
HP UFT Delphi Add-in Extensibility
For the Windows ® operating systems

Software Version: 12.00

Developer Guide

Document Release Date: March 2014

Software Release Date: March 2014



Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 1992 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Google™ andGoogleMaps™ are trademarks of Google Inc

Intel® and Pentium® are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft®, Windows®, Windows® XP, andWindows Vista ® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage
your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your
business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

Developer Guide

HP UFT Delphi Add-in Extensibility (12.00) Page 2 of 49



Contents
Contents 3

Welcome to HP UFT Delphi Add-in Extensibility 5

About the UFT Delphi Add-in Extensibility SDK 6

About the UFT Delphi Add-in Extensibility Developer Guide 7

Who Should Read This Guide 8

Unified Functional Testing Help 9

Additional Online Resources 10

Chapter 1: Developing Support for Custom Delphi Controls 11

Glossary 12

Understanding How to Create Support for a Custom Delphi Control 13

Using the Delphi Add-in Extensibility Samples 14

Designing Your Test Object Configuration XML File 16

Designing Your Toolkit Configuration XML File 19

Designing Your Delphi Extensibility Code 20

Creating Your Extensibility Code 21

Working with Published Properties to Support Test Object Methods and Identification
Properties 22

Creating Support for Custom Grid Controls 25

Mapping a Custom Grid Control to a Test Object Class 26

Developing an Agent Object to Support a Custom Grid Control 27

Instructing UFT to Treat Your Custom Grid Control as a Table 29

Step-by-Step Instructions for Supporting Custom Delphi Controls 31

Chapter 2: Deploying the Toolkit Support Set 34

About Deploying the Custom Toolkit Support 35

Placing Your XML Files in the Correct Locations 36

Compiling Your Extensibility Code 37

Modifying Deployed Support 38

Removing Deployed Support 39

Chapter 3: Understanding the Toolkit Configuration XML File Structure 40

Developer Guide
Contents

HP UFT Delphi Add-in Extensibility (12.00) Page 3 of 49



Understanding the Toolkit Configuration XML File 41

Mapping Application Controls to Test Object Classes 42

Mapping Test Object Classes to Inner Objects 43

An Example of a Complete Toolkit Configuration File 46

We appreciate your feedback! 48

Developer Guide
Contents

HP UFT Delphi Add-in Extensibility (12.00) Page 4 of 49



Welcome to HP UFT Delphi Add-in
Extensibility

HP UFT Delphi Add-in Extensibility is an SDK (Software Development Kit) package that enables
you to support testing applications that use third-party and custom Delphi controls that are not
supported out-of-the-box by the UFT Delphi Add-in.

This chapter includes:

About the UFT Delphi Add-in Extensibility SDK 6

About the UFT Delphi Add-in Extensibility Developer Guide 7

Who Should Read This Guide 8

Unified Functional Testing Help 9

Additional Online Resources 10

HP UFT Delphi Add-in Extensibility (12.00) Page 5 of 49



About the UFT Delphi Add-in Extensibility SDK
The UFT Delphi Add-in Extensibility SDK is included in the Delphi Add-in installation and provides
the following:

l An API that enables you to extend the UFT Delphi Add-in to support custom Delphi controls.

l A template that you can use when you create your extensibility code.

l The Delphi Add-in Extensibility Help, which includes the following:

n A developer guide.

n The UFT Test Object SchemaHelp.

The Help is available from Start > All Programs > HP Software > HP Unified Functional
Testing > Extensibility > Documentation

l A printer-friendly Adobe portable document format (PDF) version of the developer guide (in the <
installation>\help\Extensibility folder).

l Sample Delphi Add-in Extensibility toolkit support sets that extend UFT GUI testing support for
the following Delphi custom controls:

n TrackBar

n StringDrawGrid (a table control)

Accessing UFT Delphi Add-in Extensibility in Windows 8 Operating
Systems
UFT files that were accessible from theStartmenu in previous versions of Windows are accessible
inWindows 8 from theStart screen or theApps screen.

l Applications (.exe files). You can access UFT applications inWindows 8 directly from the
Start screen. For example, to start UFT, double-click theHP Unified Functional Testing
shortcut.

l Non-program files. You can access documentation from theApps screen.

Note: As in previous versions of Windows, you can access context sensitive help in UFT
by pressing F1, and access complete documentation and external links from theHelp
menu.

Developer Guide
Welcome to HP UFT Delphi Add-in Extensibility

HP UFT Delphi Add-in Extensibility (12.00) Page 6 of 49



About the UFT Delphi Add-in Extensibility
Developer Guide

This guide explains how to use UFT Delphi Add-in Extensibility to extend UFT GUI testing support
for third-party and custom Delphi controls.

This guide assumes you are familiar with UFT functionality, and should be used together with the
following documents:

l The API file, which contains comments and explanations. (UFT installation
folder>\dat\Extensibility\Delphi\AgentExtensibilitySDK.pas)

l The extensibility code template, which contains comments and explanations. (<UFT
installation folder>\dat\Extensibility\Delphi\ExtensibilityImplementationTemplate.pas)

l HP UFT Test Object SchemaHelp, provided in the Delphi Add-in Extensibility Help. (Start > All
Programs > HP Software > HP Unified Functional Testing > Extensibility >
Documentation > Delphi Add-in Extensibility Help)

These documents should also be used in conjunction with the following UFT documentation,
available with the UFT installation (Help > HP Unified Functional Testing Help from the UFT
main window):

l HP Unified Functional Testing User Guide

l The Delphi section of theHP Unified Functional Testing Add-ins Guide

l HP UFT Object Model Reference for GUI Testing

Note:

The information, examples, and screen captures in this guide focus specifically on working
with UFT GUI tests. However, much of the information in this guide applies equally to
business components.

Business components are part of HP Business Process Testing. For more information, see the
HP Unified Functional Testing User Guide and theHP Business Process Testing User Guide.

When working inWindows 8, access UFT documentation and other files from theApps
screen.

Developer Guide
Welcome to HP UFT Delphi Add-in Extensibility

HP UFT Delphi Add-in Extensibility (12.00) Page 7 of 49



Who Should Read This Guide
This guide is intended for programmers, QA engineers, systems analysts, system designers, and
technical managers who want to extend UFT GUI testing support for Delphi custom controls.

To use this guide, you should be familiar with:

l Major UFT features and functionality

l The UFT Object Model

l UFT Delphi Add-in

l Delphi programming

l XML (basic knowledge)

Developer Guide
Welcome to HP UFT Delphi Add-in Extensibility

HP UFT Delphi Add-in Extensibility (12.00) Page 8 of 49



Unified Functional Testing Help
The Unified Functional Testing Help provides a single-point of access for UFT documentation.

You can access the Unified Functional Testing Help by using the following:

l In UFT, select Help > HP Unified Functional Testing Help.

l In the Start menu on the UFT computer, select All Programs > HP Software > HP Unified
Functional Testing > Documentation > HP Unified Functional Testing Help.

Note:Whenworking inWindows 8, access UFT documentation and other files from the
Apps screen.

l Click in selected UFT windows and dialog boxes or press F1.

l View a description, syntax, and examples for a UFT test object, method, or property by placing
the cursor on it (in UFT) and pressing F1.

Developer Guide
Welcome to HP UFT Delphi Add-in Extensibility

HP UFT Delphi Add-in Extensibility (12.00) Page 9 of 49



Additional Online Resources
The following additional online resources are available:

Resource Description

Troubleshooting
& Knowledge
Base

The Troubleshooting page on the HP Software Support Web site where you
can search the Self-solve knowledge base. The URL for this Web site is
http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software
Support

The HP Software Support Web site. This site enables you to browse the
Self-solve knowledge base. You can also post to and search user
discussion forums, submit support requests, download patches and updated
documentation, andmore. The URL for this Web site
www.hp.com/go/hpsoftwaresupport.

l Most of the support areas require that you register as an HP Passport
user and sign in. Many also require a support contract.

l To findmore information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

l To register for an HP Passport user ID, go to:
http://h20229.www2.hp.com/passport-registration.html

HP Software
Web site

The HP SoftwareWeb site. This site provides you with themost up-to-date
information on HP Software products. This includes new software releases,
seminars and trade shows, customer support, andmore. The URL for this
Web site is www.hp.com/go/software

HP UFT Delphi Add-in Extensibility (12.00) Page 10 of 49

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software


Chapter 1: Developing Support for Custom
Delphi Controls

You can create a custom toolkit support set to extend the UFT Delphi Add-in, and teach Unified
Functional Testing (UFT) to recognize Delphi user interface controls that the Delphi Add-in does not
recognize out-of-the-box.

This chapter explains how to create support for custom Delphi user interface controls using UFT
Delphi Add-in Extensibility. It explains what files and units you have to create for the toolkit support
set, the structure and content of these files, and how to use them to enable UFT to test applications
that contain custom Delphi controls.

For information on where the toolkit support set files should be stored, and what you have to do to
activate the support you design, see "Deploying the Toolkit Support Set" on page 34.

This chapter includes:

Glossary 12

Understanding How to Create Support for a Custom Delphi Control 13

Designing Your Test Object Configuration XML File 16

Designing Your Toolkit Configuration XML File 19

Designing Your Delphi Extensibility Code 20

Creating Support for Custom Grid Controls 25

Step-by-Step Instructions for Supporting Custom Delphi Controls 31

HP UFT Delphi Add-in Extensibility (12.00) Page 11 of 49



Glossary
l Agent Object (AO). A class written in Delphi and integrated into the UFT Delphi Add-in's

precompiled agent. The Agent Object provides themethods required to support retrieving
properties and recording and running test object methods on the custom control. The Agent
Object acts as an interface between UFT and the Delphi application being tested.

l Custom toolkit. A set of custom controls for which you implement UFT support.

l Custom toolkit support set. The set of files, units and objects that you create to extend UFT
support for the controls in the custom toolkit.

l Inner test object. The StandardWindows test object class whose implementation UFT uses
for any properties or methods for which specific support is not provided by the Agent Object that
you develop.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 12 of 49



Understanding How to Create Support for a Custom
Delphi Control

You can create a custom toolkit support set to extend the UFT Delphi Add-in, and to teach UFT to
recognize Delphi user interface controls that the Delphi Add-in does not recognize out-of-the-box.

A custom toolkit support set consists of the following items:

l Required:A toolkit configuration XML file, in which youmap the custom controls to test object
classes (either existing Delphi test object classes or new ones that you define).

l Optional:A test object configuration XML file, in which you define the test object classes that
will represent your custom controls in UFT tests and components.

You do not need to define a test object class to represent a custom control if an existing Delphi
test object class has all of the necessary test object methods and identification properties.

l Optional:A Delphi unit of extensibility code, in which you develop an Agent Object for every
type of control that you want to support, as well as a factory function that creates these Agent
Objects.

You do not need to create an Agent Object for a control that can be adequately supported by
mapping to an existing Delphi test object class. You need to create an Agent Object in the
following situations:

n Youmap the custom control to a new (custom) test object class.

n Youmap the custom control to an existing test object class, but you want to override the
implementation of a test object method or provide the value of an identification property.

n You are creating support for a custom grid control.

For more information, see:

l "Designing Your Test Object Configuration XML File" on page 16

l "Designing Your Toolkit Configuration XML File" on page 19

l " Designing Your Delphi Extensibility Code" on page 20

l "Step-by-Step Instructions for Supporting Custom Delphi Controls" on page 31

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 13 of 49



Using the Delphi Add-in Extensibility Samples
The Delphi Add-in Extensibility SDK includes the following samples to help you learn about Delphi
Add-in Extensibility. You can also use the samples as a basis for your extensibility files.

l The basic Delphi Add-in extensibility sample provides a toolkit support set for the TTrackBar
control, which is not supported out-of-the-box by the Delphi Add-in. This toolkit support set
provides a comprehensive example of how to extend UFT support for a custom control.

l The Delphi Add-in grid extensibility sample provides a toolkit support set for the
TStringDrawGrid control, which is a custom grid control that inherits from the TCustomGrid
class. This toolkit support set demonstrates only how to teach UFT to treat a custom grid control
as a table. For more information, see "Creating Support for Custom Grid Controls" on page 25.

The samples are located under <UFT installation folder>\samples, in theDelphiExtSample and
DelphiGridExtSample folders. Within each of these folders, the custom control and its source
files are located in theApplication sub-folder, and the toolkit support set files (configuration files
and extensibility unit) are located in the ToolkitSupportSet sub-folder.

You can use these samples in the following ways:

l Study the content of the toolkit support set files to gain a better understanding of how to develop
your own toolkit support sets.

l Copy the toolkit support set files (or parts of them) and use them as a basis for designing your
toolkit support sets.

l Learn how extensibility can affect UFT's interaction with custom controls. To do this, create and
run a UFT test on the sample custom control before and after deploying the sample toolkit
support set to UFT. The procedure described below guides you through this process for the
TTrackBar sample. You can perform a similar procedure using the TStringDrawGrid sample.

To analyze how the TTrackBar extensibility sample affects UFT's
interaction with the TTrackBar custom control:

1. Use the UFT Object Spy to see how UFT recognizes the TTrackBar control. Create and run a
simple test on the control.

You can see that UFT uses a generic DelphiObject test object to represent the track bar
control. To set the location of the thumb on the track bar, youmust useClick, Drag, andDrop
operations.

2. Deploy the toolkit support set for the TTrackBar control according to the instructions in
"Deploying the Toolkit Support Set" on page 34.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 14 of 49



3. Use the UFT Object Spy to see how UFT recognizes the TTrackBar control now that the
extensibility support is enabled. Create and run a simple test on the control.

You can see that with extensibility support enabled, UFT uses aDelphiTrackBar test object
(and a customized icon) to represent the control. TheDelphiTrackBar test object supports the
Set, Next, andPrev operations for modifying the location of the thumb on the track bar. In
addition, when you drag the track bar thumb during a recording session, UFT records test steps
with theSet operation.

To open the Delphi Add-in grid extensibility sample project in Delphi
Studio:
The Delphi Add-in grid extensibility sample project, DelphiGridExtSample, references the
TStringDrawGrid custom control. Therefore, to successfully openDelphiGridExtSample in
Delphi Studio, youmust first register TStringDrawGrid in Delphi Studio.

To do this, perform the following steps:

1. In Delphi Studio, select Component > Install Component. The Install Component dialog box
opens.

2. In theUnit file name box, specify the full path for theStringDrawGrid.pas file. The file is
located in: <UFT installation folder>\samples\DelphiGridExtSample\Application.

3. Click OK. If confirmation or information dialog boxes open, click Yes and/orOK, as necessary.

The Package dialog box opens.

Note: If Delphi Studio displays theStringDrawGrid.pas file for editing at this point
instead of opening the Package dialog box, repeat these steps to start again.

4. Click Compile.

5. Close the Package dialog box, and click Yes in the save confirmation box that opens.

6. OpenDelphiGridExtSample.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 15 of 49



Designing Your Test Object Configuration XML File
In this file, you define any custom test object classes that you want UFT to use to represent your
custom controls in tests and components. Define a test object class for each custom control that
cannot be adequately represented by an existing Delphi test object class.

In a test object configuration XML, you define the test object classes (for example, the test object
methods they support, their identification properties, and so on).

You can also create a definition for an existing test object class in the test object configuration
XML. This definition is added to the existing definition of this test object class, affecting all test
objects of this class. It is therefore not recommended tomodify existing test object classes in this
way. For example:

l If you add a test object method, it appears in the list of test object methods in UFT, but if you use
the test object method in a test, and it is not implemented for the specific object, a run-time error
occurs.

If you add test object methods to existing test object classes, youmight add a prefix to the
method name that indicates the toolkit support for which you added themethod (for example,
CustomButtonClick, CustomEditSet). This enables test designers to easily identify the
custommethods and use them in test steps only if they know that the custommethod is
supported for the specific object.

l If you add an identification property, it appears in UFT in the list of properties for all test objects
of this class, but has no value unless it is implemented for the specific supported object.

In the test object configuration XML file, you create aClassInfo element for each test object class
that you want to define. In addition, you define the name of the environment or custom toolkit for
which the test object classes are intended (in thePackageName attribute of the TypeInformation
element), and the UFT add-in which these test object classes extend (in theAddinName attribute
of the TypeInformation element).

If the relevant add-in is not loaded when UFT opens, UFT does not load the information in this XML.
Similarly, if the name of the environment or custom toolkit is displayed in the Add-in Manager dialog
box and its check box is not selected, the information in this XML is not loaded.

To ensure the structural correctness of your test object configuration file, you can validate it against
theClassesDefintions.xsd file. This file is installed with UFT, in the <UFT installation
folder>\dat folder. (For backward compatibility reasons, UFT still supports certain XML structures
that do not pass validation against this XSD.)

For information on the structure and syntax of this XML, see the UFT Test Object SchemaHelp,
available in the UFT Delphi Add-in Extensibility Help (DelphiExtensibility.chm Help file in the
<UFT installation folder>\help\Extensibility folder).

The sections below describe the information that you can include in a test object class definition.

Class Name and Base Class
The name of the new test object class and its attributes, including the base class—the test object

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 16 of 49



class that the new test object class extends. A new test object class extends an existing
DelphiUFT test object class, directly or indirectly. The base class may be a class delivered with
UFT or a class defined using Delphi Add-in Extensibility.

By default, the base class is DelphiObject.

The test object class namemust be unique among all of the environments whose support a UFT
user might load simultaneously. For example, when defining a new test object class, do not use
names of test object classes from existing UFT add-ins, such as DelphiButton, DelphiEdit, and so
on.

Note: A test object class inherits the base class' test object operations (methods and
properties), generic type, default operation, and icon. Identification properties are not inherited.

Generic Type
The generic type for the new test object class, if you want the new test object class to belong to a
different generic type than the one to which its base class belongs. (For example, if your new test
object class extends DelphiObject (whose generic type is object), but you would like UFT to group
this test object class with the edit test object classes.)

Generic types are used when filtering objects (for example, in the StepGenerator's Select Object
for Step dialog box and when addingmultiple test objects to the object repository). Generic types
are also used when creating documentation strings for the Documentation column of the Keyword
View (if they are not specifically defined in the test object configuration file).

Test Object Operations
A list of operations for the test object class, including the following information for each operation:

l The arguments, including the argument type (for example, String or Integer), direction (In or
Out), whether the argument is mandatory, and, if not, its default value.

l The operation description (shown in the Object Spy and as a tooltip in the Keyword View and
StepGenerator).

l The Documentation string (shown in theDocumentation column of the Keyword View and in
the StepGenerator).

l The return value type.

l A context-sensitive Help topic to open when F1 is pressed for the test object operation in the
Keyword View or Editor, or when theOperation Help button is clicked for the operation in the
StepGenerator. The definition includes the Help file path and the relevant Help ID within the file.

Default Operation
The test object operation that is selected by default in the Keyword View and StepGenerator when
a step is generated for an object of this class.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 17 of 49



Identification Properties
A list of identification properties for the test object class. You can also define:

l The identification properties that are used for the object description.

l The identification properties that are used for smart identification. (This information is relevant
only if smart identification is enabled for the test object class. To enable smart identification, use
the Object Identification dialog box in UFT.)

l The identification properties that are available for use in checkpoints and output values.

l The identification properties that are selected by default for checkpoints (in the UFT Checkpoint
Properties dialog box).

Icon File
The path of the icon file to use for this test object class. (Optional. If not defined, the base class'
icon is used.) The file can be a .dll, .exe, or .ico file.

Help File
A context-sensitive Help topic to open when F1 is pressed for the test object in the Keyword View
or Editor. The definition includes the .chm Help file path and the relevant Help ID within the file.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 18 of 49



Designing Your Toolkit Configuration XML File
In this file you define two types of mapping:

l Mapping application controls to test objects. Youmap the custom controls in your Delphi
application to the Delphi test object classes that should represent them in UFT tests and
components. You canmap custom controls to new Delphi test object classes that you define in
the test object configuration file or to existing Delphi test object classes.

Use new Delphi test object classes, if you want to customize the test object name, description
(the set of properties UFT uses to identify the object in the application), or any properties and
methods that are specific to your control.

Note: If you want to customize only how a certain test object method is performed on the
control (and not themethod syntax), you canmap the control to the existing test object
class. You can override the test object method implementation in the Agent Object that you
develop.

The same is true for identification properties—if a test object class includes an identification
property that is relevant for your control but UFT does not retrieve its value, you can design
your Agent Object to provide the necessary value. For more information, see "Creating Your
Extensibility Code" on page 21.

l Mapping custom test object classes to inner objects. Youmap the test object classes that
you defined in the test object configuration file (if any) to existing UFT StandardWindows test
object classes that serve as inner objects. UFT uses the inner object's implementation for any
properties or methods for which specific support is not provided by the Agent Object that you
develop.

Mapping your new Delphi test object classes to inner objects enables you to take advantage of
existing UFT GUI testing support for commonmethods and properties. This can be helpful, for
example, when creating support for subclassed StandardWindows controls such as TListView.
For a list of existing StandardWindows test object classes, see theHP UFT Object Model
Reference for GUI Testing.

In some dialog boxes, UFT displays a list of available test object classes per environment (for
example, in the Define New Test Object dialog box, the Object Identification dialog box, and the
StepGenerator). If you want UFT to display your custom Delphi test object classes in these dialog
boxes, youmust define this in the toolkit configuration file as well.

For information on the structure and syntax of this XML, see "Understanding the Toolkit
Configuration XML File Structure" on page 40.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 19 of 49



Designing Your Delphi Extensibility Code
The Delphi unit that you develop for extensibility must include the following items:

l One ormore Agent Objects; one Agent Object for each type of control that you want to support.
The Agent Objects interface between UFT and the Delphi controls in the application being
tested.

l One factory function that creates the appropriate Agent Object for each control. When UFT first
interacts with a control, it calls the factory function to create the corresponding Agent Object.

For some custom controls, mapping the control to an existing Delphi test object class might provide
sufficient support. In such cases, you do not have to design an Agent Object for the control.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 20 of 49



Creating Your Extensibility Code
To create the extensibility Delphi unit that you develop to support your custom controls, use the
template unit provided with the Delphi Add-in: <UFT installation folder>\dat\
Extensibility\Delphi\ExtensibilityImplementationTemplate.pas

In your extensibility code youmust do the following:

l Import and use the AgentExtensibilitySDK unit provided with the UFT Delphi Add-in: <UFT
installation folder>\dat\ Extensibility\Delphi\AgentExtensibilitySDK.pas

l Design an Agent Object for each type of control that you want to support. The Agent Object
must inherit from TMicAO or one of the other Agent Object base classes defined in the Delphi
Add-in Extensibility SDK. In the Agent Objects, develop published properties that support the
test object methods and identification properties required for your controls. For more information,
see "Working with Published Properties to Support Test Object Methods and Identification
Properties" on the next page.

l Create a factory function that receives an object reference of a Delphi user interface control and
returns a new Agent Object. The factory functionmust be able to recognize the custom controls
for which you are creating support, and create the appropriate Agent Object.

l In the initialization section of your extensibility unit, call theAddExtensibilityServer API
function to register your factory function to the Delphi Add-in.

For more information, see <UFT installation
folder>\dat\Extensibility\ Delphi\AgentExtensibilitySDK.pas.

Before you can run the support that you develop, youmust compile the Delphi application you are
testing with the extensibility unit you designed and with the Delphi Add-in precompiled agent. For
more information, see "Deploying the Toolkit Support Set" on page 34.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 21 of 49



Working with Published Properties to Support Test
Object Methods and Identification Properties

UFT interacts with the application's controls by setting and retrieving the published properties
provided by the Agent Object and the control itself. UFT first accesses the published properties of
the Agent Object and then, if necessary, the published properties of the Delphi object.

When you develop your Agent Object, design published properties to support the identification
properties and test object methods that you defined in the test object configuration file. For
example, you can create published properties in your Agent Object to enable access to (public)
unpublishedmember variables of the control.

The following reserved properties are used for the implementation of recording and running tests
and components:

l __QTPReplayMtd_

Use this prefix for all Agent Object properties designed to implement running UFT test object
methods.

l __CellRect, __CellData, and __TableContent

These properties are used to implement support for grid objects. For more information, see
"Creating Support for Custom Grid Controls" on page 25.

l __QTPRecording

This property is used to implement support for the UFT recording capability. For more
information, see "Supporting the UFT Recording Capability" on the next page.

The implementation for recording and running tests and components is described in the following
sections.

Supporting Identification Properties
For each identification property that you want to support, make sure there is a published property
with the same name in the Delphi control or the Agent Object.

Note: UFT uses only lowercase letters in identification property names. Therefore, the names
of published properties that support identification properties must contain only lowercase
letters (even if the identification property name in the test object configuration file contains
uppercase letters).

A UFT user can access the published properties of the Agent Object and the Delphi control using
theGetROProperty andSetROPropertymethods. In addition, these published properties can be
verified using checkpoints in a UFT test and viewed in the Object Spy.

If a property name begins with a double underscore ('__'), it is not displayed in the Object Spy and
cannot be accessed by checkpoints or output values. Such hidden properties can be accessed by

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 22 of 49



the GetROProperty and SetROProperty test object methods, and can be accessed directly in user
defined functions created in UFT.

Supporting Test Object Methods
For each test object method that you want to support, create a published property named
__QTPReplayMtd_<Test Object Method Name> in the Agent Object. For example, a published
property named __QTPReplayMtd_MyTOMethod provides the implementation for running the
MyTOMethod test object method.

Supporting the UFT Recording Capability
An Agent Object must implement the __QTPRecording published property to support the UFT
recording capability.

During a recording session, when an event occurs on a custom Delphi control, UFT sends the
Windows message to the Agent Object and queries the __QTPRecording property to retrieve the
corresponding line to add to the test or component.

In most cases, you do not have to implement this property in your extensibility code. If you want to
create an Agent Object that supports recording, have your Agent Object inherit from the
TMicRecordableAO base class.

The TMicRecordableAO agent object base class implements __QTPRecording to perform the
following:

1. Process the parameters passed by UFT.

2. Call theProcessMessage function to determine what step to record for the event that occurred
(and the recordingmode).

3. Convert the recording information to the format required by UFT.

In the Agent Object that you develop, you need only implement theProcessMessage function.

When UFT accesses the __QTPRecording property, it passes the window message
parameters and window handle to the Agent Object, and expects in return, an array (of type
safearray) that contains the recorded step information (the operation and its arguments) and the
recordingmode. For more information on recordingmodes, see <UFT installation
folder>\ dat\Extensibility\Delphi\AgentExtensibilitySDK.pas.

Input parameters:

Parameter Index Value Type Description

0 VT_I4 Window handle

1 VT_I4 Message

2 VT_I4 IParam

3 VT_I4 wParam

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 23 of 49



Output safearray format:

Parameter Index Value Type Description

0 VT_I4 Recordingmode

1 VT_BSTR Test object method to record

2..end Test object method arguments

Note: If you create a custom test object class to support the custom control, you can use
theExtObjRecFilter attribute in the toolkit configuration file to specify the level of events
that trigger recording. For more information, see "Mapping Test Object Classes to Inner
Objects" on page 43.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 24 of 49



Creating Support for Custom Grid Controls
To create support for a custom grid control you need tomap the control to an appropriate test object
class, develop an Agent Object that implements the support, and (optionally) instruct UFT to treat
the control as a table.

A sample toolkit support set, which provides support for a custom grid control (TStringDrawGrid),
is located in the <UFT installation folder>\ samples\DelphiGridExtSample folder. After reading
this section, you can use the sample to gain a better understanding of how to create support for
custom grid controls. For more information, see "Using the Delphi Add-in Extensibility Samples" on
page 14.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 25 of 49



Mapping a Custom Grid Control to a Test Object Class
You canmap the custom grid control to the DelphiTable test object class, or to a custom grid test
object class that you define in the test object configuration file.

If youmap the custom grid control to the DelphiTable test object class, you do not have to create
any of the definitions described in "Instructing UFT to Treat Your Custom Grid Control as a Table "
on page 29.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 26 of 49



Developing an Agent Object to Support a Custom Grid
Control

The Agent Object must provide support for all of the test object methods and identification
properties defined in the test object class mapped to the grid control. These include grid operations
such as SetCellData andGetCellData, and any other methods and properties that you define in the
test object class.

The UFT Delphi Add-in provides a test object extension (Mercury.DelphiTableSrv) that
implements much of the design required to support grid controls.

This extension implements basic grid operations likeSetCellData, GetCellData, SelectCell, and
so on. The extension delegates these test object methods to the Agent Object using the
__CellRect, __CellData, __TableContent, RowCount, andColCount published properties.

To create support for a custom grid control, youmust design an Agent Object that inherits from
TMicGridAOBase or TCustomGridAOBase and implements these published properties. (For
more information about the TMicGridAOBase or TCustomGridAOBase base classes, see <UFT
installation folder>\dat\Extensibility\Delphi\AgentExtensibilitySDK.pas.)

In addition, youmust instruct UFT to use the grid test object extension to support your custom grid.
For more information on how to do this, see "Instructing UFT to Treat Your Custom Grid Control as
a Table " on page 29.

Note: If youmap the custom control to a custom test object class, design the Agent Object to
support any additional test object methods and identification properties defined in the test
object class.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 27 of 49



Implementing the Published Properties for Supporting a
Grid

The support that you develop for a custom grid control is based on the Delphi Add-in grid test object
extension. Therefore, youmust implement the following published properties in your Agent Object:

l __CellRectmust return the rectangle at which the cell is located, in the format:
x;y;width;height;;where x and y are the coordinates of the top left corner of the rectangle.

l __CellData is used to set and retrieve the value contained in a cell (in String format). The
TMicGridAOBase agent object base class implements this property to call the abstract
functions GetCellDataEx andSetCellDataEx. Implement these functions in the derived class
that you design for your Agent Object.

l __TableContent is used to write the content (data) of the whole table to the specified file and
return true or false indicating success or failure. The file is specified in the parameter passed
to the Agent Object from UFT. Write the table content to the file in string format, with tabs
separating cell data and new-line characters separating rows.

The grid test object extension uses this property to support table checkpoints. The
TMicGridAOBase agent object base class implements this property to call the abstract
CaptureTableEx function. Implement this function in the derived class that you design for your
Agent Object.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 28 of 49



Instructing UFT to Treat Your Custom Grid Control as a
Table

Note: For custom grid controls mapped to the DelphiTable test object class, you do not have to
create any of the definitions described in this section.

In the toolkit configuration XML file, define the following:

l Instruct UFT to use the Delphi Add-in grid test object extension to support your custom grid
control (or all controls mapped to a specific custom grid test object class).

l If you defined a custom grid test object class (in the test object configuration file), instruct UFT
to treat this type of test object as a table test object when creating checkpoints and output
values.

To instruct UFT to use the grid test object extension for this type of
control:
Add the following definitions to your toolkit configuration XML file (bold text represents the lines
you need to add):

<MicTest>
<Key Name="Packages">

<Key Name="DelphiPackage">
<Key Name="CustomServers">

<Key Name="TCustomGridNativeClass">
<Value Name="CustReplayProgID"

Type="BSTR"> Mercury.DelphiTableSrv
</Value>

</Key>
</Key>

</Key>
</Key>

...
</MicTest>

l Replace TCustomGridNativeClasswith the window class name of the grid control for which
you are developing support.

l Within theKey element whereName="CustomServers", create a separateKey value for each
custom grid class that you want to support.

Alternatively, you could create a singleKey element to instruct UFT to use the grid test object
extension for all custom controls mapped to a certain custom test object class. To do this, replace
TCustomGridNativeClass in the section above with the name of the custom grid test object class,
prefixed with the string MC2CSMapping_ (for example, MC2CSMapping_DelphiCustomTable).

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 29 of 49



To instruct UFT to treat this type of test object as a table test object when
creating checkpoints and output values:
Add the following definitions to your toolkit configuration file in the section that you create tomap
your custom test object class to an inner objects (bold text represents the lines you need to add):

<MicTest>
...

<Key Name="Test Objects">
<Key Name="TheDelphiCustomTestObject you are mapping">

...
<!-- enables table checkpoint and output value -->
<Key Name="CustomStepCfg">

<Value Name="Checkpoint" Type="BSTR">Mercury.MultiVerUI</Value>
<Value Name="Output Value" Type="BSTR">Mercury.MultiVerUI</Value>

</Key>
<!-- Enables use of the Define/Modify Row Range dialog box -->
<Key Name="CustomStepCfgDlg">

<Value Name="Checkpoint" Type="BSTR">
Mercury.TableTOConcigUI

</Value>
<Value Name="Output Value" Type="BSTR">

Mercury.TableTOConcigUI
</Value>

</Key>
</Key>

</Key>
</MicTest>

If you definemore than one custom Delphi grid test object class, add these definitions within the
Key element that you define for each of the relevant test object classes.

This instructs UFT to use the Table Checkpoint Properties and Table Output Value Properties
dialog boxes for this type of test object.

For information on the structure and syntax of the toolkit configuration XML, see "Understanding the
Toolkit Configuration XML File Structure" on page 40.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 30 of 49



Step-by-Step Instructions for Supporting Custom
Delphi Controls

This section guides you through the process of creating a UFT Delphi Add-in Extensibility toolkit
support set.

Note: In some cases, it is sufficient to map your custom control to an existing Delphi test
object class. In this case, create and deploy the toolkit configuration file as described in the
procedure below, but compile the application you are testing with theMicDelphiAgent.pas
module, as described in the Delphi section of theHP Unified Functional Testing Add-ins Guide.

In other cases, mapping the custom control to an existing test object class does not provide
adequate support, even though the test object class includes all of the necessary test object
methods and identification properties. In these cases, you do not need to create a new test
object class to support the custom control (steps 3 and 4), but you do need to create a Delphi
extensibility unit that supports the test object methods and properties (steps 6 to 9).

To create the support set for your custom control:

1. Create your toolkit configuration file
a. Decide which test object classes will represent your custom controls in UFT tests and

components. You canmap your custom controls to existing Delphi test objects classes, or
to custom test object classes that you define later in this task.

b. Decide which custom test object classes you will create to represent your custom controls
(if any), and which existing StandardWindows test object classes will serve as their inner
objects.

c. Copy the sample toolkit configuration file, <UFT installation folder>\
samples\DelphiExtSample\ToolkitSupportSet\TrackerSampleToolkitCfg.xml, to
create your toolkit configuration file. For information on the structure and syntax of this
XML, see "Understanding the Toolkit Configuration XML File Structure" on page 40.

d. For each custom control that you want to support, make a copy of theValue element that
maps the TTrackBar custom control to the custom test object class DelphiTrackBar.
Replace TTrackBar andDelphiTrackBarwith the appropriate names.

e. For each custom test object class that you create (if any), make a copy of theKey element
that contains the settings for theDelphiTrackBar custom test object class. Replace the
test object name, the InnerProgId, and the InnerMicClass values, with the appropriate
test object names.

Note: Youmust select an inner object that matches the functionality of the control you
are supporting. In most cases, the inner object should be a generic test object class

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 31 of 49



likeWinObject. You can use amore specific test object class when you are sure that
it is appropriate for the type of control you are supporting (for example, you can use the
WinListView test object as an inner object when creating support a control that
subclasses TListView).

In order to verify that the test object class you are using for an inner object is
appropriate, use the UFT Object Mapping dialog box tomap this test object class to
your control and ensure that you can successfully use the Object Spy on your control.

For more information on theObject Mapping dialog box, see theHP Unified Functional
Testing User Guide.

2. Deploy your toolkit configuration file
Copy the toolkit configuration XML file to the <UFT installation folder>\ dat\Settings folder.

3. Create your test object configuration file
If all of your custom controls aremapped to existing Delphi test object classes, skip to
verifying the test object class mapping.

Otherwise, create a test object configuration XML file in which you define your custom test
object classes. Define description properties, identification properties, and test object methods
for each custom test object class. For more information, see "Designing Your Test Object
Configuration XML File" on page 16.

4. Deploy your test object configuration file
If you created a test object configuration XML file, copy it to the <UFT installation
folder>\dat\Extensibility\Delphi folder.

5. Verify the test object class mapping
OpenUFT, open aGUI test, andmake sure that:

n When you use theObject Spy, UFT recognizes your custom controls correctly.

n WhenUFT learns your custom controls, the corresponding test objects are added to the
Object Repository.

Note: If mapping your custom control to an existing Delphi test object provides
sufficient support for creating and running tests and components on this control, you do
not need to perform any of the remaining steps in this procedure.

6. Create a basic extensibility Delphi unit
Create your extensibility code using the Agent Object Implementation Template <UFT
installation folder>\dat\Extensibility\Delphi\ ExtensibilityImplementationTemplate.pas.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 32 of 49



Define some visible published properties in the Agent Object.

7. Compile your extensibility code
Compile the application you are testing with the UFT Delphi Add-in precompiled agent and with
your extensibility unit. To do this, perform the procedure described in "Compiling Your
Extensibility Code" on page 37.

8. Verify the functionality of your extensibility code
Run your Delphi application and verify that your Agent Object is functioning correctly by testing
that you can use the UFT Object Spy to view the properties that you defined when you created
a basic extensibility Delphi unit.

9. Complete the development of your extensibility Delphi unit
Implement the rest of the Agent Object's published properties to support the identification
properties and test object methods that you defined in the test object configuration file.

Developer Guide
Chapter 1: Developing Support for Custom Delphi Controls

HP UFT Delphi Add-in Extensibility (12.00) Page 33 of 49



Chapter 2: Deploying the Toolkit Support Set
The final stage of extending UFT GUI testing support for a custom toolkit is deploying the toolkit
support set. This means enabling UFT to use the toolkit support set that you developed to
recognize the controls in the toolkit and run tests on them.

While you are developing the toolkit support set, deploying it to UFT enables you to test and debug
the support that you create. After the toolkit support set is complete, you can deploy it on any
computer with UFT installed, to extend the UFT Delphi Add-in.

This chapter includes:

About Deploying the Custom Toolkit Support 35

Placing Your XML Files in the Correct Locations 36

Compiling Your Extensibility Code 37

Modifying Deployed Support 38

Removing Deployed Support 39

HP UFT Delphi Add-in Extensibility (12.00) Page 34 of 49



About Deploying the Custom Toolkit Support
To deploy a UFT Delphi Add-in Extensibility toolkit support set, youmust place the XML files that
you created in the correct locations on a computer with UFT installed, and compile the application
you are testing with the UFT Delphi Add-in precompiled agent and with the extensibility unit that
you developed.

For more information, see:

l "Placing Your XML Files in the Correct Locations" on the next page

l "Compiling Your Extensibility Code" on page 37

From the UFT user's perspective, after you deploy the toolkit support set on a computer on which
UFT is installed, the Delphi Add-in recognizes your custom controls just as it recognizes any other
Delphi object.

Developer Guide
Chapter 2: Deploying the Toolkit Support Set

HP UFT Delphi Add-in Extensibility (12.00) Page 35 of 49



Placing Your XML Files in the Correct Locations
To deploy the toolkit support set that you create, youmust place the XML files in specific locations
within the UFT installation folder. The following table describes the appropriate location for each of
the toolkit support files:

File Location

Test Object Configuration
file

l <UFT installation folder>\dat\Extensibility\ Delphi

l <UFT Add-in for ALM installation
folder>\dat\Extensibility\
Delphi(Optional. Required only if UFT Add-in for ALM is
installed)

Toolkit Configuration file <UFT installation folder>\dat\Settings

Icon files for custom test
object classes (optional)

The file can be a .dll or .ico file, located on the computer on which
UFT is installed, or in an accessible network location.

Recommended location: <UFT installation
folder>\dat\Extensibility\Delphi\Toolkits\ <custom toolkit
name>\res

Specify the location in the test object configuration file.

Help files for the test
object classes (optional)

Must be a .chm file, located on the computer on which UFT is
installed.

Recommended location: <UFT installation
folder>\dat\Extensibility\Delphi\Toolkits\ <custom toolkit
name>\help

Specify the location in the test object configuration file.

Note: In the test object configuration file, you can specify these locations using relative paths.
For more information, see theUFT Test Object SchemaHelp (available with the Delphi Add-in
Extensibility Help).

Developer Guide
Chapter 2: Deploying the Toolkit Support Set

HP UFT Delphi Add-in Extensibility (12.00) Page 36 of 49



Compiling Your Extensibility Code
If you developed an extensibility Delphi unit, youmust compile the application you are testing with
the UFT Delphi Add-in precompiled agent and with your extensibility unit.

To do this, perform the following steps:

1. Add the <UFT Installation folder>\dat\Extensibility\Delphi folder to the search path of the
application's project or copy the contents of the <UFT Installation
folder>\dat\Extensibility\Delphi folder to the project folder.

2. AddMicDelphiAgent to theUses section of your application's project file.

3. If your application includes the TwwDBGrid from InfoPower, addMicWWSupport to the
Uses section of your application's project file afterMicDelphiAgent.

4. Add the location of your extensibility code to the search path of the application's project or
place your file in the project folder.

5. Add the name of your extensibility unit to theUses section of your application's project file.

6. Compile the Delphi application project.

Developer Guide
Chapter 2: Deploying the Toolkit Support Set

HP UFT Delphi Add-in Extensibility (12.00) Page 37 of 49



Modifying Deployed Support
If youmodify the extensibility Delphi unit you developed, youmust recompile the application you
are testing (with the UFT Delphi Add-in precompiled agent and with the extensibility unit that you
developed) and re-run the Delphi application for the changes to take effect.

If youmodify the XML files of a deployed toolkit support set, youmust close and reopen UFT for the
changes to take effect.

Developer Guide
Chapter 2: Deploying the Toolkit Support Set

HP UFT Delphi Add-in Extensibility (12.00) Page 38 of 49



Removing Deployed Support
If you want to remove support for a custom toolkit from UFT after it is deployed, youmust delete its
toolkit configuration file from: <UFT installation folder>\dat\Settings and compile the application
you are testing without the extensibility Delphi unit you developed.

If none of the test object class definitions in a test object configuration file are used to represent any
custom controls (meaning they are no longer needed), you can delete the file from: <UFT
installation folder>\dat\Extensibility\Delphi (and <UFT Add-in for ALM
installation folder>\dat\Extensibility\Delphi if relevant).

Developer Guide
Chapter 2: Deploying the Toolkit Support Set

HP UFT Delphi Add-in Extensibility (12.00) Page 39 of 49



Chapter 3: Understanding the Toolkit
Configuration XML File Structure

A Delphi toolkit support set must include a toolkit configuration file that maps your custom Delphi
controls to the test object classes that represent and support them in UFT.

This chapter includes:

Understanding the Toolkit Configuration XML File 41

Mapping Application Controls to Test Object Classes 42

Mapping Test Object Classes to Inner Objects 43

An Example of a Complete Toolkit Configuration File 46

HP UFT Delphi Add-in Extensibility (12.00) Page 40 of 49



Understanding the Toolkit Configuration XML File
In the toolkit configuration XML file, youmust define two types of mapping, as described in
"Designing Your Toolkit Configuration XML File" on page 19:

l Mapping application controls to test object classes

l Mapping custom test object classes to inner objects

The root element of the toolkit configuration XML file is aMicTest element, whichmust contain two
Key elements, each with different Name attributes (Packages and Test Objects):

<?xml version="1.0"?>
<MicTest>
  <Key Name="Packages">
...
  </Key>
  <Key Name="Test Objects">
...
  </Key>
</MicTest>

The twoKey elements within theMicTest element divide the XML file into two sections, each used
for a different type of mapping:

l Within theKey element whereName="Packages", youmap application controls to test objects.

This is also the section in which you canmap a custom grid control (or a custom grid test object
class) toMercury.DelphiTableSrv, if you want to use the built-in grid test object extension.
This built-in extension implements much of the design required to support grid controls. For more
information, see "Creating Support for Custom Grid Controls" on page 25.

l Within theKey element whereName="Test Objects", youmap custom test object classes to
inner objects.

This is also the section in which you set additional settings for custom test object classes, such
as instructing UFT to display them in certain dialog boxes or to treat them as tables when
creating checkpoints.

For information on the structure and syntax of each of these sections, see:

l "Mapping Application Controls to Test Object Classes" on the next page

l "Mapping Test Object Classes to Inner Objects" on page 43

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 41 of 49



Mapping Application Controls to Test Object
Classes

Within theMicTest root element of the toolkit configuration XML file, under theKey element where
Name="Packages", create a structure similar to the following:

<?xml version="1.0"?>
<MicTest>
<Key Name="Packages">
<Key Name="DelphiPackage">
<Key Name="ClassPatterns">

<!-- One Value element for each custom control that you -->
<!-- want to map. This example shows the mapping for the -->
<!-- TStringDrawGrid custom control. -->
<Value Name="TStringDrawGrid" Type="BSTR">DelphiCustomTable</Value>

</Key>
<Key Name="CustomServers">
<!-- One Key element for each custom grid control that you want -->
<!-- to support. This example shows the definition for the -->
<!-- TStringDrawGrid custom control. -->
<Key Name="TStringDrawGrid">

<Value Name="CustReplayProgID" Type="BSTR"> Mercury.DelphiTableSrv
</Value>

</Key>
</Key>

</Key>
</Key>

...
</MicTest>

Within theKey element whoseName attribute is DelphiPackage, create a ClassPatterns Key
element and, optionally, a CustomServers Key element.

The ClassPatterns Key Element
Within theKey element whoseName attribute is ClassPatterns, define oneValue element for
each type of custom control that you want to support.

In eachValue element:

l TheName attribute contains the window class name of your custom control.

l The Type attribute is set to BSTR.

l The element value contains the name of the custom Delphi test object class that UFT should
use to represent the control in tests and components.

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 42 of 49



The CustomServers Key Element
If you are creating support for custom grid controls, create aKey element whoseName attribute is
CustomServers. Within this Key attribute, define oneKey element for each custom grid control that
you want to support.

TheKey element for each custom grid control contains:

l A Name attribute that contains the window class name of your custom control.

l The followingValue element:

<Value Name="CustReplayProgID" Type="BSTR"> Mercury.DelphiTableSrv </Valu
e>

Alternatively, you could create a singleKey element (within the CustomServers Key element) to
instruct UFT to use the grid test object extension for all custom controls mapped to a certain
custom test object class. To do this, set theName attribute of theKey element to
MC2CSMapping_<custom grid test object class name>.

For more information on supporting custom grid controls, see "Creating Support for Custom Grid
Controls" on page 25.

Mapping Test Object Classes to Inner Objects
Within theMicTest root element of the toolkit configuration XML file, under theKey element where
Name="Test Objects", you define oneKey element for each custom Delphi test object class that
you want to map.

TheName attribute of this Key element must contain the name of the custom Delphi test object
class. For example, the excerpt below is part of the test object configuration file that maps the
DelphiTrackBar test object class to theWinObject test object class that serves as its inner
object:

<?xml version="1.0"?>
<MicTest>
...
  <Key Name="Test Objects">
    <!-- mapping for DelphiTrackBar -->
    <Key Name="DelphiTrackBar">
...
    </Key>
  </Key>
</MicTest>

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 43 of 49



Within theKey element for each custom Delphi test object class define the followingValue
elements:

Name Attribute
Type
Attribute

Element
Use Element Value

BottomLevelObject I4 Optional Specifies whether test objects of this type can
contain other objects.

Possible values:

l 0: Test object is not a bottom-level object. It can
contain child objects. (Default)

l 1: Test object is a bottom-level object. It cannot
contain child objects.

CLSID BSTR Required Required value: {A990252E-48C1-4d6c-9B55-
4701BC29919C}

(Default) BSTR Required The name of the custom Delphi test object class
that you want to map.

ExtObjRecFilter I4 Optional Specifies whichWindows messages UFT passes
to the Agent Object for recording.

Possible values:

l 0:Only messages addressed to the control's
window are passed to the Agent Object for
recording. (All other messages are ignored.)

l 1:All Windows messages are passed to the
Agent Object for recording.

l 2:Only messages addressed to the control or its
children are passed to the Agent Object for
recording. (All other messages are ignored.)

If this element is not defined, all recording is
handled by the inner object.

InnerMicClass BSTR Required The name of the existing StandardWindows test
object class that you want to use as the inner
object.

For a list of available test object classes, see the
Standard Windows section of theHP UFT Object
Model Reference for GUI Testing.

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 44 of 49



Name Attribute
Type
Attribute

Element
Use Element Value

InnerProgId BSTR Required Mercury.<InnerMicClass>

Exceptions: For the following InnerMicClass
values, set InnerProgId as specified below:

Window—Mercury.StdWindow

Dialog—Mercury.WinDialog

Static—Mercury.WinStatic

Desktop—Mercury.MicDesktop

tag query name BSTR Required Required value: delphi_name

Additional Definitions Within the Test Objects Key Element
This section describes additional optional elements that you can define within theKey element
defined for each custom Delphi test object class:

l In some dialog boxes, UFT displays a list of available test object classes per environment (for
example, the Define New Test Object dialog box, the Object Identification dialog box, and the
StepGenerator dialog box). If you want UFT to display your custom Delphi test object classes in
these dialog boxes, youmust add the following lines in theKey element for each custom Delphi
test object class:

<Key Name="Info">
<Value Name="package" Type="BSTR">DelphiPackage</Value>

</Key>

l If you want UFT to treat your custom Delphi test object class as a grid (table), youmust add
additional elements within theKey element that you define for this test object class. For more
information, see "Instructing UFT to Treat Your Custom Grid Control as a Table " on page 29. To
instruct UFT to treat this type of test object as a table test object when creating checkpoints and
output values.

l The Checkpoint Properties dialog box in UFT includes aCheckpoint timeout value (in
seconds). You can customize the default checkpoint timeout value that is used when creating
new checkpoints on your custom test object class. (Otherwise the default is 0). To set the
default checkpoint timeout value, add an additional Key element, like the one below, within the
Key element defined for your custom Delphi test object class. Replace the number 10 in these
lines with the default you want UFT to use:

<Key Name="CheckpointTimeout">
  <Value Name="DefaultTimeout" Type="I4">10<!--0xA--></Value>
</Key>

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 45 of 49



An Example for the Test Objects Key Element
The example below shows the entireKey element defined tomap theDelphiTrackBar test object
class to the existingWinObject test object class:

<?xml version="1.0"?>
<MicTest>
...

<Key Name="Test Objects">
<!-- The mapping definitions for the DelphiTrackBar test object -->
<Key Name="DelphiTrackBar">

<!- The name of the custom Delphi test object class being mapped.-->
<Value Name="(Default)" Type="BSTR">DelphiTrackBar</Value>
<!- The name (and ProgId) of the Standard Windows inner object.-->
<Value Name="InnerProgId" Type="BSTR">Mercury.WinObject</Value>
<Value Name="InnerMicClass" Type="BSTR">WinObject</Value>
<!- ExtObjRecFilter Value element is set to 0: only messages addressed to the

control's window are passed to the Agent Object for recording.
All other messages are ignored. -->

<Value Name="ExtObjRecFilter" Type="I4">0</Value>
<!- BottomLevelObject Value element is set to 1: Test objects of this class

do not have child objects. -->
<Value Name="BottomLevelObject" Type="I4">1</Value>
<!- These elements are defined identically for every mapped test object class.-->
<Value Name="tag query name" Type="BSTR">delphi_name</Value>
<Value Name="CLSID" Type="BSTR>

{A990252E-48C1-4d6c-9B55-4701BC29919C}
</Value>
<Key Name="Info">

<Value Name="package" Type="BSTR">DelphiPackage</Value>
</Key>

</Key>
</Key>

</MicTest>

An Example of a Complete Toolkit Configuration
File

An example of a toolkit configuration file is shown below. This file maps the TTrackBarDelphi
object to the new DelphiTrackBar test object class, and theDelphiTrackBar test object class to
the existingWinObject test object class:

<?xml version="1.0"?>
<MicTest>
  <!-- Mapping the window class of the application controls to the
     custom Delphi test object classes that should represent them in UFT.-->
  <Key Name="Packages">
    <Key Name="DelphiPackage">
      <Key Name="ClassPatterns">
          <!-- Mapping the TTrackBar control to the DelphiTrackBar test obje
ct -->

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 46 of 49



          <Value Name="TTrackBar" Type="BSTR">DelphiTrackBar</Value>
      </Key>
    </Key>
  </Key>
  <!-- Mapping the custom Delphi test object classes to inner objects. -->
  <Key Name="Test Objects">
    <!-- The mapping definitions for the DelphiTrackBar test object -->
    <Key Name="DelphiTrackBar">
       <!- The name of the custom Delphi test object class being mapped.-->
       <Value Name="(Default)" Type="BSTR">DelphiTrackBar</Value>
       <!- The name (and ProgId) of the Standard Windows inner object.-->
       <Value Name="InnerProgId" Type="BSTR">Mercury.WinObject</Value>
       <Value Name="InnerMicClass" Type="BSTR">WinObject</Value>
       <!- ExtObjRecFilter Value element is set to 0: only messages addressed
             to the control's window are passed to the Agent Object for
             recording. -->
       <Value Name="ExtObjRecFilter" Type="I4">0</Value>
       <!- BottomLevelObject Value element is set to 1: Test objects of this
             class do not have child objects. -->
       <Value Name="BottomLevelObject" Type="I4">1</Value>
       <!- These elements are defined identically for every mapped test

object class.-->
       <Value Name="tag query name" Type="BSTR">delphi_name</Value>
       <Value Name="CLSID" Type="BSTR>

{A990252E-48C1-4d6c-9B55-4701BC29919C}
       </Value>
       <Key Name="Info">
         <Value Name="package" Type="BSTR">DelphiPackage</Value>
       </Key>
    </Key>
  </Key>
</MicTest>

Developer Guide
Chapter 3: Understanding the Toolkit Configuration XML File Structure

HP UFT Delphi Add-in Extensibility (12.00) Page 47 of 49



We appreciate your feedback!
If you have comments about this document, you can contact the documentation team by email. If
an email client is configured on this system, click the link above and an email window opens with
the following information in the subject line:

Feedback on Developer Guide (UFT Delphi Add-in Extensibility 12.00)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client,
and send your feedback to sw-doc@hp.com.

HP UFT Delphi Add-in Extensibility (12.00) Page 48 of 49

mailto:sw-doc@hp.com?subject=Feedback on Developer Guide (UFT Delphi Add-in Extensibility 12.00)



	Contents
	Welcome to HP UFT Delphi Add-in Extensibility
	About the UFT Delphi Add-in Extensibility SDK
	About the UFT Delphi Add-in Extensibility Developer Guide
	Who Should Read This Guide
	Unified Functional Testing Help
	Additional Online Resources

	Chapter 1: Developing Support for Custom Delphi Controls
	Glossary
	Understanding How to Create Support for a Custom Delphi Control
	Using the Delphi Add-in Extensibility Samples

	Designing Your Test Object Configuration XML File
	Designing Your Toolkit Configuration XML File
	Designing Your Delphi Extensibility Code
	Creating Your Extensibility Code
	Working with Published Properties to Support Test Object Methods and Identifi...

	Creating Support for Custom Grid Controls
	Mapping a Custom Grid Control to a Test Object Class
	Developing an Agent Object to Support a Custom Grid Control
	Instructing UFT to Treat Your Custom Grid Control as a Table

	Step-by-Step Instructions for Supporting Custom Delphi Controls

	Chapter 2: Deploying the Toolkit Support Set
	About Deploying the Custom Toolkit Support
	Placing Your XML Files in the Correct Locations
	Compiling Your Extensibility Code
	Modifying Deployed Support
	Removing Deployed Support

	Chapter 3: Understanding the Toolkit Configuration XML File Structure
	Understanding the Toolkit Configuration XML File
	Mapping Application Controls to Test Object Classes
	Mapping Test Object Classes to Inner Objects
	An Example of a Complete Toolkit Configuration File

	We appreciate your feedback!

