HP Operations Orchestration

For the Windows and Linux Operating Systems

Software Version: 10.02

Database Guide

Document Release Date: January 2014

Software Release Date: January 2014

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial ltems are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice

© Copyright 2005-2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

This product includes an interface of the 'zlib' general purpose compression library, which is Copyright © 1995-2002 Jean-loup Gailly and Mark Adler.
AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.

Google™ and Google Maps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and other countries.

Java is aregistered trademark of Oracle and/or its affiliates.

Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S. registered trademarks of Microsoft Corporation.

Oracle is aregistered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Documentation Updates

The title page of this document contains the following identifying information:

® Software Version number, which indicates the software version.
® Document Release Date, which changes each time the document is updated.
® Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals
This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html
Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support

Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport
This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed to manage
your business. As a valued support customer, you can benefit by using the support web site to:

® Search for knowledge documents of interest

Submit and track support cases and enhancement requests
Download software patches

Manage support contracts

Look up HP support contacts

Review information about available services

Enter into discussions with other software customers
Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:
http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:
http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions to meet your
business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

HP Operations Orchestration (10.02) Page 2 of 48

Database Guide
Contents

Contents

CoNteNtS 3
Introduction to Preparing the Database Environment 6
OV IV BW 6
HP OO Database Sizing 7
Hardware Requirements i 8
Deploying and Maintaining a Microsoft SQL Server Database 9
Workflow for Microsoft SQL Server Deployment 9
System Requirements for Microsoft SQL Serverl 10
Hardware Requirements . . 10
Software Requirements 10
Examples of Tested Deployments 10
Language SUPPOrt . 11
Configuring SQL Server L 12
Manually Creating an HP OO Database on Microsoft SQL Server _..._...................... 13
Microsoft SQL Server Database Maintenance 16
Backingupthe HP OO Database i, 16
CreatingaMaintenance Plan ... 17
Deploying and Maintaining an Oracle Database 21
Workflow for Oracle Deployment .. L 21
System Requirements forOracle 22
Hardware Requirements ... 22
Software Requirements 22
Examples of Tested Deployments 22
Language SUPPOrt . 23
Configuring an Oracle Database 23
Manually Creating an HP OO Database onan Oracle Instance 24
Oracle Database Maintenance il 26
Backingupthe HP OO Database i, 26
Creatinga Maintenance Plan ... 27

HP Operations Orchestration (10.02) Page 3 of 48

Database Guide

Contents

Deploying and Maintaining a MySQL Database_. 30
Workflow for MySQL Deployment 30
System Requirements for My S QL 30
Hardware Requirements il 31
Software Requirements 31
Examples of Tested Deployments 31
Language SUPPOMt . il 32
Configuring My S QL . il 32
Manually Creating an HP OO Databaseon MySQL_.......... 34
MySQL Database Maintenance i, 35
Backingupthe HP OO Database 35
Creatinga Maintenance Plan 36
Deploying and Maintaining a Postgres Database 37
Workflow for Postgres Deployment L 37
System Requirements for Postgres 37
Hardware Requirements ... 38
Software Requirements 38
Examples of Tested Deployments 38
Language SUPPOIt . il 38
Configuring Postgres oL 39
Manually Creating an HP OO Database on Postgres i i . 39
Postgres Database Maintenance il 41
Backingupthe HP OO Database 41
CreatingaMaintenance Plan ... 42
Appendix A: Additional Guidelines for Microsoft SQL Server 43
Using Windows Authentication to Access Microsoft SQL Server Databases _.............. 43
Configuring HP OO to Work with Windows Authentication 43
T-SQL Scripts and Stored Procedures 44
Appendix B: Additional GuidelinesforOracle .. 45
Oracle Real Application Cluster (RAC) 45
Single Client Access Name 46

HP Operations Orchestration (10.02) Page 4 of 48

Database Guide
Contents

Configuring HP OO to Work with Oracle RAC i 46
SQL Scripts and Stored Procedures 47

HP Operations Orchestration (10.02) Page 5 of 48

Database Guide
Introduction to Preparing the Database Environment

Introduction to Preparing the Database
Environment

This chapter contains information about the types of databases used with HP Operations
Orchestration (HP OO).

This chapter includes:

Overview
HP OO Database Sizing

Hardware Requirements

Overview

The term “database” may be interpreted in several ways, depending on the database
vendor/technology used. In Oracle, the term “database” relates to a collection of files containing
data and metadata. A single Oracle database may contain one or more schemas (and users). A
Microsoft SQL Server “database” is closer in definition to Oracle’s "schema" than to Oracle’s
"database".

In order to avoid confusion, this document will use the following terms:
¢ Instance/server —the software and memory structures providing RDBMS services
« Database —the entity containing tables, views, indexes, and so on

HP OO requires a single database to be created. This database may co-exist with other databases
contained in a database server.

You can set up an HP OO database on one of the following database server types:
o Microsoft SQL Server Standard/Enterprise (2008 R2/2012)

o Oracle 11gR2 Standard/Enterprise Server

o Postgres (9.1/9.2)

o MySQL Community/Standard/Enterprise Server (5.5/5.6)

See the appropriate deployment chapter below for details:

¢ "Deploying and Maintaining a Microsoft SQL Server Database" on page 9

¢ "Deploying and Maintaining an Oracle Database" on page 21

HP Operations Orchestration (10.02) Page 6 of 48

Database Guide
Introduction to Preparing the Database Environment

¢ "Deploying and Maintaining a MySQL Database" on page 30
¢ "Deploying and Maintaining a Postgres Database" on page 37

Appendices contain additional information that is pertinent to all database types.
Language Support

HP OO can be installed and used in any language. Databases and database servers should be
properly configured in order to support the desired language.

If you are using HP OO in a multilingual environment, it is preferable that you configure your
database to use the Unicode character set. See the relevant deployment chapter for detailed
instructions.

Important Notes

o This document is intended for trained database administrators. If you are not familiar with the
type of database you wish to use, or you feel that you lack the relevant knowledge required in
order to create and configure an HP OO database, see the database vendor's documentation
and make sure you fully understand each action you perform as described in this guide.

« HP OO database connectivity relies on Java JDBC. If your environment requires specific
adaptations or security measures, see the JDBC documentation (or database vendor
documentation) to find out exactly how the JDBC connection URL should be formatted.

HP 00 Database Sizing

This section will help you prepare for installing HP OO. By estimating your system scale
(standard/enterprise), you will be able to derive the amount of disk space required, derive the
amount of memory (RAM) used by the database, and determine additional database installation
parameters.

Step 1: Estimate the system scale according to complexity:

System Criteria\Scale Standard Enterprise
Average number of steps per flow 100 1000
Average payload size per flow 1MB or smaller 4MB or larger
Average flow duration 1 Hour 24 Hours

Step 2: Estimate the system scale according to concurrency/frequency:

System Criteria\Scale Standard Enterprise

Average number of flows per month < 10,000 =10,000

The following table provides disk space and memory requirements for different HP OO deployment
scales:

HP Operations Orchestration (10.02) Page 7 of 48

Database Guide

Introduction to Preparing the Database Environment

System Scale\Parameter
Standard

Enterprise

Notes:

Estimated OO Database Size

50GB
1TB

Memory

8GB

12GB

o Disk space and memory values are estimates. Actual disk space and memory consumption

vary, depending on the database vendor and database server configuration.

o Memory (RAM) reflects recommended database memory, not the overall amount of memory
available on the database machine (virtual or physical server).

o Disk space reflects the amount of disk space required for day-to-day operation of the HP OO
system —not including database backups.

o The amount of additional disk space required for keeping HP OO database backups depends on
the backup policy (frequency and retention).

Hardware Requirements

The following table describes the hardware (CPU and memory) requirements recommended for the

each of the database servers.

Note: The memory values reflect database memory consumption as part of the entire

machine’s memory.

Database\Scale
CPUs
Min Rec
SQL Server 2 4
Oracle 2 4
MySQL 2 4
Postgres 2 4

Min = Minimal value, Rec = Recommended value

Standard

Min
2GB
2GB
2GB
2GB

RAM

Rec
4GB
4GB
4GB
4GB

Min

R N)

CPUs

Enterprise
Rec Min
12 8GB
12 8GB
12 8GB
12 8GB

RAM
Rec
12GB
12GB
12GB
12GB

In addition to the generalized hardware requirements above, refer to the appropriate hardware
requirements and software requirements sections per database.

HP Operations Orchestration (10.02)

Page 8 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Deploying and Maintaining a Microsoft SQL
Server Database

In order to deploy HP OO using Microsoft SQL Server, you must have an existing SQL Server
database service. If you need to create a new database service, see the relevant documentation
provided by Microsoft, because this information is not included within this guide. However, this

guide contains recommendations for the SQL Server configuration.

This chapter includes the following sections:

Workflow for Microsoft SQL Server Deployment 9
System Requirements for Microsoft SQL Server 10
Hardware Requirements .. e 10
Software Requirements . il 10
Examples of Tested Deployments 10
Language SUPPOM . . . L 11
Configuring SQL Server .. 12
Manually Creating an HP OO Database on Microsoft SQL Server 13
Microsoft SQL Server Database Maintenance 16
Backingupthe HP OO Database 16
Creatinga Maintenance Plan 17

Workflow for Microsoft SQL Server Deployment

To deploy HP OO using Microsoft SQL Server, perform the following steps:

1.

Review sizing guidelines. For details, see "HP OO Database Sizing" in "Introduction to
Preparing the Database Environment" on page 6.

Review Hardware and Software Requirements. For details, see "System Requirements for
Microsoft SQL Server" on the next page.

Configure Microsoft SQL Server. For details, see "Configuring SQL Server" on page 12.

Create HP OO database on Microsoft SQL Server. For details, see "Manually Creating an
HP OO Database on Microsoft SQL Server" on page 13.

(Optional) Set up Windows authentication. For details, see "Using Windows Authentication
to Access Microsoft SQL Server Databases" in "Appendix A: Additional Guidelines for

HP Operations Orchestration (10.02) Page 9 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Microsoft SQL Server" on page 43. This step is only relevant if you are using Windows
authentication instead of SQL Server authentication.

System Requirements for Microsoft SQL Server

This section describes the system requirements for working with Microsoft SQL Server in
conjunction with HP OO.

Hardware Requirements

For HP OO database sizing guidelines and hardware requirements, see "HP OO Database Sizing"
and and "Hardware Requirements” in "Introduction to Preparing the Database Environment" on
page 6.

For Microsoft SQL Server hardware requirements, see the relevant installation guide for your
Microsoft SQL Server release and operating system.

Software Requirements
The following table lists the Microsoft SQL Server releases supported by HP OO:

Microsoft SQL Server Database Releases

Version Type 32/64Bit Service Pack
2012 Standard 64 Bit 1
Enterprise 64 Bit 1
2008 R2 Standard x64 2
x86 2
Enterprise x64 2
x86 2

Only the listed service packs should be installed. Newer service packs are also supported unless
stated otherwise in the HP OO Release Notes.

See the Microsoft documentation for supported platforms.

Examples of Tested Deployments

The following table lists the deployment environments that have been rigorously tested by HP
quality assurance personnel.

HP Operations Orchestration (10.02) Page 10 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Database Release

Service
Version 32/64Bit Pack Operating System
Microsoft SQL Server 2012 64 Bit 1 Windows 2012 Standard Edition
Enterprise Edition 64 Bit
Microsoft SQL Server 2008 R2 64 Bit 2 Windows 2012 Standard Edition
Enterprise Edition 64 Bit

Language Support

In Microsoft SQL Server, unlike other databases, HP OO database does not use Unicode collation.

Use one of the following collations depending on your HP OO installation language:

Language Database Collation

English SQL_Latin1_General_ CP1_CS_AS

Japanese Japanese _Unicode CS AS

Simplified Chinese Chinese_Simplified_Stroke Order 100_CS_AS
German SQL Latin1_General CP1_CS_AS

French French_100_CS_AS

Spanish SQL_Latin1_General CP1_CS_AS

If you are currently using a different collation, it is highly recommended that you change your HP
OO0 database collation to one of the collations above, in order to support future HP OO versions.

The following procedure is an example of how to change an existing database collation:
1. Connect to your database server using an administrative login (for example, “sa”).

2. Disconnect all existing sessions to the specific HP OO database that you intend to change.

Important! The command will fail unless this database has exactly 0
sessions/connections.

3. Runthe following code (change my_database to the actual name of the database):

USE [master]

GO

ALTER DATABASE [my_database] COLLATE Japanese_Unicode_CS_AS
GO

HP Operations Orchestration (10.02) Page 11 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Note: This change does not alter existing column collations. Any new column or table will use
the new collation by default from this point on. The new collation sorting rules are applied
immediately. In other words, the new collation affects sorting behavior and future data, rather
than existing data.

Configuring SQL Server

This section contains information on Microsoft SQL Server and database configuration settings.

You can install an HP OO database in any SQL Server environment including clustered
environments.

Legend:
. configuration options/values appear in font.
« Recommended configuration options/values appear in bold/purple font.

o Supported configuration options/values appear in normal font, and may show as a comma-
separated list.

o Comments appear in italic font.

Microsoft SQL Server 2008R2 and 2012

Server Options/Features

Configuration Item Supported Configuration Options
Server Configuration Options Defaults, unless instructed otherwise
Instances Default, Single

Authentication Mode Mixed, Windows

Full-Text Search (Not required for HP OO)

Microsoft SQL Server 2008R2 and 2012

Instance/Server Options

Mandatory Recommended Supported
Server SQL_Latin1_General_CP1_CS_AS Any
Collation Collation
Network Server:
Libraries Client:

HP Operations Orchestration (10.02) Page 12 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Microsoft SQL Server 2008R2 and 2012

Instance/Server Options

Mandatory Recommended Supported
Concurrent 0 (unlimited)
Connections
Max Server 2,147,483,647 (default, unlimited)
Memory Allocate 4-12GB depending on system scale

according to the sizing guide
Microsoft SQL Server 2008R2 and 2012
Database Options
Mandatory Recommended Supported
Collation
Recovery Model Full Simple,
Full

Allow Snapshot Isolation

Is Read Committed
Snapshot On

Auto Shrink

Auto Create Statistics

Manually Creating an HP 00 Database on
Microsoft SQL Server

During HP OO setup, a new database can be created automatically by the HP OO installer or a pre-
existing database can be used.

This section describes the procedure for manually creating an HP OO database, login, and user on
Microsoft SQL Server.

Note: Only the database is created at this point; objects such as tables and indexes are not
created yet. These objects are created later by the HP OO installer.

This section is relevant for you if, for example, due to security restrictions, you do not wish to use
login/user credentials with elevated privileges during the HP OO installation. In such a case, you (or

HP Operations Orchestration (10.02) Page 13 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

your organization’s DBA) should create the database, login, and user first, and then let the HP OO
installer connect to the pre-existing database using “lower” privileges.

To create a database, you must connect to the SQL Serverinstance using a login that has
CREATE DATABASE permission.

e Members of the sysadmin server roles automatically have CREATE DATABASE
permission, and are also mapped to dbo in all databases.

o Perform the following procedures only if you are an experienced Microsoft SQL Server
database administrator.

« If you prefer to use the database creation wizard/GUI, make sure you select all options that
correspond with the T-SQL code presented below. For example, make sure you set Allow
Snapshot Isolation to TRUE under the Options page/Other Options
pane/Miscellaneous tab in the New Database dialog box.

o Not all database creation options are specified—only those that differ from the default
value. When in doubt, use default values.

To create a database:

1. Login to Microsoft SQL Server as “sa” or any other login with a sysadmin role or the CREATE
DATABASE permission.

2. Run the following T-SQL script and verify that the database was created successfully:

USE [master]
GO

CREATE DATABASE [<Enter the DB Name>]
ON PRIMARY
(NAME = N'00",

FILENAME = N'D:\path\to\data\00.ndf"',

SIZE = 4MB,
MAXSIZE = UNLIMITED, FILEGROWTH = 1MB)
LOG ON

(NAME = N'00_log',
FILENAME = N'D:\path\to\log\00_log.ldf"',
SIZE = 1MB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 10%)
COLLATE SQL_Latinl_General CP1_CS_AS
GO

ALTER DATABASE [00] SET ALLOW_SNAPSHOT_ISOLATION ON

HP Operations Orchestration (10.02) Page 14 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

ALTER DATABASE [00] SET READ_COMMITTED_SNAPSHOT ON
ALTER DATABASE [00] SET AUTO_CREATE_STATISTICS ON
ALTER DATABASE [00] SET AUTO_SHRINK OFF

GO

Adapt the highlighted values to match your environment.

3. Runthe following T-SQL script to create a login and user for the HP OO system, and test them
to verify that you can log in successfully:

USE [master]
GO

CREATE LOGIN [oouser] WITH PASSWORD=N'???",
DEFAULT_DATABASE=[00],
DEFAULT_LANGUAGE=[us_english];

ALTER LOGIN [oouser] ENABLE;

GO

USE [00]
GO

CREATE USER oouser FOR LOGIN [oouser];
GO
EXEC sp_addrolemember N'db_owner', N'oouser'

Adapt the highlighted values to match your environment. The login may be of any type (for
example, Windows/Credentials-based) as long as you make sure that oouser has ownership
on the HP OO database.

4. (Optional) In order to verify that database objects can be created by the new login and user,
connect to the server as oouser and perform the following:

USE [00]
GO

CREATE TABLE [dbo].[TEST_TABLE](
[TEST_COLUMN] [int] NULL

)
GO

INSERT INTO [dbo].[TEST_TABLE] ([TEST_COLUMN]) VALUES (1);
INSERT INTO [dbo].[TEST_TABLE] ([TEST_COLUMN]) VALUES (2);

HP Operations Orchestration (10.02) Page 15 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

GO

Verify that the table was created and that it contains two rows. You can now manually or
otherwise drop the table

5. (Optional) To verify that your newly created user has sufficient privileges to create the HP OO
database, log in to the database server as oouser and perform the following:

USE [00]
GO

select case when IS_MEMBER ('db_owner')=1
or IS_SRVROLEMEMBER ('sysadmin')=1

or (IS_MEMBER ('db_ddladmin') = 1 and

IS MEMBER ('db_datareader')=1 and

IS MEMBER ('db_datawriter')=1 and

IS MEMBER ('db_denydatareader')=0 and

IS MEMBER ('db_denydatawriter')=0)

then 'User has enough permissions'

else 'User does not have enough permissions'
end

Microsoft SQL Server Database Maintenance

This section describes the various maintenance tasks that are recommended for HP OO databases
created on Microsoft SQL server, such as backing up the database, checking database integrity,
handling index fragmentation, and monitoring the database.

This section includes:

Backingupthe HP OO Database 16

Creatinga Maintenance Plan .. 17

Backing up the HP 00 Database

Microsoft SQL Server databases are either configured for the Full recovery model, or the Simple
recovery model. You can back up an HP OO database using either one of these models. As HP OO
keeps all configuration and operational history in a single database, always backup the complete
database.

Consider the following guidelines when you create your backup plan for HP OO:
Backup method:

The backup method depends mainly on business considerations—how much information "may” be
lost? What is the maximum time for system recovery? If you need to be able to perform point-in-

HP Operations Orchestration (10.02) Page 16 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

time recovery, and only “allow” a few hours-worth of data loss, use the full recovery model and
perform full or differential backups daily, and transaction log backup every N hours depending on
your business requirements.

If your organization is more tolerant to data loss, you can use the simple recovery model and
perform a daily or weekly full backup.

Backup frequency:

Daily backup is recommended, especially if you are using/modifying HP OO on a daily basis.
You should back up once a month at the very least.

Timing:

Schedule backup for the time when HP OO is least active.

Retention:

Retention depends on your business guidelines and regulations.

Creating a Maintenance Plan

Maintaining an HP OO database includes rebuilding the index and reclaiming free space. Use the
scripts and tools described in this section, in order to keep the HP OO database in good shape.

Supplied Utilities for HP OO Database Housekeeping

HP OO provides a set of scripts for index maintenance, statistics maintenance, and history
purging. These scripts create stored procedures that you can tune and schedule to run periodically.

It is recommended to use these procedures, but you can also use other methods in accordance with
company policy, as long as indexes and statistics are kept in good shape.

Note that index rebuilding online (without HP OO system downtime) requires an enterprise grade
database. Make sure you are running an enterprise version of Microsoft SQL Server before
attempting online index rebuilding.

Also, note that maintenance activity usually consumes additional resources from the database.
This is why it is important to schedule maintenance activity at the times when HP OO is least
active.

Utility for Maintaining Indexes and Statistics

Toinstall and use the HP OO maintenance stored procedures:

1. Login to Microsoft SQL Server as “sa” or any member of the sysadmin role and run the
following code in order to give the HP OO user the ability to access dm_os_performance_
counters dynamic management view (DMV):

USE [master]
GO

HP Operations Orchestration (10.02) Page 17 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

GRANT VIEW SERVER STATE TO oouser
GO

Replace “oouser” with the actual user created for OOHP OO.

2. Edit the following T-SQL scripts and replace each “USE <your_db_name_here>" in the file
headers to your actual HP OO database name. For example, if your database name is
“O0OPROD?”, replace it with “USE OOPROD”.

= OO _DB_MAINTENANCE_LOG.sql
s OOCmdExec.sql

» OOIndexMaintenance.sql
Note: The actual scripts can be found in the appendix

Do not skip this step; otherwise, the set of procedures will not be created in the correct
database.

3. Loginto Microsoft SQL Server as the HP OO user.

4. Run the following T-SQL scripts in the given order and verify that the new objects were created
successfully:

= OO _DB_MAINTENANCE_LOG.sq|
= OOCmdExec.sql
= OOlIndexMaintenance.sq|
5. Tune your stored procedure according to the comments embedded in the script.

The following example shows how this procedure can be used. For detailed explanations, see
the guidelines provided as comments in the procedure header.

USE [00]
GO

EXECUTE [dbo].[00IndexMaintenance]

@DatabaseName = '00'

,@FragmentationLow = NULL

,@FragmentationMedium = 'INDEX_REORGANIZE,INDEX_ REBUILD_ONLINE,INDEX RE
BUILD_OFFLINE'

,@FragmentationHigh = 'INDEX_REBUILD_ ONLINE,INDEX_ REBUILD OFFLINE'

HP Operations Orchestration (10.02) Page 18 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

]
Ul

,@FragmentationLevell
,@FragmentationLevel2
,@SortInTempdb = 'N'
,@Indexes = '00.dbo.%"
,@TimeLimit = 1800
,@LockTimeout = 20
,@LogToTable = "Y'
,@Execute = 'Y'
GO

30

Explanation of the above code:

Replace “O0” with the actual name of your database. Note that there are three occurrences.

The @FragmentationXXX parameters set the script’s fragmentation level sensitivity and
course of action in each case. These threshold levels and subsequent actions are recommended
by Microsoft’s documentation. Tune these values with caution.

@SortiInTempdb (once set to ‘Y’) lets you perform sorting operations during index
reorganization/rebuild in tempdb rather than in memory, for better performance. If you choose to
use this option, make sure you have sufficient free space in tempdb.

@Indexes is a filter for including/excluding indexes in the maintenance operation. It is
recommended to keep this filter as is, to analyze all indexes.

@TimeLimit is the timeout in seconds for the maintenance operation to complete. Set it in
accordance with your maintenance window boundaries, if applicable.

@LockTimeout is the timeout in seconds to wait for object lock. Once expired, the specific
operation fails and the procedure continues to the next object.

@LogToTable determines whether maintenance operation results should be logged to a table.
This lets you keep track of the maintenance operations and helps procedure debugging.

@Execute determines whether actual operations (such as index rebuild) are performed or not. If
this parameter is set to ‘N’, the procedure performs a “dry run” and shows an analysis of the
relevant objects.

Utility for Purging History

Toinstall and use the HP OO history purging stored procedure:

Edit the OOPurgeHistory.sql T-SQL script and replace each “USE <your_db_name_here>"in
the file header to your actual HP OO database name.

For example, if your database name is “OOPROD”, replace it with “USE OOPROD”.

HP Operations Orchestration (10.02) Page 19 of 48

Database Guide
Deploying and Maintaining a Microsoft SQL Server Database

Note: The actual script can be found in the appendix

Do not skip this step; otherwise, the procedure will not be created in the correct database.
2. Loginto Microsoft SQL Server as the HP OO user.

3. Runthe OOPurgeHistory.sql T-SQL script and verify that the new object was created
successfully:

4. Tune your stored procedure according to the comments embedded in the script.

The following example shows how this procedure may be used. See the guidelines provided as
comments in the procedure header for detailed explanations.

USE [00]
GO

EXECUTE [dbo].[OOPurgeHistory]
@keep_this_many hours = 2160
,@prune_batch_size = 1000
,@verbose =1
,@max_hours_to_run = 4

GO

Explanation of the above code:
o Replace “O0” with the actual name of your database.

o The @keep_this_many_hours parameter determines how many hours are kept, beginning with
the newest record in the table (not necessarily from “now”). 2160 equals 90 days. The rest of the
records are deleted, starting with the oldest one.

o @prune_batch_size determines how many records are deleted in each transaction.

« @verbose determines the verbosity level. 0 corresponds to “quiet” output, 1 corresponds to
normal output, and 2 prints out detailed information.

e @max_hours_to_run is the timeout in hours for the operation to complete. Set it in accordance
with your maintenance window boundaries if applicable.

HP Operations Orchestration (10.02) Page 20 of 48

Database Guide
Deploying and Maintaining an Oracle Database

Deploying and Maintaining an Oracle
Database

In order to deploy HP OO using Oracle, you must have an existing Oracle database service. If you
need to create a new database instance/service, see the relevant documentation provided by
Oracle, because this information is not included within this guide. However, this guide contains
recommendations for the Oracle instance configuration.

This chapter includes the following sections:

Workflow for Oracle Deployment ... L 21
System Requirements for Oracle 22
Hardware Requirements .. e 22
Software Requirements . il 22
Examples of Tested Deployments 22
Language SUPPOMt . 23
Configuring an Oracle Database 23
Manually Creating an HP OO Database onan Oracle Instance 24
Oracle Database Maintenance L 26
Backingupthe HP OO Database 26
Creatinga Maintenance Plan .. . 27

Workflow for Oracle Deployment

To deploy HP OO using Oracle, perform the following steps:

1. Review sizing guidelines. For details, see "HP OO Database Sizing" in "Introduction to
Preparing the Database Environment" on page 6.

2. Review Hardware and Software Requirements. For details, see "System Requirements for
Oracle" on the next page.

3. Configure an Oracle Database. For details, see "Configuring an Oracle Database" on page
23.

4. Create a Database. For details, see "Manually Creating an HP OO Database on an Oracle
Instance" on page 24.

HP Operations Orchestration (10.02) Page 21 of 48

Database Guide
Deploying and Maintaining an Oracle Database

5. (Optional) 5. Connect HP OO to an Oracle RAC environment. For details, see "Support for
Oracle Real Application Cluster" in "Appendix B: Additional Guidelines for Oracle" on page 45.
This step is only relevant if you are using HP OO in an Oracle RAC environment.

System Requirements for Oracle

This section describes the system requirements for working with Oracle in conjunction with HP
OO0.

Hardware Requirements

For HP OO database sizing guidelines and hardware requirements, see "HP OO Database Sizing"
and and "Hardware Requirements” in "Introduction to Preparing the Database Environment" on
page 6.

For Oracle hardware requirements, see the relevant installation guide for your Oracle release and
operating system.

Software Requirements

The following table lists the Oracle releases supported by HP OO:

Oracle Releases

Version Type 32/64Bit Patch Set
11gR2 Standard 64 Bit 11.2.0.1-11.2.04
Enterprise 64 Bit 11.2.0.1-11.2.0.4

Only the listed patch sets should be installed. Newer patch sets are also supported unless stated
otherwise in the HP OO Release Notes.

See the Oracle documentation for supported platforms.

Examples of Tested Deployments

The following table lists the deployment environments that have been rigorously tested by HP
quality assurance personnel.

Database Release

Version 32/64Bit Patch Set Operating System

Oracle 11g R2 Enterprise = 64 Bit 11.2.0.1.0 Red Hat Enterprise Linux 6.3 64 Bit
Edition

Oracle 11g R2 Enterprise | 64 Bit 11.2.0.1.0 Windows 2012 Standard Edition 64 Bit
Edition

HP Operations Orchestration (10.02) Page 22 of 48

Database Guide
Deploying and Maintaining an Oracle Database

Language Support

The Oracle instance character set should be set to AL32UTF8. This enables using any Unicode
character (and practically all common characters in all languages).

Configuring an Oracle Database

This section contains information on the Oracle instance and database configuration settings.
You caninstall an HP OO database in an Oracle clustered environment (Oracle RAC or other).

Legend:
. configuration options/values appear in font.
o Recommended configuration options/values appear in bold/purple font.

o Supported configuration options/values appear in normal font, and may show as a comma-
separated list.

o Comments appear in italic font.

Oracle Database 11gR2
Instance/Server Options
Instance configuration options Defaults, unless instructed otherwise
Mandatory Recommended Supported
PROCESSES
SESSIONS
TIMED_ STATISTICS TRUE TRUE, FALSE
OPEN_CURSORS

Shared/Dedicated Server Dedicated Dedicated, Shared
UNDO_MANAGEMENT AUTO Automatic, Manual
Undo size 6GB - 10GB

Memory Management ASMM AMM, ASMM
MEMORY_TARGET 0 (disabled) >=5G (for AMM)
SGA_TARGET 8G -12G >= 4G (for ASMM)
SGA_MAX_SIZE 8G -12G >= 4G (for ASMM)
PGA_AGGREGATE_TARGET 1G-2G >= 500M (for ASMM)

HP Operations Orchestration (10.02) Page 23 of 48

Database Guide
Deploying and Maintaining an Oracle Database

o Note that all values reflect resources required by HP OO. If HP OO shares the Oracle instance
with other users, these values should be added to whatever is currently consumed by others.

o See the sizing guide to determine values displayed as range.

Oracle Database 11gR2

Instance/Server Options

Mandatory Recommended Supported

File system ASM, Any
Storage Locally managed tablespace
options

Automatic segment space

management (ASSM)

Automatic local extent

management
ARCHIVELOG ARCHIVELOG ARCHIVELOG,
mode NOARCHIVELOG
Redo Log total 1GB
size

« Note that all values reflect resources required by HP OO. If HP OO shares the Oracle instance
with other users, these values should be added to whatever is currently consumed by others.

o See the sizing guide to determine values displayed as range.

Manually Creating an HP 00 Database on an Oracle
Instance

During HP OO setup, a new database can be created automatically by the HP OQ installer or a pre-
existing database can be used.

Note: In some cases, the term "database" is used but in the case of Oracle, it should be
interpreted as "user".

This section describes the procedure for manually creating an HP OO database in an Oracle
instance.

Note: Only the database is created at this point; objects such as tables and indexes are not
created yet. These objects are created later by the HP OO installer.

HP Operations Orchestration (10.02) Page 24 of 48

Database Guide
Deploying and Maintaining an Oracle Database

This section is relevant for you if, for example, due to security restrictions, you do not wish to use
user credentials with elevated privileges during the HP OO installation. In such a case, you (or your
organization’s DBA) should create the user (database) first, and then let the HP OO installer
connect to the pre-existing database using basic privileges.

To create a database, you must connect to the Oracle instance using a login that has CREATE
USER system privilege—for example, system user.

o Any user with the DBA role has sufficient privileges to create the new user.

o Perform the following procedures only if you are an experienced Oracle database
administrator.

o If you prefer to use the database creation wizard/GUI, make sure you select all options that
correspond with the SQL code presented below.

o Not all database creation options are specified—only those that differ from the default
value. When in doubt, use default values.

To create a database:
1. Loginto the oracle as “system” or any other user with a DBA role.

2. Runthe following SQL script and verify that the database was created successfully:

CREATE USER 00
IDENTIFIED BY ???????
DEFAULT TABLESPACE <default tablespace for 00>
TEMPORARY TABLESPACE <temporary tablespace for 00>
QUOTA UNLIMITED ON <default tablespace for 00>
ACCOUNT UNLOCK

GRANT CONNECT TO 00;
GRANT CREATE VIEW, CREATE SEQUENCE, CREATE TABLE, CREATE PROCEDURE TO 00;

Adapt the highlighted values to match your environment.

3. (Optional) In order to verify that database objects can be created by the new user, connect to
the Oracle instance as HP OO and perform the following:

CREATE TABLE TEST_TABLE(
TEST_COLUMN int NULL

)5

INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (1);
INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (2);

HP Operations Orchestration (10.02) Page 25 of 48

Database Guide
Deploying and Maintaining an Oracle Database

COMMIT;

Verify that the table was created and that it contains two rows. You can now manually or
otherwise drop the table

Oracle Database Maintenance

This section describes the various maintenance tasks that are recommended for HP OO databases
created on Oracle, such as backing up the database, checking database integrity, handling index
fragmentation, and monitoring the database.

This section includes:

Backingupthe HP OO Database 26

Creating a Maintenance Plan 27

Backing up the HP 00 Database

Oracle databases can be backed up using several tools, such as expdp and RMAN. An HP OO
database can be backed up using any type of method/tool as long as the complete database is
backed up.

Consider the following guidelines when you create your backup plan for HP OO:
Backup method:

The backup method depends mainly on business considerations—how much information "may” be
lost? What is the maximum time for system recovery? If you need to be able to perform point-in-
time recovery, and only “allow” a few hours-worth of data loss, use the full recovery model and
perform full or differential backups daily, and transaction log backup every N hours depending on
your business requirements.

Backup frequency:

Daily backup is recommended, especially if you are using/modifying HP OO on a daily basis.
You should back up once a month at the very least.

Timing:

Schedule backup for the time when HP OO is least active.

Retention:

Retention depends on your business guidelines and regulations.

HP Operations Orchestration (10.02) Page 26 of 48

Database Guide
Deploying and Maintaining an Oracle Database

Creating a Maintenance Plan

Maintaining an HP OO database includes rebuilding the index and reclaiming free space. Use the
scripts and tools described in this section, in order to keep the HP OO database in good shape.

Supplied Utilities for HP OO Database Housekeeping

HP OO provides a set of scripts forindex maintenance, statistics maintenance, and history
purging. These scripts create stored procedures that you can tune and schedule to run periodically.

It is recommended to use these procedures, but you can also use other methods in accordance with
company policy, as long as indexes and statistics are kept in good shape.

Note that index rebuilding online (without HP OO system downtime) requires an enterprise grade
database. Make sure you are running an enterprise version of Oracle before attempting online index
rebuilding.

Also, note that maintenance activity usually consumes additional resources from the database.
This is why it is important to schedule maintenance activity at the times when HP OO is least
active.

Utility for Maintaining Indexes and Statistics

Toinstall and use the HP OO maintenance stored procedures:

1. Loginto Oracle as “system” or any other user with a DBA role, and run the following
commands. These system privileges are required in order to that verify the stored procedure
created in the following steps has the explicit (not role-based) privileges to execute the index
analysis and rebuild:

GRANT CREATE TABLE TO 00;
GRANT ANALYZE ANY TO 00;
GRANT ALTER ANY INDEX TO 00;

Adapt the highlighted user name to match your environment.
2. Loginto Oracle as “OQ” (the user created for HP OO).

3. Runthe OOIndexMaintenance.sql script and verify that the new object was created
successfully.

Note: For more information, and for the script, see "Appendix B: Additional Guidelines for
Oracle" on page 45.

4. Tune your stored procedure according to the comments embedded in the script.

The following example shows how this procedure can be used. For detailed explanations, see
the guidelines provided as comments in the procedure header.

HP Operations Orchestration (10.02) Page 27 of 48

Database Guide
Deploying and Maintaining an Oracle Database

SET serveroutput ON 100000
DECLARE x integer := 0;

BEGIN
00IndexMaintenance(3, 15, 1, X);
END;

Stored procedure parameters:

o pMaxHeight (IN) - The minimal index height threshold for index rebuilding. The Oracle
documentation recommends 3. Smaller values may result in unnecessary rebuilding operations.

o pMaxLeafsDeleted (IN) - The minimal deleted leaves threshold for index rebuilding. The Oracle
documentation recommends 15. Smaller values may result in unnecessary rebuilding
operations.

o pRebuild (IN) - Should indexes be rebuilt (1) or only perform a dry-run (0). A dry-run will show
only recommendations for index rebuilding.

o pReturnValue (OUT) - The number of rebuilt indexes

Note: ONLINE index rebuilding should only be performed when the enterprise edition is used.
Otherwise, the index rebuilding operation may lock tables and indexes and may interfere with
the operation of HP OO..

Utility for History Purging

Toinstall and use HP OO history purging stored procedure:
1. Loginto Oracle as “OQ” (the user created for HP OO).
2. Runthe OOPurgeHistory.sql script and verify that the new object was created successfully:
3. Tune your stored procedure according to the comments embedded in the script.

The following example shows how this procedure may be used. See the guidelines provided as
comment in the procedure header for detailed explanations.

SET serveroutput ON 100000
DECLARE x integer := 0;
BEGIN

OOPurgeHistory(2160,1000,1,4,X);
DBMS_OUTPUT.put _line('A total of ' || TO_CHAR(x) || ' records were

HP Operations Orchestration (10.02) Page 28 of 48

Database Guide
Deploying and Maintaining an Oracle Database

deleted.');
END;

Explanation about the above code:

o The pKeepThisManyHours parameter determines how many hours are kept starting with the
newest record in the table (not necessarily from “now”). 2160 equals 90 days. The rest of the
records are deleted, starting with the oldest one.

« pPruneBatchSize determines how many records are deleted in each batch.

« pVerbose determines verbosity level. O corresponds to “quiet” output, 1 corresponds to normal
output, and 2 prints out detailed information.

o pMaxHoursToRun is the timeout in hours for the operation to complete.

Set it in accordance with your maintenance window boundaries if applicable.

HP Operations Orchestration (10.02) Page 29 of 48

Database Guide
Deploying and Maintaining a MySQL Database

Deploying and Maintaining a MySQL Database

In order to deploy HP OO using MySQL, you must have an existing MySQL database. If you need
to create a new database service, see the relevant documentation provided by MySQL, because
this information is not included within this guide. However, this guide contains recommendations for
the MySQL configuration.

This chapter includes the following sections:

Workflow for MySQL Deployment 30
System Requirements for My SQL ... 30
Hardware Requirements . e 31
Software Requirements ... 31
Examples of Tested Deployments 31
Language SUPPOMt . 32
Configuring My S QI ...l 32
Manually Creating an HP OO Databaseon MySQL 34
MySQL Database Maintenance 35
Backingupthe HP OO Database 35
Creatinga Maintenance Plan 36

Workflow for MySQL Deployment

To deploy HP OO using MySQL, perform the following steps:

1.

Review sizing guidelines. For details, see "HP OO Database Sizing" in "Introduction to
Preparing the Database Environment" on page 6.

Review Hardware and Software Requirements. For details, see "System Requirements for
MySQL" below.

Configure MySQL . For details, see "Configuring MySQL" on page 32.

Create HP OO database on MySQL . For details, see "Manually Creating an HP OO
Database on MySQL" on page 34.

System Requirements for MySQL

This section describes the system requirements for working with MySQL in conjunction with HP
00.

HP Operations Orchestration (10.02) Page 30 of 48

Database Guide
Deploying and Maintaining a MySQL Database

Hardware Requirements

For HP OO database sizing guidelines and hardware requirements, see "HP OO Database Sizing"
and and "Hardware Requirements” in "Introduction to Preparing the Database Environment" on

page 6.

For MySQL hardware requirements, see the relevant installation guide for your MySQL release and

operating system.

Software Requirements
The following table lists the MySQL releases supported by HP OO:

MySQL Database Releases
Version Type
5.5 Community
Standard
Enterprise
5.6 Community

Standard

Enterprise

See the MySQL documentation for supported platforms.

Examples of Tested Deployments

32/64Bit

x86 32-bit
x86 64-bit
x86 32-bit
x86 64-bit
x86 32-bit
x86 64-bit
x86 32-bit
x86 64-bit
x86 32-bit
x86 64-bit
x86 32-bit

x86 64-bit

The following table lists the deployment environments that have been rigorously tested by HP

quality assurance personnel.

HP Operations Orchestration (10.02)

Page 31 of 48

Database Guide
Deploying and Maintaining a MySQL Database

Database Release

Version 32/64Bit Patch Operating System
MySQL Server 5.6.13 64 Bit Windows 2012 Standard Edition 64
Community Edition Bit

MySQL Server 5.6.12 64 Bit Red Hat Enterprise Linux 6.3 64 Bit

Community Edition

Language Support

MySQL Server character set should be set to utf8. This lets you use any Unicode character (and
practically all common characters in all languages). Note that the HP OO database uses the utf8_
bin collation.

Configuring MySQL

This section contains information on MySQL and database configuration settings.

Legend:
. configuration options/values appear in font.
« Recommended configuration options/values appear in bold/purple font.

o Supported configuration options/values appear in normal font, and may show as a comma-
separated list.

e Comments appear in italic font.

MySQL 5.5 - 5.6

Instance/Server Options
Server Configuration Options Defaults, unless instructed otherwise
[mysqld] Mandatory Recommended Supported
character-set-server
collation-server
transaction-isolation
max_allowed packet
max_connections

default-storage-engine

HP Operations Orchestration (10.02) Page 32 of 48

Database Guide
Deploying and Maintaining a MySQL Database

MySQL 5.5 - 5.6

Instance/Server Options
innodb_log file_size 256M
max_connect_errors
innodb_file_per_table
innodb_thread_concurrency
table_open_cache
sort_buffer_size
read_buffer_size
tmp_table_size
max_heap_table_size
innodb_buffer_pool_size
innodb_additional_mem_pool_size
innodb_locks_unsafe_for_binlog
binlog_format
innodb_flush_log_at_trx_commit

innodb_flush_method

innodb_doublewrite

MySQL 5.5 - 5.6
Other Options

Server Configuration Options

Mandatory
[client]
default-character-set utf8
[mysal]
default-character-set utf8
[mysqgldump]
max_allowed packet 250M

HP Operations Orchestration (10.02)

1000000000
1

0

1000

2M

2m

400M

400M
4096M

20M

row
2
O_DIRECT

0

Defaults, unless instructed otherwise

Recommended

Supported

Page 33 of 48

Database Guide
Deploying and Maintaining a MySQL Database

Manually Creating an HP 00 Database on MySQL

During HP OO setup, a new database can be created automatically by the HP OO installer or a pre-
existing database can be used.

This section describes the procedure for manually creating an HP OO database on MySQL.

Note: Only the database is created at this point; objects such as tables and indexes are not
created yet. These objects are created later by the HP OO installer.

This section is relevant for you if, for example, due to security restrictions, you do not wish to use
login credentials with elevated privileges during the HP OO installation. In such a case, you (or your
organization’s DBA) should create the database first, and then let the HP OO installer connect to
the pre-existing database using basic privileges.

To create a database, you must connect to the SQL Server instance using a user that has
CREATE permission (at the very least).

o root has all privileges. Any member of the DBA role will also be able to create the user and
database.

o Perform the following procedures only if you are an experienced MySQL database
administrator.

o If you prefer to use the MySQL Workbench GUI, make sure you select all options that
correspond with the SQL code presented below.

o Not all database creation options are specified—only those that differ from the default
value. When in doubt, use default values.

To create a database:
1. Logintothe MySQL as “root” or any other member of the DBA role.

2. Run the following SQL script and verify that the database was created successfully:

CREATE DATABASE IF NOT EXISTS 00 COLLATE utf8_bin;

GRANT ALL PRIVILEGES ON 00 .* to 'oouser';
FLUSH PRIVILEGES;

Adapt the highlighted values to match your environment.

3. Test your newly created connection to the database and verify that you are able to log in

HP Operations Orchestration (10.02) Page 34 of 48

Database Guide
Deploying and Maintaining a MySQL Database

successfully.

4. (Optional) In order to verify that database objects can be created by the new login and user,
connect to the server as oouser and perform the following:

USE 00;

CREATE TABLE TEST_TABLE(
TEST_COLUMN int NULL

)5

INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (1);
INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (2);

Verify that the table was created and that it contains two rows. You can now manually or
otherwise drop the table.

MySQL Database Maintenance

This section describes the various maintenance tasks that are recommended for HP OO databases
created on MySQL, such as backing up the database, checking database integrity, handling index

fragmentation, and monitoring the database.

This section includes:

Backing up the HP OO Database

Creating a Maintenance Plan

Backing up the HP 00 Database

You can back up MySQL database using several tools, such as mysqgldump or mysqlbackup.
You can back up the HP OO database using any type of method/tool as long as the complete
database is backed up.

Consider the following guidelines when you create your backup plan for HP OO:

Backup method:

The backup method depends mainly on business considerations—how much information "may” be

lost? What is the maximum time for system recovery? If you need to be able to perform point-in-
time recovery, and only “allow” a few hours-worth of data loss, use the full recovery model and
perform full or differential backups daily, and transaction log backup every N hours depending on
your business requirements.

Backup frequency:
Daily backup is recommended, especially if you are using/modifying HP OO on a daily basis.

You should back up once a month at the very least.

HP Operations Orchestration (10.02) Page 35 of 48

Database Guide
Deploying and Maintaining a MySQL Database

Timing:
Schedule backup for the time when HP OO is least active.
Retention:

Retention depends on your business guidelines and regulations.

Creating a Maintenance Plan

Maintaining an HP OO database includes rebuilding the index and reclaiming free space. Use the
scripts and tools described in this section, in order to keep the HP OO database in good shape.

Recommended Utility for Database Maintenance
In order to keep OO database in good shape, it is recommended to schedule mysqlcheck utility to

run during a system maintenance window.

Important! Note that this operation locks tables! Only perform this action during a
maintenance window when the HP OO system is not operating!

Here is an example of how to run this utility:

Replace "oouser" and "OO" with the actual HP OO user name and database name, respectively.

It is recommended not to proved the password explicitly. See the MySQL documentation for
recommendations on how to secure database passwords.

HP Operations Orchestration (10.02) Page 36 of 48

Database Guide
Deploying and Maintaining a Postgres Database

Deploying and Maintaining a Postgres
Database

In order to deploy HP OO using Postgres, you must have an existing Postgres database service. If
you need to create a new database service, see the relevant documentation provided by Postgres,
because this information is not included within this guide. However, this guide contains
recommendations for the Postgres configuration.

This chapter includes the following sections:

Workflow for Postgres Deployment .. L 37
System Requirements for Postgres 37
Hardware Requirements . e 38
Software Requirements . il 38
Examples of Tested Deployments 38
Language SUPPOMt . 38
Configuring Postgres ...l 39
Manually Creating an HP OO Databaseon Postgres ... 39
Postgres Database Maintenance . .. 41
Backingupthe HP OO Database 41
Creatinga Maintenance Plan ..l 42

Workflow for Postgres Deployment

To deploy HP OO using Postgres, perform the following steps:

1. Review sizing guidelines. For details, see "HP OO Database Sizing" in "Introduction to
Preparing the Database Environment" on page 6.

2. Review Hardware and Software Requirements. For details, see "System Requirements for
Postgres" below.

3. Configure Postgres. For details, see "Configuring Postgres" on page 39.

4. Create HP OO database on Postgres. For details, see "Manually Creating an HP OO
Database on Postgres" on page 39.

System Requirements for Postgres

HP Operations Orchestration (10.02) Page 37 of 48

Database Guide
Deploying and Maintaining a Postgres Database

This section describes the system requirements for working with Postgres in conjunction with HP
00.

Hardware Requirements

For HP OO database sizing guidelines and hardware requirements, see "HP OO Database Sizing"
and and "Hardware Requirements” in "Introduction to Preparing the Database Environment" on
page 6.

For Postgres hardware requirements, see the relevant installation guide for your Postgres release
and operating system.

Software Requirements

The following table lists the Postgres releases supported by HP OO:

Postgres Database Releases

Version Type

9.1 x86 32-bit
x86 64-bit

9.2 x86 32-bit
x86 64-bit

Only supported versions should be used.

See the Postgres documentation for supported platforms.

Examples of Tested Deployments

The following table lists the deployment environments that have been rigorously tested by HP
quality assurance personnel.

Database Release

Version 32/64Bit Service Pack Operating System
Postgres 9.2.3 = 64 Bit 1 Windows 2012 Standard Edition 64 Bit
Postgres 9.1.9 = 64 Bit 2 Red Hat Enterprise Linux 6.3 64 Bit

Language Support

Postgres determines character set and collation at the database level. The HP OO database uses
Unicode (utf8) encoding and collation. This lets you use any Unicode character (and practically all
common characters in all languages).

HP Operations Orchestration (10.02) Page 38 of 48

Database Guide
Deploying and Maintaining a Postgres Database

Configuring Postgres

This section contains information on Postgres configuration settings.

Legend:
. configuration options/values appear in font.
o Recommended configuration options/values appear in bold/purple font.

o Supported configuration options/values appear in normal font, and may show as a comma-
separated list.

o Comments appear in italic font.

MySQL 5.5 - 5.6
Instance/Server Options

Instance Configuration Options Defaults, unless instructed otherwise

Mandatory Recommended Supported
max_connections
default_transaction_isolation
autovacuum
track_counts
shared_buffers

effective_cache_size

work_mem 1

maintenance_work_mem 1

Ic_messages ‘en_US.UTF-8' Any
Ic_monetary ‘en_US.UTF-8' Any

[1]-Minimal values. See the Postgres documentation on how to tune these values in accordance
with your environment.

Manually Creating an HP 00 Database on Postgres

During HP OO setup, a new database can be created automatically by the HP OO installer or a pre-
existing database can be used.

This section describes the procedure for manually creating an HP OO database on Postgres.

HP Operations Orchestration (10.02) Page 39 of 48

Database Guide
Deploying and Maintaining a Postgres Database

Note: Only the database is created at this point; objects such as tables and indexes are not
created yet. These objects are created later by the HP OO installer.

This section is relevant for you if, for example, due to security restrictions, you do not wish to use
login/user credentials with elevated privileges during the HP OO installation. In such a case, you (or
your organization’s DBA) should create the database, login, and user first, and then let the HP OO
installer connect to the pre-existing database using basic privileges.

To create a database, you must connect to the Postgres instance using a login that has
CREATEUSER and CREATEDB privileges at the very least.

e The postgres built-in user has all the required privileges.

e Perform the following procedures only if you are an experienced Postgres database
administrator.

o If you prefer to use the PgAdmin GUI, make sure you select all options that correspond with
the SQL code presented below.

o Not all database creation options are specified—only those that differ from the default
value. When in doubt, use default values.

To create a database:

1. Loginto Postgres as “postgres” or any other login role with CREATEUSER and CREATEDB
privileges.

2. Run the following SQL script and verify that the database was created successfully:

CREATE ROLE oouser LOGIN
UNENCRYPTED PASSWORD '???????"'
NOSUPERUSER INHERIT NOCREATEDB NOCREATEROLE NOREPLICATION;

CREATE DATABASE "00O"

WITH OWNER = oouser
ENCODING = 'UTF8'
TABLESPACE = pg_default
LC_COLLATE = 'en_US.UTF-8'
LC_CTYPE = 'en_US.UTF-8'
CONNECTION LIMIT = -1;

Adapt the highlighted values to match your environment.

3. (Optional) In order to verify that database objects can be created by the new login and user,
connect to the server as oouser and perform the following:

HP Operations Orchestration (10.02) Page 40 of 48

Database Guide
Deploying and Maintaining a Postgres Database

CREATE TABLE TEST_TABLE(
TEST_COLUMN int NULL
)5

INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (1);
INSERT INTO TEST_TABLE (TEST_COLUMN) VALUES (2);

Verify that the table was created and that it contains two rows. You can now manually or
otherwise drop the table.

Postgres Database Maintenance

This section describes the various maintenance tasks that are recommended for HP OO databases
created on Postgres, such as backing up the database, checking database integrity, handling index
fragmentation, and monitoring the database.

This section includes:

Backingupthe HP OO Databaseoo i 41

Creatinga Maintenance Plan 42

Backing up the HP 00 Database

You can back up a Postgres database using several tools, such as the pg_dump or pg_backup
script. You can back up the HP OO database using any type of method/tool as long as the complete
database is backed up.

Consider the following guidelines when you create your backup plan for HP OO:
Backup method:

The backup method depends mainly on business considerations—how much information "may” be
lost? What is the maximum time for system recovery? If you need to be able to perform point-in-
time recovery, and only “allow” a few hours-worth of data loss, use the full recovery model and
perform full or differential backups daily, and transaction log backup every N hours depending on
your business requirements.

If your organization is more tolerant to data loss, you can use the simple recovery model and
perform a daily or weekly full backup.

Backup frequency:

Daily backup is recommended, especially if you are using/modifying HP OO on a daily basis.
You should back up once a month at the very least.

Timing:

Schedule backup for the time when HP OO is least active.

Retention:

HP Operations Orchestration (10.02) Page 41 of 48

Database Guide
Deploying and Maintaining a Postgres Database

Retention depends on your business guidelines and regulations.

Creating a Maintenance Plan

HP OO Postgres database maintenance mainly includes table REINDEX, as autovacuum needs
to be activated. Use the example below, in order to keep the HP OO database in good shape.

Recommended Utility for Database Maintenance
In order to keep the HP OO database in good shape, it is recommended to run the REINDEX action

during a system maintenance window.

Important! Note that this operation locks tables! Only perform this action during a
maintenance window when the HP OO system is not operating!

Here is an example of how to REINDEX a complete database using the reindexdb utility:

Replace “O0” and “oouser” with actual HP OO database and user names.

It is recommended not to provide the password explicitly. See the Postgres documentation for
recommendations on how to secure database passwords.

HP Operations Orchestration (10.02) Page 42 of 48

Database Guide
Appendix A: Additional Guidelines for Microsoft SQL Server

Appendix A: Additional Guidelines for
Microsoft SQL Server

This appendix contains additional guidelines relevant for HP OO deployment on Microsoft SQL
Server.

Using Windows Authentication to Access Microsoft
SQL Server Databases

Unless configured otherwise, HP OO uses Microsoft SQL Server authentication to access
Microsoft SQL Server databases. Note that the HP OO installer currently does not support using
Windows authentication during HP OO installation. However, Windows authentication can be used
once HP OQ is installed.

This appendix describes how to enable HP OO to use Windows authentication to access Microsoft
SQL Server databases.

Configuring HP 00 to Work with Windows
Authentication

You can enable HP OO to use Windows authentication instead of Microsoft SQL Server
authentication to access HP OO databases.

To enable HP OO to use Windows authentication to access a Microsoft SQL database:

1. Encrypt the Windows user password using the encrypt-password.bat utility located under
<00 installation>/central/bin by running:

encrypt-password.bat --encrypt --password <password>
Save the generated string in order to use it in the next step.

2. Back up your current database.properties file located under <OO installation>/central/conf
if you have an existing (usable) database connection.

3. Edit the database.properties file located under <OO installation>/central/conf, and change
only the relevant parameter syntax to match the following example:

db.username=<USERNAME >
jdbc.url=jdbc\:jtds\:\
sqlserver\://<hostname>\:<port>/<db_name>;\

HP Operations Orchestration (10.02) Page 43 of 48

Database Guide
Appendix A: Additional Guidelines for Microsoft SQL Server

sendStringParametersAsUnicode\=true;\
domain\=<DOMAIN NAME>
db.password=<the string generated by encrypt-password.bat>

Replace all the highlighted items with the correct values that match your environment.

Note that the jdbe.url parameter is broken into several lines using trailing backslash
characters.

T-SQL Scripts and Stored Procedures
Use the following T-SQL scripts in order to create the HP OO maintenance-related stored
procedures.
OO_DB_MAINTENANCE_LOG.sql

Run the following script in order to create the OO_DB_MAINTENANCE_LOG. table. This table
will log all maintenance action results.

Creating this table is optional. You can run the OOIndexMaintenance stored procedure with
LogToTable = ‘N’ inorderto prevent logging to this table.

OOCmdExec.sql

Run this script in order to create the OOCmdExec stored procedure. This operation is mandatory in
order to use the OOIndexMaintenance stored procedure.

OOIndexMaintenance.sql
In order for this procedure to operate properly, an additional preceding step is required.

Log in to Microsoft SQL Server as “sa” or any member of the sysadmin role and run the following
code in order to give the HP OO user the ability to access dm_os_performance_counters
dynamic management view (DMV):

USE [master]
GO

GRANT VIEW SERVER STATE TO oouser

GO
Replace “oouser” with the actual user created for HP OO.
Run the script in order to create the OOIndexMaintenance stored procedure.
OOPurgeHistory.sql

Run this script in order to create the OOPurgeHistory stored procedure.

HP Operations Orchestration (10.02) Page 44 of 48

00_DB_MAINTENANCE_LOG.sql

USE <your_db_name_here>
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

SET ANSI_PADDING ON
GO

/*
* Author: Harar Zafrir harar.zafrir@hp.com

* Based on a script by Ola Hallengren - See http://ola.hallengren.com

*

* Version: 1.0

*

* Last update: 2014-JAN-02

*

* This table is meant to accommodate log information from the OOlndexMaintenance

* procedures (via the 00CmdExec procedure which is used as a utility procedure).

*

* Verified on Microsoft SQL Server 2008R2 and 2012

*

A e
* Change List

e e e e e e e e e e e
*/

CREATE TABLE [dbo]-[00_DB_MAINTENANCE_LOG](
[ID] int IDENTITY(1,1) NOT NULL CONSTRAINT [PK_OO_DB_MAINTENANCE_LOG] PRIMARY KEY CLUSTERED,
[DatabaseName] sysname NULL,

[SchemaName] sysname NULL,

[ObjectName] sysname NULL,

[ObjectType] char(2) NULL,

[IndexName] sysname NULL,

[IndexType] tinyint NULL,

[StatisticsName] sysname NULL,
[PartitionNumber] int NULL,

[ExtendedInfo] xml NULL,

[Command] nvarchar(max) NOT NULL,
[CommandType] nvarchar(60) NOT NULL,
[StartTime] datetime NOT NULL,

[EndTime] datetime NULL,

[ErrorNumber] int NULL,

[ErrorMessage] nvarchar(max) NULL

)
GO

00CmdExec.sql

USE <your_db_name_here>
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

-- Replace this stored procedure in case it already exists
IF OBJECT_ID ("0OOCmdExec®, "P®) IS NOT NULL

DROP PROCEDURE [dbo] - [00CmdExec]
GO

CREATE PROCEDURE [dbo] . [00CmdExec]

@Command nvarchar(max),
@CommandType nvarchar(max),

@Mode int,

@Comment nvarchar(max) = NULL,
@DatabaseName nvarchar(max) = NULL,
@SchemaName nvarchar(max) = NULL,
@0bjectName nvarchar(max) = NULL,
@0bjectType nvarchar(max) NULL,
@IndexName nvarchar(max) = NULL,
@IndexType int = NULL,
@StatisticsName nvarchar(max) = NULL,
@PartitionNumber int = NULL,
@ExtendedInfo xml = NULL,
@LogToTable nvarchar(max),

@Execute nvarchar(max)

/*
* Author: Harar Zafrir harar.zafrir@hp.com
Based on a script by Ola Hallengren - See http://ola.hallengren.com
Version: 1.0
Last update: 2014-JAN-02
This procedure is a utility to be used by other 00 procedures.
Its main purpose is to safely execute a command while (optionally)

logging output to a table and capturing and handling exceptions.

Verified on Microsoft SQL Server 2008R2 and 2012.

L T N N R N R B B

* Change List

BEGIN
SET NOCOUNT ON

DECLARE @StartMessage nvarchar(max)

DECLARE @EndMessage nvarchar(max)

DECLARE @ErrorMessage nvarchar(max)

DECLARE @ErrorMessageOriginal nvarchar(max)

DECLARE @StartTime datetime
DECLARE @EndTime datetime

DECLARE @StartTimeSec datetime
DECLARE @EndTimeSec datetime

DECLARE @ID int

DECLARE @Error int
DECLARE @ReturnCode int

SET @Error = 0O
SET @ReturnCode = 0

IF @LogToTable = "Y®" AND NOT EXISTS (SELECT * FROM sys.objects objects INNER JOIN
sys.schemas schemas ON objects.[schema_id] = schemas.[schema_id] WHERE objects.[type]
= "U" AND schemas.[name] = "dbo" AND objects.[name] = "00_DB_MAINTENANCE_LOG")

BEGIN
SET @ErrorMessage = "The table 00_DB_MAINTENANCE_LOG is missing. Please execute
the 00_DB_MAINTENANCE_LOG.sqgl script to build the missing table." + CHAR(13) +
CHAR(10) + = ~
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Error <> 0

BEGIN
SET @ReturnCode = @Error
GOTO ReturnCode

END

//—-

IF @Command 1S NULL OR @Command = **
BEGIN

SET @ErrorMessage = "The value for the parameter @Command is not supported.” +
CHAR(13) + CHAR(10) + * *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @CommandType IS NULL OR @CommandType = "" OR LEN(@CommandType) > 60
BEGIN
SET @ErrorMessage = "The value for the parameter @CommandType is not supported.” +
CHAR(13) + CHAR(10) + = *
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Mode NOT IN(1,2) OR @Mode 1S NULL
BEGIN
SET @ErrorMessage = "The value for the parameter @Mode is not supported.” +
CHAR(13) + CHAR(10) + = *
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @LogToTable NOT IN("Y","N") OR @LogToTable IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @LogToTable is not supported.® +
CHAR(13) + CHAR(10) + " ~

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Execute NOT IN(C"Y","N") OR @Execute 1S NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @Execute is not supported.” +
CHAR(13) + CHAR(10) + " ~

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Error <> 0

BEGIN
SET @ReturnCode = @Error
GOTO ReturnCode

END

--// Log initial information
//—-

SET @StartTime = GETDATEQ)
SET @StartTimeSec = CONVERT(datetime,CONVERT(nvarchar,@StartTime,120),120)

SET @StartMessage = "Date and time: " + CONVERT(nvarchar,@StartTimeSec,120) +
CHAR(13) + CHAR(10)

SET @StartMessage = @StartMessage + "Command: * + @Command

IF @Comment IS NOT NULL SET @StartMessage = @StartMessage + CHAR(13) + CHAR(10) +
"Comment: " + @Comment

SET @StartMessage = REPLACE(@StartMessage, "%","%%")
RAISERROR(@StartMessage,10,1) WITH NOWAIT

IF @LogToTable = "Y*
BEGIN

INSERT INTO dbo.0O_DB_MAINTENANCE_LOG (DatabaseName, SchemaName, ObjectName,
ObjectType, IndexName, IndexType, StatisticsName, PartitionNumber, Extendedinfo,
CommandType, Command, StartTime)

VALUES (@DatabaseName, @SchemaName, @ObjectName, @ObjectType, @IndexName,
@IndexType, @StatisticsName, @PartitionNumber, @ExtendedInfo, @CommandType, @Command,
@StartTime)

END

SET @ID = SCOPE_IDENTITY()

//—-

IF @Mode = 1 AND @Execute = "Y*
BEGIN

EXECUTE(@Command)

SET @Error = @@ERROR

SET @ReturnCode = @Error
END

IF @Mode = 2 AND @Execute = "Y*
BEGIN
BEGIN TRY
EXECUTE(@Command)
END TRY
BEGIN CATCH
SET @Error = ERROR_NUMBERQ)
SET @ReturnCode = @Error
SET @ErrorMessageOriginal = ERROR_MESSAGE()

SET @ErrorMessage = "Msg " + CAST(@Error AS nvarchar) + *, " +
ISNULL(@ErrorMessageOriginal,®")

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END CATCH
END

SET @EndTime = GETDATEQ)
SET @EndTimeSec = CONVERT(datetime,CONVERT(varchar,@EndTime,120),120)

SET @EndMessage = "Outcome: " + CASE WHEN @Execute = "N* THEN "Not Executed®" WHEN
@Error = 0 THEN "Succeeded®™ ELSE "Failed® END + CHAR(13) + CHAR(10)

SET @EndMessage = @EndMessage + "Duration: " + CASE WHEN DATEDIFF(ss,@StartTimeSec,
@EndTimeSec)/(24*3600) > 0 THEN CAST(DATEDIFF(ss,@StartTimeSec, @EndTimeSec)/(24*3600)
AS nvarchar) + "_." ELSE "" END + CONVERT(nvarchar,@EndTimeSec - @StartTimeSec,108) +
CHAR(13) + CHAR(10)

SET @EndMessage = @EndMessage + "Date and time: " +
CONVERT(nvarchar ,@EndTimeSec,120) + CHAR(13) + CHAR(10) + = *

SET @EndMessage = REPLACE(@EndMessage, "%", "%%")
RAISERROR(@EndMessage ,10,1) WITH NOWAIT

IF @LogToTable = "Y*
BEGIN
UPDATE dbo.00_DB_MAINTENANCE_LOG
SET EndTime = @EndTime,
ErrorNumber = CASE WHEN @Execute = "N* THEN NULL ELSE @Error END,
ErrorMessage = @ErrorMessageOriginal
WHERE ID = @ID
END

ReturnCode:
IF @ReturnCode <> 0
BEGIN

RETURN @ReturnCode
END

00IndexMaintenance.sql

USE <your_db_name_here>
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

-- Replace this stored procedure in case it already exists

IF OBJECT_ID ("OOlIndexMaintenance®, "P") IS NOT NULL
DROP PROCEDURE [dbo].[00OIndexMaintenance]

GO

CREATE PROCEDURE [dbo]-[0OIndexMaintenance]

@DatabaseName nvarchar(max),
@FragmentationLow nvarchar(max) = NULL,

@FragmentationMedium nvarchar(max) =
" INDEX_REORGANIZE, INDEX_REBUILD_ONLINE, INDEX_REBUILD_OFFLINE®,

@FragmentationHigh nvarchar(max) = "INDEX_REBUILD_ONLINE, INDEX_REBUILD_OFFLINE",
@FragmentationLevell int = 5,
@FragmentationLevel2 int = 30,

@PageCountLevel int = 1000, /* See recommendation at
http://msdn_microsoft.com/en-us/library/cc966523(en-us).aspx */

@SortInTempdb nvarchar(max) = *N-",
@FillFactor int = NULL,

@PadIndex nvarchar(max) = NULL,
@LOBCompaction nvarchar(max) = "N-,
@UpdateStatistics nvarchar(max) = "INDEX",
@OnlyModifiedStatistics nvarchar(max) = "N,
@StatisticsSample int = NULL,
@StatisticsResample nvarchar(max) = "Y*",
@PartitionLevel nvarchar(max) = "N-,
@MSShippedObjects nvarchar(max) = *N-7,
@Indexes nvarchar(max) = NULL,

@TimeLimit int = NULL,

@Delay int = NULL,

@LockTimeout int = NULL,

@LogToTable nvarchar(max) = °"N-,

@Execute nvarchar(max) = "Y*

/*
* Author: Harar Zafrir harar.zafrir@hp.com
* Based on a script by Ola Hallengren - See http://ola.hallengren.com

*

* Version: 1.0

Last update: 2014-JAN-02

This procedure helps keeping 00 database indexes and statistics in good shape.
Verified on Microsoft SQL Server 2008R2 and 2012.

Parameters:

L B N N I B I

Note that only key parameters are listed here. The rest are using their default
values.

*

* @DatabaseName:

* The name of your 00 database. Surrounding brackets are not required.

*

* @FragmentationLow:

* How to deal with indexes with low fragmentation rating. NULL by
default.

* Only use this in case you would like to increase the script
sensitivity (use a lower threshold

* for triggering an action).

*

* @FragmentationMedium:

* How to deal with indexes with medium fragmentation rating. Actions
are prioritized
* from left (high) to right (low). Indexes are reorganized at first.

*

* @FragmentationHigh:

* How to deal with indexes with high fragmentation rating. Actions are
prioritized

* from left (high) to right (low). Indexes are rebuilt - online if
possible.

*

* @FragmentationLevell, @FragmentationLevel2:

* Below @FragmentationLevell value, fragmentation is considered to be
low
* Between @FragmentationLevell and @FragmentationLevel2 (inclusive)

fragmentation is considered medium
Above @FragmentationLevel2 fragmentation is considered high.
Recommended values by Microsoft are 5 and 30 respectively.

@SortInTempdb:
Should index rebuild use tempdb for faster execution. Default is "N*

if you select "Y" verify you have sufficient free space on tempdb.

@Indexes:

LINE I B N B B R A

A filter string for indexes to process. Value should be
<your_db_name_here>.dbo.%" to include all indexes.
* Please refer to http://ola.hallengren.com for explanation about the
filter syntax
* in case you wish to specify a different set of indexes to be
examined and processed.

*

* @TimeLimit:

* Overall procedure run-time limitation in seconds. The default is
1800 = 30 minutes.

*

* @LockTimeout:

* Maximum duration to wait for object lock in seconds. Default is 20
(seconds).
*

* @LogToTable:

* Should procedure output be logged to the 00 _DB_MAINTENANCE_LOG
table.
* Note that in order to use this feature, 00_DB_MAINTENANCE_LOG.sql

script must be run in order to create the logging table.
*

* @Execute:

* Should index reorganize / rebuild actions be performed ("Y") or just
"dry-run™ ("N%).

*

* Return Values:

AS

BEGIN
SET NOCOUNT ON
SET ARITHABORT ON
DECLARE @StartMessage nvarchar(max)
DECLARE @EndMessage nvarchar(max)
DECLARE @DatabaseMessage nvarchar(max)
DECLARE @ErrorMessage nvarchar(max)
DECLARE @Version numeric(18,10)
DECLARE @Cluster nvarchar(max)
DECLARE @StartTime datetime
DECLARE @DatabaselD int
DECLARE @lsDatabaseAccessible bit
DECLARE @CurrentAvailabilityGroup nvarchar(max)

DECLARE @CurrentAvailabilityGroupRole nvarchar(max)
DECLARE @CurrentDatabaseMirroringRole nvarchar(max)

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE
DECLARE

DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

@CurrentCommand01
@CurrentCommand02
@CurrentCommand03
@CurrentCommand04
@CurrentCommand05
@CurrentCommand06
@CurrentCommand07
@CurrentCommand08
@CurrentCommand09
@CurrentCommandl10
@CurrentCommandl1l
@CurrentCommandi12
@CurrentCommandi13
@CurrentCommandl14

nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)
nvarchar (max)

@CurrentCommandOutputl3 int
@CurrentCommandOutputlsd int

@CurrentCommandTypel3 nvarchar(max)
@CurrentCommandTypel4 nvarchar(max)

@CurrentlIxID int

@CurrentSchemalD int
@CurrentSchemaName nvarchar(max)
@CurrentObjectID int
@CurrentObjectName nvarchar(max)
@CurrentObjectType nvarchar(max)
@CurrentlndexID int

@CurrentlndexName
@CurrentlindexType

nvarchar (max)
int

@CurrentStatisticsliD int

@CurrentStatisticsName nvarchar(max)

@CurrentPartitionlD bigint
@CurrentPartitionNumber int
@CurrentPartitionCount int
@CurrentlsPartition bit
@CurrentindexExists bit
@CurrentStatisticsExists bit
@CurrentlslmageText bit
@CurrentlsNewLOB bit
@CurrentlsFileStream bit
@CurrentlsColumnStore bit
@CurrentAllowPagelLocks bit
@CurrentNoRecompute bit
@CurrentStatisticsModified bit
@CurrentOnReadOnlyFileGroup bit
@CurrentFragmentationLevel float

@CurrentPageCount

@CurrentFragmentationGroup nvarchar(max)

bigint

@CurrentAction nvarchar(max)

@CurrentUpdateStatistics nvarchar(max)

DECLARE @CurrentComment nvarchar(max)
DECLARE @CurrentExtendedInfo xml
DECLARE @CurrentDelay datetime

DECLARE @tmplndexesStatistics TABLE (ID int IDENTITY,
SchemalD int,
SchemaName nvarchar(max),
ObjectlD int,
ObjectName nvarchar(max),
ObjectType nvarchar(max),
IndexID int,
IndexName nvarchar(max),
IndexType int,
StatisticslID int,
StatisticsName nvarchar(max),
PartitionlD bigint,
PartitionNumber int,
PartitionCount int,
Selected bit,
Completed bit,
PRIMARY KEY(Selected, Completed,

DECLARE @SelectedDatabases TABLE (DatabaseName nvarchar(max),
DatabaseType nvarchar(max),
Selected bit)

DECLARE @SelectedIndexes TABLE (DatabaseName nvarchar(max),
SchemaName nvarchar(max),
ObjectName nvarchar(max),
IndexName nvarchar(max),
Selected bit)

DECLARE @Actions TABLE ([Action] nvarchar(max))
INSERT INTO @Actions([Action]) VALUES(" INDEX_REBUILD_ONLINE™)
INSERT INTO @Actions(JAction]) VALUES("INDEX_REBUILD_OFFLINE®)
INSERT INTO @Actions(JAction]) VALUES(" INDEX_REORGANIZE™)
DECLARE @ActionsPreferred TABLE (FragmentationGroup nvarchar(max),
[Priority] int,
[Action] nvarchar(max))

DECLARE @CurrentActionsAllowed TABLE ([Action] nvarchar(max))

DECLARE @Error int
DECLARE @ReturnCode int

SET @Error = O
SET @ReturnCode = 0

1D))

SET @Version = CAST(LEFT(CAST(SERVERPROPERTY("ProductVersion®) AS
nvarchar(max)) ,CHARINDEX(" . " ,CAST(SERVERPROPERTY("ProductVersion®) AS
nvarchar(max))) - 1) + "." + REPLACE(RIGHT(CAST(SERVERPROPERTY("ProductVersion®)
AS nvarchar(max)), LEN(CAST(SERVERPROPERTY("ProductVersion®) AS nvarchar(max))) -
CHARINDEX(" . " ,CAST(SERVERPROPERTY("ProductVersion®) AS nvarchar(max)))),".","")
AS numeric(18,10))

--// Log initial information
//——

SET @StartTime = CONVERT(datetime,CONVERT(nvarchar,GETDATE(),120),120)

SET @StartMessage = "Date and time: " + CONVERT(nvarchar,@StartTime,120) +
CHAR(13) + CHAR(10)

SET @StartMessage = @StartMessage + "Server: " +
CAST (SERVERPROPERTY("ServerName®) AS nvarchar) + CHAR(13) + CHAR(10)

SET @StartMessage = @StartMessage + "Version: " +
CAST (SERVERPROPERTY ("ProductVersion®) AS nvarchar) + CHAR(13) + CHAR(10)

SET @StartMessage = @StartMessage + “Edition: " +
CAST(SERVERPROPERTY("Edition®) AS nvarchar) + CHAR(13) + CHAR(10)

SET @StartMessage = @StartMessage + "Procedure: " + QUOTENAME(DB_NAME(DB_ID(Q)))
+ "_" + (SELECT QUOTENAME(schemas.name) FROM sys.schemas schemas INNER JOIN
sys.objects objects ON schemas.[schema_id] = objects.[schema_id] WHERE
[object_id] = @@PROCID) + "." + QUOTENAME(OBJECT_NAME(@@PROCID)) + CHAR(13) +
CHAR(10)

SET @StartMessage = @StartMessage + "Parameters: @DatabaseName = " +
ISNULL(" """ + REPLACE(@DatabaseName,®™"","""""") + """" F“NULL")

SET @StartMessage = @StartMessage + ", @FragmentationLow = * + ISNULL("""" +
REPLACE(@FragmentationLow, " ™" ", """ """) + """" "*NULL")

SET @StartMessage = @StartMessage + ", @FragmentationMedium " + ISNULL(C" """ +
REPLACE(@FragmentationMedium, ®"®" =®"""") + "="% *NULL")

SET @StartMessage = @StartMessage + ", @FragmentationHigh = " + ISNULL(*""" +
REPLACE(@FragmentationHigh,™""","""""") + "*"" "NULL")

SET @StartMessage = @StartMessage + ", @FragmentationLevell "+
ISNULL(CAST(@FragmentationLevell AS nvarchar), "NULL")

SET @StartMessage = @StartMessage + ", @FragmentationLevel?2 "+
ISNULL(CAST(@FragmentationLevel2 AS nvarchar), "NULL")

SET @StartMessage = @StartMessage + ", @PageCountLevel = * +
ISNULL(CAST(@PageCountLevel AS nvarchar), *NULL")

SET @StartMessage = @StartMessage + ", @SortInTempdb = * + ISNULL("""" +
REPLACE(@SortInTempdb, " """, """ "") + """" “NULL")

-- SET @StartMessage = @StartMessage + ", @FillFactor = * +
ISNULL(CAST(@FillFactor AS nvarchar),"NULL")

-- SET @StartMessage = @StartMessage + ", @Padlndex = " + ISNULL("""" +
REPLACE(@PadlIndex, ™ ™","""""") + """" *NULL"™)

-- SET @StartMessage = @StartMessage + ", @LOBCompaction = " + ISNULL(C*""" +
REPLACE(@LOBCompaction, """, """""") + *""" *NULL")

-- SET @StartMessage = @StartMessage + ", @UpdateStatistics = " + ISNULL("""" +
REPLACE(@UpdateStatistics, ™ ™" ,"""""") + """" *"NULL")

-— SET @StartMessage = @StartMessage + ", @OnlyModifiedStatistics = " +
ISNULL(" """ + REPLACE(@OnlyModifiedStatistics, ™ "","""""") + """" *"NULL")

-- SET @StartMessage = @StartMessage + ", @StatisticsSample = " +
ISNULL(CAST(@StatisticsSample AS nvarchar), *NULL")

SET @StartMessage = @StartMessage + ", @StatisticsResample = * + ISNULL("""" +
REPLACE(@StatisticsResample, ™™ " ,"""""") + """ "NULL")

-- SET @StartMessage = @StartMessage + ", @PartitionLevel = * + ISNULL(" """ +
REPLACE(@PartitionLevel ,"""","""""") + """ “NULL")

-- SET @StartMessage = @StartMessage + ", @MSShippedObjects = " + ISNULL(" """ +
REPLACE(@MSShippedObjects, " ="","""""") + """ *"NULL")

SET @StartMessage = @StartMessage + ", @Indexes = " + ISNULL(" """ +
REPLACE(@Indexes, ™™™ ,"" """ ") + """" "NULL")

SET @StartMessage = @StartMessage + ", @TimeLimit = * + ISNULL(CAST(@TimeLimit
AS nvarchar), "NULL")

-— SET @StartMessage = @StartMessage + ", @Delay = " + ISNULL(CAST(@Delay AS
nvarchar), *"NULL")

SET @StartMessage = @StartMessage + ", @LockTimeout = " +
ISNULL(CAST(@LockTimeout AS nvarchar), "NULL")

SET @StartMessage = @StartMessage + ", @LogToTable = " + ISNULL("""" +
REPLACE(@LogToTable, ™" ™", ""*""*"*) + """ “NULL")

SET @StartMessage = @StartMessage + ", @Execute = " + ISNULL(" """ +
REPLACE(@Execute, ™ ™","""""") + """","NULL") + CHAR(13) + CHAR(10)

SET @StartMessage = REPLACE(@StartMessage, "%", "%%") + " *

-- RAISERROR(@StartMessage,10,1) WITH NOWAIT

IF NOT EXISTS (SELECT * FROM sys.objects objects INNER JOIN sys.schemas schemas
ON objects.[schema_id] = schemas.[schema_id] WHERE objects.[type] = "P" AND
schemas.[name] = "dbo" AND objects.[name] = "00CmdExec")

BEGIN
SET @ErrorMessage = "The stored procedure O0OCmdExec is missing. Please
execute the 00CmdExec.sql script to create the missing procedure.” + CHAR(13) +
CHAR(10) + * *
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF EXISTS (SELECT * FROM sys.objects objects INNER JOIN sys.schemas schemas ON
objects.[schema_id] = schemas.[schema_id] WHERE objects.[type] = "P" AND
schemas.[name] = "dbo" AND objects.[name] = "00CmdExec®” AND
(OBJECT_DEFINITION(objects.[object_id]) NOT LIKE "%@LogToTable%" OR
OBJECT_DEFINITION(objects.[object_id]) LIKE "%LOCK_TIMEOUT%"))

BEGIN

SET @ErrorMessage = "The stored procedure OOCmdExec needs to be updated.
Please execute the 00CmdExec.sql script to update the procedure.® + CHAR(13) +
CHAR(10) + = -~

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

SET @Error = @@ERROR

END

IF @LogToTable = "Y®" AND NOT EXISTS (SELECT * FROM sys.objects objects INNER

JOIN sys.schemas schemas ON objects.[schema_id] = schemas.[schema_id] WHERE
objects.[type] = "U" AND schemas.[name] = "dbo" AND objects.[name] =

"00_DB_MAINTENANCE_LOG")
BEGIN
SET @ErrorMessage = "The table 00_DB_MAINTENANCE_LOG is missing. Please

execute the 00_DB_MAINTENANCE_LOG.sql script to build the missing table." +
CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Error <> 0

BEGIN
SET @ReturnCode = @Error
GOTO Logging

END

-- HERE!!

//—-

IF @DatabaseName IS NULL
BEGIN
SET @ErrorMessage = "The value for the parameter @DatabaseName is not

supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

//—-

SET @Indexes = REPLACE(@Indexes, ", ", ",");

WITH Indexesl (StartPosition, EndPosition, Indexltem) AS
(
SELECT 1 AS StartPosition,
ISNULL(NULLIF(CHARINDEX(",", @Indexes, 1), 0), LEN(@Indexes) + 1) AS

EndPosition,

SUBSTRING(@Indexes, 1, ISNULL(NULLIF(CHARINDEX(",", @Indexes, 1), 0),

LEN(@Indexes) + 1) - 1) AS Indexltem

WHERE @Indexes IS NOT NULL
UNION ALL

SELECT CAST(EndPosition AS int) + 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @Indexes, EndPosition + 1), 0),
LEN(@Indexes) + 1) AS EndPosition,

SUBSTRING(@Indexes, EndPosition + 1, ISNULL(NULLIF(CHARINDEX(",",
@Indexes, EndPosition + 1), 0), LEN(@Indexes) + 1) - EndPosition - 1) AS
Indexltem

FROM Indexesl

WHERE EndPosition < LEN(@Indexes) + 1
).

Indexes2 (Indexltem, Selected) AS

(

SELECT CASE WHEN Indexltem LIKE "-%" THEN RIGHT(Indexltem,LEN(Indexltem) - 1)
ELSE Indexltem END AS Indexltem,

CASE WHEN Indexltem LIKE "-%" THEN O ELSE 1 END AS Selected
FROM Indexesl
),
Indexes3 (Indexltem, Selected) AS
(
SELECT CASE WHEN Indexltem = “ALL_INDEXES®" THEN "%.%.%.%" ELSE Indexltem END AS
Indexltem,
Selected
FROM Indexes2
),
Indexes4 (DatabaseName, SchemaName, ObjectName, IndexName, Selected) AS
(

SELECT CASE WHEN PARSENAME(Indexltem,4) IS NULL THEN PARSENAME(Indexltem,3)
ELSE PARSENAME(Indexltem,4) END AS DatabaseName,

CASE WHEN PARSENAME(Indexltem,4) IS NULL THEN PARSENAME(Indexltem,?2)
ELSE PARSENAME(Indexltem,3) END AS SchemaName,

CASE WHEN PARSENAME(Indexltem,4) IS NULL THEN PARSENAME(Indexltem,1)
ELSE PARSENAME(Indexltem,2) END AS ObjectName,

CASE WHEN PARSENAME(Indexltem,4) IS NULL THEN "%" ELSE
PARSENAME(Indexltem,1) END AS IndexName,

Selected
FROM Indexes3

)
INSERT INTO @Selectedlndexes (DatabaseName, SchemaName, ObjectName, IndexName,

Selected)
SELECT DatabaseName, SchemaName, ObjectName, IndexName, Selected
FROM Indexes4
OPTION (MAXRECURSION 0);

//--

WITH FragmentationLow (StartPosition, EndPosition, [Action]) AS

(C
SELECT 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @FragmentationLow, 1), 0),
LEN(@FragmentationLow) + 1) AS EndPosition,

SUBSTRING(@FragmentationLow, 1, ISNULL(NULLIF(CHARINDEX(",",
@FragmentationLow, 1), 0), LEN(@FragmentationLow) + 1) - 1) AS [Action]
WHERE @FragmentationLow IS NOT NULL
UNION ALL
SELECT CAST(EndPosition AS int) + 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @FragmentationLow, EndPosition + 1), 0),
LEN(@FragmentationLow) + 1) AS EndPosition,

SUBSTRING(@FragmentationLow, EndPosition + 1,
ISNULL(NULLIF(CHARINDEX(",", @FragmentationLow, EndPosition + 1), 0),
LEN(@FragmentationLow) + 1) - EndPosition - 1) AS [Action]

FROM FragmentationlLow

WHERE EndPosition < LEN(@FragmentationLow) + 1

)

INSERT INTO @ActionsPreferred(FragmentationGroup, [Priority], [Action])

SELECT “Low" AS FragmentationGroup,
ROW_NUMBER() OVER(ORDER BY StartPosition ASC) AS [Priority],
[Action]

FROM FragmentationlLow

OPTION (MAXRECURSION 0);

WITH FragmentationMedium (StartPosition, EndPosition, [Action]) AS
(
SELECT 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(", ", @FragmentationMedium, 1), 0),
LEN(@FragmentationMedium) + 1) AS EndPosition,

SUBSTRING(@FragmentationMedium, 1, ISNULL(NULLIF(CHARINDEX(",",
@FragmentationMedium, 1), 0), LEN(@FragmentationMedium) + 1) - 1) AS [Action]

WHERE @FragmentationMedium IS NOT NULL
UNION ALL
SELECT CAST(EndPosition AS int) + 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @FragmentationMedium, EndPosition + 1), 0),
LEN(@FragmentationMedium) + 1) AS EndPosition,

SUBSTRING(@FragmentationMedium, EndPosition + 1,
ISNULL(NULLIF(CHARINDEX(",", @FragmentationMedium, EndPosition + 1), 0),
LEN(@FragmentationMedium) + 1) - EndPosition - 1) AS [Action]

FROM FragmentationMedium

WHERE EndPosition < LEN(@FragmentationMedium) + 1

)

INSERT INTO @ActionsPreferred(FragmentationGroup, [Priority], [Action])

SELECT "Medium®™ AS FragmentationGroup,
ROW_NUMBER() OVER(ORDER BY StartPosition ASC) AS [Priority],
[Action]

FROM FragmentationMedium

OPTION (MAXRECURSION 0);

WITH FragmentationHigh (StartPosition, EndPosition, [Action]) AS
(
SELECT 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @FragmentationHigh, 1), 0),
LEN(@FragmentationHigh) + 1) AS EndPosition,

SUBSTRING(@FragmentationHigh, 1, ISNULL(NULLIF(CHARINDEX(",",
@FragmentationHigh, 1), 0), LEN(@FragmentationHigh) + 1) - 1) AS [Action]
WHERE @FragmentationHigh IS NOT NULL
UNION ALL
SELECT CAST(EndPosition AS int) + 1 AS StartPosition,

ISNULL(NULLIF(CHARINDEX(",", @FragmentationHigh, EndPosition + 1), 0),
LEN(@FragmentationHigh) + 1) AS EndPosition,

SUBSTRING(@FragmentationHigh, EndPosition + 1,
ISNULL(NULLIF(CHARINDEX(",", @FragmentationHigh, EndPosition + 1), 0),
LEN(@FragmentationHigh) + 1) - EndPosition - 1) AS [Action]

FROM FragmentationHigh

WHERE EndPosition < LEN(@FragmentationHigh) + 1

)

INSERT INTO @ActionsPreferred(FragmentationGroup, [Priority], [Action])

SELECT "High" AS FragmentationGroup,
ROW_NUMBER() OVER(ORDER BY StartPosition ASC) AS [Priority],
[Action]

FROM FragmentationHigh

OPTION (MAXRECURSION 0)

IF EXISTS (SELECT [Action] FROM @ActionsPreferred WHERE FragmentationGroup =
"Low®™ AND [Action] NOT IN(SELECT * FROM @Actions))

OR EXISTS(SELECT * FROM @ActionsPreferred WHERE FragmentationGroup = "Low"
GROUP BY [Action] HAVING COUNT(*) > 1)

BEGIN

SET @ErrorMessage = "The value for the parameter @FragmentationLow is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF EXISTS (SELECT [Action] FROM @ActionsPreferred WHERE FragmentationGroup =
"Medium® AND [Action] NOT IN(SELECT * FROM @Actions))

OR EXISTS(SELECT * FROM @ActionsPreferred WHERE FragmentationGroup = "Medium*®
GROUP BY [Action] HAVING COUNT(*) > 1)

BEGIN

SET @ErrorMessage = "The value for the parameter @FragmentationMedium is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF EXISTS (SELECT [Action] FROM @ActionsPreferred WHERE FragmentationGroup =
"High® AND [Action] NOT IN(SELECT * FROM @Actions))

OR EXISTS(SELECT * FROM @ActionsPreferred WHERE FragmentationGroup = "High"
GROUP BY [Action] HAVING COUNT(*) > 1)

BEGIN

SET @ErrorMessage = "The value for the parameter @FragmentationHigh is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @FragmentationLevell <= 0 OR @FragmentationLevell >= 100 OR
@FragmentationLevell >= @FragmentationLevel2 OR @FragmentationLevell IS NULL

BEGIN

SET @ErrorMessage = "The value for the parameter @FragmentationLevell is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @FragmentationLevel2 <= 0 OR @FragmentationLevel2 >= 100 OR
@FragmentationLevel2 <= @FragmentationLevell OR @FragmentationLevel2 IS NULL

BEGIN

SET @ErrorMessage = "The value for the parameter @FragmentationLevel2 is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @PageCountLevel < 0 OR @PageCountLevel IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @PageCountLevel is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @SortInTempdb NOT IN("Y","N") OR @SortInTempdb IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @SortInTempdb is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @FillFactor <= 0 OR @FillFactor > 100
BEGIN

SET @ErrorMessage = "The value for the parameter @FillFactor is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @PadIndex NOT INC"Y",*N")
BEGIN

SET @ErrorMessage = "The value for the parameter @Padlndex is not supported.
+ CHAR(13) + CHAR(10) + = -

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @LOBCompaction NOT INC"Y",*N") OR @LOBCompaction IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @LOBCompaction is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @UpdateStatistics NOT IN("ALL®,"COLUMNS*®, " INDEX")
BEGIN

SET @ErrorMessage = "The value for the parameter @UpdateStatistics is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @OnlyModifiedStatistics NOT IN(C"Y","N") OR @OnlyModifiedStatistics IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @OnlyModifiedStatistics is
not supported.® + CHAR(13) + CHAR(10) + * *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @StatisticsSample <= 0 OR @StatisticsSample > 100
BEGIN

SET @ErrorMessage = "The value for the parameter @StatisticsSample is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @StatisticsResample NOT IN(C"Y","N") OR @StatisticsResample 1S NULL OR
(@StatisticsResample = "Y" AND @StatisticsSample IS NOT NULL)

BEGIN

SET @ErrorMessage = "The value for the parameter @StatisticsResample is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @PartitionLevel NOT IN("Y","N") OR @PartitionLevel 1S NULL OR
(@PartitionLevel = "Y" AND SERVERPROPERTY("EngineEdition™) <> 3)

BEGIN

SET @ErrorMessage = "The value for the parameter @PartitionLevel is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @MSShippedObjects NOT IN("Y","N") OR @MSShippedObjects 1S NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @MSShippedObjects is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF EXISTS(SELECT * FROM @Selectedlndexes WHERE DatabaseName IS NULL OR
SchemaName IS NULL OR ObjectName IS NULL OR IndexName IS NULL) OR (@Indexes IS
NOT NULL AND NOT EXISTS(SELECT * FROM @Selectedlndexes))

BEGIN

SET @ErrorMessage = "The value for the parameter @Indexes is not supported.”
+ CHAR(13) + CHAR(10) + " -

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @TimeLimit < O
BEGIN

SET @ErrorMessage = "The value for the parameter @TimeLimit is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Delay < O
BEGIN
SET @ErrorMessage = "The value for the parameter @Delay is not supported.® +
CHAR(13) + CHAR(10) + " *
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @LockTimeout < O
BEGIN

SET @ErrorMessage = "The value for the parameter @LockTimeout is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @LogToTable NOT IN("Y","N") OR @LogToTable IS NULL
BEGIN

SET @ErrorMessage = "The value for the parameter @LogToTable is not
supported.® + CHAR(13) + CHAR(10) + " *

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR

END

IF @Execute NOT IN(C"Y","N") OR @Execute 1S NULL
BEGIN
SET @ErrorMessage = "The value for the parameter @Execute is not supported.”
+ CHAR(13) + CHAR(10) + " *
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @Error = @@ERROR
END

IF @Error <> 0
BEGIN
SET @ErrorMessage = "The documentation is available at
http://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html.® +
CHAR(13) + CHAR(10) + " ~
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
SET @ReturnCode = @Error
GOTO Logging
END

IF @Version >= 11

BEGIN
SELECT @Cluster = cluster_name
FROM sys.dm_hadr_cluster

END

SET @DatabaselD = DB_ID(@DatabaseName)

IF DATABASEPROPERTYEX(@DatabaseName, "Status®) = "ONLINE*
BEGIN

IF EXISTS (SELECT * FROM sys.database_recovery_status WHERE database_id
= @DatabaselD AND database_guid IS NOT NULL)

BEGIN
SET @IsDatabaseAccessible

1
END
ELSE
BEGIN
SET @IlsDatabaseAccessible = 0

END
END
ELSE
BEGIN
SET @IsDatabaseAccessible = 0
END

IF @Version >= 11 AND @Cluster 1S NOT NULL
BEGIN
SELECT @CurrentAvailabilityGroup = availability_groups.name,
@CurrentAvailabilityGroupRole =
dm_hadr_availability_replica_states.role_desc
FROM sys.databases databases
INNER JOIN sys.availability databases_cluster
availability_databases_cluster ON databases.group_database_id =
availability_databases_cluster._group_database_id
INNER JOIN sys.availability _groups availability_groups ON
availability_databases cluster._group_id = availability _groups.group_id
INNER JOIN sys.dm_hadr_availability_replica_states
dm_hadr_availability_replica_states ON availability_groups.group_id =
dm_hadr_availability_replica_states.group_id AND databases.replica_id =
dm_hadr_availability_replica_states.replica_id
WHERE databases.name = @DatabaseName
END

SELECT @CurrentDatabaseMirroringRole = UPPER(mirroring_role_desc)
FROM sys.database_mirroring
WHERE database_id = @DatabaselD

-- Set database message

SET @DatabaseMessage = "Date and time: " + CONVERT(nvarchar,GETDATE(),120)
+ CHAR(13) + CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "Database: " +
QUOTENAME(@DatabaseName) + CHAR(13) + CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "Status: " +
CAST(DATABASEPROPERTYEX(@DatabaseName, "Status®) AS nvarchar) + CHAR(13) +
CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "Standby: * + CASE WHEN
DATABASEPROPERTYEX(@DatabaseName, "IsInStandBy®") = 1 THEN "Yes®" ELSE "No" END +
CHAR(13) + CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + “"Updateability: * +
CAST(DATABASEPROPERTYEX(@DatabaseName, "Updateability®) AS nvarchar) + CHAR(13) +
CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "User access: " +
CAST(DATABASEPROPERTYEX(@DatabaseName, "UserAccess®) AS nvarchar) + CHAR(13) +
CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "Is accessible: " + CASE WHEN
@1sDatabaseAccessible = 1 THEN "Yes® ELSE "No" END + CHAR(13) + CHAR(10)

SET @DatabaseMessage = @DatabaseMessage + "Recovery model: * +
CAST(DATABASEPROPERTYEX(@DatabaseName, "Recovery™) AS nvarchar) + CHAR(13) +
CHAR(10)

IF @CurrentAvailabilityGroup IS NOT NULL SET @DatabaseMessage =
@DatabaseMessage + "Availability group: * + @CurrentAvailabilityGroup + CHAR(13)
+ CHAR(10)

IF @CurrentAvailabilityGroup IS NOT NULL SET @DatabaseMessage =
@DatabaseMessage + "Availability group role: * + @CurrentAvailabilityGroupRole +
CHAR(13) + CHAR(10)

IF @CurrentDatabaseMirroringRole 1S NOT NULL SET @DatabaseMessage =
@DatabaseMessage + "Database mirroring role: * + @CurrentDatabaseMirroringRole +
CHAR(13) + CHAR(10)

SET @DatabaseMessage = REPLACE(@DatabaseMessage, "%","%%") + " *©

--RAISERROR(@DatabaseMessage,10,1) WITH NOWAIT

IF DATABASEPROPERTYEX(@DatabaseName, "Status®) = “ONLINE*®

AND NOT (DATABASEPROPERTYEX(@DatabaseName, "UserAccess”™) = "SINGLE_USER"
AND @lIsDatabaseAccessible = 0)

AND DATABASEPROPERTYEX(@DatabaseName, "Updateability") = "READ_WRITE"
BEGIN

-- Select indexes in the current database

IF (EXISTS(SELECT * FROM @ActionsPreferred) OR @UpdateStatistics IS NOT
NULL) AND (GETDATE() < DATEADD(ss,@TimeLimit,@StartTime) OR @TimeLimit IS NULL)

BEGIN

SET @CurrentCommand0l = "SET TRANSACTION ISOLATION LEVEL READ
UNCOMMITTED; SELECT SchemalD, SchemaName, ObjectlD, ObjectName, ObjectType,
IndexID, IndexName, IndexType, StatisticslD, StatisticsName, PartitionlD,
PartitionNumber, PartitionCount, Selected, Completed FROM (*

IF EXISTS(SELECT * FROM @ActionsPreferred) OR @UpdateStatistics
INCTALL", "INDEX")

BEGIN

SET @CurrentCommand0l1 = @CurrentCommandOl + "SELECT

schemas.[schema_id] AS SchemalD, schemas.[name] AS SchemaName,
objects.[object_id] AS ObjectlD, objects.[name] AS ObjectName,
RTRIM(objects.[type]) AS ObjectType, indexes.index_id AS IndexID, indexes.[name]
AS IndexName, indexes.[type] AS IndexType, stats.stats_id AS StatisticsliD,
stats.name AS StatisticsName®

IF @PartitionLevel = "Y" SET @CurrentCommand0l = @CurrentCommandOl
+ ", partitions.partition_id AS PartitionlD, partitions._partition_number AS
PartitionNumber, IndexPartitions.partition_count AS PartitionCount*

IF @PartitionLevel = "N" SET @CurrentCommand0l = @CurrentCommandOl
+ ", NULL AS PartitionlD, NULL AS PartitionNumber, NULL AS PartitionCount”

SET @CurrentCommand0l1 = @CurrentCommandOl + ", O AS Selected, 0 AS
Completed FROM " + QUOTENAME(@DatabaseName) + ".sys.indexes indexes INNER JOIN *
+ QUOTENAME(@DatabaseName) + ".sys.objects objects ON indexes.[object_id] =
objects.[object_id] INNER JOIN * + QUOTENAME(@DatabaseName) + *.sys.schemas
schemas ON objects.[schema_id] = schemas.[schema_id] LEFT OUTER JOIN " +
QUOTENAME(@DatabaseName) + ".sys.stats stats ON indexes.[object_id] =
stats.[object_id] AND indexes.[index_id] = stats.[stats_id]"

IF @PartitionLevel = "Y" SET @CurrentCommandOl = @CurrentCommandOl
+ " LEFT OUTER JOIN " + QUOTENAME(@DatabaseName) + ".sys.partitions partitions ON
indexes.[object_id] = partitions.[object_id] AND indexes.index_id =
partitions.index_id LEFT OUTER JOIN (SELECT partitions.[object_id],
partitions.index_id, COUNT(*) AS partition_count FROM " +
QUOTENAME(@DatabaseName) + "_.sys.partitions partitions GROUP BY
partitions.[object_id], partitions.index_id) IndexPartitions ON
partitions.[object_id] = IndexPartitions.[object_id] AND partitions.[index_id] =
IndexPartitions.[index_id]"

IF @PartitionLevel = "Y" SET @CurrentCommandO0l = @CurrentCommandOl
+ " LEFT OUTER JOIN * + QUOTENAME(@DatabaseName) + ".sys.dm_db_partition_stats

dm_db_partition_stats ON indexes.[object_id] = dm_db_partition_stats.[object_id]
AND indexes.[index_id] = dm_db_partition_stats.[index_id] AND
partitions.partition_id = dm_db_partition_stats.partition_id"

IF @PartitionLevel = "N" SET @CurrentCommand0l = @CurrentCommandOl
+ " LEFT OUTER JOIN (SELECT dm_db_partition_stats.[object_id],
dm_db_partition_stats.[index_id],
SUM(dm_db_partition_stats.in_row_data_page_count) AS in_row_data_page_count FROM
" + QUOTENAME(@DatabaseName) + ".sys.dm_db_partition_stats dm_db_partition_stats
GROUP BY dm_db_partition_stats.[object_id], dm_db_partition_stats.[index_id])
dm_db_partition_stats ON indexes.[object_id] = dm_db_partition_stats.[object_id]
AND indexes.[index_id] = dm_db_partition_stats.[index_id]~

SET @CurrentCommand0l = @CurrentCommandOl + " WHERE objects.[type]
INC*"U"",""V"")" + CASE WHEN @MSShippedObjects = "N" THEN " AND
objects.is_ms_shipped = 0" ELSE "" END + " AND indexes.[type] IN(1,2,3,4) AND
indexes.is_disabled = 0 AND indexes.is_hypothetical = 0~

IF (@UpdateStatistics NOT IN(TALL","INDEX") OR @UpdateStatistics
IS NULL) AND @PageCountLevel > 0 SET @CurrentCommandO0l = @CurrentCommandOl + *
AND (dm_db_partition_stats.in_row_data_page_count >= @ParamPageCountLevel OR
dm_db_partition_stats.in_row_data_page_count 1S NULL)"

IF NOT EXISTS(SELECT * FROM @ActionsPreferred) SET
@CurrentCommand0l = @CurrentCommandOl + " AND stats.stats_id IS NOT NULL*®

END

IF (EXISTS(SELECT * FROM @ActionsPreferred) AND @UpdateStatistics =
"COLUMNS®") OR @UpdateStatistics = "ALL" SET @CurrentCommandOl = @CurrentCommandOl1
+ ® UNION -~

IF @UpdateStatistics IN("ALL","COLUMNS") SET @CurrentCommandOl =
@CurrentCommandOl + *"SELECT schemas.[schema_id] AS SchemalD, schemas.[name] AS
SchemaName, objects.[object_id] AS ObjectlD, objects.[name] AS ObjectName,
RTRIM(objects.[type]) AS ObjectType, NULL AS IndexID, NULL AS IndexName, NULL AS
IndexType, stats.stats_id AS StatisticslID, stats.name AS StatisticsName, NULL AS
PartitionlD, NULL AS PartitionNumber, NULL AS PartitionCount, O AS Selected, 0 AS
Completed FROM " + QUOTENAME(@DatabaseName) + ".sys.stats stats INNER JOIN * +
QUOTENAME(@DatabaseName) + ".sys.objects objects ON stats.[object_ id] =
objects.[object_id] INNER JOIN *" + QUOTENAME(@DatabaseName) + ".sys.schemas
schemas ON objects.[schema_id] = schemas.[schema_id] WHERE objects.[type]
INC""U"",""V"")" + CASE WHEN @MSShippedObjects = "N* THEN " AND
objects.is_ms_shipped = 0" ELSE "" END + * AND NOT EXISTS(SELECT * FROM * +
QUOTENAME(@DatabaseName) + "_sys.indexes indexes WHERE indexes.[object_id] =
stats.[object_id] AND indexes.index_id = stats.stats_id)"

SET @CurrentCommand0l = @CurrentCommandOl + ") IndexesStatistics
ORDER BY SchemaName ASC, ObjectName ASC-

IF (EXISTS(SELECT * FROM @ActionsPreferred) AND @UpdateStatistics =
"COLUMNS™) OR @UpdateStatistics = "ALL" SET @CurrentCommand0l = @CurrentCommandOl
+ ", CASE WHEN IndexType IS NULL THEN 1 ELSE O END ASC*

IF EXISTS(SELECT * FROM @ActionsPreferred) OR @UpdateStatistics
INCTALL", "INDEX") SET @CurrentCommandO0l = @CurrentCommand0l + ", IndexType ASC,
IndexName ASC*

IF @UpdateStatistics IN("ALL","COLUMNS®") SET @CurrentCommandOl =
@CurrentCommandO0l1 + ", StatisticsName ASC"

IF @PartitionLevel = "Y" SET @CurrentCommand0l = @CurrentCommandOl1l +
", PartitionNumber ASC*

INSERT INTO @tmplIndexesStatistics (SchemalD, SchemaName, ObjectlD,
ObjectName, ObjectType, IndexID, IndexName, IndexType, StatisticsliD,

StatisticsName, PartitionlD, PartitionNumber, PartitionCount, Selected,
Completed)

EXECUTE sp_executesql @statement = @CurrentCommand0l, @params =
N*"@ParamPageCountLevel int", @ParamPageCountLevel = @PageCountLevel

SET @Error = @@ERROR
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
END
END

IF @Indexes 1S NULL
BEGIN
UPDATE tmplndexesStatistics
SET tmplndexesStatistics.Selected = 1
FROM @tmplndexesStatistics tmplndexesStatistics
END
ELSE
BEGIN
UPDATE tmplndexesStatistics
SET tmplndexesStatistics.Selected = SelectedIndexes.Selected
FROM @tmplndexesStatistics tmplndexesStatistics
INNER JOIN @Selectedlndexes Selectedlndexes

ON @DatabaseName LIKE
REPLACE(SelectedIndexes.DatabaseName,"_","[_]") AND
tmplndexesStatistics.SchemaName LIKE
REPLACE(SelectedIndexes.SchemaName, " ","[_]") AND tmplndexesStatistics.ObjectName
LIKE REPLACE(SelectedlIndexes.ObjectName," ","[_]1") AND
COALESCE(tmpIndexesStatistics. IndexName, tmplndexesStatistics.StatisticsName) LIKE
REPLACE(SelectedIndexes. IndexName, " ","[1")

WHERE SelectedlIndexes.Selected = 1

UPDATE tmplndexesStatistics

SET tmplndexesStatistics.Selected = SelectedIndexes.Selected
FROM @tmplndexesStatistics tmplndexesStatistics

INNER JOIN @SelectedIndexes Selectedlndexes

ON @DatabaseName LIKE
REPLACE(SelectedIndexes.DatabaseName,” ","[_]") AND
tmplndexesStatistics.SchemaName LIKE
REPLACE(SelectedIndexes.SchemaName, " ","[_]1") AND tmplndexesStatistics.ObjectName
LIKE REPLACE(SelectedIndexes.ObjectName," ","[_]") AND
COALESCE(tmpIndexesStatistics. IndexName, tmplndexesStatistics.StatisticsName) LIKE
REPLACE(SelectedIndexes. IndexName, " _","[_1")

WHERE SelectedIndexes.Selected = 0

END

WHILE EXISTS (SELECT * FROM @tmplndexesStatistics WHERE Selected = 1 AN
Completed = 0 AND (GETDATE() < DATEADD(ss,@TimeLimit,@StartTime) OR @TimeLimit I
NULL))

BEGIN

SELECT TOP 1 @CurrentixID = ID,
@CurrentSchemalD = SchemalD,

@CurrentSchemaName = SchemaName,
@CurrentObjectID = ObjectlD,
@CurrentObjectName = ObjectName,
@CurrentObjectType = ObjectType,
@CurrentindexID = IndexlID,
@CurrentlndexName = IndexName,
@CurrentlndexType = IndexType,
@CurrentStatisticslD = StatisticsliD,
@CurrentStatisticsName = StatisticsName,
@CurrentPartitionlD = PartitionlD,
@CurrentPartitionNumber = PartitionNumber,
@CurrentPartitionCount = PartitionCount

FROM @tmplndexesStatistics

WHERE Selected = 1

AND Completed = 0O

ORDER BY ID ASC

-- Is the index a partition?

IF @CurrentPartitionNumber IS NULL OR @CurrentPartitionCount = 1
BEGIN SET @CurrentlsPartition = 0 END ELSE BEGIN SET @CurrentlsPartition = 1 END

-- Does the index exist?

IF @CurrentindexID 1S NOT NULL AND EXISTS(SELECT * FROM
@ActionsPreferred)

BEGIN
SET @CurrentCommand02 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommand02 = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

IF @CurrentlsPartition = 0 SET @CurrentCommand02 =
@CurrentCommand02 + "IF EXISTS(SELECT * FROM " + QUOTENAME(@DatabaseName) +
".sys.indexes indexes INNER JOIN * + QUOTENAME(@DatabaseName) + ".sys.objects
objects ON indexes.[object_id] = objects.[object_id] INNER JOIN " +
QUOTENAME(@DatabaseName) + ".sys.schemas schemas ON objects.[schema_id] =
schemas.[schema_id] WHERE objects.[type] IN(""U"",""V"")" + CASE WHEN
@MSShippedObjects = "N* THEN " AND objects.is_ms_shipped = 0" ELSE "" END + " AND
indexes.[type] IN(1,2,3,4) AND indexes.is_disabled = 0O AND
indexes.is_hypothetical = 0 AND schemas.[schema_id] = @ParamSchemalD AND
schemas.[name] = @ParamSchemaName AND objects.[object_id] = @ParamObjectID AND
objects. [name] @ParamObjectName AND objects.[type] = @ParamObjectType AND
indexes.index_id = @ParamlndexID AND indexes.[name] = @ParamlndexName AND

indexes.[type] = @ParamlndexType) BEGIN SET @ParamlndexExists = 1 END*

IF @CurrentlsPartition = 1 SET @CurrentCommand02 =
@CurrentCommand02 + "1F EXISTS(SELECT * FROM " + QUOTENAME(@DatabaseName) +
"_sys.indexes indexes INNER JOIN * + QUOTENAME(@DatabaseName) + ".sys.objects
objects ON indexes.[object_id] = objects.[object_id] INNER JOIN " +
QUOTENAME(@DatabaseName) + "._.sys.schemas schemas ON objects.[schema_id] =
schemas. [schema_id] INNER JOIN * + QUOTENAME(@DatabaseName) + "._sys.partitions
partitions ON indexes.[object_id] = partitions.[object_id] AND indexes.index_id =
partitions.index_id WHERE objects.[type] IN(""U"",""V"")" + CASE WHEN
@MSShippedObjects = *N® THEN " AND objects.is_ms_shipped = 0" ELSE " END + * AND
indexes.[type] IN(1,2,3,4) AND indexes.is_disabled = 0 AND
indexes.is_hypothetical = 0 AND schemas.[schema_id] = @ParamSchemalD AND
schemas.[name] = @ParamSchemaName AND objects.[object_id] = @ParamObjectID AND
objects. [name] @ParamObjectName AND objects.[type] = @ParamObjectType AND
indexes.index_id = @ParamlndexID AND indexes.[name] = @ParamlndexName AND
indexes.[type] @ParamlndexType AND partitions.partition_id = @ParamPartitionlD

(IR I

I

AND partitions.partition_number = @ParamPartitionNumber) BEGIN SET
@ParamlndexExists = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand02, @params =
N*@ParamSchemalD int, @ParamSchemaName sysname, @ParamObjectlD int,
@ParamObjectName sysname, @ParamObjectType sysname, @ParamlindexID int,
@ParamlndexName syshame, @ParamlndexType int, @ParamPartitionlD bigint,
@ParamPartitionNumber int, @ParamlndexExists bit OUTPUT", @ParamSchemalD =
@CurrentSchemalD, @ParamSchemaName = @CurrentSchemaName, @ParamObjectlD =
@CurrentObjectlID, @ParamObjectName = @CurrentObjectName, @ParamObjectType
@CurrentObjectType, @ParamindexID = @CurrentindexID, @ParamlndexName =
@CurrentindexName, @ParamlndexType = @CurrentlndexType, @ParamPartitionlD
@CurrentPartitionlD, @ParamPartitionNumber = @CurrentPartitionNumber,
@ParamlndexExists = @CurrentlndexExists OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentlndexExists IS NULL SET
@CurrentlndexExists = 0

IF @Error = 1222
BEGIN
SET @ErrorMessage = "The index * +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + ".*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. 1t could not be checked if the index exists." + CHAR(13) + CHAR(10) + " *
SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
IF @CurrentlndexExists = 0 GOTO NoAction
END

-- Does the statistics exist?

IF @CurrentStatisticsID IS NOT NULL AND @UpdateStatistics 1S NOT
NULL

BEGIN
SET @CurrentCommand03 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandO03 = "SET
LOCK_TIMEOUT * + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommand03 = @CurrentCommand03 + "I1F EXISTS(SELECT *
FROM * + QUOTENAME(@DatabaseName) + ".sys.stats stats INNER JOIN * +
QUOTENAME(@DatabaseName) + ".sys.objects objects ON stats.[object_id] =
objects.[object_id] INNER JOIN * + QUOTENAME(@DatabaseName) + *.sys.schemas
schemas ON objects.[schema_id] = schemas.[schema_id] WHERE objects.[type]
INC*"U"",""V"")" + CASE WHEN @MSShippedObjects = "N" THEN " AND
objects.is_ms_shipped = 0° ELSE "" END + * AND schemas.[schema_id] =
@ParamSchemalD AND schemas.[name] = @ParamSchemaName AND objects.[object_id] =
@ParamObjectID AND objects.[name] = @ParamObjectName AND objects.[type] =
@ParamObjectType AND stats.stats_id = @ParamStatisticsID AND stats.[name] =
@ParamStatisticsName) BEGIN SET @ParamStatisticsExists = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand03, @params
N*@ParamSchemalD int, @ParamSchemaName sysname, @ParamObjectlID int,
@ParamObjectName sysname, @ParamObjectType sysname, @ParamStatisticslID int,

@ParamStatisticsName sysname, @ParamStatisticsExists bit OUTPUT", @ParamSchemalD
= @CurrentSchemalD, @ParamSchemaName = @CurrentSchemaName, @ParamObjectlID =
@CurrentObjectlID, @ParamObjectName = @CurrentObjectName, @ParamObjectType
@CurrentObjectType, @ParamStatisticsID = @CurrentStatisticslID,
@ParamStatisticsName = @CurrentStatisticsName, @ParamStatisticsExists =
@CurrentStatisticsExists OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentStatisticsExists IS NULL SET
@CurrentStatisticsExists = 0

IF @Error = 1222

BEGIN

SET @ErrorMessage = "The statistics " +
QUOTENAME(@CurrentStatisticsName) + " on the object " + QUOTENAME(@DatabaseName)
+ "_" + QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName) + *
is locked. It could not be checked if the statistics exists.” + CHAR(13) +
CHAR(10) + = *

SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
IF @CurrentStatisticsExists = 0 GOTO NoAction
END

-— Is one of the columns in the index an image, text or ntext data
type?
IF @CurrentindexID 1S NOT NULL AND @CurrentindexType = 1 AND
EXISTS(SELECT * FROM @ActionsPreferred)
BEGIN
SET @CurrentCommand04 = **
IF @LockTimeout IS NOT NULL SET @CurrentCommand04 = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *
SET @CurrentCommand04 = @CurrentCommand04 + “I1F EXISTS(SELECT *
FROM * + QUOTENAME(@DatabaseName) + ".sys.columns columns INNER JOIN " +
QUOTENAME(@DatabaseName) + ".sys.types types ON columns.system type_id =
types.user_type_id WHERE columns.[object_id] = @ParamObjectlD AND types.name
IN(""image"",""text" ", ""ntext" ")) BEGIN SET @ParamlslmageText = 1 END"

EXECUTE sp_executesql @statement = @CurrentCommand04, @params =
N*@ParamObjectlID int, @ParamlndexID int, @ParamlslmageText bit OUTPUT",
@ParamObjectlID = @CurrentObjectlD, @ParamlndexID = @CurrentlndexID,
@ParamlslimageText = @CurrentlslmageText OUTPUT

SET @Error = @@ERROR

IF @Error = O AND @CurrentlsimageText IS NULL SET
@CurrentlslmageText = 0

IF @Error = 1222

BEGIN

SET @ErrorMessage = "The index " +
QUOTENAME(@CurrentindexName) + " on the object * + QUOTENAME(@DatabaseName) + *.*
+ QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName) + " is
locked. 1t could not be checked if the index contains any image, text, or ntext
data types.® + CHAR(13) + CHAR(10) + * *

SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END

IF @Error <> 0

BEGIN
SET @ReturnCode = @Error
GOTO NoAction

END

END

-— Is one of the columns in the index an xml, varchar(max),
nvarchar(max), varbinary(max) or large CLR data type?

IF @CurrentindexID 1S NOT NULL AND @CurrentindexType IN(1,2) AND
EXISTS(SELECT * FROM @ActionsPreferred)

BEGIN
SET @CurrentCommand0O5 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandO5 = *SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

IF @CurrentindexType = 1 SET @CurrentCommand05 = @CurrentCommand05
+ "IF EXISTS(SELECT * FROM * + QUOTENAME(@DatabaseName) + "_sys.columns columns
INNER JOIN * + QUOTENAME(@DatabaseName) + " _sys.types types ON
columns.system_type_id = types.user_type_id OR (columns.user_type_id =
types.user_type_id AND types.is_assembly type = 1) WHERE columns.[object_id] =
@ParamObjectID AND (types.name IN("*xml*") OR (types.name
IN(""varchar®",""nvarchar™", " "varbinary®") AND columns.max_length = -1) OR
(types.is_assembly_type = 1 AND columns.max_length = -1))) BEGIN SET
@ParamlsNewLOB = 1 END*

IF @CurrentindexType = 2 SET @CurrentCommand05 = @CurrentCommand05
+ "IF EXISTS(SELECT * FROM * + QUOTENAME(@DatabaseName) + ".sys.index_columns
index_columns INNER JOIN * + QUOTENAME(@DatabaseName) + ®_sys.columns columns ON
index_columns.[object_id] = columns.[object_id] AND index_columns.column_id =
columns.column_id INNER JOIN * + QUOTENAME(@DatabaseName) + "_.sys.types types ON
columns.system_type_id = types.user_type_id OR (columns.user_type_id =
types.user_type_id AND types.is_assembly type = 1) WHERE
index_columns.[object_id] = @ParamObjectID AND index_columns.index_id =
@ParamlndexID AND (types.[name] IN(C*"xml"®) OR (types.[nhame]
INC""varchar®",""nvarchar®", " "varbinary®") AND columns.max_length = -1) OR
(types.is_assembly_type = 1 AND columns.max_length = -1))) BEGIN SET
@ParamlsNewlLOB = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand05, @params =
N"@ParamObjectlID int, @ParamlndexID int, @ParamlsNewLOB bit OUTPUT",
@ParamObjectlID = @CurrentObjectlD, @ParamlndexID = @CurrentlndexID,
@ParamlsNewLOB = @CurrentlsNewLOB OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentlsNewLOB 1S NULL SET @CurrentlsNewLOB =

IF @Error = 1222
BEGIN
SET @ErrorMessage = "The index * +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + "_.*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. 1t could not be checked if the index contains any xml, varchar(max),
nvarchar(max), varbinary(max), or large CLR data types.” + CHAR(13) + CHAR(10) +

SET @ErrorMessage = REPLACE(@ErrorMessage, "%, "%%")

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
END

-- Is one of the columns in the index a file stream column?

IF @CurrentindexID 1S NOT NULL AND @CurrentindexType = 1 AND
EXISTS(SELECT * FROM @ActionsPreferred)

BEGIN
SET @CurrentCommand06 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommand06 = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommand06 = @CurrentCommand06 + "I1F EXISTS(SELECT *
FROM " + QUOTENAME(@DatabaseName) + ".sys.columns columns WHERE
columns_[object_id] = @ParamObjectID AND columns.is_filestream = 1) BEGIN SET
@ParamlsFileStream = 1 END"

EXECUTE sp_executesql @statement = @CurrentCommand06, @params =
N"@ParamObjectlID int, @ParamlndexID int, @ParamlsFileStream bit OUTPUT",
@ParamObjectlID = @CurrentObjectlD, @ParamlndexID = @CurrentlndexID,
@ParamlsFileStream = @CurrentlsFileStream OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentlsFileStream IS NULL SET
@CurrentlsFileStream = 0

IF @Error = 1222
BEGIN
SET @ErrorMessage = "The index " +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + ".*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. It could not be checked if the index contains any file stream columns.” +
CHAR(13) + CHAR(10) + = ~
SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
END

-- Is there a columnstore index on the table?

IF @CurrentindexID 1S NOT NULL AND EXISTS(SELECT * FROM
@ActionsPreferred) AND @Version >= 11

BEGIN
SET @CurrentCommandO7 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandO07 = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommand07 = @CurrentCommand07 + "I1F EXISTS(SELECT *
FROM * + QUOTENAME(@DatabaseName) + ".sys.indexes indexes WHERE
indexes.[object_id] = @ParamObjectID AND [type] = 6) BEGIN SET
@ParamlsColumnStore = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand07, @params =
N*@ParamObjectlID int, @ParamlsColumnStore bit OUTPUT", @ParamObjectlD =
@CurrentObjectlID, @ParamlsColumnStore = @CurrentlsColumnStore OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentlsColumnStore IS NULL SET
@CurrentlsColumnStore = 0

IF @Error = 1222
BEGIN
SET @ErrorMessage = "The index " +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + ".*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. It could not be checked if there is a columnstore index on the table." +
CHAR(13) + CHAR(10) + " T~
SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
END

-— Is Allow_Page Locks set to On?
IF @CurrentindexID IS NOT NULL AND EXISTS(SELECT * FROM
@ActionsPreferred)
BEGIN
SET @CurrentCommand08 = **
IF @LockTimeout IS NOT NULL SET @CurrentCommandO08 = "SET
LOCK_TIMEOUT * + CAST(@LockTimeout * 1000 AS nvarchar) + *; *
SET @CurrentCommand08 = @CurrentCommand08 + “I1F EXISTS(SELECT *
FROM * + QUOTENAME(@DatabaseName) + ".sys.indexes indexes WHERE
indexes.[object_id] = @ParamObjectID AND indexes.[index_id] = @ParamlndexID AND
indexes.[allow_page locks] = 1) BEGIN SET @ParamAllowPagelLocks = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand08, @params =
N"@ParamObjectlID int, @ParamlndexID int, @ParamAllowPagelLocks bit OUTPUT",
@ParamObjectlID = @CurrentObjectlD, @ParamlndexID = @CurrentlndexID,

@ParamAl lowPageLocks = @CurrentAl lowPagelLocks OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentAllowPageLocks IS NULL SET
@CurrentAllowPagelLocks = 0

IF @Error = 1222

BEGIN

SET @ErrorMessage = "The index " +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + ".*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. 1t could not be checked if page locking is enabled on the index." +
CHAR(13) + CHAR(10) + * T~

SET @ErrorMessage = REPLACE(@ErrorMessage, "%, "%%")

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
END

-- Is No_Recompute set to On?

IF @CurrentStatisticsID IS NOT NULL AND @UpdateStatistics 1S NOT
NULL

BEGIN
SET @CurrentCommand09 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommand09 = *SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommand09 = @CurrentCommand09 + "I1F EXISTS(SELECT *
FROM " + QUOTENAME(@DatabaseName) + ".sys.stats stats WHERE stats.[object_ id] =
@ParamObjectID AND stats.[stats_id] = @ParamStatisticsID AND stats.[no_recompute]
= 1) BEGIN SET @ParamNoRecompute = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommand09, @params =
N"@ParamObjectlID int, @ParamStatisticsID int, @ParamNoRecompute bit OUTPUT",
@ParamObjectlID = @CurrentObjectlD, @ParamStatisticsID = @CurrentStatisticslID,
@ParamNoRecompute = @CurrentNoRecompute OUTPUT

SET @Error = @@ERROR

IF @Error = O AND @CurrentNoRecompute IS NULL SET
@CurrentNoRecompute = 0

IF @Error = 1222

BEGIN

SET @ErrorMessage = "The statistics " +
QUOTENAME(@CurrentStatisticsName) + " on the object " + QUOTENAME(@DatabaseName)
+ "_" + QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName) + *
is locked. It could not be checked if automatic statistics update is enabled.” +
CHAR(13) + CHAR(10) + " T~

SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")

RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END

IF @Error <> 0

BEGIN

SET @ReturnCode = @Error

GOTO NoAction

END

END

-- Has the data in the statistics been modified since the statistics
was last updated?
IF @CurrentStatisticsID IS NOT NULL AND @UpdateStatistics 1S NOT
NULL AND @OnlyModifiedStatistics = "Y*
BEGIN
SET @CurrentCommandl10 = **
IF @LockTimeout IS NOT NULL SET @CurrentCommandlO0 = "SET
LOCK_TIMEOUT * + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

IF (@Version >= 10.504000 AND @Version < 11) OR @Version >=
11.03000

BEGIN

SET @CurrentCommandl0 = @CurrentCommandl0 + “USE " +
QUOTENAME(@DatabaseName) + "; IF EXISTS(SELECT * FROM sys.dm_db_stats_properties
(@ParamObjectlID, @ParamStatisticsID) WHERE modification_counter > 0) BEGIN SET
@ParamStatisticsModified = 1 END"

END
ELSE
BEGIN

SET @CurrentCommandl0 = @CurrentCommandl0 + "I1F EXISTS(SELECT
* FROM " + QUOTENAME(@DatabaseName) + " _sys.sysindexes sysindexes WHERE
sysindexes.[id] = @ParamObjectID AND sysindexes.[indid] = @ParamStatisticsID AND
sysindexes. [rowmodctr] <> 0) BEGIN SET @ParamStatisticsModified = 1 END*

END

EXECUTE sp_executesql @statement = @CurrentCommandl10, @params =
N*@ParamObjectlD int, @ParamStatisticsID int, @ParamStatisticsModified bit
OUTPUT", @ParamObjectID = @CurrentObjectlD, @ParamStatisticsID =
@CurrentStatisticslD, @ParamStatisticsModified = @CurrentStatisticsModified
OUTPUT

SET @Error = @@ERROR

IF @Error = 0 AND @CurrentStatisticsModified IS NULL SET
@CurrentStatisticsModified =

IF @Error = 1222
BEGIN

SET @ErrorMessage = "The statistics " +
QUOTENAME(@CurrentStatisticsName) + " on the object " + QUOTENAME(@DatabaseName)
+ "_" + QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName) + *
is locked. It could not be checked if any rows has been modified since the most
recent statistics update.” + CHAR(13) + CHAR(10) + * *

SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END

IF @Error <> 0O

BEGIN
SET @ReturnCode = @Error
GOTO NoAction

END

END

-— Is the index on a read-only filegroup?
IF @CurrentindexID 1S NOT NULL AND EXISTS(SELECT * FROM
@ActionsPreferred)
BEGIN
SET @CurrentCommandll = **
IF @LockTimeout IS NOT NULL SET @CurrentCommandll = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *
SET @CurrentCommandll = @CurrentCommandll + "IF EXISTS(SELECT *
FROM (SELECT filegroups.data_space_id FROM * + QUOTENAME(@DatabaseName) +
"_.sys.indexes indexes INNER JOIN * + QUOTENAME(@DatabaseName) +
" _sys.destination_data_spaces destination_data_spaces ON indexes.data_space_id =
destination_data_spaces.partition_scheme_id INNER JOIN * +
QUOTENAME(@DatabaseName) + "_.sys.Filegroups filegroups ON
destination_data_spaces.data_space_id = Ffilegroups.data_space_id WHERE

filegroups.is_read_only = 1 AND indexes.[object_id] = @ParamObjectiD AND
indexes.[index_id] = @ParamlndexID*®

IF @CurrentlsPartition = 1 SET @CurrentCommandll =
@CurrentCommandll + * AND destination_data_spaces.destination_id =
@ParamPartitionNumber*

SET @CurrentCommandll = @CurrentCommandll + " UNION SELECT
filegroups.data_space_id FROM * + QUOTENAME(@DatabaseName) + " _sys.indexes
indexes INNER JOIN " + QUOTENAME(@DatabaseName) + ".sys.fFfilegroups filegroups ON
indexes.data_space_id = Filegroups.data_space_id WHERE filegroups.is_read_only =
1 AND indexes.[object_id] = @ParamObjectlD AND indexes.[index_id] =
@ParamlndexID*

IF @CurrentindexType = 1 SET @CurrentCommandll = @CurrentCommandll
+ " UNION SELECT filegroups.data_space_id FROM " + QUOTENAME(@DatabaseName) +
"_sys.tables tables INNER JOIN " + QUOTENAME(@DatabaseName) + ".sys.filegroups
filegroups ON tables.lob_data_space_id = filegroups.data_space_id WHERE
filegroups.is_read_only = 1 AND tables.[object_id] = @ParamObjectID*

SET @CurrentCommandll = @CurrentCommandll + ") ReadOnlyFileGroups)
BEGIN SET @ParamOnReadOnlyFileGroup = 1 END*

EXECUTE sp_executesql @statement = @CurrentCommandll, @params =
N*@ParamObjectlD int, @ParamlndexID int, @ParamPartitionNumber int,
@ParamOnReadOnlyFileGroup bit OUTPUT", @ParamObjectlD = @CurrentObjectlD,
@ParamlndexID = @CurrentindexID, @ParamPartitionNumber = @CurrentPartitionNumber,
@ParamOnReadOnlyFileGroup = @CurrentOnReadOnlyFileGroup OUTPUT

SET @Error = @@ERROR
IF @Error = O AND @CurrentOnReadOnlyFileGroup IS NULL SET
@CurrentOnReadOnlyFileGroup = 0
IF @Error = 1222
BEGIN
SET @ErrorMessage = "The index * +
QUOTENAME(@CurrentindexName) + " on the object " + QUOTENAME(@DatabaseName) + ".*
+ QUOTENAME(@CurrentSchemaName) + ".° + QUOTENAME(@CurrentObjectName) + " 1is
locked. 1t could not be checked if the index is on a read-only filegroup.® +
CHAR(13) + CHAR(10) + " T~
SET @ErrorMessage = REPLACE(@ErrorMessage, "%, "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT
END
IF @Error <> 0
BEGIN
SET @ReturnCode = @Error
GOTO NoAction
END
END

-- Is the index fragmented?

IF @CurrentlndexID IS NOT NULL

AND @CurrentOnReadOnlyFileGroup = 0O

AND EXISTS(SELECT * FROM @ActionsPreferred)

AND (EXISTS(SELECT [Priority], [Action], COUNT(*) FROM
@ActionsPreferred GROUP BY [Priority], [Action] HAVING COUNT(*) <> 3) OR
@PageCountLevel > 0)

BEGIN

SET @CurrentCommandl2 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandl2 = "SET
LOCK_TIMEOUT " + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommandl2 = @CurrentCommandl2 + "SELECT
@ParamFragmentationLevel = MAX(avg_fragmentation_in_percent), @ParamPageCount =
SUM(page_count) FROM sys.dm_db_index_physical_stats(@ParamDatabaselD,
@ParamObjectlID, @ParamlndexID, @ParamPartitionNumber, "“LIMITED®") WHERE
alloc_unit_type_desc = ""IN_ROW_DATA"" AND index_level = O*

EXECUTE sp_executesql @statement = @CurrentCommandl2, @params =
N*@ParamDatabaselD int, @ParamObjectlID int, @ParamlndexID int,
@ParamPartitionNumber int, @ParamFragmentationLevel float OUTPUT, @ParamPageCount
bigint OUTPUT", @ParamDatabaselD = @DatabaselD, @ParamObjectlID =
@CurrentObjectID, @ParamlndexID = @CurrentlndexID, @ParamPartitionNumber =
@CurrentPartitionNumber, @ParamFragmentationLevel = @CurrentFragmentationLevel
OUTPUT, @ParamPageCount = @CurrentPageCount OUTPUT

SET @Error = @@ERROR
IF @Error = 1222
BEGIN

SET @ErrorMessage = "The index " +
QUOTENAME(@CurrentindexName) + " on the object * + QUOTENAME(@DatabaseName) + *.*
+ QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName) + " is
locked. The size and fragmentation of the index could not be checked.® + CHAR(13)
+ CHAR(10) + = -~

SET @ErrorMessage = REPLACE(@ErrorMessage, "%", "%%")
RAISERROR(@ErrorMessage,16,1) WITH NOWAIT

END

IF @Error <> 0

BEGIN
SET @ReturnCode = @Error
GOTO NoAction

END

END

-- Select fragmentation group

IF @CurrentindexID 1S NOT NULL AND @CurrentOnReadOnlyFileGroup = 0O
AND EXISTS(SELECT * FROM @ActionsPreferred)

BEGIN
SET @CurrentFragmentationGroup = CASE
WHEN @CurrentFragmentationLevel >= @FragmentationLevel2 THEN
"High*
WHEN @CurrentFragmentationLevel >= @FragmentationLevell AND
@CurrentFragmentationLevel < @FragmentationLevel2 THEN "Medium*®
WHEN @CurrentFragmentationLevel < @FragmentationLevell THEN "Low"
END
END

-- Which actions are allowed?

IF @CurrentindexID 1S NOT NULL AND EXISTS(SELECT * FROM
@ActionsPreferred)

BEGIN
IF @CurrentOnReadOnlyFileGroup = 0 AND @CurrentAllowPagelLocks = 1
BEGIN
INSERT INTO @CurrentActionsAllowed ([Action])
VALUES (" INDEX_REORGANIZE™)
END
IF @CurrentOnReadOnlyFileGroup = 0

BEGIN
INSERT INTO @CurrentActionsAllowed ([Action])
VALUES (" INDEX_REBUILD_OFFLINE®)
END
IF @CurrentOnReadOnlyFileGroup = 0
AND @CurrentlsPartition = 0
AND ((@CurrentindexType = 1 AND @CurrentlslmageText = 0 AND
@CurrentlsNewLOB = 0)
OR (@CurrentlindexType 2 AND @CurrentlsNewLOB = 0)

OR (@CurrentindexType = 1 AND @CurrentlslmageText = 0 AND
@CurrentlsFileStream = 0 AND @Version >= 11)

OR (@CurrentindexType = 2 AND @Version >= 11))
AND (@CurrentlsColumnStore = 0 OR @Version < 11)
AND SERVERPROPERTY("EngineEdition®) = 3
BEGIN
INSERT INTO @CurrentActionsAllowed ([Action])
VALUES (" INDEX_REBUILD_ONLINE™)

END
END

-- Decide action

IF @CurrentlndexID 1S NOT NULL

AND EXISTS(SELECT * FROM @ActionsPreferred)

AND (@CurrentPageCount >= @PageCountLevel OR @PageCountLevel = 0)
BEGIN

IF EXISTS(SELECT [Priority], [Action], COUNT(*) FROM
@ActionsPreferred GROUP BY [Priority], [Action] HAVING COUNT(*) <> 3)

BEGIN
SELECT @CurrentAction = [Action]
FROM @ActionsPreferred
WHERE FragmentationGroup = @CurrentFragmentationGroup
AND [Priority] = (SELECT MIN([Priority])
FROM @ActionsPreferred
WHERE FragmentationGroup =
@CurrentFragmentationGroup
AND [Action] IN (SELECT [Action]
FROM @CurrentActionsAllowed))
END
ELSE
BEGIN
SELECT @CurrentAction = [Action]
FROM @ActionsPreferred
WHERE [Priority] = (SELECT MIN([Priority])
FROM @ActionsPreferred
WHERE [Action] IN (SELECT
[Action] FROM @CurrentActionsAllowed))
END
END

-- Update statistics?
IF @CurrentStatisticsID 1S NOT NULL

AND (@UpdateStatistics = "ALL" OR (@UpdateStatistics = "INDEX" AND
@CurrentindexID 1S NOT NULL) OR (@UpdateStatistics = "COLUMNS®" AND
@CurrentindexID 1S NULL))

AND (@CurrentStatisticsModified = 1 OR @OnlyModifiedStatistics =
"N")

AND ((@CurrentlsPartition = 0 AND (@CurrentAction NOT
INC" INDEX_REBUILD_ONLINE®, " INDEX_REBUILD_OFFLINE®") OR @CurrentAction IS NULL)) OR
(@CurrentlsPartition = 1 AND @CurrentPartitionNumber = @CurrentPartitionCount))

BEGIN

SET @CurrentUpdateStatistics = "Y*

END

ELSE

BEGIN

SET @CurrentUpdateStatistics = "N*

END

-- Create comment
IF @CurrentlndexID IS NOT NULL
BEGIN

SET @CurrentComment = "ObjectType: " + CASE WHEN
@CurrentObjectType = "U® THEN "Table® WHEN @CurrentObjectType = "V* THEN "View~
ELSE "N/A" END + *, *

SET @CurrentComment = @CurrentComment + "IndexType: * + CASE WHEN
@CurrentindexType = 1 THEN "Clustered®™ WHEN @CurrentlndexType = 2 THEN
"NonClustered®™ WHEN @CurrentindexType = 3 THEN *XML®" WHEN @CurrentlndexType = 4
THEN "Spatial® ELSE "N/A" END + *, *

SET @CurrentComment = @CurrentComment + "ImageText: * + CASE WHEN
@CurrentlslmageText = 1 THEN "Yes®™ WHEN @CurrentlslmageText = 0 THEN "No" ELSE
*N/A® END + ", *

SET @CurrentComment = @CurrentComment + "NewLOB: * + CASE WHEN
@CurrentlsNewLOB = 1 THEN "Yes®™ WHEN @CurrentlsNewLOB = O THEN "No" ELSE "N/A*
END + ",

SET @CurrentComment = @CurrentComment + "FileStream: " + CASE WHEN
@CurrentlsFileStream = 1 THEN "Yes®" WHEN @CurrentlsFileStream = 0 THEN *"No" ELSE
*N/A®" END + *, *

IF @Version >= 11 SET @CurrentComment = @CurrentComment +
"ColumnStore: " + CASE WHEN @CurrentlsColumnStore = 1 THEN "Yes" WHEN
@CurrentlsColumnStore = 0 THEN "No" ELSE *N/A® END + ", *

SET @CurrentComment = @CurrentComment + "AllowPagelLocks: " + CASE
WHEN @CurrentAllowPageLocks = 1 THEN "Yes®™ WHEN @CurrentAllowPageLocks = O THEN
"No" ELSE "N/A®" END + =, *

SET @CurrentComment = @CurrentComment + "PageCount: " +
ISNULL(CAST(@CurrentPageCount AS nvarchar),*N/A") + =, *

SET @CurrentComment = @CurrentComment + "Fragmentation: " +
ISNULL(CAST(@CurrentFragmentationLevel AS nvarchar), *N/A")

END

IF @CurrentindexID 1S NOT NULL AND (@CurrentPageCount IS NOT NULL OR
@CurrentFragmentationLevel 1S NOT NULL)

BEGIN
SET @CurrentExtendedInfo = (SELECT *

FROM (SELECT
CAST(@CurrentPageCount AS nvarchar) AS [PageCount],

CAST(@CurrentFragmentationLevel AS nvarchar) AS Fragmentation

) ExtendedInfo FOR
XML AUTO, ELEMENTS)

END

IF @CurrentindexID 1S NOT NULL AND @CurrentAction IS NOT NULL AND
(GETDATE() < DATEADD(ss,@TimeLimit,@StartTime) OR @TimeLimit IS NULL)

BEGIN
SET @CurrentCommandTypel3 = "ALTER_INDEX"®

SET @CurrentCommandl3 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandl3 = "SET
LOCK_TIMEOUT * + CAST(@LockTimeout * 1000 AS nvarchar) + *; *

SET @CurrentCommandl3 = @CurrentCommandl3 + “ALTER INDEX * +
QUOTENAME(@CurrentindexName) + " ON " + QUOTENAME(@DatabaseName) + ".° +
QUOTENAME(@CurrentSchemaName) + "." + QUOTENAME(@CurrentObjectName)

IF @CurrentAction
INC" INDEX_REBUILD_ONLINE", " INDEX_REBUILD_OFFLINE")

BEGIN

SET @CurrentCommandl3 = @CurrentCommandl3 + * REBUILD*

IF @CurrentlsPartition = 1 SET @CurrentCommandl3 =
@CurrentCommandl3 + * PARTITION = * + CAST(@CurrentPartitionNumber AS nvarchar)

SET @CurrentCommandl3 = @CurrentCommandl3 + * WITH (*

IF @SortInTempdb = *"Y" SET @CurrentCommandl3 =
@CurrentCommandl3 + "SORT_IN_TEMPDB = ON*

IF @SortInTempdb = *N* SET @CurrentCommandl3 =
@CurrentCommandl13 + "SORT_IN_TEMPDB = OFF*

IF @CurrentAction = "INDEX_REBUILD_ONLINE®" AND
@CurrentlsPartition = 0 SET @CurrentCommandl3 = @CurrentCommandl3 + ", ONLINE
ON*

IF @CurrentAction = "INDEX_REBUILD_OFFLINE®" AND
@CurrentlsPartition = 0 SET @CurrentCommandl3 = @CurrentCommandl3 + ", ONLINE
OFF*

SET @CurrentCommandl3 = @CurrentCommandl13 + *, MAXDOP = 1°F

IF @FillFactor 1S NOT NULL AND @CurrentlsPartition = 0 SET
@CurrentCommandl3 + ", FILLFACTOR = " + CAST(@FillFactor AS

@CurrentCommand13
nvarchar)

IF @PadIndex = "Y" AND @CurrentlsPartition
@CurrentCommandl13 = @CurrentCommandl3 + ", PAD_INDEX = ON*

IF @Padlndex = "N* AND @CurrentlsPartition = 0 SET
@CurrentCommandl3 = @CurrentCommandl13 + ", PAD_INDEX = OFF*

SET @CurrentCommandl3 = @CurrentCommandl3 + *)*

O SET

END

IF @CurrentAction IN("INDEX_REORGANIZE®)
BEGIN
SET @CurrentCommandl3 = @CurrentCommandl3 + " REORGANIZE*

IF @CurrentlsPartition = 1 SET @CurrentCommandl3 =
@CurrentCommandl3 + " PARTITION = * + CAST(@CurrentPartitionNumber AS nvarchar)

SET @CurrentCommandl3 = @CurrentCommandl3 + * WITH (*

IF @LOBCompaction = "Y® SET @CurrentCommandl3 =
@CurrentCommandl3 + "LOB_COMPACTION = ON*

IF @LOBCompaction = "N* SET @CurrentCommandl3
@CurrentCommandl13 + "LOB_COMPACTION = OFF*

SET @CurrentCommandl3 = @CurrentCommandl3 + ")*
END

EXECUTE @CurrentCommandOutputl3 = [dbo].[00CmdExec] @Command =
@CurrentCommandl13, @CommandType = @CurrentCommandTypel3, @Mode = 2, @Comment =
@CurrentComment, @DatabaseName = @DatabaseName, @SchemaName = @CurrentSchemaName,
@0ObjectName = @CurrentObjectName, @ObjectType = @CurrentObjectType, @IndexName =
@CurrentindexName, @IndexType = @CurrentlndexType, @PartitionNumber =
@CurrentPartitionNumber, @ExtendedInfo = @CurrentExtendedInfo, @LogToTable =
@LogToTable, @Execute = @Execute

SET @Error = @@ERROR

IF @Error <> 0 SET @CurrentCommandOutputl3 = @Error

IF @CurrentCommandOutputl3 <> 0 SET @ReturnCode =
@CurrentCommandOutputl3

IF @Delay > O
BEGIN
SET @CurrentDelay = DATEADD(ss,@Delay, "1900-01-01")
WAITFOR DELAY @CurrentDelay
END
END

IF @CurrentStatisticsID IS NOT NULL AND @CurrentUpdateStatistics =
"Y" AND (GETDATE() < DATEADD(ss,@TimeLimit,@StartTime) OR @TimeLimit 1S NULL)

BEGIN
SET @CurrentCommandTypeld = "UPDATE_STATISTICS"

SET @CurrentCommandl4 = **

IF @LockTimeout IS NOT NULL SET @CurrentCommandl4 = "SET
LOCK_TIMEOUT * + CAST(@LockTimeout * 1000 AS nvarchar) + "; *

SET @CurrentCommandl4 = @CurrentCommandl4 + “UPDATE STATISTICS " +
QUOTENAME(@DatabaseName) + "." + QUOTENAME(@CurrentSchemaName) + "." +
QUOTENAME(@CurrentObjectName) + " * + QUOTENAME(@CurrentStatisticsName)

IF @StatisticsSample IS NOT NULL OR @StatisticsResample = "Y" OR
@CurrentNoRecompute = 1 SET @CurrentCommandl4 = @CurrentCommandl4 + * WITH"

IF @StatisticsSample = 100 SET @CurrentCommandl4 =
@CurrentCommand14 + " FULLSCAN*

IF @StatisticsSample IS NOT NULL AND @StatisticsSample <> 100 SET
@CurrentCommandl4 = @CurrentCommandl14 + " SAMPLE " + CAST(@StatisticsSample AS
nvarchar) + " PERCENT"

IF @StatisticsResample = "Y" SET @CurrentCommandl4 =
@CurrentCommandl4 + * RESAMPLE®

IF (@StatisticsSample 1S NOT NULL OR @StatisticsResample = "Y")
AND @CurrentNoRecompute = 1 SET @CurrentCommandl4 = @CurrentCommandl4 + =,*

IF @CurrentNoRecompute = 1 SET @CurrentCommandl4 =
@CurrentCommandl14 + " NORECOMPUTE"®

EXECUTE @CurrentCommandOutputl4 = [dbo].[00CmdExec] @Command =
@CurrentCommandl4, @CommandType = @CurrentCommandTypel4, @Mode = 2, @DatabaseName
= @DatabaseName, @SchemaName = @CurrentSchemaName, @ObjectName =
@CurrentObjectName, @ObjectType = @CurrentObjectType, @IndexName =
@CurrentindexName, @IndexType = @CurrentlndexType, @StatisticsName =
@CurrentStatisticsName, @LogToTable = @LogToTable, @Execute = @Execute

SET @Error = @@ERROR

IF @Error <> 0 SET @CurrentCommandOutputl4 = @Error

IF @CurrentCommandOutputl4 <> 0 SET @ReturnCode
@CurrentCommandOutputl4

END
NoAction:

-- Update that the index is completed
UPDATE @tmplndexesStatistics

SET Completed = 1

WHERE Selected = 1

AND Completed = 0

AND 1D = @CurrentixID

-- Clear variables

SET @CurrentCommand02 = NULL
SET @CurrentCommand03 = NULL
SET @CurrentCommand04 = NULL
SET @CurrentCommandO5 = NULL
SET @CurrentCommand06 = NULL
SET @CurrentCommandO7 = NULL
SET @CurrentCommand08 = NULL
SET @CurrentCommand09 = NULL
SET @CurrentCommandl10 = NULL
SET @CurrentCommandll = NULL
SET @CurrentCommandl2 = NULL
SET @CurrentCommandl3 = NULL
SET @CurrentCommandl4 = NULL

SET @CurrentCommandOutputl3 NULL
SET @CurrentCommandOutputl4 = NULL

NULL
NULL

SET @CurrentCommandTypel3
SET @CurrentCommandTypel4d

SET @CurrentixID = NULL

SET @CurrentSchemalD = NULL

SET @CurrentSchemaName = NULL

SET @CurrentObjectID = NULL

SET @CurrentObjectName = NULL

SET @CurrentObjectType = NULL

SET @CurrentindexID = NULL

SET @CurrentindexName = NULL

SET @CurrentlndexType = NULL

SET @CurrentStatisticsID = NULL
SET @CurrentStatisticsName = NULL
SET @CurrentPartitionlD = NULL

SET @CurrentPartitionNumber = NULL
SET @CurrentPartitionCount = NULL
SET @CurrentlsPartition = NULL

SET @CurrentindexExists = NULL

SET @CurrentStatisticsExists = NULL

SET @CurrentlslmageText = NULL

SET @CurrentlsNewLOB = NULL

SET @CurrentlsFileStream = NULL

SET @CurrentlsColumnStore = NULL

SET @CurrentAllowPagelLocks = NULL

SET @CurrentNoRecompute = NULL

SET @CurrentStatisticsModified = NULL
SET @CurrentOnReadOnlyFileGroup = NULL
SET @CurrentFragmentationLevel = NULL
SET @CurrentPageCount = NULL

SET @CurrentFragmentationGroup = NULL
SET @CurrentAction = NULL

SET @CurrentUpdateStatistics = NULL
SET @CurrentComment = NULL

SET @CurrentExtendedinfo = NULL

DELETE FROM @CurrentActionsAllowed

Logging:

SET @EndMessage = "Date and time: " + CONVERT(nvarchar,GETDATE(),120)
SET @EndMessage = REPLACE(@EndMessage, "%", "%%")
RAISERROR(@EndMessage,10,1) WITH NOWAIT

IF @ReturnCode <> 0
BEGIN

RETURN @ReturnCode
END

00PurgeHistory.sql

USE <your_db_name_here>
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

-- Verify that the stored procedure does not already exist.
IF OBJECT_ID (“usp_GetErrorinfo®, "P") IS NOT NULL

DROP PROCEDURE dbo.usp_GetErrorinfo
GO

-- Create procedure to retrieve error information.

CREATE PROCEDURE [dbo].[usp_GetErrorinfo]

AS

SELECT
ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE() AS ErrorMessage

GO

-- Replace this stored procedure in case it already exists
IF OBJECT_ID ("OOPurgeHistory®", "P") IS NOT NULL

DROP PROCEDURE [dbo]-[0OPurgeHistory]
GO

CREATE PROCEDURE [dbo].[0OPurgeHistory]

@keep_this_many hours INTEGER = 2160, -- 90 days
@prune_batch_size INTEGER = 1000, —— Minimum 50

@verbose INTEGER = 1,

@max_hours_to_run INTEGER = 4 -— Minimum limit of 1 hour
/*

* Author: Harar Zafrir harar.zafrir@hp.com
Version: 1.0
Last update: 2014-JAN-02

This procedure purges historical data from 00 database.
Verified on Microsoft SQL Server 2008R2 and 2012.

ok ok ok o+ ok o+ * %

Parameters:

@keep_this_many_hours:

@prune_batch_size:

@verbose:

@max_hours_to_run:

Return Values:

L I I SR T N B T B B N B I B S 2 S B

AS
BEGIN

SET NOCOUNT ON; /=
affected

returned as part

SET ARITHABORT ON; /*

SET XACT_ABORT ON; /*

violation occurs. */

SET DEADLOCK_PRIORITY LOW;

we disturb 00 operation

-- validate input params
IF (@prune_batch_size < 50)
BEGIN RAISERROR("ERROR:
WITH NOWAIT;
RETURN
END;

How many hours of history to keep. Default is 2160 = 90 days

size of each deleted batch of records. Each batch is deleted in a
single transaction.

Verbosity level. 0 means "quiet” output. 1 provides medium level details
and 2 provides all details.

Maximum time for the procedure to run.

Stops the message indicating the number of rows
by a Transact-SQL statement from being

of the results. */

Terminates a query when an overflow or divide-by-zero
error occurs during query execution. */

SET XACT_ABORT ON will cause the transaction to be
uncommittable when the constraint

/* Sets the deadlock priority for this session
to low such that in case

we"re the losing party */

Invalid pruning batch size, must be at least 50",0,1)

IF (@keep_this_many hours < 1)
BEGIN RAISERROR("ERROR: Invalid time window, must be at least 1 hour®,0,1) WITH
NOWAIT;

RETURN
END;

DECLARE
@max_exec_summary_id_to_delete BIGINT
,@min_exec_summary_id_to_delete BIGINT
,@batch_start BIGINT
,@curr_batch_min_id BIGINT
,@curr_batch_max_id BIGINT
,@max_start_time DATETIME
,@last_start_time DATETIME
,@prune_size INTEGER
,@prune_start_time DATETIME
,@prune_end_time DATETIME
,@batch_start_time DATETIME
,@seconds INTEGER
,@msg VARCHAR(1000)

SET @prune_start_time = GETDATEQ);
SET @prune_end_time = DATEADD(hour,@max_hours_to_run,@prune_start_time);

/* Get the newest (latest time-wise) start time from 00 _EXECUTION_SUMMARY table */
SELECT @max_start_time = MAX(START_TIME)
FROM [dbo].[00_EXECUTION_SUMMARY] WITH (NOLOCK);

/* Get the newest run start time we need to KEEP */
SET @last_start_time = DATEADD(hour, (-1 * @keep_this_many hours), @max_start _time);

/* Get the minimal and maximal execution summary ids we need to delete */
SELECT
@min_exec_summary_id_to_delete = MIN(ID),
@max_exec_summary_id_to_delete = MAX(ID)
FROM [dbo].[00_EXECUTION_SUMMARY] WITH (NOLOCK)
WHERE START_TIME < @last_start_time

/* Prepare for the the first batch run. */

SET @batch_start = @min_exec_summary_id_to_delete; /* Starting at the oldest record
we need to delete */

SET @curr_batch_min_id = @batch_start;
SET @curr_batch_max_id = @curr_batch_min_id + @prune_batch_size - 1;
SET @prune_size = 0; /* The actual deletion counter */

/* Main loop */
WHILE (@curr_batch_min_id < @max_exec_summary_id_to_delete)

BEGIN

SET @batch_start_time = GETDATEQ);

IF (@batch_start_time > @prune_end_time) BEGIN
RAISERROR("Out of time limit... Exiting." , 0,1) WITH NOWAIT;

BREAK;
END;

1) RAISERROR("Deleting 00 _EXECUTION_SUMMARY data..." , 0,1)

IF (@verbose
WITH NOWAIT;

IF (@verbose = 2) BEGIN

SET @msg = "Deleting O0_EXECUTION_SUMMARY data between " +

CAST(@curr_batch_min_id AS VARCHAR) + * and " +

CAST(@curr_batch_max_id AS VARCHAR) + * _..";
RAISERROR(@msg, 0, 1) WITH NOWAIT;

END;

BEGIN TRY

BEGIN TRANSACTION;

DELETE [dbo].-[00_EXECUTION_SUMMARY]

WHERE ID BETWEEN @curr_batch_min_id AND @curr_batch_max_id
AND STATUS = "COMPLETED*®

AND END_TIME IS NOT NULL;

COMMIT TRANSACTION; -- End of current transaction
END TRY

/* Error handling - in case the transaction has failed */

BEGIN CATCH
EXECUTE usp_GetErrorinfo; -- Execute error retrieval routine.

IF (XACT_STATEQ)) = -1

BEGIN
SET @msg = "Last transaction has failed. Please try to run this

procedure again later.";
RAISERROR(@msg, 0,1) WITH NOWAIT;

ROLLBACK TRANSACTION;
END;

IF (XACT_STATEQ)) = 1
BEGIN
COMMIT TRANSACTION;
END;
END CATCH;

/* Advance counters */

SET @prune_size = @prune_size + @prune_batch_size;

SET @curr_batch_min_id = @curr_batch_min_id + @prune_batch_size;
SET @curr_batch_max_id = @curr_batch_max_id + @prune_batch_size;
IF @curr_batch_max_id > @max_exec_summary_id_to_delete

SET @curr_batch_max_id = @max_exec_summary_id_to_delete;

END;

END -- End of main WHILE loop

/* Summary */
IF (@verbose > 0) BEGIN
SELECT @seconds = DATEDIFF(SECOND, @prune_start_time, GETDATE());

SET @msg = "Total pruning time was: " + CAST(@seconds AS VARCHAR) + " seconds”;
RAISERROR(@msg, 0,1) WITH NOWAIT;
END;

RETURN @prune_size -- END PROCEDURE

GO -- End of create procedure

Database Guide
Appendix B: Additional Guidelines for Oracle

HP Operations Orchestration (10.02)

Appendix B: Additional Guidelines for Oracle

This appendix contains additional guidelines relevant for HP OO deployment on Oracle.
This appendix contains the configuration that needs to be done for HP OO to work with Oracle Real
Application Cluster. This information is for advanced users only.

Note: The HP OO installer currently does not support using an Oracle RAC connection during
the HP OO installation. During installation, regular connection properties must be provided.
However, you can use the Oracle RAC connection once HP OO is installed.

This appendix includes:

Oracle Real Application Cluster (RAC) 45
Single Client Access Name
Configuring HP OO to Work with Oracle RAC
SQL Scripts and Stored Procedures

Oracle Real Application Cluster (RAC)

A cluster is a collection of interconnected servers that appear as one server to the end user and to
applications. Oracle Real Application Cluster (RAC) is Oracle's solution for high availability,
scalability, and fault tolerance. It is based on clustered servers that share the same storage.

Oracle RAC is a single Oracle database installed on a cluster of hardware servers. Each server
runs an instance of the database and all the instances share the same database files.

For more details about Oracle RAC, see the Oracle Clusterware Guide and the Oracle Real
Application Clusters Administration and Deployment Guide in the Oracle documentation set of your
release.

In this appendix, the following Oracle RAC example is used:
¢ Oracle RAC database name: OORAC
e Machine names: Server1, Server2
¢ On each machine, there is an Oracle instance of OORAC:
= SID on Server1: OORAC1
= SID on Server2: OORAC2

¢ Oneach machine, there is a virtual IP (Server1-Vip and Server2-Vip):

Page 45 of 48

Database Guide
Appendix B: Additional Guidelines for Oracle

= Server1-Vipis assigned to Server1
» Server2-Vipis assigned to Server2
The virtual IP is in addition to the static IP assigned to the machine.

o Thelisteners on both servers are listening on the default port 1521 and support the database
service OORAC.

Single Client Access Name

Inrelease 11g, Oracle introduced the Single Client Access Name (SCAN), as a preferred access
method for clients connecting to the RAC. In this method, clients are not required to configure
individual nodes in the RAC; rather, they use a single virtual IP known as the SCAN or the SCAN
VIP.

The SCAN is a single network name defined for the cluster either in your organization's Domain
Name Server (DNS) orin the Grid Naming Service (GNS) that rotates between several IP
addresses, reflecting multiple listeners in the cluster. The SCAN eliminates the need to change
clients when nodes are added to or removed from the cluster.

The SCAN and its associated IP addresses provide a stable name for clients to use for
connections, independent of the nodes that make up the cluster. Database server SCAN
addresses, virtual IP addresses, and public IP addresses must all be on the same subnet.

The SCAN method is recommended when using HP OO in an Oracle 11g RAC environment.

Configuring HP 00 to Work with Oracle RAC

To enable HP OO to connect to an Oracle RAC environment, complete the following steps:

1. Back up your current database.properties file located under <OO installation>/central/conf if
you have an existing (usable) database connection.

2. Edit the database.properties file located under <OO installation>/central/conf, and change
only the relevant parameter syntax to match the following example:

jdbc.url=jdbc:oracle:thin:@\

(DESCRIPTION=\

(LOAD_BALANCE=0n)\

(ADDRESS_LIST=\

(ADDRESS=(PROTOCOL=TCP) (HOST= Serverl-Vip)(PORT=1521))\
(ADDRESS=(PROTOCOL=TCP) (HOST= Server2-Vip) (PORT=1521)))\
(CONNECT_DATA=(SERVICE_NAME= OORAC)))

Replace the highlighted items with the values that match your environment.

HP Operations Orchestration (10.02) Page 46 of 48

Database Guide
Appendix B: Additional Guidelines for Oracle

Note that the jdbc.url parameter is broken into several lines using trailing backslash
characters.

Set the Load Balancing and Failover parameter values in accordance with your preferences.

When Load Balancing is on, Failover is on by default.

SQL Scripts and Stored Procedures

Use the following SQL scripts in order to create the HP OO maintenance-related stored
procedures.

OOIndexMaintenance.sql (Oracle)

Copy and run this script in order to create the OOIndexMaintenance stored procedure. Create
and use this stored procedure under the HP OO schema.

OOPurgeHistory.sql

Run this script in order to create the OOPurgeHistory stored procedure.

HP Operations Orchestration (10.02) Page 47 of 48

00IndexMaintenance.sql (Oracle)

CREATE OR REPLACE PROCEDURE OOIndexMaintenance

/*

*

Parameters:
pMaxHeight:

pRebuild:

Author: Harar Zafrir, harar.zafrir@hp.com
Version: 1.0
Last update: 2014-JAN-02

This procedure performs index maintenance for 00 database.

Minimal index height threshold for index rebuild

pMaxLeafsDeleted: Minimal deleted leaves threshold for index rebuild

Should indexes be rebuilt (1) or only perform a dry-

un (0)

Return Value:

Ok Ok o X R X ROk ko % X X kX F

(pMaxHeight IN INTEGER := 3,
pMaxLeafsDeleted IN INTEGER := 15,
pRebuild IN INTEGER := 1,
pReturnvValue OUT INTEGER

) IS

-- Resource busy exception definition
resrcBusyExcptn EXCEPTION;
PRAGMA EXCEPTION_INIT(resrcBusyExcptn, -54);

-- A Cursor for iterating through the index_stats data dictionary view
CURSOR csrindexStats 1S
SELECT
name
,height
,1f_rows AS leafRows
,del_If_rows AS leafRowsDeleted
FROM index_stats;

vindexStats csrilndexStats¥hrowtype;

-- A Cursor for iterating through the user_indexes data dictionary view
CURSOR csrOOIndexes 1S
SELECT
index_name
,tablespace_name
FROM user_indexes
WHERE partitioned = "NO*
AND status = "VALID";

vCount INTEGER := 0; -- Number of rebuilt indexes

VErrors INTEGER := 0; —-- Number of operations ending with an unhandled

exception

vIsEnt INTEGER := 0; —- Is this an Enterprise edition (allowing online index
rebuild)

vRebuildStr VARCHAR2(25) := " REBUILD"; -- Rebuild option - regular or online

BEGIN

dbms_output.put_line("Beginning execution of OOlndexMaintenance procedure version 1.0
at " || TO_CHAR(CURRENT_DATE, "dd/mm/yyyy hh24:mi:ss®));

pReturnvValue := 0O;

-- Check if this Oracle is an enterprise version or not
SELECT COUNT(*) INTO vIseEnt FROM product_component_version WHERE product LIKE
"%O0racle%Database%Enterprise®%” ;
IF vIsént = 1 THEN
VRebuildStr := " REBUILD ONLINE";
END IF;

-- Looping through all 00"s indexes
FOR vindexRec IN csrOOIndexes
LOOP -- Main loop

-- Analyzing the current index. Results are saved in index_stats
BEGIN -- Wrapping in a block for exception handling
EXECUTE IMMEDIATE “ANALYZE INDEX " || vIndexRec.index_name || * VALIDATE
STRUCTURE" ;
EXCEPTION
WHEN resrcBusyExcptn THEN
dbms_output.put_line("ERROR: Index " || vIndexRec.index_name || "
is busy, could not lock it. Retry later.");
WHEN OTHERS THEN
dbms_output.put_line(SUBSTR(SQLERRM, 1, 200));
END;

OPEN csrindexStats;
FETCH csrindexStats INTO vindexStats;
IF csrindexStats%found

THEN
IF (vindexStats.height > pMaxHeight)
OR
(vindexStats.leafRows > O AND
vindexStats. leafRowsDeleted > O AND
(vindexStats.leafRowsDeleted * 100/vIindexStats. leafRows) >
pMaxLeafsDeleted)
THEN
vCount := vCount + 1;
pReturnValue := pReturnValue + 1;
IF pRebuild = 1 THEN
BEGIN -- Wrapping in a block for exception handling
dbms_output.put_line("Rebuilding index * ||
vindexRec.index_name || "---");
EXECUTE IMMEDIATE “ALTER INDEX * ||
vindexRec. index_name || vRebuildStr;
EXCEPTION
WHEN resrcBusyExcptn THEN
dbms_output.put_line("ERROR: Index * ||
vindexRec.index_name || " is busy, could not lock it. Retry later.");
WHEN OTHERS THEN
VErrors := vErrors + 1;

dbms_output.put_line(SUBSTR(SQLERRM, 1, 200));
END;
ELSE

dbms_output.put_line("Dry run, index " ||
vindexRec.index_name || ° should be rebuilt.");
END IF;
END IF;
END IF;

CLOSE csrindexStats;
END LOOP; -- End of main loop

-— Summary
IF vCount > O THEN

IF pRebuild = 1 THEN
dbms_output.put_line("Total number of indexes rebuilt: = ||
TO_CHAR(vCount));
ELSE
dbms_output.put_line("Total number of indexes recommended for rebuild
(not actually rebuilt): * || TO_CHAR(vCount));
END IF;
ELSE
dbms_output.put_line("No indexes were processed.");
END IF;

END OOIndexMaintenance;
/

00PurgeHistory.sql

CR

N
*

[T B D B R N B R B S N R I R R I S TR R R T I B I B R B

)

re
PR
ou

EATE OR REPLACE PROCEDURE OOPurgeHistory

Author: Harar Zafrir, harar.zafrir@hp.com
Version: 1.0
Last update: 2014-JAN-12

This procedure purges historical data from 00 database.
Verified on Oracle 11gR2

Parameters:

pKeepThisManyHours:
How many hours of history to keep. Default is 2160 = 90 days

pPruneBatchSize:
size of each deleted batch of records. Each batch is deleted in a
single transaction. Default is 1000, minimum value is 50.

pVerbose:
Verbosity level. 0 means "quiet” output. 1 provides medium level details
and 2 provides all details.

pMaxHoursToRun:
Maximum time for the procedure to run. Default is 4 hours.

Return Values:

pKeepThisManyHours IN INTEGER := 2160,
pPruneBatchSize IN INTEGER := 1000,
pVerbose IN INTEGER := 1,
pMaxHoursToRun IN INTEGER := 4,
pReturnValue OUT INTEGER

IS

Resource busy exception definition
srcBusyExcptn EXCEPTION;
AGMA EXCEPTION_INIT(resrcBusyExcptn, -54);
tOfTimeExcptn EXCEPTION;

-—errExcptn EXCEPTION;

vMaxExecSummaryldToDelete NUMBER(38,0
vMinExecSummaryldToDelete NUMBER(38,0
vBatchStart NUMBER(38,0) := 0O;
vCurrBatchMinld NUMBER(38,0
vCurrBatchMaxld NUMBER(38,0
vMaxStartTime TIMESTAMP;
vLastStartTime TIMESTAMP;
vPruneSize INTEGER := O;
vPruneStartTime TIMESTAMP;
VPruneEndTime TIMESTAMP;
vBatchStartTime TIMESTAMP;
vSeconds INTEGER := 0;

) :=0
) :=0

BEGIN

dbms_output.put_line("Beginning execution of OOPurgeHistory procedure version
1.0 at * || TO_CHAR(CURRENT_DATE, "dd/mm/yyyy hh24:mi:ss®));

pReturnvalue := 0;

-- validate input parameters
IF pPruneBatchSize < 50 THEN
dbms_output.put_line("ERROR: Prune batch size is too small. Minimum value is
50.7);
RETURN;
END IF;

IF pKeepThisManyHours < 1 THEN

dbms_output.put_line("ERROR: Cannot keep less than 1 hour. Set
pKeepThisManyHours parameter accordingly.®);

RETURN;
END IF;

VPruneStartTime := CURRENT_TIMESTAMP;
VPruneEndTime := vPruneStartTime + (pMaxHoursToRun/24);

/* Get the newest (latest time-wise) start time from 00 _EXECUTION_SUMMARY table
*/

SELECT MAX(START_TIME) INTO vMaxStartTime FROM OO_EXECUTION_SUMMARY ;

IF vMaxStartTime IS NULL THEN

dbms_output.put_line("INFO: O0_EXECUTION_SUMMARY is empty. Nothing to
prune.);
RETURN;
END IF;

/* Get the newest run start time we need to KEEP */
vLastStartTime := vMaxStartTime - (pKeepThisManyHours/24);

/* Get the minimal and maximal execution summary ids we need to delete */
SELECT

MINCID), MAX(ID) INTO vMinExecSummaryldToDelete, vMaxExecSummaryldToDelete
FROM OO_EXECUTION_SUMMARY WHERE START_TIME < vLastStartTime

IF vMinExecSummaryldToDelete IS NULL THEN

dbms_output.put_line("INFO: Nothing to delete. All records are newer than *
|l TO_CHAR(vLastStartTime, "dd/mm/yyyy hh24:mi:ss®));

RETURN;
END IF;

/* Prepare for the the first batch run. */

vBatchStart := vMinExecSummaryldToDelete;

vCurrBatchMinld := vBatchStart;

vCurrBatchMaxld := vCurrBatchMinld + pPruneBatchSize - 1;
vPruneSize := 0;

/* Main loop */
WHILE vCurrBatchMinld < vMaxExecSummaryldToDelete
LOOP

vBatchStartTime := CURRENT_TIMESTAMP;

IF vBatchStartTime > vPruneEndTime THEN
RAISE outOfTimeExcptn;

END IF;

IF pVerbose = 1 THEN
dbms_output.put_line("Deleting O0_EXECUTION_SUMMARY data...");
END IF;

IF pVerbose > 1 THEN

dbms_output.put_line("Deleting 00 _EXECUTION_SUMMARY data between " ||
TO_CHAR(vCurrBatchMinld) || ® and * || TO_CHAR(vCurrBatchMaxlid) || = ---7);

END IF;

BEGIN -- Delete current batch
DELETE OO_EXECUTION_SUMMARY
WHERE ID BETWEEN vCurrBatchMinld AND vCurrBatchMaxld
AND STATUS = "COMPLETED*
AND END_TIME IS NOT NULL;
EXCEPTION
WHEN resrcBusyExcptn THEN

dbms_output.put_line("ERROR: Table is busy, could not lock it for
deletion. Retry later.");

WHEN OTHERS THEN
dbms_output.put_line(SUBSTR(SQLERRM, 1, 200));
END;

/* Advance counters */

VvPruneSize := vPruneSize + pPruneBatchSize;
pReturnValue := vPruneSize;

vCurrBatchMinld := vCurrBatchMinld + pPruneBatchSize;

vCurrBatchMaxld := vCurrBatchMaxld + pPruneBatchSize;
IF vCurrBatchMaxld > vMaxExecSummaryldToDelete THEN
vCurrBatchMaxld := vMaxExecSummaryldToDelete;

END IF;
END LOOP; -- End of main WHILE loop

/* Summary */

IF pVerbose > 0 THEN
vSeconds := EXTRACT(SECOND FROM (CURRENT_TIMESTAMP - vPruneStartTime));

dbms_output.put_line("Total pruning time was: " || TO_CHAR(vSeconds) ||
seconds”®);
END IF;

EXCEPTION
WHEN outOfTimeExcptn THEN
dbms_output.put_line("INFO: Time limit reached, exiting.");

WHEN OTHERS THEN
dbms_output.put_line(SUBSTR(SQLERRM, 1, 200));
RETURN; -- END PROCEDURE

END OOPurgeHistory;

	Contents
	Introduction to Preparing the Database Environment
	Overview
	HP OO Database Sizing
	Hardware Requirements

	Deploying and Maintaining a Microsoft SQL Server Database
	Workflow for Microsoft SQL Server Deployment
	System Requirements for Microsoft SQL Server
	Hardware Requirements
	Software Requirements
	Examples of Tested Deployments
	Language Support

	Configuring SQL Server
	Manually Creating an HP OO Database on Microsoft SQL Server
	Microsoft SQL Server Database Maintenance
	Backing up the HP OO Database
	Creating a Maintenance Plan

	Deploying and Maintaining an Oracle Database
	Workflow for Oracle Deployment
	System Requirements for Oracle
	Hardware Requirements
	Software Requirements
	Examples of Tested Deployments
	Language Support

	Configuring an Oracle Database
	Manually Creating an HP OO Database on an Oracle Instance
	Oracle Database Maintenance
	Backing up the HP OO Database
	Creating a Maintenance Plan

	Deploying and Maintaining a MySQL Database
	Workflow for MySQL Deployment
	System Requirements for MySQL
	Hardware Requirements
	Software Requirements
	Examples of Tested Deployments
	Language Support

	Configuring MySQL
	Manually Creating an HP OO Database on MySQL
	MySQL Database Maintenance
	Backing up the HP OO Database
	Creating a Maintenance Plan

	Deploying and Maintaining a Postgres Database
	Workflow for Postgres Deployment
	System Requirements for Postgres
	Hardware Requirements
	Software Requirements
	Examples of Tested Deployments
	Language Support

	Configuring Postgres
	Manually Creating an HP OO Database on Postgres
	Postgres Database Maintenance
	Backing up the HP OO Database
	Creating a Maintenance Plan

	Appendix A: Additional Guidelines for Microsoft SQL Server
	Using Windows Authentication to Access Microsoft SQL Server Databases
	Configuring HP OO to Work with Windows Authentication
	T-SQL Scripts and Stored Procedures

	Appendix B: Additional Guidelines for Oracle
	Oracle Real Application Cluster (RAC)
	Single Client Access Name
	Configuring HP OO to Work with Oracle RAC
	SQL Scripts and Stored Procedures

