
Copyright 2013 Hewlett Packard Development Company LP 1

Diagnostics FAQ
December 2013

1. Since the Diagnostics 9.x .NET Agent doesn’t support .NET 1.1 how can I monitor .NET 1.1

applications?

Use the Diagnostics 8.0x .NET Agent for applications running under .NET 1.1. You can have an 8.0x

.NET probe running and communicating to a Diagnostics 9.x Server.

2. If I have both .NET 1.1 and .NET 2.0 on the same system can I have multiple .NET agent versions on

the same machine?

You cannot have more than 1 version of the .NET agent on a single machine. The 9.x .NET agent has

new profiler interfaces and support for .NET 1.1 had to be dropped in order to implement these new

features using the .NET 2.0 framework libraries.

3. I don’t see my .NET probe in the Diagnostics commander’s System Health registrar and I tried to

enable the probe and restart IIS but still don’t see it in system health graph.

The .NET probe is only active and will only show up in the system health graph when the application

it is monitoring is running. Windows shuts the probe down when the application is not being used,

even though IIS is running.

4. Since the Diagnostics 9.23 Java Agent doesn’t support Java 1.4, how can I monitor my legacy

applications? You can have a 9.20 or 9.21 Java probe running and communicating to a Diagnostics

9.23 Server.

5. Why is the probe overhead so high on IBM JVMs?

The IBM (J0) JVM 1.5.0 has a defect that causes JVM performance degradation. The recommended

way to use Diagnostics with this JVM is to use -Xbootclasspath option instead of –javaagent option.

6. Why can't I do dynamic instrumentation of IBM JVMs?

The IBM (J0) JVM 1.5.0 has a defect that causes JVM performance degradation. The recommended

way to use Diagnostics with this JVM is to use -Xbootclasspath option instead of –javaagent option.

Unfortunately, dynamic instrumentation requires -javaagent. In development environment, you may

still want to use this option, if the high overhead can be tolerated. Note that the overhead is high all

the time; it has nothing to do with Diagnostics activities.

If you are in a development environment and want to use the –javaagent option there is another

limitation of the IBM J9 JVM where "-javaagent" and "-agentpath" are mutually exclusive - only one

of them will take effect. So, by using -javaagent you will gain dynamic instrumentation capability,

Copyright 2013 Hewlett Packard Development Company LP 2

but lose HeapWalker feature and good performance. The safest way to invoke Diagnostics in this

environment would be simply this:

-javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar

-Xshareclasses:none -Dprobe.id=gblabl14

If you need heap diagnostics, you can try to use HeapBreakdown. This would require setting up

LD_LIBRARY_PATH to include /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/x86-linux

and then using this invocation:

-javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar

-Xrunheapdump -Xshareclasses:none -Dprobe.id=gblabl14

7. What if there are different JVMs how do I know which to pick to instrument in the JRE

instrumenter?

Use JREinstrumenterin Automatic Explicit or Implicit mode. If you cannot do that, read on. Many

application servers use launcher utilities that can and often do use a different JVMs to start the

actual, final JVM (which leads to MUCH confusion as to what JVM to instrument, what versions of

Java are running, etc.)

If this is a Unix - linux system where you can see the command line the JVM is using then you can do

a ps -ef | grep java and you should be able to see the application server's entire command line.

For example, when entering this command on my test machine where I have more than one java

process running, the 1st one, because it does not specify a path is using the default JRE installed on

the machine:

sdd 5597 5576 0 11:50 ? 00:00:09 java

One of the other processes on my test box DOES specify a path and therefore it is using a DIFFERENT

run time:

sdd 24986 24983 0 Nov28 ? 00:02:34 /usr/bin/java

You can check the java version by copying the path and java command and add -version to the end

of it. For that second process this command will display the JRE version:

/usr/bin/java –version

8. How does Diagnostics support clustered JVMs?

To see performance for the cluster, first put all probes for the JVMs in the cluster into the same

probe group. Then you can use the Aggregate Server Request view to see performance of the whole

cluster and drill down to individual probes.

Copyright 2013 Hewlett Packard Development Company LP 3

9. Can Diagnostics help identify load balancing issues in a cluster?

Assuming you’ve put all probes for the JVMs in the cluster into the same probe group then in the

Aggregate Server Request view, you can add the count metric to the entity table which tells you the

total number of requests across the cluster. You can drill into the aggregate server request to see

the server request performance in each JVM. Again use the count metric to see the number of

server request instances for each JVM.

10. What should I consider when choosing an approach for monitoring multiple JVMs on a single server?

There are two options: 1) installing one agent per server and then configuring multiple probes for

the JVMs 2) installing an agent for each JVM.

If you want to minimize the number of agents you have to install and setup you can plan to install

just one agent on the server. This works best if the JVMs on the server are similar enough that you

can use the same agent configuration files and libraries etc. for all the JVMs. In this scenario there is

only one probe.properties file (for the agent) so you use command line overrides of the values in

this file along with running the JRE instrumenter for each JVM to configure unique probe names and

instrumentation for each JVM.

Another approach if you have very different JVMs on the same system or you have very different

agent configuration requirements is to install the agent multiple times and define an instance of a

probe for each agent by setting the probe’s id property in the probe.properties file for each agent.

Refer to the Java Agent Guide section on “Configure Monitoring of Multiple Java Processes on an

Application Server”.

11. If you are setting up multiple probes on the same system do you have to give them unique names,

and if so, how do you do this? How do you set up unique probe names?

Diagnostics relies on unique probe names. Some functionality will not work if they are not unique.

When you install an agent a default probe name is assigned. You can change the name by modifying

the id property in the <agent install dir>/etc/probe.properties file. If you have multiple JVMs on a

system and have installed the agent multiple times you can set the id property in the

probe.properties file in each agent’s /etc directory.

Id=<uniqueProbeName>

Note: This approach will not work if you have configured multiple probes/JVMs based on a single

agent installation. Because there is only one probe.properties file , you can’t assign more than one

id=property.

Copyright 2013 Hewlett Packard Development Company LP 4

What you can do in this scenario is override the probe name in probe.properties by specifying a

unique probe name for each of the JVMs probes. This is done using the Java command line or

startup script (in the Generic JVM arguments section).

-Dprobe.id=<Unique_Probe_Name>

You can also use the %0 option to generate a unique probe id rather than assigning a specific name.

For example you might want to use this approach in a clustered environment where a single startup

script is used to start multiple application server instances.

-Dprobe.id=<probeName>%0

On Windows, use %%0. Use the first % to escape the second %. The is replaced dynamically with

a number to create a unique probe name for each probe; for example, <probeName>0,

<probeName>1, and so on.

Refer to the Java Agent Guide section on “Configure Monitoring of Multiple Java Processes on an

Application Server”.

12. I see my probe in the Enterprise UI but my Server Request and SQL views are empty. Why don’t I see

my servlet or message bean or EJB…?

First check the appropriate Java Agent monitoring profile in etc/defaults to see if they have been

configured for the profile you are using.

If the items still do not appear, in dispatcher.properties check the following properties:

 - minimum.fragment.latency = 51ms (default) Tune this value

 - minimum.sql.latency = 1s (default) Tune this value

13. What is the difference between Total CPU Utilization and Normalized CPU Utilization?

Normalized CPU Utilization on the probe is CPU utilization for the application server process divided

by the number of logical processors/cores.

Total CPU Utilization is on all cores added up so it can be greater than 100.

So for example if Total CPU Utilization is 4% and you have 4 CPUs/Cores, the Normalized CPU

Utilization is 1%.

Both metrics represent the same thing – the CPU consumption by the probe process. This includes

the JVM, the Java application, the probe, and all the native libraries which may be used by the JVM

or the application. This is the sum of CPU utilization by all threads belonging to the process.

If the system has N CPU/Cores then

Normalized CPU Utilization = Total CPU Utilization/N

Copyright 2013 Hewlett Packard Development Company LP 5

On a single CPU system the metrics have identical values.

14. Where can I find the Diagnostics support matrix?

Customer visible path is Diagnostics Product Availability Matrix at

http://support.openview.hp.com/sc/support_matrices.jsp

15. I've installed a probe/collector and configured its mediator server but I don't see the probe in the

Diagnostics Enterprise UI. What should I do?

 Check the collector log. Is the collector connecting to the database or whatever it is collecting

from?

 Did you give the probe/collector a unique name? if you are working with two probes at the

same box same probe installation, make sure you use the jvm options –Dprobe.id=xxx to

differentiate them.

 Do you see probe.log under the configure probe name in the log directory? If not, you have not

specified the necessary Java command line options to load the Agent.

 Check that the mediator process is running and available (communication and firewall) from the

probe machine

 Check registrar - system health view

 Check commander's server.log

16. What does the Average Downtime metric mean? If an app server (hence the probe) is down for

more than 2 days but downtime metric when viewing data for the last 3 months is 26m, this seems

incorrect.

The Average downtime is a metric that measures how quickly the probe is started up after a failure

(crash) and it is simply the arithmetic average of all downtime period lengths over the viewing data

periods. This metric is useful only for viewing historical data.

This metric is collected upon probe restart or upon probe reconnecting to the mediator so if the

probe is currently down the metric does not report that until the probe restarts.

So for example if the probe has been down for the last 2 days and didn’t restart, these 2 days are

not taken into account when calculating Average Downtime since this is how long it takes to restart

not how long the probe was down.

If you want to check the time when a probe becomes unavailable, for example if the probe is down

for maintenance, you may consider probe availability metrics.

http://support.openview.hp.com/sc/support_matrices.jsp

Copyright 2013 Hewlett Packard Development Company LP 6

If you want to scrape the logs on the mediators, there is a message logged each time the probe

connects:

2010-11-07 14:55:43,929: INFO data_in : Successfully pulled (ProbeTrendsPullerTask) data from

ProbeTrendsPullerTask

and if the probe goes offline and the mediator cannot access it, the log shows:

2010-11-07 14:56:30,080: INFO data_in : Removing ProbePullerTask ProbeTrendsPullerTask

17. I am concerned about the overhead of instrumentation. What mechanisms does Diagnostics provide

to reduce instrumentation overhead?

First of all make sure your instrumenting is appropriate – for example the basic recommendation is

not to instrument get/set calls. These are simply returning or setting a single value, very fast. For

transactions with a very small transaction time you wouldn’t need to instrument for performance.

Then note that Diagnostics is designed to use the level of instrumentation that will provide

adequate information to troubleshoot a temporary or hard to reproduce performance issue while

imposing a low overhead that can be tolerated in most production environments.

To achieve this goal, Diagnostics provides two mechanisms which automatically adjust data

collection in response to the performance characteristics of the currently executing server request.

The first such mechanism is latency-based trimming. If a particular invocation of an instrumented

method is fast, the invocation is not reported (there will be no corresponding node in the Call

Profile). This cuts the overhead substantially, as the Diagnostics Agent does not have to create the

necessary object and place it in the call tree. At the same time, it is assumed that such fast calls are

of no interest to the user who is interested in pinpointing performance issues. You can adjust the

reporting threshold (51 ms by default) to eliminate some of these types of fast calls (presented by

very thin bars in the call profile). These calls have relatively high overhead, and probably do not

provide any useful information which can help diagnose performance issues.

Another automatic data collection mechanism is stack trace sampling. This feature reports long

running methods even if they are not instrumented. Thus by enabling this feature, and tuning it to

provide adequate level of information, the user can turn off some of the instrumentation and trust

that any potential performance issues in this module will be reported by stack trace sampling.

As far as light-weight code injection, we do exactly that. Our instrumentation is as light-weight as

possible. One should realize though that a major portion of the overhead is caused just by taking a

timestamp (which is necessary to calculate the latency). Also see the section on Monitoring Profiles in

the Java Agent Guide.

18. What are the metrics Diagnostics collects out of the box?

The document of what metrics are collected is the metrics.config file for Java agent and

metrics.config file for .Net agent.

Copyright 2013 Hewlett Packard Development Company LP 7

What metrics Diagnostics collects is dependent in part on what application server you are running

(WAS, WebLogic, Jboss, IIS…).

If looking at WAS the metrics Diagnostics collects are dependent on the PMI setting of WAS.

Diagnostics Java Agent can collect any JMX and PMI metrics.

The Java Agent metrics.config file has a feature to write a list of all the available metrics for each

JMX collector into a file. When the default.dump.available.metrics property in the metrics.config

file is set to true, the probe will write this list of available metrics to text files in the probe log

directory. The files are named as follows: <probe_install_dir>/log/

<probe-id>/jmx_metrics_<collector-name>.txt. Interrogate all the metrics available to the probe

inside the JVM. The output can be edited into new metrics.config entries on the fly.

You can customize the metrics collection in the agent’s metrics.config file. Refer to the Agent Guide

chapters on “Configuring Diagnostics Metrics Collectors”.

A system metrics collector is installed with the Java Agent and the .NET Agent. It gathers system

level metrics such as CPU usage and memory usage from the agent’s host. You can customize the

system metrics collection in the metrics.config file.

19. What should I do with the probe group?

 Probe group is used to aggregate data across clusters.

 Aggregate Server Request view is all requests across cluster

 SQL statement view is all SQL across cluster

20. How can I see how many users are accessing the Diagnostics Enterprise UI?

You can get a list of active users seen by the Diagnostics server in the last 60 seconds. And you can

see the Queries/sec indicating how much load the user generates with summary or trend queries.

From the main Diagnostics UI select Configure Diagnostics and the Components page is displayed.

(You can also access this Components page by selecting the Maintenance link in any Diagnostics

view). Select the query link and then select the Active Users link at the bottom of that page to

display a list of active users. Also this data is under Mercury System groupby.

21. Why am I not seeing information for the method I instrumented via auto_detect.points?

You can check detailReport.txt in the log directory of the probe and make sure the method you are

instrumenting uses the intended instrumentation point. If multiple instrumentation points satisfy

the conditions for a particular method, the probe either uses the point with higher *priority* or else

can’t predict which point will be used.

Copyright 2013 Hewlett Packard Development Company LP 8

22. Is there a "simple" way to trim the unique server requests to reduce impact of probe on server

processing load and also on server disk space?

An effective way will be using the uri.pattern.replace property in

<probe_install_dir>/etc/dynamic.properties file. Refer to the comments in the properties file. This

works only for http/https URIs. It uses regular expressions based on Perl syntax.

23. I don't see any system metrics (Disk bytes/s, Network bytes/s, Page In/s and Memory percentage)

even though I have the SAP Collector on that system?

The SAP collector does not report system metrics. To get them, install a Java agent on the desired

host and run the bin/startAgent.sh to collect these system level metrics.

24. Explanation of Diagnostics thresholds?

Each of the numeric metric data for an entity (CPU of a host, heap used in a VM…) can have a

threshold value set. Threshold is evaluated against the metric data points received, usually every 5

seconds. The metric with a threshold set will have one of the following status levels: Green, Yellow

and Red. The entity’s status is derived from all its metric statuses according to worst-child rules (if

any metric for the entity is red, the entity is red).

As long as the metric value does not exceed the threshold the status remains Green. If 3 or more

metric data points are beyond the threshold the status turns to Yellow. If the average metric value

within the last 5 minutes is beyond the threshold the status becomes Red. Once the 5 minute

average goes below the threshold the status becomes Green again. Note that Diagnostics status

does not revert to Yellow it goes directly back to Green.

The threshold values for metrics are configurable in the UI (details pane) and some metrics also have

default thresholds set. The default threshold configuration is set in the server’s etc directory in

thresholds.configuration.

If you need to set thresholds on specific methods you would want to add a separate entry in the

points file for each method and this will allow you to set up thresholds and alerts for the specific

method.

25. Questions on Diagnostics and SiteScope integration.

What port does the Diagnostics/SiteScope integration use? You point SiteScope to a Diagnostics

MEDIATOR on the standard 2006 port. For example you’d set Receiver URL to:

http://meditor.customer.com:2006/metricdata/siteScopeData.

And once I tag an existing SiteScope monitor with this Diagnostics integration will I need to do any

restarts or touch my files? No there is no need to bounce any servers or touch any files.

When you first try to view SiteScope data in the Diagnostics External Monitors view, by default the

monitor’s status is gray and no data is graphed. To see a status (red, yellow, green), you must first

http://meditor.customer.com:2006/metricdata/siteScopeData

Copyright 2013 Hewlett Packard Development Company LP 9

set a threshold on a metric (in the details pane). To see data in the graph, you must first select a

metric to be charted (in the details pane).

26. More information on the threads metrics.

I’m running an application where I see a lot of threads in a blocked state and I’d like to know the

exact amount of time each thread keeps blocked. What I’m interested in knowing is total execution

time of a server request and time spent in blocked state for that server request.

The thread metrics shown in the Profiler’s Threads tab are collected independently of the server

requests.

The values shown in the table are cumulative metrics for:

 CPU time spent in OS kernel

 CPU time spent in user mode

 Time spent in waiting state (in Object.wait(…))

 Time spent in blocked mode (lock contention for synchronized methods or blocks)

The values can only increase and they correspond to the usage since the thread creation.

The graph shows the difference between the values of these metrics between the last two thread

snapshots. Graph makes little sense unless you enable automatic update with a constant frequency.

When a thread is returned to a pool its ID doesn’t change.

Blocked time is also shown for Call Profiles, as one of the latency metrics for the topmost call profile

entry.

27. What is the overhead of the Diagnostics Oracle collector? Does the oracle collector actively query
the Oracle SID/Database or does it passively collect metrics?

The overhead should be negligible. The Oracle collector runs a couple of SQL queries from Java

periodically (the interval is configurable) to collect the performance metrics. Also the collector can

be installed on any machine so it does not have to be on the Oracle host.

28. What Java Agent changes can be made without requiring a restart?

In general all of the setting in the dynamic.properties files can be changed without restarting. There

are a few other settings you can change without restarting and this will be noted in a property file’s

comments.

Copyright 2013 Hewlett Packard Development Company LP 10

29. Is it possible to configure Diagnostics to send immediate alerts instead of waiting for the 5 minute

threshold to be crossed?

No this is not possible with Diagnostics.

30. How can I monitor if my applications are producing dynamic server requests which can cause symbol

explosion in Diagnostics?

Symbol explosion from dynamic or ever changing server requests can cause performance problems

in the Diagnostics Server, and agents should be configured in a way to prevent this using URI

collapsing, filtering and symbol name replacement. The Diagnostics Server has the ability to detect if

there is an unusual growth in the number of server requests being created. Often, this can clue the

user into problematic dynamic server request names or URIs which should be addressed.

There are several configurations in server.properties starting with "watchdog.server_request_rate"

for setting conditions of when a warning email and log message are produced.

If and when such a warning is produced, it will indicate the number of server requests created in the

past 1 day, 7 days, and 1 month. This will show how there appears to be an unusual growth on the

number of server requests being created when they typically should become fairly static over

time. The server requests should be examined to see if there appears to be anything dynamic

about them, and it should be considered to make changes in the agents to do symbol name

replacement to fold in the dynamic parts of the server requests.

31. I know there are symbol folding and trimming options on the agents, but can any kind of symbol

folding or trimming be done at the mediator?

In Diagnostics 9.23, at the mediator, you can now do similar symbol pattern replacement and folding

as seen in the agents. Keeping in mind that it is still more efficient to do this kind of replacement

and folding earlier on in the agents, having the same ability in the mediator allows for both a more

centralized way of handling symbol explosion and a way to take care of trimming symbols from

older agents that may not have the trimming feature. These trimming/folding settings can be found

in server.properties under the "Probe data trimming / folding" section.

