
HP Vertica Programmer's Guide

HP Vertica Analytics Platform

Software Version: 7.0.x

Document Release Date:
12/18/2013

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 2006 - 2013 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

HP Vertica Analytics Platform (7.0.x) Page 2 of 817

Contents

Contents 3

HP Vertica Client Libraries 35

Client Driver Standards 35

Client Driver and Server Version Compatibility 36

Version 4.1 to 5.1 Client Driver Transition 36

HP Vertica ODBC/JDBC Client Installers 36

ODBC/JDBC Multiple Version Installations 36

HP Vertica ADO.NET Client Installers 37

Installing the HP Vertica Client Drivers 38

Client Driver Standards 38

Driver Prerequisites 38

ODBC Prerequisites 38

Operating System 38

ODBC Driver Manager 38

UTF-8, UTF-16 and UTF-32 Support 38

ADO.NET Prerequisites 39

Operating System 39

Memory 39

.NET Framework 39

Python Prerequisites 39

Python Driver 40

Supported Operating Systems 40

Perl Prerequisites 40

Perl Drivers 40

Supported Client Systems 40

PHP Prerequisites 40

PHP Modules 41

Supported Client Systems 41

Installing the Client Drivers 41

HP Vertica Analytics Platform (7.0.x) Page 3 of 817

Installing Driver Managers Linux andOther UNIX-like Platforms 42

Installing ODBC Drivers on Linux, Solaris, AIX, and HP-UX 42

Installation Procedure 43

Post Driver Installation Configuration 43

Installing the Client RPM onRedHat and SUSE 44

Installing JDBC Driver on Linux, Solaris, AIX, and HPUX 45

Installing ODBC/JDBC Client Drivers and vsql Client onWindows 46

To Download theWindows client-drivers: 46

To Install theWindows Client-Drivers and vsql client: 46

To Silent-Install theWindows Client-Drivers and vsql client: 47

After You install: 47

Modifying the Java CLASSPATH 47

Linux, Solaris, AIX, HP-UX, andOS X 47

Windows 48

Specifying the Library Directory in the Java Command 48

Installing the JDBC Driver onMacintosh OS X 49

Downloading the JDBC Driver 49

Ensuring Java Can Find the JDBC Driver 49

Installing the ODBC Driver onMacintosh OS X 49

Download the Driver 49

DecideWhere to Install the Driver 50

Unpack the Driver 50

Using Legacy Drivers 51

Creating anODBC Data Source Name (DSN) 52

Creating anODBC DSN for Linux, Solaris, AIX, and HP-UX 52

odbc.ini File Structure 52

Configuring the odbc.ini file: 53

Using an odbcinst.ini File 54

Configuring Additional ODBC Settings 55

Testing a DSN Using Isql 55

Creating anODBC DSN forWindows Clients 56

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 4 of 817

Setting Up a DSN 56

To set up a DSN: 56

Setting up a 32-Bit DSN on 64-Bit Versions of Windows 61

Testing a DSN Using Excel 2007 62

Creating anODBC DSN for Macintosh OS X Clients 64

odbc.ini File Structure 65

Configuring the odbc.ini file: 65

Using an odbcinst.ini File 66

Configuring Additional ODBC Settings 67

DSN Parameters 67

Required Connection Parameters 67

Optional Parameters 68

Advanced Settings 68

Identification 74

Encryption 74

Third-Party Compatibility 75

Kerberos Connection Parameters 75

Setting DSN Parameters 76

Upgrading the HP Vertica Client Drivers 77

Additional ODBC Driver Configuration Settings 78

Location of the Additional Driver Settings 78

Creating a vertica.ini File 78

Required Settings 79

Setting the VERTICAINI Environment Variable 79

Example vertica.ini File 79

Additional Parameter Settings 80

Logging Settings 80

ODBC-specific Settings 80

ADO.NET-specific Settings 82

ProgrammingODBC Client Applications 83

ODBC Architecture 83

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 5 of 817

ODBC Feature Support 84

Updating ODBC Client Code From Previous Driver Versions 84

DSN Parameter Changes 84

Removed DSN Parameters 84

Changed DSN Parameters 85

New DSN Parameter 85

New DSN Parameter Alias 86

Function Changes 86

Removed Functions 87

Interval and TimeStampChanges 87

New Additional Driver Information 88

HP Vertica-specific ODBC Header File 88

Connecting to HP Vertica 89

Notes 92

Enabling Native Connection Load Balancing in ODBC 92

ODBC Connection Failover 94

Choosing a Failover Method 95

Using DNS Failover 95

Using the Backup Host List 96

PromptingWindows Users for Missing Connection Parameters 98

PromptingWindows Users for Passwords 99

No Password Entry vs. Empty Passwords 101

Setting the Locale for ODBC Sessions 102

AUTOCOMMIT andODBC Transactions 105

Retrieving Data ThroughODBC 108

Loading Data ThroughODBC 111

Using a Single Row Insert 111

Using Prepared Statements 112

Using Batch Inserts 115

Batch Insert Steps 116

Tracking Load Status (ODBC) 120

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 6 of 817

Finding the Number of Accepted Rows 120

Finding the Accepted and Rejected Rows 121

Error Handling During Batch Loads 125

Loading Batches in Parallel 126

Using the COPY Statement 126

Streaming Data From the Client Using COPY LOCAL 129

Programming JDBC Client Applications 132

JDBC Feature Support 132

Multiple SQL Statement Support 132

Multiple Batch Conversion to COPY Statements 133

Multiple JDBC Version Support 133

Updating Application Code From Previous Driver Versions 133

Updating Client Code From 4.1 or Earlier JDBC Driver Versions 134

Driver Package and Interface NameChanges 134

Interface NameChanges 134

Removed Classes 134

Converting From PGConnection to VerticaConnection 135

Property Setters andGetters 135

DeprecatedMethods 135

Savepoint Support 137

Updatable Result Set Changes 137

Converting From PGStatement to VerticaStatement 137

DeprecatedMethods 137

Bulk LoadingMethod Changes 138

Connection Property Setters andGetters 138

Multiple Statement Support 139

Connection Property Changes 139

New Connection Properties 139

Renamed Properties 140

Removed Connection Properties 140

New Features in the HP Vertica Version 7.0 JDBC Driver 141

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 7 of 817

JNDI Service Registration 141

Exception Class Improvements 141

Wrapper Interface Support 142

Additional DatabaseMetaDataMethods 142

Improved Connection Pooling 142

Native Connection Load Balancing Support 142

Connection Failover Support 143

Creating and Configuring a Connection 144

Importing SQL Packages 144

Opening the Connection 144

JDBC Connection Properties 147

Connection Properties 147

General Properties 149

Logging Properties 150

Kerberos Connection Parameters 151

Key/Value API Connection Parameters 152

Setting andGetting Connection Property Values 153

Setting Properties When Connecting 153

Getting and Setting Properties After Connecting 154

Setting the Locale for JDBC Sessions 155

Notes: 156

Changing the Transaction Isolation Level 156

Using a Pooling Data Source 158

Enabling Native Connection Load Balancing in JDBC 158

JDBC Connection Failover 160

Choosing a Failover Method 160

Using DNS Failover 161

Using the Backup Host List 161

JDBC Data Types 163

HP Vertica Numeric Data Alias Conversion 163

Using Intervals with JDBC 165

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 8 of 817

Using Intervals in Batch Inserts 166

Reading Interval Values 167

Executing Queries Through JDBC 169

Executing DDL (Data Definition Language) Queries 169

Executing Queries That Return Result Sets 170

Executing DML (DataManipulation Language) Queries Using executeUpdate 170

Loading Data Through JDBC 171

Using a Single Row Insert 171

Batch Inserts Using JDBC Prepared Statements 172

Streaming Batch Inserts 174

Notes 175

Loading Batches Directly into ROS 175

Error Handling During Batch Loads 176

Identifying Accepted and Rejected Rows (JDBC) 176

Rolling Back Batch Loads on the Server 179

Bulk Loading Using the COPY Statement 181

Streaming Data Via JDBC 182

Using VerticaCopyStream 183

Getting Rejected Rows 184

Using COPY LOCALwith JDBC 187

Handling Errors 189

Vertica Analytics Platform SQLStateMapping to Java Exception Classes 189

Error Handling Example 192

About the JDBC Key/Value API 193

Creating Tables and Projections for use with the Key/Value API 195

Creating a Connection for Key/Value Queries 197

Defining the Query for Key/Value Lookups 198

Key/Value Performance and Troubleshooting 201

Programming ADO.NET Applications 203

Updating ADO.NET Client Code From Previous Driver Versions 203

Auto Commit Change 203

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 9 of 817

Performance Improvements 203

Namespace Change 203

Connection Properties 203

Result Buffering 204

Logging Changes 204

Data Type Changes 204

Multiple Commands Now Supported 205

Setting the Locale for ADO.NET Sessions 205

Connecting to the Database 205

Using SSL: Installing Certificates onWindows 205

Import the Server and Client Certificates into theWindows Key store: 206

Import the Public Certificate of Your CA: 206

Enable SSL in Your ADO.NET Applications 206

Opening and Closing the Database Connection (ADO.NET) 207

ToManually Create a Connection string: 207

To Use the VerticaConnectionStringBuilder Class to Create a Connection
String andOpen a connection: 208

To Close the connection: 208

Example Usage: 209

ADO.NET Connection Properties 209

Enabling Native Connection Load Balancing in ADO.NET 213

ADO.NET Connection Failover 214

Choosing a Failover Method 215

Using DNS Failover 215

Using the Backup Host List 216

Configuring Log Properties (ADO.Net) 217

VerticaLogProperties 217

Setting Log Properties 217

SetLogPath 217

SetLogNamespace 218

SetLogLevel 219

Getting Log Properties 219

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 10 of 817

Setting andGetting Log Properties Example 220

Querying the Database Using ADO.NET 221

Inserting Data (ADO.NET) 222

To Insert a Single Row of data: 222

Example Usage: 222

Using Parameters 223

Using Parameters 223

Creating and Rolling Back Transactions 224

Creating Transactions 224

To Create a Transaction in HP Vertica Using the ADO.NET driver: 224

Rolling Back Transactions 225

Commit and Rollback Example 226

Setting the Transaction Isolation Level 227

Reading Data (ADO.Net) 229

To Read Data From the Database Using VerticaDataReader: 229

Loading Data Through ADO.Net 231

Using the HP Vertica Data Adapter 231

Batching Updates 231

Reading Data From HP Vertica Using the Data adapter: 232

Reading Data From HP Vertica into a Data set and Changing data: 233

Using Batch Inserts and Prepared Statements 235

Example Batch Insert Using Parameters and Transactions 235

Loading Batches Directly into ROS 237

Streaming Data Via ADO.NET 238

Streaming From the Client Via VerticaCopyStream 238

Using Copy with ADO.NET 241

HandlingMessages (ADO.NET) 243

To Use the VerticaInfoMessageEventHander class: 243

Getting TableMetadata (ADO.Net) 245

ADO.NET Data Types 247

Programming Python Client Applications 250

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 11 of 817

Python on Linux 250

Python onWindows 250

The Python Driver Module (pyodbc) 250

Configuring the ODBC Run-Time Environment on Linux 251

Querying the Database Using Python 252

Programming Perl Client Applications 254

Perl Client Prerequisites 254

Supported Perl Versions 255

Perl on Linux 255

Perl onWindows 255

The Perl Driver Modules (DBI and DBD::ODBC) 255

InstallingMissing Perl Modules 257

Connecting to HP Vertica Using Perl 257

Setting ODBC Connection Parameters in Perl 258

Setting Perl DBI Connection Attributes 259

Connecting From Perl Without a DSN 260

Executing Statements Using Perl 261

Batch Loading Data Using Perl 262

Using COPY LOCAL to Load Data in Perl 264

Querying HP Vertica Using Perl 266

Binding Variables to Column Values 267

Preparing, Querying, and Returning a Single Row 268

Conversions Between Perl and HP Vertica Data Types 268

Perl Unicode Support 271

Programming PHP Client Applications 274

PHP on Linux 274

PHP onWindows 274

The PHP ODBC Drivers 274

Setup 274

Example odbc.ini 274

Example odbcinst.ini 275

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 12 of 817

Verify the HP Vertica UnixODBC or iODBC Library 275

Test Your ODBC Connection 275

PHP Unicode Support 275

Querying the Database Using PHP 276

Using vsql 278

General Notes 278

Installing the vsql Client 281

How to Install vsql on Unix-Based systems: 281

Installing vsql onWindows: 281

vsql Notes forWindows Users 281

Connecting From the Administration Tools 282

Connecting From the Command Line 284

Command Line Options 285

Connecting From aNon-Cluster Host 288

Meta-Commands 289

! [COMMAND] 289

? 289

a 290

b 291

c (or \connect) [Dbname [Username]] 291

C [STRING] 291

cd [DIR] 291

The \d [PATTERN] Meta-Commands 291

d [PATTERN] 292

Df [PATTERN] 296

Dj [PATTERN] 297

Dn [PATTERN] 298

Dp [PATTERN] 298

ds [PATTERN] 298

dS [PATTERN] 299

dt [PATTERN] 299

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 13 of 817

dT [PATTERN] 300

Dtv [PATTERN] 301

Du [PATTERN] 301

Dv [PATTERN] 301

e \edit [FILE] 302

echo [STRING] 302

f [String] 303

g 303

H 303

h \help 303

i FILE 304

l 304

Locale 305

Viewing the Current Locale Setting 305

Overriding the Default Local for a Session 305

o 306

p 306

Password [USER] 306

pset NAME [VALUE] 307

q 308

Qecho [STRING] 309

r 309

s [FILE] 309

set [NAME [VALUE [...]]] 309

Using Backquotes to Read System Variables 310

t 310

T [STRING] 311

Timing 311

Unset [NAME] 311

w [FILE] 311

x 311

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 14 of 817

z 311

Variables 312

SQL Interpolation 312

AUTOCOMMIT 313

Notes 313

DBNAME 314

ECHO 314

ECHO_HIDDEN 314

ENCODING 314

HISTCONTROL 314

HISTSIZE 314

HOST 315

IGNOREEOF 315

ON_ERROR_STOP 315

PORT 315

PROMPT1 PROMPT2 PROMPT3 315

QUIET 315

SINGLELINE 315

SINGLESTEP 316

USER 316

VERBOSITY 316

VSQL_HOME 316

Prompting 316

Command Line Editing 318

Notes 318

vsql Environment Variables 319

Locales 319

To Change Settings on Linux 319

To Change Settings onWindows Using PuTTy 320

Notes 320

Files 320

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 15 of 817

Exporting Data Using vsql 320

Copying Data Using vsql 322

Monitoring Progress (optional) 323

Output Formatting Examples 323

Writing Queries 326

Multiple Instances of Dimension Tables in the FROMClause 326

Historical (Snapshot) Queries 326

Temporary Tables 327

SQLQueries 328

Simple Queries 328

Joins 328

Cross Joins 329

Subqueries 329

Sorting Queries 330

Special Note About Query Results 330

Subqueries 332

Subqueries Used in Search Conditions 333

Logical Operators AND andOR 335

OR Subqueries (complex expressions) 335

How AND Queries Are Evaluated 336

In Place of an Expression 338

Comparison Operators 338

LIKE PatternMatching 339

ANY (SOME) and ALL 340

Notes 340

ANY Subqueries 340

ANY Subquery Examples 340

ALL Subqueries 341

EXISTS and NOT EXISTS 342

IN and NOT IN 344

Subqueries in the SELECT List 346

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 16 of 817

WITH Clauses in SELECT 347

UsingWITH Clauses 347

Noncorrelated and Correlated Subqueries 348

Flattening FROMClause Subqueries and Views 349

Flattening Views 350

Examples 350

Subqueries in UPDATE and DELETE Statements 351

UPDATE Subqueries 351

DELETE Subqueries 355

Subquery Examples 357

Single-Row Subqueries 358

Multiple-Row Subqueries 358

Multicolumn Subqueries 358

HAVINGClause Subqueries 360

Subquery Restrictions 361

Joins 364

The ANSI Join Syntax 364

Join Conditions vs. Filter Conditions 365

Inner Joins 366

Equi-Joins and Non Equi-Joins 367

Natural Joins 369

Cross Joins 370

Outer Joins 371

Left Outer Joins 372

Right Outer Joins 372

Full Outer Joins 373

Range Joins 373

Key Ranges 373

Slowly-Changing Dimensions 374

Pre-Join Projections and Join Predicates 376

Join Notes and Restrictions 377

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 17 of 817

About Running Database Designer Programmatically 379

When to Run Database Designer Programmatically 380

Categories Database Designer Functions 380

Privileges for Running Database Designer Functions 381

DBDUSER Capabilities and Limitations 382

DBDUSER Privileges 382

Workflow for Running Database Designer Programmatically 383

Using SQL Analytics 388

How Analytic Functions Work 388

Evaluation Order 389

Analytic Functions Versus Aggregate Functions 391

TheWindow OVER() Clause 394

Window Partitioning 394

Syntax 394

Examples 394

Median of Sales Within Each State 395

Median of Sales Among All States 395

Sales Larger ThanMedian (evaluation order) 395

Window Ordering 396

Window Framing 398

Syntax 398

Schema for Examples 398

Windows with a Physical Offset (ROWS) 399

Examples 399

Windows with a Logical Offset (RANGE) 402

Reporting Aggregates 406

About Standard Deviation and Variance Functions 407

What About LAST_VALUE()? 408

NamingWindows 412

Analytic Query Examples 414

Calculating aMedian Value 414

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 18 of 817

Allsales Table Schema 414

Getting Price Differential for Two Stocks 415

Calculating theMoving Average 416

Avoiding GROUPBY HASH with Projection Design 417

Getting Latest Bid and Ask Results 419

Event-BasedWindows 421

Using the CONDITIONAL_CHANGE_EVENT Function 422

Using the CONDITIONAL_TRUE_EVENT Function 423

Advanced Use of Event-BasedWindows 425

Sessionization with Event-BasedWindows 426

Using Time Series Analytics 429

Gap Filling and Interpolation (GFI) 430

Constant Interpolation 431

The TIMESERIES Clause and Aggregates 431

The TIMESERIES Clause 432

Time Series Aggregate (TSA) Functions 432

Linear Interpolation 433

GFI Examples 434

Constant Interpolation 434

Linear Interpolation 435

UsingMultiple Time Series Aggregate Functions 436

Using the Analytic LAST_VALUE() Function 436

Using slice_time 437

Creating a Dense Time Series 437

When Time Series Data Contains Null Values 439

Constant Interpolation with Null Values 439

Linear Interpolation with Null Values 441

Event Series Joins 442

Sample Schema for Event Series Joins Examples 442

Schema of hTicks and aTicks Tables 442

Example Query ShowingGaps 443

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 19 of 817

Schema of Bid and Asks Tables 443

Example Query ShowingGaps 444

Writing Event Series Joins 444

The hTicks and aTicks Tables 445

Querying Event Series Data with Full Outer Joins 445

Querying Event Series Data with Left Outer Joins 446

Querying Event Series Data with Inner Joins 447

The Bid and Ask Tables 447

Event Series Pattern Matching 449

Clickstream Funnel Schema 449

Optimizing Query Performance 452

First Steps for Improving Query Performance 453

RunDatabase Designer 453

Check Query Events Proactively 453

Review theQuery Plan 454

Optimizing Encoding to ImproveQuery Performance 455

Improving the Compression of FLOAT Columns 455

Using Run Length Encoding (RLE) to ImproveQuery Performance 456

Optimizing Projections for Queries with Predicates 456

Example 1: Queries That Use Date Ranges 456

Example 2: Queries for Tables with a High-Cardinality Primary Key 457

Optimizing Projections for MERGE Operations 458

Optimizing GROUP BY Queries 459

Partially Sorted GROUPBY 459

Partially Sorted GROUPBY with Multiple DISTINCT Aggregate Function Calls 459

Partially Sorted GROUPBY WhenGROUP BY ColumnCrosses Join 460

Avoiding GROUPBY HASH with Projection Design 462

Avoiding Resegmentation During GROUP BY Optimization with Projection Design 464

Optimizing DISTINCT in a SELECT Query List 465

If the Query Has No Aggregates in the SELECT List 466

Optimizing COUNT (DISTINCT) andOther DISTINCT Aggregates 466

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 20 of 817

Optimizing COUNT (DISTINCT) by Calculating Approximate Counts 466

When to Use the Approximate Count Distinct Functions 467

If the Query Has a Single DISTINCT Aggregate 468

If the Query Has Multiple DISTINCT Aggregates 468

Optimizing JOIN Queries 469

Hash Joins vs. Merge Joins 469

Optimizing for Merge Joins 470

Using Equality Predicates to Optimize Joins 470

Specifying INNER andOUTER Tables to Optimize Joins 471

Avoiding Resegmentation During Joins 471

Join Conditions for Identically Segmented Projections (ISPs) 471

Designing Identically Segmented Projections for K-Safety 473

Optimizing ORDER BY Queries 474

Pre-Sorting Projections to Optimize ORDER BY Clauses 474

Optimizing SQL-99 Analytic Functions 476

Avoiding Single-Node Execution By Avoiding Empty OVER() Clauses 476

NULL Placement By Analytic Functions 476

Designing Tables toMinimize Run-Time Sorting of NULL Values in Analytic
Functions 478

Optimizing LIMIT Queries with ROW_NUMBER Predicates 479

Optimizing INSERT-SELECT Operations 481

Optimizing INSERT-SELECT Queries for Tables with Pre-Join Projections 481

Optimizing INSERT-SELECT Queries By Matching Sort Orders 482

Avoiding Resegmentation of INSERT-SELECT Queries 483

Optimizing DELETE and UPDATE Queries 484

Performance Considerations for DELETE and UPDATE Queries 484

Optimizing DELETEs and UPDATEs for Performance 485

Projection ColumnRequirements for Optimized Deletes 485

Optimized Deletes in Subqueries 485

Projection Sort Order for Optimizing Deletes 486

Using External Procedures 488

Implementing External Procedures 489

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 21 of 817

Requirements for External Procedures 489

Procedure File Attributes 489

Handling Procedure Output 489

Handling Resource Usage 489

Sample Procedure File 490

Installing External Procedure Executable Files 490

Graphical User Interface 490

Command Line 491

Creating External Procedures 491

Executing External Procedures 492

Permissions 492

Dropping External Procedures 493

Using User-Defined SQL Functions 494

Creating User-Defined SQL Functions 494

Altering and Dropping User-Defined SQL Functions 495

Altering a User-Defined SQL Function 496

Dropping a SQL Function 496

Managing Access to SQL Functions 497

Viewing Information About User-Defined SQL Functions 497

Migrating Built-In SQL Functions 499

UCASE() 499

LCASE() 499

LOCATE() 500

POSSTR() 500

Developing and Using User Defined Extensions 501

How UDxs Work 501

FencedMode 502

About the Zygote Process 502

About FencedMode Logging: 502

About FencedMode Configuration Parameters 503

See Also 503

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 22 of 817

Developing User Defined Functions (UDFs) 504

Types of UDFs 504

Developing a User Defined Function in C++ 506

HP Vertica C++ SDK Data Types 506

Notes 507

Setting up a C++ UDF Development Environment 507

The C++ HP Vertica SDK 507

Running the Examples 508

Include File Overview 508

The HP Vertica C++ SDK API Documentation 508

Developing a User Defined Scalar Function 509

UDSF Requirements 509

UDSF Class Overview 509

The ServerInterface Class 510

Subclassing ScalarFunction 510

Subclassing ScalarFunctionFactory 512

The getReturnType Function 513

The RegisterFactory Macro 514

Setting Null Input and Volatility Behavior 514

Volatility Settings 514

Null Input Behavior 515

Deploying and Using UDSFs 516

Developing a User Defined Transform Function in C++ 518

UDTF Requirements 518

UDTF Class Overview 518

The ServerInterface Class 519

Subclassing TransformFunction 519

Extracting Parameters 521

Handling Null Values 521

Processing Input Values 522

Writing Output 522

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 23 of 817

Advancing to the Next Input Row 522

Subclassing TransformFunctionFactory 522

Registering the UDTF Factory Subclass 524

CreatingMulti-Phase UDTFs 524

Notes 527

Deploying and Using User Defined Transforms 528

UDTF Query Restrictions 529

Partitioning By Data Stored on Nodes 529

Using PARTITION AUTO to Process Local Data 530

Developing a User Defined Aggregate Function 531

User Defined Aggregate Function Requirements 531

UDAF Class Overview 531

The AggregateFunctionFactory Class 532

The AggregateFunction Class 532

The ServerInterface Class 533

Subclassing Aggregate Function 533

Example Subclass of AggregateFunction 533

Subclassing AggregateFunctionFactory 535

Example Subclass of AggregateFunctionFactory 535

User Defined Aggregate - Complete Example 536

Developing a User Defined Analytic Function 539

User Defined Analytic Function Requirements 539

UDAnF Class Overview 539

The ServerInterface Class 540

Subclassing AnalyticFunction 540

Subclassing AnalyticFunctionFactory 542

Deploying and Using User Defined Analytic Functions 543

Notes 545

Compiling Your C++ UDF 545

Handling External Libraries 546

Handling Different Numbers and Types of Arguments 547

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 24 of 817

User Defined Function Overloading 547

Creating a Polymorphic UDF 549

Polymorphic UDFs and Schema Search Paths 552

UDF Parameters 554

Defining the Parameters Your UDF Accepts 554

Getting Parameter Values in UDFs 555

TestingWhether the User Supplied Parameter Values 556

Using Parameters in the Factory Class 557

Calling UDFs with Parameters 557

UDF Resource Use 560

Allocating Resources for UDFs 560

Allocating Resources with the SDK Macros 561

Informing HP Vertica of Resource Requirements 562

SettingMemory Limits for FencedMode UDFs 563

How Resource Limits Are Enforced 563

Handling Errors 566

Handling Cancel Requests 568

ExitingWhen the Calling Query Has Been Canceled 568

Implementing the Cancel Callback Function 569

Notes 569

UDF Debugging Tips 570

Use a Single Node For Initial Debugging 570

Write Messages to the HP Vertica Log 570

AddingMetadata to C++ Libraries 571

Developing a User Defined Function in R 575

User Defined Functions in R Notes and Considerations 575

Installing/Upgrading the R Language Pack for HP Vertica 575

HP Vertica R Language Pack Prerequisites 576

To Install the HP Vertica R Language Pack: 576

To Upgrade the HP Vertica R Language Pack: 577

R Packages 578

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 25 of 817

Using the HP Vertica SDK R Examples 578

Creating R Functions 578

About the R Factory Function 579

Factory Function - Supported Data Types 579

Example Factory Function 580

About theMain R Function 580

About the Outtypecallback Function 581

Deploying the Function into HP Vertica 582

Example R Scalar Function 582

Example Usage: 582

Setting Null Input and Volatility Behavior for R Functions 583

Volatility Settings 583

Null Input Behavior 584

Using Parameters in R 585

Complete R Example 586

Polymorphic Functions in R 586

Declare the Function As Polymorphic 587

Define the outtypecallback for Polymorphic Functions 587

Complete Example 588

To Use the Example 589

AddingMetadata to R Libraries 590

Developing User Defined Functions in Java 593

Supported Features 593

Supported Java SDK Function Types 593

User Defined Scalar Functions (UDSFs) 593

User Defined Transform Functions (UDTF) 594

Java UDF ResourceManagement 595

Installing Java on HP Vertica Hosts 596

Downloading and Installing the Java Installation Package 596

Setting the JavaBinaryForUDx Configuration Parameter 597

Configuring Your Java Development Environment 598

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 26 of 817

Compiling BuildInfo.java 598

The HP Vertica Java SDK Documentation 599

Java and HP Vertica Data Type Conversions 599

Testing for Null Values 599

Developing a User Defined Scalar Function in Java 601

Java UDSF Requirements 601

Subclassing the ScalarFunction Class 601

Notes 603

Defining the Arguments and Return Type for Your UDSF 603

Overriding getPrototype 604

Setting Precision, Width, and Name of the Output Value in getReturnType 604

Overriding createScalarFunction 605

Complete Java UDSF Example 606

Deploying and Using Your Java UDSF 607

Developing a User Defined Transform Function in Java 609

Subclassing the TransformFunction Class 609

Defining Your Java UDTF's Input andOutput Table Columns 610

Overriding getPrototype 611

Overriding getReturnType 611

Overriding the createTransformFunctionMethod 612

Complete Java UDTF Example 612

Deploying and Using Your Java UDTF 615

Compiling and Packaging a Java UDF 617

Compiling Your Java UDF 617

Packaging Your UDF into a JAR File 618

Handling Dependencies 619

Handling Errors 619

Handling Cancel Requests 621

ExitingWhen the Calling Query Has Been Canceled 621

Overriding the Cancel Method 622

Communicating with HP Vertica Using ServerInterface 623

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 27 of 817

WritingMessages to the Log File 623

Accepting Different Numbers and Types of Arguments 625

Overloading Your Java UDFs 625

Creating a Polymorphic Java UDF 629

Polymorphic UDFs and Schema Search Paths 632

UDF Parameters 633

Defining the Parameters Your Java UDF Accepts 633

Accessing Parameter Values 634

TestingWhether the User Supplied Parameter Values 635

Using Parameters in the Factory Class 636

Calling UDFs with Parameters 636

AddingMetadata to Java UDx Libraries 638

Developing User Defined Load (UDL) Functions 641

UDLRequirements 641

Deploying User Defined Load Functions 642

Developing UDLs in C++ 642

Requirements for C++ UDLs 642

UDL Source 644

Developing Source Functions for User Defined Load 644

Subclassing SourceFactory 644

About the Source Factory Class 644

SourceFactory Methods: 644

Example SourceFactory 645

Subclassing UDSource 645

About the UDSource Class 645

UDSourceMethods: 646

ContinuousUDSource Functions: 646

Example UDSource 646

UDL Filter 648

Developing Filter Functions for User Defined Load 648

Subclassing FilterFactory 648

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 28 of 817

About the Filter Factory Class: 648

FilterFactory Methods: 648

Example FilterFactory 649

Subclassing UDFilter 650

About the UDFilter Class 650

UDFilter Methods: 650

ContinuousUDFilter Functions: 651

Example UDFilter 652

UDL Parser 654

Developing Parser Functions for User Defined Load 654

Subclassing ParserFactory 654

About the ParserFactory Class 654

ParserFactory Methods: 655

UDChunker Methods 655

ParserFactory Class Example 656

Subclassing UDParser 658

About the UDParser Class 658

UDParser Methods: 658

Row Rejection 659

ContinuousUDParser Functions: 660

UDParser Class Example: 660

Subclassing UDChunker 661

About the UDChunker Class 661

UDChunker Methods: 661

UDChunker Class Example: 662

Developing UDLs in Java 663

Developing User Defined Source Functions 663

UDSource Example Overview 664

Subclassing SourceFactory in Java 667

SourceFactory Methods 667

Example SourceFactory Subclass 668

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 29 of 817

Subclassing UDSource in Java 671

UDSourceMethods 671

Example UDSource 672

Developing Filter Functions in Java 674

Java UDL Filter Example Overview 674

Subclassing FilterFactory in Java 675

FilterFactory Methods 675

Example FilterFactory 676

Subclassing UDFilter in Java 677

UDFilter Methods 678

Example UDFilter 679

Developing UDL Parser Functions in Java 680

Java UDL Parser Example Overview 680

Subclassing ParserFactory in Java 683

ParserFactory Methods 683

Example ParserFactory 684

Subclassing UDParser in Java 686

UDParser Methods 686

Rejecting Rows 687

Example UDParser 687

Updating UDx Libraries 692

UDx Library Compatibility with New Server Versions 692

Determining If a UDF Signature Has Changed 693

Deploying A New Version of Your UDx Library 694

Listing the UDxs Contained in a Library 696

Appendix: Error Codes 697

SQLSTATEs and Error Codes 697

SQLSTATE 697

Warning and Error Messages 697

SQL State List 698

WarningMessages Associated with SQLSTATE 01000 710

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 30 of 817

WarningMessages Associated with SQLSTATE 01006 712

WarningMessages Associated with SQLSTATE 01007 712

WarningMessages Associated with SQLSTATE 01V01 713

Error Messages Associated with SQLSTATE 08000 713

Error Messages Associated with SQLSTATE 08001 714

Error Messages Associated with SQLSTATE 08003 714

Error Messages Associated with SQLSTATE 08006 715

Error Messages Associated with SQLSTATE 08V01 715

Error Messages Associated with SQLSTATE 0A000 716

Error Messages Associated with SQLSTATE 0B000 726

Error Messages Associated with SQLSTATE 0LV01 726

Error Messages Associated with SQLSTATE 22000 727

Error Messages Associated with SQLSTATE 22001 728

Error Messages Associated with SQLSTATE 22003 728

Error Messages Associated with SQLSTATE 22004 729

Error Messages Associated with SQLSTATE 22007 729

Error Messages Associated with SQLSTATE 22008 730

Error Messages Associated with SQLSTATE 22009 730

Error Messages Associated with SQLSTATE 2200B 731

Error Messages Associated with SQLSTATE 2200D 731

Error Messages Associated with SQLSTATE 22011 731

Error Messages Associated with SQLSTATE 22012 732

Error Messages Associated with SQLSTATE 22015 732

Error Messages Associated with SQLSTATE 22019 733

Error Messages Associated with SQLSTATE 2201B 733

Error Messages Associated with SQLSTATE 2201G 734

Error Messages Associated with SQLSTATE 22021 734

Error Messages Associated with SQLSTATE 22023 734

Error Messages Associated with SQLSTATE 22025 744

Error Messages Associated with SQLSTATE 22906 744

Error Messages Associated with SQLSTATE 22V02 744

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 31 of 817

Error Messages Associated with SQLSTATE 22V03 745

Error Messages Associated with SQLSTATE 22V04 746

Error Messages Associated with SQLSTATE 22V0B 747

Error Messages Associated with SQLSTATE 22V21 747

Error Messages Associated with SQLSTATE 22V23 748

Error Messages Associated with SQLSTATE 22V24 748

Error Messages Associated with SQLSTATE 23502 749

Error Messages Associated with SQLSTATE 23503 750

Error Messages Associated with SQLSTATE 23505 750

Error Messages Associated with SQLSTATE 25V01 751

Error Messages Associated with SQLSTATE 28000 751

Error Messages Associated with SQLSTATE 2BV01 751

Error Messages Associated with SQLSTATE 40V01 752

Error Messages Associated with SQLSTATE 42501 752

Error Messages Associated with SQLSTATE 42601 755

Error Messages Associated with SQLSTATE 42602 762

Error Messages Associated with SQLSTATE 42611 762

Error Messages Associated with SQLSTATE 42622 763

Error Messages Associated with SQLSTATE 42701 763

Error Messages Associated with SQLSTATE 42702 764

Error Messages Associated with SQLSTATE 42703 764

Error Messages Associated with SQLSTATE 42704 765

Error Messages Associated with SQLSTATE 42710 767

Error Messages Associated with SQLSTATE 42712 768

Error Messages Associated with SQLSTATE 42723 769

Error Messages Associated with SQLSTATE 42725 769

Error Messages Associated with SQLSTATE 42803 770

Error Messages Associated with SQLSTATE 42804 770

Error Messages Associated with SQLSTATE 42809 771

Error Messages Associated with SQLSTATE 42830 772

Error Messages Associated with SQLSTATE 42846 773

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 32 of 817

Error Messages Associated with SQLSTATE 42883 773

Error Messages Associated with SQLSTATE 42939 774

Error Messages Associated with SQLSTATE 42P20 774

Error Messages Associated with SQLSTATE 42V01 776

Error Messages Associated with SQLSTATE 42V02 777

Error Messages Associated with SQLSTATE 42V03 777

Error Messages Associated with SQLSTATE 42V04 778

Error Messages Associated with SQLSTATE 42V06 778

Error Messages Associated with SQLSTATE 42V07 778

Error Messages Associated with SQLSTATE 42V08 779

Error Messages Associated with SQLSTATE 42V09 779

Error Messages Associated with SQLSTATE 42V10 779

Error Messages Associated with SQLSTATE 42V11 780

Error Messages Associated with SQLSTATE 42V13 780

Error Messages Associated with SQLSTATE 42V15 782

Error Messages Associated with SQLSTATE 42V16 782

Error Messages Associated with SQLSTATE 42V17 783

Error Messages Associated with SQLSTATE 42V18 784

Error Messages Associated with SQLSTATE 42V21 785

Error Messages Associated with SQLSTATE 42V25 785

Error Messages Associated with SQLSTATE 42V26 786

Error Messages Associated with SQLSTATE 53000 787

Error Messages Associated with SQLSTATE 53100 787

Error Messages Associated with SQLSTATE 53200 788

Error Messages Associated with SQLSTATE 54000 789

Error Messages Associated with SQLSTATE 54001 790

Error Messages Associated with SQLSTATE 54011 790

Error Messages Associated with SQLSTATE 54023 791

Error Messages Associated with SQLSTATE 55000 791

Error Messages Associated with SQLSTATE 55006 796

Error Messages Associated with SQLSTATE 55V02 797

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 33 of 817

Error Messages Associated with SQLSTATE 55V03 797

Error Messages Associated with SQLSTATE 55V04 798

Error Messages Associated with SQLSTATE 57014 798

Error Messages Associated with SQLSTATE 57015 799

Error Messages Associated with SQLSTATE 57V01 800

Error Messages Associated with SQLSTATE 57V03 800

Error Messages Associated with SQLSTATE 58030 801

Error Messages Associated with SQLSTATE 58V01 802

Error Messages Associated with SQLSTATE V1001 802

Error Messages Associated with SQLSTATE V1002 803

Error Messages Associated with SQLSTATE V1003 804

Error Messages Associated with SQLSTATE V2000 804

Error Messages Associated with SQLSTATE V2001 805

Error Messages Associated with SQLSTATE VC001 805

Error Messages Associated with SQLSTATE VD001 806

Error Messages Associated with SQLSTATE VP000 812

Error Messages Associated with SQLSTATE VP001 813

Error Messages Associated with SQLSTATE VX001 814

Error Messages Associated with SQLSTATE VX002 815

Error Messages Associated with SQLSTATE VX003 816

We appreciate your feedback! 817

HP Vertica Programmer's Guide
Contents

HP Vertica Analytics Platform (7.0.x) Page 34 of 817

HP Vertica Client Libraries
The HP Vertica client driver libraries provide interfaces for connecting your client applications (or
third-party applications such as Cognos andMicroStrategy) to your HP Vertica database. The
drivers simplify exchanging data for loading, report generation, and other common database tasks.

There are three separate client drivers:

l OpenDatabase Connectivity (ODBC)—themost commonly-used interface for third-party
applications and clients written in C, Python, PHP, Perl, andmost other languages.

l Java Database Connectivity (JDBC)—used by clients written in the Java programming
language.

l ActiveX Data Objects for .NET (ADO.NET)—used by clients developed usingMicrosoft's .NET
Framework and written in C#, Visual Basic .NET, and other .NET languages.

Client Driver Standards
The HP Vertica client drivers are compatible with the following driver standards:

l TheODBC driver complies with version 3.5.1 of the ODBC standard.

l HP Vertica's JDBC driver is a type 4 driver that complies with the JDBC 3.0 standard. It is
compiled using JDK version 1.5, and is compatible with client applications compiled using JDK
versions 1.5 and 1.6.

l ADO.NET drivers conform to .NET framework 3.0 specifications.

The drivers do not support some of the optional features in the standards. SeeODBC Feature
Support and JDBC Feature Support and Using ADO.NET for details.

HP Vertica Analytics Platform (7.0.x) Page 35 of 817

Client Driver and Server Version Compatibility
Usually, each version of the HP Vertica server is compatible with the previous version of the client
drivers. This compatibility lets you upgrade your HP Vertica server without having to immediately
upgrade your client software. However, some new features of the new server versionmay not be
available through the old drivers.

The following table summarizes the compatibility of each recent version of the client drivers with
the HP Vertica server versions.

Client Driver Version Compatible Server Versions

5.1.x 5.1.x, 6.0.x, 6.1.x

6.0.x 6.0.x, 6.1

6.1.x 6.1.x, 7.0,x

7.0.x 7.0.x

Version 4.1 to 5.1 Client Driver Transition
The client driver libraries were completely rewritten for HP Vertica 5.1 to improve standards
compatibility and support more platforms. As a result, some of the classes, functions, properties,
and other elements of the driver APIs have been renamed or deprecated in favor of standard ones.
See Updating ODBC Client Code From Previous Driver Versions, Updating ADO.NET Client Code
From Previous Driver Versions, and Updating Client Code From 4.1 or Earlier JDBC Driver
Versions for details on updating your pre-5.1 client code to work with the new client libraries.

HP Vertica ODBC/JDBC Client Installers
TheODBC/JDBC client drivers are a separate installation from the ADO.NET drivers. (ADO.NET
support is not available in Community Edition.) As noted in the compatibility table, the 6.x
ODBC/JDBC client drivers do not support access to a non HP Vertica 6.x database and above. For
example, you cannot use the new 6.x ODBC/JDBC client drivers to access an HP Vertica 5.x
database. If you plan on having amixed HP Vertica environment supporting both 5.x and 6.x HP
Vertica database, consider keeping the 5.x drivers installed.

ODBC/JDBC Multiple Version Installations
The following ODBC/JDBC drivers are supported on a single machine:

l 4.x and 5.x ODBC/JDBC drivers can be installed on the samemachine.

l 4.x and 6.x ODBC/JDBC drivers can be installed on the samemachine.

It is not possible to have both 5.x and 6.x ODBC drivers on a single machine. If you install the 6.x
version, it automatically overlays the existing 5.x installation, and any DSN defined against a 5.x
HP Vertica database is not supported.

HP Vertica Analytics Platform (7.0.x) Page 36 of 817

HP Vertica ADO.NET Client Installers
Prior to version 6.x, ADO.Net drivers must be uninstalled prior to installing a later version of the
driver. The 6.x ADO.Net drivers require the HP Vertica database to be 6.0.0 or above. The
ADO.NET 6.x driver only supports access to an HP Vertica 6.x server. The ADO.NET 4.x plug-in
does not work with an HP Vertica 6.x server. If you plan on also using the ODBC bridge and you
need to access both HP Vertica 5.x and 6.x databases, consider keeping the 5.x versions of the
ODBC/JDBC drivers for the reasons stated previously.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 37 of 817

Installing the HP Vertica Client Drivers
Youmust install the HP Vertica client drivers to access HP Vertica from your client application. The
drivers create andmaintain connections to the database and provide APIs that your applications
use to access your data. The client drivers support connections using JDBC, ODBC, and
ADO.NET.

Client Driver Standards
The client drivers support the following standards:

l ODBC drivers conform to ODBC 3.5.1 specifications.

l JDBC drivers conform to JDK 5 specifications.

l ADO.NET drivers conform to .NET framework 3.0 specifications.

The remainder of this section explain the requirements for the HP Vertica client drivers, and the
procedure for downloading, installing, and configuring them.

Driver Prerequisites
The following topics explain the system requirements for the client drivers. You need to ensure that
your client systemmeets these requirements before installing and using the client drivers.

ODBC Prerequisites
There are several requirements your client systems must meet before you can install the HP
Vertica ODBC drivers.

Operating System

The HP Vertica ODBC driver requires a supported platform. The list of currently-supported
platforms can be found on themyVertica portal.

ODBC Driver Manager

The HP Vertica ODBC driver requires that the client system have a supported driver manager. See
themyVertica portal for a list of supported driver managers.

UTF-8, UTF-16 and UTF-32 Support

The HP Vertica ODBC driver is a universal driver that supports UTF-8, UTF-16, and UTF-32
encoding. The default setting depends on the client platform. (see Additional ODBC Driver
Configuration Settings for more information).

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 38 of 817

http://my.vertica.com/
http://my.vertica.com/

When using the driver with the DataDirect Connect driver manager, DataDirect Connect adapts to
the ODBC driver's text encoding settings. You should configure the ODBC driver to use the
encodingmethod that your application requires. This allows strings to be passed between the driver
and the application without intermediate conversion.

See Also

l Installing the Client Drivers

l ProgrammingODBC Client Applications

l Creating anODBC Data Source Name (DSN)

ADO.NET Prerequisites
The HP Vertica driver for ADO.NET requires the following software and hardware components:

Operating System

The HP Vertica ADO.NET driver requires a supportedWindows operating system. The list of
supported platforms can be found in the Supported Platforms document at
http://www.vertica.com/documentation.

Memory

HP Vertica suggests aminimum of 512MB of RAM.

.NET Framework

The requirements for the .NET framework for ADO.NET in HP Vertica can be found in the
Supported Platforms document at http://www.vertica.com/documentation.

See Also

l Programming ADO.NET Applications

Python Prerequisites
Python is a free, agile, object-oriented, cross-platform programming language designed to
emphasize rapid development and code readability. Python has been released under several
different open source licenses.

HP Vertica's ODBC driver is tested with Python version 2.4. It should work with versions 2.4
through 2.7. It may also work with Python version 3.0, but this is untested.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 39 of 817

http://www.vertica.com/documentation
http://www.vertica.com/documentation

Python Driver

HP Vertica requires the pyodbc driver module. See your system's Python documentation for
installation and configuration information.

Supported Operating Systems

The HP Vertica ODBC driver requires one of the operating systems listed in ODBC Prerequisites.

For usage and examples, see Using Python.

Perl Prerequisites
Perl is a free, stable, open source, cross-platform programming language licensed under its Artistic
License, or the GNU General Public License (GPL).

Your Perl scripts access HP Vertica through its ODBC driver, using the Perl Database Interface
(DBI) module with the ODBC Database Driver (DBD::ODBC). The HP Vertica ODBC driver is
known to be compatible with these versions of Perl:

l 5.8

l 5.10

Later Perl versions may also work.

Perl Drivers

The following Perl driver modules have been tested with the HP Vertica ODBC driver:

l The DBI driver module, version 1.609

l The DBD::ODBC driver module, version 1.22

Other versions may also work.

Supported Client Systems

The HP Vertica ODBC driver requires one of the operating systems and driver managers listed in
ODBC Prerequisites.

PHP Prerequisites
PHP is a widely-used general-purpose scripting language that is especially suited forWeb
development and can be embedded into HTML. PHP is licensed under the PHP License, an open-
source BSD-style license certified by the Open Source Initiative.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 40 of 817

PHP Modules

The following PHP modules are required:

l php

l php-odbc

l php-pdo

l UnixODBC (if you are using the Unix ODBC driver)

l libiodbc (if you are using the iODBC driver)

Supported Client Systems

The HP Vertica ODBC driver requires one of the operating systems and driver managers listed in
ODBC Prerequisites.

Installing the Client Drivers
How you install client drivers depends on the client's operating system:

l For Linux and UNIX clients, youmust first install a Linux driver manager. After you have
installed the driver manager, there are two different ways to install the client drivers:

n OnRedHat Enterprise Linux 5, 64-bit and SUSE Linux Enterprise Server 10/11 64-bit, you
can use the HP Vertica client RPM package to install the ODBC and JDBC drivers as well as
the vsql client.

n On other Linux platforms and UNIX-like platforms you can download the ODBC and JDBC
drivers and install them individually.

Note: TheODBC and JDBC client drivers are installed by the server .rpm files. If you have
installed HP Vertica Analytics Platform on your Linux system for development or testing
purposes, you do not need to download and install the client drivers on it—you just need to
configure the drivers. To useODBC, you need to create a DSN (see Creating anODBC DSN for
Linux, Solaris, AIX, and HP-UX). To use JDBC, you need to add the JDBC client driver to the
Java CLASSPATH (seeModifying the Java CLASSPATH).

l OnWindows clients, download the 32-bit or 64-bit client installer. The installer provides the
ODBC and and JDBC drivers.

l There is an additional Windows installer for the ADO.NET client driver. 32-bit and 64-bit versions
of the installer are available. ADO.NET is only available for the Enterprise edition of HP Vertica.

The remainder of this section describes how to install client drivers on different operating systems.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 41 of 817

Installing Driver Managers Linux and Other UNIX-like
Platforms

If your client platform does not already have aODBC driver manager, you need to install one before
you can use the HP Vertica ODBC client driver. The driver manager provides an interface between
your client operating system and theODBC drivers. See Supported Platforms for a list of driver
managers that are supported on each of the client platforms.

HP Vertica provides reference implementations of supported driver managers in binary format.
These binaries are built by HP Vertica and used when testing the product. The driver managers are
not modified by HP Vertica and are built with the default settings.

The driver managers can be downloaded from the Download tab of themyVertica portal.

HP Vertica provides these binaries as a convenience for users in the event that the supported
versions of the driver managers cannot be easily obtained from the original developers. There is no
benefit to using the HP Vertica provided binaries if you installed the same or a compatible version of
the supported driver-manager as part of your operating system.

The binaries provided by HP Verticamust be installed and configuredmanually. For example, the
.so files must be in a directory that is in the operating system’s "lib" search path, for example,
/usr/lib, or other location specified by the shell's library search path variable (LD_LIBRARY_
PATH). HP Vertica does not provide instructions for installing and configuring these third party
binaries. See the respective websites for the driver managers for installation and configuration
information:

l UnixODBC: http://www.unixodbc.org/

l iODBC: http://www.iodbc.org

Installing ODBC Drivers on Linux, Solaris, AIX, and HP-
UX

Note: For additional details about supported platforms, see Supported Platforms.

Read Driver Prerequisites before you proceed.

For Red Hat Enterprise Linux and SUSE Linux Enterprise Server, you can download and install a
client RPM that installs both the ODBC and JDBC driver as well as the vsql client. See Installing
the Client RPM onRedHat and SUSE.

Note: TheODBC and JDBC client drivers are installed by the server .rpm files. If you have
installed HP Vertica Analytics Platform on your Linux system for development or testing purposes,
you do not need to download and install the client drivers on it—you just need to configure the
drivers. To useODBC, you need to create a DSN (see Creating anODBC DSN for Linux, Solaris,
AIX, and HP-UX). To use JDBC, you need to add the JDBC client driver to the Java CLASSPATH
(seeModifying the Java CLASSPATH).

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 42 of 817

http://my.vertica.com/
http://www.unixodbc.org/
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/

TheODBC driver installation packages are broken down by client platform on themyVertica portal.
The package's filename is named based on its operating system and architecture (for example,
vertica_7.0..xx_odbc_x86_64_linux.tar.gz)

Installation Procedure

1. Open aWeb browser and log in tomyVertica portal.

2. Click the Download tab and locate and download the driver package that corresponds to your
client system.

3. If you did not directly download to the client system, transfer the downloaded file to it.

4. Log in to the client system as root.

5. If the directory /opt/vertica/ does not exist, create it:

mkdir -p /opt/vertica/

6. Copy the downloaded file to the /opt/vertica/ directory. For example:

cp vertica_7.0..xx_odbc_x86_64_linux.tar.gz /opt/vertica/

7. Change to the /opt/vertica/ directory:

cd /opt/vertica/

8. Uncompress the file you downloaded. For example:

$ tar vzxf vertica_7.0..xx_odbc_x86_64_linux.tar.gz

Two folders are created: one for the include file, and one for the library files. The path of the
library file depends on the processor architecture: lib for 32-bit libraries, and lib64 for 64-bit
libraries. So, a 64-bit driver client download creates the directories:

n /opt/vertica/include, which contains the header file

n /opt/vertica/lib64, which contains the library file

Post Driver Installation Configuration

Youmust configure the ODBC driver before you can use it. There are two required configuration
files:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 43 of 817

http://my.vertica.com/
http://my.vertica.com/

l The odbc.ini configuration file defines the Data Source Names (DSNs) that tell the ODBC how
to access your HP Vertica databases. See Creating anODBC Data Source Name for
instructions to create this file.

l The vertica.ini configuration file defines someHP Vertica-specific settings required by the
drivers. See Additional ODBC Driver Configuration Settings for instructions to create this file.

Note: If you are upgrading your ODBC driver, youmust either update your DSNs to point to the
newly-installed driver or create new DSNs. If your odbc.ini file references drivers defined in
an odbcinst.ini file, you just need to update the odbcinst.ini file. See Creating anODBC
Data Source Name (DSN) for details.

Installing the Client RPM on Red Hat and SUSE
For Red Hat Enterprise Linux and SUSE Linux Enterprise Server, you can download and install a
client driver RPM that installs both the ODBC and JDBC driver libraries and the vsql client.

To install the client driver RPM package:

1. Open aWeb browser and log in to themyVertica portal.

2. Click the Download tab and download the client RPM file that matches your client platform's
architecture.

Note: The 64-bit client driver RPM installs both the 64-bit and 32-bit ODBC driver libraries,
so you do not need to install both on your 64-bit client system.

3. If you did not directly download the RPM on the client system, transfer the file to the client.

4. Log in to the client system as root.

5. Install the RPM package you downloaded:

rpm -Uvh package_name.rpm

Note: You receive one or more conflict error messages if there are existing HP Vertica client
driver files on your system. This can happen if you are trying to install the client driver package
on a system that has the server package installed, since the server package also includes the
client drivers. In this case, you don't need to install the client drivers, and can instead use the
drivers installed by the server package. If the conflict arises from an old driver installation or
from a server installation for an older version, you can use the rpm command's --force switch
to force it to overwrite the existing files with the files in the client driver package.

Once you have installed the client package, you need to create a DSN (see Creating anODBC
DSN for Linux, Solaris, AIX, and HP-UX) and set some additional configuration parameters (see

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 44 of 817

http://my.vertica.com/

Additional ODBC Driver Configuration Settings) to useODBC. To use JDBC, you need tomodify
your class path (seeModifying the Java CLASSPATH) before you can use JDBC.

Youmay also want to add the vsql client to your PATH environment variable so that you do not
need to enter its full path to run it. You add it to your path by adding the following to the .profile file
in your home directory or the global /etc/profile file:

export PATH=$PATH:/opt/vertica/bin

Installing JDBC Driver on Linux, Solaris, AIX, and HPUX
Note: TheODBC and JDBC client drivers are installed by the server .rpm files. If you have
installed HP Vertica Analytics Platform on your Linux system for development or testing purposes,
you do not need to download and install the client drivers on it—you just need to configure the
drivers. To useODBC, you need to create a DSN (see Creating anODBC DSN for Linux, Solaris,
AIX, and HP-UX). To use JDBC, you need to add the JDBC client driver to the Java CLASSPATH
(seeModifying the Java CLASSPATH).

Note: For additional details about supported platforms, see Supported Platforms.

The JDBC driver is available for download frommyVertica portal. There is a single .jar file that
works on all platforms and architectures. To download and install the file:

1. Open aWeb browser and log in tomyVertica portal.

2. Click the Download tab and locate and download the JDBC driver.

3. You need to copy the .jar file you downloaded file to a directory in your Java CLASSPATH on
every client system with which you want to access HP Vertica. You can either:

n Copy the .jar file to its own directory (such as /opt/vertica/java/lib) and then add that
directory to your CLASSPATH (recommended). SeeModifying the Java CLASSPATH for
details.

n Copy the .jar file to directory that is already in your CLASSPATH (for example, a directory
where you have placed other .jar files on which your application depends).

Note: In the directory where you copied the .jar file, you should create a symbolic link named
vertica_jdk_5.jar to the .jar file. You can reference this symbolic link anywhere you need
to use the name of the JDBC library without having to worry any future upgrade invalidating the
file name. This symbolic link is automatically created on server installs. On clients, you need to
create andmanually maintain this symbolic link yourself if you installed the driver manually.
The Installing the Client RPM onRedHat and SUSE create this link when they install the
JDBC library.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 45 of 817

http://my.vertica.com/
http://my.vertica.com/
http://en.wikipedia.org/wiki/Classpath_(Java) CLASSPATH

Installing ODBC/JDBC Client Drivers and vsql Client on
Windows

This topic details how to download and install the HP Vertica ODBC/JDBC client drivers and vsql
client forWindows systems. The installer can be run as a regular windows installer or silently. The
Windows client drivers (ODBC, JDBC, etc.) are all installed using a single installer. There are 32-bit
and 64-bit installers available. The 32-bit installer provides a 32-bit driver. The 64-bit installer
provides both 32-bit and 64-bit drivers.

Read Driver Prerequisites before you proceed.

Note: Note: If you are uninstalling a previous release of the HP Vertica ODBC/JDBC drivers,
delete any DSNs associated with those drivers before you uninstall. Windows requires that the
driver files be present when a DSN is removed. If you uninstall the driver first, then the DSN
cannot be removed. For releases after 5.1 you do not need to uninstall the drivers, as the
installation program upgrades the existing 5.1+ drivers in place.

To Download the Windows client-drivers:

1. Open aWeb browser and log in tomyVertica portal.

2. Click the Download tab and select the ODBC/JDBC Windows installer that you want to install
(32-bit or 64-bit) and follow the on-screen prompts to download the installer.

To Install the Windows Client-Drivers and vsql client:

1. As aWindows Administrator, double-click the installer to start the install process.

2. The introduction screen appears. Click Next to begin the installation.

3. Read the license agreement and check the appropriate radio box. Click Next to continue.

4. Optionally change the installation directory and click Next. The default directory is C:\Program
Files (x86)\Vertica Systems\.

5. Select the components to install and click Next. By default all components are selected.

6. Click Install to install the options you selected.

7. Click Finish.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 46 of 817

http://my.vertica.com/

To Silent-Install the Windows Client-Drivers and vsql client:

1. As aWindows Administrator, open a command-line session and change directory to the folder
that contains the installer.

2. Run the command vertica_client_drivers_[VERSION].exe /S /v/qn

3. The drivers are silently installed in C:\Program Files\Vertica Systems\. If you install the 32-bit
drivers on a 64-bit system, then those drivers are installed to C:\Program Files (x86)\Vertica
Systems\. The driver appears in the list of installed programs and is now available in the ODBC
control panel.

After You install:

l The client drivers are available in the ODBC and JDBC folders of the installation directory.

l There is no shortcut for the vsql client. vsql is added to the windows PATH environment
variable. Start a commandwindow and type vsql -? at the command prompt to start vsql and
show the help list. See vsql Notes forWindows Users for important details about using vsql in a
Windows console.

Youmust perform an additional step for some of the client drivers before you use them:

l For ODBC, create a new Data Source Name (DSN).

l For JDBC, Modifying the Java CLASSPATH.

Modifying the Java CLASSPATH
The CLASSPATH environment variable contains the list of directories where the Java run time
looks for library class files. For your Java client code to access HP Vertica, you need to add the
directory where the HP Vertica JDBC .jar file is located.

Note: In your CLASSPATH, use the symbolic link vertica_jdk_5.jar that points to the
JDBC library .jar file, rather than the .jar file itself. Using the symbolic link ensures that any
updates to the JDBC library .jar file (which will use a different filename) will not invalidate
your CLASSPATH setting, since the symbolic link's filenamewill remain the same. You just
need to update the symbolic link to point at the new .jar file.

Linux, Solaris, AIX, HP-UX, and OS X

If you are using the Bash shell, use the export command to define the CLASSPATH variable:

export CLASSPATH=/opt/vertica/java/lib/vertica_jdk_5.jar

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 47 of 817

If environment variable CLASSPATH is already defined, use the following command to prevent it
from being overwritten:

export CLASSPATH=$CLASSPATH:/opt/vertica/java/lib/vertica_jdk_5.jar

If you are using a shell other than Bash, consult its documentation to learn how to set environment
variables.

You need to either set the CLASSPATH environment variable for every login session, or insert the
command to set the variable into one of your startup scripts (such as ~/.profile or
/etc/profile).

Windows

Provide the class paths to the .jar, .zip, or .class files.

C:> SET CLASSPATH=classpath1;classpath2...

For example:

C:> SET CLASSPATH=C:\java\MyClasses\vertica_jdk_5.jar

As with the Linux/UNIX settings, this setting only lasts for the current session. To set the
CLASSPATH permanently, set an environment variable:

1. On theWindows Control Panel, click System.

2. Click Advanced orAdvanced Systems Settings.

3. Click Environment Variables.

4. Under User variables, click New.

5. In the Variable name box, type CLASSPATH.

6. In the Variable value box, type the path to the HP Vertica JDBC .jar file on your system (for
example, C:\Program Files (x86)\Vertica\JDBC\vertica_jdk_5.jar)

Specifying the Library Directory in the Java Command

There is an alternative way to tell the Java run time where to find the HP Vertica JDBC driver other
than changing the CLASSPATH environment variable: explicitly add the directory containing the
.jar file to the java command line using either the -cp or -classpath argument. For example, on
Linux, start your client application using:

java -classpath /opt/vertica/java/lib/vertica_jdk_5.jar myapplication.class

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 48 of 817

Your Java IDE may also let you add directories to your CLASSPATH, or let you import the HP
Vertica JDBC driver into your project. See your IDE documentation for details.

Installing the JDBC Driver on Macintosh OS X
To install the HP Vertica JDBC driver on your Macintosh OS X client system, download the cross-
platform JDBC driver .jar file to your system and ensure OS X's Java installation can find it.

Downloading the JDBC Driver

To download the HP Vertica JDBC driver onMacintosh OS X:

1. On your Macintosh client system, open a browser and log into themyVertica portal.

2. Navigate to the Downloads page, scroll to the Client Software download section, and click the
download link for the JDBC driver.

3. Accept the license agreement and wait for the download to complete.

Ensuring Java Can Find the JDBC Driver

In order for your Java client application to use the HP Vertica JDBC driver, the Java interpreter
needs to be able to find its library file. Choose one of thesemethods to tell the Java interpreter
where to look for the library:

l Copy the JDBC .jar file you downloaded to either the system-wide Java Extensions folder
(/Library/Java/Extensions) or your user Java Extensions folder
(/Users/username/Library/Java/Extensions).

l Add the directory containing the JDBC .jar file to the CLASSPATH environment variable (see
Modifying the Java CLASSPATH).

l Specify the directory containing the JDBC .jar using the -cp argument in the Java command
line you use to start your Java command line.

Installing the ODBC Driver on Macintosh OS X
The HP Vertica ODBC driver for Macintosh OS X is packaged as a gzipped tar archive (.tar.gz).
This driver works with both 32-bit and 64-bit applications. You need to extract the library files from
this archive onto your system.

Download the Driver

Follow these steps to download the HP Vertica ODBC driver for Macintosh:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 49 of 817

http://my.vertica.com/

1. On your Macintosh client system, open a browser and log into the themyVertica portal.

2. Navigate to the Downloads tab, scroll to the Client Software section, then click the download
link for theMacintosh OS X ODBC driver package.

3. Accept the license agreement, and wait for the download to complete.

Decide Where to Install the Driver

Where you decide to install the driver depends on which users on the client Macintosh need to use
the HP Vertica ODBC driver:

l If multiple users need to use the driver, install it in /Library/ODBC/vertica. You need to be
logged into an administrator account to install the driver in this location.

l If just a single user needs to use the driver (or you do not have administrative privileges on the
client OS X system), install the driver here: /Users/username/Library/ODBC/vertica.

Unpack the Driver

To unpack the driver:

1. Log into the client Macintosh either with an administrator account (if installing the driver for
system-wide use) or as the user who needs to use the HP Vertica ODBC driver.

2. Open a Terminal window (in the Finder, click Applications > Utilities > Terminal).

3. Enter one of the following commands to create the target directory for the driver files:

n To install system-wide: mkdir -p /Library/ODBC/vertica

n To install for the current user: mkdir -p ~/Library/ODBC/vertica

4. Change to the directory you just created:

n For system-wide installs: cd /Library/ODBC/vertica

n For current user installs: cd ~/Library/ODBC/vertica

5. Unpack the .tar.gz file containing the ODBC driver using the command:

tar -xzf ~/Downloads/vertica_7.0.x_odbc_mac_tar.gz

Note: If you downloaded the driver .tar.gz file to a directory other than your Downloads
directory, or you downloaded it using another user account, change the path in the above
tar command to the path of the downloaded file.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 50 of 817

http://my.vertica.com/

After installing the ODBC driver, must create a DSN to be able to connect to your HP Vertica
database. See Creating anODBC DSN for Macintosh OS X Clients.

Using Legacy Drivers
The HP Vertica server supports connections from the previous version of the client drivers. For
example, the HP Vertica version 5.1 server works with the 4.1 client drivers, since they were the
drivers distributed with the previous version of the server. This backwards compatibility lets you
upgrade your HP Vertica database first, then later upgrade your clients.

If you have not yet updated your code to work with the new version of the HP Vertica client drivers,
you can continue to use the older drivers until you do. If you need to install your client application on
a new client system, you can download and install the older drivers. SeemyVertica portal to
download the installers; find installation documentation at http://www.vertica.com/documentation.

For detailed information on which the compatibility of different versions of the HP Vertica server and
HP Vertica client, see Client Driver and Server Version Compatibility.

Note: The support for a previous version of the drivers is usually eliminated in the next release
of HP Vertica. For example, the HP Vertica version 5.1 server does not support the version 4.0
drivers. You should update your client application to work with the new client drivers as soon
as possible.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 51 of 817

http://my.vertica.com/
http://www.vertica.com/documentation

Creating an ODBC Data Source Name (DSN)
A Data Source Name (DSN) is the logical name that is used by Open Database Connectivity
(ODBC) to refer to the driver and other information that is required to access data from a data
source. Whether you are developing your ownODBC client code or you are using a third-party tool
that needs to access HP Vertica using ODBC, you need to configure and test a DSN. Themethod
you use depends upon the client operating system you are using.

Creating an ODBC DSN for Linux, Solaris, AIX, and
HP-UX

DSNs are defined on Linux, Solaris, and other UNIX-like platforms in a text file. Your client's driver
manager reads this file to determine how to connect to your HP Vertica database. The driver
manager usually looks for the DSN definitions in two places:

l /etc/odbc.ini

l ~/.odbc.ini (a file named .odbc.ini in the user's home directory)

The structure of these files is the same, only their location differs. If both files are present, the
~/.odbc.ini file usually overrides the system-wide /etc/odbc.ini file.

Note: See your ODBC driver manager's documentation for details on where these files should
be located and any other requirements.

odbc.ini File Structure
The odbc.ini is a text file that contains two types of lines:

l Section definitions, which are text strings enclosed in square brackets.

l Parameter definitions, which contain a parameter name, an equal sign, and then the parameter's
value.

The first section of the file is always named [ODBC Data Sources], and contains a list of all the
DSNs that the odbc.ini file defines. The parameters in this section are the names of the DSNs,
which appear as section definitions later in the file. The value is a text description of the DSN, and
has no function. For example, an odbc.ini file that defines a single DSN namedHP VerticaDSN
could have this ODBC Data Sources section:

[ODBC Data Sources]HPVerticaDSN = "vmartdb"

After the ODBC data sources section are sections that define each DSN. The name of a DSN
sectionmust match one of the names defined in the ODBC Data Sources section.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 52 of 817

Configuring the odbc.ini file:
To create or edit the DSN definition file:

1. Using the text editor of your choice, open odbc.ini or ~/.odbc.ini.

2. Create anODBC Data Sources section and define a parameter whose name is the name of the
DSN you want to create and whose value is a description of the DSN. For example, to create a
DSN named VMart, you would enter:

[ODBC Data Sources]VMart = "VMart database on HP Vertica"

3. Create a section whose namematches the DSN name you defined in step 2. In this section,
you add parameters that define the DSN's settings. Themost commonly-defined parameters
are:

n Description – Additional information about the data source.

n Driver – The location and designation of the HP Vertica ODBC driver, or the name of a
driver defined in the odbcinst.ini file (see below). For future compatibility, you should use
the name of the symbolic link in the library directory (/opt/vertica/lib on 32-bit clients,
and /opt/vertica/lib64 on 64-bit clients), rather than the library file. For example, the
symbolic link for the 64-bit ODBC driver library is:

/opt/vertica/lib64/libverticaodbc.so

The symbolic link always points to themost up-to-date version of the HP Vertica client
ODBC library. Using the link ensures that you do not need to update all of your DSNs when
you update your client drivers.

n Database – The name of the database running on the server. This example uses vmartdb
for the vmartdb.

n ServerName—The name of the server where HP Vertica is installed. Use localhost if HP
Vertica is installed on the samemachine.

n UID – Either the database superuser (same name as database administrator account) or a
user that the superuser has created and granted privileges. This example uses the user
name dbadmin.

n PWD – The password for the specified user name. This example leaves the password field
blank.

n Port – The port number on which HP Vertica listens for ODBC connections. For example,
5433.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 53 of 817

n ConnSettings – Can contain SQL commands separated by a semicolon. These commands
can be run immediately after connecting to the server.

n SSLKeyFile – The file path and name of the client's private key. This file can reside
anywhere on the system.

n SSLCertFile – The file path and name of the client's public certificate. This file can reside
anywhere on the system.

n Locale – The default locale used for the session. By default, the locale for the database is
en_US@collation=binary (English as in the United States of America). Specify the locale as
an ICU Locale. See the ICU User Guide (http://userguide.icu-project.org/locale) for a
complete list of parameters that can be used to specify a locale.

For example:

[VMart]Description = Vmart Database
Driver = /opt/vertica/lib64/libverticaodbc.so
Database = vmartdb
Servername = host01
UID = dbadmin
PWD =
Port = 5433
ConnSettings =
SSLKeyFile = /home/dbadmin/client.key
SSLCertFile = /home/dbadmin/client.crt
Locale = en_GB

SeeDSN Parameters for a complete list of parameters including HP Vertica-specific ones.

Using an odbcinst.ini File
Instead of giving the path of the ODBC driver library in your DSN definitions, you can use the name
of a driver defined in the odbcinst.ini file. This is a useful method if you havemany DSNs and
often need to update them to point to new driver libraries. It also allows you to set some additional
ODBC parameters, such as the threadingmodel.

Just as in the odbc.ini file, odbcinst.ini has sections. Each section defines anODBC driver
that can be referenced in the odbc.ini files.

In a section, you can define the following parameters:

l Description — Additional information about the data source.

l Driver — The location and designation of the HP Vertica ODBC driver. For example:
/opt/vertica/lib64/libverticaodbc.so

For example:

[HPVertica]Description = HP Vertica ODBC Driver

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 54 of 817

Driver = /opt/vertica/lib64/libverticaodbc.so

Then in your odbc.ini file, you use the name of the section you created in the odbcinst.ini file
that describes the driver you want to use. For example:

[VMart]Description = HP Vertica Vmart database
Driver = HPVertica

If you are using the unixODBC driver manager, you should also add anODBC section to override
its standard threading settings. By default, unixODBC will serialize all SQL calls throughODBC,
which prevents multiple parallel loads. To change this default behavior, add the following to your
odbcinst.ini file:

[ODBC]Threading = 1

Configuring Additional ODBC Settings
On Linux and UNIX systems, you need to configure some additional driver settings before you can
use your DSN. See Additional ODBC Driver Configuration Settings for details.

Testing a DSN Using Isql
The unixODBC driver manager includes a utility named isql, which is a simple ODBC command-
line client. It lets you to connect to a DSN to send commands and receive results, similarly to vsql.

To use isql to test a DSN connection:

1. Run the following command:

$ isql –v DSNnameSQL>

Where DSNname is the name of the DSN you created.

A connectionmessage and a SQL prompt display. If they do not, you could have a
configuration problem or you could be using the wrong user name or password.

2. Try a simple SQL statement. For example:

SQL> SELECT table_name FROM tables;

The isql tool returns the results of your SQL statement.

Note: If you have not set the ErrorMessagesPath in the additional driver configuration settings,
any errors during testing will trigger amissing error message file ("The error message
NoSQLGetPrivateProfileString could not be found in the en-US locale"). See Additional ODBC

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 55 of 817

Driver Configuration Settings for more information.

Creating an ODBC DSN for Windows Clients
Creating a DSN for Microsoft Windows clients consists of:

l Setting Up a DSN

l Testing the DSN Using Excel 2007

Setting Up a DSN
A Data Source Name (DSN) is the logical name that is used by Open Database Connectivity
(ODBC) to refer to the drive and other information that is required to access data. The name is used
by Internet Information Services (IIS) for a connection to anODBC data source.

This section describes how to use the HP Vertica ODBC Driver to set up anODBC DSN. This
topic assumes that the driver is already installed, as described in Installing Client Drivers on
Windows.

To set up a DSN:

1. Open theODBC Administrator (For example, Start > Control Panel > Administrative Tools >
Data Sources (ODBC)).

Note: Themethod you use to open theODBC Administrator depends on your version of
Windows. Differences betweenWindows versions and Start Menu customizations could
require a different action to open theODBC Administrator

2. If you want all users on your client system to be able to access to the DSN for the HP Vertica
database, click theSystem DSN tab.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 56 of 817

Otherwise, click theUser DSN tab to create a DSN that is only usable by yourWindows user
account.

3. Click Add to create a new DSN to connect to the HP Vertica database.

4. Scroll through the list of drivers in the Create a New Data Source dialog to locate the HP
Vertica driver. Select the driver, and then click Finish.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 57 of 817

Note: If you have installedmore than one version of the HP Vertica client drivers on your
Windows client system, youmay seemultiple versions of the driver in this list. Choose
the version that you know is compatible with your client application and Vertica Analytics
Platform server. If you are unsure, use the latest version of the driver.

The HP Vertica ODBC DSN configuration dialog appears.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 58 of 817

5. Click theMore >>> button to view a description of the field you are editing as well as the
connection string defined by the DSN.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 59 of 817

6. Enter the information for your DSN. The following fields are required:

n DSN Name—The name for the DSN. Clients will use this name to identify the DSN to
which they want to connect.

n Server Name—The hostname or IP address of any active node within an HP Vertica
database.

n Database—The name of the HP Vertica database.

n User Name—The name of the user account to use when connecting to the database. This
account name is used to log into the database if the application does not supply its own user
namewhen connecting to the DSN.

The rest of the fields are optional. See DSN Parameters for detailed information about the DSN
parameters you can define.

7. If you want to test your connection:

a. Enter at least a validDSN name, Server name, Database, and eitherUser name or
selectWindows authentication.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 60 of 817

b. If you have no selectedWindows authentication, either enter a password in the
Password box or select Password prompt to have the driver prompt you for a password
when connecting.

c. Click Test Connection.

8. When you have finished editing and testing the DSN, click OK. The Vertica ODBC
DSN configuration window closes, and your new DSN is listed in the ODBC Data Source
Administrator window.

9. Click OK to close the ODBC Data Source Administrator.

After creating the DSN, you can test it usingMicrosoft Excel 2007.

Setting up a 32-Bit DSN on 64-Bit Versions of Windows

On 64-bit versions of Windows, the default ODBC Data Source Administrator creates and edits
DSNs that are associated with the 64-bit HP Vertica ODBC library. Attempting to use these 64-bit
DSNs with a 32-bit client application results in an architecturemismatch error. You need to create a
specific 32-bit DSN for 32-bit clients by running the 32-bit ODBC Administrator usually located at:

c:\Windows\SysWOW64\odbcad32.exe

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 61 of 817

This administrator window edits a set of DSNs that are associated with the 32-bit ODBC library.
You can then use your 32-bit client applications with the DSNs you create with this version of the
ODBC administrator.

Testing a DSN Using Excel 2007
This section uses Microsoft Excel 2007 to verify that an application can connect to anODBC data
source. You can accomplish the same thing with any ODBC application.

1. Open Excel.

2. From themenu, select Data > Get External Data > From Other Sources > From Microsoft
Query.

3. Select VMart_Schema*, make sure the "Use theQuery Wizard" check box is deselected and
click OK.

4. When the Add Tables window loads, click Close.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 62 of 817

5. TheMicrosoft Query window opens; click theSQL button.

6. In the SQLwindow write any simple query to test your connection. This example uses the
following query:

SELECT DISTINCT calendar_year FROM date_dimension;

7. If you see the caution, "SQLQuery can't be represented graphically. Continue anyway?" click
OK.

8. The data values 2003, 2004, 2005, 2006, 2007 indicate that you successfully connected to and
ran a query throughODBC.

9. Click File > Return Data to Microsoft Office Excel

10. In the Import Data dialog, click OK.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 63 of 817

The data is now available for use in an Excel worksheet.

Creating an ODBC DSN for Macintosh OS X Clients
DSNs are defined onOS X in a text file named odbc.ini. TheODBC driver manager in OS X reads
this file to determine how to connect to your HP Vertica database. The driver manager looks for the
odbc.ini file in two locations:

l System DSNs (those available for all users on the OS X client) are defined in
/Library/ODBC/odbc.ini

l User DSNs (defined for just a single user) are defined in /Users/username/ODBC/odbc.ini

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 64 of 817

The structure of these files is the same, only their location differs. If both files are present, the
entries in the user DSN usually override those in the system DSN.

odbc.ini File Structure
The odbc.ini is a text file that contains two types of lines:

l Section definitions, which are text strings enclosed in square brackets.

l Parameter definitions, which contain a parameter name, an equal sign, and then the value for the
parameter.

The first section of the file is always named [ODBC Data Sources], and contains a list of all the
DSNs that the odbc.ini file defines. The parameters in this section are the names of the DSNs,
which appear as section definitions later in the file. The value is a text description of the DSN, and
has no function. For example, an odbc.ini file that defines a single DSN namedHP VerticaDSN
could have this ODBC Data Sources section:

[ODBC Data Sources]HPVerticaDSN = VMart Database

Following the ODBC Data Sources section are sections that define each DSN. The name of a DSN
sectionmust match one of the parameter names defined in the ODBC Data Sources section.

Configuring the odbc.ini file:
To create or edit the DSN definition file:

1. Using the text editor of your choice, open /Library/ODBC/odbc.ini (to create a system DSN
entry) or /Users/username/ODBC/odbc.ini to create a user DSN entry).

Note: Youmust be a system administrator in order to define a system DSN.

2. Create anODBC Data Sources section and create an entry for the DSN you want to create (for
example, HPVerticaDSN). This entry establishes the name by which the new data source is
referred. The value you assign to the DSN entry is just a comment that describes the DSN. For
example:

[ODBC Data Sources]HPVerticaDSN = "vmartdb connection"

3. Create a section for the DSN, and add values that define the settings needed to connect to
your database. The following are themost commonly-defined parameters:

n Description – Additional information about the data source.

n Driver – The path to the HP Vertica ODBC driver library, or the name of a driver defined in
the odbcinst.ini file (see below). The location of the driver depends on whether it was
installed system-wide use, or just for an individual user:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 65 of 817

If you installed the ODBC driver for system-wide use, its path should be
/Library/ODBC/vertica/lib/libverticaodbc.dylib

If you installed the ODBC driver for just the current user, its path should be
/Users/username/Library/ODBC/vertica/lib/libverticaodbc.dylib

The file name libverticaodbc.dylib is a symbolic link that always points to themost up-
to-date version of the HP Vertica client ODBC library. Using this link ensures that you do
not need to update all of your DSNs when you update your client drivers.

n Database – The name of the database running on the server.

n ServerName—The name of the server where HP Vertica is installed.

n UID – The HP Vertica user account to use when connecting.

n PWD – The password for the user given in the UID.

n Port – The port number on which HP Vertica listens for connections. This is usually 5433.

n Locale – The default locale used for the session. By default, the locale for the database is
en_US@collation=binary (English as in the United States of America). Specify the locale as
an ICU Locale. See the ICU User Guide for a complete list of parameters that can be used
to specify a locale.

For example:

[VMart]Description = Vmart Database
Driver = /Library/ODBC/vertica/lib/libverticaodbc.dylib
Database = vmartdb
Servername = host01
UID = dbadmin
PWD = password
Port = 5433
Locale = en_GB

SeeDSN Parameters for a complete list of parameters including HP Vertica-specific ones.

Note: Instead of editing the odbc.ini and odbcinst.ini files in a text editor, you can install
and use Apple's ODBC Administrator Tool.

Using an odbcinst.ini File
Instead of giving the path of the ODBC driver library in your DSN definitions, you can use the name
of a driver defined in the odbcinst.ini file. This is a useful method if you havemany DSNs, and
often need to update them to point to new driver libraries. It also allows you to set some additional
ODBC parameters.

Just as in the odbc.ini file, odbcinst.ini has sections. Each section defines anODBC driver
that can be referenced in the odbc.ini files.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 66 of 817

http://userguide.icu-project.org/locale
http://support.apple.com/kb/DL895 ODBC Administrator Tool

In a section, you can define the following parameters:

l Description — Additional information about the database driver.

l Driver — The location of the HP Vertica ODBC driver library. For example:
/Library/ODBC/vertica/lib/libverticaodbc.dylib

For example:

[HPVerticaDriver]Description = HP Vertica ODBC Driver
Driver = /Library/ODBC/vertica/lib/libverticaodbc.dylib

Then in your odbc.ini file, you use the name of the section you created in the odbcinst.ini file
that describes the driver you want to use. For example:

[VMart]Description = HP Vertica Vmart database
Driver = HPVerticaDriver

Configuring Additional ODBC Settings
In addition to configuring the odbc.ini file, you need to configure some additional driver settings
before you can use your DSN. See Additional ODBC Driver Configuration Settings for details.

DSN Parameters
The following tables list the connection properties you can set in the DSNs for use with HP
Vertica's ODBC driver.

Required Connection Parameters
These connection parameters are theminimum requires to create a functioning DSN.

Parameters Description
Default
Value

Standard/HP
Vertica

Driver The file path and name of the driver used. none Standard

Database The name of the database running on the server. none Standard

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 67 of 817

Parameters Description
Default
Value

Standard/HP
Vertica

Servername The host name or IP address of any active node within
an HP Vertica database; for example, host01. If you use
a host namewhose DNS entry resolves tomultiple
IP addresses, the client attempts to connect to the first
IP address. If the first address is unreachable, it
attempts to connect to the second, then the third and so
on until it either connects successfully or runs out of
IP addresses. SeeODBC Connection Failover for
details.

Note: You can also use the aliases "server" and
"host" for this parameter.

none Standard

UID Either the database superuser (same name as the
database administrator account) or a user that the
superuser has created and granted privileges.

none Standard

Optional Parameters
These are basic parameters that are not necessarily required.

Parameters Description Default Value
Standard/HP
Vertica

Port The port number on which HP Vertica
listens for ODBC connections.

5433 Standard

PWD The password for the specified user
name. Youmay insert an empty string
to leave this parameter blank.

none (login only
succeeds if the user
does not have a
password set).

Standard

Advanced Settings

Parameters Description Default
Standard/HP
Vertica

AutoCommit A Boolean value that
controls whether the driver
automatically commits
transactions after
executing aDML
statement.

true Standard

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 68 of 817

Parameters Description Default
Standard/HP
Vertica

BackupServerNode A string containing a the
host name or IP address
(optionally followed by a
colon and a port number) of
database hosts to which
the client libraries attempt
to connect if the host in
specified in the
ServerName is
unreachable. Multiple
servers can be specified in
a comma-separated list.
Whenmultiple host
addresses are given, the
client tries each in turn until
one of the hosts responds
or it reaches the end of the
list of backup nodes.

Note: You should limit
the number of hosts
you specify in this
parameter. If the all
hosts in the database
are unreachable (due
to a network issue, for
example), a long list of
backup servers will
result in a significant
delay for users before
the client application
returns a failure
message.

none HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 69 of 817

Parameters Description Default
Standard/HP
Vertica

ConnectionLoadBalance A Boolean that indicates
whether the client is willing
to accept having its
connection redirected to a
host in the database other
than ServerNode to help
spread the overhead of
client connections across
all hosts in the database
cluster. This setting only
has an effect if the server
has its load balancing
policy set to something
other than "none." If the
server does have a load
balance policy set, the first
node the client connects to
will choose a node to
handle the client
connection. If this selected
node is different than the
node the client is
connected to, the client
disconnects and
reconnects to the targeted
node. See About Native
Connection Load Balancing
in the Administrator's Guide
for details.

false HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 70 of 817

Parameters Description Default
Standard/HP
Vertica

ConnSettings A string containing SQL
commands that the driver
should execute
immediately after
connecting to the server.
This parameter is often
used to configure the
connection in some
manner, such as setting a
schema search path.

Note: In the
connection string ';' is
a reserved symbol. If
you need to set
multiple parameters as
part of ConnSettings
parameter use '%3B' in
place of ';'. Also use '+'
for spaces.

none HP Vertica

DirectBatchInsert A Boolean that controls
where data inserted through
the connection is stored.
When set to true, HP
Vertica directly inserts data
intoROS containers.
Otherwise, it stores data
using AUTOmode.

When loading data using
AUTOmode, HP Vertica
inserts the data first into the
WOS. If theWOS is full,
then HP Vertica inserts the
data directly intoROS. See
the COPY statement for
more details.

false HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 71 of 817

Parameters Description Default
Standard/HP
Vertica

DriverStringConversions Controls whether the
ODBC driver performs type
conversions on strings sent
between theODBC driver
and the database. Possible
values are:

l NONE—no conversion
in either direction. this
results in the highest
performance.

l INPUT—strings sent
from the client to the
server are converted,
but strings sent from the
server to the client are
not.

l OUTPUT—strings sent
by the server to the
client are converted, but
strings sent from the
client to the server are
not.

l BOTH—strings are
converted in both
directions.

OUTPUT HP Vertica

Locale The locale used for the
session. Specify the locale
as an ICU Locale. See the
ICU User Guide
(http://userguide.icu-
project.org/locale) for a
complete list of parameters
that can be used to specify
a locale.

en_
US@collation=binary
(English as in the
United States of
America)

HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 72 of 817

Parameters Description Default
Standard/HP
Vertica

PromptOnNoPassword Controls whether users are
prompted to enter a
password if none is
supplied by the connection
string or DSN used to
connect to HP Vertica. See
PromptingWindows Users
for Passwords.

Note: This setting only
has an effect on
Windows platforms. It
is ignored by the
drivers on other
platforms.

false HP Vertica

ReadOnly A true/false value that
controls whether the
connection can only read
data from HP Vertica.

false HP Vertica

ResultBufferSize Size of memory buffer for
the large result sets in
streamingmode.

Note: This parameter
was previously called
MaxMemoryCache

131072 (128KB) HP Vertica

TransactionIsolation Sets the transaction
isolation for the connection.
Valid values are:

l ReadCommitted

l Serializable

l Server Default

See Changing Transaction
Isolation Levels in the
Administrator's Guide for
an explanation of
transaction isolation.

Server Default HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 73 of 817

Identification

Parameters Description Default
Standard/HP
Vertica

Description An optional description for the DSN entry.

Insert an empty string to leave the description empty.

none Standard

Label /
SessionLabel

Sets a label for the connection on the server. This
value appears in the session_id column of the V_
MONITOR.SESSIONS system table.

Note: Label and SessionLabel are synonyms.
They can be used interchangeably.

none HP Vertica

Encryption

Parameters Description Default
Standard/HP
Vertica

SSLMode Controls whether the connection to the database uses
SSL encryption. Valid values are:

l require—Requires the server to use SSL. If the
server cannot provide an encrypted channel, the
connection fails.

l prefer—Prefers the server to use SSL. If the server
does not offer an encrypted channel, the client
requests one. Note that the first connection attempt
to the database tries to use SSL. If that fails, a
second connection is attempted over a clear
channel.

l allow—Makes a connection to the server whether
the server uses SSL or not. Note that the first
connection attempt to the database is attempted
over a clear channel. If that fails, a second
connection is attempted over SSL.

l disable—Never connects to the server using SSL.
This setting is typically used for troubleshooting

prefer HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 74 of 817

Third-Party Compatibility

Parameters Description Default
Standard/HP
Vertica

ColumnsAsChar How character column types are reported when
the driver is in Unicodemode. When set to false,
the ODBC driver reports the data type of
character columns as WCHAR. If you set
ColumnsAsChar to true, the driver identifies
character column as CHAR.

This setting is normally used for compatibility
with some third-party clients such as
Informatica.

false HP Vertica

ThreePartNaming A Boolean that controls how the database
metadata APIs reports the catalog name. When
set to true, the database name is returned as the
catalog name in the databasemetadata. When
set to false, NULL is returned as the catalog
name.

Enable this option of your client software
expects to be able to get the catalog name from
the databasemetadata and use it as part of a
three-part name reference.

false on
Unix
clients

true on
Windows
clients

HP Vertica

Kerberos Connection Parameters
Use the following parameters for client authentication using Kerberos.

Parameters Description Default
Standard/HP
Vertica

KerberosServiceName Provides the service name portion
of the HP Vertica Kerberos
principal; for example:
vertica/host@EXAMPLE.COM

vertica HP Vertica

KerberosHostname Provides the instance or host name
portion of the HP Vertica Kerberos
principal; for example:
vertica/host@EXAMPLE.COM

Value specified
in the
servername
connection string
property

HP Vertica

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 75 of 817

See Also
l Additional ODBC Driver Configuration Settings

Setting DSN Parameters
The parameters in the following tables are common for all user and system DSN entries. The
examples provided are forWindows clients.

To edit DSN parameters:

l OnUNIX and Linux client platforms, you can edit the odbc.ini file. (See Creating anODBC
DSN for Linux, Solaris, AIX, and HP-UX.) The location of this file is specific to the driver
manager.

l OnWindows client platforms, you can edit someDSN parameters using the HP Vertica ODBC
client driver interface. See Creating anODBC DSN forWindows Clients.

You can also edit the DSN parameters directly by opening the DSN entry in theWindows
registry (for example, at HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\DSNname). Directly
editing the registry can be risky, so you should only use this method for parameters cannot be
set through theODBC driver's user interface, or via your client code.

l You can set parameters in the connection string when opening a connection using the
SQLDriverConnect() function:

sqlRet = SQLDriverConnect(sql_hDBC, 0, (SQLCHAR*)"DSN=DSNName;Locale=en_GB", SQL_NTS,
szDNS, 1024,&nSize, SQL_DRIVER_NOPROMPT);

Note: In the connection string ';' is a reserved symbol. If you need to set multiple parameters
as part of ConnSettings parameter use '%3B' in place of ';'. Also use '+' instead of spaces.

For Example:

sqlRet = SQLDriverConnect(sql_hDBC, 0, (SQLCHAR*)"DSN=HP VerticaSQL;ConnSettings=set+sea
rch_path+to+a,b,c%3Bset+locale=ch;SSLMode=prefer", SQL_NTS,
szDNS, 1024,&nSize, SQL_DRIVER_NOPROMPT);

l Your client code can retrieve DSN parameter values after a connection has beenmade to HP
Vertica using the SQLGetConnectAttr() and SQLGetStmtAttr() API calls. Some parameters
can be set and using SQLSetConnectAttr() and SQLSetStmtAttr().

For details of the list of HP Vertica-specific parameters see HP Vertica-specific ODBC Header
File.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 76 of 817

Upgrading the HP Vertica Client Drivers
The HP Vertica client driver are usually updated for each new release of the HP Vertica server. The
client driver installation packages include the version number of the corresponding HP Vertica
server release. Usually, the drivers are forward-compatible with the next release, so your client
applications are still be able to connect using the older drivers after you upgrade to the next version
of HP Vertica Analytics Platform server. See Client Driver and Server Version Compatibility for
details on which client driver versions work withe each version of HP Vertica server.

You should upgrade your clients as soon as possible after upgrading your server, to take advantage
of new features and tomaintain maximum compatibility with the server.

To upgrade your drivers, follow the same procedure you used to install them in the first place. The
new installation will overwrite the old. See the specific instructions for installing the drivers on your
client platform for any special instructions regarding upgrades.

Note: Installing new ODBC drivers does not alter existing DSN settings. Youmay need to
change the driver settings in either the DSN or in the odbcinst.ini file, if your client system
uses one. See Creating anODBC Data Source Name for details.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 77 of 817

Additional ODBC Driver Configuration Settings
On Linux and UNIX platforms, in addition to the DSN settings, you need to provide some additional
settings to configure the HP Vertica ODBC client driver. These settings control the following:

l The text encoding used by the driver manager (for example, UTF-8 or UTF-16).

l The location of the directory containing the HP Vertica ODBC driver's error message files.

l Whether and how theODBC driver logs messages.

Note: Most of the additional driver configuration settings are automatically set onWindows
platforms. TheWindows ODBC driver's DSN Configuration dialog lets you control whether the
ODBC driver logs messages. On Linux/UNIX systems, youmust supply the additional
configuration settings before the ODBC drivers can function properly.

The topics in this section describe these settings in greater detail.

Location of the Additional Driver Settings
Where the additional driver settings are stored depends on your client platform:

l On Linux and UNIX platforms, the settings are contained in a text file named vertica.ini
(although you can choose a different filename). You tell the HP Vertica ODBC driver where to
find this file using an environment variable named VERTICAINI.

l OnWindows platforms, the additional settings are set using the ODBC Data Source
Configuration window. The values for the settings are stored in theWindows registry under the
path HKEY_LOCAL_MACHINE\SOFTWARE\Vertica\Driver.

Creating a vertica.ini File
There is no standard location for the vertica.ini file—you can store the file anywhere that it is
convenient for you on your client system. One possible location is in the /etc directory if you have
multiple users on your client system that need to access it, or have a vertica.ini file in each
user's home directory so users can alter their own settings. Wherever you store it, be sure users
have read access to the file.

The format of the vertica.ini file is similar to the odbc.ini file, with a section followed by
parameter definitions. Unlike the odbc.ini file, vertica.ini contains a single section named
Driver:

[Driver]

Following the section definition, you add setting definitions, one per line. A setting definition
consists of the setting name, followed by an equal sign (=), followed by the value. The value does
not need quotes. For example, to set the ODBCInstLib setting, you add a line like this:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 78 of 817

ODBCInstLib=/usr/lib64/libodbcinst.so

See Additional Parameter Settings for a list of the additional settings.

Required Settings
Youmust configure two settings in order for the ODBC driver to work correctly:

l ErrorMessagesPath

l ODBCInstLib (unless the driver manager's installation library is in a directory listed in the LD_
LIBRARY_PATH or LIB_PATH environment variables).

Also, if your driver manager does not use UTF-8 encoding, you need to set DriverManagerEncoding
to the proper encoding.

Setting the VERTICAINI Environment Variable
Youmust set an environment variable named VERTICAINI to the absolute path of the
vertica.ini file. The HP Vertica ODBC driver uses this variable to find the settings.

Where you set this variable depends on whether users on your client system need to have separate
vertica.ini files. If you want to have a single, system-wide vertica.ini file, you can add a
command to set VERTICAINI in /etc/profile or some other system-wide environment file. For
example:

export VERTICAINI=/etc/vertica.ini

If users need individual vertica.ini files, set VERTICAINI in their ~/.profile or similar
configuration file. For example:

export VERTICAINI=~/.vertica.ini

OnMacintosh OS X client systems, you can set the VERTICAINI environment variable in each
user's ~/.MacOSX/environment.plist file. See the Environment Variables entry in the Apple's
Developer's Library for more information.

Example vertica.ini File
The following example vertica.ini file configures the ODBC driver to:

l use the 64-bit UnixODBC driver manager.

l get its error messages from the standard HP Vertica 64-bit ODBC driver installation directory.

l log all warnings andmore severemessages to log files stored in the temporary directory.

[Driver]
DriverManagerEncoding=UTF-16

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 79 of 817

http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPRuntimeConfig/Articles/EnvironmentVars.html

ODBCInstLib=/usr/lib64/libodbcinst.so
ErrorMessagesPath=/opt/vertica/lib64
LogLevel=4
LogPath=/tmp

Additional Parameter Settings
The following parameters can be set for the HP Vertica client drivers.

Logging Settings
These parameters control how messages between the client and server are logged. None of these
settings are required. If they are not set, then the client library does not log any messages. They
apply to both ADO.NET andODBC.

l LogLevel—The severity of messages that are logged between the client and the server. The
valid values are:

n 0—No logging

n 1—Fatal errors

n 2—Errors

n 3—Warnings

n 4—Info

n 5—Debug

n 6—Trace (all messages)

The value you specify for this setting sets theminimum severity for amessage to be logged. For
example, setting LogLevel to 3means that the client driver logs all warnings, errors, and fatal
errors.

l LogPath—The absolute path of a directory to store log files . For example:
/var/log/verticaodbc

l LogNamespace—Limits logging tomessages generated by certain objects in the client driver.

Note: These settings are also available for the HP Vertica JDBC driver through connection
properties. See Connection Properties for details.

ODBC-specific Settings
The following settings are used only by the HP Vertica ODBC client driver.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 80 of 817

l DriverManagerEncoding—TheUTF encoding standard that the driver manager uses. This
setting needs tomatch the encoding the driver manager expects. The available values for this
setting are:

n UTF-8

n UTF-16 (usually used by unixODBC)

n UTF-32 (usually used by iODBC)

See the documentation for your driver manager to find the correct value for this setting.

Note:While both UTF-16 and UTF-8 are valid settings for DataDirect, Vertica recommends
that you set the DataDirect driver manager encoding to UTF-16.

If you do not set this parameter, the ODBC driver defaults to the value shown in the following
table. If your driver manager uses a different encoding, youmust set this value for the ODBC
driver to be able to work.

Client Platform Default Encoding

AIX 32-bit UTF-16

AIX 64-bit UTF-32

HPUX 32-bit UTF-32

HPUX 64-bit UTF-32

Linux x86 32-bit UTF-32

Linux x86 64-bit UTF-32

Linux Itanium 64-bit UTF-32

OS X UTF-32

Solaris x86 32-bit UTF-32

Solaris x86 64-bit UTF-32

Solaris SPARC 32-bit UTF-32

Solaris SPARC 64-bit UTF-32

Windows 32-bit UTF-16

Windows 64-bit UTF-16

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 81 of 817

l ErrorMessagesPath—The absolute path to the parent directory that contains the HP Vertica
client driver's localized error message files. These files are usually stored in the same directory
as the HP Vertica ODBC driver files.

Note: This setting is required. If you do not set it, then any error the ODBC driver
encounters will result in an error message about amissing ODBCMessages.xml file.

l ODBCInstLib—The absolute path to the file containing the ODBC installer library (ODBCInst).
This setting is required if the directory containing this library is not set in the LD_LIBRARY_
PATH or LIB_PATH environment variables. The library files for themajor driver manager are:

n UnixODBC: libodbcinst.so

n iODBC: libiodbcinst.so (libiodbcinst.2.dylib onOS X)

n DataDirect: libodbcinst.so

Note: OnAIX platforms, you need give the path to the library archive, followed by the name of
the library enclosed in parenthesis. For example:
ODBCInstLib=/usr/lib64/libodbcinst.a(libodbcinst.so.1)

ADO.NET-specific Settings
This setting applies only to the ADO.NET client driver:

C#PreloadLogging—Tells the HP Vertica ADO.NET driver to begin logging as soon as possible,
before the driver has fully loaded itself. Normally, logging only starts after the driver has fully
loaded. Valid values for this setting are:

l 0—Do not start logging before the driver has loaded.

l 1—Start logging as soon as possible.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 82 of 817

Programming ODBC Client Applications
HP Vertica provides anOpen Database Connectivity (ODBC) driver that allows applications to
connect to the HP Vertica database. This driver can be used by custom-written client applications
that use the ODBC API to interact with HP Vertica. ODBC is also used by many third-party
applications to connect to HP Vertica, including business intelligence applications and extract,
transform, and load (ETL) applications.

This section details the process for configuring the HP Vertica ODBC driver. It also explains how to
use the ODBC API to connect to HP Vertica in your own client applications.

This section assumes that you have already installed the ODBC libraries on your client system. If
you have not, see Client Driver Install Procedures.

ODBC Architecture
TheODBC architecture has four layers:

l Client Application

Is an application that opens a data source through a Data Source Name (DSN). It then sends
requests to the data source, and receives the results of those requests. Requests aremade in
the form of calls to ODBC functions.

l Driver Manager

Is a library on the client system that acts as an intermediary between a client application and one
or more drivers. The driver manager:

n Resolves the DSN provided by the client application.

n Loads the driver required to access the specific database defined within the DSN.

n Processes ODBC function calls from the client or passing them to the driver.

n Retrieves results from the driver.

n Unloads drivers when they are no longer needed.

OnWindows andMac client systems, the driver manager is provided by the operating system.
On Linux and UNIX systems, you usually need to install a driver manager. SeeODBC
Prerequisites for a list of driver managers that can be used with HP Vertica on your client
platform.

l Driver

A library on the client system that provides access to a specific database. It translates requests
into the format expected by the database, and translates results back into the format required by
the client application.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 83 of 817

l Database

The database processes requests initiated at the client application and returns results.

ODBC Feature Support
TheODBC driver for HP Vertica supports themost of the features defined in theMicrosoft ODBC
3.5 specifications. The following features are not supported:

l Updatable result sets

l Backwards scrolling cursors

l Cursor attributes

l More than one open statement per connection. For example you cannot execute a new
statement while another statement has a result set open. If you need to executemultiple
statements at once, openmultiple database connections.

l Keysets

l Bookmarks

The HP Vertica ODBC driver accurately reports its capabilities. If you need to determine whether it
complies with a specific feature, you should query the driver's capabilities directly using the
SQLGetInfo() function.

Updating ODBC Client Code From Previous Driver
Versions

In HP Vertica Version 5.1, the client drivers were rewritten to improve standards compliance and
reliability. As a result, someHP Vertica-specific features and past incompatibilities have been
eliminated. Youmust update any client code written for versions of the HP Vertica ODBC driver
earlier than 5.1 to work with the newer drivers. The following topics give you an overview of the
necessary code changes.

DSN Parameter Changes
A number of HP Vertica-specific DSN parameters have been eliminated or changed.

Removed DSN Parameters

The following parameters are no longer available in the 5.1 ODBC driver.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 84 of 817

Parameter Description

BatchInsertEnforceLength Batch inserts now behave the sameway all other inserts behave. If
a piece of data is too wide for its column, the row will be rejected. To
avoid having rows rejected, either truncate the data yourself or use
the COPY statement directly, which defaults to truncating data.

BinaryDataTransfer All data is now transferred using NATIVE VARCHAR.

BoolAsChar Boolean columns can no longer be bound to SQL_CHAR values.
Use SQL_BIT values instead.

Debug Use the LogLevel parameter instead.

LRSPath and
LRSStreaming

TheODBC driver now always streams data. It does not cache data
on the local disk.

SupressWarnings Removed to prevent clients from ignoring warnings.

WideCharSizeIn and
WideCharSizeOut

These options are now set using the DriverManagerEncoding option
in the vertica.ini file.

Changed DSN Parameters

The following DSN parameters have changed since the previous version of the ODBC driver.

Parameter Description

MaxMemoryCache This parameter is now namedResultBufferSize tomake its name
consistent across all HP Vertica client drivers.

New DSN Parameter

The following DSN parameters are new in the version 5.1 ODBC driver.

Parameter Description

DriverStringConversions Determines whether strings sent between the server and theODBC
client are converted.

ThreePartNaming Controls whether the databasemetadata uses the database name as
the catalog name. This parameter is only used for backwards
compatibility with some client software that expects a non-null
catalog name.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 85 of 817

New DSN Parameter Alias

Parameter Description

Password An alias for PWD.

SessionLabel This is a new alias for the existing Label parameter that lets you assign a label to
anODBC connection.

UserName An alias for UID.

Function Changes
The following functions have changed their behavior in the version 5.1 drivers.

l SQLGetInfo() now returns the file name of the ODBC library file when queried for the SQL_
DRIVER_NAME. Previous versions would return the brand name of the driver, which is not part
of the ODBC specifications.

l In previous versions of the ODBC driver, passing the SQLGetInfo function SQL_PARAM_
ARRAY_SELECTS returned SQL_PAS_BATCH, indicating that the driver returns a batch for
each set of parameters in a SELECT statement. This return value was incorrect. The driver now
correctly returns SQL_PAS_NO_SELECT, which indicates that the driver does not support
SELECT queries using arrays of parameters.

l For better compatibility with the ODBC standards, the time data type in the ODBC driver no
longer contain fractions of a second. In the new driver, functions that convert time values to
strings (for example, a SQLBindCol() call to bind a SQL_TYPE_TIME to a SQL_C_CHAR
value) no longer add fractional second values to the string. Earlier versions of the driver would
return the fractions of a second that the HP Vertica database stores.

l SQLBindParameter() now requires that its column-size argument for variable-width columns
(such as SQL_CHAR, SQL_VARCHAR, SQL_VARBINARY) be non-zero as specified in the
ODBC standards. The implementation of this function in previous versions of the driver allowed
a non-standard zero value to indicate the columnwidth was a default width value.

l The driver is now more strict about converting from character data types to numerical data
types. In previous drivers, any portion of the character string that could not be converted to a
numeric value was ignored. The new driver returns an error if any portion of the string cannot be
converted. For example, asking the previous driver to insert the character string "3 days" to an
integer column resulted in the value 3 being stored in the column. Now, the driver returns an error
when attempting to store this character value in an integer column.

l Functions that return result sets containing catalogmetadata now return SQL_WVARCHAR
columns instead of SQL_VARCHAR columns. This is standard behavior for ODBC 3.52 drivers
that are Unicode capable.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 86 of 817

Removed Functions

The LCOPY function has been removed from the version 5.1 driver. You should instead use the
LOCAL option of the COPY SQL statement to copy data from the client system to the server. See
Streaming Data From the Client Using COPY LOCAL.

Interval and TimeStamp Changes

When you call the SQLBindParameter() function to bind a SQL_C_INTERVAL value (for example,
SQL_INTERVAL_STRUCT) to an INTERVAL column after calling SQLPrepare(), the interval
leading precision is now reset to the default value of 2. Earlier versions of the driver did not reset the
leading precision as called for in the ODBC standards. If you want your interval value to have a
greater leading precision, your client application can take either of the following steps:

l Call SQLBindParamter() to bind the value to the INTERVAL column before calling SQLPrepare
(). The interval precision is not reset unless you call SQLBindParameter() after you have called
SQLPrepare().

l Reset the leading precision by using the SQLSetDescField() function to set SQL_DESC_
DATETIME_INTERVAL_PRECISION to whatever value you want.

SQLDescribeCol() now returns a new width for interval data types. For example, when passed
SQL_INTERVAL_SECOND, the previous driver would return 21 bytes. The new driver returns 16.

In general, the new drivers aremore strict regarding interval values, and throw errors when the old
drivers silently truncated values. If your application throws an exception when dealing with an
interval, your first debugging step is to make sure the values you are inserting are the correct width
and type.

Note: The units interval style is not supported. Do not use the SET INTERVALSTYLE
statement to change the interval style in your client applications.

SQLBindParameter() is more strict about the number of digits you supply in fractions of a second
in a timestamp. For example, the following call generates an error:

SQL_TIMESTAMP_STRUCT ts;ts.fraction = 123456; //represents the fraction 0.000123456
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TIMESTAMP, SQL_TYPE_TIMESTAMP, 0, 6, (S
QLPOINTER)&ts, 0, NULL);
SQLExecute(hstmt);

The error occurs because the fractional value represents more than six digits. Instead you would
need to change the SQLBindParameter call to allow 9 digits in the fraction:

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_TIMESTAMP, SQL_TYPE_TIMESTAMP, 0, 9, (S
QLPOINTER)&ts, 0, NULL);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 87 of 817

Note that the fraction will be truncated to 0.000123, since timestamps do not have nanosecond
precision. But you still need to allow for all of the fractional digits to be inserted into the timestamp.

New Additional Driver Information
The new HP Vertica version 5.1 ODBC driver has some additional configuration settings not
covered by the standard ODBC.INI file. use a configuration file named vertica.ini on Linux, AIX,
Solaris, and HP-UX. It controls several features of the ODBC driver. For more information, see
Additional ODBC Driver Configuration Settings.

HP Vertica-specific ODBC Header File
The HP Vertica ODBC driver provides a C header file named verticaodbc.h that defines several
useful constants that you can use in your applications. These constants let you access and alter
HP Vertica-specific settings.

This file's location depends on your client operating system:

l /opt/vertica/include on Linux and UNIX systems.

l C:\Program Files (x86)\Vertica\ODBC\include onWindows systems.

The constants defined in this file are listed below.

Parameter Description Associated Function

SQL_ATTR_VERTICA_RESULT_BUFFER_S
IZE

Sets the size of the
buffer used when
retrieving results
from the server.

SQLSetConnectAttr() SQLGetConnectAt
tr()

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 88 of 817

Parameter Description Associated Function

SQL_ATTR_VERTICA_DIRECT_BATCH_IN
SERT

Determines
whether a batch is
inserted directly
into the ROS (1) or
using AUTOmode
(0). By default
batches are
inserted using
AUTO.

When loading data
using AUTOmode,
HP Vertica inserts
the data first into
theWOS. If the
WOS is full, then
HP Vertica inserts
the data directly
intoROS. See the
COPY statement
for more details.

SQLSetConnectAttr() SQLSetStmtAttr(
)
SQLGetConnectAttr()
SQLGetStmtAttr()

SQL_ATTR_VERTICA_LOCALE Changes the locale
from en_
US@collation=bina
ry to the ICU locale
specified. See
Setting the Locale
for ODBC
Sessions for an
example of using
this parameter.

SQLSetConnectAttr() SQLGetConnectAt
tr()

Connecting to HP Vertica
The first step in any ODBC application is to connect to the database. When you create the
connection to a data source using ODBC, you use the name of the DSN that contains the details of
the driver to use, the database host, and other basic information about connecting to the data
source.

There are 4 steps your application needs to take to connect to a database:

1. Call SQLAllocHandle() to allocate a handle for the ODBC environment. This handle is used to
create connection objects and to set application-wide settings.

2. Use the environment handle to set the version of ODBC that your application wants to use.
This ensures that the data source knows which API your application will use to interact with it.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 89 of 817

3. Allocate a database connection handle by calling SQLAllocHandle(). This handle represents a
connection to a specific data source.

4. Use the SQLConnect() or SQLDriverConnect() functions to open the connection to the
database.

Note: If you specify a locale either in the connection string or in the DSN, the call to the
connection function returns SQL_SUCCESS_WITH_INFO on a successful connection,
with messages about the state of the locale.

When creating the connection to the database, use SQLConnect()when the only options you need
to set at connection time is the username and password. Use SQLDriverConnect()when you
want to change connection options, such as the locale.

The following example demonstrates connecting to a database using a DSN named ExampleDB.
After it creates the connection successfully, this example simply closes it.

// Demonstrate connecting to Vertica using ODBC.
// Standard i/o library
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// SQL include files that define data types and ODBC API
// functions
#include <sql.h>
#include <sqlext.h>
#include <sqltypes.h>
int main()
{

SQLRETURN ret; // Stores return value from ODBC API calls
SQLHENV hdlEnv; // Handle for the SQL environment object
// Allocate an a SQL environment object
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}

// Set the ODBC version we are going to use to
// 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC 3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application version to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 90 of 817

ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated Database handle.\n");

}
// Connect to the database using
// SQL Connect
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "ExampleUser";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}
// We're connected. You can do real
// work here

// When done, free all of the handles to close them
// in an orderly fashion.
printf("Disconnecting and freeing handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting from database. Transaction still open?\n");
exit(EXIT_FAILURE);

}

SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

Running the above code prints the following:

Allocated an environment handle.
Set application version to ODBC 3.
Allocated Database handle.
Connecting to database.
Connected to database.
Disconnecting and freeing handles.

See Setting the Locale for ODBC Sessions for an example of using SQLDriverConnect to connect
to the database.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 91 of 817

Notes
n If you use the DataDirect® driver manager, you should always use the SQL_DRIVER_

NOPROMPT value for the SQLDriverConnect function's DriverCompletion parameter (the final
parameter in the function call) when connecting to HP Vertica. HP Vertica's ODBC driver on
Linux and UNIX platforms does not contain a UI, and therefore cannot prompt users for a
password.

l OnWindows client platforms, the ODBC driver can prompt users for connection information.
See PromptingWindows Users for Missing Connection Parameters for more information.

l If your database is not in compliance with the terms your license agreement (for example, it is
larger than the data allowance in your license), HP Vertica sends amessage about the non-
compliance to your client application in the return value of the SQLConnect() function. Your
application should always test this return value to see if it is SQL_SUCCESS_WITH_INFO. If it
is, your application should extract and display themessage to the user.

Enabling Native Connection Load Balancing in
ODBC

Native connection load balancing helps spread the overhead caused by client connections on the
hosts in the HP Vertica database. Both the server and the client must enable native connection load
balancing in order for it to have an effect. If both have enabled it, then when the client initially
connects to a host in the database, the host picks a host to handle the client connection from a list
of the currently up hosts in the database, and informs the client which host it has chosen. If the
initially-contacted host did not choose itself to handle the connection, the client disconnects, then
opens a second connection to the host selected by the first host. The connection process to this
second host proceeds as usual—if SSL is enabled, then SSL negotiations begin, otherwise the
client begins the authentication process. See About Native Connection Load Balancing in the
Administrator's Guide for details.

To enable native load balancing on your client, set the ConnectionLoadBalance connection
parameter to true either in the DSN entry or in the connection string. The following example
demonstrates connecting to the database several times with native connection load balancing
enabled, and fetching the name of the node handling the connection from the V_
MONITOR.CURRENT_SESSION system table.

// Demonstrate enabling native load connection balancing.
// Standard i/o library
#include <stdlib.h>
#include <iostream>
#include <assert.h>
// Only needed for Windows clients
// #include <windows.h>
// SQL include files that define data types and ODBC API
// functions
#include <sql.h>
#include <sqlext.h>

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 92 of 817

#include <sqltypes.h>

using namespace std;
int main()
{

SQLRETURN ret; // Stores return value from ODBC API calls
SQLHENV hdlEnv; // Handle for the SQL environment object
// Allocate an a SQL environment object
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
assert(SQL_SUCCEEDED(ret));

// Set the ODBC version we are going to use to
// 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
assert(SQL_SUCCEEDED(ret));

// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
assert(SQL_SUCCEEDED(ret));

// Connect four times. If load balancing is on, client should
// connect to different nodes.
for (int x=1; x <= 4; x++) {

// Connect to the database using SQLDriverConnect. Set
// ConnectionLoadBalance to 1 (true) to enable load
// balancing.
cout << endl << "Connection attempt #" << x << "... ";
const char *connStr = "DSN=VMart;ConnectionLoadBalance=1;"

"UID=ExampleUser;PWD=password123";

ret = SQLDriverConnect(hdlDbc, NULL, (SQLCHAR*)connStr, SQL_NTS,
NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

if(!SQL_SUCCEEDED(ret)) {
cout << "failed. Exiting." << endl;
exit(EXIT_FAILURE);

} else {
cout << "succeeded" << endl;

}
// We're connected. Query the v_monitor.current_session table to
// find the name of the node we've connected to.

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
assert(SQL_SUCCEEDED(ret));

ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"SELECT node_name FROM "
"V_MONITOR.CURRENT_SESSION;", SQL_NTS);

if(SQL_SUCCEEDED(ret)) {
// Bind varible to column in result set.
SQLTCHAR node_name[256];
ret = SQLBindCol(hdlStmt, 1, SQL_C_TCHAR, (SQLPOINTER)node_name,

sizeof(node_name), NULL);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 93 of 817

while(SQL_SUCCEEDED(ret = SQLFetchScroll(hdlStmt, SQL_FETCH_NEXT,1))) {
// Print the bound variables, which now contain the values from the
// fetched row.
cout << "Connected to node " << node_name << endl;

}
}
// Free statement handle
SQLFreeHandle(SQL_HANDLE_STMT,hdlStmt);
cout << "Disconnecting." << endl;
ret = SQLDisconnect(hdlDbc);
assert(SQL_SUCCEEDED(ret));

}
// When done, free all of the handles to close them
// in an orderly fashion.
cout << endl << "Freeing handles..." << endl;
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
cout << "Done!" << endl;
exit(EXIT_SUCCESS);

}

Running the above example produces output similar to the following:

Connection attempt #1... succeeded
Connected to node v_vmart_node0001
Disconnecting.

Connection attempt #2... succeeded
Connected to node v_vmart_node0002
Disconnecting.

Connection attempt #3... succeeded
Connected to node v_vmart_node0003
Disconnecting.

Connection attempt #4... succeeded
Connected to node v_vmart_node0001
Disconnecting.

Freeing handles...
Done!

ODBC Connection Failover
If a client application attempts to connect to a host in the Vertica Analytics Platform cluster that is
down, the connection attempt fails when using the default connection configuration. This failure
usually returns an error to the user. The user must either wait until the host recovers and retry the
connection or manually edit the connection settings to choose another host.

Due to Vertica Analytics Platform's distributed architecture, you usually do not care which
database host handles a client application's connection. You can use the client driver's connection
failover feature to prevent the user from getting connection errors when the host specified in the
connection settings is unreachable. It gives you two ways to let the client driver automatically

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 94 of 817

attempt to connect to a different host if the one specified in the connection parameters is
unreachable:

l Configure your DNS server to returnmultiple IP addresses for a host name. When you use this
host name in the connection settings, the client attempts to connect to the first IP address from
the DNS lookup. If the host at that IP address is unreachable, the client tries to connect to the
second IP, and so on until it either manages to connect to a host or it runs out of IP addresses.

l Supply a list of backup hosts for the client driver to try if the primary host you specify in the
connection parameters is unreachable.

For bothmethods, the process of failover is transparent to the client application (other than
specifying the list of backup hosts, if you choose to use the list method of failover). If the primary
host is unreachable, the client driver automatically tries to connect to other hosts.

Failover only applies to the initial establishment of the client connection. If the connection breaks,
the driver does not automatically try to reconnect to another host in the database.

Choosing a Failover Method
You usually choose to use one of the two failover methods. However, they do work together. If your
DNS server returns multiple IP addresses and you supply a list of backup hosts, the client first tries
all of the IPs returned by the DNS server, then the hosts in the backup list.

Note: If a host name in the backup host list resolves tomultiple IP addresses, the client does
not try all of them. It just tries the first IP address in the list.

The DNS method of failover centralizes the configuration client failover. As you add new nodes to
your Vertica Analytics Platform cluster, you can choose to add them to the failover list by editing
the DNS server settings. All client systems that use the DNS server to connect to Vertica
Analytics Platform automatically use connection failover without having to change any settings.
However, this method does require administrative access to the DNS server that all clients use to
connect to the Vertica Analytics Platform cluster. This may not be possible in your organization.

Using the backup server list is easier than editing the DNS server settings. However, it
decentralizes the failover feature. Youmay need to update the application settings on each client
system if youmake changes to your Vertica Analytics Platform cluster.

Using DNS Failover
To use DNS failover, you need to change your DNS server's settings tomap a single host name to
multiple IP addresses of hosts in your Vertica Analytics Platform cluster. You then have all client
applications use this host name to connect to Vertica Analytics Platform.

You can choose to have your DNS server return as many IP addresses for the host name as you
want. In smaller clusters, youmay choose to have it return the IP addresses of all of the hosts in
your cluster. However, for larger clusters, you should consider choosing a subset of the hosts to
return. Otherwise there can be a long delay as the client driver tries unsuccessfully to connect to
each host in a database that is down.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 95 of 817

Using the Backup Host List
To enable backup list-based connection failover, your client application has to specify at least one
IP address or host name of a host in the BackupServerNode parameter. The host name or IP can
optionally be followed by a colon and a port number. If not supplied, the driver defaults to the
standard HP Vertica port number (5433). To list multiple hosts, separate them by a comma.

The following example demonstrates setting the BackupServerNode connection parameter to
specify additional hosts for the connection attempt. The connection string intentionally has a non-
existent node, so that the initial connection fails. The client driver has to resort to trying the backup
hosts to establish a connection to HP Vertica.

// Demonstrate using connection failover.
// Standard i/o library
#include <stdlib.h>
#include <iostream>
#include <assert.h>

// Only needed for Windows clients
// #include <windows.h>

// SQL include files that define data types and ODBC API
// functions
#include <sql.h>
#include <sqlext.h>
#include <sqltypes.h>

using namespace std;

int main()
{

SQLRETURN ret; // Stores return value from ODBC API calls
SQLHENV hdlEnv; // Handle for the SQL environment object
// Allocate an a SQL environment object
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
assert(SQL_SUCCEEDED(ret));

// Set the ODBC version we are going to use to
// 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
assert(SQL_SUCCEEDED(ret));

// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
assert(SQL_SUCCEEDED(ret));

/* DSN for this connection specifies a bad node, and good backup nodes:
[VMartBadNode]
Description=VMart Vertica Database
Driver=/opt/vertica/lib64/libverticaodbc.so
Database=VMart
Servername=badnode.example.com
BackupServerNode=node02.example.com,node03.example.com
*/

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 96 of 817

// Connect to the database using SQLConnect
cout << "Connecting to database." << endl;
const char *dsnName = "VMartBadNode"; // Name of the DSN
const char* userID = "ExampleUser"; // Username
const char* passwd = "password123"; // password
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret))
{

cout << "Could not connect to database." << endl;
exit(EXIT_FAILURE);

} else
{

cout << "Connected to database." << endl;
}
// We're connected. Query the v_monitor.current_session table to
// find the name of the node we've connected to.

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
assert(SQL_SUCCEEDED(ret));

ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"SELECT node_name FROM "
"v_monitor.current_session;", SQL_NTS);

if(SQL_SUCCEEDED(ret)) {
// Bind varible to column in result set.
SQLTCHAR node_name[256];
ret = SQLBindCol(hdlStmt, 1, SQL_C_TCHAR, (SQLPOINTER)node_name,

sizeof(node_name), NULL);
while(SQL_SUCCEEDED(ret = SQLFetchScroll(hdlStmt, SQL_FETCH_NEXT,1)))

{
// Print the bound variables, which now contain the values from the
// fetched row.
cout << "Connected to node " << node_name << endl;

}
}

cout << "Disconnecting." << endl;
ret = SQLDisconnect(hdlDbc);
assert(SQL_SUCCEEDED(ret));

// When done, free all of the handles to close them
// in an orderly fashion.
cout << endl << "Freeing handles..." << endl;
SQLFreeHandle(SQL_HANDLE_STMT,hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
cout << "Done!" << endl;
exit(EXIT_SUCCESS);

}

When run, the example's output on the system console is similar to the following:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 97 of 817

Connecting to database.
Connected to database.
Connected to node v_vmart_node0002
Disconnecting.

Freeing handles...
Done!

Notice that the connection was made to the first node in the backup list (node 2).

Note:When native connection load balancing is enabled, the additional servers specified in the
BackupServerNode connection parameter are only used for the initial connection to an HP
Vertica host. If host redirects the client to another host in the database cluster to handle its
connection request, the second connection does not use the backup node list. This is rarely an
issue, since native connection load balancing is aware of which nodes are currently up in the
database. See Enabling Native Connection Load Balancing in ODBC

Prompting Windows Users for Missing Connection
Parameters

The HP VerticaWindows ODBC driver can prompt the user for connection information if required
information is missing. The driver displays the HP Vertica Connection Dialog if the client
application calls SQLDriverConnect to connect to HP Vertica and either of the following is true:

l the DriverCompletion parameter is set to SQL_DRIVER_PROMPT.

l the DriverCompletion parameter is set to SQL_DRIVER_COMPLETE or SQL_DRIVER_
COMPLETE_REQUIRED and the connection string or DSN being used to connect is missing
the server, database, or port information.

If either of the above conditions are true, the driver displays an HP Vertica Connection Dialog to the
user to prompt for connection information.

Any parameters supplied in the connection string or DSN filled in on the dialog.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 98 of 817

Note: Your connection string at least needs to specify Vertica as the driver, otherwise
Windows will not know to use the Vertica ODBC driver to try to open the connection.

The required fields on the connection dialog are Database, UID, Server, and Port. Once these are
filled in, the form enables theOK button.

If the user clicks Cancel on the dialog, the SQLDriverConnect function call returns SQL_NO_
DATA immediately, without attempting to connect to HP Vertica. If the user supplies incomplete or
incorrect information for the connection, the connection function returns SQL_ERROR after the
connection attempt fails.

Note: If the DriverCompletion parameter of the SQLDriverConnect function call is SQL_
DRIVER_NOPROMPT, the ODBC driver immediately returns a SQL_ERROR indicating that
it cannot connect because not enough information has been supplied and the driver is not
allowed to prompt the user for themissing information.

Prompting Windows Users for Passwords
If the connection string or DSN supplied to the SQLDriverConnect function that client applications
call to connect to HP Vertica lacks any of the required connection properties needed to connect, the
HP Vertica's Windows ODBC driver opens a dialog box to prompt the user to enter themissing
information (see PromptingWindows Users for Missing Connection Parameters). The user's
password is not normally considered a required connection property, since HP Vertica user
accounts may not have a password. If the password property is missing, the ODBC driver still tries
to connect to HP Vertica without supplying a password.

You can use the PromptOnNoPassword DSN parameter to force ODBC driver to treat the
password as a required connection property. This parameter is useful if you do not want to store
passwords in DSN entries. Passwords saved in DSN entries are insecure, since they are stored as
clear text in theWindows registry and therefore visible to other users on the same system.

There are two other factors which also decide whether the ODBC driver displays the the HP Vertica
Connection Dialog. These are (in order of priority):

l The SQLDriverConnect function call's DriverCompletion parameter.

l Whether the DSN or connection string contain a password

The following table shows how the PromptOnNoPassword DSN parameter, the DriverCompletion
parameter of the SQLDriverConnect function, and whether the DSN or connection string contains a
password interact to control whether the HP Vertica Connection dialog appears.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 99 of 817

PromptOnNoPassword
Setting

DriverCompletion
Value

DSN or
Connection
String
Contains
Password?

HP Vertica
Connection
Dialog
Displays? Notes

any value SQL_DRIVER_
PROMPT

any case Yes This
DriverCompletion
value forces the
dialog to always
appear, even if all
required
connection
properties are
supplied.

any value SQL_DRIVER_
NOPROMPT

any case No This
DriverCompletion
value always
prevents the
dialog from
appearing.

any value SQL_DRIVER_
COMPLETE

Yes No Connection
dialog displays if
another required
connection
property is
missing.

true SQL_DRIVER_
COMPLETE

No Yes

false (default) SQL_DRIVER_
COMPLETE

No No Connection
dialog displays if
another required
connection
property is
missing.

The following example code demonstrates using the PromptOnNoPassword DSN parameter along
with a system DSN.

wstring connectString = L"DSN=VerticaDSN;PromptOnNoPassword=1;";
retcode = SQLDriverConnect(

hdbc,
0,
(SQLWCHAR*)connectString.c_str(),
connectString.length(),
OutConnStr,
255,

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 100 of 817

&OutConnStrLen,
SQL_DRIVER_COMPLETE);

No Password Entry vs. Empty Passwords
There is a difference between not having a password property in the connection string or DSN and
having an empty password. The PromptOnNoPassword DSN parameter only has an effect if the
connection string or DSN does not have a PWD property (which holds the user's password). If it
does, even if it is empty, PromptOnNoPassword will not prompt theWindows ODBC driver to
display the HP Vertica Connection Dialog.

This difference can cause confusion if you are using a DSN to provide the properties for your
connection. Once you enter a password for a DSN connection in theWindows ODBC Manager and
save it, Windows adds a PWD property to the DSN definition in the registry. If you later delete the
password, the PWD property remains in the DSN definition—value is just set to an empty string.
The PWD property is created even if you just use the Test button on theODBC Manager dialog to
test the DSN and later clear it before saving the DSN.

Once the password has been set, the only way to remove the PWD property from the DSN
definition is to delete it using theWindows Registry Editor:

1. On theWindows Start menu, click Run.

2. In the Run dialog, type regedit, then click OK.

3. In the Registry Editor window, click Edit > Find (or press Ctrl+F).

4. In the Find window, enter the name of the DSN whose PWD property you want to delete and
click OK.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 101 of 817

5. If find operation did not locate a folder under the ODBC.INI folder, click Edit > Find Next (or
press F3) until the folder matching your DSN's name is highlighted.

6. Select the PWD entry and press Delete.

7. Click Yes to confirm deleting the value.

The DSN now does not have a PWD property and can trigger the connection dialog to appear when
used along with PromptOnNoPassword=true and DriverConnect=SQL_DRIVER_COMPLETE.

Setting the Locale for ODBC Sessions
HP Vertica provides three ways to set the locale for an ODBC session:

l Specify the locale for all connections made using the DSN:

n On Linux and other UNIX-like platforms: Creating anODBC DSN for Linux, Solaris, AIX, and
HP-UX

n OnWindows platforms, set the locale in the ODBC DSN configuration editor's Locale field on
the Server Settings tab. See Creating anODBC DSN forWindows Clients for detailed
information.

l Set the Locale connection parameter in the connection string in SQLDriverConnect() function.

For example:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 102 of 817

SQLDriverConnect(conn, NULL, (SQLCHAR*)"DSN=Vertica;Locale=en_GB", SQL_NTS, szConnOut,
sizeof(szConnOut), &iAvailable, SQL_DRIVER_NOPROMPT)

l Use the SQLSetConnectAttr()method with the SQL_ATTR_VERTICA_LOCALE constant and
specify the ICU string as the attribute value. See the example below.

Notes
l Having the client system use a non-Unicode locale (such as setting LANG=C on Linux platforms)

and using a Unicode locale for the connection to HP Vertica can result in errors such as "(10170)
String data right truncation on data from data source." If data received from HP Vertica isn't in
UTF-8 format. The driver allocates stringmemory based on the system's locale setting, and
non-UTF-8 data can trigger an overrun. You can avoid these errors by always using a Unicode
locale on the client system.

If you specify a locale either in the connection string or in the DSN, the call to the connection
function returns SQL_SUCCESS_WITH_INFO on a successful connection, with messages
about the state of the locale.

l ODBC applications can be in either ANSI or Unicodemode:

n If Unicode, the encoding used by ODBC is UCS-2.

n If ANSI, the datamust be in single-byte ASCII, which is compatible with UTF-8 on the
database server.

TheODBC driver converts UCS-2 to UTF-8 when passing to the HP Vertica server and
converts data sent by the HP Vertica server from UTF-8 to UCS-2.

l If the end-user application is not already in UCS-2, the application is responsible for converting
the input data to UCS-2, or unexpected results could occur. For example:

n On non-UCS-2 data passed to ODBC APIs, when it is interpreted as UCS-2, it could result in
an invalid UCS-2 symbol being passed to the APIs, resulting in errors.

n Or the symbol provided in the alternate encoding could be a valid UCS-2 symbol; in this case,
incorrect data is inserted into the database.

ODBC applications should set the correct server session locale using SQLSetConnectAttr (if
different from database-wide setting) in order to set the proper collation and string functions
behavior on server.

The following example code demonstrates setting the locale using both the connection string and
through the SQLSetConnectAttr() function.

// Standard i/o library
#include <stdio.h>
#include <stdlib.h>

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 103 of 817

// Only needed for Windows clients
// #include <windows.h>
// SQL include files that define data types and ODBC API
// functions
#include <sql.h>
#include <sqlext.h>
#include <sqltypes.h>
// Vertica-specific definitions. This include file is located as
// /opt/vertica/include on database hosts.
#include <verticaodbc.h>
int main()
{

SQLRETURN ret; // Stores return value from ODBC API calls
SQLHENV hdlEnv; // Handle for the SQL environment object
// Allocate an a SQL environment object
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
// Set the ODBC version we are going to use to 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC 3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application version to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated Database handle.\n");

}
// Connect to the database using SQLDriverConnect
printf("Connecting to database.\n");
// Set the locale to English in Great Britain.
const char *connStr = "DSN=ExampleDB;locale=en_GB;"

"UID=dbadmin;PWD=password123";
ret = SQLDriverConnect(hdlDbc, NULL, (SQLCHAR*)connStr, SQL_NTS,

NULL, 0, NULL, SQL_DRIVER_NOPROMPT);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}
// Get the Locale
char locale[256];
SQLGetConnectAttr(hdlDbc, SQL_ATTR_VERTICA_LOCALE, locale, sizeof(locale),

0);
printf("Locale is set to: %s\n", locale);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 104 of 817

// Set the locale to a new value
const char* newLocale = "en_GB";
SQLSetConnectAttr(hdlDbc, SQL_ATTR_VERTICA_LOCALE, (SQLCHAR*)newLocale,

SQL_NTS);

// Get the Locale again
SQLGetConnectAttr(hdlDbc, SQL_ATTR_VERTICA_LOCALE, locale, sizeof(locale),

0);
printf("Locale is now set to: %s\n", locale);
// When done, free all of the handles to close them
// in an orderly fashion.
printf("Disconnecting and freeing handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting from database. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

AUTOCOMMIT and ODBC Transactions
The AUTOCOMMIT connection attribute controls whether INSERT, ALTER, COPY and other
data-manipulation statements are automatically committed after they complete. By default,
AUTOCOMMIT is enabled—all statements are committed after they execute. This is often not the
best setting to use, since it is less efficient. Also, you often want to control whether a set of
statements are committed as a whole, rather than have each individual statement committed. For
example, youmay only want to commit a series of inserts if all of the inserts succeed. With
AUTOCOMMIT disabled, you can roll back the transaction if one of the statements fail.

If AUTOCOMMIT is on, the results of statements are committed immediately after they are
executed. You cannot roll back a statement executed in AUTOCOMMIT mode.

For example, when AUTOCOMMIT is on, the following single INSERT statement is automatically
committed:

ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"INSERT INTO customers VALUES(500,"
"'Smith, Sam', '123-456-789');", SQL_NTS);

If AUTOCOMMIT is off, you need tomanually commit the transaction after executing a statement.
For example:

ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"INSERT INTO customers VALUES(500,"
"'Smith, Sam', '123-456-789');", SQL_NTS);

// Other inserts and data manipulations
// Commit the statements(s)
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);

The inserted row is only committed when you call SQLEndTran(). You can roll back the INSERT
and other statements at any point before committing the transaction.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 105 of 817

Note: Prepared statements cache the AUTOCOMMIT setting when you create them using
SQLPrepare(). Later changing the connection's AUTOCOMMIT setting has no effect on the
AUTOCOMMIT settings of previously created prepared statements. See Using Prepared
Statements for details.

The following example demonstrates turning off AUTOCOMMIT, executing an insert, then
manually committing the transaction.

// Some standard headers
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
int main()
{

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
// Tell ODBC that the application uses ODBC 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated Database handle.\n");

}
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 106 of 817

printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}
// Get the AUTOCOMMIT state
SQLINTEGER autoCommitState;
SQLGetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, &autoCommitState, 0, NULL);
printf("Autocommit is set to: %d\n", autoCommitState);

// Disable AUTOCOMMIT
printf("Disabling autocommit.\n");
ret = SQLSetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF,

SQL_NTS);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not disable autocommit.\n");
exit(EXIT_FAILURE);

}

// Get the AUTOCOMMIT state again
SQLGetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, &autoCommitState, 0, NULL);
printf("Autocommit is set to: %d\n", autoCommitState);

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);

// Create a table to hold the data
SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",

SQL_NTS);
SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers "

"(CustID int, CustName varchar(100), Phone_Number char(15));",
SQL_NTS);

// Insert a single row.
ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"INSERT INTO customers VALUES(500,"

"'Smith, Sam', '123-456-789');", SQL_NTS);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not perform single insert.\n");
} else {

printf("Performed single insert.\n");
}

// Need to commit the transaction before closing, since autocommit is
// disabled. Otherwise SQLDisconnect returns an error.
printf("Committing transaction.\n");
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);
if(!SQL_SUCCEEDED(ret)) {

printf("Error committing transaction.\n");
exit(EXIT_FAILURE);

}

// Clean up
printf("Free handles.\n");

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 107 of 817

ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting from database. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

Running the above code results in the following output:

Allocated an environment handle.
Set application to ODBC 3.
Allocated Database handle.
Connecting to database.
Connected to database.
Autocommit is set to: 1
Disabling autocommit.
Autocommit is set to: 0
Performed single insert.
Committing transaction.
Free handles.

Note: You can also disable AUTOCOMMIT in the ODBC connection string. See Setting DSN
Parameters for more information.

Retrieving Data Through ODBC
To retrieve data throughODBC, you execute a query that returns a result set (SELECT, for
example), then retrieve the results using one of twomethods:

l Use the SQLFetch() function to retrieve a row of the result set, then access column values in
the row by calling SQLGetData().

l Use the SQLBindColumn() function to bind a variable or array to a column in the result set, then
call SQLExtendedFetch() or SQLFetchScroll() to read a row of the result set and insert its
values into the variable or array.

In bothmethods you loop through the result set until you either reach the end (signaled by the SQL_
NO_DATA return status) or encounter an error.

Note: HP Vertica supports one cursor per connection. Attempting to usemore than one cursor
per connection will result in an error. For example, you receive an error if you execute a
statement while another statement has a result set open.

The following code example demonstrates retrieving data from HP Vertica by:

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 108 of 817

1. Connecting to the database.

2. Executing a SELECT statement that returns the IDs and names of all tables.

3. Binds two variables to the two columns in the result set.

4. Loops through the result set, printing the ids and name values.

// Demonstrate running a query and getting results by querying the tables
// system table for a list of all tables in the current schema.
// Some standard headers
#include <stdlib.h>
#include <sstream>
#include <iostream>
#include <assert.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
// Use std namespace to make output easier
using namespace std;
// Helper function to print SQL error messages.
template <typename HandleT>
void reportError(int handleTypeEnum, HandleT hdl)
{

// Get the status records.
SQLSMALLINT i, MsgLen;
SQLRETURN ret2;
SQLCHAR SqlState[6], Msg[SQL_MAX_MESSAGE_LENGTH];
SQLINTEGER NativeError;
i = 1;
cout << endl;
while ((ret2 = SQLGetDiagRec(handleTypeEnum, hdl, i, SqlState, &NativeError,

Msg, sizeof(Msg), &MsgLen)) != SQL_NO_DATA) {
cout << "error record #" << i++ << endl;
cout << "sqlstate: " << SqlState << endl;
cout << "detailed msg: " << Msg << endl;
cout << "native error code: " << NativeError << endl;

}
}
int main()
{

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
assert(SQL_SUCCEEDED(ret));
// Tell ODBC that the application uses ODBC 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
assert(SQL_SUCCEEDED(ret));
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
assert(SQL_SUCCEEDED(ret));
// Connect to the database

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 109 of 817

cout << "Connecting to database." << endl;
const char* dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
cout << "Could not connect to database" << endl;
reportError<SQLHDBC>(SQL_HANDLE_DBC, hdlDbc);
exit(EXIT_FAILURE);

} else {
cout << "Connected to database." << endl;

}

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
assert(SQL_SUCCEEDED(ret));

// Execute a query to get the names and IDs of all tables in the schema
// search p[ath (usually public).
ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"SELECT table_id, table_name "

"FROM tables ORDER BY table_name", SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
// Report error an go no further if statement failed.
cout << "Error executing statement." << endl;
reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {

// Query succeeded, so bind two variables to the two colums in the
// result set,
cout << "Fetching results..." << endl;
SQLBIGINT table_id; // Holds the ID of the table.
SQLTCHAR table_name[256]; // buffer to hold name of table
ret = SQLBindCol(hdlStmt, 1, SQL_C_SBIGINT, (SQLPOINTER)&table_id,

sizeof(table_id), NULL);
ret = SQLBindCol(hdlStmt, 2, SQL_C_TCHAR, (SQLPOINTER)table_name,

sizeof(table_name), NULL);

// Loop through the results,
while(SQL_SUCCEEDED(ret = SQLFetchScroll(hdlStmt, SQL_FETCH_NEXT,1))) {

// Print the bound variables, which now contain the values from the
// fetched row.
cout << table_id << " | " << table_name << endl;

}

// See if loop exited for reasons other than running out of data
if (ret != SQL_NO_DATA) {

// Exited for a reason other than no more data... report the error.
reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);

}
}

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 110 of 817

// Clean up by shutting down the connection
cout << "Free handles." << endl;
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

cout << "Error disconnecting. Transaction still open?" << endl;
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

Running the example code in the vmart database produces output similar to this:

Connecting to database.
Connected to database.
Fetching results...
45035996273970908 | call_center_dimension
45035996273970836 | customer_dimension
45035996273972958 | customers
45035996273970848 | date_dimension
45035996273970856 | employee_dimension
45035996273970868 | inventory_fact
45035996273970904 | online_page_dimension
45035996273970912 | online_sales_fact
45035996273970840 | product_dimension
45035996273970844 | promotion_dimension
45035996273970860 | shipping_dimension
45035996273970876 | store_dimension
45035996273970894 | store_orders_fact
45035996273970880 | store_sales_fact
45035996273972806 | t
45035996273970852 | vendor_dimension
45035996273970864 | warehouse_dimension
Free handles.

Loading Data Through ODBC
A primary task for many client applications is loading data into the HP Vertica database. There are
several different ways to insert data using ODBC, which are covered by the topics in this section.

Using a Single Row Insert
The easiest way to load data into HP Vertica is to run an INSERT SQL statement using the
SQLExecuteDirect function. However this method is limited to inserting a single row of data.

ret = SQLExecDirect(hstmt, (SQLTCHAR*)"INSERT into Customers values"
"(1,'abcda','efgh','1')", SQL_NTS);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 111 of 817

Using Prepared Statements
HP Vertica supports using server-side prepared statements with both ODBC and JDBC. Prepared
statements let you define a statement once, and then run it many times with different parameters.
The statement you want to execute contains placeholders instead of parameters. When you
execute the statement, you supply values for each placeholder.

Placeholders are represented by questionmarks (?) as in the following example query:

SELECT * FROM public.inventory_fact WHERE product_key = ?

Server-side prepared statements are useful for:

l Optimizing queries. HP Vertica only needs to parse the statement once.

l Preventing SQL injection attacks. A SQL injection attack occurs when user input is either
incorrectly filtered for string literal escape characters embedded in SQL statements or user input
is not strongly typed and thereby unexpectedly run. Since a prepared statement is parsed
separately from the input data, there is no chance the data can be accidentally executed by the
database.

l Binding direct variables to return columns. By pointing to data structures, the code doesn't have
to perform extra transformations.

The following example demonstrates a using a prepared statement for a single insert.

// Some standard headers
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
// Some constants for the size of the data to be inserted.
#define CUST_NAME_LEN 50
#define PHONE_NUM_LEN 15
#define NUM_ENTRIES 4
int main()
{

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
// Tell ODBC that the application uses ODBC 3.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 112 of 817

ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}

// Disable AUTOCOMMIT
printf("Disabling autocommit.\n");
ret = SQLSetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF,

SQL_NTS);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not disable autocommit.\n");
exit(EXIT_FAILURE);

}

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",

SQL_NTS);
SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers "

"(CustID int, CustName varchar(100), Phone_Number char(15));",
SQL_NTS);

// Set up a bunch of variables to be bound to the statement
// parameters.

// Create the prepared statement. This will insert data into the
// table we created above.
printf("Creating prepared statement\n");
ret = SQLPrepare (hdlStmt, (SQLTCHAR*)"INSERT INTO customers (CustID, "

"CustName, Phone_Number) VALUES(?,?,?)", SQL_NTS) ;
if(!SQL_SUCCEEDED(ret)) {

printf("Could not create prepared statement\n");
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 113 of 817

exit(EXIT_FAILURE);
} else {

printf("Created prepared statement.\n");
}
SQLINTEGER custID = 1234;
SQLCHAR custName[100] = "Fein, Fredrick";
SQLVARCHAR phoneNum[15] = "555-123-6789";
SQLLEN strFieldLen = SQL_NTS;
SQLLEN custIDLen = 0;
// Bind the data arrays to the parameters in the prepared SQL
// statement
ret = SQLBindParameter(hdlStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, &custID, 0 , &custIDLen);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind custID array\n");
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_FAILURE);

} else {
printf("Bound custID to prepared statement\n");

}
// Bind CustNames
SQLBindParameter(hdlStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

50, 0, (SQLPOINTER)custName, 0, &strFieldLen);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind custNames\n");
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_FAILURE);

} else {
printf("Bound custName to prepared statement\n");

}
// Bind phoneNums
SQLBindParameter(hdlStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

15, 0, (SQLPOINTER)phoneNum, 0, &strFieldLen);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind phoneNums\n");
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_FAILURE);

} else {
printf("Bound phoneNum to prepared statement\n");

}
// Execute the prepared statement.
printf("Running prepared statement...");
ret = SQLExecute(hdlStmt);
if(!SQL_SUCCEEDED(ret)) {

printf("not successful!\n");
} else {

printf("successful.\n");
}

// Done with batches, commit the transaction
printf("Committing transaction\n");
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 114 of 817

if(!SQL_SUCCEEDED(ret)) {
printf("Could not commit transaction\n");

} else {
printf("Committed transaction\n");

}

// Clean up
printf("Free handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

Using Batch Inserts
You use batch inserts to insert chunks of data into the database. By breaking the data into batches,
you canmonitor the progress of the load by receiving information about any rejected rows after each
batch is loaded. To perform a batch load throughODBC, you typically use a prepared statement
with the parameters bound to arrays that contain the data to be loaded. For each batch, you load a
new set of data into the arrays then execute the prepared statement.

When you perform a batch load, HP Vertica uses a COPY statement to load the data. Each
additional batch you load uses the sameCOPY statement. The statement remains open until you
end the transaction, close the cursor for the statement, or execute a non-INSERT statement.

Using a single COPY statement for multiple batches improves batch loading efficiency by:

l reducing the overhead of inserting individual batches

l combining individual batches into larger ROS containers

Note: If the database connection has AUTOCOMMIT enabled, then the transaction is
automatically committed after each batch insert statement which closes the COPY statement.
Leaving AUTOCOMMIT enabledmakes your batch loadmuch less efficient, and can cause
added overhead in your database as all of the smaller loads are consolidated.

Even though HP Vertica uses a single COPY statement to insert multiple batches within a
transaction, you can locate which (if any) rows were rejected due to invalid row formats or data type
issues after each batch is loaded. See Tracking Load Status (ODBC) for details.

Note:While you can find rejected rows during the batch load transaction, other types of errors
(such as running out of disk space or a node shutdown that makes the database unsafe) are
only reported when the COPY statement ends.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 115 of 817

Since the batch loads share a COPY statement, errors in one batch can cause earlier batches in the
same transaction to be rolled back.

Batch Insert Steps

The steps your application needs to take in order to perform anODBC Batch Insert are:

1. Connect to the database.

2. Disable autocommit for the connection.

3. Create a prepared statement that inserts the data you want to load.

4. Bind the parameters of the prepared statement to arrays that will contain the data you want to
load.

5. Populate the arrays with the data for your batches.

6. Execute the prepared statement.

7. Optionally, check the results of the batch load to find rejected rows.

8. Repeat the previous three steps until all of the data you want to load is loaded.

9. Commit the transaction.

10. Optionally, check the results of the entire batch transaction.

The following example code demonstrates a simplified version of the above steps.

// Some standard headers
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
int main()
{

// Number of data rows to insert
const int NUM_ENTRIES = 4;

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 116 of 817

}
// Tell ODBC that the application uses ODBC 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated Database handle.\n");

}
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}

// Disable AUTOCOMMIT
printf("Disabling autocommit.\n");
ret = SQLSetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF,

SQL_NTS);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not disable autocommit.\n");
exit(EXIT_FAILURE);

}

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);

// Create a table to hold the data
SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",

SQL_NTS);
SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers "

"(CustID int, CustName varchar(100), Phone_Number char(15));",
SQL_NTS);

// Create the prepared statement. This will insert data into the
// table we created above.
printf("Creating prepared statement\n");

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 117 of 817

ret = SQLPrepare (hdlStmt, (SQLTCHAR*)"INSERT INTO customers (CustID, "
"CustName, Phone_Number) VALUES(?,?,?)", SQL_NTS) ;

if(!SQL_SUCCEEDED(ret)) {
printf("Could not create prepared statement\n");
exit(EXIT_FAILURE);

} else {
printf("Created prepared statement.\n");

}
// This is the data to be inserted into the database.
SQLCHAR custNames[][50] = { "Allen, Anna", "Brown, Bill", "Chu, Cindy",

"Dodd, Don" };
SQLINTEGER custIDs[] = { 100, 101, 102, 103};
SQLCHAR phoneNums[][15] = {"1-617-555-1234", "1-781-555-1212",

"1-508-555-4321", "1-617-555-4444"};
// Bind the data arrays to the parameters in the prepared SQL
// statement. First is the custID.
ret = SQLBindParameter(hdlStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, (SQLPOINTER)custIDs, sizeof(SQLINTEGER) , NULL);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind custID array\n");
exit(EXIT_FAILURE);

} else {
printf("Bound CustIDs array to prepared statement\n");

}
// Bind CustNames
ret = SQLBindParameter(hdlStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

50, 0, (SQLPOINTER)custNames, 50, NULL);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind custNames\n");
exit(EXIT_FAILURE);

} else {
printf("Bound CustNames array to prepared statement\n");

}
// Bind phoneNums
ret = SQLBindParameter(hdlStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

15, 0, (SQLPOINTER)phoneNums, 15, NULL);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind phoneNums\n");
exit(EXIT_FAILURE);

} else {
printf("Bound phoneNums array to prepared statement\n");

}
// Tell the ODBC driver how many rows we have in the
// array.
ret = SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAMSET_SIZE,

(SQLPOINTER)NUM_ENTRIES, 0);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not bind set parameter size\n");
exit(EXIT_FAILURE);

} else {
printf("Bound phoneNums array to prepared statement\n");

}

// Add multiple batches to the database. This just adds the same
// batch of data four times for simplicity's sake. Each call adds
// the 4 rows into the database.
for (int batchLoop=1; batchLoop<=5; batchLoop++) {

// Execute the prepared statement, loading all of the data

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 118 of 817

// in the arrays.
printf("Adding Batch #%d...", batchLoop);
ret = SQLExecute(hdlStmt);
if(!SQL_SUCCEEDED(ret)) {

printf("not successful!\n");
} else {

printf("successful.\n");
}

}
// Done with batches, commit the transaction
printf("Committing transaction\n");
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not commit transaction\n");
} else {

printf("Committed transaction\n");
}

// Clean up
printf("Free handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

The result of running the above code is shown below.

Allocated an environment handle.
Set application to ODBC 3.
Allocated Database handle.
Connecting to database.
Connected to database.
Creating prepared statement
Created prepared statement.
Bound CustIDs array to prepared statement
Bound CustNames array to prepared statement
Bound phoneNums array to prepared statement
Adding Batch #1...successful.
Adding Batch #2...successful.
Adding Batch #3...successful.
Adding Batch #4...successful.
Adding Batch #5...successful.
Committing transaction
Committed transaction
Free handles.

The resulting table looks like this:

=> SELECT * FROM customers;

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 119 of 817

CustID | CustName | Phone_Number
--------+-------------+-----------------

100 | Allen, Anna | 1-617-555-1234
101 | Brown, Bill | 1-781-555-1212
102 | Chu, Cindy | 1-508-555-4321
103 | Dodd, Don | 1-617-555-4444
100 | Allen, Anna | 1-617-555-1234
101 | Brown, Bill | 1-781-555-1212
102 | Chu, Cindy | 1-508-555-4321
103 | Dodd, Don | 1-617-555-4444
100 | Allen, Anna | 1-617-555-1234
101 | Brown, Bill | 1-781-555-1212
102 | Chu, Cindy | 1-508-555-4321
103 | Dodd, Don | 1-617-555-4444
100 | Allen, Anna | 1-617-555-1234
101 | Brown, Bill | 1-781-555-1212
102 | Chu, Cindy | 1-508-555-4321
103 | Dodd, Don | 1-617-555-4444
100 | Allen, Anna | 1-617-555-1234
101 | Brown, Bill | 1-781-555-1212
102 | Chu, Cindy | 1-508-555-4321
103 | Dodd, Don | 1-617-555-4444

(20 rows)

Note: An input parameter bound with the SQL_C_NUMERIC data type uses the default
numeric precision (37) and the default scale (0) instead of the precision and scale set by the
SQL_NUMERIC_STRUCT input value. This behavior adheres to the ODBC standard. If you
do not want to use the default precision and scale, use SQLSetDescField() or SQLSetDescRec
() to change them in the statement's attributes.

Tracking Load Status (ODBC)

After loading a batch of data, your client application can get the number of rows that were
processed and find out whether each row was accepted or rejected.

Finding the Number of Accepted Rows

To get the number of rows processed by a batch, you add an attribute named SQL_ATTR_
PARAMS_PROCESSED_PTR to the statement object that points to a variable to receive the
number rows:

SQLULEN rowsProcessed;
SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAMS_PROCESSED_PTR, &rowsProcessed, 0);

When your application calls SQLExecute() to insert the batch, the HP Vertica ODBC driver saves
the number of rows that it processed (which is not necessarily the number of rows that were
successfully inserted) in the variable you specified in the SQL_ATTR_PARAMS_PROCESSED_
PTR statement attribute.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 120 of 817

Finding the Accepted and Rejected Rows

Your application can also set a statement attribute named SQL_ATTR_PARAM_STATUS_PTR
that points to an array where the ODBC driver can store the result of inserting each row:

SQLUSMALLINT rowResults[NUM_ENTRIES];
SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAM_STATUS_PTR, rowResults, 0);

This array must be at least as large as the number of rows being inserted in each batch.

When your application calls SQLExecute to insert a batch, the ODBC driver populates the array with
values indicating whether each row was successfully inserted (SQL_PARAM_SUCCESS or SQL_
PARAM_SUCCESS_WITH_INFO) or encountered an error (SQL_PARAM_ERROR).

The following example expands on the example shown in Using Batch Inserts to include reporting
the number of rows processed and the status of each row inserted.

// Some standard headers
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
// Helper function to print SQL error messages.
template <typename HandleT>
void reportError(int handleTypeEnum, HandleT hdl)
{

// Get the status records.
SQLSMALLINT i, MsgLen;
SQLRETURN ret2;
SQLCHAR SqlState[6], Msg[SQL_MAX_MESSAGE_LENGTH];
SQLINTEGER NativeError;
i = 1;
printf("\n");
while ((ret2 = SQLGetDiagRec(handleTypeEnum, hdl, i, SqlState, &NativeError,

Msg, sizeof(Msg), &MsgLen)) != SQL_NO_DATA) {
printf("error record %d\n", i);
printf("sqlstate: %s\n", SqlState);
printf("detailed msg: %s\n", Msg);
printf("native error code: %d\n\n", NativeError);
i++;

}
}
int main()
{

// Number of data rows to insert
const int NUM_ENTRIES = 4;

SQLRETURN ret;
SQLHENV hdlEnv;

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 121 of 817

ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated Database handle.\n");

}
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not connect to database.\n");
reportError<SQLHDBC>(SQL_HANDLE_DBC, hdlDbc);
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}
// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",

SQL_NTS);
// Create a table into which we can store data
printf("Creating table.\n");
ret = SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers "

"(CustID int, CustName varchar(50), Phone_Number char(15));",
SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {
printf("Created table.\n");

}
// Create the prepared statement. This will insert data into the
// table we created above.
printf("Creating prepared statement\n");
ret = SQLPrepare (hdlStmt, (SQLTCHAR*)"INSERT INTO customers (CustID, "

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 122 of 817

"CustName, Phone_Number) VALUES(?,?,?)", SQL_NTS) ;
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {
printf("Created prepared statement.\n");

}
// This is the data to be inserted into the database.
char custNames[][50] = { "Allen, Anna", "Brown, Bill", "Chu, Cindy",

"Dodd, Don" };
SQLINTEGER custIDs[] = { 100, 101, 102, 103};
char phoneNums[][15] = {"1-617-555-1234", "1-781-555-1212",

"1-508-555-4321", "1-617-555-4444"};
// Bind the data arrays to the parameters in the prepared SQL
// statement
ret = SQLBindParameter(hdlStmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER,

0, 0, (SQLPOINTER)custIDs, sizeof(SQLINTEGER) , NULL);
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {
printf("Bound CustIDs array to prepared statement\n");

}
// Bind CustNames
SQLBindParameter(hdlStmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_VARCHAR,

50, 0, (SQLPOINTER)custNames, 50, NULL);
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {
printf("Bound CustNames array to prepared statement\n");

}
// Bind phoneNums
SQLBindParameter(hdlStmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

15, 0, (SQLPOINTER)phoneNums, 15, NULL);
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

} else {
printf("Bound phoneNums array to prepared statement\n");

}
// Set up a variable to recieve number of parameters processed.
SQLULEN rowsProcessed;
// Set a statement attribute to point to the variable
SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAMS_PROCESSED_PTR, &rowsProcessed, 0);
// Set up an array to hold the result of each row insert
SQLUSMALLINT rowResults[NUM_ENTRIES];
// Set a statement attribute to point to the array
SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAM_STATUS_PTR, rowResults, 0);
// Tell the ODBC driver how many rows we have in the
// array.
SQLSetStmtAttr(hdlStmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)NUM_ENTRIES, 0);
// Add multiple batches to the database. This just adds the same
// batch of data over and over again for simplicity's sake.
for (int batchLoop=1; batchLoop<=5; batchLoop++) {

// Execute the prepared statement, loading all of the data
// in the arrays.
printf("Adding Batch #%d...", batchLoop);

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 123 of 817

ret = SQLExecute(hdlStmt);
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
exit(EXIT_FAILURE);

}
// Number of rows processed is in rowsProcessed
printf("Params processed: %d\n", rowsProcessed);
printf("Results of inserting each row:\n");
int i;
for (i = 0; i<NUM_ENTRIES; i++) {

SQLUSMALLINT result = rowResults[i];
switch(rowResults[i]) {

case SQL_PARAM_SUCCESS:
case SQL_PARAM_SUCCESS_WITH_INFO:

printf(" Row %d inserted successsfully\n", i+1);
break;

case SQL_PARAM_ERROR:
printf(" Row %d was not inserted due to an error.", i+1);
break;

default:
printf(" Row %d had some issue with it: %d\n", i+1, result);

}
}

}
// Done with batches, commit the transaction
printf("Commit Transaction\n");
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);
if(!SQL_SUCCEEDED(ret)) {

reportError<SQLHDBC>(SQL_HANDLE_STMT, hdlStmt);
}

// Clean up
printf("Free handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

Running the example code produces the following output:

Allocated an environment handle.Set application to ODBC 3.
Allocated Database handle.
Connecting to database.
Connected to database.
Creating table.
Created table.
Creating prepared statement
Created prepared statement.
Bound CustIDs array to prepared statement

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 124 of 817

Bound CustNames array to prepared statement
Bound phoneNums array to prepared statement
Adding Batch #1...Params processed: 4
Results of inserting each row:

Row 1 inserted successfully
Row 2 inserted successfully
Row 3 inserted successfully
Row 4 inserted successfully

Adding Batch #2...Params processed: 4
Results of inserting each row:

Row 1 inserted successfully
Row 2 inserted successfully
Row 3 inserted successfully
Row 4 inserted successfully

Adding Batch #3...Params processed: 4
Results of inserting each row:

Row 1 inserted successfully
Row 2 inserted successfully
Row 3 inserted successfully
Row 4 inserted successfully

Adding Batch #4...Params processed: 4
Results of inserting each row:

Row 1 inserted successfully
Row 2 inserted successfully
Row 3 inserted successfully
Row 4 inserted successfully

Adding Batch #5...Params processed: 4
Results of inserting each row:

Row 1 inserted successfully
Row 2 inserted successfully
Row 3 inserted successfully
Row 4 inserted successfully

Commit Transaction
Free handles.

Error Handling During Batch Loads

When loading individual batches, you can find information on how many rows were accepted and
what rows were rejected (see Tracking Load Status (ODBC) for details). Other errors, such as disk
space errors, do not occur while inserting individual batches. This behavior is caused by having a
single COPY statement perform the loading of multiple consecutive batches. Using the single
COPY statement makes the batch load process perform much faster. It is only when the COPY
statement closes that the batched data is committed and HP Vertica reports other types of errors.

Your bulk loading application should check for errors when the COPY statement closes. Normally,
you force the COPY statement to close by calling the SQLEndTran() function to end the
transaction. You can also force the COPY statement to close by closing the cursor using the
SQLCloseCursor() function, or by setting the database connection's AutoCommit property to true
before inserting the last batch in the load.

Note: The COPY statement also closes if you execute any non-insert statement. However
having to deal with errors from the COPY statement in what might be an otherwise-unrelated

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 125 of 817

query is not intuitive, and can lead to confusion and a harder to maintain application. You
should explicitly end the COPY statement at the end of your batch load and handle any errors
at that time.

Loading Batches in Parallel

To load batches in parallel, you need to establish a thread for each parallel batch you want to load.
Then for each thread, set the batch size, prepare the insert, and execute the batch insert. The
following code samples illustrate this.

#define THREAD_COUNT 10#define ROWS_PER_THREAD 100000
#define BATCH_SIZE 10000
void *BatchInsert(void *arg){

SQLRETURN rc = SQL_SUCCESS;
int i, j;
SQLINTEGER *intValArray = NULL;
SQLINTEGER lRows=BATCH_SIZE;
// connect to db, allocate statement, set auto-commit off – skipped
intValArray = (SQLINTEGER*) malloc(sizeof(*intValArray) * BATCH_SIZE);
rc = SQLSetStmtAttr(hStmt, SQL_ATTR_PARAMSET_SIZE, (SQLPOINTER)lRows, 0);

// prepare insert
rc = SQLPrepare (hStmt, (SQLTCHAR*)"insert into mt_test values(?)", SQL_NTS) ;
rc = SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, 0, 0, (SQL

POINTER)intValArray, sizeof(*intValArray), NULL);
for (i = 0; i < ROWS_PER_THREAD; i) {

for (j = 0; j < BATCH_SIZE; j++) {
intValArray[j] = (SQLINTEGER) ++i;

}
rc = SQLExecute(hStmt);

}
rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

}
int runMT(int argc, char **argv) {

pthread_t t[THREAD_COUNT];
void *trc;
for (int i=0;i<THREAD_COUNT;++i){

pthread_create(&t[i], NULL, BatchInsert, argv[0]);
}
for (int i=0;i<THREAD_COUNT;++i){

pthread_join(t[i], &trc);
}
free(trc);
return 0;

}

Using the COPY Statement
The COPY statement lets you bulk load data from a file on stored on a database node into the HP
Vertica database. This method is themost efficient way to load data into HP Vertica because the
file resides on the database server. One drawback is that only a database superuser can use
COPY, since it requires privilege in order to access the filesystem of the database node.

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 126 of 817

One drawback of using COPY instead of performing batch loads is that you can only get results of
the load (the number of accepted and rejected rows) when the COPY statement has finished. With
batch loads, you canmonitor the progress as batches are inserted. The ability to monitor the
progress of a load can be a useful feature if you want to stop loading if a large portion of the data is
being rejected.

A primary concern when bulk loading data using COPY is deciding whether the data should be
loaded directly intoROS using the DIRECT option, or by using the AUTOmethod (loading into
WOS until it fills, then loading into ROS). You should load directly into the ROS when your
transaction will load a large (more than 100MB of data or so) amount of data.

Note: The exceptions/rejections files are created on the client machine when the exceptions
and rejected datamodifiers are specified on the COPY command. Specify a local path and
filename for thesemodifiers when executing a COPY query from the driver.

The following example loads data into theWOS (Write Optimized Store) until it fills, then stores
additional data directly inROS (Read Optimized Store).

ret=SQLExecDirect(hdlStmt, (SQLCHAR*)"COPY customers "
"FROM '/data/customers.txt' AUTO",SQL_NTS);

The following example loads data into theROS (Read Optimized Store.

ret=SQLExecDirect(hdlStmt, (SQLCHAR*)"COPY customers "
"FROM '/data/customers.txt' DIRECT",SQL_NTS);

See the COPY statement in the SQLReferenceManual for more information about its syntax and
use.

The following example demonstrates using the COPY command.

// Some standard headers
#include <stdio.h>
#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
// Helper function to determine if an ODBC function call returned
// successfully.
bool notSuccess(SQLRETURN ret) {

return (ret != SQL_SUCCESS && ret != SQL_SUCCESS_WITH_INFO);
}
int main()
{

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(notSuccess(ret)) {

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 127 of 817

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
// Tell ODBC that the application uses ODBC 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(notSuccess(ret)) {

printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";

// Note: User MUST be a database superuser to be able to access files on the
// filesystem of the node.
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(notSuccess(ret)) {
printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}

// Disable AUTOCOMMIT
printf("Disabling autocommit.\n");
ret = SQLSetConnectAttr(hdlDbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF, SQL_NTS);
if(notSuccess(ret)) {

printf("Could not disable autocommit.\n");
exit(EXIT_FAILURE);

}

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);
// Create table to hold the data
SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",

SQL_NTS);
SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers"

"(Last_Name char(50) NOT NULL, First_Name char(50),Email char(50), "
"Phone_Number char(15));",
SQL_NTS);

// Run the copy command to load data into ROS.
ret=SQLExecDirect(hdlStmt, (SQLCHAR*)"COPY customers "

"FROM '/data/customers.txt' DIRECT",

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 128 of 817

SQL_NTS);
if(notSuccess(ret)) {

printf("Data was not successfully loaded.\n");
exit(EXIT_FAILURE);

} else {
// Get number of rows added.
SQLLEN numRows;
ret=SQLRowCount(hdlStmt, &numRows);
printf("Successfully inserted %d rows.\n", numRows);

}

// Done with batches, commit the transaction
printf("Committing transaction\n");
ret = SQLEndTran(SQL_HANDLE_DBC, hdlDbc, SQL_COMMIT);
if(notSuccess(ret)) {

printf("Could not commit transaction\n");
} else {

printf("Committed transaction\n");
}

// Clean up
printf("Free handles.\n");
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

The example prints the following when run:

Allocated an environment handle.
Set application to ODBC 3.
Connecting to database.
Connected to database.
Disabling autocommit.
Successfully inserted 10001 rows.
Committing transaction
Committed transaction
Free handles.

Streaming Data From the Client Using COPY LOCAL
The LOCAL option of the SQLCOPY statement lets you stream data from a file on a client system
to your HP Vertica database. This statement works through theODBC driver, making the task of
transferring data files from the client to the server much easier.

The LOCAL option of COPY works transparently through theODBC driver. Just have your client
application execute a statement containing a COPY LOCAL statement, and the ODBC driver will
read and stream the data file from the client to the server. For example:

// Some standard headers
#include <stdio.h>

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 129 of 817

#include <stdlib.h>
// Only needed for Windows clients
// #include <windows.h>
// Standard ODBC headers
#include <sql.h>
#include <sqltypes.h>
#include <sqlext.h>
int main()
{

// Set up the ODBC environment
SQLRETURN ret;
SQLHENV hdlEnv;
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &hdlEnv);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not allocate a handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Allocated an environment handle.\n");

}
// Tell ODBC that the application uses ODBC 3.
ret = SQLSetEnvAttr(hdlEnv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3, SQL_IS_UINTEGER);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not set application version to ODBC3.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Allocate a database handle.
SQLHDBC hdlDbc;
ret = SQLAllocHandle(SQL_HANDLE_DBC, hdlEnv, &hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Could not aalocate a database handle.\n");
exit(EXIT_FAILURE);

} else {
printf("Set application to ODBC 3.\n");

}
// Connect to the database
printf("Connecting to database.\n");
const char *dsnName = "ExampleDB";
const char* userID = "dbadmin";
const char* passwd = "password123";
ret = SQLConnect(hdlDbc, (SQLCHAR*)dsnName,

SQL_NTS,(SQLCHAR*)userID,SQL_NTS,
(SQLCHAR*)passwd, SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Could not connect to database.\n");
exit(EXIT_FAILURE);

} else {
printf("Connected to database.\n");

}

// Set up a statement handle
SQLHSTMT hdlStmt;
SQLAllocHandle(SQL_HANDLE_STMT, hdlDbc, &hdlStmt);

// Create table to hold the data

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 130 of 817

SQLExecDirect(hdlStmt, (SQLCHAR*)"DROP TABLE IF EXISTS customers",
SQL_NTS);

SQLExecDirect(hdlStmt, (SQLCHAR*)"CREATE TABLE customers"
"(Last_Name char(50) NOT NULL, First_Name char(50),Email char(50), "
"Phone_Number char(15));",
SQL_NTS);

// Run the copy command to load data into ROS.
ret=SQLExecDirect(hdlStmt, (SQLCHAR*)"COPY customers "

"FROM LOCAL '/home/dbadmin/customers.txt' DIRECT",
SQL_NTS);

if(!SQL_SUCCEEDED(ret)) {
printf("Data was not successfully loaded.\n");
exit(EXIT_FAILURE);

} else {
// Get number of rows added.
SQLLEN numRows;
ret=SQLRowCount(hdlStmt, &numRows);
printf("Successfully inserted %d rows.\n", numRows);

}

// COPY commits automatically, unless it is told not to, so
// there is no need to commit the transaction.

// Clean up
printf("Free handles.\n");
ret = SQLDisconnect(hdlDbc);
if(!SQL_SUCCEEDED(ret)) {

printf("Error disconnecting. Transaction still open?\n");
exit(EXIT_FAILURE);

}
SQLFreeHandle(SQL_HANDLE_STMT, hdlStmt);
SQLFreeHandle(SQL_HANDLE_DBC, hdlDbc);
SQLFreeHandle(SQL_HANDLE_ENV, hdlEnv);
exit(EXIT_SUCCESS);

}

This example is essentially the same as the example shown in Using the COPY Statement, except
it uses the COPY statement's LOCAL option to load data from the client system rather than from
the filesystem of the database node.

Note: OnWindows clients, the path you supply for the COPY LOCAL file is limited to 216
characters due to limitations in theWindows API.

See Also

l COPY LOCAL

HP Vertica Programmer's Guide
HP Vertica Client Libraries

HP Vertica Analytics Platform (7.0.x) Page 131 of 817

Programming JDBC Client Applications
The HP Vertica JDBC driver provides you with a standard JDBC API. If you have accessed other
databases using JDBC, you should find accessing HP Vertica familiar. This section explains how
to use the JDBC to connect your Java application to HP Vertica.

Youmust first install the JDBC client driver on all client systems that will be accessing the HP
Vertica database. For installation instructions, see Installing the HP Vertica Client Drivers.

For more information about JDBC:

l Vertica Analytics Platform JDBC Driver JavaDoc (HP Vertica extensions)

l An Introduction to JDBC, Part 1

JDBC Feature Support
The HP Vertica JDBC driver complies with the JDBC 4.0 standards (although it does not
implement all of the optional features in them). Your application can use the DatabaseMetaData
class to determine if the driver supports a particular feature it wants to use. In addition, the driver
implements the Wrapper interface, which lets your client code discover HP Vertica-specific
extensions to the JDBC standard classes, such as VerticaConnection and VerticaStatement
classes.

Some important facts to keep inmind when using the HP Vertica JDBC driver:

l Cursors are forward only and are not scrollable. Result sets cannot be updated.

l A connection supports executing a single statement at any time. If you want to executemultiple
statements simultaneously, youmust openmultiple connections.

l Because HP Vertica does not have stored procedures, CallableStatement is not supported.
The DatabaseMetaData.getProcedures() and .getProcedureColumns()methods return
information about SQL functions (includingUser Defined Functions) instead of stored
procedures.

Multiple SQL Statement Support
The HP Vertica JDBC driver can execute strings containingmultiple statements. For example:

stmt.executeUpdate("CREATE TABLE t(a INT);INSERT INTO t VALUES(10);");

Only the Statement interface supports executing strings containingmultiple SQL statements. You
cannot usemultiple statement strings with PreparedStatement. COPY statements that copy a file
from a host file system work in amultiple statement string. However, client COPY statements
(COPY FROM STDIN) do not work.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 132 of 817

http://www.onjava.com/pub/a/onjava/excerpt/javaentnut_2/index1.html

Multiple Batch Conversion to COPY Statements
The HP Vertica JDBC driver converts all batch inserts into HP Vertica COPY statements. If you
turn off your JDBC connection's AutoCommit property, the JDBC driver uses a single COPY
statement to load data from sequential batch inserts which can improve load performance by
reducing overhead. See Batch Inserts Using JDBC Prepared Statements for details.

Multiple JDBC Version Support
The HP Vertica JDBC driver implements both JDBC 3.0 and JDBC 4.0 compliant interfaces. The
interface that the driver returns to your application depends on the JVM version on which it is
running. If your application is running on a 5.0 JVM, the driver supplies your application with JDBC
3.0 classes. If your application is running on a 6.0 or later JVM, the driver supplies it with JDBC 4.0
classes.

Updating Application Code From Previous Driver
Versions

If you have a client application that was written using a previous version of the HP Vertica JDBC
driver, youmay need to alter its code to work with newer driver versions, or youmay want to
change your application to take advantage of new driver features. The topics in this section explain
the changes that have beenmade to the JDBC driver from previous driver versions.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 133 of 817

Updating Client Code From 4.1 or Earlier JDBC Driver
Versions

The HP Vertica version 5.1 client drivers were rewritten to improve standards compliance and
reliability. As a result, someHP Vertica-specific features and past incompatibilities were
eliminated. If you client code worked with a pre-5.1 version of the HP Vertica JDBC driver, you
must update it to work with the new driver versions. The following topics explain these updates.

Driver Package and Interface Name Changes

The name of the HP Vertica client driver package has changed. Previously, the HP Vertica JDBC
driver classes were located in com.vertica. They are now in com.vertica.jdbc.

Loading the 4.1 Driver Loading the 5.1 Driver

Class.forName("com.vertica.Driver"); Class.forName("com.vertica.jdbc.Driver");

Note: The HP Vertica version 7.0 JDBC driver introduces JDBC 4.0 compatibility which
includes the JNDI service registration that eliminates the need tomanually load the JDBC
driver. See New Features in the HP Vertica Version 7.0 JDBC Driver for details.

Interface Name Changes

The following table lists the interfaces in the HP Vertica JDBC client library whose names have
changed.

4.1 Interface Name 5.1 Interface Name

PGConnection VerticaConnection

PGStatement VerticaStatement

Normally, you reference these interfaces only when casting a Connection or Statement object to
access HP Vertica-specific methods or properties. Many of the HP Vertica-specific methods and
properties have been removed from the version 5.1 client drivers in favor of JDBC-standard
methods and properties. You should not need to cast to these interfaces as often when using the
new client drivers. See Converting From PGConnection to VerticaConnection and Converting From
PGStatement to VerticaStatement for more information.

Removed Classes

The HP Vertica version 5.1 JDBC driver has removed several legacy classes.

Previously, many HP Vertica-specific methods would throw a PSQLExceptionwhen encountering
an error. This class has been removed. Instead, all methods now throw a standard SQLException.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 134 of 817

Note: Note: The HP Vertica version 7.0 JDBC driver introduces a set of SQLException
subclasses that more specifically describe error situations. See New Features in the HP
Vertica Version 7.0 JDBC Driver for more information.

The PGInterval class has been replaced with a pair of HP Vertica interval classes:
VerticaDayTimeInterval (which represents all ten types of day/time intervals) and
VerticaYearMonthInterval (which represents all three types of year/month intervals). See Using
Intervals with JDBC for details.

The PGMoney class has been removed from the driver.

Converting From PGConnection to VerticaConnection

The VerticaConnection interface replaces the PGConnection interface in the version 5.1 JDBC
driver. The PGConnection interface contained HP Vertica-specific extensions to the standard
JDBC Connection interface. VerticaConnection does not implement some of PGConnection's
methods tomake it more compliant with the JDBC standards.

Property Setters and Getters

The PGConnection interface had several specific setters and getters for some connection
properties. These have been removed from VerticaConnection and replaced with properties, as
described in the following table:

4.1 Methods
5.1 Property
Name Description

getBatchDirectInsert()setBatchDirectInsert() DirectBatchInsert Controls whether data is
inserted directly intoROS,
or intoWOS.

getMaxLRSMemory()setMaxLRSMemory() ResultBufferSize Controls the size of the
memory buffer the client
uses when retrieving a
result set stream.

Instead of these non-standardmethods, use the VerticaConnection.getProperty() and
VerticaConnection.setProperty()methods to access these properties, or set them when
creating the database connection. See Connection Properties and Setting andGetting Connection
Property Values for more information.

Deprecated Methods

The followingmethods of the PGConnection class were deprecated in the version 4.1 drivers, and
are not implemented by VerticaConnection:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 135 of 817

Removed Methods Reason

getBatchInsertEnforceLength()setBatchInsertEnforceLength() In the HP Vertica version 5.1
drivers, batch inserts always
enforce column-width limitations.
This makes batch inserts
consistent with non-batch
inserts, which always enforce
width limitations. If you do not
want to batch load errors to occur
due to data being too wide for the
column, you can either:

l Truncate the data to the
column's width before
attempting to insert it

l Use the VerticaCopyStream
class to execute a COPY
FROM STDIN statement,
without an
ENFORCELENGTH
parameter.

getBinaryBatchInsert()setBinaryBatchInsert() The new JDBC driver now uses
a single batch insert protocol
rather than having separate
binary and text modes to insert
data.

getLocale()setLocale() Thesemethods are not
implemented by
VerticaConnection. Instead,
you set the connection's locale
using the SET LOCALE SQL
statement. See Setting the
Locale for JDBC Sessions for
details.

getStreamingLRS()setStreamingLRS() The new JDBC driver always
uses streaming result sets rather
than optionally caching the
results on the client.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 136 of 817

Removed Methods Reason

getEncoding()setEncoding()
getFastPathAPI()
getLargeObjectAPI()
getManagedBatchInsert()
setManagedBatchInsert()
getObject()
getPGType()
getPrepareThreshold()
setPrepareThreshold()
getSQLType()
getUse35CopyFormat()
setUse35CopyFormat()
getUse35CopyParameters()
setUser35CopyParameters()
addDataType()

All of thesemethods were
previously deprecated and have
been removed from the version
5.1 JDBC driver.

Savepoint Support

The version 5.1 JDBC driver implements the Savepoint interface, allowing you to use savepoints
to segment your transactions and later roll back a portion of the transaction.

Updatable Result Set Changes

The createStatement()method in the 4.1 and earlier JDBC drivers accepted the
ResultSet.CONCUR_UPDATABLE flag to create an updatable result set. However, the driver's
support of this feature was limited. The 5.1 JDBC driver does not support updatable result sets. The
createStatement()method now accepts just ResultSet.TYPE_FORWARD_ONLY and
ResultSet.CONCUR_READ_ONLY flags. It throws an exception if you pass it other flags.

Converting From PGStatement to VerticaStatement

The VerticaStatement interface contains the HP Vertica-specific extensions of the standard
JDBC Statement interface. In previous versions of the HP Vertica JDBC driver, this interface was
named PGStatement. In addition to the name change, a somemethods have been removed from
this interface.

Deprecated Methods

VerticaStatement does not implement the following PGStatementmethods because they are
obsolete:

l executeCopyIn()

l executeCopyOut()

l finishLoad()

l getLastOID()

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 137 of 817

Bulk Loading Method Changes

VerticaStatement does not implement the following PGStatement bulk loadingmethods:

l addStreamtoCopyIn()

l startCopyIn()

l finishCopyIn()

Instead, the new VerticaCopyStream class implements a stream copying feature. See Streaming
Data Via JDBC.

Connection Property Setters and Getters

In previous versions of the drivers, many of the connection property setters and getters on the
PGConnection interface were also implemented in the PGStatement interface. Thesemethods
allowed you to change some of the connection parameters for the statement, letting you override
their settings on the PGConnection object used to create the statement. VerticaStatement does
not implement these setters and getters helping to prevent potential confusion and difficult-to-debug
issues caused by having different statements on the same connection having their own connection
properties.

VerticaStatement objects cache two properties independently: DirectBatchInsert and
ResultBufferSize. Once a VerticaStatement object is instantiated, it stores the values of these
properties that were set on the VerticaConnection object you used to create them. The object
retains these values even if you later change the property on the VerticaConnection object.

For example, in the following code:

// Set the DirectBatchInsert property
((VerticaConnection) conn).setProperty("DirectBatchInsert", true);
// Create a statement object
Statement stmtA = conn.createStatement();
// Change the direct batch insert setting and create another
// statement.
((VerticaConnection) conn).setProperty("DirectBatchInsert", false);
Statement stmtB = conn.createStatement();

The stmtA object has its DirectBatchInsert property set to true, since that was the property's value
on the VerticaConnection used to instantiate it. Since this property is specific to the statement,
stmtA's DirectBatchInsert property remains unchanged when the connection's DirectBatchInsert
property changes to false later.

Note: The VerticaStatement interface does not cache any of the other connection properties.
If you change another property (such as Locale) on a VerticaConnection object, the change
affects all of the VerticaStatement objects instantiated using that connection object.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 138 of 817

Multiple Statement Support

The previous JDBC driver's implementation of the Statement interface did not support executing
SQL strings containingmultiple statements. The new driver's implementation does support multiple
statements. For example:

stmt.executeUpdate("CREATE TABLE t(a INT);INSERT INTO t VALUES(10);");

Only the Statement interface supports executing strings containingmultiple SQL statements. You
cannot usemultiple statement strings with PreparedStatement. COPY statements that copy a file
from a host file system work in amultiple statement string. However, client COPY statements
(COPY FROM STDIN) do not work.

Connection Property Changes

JDBC connection properties let you control the behavior of your application's connection to the
database. The HP Vertica version 5.1 JDBC driver has removed some old properties, renamed
several others, and added some new properties.

New Connection Properties

The following properties have been added to the HP Vertica version 5.1 JDBC driver.

Property Description

ConnSettings Contains SQL commands to be executed when the database connection
is established.

LogLevel Sets the types of messages that the client writes to a log file.

LogNameSpace Limits themessages written to the log to only those generated by classes
in the given namespace.

LogPath Sets the path where the log file is written.

TransactionIsolation Previously could only be accessed using a getter and setter method on
the PGConnection object. It can now be set using the samemethods as
other connection properties.

ThreePartNaming Controls whether the databasemetadata uses the database name as the
catalog name. This property is only used for backwards compatibility with
some client software.

See Connection Properties for more information about these new properties.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 139 of 817

Renamed Properties

Several properties have been renamed tomake connection properties more consistent across the
different client libraries:

4.1 Property
Name 5.1 Name Description

defaultAutoCommit Autocommit Sets whether statements automatically commit
themselves.

SessionLabel Label Identifies the connection on the server.

maxLRSMemory ResultBufferSize Sets the buffer size the driver uses when retrieving a
result set from the server. In addition, the default value
has been changed from 8MB to 8KB.

Removed Connection Properties

The following table lists the connection properties have been removed from the HP Vertica version
5.1 JDBC driver:

Parameter Description

batchInsertEnforceLength Controlled whether inserting data that is too wide for its column
would cause an error. Removed tomake batch inserts
consistent with other types of data inserts. Attempting to insert
data that is too wide for a column always results in an error.

batchInsertRecordTerminator Set the record terminator for a batch insert. This property was
deprecated and was only available for backwards compatibility.

binaryBatchInsert Controlled whether batched data inserts were transmitted as
binary data or converted to string. Removed because the driver
now uses NATIVE VARCHAR transfer for all data types.

BinaryDataTransfer Controlled whether data was transmitted between the server and
the client in binary format. Removed because the driver now
uses NATIVE VARCHAR to transfer data

KeepAlive Caused the network connection to send keepalive packets to
ensure the connection remained open during idle periods. The
new JDBC driver always sends keepalive packets.

Locale Set the locale for the connection. Instead of a property, use a
query to set the locale. You can include a SQL statement in the
ConnSettings property to set the locale as soon as the JDBC
driver connects to the database. See Setting the Locale for
JDBC Sessions.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 140 of 817

Parameter Description

prepareThreshold Controlled how many times a statement would be executed
before the server would automatically convert it to a server-side
prepared statement. Removed since this functionality was
deprecated.

streamingLRS Controlled whether results were streamed to the client as it
requested data, or if all data in a result set was sent to the client,
which cached it in a local file. Removed since the new driver
always uses streamingmode.

New Features in the HP Vertica Version 7.0 JDBC Driver
The HP Vertica Version 7.0 JDBC driver introduces JDBC 4.0 compatibility. This driver is
completely backwards compatible with the earlier driver versions, so you do not need to change the
code of your Java client application or even recompile it. Youmay wish to update you client
application to take advantage of some of the features offered by the new driver, which are explained
below.

JNDI Service Registration

In prior versions of the HP Vertica JDBC driver, your client application needed to load the JDBC
driver by calling Class.forName("com.vertica.jdbc.Driver") before using it. The new driver
implements JNDI service registration, so the JVM automatically finds and loads the JDBC driver
when your application tries to use it. Therefore, your application no longer needs to call
Class.forName before using the JDBC driver. There is no harm in having you application still call
Class.forName so you do not need to remove this call if it is already there.

Note: If you want your application to remain compatible with the JDBC 3.0 driver so it can run
in a Java 5 JVM, you should still have it call Class.forName to load the driver. You can remove
the call if your application will only be run on Java 6 or later JVMs which use the JDBC 4.0
driver.

Exception Class Improvements

In the JDBC 3.0 standard, most errors were signaled by throwing a single exception class
(SQLException). This single class makes it difficult for a client application to analyze errors. JDBC
4.0 introduces a hierarchy of subclasses of SQLExceptionwhich providemore specific information
to your application about the type of error that has occurred. With these new classes, your client
application can better respond to errors, potentially resolving them itself.

For example, exception subclasses that inherit from the SQLTransientException subclass of
SQLException (such as SQLTransientConnectionException) are thrown by the driver when it
encounters an error that may be caused by a temporary condition (such as a timeout or a network
issue that might resolve itself). Your client application could catch this exception and automatically
retry the operation instead of immediately reporting a failure to the user.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 141 of 817

The SQLException class and its subclasses now make iterating over multiple exceptions easier by
implementing the Iterator interface.

See Handling Errors for details about using these new SQLException subclasses.

Wrapper Interface Support

The JDBC 4.0 standard introduces the Wrapper interface, which lets client applications discover
vendor-specific extensions to the JDBC standards. Your client application can use this interface to
find Vertica-specific extensions to standard JDBC classes such as VerticaConnection (an
extension to the standard Connection class) and VerticaPreparedStatement (an extension to the
PreparedStatement class) which implement the Wrapper interface.

Additional DatabaseMetaData Methods

Past versions of the JDBC standard contained the DatabaseMetaData interface which let client
applications determine which features the JDBC driver and database implemented. JDBC 4.0
extends this interface with new methods that the HP Vertica JDBC driver implements. Among
these new methods are getFunctions() and getFunctionColumns()which let your client
application find which User Defined Functions (UDFs) are defined in the HP Vertica catalog, and
determine their input and output values. See Developing and Using User Defined Extensions for
more information about UDFs.

Improved Connection Pooling

The HP Vertica Version 7.0 JDBC driver implements the improvements in connection pooling
defined in the JDBC 4.0 standard. These improvements include:

l new methods to determine if a connection is still valid.

l new methods to report information about the client back to the server.

l new callback methods to alert client applications to the expiration of a connection or statement.

Normally, your client application will not use this API directly. Instead, you use an application
framework that handles connection pooling for you. See Using a Pooling Data Source for more
information.

Native Connection Load Balancing Support

The HP Vertica Version 7.0 server, client libraries, and vsql client support native connection load
balancing, which helps spread the resources used by client connections across all of the hosts in
the database. See "About Native Connection Load Balancing" on page 1 in the Administrator's
Guide for details. To support this feature, the JDBC driver has a new connection parameter named
ConnectionLoadBalance to enable load balancing on the client side of the connection. See Enabling
Native Connection Load Balancing in JDBC for more information.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 142 of 817

Connection Failover Support

The JDBC driver now supports two forms of connection failover: DNS based and parameter based.
This feature lets the JDBC driver automaitcally attempt to one or more backup hosts if ithe primary
host does not respond to its connection request.

See JDBC Connection Failover for more information.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 143 of 817

Creating and Configuring a Connection
Before your Java application can interact with HP Vertica, it must create a connection. Connecting
to HP Vertica via JDBC is similar to connecting tomost other databases.

Importing SQL Packages
Before creating a connection, youmust import the Java SQL packages. The easiest way to do this
to import the entire package using a wildcard:

import java.sql.*;

Youmay also want to import the Properties class. You can use an instance of this class to pass
connection properties when instantiating a connection, rather than encoding everything within the
connection string:

import java.util.Properties;

If your application needs to run in a Java 5 JVM, it will use the older JDBC 3.0-compliant driver.
This driver requires you tomanually load the HP Vertica JDBC driver using the Class.forName()
method:

// Only required for old JDBC 3.0 driver
try {

Class.forName("com.vertica.jdbc.Driver");
} catch (ClassNotFoundException e) {

// Could not find the driver class. Likely an issue
// with finding the .jar file.
System.err.println("Could not find the JDBC driver class.");
e.printStackTrace();
return; // Exit. Cannot do anything further.

}

If your application runs in a Java 6 or later JVM, the JVM automatically loads the HP Vertica JDBC
4.0-compatible driver without requiring the call to Class.forName. There is no harm inmaking this
call, so if you want your application to be compatible with both Java 5 and Java 6 (or later) JVMs, it
can still call Class.forName.

Opening the Connection
With SQL packages imported, you are ready to create your connection by calling the
DriverManager.getConnection()method. You supply this method with at least the following
information:

l The name of a host in the database cluster

l The port number for the database

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 144 of 817

l The name of the database

l The username of a database user account

l The password of the user (if the user has a password)

The first three parameters are always supplied as part of the connection string (a URL that tells the
JDBC driver where to find the database). The format of the connection string is:

"jdbc:vertica://VerticaHost:portNumber/databaseName"

The first portion of the connection string selects the HP Vertica JDBC driver, followed by the
location of the database.

The last two parameters, username and password, can be given to the JDBC driver in one of three
ways:

l as part of the connection string. The parameters are encoded similarly to URL parameters:

"jdbc:vertica://VerticaHost:portNumber/databaseName?user=username&password=password"

l passed as separate parameters to DriverManager.getConnection():

Connection conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:portNumber/databaseName",
"username", "password");

l passed in a Properties object:

Properties myProp = new Properties();myProp.put("user", "username");
myProp.put("password", "password");
Connection conn = DriverManager.getConnection(

"jdbc:vertica://VerticaHost:portNumber/databaseName", myProp);

Of these threemethods, the Properties object is themost flexible because it makes passing
additional connection properties to the getConnection()method easy. See Connection Properties
and Setting andGetting Connection Property Values for more information about the additional
connection properties.

The getConnection()method throws a SQLException or one of its subclasses if there is any
problem establishing a connection to the database, so you want to enclose it within a try-catch
block, as shown in the following complete example of establishing a connection.

import java.sql.*;
import java.util.Properties;
public class VerySimpleVerticaJDBCExample {

public static void main(String[] args) {
/*
* If your client needs to run under a Java 5 JVM, It will use the older

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 145 of 817

* JDBC 3.0-compliant driver, which requires you manually load the
* driver using Class.forname
*/

/*
* try { Class.forName("com.vertica.jdbc.Driver"); } catch
* (ClassNotFoundException e) { // Could not find the driver class.
* Likely an issue // with finding the .jar file.
* System.err.println("Could not find the JDBC driver class.");
* e.printStackTrace(); return; // Bail out. We cannot do anything
* further. }
*/

Properties myProp = new Properties();
myProp.put("user", "dbadmin");
myProp.put("password", "vertica");
myProp.put("loginTimeout", "35");
myProp.put("binaryBatchInsert", "true");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://docd04.verticacorp.com:5433/vmart", myProp);

System.out.println("Connected!");
conn.close();

} catch (SQLTransientConnectionException connException) {
// There was a potentially temporary network error
// Could automatically retry a number of times here, but
// instead just report error and exit.
System.out.print("Network connection issue: ");
System.out.print(connException.getMessage());
System.out.println(" Try again later!");
return;

} catch (SQLInvalidAuthorizationSpecException authException) {
// Either the username or password was wrong
System.out.print("Could not log into database: ");
System.out.print(authException.getMessage());
System.out.println(" Check the login credentials and try again.");
return;

} catch (SQLException e) {
// Catch-all for other exceptions
e.printStackTrace();

}
}

}

Notes
l When you disconnect a user session, any uncommitted transactions are automatically rolled

back.

l If your database is not compliant with your HP Vertica license terms, HP Vertica issues a
SQLWarningwhen you establish the connection to the database. You can retrieve this warning
using the Connection.getWarnings()method. SeeManaging Your License Key in the
Administrator's Guide for more information about complying with your license terms.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 146 of 817

JDBC Connection Properties
You use connection properties to configure the connection between your JDBC client application
and your HP Vertica database. The properties provide the basic information about the connections,
such as the server name and port number to use to connect to your database. They also let you
tune the performance of your connection and enable logging.

There are three ways to set a connection property:

l Including the property name and value as part of the connection string you pass to the
DriverManager.getConnection()method.

l Setting the properties in a Properties object, then passing it to the
DriverManager.getConnection()method.

l Using the VerticaConnection.setProperty()method. Only the connection properties that
can be changed after the connection has been established can be changed using the
setProperty()method.

In addition, some of the standard JDBC connection properties have getters and setters on the
Connection interface (such as Connection.setAutocommit()).

The following tables list the properties supported by the HP Vertica JDBC driver, and explain which
are required in order for the connection to be established.

Connection Properties

The properties in the following table can only be set before you open the connection to the
database. Two of them are required for every connection.

Property Description

ConnSettings A string containing SQL statements that the JDBC driver
automatically runs after it connects to the database. This property is
useful to set the locale, set the schema search path, or perform other
configuration that the connection requires.

Required?:No

Default Value: none

Label Sets a label for the connection on the server. This value appears in
the session_id column of the V_MONITOR.SESSIONS system
table.

Required?:No

Default Value: jdbc-driver_version-random_number

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 147 of 817

Property Description

LoginTimeout The number of seconds HP Vertica waits for a connection to be
established to the database before throwing a SQLException. When
set to 0 (the default) there is no TCP timeout.

Required?:No

Default Value: 0

SSL When set to true, uses SSL to encrypt the connection to the server.
HP Vertica needs to be configured to handle SSL connections before
you can establish an SSL-encrypted connection to it. See
Implementing SSL in the Administrator's Guide.

Required?:No

Default Value: false

Password The password to use to log into the database.

Required?:Yes

Default Value: none

User The database user name to use to connection to the database.

Required?:Yes

Default Value: none

ConnectionLoadBalance A Boolean indicating whether the client is willing to have its
connection redirected to another host in the HP Vertica database.
This setting only has an effect if the server has also enabled
connection load balancing. See About Native Connection Load
Balancing in the Administrator's Guide for more information about
native connection load balancing.

Required?:No

Default Value: false

BackupServerNode A string containing the host name or IP address of one or more hosts
in the database that he client should attempt to connect to if the
connection to the host specified in the connection string times out.
The host name or IP address can also include a colon followed by the
port number for the database. If no port number is specified, the client
uses the standard port number (5433) . Separatemultiple host name
or IP address entries with commas.

Required?:No

Default Value: none

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 148 of 817

General Properties

The following properties can be set after the connection is established. None of these properties are
required.

Property Description

AutoCommit Controls whether the connection automatically commits transactions. Set
this parameter to false to prevent the connection from automatically
committing its transactions. You often want to do this when you are bulk
loadingmultiple batches of data and you want the ability to roll back all of
the loads if an error occurs.

Note: This property was called defaultAutoCommit in previous versions of
the HP Vertica JDBC driver.

Set After Connection: Connection.setAutoCommit()

Default Value: true

DirectBatchInsert Determines whether a batch insert stored data directly intoROS (true) or
using AUTOmode (false).

When loading data using AUTOmode, HP Vertica inserts the data first
into theWOS. If theWOS is full, then HP Vertica inserts the data directly
intoROS. See the COPY statement for more details.

Set After Connection: VerticaConnection.setProperty()

Default Value: false

ReadOnly When set to true, makes the data connection read-only. Any queries
attempting to update the database using a read-only connection cause a
SQLException.

Set After Connection: Connection.setReadOnly()

Default Value: false

ResultBufferSize Sets the size of the buffer the HP Vertica JDBC driver uses to temporarily
store result sets.

Note: This property was namedmaxLRSMemory in previous versions of
the HP Vertica JDBC driver.

Set After Connection: VerticaConnection.setProperty()

Default Value: 8912 (8KB)

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 149 of 817

Property Description

SearchPath Sets the schema search path for the connection. The value for this
property is a string containing a comma-separated list of schema names.
See Setting Search Paths in the Administrator's Guide for more
information on the schema search path.

Set After Connection: VerticaConnection.setProperty()

Default Value: "$user", public, v_catalog, v_monitor, v_internal

ThreePartNaming A Boolean that controls how DatabaseMetaData reports the catalog
name. When set to true, the database name is returned as the catalog
name in the databasemetadata. When set to false, NULL is returned as
the catalog name.

Enable this option if your client software expects to be able to get the
catalog name from the databasemetadata and use it as part of a three-
part name reference.

Set After Connection: VerticaConnection.setProperty()

Default Value: true

TransactionIsolation Sets the isolation level of the transactions that use the connection. See
Changing the Transaction Isolation Level for details.

Note: In previous versions of the HP Vertica JDBC driver, this property
was only available using a getter and setter on the PGConnection object.
It can now be set like other connection properties.

Set After Connection: Connection.setTransactionIsolation()

Default Value: TRANSACTION_READ_COMMITTED

Logging Properties

The properties that control client loggingmust be set before the connection is opened. None of
these properties are required, and none can be changed after the Connection object has been
instantiated.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 150 of 817

Property Description

LogLevel Sets the type of information logged by the JDBC driver. The value is set to one
of the following values:

l "DEBUG"

l "ERROR"

l "TRACE"

l "WARNING"

l "INFO"

l "OFF"

Default Value: "OFF"

LogNameSpace Restricts logging to just messages generated by a specific packages. Valid
values are:

l com.vertica (all messages generated by the JDBC driver)

l com.vertica.jdbc (all messages generated by the top-level JDBC API)

l com.vertica.jdbc.core (connection and statement settings)

l com.vertica.jdbc.io (client/server protocol messages)

l com.vertica.jdbc.util (miscellaneous utilities)

l com.vertica.jdbc.dataengine (query execution and result set iteration).

Default Value: none

LogPath Sets the path where the log file is written.

Default Value: The current working directory

Kerberos Connection Parameters

Use the following parameters to set the service and host name principals for client authentication
using Kerberos.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 151 of 817

Parameters Description

JAASConfigName Provides the name of the JAAS configuration that contains the JAAS
Krb5LoginModule and its settings.

Default Value: verticajdbc

KerberosServiceName Provides the service name portion of the HP Vertica Kerberos principal;
for example: vertica/host@EXAMPLE.COM

Default Value: vertica

KerberosHostname Provides the instance or host name portion of theHP Vertica Kerberos
principal; for example: vertica/host@EXAMPLE.COM

Default Value:Value specified in the servername connection string
property

Key/Value API Connection Parameters

Use the following parameters to set properties to enable and configure the connection for Key/Value
lookups.

Parameters Description

EnableRoutableQueries Enables Key/Value lookup. See About the JDBC
Key/Value API

Default Value: false

FailOnMultiNodePlans If the query plan requires more than one node, then
the query fails. Only applicable when
EnableRoutableQueries = true.

Default Value: true

MetadataCacheLifetime The time in seconds to keep projectionmetadata.
Only applicable when EnableRoutableQueries =
true.

Default Value:

MaxPooledConnections Cluster-widemaximum number of connections to
keep in the VerticaRoutableConnection’s internal
pool. Only applicable when
EnableRoutableQueries = true.

Default Value: 20

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 152 of 817

Parameters Description

MaxPooledConnections
PerNode

Per-nodemaximum number of connections to
keep in the VerticaRoutableConnection’s internal
pool. Only applicable when
EnableRoutableQueries = true.

Default Value: 5

Note: The VerticaConnection.setProperty()method can also be used to set properties
that have standard JDBC Connection setters, such as AutoCommit.

For information about manipulating these attributes, see Setting andGetting Connection Property
Values.

Setting and Getting Connection Property Values
There are three ways to set a connection property:

l Including the property name and value as part of the connection string you pass to the
DriverManager.getConnection()method.

l Setting the properties in a Properties object, then passing it to the
DriverManager.getConnection()method.

l Using the VerticaConnection.setProperty()method. Only the connection properties that
can be changed after the connection has been established can be changed using the
setProperty()method.

In addition, some of the standard JDBC connection properties have getters and setters on the
Connection interface (such as Connection.setAutocommit()).

Setting Properties When Connecting

There are two ways you can set connection properties when creating a connection to HP Vertica:

l In the connection string, using the sameURL parameter format that you can use to set the
username and password. The following example sets the SSL connection parameter to true:

"jdbc:vertica://VerticaHost:5433/db?user=UserName&password=Password&ssl=true"

l In a Properties object that you pass to the getConnection() call. You will need to import the
java.util.Properties class in order to instantiate a Properties object. Then you use the put
()method to add the property name and value to the object:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 153 of 817

Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
myProp.put("LoginTimeout", "35");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:/ExampleDB", myProp);

} catch (SQLException e) {
e.printStackTrace();

}

Note: The data type of all of the values you set in the Properties object are strings, even if
the property value's data type is integer or Boolean.

Getting and Setting Properties After Connecting

The VerticaConnection.getProperty()method lets you get the value of some connection
properties. You can use VerticaConnection.setProperty()method to change the value for
properties that can be set after the database connection has been established. Since these
methods are HP Vertica-specific, youmust cast your Connection object to the
VerticaConnection interface to be able to use them. To cast to VerticaConnection, youmust
either import it into your client application or use a fully-qualified reference
(com.vertica.jdbc.VerticaConnection). The following example demonstrates getting and
setting the value of the DirectBatchInsert property.

import java.sql.*;
import java.util.Properties;
import com.vertica.jdbc.*;
public class SetConnectionProperties {

public static void main(String[] args) {
// Note: If your application needs to run under Java 5, you need to
// load the JDBC driver using Class.forName() here.
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
// Set DirectBatchInsert to true initially
myProp.put("DirectBatchInsert", "true");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// Show state of the DirectBatchInsert property. This was set at the
// time the connection was created.
System.out.println("DirectBatchInsert state: "

+ ((VerticaConnection) conn).getProperty(
"DirectBatchInsert"));

// Change it and show it again
((VerticaConnection) conn).setProperty("DirectBatchInsert", false);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 154 of 817

System.out.println("DirectBatchInsert state is now: " +
((VerticaConnection) conn).getProperty(

"DirectBatchInsert"));
conn.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

When run, the example prints the following on the standard output:

DirectBatchInsert state: true
DirectBatchInsert state is now: false

Setting the Locale for JDBC Sessions
You set the locale for a connection while opening it by including a SET LOCALE statement in the
ConnSettings property, or by executing a SET LOCALE statement at any time after opening the
connection. Changing the locale of a Connection object affects all of the Statement objects you
instantiated using it.

You can get the locale by executing a SHOW LOCALE query. The following example demonstrates
setting the locale using ConnSettings and executing a statement, as well as getting the locale:

import java.sql.*;
import java.util.Properties;
public class GetAndSetLocale {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");

// Set Locale to true en_GB on connection. After the connection
// is established, the JDBC driver runs the statements in the
// ConnSettings property.
myProp.put("ConnSettings", "SET LOCALE TO en_GB");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// Execute a query to get the locale. The results should
// show "en_GB" as the locale, since it was set by the
// conn settings property.
Statement stmt = conn.createStatement();
ResultSet rs = null;
rs = stmt.executeQuery("SHOW LOCALE");
System.out.print("Query reports that Locale is set to: ");
while (rs.next()) {

System.out.println(rs.getString(2).trim());

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 155 of 817

}

// Now execute a query to set locale.
stmt.execute("SET LOCALE TO en_US");

// Run query again to get locale.
rs = stmt.executeQuery("SHOW LOCALE");
System.out.print("Query now reports that Locale is set to: ");
while (rs.next()) {

System.out.println(rs.getString(2).trim());
}
// Clean up
conn.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

Running the above example displays the following on the system console:

Query reports that Locale is set to: en_GB (LEN)
Query now reports that Locale is set to: en_US (LEN)

Notes:

l JDBC applications use a UTF-16 character set encoding and are responsible for converting any
non-UTF-16 encoded data to UTF-16. Failing to convert the data can result in errors or the data
being stored incorrectly.

l The JDBC driver converts UTF-16 data to UTF-8 when passing to the HP Vertica server and
converts data sent by HP Vertica server from UTF-8 to UTF-16 .

Changing the Transaction Isolation Level
Changing the transaction isolation level lets you choose how transactions prevent interference from
other transactions. By default, the JDBC driver matches the transaction isolation level of the HP
Vertica server. The HP Vertica default transaction isolation level is READ_COMMITTED, whichmeans
any changes made by a transaction cannot be read by any other transaction until after they are
committed. This prevents a transaction from reading data inserted by another transaction that is
later rolled back.

HP Vertica also supports the SERIALIZABLE transaction isolation level. This level locks tables to
prevent queries from having the results of their WHERE clauses changed by other transactions.
Locking tables can have a performance impact, since only one transaction is able to access the
table at a time.

A transaction retains its isolation level until it completes, even if the session's transaction isolation
level changes mid-transaction. HP Vertica internal processes (such as the Tuple Mover and

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 156 of 817

refresh operations) and DDL operations are always run at SERIALIZABLE isolation level to ensure
consistency.

You can change the transaction isolation level connection property after the connection has been
established using the Connection object's setter (setTransactionIsolation()) and getter
(getTransactionIsolation()). The value for transaction isolation property is an integer. The
Connection interface defines constants to help you set the value in amore intuitivemanner:

Constant Value

Connection.TRANSACTION_READ_COMMITTED 2

Connection.TRANSACTION_SERIALIZABLE 8

Note: The Connection interface also defines several other transaction isolation constants
(READ_UNCOMMITTED and REPEATABLE_READ). Since HP Vertica does not support these
isolation levels, they are converted to READ_COMMITTED and SERIALIZABLE, respectively.

The following example demonstrates setting the transaction isolation level to SERIALIZABLE.

import java.sql.*;
import java.util.Properties;
public class SetTransactionIsolation {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// Get default transaction isolation
System.out.println("Transaction Isolation Level: "

+ conn.getTransactionIsolation());
// Set transaction isolation to SERIALIZABLE
conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);
// Get the transaction isolation again
System.out.println("Transaction Isolation Level: "

+ conn.getTransactionIsolation());
conn.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

Running the example results in the following being printed out to the console:

Transaction Isolation Level: 2Transaction Isolation Level: 8

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 157 of 817

Using a Pooling Data Source
A pooling data source uses a collection of persistent connections in order to reduce the overhead of
repeatedly opening network connections between the client and server. Opening a new connection
for each request is costly for both the server and the client than keeping a small pool of connections
open constantly, ready to be used by new requests. When a request comes in, one of the pre-
existing connections in the pool is assigned to it. Only if there are no free connections in the pool is
a new connection created. Once the request is complete, the connection returns to the pool and
waits to service another request.

The HP Vertica JDBC driver supports connection pooling as defined in the JDBC 4.0 standard. If
you are using a J2EE-based application server in conjunction with HP Vertica, it should already
have a built-in data pooling feature. All that is required is that the application server work with the
PooledConnection interface implemented by HP Vertica's JDBC driver. An application server's
pooling feature is usually well-tuned for the works loads that the server is designed to handle. See
your application server's documentation for details on how to work with pooled connections.
Normally, using pooled connections should be transparent in your code—youwill just open
connections and the application server will worry about the details of pooling them.

If you are not using an application server, or your application server does not offer connection
pooling that is compatible with HP Vertica, you can use a third-party pooling library, such as the
open-source c3p0 or DBCP libraries, to implement connection pooling.

Note: The Vertica Analytics Platform client driver's native connection load balancing feature
works with third-party connection pooling supplied by application servers and third-party
pooling libraries. See Enabling Native Connection Load Balancing in JDBC for more
information.

Enabling Native Connection Load Balancing in JDBC
Native connection load balancing helps spread the overhead caused by client connections on the
hosts in the HP Vertica database. Both the server and the client must enable native connection load
balancing in order for it to have an effect. If both have enabled it, then when the client initially
connects to a host in the database, the host picks a host to handle the client connection from a list
of the currently up hosts in the database, and informs the client which host it has chosen. If the
initially-contacted host did not choose itself to handle the connection, the client disconnects, then
opens a second connection to the host selected by the first host. The connection process to this
second host proceeds as usual—if SSL is enabled, then SSL negotiations begin, otherwise the
client begins the authentication process. See About Native Connection Load Balancing in the
Administrator's Guide for details.

To enable native load balancing on your client, set the ConnectionLoadBalance connection
parameter to true. The following example demonstrates connecting to the database several times
with native connection load balancing enabled, and fetching the name of the node handling the
connection from the V_MONITOR.CURRENT_SESSION system table.

import java.sql.*;

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 158 of 817

import java.util.Properties;

import com.vertica.jdbc.DataSource;

public class ConnectionLoadBalancingExample {
public static void main(String[] args) {

/*
* If your client needs to run under a Java 5 JVM, It will use the older
* JDBC 3.0-compliant driver, which requires you manually load the
* driver using Class.forname
*/

Properties myProp = new Properties();
myProp.put("user", "dbadmin");
myProp.put("password", "vertica");
// Enable connection load balancing on this client. Only works if it is set on th

e
// server as well.
myProp.put("ConnectionLoadBalance", 1);
Connection conn;
// Connect 4 times. See if we connect to a different node each time.
for (int x=1; x <= 4; x++) {

try {
System.out.print("Connect attempt #" + x + "...");
conn = DriverManager.getConnection(

"jdbc:vertica://docd03.verticacorp.com:5433/vmart", myProp);
Statement stmt = conn.createStatement();

// Query system to table to see what node we are connected to. Assume a s
ingle row

// in response set.
ResultSet rs = stmt.executeQuery("SELECT node_name FROM v_monitor.curren

t_session;");
rs.next();
System.out.println("Connected to node " + rs.getString(1).trim());
conn.close();

} catch (SQLException e) {
// Catch-all for other exceptions
System.out.println("Error!");
e.printStackTrace();

}
}

}
}

Running the above example produces the following output:

Connect attempt #1...Connected to node v_vmart_node0001
Status of load balance policy on server: roundrobin
Connect attempt #2...Connected to node v_vmart_node0002
Connect attempt #3...Connected to node v_vmart_node0003
Connect attempt #4...Connected to node v_vmart_node0001

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 159 of 817

JDBC Connection Failover
If a client application attempts to connect to a host in the Vertica Analytics Platform cluster that is
down, the connection attempt fails when using the default connection configuration. This failure
usually returns an error to the user. The user must either wait until the host recovers and retry the
connection or manually edit the connection settings to choose another host.

Due to Vertica Analytics Platform's distributed architecture, you usually do not care which
database host handles a client application's connection. You can use the client driver's connection
failover feature to prevent the user from getting connection errors when the host specified in the
connection settings is unreachable. It gives you two ways to let the client driver automatically
attempt to connect to a different host if the one specified in the connection parameters is
unreachable:

l Configure your DNS server to returnmultiple IP addresses for a host name. When you use this
host name in the connection settings, the client attempts to connect to the first IP address from
the DNS lookup. If the host at that IP address is unreachable, the client tries to connect to the
second IP, and so on until it either manages to connect to a host or it runs out of IP addresses.

l Supply a list of backup hosts for the client driver to try if the primary host you specify in the
connection parameters is unreachable.

For bothmethods, the process of failover is transparent to the client application (other than
specifying the list of backup hosts, if you choose to use the list method of failover). If the primary
host is unreachable, the client driver automatically tries to connect to other hosts.

Failover only applies to the initial establishment of the client connection. If the connection breaks,
the driver does not automatically try to reconnect to another host in the database.

Choosing a Failover Method

You usually choose to use one of the two failover methods. However, they do work together. If your
DNS server returns multiple IP addresses and you supply a list of backup hosts, the client first tries
all of the IPs returned by the DNS server, then the hosts in the backup list.

Note: If a host name in the backup host list resolves tomultiple IP addresses, the client does
not try all of them. It just tries the first IP address in the list.

The DNS method of failover centralizes the configuration client failover. As you add new nodes to
your Vertica Analytics Platform cluster, you can choose to add them to the failover list by editing
the DNS server settings. All client systems that use the DNS server to connect to Vertica
Analytics Platform automatically use connection failover without having to change any settings.
However, this method does require administrative access to the DNS server that all clients use to
connect to the Vertica Analytics Platform cluster. This may not be possible in your organization.

Using the backup server list is easier than editing the DNS server settings. However, it
decentralizes the failover feature. Youmay need to update the application settings on each client
system if youmake changes to your Vertica Analytics Platform cluster.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 160 of 817

Using DNS Failover

To use DNS failover, you need to change your DNS server's settings tomap a single host name to
multiple IP addresses of hosts in your Vertica Analytics Platform cluster. You then have all client
applications use this host name to connect to Vertica Analytics Platform.

You can choose to have your DNS server return as many IP addresses for the host name as you
want. In smaller clusters, youmay choose to have it return the IP addresses of all of the hosts in
your cluster. However, for larger clusters, you should consider choosing a subset of the hosts to
return. Otherwise there can be a long delay as the client driver tries unsuccessfully to connect to
each host in a database that is down.

Using the Backup Host List

To enable backup list-based connection failover, your client application has to specify at least one
IP address or host name of a host in the BackupServerNode parameter. The host name or IP can
optionally be followed by a colon and a port number. If not supplied, the driver defaults to the
standard HP Vertica port number (5433). To list multiple hosts, separate them by a comma.

The following example demonstrates setting the BackupServerNode connection parameter to
specify additional hosts for the connection attempt. The connection string intentionally has a non-
existent node, so that the initial connection fails. The client driver has to resort to trying the backup
hosts to establish a connection to HP Vertica.

import java.sql.*;
import java.util.Properties;

public class ConnectionFailoverExample {
public static void main(String[] args) {

// Assume using JDBC 4.0 driver on JVM 6+. No driver loading needed.
Properties myProp = new Properties();
myProp.put("user", "dbadmin");
myProp.put("password", "vertica");
// Set two backup hosts to be used if connecting to the first host
// fails. All of these hosts will be tried in order until the connection
// succeeds or all of the connections fail.
myProp.put("BackupServerNode", "VerticaHost02,VerticaHost03");
Connection conn;
try {

// The connection string is set to try to connect to a known
// bnad host (in this case, a host that never existed).
conn = DriverManager.getConnection(

"jdbc:vertica://BadVerticaHost:5433/vmart", myProp);
System.out.println("Connected!");
// Query system to table to see what node we are connected to.
// Assume a single row in response set.
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT node_name FROM v_monitor.current_session;");
rs.next();
System.out.println("Connected to node " + rs.getString(1).trim());

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 161 of 817

// Done with connection.
conn.close();

} catch (SQLException e) {
// Catch-all for other exceptions
e.printStackTrace();

}
}

}

When run, the example outputs output similar to the following on the system console:

Connected!
Connected to node v_vmart_node0002

Notice that the connection was made to the first node in the backup list (node 2).

Notes

l When native connection load balancing is enabled, the additional servers specified in the
BackupServerNode connection parameter are only used for the initial connection to an HP
Vertica host. If host redirects the client to another host in the database cluster to handle its
connection request, the second connection does not use the backup node list. This is rarely an
issue, since native connection load balancing is aware of which nodes are currently up in the
database. See Enabling Native Connection Load Balancing in JDBC for more information.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 162 of 817

JDBC Data Types
The JDBC driver transparently converts most HP Vertica data types to the appropriate Java data
type. In a few cases, an HP Vertica data type cannot be directly translated to a Java data type;
these exceptions are explained in this section.

HP Vertica Numeric Data Alias Conversion
The HP Vertica server supports data type aliases for integer, float and numeric types. The JDBC
driver reports these as its basic data types (BIGINT, DOUBLE PRECISION, and NUMERIC), as
follows:

HP Vertica Server Types and Aliases HP Vertica JDBC Type

INTEGER

INT

INT8

BIGINT

SMALLINT

TINYINT

BIGINT

DOUBLE PRECISION

FLOAT5

FLOAT8

REAL

DOUBLE PRECISION

DECIMAL

NUMERIC

NUMBER

MONEY

NUMERIC

If a client application retrieves the values into smaller data types, HP Vertica JDBC driver does not
check for overflows. The following example demonstrates the results of this overflow.

import java.sql.*;
import java.util.Properties;
public class JDBCDataTypes {

public static void main(String[] args) {
// If running under a Java 5 JVM, use you need to load the JDBC driver
// using Class.forname here

Properties myProp = new Properties();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 163 of 817

myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/VMart",
myProp);

Statement statement = conn.createStatement();
// Create a table that will hold a row of different types of
// numeric data.
statement.executeUpdate(

"DROP TABLE IF EXISTS test_all_types cascade");
statement.executeUpdate("CREATE TABLE test_all_types ("

+ "c0 INTEGER, c1 TINYINT, c2 DECIMAL, "
+ "c3 MONEY, c4 DOUBLE PRECISION, c5 REAL)");

// Add a row of values to it.
statement.executeUpdate("INSERT INTO test_all_types VALUES("

+ "111111111111, 444, 55555555555.5555, "
+ "77777777.77, 88888888888888888.88, "
+ "10101010.10101010101010)");

// Query the new table to get the row back as a result set.
ResultSet rs = statement

.executeQuery("SELECT * FROM test_all_types");
// Get the metadata about the row, including its data type.
ResultSetMetaData md = rs.getMetaData();
// Loop should only run once...
while (rs.next()) {

// Print out the data type used to defined the column, followed
// by the values retrieved using several different retrieval
// methods.

String[] vertTypes = new String[] {"INTEGER", "TINYINT",
"DECIMAL", "MONEY", "DOUBLE PRECISION", "REAL"};

for (int x=1; x<7; x++) {
System.out.println("\n\nColumn " + x + " (" + vertTypes[x-1]

+ ")");
System.out.println("\tgetColumnType()\t\t"

+ md.getColumnType(x));
System.out.println("\tgetColumnTypeName()\t"

+ md.getColumnTypeName(x));
System.out.println("\tgetShort()\t\t"

+ rs.getShort(x));
System.out.println("\tgetLong()\t\t" + rs.getLong(x));
System.out.println("\tgetInt()\t\t" + rs.getInt(x));
System.out.println("\tgetByte()\t\t" + rs.getByte(x));

}
}
rs.close();
statement.executeUpdate("drop table test_all_types cascade");
statement.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

The above example prints the following on the console when run:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 164 of 817

Column 1 (INTEGER)
getColumnType() -5
getColumnTypeName() BIGINT
getShort() 455
getLong() 111111111111
getInt() -558038585
getByte() -57

Column 2 (TINYINT)
getColumnType() -5
getColumnTypeName() BIGINT
getShort() 444
getLong() 444
getInt() 444
getByte() -68

Column 3 (DECIMAL)
getColumnType() 2
getColumnTypeName() NUMERIC
getShort() -1
getLong() 55555555555
getInt() 2147483647
getByte() -1

Column 4 (MONEY)
getColumnType() 2
getColumnTypeName() NUMERIC
getShort() -13455
getLong() 77777777
getInt() 77777777
getByte() 113

Column 5 (DOUBLE PRECISION)
getColumnType() 8
getColumnTypeName() DOUBLE PRECISION
getShort() -1
getLong() 88888888888888900
getInt() 2147483647
getByte() -1

Column 6 (REAL)
getColumnType() 8
getColumnTypeName() DOUBLE PRECISION
getShort() 8466
getLong() 10101010
getInt() 10101010
getByte() 18

Using Intervals with JDBC
The JDBC standard does not contain a data type for intervals (the duration between two points in
time). To handle HP Vertica's INTERVAL data type, youmust use JDBC's database-specific
object type.

When reading an interval value from a result set, use the ResultSet.getObject()method to
retrieve the value, and then cast it to one of the HP Vertica interval classes:
VerticaDayTimeInterval (which represents all ten types of day/time intervals) or
VerticaYearMonthInterval (which represents all three types of year/month intervals).

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 165 of 817

Note: The units interval style is not supported. Do not use the SET INTERVALSTYLE
statement to change the interval style in your client applications.

Using Intervals in Batch Inserts

When inserting batches into tables that contain interval data, youmust create instances of the
VerticaDayTimeInterval or VerticaYearMonthInterval classes to hold the data you want to
insert. You set values either when calling the class's constructor, or afterwards using setters. You
then insert your interval values using the PreparedStatement.setObject()method. You can also
use the .setString()method, passing it a string in "DD HH:MM:SS" or "YY-MM" format.

The following example demonstrates inserting data into a table containing a day/time interval and a
year/month interval:

import java.sql.*;
import java.util.Properties;
// Need to import the Vertica JDBC classes to be able to instantiate
// the interval classes.
import com.vertica.jdbc.*;
public class IntervalDemo {

public static void main(String[] args) {
// If running under a Java 5 JVM, use you need to load the JDBC driver
// using Class.forname here
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/VMart", myProp);

// Create table for interval values
Statement stmt = conn.createStatement();
stmt.execute("DROP TABLE IF EXISTS interval_demo");
stmt.executeUpdate("CREATE TABLE interval_demo("

+ "DayInt INTERVAL DAY TO SECOND, "
+ "MonthInt INTERVAL YEAR TO MONTH)");

// Insert data into interval columns using
// VerticaDayTimeInterval and VerticaYearMonthInterval
// classes.
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO interval_demo VALUES(?,?)");
// Create instances of the Vertica classes that represent
// intervals.
VerticaDayTimeInterval dayInt = new VerticaDayTimeInterval(10, 0,

5, 40, 0, 0, false);
VerticaYearMonthInterval monthInt = new VerticaYearMonthInterval(

10, 6, false);
// These objects can also be manipulated using setters.
dayInt.setHour(7);
// Add the interval values to the batch
((VerticaPreparedStatement) pstmt).setObject(1, dayInt);
((VerticaPreparedStatement) pstmt).setObject(2, monthInt);
pstmt.addBatch();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 166 of 817

// Set another row from strings.
// Set day interval in "days HH:MM:SS" format
pstmt.setString(1, "10 10:10:10");
// Set year to month value in "MM-YY" format
pstmt.setString(2, "12-09");
pstmt.addBatch();
// Execute the batch to insert the values.
try {

pstmt.executeBatch();
} catch (SQLException e) {

System.out.println("Error message: " + e.getMessage());
}

Reading Interval Values

You read an interval value from a result set using the ResultSet.getObject()method, and cast
the object to the appropriate HP Vertica object class: VerticaDayTimeInterval for day/time
intervals or VerticaYearMonthInterval for year/month intervals. This is easy to do if you know
that the column contains an interval, and you know what type of interval it is. If your application
cannot assume the structure of the data in the result set it reads in, you can test whether a column
contains a database-specific object type, and if so, determine whether the object belongs to either
the VerticaDayTimeInterval or VerticaYearMonthInterval classes.

// Retrieve the interval values inserted by previous demo.
// Query the table to get the row back as a result set.
ResultSet rs = stmt.executeQuery("SELECT * FROM interval_demo");
// If you do not know the types of data contained in the result set,
// you can read its metadata to determine the type, and use
// additional information to determine the interval type.
ResultSetMetaData md = rs.getMetaData();
while (rs.next()) {

for (int x = 1; x <= md.getColumnCount(); x++) {
// Get data type from metadata
int colDataType = md.getColumnType(x);
// You can get the type in a string:
System.out.println("Column " + x + " is a "

+ md.getColumnTypeName(x));
// Normally, you'd have a switch statement here to
// handle all sorts of column types, but this example is
// simplified to just handle database-specific types
if (colDataType == Types.OTHER) {

// Column contains a database-specific type. Determine
// what type of interval it is. Assuming it is an
// interval...
Object columnVal = rs.getObject(x);
if (columnVal instanceof VerticaDayTimeInterval) {

// We know it is a date time interval
VerticaDayTimeInterval interval =

(VerticaDayTimeInterval) columnVal;
// You can use the getters to access the interval's
// data
System.out.print("Column " + x + "'s value is ");
System.out.print(interval.getDay() + " Days ");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 167 of 817

System.out.print(interval.getHour() + " Hours ");
System.out.println(interval.getMinute()

+ " Minutes");
} else if (columnVal instanceof VerticaYearMonthInterval) {

VerticaYearMonthInterval interval =
(VerticaYearMonthInterval) columnVal;

System.out.print("Column " + x + "'s value is ");
System.out.print(interval.getYear() + " Years ");
System.out.println(interval.getMonth() + " Months");

} else {
System.out.println("Not an interval.");

}
}

}
}

} catch (SQLException e) {
e.printStackTrace();

}
}

}

The example prints the following to the console:

Column 1 is a INTERVAL DAY TO SECOND
Column 1's value is 10 Days 7 Hours 5 Minutes
Column 2 is a INTERVAL YEAR TO MONTH
Column 2's value is 10 Years 6 Months
Column 1 is a INTERVAL DAY TO SECOND
Column 1's value is 10 Days 10 Hours 10 Minutes
Column 2 is a INTERVAL YEAR TO MONTH
Column 2's value is 12 Years 9 Months

Another option is to use databasemetadata to find columns that contain intervals.

// Determine the interval data types by examining the database
// metadata.
DatabaseMetaData dbmd = conn.getMetaData();
ResultSet dbMeta = dbmd.getColumns(null, null, "interval_demo", null);
int colcount = 0;
while (dbMeta.next()) {

// Get the metadata type for a column.
int javaType = dbMeta.getInt("DATA_TYPE");

System.out.println("Column " + ++colcount + " Type name is " +
dbMeta.getString("TYPE_NAME"));

if(javaType == Types.OTHER) {
// The SQL_DATETIME_SUB column in the metadata tells you
// Specifically which subtype of interval you have.
// The VerticaDayTimeInterval.isDayTimeInterval()
// methods tells you if that value is a day time.
//
int intervalType = dbMeta.getInt("SQL_DATETIME_SUB");
if(VerticaDayTimeInterval.isDayTimeInterval(intervalType)) {

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 168 of 817

// Now you know it is one of the 10 day/time interval types.
// When you select this column you can cast to
// VerticaDayTimeInterval.
// You can get more specific by checking intervalType
// against each of the 10 constants directly, but
// they all are represented by the same object.
System.out.println("column " + colcount + " is a " +

"VerticaDayTimeInterval intervalType = "
+ intervalType);

} else if(VerticaYearMonthInterval.isYearMonthInterval(
intervalType)) {

//now you know it is one of the 3 year/month intervals,
//and you can select the column and cast to
// VerticaYearMonthInterval
System.out.println("column " + colcount + " is a " +

"VerticaDayTimeInterval intervalType = "
+ intervalType);

} else {
System.out.println("Not an interval type.");

}
}

}

Executing Queries Through JDBC
To run a query through JDBC:

1. Connect with the HP Vertica database. See Creating and Configuring a Connection.

2. Run the query.

Themethod you use to run the query depends on the type of query you want to run:

l a DDL query that does not return a result set.

l a DDL query that returns a result set.

l a DML query

Executing DDL (Data Definition Language) Queries
To run DDL queries, such as CREATE TABLE and COPY, use the Statement.execute()
method. You get an instance of this class by calling the createStatementmethod of your
connection object.

The following example creates an instance of the Statement class and uses it to execute a
CREATE TABLE and a COPY query:

Statement stmt = conn.createStatement();
stmt.execute("CREATE TABLE address_book (Last_Name char(50) default ''," +

"First_Name char(50),Email char(50),Phone_Number char(50))");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 169 of 817

stmt.execute("COPY address_book FROM 'address.dat' DELIMITER ',' NULL 'null'");

Executing Queries That Return Result Sets
Use the Statement class's executeQuerymethod to execute queries that return a result set, such
as SELECT. To get the data from the result set, usemethods such as getInt, getString, and
getDouble to access column values depending upon the data types of columns in the result set.
Use ResultSet.next to advance to the next row of the data set.

ResultSet rs = null;
rs = stmt.executeQuery("SELECT First_Name, Last_Name FROM address_book");
int x = 1;
while(rs.next()){

System.out.println(x + ". " + rs.getString(1).trim() + " "
+ rs.getString(2).trim());

x++;
}

Note: The HP Vertica JDBC driver does not support scrollable cursors. You can only read
forwards through the result set.

Executing DML (Data Manipulation Language) Queries
Using executeUpdate

Use the executeUpdatemethod for DML SQL queries that change data in the database, such as
INSERT, UPDATE and DELETE which do not return a result set.

stmt.executeUpdate("INSERT INTO address_book " +
"VALUES ('Ben-Shachar', 'Tamar', 'tamarrow@example.com'," +
"'555-380-6466')");

stmt.executeUpdate("INSERT INTO address_book (First_Name, Email) " +
"VALUES ('Pete','pete@example.com')");

Note: The HP Vertica JDBC driver's Statement class supports executingmultiple statements
in the SQL string you pass to the executemethod. The PreparedStatement class does not
support usingmultiple statements in a single execution.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 170 of 817

Loading Data Through JDBC
You can use any of the followingmethods to load data via the JDBC interface:

l Executing a SQL INSERT statement to insert a single row directly.

l Batch loading data using a prepared statement.

l Bulk loading data from files or streams using COPY.

When loading data into HP Vertica, you need to decide whether to write data to theWrite
Optimized Store (WOS) or theRead Optimized Store (ROS). By default, most data loading
methods insert data into theWOS until it fills up, then insert any additional data directly into ROS
containers (called AUTOmode). This is the best method to use when frequently loading small
amounts of data (often referred to as trickle-loading). When performing less frequent large data
loads (any loads over 100MB of data at once), you should change this behavior to insert data
directly into the ROS.

The following sections explain in detail how you load data using JDBC.

Using a Single Row Insert
The simplest way to insert data into a table is to use the SQL INSERT statement. You can use this
statement by instantiating amember of the Statement class, and use its executeUpdate()
method to run your SQL statement.

The following code fragment demonstrates how you can create a Statement object and use it to
insert data into a table named address_book:

Statement stmt = conn.createStatement();
stmt.executeUpdate("INSERT INTO address_book " +

"VALUES ('Smith', 'John', 'jsmith@example.com', " +
"'555-123-4567')");

This method has a few drawbacks: you need convert your data to string and escape any special
characters in your data. A better way to insert data is to use prepared statements. See Batch
Inserts Using JDBC Prepared Statements.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 171 of 817

Batch Inserts Using JDBC Prepared Statements
You can load batches of data into HP Vertica using prepared INSERT statements—server-side
statements that you set up once, and then call repeatedly. You instantiate amember of the
PreparedStatement class with a SQL statement that contains questionmark placeholders for
data. For example:

PreparedStatement pstmt = conn.prepareStatement(
"INSERT INTO customers(last, first, id) VALUES(?,?,?)");

You then set the parameters using data-type-specific methods on the PreparedStatement object,
such as setString() and setInt(). Once your parameters are set, call the addBatch()method to
add the row to the batch. When you have a complete batch of data ready, call the executeBatch()
method to execute the insert batch.

Behind the scenes, the batch insert is converted into a COPY statement. When the connection's
AutoCommit parameter is disabled, HP Vertica keeps the COPY statement open and uses it to
load subsequent batches until the transaction is committed, the cursor is closed, or your application
executes anything else (or executes any statement using another Statement or
PreparedStatement object). Using a single COPY statement for multiple batch inserts makes
loading datamore efficient. If you are loadingmultiple batches, you should disable the AutoCommit
property of the database to take advantage of this increased efficiency.

When performing batch inserts, experiment with various batch and row sizes to determine the
settings that provide the best performance.

The following example demonstrates using a prepared statement to batch insert data.

import java.sql.*;
import java.util.Properties;
public class BatchInsertExample {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");

//Set streamingBatchInsert to True to enable streaming mode for batch inserts.
//myProp.put("streamingBatchInsert", "True");

Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// establish connection and make a table for the data.
Statement stmt = conn.createStatement();

// Set AutoCommit to false to allow Vertica to reuse the same
// COPY statement
conn.setAutoCommit(false);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 172 of 817

// Drop table and recreate.
stmt.execute("DROP TABLE IF EXISTS customers CASCADE");
stmt.execute("CREATE TABLE customers (CustID int, Last_Name"

+ " char(50), First_Name char(50),Email char(50), "
+ "Phone_Number char(12))");

// Some dummy data to insert.
String[] firstNames = new String[] { "Anna", "Bill", "Cindy",

"Don", "Eric" };
String[] lastNames = new String[] { "Allen", "Brown", "Chu",

"Dodd", "Estavez" };
String[] emails = new String[] { "aang@example.com",

"b.brown@example.com", "cindy@example.com",
"d.d@example.com", "e.estavez@example.com" };

String[] phoneNumbers = new String[] { "123-456-7890",
"555-444-3333", "555-867-5309",
"555-555-1212", "781-555-0000" };

// Create the prepared statement
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO customers (CustID, Last_Name, " +
"First_Name, Email, Phone_Number)" +
" VALUES(?,?,?,?,?)");

// Add rows to a batch in a loop. Each iteration adds a
// new row.
for (int i = 0; i < firstNames.length; i++) {

// Add each parameter to the row.
pstmt.setInt(1, i + 1);
pstmt.setString(2, lastNames[i]);
pstmt.setString(3, firstNames[i]);
pstmt.setString(4, emails[i]);
pstmt.setString(5, phoneNumbers[i]);
// Add row to the batch.
pstmt.addBatch();

}

try {
// Batch is ready, execute it to insert the data
pstmt.executeBatch();

} catch (SQLException e) {
System.out.println("Error message: " + e.getMessage());
return; // Exit if there was an error

}

// Commit the transaction to close the COPY command
conn.commit();

// Print the resulting table.
ResultSet rs = null;
rs = stmt.executeQuery("SELECT CustID, First_Name, "

+ "Last_Name FROM customers ORDER BY CustID");
while (rs.next()) {

System.out.println(rs.getInt(1) + " - "
+ rs.getString(2).trim() + " "
+ rs.getString(3).trim());

}
// Cleanup
conn.close();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 173 of 817

} catch (SQLException e) {
e.printStackTrace();

}
}

}

The result of running the example code is:

1 - Anna Allen
2 - Bill Brown
3 - Cindy Chu
4 - Don Dodd
5 - Eric Estavez

Streaming Batch Inserts

By default, HP Vertica performs batch inserts by caching each row and inserting the cache when
the user calls the executeBatch()method. HP Vertica also supports streaming batch inserts. A
streaming batch insert adds a row to the database each time the user calls addBatch(). Streaming
batch inserts improve database performance by allowing parallel processing and reducingmemory
demands.

Note: Once you begin a streaming batch insert, you cannot make other JDBC calls that require
client-server communication until you have executed the batch or closed or rolled back the
connection.

To enable streaming batch inserts, set the streamingBatchInsert property to True. The preceding
code sample includes a line enabling streamingBatchInsertmode. Remove the // comment
marks to enable this line and activate streaming batch inserts.

The following table explains the various batch insert methods and how their behavior differs
between default batch insert mode and streaming batch insert mode.

Method Default Batch Insert
Behavior

Streaming Batch Insert Behavior

addBatch() Adds a row to the row
cache.

Inserts a row into the database.

executeBatch
()

Adds the contents of the
row cache to the
database in a single
action.

Sends an end-of-batchmessage to the server and
returns an array of integers indicating the success
or failure of each addBatch() attempt.

clearBatch() Clears the row cache
without inserting any
rows.

Not supported. Triggers an exception if used
when streaming batch inserts are enabled.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 174 of 817

Notes

l Using the PreparedStatement.setFloat()method can cause rounding errors. If precision is
important, use the .setDouble()method instead.

l The PreparedStatement object caches the connection's AutoCommit property when the
statement is prepared. Later changes to the AutoCommit property have no effect on the
prepared statement.

Loading Batches Directly into ROS

When loading large batches of data (more than 100MB or so), you should load the data directly into
ROS containers. Inserting directly into ROS is more efficient for large loads than AUTOmode,
since it avoids overflowing theWOS and spilling the remainder of the batch to ROS. Otherwise, the
TupleMover has to perform amoveout on the data in theWOS, while subsequent data is directly
written into ROS containers causing your data to be segmented across storage containers.

When loading data using AUTOmode, HP Vertica inserts the data first into theWOS. If theWOS is
full, then HP Vertica inserts the data directly intoROS. See the COPY statement for more details.

To directly load batches into ROS, set the directBatchInsert connection property to true. See
Setting andGetting Connection Property Values for an explanation of how to set connection
properties. When this property is set to true, all batch inserts bypass theWOS and load directly into
a ROS container.

If all of batches being inserted using a connection should be inserted into the ROS, you should set
the DirectBatchInsert connection property to true in the Properties object you use to create the
connection:

Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
// Enable directBatchInsert for this connection
myProp.put("DirectBatchInsert", "true");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

. . .

If you will be using the connection for inserting both large and small batches (or you do not know the
size batches you will be inserting when you create the Connection object), you can set the
DirectBatchInsert property after the connection has been established using the
VerticaConnection.setPropertymethod:

((VerticaConnection)conn).setProperty("DirectBatchInsert", true);

See Setting andGetting Connection Property Values for a full example of setting DirectBatchInsert.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 175 of 817

Error Handling During Batch Loads

When loading individual batches, you can find how many rows were accepted and what rows were
rejected (see Identifying Accepted and Rejected Rows for details). If you have disabled the
AutoCommit connection setting, other errors (such as disk space errors, for example) do not occur
while inserting individual batches. This behavior is caused by having a single SQLCOPY
statement perform the loading of multiple consecutive batches (whichmakes the load process
more efficient). It is only when the COPY statement closes that the batched data is committed and
HP Vertica reports other types of errors.

Therefore, your bulk loading application should be prepared to check for errors when the COPY
statement closes. You can trigger the COPY statement to close by:

l ending the batch load transaction by calling Connection.commit()

l closing the statement using Statement.close()

l setting the connection's AutoCommit property to true before inserting the last batch in the load

Note: The COPY statement also closes if you execute any non-insert statement or execute
any statement using a different Statement or PreparedStatement object. Ending the COPY
statement using either of thesemethods can lead to confusion and a harder-to-maintain
application, since you would need to handle batch load errors in a non-batch load statement.
You should explicitly end the COPY statement at the end of your batch load and handle any
errors at that time.

Identifying Accepted and Rejected Rows (JDBC)

The return value of PreparedStatement.executeBatch is an integer array containing the success
or failure status of inserting each row. A value 1means the row was accepted and a value of -3
means that the row was rejected. In the case where an exception occurred during the batch
execution, you can also get the array using BatchUpdateException.getUpdateCounts().

The following example extends the example shown in Batch Inserts Using JDBC Prepared
Statements to retrieve this array and display the results the batch load.

import java.sql.*;
import java.util.Arrays;
import java.util.Properties;
public class BatchInsertErrorHandlingExample {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
Connection conn;

// establish connection and make a table for the data.
try {

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 176 of 817

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// Disable auto commit
conn.setAutoCommit(false);

// Create a statement
Statement stmt = conn.createStatement();
// Drop table and recreate.
stmt.execute("DROP TABLE IF EXISTS customers CASCADE");
stmt.execute("CREATE TABLE customers (CustID int, Last_Name"

+ " char(50), First_Name char(50),Email char(50), "
+ "Phone_Number char(12))");

// Some dummy data to insert. The one row won't insert because
// the phone number is too long for the phone column.
String[] firstNames = new String[] { "Anna", "Bill", "Cindy",

"Don", "Eric" };
String[] lastNames = new String[] { "Allen", "Brown", "Chu",

"Dodd", "Estavez" };
String[] emails = new String[] { "aang@example.com",

"b.brown@example.com", "cindy@example.com",
"d.d@example.com", "e.estavez@example.com" };

String[] phoneNumbers = new String[] { "123-456-789",
"555-444-3333", "555-867-53093453453",
"555-555-1212", "781-555-0000" };

// Create the prepared statement
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO customers (CustID, Last_Name, " +
"First_Name, Email, Phone_Number)" +
" VALUES(?,?,?,?,?)");

// Add rows to a batch in a loop. Each iteration adds a
// new row.
for (int i = 0; i < firstNames.length; i++) {

// Add each parameter to the row.
pstmt.setInt(1, i + 1);
pstmt.setString(2, lastNames[i]);
pstmt.setString(3, firstNames[i]);
pstmt.setString(4, emails[i]);
pstmt.setString(5, phoneNumbers[i]);
// Add row to the batch.
pstmt.addBatch();

}

// Integer array to hold the results of inserting
// the batch. Will contain an entry for each row,
// indicating success or failure.
int[] batchResults = null;

try {
// Batch is ready, execute it to insert the data
batchResults = pstmt.executeBatch();

} catch (BatchUpdateException e) {
// We expect an exception here, since one of the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 177 of 817

// inserted phone numbers is too wide for its column. All of the
// rest of the rows will be inserted.
System.out.println("Error message: " + e.getMessage());

// Batch results isn't set due to exception, but you
// can get it from the exception object.
//
// In your own code, you shouldn't assume the a batch
// exception occurred, since exceptions can be thrown
// by the server for a variety of reasons.
batchResults = e.getUpdateCounts();

}
// You should also be prepared to catch SQLExceptions in your own
// application code, to handle dropped connections and other general
// problems.

// Commit the transaction
conn.commit();

// Print the array holding the results of the batch insertions.
System.out.println("Return value from inserting batch: "

+ Arrays.toString(batchResults));
// Print the resulting table.
ResultSet rs = null;
rs = stmt.executeQuery("SELECT CustID, First_Name, "

+ "Last_Name FROM customers ORDER BY CustID");
while (rs.next()) {

System.out.println(rs.getInt(1) + " - "
+ rs.getString(2).trim() + " "
+ rs.getString(3).trim());

}

// Cleanup
conn.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

Running the above example produces the following output on the console:

Error message: [Vertica][VJDBC](100172) One or more rows were rejected by the server.Retu
rn value from inserting batch: [1, 1, -3, 1, 1]
1 - Anna Allen
2 - Bill Brown
4 - Don Dodd
5 - Eric Estavez

Notice that the third row failed to insert because its phone number is too long for the Phone_Number
column. All of the rest of the rows in the batch (including those after the error) were correctly
inserted.

Note: It is more efficient for you to ensure that the data you are inserting is the correct data

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 178 of 817

type and width for the table column you are inserting it into than to handle exceptions after the
fact.

Rolling Back Batch Loads on the Server

Batch loads always insert all of their data, even if one or more rows is rejected. Only the rows that
caused errors in a batch are not loaded. When the database connection's AutoCommit property is
true, batches automatically commit their transactions when they complete, so once the batch
finishes loading, the data is committed.

In some cases, youmay want all of the data in a batch to be successfully inserted—none of the
data should be committed if an error occurs. The best way to accomplish this is to turn off the
database connection's AutoCommit property to prevent batches from automatically committing
themselves. Then, if a batch encounters an error, you can roll back the transaction after catching
the BatchUpdateException caused by the insertion error.

The following example demonstrates performing a rollback if any error occurs when loading a batch.

import java.sql.*;
import java.util.Arrays;
import java.util.Properties;
public class RollbackBatchOnError {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleUser");
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",
myProp);

// Disable auto-commit. This will allow you to roll back a
// a batch load if there is an error.
conn.setAutoCommit(false);
// establish connection and make a table for the data.
Statement stmt = conn.createStatement();
// Drop table and recreate.
stmt.execute("DROP TABLE IF EXISTS customers CASCADE");
stmt.execute("CREATE TABLE customers (CustID int, Last_Name"

+ " char(50), First_Name char(50),Email char(50), "
+ "Phone_Number char(12))");

// Some dummy data to insert. The one row won't insert because
// the phone number is too long for the phone column.
String[] firstNames = new String[] { "Anna", "Bill", "Cindy",

"Don", "Eric" };
String[] lastNames = new String[] { "Allen", "Brown", "Chu",

"Dodd", "Estavez" };
String[] emails = new String[] { "aang@example.com",

"b.brown@example.com", "cindy@example.com",
"d.d@example.com", "e.estavez@example.com" };

String[] phoneNumbers = new String[] { "123-456-789",
"555-444-3333", "555-867-53094535", "555-555-1212",

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 179 of 817

"781-555-0000" };
// Create the prepared statement
PreparedStatement pstmt = conn.prepareStatement(

"INSERT INTO customers (CustID, Last_Name, " +
"First_Name, Email, Phone_Number) "+
"VALUES(?,?,?,?,?)");

// Add rows to a batch in a loop. Each iteration adds a
// new row.
for (int i = 0; i < firstNames.length; i++) {

// Add each parameter to the row.
pstmt.setInt(1, i + 1);
pstmt.setString(2, lastNames[i]);
pstmt.setString(3, firstNames[i]);
pstmt.setString(4, emails[i]);
pstmt.setString(5, phoneNumbers[i]);
// Add row to the batch.
pstmt.addBatch();

}
// Integer array to hold the results of inserting
// the batch. Will contain an entry for each row,
// indicating success or failure.
int[] batchResults = null;
try {

// Batch is ready, execute it to insert the data
batchResults = pstmt.executeBatch();
// If we reach here, we inserted the batch without errors.
// Commit it.
System.out.println("Batch insert successful. Committing.");
conn.commit();

} catch (BatchUpdateException e) {
System.out.println("Error message: " + e.getMessage());
// Batch results isn't set due to exception, but you
// can get it from the exception object.
batchResults = e.getUpdateCounts();
// Roll back the batch transaction.
System.out.println("Rolling back batch insertion");
conn.rollback();

}
catch (SQLException e) {

// General SQL errors, such as connection issues, throw
// SQLExceptions. Your application should do something more
// than just print a stack trace,
e.printStackTrace();

}
System.out.println("Return value from inserting batch: "

+ Arrays.toString(batchResults));
System.out.println("Customers table contains:");

// Print the resulting table.
ResultSet rs = null;
rs = stmt.executeQuery("SELECT CustID, First_Name, "

+ "Last_Name FROM customers ORDER BY CustID");
while (rs.next()) {

System.out.println(rs.getInt(1) + " - "
+ rs.getString(2).trim() + " "
+ rs.getString(3).trim());

}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 180 of 817

// Cleanup
conn.close();

} catch (SQLException e) {
e.printStackTrace();

}
}

}

Running the above example prints the following on the system console:

Error message: [Vertica][VJDBC](100172) One or more rows were rejected by the server.Roll
ing back batch insertion
Return value from inserting batch: [1, 1, -3, 1, 1]
Customers table contains:

The return values indicate whether each rows was successfully inserted. The value 1means the
row inserted without any issues, and a -3 indicates the row failed to insert.

The customers table is empty since the batch insert was rolled back due to the error caused by the
third column.

Bulk Loading Using the COPY Statement
One of the fastest ways to load large amounts of data into HP Vertica at once (bulk loading) is to
use the COPY statement. This statement loads data from a file stored on an HP Vertica host (or in
a data stream) into a table in the database. You can pass the COPY statement parameters that
define the format of the data in the file, how the data is to be transformed as it is loaded, how to
handle errors, and how the data should be loaded. See the COPY documentation in the SQL
ReferenceManual for details.

One parameter that is particularly important is the DIRECT option, which tells COPY to load the
data directly intoROS rather than going through theWOS. You should use this option when you are
loading large files (over 100MB) into the database. Without this option, your loadmay fill theWOS
and overflow into ROS, requiring the TupleMover to perform aMoveout on the data in theWOS. It
is more efficient to directly load into ROS and avoid forcing amoveout.

Only a superuser can use the COPY statement to copy a file stored on a host, so youmust
connect to the database using a superuser account. If you want to have a non-superuser user bulk-
load data, you can use COPY to load from a stream on the host (such as STDIN) rather than a file
or stream data from the client (see Streaming Data Via JDBC). You can also perform a standard
batch insert using a prepared statement, which uses the COPY statement in the background to load
the data.

The following example demonstrates using the COPY statement through the JDBC to load a file
name customers.txt into a new database table. This file must be stored on the database host to
which your application connects (in this example, a host named VerticaHost). Since the
customers.txt file used in the example is very large, this example uses the DIRECT option to
bypass WOS and load directly into ROS.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 181 of 817

import java.sql.*;
import java.util.Properties;
import com.vertica.jdbc.*;
public class COPYFromFile {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "ExampleAdmin"); // Must be superuser
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",myProp);

// Disable AutoCommit
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
// Create a table to hold data.
stmt.execute("DROP TABLE IF EXISTS customers;");
stmt.execute("CREATE TABLE IF NOT EXISTS customers (Last_Name char(50) "

+ "NOT NULL, First_Name char(50),Email char(50), "
+ "Phone_Number char(15))");

// Use the COPY command to load data. Load directly into ROS, since
// this load could be over 100MB. Use ENFORCELENGTH to reject
// strings too wide for their columns.
boolean result = stmt.execute("COPY customers FROM "

+ " '/data/customers.txt' DIRECT ENFORCELENGTH");

// Determine if execution returned a count value, or a full result
// set.
if (result) {

System.out.println("Got result set");
} else {

// Count will usually return the count of rows inserted.
System.out.println("Got count");
int rowCount = stmt.getUpdateCount();
System.out.println("Number of accepted rows = " + rowCount);

}

// Commit the data load
conn.commit();

} catch (SQLException e) {
System.out.print("Error: ");
System.out.println(e.toString());

}
}

}

The example prints the following out to the system console when run (assuming that the
customers.txt file contained twomillion valid rows):

Number of accepted rows = 2000000

Streaming Data Via JDBC
There are two options to stream data from a file on the client to your HP Vertica database:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 182 of 817

l Use the VerticaCopyStream class to stream data in an object-orientedmanner

l Execute a COPY LOCAL SQL statement to stream the data

The topics in this section explain how to use these options.

Using VerticaCopyStream

The VerticaCopyStream class lets you stream data from the client system to an HP Vertica
database. It lets you use the SQLCOPY statement directly without having to copy the data to a
host in the database cluster first. Using the COPY command to load data from the host requires
superuser privileges to be able to access the host's filesystem. The COPY statement used to load
data from a stream does not require superuser privileges so your client can connect using any user
account that has INSERT privileges on the table that will receive the data.

To copy streams into the database:

1. Disable the database connections AutoCommit connection parameter.

2. Instantiate a VerticaCopyStreamObject, passing it at least the database connection objects
and a string containing a COPY statement to load the data. This statementmust copy data
from the STDIN into your table. You can use whatever parameters are appropriate for your data
load.

Note: The VerticaCopyStreamObject constructor optionally takes a single InputStream
object, or a List of InputStream objects. This option lets you pre-populate the list of
streams to be copied into the database.

3. Call VerticaCopyStreamObject.start() to start the COPY statement and begin streaming
the data in any streams you have already added to the VerticaCopyStreamObject.

4. Call VerticaCopyStreamObject.addStream() to add additional streams to the list of streams
to send to the database. You can then call VerticaCopyStreamObject.execute() to stream
them to the server.

5. Optionally, call VerticaCopyStreamObject.getRejects() to get a list of rejected rows from
the last .execute() call. The list of rejects is reset by each call to .execute() or .finish().

Note: If you used either the REJECTED DATA or EXCEPTIONS options in the COPY
statement you passed to VerticaCopyStreamObject the object in step 2, .getRejects()
returns an empty list. You can only use onemethod of tracking the rejected rows at a time.

6. When you are finished adding streams, call VerticaCopyStreamObject.finish() to send
any remaining streams to the database and close the COPY statement.

7. Call Connection.commit() to commit the loaded data.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 183 of 817

Getting Rejected Rows

The VerticaCopyStreamObject.getRejects()method returns a List containing the row numbers
of rows that were rejected after the previous .execute()method call. Each call to .execute()
clears the list of rejected rows, so you need to call .getRejects() after each call to .execute().
Since .start() and .finish() also call .execute() to send any pending streams to the server,
you should also call .getRejects() after thesemethods as well.

The following example demonstrates loading the content of five text files stored on the client
system into a table.

import java.io.File;
import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.Iterator;
import java.util.List;
import java.util.Properties;
import com.vertica.jdbc.VerticaConnection;
import com.vertica.jdbc.VerticaCopyStream;
public class CopyMultipleStreamsExample {

public static void main(String[] args) {
// Note: If running on Java 5, you need to call Class.forName
// to manually load the JDBC driver.
// Set up the properties of the connection
Properties myProp = new Properties();
myProp.put("user", "ExampleUser"); // Must be superuser
myProp.put("password", "password123");
// When performing bulk loads, you should always disable the
// connection's AutoCommit property to ensure the loads happen as
// efficiently as possible by reusing the same COPY command and
// transaction.
myProp.put("AutoCommit", "false");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB", myProp);

Statement stmt = conn.createStatement();

// Create a table to receive the data
stmt.execute("DROP TABLE IF EXISTS customers");
stmt.execute("CREATE TABLE customers (Last_Name char(50), "

+ "First_Name char(50),Email char(50), "
+ "Phone_Number char(15))");

// Prepare the query to insert from a stream. This query must use
// the COPY statement to load data from STDIN. Unlike copying from
// a file on the host, you do not need superuser privileges to
// copy a stream. All your user account needs is INSERT privileges
// on the target table.
String copyQuery = "COPY customers FROM STDIN "

+ "DELIMITER '|' DIRECT ENFORCELENGTH";

// Create an instance of the stream class. Pass in the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 184 of 817

// connection and the query string.
VerticaCopyStream stream = new VerticaCopyStream(

(VerticaConnection) conn, copyQuery);

// Keep running count of the number of rejects
int totalRejects = 0;

// start() starts the stream process, and opens the COPY command.
stream.start();

// If you added streams to VerticaCopyStream before calling start(),
// You should check for rejects here (see below). The start() method
// calls execute() to send any pre-queued streams to the server
// once the COPY statement has been created.

// Simple for loop to load 5 text files named customers-1.txt to
// customers-5.txt
for (int loadNum = 1; loadNum <= 5; loadNum++) {

// Prepare the input file stream. Read from a local file.
String filename = "C:\\Data\\customers-" + loadNum + ".txt";
System.out.println("\n\nLoading file: " + filename);
File inputFile = new File(filename);
FileInputStream inputStream = new FileInputStream(inputFile);

// Add stream to the VerticaCopyStream
stream.addStream(inputStream);

// call execute() to load the newly added stream. You could
// add many streams and call execute once to load them all.
// Which method you choose depends mainly on whether you want
// the ability to check the number of rejections as the load
// progresses so you can stop if the number of rejects gets too
// high. Also, high numbers of InputStreams could create a
// resource issue on your client system.
stream.execute();

// Show any rejects from this execution of the stream load
// getRejects() returns a List containing the
// row numbers of rejected rows.
List<Long> rejects = stream.getRejects();

// The size of the list gives you the number of rejected rows.
int numRejects = rejects.size();
totalRejects += numRejects;
System.out.println("Number of rows rejected in load #"

+ loadNum + ": " + numRejects);

// List all of the rows that were rejected.
Iterator<Long> rejit = rejects.iterator();
long linecount = 0;
while (rejit.hasNext()) {

System.out.print("Rejected row #" + ++linecount);
System.out.println(" is row " + rejit.next());

}
}
// Finish closes the COPY command. It returns the number of
// rows inserted.
long results = stream.finish();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 185 of 817

System.out.println("Finish returned " + results);

// If you added any streams that hadn't been executed(),
// you should also check for rejects here, since finish()
// calls execute() to

// You can also get the number of rows inserted using
// getRowCount().
System.out.println("Number of rows accepted: "

+ stream.getRowCount());
System.out.println("Total number of rows rejected: " + totalRejects);

// Commit the loaded data
conn.commit();

} catch (Exception e) {
e.printStackTrace();

}
}

}

Running the above example on some sample data results in the following output:

Loading file: C:\Data\customers-1.txtNumber of rows rejected in load #1: 3
Rejected row #1 is row 3
Rejected row #2 is row 7
Rejected row #3 is row 51
Loading file: C:\Data\customers-2.txt
Number of rows rejected in load #2: 5Rejected row #1 is row 4143
Rejected row #2 is row 6132
Rejected row #3 is row 9998
Rejected row #4 is row 10000
Rejected row #5 is row 10050
Loading file: C:\Data\customers-3.txt
Number of rows rejected in load #3: 9
Rejected row #1 is row 14142
Rejected row #2 is row 16131
Rejected row #3 is row 19999
Rejected row #4 is row 20001
Rejected row #5 is row 20005
Rejected row #6 is row 20049
Rejected row #7 is row 20056
Rejected row #8 is row 20144
Rejected row #9 is row 20236
Loading file: C:\Data\customers-4.txt
Number of rows rejected in load #4: 8
Rejected row #1 is row 23774
Rejected row #2 is row 24141
Rejected row #3 is row 25906
Rejected row #4 is row 26130
Rejected row #5 is row 27317
Rejected row #6 is row 28121
Rejected row #7 is row 29321
Rejected row #8 is row 29998
Loading file: C:\Data\customers-5.txt
Number of rows rejected in load #5: 1

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 186 of 817

Rejected row #1 is row 39997
Finish returned 39995
Number of rows accepted: 39995
Total number of rows rejected: 26

Note: The above example shows a simple load process that targets one node in the HP
Vertica cluster. It is more efficient to simultaneously loadmultiple streams tomultiple database
nodes. Doing so greatly improves performance because it spreads the processing for the load
across the cluster.

Using COPY LOCAL with JDBC

To use COPY LOCALwith JDBC, just execute a COPY LOCAL statement with the path to the
source file on the client system. This method is simpler than using the VerticaCopyStream class.
However, youmay prefer using VerticaCopyStream if you havemany files to copy to the database
or if your data comes from a source other than a file (streamed over a network connection, for
example).

The following example code demonstrates using COPY LOCAL to copy a file from the client to the
database. It is the same as the code shown in Bulk Loading Using the COPY Statement, except for
the use of the LOCAL option in the COPY statement, and the path to the data file is on the client
system, rather than on the server.

Note: The exceptions/rejections files are created on the client machine when the exceptions
and rejected datamodifiers are specified on the copy local command. Specify a local path and
filename for thesemodifiers when executing a COPY LOCAL query from the driver.

import java.sql.*;
import java.util.Properties;
public class COPYLocal {

public static void main(String[] args) {
// Note: If using Java 5, you must call Class.forName to load the
// JDBC driver.
Properties myProp = new Properties();
myProp.put("user", "ExampleUser"); // Do not need to superuser
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://VerticaHost:5433/ExampleDB",myProp);

// Disable AutoCommit
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
// Create a table to hold data.
stmt.execute("DROP TABLE IF EXISTS customers;");
stmt.execute("CREATE TABLE IF NOT EXISTS customers (Last_Name char(50) "

+ "NOT NULL, First_Name char(50),Email char(50), "
+ "Phone_Number char(15))");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 187 of 817

// Use the COPY command to load data. Load directly into ROS, since
// this load could be over 100MB. Use ENFORCELENGTH to reject
// strings too wide for their columns.
boolean result = stmt.execute("COPY customers FROM LOCAL "

+ " 'C:\\Data\\customers.txt' DIRECT ENFORCELENGTH");

// Determine if execution returned a count value, or a full result
// set.
if (result) {

System.out.println("Got result set");
} else {

// Count will usually return the count of rows inserted.
System.out.println("Got count");
int rowCount = stmt.getUpdateCount();
System.out.println("Number of accepted rows = " + rowCount);

}

conn.close();
} catch (SQLException e) {

System.out.print("Error: ");
System.out.println(e.toString());

}
}

}

The result of running this code appears below. In this case, the customers.txt file contains 10000
rows, seven of which get rejected because they contain data too wide to fit into their database
columns.

Got countNumber of accepted rows = 9993

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 188 of 817

Handling Errors
When the HP Vertica JDBC driver encounters an error, it throws a SQLException or one of its
subclasses. The specific subclass it throws depends on the type of error that has occurred. Most of
the JDBC method calls can result in several different types of errors, in response to which the
JDBC driver throws a specific SQLException subclass. Your client application can choose how to
react to the error based on the specific exception that the JDBC driver threw.

Note: The specific SQLException subclasses were introduced in the JDBC 4.0 standard. If
your client application runs in a Java 5 JVM, it will use the older JDBC 3.0-compliant driver
which lacks these subclasses. In that case, all errors throw a SQLException.

The hierarchy of SQLException subclasses is arranged to help your client application determine
what actions it can take in response to an error condition. For example:

l The JDBC driver throws SQLTransientException subclasses when the cause of the error may
be a temporary condition, such as a timeout error (SQLTimeoutException) or a connection issue
(SQLTransientConnectionIssue). Your client application can choose to retry the operation
without making any sort of attempt to remedy the error, since it may not reoccur.

l The JDBC driver throws SQLNonTransientException subclasses when the client needs to take
some action before it could retry the operation. For example, executing a statement with a SQL
syntax error results in the JDBC driver throwing the a SQLSyntaxErrorException (a subclass
of SQLNonTransientException). Often, your client application just has to report these errors
back to the user and have him or her resolve them. For example, if the user supplied your
application with a SQL statement that triggered a SQLSyntaxErrorException, it could prompt
the user to fix the SQL error.

See Vertica Analytics Platform SQLStateMapping to Java Exception Classes for a list Java
exceptions thrown by the JDBC driver.

Vertica Analytics Platform SQLState Mapping to Java
Exception Classes

SQLSTATE
Class or Value Description Java Exception Class

Class 00 Successful Completion SQLException

Class 01 Warning SQLWarning

Class 02 NoData SQLException

Class 03 SQLStatement Not Yet
Complete

SQLException

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 189 of 817

SQLSTATE
Class or Value Description Java Exception Class

Class 08 Client Connection
Exception

SQLNonTransientConnectionException

Class 09 Triggered Action
Exception

SQLException

Class 0A Feature Not Supported SQLFeatureNotSupportedException

Class 0B Invalid Transaction
Initiation

SQLException

Class 0F Locator Exception SQLException

Class 0L Invalid Grantor SQLException

Class 0P Invalid Role Specification SQLException

Class 21 Cardinality Violation SQLException

Class 22 Data Exception SQLDataException

22V21 ERRCODE_INVALID_
EPOCH

SQLNonTransientException

Class 23 Integrity Constraint
Violation

SQLIntegrityConstraintViolationException

Class 24 Invalid Cursor State SQLException

Class 25 Invalid Transaction State SQLTransactionRollbackException

Class 26 Invalid SQL Statement
Name

SQLException

Class 27 Triggered Data Change
Violation

SQLException

Class 28 Invalid Authorization
Specification

SQLInvalidAuthorizationException

Class 2B Dependent Privilege
Descriptors Still Exist

SQLDataException

Class 2D Invalid Transaction
Termination

SQLException

Class 2F SQLRoutine Exception SQLException

Class 34 Invalid Cursor Name SQLException

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 190 of 817

SQLSTATE
Class or Value Description Java Exception Class

Class 38 External Routine
Exception

SQLException

Class 39 External Routine
Invocation Exception

SQLException

Class 3B Savepoint Exception SQLException

Class 3D Invalid Catalog Name SQLException

Class 3F Invalid SchemaName SQLException

Class 40 Transaction Rollback SQLTransactionRollbackException

Class 42 Syntax Error or Access
Rule Violation

SQLSyntaxErrorException

Class 44 WITH CHECK OPTION
Violation

SQLException

Class 53 Insufficient Resources SQLTransientException

53300 ERRCODE_TOO_
MANY_CONNECTIONS

SQLNonTransientConnectionException

Class 54 Program Limit Exceeded SQLNonTransientException

Class 55 Object Not In
Prerequisite State

SQLNonTransientException

55V03 ERRCODE_LOCK_
NOT_AVAILABLE

SQLTransactionRollbackException

Class 57 Operator Intervention SQLTransientException

57V01 ERRCODE_ADMIN_
SHUTDOWN

SQLNonTransientConnectionException

57V02 ERRCODE_CRASH_
SHUTDOWN

SQLNonTransientConnectionException

57V03 ERRCODE_CANNOT_
CONNECT_NOW

SQLNonTransientConnectionException

Class 58 System Error SQLException

Class V1 Vertica-specific multi-
node errors class

SQLException

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 191 of 817

SQLSTATE
Class or Value Description Java Exception Class

Class V2 Vertica-specific
miscellaneous errors
class

SQLException

V2000 ERRCODE_AUTH_
FAILED

SQLInvalidAuthorizationException

Class VC Configuration File Error SQLNonTransientException

Class VD DB Designer errors SQLNonTransientException

Class VP User procedure errors SQLNonTransientException

Class VX Internal Error SQLException

Error Handling Example
The following example code demonstrates catching two subclasses of SQLException. In this
example, the program just prints out different error messages. Your own client application could
respond to these errors in different ways.

import java.sql.*;
import java.util.Properties;
// Demonstrate catching specific SQLException subclasses.
public class ExceptionClassExample {

public static void main(String[] args) {
Properties myProp = new Properties();
myProp.put("user", "myuser");
myProp.put("password", "password123");
Connection conn;
try {

conn = DriverManager.getConnection(
"jdbc:vertica://verticahost:5433/vmart", myProp);

System.out.println("Connected!");

// Array of statements that we want to run. Some contain errors.
String[] statements = new String[] {

"DROP TABLE IF EXISTS t;",
"CREATE TABLE t (id INTEGER, name VARCHAR(50));",
"INSERT INTO t (id, name) VALUES (1, 'Alice');",
"INSERT INTO t (id, name) VALUES ('Bob', 2)",
"DRUP TABLE t CASCADE;",
"DROP TABLE t CASCADE;",
"CREATE TABLE nonExistentSchema.t (id INTEGER, name VARCHAR(50));"};

Statement stmt = conn.createStatement();

// Loop through the strings, executing each.
for (String statement : statements) {

try {
System.out.println("Executing statement: '" + statement + "'");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 192 of 817

stmt.execute(statement);
System.out.println("Success!");

// Handle some specific types of SQL Exceptions

// Syntax errors in statements are handled here.
} catch (SQLSyntaxErrorException e) {

System.out.println("Statement '" + statement + "' has a syntax erro
r.");

System.out.println(" SQLSTATE = " + e.getSQLState());
System.out.println(" Error code: " + e.getErrorCode() +

" Error message: " + e.getMessage());

// SQLDataException is thrown for various data-releted errors, such
// as trying to put the wrong data type in a column.
} catch (SQLDataException e) {

System.out.println("Statement '" + statement + "' caused a data erro
r.");

System.out.println(" SQLSTATE = " + e.getSQLState());
System.out.println(" Error code: " + e.getErrorCode() +

" Error message: " + e.getMessage());

// Catch-all for other exceptions.
} catch (SQLException e) {

System.out.println("Statement '" + statement + "' caused a "
+ e.getClass().getCanonicalName() + " exception.");

System.out.println(" SQLSTATE = " + e.getSQLState());
System.out.println(" Error code: " + e.getErrorCode() +

" Error message: " + e.getMessage());
e.getClass().getCanonicalName();
//e.printStackTrace();

}
}
conn.close();

// This catches exceptions caused by a bad connection.
} catch (SQLException e) {

e.printStackTrace();
}

}
}

About the JDBC Key/Value API
The JDBC Key/Value API allows you to quickly query data when a single or only a few rows are
being returned and the data exists on a single node. This feature is ideal for high-volume "short"
requests that return a small number of results. The common likely scenario for using the Key/Value
API is for doing high-volumeNoSQL-like lookups on data that is identified with unique primary key.

Typical analytic queries require dense computation on data across all nodes in the cluster and
benefit from having all nodes involved in the planning and execution of the queries.

HP Vertica Typical Analytic Query

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 193 of 817

However, for high-volume queries that return a single or a few rows of data, it is more efficient to
execute the query on the single node that contains the data.

HP Vertica Key/Value API Query

To effectively route a request to a single node, the client must determine the specific node on which
the data resides. For the client to be able to determine the correct node, the table must segmented
on one or more columns. For example, if you segment a table on a Primary Key (PK) column, then
the client can determine on which node the data resides based on the Primary Key and directly
connect to that node to quickly fulfill the request. However, it is not required that you segment on a
PK column.

The Key/Value API does not use a traditional SQL interface. Instead, it uses a data structure that
you build by defining predicates and predicate expressions and outputs and output expressions.

The data structure used for querying the table must provide a predicate for each segmented column
defined in the projection for the table. Youmust provide, at aminimum, a predicate with a constant
value for each segmented column. For example, an idwith a value of 12234 if the table is
segmented only on the id column. You can also specify additional predicates for the other, non-

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 194 of 817

segmented, columns in the table. Predicates act like an SQLWHERE clause andmultiple
predicates/predicate expressions are joined together with a SQL AND modifier. Predicates must be
defined with a constant value. Predicate expressions can be used to refine the query and can
contain any arbitrary SQL expressions (such as less than, greater than, etc.) for any of the non-
segmented columns in the table.

Java doc for all classes andmethods in the Key/Value API is available in the HP Vertica JDBC
Java doc.

Note: The JDBC Key/Value API is read-only and requires JDK 1.6 or greater.

See Also
l Creating Tables and Projections for use with the Key/Value API

l Creating a Connection for Key/Value Queries

l Defining the Query for Key/Value Lookups

l Key/Value Performance and Troubleshooting

Creating Tables and Projections for use with the
Key/Value API

For Key/Value queries, the client needs to determine the appropriate node to get the data. The client
does this by comparing all of the projections available for the table and determining the best
projection to use to find the single node that contains data. You can simplify this comparison
creating a projection so that the data is segmented and sorted on the key that you are using to query
the data.

Note: Tables must be segmented by hash for Key/Value queries. See Hash-Segmentation-
Clause. Other segmentation types are not supported.

Creating Tables for use with Key/Value

To create a table that can be used with the Key/Value API, segment (by hash) the table on a
uniformly distributed column. Typically, you segment on a primary key. For faster lookups, sort the
projection on the same columns on which you segmented. For example, to create a typical table
that is well suited to key/value queries:

CREATE TABLE users (
id INT NOT NULL PRIMARY KEY,
username VARCHAR(32),
email VARCHAR(64),
business_unit VARCHAR(16))

ORDER BY id

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 195 of 817

SEGMENTED BY HASH(id)
ALL NODES;

This table is segmented based on the id column (and ordered by id to make lookups faster). To
build a query for this table using the Key/Value API, you only need to provide a single predicate for
the id columnwhich returns a single row when queried.

However, if you were to addmultiple columns to the segmentation clause, such as this table:

CREATE TABLE users (
id INT NOT NULL PRIMARY KEY,
username VARCHAR(32),
email VARCHAR(64),
business_unit VARCHAR(16))

ORDER BY id, business_unit
SEGMENTED BY HASH(id, business_unit)
ALL NODES;

Then you would need to provide two predicates when querying the users2 table, since the
segmentation clause uses both the id and the business_unit columns. However, if you know both id
and business_unit when you perform the queries, then it is beneficial to segment on both columns,
as it makes it easier for the client to determine that this projection is the best projection to use to
determine the correct node.

Verifying Existing Projections for Tables

If you have existing tables that are already segmented by hash (for example, on an ID column), then
you can determine what predicates are needed to query the table by using the select get_table_
projections('tableName') command to view the projections associated with the table. The
example table displays the following when select get_table_projections('users') is run:

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy Projections] [Safe] [UptoDa
te] [Stats]

public.users_b1 [Segmented: Yes] [Seg Cols: "public.users.id"] [K: 1] [public.users_b0] [
Safe: Yes] [UptoDate: Yes] [Stats: RowCounts]
public.users_b0 [Segmented: Yes] [Seg Cols: "public.users.id"] [K: 1] [public.users_b1] [
Safe: Yes] [UptoDate: Yes] [Stats: RowCounts]

Note that for each projection, only the "public.users.id" column is specified,meaning you need
to provide a predicate for this columnwhen you build your query.

If the table was segmented onmultiple columns, for example id and business_unit, then you would
need to provide both columns as predicates to the query, to query this table with the Key/Value API.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 196 of 817

Creating a Connection for Key/Value Queries
The JDBC Key/Value API provides the VerticaRoutableConnection interface to connect to a
cluster and allow for Key/Value queries. This interface provides advanced routing capabilities
beyond those of a normal VerticaConnection. The VerticaRoutableConnection provides access to
the VGet class; see Defining the Query for Key/Value Lookups , which performs efficient key-
based lookups.

You enable access to this class by setting the EnableRoutableQueries JDBC connection
property to true.

The VerticaRoutableConnectionmaintains an internal pool of connections and a cache of table
metadata that is shared by all VGet objects that are produced by this connection's prepareGet()
method. It is also a fully-fledged JDBC connection on its own and supports all the functionality that
a VerticaConnection supports. When this connection is closed, all pooled connections managed by
this VerticaRoutableConnection and all child VGet objects are closed too. The connection pool and
metadata is only used by child VGet operations.

Example:

You can create the connection using a JDBC data source:

com.vertica.jdbc.DataSource jdbcSettings = new com.vertica.jdbc.DataSource();
jdbcSettings.setDatabase("exampleDB");
jdbcSettings.setHost("doc1.verticacorp.com");
jdbcSettings.setUserID("dbadmin");
jdbcSettings.setPassword("password");
jdbcSettings.setEnableRoutableQueries(true);
jdbcSettings.setPort((short) 5433);

VerticaRoutableConnection conn;

You can also create the connection using a connection string and the
DriverManager.getConnection()method:

String connectionString = "jdbc:vertica://doc.verticacorp.com:5433/exampleDB?user=dbadmin
&password=&EnableRoutableQueries=true";
VerticaRoutableConnection conn = (VerticaRoutableConnection) DriverManager.getConnection(
connectionString);

Bothmethods result in a conn connection object that is identical.

Note: Avoid openingmany VerticaRoutableConnection connections because this
connectionmaintains its own private pool of connections which are not shared with other
connections. Instead, your application should use a single connection and issuemultiple
queries through that connection.

In addition to the setEnableRoutableQueries property that the Key/Value API adds to the HP
Vertica JDBC connection class, the API also adds additional properties. The complete list is below.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 197 of 817

Note: Preface these parameters with setwhen used as JDBC data source settings. For
example, EnableRoutableQueries becomes setEnableRoutableQueries if used as a JDBC
data source setting. If used in a connection string, then use EnableRoutableQueries=true.

l EnableRoutableQueries: Enables Key/Value lookup capability. Default is false.

l FailOnMultiNodePlans: If the plan requires more than one node, and FailOnMultiNodePlans is
true, then the query fails. If it is set to false then a warning is generated and the query continues.
However, latency is greatly increased as the Key/Value query must first determine the data is on
multiple nodes,then a normal query is run using traditional (all node) execution and execution.
Defaults to true. Note that this failure cannot occur on simple calls using only predicates and
constant values.

l MetadataCacheLifetime: The time in seconds to keep projectionmetadata. The API caches
metadata about the projection used for the query (such as projections). The cache is used on
subsequent queries to reduce response time. The default is 300 seconds.

l MaxPooledConnections: Cluster-widemaximum number of connections to keep in the
VerticaRoutableConnection’s internal pool. Default 20.

l MaxPooledConnectionsPerNode: Per-nodemaximum number of connections to keep in the
VerticaRoutableConnection’s internal pool. Default 5.

Defining the Query for Key/Value Lookups
The VGet class is used to access table data directly from a single node. VGet directly queries HP
Vertica nodes that have the data needed for the query, avoiding the distributed planning and
execution costs associated with a normal HP Vertica execution.

VGet does not use SQL to define the query. Instead, it allows you to build a query using a data
structure for which you define predicates, outputs, and sort and limit options.

You create a VGet by calling prepareGet(schema, table/proj) on a connection object.
prepareGet() takes the name of the schema and the name of a table or projection as arguments.

Note: You can query projections directly instead of querying a table. When querying a table,
the client driver attempts to find the best projection to use to return the data quickly. However,
if there aremany projections for the table, then HP Verticamay not always pick themost
efficient projection.

VGet has the followingmethods:

l addPredicate(string, object) - adds a predicate column and a constant value to the query.
Youmust include a predicate for each column on which the table is segmented. The predicate
acts as the "WHERE" clause to the query. Multiple addPredicate()method calls are joined by
AND modifiers. Note that the VGet retains this value after each call to execute. To remove it,
use ClearPredicates().

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 198 of 817

Note: The following data types cannot be used as predicates. Additionally, if a table is
segmented on any columns with the following data types then the table cannot be queried
using the Key/Value API:

n interval

n timetz

n timsestamptz

n numeric

l addPredicateExpression(string) - Accepts arbitrary SQL expressions that operate on the
table's columns as input to the query. Predicate expressions and predicates arejoing by AND
modifiers. You can use segmented columns in predicate expressions, but they must also be
specified as a regular predicate with addPredicate(). Note that the VGet retains this value
after each call to execute. To remove it, use ClearPredicates().

Note: The driver does not verify the syntax of the expression before it sends it to the server.
If your expression is incorrect then the query fails.

l addOutputColumn(string) - Adds a column to be included in the output. By default the query
runs as SELECT * and you do not need to define any output columns to return the data. If you add
output columns then youmust add all the columns you want returned. Note that the VGet retains
this value after each call to execute. To remove it, use ClearOutputs().

l addOutputExpression(string) - Accepts arbitrary SQL expressions that operate on the
table's columns as output. Note that the VGet retains this value after each call to execute. To
remove it, use ClearOutputs().

Note: The driver does not verify the syntax of the expression before it sends it to the server.
If your expression is incorrect then the query fails.

l addSortColumn(string, SortOrder) - Adds a sort order to an output column. The output
column can be either the one returned by the default query (SELECT *) or one of the columns
defined in addOutputColumn or addOutputExpress. You can definedmultiple sort columns.

l setLimit(int) - Sets a limit on the number of results returned. A limit of 0 is unlimited.

l clearPredicates() - Removes predicates that were added by addPredicate() and
addPredicateExpression().

l clearOutputs() - Removes outputs added by addOutput() and addOutputExpression().

l clearSortColumns() - Removes sort columns previously added by addSortColumn().

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 199 of 817

l execute() - Runs the query. Caremust be taken to ensure that the predicate columns exist on
the table and projection used by VGet, and that the expressions do not require multiple nodes to
execute. If an expression is sufficiently complex as to require more than one node to execute,
execute() throws a SQLException if the FailOnMultiNodePlans connection property is true.

l close() - Closes this VGet by releasing resources used by this VGet. It does not close the
parent JDBC connection to HP Vertica.

l getWarnings() - Retrieves the first warning reported by calls on this VGet. Additional warning
are chained and can be accessed with the JDBC getNextWarning()method.

You call the execute()method to run query. By default, the VGet fetches all the columns of all the
rows that satisfy the logical AND of all the predicates passed via the addPredicate()method. To
further customize the get operation use the addOutputColumn(), addOutputExpression(),
addPredicateExpression(), addSortColumn() and setLimit()methods.

Note: VGet operations spanmultiple JDBC connections (andmultiple HP Vertica sessions)
and do not honor the parent connection's transaction semantics. If consistency is required
across multiple executions, the parent VerticaRoutableConnection's consistent read API can
be used to guarantee all operations occur at the same epoch.

VGet is thread safe, but all methods are synchronized, so threads that share a VGet instance
are never run in parallel. For better parallelism, each thread should have its own VGet instance.
Different VGet instances that operate on the same table share pooled connections and
metadata in amanner that enables a high degree of parallelism.

Example

You can query the table defined in Creating Tables and Projections for use with the Key/Value API
with the following example code. The table defines an id column that is segmented by hash.

import java.sql.*;
import com.vertica.jdbc.kv.*;

public class verticaKV2 {
public static void main(String[] args) {

com.vertica.jdbc.DataSource jdbcSettings
= new com.vertica.jdbc.DataSource();

jdbcSettings.setDatabase("exampleDB");
jdbcSettings.setHost("docg01.verticacorp.com");
jdbcSettings.setUserID("dbadmin");
jdbcSettings.setPassword("password");
jdbcSettings.setEnableRoutableQueries(true);
jdbcSettings.setPort((short) 5433);

VerticaRoutableConnection conn;
try {

conn = (VerticaRoutableConnection)
jdbcSettings.getConnection();

System.out.println("Connected.");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 200 of 817

VGet get = conn.prepareGet("public", "users");
get.addPredicate("id", 5);
ResultSet rs = get.execute();
rs.next();
System.out.println("ID: " +

rs.getString("id"));
System.out.println("Username: "

+ rs.getString("username"));
System.out.println("Email: "

+ rs.getString("email"));
System.out.println("Closing Connection.");

conn.close();
} catch (SQLException e) {

System.out.println("Error! Stacktrace:");
e.printStackTrace();

}
}

}

The output:

Connected.
ID: 5
Username: userE
Email: usere@example.com
Closing Connection.

Key/Value Performance and Troubleshooting
This topic details performance considerations and common issues youmight encounter when using
the Key/Value API.

Using Resource Pools with Key/Value Queries

Individual Key/Value queries are serviced quickly since they directly access a single node and
return only one or a few rows of data. However, by default, HP Vertica resource pools use an AUTO
setting for the execution parallelism parameter. When set to AUTO, the setting is determined
by the number of CPU cores available and generally results in multi-threaded execution of queries
in the resource pool. It is not efficient to create parallel threads on the server because VGet
operations return data so quickly and VGet only uses a single thread to find a row. To prevent the
server from opening unneeded processing threads, you should create a specific resource pool for
Key/Value clients. Consider the following settings for the resource pool you use for Key/Value
queries:

l Set execution parallelism to 1 to force single-threaded queries. This setting improves key/value
performance.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 201 of 817

l UseCPU affinity to limit the resource pool to a specific CPU or CPU set. The setting ensures
that the key/value queries have resources available to them, but it also prevents key/value
queries from significantly impacting performance on the system for other general queries.

l If you do not set a CPU affinity for the resource pool, consider setting themaximum concurrency
value of the resource pool to a setting that ensures good performance for Key/Value queries, but
does not negatively impact the performance of general queries.

Performance Considerations for Key/Value Connections

Because a VerticaRoutableConnection opens an internal pool of connections, it is important to
configure MaxPooledConnections and MaxPooledConnectionsPerNode appropriately for your
cluster size and the amount of simultaneous client connections. It is possible to impact normal
database connections if you are overloading the cluster with VerticaRoutableConnections.

The initial connection to the initiator node discovers all other nodes in the cluster. The internal-pool
connections are not opened until a VGet query is sent. All VGets in a connection object use
connections from the internal pool and are limited by the MaxPooledConnections settings.
Connections remain open until they until the are close so a new connection can be opened
elsewhere if the connection limit has been reached.

Troubleshooting Key/Value Queries

Key/Value query issues generally fall into two categories:

l Not providing enough predicates.

l Queries having to spanmultiple nodes.

Predicate Requirements

Youmust provide the same number of predicates that correspond to the columns of the table
segmented by hash. To determine the segmented columns, run select get_table_projections
('tableName'). Youmust provide a predicate for each column displayed in the "Seg Cols" field.

Multi-node Failures

It is possible to define the correct number of predicates, but still have a failure becausemultiple
nodes contain the data. This failure occurs because the projection's data is not segmented in such
a way that the data being queried is contained on a single node. Enable logging for the connection
and view the logs to verify the projection being used. If the client is not picking the correct
projection, then try to query the projection directly by specifying the projection instead of the table in
conn.prepareGet('schema','table/projection').

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 202 of 817

Programming ADO.NET Applications
The HP Vertica driver for ADO.NET allows applications written in C# to read data from, update, and
load data into HP Vertica databases. It provides a data adapter (HP Vertica Data Adapter) that
facilitates reading data from a database into a data set, and then writing changed data from the data
set back to the database. It also provides a data reader (HP VerticaDataReader) for reading data.
The driver requires the .NET framework version 3.5+.

For more information about ADO.NET, see:

l Overview of ADO.NET

l ADO.NET .NET Framework Developer's Guide

Note: All of the examples provided in this section are in C#.

Updating ADO.NET Client Code From Previous
Driver Versions

Starting in release 5.1.1, the HP Vertica client drivers have been updated to improve standards
compliance, performance, and reliability. As a result, someHP Vertica-specific features and past
incompatibilities have been eliminated. Youmust update any client code written for the prior
versions of the ADO.NET driver to work with the version 5.1.1 driver and beyond.

Auto Commit Change
l All queries are now Auto Committed. The only exception is that queries run using a Transaction

are not committed until the Commit(); method is called.

Performance Improvements
l Prepared INSERT statements now run significantly faster than in previous driver versions. For

the best performance, prepared statements should be executed as part of a transaction.

Namespace Change
l The namespace has changed from vertica to Vertica.Data.VerticaClient

Connection Properties
l DSN is no longer a valid connection string keyword. You cannot connect to HP Vertica using

ADO.net with a DSN.

l The RowBufferSize connection property has been renamed to ResultBufferSize.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 203 of 817

http://msdn.microsoft.com/en-us/library/h43ks021(vs.85).aspx
http://msdn.microsoft.com/en-us/library/e80y5yhx.aspx http://www

l Getters on the VerticaConnection to get various connection string options
(CacheDirectoryPooling, MinPoolSize, MaxPoolSize, SyncNotification, Timeout, Enlist,
UseExtendedTypes, Password, Pooling, MinPoolSize, MaxPoolSize) have been removed.

l There is no longer a locale connection string keyword and you cannot set the locale through the
connection string. To change the locale, run the query "set locale to..."

l The connection property to enable or disable auto commit has been removed. All queries outside
of transactions are auto-committed.

Result Buffering
l The driver now buffers all results, and always uses streaming. Because of this, the following

functionality has changed:

n VerticaCommandBehavior enum has been removed. This enum extended the ADO.NET
CommandBehavior enum to add support for buffering results. Results are now buffered in HP
Vertica 5.1.x.

n The VerticaCommand.ExecuteReader(CommandBehavior, bool) argument has been
removed.

n CacheDirectory or PreloadReader connection string options have been removed.

Logging Changes
l Log properties are no longer configured on the connection string. Log properties are now

configured through the VerticaLogProperties class.

Data Type Changes
The following data types have changed:

Old Datatype Name New Datatype Name

verticaType.Integer VerticaType.BigInt

verticaType.Bigint VerticaType.BigInt

verticaType.Timestamp VerticaType.DateTime

verticaType.Interval Changed to specific type of interval, for example:

l VerticaType.IntervalDay

l VerticaType.IntervalDayToHour

l VerticaType.IntervalDayToMinute

l etc.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 204 of 817

Old Datatype Name New Datatype Name

verticaType.Real VerticaType.Double

verticaType.Text VerticaType.VarChar

verticaType.Smallint VerticaType.BigInt

verticaType.Varbinary VerticaType.VarBinary

Multiple Commands Now Supported
Multiple commands in a single statement are now supported, provided that parameters are not used
in any of the commands in the statement. The exception is COPY commands. You cannot issue
multiple COPY commands in the same statement.

Setting the Locale for ADO.NET Sessions
l ADO.NET applications use a UTF-16 character set encoding and are responsible for converting

any non-UTF-16 encoded data to UTF-16. The same cautions as for ODBC apply if this
encoding is violated.

l The ADO.NET driver converts UTF-16 data to UTF-8 when passing to the HP Vertica server
and converts data sent by HP Vertica server from UTF-8 to UTF-16

l ADO.NET applications should set the correct server session locale by executing the SET
LOCALE TO command in order to get expected collation and string functions behavior on the
server.

l If there is no default session locale at the database level, ADO.NET applications need to set the
correct server session locale by executing the SET LOCALE TO command in order to get
expected collation and string functions behavior on the server. See the SET LOCALE command
in the SQLReferenceManual

Connecting to the Database
This section describes:

l Using SSL: Installing SSLCertificates onWindows

l Opening and Closing the Database Connection (ADO.NET)

l ADO.NET Connection Properties

l Configuring Log Properties

Using SSL: Installing Certificates on Windows
You can optionally secure communication between your ADO.NET application and HP Vertica
using SSL. The HP Vertica ADO.NET driver uses the default Windows key store when looking for

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 205 of 817

SSL certificates. This is the same key store that Internet Explorer uses.

Before you can use SSL on the client side, youmust implement SSL on the server. See
Implementing SSL in the Administrator's Guide, perform those steps, then return to this topic to
install the SSL certificate onWindows.

To use SSL for ADO.NET connections to HP Vertica:

l Import the server and client certificates into theWindows Key Store.

l If required by your certificates, import the public certificate of your Certifying Authority.

Import the Server and Client Certificates into the Windows Key
store:

1. Copy the server.crt file you generated when you enabled SSL on the server to yourWindows
Machine.

2. Double-click the certificate.

3. Let Windows determine the key type, and click Install.

Import the Public Certificate of Your CA:

Youmust establish a chain of trust for the certificates. Youmay need to import the public certificate
for your Certifying Authority (CA) (especially if it is a self-signed certificate).

1. using the same certificate as above, double-click the certificate.

2. Select Place all certificates in the following store.

3. Click Browse, select Trusted Root Certification Authorities and click Next.

4. Click Install.

Enable SSL in Your ADO.NET Applications

In your connection string, be sure to enable SSL by setting the SSL property in
VerticaConnectionStringBuilder to true, for example:

//configure connection properties VerticaConnectionStringBuilder builder = new Vertica
ConnectionStringBuilder();

builder.Host = "192.168.17.10";
builder.Database = "VMart";
builder.User = "dbadmin";
builder.SSL = true;
//open the connection
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 206 of 817

Opening and Closing the Database Connection
(ADO.NET)

Before you can access data in HP Vertica through ADO.NET, youmust create a connection to the
database using the VerticaConnection class which is an implementation of
System.Data.DbConnection. The VerticaConnection class takes a single argument that contains
the connection properties as a string. You canmanually create a string of property keywords to use
as the argument, or you can use the VerticaConnectionStringBuilder class to build a connection
string for you.

This topic details the following:

l Manually building a connection string and connecting to HP Vertica

l Using VerticaConnectionStringBuilder to create the connection string and connecting to HP
Vertica

l Closing the connection

To Manually Create a Connection string:

See ADO.NET Connection Properties for a list of available properties to use in your connection
string. At aminimum, you need to specify the Host, Database, and User.

1. For each property, provide a value and append the properties and values one after the other,
separated by a semicolon. Assign this string to a variable. For example:

String connectString = "DATABASE=VMart;HOST=node01;USER=dbadmin";

2. Build an HP Vertica connection object that specifies your connection string.

VerticaConnection _conn = new VerticaConnection(connectString)

3. Open the connection.

_conn.Open();

4. Create a command object and associate it with a connection. All VerticaCommand objects
must be associated with a connection.

VerticaCommand command = _conn.CreateCommand();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 207 of 817

To Use the VerticaConnectionStringBuilder Class to Create a
Connection String and Open a connection:

1. Create a new object of the VerticaConnectionStringBuilder class.

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder();

2. Update your VerticaConnectionStringBuilder object with property values. See ADO.NET
Connection Properties for a list of available properties to use in your connection string. At a
minimum, you need to specify the Host, Database, and User.

builder.Host = "node01";
builder.Database = "VMart";
builder.User = "dbadmin";

3. Build an HP Vertica connection object that specifies your connection
VerticaConnectionStringBuilder object as a string.

VerticaConnection _conn = new VerticaConnection(builder.ToString());

4. Open the connection.

_conn.Open();

5. Create a command object and associate it with a connection. All VerticaCommand objects
must be associated with a connection.

VerticaCommand command = _conn.CreateCommand;

Note: If your database is not in compliance with your HP Vertica license, the call to
VerticaConnection.open() returns a warningmessage to the console and the log. See
Managing Your License Key in the Administrator's Guide for more information.

To Close the connection:

When you're finished with the database, close the connection. Failure to close the connection can
deteriorate the performance and scalability of your application. It can also prevent other clients from
obtaining locks.

_conn.Close();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 208 of 817

Example Usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

//Perform some operations
_conn.Close();

}
}

}

ADO.NET Connection Properties
You use connection properties to configure the connection between your ADO.NET client
application and your HP Vertica database. The properties provide the basic information about the
connections, such as the server name and port number to use to connect to your database.

You can set a connection property in two ways:

l Include the property name and value as part of the the connection string you pass to a
VerticaConnection.

l Set the properties in a VerticaConnectionStringBuilder object, then pass the object as a
string to a VerticaConnection.

Property Description Default Value

Database Name of the HP Vertica database
to connect to. For example, if you
installed the example VMart
database, the database is "VMart"

string.Empty

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 209 of 817

Property Description Default Value

User Name of the user to log into HP
Vertica/

string.Empty

Port Port on which HP Vertica is
running.

5433

Host The hostname or IP address of the
server on which HP Vertica is
running.

string.Empty

Password The password associated with the
user connecting to the server.

string.Empty

ConnSettings SQL commands to run upon
connection. Uses %3B for
semicolons.

string.Empty

IsolationLevel Sets the transaction isolation level
for HP Vertica. See Transactions
for a description of the different
transaction levels. This value is
either Serializable,
ReadCommitted, or Unspecified.
See Setting the Transaction
Isolation Level for an example of
setting the isolation level using this
keyword.

Note:By default, this value is set
to IsolationLevel.Unspecified,
whichmeans the connection uses
the server's default transaction
isolation level. HP Vertica's default
isolation level is
IsolationLevel.ReadCommitted.

System.Data.IsolationLevel.Unspecif
ied

Label A string to identify the session on
the server.

string

DirectBatchInsert A boolean value, whether to Bulk
insert to ROS (true) orWOS
(false).

false

ResultBufferSize The size of the buffer to use when
streaming results.

8192

ConnectionTimeout Number seconds to wait for a
connection. A value of 0means no
timeout.

0

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 210 of 817

Property Description Default Value

ReadOnly Boolean, if true, throw an exception
on write attempts.

false

Pooling A boolean value, whether to enable
connection pooling. Connection
pooling is useful for server
applications because it allows the
server to reuse connections. This
saves resources and enhances the
performance of executing
commands on the database. It also
reduces the amount of time a user
must wait to establish a connection
to the database

false

MinPoolSize An integer that defines the
minimum number of connections to
pool. Cannot be greater than the
number of connections that the
server is configured to allow or an
exception is thrownwhen that
threshold is exceeded. The default
number of connections allowed is
55.

1

MaxPoolSize An integer that defines the
maximum number of connections
to pool. Cannot be greater than the
number of connections that the
server is configured to allow or an
exception is thrownwhen that
threshold is exceeded.

20

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 211 of 817

Property Description Default Value

LoadBalanceTimeou
t

The amount of time, in seconds, to
timeout/remove pooled
connections if the connections are
unused. Set to 0 to disable this
parameter and have no timeouts
occur.

If you are using a cluster
environment to load-balance the
work, then pool is restricted to the
servers in the cluster when the pool
was created. If additional servers
are added to the cluster, and the
pool is not removed, then the new
servers will never be added to the
connection pool unless
LoadBalanceTimeout is set and
exceeded or
VerticaConnection.ClearAllPo
ols() is manually called from an
application. If you are using load
balancing then set this to a value
that takes into account when new
servers are added to the cluster.
However, do not set it so low that
pools are frequently removed and
rebuilt, as this defeats the purpose
of using pooling in the first place.

0 (no timeout)

SSL A boolean value, whether to use
SSL for the connection.

false

IntegratedSecurit
y

Provides a Boolean value that,
when set to true, uses the user’s
Windows credentials for
authentication, instead of
user/password in the connection
string.

false

KerberosServiceNa
me

Provides the service name portion
of the HP Vertica Kerberos
principal; for example:
vertica/host@EXAMPLE.COM

vertica

KerberosHostname Provides the instance or host name
portion of the HP Vertica Kerberos
principal; for example:
vertica/host@EXAMPLE.COM

Value specified in the servername
connection string property

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 212 of 817

Enabling Native Connection Load Balancing in ADO.NET
Native connection load balancing helps spread the overhead caused by client connections on the
hosts in the HP Vertica database. Both the server and the client must enable native connection load
balancing in order for it to have an effect. If both have enabled it, then when the client initially
connects to a host in the database, the host picks a host to handle the client connection from a list
of the currently up hosts in the database, and informs the client which host it has chosen. If the
initially-contacted host did not choose itself to handle the connection, the client disconnects, then
opens a second connection to the host selected by the first host. The connection process to this
second host proceeds as usual—if SSL is enabled, then SSL negotiations begin, otherwise the
client begins the authentication process. See About Native Connection Load Balancing in the
Administrator's Guide for details.

To enable native load balancing on your client, set the ConnectionLoadBalance connection
parameter to true either in the connection string or using the ConnectionStringBuilder(). The
following example demonstrates connecting to the database several times with native connection
load balancing enabled, and fetching the name of the node handling the connection from the V_
MONITOR.CURRENT_SESSION system table.

using System;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder =
new VerticaConnectionStringBuilder();

builder.Host = "node01.example.com";
builder.Database = "VMart";
builder.User = "dbadmin";
// Enable native client load balancing in the client,
// must also be enabled on the server!
builder.ConnectionLoadBalance = true;
// Connect 3 times to verify a new node is connected
// for each connection.
for (int i = 1; i <= 4; i++)
{

try
{

VerticaConnection _conn =
new VerticaConnection(builder.ToString());

_conn.Open();
if (i == 1)
{

// On the first connection, check the server policy for load bala
nce

VerticaCommand sqlcom = _conn.CreateCommand();
sqlcom.CommandText =

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 213 of 817

"SELECT LOAD_BALANCE_POLICY FROM V_CATALOG.DATABASES";
var returnValue = sqlcom.ExecuteScalar();
Console.WriteLine("Status of load balancy policy
on server: " + returnValue.ToString() + "\n");

}
VerticaCommand command = _conn.CreateCommand();
command.CommandText =

"SELECT node_name FROM V_MONITOR.CURRENT_SESSION";
VerticaDataReader dr = command.ExecuteReader();
while (dr.Read())
{

Console.Write("Connect attempt #" + i + "... ");
Console.WriteLine("Connected to node " + dr[0]);

}
dr.Close();
_conn.Close();
Console.WriteLine("Disconnecting.\n");

}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

}
}

}
}

Running the above example produces the following output:

Status of load balancy policy on server: roundrobin

Connect attempt #1... Connected to node v_vmart_node0001
Disconnecting.

Connect attempt #2... Connected to node v_vmart_node0002
Disconnecting.

Connect attempt #3... Connected to node v_vmart_node0003
Disconnecting.

Connect attempt #4... Connected to node v_vmart_node0001
Disconnecting.

ADO.NET Connection Failover
If a client application attempts to connect to a host in the Vertica Analytics Platform cluster that is
down, the connection attempt fails when using the default connection configuration. This failure
usually returns an error to the user. The user must either wait until the host recovers and retry the
connection or manually edit the connection settings to choose another host.

Due to Vertica Analytics Platform's distributed architecture, you usually do not care which
database host handles a client application's connection. You can use the client driver's connection
failover feature to prevent the user from getting connection errors when the host specified in the
connection settings is unreachable. It gives you two ways to let the client driver automatically

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 214 of 817

attempt to connect to a different host if the one specified in the connection parameters is
unreachable:

l Configure your DNS server to returnmultiple IP addresses for a host name. When you use this
host name in the connection settings, the client attempts to connect to the first IP address from
the DNS lookup. If the host at that IP address is unreachable, the client tries to connect to the
second IP, and so on until it either manages to connect to a host or it runs out of IP addresses.

l Supply a list of backup hosts for the client driver to try if the primary host you specify in the
connection parameters is unreachable.

For bothmethods, the process of failover is transparent to the client application (other than
specifying the list of backup hosts, if you choose to use the list method of failover). If the primary
host is unreachable, the client driver automatically tries to connect to other hosts.

Failover only applies to the initial establishment of the client connection. If the connection breaks,
the driver does not automatically try to reconnect to another host in the database.

Choosing a Failover Method

You usually choose to use one of the two failover methods. However, they do work together. If your
DNS server returns multiple IP addresses and you supply a list of backup hosts, the client first tries
all of the IPs returned by the DNS server, then the hosts in the backup list.

Note: If a host name in the backup host list resolves tomultiple IP addresses, the client does
not try all of them. It just tries the first IP address in the list.

The DNS method of failover centralizes the configuration client failover. As you add new nodes to
your Vertica Analytics Platform cluster, you can choose to add them to the failover list by editing
the DNS server settings. All client systems that use the DNS server to connect to Vertica
Analytics Platform automatically use connection failover without having to change any settings.
However, this method does require administrative access to the DNS server that all clients use to
connect to the Vertica Analytics Platform cluster. This may not be possible in your organization.

Using the backup server list is easier than editing the DNS server settings. However, it
decentralizes the failover feature. Youmay need to update the application settings on each client
system if youmake changes to your Vertica Analytics Platform cluster.

Using DNS Failover

To use DNS failover, you need to change your DNS server's settings tomap a single host name to
multiple IP addresses of hosts in your Vertica Analytics Platform cluster. You then have all client
applications use this host name to connect to Vertica Analytics Platform.

You can choose to have your DNS server return as many IP addresses for the host name as you
want. In smaller clusters, youmay choose to have it return the IP addresses of all of the hosts in
your cluster. However, for larger clusters, you should consider choosing a subset of the hosts to
return. Otherwise there can be a long delay as the client driver tries unsuccessfully to connect to
each host in a database that is down.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 215 of 817

Using the Backup Host List

To enable backup list-based connection failover, your client application has to specify at least one
IP address or host name of a host in the BackupServerNode parameter. The host name or IP can
optionally be followed by a colon and a port number. If not supplied, the driver defaults to the
standard HP Vertica port number (5433). To list multiple hosts, separate them by a comma.

The following example demonstrates setting the BackupServerNode connection parameter to
specify additional hosts for the connection attempt. The connection string intentionally has a non-
existent node, so that the initial connection fails. The client driver has to resort to trying the backup
hosts to establish a connection to HP Vertica.

using System;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder =
new VerticaConnectionStringBuilder();

builder.Host = "not.a.real.host:5433";
builder.Database = "VMart";
builder.User = "dbadmin";
builder.BackupServerNode =

"another.broken.node:5433,docg02.verticacorp.com:5433";
try
{

VerticaConnection _conn =
new VerticaConnection(builder.ToString());

_conn.Open();
VerticaCommand sqlcom = _conn.CreateCommand();
sqlcom.CommandText = "SELECT node_name FROM current_session";
var returnValue = sqlcom.ExecuteScalar();
Console.WriteLine("Connected to node: " +

returnValue.ToString() + "\n");
_conn.Close();
Console.WriteLine("Disconnecting.\n");

}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

}
}

}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 216 of 817

Notes

l When native connection load balancing is enabled, the additional servers specified in the
BackupServerNode connection parameter are only used for the initial connection to an HP
Vertica host. If host redirects the client to another host in the database cluster to handle its
connection request, the second connection does not use the backup node list. This is rarely an
issue, since native connection load balancing is aware of which nodes are currently up in the
database. See Enabling Native Connection Load Balancing in ADO.NET.

l Connections to a host taken from the BackupServerNode list are not pooled for ADO.NET
connections.

Configuring Log Properties (ADO.Net)
Log properties for ADO.Net are configured differently than they are other client drivers. On the other
client drivers, log properties can be configured as one of the connection properties. The ADO.Net
driver user the VerticaLogProperties class to configure the properties.

VerticaLogProperties

VerticaLogProperties is a static class that allows you to set and get the log settings for the ADO.net
driver. You can control the log level, log path, and log namespace using this class.

The log is created when the first connection is opened. Once the connection is opened, you cannot
change the log path. It must be set prior to opening the connection. You can change the log level
and log namespace at any time.

Setting Log Properties

Setting the log properties is done using the threemethods in the VerticaLogProperties class. The
threemethods are:

l SetLogPath(String path, bool persist)

l SetLogNamespace(String lognamespace, bool persist)

l SetLogLevel(VerticaLogLevel loglevel, bool persist)

Each of themethods requires a boolean persist argument. When set to true, the persist argument
causes the setting to be written to the client's Windows Registry, where it is used for all
subsequent connections. If set to false, then the log property only applies to the current session.

SetLogPath

The SetLogPathmethod takes as its arguments a string containing the path to the log file and the
persist argument. If the path string contains only a directory path, then the log file is created with the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 217 of 817

name vdp-driver-MM-dd_HH.mm.ss.log (whereMM-dd_HH.mm.ss is the date and time the log
was created). If the path ends in a filename, such as log.txt or log.log, then the log is created with
that filename.

If SetLogPath is called with an empty string for the path argument, then the client executable's
current directory is used as the log path.

If SetLogPath is not called and no registry entry exists for the log path, and you have called any of
the other VerticaLogProperties methods, then the client executable's current directory is used as
the log path.

When the persist argument is set to true, the path specified is copied to the registry verbatim. If no
filenamewas specified, then the filename is not saved to the registry.

Note: Note: The pathmust exist on the client system prior to calling this method. Themethod
does not create directories.

Example Usage:

//set the log path
string path = "C:\\log";
VerticaLogProperties.SetLogPath(path, false);

SetLogNamespace

The SetLogNamespacemethod takes as its arguments a string containing the namespace to log
and the persist argument. The namespace string to log can be one of the following:

l Vertica

l Vertica.Data.VerticaClient

l Vertica.Data.Internal.IO

l Vertica.Data.Internal.DataEngine

l Vertica.Data.Internal.Core

Namespaces can be truncated to includemultiple child namespaces. For example, you can specify
"Vertica.Data.Internal" to log for all of the Vertica.Data.Internal namespaces.

If a log namespace is not set, and no value is stored in the registry, then the "Vertica" namespace is
used for logging.

Example Usage:

//set namespace to log
string lognamespace = "Vertica.Data.VerticaClient";
VerticaLogProperties.SetLogNamespace(lognamespace, false);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 218 of 817

SetLogLevel

The SetLogLevel method takes as its arguments a VerticaLogLevel type and the persist argument.
The VerticaLogLevel argument can be one of:

l VerticaLogLevel.None

l VerticaLogLevel.Fatal

l VerticaLogLevel.Error

l VerticaLogLevel.Warning

l VerticaLogLevel.Info

l VerticaLogLevel.Debug

l VerticaLogLevel.Trace

If a log level is not set, and no value is stored in the registry, then VerticaLogLevel.None is used.

Example Usage:

//set log level
VerticaLogLevel level = VerticaLogLevel.Debug;
VerticaLogProperties.SetLogLevel(level, false);

Getting Log Properties

You can get the log property values using the getters included in the VerticaLogProperties class.
The properties are:

l LogPath

l LogNamespace

l LogLevel

Example Usage:

//get current log settings
string logpath = VerticaLogProperties.LogPath;
VerticaLogLevel loglevel = VerticaLogProperties.LogLevel;
string logns = VerticaLogProperties.LogNamespace;
Console.WriteLine("Current Log Settings:");
Console.WriteLine("Log Path: " + logpath);
Console.WriteLine("Log Level: " + loglevel);
Console.WriteLine("Log Namespace: " + logns);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 219 of 817

Setting and Getting Log Properties Example

This complete example shows how to set and get log properties:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

//configure connection properties

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";

//get current log settings

string logpath = VerticaLogProperties.LogPath;
VerticaLogLevel loglevel = VerticaLogProperties.LogLevel;
string logns = VerticaLogProperties.LogNamespace;
Console.WriteLine("\nOld Log Settings:");
Console.WriteLine("Log Path: " + logpath);
Console.WriteLine("Log Level: " + loglevel);
Console.WriteLine("Log Namespace: " + logns);

//set the log path

string path = "C:\\log";
VerticaLogProperties.SetLogPath(path, false);

//set log level

VerticaLogLevel level = VerticaLogLevel.Debug;
VerticaLogProperties.SetLogLevel(level, false);

//set namespace to log

string lognamespace = "Vertica";
VerticaLogProperties.SetLogNamespace(lognamespace, false);

//open the connection

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 220 of 817

VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

//get new log settings

logpath = VerticaLogProperties.LogPath;
loglevel = VerticaLogProperties.LogLevel;
logns = VerticaLogProperties.LogNamespace;
Console.WriteLine("\nNew Log Settings:");
Console.WriteLine("Log Path: " + logpath);
Console.WriteLine("Log Level: " + loglevel);
Console.WriteLine("Log Namespace: " + logns);

//close the connection

_conn.Close(); }
}

}

The example produces the following output:

Old Log Settings:
Log Path:
Log Level: None
Log Namespace:
New Log Settings:
Log Path: C:\log
Log Level: Debug
Log Namespace: Vertica

Querying the Database Using ADO.NET
This section describes how to create queries to do the following:

l Inserting data into the database

l Read data from the database

l Load data into the database

Note: The ExecuteNonQuery() method used to query the database returns an int32 with the
number of rows affected by the query. Themaximum size of an int32 type is a constant and is
defined to be 2,147,483,547. If your query returns more results than the int32max, then
ADO.NET throws an exception because of the overflow of the int32 type. However the query is
still processed by HP Vertica even when the reporting of the return value fails. This is a
limitation in .NET, as ExecuteNonQuery() is part of the standard ADO.NET interface.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 221 of 817

Inserting Data (ADO.NET)
Inserting data can done using the VerticaCommand class. VerticaCommand is an implementation
of DbCommand. It allows you to create and send an SQL statement to the database. Use the
CommandText method to assign an SQL statement to the command and then execute the SQL by
calling the ExecuteNonQuery method. The ExecuteNonQuery method is used for executing
statements that do not return result sets.

To Insert a Single Row of data:

1. Create a connection to the database.

2. Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3. Insert data using an INSERT statement. The following is an example of a simple insert. Note
that is does not contain a COMMIT statement because the HP Vertica ADO.NET driver
operates in autocommit mode.

command.CommandText =
"INSERT into test values(2, 'username', 'email', 'password')";

4. Execute the query. The rowsAdded variable contains the number of rows added by the insert
statement.

Int32 rowsAdded = command.ExecuteNonQuery();

The ExecuteNonQuery() method returns the number of rows affected by the command for
UPDATE, INSERT, and DELETE statements. For all other types of statements it returns -1. If
a rollback occurs then it is also set to -1.

Example Usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 222 of 817

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

VerticaCommand command = _conn.CreateCommand();
command.CommandText =

"INSERT into test values(2, 'username', 'email', 'password')";
Int32 rowsAdded = command.ExecuteNonQuery();
Console.WriteLine(rowsAdded + " rows added!");

_conn.Close();
}

}
}

Using Parameters

You can use parameters to execute similar SQL statements repeatedly and efficiently.

Using Parameters

VerticaParameters are an extension of the System.Data.DbParameter base class in ADO.NET
and are used to set parameters in commands sent to the server. Use Parameters in all queries
(SELECT/INSERT/UPDATE/DELETE) for which the values in theWHERE clause are not static;
that is for all queries that have a known set of columns, but whose filter criteria is set dynamically
by an application or end user. Using parameters in this way greatly decreases the chances of an
SQL injection issue that can occur when simply creating a SQL query from a number of variables.

Parameters require that a valid DbType, VerticaDbType, or System type be assigned to the
parameter. See SQLData Types and ADO.NET Data Types for amapping of System, Vertica, and
DbTypes.

To create a parameter placeholder, place either the at sign (@) or a colon (:) character in front of the
parameter name in the actual query string. Do not insert any spaces between the placeholder
indicator (@ or :) and the placeholder.

Note: The@ character is the preferred way to identify parameters. The colon (:) character is
supported for backward compatibility.

For example, the following typical query uses the string 'MA' as a filter.

SELECT customer_name, customer_address, customer_city, customer_state
FROM customer_dimension WHERE customer_state = 'MA';

Instead, the query can be written to use a parameter. In the following example, the stringMA is
replaced by the parameter placeholder@STATE.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 223 of 817

SELECT customer_name, customer_address, customer_city, customer_state
FROM customer_dimension WHERE customer_state = @STATE;

For example, the ADO.net code for the prior example would be written as:

VerticaCommand command = new VerticaCommand();
command.Text = “SELECT customer_name, customer_address, customer_city, customer_state

FROM customer_dimension WHERE customer_state = @STATE”, _conn);
command.Parameters.Add(new VerticaParameter(“STATE”, VerticaType.VarChar));
command.Parameters["STATE"] = 'MA';

Note: Although the VerticaCommand class supports a Prepare() method, you do not need to
call the Prepare() method for parameterized statements because HP Vertica automatically
prepares the statement for you.

Creating and Rolling Back Transactions

Creating Transactions

Transactions in HP Vertica are atomic, consistent, isolated, and durable. When you connect to a
database using the Vertica ADO.NET Driver, the connection is in autocommit mode and each
individual query is committed upon execution. You can collect multiple statements into a single
transaction and commit them at the same time by using a transaction. You can also choose to
rollback a transaction before it is committed if your code determines that a transaction should not
commit.

Transactions use the VerticaTransaction object, which is an implementation of DbTransaction. You
must associate the transaction with the VerticaCommand object.

The following code uses an explicit transaction to insert one row each into to tables of the VMart
schema.

To Create a Transaction in HP Vertica Using the ADO.NET driver:

1. Create a connection to the database.

2. Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3. Start an explicit transaction, and associate the commandwith it.

VerticaTransaction txn = _conn.BeginTransaction();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 224 of 817

command.Connection = _conn;
command.Transaction = txn;

4. Execute the individual SQL statements to add rows.

command.CommandText =
"insert into product_dimension values(...)";

command.ExecuteNonQuery();
command.CommandText =

"insert into store_orders_fact values(...)";

5. Commit the transaction.

txn.Commit();

Rolling Back Transactions

If your code checks for errors, then you can catch the error and rollback the entire transaction.

VerticaTransaction txn = _conn.BeginTransaction();
VerticaCommand command = new

VerticaCommand("insert into product_dimension values(838929, 5, 'New item 5')",
_conn);
// execute the insert
command.ExecuteNonQuery();
command.CommandText = "insert into product_dimension values(838929, 6, 'New item 6')";
// try insert and catch any errors
bool error = false;
try
{

command.ExecuteNonQuery();
}
catch (Exception e)
{

Console.WriteLine(e.Message);
error = true;

}
if (error)
{

txn.Rollback();
Console.WriteLine("Errors. Rolling Back.");

}
else
{

txn.Commit();
Console.WriteLine("Queries Successful. Committing.");

}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 225 of 817

Commit and Rollback Example

This example details how you can commit or rollback queries during a transaction.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();
bool error = false;

VerticaCommand command = _conn.CreateCommand();
VerticaCommand command2 = _conn.CreateCommand();
VerticaTransaction txn = _conn.BeginTransaction();
command.Connection = _conn;
command.Transaction = txn;
command.CommandText =
"insert into test values(1, 'test', 'test', 'test')";
Console.WriteLine(command.CommandText);
try
{

command.ExecuteNonQuery();
}
catch (Exception e)
{

Console.WriteLine(e.Message);
error = true;

}
command.CommandText =
"insert into test values(2, 'ear', 'eye', 'nose', 'extra')";
Console.WriteLine(command.CommandText);
try
{

command.ExecuteNonQuery();
}
catch (Exception e)
{

Console.WriteLine(e.Message);
error = true;

}
if (error)
{

txn.Rollback();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 226 of 817

Console.WriteLine("Errors. Rolling Back.");
}
else
{

txn.Commit();
Console.WriteLine("Queries Successful. Committing.");

}
_conn.Close();

}
}

}

The example displays the following output on the console:

insert into test values(1, 'test', 'test', 'test')
insert into test values(2, 'ear', 'eye', 'nose', 'extra')
[42601]ERROR: INSERT has more expressions than target columns
Errors. Rolling Back.

See Also

l Setting the Transaction Isolation Level

Setting the Transaction Isolation Level

You can set the transaction isolation level on a per-connection and per-transaction basis. See
Transaction for an overview of the transaction isolation levels supported in HP Vertica. To set the
default transaction isolation level for a connection, use the IsolationLevel keyword in the
VerticaConnectionStringBuilder string (see Connection String Keywords for details). To set the
isolation level for an individual transaction, pass the isolation level to the
VerticaConnection.BeginTransaction()method call to start the transaction.

To set the Isolation Level on a connection-
basis:

1. Use the VerticaConnectionStringBuilder to build the connection string.

2. Provide a value for the IsolationLevel builder string. It can take one of two values:
IsolationLevel.ReadCommited (default) or IsolationLevel.Serializeable. For example:

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder();
builder.Host = "192.168.1.100";
builder.Database = "VMart";
builder.User = "dbadmin";
builder.IsolationLevel = System.Data.IsolationLevel.Serializeable
VerticaConnection _conn1 = new VerticaConnection(builder.ToString());
_conn1.Open();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 227 of 817

To set the Isolation Level on a Transaction
basis:

1. Set the IsolationLevel on the BeginTransactionmethod, for example

VerticaTransaction txn = _conn.BeginTransaction(IsolationLevel.Serializable);

Example usage:
The following example demonstrates:

l getting the connection's transaction isolation level.

l setting the connection's isolation level using connection property.

l setting the transaction isolation level for a new transaction.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn1 = new VerticaConnection(builder.ToString());
_conn1.Open();

VerticaTransaction txn1 = _conn1.BeginTransaction();
Console.WriteLine("\n Transaction 1 Transaction Isolation Level: " +

txn1.IsolationLevel.ToString());
txn1.Rollback();
VerticaTransaction txn2 = _conn1.BeginTransaction(IsolationLevel.Serializabl

e);
Console.WriteLine("\n Transaction 2 Transaction Isolation Level: " +

txn2.IsolationLevel.ToString());
txn2.Rollback();
VerticaTransaction txn3 = _conn1.BeginTransaction(IsolationLevel.ReadCommitte

d);
Console.WriteLine("\n Transaction 3 Transaction Isolation Level: " +

txn3.IsolationLevel.ToString());
_conn1.Close();

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 228 of 817

}
}

}

When run, the example code prints the following to the system console:

Transaction 1 Transaction Isolation Level: ReadCommitted
Transaction 2 Transaction Isolation Level: Serializable
Transaction 3 Transaction Isolation Level: ReadCommitted

Reading Data (ADO.Net)
To read data from the database use VerticaDataReader, an implementation of DbDataReader. This
implementation is useful for moving large volumes of data quickly off the server where it can be run
through analytic applications.

Note: that the VerticaDataReader.HasRows property returns true if the result generated any
rows. In versions of HP Vertica prior to 5.1, HasRows returned rows if there weremore rows to
be read.

Note: A VerticaCommand cannot execute anything else while it has an open
VerticaDataReader associated with it. To execute something else, close the data reader or use
a different VerticaCommand object.

To Read Data From the Database Using VerticaDataReader:

1. Create a connection to the database.

2. Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3. Create a query. This query works with the example VMart database.

command.CommandText =
"SELECT fat_content, product_description " +
"FROM (SELECT DISTINCT fat_content, product_description" +
" FROM product_dimension " +
" WHERE department_description " + " IN ('Dairy') " +
" ORDER BY fat_content) AS food " +
"LIMIT 10;";

4. Execute the reader to return the results from the query. The following command calls the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 229 of 817

ExecuteReader method of the VerticaCommand object to obtain the VerticaDataReader
object.

VerticaDataReader dr = command.ExecuteReader();

5. Read the data. The data reader returns results in a sequential stream. Therefore, youmust read
data from tables row-by-row. The following example uses a while loop to accomplish this:

Console.WriteLine("\n\n Fat Content\t Product Description");
Console.WriteLine("------------\t -------------------");
int rows = 0;
while (dr.Read())
{

Console.WriteLine(" " + dr[0] + " \t " + dr[1]);
++rows;

}
Console.WriteLine("------------\n (" + rows + " rows)\n");

6. When you're finished, close the data reader to free up resources.

dr.Close();

Example Usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

VerticaCommand command = _conn.CreateCommand();
command.CommandText =

"SELECT fat_content, product_description " +
"FROM (SELECT DISTINCT fat_content, product_description" +
" FROM product_dimension " +
" WHERE department_description " +

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 230 of 817

" IN ('Dairy') " +
" ORDER BY fat_content) AS food " +
"LIMIT 10;";

VerticaDataReader dr = command.ExecuteReader();

Console.WriteLine("\n\n Fat Content\t Product Description");
Console.WriteLine("------------\t -------------------");
int rows = 0;
while (dr.Read())
{

Console.WriteLine(" " + dr[0] + " \t " + dr[1]);
++rows;

}
Console.WriteLine("------------\n (" + rows + " rows)\n");

dr.Close();
_conn.Close();

}
}

}

Loading Data Through ADO.Net
This section details the different ways that you can load data in HP Vertica using the ADO.NET
client driver:

l Using the HP Vertica Data Adapter

l Using Batch Inserts and Prepared Statements

l Streaming Data Via ADO.NET

Using the HP Vertica Data Adapter

The HP Vertica data adapter (VerticaDataAdapter) enables a client to exchange data between a
data set and an HP Vertica database. It is an implementation of DbDataAdapter. You can use
VerticaDataAdapter to simply read data, or, for example, read data from a database into a data set,
and then write changed data from the data set back to the database.

Batching Updates

When using the Update() method to update a dataset, you can optionally use the UpdateBatchSize
() method prior to calling Update() to reduce the number of times the client communicates with the
server to perform the update. The default value of UpdateBatchSize is 1. If you havemultiple
rows.Add() commands for a data set, then you can change the batch size to an optimal size to
speed up the operations your client must perform to complete the update.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 231 of 817

Reading Data From HP Vertica Using the Data adapter:

The following example details how to perform a select query on the VMart schema and load the
result into a DataTable, then output the contents of the DataTable to the console.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;
Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

// Try/Catch any exceptions

try
{

using (_conn)
{

// Create the command

VerticaCommand command = _conn.CreateCommand();
command.CommandText = "select product_key, product_description " +

"from product_dimension where product_key < 10";

// Associate the commandwith the connection

command.Connection = _conn;

// Create the DataAdapter

VerticaDataAdapter adapter = new VerticaDataAdapter();
adapter.SelectCommand = command;

// Fill the DataTable

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 232 of 817

DataTable table = new DataTable();
adapter.Fill(table);

// Display each row and column value.

int i = 1;
foreach (DataRow row in table.Rows)
{

foreach (DataColumn column in table.Columns)
{

Console.Write(row[column] + "\t");
}
Console.WriteLine();
i++;

}
Console.WriteLine(i + " rows returned.");

}
}
catch (Exception e)
{

Console.WriteLine(e.Message);
}
_conn.Close();

}
}

}

Reading Data From HP Vertica into a Data set and Changing data:

The following example shows how to use a data adapter to read from and insert into a dimension
table of the VMart schema.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.Data.SqlClient;
using Vertica.Data.VerticaClient
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

// Try/Catch any exceptions

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 233 of 817

try
{

using (_conn)
{

//Create a data adapter object using the connection

VerticaDataAdapter da = new VerticaDataAdapter();

//Create a select statement that retrieves data from the table

da.SelectCommand = new
VerticaCommand("select * from product_dimension where product_key

< 10",
_conn);

//Set up the insert command for the data adapter, and bind variables for some of the columns

da.InsertCommand = new
VerticaCommand("insert into product_dimension values(:key, :vers

ion, :desc)",
_conn);

da.InsertCommand.Parameters.Add(new VerticaParameter("key", VerticaTy
pe.BigInt));

da.InsertCommand.Parameters.Add(new VerticaParameter("version", Verti
caType.BigInt));

da.InsertCommand.Parameters.Add(new VerticaParameter("desc", VerticaT
ype.VarChar));

da.InsertCommand.Parameters[0].SourceColumn = "product_key";
da.InsertCommand.Parameters[1].SourceColumn = "product_version";
da.InsertCommand.Parameters[2].SourceColumn = "product_description";
da.TableMappings.Add("product_key", "product_key");
da.TableMappings.Add("product_version", "product_version");
da.TableMappings.Add("product_description", "product_description");

//Create and fill a Data set for this dimension table, and get the resulting DataTable.

DataSet ds = new DataSet();
da.Fill(ds, 0, 0, "product_dimension");
DataTable dt = ds.Tables[0];

//Bind parameters and add two rows to the table.

DataRow dr = dt.NewRow();
dr["product_key"] = 838929;
dr["product_version"] = 5;
dr["product_description"] = "New item 5";
dt.Rows.Add(dr);
dr = dt.NewRow();
dr["product_key"] = 838929;
dr["product_version"] = 6;

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 234 of 817

dr["product_description"] = "New item 6";
dt.Rows.Add(dr);

//Extract the changes for the added rows.

DataSet ds2 = ds.GetChanges();

//Send themodifications to the server.

int updateCount = da.Update(ds2, "product_dimension");

//Merge the changes into the original Data set, andmark it up to date.

ds.Merge(ds2);
ds.AcceptChanges();
Console.WriteLine(updateCount + " updates made!");

}
}
catch (Exception e)
{

Console.WriteLine(e.Message);
}
_conn.Close();

}
}

}

Using Batch Inserts and Prepared Statements

You can load data in batches using a prepared statement with parameters. You can also use
transactions to rollback the batch load if any errors are encountered.

If you are loading large batches of data (more than 100MB), then consider using a direct batch
insert.

The following example details using data contained in arrays, parameters, and a transaction to
batch load data.

The test table used in the example is created with the command: create table test (id INT,
username VARCHAR(24), email VARCHAR(64), password VARCHAR(8));

Example Batch Insert Using Parameters and Transactions

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 235 of 817

namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

// create arrays for column data

int[] ids = {1, 2, 3, 4};
string[] usernames = {"user1", "user2", "user3", "user4"};
string[] emails = { "user1@example.com", "user2@example.com","user3@example.c

om","user4@example.com" };
string[] passwords = { "pass1", "pass2", "pass3", "pass4" };

// create counters for accepted and rejected rows

int rows = 0;
int rejRows = 0;
bool error = false;

// create the transaction

VerticaTransaction txn = _conn.BeginTransaction();

// create the parametrized query and assign parameter types

VerticaCommand command = _conn.CreateCommand();
command.CommandText = "insert into TEST values (@id, @username, @email, @pass

word)";
command.Parameters.Add(new VerticaParameter("id", VerticaType.BigInt));
command.Parameters.Add(new VerticaParameter("username", VerticaType.VarCha

r));
command.Parameters.Add(new VerticaParameter("email", VerticaType.VarChar));
command.Parameters.Add(new VerticaParameter("password", VerticaType.VarCha

r));

// prepare the statement

command.Prepare();

// loop through the column arrays and insert the data

for (int i = 0; i < ids.Length; i++) {

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 236 of 817

command.Parameters["id"].Value = ids[i];
command.Parameters["username"].Value = usernames[i];
command.Parameters["email"].Value = emails[i];
command.Parameters["password"].Value = passwords[i];
try
{

rows += command.ExecuteNonQuery();
}
catch (Exception e)
{

Console.WriteLine("\nInsert failed - \n " + e.Message + "\n");
++rejRows;
error = true;

}
}
if (error)
{

//roll back if errors

Console.WriteLine("Errors. Rolling Back Transaction.");
Console.WriteLine(rejRows + " rows rejected.");
txn.Rollback();

}
else
{

//commit if no errors

Console.WriteLine("No Errors. Committing Transaction.");
txn.Commit();
Console.WriteLine("Inserted " + rows + " rows. ");

}
_conn.Close();

}
}

}

Loading Batches Directly into ROS

When loading large batches of data (more than 100MB or so), you should load the data directly into
ROS containers. Inserting directly into ROS is more efficient for large loads than AUTOmode,
since it avoids overflowing theWOS and spilling the remainder of the batch to ROS. Otherwise, the
TupleMover has to perform amoveout on the data in theWOS, while subsequent data is directly
written into ROS containers. This results in the data from your batch being segmented across
containers.

When loading data using AUTOmode, HP Vertica inserts the data first into theWOS. If theWOS is
full, then HP Vertica inserts the data directly intoROS. See the COPY statement for more details.

To directly load batches into ROS, set the DirectBatchInsert connection property to true. See
Opening and Closing the Database Connection for details on all of the connection properties. When

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 237 of 817

the DirectBatchInsert property is set to true, all batch inserts bypass theWOS and load directly into
a ROS container.

Example usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";

builder.DirectBatchInsert = true;
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

//Perform some operations
_conn.Close();

}
}

}

Streaming Data Via ADO.NET

There are two options to stream data from a file on the client to your HP Vertica database through
ADO.NET:

l Use the VerticaCopyStream ADO.NET class to stream data in an object-orientedmanner

l Execute a COPY SQL statement to stream the data

The topics in this section explain how to use these options.

Streaming From the Client Via VerticaCopyStream

The VerticaCopyStream class lets you stream data from the client system to an HP Vertica
database. It lets you use the SQLCOPY statement directly without having to copy the data to a
host in the database cluster first by substituting one or more data stream(s) for STDIN.

Notes:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 238 of 817

l Use Transactions and disable auto commit on the copy command for better performance.

l Disable auto commit using the copy commandwith the 'no commit' modifier. Youmust explicitly
disable commits. Enabling transactions does not disable autocommit when using
VerticaCopyStream.

l The copy command used with VerticaCopyStream uses copy syntax.

l VerticaCopyStream.rejects is zeroed every time execute is called. If you want to capture the
number of rejects, assign the value of VerticaCopyStream.rejects to another variable before
calling execute again.

l You can addmultiple streams usingmultiple AddStream() calls.

Example usage:
The following example demonstrates using VerticaCopyStream to copy a file stream into HP
Vertica.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.IO;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

//configure connection properties

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
; builder.Host = "192.168.1.10";

builder.Database = "VMart";
builder.User = "dbadmin";
//open the connection
VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();
try
{

using (_conn)
{

//start a transaction

VerticaTransaction txn = _conn.BeginTransaction();

//create a table for this example

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 239 of 817

VerticaCommand command = new VerticaCommand("DROP TABLE IF EXISTS cop
y_table", _conn); command.ExecuteNonQuery();

command.CommandText = "CREATE TABLE copy_table (Last_Name char(50), "
+ "First_Name char(50),Email char(50), "
+ "Phone_Number char(15))";

command.ExecuteNonQuery();

//create a new filestream from the data file

string filename = "C:/customers.txt"; Console.Writ
eLine("\n\nLoading File: " + filename);

FileStream inputfile = File.OpenRead(filename);

//define the copy command

string copy = "copy copy_table from stdin record terminator E'\n' del
imiter '|'" + " enforcelength "

+ " no commit";

//create a new copy stream instance with the connection and copy statement

VerticaCopyStream vcs = new VerticaCopyStream(_conn, copy);

//start the VerticaCopyStream process

vcs.Start();

//add the file stream

vcs.AddStream(inputfile, false);

//execute the copy

vcs.Execute();

//finish stream and write out the list of inserted and rejected rows

long rowsInserted = vcs.Finish(); IList<long> rows
Rejected = vcs.Rejects; // does not work when rejected or exceptions defined

Console.WriteLine("Number of Rows inserted: " + rowsInserted);
Console.WriteLine("Number of Rows rejected: " + rowsRejected.Count);
if (rowsRejected.Count > 0)
{

for (int i = 0; i < rowsRejected.Count; i++)
{

Console.WriteLine("Rejected row #{0} is row {1}", i, rowsReje
cted[i]);

}
}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 240 of 817

//commit the changes

txn.Commit(); }
}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

//close the connection

_conn.Close(); }
}

}

Using Copy with ADO.NET

To use COPY with ADO.NET, just execute a COPY statement and the path to the source file on
the client system. This method is simpler than using the VerticaCopyStream class. However, you
may prefer using VerticaCopyStream if you havemany files to copy to the database or if your data
comes from a source other than a local file (streamed over a network connection, for example).

The following example code demonstrates using COPY to copy a file from the client to the
database. It is the same as the code shown in Bulk Loading Using the COPY Statement and the
path to the data file is on the client system, rather than on the server.

To load data that is stored on a database node, use a VerticaCommand object to create a COPY
command:

1. Create a connection to the database through the node on which the data file is stored.

2. Create a command object using the connection.

VerticaCommand command = _conn.CreateCommand();

3. Copy data. The following is an example of using the COPY command to load data. It uses the
LOCALmodifier to copy a file local to the client issuing the command.

command.CommandText = "copy lcopy_table from '/home/dbadmin/customers.txt'"
+ " record terminator E'\n' delimiter '|'"
+ " enforcelength ";

Int32 insertedRows = command.ExecuteNonQuery();
Console.WriteLine(insertedRows + " inserted.");

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 241 of 817

Example Usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using System.IO;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

//configure connection properties

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder();

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";

//open the connection

VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();
try
{

using (_conn)
{

//start a transaction

VerticaTransaction txn = _conn.BeginTransaction();

//create a table for this example

VerticaCommand command = new VerticaCommand("DROP TABLE IF EXISTS lco
py_table", _conn);

command.ExecuteNonQuery();
command.CommandText = "CREATE TABLE IF NOT EXISTS lcopy_table (Last_N

ame char(50), "
+ "First_Name char(50),Email char(50), "
+ "Phone_Number char(15))";

command.ExecuteNonQuery();

//define the copy command

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 242 of 817

command.CommandText = "copy lcopy_table from '/home/dbadmin/customers
.txt'"

+ " record terminator E'\n' delimiter '|'"
+ " enforcelength "

+ " no commit";

//execute the copy

Int32 insertedRows = command.ExecuteNonQuery();
Console.WriteLine(insertedRows + " inserted.");

//commit the changes

txn.Commit();
}

}
catch (Exception e)
{

Console.WriteLine("Exception: " + e.Message);
}

//close the connection

_conn.Close();
}

}
}

Handling Messages (ADO.NET)
You can capture info and warningmessages that HP Vertica provides to the ADO.NET driver by
using the InfoMessage event on the VerticaConnection delegate class. This class captures
messages that are not severe enough to force an exception to be triggered, but might still provide
information that can benefit your application.

To Use the VerticaInfoMessageEventHander class:
1. Create amethod to handle themessage sent from the even handler:

static void conn_InfoMessage(object sender, VerticaInfoMessageEventArgs e)
{

Console.WriteLine(e.SqlState + ": " + e.Message);
}

2. Create a connection and register a new VerticaInfoMessageHandler delegate for the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 243 of 817

InfoMessage event:

_conn.InfoMessage += new VerticaInfoMessageEventHandler(conn_InfoMessage);

3. Execute your queries. If a message is generated, then the event handle function is run.

4. You can unsubscribe from the event with the following command:

_conn.InfoMessage -= new VerticaInfoMessageEventHandler(conn_InfoMessage);

Example usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

// definemessage handler to deal with messages

static void conn_InfoMessage(object sender, VerticaInfoMessageEventArgs e)
{

Console.WriteLine(e.SqlState + ": " + e.Message);
}
static void Main(string[] args)
{

//configure connection properties

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";

//open the connection

VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

//createmessage handler instance by subscribing it to the InfoMessage event of the connection

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 244 of 817

_conn.InfoMessage += new VerticaInfoMessageEventHandler(conn_InfoMessage);

//create and execute the command

VerticaCommand cmd = _conn.CreateCommand();
cmd.CommandText = "drop table if exists fakeTable";
cmd.ExecuteNonQuery();

//close the connection

_conn.Close();
}

}
}

This examples displays the following when run:

00000: Nothing was dropped

Getting Table Metadata (ADO.Net)
You can get the table metadata by using the GetSchema() method on a connection and loading the
metadata into a DataTable:

DataTable table = _conn.GetSchema("Tables", new string[] { database_name, schema_name, ta
ble_name, table_type });

For example:

DataTable table = _conn.GetSchema("Tables", new string[] { null, null, null, "SYSTEM TABLE" });

database_name, schema_name, table_name can be set to null, be a specific name, or use a LIKE
pattern.

table_type can be one of:

l "SYSTEM TABLE"

l "TABLE"

l "GLOBAL TEMPORARY"

l "LOCAL TEMPORARY"

l "VIEW"

l null

If table_type is set to null, then themetadata for all metadata tables is returned.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 245 of 817

Example Usage:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data;
using Vertica.Data.VerticaClient;
namespace ConsoleApplication
{

class Program
{

static void Main(string[] args)
{

//configure connection properties

VerticaConnectionStringBuilder builder = new VerticaConnectionStringBuilder()
;

builder.Host = "192.168.1.10";
builder.Database = "VMart";
builder.User = "dbadmin";

//open the connection

VerticaConnection _conn = new VerticaConnection(builder.ToString());
_conn.Open();

//create a new data table containing the schema

//the last argument can be "SYSTEM TABLE", "TABLE", "GLOBAL TEMPORARY",
// "LOCAL TEMPORARY", "VIEW", or null for all types

DataTable table = _conn.GetSchema("Tables", new string[] { null, null, null,
"SYSTEM TABLE" });

//print out the schema

foreach (DataRow row in table.Rows) {
foreach (DataColumn col in table.Columns)
{

Console.WriteLine("{0} = {1}", col.ColumnName, row[col]);
}
Console.WriteLine("============================");

}

//close the connection

_conn.Close();
}

}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 246 of 817

}

ADO.NET Data Types
his table details themapping between HP Vertica data type's and .NET and ADO.NET data types.

.NET
Framework
Type

ADO.NET
DbType VerticaType

HP Vertica
Data Type

VerticaDataReader
getter

Boolean Boolean Bit Boolean GetBoolean()

byte[] Binary Binary

VarBinary

LongVarBinary

Binary

VarBinary

LongVarBinary

GetBytes()

Note: The limit for
LongVarBinary is
32Million bytes. If
you attempt to
insert more than
the limit during a
batch transfer for
any one row, then
they entire batch
fails. Verify the
size of the data
before attempting
to insert a
LongVarBinary
during a batch.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 247 of 817

.NET
Framework
Type

ADO.NET
DbType VerticaType

HP Vertica
Data Type

VerticaDataReader
getter

Datetime DateTime Date

Time

TimeStamp

Date

Time

TimeStamp

GetDateTime()

Note: The Time
portion of the
DateTime object
for vertica dates is
set to
DateTime.MinValu
e. Previously,
VerticaType.DateT
imewas used for
all date/time types.
VerticaType.DateT
ime still exists for
backwards
compatibility, but
now there aremore
specific
VerticaTypes for
each type.

DateTimeOffset DateTimeOffset TimestampTZ

TimeTZ

TimestampTZ

TimeTZ

GetDateTimeOffset()

Note: The Date
portion of the
DateTime is set to
DateTime.MinValu
e

Decimal Decimal Numeric Numeric GetDecimal()

Double Double Double Double

Precision

GetDouble()

Note: HP Vertica
Double type uses a
default precision of
53.

Int64 Int64 BigInt Integer GetInt64()

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 248 of 817

.NET
Framework
Type

ADO.NET
DbType VerticaType

HP Vertica
Data Type

VerticaDataReader
getter

TimeSpan Object 13 Interval
Types

13 Interval
Types

GetInterval()

Note: There are 13
VerticaType values
for the 13 types of
intervals. The
specific
VerticaType used
determines the
conversion rules
that the driver
applies.
Year/Month
intervals
represented as
365/30 days

String String Varchar

LongVarChar

Varchar

LongVarChar

GetString()

String StringFixedLengt Char Char GetString()

Object Object N/A N/A GetValue()

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 249 of 817

Programming Python Client Applications
HP Vertica provides anODBC driver so applications can connect to the HP Vertica database.

In order to use Python with HP Vertica, youmust install the pyodbc module and an HP Vertica
ODBC driver on themachine where Python is installed. See Python Prerequisites.

Python on Linux
Most Linux distributions comewith Python preinstalled. If you want amore recent version, you can
download and build it from the source code, though sometimes RPMs are also available. See the
the PythonWeb site and click an individual release for details. See also Python documentation.

To determine the Python version on your Linux operating systems, type the following at a command
prompt:

python -V

The system returns the version; for example:

Python 2.5.2

Python on Windows
Python is not required to run natively onWindows operating systems, so it is not preinstalled. The
ActiveStateWeb site distributes a freeWindows installer for Python called ActivePython.

If you need installation instructions forWindows, see Using Python onWindows at python.org.
Python onWindows at diveintopython.org provides installation instructions for both the
ActivePython and python.org packages.

The Python Driver Module (pyodbc)
The native python driver is not supported.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 250 of 817

http://www.python.org/download/
http://www.python.org/doc/
http://www.activestate.com/activepython/
http://docs.python.org/using/windows.html
http://diveintopython.org/installing_python/windows.html

Before you can connect to HP Vertica using Python, you need the pyodbc module, which
communicates with iODBC/unixODBC driver on UNIX operating systems and theODBC Driver
Manager forWindows operating systems.

The pyodbc module is an open source , MIT-licensed Pythonmodule that implements the Python
Database API Specification v2.0, letting you useODBC to connect to almost any database from
Windows, Linux, Mac OS/X, and other operating systems.

HP Vertica supports pyodbc version 2.1.6, which requires Python 2.4 or greater, up to 2.6. HP
Vertica does not support Python version 3.x. See Python Prerequisites for additional details.

Download the source distribution from the pyodbc Web site, unpack it and build it. See the pyodbc
wiki for instructions.

Note: Links to external Web sites could change between HP Vertica releases.

External Resources
l Python Database API Specification v2.0

l Python documentation

Configuring the ODBC Run-Time Environment on
Linux

To configure the ODBC run-time environment on Linux:

1. Create the odbc.ini file if it does not already exist.

2. Add theODBC driver directory to the LD_LIBRARY_PATH system environment variable:

export LD_LIBRARY_PATH=/path-to-vertica-odbc-driver:$LD_LIBRARY_PATH

Important: If you skip Step 2, the ODBC manager cannot find the driver in order to load it.

These steps are relevant only for unixODBC and iODBC. See their respective documentation for
details on odbc.ini.

See Also
l unixODBC Web site

l iODBC Web site

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 251 of 817

http://code.google.com/p/pyodbc/
http://code.google.com/p/pyodbc/w/list
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/doc/
http://www.unixodbc.org/
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/

Querying the Database Using Python
The example session below uses pyodbc with the HP Vertica ODBC driver to connect Python to
the HP Vertica database.

Note: SQLFetchScroll and SQLFetch functions cannot bemixed together in iODBC code.
When using pyodbc with the iODBC driver manager, skip cannot be used with the fetchall,
fetchone, and fetchmany functions.

1. Open a database connection, create a table called TEST:

cnxn = pyodbc.connect(connection_string, ansi=True) cursor = cnxn.cursor()
create table
cursor.execute("CREATE TABLE TEST("

"C_ID INT,"
"C_FP FLOAT,"
"C_VARCHAR VARCHAR(100),"
"C_DATE DATE, C_TIME TIME,"
"C_TS TIMESTAMP,"
"C_BOOL BOOL)")

2. Insert records into table TEST:

cursor.execute("INSERT into testvalues(1,1.1,'abcdefg1234567890','1901-01-01','23:12:
34','1901-01-01
09:00:09','t')")

3. Insert records using bind values:

values = (2,2.28,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-0109:00:09','
t')
cursor.execute("INSERT into test values(?,?,?,?,?,?,?)",

values[0], values[1], values[2], values[3], values[4], values[5], valu
es[6])

4. Select data from the TEST table:

cursor.execute("SELECT * FROM TEST")rows = cursor.fetchall()
for row in rows:

print row

5. The following is the example output:

(1L, 1.1000000000000001, 'abcdefg1234567890', datetime.date(1901, 1, 1),

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 252 of 817

datetime.time(23, 12, 34), datetime.datetime(1901, 1, 1, 9, 0, 9), '1') (2L, 2.279999
9999999998, 'abcdefg1234567890', datetime.date(1901, 1, 1), datetime.time(23, 12, 3
4), datetime.datetime(1901, 1, 1, 9, 0, 9), '1')

6. Drop the TEST table and its associated projections and close the database connection:

cursor.execute("DROP TABLE TEST CASCADE")cursor.close()
cnxn.close()

Notes
SQLPrimaryKeys returns the table name in the primary (pk_name) column for unnamed primary
constraints. For example:

l Unnamed primary key:

CREATE TABLE schema.test(c INT PRIMARY KEY);SQLPrimaryKeys
"TABLE_CAT", "TABLE_SCHEM", "TABLE_NAME", "COLUMN_NAME", "KEY_SEQ", "PK_NAME" <Null>,
"SCHEMA", "TEST", "C", 1, "TEST"

l Named primary key:

CREATE TABLE schema.test(c INT CONSTRAINT pk_1 PRIMARY KEY);SQLPrimaryKeys
"TABLE_CAT", "TABLE_SCHEM", "TABLE_NAME", "COLUMN_NAME", "KEY_SEQ", "PK_NAME" <Null>,
"SCHEMA", "TEST", "C", 1, "PK_1"

HP recommends that you name your constraints.

See Also
l Loading Data ThroughODBC

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 253 of 817

Programming Perl Client Applications
The Perl programming language has a Database Interfacemodule (DBI) that creates a standard
interface for Perl scripts to interact with databases. The interfacemodule relies on Database Driver
modules (DBDs) to handle all of the database-specific communication tasks. The result is an
interface that provides a consistent way for Perl scripts to interact with many different types of
databases.

Your Perl script can interact with HP Vertica using the Perl DBI module along with the DBD::ODBC
database driver to interface to HP Vertica's ODBC driver. See the CPAN pages for Perl's DBI and
DBD::ODBC modules for detailed documentation.

The topics in this chapter explain how to:

l Configure Perl to access HP Vertica

l Connect to HP Vertica

l Query data stored in HP Vertica

l Insert data into HP Vertica

Perl Client Prerequisites
In order run a Perl client script that connects to HP Vertica, your client systemmust have:

l The HP Vertica ODBC drivers installed and configured. See Installing the HP Vertica Client
Drivers for details.

l A Data Source Name (DSN) containing the connection parameters for your HP Vertica. See
Creating anODBC Data Source Name. (Optionally, your Perl script can connect to HP Vertica
without using a DSN as described in Connecting From Perl Without a DSN).

l A supported version of Perl installed

l The DBI and DBD::ODBC Perl modules (see below)

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 254 of 817

http://search.cpan.org/dist/DBI/DBI.pm
http://search.cpan.org/~mjevans/DBD-ODBC-1.43/ODBC.pm

Supported Perl Versions
HP Vertica supports Perl versions 5.8 and 5.10. Versions later than 5.10may also work.

Perl on Linux
Most Linux distributions comewith Perl preinstalled. See your Linux distribution's documentation
for details of installing and configuring its Perl package is it is not already installed.

To determine the Perl version on your Linux operating systems, type the following at a command
prompt:

perl -v

The system returns the version; for example:

This is perl, v5.10.0 built for x86_64-linux-thread-multi

Perl on Windows
Perl is not installed by default onWindows platforms. There are several different Perl packages you
can download and install on yourWindows system:

l ActivePerl by Activestate is a commercially-supported version of Perl forWindows platforms.

l Strawberry Perl is an open-source port of Perl forWindows.

The Perl Driver Modules (DBI and DBD::ODBC)
Before you can connect to HP Vertica using Perl, your Perl installation needs to have the Perl
Database Interfacemodule (DBI) and the Database Driver for ODBC (DBD::ODBC). These
modules communicate with iODBC/unixODBC driver on UNIX operating systems or the ODBC
Driver Manager forWindows operating systems.

HP Vertica supports the following Perl modules:

l DBI version 1.609 (DBI-1.609.tar.gz)

l DBD::ODBC version 1.22 (DBD-ODBC-1.22.tar.gz)

Later versions of DBI and DBD::ODBC may also work.

DBI is installed by default with many Perl installations. You can test whether it is installed by
executing the following command on the Linux orWindows command line:

perl -e "use DBI;"

If the command exits without printing anything, then DBI is installed. If it prints an error, such as:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 255 of 817

http://www.activestate.com/activeperl/
http://strawberryperl.com/

Can't locate DBI.pm in @INC (@INC contains: /usr/local/lib64/perl5/usr/local/share/perl5
/usr/lib64/perl5/vendor_perl /usr/share/perl5/vendor_perl

/usr/lib64/perl5 /usr/share/perl5 .) at -e line 1.
BEGIN failed--compilation aborted at -e line 1.

then DBI is not installed.

Similarly, you can see if DBD::ODBC is installed by executing the command:

perl -e "use DBD::ODBC;"

You can also run the following Perl script to determine if DBI and DBD::ODBC are installed. If they
are, the script lists any available DSNs.

#!/usr/bin/perl
use strict;
Attempt to load the DBI module in an eval using require. Prevents
script from erroring out if DBI is not installed.
eval
{

require DBI;
DBI->import();

};
if ($@) {

The eval failed, so DBI must not be installed
print "DBI module is not installed\n";

} else {
Eval was successful, so DBI is installed
print "DBI Module is installed\n";
List the drivers that DBI knows about.
my @drivers = DBI->available_drivers;
print "Available Drivers: \n";
foreach my $driver (@drivers) {

print "\t$driver\n";
}
See if DBD::ODBC is installed by searching driver array.
if (grep {/ODBC/i} @drivers) {

print "\nDBD::ODBC is installed.\n";
List the ODBC data sources (DSNs) defined on the system
print "Defined ODBC Data Sources:\n";
my @dsns = DBI->data_sources('ODBC');
foreach my $dsn (@dsns) {

print "\t$dsn\n";
}

} else {
print "DBD::ODBC is not installed\n";

}
}

The exact output of the above code will depend on the configuration of your system. The following
is an example of running the code on aWindows computer:

DBI Module is installed

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 256 of 817

Available Drivers:
ADO
DBM
ExampleP
File
Gofer
ODBC
Pg
Proxy
SQLite
Sponge
mysql

DBD::ODBC is installed.
Defined ODBC Data Sources:

dbi:ODBC:dBASE Files
dbi:ODBC:Excel Files
dbi:ODBC:MS Access Database
dbi:ODBC:VerticaDSN

Installing Missing Perl Modules
If Perl's DBI or DBD::ODBC modules are not installed on your client system, youmust install them
before your Perl scripts can connect to HP Vertica. How you install modules depends on your Perl
configuration:

l Formost Perl installations, you use the cpan command to install modules. If the cpan command
alias isn't installed on your system, you can try to start CPAN by using the command:

perl -MCPAN -e shell

l Some Linux distributions provide Perl modules as packages that can be installed with the
system packagemanager (such as yum or apt). See your Linux distribution's documentation for
details.

l OnActiveState Perl forWindows, you use the Perl PackageManager (PPM) program to install
Perl modules. See the Activestate's PPM documentation for details.

Note: Installing Perl modules usually requires administrator or root privileges. If you do not
have these permissions on your client system, you need to ask your system administrator to
install thesemodules for you.

Connecting to HP Vertica Using Perl
You use the Perl DBI module's connect function to connect to HP Vertica. This function takes a
required data source string argument and optional arguments for the username, password, and
connection attributes.

The data source stringmust start with "dbi:ODBC:", which tells the DBI module to use the
DBD::ODBC driver to connect to HP Vertica. The remainder of the string is interpreted by the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 257 of 817

http://docs.activestate.com/activeperl/5.16/faq/ActivePerl-faq2.html

DBD::ODBC driver. It usually contains the name of a DSN that contains the connection information
needed to connect to your HP Vertica database. For example, to tell the DBD::ODBC driver to use
the DSN named VerticaDSN, you use the data source string:

"dbi:ODBC:VerticaDSN"

The username and password parameters are optional. However, if you do not supply them (or just
the username for a passwordless account) and they are not set in the DSN, attempting to connect
always fails.

The connect function returns a database handle if it connects to HP Vertica. If it does not, it returns
undef. In that case, you can access the DBI module's error string property ($DBI::errstr) to get
the error message.

Note: By default, the DBI module prints an error message to STDERR whenever it encounters
an error. If you prefer to display your own error messages or handle errors in some other
manner, youmay want to disable these automatic messages by setting DBI's PrintError
connection attribute to false. See Setting Perl DBI Connection Attributes for details.
Otherwise, users may see two error messages: the one that DBI prints automatically, and the
one that your script prints on its own.

The following example demonstrates connecting to HP Vertica using a DSN named VerticaDSN.
The call to connect supplies a username and password. After connecting, it calls the database
handle's disconnect function, which closes the connection.

#!/usr/bin/perl -w
use strict;
use DBI;
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123");
unless (defined $dbh) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}
print "Connected!\n";
$dbh->disconnect();

Setting ODBC Connection Parameters in Perl
To set ODBC connection parameters, replace the DSN namewith a semicolon delimited list of
parameter name and value pairs in the source data string. Use the DSN parameter to tell
DBD::ODBC which DSN to use, then add in other the other ODBC parameters you want to set. For
example, the following code connects using a DSN named VerticaDSN and sets the connection's
locale to en_GB.

#!/usr/bin/perl -w
use strict;
use DBI;
Instead of just using the DSN name, use name and value pairs.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 258 of 817

my $dbh = DBI->connect("dbi:ODBC:DSN=VerticaDSN;Locale=en_GB","ExampleUser","password12
3");
unless (defined $dbh) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}
print "Connected!\n";
$dbh->disconnect();

SeeDSN Parameters for a list of the connection parameters you can set in the source data string.

Setting Perl DBI Connection Attributes
The Perl DBI module has attributes that you can use to control the behavior of its database
connection. These attributes are similar to the ODBC connection parameters (in several cases,
they duplicate each other's functionality). The DBI connection attributes are a cross-platform way
of controlling the behavior of the database connection.

You can set the DBI connection attributes when establishing a connection by passing the DBI
connect function a hash containing attribute and value pairs. For example, to set the DBI
connection attribute AutoCommit to false, you would use:

Create a hash that holds attributes for the connection
my $attr = {AutoCommit => 0};
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);

See the DBI documentation's Database Handle Attributes section for a full description of the
attributes you can set on the database connection.

After your script has connected, it can access andmodify the connection attributes through the
database handle by using it as a hash reference. For example:

print "The AutoCommit attribute is: " . $dbh->{AutoCommit} . "\n";

The following example demonstrates setting two connection attributes:

l RaiseError controls whether the DBI driver generates a Perl error if it encounters a database
error. Usually, you set this to true (1) if you want your Perl script to exit if there is a database
error.

l AutoCommit controls whether statements automatically commit their transactions when they
complete. DBI defaults to HP Vertica's default AutoCommit value of true. Always set
AutoCommit to false (0) when bulk loading data to increase database efficiency.

#!/usr/bin/perl
use strict;
use DBI;

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 259 of 817

http://search.cpan.org/~timb/DBI/DBI.pm#ATTRIBUTES_COMMON_TO_ALL_HANDLES

Create a hash that holds attributes for the connection
my $attr = {

RaiseError => 1, # Make database errors fatal to script
AutoCommit => 0, # Prevent statements from committing

their transactions.
};

Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);

if (defined $dbh->err) {
Connection failed.
die "Failed to connect: $DBI::errstr";

}
print "Connected!\n";
The database handle lets you access the connection attributes directly:
print "The AutoCommit attribute is: " . $dbh->{AutoCommit} . "\n";
print "The RaiseError attribute is: " . $dbh->{RaiseError} . "\n";
And you can change values, too...
$dbh->{AutoCommit} = 1;
print "The AutoCommit attribute is now: " . $dbh->{AutoCommit} . "\n";
$dbh->disconnect();

The example outputs the following when run:

Connected!The AutoCommit attribute is: 0
The RaiseError attribute is: 1
The AutoCommit attribute is now: 1

Connecting From Perl Without a DSN
If you do not want to set up a Data Source Name (DSN) for your database, you can supply all of the
information Perl's DBD::ODBC driver requires to connect to your HP Vertica database in the data
source string. This source stringmust the DRIVER= parameter that tells DBD::ODBC which driver
library to use in order to connect. The value for this parameter is the name assigned to the driver by
the client system's driver manager:

l OnWindows, the name assigned to the HP Vertica ODBC driver by the driver manager is
Vertica.

l On Linux and other UNIX-like operating systems, the HP Vertica ODBC driver's name is
assigned in the system's odbcinst.ini file. For example, if your /etc/odbcint.ini contains
the following:

[HPVertica]
Description = HP Vertica ODBC Driver
Driver = /opt/vertica/lib64/libverticaodbc.so

you would use the nameHPVertica. See Creating anODBC DSN for Linux, Solaris, AIX, and
HP-UX for more information about the odbcinst.ini file.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 260 of 817

You can take advantage of Perl's variable expansion within strings to use variables for most of the
connection properties as the following example demonstrates.

#!/usr/bin/perl
use strict;
use DBI;
my $server='VerticaHost';
my $port = '5433';
my $database = 'VMart';
my $user = 'ExampleUser';
my $password = 'password123';
Connect without a DSN by supplying all of the information for the connection.
The DRIVER value on UNIX platforms depends on the entry in the odbcinst.ini
file.
my $dbh = DBI->connect("dbi:ODBC:DRIVER={Vertica};Server=$server;" .

"Port=$port;Database=$database;UID=$user;PWD=$password")
or die "Could not connect to database: " . DBI::errstr;

print "Connected!\n";
$dbh->disconnect();

Note: Surrounding the driver namewith braces ({ and }) in the source string is optional.

Executing Statements Using Perl
Once your Perl script has connected to HP Vertica (see Connecting to HP Vertica Using Perl), it
can execute simple statements that return a value rather than a result set by using the Perl DBI
module's do function. You usually use this function to executeDDL statements or data loading
statements such as COPY (see Using COPY LOCAL to Load Data in Perl).

#!/usr/bin/perl
use strict;
use DBI;
Disable autocommit
my $attr = {AutoCommit => 0};

Open a connection using a DSN.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);
unless (defined $dbh) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}
You can use the do function to perform DDL commands.
Drop any existing table.
$dbh->do("DROP TABLE IF EXISTS TEST CASCADE;");
Create a table to hold data.
$dbh->do("CREATE TABLE TEST(\

C_ID INT, \
C_FP FLOAT,\
C_VARCHAR VARCHAR(100),\
C_DATE DATE, C_TIME TIME,\
C_TS TIMESTAMP,\
C_BOOL BOOL)");

Commit changes and exit.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 261 of 817

$dbh->commit();
$dbh->disconnect();

Note: The do function returns the number of rows that were affected by the statement (or -1 if
the count of rows doesn't apply or is unavailable). Usually, the only time you need to consult
this value is after you deleted a number of rows or if you used a bulk load command such as
COPY. You use other DBI functions instead of do to perform batch inserts and selects (see
Batch Loading Data Using Perl andQuerying HP Vertica Using Perl for details).

Batch Loading Data Using Perl
To load large batches of data into HP Vertica using Perl:

1. Set DBI's AutoCommit connection attribute to false to improve the batch load speed. See
Setting Perl DBI Connection Attributes for an example of disabling AutoCommit.

2. Call the database handle's prepare function to prepare a SQL INSERT statement that
contains placeholders for the data values you want to insert. For example:

Prepare an INSERT statement for the test table
$sth = $dbh->prepare("INSERT into test values(?,?,?,?,?,?,?)");

The prepare function returns a statement handle that you will use to insert the data.

3. Assign data to the placeholders. There are several ways to do this. The easiest is to populate
an array with a value for each placeholder in your INSERT statement.

4. Call the statement handle's execute function to insert a row of data into HP Vertica. The return
value of this function call lets you know whether HP Vertica accepted or rejected the row.

5. Repeat steps 3 and 4 until you have loaded all of the data you need to load.

6. Call the database handle's commit function to commit the data you inserted.

The following example demonstrates inserting a small batch of data by populating an array of arrays
with data, then looping through it and inserting each row.

#!/usr/bin/perl
use strict;
use DBI;
Create a hash reference that holds a hash of parameters for the
connection.
my $attr = {AutoCommit => 0, # Turn off autocommit

PrintError => 0 # Turn off automatic error printing.
This is handled manually.

};
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 262 of 817

$attr);
if (defined DBI::err) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}
print "Connection AutoCommit state is: " . $dbh->{AutoCommit} . "\n";
Create table to hold inserted data
$dbh->do("DROP TABLE IF EXISTS TEST CASCADE;") or die "Could not drop table";
$dbh->do("CREATE TABLE TEST(\

C_ID INT, \
C_FP FLOAT,\
C_VARCHAR VARCHAR(100),\
C_DATE DATE, C_TIME TIME,\
C_TS TIMESTAMP,\
C_BOOL BOOL)") or die "Could not create table";

Populate an array of arrays with values. One of these rows contains
data that will not be sucessfully inserted. Another contains an
undef value, which gets inserted into the database as a NULL.
my @data = (

[1,1.111,'Hello World!','2001-01-01','01:01:01'
,'2001-01-01 01:01:01','t'],

[2,2.22222,'How are you?','2002-02-02','02:02:02'
,'2002-02-02 02:02:02','f'],

['bad value',2.22222,'How are you?','2002-02-02','02:02:02'
,'2002-02-02 02:02:02','f'],

[4,4.22222,undef,'2002-02-02','02:02:02'
,'2002-02-02 02:02:02','f'],

);
Create a prepared statement to use parameters for inserting values.
my $sth = $dbh->prepare_cached("INSERT into test values(?,?,?,?,?,?,?)");
my $rowcount = 0; # Count # of rows
Loop through the arrays to insert values
foreach my $tuple (@data) {

$rowcount++;
Insert the row
my $retval = $sth->execute(@$tuple);

See if the row was successfully inserted.
if ($retval == 1) {

Value of 1 means the row was inserted (1 row was affected by insert)
print "Row $rowcount successfully inserted\n";

} else {
print "Inserting row $rowcount failed";
Error message is not set on some platforms/versions of DBUI. Check to
ensure a message exists to avoid getting an unitialized var warning.
if ($sth->err()) {

print ": " . $sth->errstr();
}
print "\n";

}
}
Commit changes. With AutoCommit off, you need to use commit for batched
data to actually be committed into the database. If your Perl script exits
without committing its data, HP Vertica rolls back the transaction and the
data is not committed.
$dbh->commit();
$dbh->disconnect();

The previous example displays the following when successfully run:

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 263 of 817

Connection AutoCommit state is: 0
Row 1 successfully inserted
Row 2 successfully inserted
Inserting row 3 failed with error 01000 [Vertica][VerticaDSII] (20) An
error occurred during query execution: Row rejected by server; see
server log for details (SQL-01000)
Row 4 successfully inserted

Note that one of the rows was not inserted because it contained a string value that could not be
stored in an integer column. See Conversions Between Perl and HP Vertica Data Types for details
of data type handling in Perl scripts that communicate with HP Vertica.

Using COPY LOCAL to Load Data in Perl
If you have delimited files (for example, a file with comma-separated values) on your client system
that you want to load into HP Vertica, you can use the COPY LOCAL statement to directly load the
file's contents into HP Vertica instead of using Perl to read, parse, and then batch insert the data.
You execute a COPY LOCAL statement to load the file from the local filesystem. The result of
executing the statement is the number of rows that were successfully inserted.

The following example code demonstrates loading a file named data.txt and located in the same
directory as the Perl file into HP Vertica using a COPY LOCAL statement.

#!/usr/bin/perl
use strict;
use DBI;
Filesystem path handling module
use File::Spec;
Create a hash reference that holds a hash of parameters for the
connection.
my $attr = {AutoCommit => 0}; # Turn off AutoCommit

Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr) or die "Failed to connect: $DBI::errstr";
print "Connected!\n";
Drop any existing table.
$dbh->do("DROP TABLE IF EXISTS Customers CASCADE;");
Create a table to hold data.
$dbh->do("CREATE TABLE Customers(\

ID INT, \
FirstName VARCHAR(100),\
LastName VARCHAR(100),\
Email VARCHAR(100),\
Birthday DATE)");

Find the absolute path to the data file located in the current working
directory and named data.txt
my $currDir = File::Spec->rel2abs(File::Spec->curdir());
my $dataFile = File::Spec->catfile($currDir, 'data.txt');
print "Loading file $dataFile\n";
Load local file using copy local. Return value is the # of rows affected
which equates to the number of rows inserted.
my $rows = $dbh->do("COPY Customers FROM LOCAL '$dataFile' DIRECT")

or die $dbh->errstr;
print "Copied $rows rows into database.\n";

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 264 of 817

$dbh->commit();
Prepare a query to get the first 15 rows of the results
my $sth = $dbh->prepare("SELECT * FROM Customers WHERE ID < 15 \

ORDER BY ID");

$sth->execute() or die "Error querying table: " . $dbh->errstr;
my @row; # Pre-declare variable to hold result row used in format statement.
Use Perl formats to pretty print the output. Declare the heading for the
form.
format STDOUT_TOP =
ID First Last EMail Birthday
== ===== ==== ===== ========
.
The Perl write statement will output a formatted line with values from the
@row array. See http://perldoc.perl.org/perlform.html for details.
format STDOUT =
@> @<<<<<<<<<<<<< @<<<<<<<<<<< @<<<<<<<<<<<<<<<<<<<<<<<<<<< @<<<<<<<<<
@row
.
Loop through result rows while we have them
while (@row = $sth->fetchrow_array()) {

write; # Format command does the work of extracting the columns from
the @row array and writing them out to STDOUT.

}
Call commit to prevent Perl from complaining about uncommitted transactions
when disconnecting
$dbh->commit();
$dbh->disconnect();

The data.txt file is a text file containing a row of data on each line. The columns are delimited by
pipe (|) characters. This is the default format that the COPY command accepts, whichmakes the
COPY LOCAL statement in the example code simple. See the COPY statement entry in the SQL
ReferenceManual for handling data files that are in different formats. Here is an example of the
content in this file:

1|Georgia|Gomez|Rhiannon@magna.us|1937-10-03
2|Abdul|Alexander|Kathleen@ipsum.gov|1941-03-10
3|Nigel|Contreras|Tanner@et.com|1955-06-01
4|Gray|Holt|Thomas@Integer.us|1945-12-06
5|Candace|Bullock|Scott@vitae.gov|1932-05-27
6|Matthew|Dotson|Keith@Cras.com|1956-09-30
7|Haviva|Hopper|Morgan@porttitor.edu|1975-05-10
8|Stewart|Sweeney|Rhonda@lectus.us|2003-06-20
9|Allen|Rogers|Alexander@enim.gov|2006-06-17
10|Trevor|Dillon|Eagan@id.org|1988-11-27
11|Leroy|Ashley|Carter@turpis.edu|1958-07-25
12|Elmo|Malone|Carla@enim.edu|1978-08-29
13|Laurel|Ball|Zelenia@Integer.us|1989-09-20
14|Zeus|Phillips|Branden@blandit.gov|1996-08-08
15|Alexis|Mclean|Flavia@Suspendisse.org|2008-01-07

The example code produces the following output when run on a large sample file:

Connected!

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 265 of 817

Loading file /home/dbadmin/Perl/data.txt
Copied 1000000 rows into database.
ID First Last EMail Birthday
== ===== ==== ===== ========
1 Georgia Gomez Rhiannon@magna.us 1937-10-03
2 Abdul Alexander Kathleen@ipsum.gov 1941-03-10
3 Nigel Contreras Tanner@et.com 1955-06-01
4 Gray Holt Thomas@Integer.us 1945-12-06
5 Candace Bullock Scott@vitae.gov 1932-05-27
6 Matthew Dotson Keith@Cras.com 1956-09-30
7 Haviva Hopper Morgan@porttitor.edu 1975-05-10
8 Stewart Sweeney Rhonda@lectus.us 2003-06-20
9 Allen Rogers Alexander@enim.gov 2006-06-17

10 Trevor Dillon Eagan@id.org 1988-11-27
11 Leroy Ashley Carter@turpis.edu 1958-07-25
12 Elmo Malone Carla@enim.edu 1978-08-29
13 Laurel Ball Zelenia@Integer.us 1989-09-20
14 Zeus Phillips Branden@blandit.gov 1996-08-08

Note: Loading a single, large data file into HP Vertica through a single data connection is less
efficient than loading a number of smaller files ontomultiple nodes in parallel. Loading onto
multiple nodes prevents any one node from becoming a bottleneck.

Querying HP Vertica Using Perl
To query HP Vertica using Perl:

1. Prepare a query statement using the Perl DBI module's prepare function. This function returns
a statement handle that you use to execute the query and get the result set.

2. Execute the prepared statement by calling the execute function on the statement handle.

3. Retrieve the results of the query from the statement handle using one of several methods, such
as calling the statement handle's fetchrow_array function to retrieve a row of data, or
fetchall_array to get an array of arrays containing the entire result set (not a good idea if
your result set may be very large!).

The following example demonstrates querying the table created by the example shown in Batch
Loading Data Using Perl. It executes a query to retrieve all of the content of the table, then
repeatedly calls the statement handle's fetchrow_array function to get rows of data in an array. It
repeats this process until fetchrow_array returns undef, whichmeans that there are nomore rows
to be read.

#!/usr/bin/perl
use strict;
use DBI;
my $attr = {RaiseError => 1 }; # Make errors fatal to the Perl script.
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 266 of 817

Prepare a query to get the content of the table
my $sth = $dbh->prepare("SELECT * FROM TEST ORDER BY C_ID ASC");
Execute the query by calling execute on the statement handle
$sth->execute();
Loop through result rows while we have them, getting each row as an array
while (my @row = $sth->fetchrow_array()) {

The @row array contains the column values for this row of data
Loop through the column values
foreach my $column (@row) {

if (!defined $column) {
NULLs are signaled by undefs. Set to NULL for clarity
$column = "NULL";

}
print "$column\t"; # Output the column separated by a tab

}
print "\n";

}
$dbh->disconnect();

The example prints the following when run:

1 1.111 Hello World! 2001-01-01 01:01:01 2001-01-01 01:01:01 1
2 2.22222 How are you? 2002-02-02 02:02:02 2002-02-02 02:02:02 0
4 4.22222 NULL 2002-02-02 02:02:02 2002-02-02 02:02:02 0

Binding Variables to Column Values
Another method of retrieving the query results is to bind variables to columns in the result set using
the statement handle's bind_columns function. Youmay find this method convenient if you need to
perform extensive processing on the returned data, since your code can use variables rather than
array references to access the data. The following example demonstrates binding variables to the
result set, rather than looping through the row and column values.

#!/usr/bin/perl
use strict;
use DBI;
my $attr = {RaiseError => 1 }; # Make SQL errors fatal to the Perl script.
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN32","ExampleUser","password123",

$attr);
Prepare a query to get the content of the table
my $sth = $dbh->prepare("SELECT * FROM TEST ORDER BY C_ID ASC");
$sth->execute();
Create a set of variables to bind to the column values.
my ($C_ID, $C_FP, $C_VARCHAR, $C_DATE, $C_TIME, $C_TS, $C_BOOL);
Bind the variable references to the columns in the result set.
$sth->bind_columns(\$C_ID, \$C_FP, \$C_VARCHAR, \$C_DATE, \$C_TIME,

\$C_TS, \$C_BOOL);

Now, calling fetch() to get a row of data updates the values of the bound
variables. Continue calling fetch until it returns undefined.
while ($sth->fetch()) {

Note, you should always check that values are defined before using them,

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 267 of 817

since NULL values are translated into Perl as undefined. For this
example, just check the VARCHAR column for undefined values.
if (!defined $C_VARCHAR) {

$C_VARCHAR = "NULL";
}
Just print values separated by tabs.
print "$C_ID\t$C_FP\t$C_VARCHAR\t$C_DATE\t$C_TIME\t$C_TS\t$C_BOOL\n";

}
$dbh->disconnect();

The output of this example is identical to the output of the previous example.

Preparing, Querying, and Returning a Single Row
If you expect a single row as the result of a query (for example, when you execute a COUNT (*)
query), you can use the DBI module's selectrow_array function to combine executing a
statement and retrieving an array as a result.

The following example shows using selectrow_array to execute and get the results of the SHOW
LOCALE statement. It also demonstrates changing the locale using the do function.

#!/usr/bin/perl
use strict;
use DBI;
my $attr = {RaiseError => 1 }; # Make SQL errors fatal to the Perl script.
Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);
Demonstrate setting/getting locale.
Use selectrow_array to combine preparing a statement, executing it, and
getting an array as a result.
my @localerv = $dbh->selectrow_array("SHOW LOCALE;");
The locale name is the 2nd column (array index 1) in the result set.
print "Locale: $localerv[1]\n";
Use do() to execute a SQL statement to set the locale.
$dbh->do("SET LOCALE TO en_GB");
Get the locale again.
@localerv = $dbh->selectrow_array("SHOW LOCALE;");
print "Locale is now: $localerv[1]\n";
$dbh->disconnect();

The result of running the example is:

Locale: en_US@collation=binary (LEN_KBINARY)
Locale is now: en_GB (LEN)

Conversions Between Perl and HP Vertica Data
Types

Perl is a loosely-typed programming language that does not assign specific data types to values. It
converts between string and numeric values based on the operations being performed on the

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 268 of 817

values. For this reason, Perl has little problem extractingmost string and numeric data types from
HP Vertica. All interval data types (DATE, TIMESTAMP, etc.) are converted to strings. You can
use several different date and time handling Perl modules tomanipulate these values in your
scripts.

HP Vertica NULL values translate to Perl's undefined (undef) value. When reading data from
columns that can contain NULL values, you should always test whether a value is defined before
using it.

When inserting data into HP Vertica, Perl's DBI module attempts to coerce the data into the correct
format. By default, it assumes column values are VARCHAR unless it can determine that they are
some other data type. If given a string value to insert into a column that has an integer or numeric
data type, DBI attempts to convert the string's contents to the correct data type. If the entire string
can be converted to a value of the appropriate data type, it inserts the value into the column. If not,
inserting the row of data fails.

DBI transparently converts integer values into numeric or float values when inserting into column of
FLOAT, NUMERIC, or similar data types. It converts numeric or floating values to integers only
when there would be no loss of precision (the value to the right of the decimal point is 0). For
example, it can insert the value 3.0 into an INTEGER column since there is no loss of precision
when converting the value to an integer. It cannot insert 3.1 into an INTEGER column, since that
would result in a loss of precision. It returns an error instead of truncating the value to 3.

The following example demonstrates some of the conversions that the DBI module performs when
inserting data into HP Vertica.

#!/usr/bin/perl
use strict;
use DBI;
Create a hash reference that holds a hash of parameters for the
connection.
my $attr = {AutoCommit => 0, # Turn off autocommit

PrintError => 0 # Turn off print error. Manually handled
};

Open a connection using a DSN. Supply the username and password.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123",

$attr);
if (defined DBI::err) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}
print "Connection AutoCommit state is: " . $dbh->{AutoCommit} . "\n";
Create table to hold inserted data
$dbh->do("DROP TABLE IF EXISTS TEST CASCADE;");
$dbh->do("CREATE TABLE TEST(\

C_ID INT, \
C_FP FLOAT,\
C_VARCHAR VARCHAR(100),\
C_DATE DATE, C_TIME TIME,\
C_TS TIMESTAMP,\
C_BOOL BOOL)");

Populate an array of arrays with values.
my @data = (

Start with matching data types
[1,1.111,'Matching datatypes','2001-01-01','01:01:01'

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 269 of 817

,'2001-01-01 01:01:01','t'],
Force floats -> int and int -> float.
[2.0,2,"Ints <-> floats",'2002-02-02','02:02:02'

,'2002-02-02 02:02:02',1],
Float -> int *only* works when there is no loss of precision.
this row will fail to insert:
[3.1,3,"float -> int with trunc?",'2003-03-03','03:03:03'

,'2003-03-03 03:03:03',1],
String values are converted into numbers
["4","4.4","Strings -> numbers", '2004-04-04','04:04:04',

,'2004-04-04 04:04:04',0],
String -> numbers only works if the entire string can be
converted into a number
["5 and a half","5.5","Strings -> numbers", '2005-05-05',

'05:05:05', ,'2005-05-05 05:05:05',0],
Number are converted into string values automatically,
assuming they fit into the column width.
[6,6.6,3.14159, '2006-06-06','06:06:06',

,'2006-06-06 06:06:06',0],
There are some variations in the accepted date strings
[7,7.7,'Date/time formats', '07/07/2007','07:07:07',

,'07-07-2007 07:07:07',1],
);

Create a prepared statement to use parameters for inserting values.
my $sth = $dbh->prepare_cached("INSERT into test values(?,?,?,?,?,?,?)");
my $rowcount = 0; # Count # of rows
Loop through the arrays to insert values
foreach my $tuple (@data) {

$rowcount++;
Insert the row
my $retval = $sth->execute(@$tuple);

See if the row was successfully inserted.
if ($retval == 1) {

Value of 1 means the row was inserted (1 row was affected by insert)
print "Row $rowcount successfully inserted\n";

} else {
print "Inserting row $rowcount failed with error " .

$sth->state . " " . $sth->errstr . "\n";
}

}
Commit the data
$dbh->commit();
Prepare a query to get the content of the table
$sth = $dbh->prepare("SELECT * FROM TEST ORDER BY C_ID ASC");
$sth->execute() or die "Error: " . $dbh->errstr;
my @row; # Need to pre-declare to use in the format statement.
Use Perl formats to pretty print the output.
format STDOUT_TOP =
Int Float VarChar Date Time Timestamp Bool
=== ===== ================== ========== ======== ================ ====
.
format STDOUT =
@>> @<<<< @<<<<<<<<<<<<<<<<< @<<<<<<<<< @<<<<<<< @<<<<<<<<<<<<<<< @<<<<
@row
.
Loop through result rows while we have them
while (@row = $sth->fetchrow_array()) {

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 270 of 817

write; # Format command does the work of extracting the columsn from
the array.

}
Commit to stop Perl complaining about in-progress transactions.
$dbh->commit();
$dbh->disconnect();

The example produces the following output when run:

Connection AutoCommit state is: 0
Row 1 successfully inserted
Row 2 successfully inserted
Inserting row 3 failed with error 01000 [Vertica][VerticaDSII] (20) An error
occurred during query execution: Row rejected by server; see server log for
details (SQL-01000)
Row 4 successfully inserted
Inserting row 5 failed with error 01000 [Vertica][VerticaDSII] (20) An error
occurred during query execution: Row rejected by server; see server log for
details (SQL-01000)
Row 6 successfully inserted
Row 7 successfully inserted
Int Float VarChar Date Time Timestamp Bool
=== ===== ================== ========== ======== ================ ====

1 1.111 Matching datatypes 2001-01-01 01:01:01 2001-01-01 01:01 1
2 2 Ints <-> floats 2002-02-02 02:02:02 2002-02-02 02:02 1
4 4.4 Strings -> numbers 2004-04-04 04:04:04 2004-04-04 04:04 0
6 6.6 3.14159 2006-06-06 06:06:06 2006-06-06 06:06 0
7 7.7 Date/time formats 2007-07-07 07:07:07 2007-07-07 07:07 1

Perl Unicode Support
Perl supports Unicode data with some caveats. See the perlunicode and the perlunitut (Perl
Unicode tutorial) manual pages for details. (Be sure to see the copies of thesemanual pages
included with the version of Perl installed on your client system, as the support for Unicode has
changed in recent versions of Perl.) Perl DBI and DBD::ODBC also support Unicode, however
DBD::ODBC must be compiled with Unicode support. See the DBD::ODBC documentation for
details. You can check the DBD::ODBC-specific connection attribute named odbc_has_unicode
to see if Unicode support is enabled in the driver.

The following example Perl script demonstrates directly inserting UTF-8 strings into HP Vertica and
then reading them back. The example writes a text file with the output, since there aremay
problems displaying Unicode characters in terminal windows or consoles.

#!/usr/bin/perl
use strict;
use DBI;
Open a connection using a DSN.
my $dbh = DBI->connect("dbi:ODBC:VerticaDSN","ExampleUser","password123");
unless (defined $dbh) {

Conection failed.
die "Failed to connect: $DBI::errstr";

}

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 271 of 817

http://perldoc.perl.org/perlunicode.html
http://perldoc.perl.org/perlunitut.html
http://search.cpan.org/~mjevans/DBD-ODBC-1.43/ODBC.pm

Output to a file. Displaying Unicode characters to a console or terminal
window has many problems. This outputs a UTF-8 text file that can
be handled by many Unicode-aware text editors:
open OUTFILE, '>:utf8', "unicodeout.txt";
See if the DBD::ODBC driver was compiled with Unicode support. If this returns
1, your Perl script will get get strings from the driver with the UTF-8
flag set on them, ensuring that Perl handles them correctly.
print OUTFILE "Was DBD::ODBC compiled with Unicode support? " .

$dbh->{odbc_has_unicode} . "\n";

Create a table to hold VARCHARs
$dbh->do("DROP TABLE IF EXISTS TEST CASCADE;");

Create a table to hold data. Remember that the width of the VARCHAR column
is the number of bytes set aside to store strings, which often does not equal
the number of characters it can hold when it comes to Unicode!
$dbh->do("CREATE TABLE test(C_VARCHAR VARCHAR(100))");
print OUTFILE "Inserting data...\n";
Use Do to perform simple inserts
$dbh->do("INSERT INTO test VALUES('Hello')");
This string contains several non-latin accented characters and symbols, encoded
with Unicode escape notation. They are converted by Perl into UTF-8 characters
$dbh->do("INSERT INTO test VALUES('My favorite band is " .

"\N{U+00DC}ml\N{U+00E4}\N{U+00FC}t \N{U+00D6}v\N{U+00EB}rk\N{U+00EF}ll" .
" \N{U+263A}')");

Some Chinese (Simplified) characters. This again uses escape sequence
that Perl translates into UTF-8 characters.
$dbh->do("INSERT INTO test VALUES('\x{4F60}\x{597D}')");
print OUTFILE "Getting data...\n";
Prepare a query to get the content of the table
my $sth = $dbh->prepare_cached("SELECT * FROM test");
Execute the query by calling execute on the statement handle
$sth->execute();
Loop through result rows while we have them
while (my @row = $sth->fetchrow_array()) {

Loop through the column values
foreach my $column (@row) {

print OUTFILE "$column\t";
}
print OUTFILE "\n";

}
close OUTFILE;
$dbh->disconnect();

Viewing the unicodeout.txt file in a UTF-8-capable text editor or viewer displays:

Was DBD::ODBC compiled with Unicode support? 1
Inserting data...
Getting data...
My favorite band is Ümläüt Övërkïll ☺

你好

Hello

Note: Terminal windows and consoles often have problems properly displaying Unicode
characters. That is why the example writes the output to a text file. With some text editors, you

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 272 of 817

may need tomanually set the encoding of the text file to UTF-8 in order for the characters to
properly appear (and the font used to display text must have a full Unicode character set). If the
character still do not show up, it may be that your version of DBD::ODBC was not compiled
with UTF-8 support.

See Also
l Unicode Character Encoding

l Additional ODBC Driver Configuration Settings

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 273 of 817

Programming PHP Client Applications
You can connect to HP Vertica through PHP-ODBC using the Unix ODBC or iODBC library.

In order to use PHP with HP Vertica, youmust install the following packages (and their
dependencies):

l php

l php-odbc

l php-pdo

l UnixODBC (if you are using the Unix ODBC driver)

l libiodbc (if you are using the iODBC driver)

PHP on Linux
PHP is available with most Linux operating systems as amodule for the Apache web server.
Check your particular Linux repository for PHP RPMs or Debian packages. You can also build PHP
from source. See the PHP web site for documentation and source downloads.

PHP on Windows
PHP is available for windows for both the Apache and IIS web servers. You can download PHP for
Windows and view installation instructions at the PHP web site.

The PHP ODBC Drivers
PHP supports both the UnixODBC drivers and iODBC drivers. Both drivers use PHP's ODBC
database abstraction layer.

Setup
Youmust read ProgrammingODBC Client Applications before connecting to HP Vertica through
PHP. The following example ODBC configuration entries detail the typical settings required for
PHP ODBC connections. The driver location assumes you have copied the HP Vertica drivers to
/usr/lib64.

Example odbc.ini

[ODBC Data Sources]
VerticaDSNunixodbc = exampledb
VerticaDNSiodbc = exampledb2
[VerticaDSNunixodbc]
Description = VerticaDSN Unix ODBC driver

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 274 of 817

http://www.unixodbc.org/
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/
http://www.unixodbc.org/
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/

Driver = /usr/lib64/libverticaodbc.so
Database = Telecom
Servername = localhost
UserName = dbadmin
Password =
Port = 5433
[VerticaDSNiodbc]
Description = VerticaDSN iODBC driver
Driver = /usr/lib64/libverticaodbc.so
Database = Telecom
Servername = localhost
UserName = dbadmin
Password =
Port = 5433

Example odbcinst.ini

Vertica
[VerticaDSNunixodbc]
Description = VerticaDSN Unix ODBC driver
Driver = /usr/lib64/libverticaodbc.so
[VerticaDNSiodbc]
Description = VerticaDSN iODBC driver
Driver = /usr/lib64/libverticaodbc.so
[ODBC]
Threading = 1

Verify the HP Vertica UnixODBC or iODBC Library
Verify the HP Vertica UnixODBC library can load all dependant libraries with the following
command (assuming you have copies the libraries to /usr/lib64):

For example:

ldd /usr/lib64/libverticaodbc.so

Youmust resolve any "not found" libraries before continuing.

Test Your ODBC Connection
Test your ODBC connection with the following.

isql -v VerticaDSN

PHP Unicode Support
PHP does not offer native Unicode support. PHP only supports a 256-character set. However,
PHP provides the UTF-8 functions utf8_encode() and utf8_decode() to provide some basic Unicode
functionality.

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 275 of 817

http://www.php.net/manual/en/function.utf8-decode.php utf8_decode()

See the PHP manual for strings for more details about PHP and Unicode.

Querying the Database Using PHP
The example script below details the use of PHP ODBC functions to connect to the HP Vertica
Analytics Platform.

<?php
Turn on error reporting
error_reporting(E_ERROR | E_WARNING | E_PARSE | E_NOTICE);
A simple function to trap errors from queries
function errortrap_odbc($conn, $sql) {

if(!$rs = odbc_exec($conn,$sql)) {
echo "
Failed to execute SQL: $sql
" . odbc_errormsg($conn);

} else {
echo "
Success: " . $sql;

}
return $rs;

}
Connect to the Database
$dsn = "VerticaDSNunixodbc";
$conn = odbc_connect($dsn,'','') or die ("
CONNECTION ERROR");
echo "<p>Connected with DSN: $dsn</p>";
Create a table
$sql = "CREATE TABLE TEST(

C_ID INT,
C_FP FLOAT,
C_VARCHAR VARCHAR(100),
C_DATE DATE, C_TIME TIME,
C_TS TIMESTAMP,
C_BOOL BOOL)";

$result = errortrap_odbc($conn, $sql);
Insert data into the table with a standard SQL statement
$sql = "INSERT into test values(1,1.1,'abcdefg1234567890','1901-01-01','23:12:34
','1901-01-01 09:00:09','t')";
$result = errortrap_odbc($conn, $sql);
Insert data into the table with odbc_prepare and odbc_execute
$values = array(2,2.28,'abcdefg1234567890','1901-01-01','23:12:34','1901-01-01 0
9:00:09','t');
$statement = odbc_prepare($conn,"INSERT into test values(?,?,?,?,?,?,?)");
if(!$result = odbc_execute($statement, $values)) {

echo "
odbc_execute Failed!";
} else {

echo "
Success: odbc_execute.";
}
Get the data from the table and display it
$sql = "SELECT * FROM TEST";
if($result = errortrap_odbc($conn, $sql)) {

echo "<pre>";
while($row = odbc_fetch_array($result)) {

print_r($row);
}
echo "</pre>";

}
Drop the table and projection
$sql = "DROP TABLE TEST CASCADE";
$result = errortrap_odbc($conn, $sql);

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 276 of 817

http://php.net/manual/en/language.types.string.php

Close the ODBC connection
odbc_close($conn);
?>

Example Output
The following is the example output from the script.

Success: CREATE TABLE TEST(C_ID INT, C_FP FLOAT, C_VARCHAR VARCHAR(100), C_DATE DATE, C_
TIME TIME, C_TS TIMESTAMP, C_BOOL BOOL)
Success: INSERT into test values(1,1.1,'abcdefg1234567890','1901-01-01','23:12:34 ','190
1-01-01 09:00:09','t')
Success: odbc_execute.
Success: SELECT * FROM TEST
Array
(

[C_ID] => 1
[C_FP] => 1.1
[C_VARCHAR] => abcdefg1234567890
[C_DATE] => 1901-01-01
[C_TIME] => 23:12:34
[C_TS] => 1901-01-01 09:00:09
[C_BOOL] => 1

)
Array
(

[C_ID] => 2
[C_FP] => 2.28
[C_VARCHAR] => abcdefg1234567890
[C_DATE] => 1901-01-01
[C_TIME] => 23:12:34
[C_TS] => 1901-01-01 23:12:34
[C_BOOL] => 1

)
Success: DROP TABLE TEST CASCADE

HP Vertica Programmer's Guide

HP Vertica Analytics Platform (7.0.x) Page 277 of 817

Using vsql
vsql is a character-based, interactive, front-end utility that lets you type SQL statements and see
the results. It also provides a number of meta-commands and various shell-like features that
facilitate writing scripts and automating a variety of tasks.

If you are using the vsql client installed on the server, then you can connect from the:

l Administration Tools

l Linux command line

You can also install the vsql client for other supported platforms.

A man page is available for vsql. If you are running as the dbadmin user, simply type: man vsql. If
you are running as a different user, type: man -M /opt/vertica/man vsql.

General Notes
l SQL statements can be spread over several lines for clarity.

l vsql can handles input and output in UTF-8 encoding. Note that the terminal emulator running
vsql must be set up to display the UTF-8 characters correctly. Follow the documentation of your
terminal emulator. The following example shows the settings in PuTTy from the Change
Settings > Window > Translation option:

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 278 of 817

See also Best Practices forWorking with Locales.

l Cancel SQL statements by typing Ctrl+C.

l Traverse command history by typing Ctrl+R.

l When you disconnect a user session, any transactions in progress are automatically rolled
back.

l To view wide result sets, use the Linux less utility to truncate long lines.

a. Before connecting to the database, specify that you want to use less for query output:

$ export PAGER=less

b. Connect to the database.

c. Query a wide table:

=> select * from wide_table;

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 279 of 817

d. At the less prompt, type:

-S

n If a shell running vsql fails (crashes or freezes), the vsql processes continue to run even if you
stop the database. In that case, log in as root on themachine on which the shell was running
andmanually kill the vsql process. For example:

ps -ef | grep vertica

fred 2401 1 0 06:02 pts/1 00:00:00 /opt/vertica/bin/vsql -p 5433 -h
test01_site01 quick_start_single

kill -9 2401

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 280 of 817

Installing the vsql Client
The vsql client is installed as part of the HP Vertica server rpm, but it is also available as a
download for other Unix-based systems such as HP-UX, AIX, andMac OSX.

How to Install vsql on Unix-Based systems:
1. Use a web browser to log in to themyVertica portal.

2. Click the Download tab, scroll down to the CLIENT PACKAGES section and download the
appropriate vsql client from the HP Vertica downloads page. Note that there are both 32-bit and
64-bit versions for most platforms.

3. Extract the tarball. The tarball is organized to extract into /opt/vertica if you extract it at the root
(/) of the drive.

4. Optionally add the directory where the vsql client resides to your path.

5. Verify mode on the vsql file is executable. For example: chmod ugo+x vsql_VERSION

6. Set your shell locale to a locale supported by vsql. For example, in your .profile, add, export
LANG=en_US.UTF-8

Installing vsql on Windows:
vsql onWindows is installed as part of theWindows Client Driver package. To install vsql on
windows see the instructions for installing theWindows Client Driver package.

See vsql Notes forWindows Users for details on using vsql in a windows console.

vsql Notes for Windows Users

Font
Set the console font to "Lucida Console", because the raster font does not work well with the ANSI
code page.

Console Encoding
vsql is built as a "console application." TheWindows console windows use a different encoding
than the rest of the system, so take care when you use 8-bit characters within vsql. If vsql detects a
problematic console code page, it warns you at startup. To change the console code page, two
things are necessary:

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 281 of 817

http://my.vertica.com/

l Set the code page by entering cmd.exe /c chcp 1252.

1252 is a code page that is appropriate for European languages; replace it with your preferred
locale code page.

Running Under Cygwin
Verify that your cygwin.bat file does not include the "tty" flag. If the "tty" flag is included in your
cywgin.bat file, then banners and prompts are not displayed in vsql.

For example, change:

set CYGWIN=binmode tty ntsec

to:

set CYGWIN=binmode ntsec

Additionally, when running under Cygwin, vsql uses Cygwin shell conventions as opposed to
Windows console conventions.

Tab Completion
Tab completion is a function of the shell, not vsql. Because of this, tab completion does not work
the sameway inWindows vsql as it does on Linux versions of vsql.

OnWindows, instead of using tab-completion. Press F7 to pop-up a history window of commands,
or press F8 after typing a few letters of a command to cycle through commands in the history buffer
starting with the same letters.

Connecting From the Administration Tools
You can use theAdministration Tools to connect to a database using vsql on any node in the
cluster.

1. Log in as any user that does not have root privileges. (HP Vertica does not allow users with
root privileges to connect to a database for security reasons).

2. Run the Administration Tools.

/opt/vertica/bin/admintools

3. On theMainMenu, select Connect to Database.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 282 of 817

4. Supply the database password if asked:

Password:

When you create a new user with the CREATE USER command, you can configure the
password or leave it empty. You cannot bypass the password if the user was created with a
password configured. You can change a user's password using the ALTER USER command.

5. The Administration Tools connect to the database and transfer control to vsql.

Welcome to vsql, the Vertica Analytic Database interactive terminal.
Type: \h or \? for help with vsql commands

\g or terminate with semicolon to execute query
\q to quit

=>

Note: SeeMeta-Commands for the various commands you can run while connected to the
database through the Administration Tools.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 283 of 817

Connecting From the Command Line
You can use vsql from the command line to connect to a database from any Linux machine,
including those not part of the cluster. Copy /opt/vertica/bin/vsql to your machine.

Syntax
/opt/vertica/bin/vsql [option...] [dbname [username]]

Parameters

option One ormore of the vsql Command Line Options

dbname The name of the target database

username The name of the user to connect as

Notes
l If the database is password protected, youmust specify the -w or --password command line

option.

l The default dbname and username is your Linux user name.

l If the connection cannot bemade for any reason (for example, insufficient privileges, server is
not running on the targeted host, etc.), vsql returns an error and terminates.

l vsql returns the following informational messages:

n 0 to the shell if it finished normally

n 1 if a fatal error of its own (out of memory, file not found) occurs

n 2 if the connection to the server went bad and the session was not interactive

n 3 if an error occurred in a script and the variable ON_ERROR_STOP was set

l Unrecognized words in the command linemight be interpreted as database or user names.

Example
The following example redirects vsql output and error messages into an output file called retail_
queries.out and captures any error messages:

$ vsql --echo-all < retail_queries.sql > retail_queries.out 2>&1

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 284 of 817

Command Line Options
This section contains the command-line options for vsql:

-? --help displays help about vsql command line arguments and exits.

-a --echo-all prints all input lines to standard output as they are read. This is more useful for
script processing than interactivemode. It is equivalent to setting the variable ECHO to all.

-A --no-align switches to unaligned output mode. (The default output mode is aligned.)

-B SERVER:PORT,SERVER:PORT,... sets connection backup server/port. Comma separate
multiple hosts. (default: not set).

-c command --command command runs one command and exits. This is useful in shell scripts. The
commandmust be either a command string that can be completely parsed by the server (it contains
no vsql specific features), or a single meta-command. In other words, you cannot mix SQL and vsql
meta-commands. To achieve that, you can pipe the string into vsql like this:

echo "\\timing\\\\select * from t" | ../Linux64/bin/vsql
Timing is on.
i | c | v

---+---+---
(0 rows)

Note: If you use double quotes with echo, youmust double the backslashes.

-C Enables connection load balancing (default: not enabled)

-d dbname --dbname dbname specifies the name of the database to connect to. This is equivalent
to specifying dbname as the first non-option argument on the command line.

-e --echo-queries copies all SQL commands sent to the server to standard output as well. This
is equivalent to setting the variable ECHO to queries.

-E displays queries generated by internal commands.

-f filename --file filename uses the file filename as the source of commands instead of
reading commands interactively. After the file is processed, vsql terminates. This is in many ways
equivalent to the internal command \i .

If filename is - (hyphen), the standard input is read.

Using this option is subtly different from writing vsql < filename. In general, both do what you
expect, but using -f enables some nice features such as error messages with line numbers. There
is also a slight chance that using this option reduces the start-up overhead. On the other hand, the
variant using the shell's input redirection is (in theory) guaranteed to yield exactly the same output
that you would have gotten had you entered everything by hand.

Using f filename to Read Data Piped into vsql

To read data piped into vsql from a data file:

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 285 of 817

1. Create the following:

n A named pipe. For example, to create a named pipe called pipe1: mkfifo pipe1

n A data file. The data file in this example is called data_file.

n The command file that selects the table into which you want to copy data, copies the data
from the pipe file (pipe1), and removes the pipe file. The command file in this example is
called command_line.

2. From the command line, run a command that pipes the data file (data_file) into the appropriate
table through vsql. The following example pipes the data file into public.shipping_dimension in
the VMart database:

cat data_file > pipe1 | vsql -f 'command_line'

Example data_file:

110|EXPRESS|SEA|FEDEX111|EXPRESS|HAND CARRY|MSC
112|OVERNIGHT|COURIER|USPS

Example command_line file:

SELECT * FROM public.shipping_dimension;\set dir `pwd`/
\set file '''':dir'pipe1'''
COPY public.shipping_dimension FROM :file delimiter '|';
SELECT * FROM public.shipping_dimension;
--Remove the pipe1
\! rm pipe1

-F separator --field-separator separator specifies the field separator for unaligned output
(default: "|") (-P fieldsep=). (See -A --no-align.) This is equivalent to \pset fieldsep or \f .

-h hostname --host hostname specifies the host name of themachine on which the server is
running.

Notes about -h hostname:

l If you are using client authentication with a connectionmethod of either "gss" or" "krb5"
(Kerberos), the -h hostname option is required.

l If you are using client authentication with a "local" connection type specified, do not use -h
hostname if you want to match the client authentication entry.

-H --html turns on HTML tabular output. This is equivalent to \pset format html or the \H
command.

-k KRB SERVICE provides the service name portion of the Kerberos principal (default: vertica). -k
is equivalent to the drivers' KerberosServiceName connection string.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 286 of 817

-K KRB HOST provides the instance or host name portion of the Kerberos principal. -K is equivalent
to the drivers' KerberosHostName connection string.

-l --list returns all available databases, then exits. Other non-connection options are ignored.
This command is similar to the internal command \list.

-n disables command line editing.

-o filename --output filename writes all query output into file filename. This is equivalent to
the command \o.

-p port --port port specifies the TCP port or the local socket file extension on which the server
is listening for connections. Defaults to port 5433.

-P assignment --pset assignment lets you specify printing options in the style of \pset on the
command line. Note that you have to separate name and value with an equal sign instead of a
space. Thus to set the output format to LaTeX, you could write -P format=latex.

-q --quiet specifies that vsql do its work quietly. By default, it prints welcomemessages and
various informational output. If this option is used, none of this appears. This is useful with the -c
option. Within vsql you can also set the QUIET variable to achieve the same effect.

-R separator --record-separator separator uses separator as the record separator. This is
equivalent to the \pset recordsep command.

-s --single-step runs in single-stepmode for debugging scripts. Forces vsql to prompt before
each statement is sent to the database and allows you to cancel execution.

-S --single-line runs in single-linemode where a newline terminates a SQL command, like the
semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it, particularly if youmix SQL andmeta-commands on a line. The order of execution
might not always be clear to the inexperienced user.

-t --tuples-only disables printing of column names, result row count footers, and so on. This is
equivalent to the \t command.

-T table_options --table-attr table_options allows you to specify options to be placed
within the HTML table tag. See \pset for details.

-U username --username username connects to the database as the user username instead of
the default.

-v assignment --set assignment --variable assignment performs a variable assignment,
like the \set internal command.

Note: Youmust separate name and value, if any, by an equal sign on the command line.

To unset a variable, omit the equal sign. To set a variable without a value, use the equal sign but
omit the value. These assignments are done during a very early stage of start-up, so variables
reserved for internal purposes can get overwritten later.

-V --version prints the vsql version and exits.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 287 of 817

-w password specifies the password for a database user.

Note: Using this command line option displays the database password in plain text on the
screen. Use it with care, particularly if you are connecting as the database administrator.

-W --password forces vsql to prompt for a password before connecting to a database.

The password is not displayed on the screen. This option remains set for the entire session, even if
you change the database connection with themeta-command \connect .

-x --expanded enables extended table formattingmode. This is equivalent to the command \ x .

-X, --no-vsqlrc prevents the start-up file from being read (the system-wide vsqlrc file or the
user's ~/.vsqlrc file).

Connecting From a Non-Cluster Host
You can use the HP Vertica vsql executable image on a non-cluster Linux host to connect to an HP
Vertica database.

l OnRedHat 5.0 64-bit and SUSE 10/11 64-bit, you can install the client driver RPM, which
includes the vsql executable. See Installing the Client RPM onRedHat and SUSE for details.

l If the non-cluster host is running the same version of Linux as the cluster, copy the image file to
the remote system. For example:

$ scp host01:/opt/vertica/bin/vsql .$./vsql

l If the non-cluster host is running a different version of Linux than your cluster hosts, and that
operating system is not Red Hat version 5 64-bit or SUSE 10/11 64-bit, youmust install the HP
Vertica server RPM in order to get vsql. Download the appropriate rpm package from the
Download tab of themyVertica portal then log into the non-cluster host as root and install the
rpm package using the command:

rpm -Uvh filename

In the above command, filename is package you downloaded. Note that you do not have to run
the install_HP Vertica script on the non-cluster host in order to use vsql.

Notes
l Use the sameCommand Line Options that you would on a cluster host.

l You cannot run vsql on a Cygwin bash shell (Windows). Use ssh to connect to a cluster host,
then run vsql.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 288 of 817

http://my.vertica.com/

Meta-Commands
Anything you enter in vsql that begins with an unquoted backslash is a vsql meta-command that is
processed by vsql itself. These commands helpmake vsql more useful for administration or
scripting. Meta-commands aremore commonly called slash or backslash commands.

The format of a vsql command is the backslash, followed immediately by a command verb, then
any arguments. The arguments are separated from the command verb and each other by any
number of whitespace characters.

To include whitespace into an argument you can quote it with a single quote. To include a single
quote into such an argument, precede it by a backslash. Anything contained in single quotes is
furthermore subject to C-like substitutions for \n (new line), \t (tab), \digits, \0digits, and \0xdigits
(the character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon (:), it is taken as a vsql variable and the value of the
variable is used as the argument instead.

Arguments that are enclosed in backquotes (`) are taken as a command line that is passed to the
shell. The output of the command (with any trailing newline removed) is taken as the argument
value. The above escape sequences also apply in backquotes.

Some commands take a SQL identifier (such as a table name) as argument. These arguments
follow the syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (")
protect letters from case conversion and allow incorporation of whitespace into the identifier. Within
double quotes, paired double quotes reduce to a single double quote in the resulting name. For
example, FOO"BAR"BAZ is interpreted as fooBARbaz, and "A weird"" name" becomes A weird"
name.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the
beginning of a new meta-command. The special sequence \\ (two backslashes) marks the end of
arguments and continues parsing SQL commands, if any. That way SQL and vsql commands can
be freely mixed on a line. But in any case, the arguments of ameta-command cannot continue
beyond the end of the line.

! [COMMAND]
\! [COMMAND] executes a command in a Linux shell (passing arguments as entered) or starts an
interactive shell.

?
\? displays help information about themeta-commands. Works the same as \h .

=> \?
General

\c[onnect] [DBNAME|- [USER]]
connect to new database (currently "VMart")

\cd [DIR] change the current working directory
\q quit vsql

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 289 of 817

\set [NAME [VALUE]]
set internal variable, or list all if no parameters

\timing toggle timing of commands (currently off)
\unset NAME unset (delete) internal variable
\! [COMMAND] execute command in shell or start interactive shell
\password [USER]

change user's password
Query Buffer

\e [FILE] edit the query buffer (or file) with external editor
\g send query buffer to server
\g FILE send query buffer to server and results to file
\g | COMMAND send query buffer to server and pipe results to command
\p show the contents of the query buffer
\r reset (clear) the query buffer
\s [FILE] display history or save it to file
\w FILE write query buffer to file

Input/Output
\echo [STRING] write string to standard output
\i FILE execute commands from file
\o FILE send all query results to file
\o | COMMAND pipe all query results to command
\o close query-results file or pipe
\qecho [STRING]

write string to query output stream (see \o)
Informational

\d [PATTERN] describe tables (list tables if no argument is supplied)
\df [PATTERN] list functions
\dj [PATTERN] list projections
\dn [PATTERN] list schemas
\dp [PATTERN] list table access privileges
\ds [PATTERN] list sequences
\dS [PATTERN] list system tables
\dt [PATTERN] list tables
\dtv [PATTERN] list tables and views
\dT [PATTERN] list data types
\du [PATTERN] list users
\dv [PATTERN] list views
\l list all databases
\z [PATTERN] list table access privileges (same as \dp)

Formatting
\a toggle between unaligned and aligned output mode
\b toggle beep on command completion
\C [STRING] set table title, or unset if none
\f [STRING] show or set field separator for unaligned query output
\H toggle HTML output mode (currently off)
\pset NAME [VALUE]

set table output option
(NAME := {format|border|expanded|fieldsep|footer|null|
recordsep|tuples_only|title|tableattr|pager})

\t show only rows (currently off)
\T [STRING] set HTML <table> tag attributes, or unset if none
\x toggle expanded output (currently off)

a
\a toggles output format alignment. This command is kept for backwards compatibility. See \pset
for amore general solution.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 290 of 817

\a is similar to the command line option -A --no-align, which only disables alignment.

b
\b toggles beep on command completion.

c (or \connect) [Dbname [Username]]
\c (or \connect) [dbname [username]] establishes a connection to a new database
and/or under a user name. The previous connection is closed. If dbname is - the current database
name is assumed.

If username is omitted the current user name is assumed.

As a special rule, \connectwithout any arguments connects to the default database as the default
user (as you would have gotten by starting vsql without any arguments).

If the connection attempt fails (wrong user name, access denied, etc.), the previous connection is
kept if and only if vsql is in interactivemode. When executing a non-interactive script, processing
immediately stops with an error. This distinction that avoids typos and a prevent scripts from
accidentally acting on the wrong database.

C [STRING]
\C [STRING] sets the title of any tables being printed as the result of a query or unsets any such
title. This command is equivalent to \pset title title. (The name of this command derives from
"caption", as it was previously only used to set the caption in an HTML table.)

cd [DIR]
\cd [DIR] changes the current working directory to directory. Without argument, changes to the
current user's home directory.

To print your current working directory, use \! pwd. For example:

=> \!pwd
/home/dbadmin

The \d [PATTERN] Meta-Commands
This section describes the various \dmeta-commands

All \dmeta-commands take an optional pattern (asterisk [*] or questionmark [?]) and return only
the records that match that pattern.

The ? argument is useful if you can't remember if a table name uses an underscore or a dash:

=> \dn v?internal
List of schemas

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 291 of 817

Name | Owner
------------+---------
v_internal | dbadmin

(1 row)

The output from the \dmetacommands places double quotes around non-alphanumeric table
names and table names that are keywords, such as in the following example.

=> CREATE TABLE my_keywords.precision(x numeric (4,2));
CREATE TABLE
=> \d

List of tables
Schema | Name | Kind | Owner

--------------+-----------------------+-------+---------
my_keywords | "precision" | table | dbadmin

Double quotes are optional when you use a \d commandwith patternmatching.

d [PATTERN]
The \d meta-command lists all tables in the database and returns their schema, table name, kind
(e.g., table), and owner.

If you use \d [PATTERN] and provide the schema name or table name (or wildcard or ?
characters) as the pattern argument, the result shows more detailed information about the tables:

l Schema name

l Table name

l Column name

l Column data type

l Data type size

l Default column value

l Whether the column accepts null values or has a NOT NULL constraint

l Whether there is a primary key or foreign key constraint

To view information about system tables, youmust include the V_MONITOR or V_CATALOG as the
pattern argument; for example:

\d v_catalog.types -- information on the types table in v_catalog schema
\d v_catalog.* -- information on all table columns in v_catalog schema

The following output is the result of all tables in the vmart schema, which is in the PUBLIC schema.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 292 of 817

VMart=> \d
List of tables

Schema | Name | Kind | Owner
--------------+-----------------------+-------+---------
online_sales | call_center_dimension | table | dbadmin
online_sales | online_page_dimension | table | dbadmin
online_sales | online_sales_fact | table | dbadmin
public | customer_dimension | table | dbadmin
public | date_dimension | table | dbadmin
public | employee_dimension | table | dbadmin
public | inventory_fact | table | dbadmin
public | product_dimension | table | dbadmin
public | promotion_dimension | table | dbadmin
public | shipping_dimension | table | dbadmin
public | vendor_dimension | table | dbadmin
public | warehouse_dimension | table | dbadmin
store | store_dimension | table | dbadmin
store | store_orders_fact | table | dbadmin
store | store_sales_fact | table | dbadmin

(15 rows)

This example returns information on the inventory_fact table in the VMart database:

VMart=> \x
Expanded display is on.
VMart=> \d inventory_fact
List of Fields by Tables
-[RECORD 1]--
Schema | public
Table | inventory_fact
Column | date_key
Type | int
Size | 8
Default |
Not Null | t
Primary Key | f
Foreign Key | public.date_dimension(date_key)
-[RECORD 2]--
Schema | public
Table | inventory_fact
Column | product_key
Type | int

Size | 8
Default |
Not Null | t
Primary Key | f
Foreign Key | public.product_dimension(product_key)
-[RECORD 3]--
Schema | public
Table | inventory_fact
Column | product_version
Type | int
Size | 8
Default |
Not Null | t

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 293 of 817

Primary Key | f
Foreign Key | public.product_dimension(product_version)
-[RECORD 4]--
Schema | public
Table | inventory_fact
Column | warehouse_key
Type | int
Size | 8
Default |
Not Null | t
Primary Key | f
Foreign Key | public.warehouse_dimension(warehouse_key)
-[RECORD 5]--
Schema | public
Table | inventory_fact
Column | qty_in_stock
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |

Use the questionmark [?] argument to replace a single character. For example, the ? argument
replaces the last character in the user-created SubQ1 and SubQ2 tables, so the command returns
information about both:

=> \d SubQ?

List of Fields by Tables
Schema | Table | Column | Type | Size | Default | Not Null | Primary Key | Foreign Key
--------+-------+--------+------+------+---------+----------+-------------+-------------
public | SubQ1 | a | int | 8 | | f | f |
public | SubQ1 | b | int | 8 | | f | f |
public | SubQ1 | c | int | 8 | | f | f |
public | SubQ2 | x | int | 8 | | f | f |
public | SubQ2 | y | int | 8 | | f | f |
public | SubQ2 | z | int | 8 | | f | f |

(6 rows)

If you run the \d command and provide both the schema and table name, output includes columns
for tables that match the pattern

VMart=> \x
Expanded display is on.
VMart=> \d v_catalog.types
List of Fields by Tables
-[RECORD 1]--------------------
Schema | v_catalog
Table | types
Column | column_size
Type | int
Size | 8
Default |

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 294 of 817

Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 2]--------------------
Schema | v_catalog
Table | types
Column | creation_parameters
Type | varchar(128)
Size | 128
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 3]--------------------
Schema | v_catalog
Table | types
Column | epoch
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 4]--------------------
Schema | v_catalog
Table | types
Column | interval_mask
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 5]--------------------
Schema | v_catalog
Table | types
Column | max_scale
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 6]--------------------
Schema | v_catalog
Table | types
Column | min_scale
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 7]--------------------
Schema | v_catalog
Table | types
Column | odbc_subtype
Type | int

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 295 of 817

Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 8]--------------------
Schema | v_catalog
Table | types
Column | odbc_type
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 9]--------------------
Schema | v_catalog
Table | types
Column | type_id
Type | int
Size | 8
Default |
Not Null | f
Primary Key | f
Foreign Key |
-[RECORD 10]-------------------
Schema | v_catalog
Table | types
Column | type_name
Type | varchar(128)
Size | 128
Default |
Not Null | f
Primary Key | f
Foreign Key |

To view all tables in a schema, use the wildcard character. The following commandwould return all
system tables in the V_CATALOG schema:

=> \d v_catalog.*

Df [PATTERN]
The \df [PATTERN]meta-command returns all function names, the function return data type,
and the function argument data type. Also returns the procedure names and arguments for all
procedures that are available to the user.

vmartdb=> \df
List of functions

procedure_name | procedure_return_type | procedure_argument_types
-----------------+-----------------------+---------------------------
abs | Float | Float
abs | Integer | Integer

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 296 of 817

abs | Interval | Interval
abs | Interval | Interval
abs | Numeric | Numeric
acos | Float | Float
add_location | Varchar | Varchar
add_location | Varchar | Varchar, Varchar, Varchar

...
width_bucket | Integer | Float, Float, Float, Integer
width_bucket | Integer | Interval, Interval, Interval, Integer
width_bucket | Integer | Interval, Interval, Interval, Integer
width_bucket | Integer | Timestamp, Timestamp, Timestamp, Integer

...

The following example uses the wildcard character to search for all functions that begin with as:

vmartdb=> \df as*
List of functions

procedure_name | procedure_return_type | procedure_argument_types
----------------+-----------------------+--------------------------
ascii | Integer | Varchar
asin | Float | Float

(2 rows)

Dj [PATTERN]
The \dj [PATTERN]meta-command returns all projections showing the schema, projection
name, owner, and node:

vmartdb=> \dj
List of projections

Schema | Name | Owner | Node
--------------+--------------------------------+---------+--------------------
public | product_dimension_node0001 | dbadmin | v_wmartdb_node0001
public | product_dimension_node0002 | dbadmin | v_wmartdb_node0002
public | product_dimension_node0003 | dbadmin | v_wmartdb_node0003
online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001
online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002
online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

...

If you supply a projection name as an argument, the system returns fewer records:

vmartdb=> \dj call_center_dimension_n*
List of projections

Schema | Name | Owner | Node
--------------+--------------------------------+---------+--------------------
online_sales | call_center_dimension_node0001 | dbadmin | v_wmartdb_node0001
online_sales | call_center_dimension_node0002 | dbadmin | v_wmartdb_node0002
online_sales | call_center_dimension_node0003 | dbadmin | v_wmartdb_node0003

(3 rows)

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 297 of 817

Dn [PATTERN]
The \dn [PATTERN]meta-command returns the schema names and schema owner.

vmartdb=> \dn
List of schemas
Name | Owner

--------------+---------
v_internal | dbadmin
v_catalog | dbadmin
v_monitor | dbadmin
public | dbadmin
store | dbadmin
online_sales | dbadmin

(6 rows)

The following command returns all schemas that begin with the letter v:

=> \dn v*
List of schemas
Name | Owner

------------+---------
v_internal | dbadmin
v_catalog | dbadmin
v_monitor | dbadmin

(3 rows)

Dp [PATTERN]
The \dp [PATTERN]meta-command returns the grantee, grantor, privileges, schema, and name
for all table access privileges in each schema:

vmartdb=> \dp
Access privileges for database "vmartdb"

Grantee | Grantor | Privileges | Schema | Name
---------+---------+------------+--------+------------

| dbadmin | USAGE | | public
| dbadmin | USAGE | | v_internal
| dbadmin | USAGE | | v_catalog
| dbadmin | USAGE | | v_monitor

(4 rows)

Note: \dp is the same as \z .

ds [PATTERN]
The \ds [PATTERN]meta-command (lowercase s) returns a list of sequences and their
parameters.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 298 of 817

The following series of commands creates a sequence calledmy_seq and uses the vsql command
to display its parameters:

=> CREATE SEQUENCE my_seq MAXVALUE 5000 START 150;
CREATE SEQUENCE

=> \ds
List of Sequences

Schema | Sequence | CurrentValue | IncrementBy | Minimum | Maximum | AllowCycle
--------+----------+--------------+-------------+---------+---------+------------
public | my_seq | 149 | 1 | 1 | 5000 | f

(1 row)

Note: You can return additional information about sequences by issuing SELECT * FROM
SEQUENCES, as described in the SQLReferenceManual.

dS [PATTERN]
The \dS [PATTERN]meta-command (uppercase S) returns all system table (monitoring API)
names from the V_CATALOG and V_MONITOR schemas.

Tip: You can get identical results running this query: SELECT * FROM system_tables;

If you specify a schema name, you can view results for tables in that schema only; however, you
must use the wildcard character. For example:

=> \dS v_catalog.*

You can also run the \dS commandwith a table argument to return information for that table only:

vmartdb=> \dS columns
List of tables

Schema | Name | Kind | Description | Comment
-----------+---------+--------+--------------------------+---------
v_catalog | columns | system | Table column information |

(1 row)

If you provide the schema namewith the table name, the output returns information about the table:

dt [PATTERN]
The \dt [PATTERN]meta-command (lowercase t) is identical to \d and returns all tables in the
database—unless a table name is specified—in which case the command lists only the schema,
name, kind and owner for the specified table (or tables if wildcards used).

vmartdb=> \dt inventory_fact

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 299 of 817

List of tables
Schema | Name | Kind | Owner

--------+----------------+-------+---------
public | inventory_fact | table | dbadmin

(1 row)

The following command returns all table names that begin with "st":

vmartdb=> \dt st*

List of tables
Schema | Name | Kind | Owner

--------+-------------------+-------+---------
store | store_dimension | table | dbadmin
store | store_orders_fact | table | dbadmin
store | store_sales_fact | table | dbadmin

(3 rows)

dT [PATTERN]
The \dT [PATTERN]meta-command (uppercase T) lists all supported data types.

vmartdb=> \dT
List of data types

type_name

Binary
Boolean
Char
Date
Float
Integer
Interval Day
Interval Day to Hour
Interval Day to Minute
Interval Day to Second
Interval Hour
Interval Hour to Minute
Interval Hour to Second
Interval Minute
Interval Minute to Second
Interval Month
Interval Second
Interval Year
Interval Year to Month
Numeric
Time
TimeTz
Timestamp
TimestampTz
Varbinary

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 300 of 817

Varchar
(26 rows)

Dtv [PATTERN]
The \dtv [PATTERN]meta-command lists all tables and views, returning the schema, table or
view name, kind (table of view), and owner.

vmartdb=> \dtv
List of tables

Schema | Name | Kind | Owner
--------------+-----------------------+-------+---------
online_sales | call_center_dimension | table | release
online_sales | online_page_dimension | table | release
online_sales | online_sales_fact | table | release
public | customer_dimension | table | release
public | date_dimension | table | release
public | employee_dimension | table | release
public | inventory_fact | table | release
public | product_dimension | table | release
public | promotion_dimension | table | release
public | shipping_dimension | table | release
public | vendor_dimension | table | release
public | warehouse_dimension | table | release
store | store_dimension | table | release
store | store_orders_fact | table | release
store | store_sales_fact | table | release

(15 rows)

Du [PATTERN]
The \du [PATTERN]meta-command returns all database users and attributes, such as if user is
a superuser.

vmartdb=> \du
List of users

User name | Is Superuser
-----------+--------------
dbadmin | t

(1 row)

Dv [PATTERN]
The \dv [PATTERN]meta-command returns the schema name, view name, and view owner.

The following example defines a view using the SEQUENCES system table:

vmartdb=> CREATE VIEW my_seqview AS (SELECT * FROM sequences);
CREATE VIEW

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 301 of 817

vmartdb=> \dv
List of views

Schema | Name | Owner
--------+------------+---------
public | my_seqview | dbadmin

(1 row)

If a view name is provided as an argument, the result shows the schema, view name, and the
following for all columns within the view's result set: schema name, view name, column name,
column data type, and data type size.

vmartdb=> \dv my_seqview
List of View Fields

Schema | View | Column | Type | Size
--------+------------+---------------------+--------------+------
public | my_seqview | sequence_schema | varchar(128) | 128
public | my_seqview | sequence_name | varchar(128) | 128
public | my_seqview | owner_name | varchar(128) | 128
public | my_seqview | identity_table_name | varchar(128) | 128
public | my_seqview | session_cache_count | int | 8
public | my_seqview | allow_cycle | boolean | 1
public | my_seqview | output_ordered | boolean | 1
public | my_seqview | increment_by | int | 8
public | my_seqview | minimum | int | 8
public | my_seqview | maximum | int | 8
public | my_seqview | current_value | int | 8
public | my_seqview | sequence_schema_id | int | 8
public | my_seqview | sequence_id | int | 8
public | my_seqview | owner_id | int | 8
public | my_seqview | identity_table_id | int | 8

(15 rows)

e \edit [FILE]
\e \edit [FILE] edits the query buffer (or specified file) with an external editor. When the editor
exits, its content is copied back to the query buffer. If no argument is given, the current query buffer
is copied to a temporary file which is then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of vsql, where the whole buffer
up to the first semicolon is treated as a single line. (Thus you cannot make scripts this way. Use \i
for that.) If there is no semicolon, vsql waits for one to be entered (it does not execute the query
buffer).

Tip: vsql searches the environment variables VSQL_EDITOR, EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, vi is used on Linux systems, notepad.exe on
Windows systems.

echo [STRING]
\echo [STRING]writes the string to standard output

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 302 of 817

Tip: If you use the \o command to redirect your query output youmight want to use \qecho
instead of this command.

f [String]
\f [string] sets the field separator for unaligned query output. The default is the vertical bar
(|). See also \pset for a generic way of setting output options.

g
The \gmeta-command sends the query in the input buffer (see \p) to the server. With no
arguments, it displays the results in the standard way.

\g FILE sends the query input buffer to the server, and writes the results to FILE.

\g | COMMAND sends the query buffer to the server, and pipes the results to a shell COMMAND.

See Also
l o

H
\H toggles HTML query output format. This command is for compatibility and convenience, but see
\pset about setting other output options.

h \help
\h \help displays help information about themeta-commands. Works the same as \? .

=> \h
General

\c[onnect] [DBNAME|- [USER]]
connect to new database (currently "VMart")

\cd [DIR] change the current working directory
\q quit vsql
\set [NAME [VALUE]]

set internal variable, or list all if no parameters
\timing toggle timing of commands (currently off)
\unset NAME unset (delete) internal variable
\! [COMMAND] execute command in shell or start interactive shell
\password [USER]

change user's password
Query Buffer

\e [FILE] edit the query buffer (or file) with external editor
\g send query buffer to server
\g FILE send query buffer to server and results to file
\g | COMMAND send query buffer to server and pipe results to command
\p show the contents of the query buffer
\r reset (clear) the query buffer

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 303 of 817

\s [FILE] display history or save it to file
\w FILE write query buffer to file

Input/Output
\echo [STRING] write string to standard output
\i FILE execute commands from file
\o FILE send all query results to file
\o | COMMAND pipe all query results to command
\o close query-results file or pipe
\qecho [STRING]

write string to query output stream (see \o)
Informational

\d [PATTERN] describe tables (list tables if no argument is supplied)
\df [PATTERN] list functions
\dj [PATTERN] list projections
\dn [PATTERN] list schemas
\dp [PATTERN] list table access privileges
\ds [PATTERN] list sequences
\dS [PATTERN] list system tables
\dt [PATTERN] list tables
\dtv [PATTERN] list tables and views
\dT [PATTERN] list data types
\du [PATTERN] list users
\dv [PATTERN] list views
\l list all databases
\z [PATTERN] list table access privileges (same as \dp)

Formatting
\a toggle between unaligned and aligned output mode
\b toggle beep on command completion
\C [STRING] set table title, or unset if none
\f [STRING] show or set field separator for unaligned query output
\H toggle HTML output mode (currently off)
\pset NAME [VALUE]

set table output option
(NAME := {format|border|expanded|fieldsep|footer|null|
recordsep|tuples_only|title|tableattr|pager})

\t show only rows (currently off)
\T [STRING] set HTML <table> tag attributes, or unset if none
\x toggle expanded output (currently off)

i FILE
\i filename command reads input from the file filename and executes it as though it had been
typed on the keyboard.

Note: To see the lines on the screen as they are read, set the variable ECHO to all.

l
\l provides a list of databases and their owners.

vmartdb=> \l
List of databases

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 304 of 817

name | user_name
---------+-----------
vmartdb | dbadmin

(1 row)

Locale
The vsql \locale command displays the current locale setting or lets you set a new locale for the
session.

This command does not alter the default locale for all database sessions. To change the default for
all sessions, set the DefaultSessionLocale configuration parameter.

Viewing the Current Locale Setting
To view the current locale setting, use the vsql command \locale, as follows:

=> \locale
en_US@collation=binary

Overriding the Default Local for a Session
To override the default local for a specific session, use the vsql command \locale <ICU-locale-
identifier>. The session locale setting applies to any subsequent commands issued in the session.

For example:

\locale en_GBINFO: Locale: 'en_GB'
INFO: English (United Kingdom)
INFO: Short form: 'LEN'

You can also use the short form of an ICU locale identifier:

\locale LENINFO: Locale: 'en'
INFO: English
INFO: Short form: 'LEN'

Notes
The server locale settings impact only the collation behavior for server-side query processing. The
client application is responsible for ensuring that the correct locale is set in order to display the
characters correctly. Below are the best practices recommended by HP to ensure predictable
results:

l The locale setting in the terminal emulator for vsql (POSIX) should be set to be equivalent to
session locale setting on server side (ICU) so data is collated correctly on the server and

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 305 of 817

displayed correctly on the client.

l The vsql locale should be set using the POSIX LANG environment variable in terminal emulator.
Refer to the documentation of your terminal emulator for how to set locale.

l Server session locale should be set using the set as described in Specify the Default Locale for
the Database.

l Note that all input data for vsql should be in UTF-8 and all output data is encoded in UTF-8

l NonUTF-8 encodings and associated locale values are not supported.

o
The \ometa-command is used to control where vsql directs its query output. The output can be
written to a file, piped to a shell command, or sent to the standard output.

\o FILE sends all subsequent query output to FILE.

\o | COMMAND pipes all subsequent query output to a shell COMMAND.

\owith no argument closes any open file or pipe, and switches back to normal query result output.

Notes
l Query results includes all tables, command responses, and notices obtained from the database

server.

l To intersperse text output with query results, use \qecho.

See Also
l g

p
\p prints the current query buffer to the standard output. For example:

=> \p
CREATE VIEW my_seqview AS (SELECT * FROM sequences);

Password [USER]
\password starts the password change process. Users can only change their own passwords. The
command prompts the user for the old password, a new password, and then the new password
again to confirm.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 306 of 817

A superuser can change the password of another user by supplying the username. A superuser is
not prompted for the old password, either when changing his or her own password, or when
changing another user's password.

Note: If you want to cancel the password change process, press ENTER until you return the to
vsql prompt.

pset NAME [VALUE]
\pset NAME [VALUE] sets options affecting the output of query result tables. NAME describes
which option to set, as illustrated in the following table. The parameters of VALUE depend thereon.

It is an error to call \psetwithout arguments

Adjustable printing options are:

format Sets the output format to one of unaligned, aligned, html, or
latex. Unique abbreviations are allowed. (That wouldmean one
letter is enough.)

"Unaligned" writes all columns of a row on a line, separated by the
currently active field separator. This is intended to create output that
might be intended to be read in by other programs (tab- separated,
comma-separated). "Aligned" mode is the standard, human-readable,
nicely formatted text output that is default. The "HTML" and "LaTeX"
modes put out tables that are intended to be included in documents
using the respectivemark-up language. They are not complete
documents! (This might not be so dramatic in HTML, but in LaTeX
youmust have a complete document wrapper.)

border The second argument must be a number. In general, the higher the
number themore borders and lines the tables have, but this depends
on the particular format. In HTMLmode, this translates directly into
the border=... attribute, in the others only values 0 (no border), 1
(internal dividing lines), and 2 (table frame)make sense.

expanded Toggles between regular and expanded format. When expanded
format is enabled, all output has two columns with the column name
on the left and the data on the right. This mode is useful if the data
wouldn't fit on the screen in the normal "horizontal" mode.

Expandedmode is supported by all four output formats.

\x is the same as \pset expanded.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 307 of 817

fieldsep Specifies the field separator to be used in unaligned output mode.
That way one can create, for example, tab- or comma-separated
output, which other programs might prefer. To set a tab as field
separator, type \pset fieldsep '\t'. The default field separator is
'|' (a vertical bar).

footer Toggles the display of the default footer (x rows).

null The second argument is a string that is printed whenever a column is
null. The default is not to print anything, which can easily bemistaken
for, say, an empty string. Thus, onemight choose to write \pset
null '(null)'.

recordsep Specifies the record (line) separator to use in unaligned output mode.
The default is a newline character.

tuples_only (or t) Toggles between tuples only and full display. Full display might show
extra information such as column headers, titles, and various footers.
In tuples only mode, only actual table data is shown.

title [text] Sets the table title for any subsequently printed tables. This can be
used to give your output descriptive tags. If no argument is given, the
title is unset.

tableattr (or T)[text] Allows you to specify any attributes to be placed inside the HTML
table tag. This could for example be cellpadding or bgcolor. Note
that you probably don't want to specify border here, as that is
already taken care of by \pset border.

pager Controls use of a pager for query and vsql help output. If the
environment variable PAGER is set, the output is piped to the specified
program. Otherwise a platform-dependent default (such as more) is
used.

When the pager is off, the pager is not used. When the pager is on,
the pager is used only when appropriate; that is, the output is to a
terminal and does not fit on the screen. (vsql does not do a perfect job
of estimating when to use the pager.) \pset pager turns the pager
on and off. Pager can also be set to always, which causes the pager
to be always used.

See illustrations on how these different formats look in the Examples section.

Tip: There are various shortcut commands for \pset. See \a , \C , \H , \t , \T , and \ x .

q
\q quits the vsql program.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 308 of 817

Qecho [STRING]
\qecho [STRING] is identical to \echo except that the output is written to the query output
stream, as set by \o .

r
\r resets (clears) the query buffer.

For example, run the \p meta-command to see what is in the query buffer:

=> \p
CREATE VIEW my_seqview AS (SELECT * FROM sequences);

Now reset the query buffer:

=> \r
Query buffer reset (cleared).

If you reissue the command to see what's in the query buffer, you can see it is now empty:

=> \p
Query buffer is empty.

s [FILE]
\s [FILE] prints or saves the command line history to filename. If a filename is not specified, \s
writes the history to the standard output. This option is only available if vsql is configured to use the
GNU Readline library.

set [NAME [VALUE [...]]]
\set [name [value [...]]] sets the internal variable name to value or, if more than one
value is given, to the concatenation of all of values. If no second argument is given, the variable is
set with no value.

If no argument is provided, \set lists all internal variables; for example:

=> \set
VERSION = 'Vertica Analytic Database v6.0.0-0'
AUTOCOMMIT = 'off'
VERBOSITY = 'default'
PROMPT1 = '%/%R%# '
PROMPT2 = '%/%R%# '
PROMPT3 = '>> '
ROWS_AT_A_TIME = '1000'
DBNAME = 'VMartDB'
USER = 'dbadmin'

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 309 of 817

HOST = '<host_ip_address>'
PORT = '5433'
LOCALE = 'en_US@collation=binary'
HISTSIZE = '500'

Notes
l Valid variable names are case sensitive and can contain characters, digits, and underscores.

vsql treats several variables as special, which are described in Variables.

l The \set parameter ROWS_AT_A_TIME defaults to 1000. It retrieves results as blocks of rows of
that size. The column formatting for the first block is used for all blocks, so in later blocks some
entries could overflow. See \timing for examples.

l When formatting results, HP Vertica buffers ROWS_AT_A_TIME rows inmemory to calculate
themaximum columnwidths. It is possible that rows after this initial fetch are not properly
aligned if any of the field values are longer than those see in the first ROWS_AT_A_TIME rows.
ROWS_AT_A_TIME can be \unset to guarantee perfect alignment, but this requires re-
buffering the entire result set in memory andmay cause vsql to fail if the result set is too big.

l To unset a variable, use the \unset command.

Using Backquotes to Read System Variables
In vsql, the contents of backquotes are passed to the system shell to be interpreted (the same
behavior as many UNIX shells). This is particularly useful in setting internal vsql variables, since
youmay want to access UNIX system variables (such as HOME or TMPDIR) rather than hard-
code values.

For example, if you want to set an internal variable to the full path for a file in your UNIX user
directory, you could use backquotes to get the content of the system HOME variable, which is the
full path to your user directory:

=> \set inputfile `echo $HOME`/myinput.txt=> \echo :inputfile
/home/dbadmin/myinput.txt

The contents of the backquotes are replaced with the results of running the contents in a system
shell interpreter. In this case, the echo $HOME command returns the contents of the HOME system
variable.

t
\t toggles the display of output column name headings and row count footer. This command is
equivalent to \pset tuples_only and is provided for convenience.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 310 of 817

T [STRING]
\T [STRING] specifies attributes to be placed within the table tag in HTML tabular output
mode. This command is equivalent to \pset tableattr table_options.

Timing
\timing toggles the timing of commands (currently off). Themeta-command displays how long
each SQL statement takes, in milliseconds, and reports both the time required to fetch the first
block of rows from the server and the total until the last block is formatted.

Example

=> \o /dev/null=> SELECT * FROM fact LIMIT 100000;
Time: First fetch (1000 rows): 22.054 ms. All rows formatted: 235.056 ms

Note that the database retrieved the first 1000 rows in 22ms and completed retrieving and
formatting all rows in 235ms.

See Also
l set [NAME [VALUE [...]]]

Unset [NAME]
\unset [NAME] unsets (deletes) the internal variable name that was set using the \set meta-
command.

w [FILE]
\w [FILE] outputs the current query buffer to the file filename.

x
\x toggles extended table formattingmode. Is equivalent to \pset expanded.

Note: There is no space between the backslash and the x.

z
\z lists table access privileges (grantee, grantor, privilege, and name) for all table access privileges
in each schema. Is the same as \dp

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 311 of 817

Variables
vsql provides variable substitution features similar to common Linux command shells. Variables are
simply name/value pairs, where the value can be any string of any length. To set variables, use the
vsql meta-command \set :

=> \set fact dim

sets the variable fact to the value dim. To retrieve the content of the variable, precede the name
with a colon and use it as the argument of any slash command:

=> \echo :fact dim

Note: The arguments of \set are subject to the same substitution rules as with other
commands. For example, \set dim :fact is a valid way to copy a variable.

If you call \setwithout a second argument, the variable is set, with an empty string as value. To
unset (or delete) a variable, use the command \unset .

vsql's internal variable names can consist of letters, numbers, and underscores in any order and
any number. Some of these variables are treated specially by vsql. They indicate certain option
settings that can be changed at run time by altering the value of the variable or represent some state
of the application. Although you can use these variables for any other purpose, this is not
recommended. By convention, all specially treated variables consist of all upper-case letters (and
possibly numbers and underscores). To ensuremaximum compatibility in the future, avoid using
such variable names for your own purposes.

SQL Interpolation
An additional useful feature of vsql variables is that you can substitute ("interpolate") them into
regular SQL statements. The syntax for this is again to prepend the variable namewith a colon (:).

=> \set fact 'my_table'
=> SELECT * FROM :fact;

would then query the table my_table. The value of the variable is copied literally (except for
backquoted strings, see below), so it can even contain unbalanced quotes or backslash
commands. Make sure that it makes sense where you put it. Variable interpolation is not performed
into quoted SQL entities.

Note: The one exception to variable values being copied literally is strings in backquotes (``).
The contents of backquoted strings are passed to a system shell, and replaced with the shell's
output. See the set metacommand topic for details.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 312 of 817

AUTOCOMMIT
When AUTOCOMMIT is set 'on', each SQL command is automatically committed upon successful
completion; for example:

\ set AUTOCOMMIT on

To postpone COMMIT in this mode, set the value as off.

\set AUTOCOMMIT off

If AUTOCOMMIT is empty or defined as off, SQL commands are not committed unless you
explicitly issue COMMIT.

Notes
l AUTOCOMMIT is off by default.

l AUTOCOMMIT must be in uppercase, but the values, on or off, are case insensitive.

l In autocommit-off mode, youmust explicitly abandon any failed transaction by entering ABORT
or ROLLBACK.

l If you exit the session without committing, your work is rolled back.

l Validation on vsql variables is done when they are run, not when they are set.

l The COPY statement, by default, commits on completion, so it does not matter which
AUTOCOMMIT mode you use, unless you issue COPY NOCOMMIT.

l To tell if AUTOCOMMIT is on or off, issue the set command:

$ \set...
AUTOCOMMIT = 'off'
...

l AUTOCOMMIT is off if a SELECT * FROM LOCKS shows locks from the statement you just ran.

$ \set AUTOCOMMIT off
$ \set
...
AUTOCOMMIT = 'off'
...
SELECT COUNT(*) FROM customer_dimension;
count

50000

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 313 of 817

(1 row)
SELECT node_names, object_name, lock_mode, lock_scope
FROM LOCKS;
node_names | object_name | lock_mode | lock_scope

------------+--------------------------+-----------+-------------
site01 | Table:customer_dimension | S | TRANSACTION

(1 row)

DBNAME
The name of the database to which you are currently connected. DBNAME is set every time you
connect to a database (including program startup), but it can be unset.

ECHO
If set to all, all lines entered from the keyboard or from a script are written to the standard output
before they are parsed or run.

To select this behavior on program start-up, use the switch -a . If set to queries, vsql merely
prints all queries as they are sent to the server. The switch for this is -e .

ECHO_HIDDEN
When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the HP Vertica internals and provide similar functionality in your own
programs. (To select this behavior on program start-up, use the switch -E .)

If you set the variable to the value noexec, the queries are just shown but are not actually sent to
the server and run.

ENCODING
The current client character set encoding.

HISTCONTROL
If this variable is set to ignorespace, lines that begin with a space are not entered into the history
list. If set to a value of ignoredups, lines matching the previous history line are not entered. A value
of ignoreboth combines the two options. If unset, or if set to any other value than those previously
mentioned, all lines read in interactivemode are saved on the history list.

Source: Bash.

HISTSIZE
The number of commands to store in the command history. The default value is 500.

Source: Bash.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 314 of 817

HOST
The database server host you are currently connected to. This is set every time you connect to a
database (including program startup), but can be unset.

IGNOREEOF
If unset, sending an EOF character (usually Control+D) to an interactive session of vsql terminates
the application. If set to a numeric value, that many EOF characters are ignored before the
application terminates. If the variable is set but has no numeric value, the default is 10.

Source:Bash.

ON_ERROR_STOP
By default, if a script command results in an error, for example, because of amalformed command
or invalid data format, processing continues. If you set ON_ERROR_STOP to ‘on’ in a script and an
error occurs during processing, the script terminates immediately.

If you set ON_ERROR_STOP to ‘on’ in a script, run the script from Linux using vsql -f <filename>,
and an error occurs, vsql returns an error code 3 to Linux to indicate that the error occurred in a
script.

To enable ON_ERROR_STOP:

=> \set ON_ERROR_STOP on

To disable ON_ERROR_STOP:

=> \set ON_ERROR_STOP off

PORT
The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1 PROMPT2 PROMPT3
These specify what the prompts vsql issues look like. See Prompting for details.

QUIET
This variable is equivalent to the command line option -q . It is probably not too useful in interactive
mode.

SINGLELINE
This variable is equivalent to the command line option -S .

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 315 of 817

SINGLESTEP
This variable is equivalent to the command line option -s.

USER
The database user you are currently connected as. This is set every time you connect to a
database (including program startup), but can be unset.

VERBOSITY
This variable can be set to the values default, verbose, or terse to control the verbosity of error
reports.

VSQL_HOME
By default, the vsql program reads configuration files from the user's home directory. In cases
where this is not desirable, the configuration file location can be overridden by setting the VSQL_
HOME environment variable in a way that does not require modifying a shared resource.

In the following example, vsql reads configuration information out of /tmp/jsmith rather than out of ~.

Make an alternate configuration file in /tmp/jsmith
mkdir -p /tmp/jsmith
echo "\\echo Using VSQLRC in tmp/jsmith" > /tmp/jsmith/.vsqlrc
Note that nothing is echoed when invoked normally
vsql
Note that the .vsqlrc is read and the following is
displayed before the vsql prompt
#
Using VSQLRC in tmp/jsmith
VSQL_HOME=/tmp/jsmith vsql

Prompting
The prompts vsql issues can be customized to your preference. The three variables PROMPT1,
PROMPT2, and PROMPT3 contain strings and special escape sequences that describe the appearance
of the prompt. Prompt 1 is the normal prompt that is issued when vsql requests a new command.
Prompt 2 is issued whenmore input is expected during command input because the commandwas
not terminated with a semicolon or a quote was not closed. Prompt 3 is issued when you run a SQL
COPY command and you are expected to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 316 of 817

%M The full host name (with domain name) of the database server, or [local] if the
connection is over a socket, or [local:/dir/name], if the socket is not at the compiled
in default location.

%m The host name of the database server, truncated at the first dot, or [local].

%> The port number at which the database server is listening.

%n The database session user name.

%/ The name of the current database.

%~ Like%/, but the output is ~ (tilde) if the database is your default database.

%# If the session user is a database superuser, then a #, otherwise a >. (The expansion
of this valuemight change during a database session as the result of the command
SET SESSION AUTHORIZATION.)

%R In prompt 1 normally =, but ^ if in single-linemode, and ! if the session is
disconnected from the database (which can happen if \connect fails). In prompt 2
the sequence is replaced by -, *, a single quote, a double quote, or a dollar sign,
depending on whether vsql expects more input because the commandwasn't
terminated yet, because you are inside a /* ... */ comment, or because you are inside
a quoted or dollar-escaped string. In prompt 3 the sequence doesn't produce
anything.

%x Transaction status: an empty string when not in a transaction block, or * when in a
transaction block, or ! when in a failed transaction block, or ? when the transaction
state is indeterminate (for example, because there is no connection).

%digits The character with the indicated numeric code is substituted. If digits starts with 0x
the rest of the characters are interpreted as hexadecimal; otherwise if the first digit
is 0 the digits are interpreted as octal; otherwise the digits are read as a decimal
number.

%:name: The value of the vsql variable name. See the section Variables for details.

%`command` The output of command, similar to ordinary "back- tick" substitution.

%[... %] Prompts may contain terminal control characters which, for example, change the
color, background, or style of the prompt text, or change the title of the terminal
window. In order for the line editing features of Readline to work properly, these non-
printing control characters must be designated as invisible by surrounding them with
%[and%]. Multiple pairs of thesemay occur within the prompt. The following
example results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-
compatible, color-capable terminals:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%#%[%033[0m%] '

To insert a percent sign into your prompt, write%%. The default prompts are
'%/%R%# ' for prompts 1 and 2, and '>> ' for prompt 3.

Note:See the specification for terminal control sequences (applicable to gnome-
terminal and xterm).

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 317 of 817

http://www.xfree86.org/current/ctlseqs.html

Command Line Editing
vsql supports the tecla library for convenient line editing and retrieval.

The command history is automatically saved when vsql exits and is reloaded when vsql starts up.
Tab-completion is also supported, although the completion logic makes no claim to be a SQL
parser. If for some reason you do not like the tab completion, you can turn it off by putting this in a
file named .teclarc in your home directory:

bind ^I

Read the tecla documentation for further details.

Notes
The vsql implementation of the tecla library deviates from the tecla documentation as follows:

l Recalling Previously Typed Lines

Under pure tecla, all new lines are appended to a list of historical input lines maintained within
the GetLine resource object. In vsql, only different, non-empty lines are appended to the list of
historical input lines.

l History Files

tecla has no standard name for the history file. In vsql, the file name is called ~/.vsql_hist.

l International Character Sets (Meta keys and locales)

In vsql, 8-bit meta characters are no longer supported. Make sure that meta characters send an
escape by setting their EightBitInput X resource to False. You can do this in one of the following
ways:

n Edit the ~/.Xdefaults file by adding the following line:

XTerm*EightBitInput: False

n Start an xterm with an -xrm '*EightBitInput: False' command-line argument.

l Key Bindings:

l The following key bindings are specific to vsql:

n Insert switches between insert mode (the default) and overwrite mode.

n Delete deletes the character to the right of the cursor.

n Homemoves the cursor to the front of the line.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 318 of 817

n Endmoves the cursor to the end of the line.

n ^R Performs a history backwards search.

vsql Environment Variables
The following environment variables can be set to automatically use the defined properties each
time you start vsql:

l PAGER - If the query results do not fit on the screen, they are piped through this command.
Typical values are more or less. The default is platform-dependent. The use of the pager can be
disabled by using the \pset command.

l VSQL_DATABASE - Database to connect to. For example, VMart.

l VSQL_HOST - Host name or IP address of the HP Vertica node.

l VSQL_PORT - Port to use for the connection.

l VSQL_USER - Username to use for the connection.

l VSQL_PASSWORD - Password to use for the connection.

l VSQL_EDITOR, EDITOR and VISUAL - Editor used by the \e command. The variables are
examined in the order listed; the first that is set is used.

l SHELL - Command run by the \! command.

l TMPDIR - Directory for storing temporary files. The default is platform-dependant. On Unix-like
systems the default is /tmp.

Locales
The default terminal emulator under Linux is gnome-terminal, although xterm can also be used.

HP recommends that you use gnome-terminal with vsql in UTF-8mode, which is its default.

To Change Settings on Linux
1. From the tabs at the top of the vsql screen, select Terminal.

2. Click Set Character Encoding.

3. Select Unicode (UTF-8).

Note: This works well for standard keyboards. xterm has a similar UTF-8 option.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 319 of 817

To Change Settings on Windows Using PuTTy
1. Right click the vsql screen title bar and select Change Settings.

2. ClickWindow and click Translation.

3. Select UTF-8 in the drop-downmenu on the right.

Notes
l vsql has no way of knowing how you have set your terminal emulator options.

l The tecla library is prepared to do POSIX-type translations from a local encoding to UTF-8 on
interactive input, using the POSIX LANG, etc., environment variables. This could be useful to
international users who have a non-UTF-8 keyboard. See the tecla documentation for details.

HP recommends the following (or whatever other .UTF-8 locale setting you find appropriate):

export LANG=en_US.UTF-8

l The vsql \locale command invokes and tracks the server SET LOCALE TO command,
described in the SQLReferenceManual. vsql itself currently does nothing with this locale
setting, but rather treats its input (from files or from tecla), all its output, and all its interactions
with the server as UTF-8. vsql ignores the POSIX locale variables, except for any "automatic"
uses in printf, and so on.

Files
Before starting up, vsql attempts to read and execute commands from the system-wide vsqlrc file
and the user's ~/.vsqlrc file. The command-line history is stored in the file ~/.vsql_history.

Tip: If you want to save your old history file, open another terminal window and save a copy to
a different file name.

Exporting Data Using vsql
You can use vsql for simple data exports tasks by changing its output format options so the output
is suitable for importing into other systems (tab delimited or comma-separated files, for example).
These options can be set either from within an interactive vsql session, or through command-line
arguments to the vsql command (making the export process suitable for automation through
scripting). After you have set vsql's options so it outputs the data in a format your target system can
read, you run a query and capture the result in a text file.

The following table lists themeta-commands and command-line options that are useful for changing
the format of vsql's output.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 320 of 817

Description
Meta-
command

Command-line
Option

Disable padding used to align output. \a -A or --no-align

Show only tuples, disabling column headings and row
counts.

\t -t or --tuples-only

Set the field separator character. \pset fieldsep -F or --field-separator

Send output to a file. \o -o or --output

Specify a SQL statement to execute. N/A -c or --command

The following example demonstrates disabling padding and column headers in the output, and
setting a field separator to dump a table to a tab-separated text file within an interactive session.

=> SELECT * FROM my_table;
a | b | c

---+-------+---
a | one | 1
b | two | 2
c | three | 3
d | four | 4
e | five | 5

(5 rows)
=> \a
Output format is unaligned.
=> \t
Showing only tuples.
=> \pset fieldsep '\t'
Field separator is " ".
=> \o dumpfile.txt
=> select * from my_table;
=> \o
=> \! cat dumpfile.txt
a one 1
b two 2
c three 3
d four 4
e five 5

Note: You could encounter issues with empty strings being converted to NULLs or the reverse
using this technique. You can prevent any confusion by explicitly setting null values to output a
unique string such as NULLNULLNULL (for example, \pset null 'NULLNULLNULL'). Then,
on the import end, convert the unique string back to a null value. For example, if you are
copying the file back into an HP Vertica database, you would give the argument NULL
'NULLNULLNULL' to the COPY statement.

When logged into one of the database nodes, you can create the same output file directly from the
command line by passing the right parameters to vsql:

$ vsql -U username -F $'\t' -At -o dumpfile.txt -c "SELECT * FROM my_table;"

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 321 of 817

Password:
$ cat dumpfile.txt
a one 1
b two 2
c three 3
d four 4
e five 5

Note: $'...' is a BASH-specific string format that interprets backslash escapes, so it will
pass a literal tab character to the vsql command as the argument for the -F parameter. Shells
other than BASH may have other string literal syntax.

If you want to convert null values to a unique string as mentioned earlier, you can add the argument
-P null='NULLNULLNULL' (or whatever unique string you choose).

By adding the -w vsql command-line option to the example command line, you could use the
commandwithin a batch script to automate the data export. However, the script would contain the
database password as plain text. If you take this approach, you should prevent unauthorized
access to the batch script, and also have the script use a database user account that has limited
access.

Copying Data Using vsql
You can use vsql to copy data between two HP Vertica databases. This technique is similar to the
technique explained in Exporting Data Using vsql, except instead of having vsql save data to a file
for export, you pipe one vsql's output to the input of another vsql command that runs a COPY
statement from STDIN. This technique can also work for other databases or applications that
accept data from an input stream.

Note: The following technique only works for individual tables. To copy an entire database to
another cluster, see Copying a Database to Another Cluster in the Administrator's Guide.

The easiest way to copy using vsql is to log in to a node of the target database, then issue a vsql
command that connects to the source HP Vertica database to dump the data you want. For
example, the following command copies the store.store_sales_fact table from the vmart database
on node testdb01 to the vmart database on the node you are logged into:

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_f
act" \
| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITE
R '|';"

Note: The above example copies the data only, not the table design. The target table for the
data copy must already exist in the target database. You can export the design of the table
using EXPORT_OBJECTS or EXPORT_CATALOG.

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 322 of 817

Monitoring Progress (optional)
Youmay want someway of monitoring progress when copying large amounts of data between HP
Vertica databases. One way of monitoring the progress of the copy operation is to use a utility such
as Pipe Viewer that pipes its input directly to its output while displaying the amount and speed of
data it passes along. Pipe Viewer can even display a progress bar if you give it the total number of
bytes or lines you expect to be processed. You can get the number of lines to be processed by
running a separate vsql command that executes a SELECT COUNT query.

Note: Pipe Viewer isn't a standard Linux or Solaris command, so you will need download and
install it yourself. See the Pipe Viewer page for download packages and instructions. HP does
not support Pipe Viewer. Install and use it at your own risk.

The following command demonstrates how you can use Pipe Viewer to monitor the progress of the
copy shown in the prior example. The command is complicated by the need to get the number of
rows that will be copied, which is done using a separate vsql commandwithin a BASH backquote
string, which executes the strings contents and inserts the output of the command into the
command line. This vsql command just counts the number of rows in the store.store_sales_fact
table.

vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT * from store.store_sales_f
act" \
| pv -lpetr -s `vsql -U username -w passwd -h testdb01 -d vmart -At -c "SELECT COUNT (*)
FROM store.store_sales_fact;"` \
| vsql -U username -w passwd -d vmart -c "COPY store.store_sales_fact FROM STDIN DELIMITE
R '|';"

While running, the above command displays a progress bar that looks like this:

0:00:39 [12.6M/s] [=============================>] 50% ETA 0
0:00:40

Output Formatting Examples
The first example shows how to spread a command over several lines of input. Notice the changing
prompt:

=> CREATE TABLE my_table (
-> first integer not null default 0,
-> second char(10));
CREATE TABLE

Assume you have filled the table with data and want to take a look at it:

testdb=> SELECT * FROM my_table;
first | second

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 323 of 817

http://www.ivarch.com/programs/pv.shtml
http://www.ivarch.com/programs/pv.shtml

-------+--------
1 | one
2 | two
3 | three
4 | four

(4 rows)

You can display tables in different ways by using the \pset command:

testdb=> \pset border 2
Border style is 2.

testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

=> \pset border 0
Border style is 0.

=> SELECT * FROM my_table;
first second
----- ------

1 one
2 two
3 three
4 four

(4 rows)

=> \pset border 1 Border style is 1.
=> \pset format unaligned
Output format is unaligned.
=> \pset fieldsep ','
Field separator is ",".
=> \pset tuples_only
Showing only tuples.
=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4

Alternatively, use the short commands:

=> \a \t \ x Output format is aligned.
Tuples only is off.
Expanded display is on.
=> SELECT * FROM my_table;
first | 1
second | one
-------+-----------
first | 2

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 324 of 817

second | two
-------+-----------
first | 3
second | three
-------+-----------
first | 4
second | four

HP Vertica Programmer's Guide
Using vsql

HP Vertica Analytics Platform (7.0.x) Page 325 of 817

Writing Queries
Queries are database operations that retrieve data from one or more tables or views. In HP Vertica,
the top-level SELECT statement is the query, and a query nested within another SQL statement is
called a subquery.

HP Vertica is designed to run the same SQL standard queries that run on other databases.
However, there are some differences between HP Vertica queries and queries used in other
relational databasemanagement systems.

The HP Vertica transactionmodel is different from the SQL standard in a way that has a profound
effect on query performance. You can:

l Run a query on a static snapshot of the database from any specific date and time. Doing so
avoids holding locks or blocking other database operations.

l Use a subset of the standard SQL isolation levels and access modes (read/write or read-only)
for a user session.

In HP Vertica, the primary structure of a SQL query is its statement. Each statement ends with a
semicolon, and you can write multiple queries separated by semicolons; for example:

=> CREATE TABLE t1(..., date_col date NOT NULL, ...);
=> CREATE TABLE t2(..., state VARCHAR NOT NULL, ...);

Multiple Instances of Dimension Tables in the
FROM Clause

The same dimension table can appear multiple times in a query's FROM clause, using different
aliases. For example:

SELECT * FROM fact, dimension d1, dimension d2
WHERE fact.fk = d1.pk

AND
fact.name = d2.name;

Historical (Snapshot) Queries
HP Vertica supports querying historical data for individual SELECT statements.

Syntax
[AT EPOCH LATEST] | [AT TIME 'timestamp'] SELECT ...

HP Vertica Analytics Platform (7.0.x) Page 326 of 817

Parameters

AT EPOCH LATEST Queries all committed data in the database up to, but not including, the
current epoch.

AT TIME 'timestamp' Queries all committed data in the database up to the time stamp specified.
AT TIME 'timestamp' queries are resolved to the next epoch boundary
before being evaluated.

Historical queries, also known as snapshot queries, are useful because they access data in past
epochs only. Historical queries do not need to hold table locks or block write operations because
they do not return the absolute latest data.

Historical queries behave in the samemanner regardless of transaction isolation level. Historical
queries observe only committed data, even excluding updates made by the current transaction,
unless those updates are to a temporary table.

Note: You do not need to use historical queries for temporary tables because temp tables do
not require locks. Their content is private to the transaction and valid only for the length of the
transaction.

Be aware that there is only one snapshot of the logical schema. This means that any changes you
make to the schema are reflected across all epochs. If, for example, you add a new column to a
table and you specify a default value for the column, all historical epochs display the new column
and its default value.

See Also
l Transactions

Temporary Tables
You can use the CREATE TEMPORARY TABLE statement to implement certain queries usingmultiple
steps:

1. Create one or more temporary tables.

2. Execute queries and store the result sets in the temporary tables.

3. Execute themain query using the temporary tables as if they were a normal part of the logical
schema.

See CREATE TEMPORARY TABLE in the SQLReferenceManual for details.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 327 of 817

SQL Queries
All DML (DataManipulation Language) statements can contain queries. This section introduces
some of the query types in HP Vertica, with additional details in later sections.

Note: Many of the examples in this chapter use the VMart schema. For information about other
HP Vertica-supplied queries, see the Getting Started Guide.

Simple Queries
Simple queries contain a query against one table. Minimal effort is required to process the following
query, which looks for product keys and SKU numbers in the product table:

=> SELECT product_key, sku_number FROM public.product_dimension;
product_key | sku_number
-------------+-----------
43 | SKU-#129
87 | SKU-#250
42 | SKU-#125
49 | SKU-#154
37 | SKU-#107
36 | SKU-#106
86 | SKU-#248
41 | SKU-#121
88 | SKU-#257
40 | SKU-#120
(10 rows)

Joins
Joins use a relational operator that combines information from two ormore tables. The query's ON
clause specifies how tables are combined, such as by matching foreign keys to primary keys. In
the following example, the query requests the names of stores with transactions greater than 70 by
joining the store key ID from the store schema's sales fact and sales tables:

=> SELECT store_name, COUNT(*) FROM store.store_sales_fact
JOIN store.store_dimension ON store.store_sales_fact.store_key = store.store_dimension

.store_key
GROUP BY store_name HAVING COUNT(*) > 70 ORDER BY store_name;

store_name | count
------------+-------
Store49 | 72
Store83 | 78

(2 rows)

Formore detailed information, see Joins. See also theMulticolumn subqueries section in Subquery
Examples.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 328 of 817

Cross Joins
Also known as the Cartesian product, a cross join is the result of joining every record in one table
with every record in another table. A cross join occurs when there is no join key between tables to
restrict records. The following query, for example, returns all instances of vendor and store names
in the vendor and store tables:

=> SELECT vendor_name, store_name FROM public.vendor_dimension
CROSS JOIN store.store_dimension;

vendor_name | store_name
--------------------+------------
Deal Warehouse | Store41
Deal Warehouse | Store12
Deal Warehouse | Store46
Deal Warehouse | Store50
Deal Warehouse | Store15
Deal Warehouse | Store48
Deal Warehouse | Store39
Sundry Wholesale | Store41
Sundry Wholesale | Store12
Sundry Wholesale | Store46
Sundry Wholesale | Store50
Sundry Wholesale | Store15
Sundry Wholesale | Store48
Sundry Wholesale | Store39
Market Discounters | Store41
Market Discounters | Store12
Market Discounters | Store46
Market Discounters | Store50
Market Discounters | Store15
Market Discounters | Store48
Market Discounters | Store39
Market Suppliers | Store41
Market Suppliers | Store12
Market Suppliers | Store46
Market Suppliers | Store50
Market Suppliers | Store15
Market Suppliers | Store48
Market Suppliers | Store39
... | ...
(4000 rows)

This example's output is truncated because this particular cross join returned several thousand
rows. See also Cross Joins.

Subqueries
A subquery is a query nested within another query. In the following example, we want a list of all
products containing the highest fat content. The inner query (subquery) returns the product
containing the highest fat content among all food products to the outer query block (containing
query). The outer query then uses that information to return the names of the products containing
the highest fat content.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 329 of 817

=> SELECT product_description, fat_content FROM public.product_dimension
WHERE fat_content IN

(SELECT MAX(fat_content) FROM public.product_dimension
WHERE category_description = 'Food' AND department_description = 'Bakery')

LIMIT 10;
product_description | fat_content

-------------------------------------+-------------
Brand #59110 hotdog buns | 90
Brand #58107 english muffins | 90
Brand #57135 english muffins | 90
Brand #54870 cinnamon buns | 90
Brand #53690 english muffins | 90
Brand #53096 bagels | 90
Brand #50678 chocolate chip cookies | 90
Brand #49269 wheat bread | 90
Brand #47156 coffee cake | 90
Brand #43844 corn muffins | 90

(10 rows)

Formore information, see Subqueries.

Sorting Queries
Use the ORDER BY clause to order the rows that a query returns.

Special Note About Query Results
You could get different results running certain queries on onemachine or another for the following
reasons:

l Partitioning on a FLOAT type could return nondeterministic results because of the precision,
especially when the numbers are close to one another, such as results from the RADIANS()
function, which has a very small range of output.

To get deterministic results, use NUMERIC if youmust partition by data that is not an INTEGER
type.

l Most analytics (with analytic aggregations, such as MIN()/MAX()/SUM()/COUNT()/AVG() as
exceptions) rely on a unique order of input data to get deterministic result. If the analytic window-
order clause cannot resolve ties in the data, results could be different each time you run the
query.

For example, in the following query, the analytic ORDER BY does not include the first column in
the query, promotion_key. So for a tie of AVG(RADIANS(cost_dollar_amount)), product_
version, the same promotion_key could have different positions within the analytic partition,
resulting in a different NTILE() number. Thus, DISTINCT could also have a different result:

=> SELECT COUNT(*) FROM
(SELECT DISTINCT SIN(FLOOR(MAX(store.store_sales_fact.promotion_key))),

NTILE(79) OVER(PARTITION BY AVG (RADIANS

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 330 of 817

(store.store_sales_fact.cost_dollar_amount))
ORDER BY store.store_sales_fact.product_version)
FROM store.store_sales_fact
GROUP BY store.store_sales_fact.product_version,

store.store_sales_fact.sales_dollar_amount) AS store;
count

1425

(1 row)

If you add MAX(promotion_key) to analytic ORDER BY, the results are the same on any machine:

=> SELECT COUNT(*) FROM (SELECT DISTINCT MAX(store.store_sales_fact.promotion_key),
NTILE(79) OVER(PARTITION BY MAX(store.store_sales_fact.cost_dollar_amount)

ORDER BY store.store_sales_fact.product_version,
MAX(store.store_sales_fact.promotion_key))
FROM store.store_sales_fact
GROUP BY store.store_sales_fact.product_version,

store.store_sales_fact.sales_dollar_amount) AS store;

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 331 of 817

Subqueries
Subqueries provide a great deal of flexibility to SQL statements by letting you perform in one step
what, otherwise, would require several steps. For example, instead of having to write separate
queries to answermultiple-part questions, you can write a subquery.

A subquery is a SELECT statement within another SELECT statement. The inner statement is the
subquery, and the outer statement is the containing statement (often referred to in HP Vertica as
the outer query block).

Like any query, a subquery returns records from a table that could consist of a single column and
record, a single columnwith multiple records, or multiple columns and records. Queries can be
noncorrelated or correlated. You can even use them to update or delete records in a table based on
values that are stored in other database tables.

Notes
l Many examples in this section use the VMart example database.

l Be sure to read Subquery Restrictions.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 332 of 817

Subqueries Used in Search Conditions
Subqueries are used as search conditions in order to filter results. They specify the conditions for
the rows returned from the containing query's select-list, a query expression, or the subquery itself.
The operation evaluates to TRUE, FALSE, or UNKNOWN (NULL).

Syntax
< search_condition > {

[{ AND | OR [NOT] } { < predicate > | (< search_condition >) }]
} [,...]

< predicate >
{ expression comparison-operator expression
... | string-expression [NOT] { LIKE | ILIKE | LIKEB | ILIKEB } string-expression

... | expression IS [NOT] NULL

... | expression [NOT] IN (subquery | expression [,...n])

... | expression comparison-operator [ANY | SOME] (subquery)

... | expression comparison-operator ALL (subquery)

... | expression OR (subquery)

... | [NOT] EXISTS (subquery)

... | [NOT] IN (subquery)
}

Parameters

<search-condition> Specifies the search conditions for the rows
returned from one of the:

l containing query's select-list

l a query expression

l a subquery

If the subquery is used with an UPDATE or
DELETE statement, UPDATE specifies the rows
to update and DELETE specifies the rows to
delete.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 333 of 817

{ AND | OR | NOT } Keywords that specify the logical operators that
combine conditions, or in the case of NOT, negate
conditions.

l AND—Combines two conditions and
evaluates to TRUE when both of the conditions
are TRUE.

l OR—Combines two conditions and evaluates
to TRUE when either condition is TRUE.

l NOT—Negates the Boolean expression
specified by the predicate.

<predicate> Is an expression that returns TRUE, FALSE, or
UNKNOWN (NULL).

expression Can be a column name, a constant, a function, a
scalar subquery, or a combination of column
names, constants, and functions connected by
operators or subqueries.

comparison-operator Test conditions between expressions:

l < tests the condition of one expression being
less than the other.

l > tests the condition of one expression being
greater than the other.

l <= tests the condition of one expression being
less than or equal to the other expression.

l >= tests the condition of one expression being
greater than or equal to the other expression.

l = tests the equality between two expressions.

l <=> tests equality like the = operator, but it
returns TRUE instead of UNKNOWN if both
operands are UNKNOWN and FALSE instead
of UNKNOWN if one operand is UNKNOWN.

l <> and != test the condition of two expressions
not equal to one another.

string_expression Is a character string with optional wildcard (*)
characters.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 334 of 817

[NOT] { LIKE | ILIKE | LIKEB | ILIKEB } Indicates that the character string following the
predicate is to be used (or not used) for pattern
matching.

IS [NOT] NULL Searches for values that are null or are not null.

ALL Is used with a comparison operator and a
subquery. Returns TRUE for the lefthand predicate
if all values returned by the subquery satisfy the
comparison operation, or FALSE if not all values
satisfy the comparison or if the subquery returns no
rows to the outer query block.

ANY | SOME ANY and SOME are synonyms and are used with a
comparison operator and a subquery. Either returns
TRUE for the lefthand predicate if any value
returned by the subquery satisfies the comparison
operation, or FALSE if no values in the subquery
satisfy the comparison or if the subquery returns no
rows to the outer query block. Otherwise, the
expression is UNKNOWN.

[NOT] EXISTS Used with a subquery to test for the existence of
records that the subquery returns.

[NOT] IN Searches for an expression on the basis of an
expression's exclusion or inclusion from a list. The
list of values is enclosed in parentheses and can be
a subquery or a set of constants.

Logical Operators AND and OR
The AND andOR logical operators combine two conditions. AND evaluates to TRUE when both of
the conditions joined by the AND keyword arematched, andOR evaluates to TRUE when either
condition joined by OR is matched.

OR Subqueries (complex expressions)

HP Vertica supports subqueries in more complex expressions using OR; for example:

l More than one subquery in the conjunct expression:

(SELECT MAX(b) FROM t1) + SELECT (MAX FROM t2) a IN (SELECT a FROM t1) OR b IN (SELECT
x FROM t2)

l AnOR clause in the conjunct expression involves at least one subquery:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 335 of 817

a IN (SELECT a FROM t1) OR b IN (SELECT x FROM t2) a IN (SELECT a from t1) OR b = 5
a = (SELECT MAX FROM t2) OR b = 5

l One subquery is present but it is part of a another expression:

x IN (SELECT a FROM t1) = (x = (SELECT MAX FROM t2) (x IN (SELECT a FROM t1) IS NULL

How AND Queries Are Evaluated

HP Vertica treats expressions separated by AND (conjunctive) operators individually. For example
if theWHERE clause were:

WHERE (a IN (SELECT a FROM t1) OR b IN (SELECT x FROM t2)) AND (c IN (SELECT a FROM t
1))

the query would be interpreted as two conjunct expressions:

1. (a IN (SELECT a FROM t1) OR b IN (SELECT x FROM t2))

2. (c IN (SELECT a FROM t1))

The first expression is considered a complex subquery, whereas the second expression is not.

Examples

The following list shows some of the ways you can filter complex conditions in theWHERE clause:

l OR expression between a subquery and a non-subquery condition:

=> SELECT x FROM t WHERE x > (SELECT SUM(DISTINCT x) FROM t GROUP BY y) OR x < 9;

l OR expression between two subqueries:

=> SELECT * FROM t WHERE x=(SELECT x FROM t) OR EXISTS(SELECT x FROM tt);

l Subquery expression:

=> SELECT * FROM t WHERE x=(SELECT x FROM t)+1 OR x<>(SELECT x FROM t)+1;

l OR expression with [NOT] IN subqueries:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 336 of 817

=> SELECT * FROM t WHERE NOT (EXISTS (SELECT x FROM t)) OR x >9;

l OR expression with IS [NOT] NULL subqueries:

=> SELECT * FROM t WHERE (SELECT * FROM t)IS NULL OR (SELECT * FROM tt)IS NULL;

l OR expression with boolean column and subquery that returns Boolean data type:

=> SELECT * FROM t2 WHERE x = (SELECT x FROM t2) OR x;

Note: To return TRUE, the argument of OR must be a Boolean data type.

l OR expression in the CASE statement:

=> SELECT * FROM t WHERE CASE WHEN x=1 THEN x > (SELECT * FROM t)
OR x < (SELECT * FROM t2) END ;

l Analytic function, NULL-handling function, string function, math function, and so on:

=> SELECT x FROM t WHERE x > (SELECT COALESCE (x,y) FROM t GROUP BY x,y) OR
x < 9;

l In user-defined functions (assuming f() is one):

=> SELECT * FROM t WHERE x > 5 OR x = (SELECT f(x) FROM t);

l Use of parentheses at different places to restructure the queries:

=> SELECT x FROM t WHERE (x = (SELECT x FROM t) AND y = (SELECT y FROM t))
OR (SELECT x FROM t) =1;

l Multicolumn subqueries:

=> SELECT * FROM t WHERE (x,y) = (SELECT x,y FROM t) OR x > 5;

l Constant/NULL on lefthand side of subquery:

=> SELECT * FROM t WHERE x > 5 OR 5 = (SELECT x FROM t);

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 337 of 817

See Also

l Subquery Restrictions

In Place of an Expression
Subqueries that return a single value (unlike a list of values returned by IN subqueries) can be used
just about anywhere an expression is allowed in SQL. It can be a column name, a constant, a
function, a scalar subquery, or a combination of column names, constants, and functions
connected by operators or subqueries.

For example:

=> SELECT c1 FROM t1 WHERE c1 = ANY (SELECT c1 FROM t2) ORDER BY c1;
=> SELECT c1 FROM t1 WHERE COALESCE((t1.c1 > ANY (SELECT c1 FROM t2)), TRUE);
=> SELECT c1 FROM t1 GROUP BY c1 HAVING

COALESCE((t1.c1 <> ALL (SELECT c1 FROM t2)), TRUE);

Multi-column expressions are also supported:

=> SELECT c1 FROM t1 WHERE (t1.c1, t1.c2) = ALL (SELECT c1, c2 FROM t2);
=> SELECT c1 FROM t1 WHERE (t1.c1, t1.c2) <> ANY (SELECT c1, c2 FROM t2);

HP Vertica returns an error on queries wheremore than one row would be returned by any subquery
used as an expression:

=> SELECT c1 FROM t1 WHERE c1 = (SELECT c1 FROM t2) ORDER BY c1;
ERROR: more than one row returned by a subquery used as an expression

See Also

l Subquery Restrictions

Comparison Operators
HP Vertica supports Boolean subquery expressions in theWHERE clause with any of the following
operators: (>, <, >=, <=, =, <>, <=>).

WHERE clause subqueries filter results and take the following form:

SELECT <column, ...> FROM <table>
WHERE <condition> (SELECT <column, ...> FROM <table> WHERE <condition>);

These conditions are available for all data types where comparisonmakes sense. All Comparison
Operators are binary operators that return values of TRUE, FALSE, or UNKNOWN (NULL).

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 338 of 817

Expressions that correlate to just one outer table in the outer query block are supported, and these
correlated expressions can be comparison operators.

The following subquery scenarios are supported:

SELECT * FROM T1 WHERE T1.x = (SELECT MAX(c1) FROM T2);
SELECT * FROM T1 WHERE T1.x >= (SELECT MAX(c1) FROM T2 WHERE T1.y = T2.c2);
SELECT * FROM T1 WHERE T1.x <= (SELECT MAX(c1) FROM T2 WHERE T1.y = T2.c2);

See Also

l Subquery Restrictions

LIKE Pattern Matching
HP Vertica supports LIKE pattern-matching conditions in subqueries and take the following form:

string-expression [NOT] { LIKE | ILIKE | LIKEB | ILIKEB } string-expression

The following command searches for customers whose company name starts with "Ev" and returns
the total count:

=> SELECT COUNT(*) FROM customer_dimension WHERE customer_name LIKE
(SELECT 'Ev%' FROM customer_dimension LIMIT 1);

count

153
(1 row)

HP Vertica also supports single-row subqueries as the pattern argument for LIKEB and ILIKEB
predicates; for example:

=> SELECT * FROM t1 WHERE t1.x LIKEB (SELECT t2.x FROM t2);

The following symbols are substitutes for the LIKE keywords:

~~ LIKE
~# LIKEB
~~* ILIKE
~#* ILIKEB
!~~ NOT LIKE
!~# NOT LIKEB
!~~* NOT ILIKE
!~#* NOT IILIKEB

Note: The ESCAPE keyword is not valid for the above symbols.

See LIKE-predicate in the SQLReferenceManual for additional examples.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 339 of 817

ANY (SOME) and ALL
Normally, you use operators like equal and greater-than only on subqueries that return one row.
With ANY and ALL, however, comparisons can bemade on subqueries that returnmultiple rows.
The ANY and ALL keywords let you specify whether any or all of the subquery values, respectively,
match the specified condition.

These subqueries take the following form:

expression comparison-operator { ANY | SOME } (subquery)expression comparison-operator ALL (
subquery)

Notes

l The keyword SOME is an alias for ANY.

l IN is equivalent to = ANY.

l NOT IN is equivalent to <> ALL.

ANY Subqueries

Subqueries that use the ANY keyword yield a Boolean result when any value retrieved in the
subquery matches the value of the lefthand expression.

Expression Returns

> ANY(1,10,100) Returns TRUE for any value > 1 (greater than at least one value or greater than
theminimum value)

< ANY(1,10,100) Returns TRUE for any value < 100 (less than at least one value or less than
themaximum value)

= ANY(1,10,100) Returns TRUE for any value = 1 or 10 or 100 (equals any of the values)

ANY Subquery Examples

l An ANY subquery within an expression. Note that the second statement uses the SOME
keyword:

=> SELECT c1 FROM t1 WHERE COALESCE((t1.c1 > ANY (SELECT c1 FROM t2)), TRUE);
=> SELECT c1 FROM t1 WHERE COALESCE((t1.c1 > SOME (SELECT c1 FROM t2)), TRUE);

l ANY noncorrelated subqueries without aggregates:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 340 of 817

=> SELECT c1 FROM t1 WHERE c1 = ANY (SELECT c1 FROM t2) ORDER BY c1;

Note that omitting the ANY keyword returns an error becausemore than one row would be
returned by the subquery used as an expression:

=> SELECT c1 FROM t1 WHERE c1 = (SELECT c1 FROM t2) ORDER BY c1;

l ANY noncorrelated subqueries with aggregates:

=> SELECT c1 FROM t1 WHERE c1 <> ANY (SELECT MAX(c1) FROM t2) ORDER BY c1;
=> SELECT c1 FROM t1 GROUP BY c1 HAVING c1 <> ANY (SELECT MAX(c1) FROM t2)

ORDER BY c1;

l ANY noncorrelated subqueries with aggregates and aGROUP BY clause:

=> SELECT c1 FROM t1 WHERE c1 <> ANY (SELECT MAX(c1) FROM t2 GROUP BY c2)
ORDER BY c1;

l ANY noncorrelated subqueries with a GROUP BY clause:

=> SELECT c1 FROM t1 WHERE c1 <=> ANY (SELECT c1 FROM t2 GROUP BY c1)
ORDER BY c1;

l ANY correlated subqueries with no aggregates or GROUP BY clause:

=> SELECT c1 FROM t1 WHERE c1 >= ANY (SELECT c1 FROM t2 WHERE t2.c2 = t1.c2)
ORDER BY c1;

ALL Subqueries

Subqueries that use the ALL keyword yield a Boolean result when all values retrieved in the
subquery match the specified condition of the lefthand expression.

Expression Returns

> ALL(1,10,100) Returns the expression value > 100 (greater than themaximum value)

< ALL(1,10,100) Returns the expression value < 1 (less than theminimum value)

ALL Subquery Examples

Following are some examples of ALL (subquery):

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 341 of 817

l ALL noncorrelated subqueries without aggregates:

=> SELECT c1 FROM t1 WHERE c1 >= ALL (SELECT c1 FROM t2) ORDER BY c1;

l ALL noncorrelated subqueries with aggregates:

=> SELECT c1 FROM t1 WHERE c1 = ALL (SELECT MAX(c1) FROM t2) ORDER BY c1;
=> SELECT c1 FROM t1 GROUP BY c1 HAVING c1 <> ALL (SELECT MAX(c1) FROM t2)

ORDER BY c1;

l ALL noncorrelated subqueries with aggregates and aGROUP BY clause:

=> SELECT c1 FROM t1 WHERE c1 <= ALL (SELECT MAX(c1) FROM t2 GROUP BY c2)
ORDER BY c1;

l ALL noncorrelated subqueries with a GROUP BY clause:

=> SELECT c1 FROM t1 WHERE c1 <> ALL (SELECT c1 FROM t2 GROUP BY c1)
ORDER BY c1;

See Also

l Subquery Restrictions

EXISTS and NOT EXISTS
The EXISTS predicate is one of themost common predicates used to build conditions that use
noncorrelated and correlated subqueries. Use EXISTS to identify the existence of a relationship
without regard for the quantity. For example, EXISTS returns true if the subquery returns any rows,
and NOT EXISTS returns true if the subquery returns no rows.

[NOT] EXISTS subqueries take the following form:

expression [NOT] EXISTS (subquery)

The EXISTS condition is considered to bemet if the subquery returns at least one row. Since the
result depends only on whether any records are returned, and not on the contents of those records,
the output list of the subquery is normally uninteresting. A common coding convention is to write all
EXISTS tests as follows:

EXISTS (SELECT 1 WHERE ...)

In the above fragment, SELECT 1 returns the value 1 for every record in the query. If the query
returns, for example, five records, it returns 5 ones. The system doesn't care about the real values
in those records; it just wants to know if a row is returned.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 342 of 817

Alternatively, a subquery’s select list that uses EXISTS might consist of the asterisk (*). You do not
need to specify column names, because the query tests for the existence or nonexistence of
records that meet the conditions specified in the subquery.

EXISTS (SELECT * WHERE ...)

Notes

l If EXISTS (subquery) returns at least 1 row, the result is TRUE.

l If EXISTS (subquery) returns no rows, the result is FALSE.

l If NOT EXISTS (subquery) returns at least 1 row, the result is FALSE.

l If NOT EXISTS (subquery) returns no rows, the result is TRUE.

Examples

The following query retrieves the list of all the customers who purchased anything from any of the
stores amounting tomore than 550 dollars:

=> SELECT customer_key, customer_name, customer_state
FROM public.customer_dimension WHERE EXISTS

(SELECT 1 FROM store.store_sales_fact
WHERE customer_key = public.customer_dimension.customer_key
AND sales_dollar_amount > 550)

AND customer_state = 'MA' ORDER BY customer_key;
customer_key | customer_name | customer_state

--------------+--------------------+----------------
14818 | William X. Nielson | MA
18705 | James J. Goldberg | MA
30231 | Sarah N. McCabe | MA
48353 | Mark L. Brown | MA

(4 rows)

Whether you use EXISTS or IN subqueries depends on which predicates you select in outer and
inner query blocks. For example, to get a list of all the orders placed by all stores on January 2, 2003
for vendors with records in the vendor table:

=> SELECT store_key, order_number, date_ordered
FROM store.store_orders_fact WHERE EXISTS

(SELECT 1 FROM public.vendor_dimension
WHERE public.vendor_dimension.vendor_key = store.store_orders_fact.vendor_key)

AND date_ordered = '2003-01-02';
store_key | order_number | date_ordered

-----------+--------------+--------------
37 | 2559 | 2003-01-02
16 | 552 | 2003-01-02
35 | 1156 | 2003-01-02
13 | 3885 | 2003-01-02
25 | 554 | 2003-01-02
21 | 2687 | 2003-01-02

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 343 of 817

49 | 3251 | 2003-01-02
19 | 2922 | 2003-01-02
26 | 1329 | 2003-01-02
40 | 1183 | 2003-01-02

(10 rows)

The above query looks for existence of the vendor and date ordered. To return a particular value,
rather than simple existence, the query looks for orders placed by the vendor who got the best deal
on January 4, 2004:

=> SELECT store_key, order_number, date_ordered
FROM store.store_orders_fact ord, public.vendor_dimension vd
WHERE ord.vendor_key = vd.vendor_key AND vd.deal_size IN

(SELECT MAX(deal_size) FROM public.vendor_dimension)
AND date_ordered = '2004-01-04';

store_key | order_number | date_ordered
-----------+--------------+--------------

166 | 36008 | 2004-01-04
113 | 66017 | 2004-01-04
198 | 75716 | 2004-01-04
27 | 150241 | 2004-01-04

148 | 182207 | 2004-01-04
9 | 188567 | 2004-01-04

45 | 202416 | 2004-01-04
24 | 250295 | 2004-01-04

121 | 251417 | 2004-01-04
(9 rows)

See Also

l Subquery Restrictions

IN and NOT IN
While you cannot equate a single value to a set of values, you can check to see if a single value is
found within that set of values. Use the IN clause for multiple-record, single-column subqueries.
After the subquery returns results introduced by IN or NOT IN, the outer query uses them to return
the final result.

[NOT] IN subqueries take the following form:

{ expression [NOT] IN (subquery)| expression [NOT] IN (expression) }

There is no limit to the number of parameters passed to the IN clause of the SELECT statement; for
example:

=> SELECT * FROM tablename WHERE column IN (a, b, c, d, e, ...);

HP Vertica also supports queries where two or more outer expressions refer to different inner
expressions:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 344 of 817

=> SELECT * FROM A WHERE (A.x,A.x) IN (SELECT B.x, B.y FROM B);

Examples

The following query uses the VMart schema to illustrate the use of outer expressions referring to
different inner expressions:

=> SELECT product_description, product_price FROM product_dimension
WHERE (product_dimension.product_key, product_dimension.product_key) IN

(SELECT store.store_orders_fact.order_number,
store.store_orders_fact.quantity_ordered

FROM store.store_orders_fact);
product_description | product_price

-----------------------------+---------------
Brand #72 box of candy | 326
Brand #71 vanilla ice cream | 270

(2 rows)

To find all products supplied by stores in MA, first create the inner query and run it to ensure that it
works as desired. The following query returns all stores located inMA:

=> SELECT store_key FROM store.store_dimension WHERE store_state = 'MA';
store_key

13
31

(2 rows)

Then create the outer or main query that specifies all distinct products that were sold in stores
located inMA. This statement combines the inner and outer queries using the IN predicate:

=> SELECT DISTINCT s.product_key, p.product_description
FROM store.store_sales_fact s, public.product_dimension p
WHERE s.product_key = p.product_key

AND s.product_version = p.product_version
AND s.store_key IN

(SELECT store_key
FROM store.store_dimension
WHERE store_state = 'MA')

ORDER BY s.product_key;
product_key | product_description

-------------+---------------------------------------
1 | Brand #1 white bread
1 | Brand #4 vegetable soup
3 | Brand #9 wheelchair
5 | Brand #15 cheddar cheese
5 | Brand #19 bleach
7 | Brand #22 canned green beans
7 | Brand #23 canned tomatoes
8 | Brand #24 champagne
8 | Brand #25 chicken nuggets

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 345 of 817

11 | Brand #32 sausage
... ...

(281 rows)

When using NOT IN, the subquery returns a list of zero or more values in the outer query where the
comparison column does not match any of the values returned from the subquery. Using the
previous example, NOT IN returns all the products that are not supplied fromMA.

Notes

HP Vertica supports multicolumnNOT IN subqueries in which the columns are not marked NOT
NULL. Previously, marking the columns NOT NULLwas a requirement; now, if one of the columns
is found to contain a a NULL value during query execution, HP Vertica returns a run-time error.

Similarly, IN subqueries nested within another expression are not supported if any of the column
values are NULL. For example, if in the following statement column x from either table contained a
NULL value, Vertica would return a run-time error:

=> SELECT * FROM t1 WHERE (x IN (SELECT x FROM t2)) IS FALSE;
ERROR: NULL value found in a column used by a subquery

See Also

l Subquery Restrictions

l IN-predicate

Subqueries in the SELECT List
Subqueries can occur in the select list of the containing query. The results from the following
statement are ordered by the first column (customer_name). You could also write ORDER BY 2 and
specify that the results be ordered by the select-list subquery.

=> SELECT c.customer_name, (SELECT AVG(annual_income) FROM customer_dimension
WHERE deal_size = c.deal_size) AVG_SAL_DEAL FROM customer_dimension c
ORDER BY 1;

customer_name | AVG_SAL_DEAL
---------------+--------------
Goldstar | 603429
Metatech | 628086
Metadata | 666728
Foodstar | 695962
Verihope | 715683
Veridata | 868252
Bettercare | 879156
Foodgen | 958954
Virtacom | 991551
Inicorp | 1098835

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 346 of 817

...

Notes
l Scalar subqueries in the select-list return a single row/column value. These subqueries use

Boolean comparison operators: =, >, <, <>, <=, >=.

If the query is correlated, it returns NULL if the correlation results in 0 rows. If the query returns
more than one row, the query errors out at run time and HP Vertica displays an error message
that the scalar subquery must only return 1 row.

l Subquery expressions such as [NOT] IN, [NOT] EXISTS, ANY/SOME, or ALL always return a
single Boolean value that evaluates to TRUE, FALSE, or UNKNOWN; the subquery itself can
havemany rows. Most of these queries can be correlated or noncorrelated.

Note: ALL subqueries cannot be correlated.

l Subqueries in the ORDER BY andGROUP BY clauses are supported; for example, the
following statement says to order by the first column, which is the select-list subquery:

SELECT (SELECT MAX(x) FROM t2 WHERE y=t1.b) FROM t1 ORDER BY 1;

See Also
l Subquery Restrictions

WITH Clauses in SELECT
While not strictly subqueries, WITH clauses are concomitant queries within a larger, primary query.
HP Vertica evaluates each WITH clause only once while executing the primary query. You can
reference the results of any evaluated WITH clause during the primary query transaction, as if the
results existed in a temporary table using the WITH query name. EachWITH clause query must
have a unique name. Attempting to use same-name aliases forWITH clause query names causes
an error.

You can also use the results of a previously evaluated WITH clause in any subsequent WITH clause
or select statement. Combining WITH clause results in anotherWITH query lets you successively
use the results of evaluated WITH clauses (the limit of evaluated WITH clauses is undefined). WITH
clauses do not support INSERT, DELETE, and UPDATE statements, and you cannot use them
recursively.

Using WITH Clauses
This example illustrates the use of twoWITH clauses evaluated before the primary query,
regional_sales and top_regions. Following are the evaluation and usage steps:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 347 of 817

1. The regional_sales clause evaluates its select statement from table orders. After
evaluation, each of the columns selected in this WITH clause can be queried or used as part of
a later WITH clause.

2. The top_regions clause is evaluated using values from results obtained in the regional_
sales clause.

3. The primary query is then evaluated using the results obtained in the top_regions clause, and
accessed as if top_regions is a temporary table.

-- Begin WITH clauses,
-- First WITH clause,regional_sales
WITH

regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region),

-- Second WITH clause top_regions
top_regions AS (

SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM (total_sales)/10 FROM regional_sales))

-- End defining WITH clause statement
-- Begin main primary query
SELECT region,

product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

See Also
l Subquery Restrictions

l WITH Clause

Noncorrelated and Correlated Subqueries
A class of queries is evaluated by running the subquery once and then substituting the resulting
value or values into the WHERE clause of the outer query. These self-contained queries are called
noncorrelated (simple) subqueries; you can run them by themselves and inspect the results
independent of their containing statements. A correlated subquery, however, is dependent on its
containing statement, from which it references one or more columns.

See the following table for examples of the two subquery types:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 348 of 817

Noncorrelated (simple) Correlated

SELECT name, street, city, stateFROM address
es as ADD
WHERE state IN

(SELECT state FROM states);

SELECT name, street, city, state FROM address
es as ADD
WHERE EXISTS
(SELECT * FROM states as ST
WHERE ST.state = ADD.state);

The subquery (SELECT state FROM states)
is independent from the containing query. It is
evaluated first and its results are passed to the
outer query block.

The subquery needs values from the state
column in containing query, and results are then
passed to the outer query block. The subquery
is evaluated for every record of the outer block
because the column is being used in the
subquery.

The difference between noncorrelated (simple) subqueries and correlated subqueries is that in
simple subqueries, the containing (outer) query only has to take action on the results from the
subquery (inner query). In a correlated subquery, the outer query block provides values for subquery
to use in its evaluation.

Notes
l You can use an outer join to obtain the same effect as a correlated subquery.

l Arbitrary uncorrelated queries are permitted in theWHERE clause as single-row expressions;
for example:

=> SELECT COUNT(*) FROM SubQ1 WHERE SubQ1.a = (SELECT y from SubQ2);

l Noncorrelated queries in the HAVING clause as single-row expressions are permitted; for
example:

=> SELECT COUNT(*) FROM SubQ1 GROUP BY SubQ1.a HAVING SubQ1.a = (SubQ1.a & (SELECT y
from SubQ2));

See Also
l Subquery Restrictions

Flattening FROM Clause Subqueries and Views
FROM clause subquery are always evaluated before their containing query. For example, in the
following statement, the HP Vertica optimizer must evaluate all records in table t1 before it can
evaluate the records in table t0:

=> SELECT * FROM (SELECT a, MAX(a) AS max FROM (SELECT * FROM t1) AS t0 GROUP BY a);

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 349 of 817

In an optimization called subquery flattening, some FROM clause subqueries are flattened into the
containing query, improving the performance of subquery-containing queries.

Using the above query, HP Vertica can internally flatten it as follows:

=> SELECT * FROM (SELECT a, MAX(a) FROM t1 GROUP BY a) AS t0;

Both queries return the same results, but the flattened query runs more quickly.

The optimizer will choose the flattening plan if the subquery or view does not contain the following:

l Aggregates

l Analytics

l An outer join (left, right or full)

l GROUP BY, ORDER BY, or HAVING clause

l DISTINCT keyword

l LIMIT or OFFSET clause

l UNION, EXCEPT, or INTERSECT clause

l EXISTS subquery

To see if a FROM clause subquery has been flattened, inspect the query plan, as described in
EXPLAIN in the SQLReferenceManual. Typically, the number of value expression nodes
(ValExpNode) decreases after flattening.

Flattening Views
When you specify a view in a FROM clause query, HP Vertica first replaces the view namewith the
view definition query, creating further opportunities for subquery flattening. This process is called
view flattening and works the sameway as subquery flattening. See Implementing Views in the
Administrator's Guide for additional details about views.

Examples
If you have a predicate that applies to a view or subquery, the flattening operation can allow for
optimizations by evaluating the predicates before the flattening takes place. In this example,
without flattening, HP Verticamust first evaluate the subquery, and only then can the predicate
WHERE x > 10 be applied. In the flattened subquery, HP Vertica applies the predicate before
evaluating the subquery, thus reducing the amount of work for the optimizer because it returns only
the records WHERE x > 10 to the containing query.

Assume that view v1 is defined as follows:

=> CREATE VIEW v1 AS SELECT * FROM a;

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 350 of 817

You enter the following query:

=> SELECT * FROM v1 JOIN b ON x=y WHERE x > 10;

HP Vertica internally transforms the above query as follows:

=> SELECT * FROM (SELECT * FROM a) AS t1 JOIN b ON x=y WHERE x > 10;

And the flatteningmechanism gives you the following:

=> SELECT * FROM a JOIN b ON x=y WHERE x > 10;

The following example is how HP Vertica transforms FROM clause subqueries within a WHERE
clause IN subquery:

l Original query: SELECT * FROM a WHERE b IN (SELECT b FROM (SELECT * FROM t2) AS D
WHERE x=1;

l Flattened query: SELECT * FROM a WHERE b IN (SELECT b FROM t2) AS D WHERE x=1;

See Also
l Subquery Restrictions

Subqueries in UPDATE and DELETE Statements
You can nest subqueries within UPDATE and DELETE statements.

UPDATE Subqueries
If you want to update records in a table based on values that are stored in other database tables,
you can nest a subquery within an UPDATE statement. See also UPDATE in the SQLReference
Manual.

Syntax
UPDATE [[db-name.]schema.]table SET column = { expression | DEFAULT } [, ...]
[FROM from-list]
[WHERE Clause]

Semantics UPDATE changes the values of the specified columns in all rows that satisfy the
condition. Only the columns to bemodified need to be specified in the SET clause.
Columns that are not explicitly modified retain their previous values.

Outputs On successful completion, an update operation returns a count, which represents
the number of rows updated. A count of 0 is not an error; it means that no rows
matched the condition.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 351 of 817

Performance Tip
To be eligible for DELETE optimization, all target table columns referenced in a DELETE or UPDATE
statement's WHERE clausemust be in the projection definition.

For example, the following simple schema has two tables and three projections:

CREATE TABLE tb1 (a INT, b INT, c INT, d INT);
CREATE TABLE tb2 (g INT, h INT, i INT, j INT);

The first projection references all columns in tb1 and sorts on column a:

CREATE PROJECTION tb1_p AS SELECT a, b, c, d FROM tb1 ORDER BY a;

The buddy projection references and sorts on column a in tb1:

CREATE PROJECTION tb1_p_2 AS SELECT a FROM tb1 ORDER BY a;

This projection references all columns in tb2 and sorts on column i:

CREATE PROJECTION tb2_p AS SELECT g, h, i, j FROM tb2 ORDER BY i;

Consider the following DML statement, which references tb1.a in its WHERE clause. Since both
projections on tb1 contain column a, both are eligible for the optimized DELETE:

DELETE FROM tb1 WHERE tb1.a IN (SELECT tb2.i FROM tb2);

Restrictions
Optimized DELETEs are not supported under the following conditions:

l With pre-join projections on nodes that are down

l With replicated and pre-join projections if subqueries reference the target table. For example, the
following syntax is not supported:

DELETE FROM tb1 WHERE tb1.a IN (SELECT e FROM tb2, tb2 WHERE tb2.e = tb1.e);

l With subqueries that do not returnmultiple rows. For example, the following syntax is not
supported:

DELETE FROM tb1 WHERE tb1.a = (SELECT k from tb2);

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 352 of 817

Notes and Restrictions
l The table specified in the UPDATE list cannot also appear in the FROM list (no self joins); for

example, the following is not allowed:

=> BEGIN;
=> UPDATE result_table

SET address='new' || r2.address
FROM result_table r2
WHERE r2.cust_id = result_table.cust_id + 10;
ERROR: Self joins in UPDATE statements are not allowed
DETAIL: Target relation result_table also appears in the FROM list

l If more than one row in a table to be updatedmatches the WHERE predicate, HP Vertica returns
an error specifying which row hadmore than onematch.

UPDATE Example
The following series of commands illustrate the use of subqueries in UPDATE statements; they all
use the following simple schema:

=> CREATE TABLE result_table(
cust_id INTEGER,
address VARCHAR(2000));

Enter some customer data:

=> COPY result_table FROM stdin delimiter ',' DIRECT;
20, Lincoln Street
30, Booth Hill Road
30, Beach Avenue
40, Mt. Vernon Street
50, Hillside Avenue
\.

Query the table you just created:

=> SELECT * FROM result_table;
cust_id | address

---------+--------------------
20 | Lincoln Street
30 | Beach Avenue
30 | Booth Hill Road
40 | Mt. Vernon Street
50 | Hillside Avenue

(5 rows)

Create a second table called new_addresses:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 353 of 817

=> CREATE TABLE new_addresses(
new_cust_id integer,
new_address VARCHAR(200));

Enter some customer data.

Note: The following COPY statement creates an entry for a customer ID with a value of 60,
which does not have amatching value in the result_table table:

=> COPY new_addresses FROM stdin delimiter ',' DIRECT;
20, Infinite Loop
30, Loop Infinite
60, New Addresses
\.

Query the new_addresses table:

=> SELECT * FROM new_addresses;
new_cust_id | new_address

-------------+----------------
20 | Infinite Loop
30 | Loop Infinite
60 | New Addresses

(3 rows)

Commit the changes:

=> COMMIT;

In the following example, a noncorrelated subquery is used to change the address record in
results_table to 'New Address' when the query finds a customer ID match in both tables:

=> UPDATE result_table
SET address='New Address'
WHERE cust_id IN (SELECT new_cust_id FROM new_addresses);

The output returns the expected count indicating that three rows were updated:

OUTPUT

3
(1 row)

Now query the result_table table to see the changes for matching customer ID 20 and 30.
Addresses for customer ID 40 and 50 are not updated:

=> SELECT * FROM result_table;
cust_id | address

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 354 of 817

---------+------------------
20 | New Address
30 | New Address
30 | New Address
40 | Mt. Vernon Street
50 | Hillside Avenue

(5 rows)

To preserve your original data, issue the ROLLBACK command:

=> ROLLBACK;

In the following example, a correlated subquery is used to replace all address records in the
results_table with the new_address record from the new_addresses table when the query
finds match on the customer ID in both tables:

=> UPDATE result_table
SET address=new_addresses.new_address
FROM new_addresses
WHERE cust_id = new_addresses.new_cust_id;

Again, the output returns the expected count indicating that three rows were updated:

OUTPUT

3
(1 row)

Now query the result_table table to see the changes for customer ID 20 and 30. Addresses for
customer ID 40 and 50 are not updated, and customer ID 60 is omitted because there is nomatch:

=> SELECT * FROM result_table;
cust_id | address

---------+------------------
20 | Infinite Loop
30 | Loop Infinite
30 | Loop Infinite
40 | Mt. Vernon Street
50 | Hillside Avenue

(5 rows)

DELETE Subqueries
If you want to delete records in a table based on values that are stored in other database tables, you
can nest a subquery within a DELETE statement. See also DELETE in the SQLReferenceManual.

Syntax
DELETE FROM [[db-name.]schema.]table WHERE Clause

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 355 of 817

Semantics The DELETE operation deletes rows that satisfy theWHERE clause from the
specified table. If the WHERE clause is absent, all table rows are deleted. The result
is a valid, even though the statement leaves an empty table.

Outputs On successful completion, a DELETE operation returns a count, which represents
the number of rows deleted. A count of 0 is not an error; it means that no rows
matched the condition.

DELETE Example
The following series of commands illustrate the use of subqueries in DELETE statements; they all
use the following simple schema:

=> CREATE TABLE t (a INTEGER);
=> CREATE TABLE t2 (a INTEGER);
=> INSERT INTO t VALUES (1);
=> INSERT INTO t VALUES (2);
=> INSERT INTO t2 VALUES (1);
=> COMMIT;

The following command deletes the expected row from table t:

=> DELETE FROM t WHERE t.a IN (SELECT t2.a FROM t2);
OUTPUT

1

(1 row)

Notice that table t now has only one row,instead of two:

=> SELECT * FROM t;
a

2

(1 row)

To preserve the data for this example, issue the rollback command:

=> ROLLBACK;

The following command deletes the expected two rows:

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2);
OUTPUT

2

(1 row)

Now table t contains no rows:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 356 of 817

=> SELECT * FROM t;
a

(0 rows)

Roll back to the previous state and verify that you still have two rows:

=> ROLLBACK;SELECT * FROM t;
a

1
2

(2 rows)

The following command uses a correlated subquery to delete all rows in table twhere t.amatches
a value of t2.a.

=> DELETE FROM t WHERE EXISTS (SELECT * FROM t2 WHERE t.a = t2.a);
OUTPUT

1

(1 row)

Query the table to verify the row was deleted:

=> SELECT * FROM t;
a

2

(1 row)

Roll back to the previous state and query the table again:

=> ROLLBACK;=> SELECT * FROM t;
a

1
2

(2 rows)

See Also
l Subquery Restrictions

Subquery Examples
This topic illustrates some of the subqueries you can write. The examples use the VMart example
database.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 357 of 817

Single-Row Subqueries
Single-row subqueries are used with single-row comparison operators (=, >=, <=, <>, and <=>) and
return exactly one row.

For example, the following query retrieves the name and hire date of the oldest employee in the
Vmart database:

=> SELECT employee_key, employee_first_name, employee_last_name, hire_date
FROM employee_dimension
WHERE hire_date = (SELECT MIN(hire_date) FROM employee_dimension);

employee_key | employee_first_name | employee_last_name | hire_date
--------------+---------------------+--------------------+------------

2292 | Mary | Bauer | 1956-01-11
(1 row)

Multiple-Row Subqueries
Multiple-row subqueries returnmultiple records.

For example, the following IN clause subquery returns the names of the employees making the
highest salary in each of the six regions:

=> SELECT employee_first_name, employee_last_name, annual_salary, employee_region
FROM employee_dimension WHERE annual_salary IN
(SELECT MAX(annual_salary) FROM employee_dimension GROUP BY employee_region)

ORDER BY annual_salary DESC;
employee_first_name | employee_last_name | annual_salary | employee_region

---------------------+--------------------+---------------+-------------------
Alexandra | Sanchez | 992363 | West
Mark | Vogel | 983634 | South
Tiffany | Vu | 977716 | SouthWest
Barbara | Lewis | 957949 | MidWest
Sally | Gauthier | 927335 | East
Wendy | Nielson | 777037 | NorthWest

(6 rows)

Multicolumn Subqueries
Multicolumn subqueries return one or more columns. Sometimes a subquery's result set is
evaluated in the containing query in column-to-column and row-to-row comparisons.

Note: Multicolumn subqueries can use the <>, !=, and = operators but not the <, >, <=, >=
operators.

You can substitute somemulticolumn subqueries with a join, with the reverse being true as well.
For example, the following two queries ask for the sales transactions of all products sold online to
customers located inMassachusetts and return the same result set. The only difference is the first
query is written as a join and the second is written as a subquery.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 358 of 817

Join query: Subquery:

=> SELECT *
FROM online_sales.online_sales_fact
INNER JOIN public.customer_dimension
USING (customer_key)
WHERE customer_state = 'MA';

=> SELECT *
FROM online_sales.online_sales_fact
WHERE customer_key IN

(SELECT customer_key
FROM public.customer_dimension
WHERE customer_state = 'MA');

The following query returns all employees in each region whose salary is above the average:

=> SELECT e.employee_first_name, e.employee_last_name, e.annual_salary,
e.employee_region, s.average

FROM employee_dimension e,
(SELECT employee_region, AVG(annual_salary) AS average
FROM employee_dimension GROUP BY employee_region) AS s

WHERE e.employee_region = s.employee_region AND e.annual_salary > s.average
ORDER BY annual_salary DESC;

employee_first_name | employee_last_name | annual_salary | employee_region | average
---------------------+--------------------+---------------+-----------------+------------

Doug | Overstreet | 995533 | East | 61192.7860

13986
Matt | Gauthier | 988807 | South | 57337.86389

02996
Lauren | Nguyen | 968625 | West | 56848.42749

14089
Jack | Campbell | 963914 | West | 56848.42749

14089
William | Martin | 943477 | NorthWest | 58928.22761

19403
Luigi | Campbell | 939255 | MidWest | 59614.91704

54545
Sarah | Brown | 901619 | South | 57337.86389

02996
Craig | Goldberg | 895836 | East | 61192.7860

13986
Sam | Vu | 889841 | MidWest | 59614.91704

54545
Luigi | Sanchez | 885078 | MidWest | 59614.91704

54545
Michael | Weaver | 882685 | South | 57337.86389

02996
Doug | Pavlov | 881443 | SouthWest | 57187.25105

48523
Ruth | McNulty | 874897 | East | 61192.7860

13986
Luigi | Dobisz | 868213 | West | 56848.42749

14089
Laura | Lang | 865829 | East | 61192.7860

13986
...

You can also use the EXCEPT, INTERSECT, and UNION [ALL] keywords in FROM, WHERE,
and HAVING clauses.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 359 of 817

The following subquery returns information about all Connecticut-based customers who bought
items through either stores or online sales channel and whose purchases amounted tomore than
500 dollars:

=> SELECT DISTINCT customer_key, customer_name FROM public.customer_dimension
WHERE customer_key IN (SELECT customer_key FROM store.store_sales_fact

WHERE sales_dollar_amount > 500
UNION ALL
SELECT customer_key FROM online_sales.online_sales_fact
WHERE sales_dollar_amount > 500)

AND customer_state = 'CT';
customer_key | customer_name

--------------+------------------
200 | Carla Y. Kramer
733 | Mary Z. Vogel
931 | Lauren X. Roy

1533 | James C. Vu
2948 | Infocare
4909 | Matt Z. Winkler
5311 | John Z. Goldberg
5520 | Laura M. Martin
5623 | Daniel R. Kramer
6759 | Daniel Q. Nguyen

...

HAVING Clause Subqueries
A HAVING clause is used in conjunction with the GROUP BY clause to filter the select-list records
that a GROUP BY returns. HAVING clause subqueries must use Boolean comparison operators:
=, >, <, <>, <=, >= and take the following form:

SELECT <column, ...>
FROM <table>
GROUP BY <expression>
HAVING <expression>

(SELECT <column, ...>
FROM <table>
HAVING <expression>);

For example, the following statement uses the VMart database and returns the number of
customers who purchased lowfat products. Note that the GROUP BY clause is required because
the query uses an aggregate (COUNT).

=> SELECT s.product_key, COUNT(s.customer_key) FROM store.store_sales_fact s
GROUP BY s.product_key HAVING s.product_key IN

(SELECT product_key FROM product_dimension WHERE diet_type = 'Low Fat');

The subquery first returns the product keys for all low-fat products, and the outer query then counts
the total number of customers who purchased those products.

product_key | count

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 360 of 817

-------------+-------
15 | 2
41 | 1
66 | 1

106 | 1
118 | 1
169 | 1
181 | 2
184 | 2
186 | 2
211 | 1
229 | 1
267 | 1
289 | 1
334 | 2
336 | 1

(15 rows)

Subquery Restrictions
The following list summarizes subquery restrictions in HP Vertica.

l Subqueries are not allowed in the defining query of a CREATE PROJECTION statement.

l Subqueries can be used in the select-list, but GROUP BY or aggregate functions are not allowed
in the query if the subquery is not part of the GROUP BY clause in the containing query; for
example, the following two statement returns an error message:

=> SELECT y, (SELECT MAX(a) FROM t1) FROM t2 GROUP BY y;
ERROR: subqueries in the SELECT or ORDER BY are not supported if the
subquery is not part of the GROUP BY

=> SELECT MAX(y), (SELECT MAX(a) FROM t1) FROM t2;
ERROR: subqueries in the SELECT or ORDER BY are not supported if the
query has aggregates and the subquery is not part of the GROUP BY

l Subqueries are supported within UPDATE statements with the following exceptions:

n You cannot use SET column = {expression} to specify a subquery.

n The table specified in the UPDATE list cannot also appear in the FROM list (no self joins).

l FROM clause subqueries require an alias but tables do not. If the table has no alias, the query
must refer to columns inside it as <table>.<column>; however, if the column names are uniquely
identified among all tables used by the query, then preceding the columnwith a table name is not
enforced.

l If the ORDER BY clause is inside a FROM clause subquery, rather than in the containing query,
the query could return unexpected sort results. This is because HP Vertica data comes from
multiple nodes, so sort order cannot be guaranteed unless anORDER BY clause is specified in

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 361 of 817

the outer query block. This behavior is compliant with the SQL standard but it might differ from
other databases.

l Multicolumn subqueries cannot use the <, >, <=, >= comparison operators. They can use <>,
!=, and = operators.

l WHERE and HAVING clause subqueries must use Boolean comparison operators: =, >, <, <>,
<=, >=. Those subqueries can be noncorrelated and correlated.

n [NOT] IN and ANY subqueries nested within another expression are not supported if any of
the column values are NULL. In the following statement, for example, if column x from either
table t1 or t2 contains a NULL value, HP Vertica returns a run-time error:

=> SELECT * FROM t1 WHERE (x IN (SELECT x FROM t2)) IS FALSE; ERROR: NULL value f
ound in a column used by a subquery

l HP Vertica returns an error message during subquery run time on scalar subqueries that return
more than one row.

l Aggregates andGROUP BY clauses are allowed in subqueries, as long as those subqueries are
not correlated.

l Correlated expressions under ALL and [NOT] IN are not supported.

l Correlated expressions under OR are not supported.

l Multiple correlations are allowed only for subqueries that are joined with an equality predicate (<,
>, <=, >=, =, <>, <=>) but IN/NOT IN, EXISTS/NOT EXISTS predicates within correlated
subqueries are not allowed:

=> SELECT t2.x, t2.y, t2.z FROM t2 WHERE t2.z NOT IN
(SELECT t1.z FROM t1 WHERE t1.x = t2.x);

ERROR: Correlated subquery with NOT IN is not supported

l Up to one level of correlated subqueries is allowed in the WHERE clause if the subquery
references columns in the immediate outer query block. For example, the following query is not
supported because the t2.x = t3.x subquery can only refer to table t1 in the outer query,
making it a correlated expression because t3.x is two levels out:

=> SELECT t3.x, t3.y, t3.z FROM t3 WHERE t3.z IN (
SELECT t1.z FROM t1 WHERE EXISTS (

SELECT 'x' FROM t2 WHERE t2.x = t3.x) AND t1.x = t3.x);
ERROR: More than one level correlated subqueries are not supported

The query is supported if it is rewritten as follows:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 362 of 817

=> SELECT t3.x, t3.y, t3.z FROM t3 WHERE t3.z IN
(SELECT t1.z FROM t1 WHERE EXISTS

(SELECT 'x' FROM t2 WHERE t2.x = t1.x)
AND t1.x = t3.x);

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 363 of 817

Joins
Queries can combine records frommultiple tables, or multiple instances of the same table. A query
that combines records from one or more tables is called a join. Joins are allowed in a SELECT
statement, as well as inside a subquery.

HP Vertica supports the following join types:

l Inner (including natural, cross) joins

l Left, right, and full outer joins

l Optimizations for equality and range joins predicates

l Hash, merge and sort-merge join algorithms.

There are three basic algorithms that perform a join operation: hash, merge, and nested loop:

l A hash join is used to join large data sets. The smaller joined table is used to build a hash table in
memory on the join column. The HP Vertica optimizer then scans the larger table and probes the
hash table to look for matches. The optimizer chooses a hash join when projections are not
sorted on the join columns.

l If both inputs are pre-sorted, the optimizer can skip a sort operation and choose amerge join.
The term sort-merge join refers to the case when one or both inputs must be sorted before the
merge join. In this case, HP Vertica sorts the inner input but only if the outer input is already
sorted on the join keys.

l HP Vertica does not support nested loop joins.

The ANSI Join Syntax
Before the ANSI SQL-92 standard introduced the new join syntax, relations (tables, views, etc.)
were named in the FROM clause, separated by commas. Join conditions were specified in the WHERE
clause:

=> SELECT * FROM T1, T2 WHERE T1.id = T2.id;

The ANSI SQL-92 standard providedmore specific join syntax, with join conditions named in the
ON clause:

=> SELECT * FROM T1
[INNER | LEFT OUTER | RIGHT OUTER | FULL OUTER | NATURAL | CROSS] JOIN T2
ON T1.id = T2.id

See SQL-99 ANSI syntax at BNF Grammar for SQL-99 for additional details.

Although some users continue to use the older join syntax, HP encourages you to use the SQL-92
join syntax whenever possible because of its many advantages:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 364 of 817

http://savage.net.au/SQL/sql-99.bnf.html

l SQL-92 outer join syntax is portable across databases; the older syntax was not consistent
between databases. (HP Vertica does not support proprietary outer join syntax such as '+' that
can be used in some databases.)

l SQL-92 syntax provides greater control over whether predicates are to be evaluated during or
after outer joins. This was also not consistent between databases when using the older syntax.
See "Join Conditions vs. Filter Conditions" below.

l SQL-92 syntax eliminates ambiguity in the order of evaluating the joins, in cases wheremore
than two tables are joined with outer joins.

l Union joins can be expressed using the SQL-92 syntax, but not in the older syntax.

Note: HP Vertica does not currently support union joins.

Join Conditions vs. Filter Conditions
If you do not use the SQL-92 syntax, join conditions (predicates that are evaluated during the join)
are difficult to distinguish from filter conditions (predicates that are evaluated after the join), and in
some cases cannot be expressed at all. With SQL-92, join conditions and filter conditions are
separated into two different clauses, the ON clause and the WHERE clause, respectively, making
queries easier to understand.

l The ON clause contains relational operators (for example, <, <=, >, >=, <>, =, <=>) or other
predicates that specify which records from the left and right input relations to combine, such as
by matching foreign keys to primary keys. ON can be used with inner, left outer, right outer, and
full outer joins. Cross joins and union joins do not use an ON clause.

Inner joins return all pairings of rows from the left and right relations for which the ON clause
evaluates to TRUE. In a left join, all rows from the left relation in the join are present in the result;
any row of the left relation that does not match any rows in the right relation is still present in the
result but with nulls in any columns taken from the right relation. Similarly, a right join preserves
all rows from the right relation, and a full join retains all rows from both relations.

l The WHERE clause is evaluated after the join is performed. It filters records returned by the
FROM clause, eliminating any records that do not satisfy the WHERE clause condition.

HP Vertica automatically converts outer joins to inner joins in cases where it is correct to do so,
allowing the optimizer to choose among a wider set of query plans and leading to better
performance.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 365 of 817

Inner Joins
An inner join combines records from two tables based on a join predicate and requires that each
record in the first table has amatching record in the second table. Inner joins, thus, return only those
records from both joined tables that satisfy the join condition. Records that contain nomatches are
not preserved.

Inner joins take the following form:

SELECT <column list>
FROM <left joined table>
[INNER] JOIN <right joined table>
ON <join condition>

Notes
n Inner joins are are commutative and associative, whichmeans you can specify the tables in

any order you want, and the results do not change.

n If you omit the INNER keyword, the join is still an inner join, themost commonly used type of
join.

n Join conditions that follow the ON keyword generally can contain many predicates connected
with Boolean AND, OR, or NOT predicates.

n For best performance, do not join on any LONG VARBINARY and LONG VARCHAR columns.

n You can also use inner join syntax to specify joins for pre-join projections. See Pre-Join
Projections and Join Predicates.

l SomeSQL-related books and online tutorials refer to a left-joined table as the outer table and a
right-joined table as the inner table. The HP documentation often uses the left/right table
concept.

Example
In the following example, an inner join produces only the set of records that matches in both T1 and
T2 when T1 and T2 have the same data type; all other data is excluded.

=> SELECT * FROM T1 INNER JOIN T2 ON (T1.id = T2.id);

If a company, for example, wants to know the dates vendors in Utah sold inventory:

=> SELECT v.vendor_name, d.date FROM vendor_dimension v
INNER JOIN date_dimension d ON v.vendor_key = d.date_key
WHERE vendor_state = 'UT';
vendor_name | date

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 366 of 817

------------------+------------
Frozen Warehouse | 2003-01-07
Delicious Farm | 2003-01-26

(2 rows)

To clarify, if the vendor dimension table contained a third row that has no corresponding date when
a vendor sold inventory, then that row would not be included in the result set. Similarly, if on some
date there was no inventory sold by any vendor, those rows would be left out of the result set. If you
want to include all rows from one table or the other regardless of whether amatch exists, you can
specify an outer join.

See Also
l Join Notes and Restrictions

Equi-Joins and Non Equi-Joins
HP Vertica supports any arbitrary join expression with bothmatching and non-matching column
values; for example:

SELECT * FROM fact JOIN dim ON fact.x = dim.x;
SELECT * FROM fact JOIN dim ON fact.x > dim.y;
SELECT * FROM fact JOIN dim ON fact.x <= dim.y;
SELECT * FROM fact JOIN dim ON fact.x <> dim.y;
SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

Note: The = and <=> operators generally run the fastest.

Equi-joins are based on equality (matching column values). This equality is indicated with an equal
sign (=), which functions as the comparison operator in the ON clause using SQL-92 syntax or the
WHERE clause using older join syntax.

The first example below uses SQL-92 syntax and the ON clause to join the online sales table with
the call center table using the call center key; the query then returns the sale date key that equals
the value 156:

=> SELECT sale_date_key, cc_open_date FROM online_sales.online_sales_fact
INNER JOIN online_sales.call_center_dimension
ON (online_sales.online_sales_fact.call_center_key =
online_sales.call_center_dimension.call_center_key

AND sale_date_key = 156);
sale_date_key | cc_open_date

---------------+--------------
156 | 2005-08-12

(1 row)

The second example uses older join syntax and the WHERE clause to join the same tables to get the
same results:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 367 of 817

=> SELECT sale_date_key, cc_open_date
FROM online_sales.online_sales_fact, online_sales.call_center_dimension

WHERE online_sales.online_sales_fact.call_center_key =
online_sales.call_center_dimension.call_center_key

AND sale_date_key = 156;
sale_date_key | cc_open_date

---------------+--------------
156 | 2005-08-12

(1 row)

HP Vertica also permits tables with compound (multiple-column) primary and foreign keys. For
example, to create a pair of tables with multi-column keys:

=> CREATE TABLE dimension(pk1 INTEGER NOT NULL, pk2 INTEGER NOT NULL);=> ALTER TABLE dime
nsion ADD PRIMARY KEY (pk1, pk2);
=> CREATE TABLE fact (fk1 INTEGER NOT NULL, fk2 INTEGER NOT NULL);
=> ALTER TABLE fact ADD FOREIGN KEY (fk1, fk2) REFERENCES dimension (pk1, pk2);

To join tables using compound keys, youmust connect two join predicates with a Boolean AND
operator. For example:

=> SELECT * FROM fact f JOIN dimension d ON f.fk1 = d.pk1 AND f.fk2 = d.pk2;

You can write queries with expressions that contain the <=> operator for NULL=NULL joins.

=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

The <=> operator performs an equality comparison like the = operator, but it returns true, instead of
NULL, if both operands are NULL, and false, instead of NULL, if one operand is NULL.

=> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
?column? | ?column? | ?column?

----------+----------+----------
t | t | f

(1 row)

Compare the <=> operator to the = operator:

=> SELECT 1 = 1, NULL = NULL, 1 = NULL;
?column? | ?column? | ?column?

----------+----------+----------
t | |

(1 row)

Note:Writing NULL=NULL joins on primary key/foreign key combinations is not an optimal
choice because PK/FK columns are usually defined as NOT NULL.

When composing joins, it helps to know in advance which columns contain null values. An
employee's hire date, for example, would not be a good choice because it is unlikely hire date would

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 368 of 817

be omitted. An hourly rate column, however, might work if some employees are paid hourly and
some are salaried. If you are unsure about the value of columns in a given table and want to check,
type the command:

=> SELECT COUNT(*) FROM tablename WHERE columnname IS NULL;

Natural Joins
A natural join is just a join with an implicit join predicate. Natural joins can be inner, left outer, right
outer, or full outer joins and take the following form:

SELECT <column list> FROM <left-joined table>
NATURAL [INNER | LEFT OUTER | RIGHT OUTER | FULL OUTER] JOIN <right-joined table>

Natural joins are, by default, natural inner joins; however, there can also be natural (left/right) outer
joins. The primary difference between an inner and natural join is that inner joins have an explicit join
condition, whereas the natural join’s conditions are formed by matching all pairs of columns in the
tables that have the same name and compatible data types, making natural joins equi-joins
because join condition are equal between common columns. (If the data types are incompatible, HP
Vertica returns an error.)

Note: The data type coercion chart lists the data types that can be cast to other data types. If
one data type can be cast to the other, those two data types are compatible.

The following query is a simple natural join between tables T1 and T2 when the T2 column val is
greater than 5:

=> SELECT * FROM T1 NATURAL JOIN T2 WHERE T2.val > 5;

The following example shows a natural join between the store_sales_fact table and the
product_dimension table with columns of the same name, product_key and product_version:

=> SELECT product_description, store.store_sales_fact.*
FROM store.store_sales_fact, public.product_dimension
WHERE store.store_sales_fact.product_key = public.product_dimension.product_key
AND store.store_sales_fact.product_version = public.product_dimension.product_version;

The following three queries return the same result expressed as a basic query, an inner join, and a
natural join. at the table expressions are equivalent only if the common attribute in the store_
sales_fact table and the store_dimension table is store_key. If both tables have a column
named store_key, then the natural join would also have a store_sales_fact.store_key =
store_dimension.store_key join condition. Since the results are the same in all three instances,
they are shown in the first (basic) query only:

=> SELECT store_name FROM store.store_sales_fact, store.store_dimension
WHERE store.store_sales_fact.store_key = store.store_dimension.store_key
AND store.store_dimension.store_state = 'MA' ORDER BY store_name;

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 369 of 817

store_name

Store11
Store128
Store178
Store66
Store8
Store90

(6 rows)

The query written as an inner join:

=> SELECT store_name FROM store.store_sales_fact
INNER JOIN store.store_dimension
ON (store.store_sales_fact.store_key = store.store_dimension.store_key)
WHERE store.store_dimension.store_state = 'MA' ORDER BY store_name;

In the case of the natural join, the join predicate appears implicitly by comparing all of the columns
in both tables that are joined by the same column name. The result set contains only one column
representing the pair of equally-named columns.

=> SELECT store_name FROM store.store_sales_fact
NATURAL JOIN store.store_dimension
WHERE store.store_dimension.store_state = 'MA' ORDER BY store_name;

Cross Joins
Cross joins are the simplest joins to write, but they are not usually the fastest to run because they
consist of all possible combinations of two tables’ records. Cross joins contain no join condition and
return what is known as a Cartesian product, where the number of rows in the result set is equal to
the number of rows in the first table multiplied by the number of rows in the second table.

The following query returns all possible combinations from the the promotion table and the store
sales table:

=> SELECT * FROM promotion_dimension CROSS JOIN store.store_sales_fact;

Since this example returns over 600million records, many cross join results can be extremely large
and difficult to manage. Cross joins can be useful, however, such as when you want to return a
single-row result set.

Tip: Tip: Filter out unwanted records in a cross with WHERE clause join predicates:

=> SELECT * FROM promotion_dimension p CROSS JOIN store.store_sales_fact f
WHERE p.promotion_key LIKE f.promotion_key;

For details on what qualifies as a join predicate, see Pre-Join Projections and Join Predicates.

HP recommends that you do not write implicit cross joins (coma-separated tables in the FROM
clause). These queries could imply accidental omission of a join predicate.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 370 of 817

The following statement is an example of an implicit cross join:

=> SELECT * FROM promotion_dimension , store.store_sales_fact;

If you intend is to run a cross join, write an explicit cross join query using CROSS JOIN keywords,
such as in the following statement:

=> SELECT * FROM promotion_dimension CROSS JOIN store.store_sales_fact;

Examples

The following example creates two small tables and their superprojections and then runs a cross
join on the tables:

=> CREATE TABLE employee(employee_id INT, employee_fname VARCHAR(50));
=> CREATE TABLE department(dept_id INT, dept_name VARCHAR(50));
=> INSERT INTO employee VALUES (1, 'Andrew');
=> INSERT INTO employee VALUES (2, 'Priya');
=> INSERT INTO employee VALUES (3, 'Michelle');
=> INSERT INTO department VALUES (1, 'Engineering');
=> INSERT INTO department VALUES (2, 'QA');
=> SELECT * FROM employee CROSS JOIN department;

In the result set, the cross join retrieves records from the first table and then creates a new row for
every row in the 2nd table. It then does the same for the next record in the first table, and so on.

employee_id | employee_name | dept_id | dept_name
-------------+---------------+---------+-----------

1 | Andrew | 1 | Engineering
2 | Priya | 1 | Engineering
3 | Michelle | 1 | Engineering
1 | Andrew | 2 | QA
2 | Priya | 2 | QA
3 | Michelle | 2 | QA

(6 rows)

Outer Joins
Outer joins extend the functionality of inner joins by letting you preserve rows of one or both tables
that do not havematching rows in the non-preserved table. Outer joins take the following form:

SELECT <column list>
FROM <left-joined table>
[LEFT | RIGHT | FULL] OUTER JOIN <right-joined table>
ON <join condition>

Note: Omitting the keyword OUTER from your statements does not affect results of left and right
joins. LEFT OUTER JOIN and LEFT JOIN perform the same operation and return the same

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 371 of 817

results.

Left Outer Joins
A left outer join returns a complete set of records from the left-joined (preserved) table T1, with
matched records, where available, in the right-joined (non-preserved) table T2. Where HP Vertica
finds nomatch, it extends the right side column (T2) with null values.

=> SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.x = T2.x;

To exclude the non-matched values from T2, write the same left outer join, but filter out the records
you don't want from the right side by using a WHERE clause:

=> SELECT * FROM T1 LEFT OUTER JOIN T2
ON T1.x = T2.x WHERE T2.x IS NOT NULL;

The following example uses a left outer join to enrich telephone call detail records with an
incomplete numbers dimension. It then filters out results that are known not to be from
Massachusetts:

=> SELECT COUNT(*) FROM calls LEFT OUTER JOIN numbers
ON calls.to_phone = numbers.phone WHERE NVL(numbers.state, '') <> 'MA';

Right Outer Joins
A right outer join returns a complete set of records from the right-joined (preserved) table, as well as
matched values from the left-joined (non-preserved) table. If HP Vertica finds nomatching records
from the left-joined table (T1), NULL values appears in the T1 column for any records with no
matching values in T1. A right join is, therefore, similar to a left join, except that the treatment of the
tables is reversed.

=> SELECT * FROM T1 RIGHT OUTER JOIN T2 ON T1.x = T2.x;

The above query is equivalent to the following query, where T1 RIGHT OUTER JOIN T2 = T2 LEFT
OUTER JOIN T1.

=> SELECT * FROM T2 LEFT OUTER JOIN T1 ON T2.x = T1.x;

The following example identifies customers who have not placed an order:

=> SELECT customers.customer_id FROM orders RIGHT OUTER JOIN customers
ON orders.customer_id = customers.customer_id
GROUP BY customers.customer_id HAVING COUNT(orders.customer_id) = 0;

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 372 of 817

Full Outer Joins
A full outer join returns results for both left and right outer joins. The joined table contains all records
from both tables, including nulls (missingmatches) from either side of the join. This is useful if you
want to see, for example, each employee who is assigned to a particular department and each
department that has an employee, but you also want to see all the employees who are not assigned
to a particular department, as well as any department that has no employees:

=> SELECT employee_last_name, hire_date FROM employee_dimension emp
FULL OUTER JOIN department dept ON emp.employee_key = dept.department_key;

Notes
HP Vertica also supports joins where the outer (preserved) table or subquery is replicated onmore
than one node and the inner (non-preserved) table or subquery is segmented across more than one
node. For example, in the following query, the fact table, which is almost always segmented,
appears on the non-preserved side of the join, and it is allowed:

=> SELECT sales_dollar_amount, transaction_type, customer_name
FROM store.store_sales_fact f RIGHT JOIN customer_dimension d

ON f.customer_key = d.customer_key;
sales_dollar_amount | transaction_type | customer_name

---------------------+------------------+---------------
252 | purchase | Inistar
363 | purchase | Inistar
510 | purchase | Inistar

-276 | return | Foodcorp
252 | purchase | Foodcorp
195 | purchase | Foodcorp
290 | purchase | Foodcorp
222 | purchase | Foodcorp

| | Foodgen
| | Goldcare

(10 rows

Range Joins
HP Vertica provides performance optimizations for <, <=, >, >=, and BETWEEN predicates in join ON
clauses. These optimizations are particularly useful when a column from one table is restricted to
be in a range specified by two columns of another table.

Key Ranges
Multiple, consecutive key values canmap to the same dimension values. Consider, for example, a
table of IPv4 addresses and their owners. Because large subnets (ranges) of IP addresses could
belong to the same owner, this dimension can be represented as:

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 373 of 817

=> CREATE TABLE ip_owners(
ip_start INTEGER,
ip_end INTEGER,
owner_id INTEGER);

=> CREATE TABLE clicks(
ip_owners INTEGER,
dest_ip INTEGER);

A query that associates a click stream with its destination can use a join similar to the following,
which takes advantage of the range optimization:

=> SELECT owner_id, COUNT(*) FROM clicks JOIN ip_owners
ON clicks.dest_ip BETWEEN ip_start AND ip_end
GROUP BY owner_id;

Slowly-Changing Dimensions
Sometimes there aremultiple dimension ranges, each relevant over a different time period. For
example, stocks might undergo splits (and reverse splits), and the price or volume of two trades
might not be directly comparable without taking this into account. A “split factor” can be defined,
which accounts for these events through time:

=> CREATE TABLE splits(
symbol VARCHAR(10),
start DATE,
"end" DATE,
split_factor FLOAT);

A join with an optimized range predicate can then be used tomatch each trade with the effective
split factor:

=> SELECT trades.symbol, SUM(trades.volume * splits.split_factor)
FROM trades JOIN splits
ON trades.symbol = splits.symbol AND trades.tdate between splits.start AND splits.end
GROUP BY trades.symbol;

Notes
l Operators <, <=, >, >=, or BETWEEN must appear as top-level conjunctive predicates for range

join optimization to be effective, as shown in the following examples:

The following example query is optimized because BETWEEN is the only predicate:

=> SELECT COUNT(*) FROM fact JOIN dim
ON fact.point BETWEEN dim.start AND dim.end;

This next example uses comparison operators as top-level predicates (within AND):

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 374 of 817

=> SELECT COUNT(*) FROM fact JOIN dim
ON fact.point > dim.start AND fact.point < dim.end;

The following is optimized because BETWEEN is a top-level predicate (within AND):

=> SELECT COUNT(*) FROM fact JOIN dim
ON (fact.point BETWEEN dim.start AND dim.end) AND fact.c <> dim.c;

The following query is not optimized because OR is the top-level predicate (disjunctive):

=> SELECT COUNT(*) FROM fact JOIN dim
ON (fact.point BETWEEN dim.start AND dim.end) OR dim.end IS NULL;

l Expressions are optimized in range join queries in many cases.

l If range columns can have NULL values indicating that they are open-ended, it is possible to use
range join optimizations by replacing nulls with very large or very small values:

=> SELECT COUNT(*) FROM fact JOIN dim
ON fact.point BETWEEN NVL(dim.start, -1) AND NVL(dim.end, 1000000000000);

l If there is more than one set of ranging predicates in the same ON clause, the order in which the
predicates are specifiedmight impact the effectiveness of the optimization:

=> SELECT COUNT(*) FROM fact JOIN dim ON fact.point1 BETWEEN dim.start1 AND dim.end1
AND fact.point2 BETWEEN dim.start2 AND dim.end2;

The optimizer chooses the first range to optimize, so write your queries so that the range you
most want optimized appears first in the statement.

l The use of the range join optimization is not directly affected by any characteristics of the
physical schema; no schema tuning is required to benefit from the optimization.

l The range join optimization can be applied to joins without any other predicates, and to HASH or
MERGE joins.

l To determine if an optimization is in use, search for RANGE in the EXPLAIN plan. For example:

=> EXPLAIN SELECT owner_id, COUNT(*) FROM clicks JOIN ip_owners
ON clicks.dest_ip BETWEEN ip_start AND ip_end GROUP BY owner_id;

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 375 of 817

Pre-Join Projections and Join Predicates
HP Vertica can use pre-join projections when queries contain equi-joins between tables that contain
all foreign key-primary key (FK-PK) columns in the equality predicates.

If you use pre-join projections in queries, the join in the input query becomes an inner join due to
FK-PK constraints, so the second predicate in the example that follows (AND f.id2 = d.id2) is
just extra. HP Vertica runs queries using pre-join projections only if the query contains a superset of
the join predicates in the pre-join projection. In the following example, as long as the pre-join
projection contains f.id = d.id, the pre-join can be used, even with the presence of f.id2 =
d.id2.

=> SELECT * FROM fact f JOIN dim d ON f.id = d.id AND f.id2 = d.id2;

Note: HP Vertica uses amaximum of one pre-join projection per query. More than one pre-join
projectionmight appear in a query plan, but at most, one will have been used to replace the join
that would be computed with the precomputed pre-join. Any other pre-join projections are used
as regular projections to supply records from a particular table.

Examples
The following is an example of a pre-join projection schemawith a single-column constraint called
customer_key. The first sequence of statements creates a customer table in the public schema
and a store_sales table in the store schema. The dimension table has one primary key, and the
fact table has a foreign key that references the dimension table's primary key.

=> CREATE TABLE public.customer_dimension (
customer_key integer,
annual_income integer,
largest_bill_amount integer);

=> CREATE TABLE store.store_sales_fact (
customer_key integer,

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 376 of 817

sales_quantity integer,
sales_dollar_amount integer);

=> ALTER TABLE public.customer_dimension
ADD CONSTRAINT pk_customer_dimension PRIMARY KEY (customer_key);

=> ALTER TABLE store.store_sales_fact
ADD CONSTRAINT fk_store_sales_fact FOREIGN KEY (customer_key)
REFERENCES public.customer_dimension (customer_key);

=> CREATE PROJECTION p1 (
customer_key,
annual_income,
largest_bill_amount)

AS SELECT * FROM public.customer_dimension UNSEGMENTED ALL NODES;
=> CREATE PROJECTION p2 (

customer_key,
sales_quantity,
sales_dollar_amount)

AS SELECT * FROM store.store_sales_fact UNSEGMENTED ALL NODES;

The following command creates the pre-join projection:

=> CREATE PROJECTION pp (
cust_customer_key,
cust_annual_income,
cust_largest_bill_amount,
fact_customer_key,
fact_sales_quantity,
fact_sales_dollar_amount)

AS SELECT * FROM public.customer_dimension cust, store.store_sales_fact fact
WHERE cust.customer_key = fact.customer_key ORDER BY cust.customer_key;

The pre-join projection contains columns from both tables and has a join predicate between
customer_dimension and store_sales_fact along the FK-PK (primary key-foreign key)
constraints defined on the tables.

The following query uses a pre-join projection because the join predicates match the pre-join
projection's predicates exactly:

=> SELECT COUNT(*) FROM public.customer_dimension INNER JOIN store.store_sales_fact
ON public.customer_dimension.customer_key = store.store_sales_fact.customer_key;

count

10000

(1 row)

Join Notes and Restrictions
The following list summarizes the notes and restrictions for joins in HP Vertica:

n Inner joins are are commutative and associative, whichmeans you can specify the tables in
any order you want, and the results do not change.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 377 of 817

n If you omit the INNER keyword, the join is still an inner join, themost commonly used type of
join.

n Join conditions that follow the ON keyword generally can contain many predicates connected
with Boolean AND, OR, or NOT predicates.

n For best performance, do not join on any LONG VARBINARY and LONG VARCHAR columns.

n You can also use inner join syntax to specify joins for pre-join projections. See Pre-Join
Projections and Join Predicates.

l HP Vertica supports any arbitrary join expression with bothmatching and non-matching column
values; for example:

=> SELECT * FROM fact JOIN dim ON fact.x = dim.x;
=> SELECT * FROM fact JOIN dim ON fact.x > dim.y;
=> SELECT * FROM fact JOIN dim ON fact.x <= dim.y;
=> SELECT * FROM fact JOIN dim ON fact.x <> dim.y;
=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

l HP Vertica permits joins between tables with compound (multiple-column) primary and foreign
keys, as long as you connect the two join predicates with a Boolean AND operator.

l You can write queries with expressions that contain the <=> operator for NULL=NULL joins.

=> SELECT * FROM fact JOIN dim ON fact.x <=> dim.y;

The <=> operator performs an equality comparison like the = operator, but it returns true, instead
of NULL, if both operands are NULL, and false, instead of NULL, if one operand is NULL.

l HP recommends that you do not write implicit cross joins (such as tables named in the FROM
clause separated by commas). Such queries could imply accidental omission of a join predicate.
If your intent is to run a cross join, write explicit CROSS JOIN syntax.

l HP Vertica supports joins where the outer (preserved) table or subquery is replicated onmore
than one node and the inner (non-preserved) table or subquery is segmented across more than
one node.

l HP Vertica uses amaximum of one pre-join projection per query. More than one pre-join
projectionmight appear in a query plan, but at most, one will have been used to replace the join
that would be computed with the precomputed pre-join. Any other pre-join projections are used
as regular projections to supply records from a particular table.

HP Vertica Programmer's Guide
Writing Queries

HP Vertica Analytics Platform (7.0.x) Page 378 of 817

About Running Database Designer
Programmatically

If you have been granted the DBDUSER role and have enabled the role, you can access Database
Designer functionality programmatically. In previous releases, Database Designer was available
only via the Administration Tools. Using the DESIGNER_* command-line functions, you can
perform the following Database Designer tasks:

l Create a comprehensive or incremental design.

l Add tables and queries to the design.

l Set the optimization objective to prioritize for query performance or storage footprint.

l Assign a weight to each query.

l Assign the K-safety value to a design.

l Analyze statistics on the design tables.

l Create the script that contains the DDL statements that create the design projections.

l Deploy the database design.

l Specify that all projections in the design be segmented.

l Populate the design.

l Cancel a running design.

l Wait for a running design to complete.

l Deploy a design automatically.

l Drop database objects from one or more completed or terminated designs.

Important:When you grant the DBDUSER role, make sure to associate a resource pool with
that user to manage resources during Database Designer runs. Multiple users can run
Database Designer concurrently without interfering with each other or using up all the cluster
resources. When a user runs Database Designer, either using the Administration Tools or
programmatically, its execution is mostly contained by the user's resource pool, but may spill
over into some system resource pools for less-intensive tasks.

For detailed information about each function, see Database Designer Functions in the SQL
ReferenceManual.

HP Vertica Analytics Platform (7.0.x) Page 379 of 817

When to Run Database Designer
Programmatically

RunDatabase Designer programmatically when you want to:

l Optimize performance on tables you own.

l Create or update a design without the involvement of the superuser.

l Add individual queries and tables, or add data to your design and then rerun Database Designer
to update the design based on this new information.

l Customize the design.

l Use recently executed queries to set up your database to run Database Designer automatically
on a regular basis.

l Assign each design query a query weight that indicates the importance of that query in creating
the design. Assign a higher weight to queries that you run frequently so that Database Designer
prioritizes those queries in creating the design.

Categories Database Designer Functions
You can run Database Designer functions in vsql:

Setup Functions
This function directs Database Designer to create a new design:

l DESIGNER_CREATE_DESIGN

Configuration Functions
The following functions allow you to specify properties of a particular design:

l DESIGNER_DESIGN_PROJECTION_ENCODINGS

l DESIGNER_SET_DESIGN_KSAFETY

l DESIGNER_SET_OPTIMIZATION_OBJECTIVE

l DESIGNER_SET_DESIGN_TYPE

l DESIGNER_SET_PROPOSED_UNSEGMENTED_PROJECTIONS

l DESIGNER_SET_ANALYZE_CORRELATIONS_MODE

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 380 of 817

Input Functions
The following functions allow you to add tables and queries to your Database Designer design:

l DESIGNER_ADD_DESIGN_QUERIES

l DESIGNER_ADD_DESIGN_QUERIES_FROMRESULTS

l DESIGNER_ADD_DESIGN_QUERY

l DESIGNER_ADD_DESIGN_TABLES

Invocation Functions
These functions populate the Database Designer workspace and create design and deployment
scripts. You can also analyze statistics, deploy the design automatically, and drop the workspace
after the deployment:

l DESIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY

l DESIGNER_WAIT_FOR_DESIGN

Output Functions
The following functions display information about projections and scripts that the Database
Designer created:

l DESIGNER_OUTPUT_ALL_DESIGN_PROJECTIONS

l DESIGNER_OUTPUT_DEPLOYMENT_SCRIPT

Cleanup Functions
The following functions cancel any running Database Designer operation or drop a Database
Designer design and all its contents:

l DESIGNER_CANCEL_POPULATE_DESIGN

l DESIGNER_DROP_DESIGN

l DESIGNER_DROP_ALL_DESIGNS

Privileges for Running Database Designer
Functions

If they have been granted the DBDUSER role, non-DBADMIN users can run Database Designer
using the functions described in Categories of Database Designer Functions. Non-DBADMIN

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 381 of 817

users cannot run Database Designer using Administration Tools, even if they have been assigned
the DBDUSER role.

To grant the DBDUSER role:

1. The DBADMIN user must grant the DBDUSER role:

=> GRANT DBDUSER TO <username>;

This role persists until the DBADMIN revokes it.

IMPORTANT:When you grant the DBDUSER role, make sure to associate a resource pool
with that user to manage resources during Database Designer runs. Multiple users can run
Database Designer concurrently without interfering with each other or using up all the cluster
resources. When a user runs Database Designer, either using the Administration Tools or
programmatically, its execution is mostly contained by the user's resource pool, but may spill
over into some system resource pools for less-intensive tasks.

2. For a user to run the Database Designer functions, one of the followingmust happen first:

n The user must enable the DBDUSER role:

=> SET ROLE DBDUSER;

n The superuser must add DBDUSER as the default role:

=> ALTER USER <username> DEFAULT ROLE DBDUSER;

DBDUSER Capabilities and Limitations
The DBDUSER role has the following capabilities and limitations:

l A DBDUSER can change K-safety for their own designs, but they cannot change the system K-
safety value. The DBDUSER can set the K-safety to a value less than or equal to the system K-
safety value, but is limited to a value of 0, 1, or 2.

l A DBDUSER cannot explicitly change the ancient history mark (AHM), even during deployment
of their design.

DBDUSER Privileges
When you create a design, you automatically have privileges tomanipulate the design. Other tasks
may require that the DBDUSER have additional privileges:

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 382 of 817

To... DBDUSER must have...

Add tables to a design l USAGE privilege on the design table schema

l OWNER privilege on the design table

Add a single design query to the
design

l Privilege to execute the design query

Add a query file to the design l Read privilege on the storage location that contains
the query file

l Privilege to execute all the queries in the file

Add queries from the result of a user
query to the design

l Privilege to execute the user query

l Privilege to execute each design query retrieved from
the results of the user query

Create the design and deployment
scripts

l WRITE privilege on the storage location of the design
script

l WRITE privilege on the storage location of the
deployment script

Workflow for Running Database Designer
Programmatically

The following example shows the steps you take to create a design by running Database Designer
programmatically.

Note: Be sure to back up the existing design using the EXPORT_CATALOG (on page 1)
function before running the Database Designer functions on an existing schema. Youmust
explicitly back up the current design when using Database Designer to create a new
comprehensive design.

Before you run this example, you should have the DBDUSER role, and you should have enabled
that role using the SET ROLE DBDUSER command:

1. Create a table in the public schema:

=> CREATE TABLE T(
x INT,
y INT,
z INT,
u INT,
v INT,

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 383 of 817

w INT PRIMARY KEY
);

2. Add data to the table:

\! perl -e 'for ($i=0; $i<100000; ++$i) {printf("%d, %d, %d, %d, %d, %d\n", $i/1000
0, $i/100, $i/10, $i/2, $i, $i);}'

| vsql -c "COPY T FROM STDIN DELIMITER ',' DIRECT;"

3. Create a second table in the public schema:

=> CREATE TABLE T2(
x INT,
y INT,
z INT,
u INT,
v INT,
w INT PRIMARY KEY
);

4. Copy the data from table T1 to table T2 and commit the changes:

=> INSERT /*+DIRECT*/ INTO T2 SELECT * FROM T;
=> COMMIT;

5. Create a new design:

=> SELECT DESIGNER_CREATE_DESIGN('my_design');

This command creates the following system tables in the V_MONITOR schema:

n DESIGNS

n DESIGN_TABLES

n DEPLOYMENT_PROJECTIONS

n DEPLOYMENT_PROJECTION_STATEMENTS

n DESIGN_QUERIES

n OUTPUT_DEPLOYMENT_STATUS

n OUTPUT_EVENT_HISTORY

6. Add tables from the public schema to the design :

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 384 of 817

=> SELECT DESIGNER_ADD_DESIGN_TABLES('my_design', 'public.t');
=> SELECT DESIGNER_ADD_DESIGN_TABLES('my_design', 'public.t2');

These commands populate the DESIGN_TABLES system table.

7. Create a file named queries.txt in /tmp/examples, or another directory where you have
READ andWRITE privileges. Add the following two queries in that file and save it. Database
Designer uses these queries to create the design:

SELECT DISTINCT T2.u FROM T JOIN T2 ON T.z=T2.z-1 WHERE T2.u > 0;
SELECT DISTINCT w FROM T;

8. Add the queries file to the design and display the results—the numbers of accepted queries,
non-design queries, and unoptimizable queries:

=> SELECT DESIGNER_ADD_DESIGN_QUERIES
('my_design',
'/tmp/examples/queries.txt',
'true'
);

The results show that both queries were accepted:

Number of accepted queries =2
Number of queries referencing non-design tables =0
Number of unsupported queries =0
Number of illegal queries =0

The DESIGNER_ADD_DESIGN_QUERIES function populates the DESIGN_QUERIES
system table.

9. Set the design type to comprehensive. (This is the default.) A comprehensive design creates
an initial or replacement design for all the design tables:

=> SELECT DESIGNER_SET_DESIGN_TYPE('my_design', 'comprehensive');

10. Set the optimization objective to query. This setting creates a design that focuses on faster
query performance, whichmight recommend additional projections. These projections could
result in a larger database storage footprint:

=> SELECT DESIGNER_SET_OPTIMIZATION_OBJECTIVE('my_design', 'query');

11. Create the design and save the design and deployment scripts in /tmp/examples, or another

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 385 of 817

directory where you have READ andWRITE privileges. The following command:

n Analyzes statistics

n Doesn't deploy the design.

n Doesn't drop the design after deployment.

n Stops if it encounters an error.

=> SELECT DESIGNER_RUN_POPULATE_DESIGN_AND_DEPLOY
('my_design',
'/tmp/examples/my_design_projections.sql',
'/tmp/examples/my_design_deploy.sql',
'True',
'False',
'False',
'False'
);

This command populates the following system tables:

n DEPLOYMENT_PROJECTION_STATEMENTS

n DEPLOYMENT_PROJECTIONS

n OUTPUT_DEPLOYMENT_STATUS

12. Examine the status of the Database Designer run to see what projections Database Designer
recommends. In the deployment_projection_name column:

n rep indicates a replicated projection

n super indicates a superprojection

The deployment_status column is pending because the design has not yet been
deployed.

For this example, Database Designer recommends four projections:

=> \x
Expanded display is on.
=> SELECT * FROM OUTPUT_DEPLOYMENT_STATUS;
-[RECORD 1]--------------+-----------------------------
deployment_id | 45035996273795970
deployment_projection_id | 1
deployment_projection_name | T_DBD_1_rep_my_design
deployment_status | pending
error_message | N/A
-[RECORD 2]--------------+-----------------------------

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 386 of 817

deployment_id | 45035996273795970
deployment_projection_id | 2
deployment_projection_name | T2_DBD_2_rep_my_design
deployment_status | pending
error_message | N/A
-[RECORD 3]--------------+-----------------------------
deployment_id | 45035996273795970
deployment_projection_id | 3
deployment_projection_name | T_super
deployment_status | pending
error_message | N/A
-[RECORD 4]--------------+-----------------------------
deployment_id | 45035996273795970
deployment_projection_id | 4
deployment_projection_name | T2_super
deployment_status | pending
error_message | N/A

13. View the script /tmp/examples/my_design_deploy.sql to see how these projections are
created when you run the deployment script. In this example, the script also assigns the
encoding schemes RLE and COMMONDELTA_COMP to columns where appropriate.

14. Deploy the design from the directory where you saved it:

=> \i /tmp/examples/my_design_deploy.sql

15. Now that the design is deployed, delete the design:

=> SELECT DESIGNER_DROP_DESIGN('my_design');

HP Vertica Programmer's Guide
About Running Database Designer Programmatically

HP Vertica Analytics Platform (7.0.x) Page 387 of 817

Using SQL Analytics
HP Vertica analytics are SQL functions based on the ANSI 99 standard. These functions handle
complex analysis and reporting tasks such as:

l Rank the longest-standing customers in a particular state

l Calculate themoving average of retail volume over a specified time

l Find the highest score among all students in the same grade

l Compare the current sales bonus each salesperson received against his or her previous bonus

Analytic functions return aggregate results but they do not group the result set. They return the
group valuemultiple times, once per record.

You can sort these group values, or partitions, using a window ORDER BY clause, but the order
affects only the function result set, not the entire query result set. This ordering concept is
describedmore fully later.

Notes
HP Vertica supports a full list of analytic functions, including:

l FIRST_VALUE(arguments): Allows the selection of the first value of a table or partition without
having to use a self-join

l MEDIAN(arguments): Returns themiddle value from a set of values

l NTILE(value): Equally divides the data set into a {value} number of subsets (buckets)

l RANK(): Assigns a rank to each row returned from the query with respect to the other ordered
rows

l STDDEV(arguments): Computes the statistical sample standard deviation of the current row
with respect to a group of rows

l AVG(arguments): Computes an average of an expression in a group of rows

For additional details, see Analytic Functions in the SQLReferenceManual.

How Analytic Functions Work
Analytic functions take the following form:

analytic_function (arguments) OVER(analytic_clause)

[window_partition_clause]
[window_order_clause { ASC | DESC }

{ NULLS { FIRST | LAST | AUTO } }]
[window_frame_clause])

HP Vertica Analytics Platform (7.0.x) Page 388 of 817

{ ROWS | RANGE }
{

{
BETWEEN
{ UNBOUNDED PRECEDING
| CURRENT ROW
| constant-value { PRECEDING | FOLLOWING }
}
AND
{ UNBOUNDED FOLLOWING
| CURRENT ROW
| constant-value { PRECEDING | FOLLOWING }
}

}
|

{
{ UNBOUNDED PRECEDING
| CURRENT ROW
| constant-value PRECEDING
}

}
}

Evaluation Order
Analytic functions conform to the following phases of execution:

1. Take the input rows.

Analytic functions are computed afterWHERE, GROUP BY, HAVING clause operations, and
joins are performed on the query.

2. Group input rows according to the PARTITION BY clause.

The analytic PARTITION BY clause (called the window_partition_clause) is different from
table partition expressions. SeeWorking with Table Partitions in the Administrator's Guide for
details.

3. Order rows within groups (partitions) according to ORDER BY clause.

The analytic ORDER BY clause (called the window_order_clause) is different from the SQL
ORDER BY clause. If the query has a final ORDER BY clause (outside the OVER() clause),
the final results are ordered according by the SQLORDER BY clause, not the window_order_
clause. See NULL Placement By Analytic Functions and Designing Tables toMinimize Run-
Time Sorting of NULL Values in Analytic Functions in the Programmer's Guide for additional
information about sort computation.

4. Compute some function for each row.

Notes
Analytic functions:

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 389 of 817

l Require the OVER() clause. However, depending on the function, the window_frame_clause
and window_order_clause might not apply. For example, when used with analytic aggregate
functions like SUM(x), you can use theOVER() clause without supplying any of the windowing
clauses; in this case, the aggregate returns the same aggregated value for each row of the result
set.

l Are allowed only in the SELECT andORDER BY clauses.

l Can be used in a subquery or in the parent query but cannot be nested; for example, the
following query is not allowed:

=> SELECT MEDIAN(RANK() OVER(ORDER BY sal) OVER()).

l WHERE, GROUP BY and HAVING operators are technically not part of the analytic function;
however, they determine on which rows the analytic functions operate.

Note: Several examples throughout this section refer back to this example's allsales table
schema.

Example: Calculation of Median Value
A median is a numerical value that separates the higher half of a sample from the lower half. For
example, you can retrieve themedian of a finite list of numbers by arranging all observations from
lowest value to highest value and then picking themiddle one.

If there is an even number of observations, then there is no single middle value; themedian is then
defined to be themean (average) of the twomiddle values.

CREATE TABLE allsales(state VARCHAR(20), name VARCHAR(20), sales INT);
INSERT INTO allsales VALUES('MA', 'A', 60);
INSERT INTO allsales VALUES('NY', 'B', 20);
INSERT INTO allsales VALUES('NY', 'C', 15);
INSERT INTO allsales VALUES('MA', 'D', 20);
INSERT INTO allsales VALUES('MA', 'E', 50);
INSERT INTO allsales VALUES('NY', 'F', 40);
INSERT INTO allsales VALUES('MA', 'G', 10);
COMMIT;

The following analytic query returns themedian value from the allsales table. Note that themedian
value is reported for every row in the result set:

=> SELECT name, sales, MEDIAN(sales) OVER () AS
MEDIAN FROM allsales;

name | sales | median
------+-------+--------
G | 10 | 20
C | 15 | 20
D | 20 | 20
B | 20 | 20
F | 40 | 20

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 390 of 817

E | 50 | 20
A | 60 | 20

(7 rows)

Additional MEDIAN() examples are inWindow Partitioning.

See Also
l Analytic Functions

Analytic Functions Versus Aggregate Functions
Like aggregate functions, analytic functions return aggregate results, but analytics do not group the
result set. Instead, they return the group valuemultiple times with each record, allowing further
analysis.

Analytic queries also generally run faster and use fewer resources than aggregate queries.

Analytic functions Aggregate functions

Return the same number of rows as the input Return a single summary value

The groups of rows on which an analytic function
operates are defined by window partitioning and
window frame clauses

The groups of rows on which an aggregate
function operates are defined by the SQL
GROUP BY clause

Example
This examples illustrate the difference between aggregate functions and their analytic counterpart
using table employees defined in the below sample schema:

CREATE TABLE employees(emp_no INT, dept_no INT);
INSERT INTO employees VALUES(1, 10);
INSERT INTO employees VALUES(2, 30);
INSERT INTO employees VALUES(3, 30);
INSERT INTO employees VALUES(4, 10);
INSERT INTO employees VALUES(5, 30);
INSERT INTO employees VALUES(6, 20);
INSERT INTO employees VALUES(7, 20);
INSERT INTO employees VALUES(8, 20);
INSERT INTO employees VALUES(9, 20);
INSERT INTO employees VALUES(10, 20);
INSERT INTO employees VALUES(11, 20);
COMMIT;

Table employees:

SELECT * FROM employees ORDER BY emp_no;
emp_no | dept_no

--------+---------
1 | 10

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 391 of 817

2 | 30
3 | 30
4 | 10
5 | 30
6 | 20
7 | 20
8 | 20
9 | 20

10 | 20
11 | 20

(11 rows)

Both queries below ask for the number of employees are in each department:

Aggregate query/result Analytics query/result

SELECT dept_no, COUNT(*)
AS emp_count

FROM employees
GROUP BY dept_no ORDER BY
1;

SELECT emp_no, dept_no, COUNT(*) OVER(PARTITION BY dept_no
ORDER BY emp_no)

AS emp_count FROM employees;

dept_no | emp_count
---------+-----------

10 | 2
20 | 6
30 | 3

(3 rows)

emp_no | dept_no | emp_count
--------+---------+-----------

1 | 10 | 1
4 | 10 | 2

6 | 20 | 1
7 | 20 | 2
8 | 20 | 3
9 | 20 | 4

10 | 20 | 5
11 | 20 | 6

2 | 30 | 1
3 | 30 | 2
5 | 30 | 3

(11 rows)

Aggregate function COUNT() ret
urnsone row per department fo
r the number of employees in th
at department.

The analytic function COUNT() returnsa count of the number of employees in e
ach department, aswell aswhich employee is in each department.Within each
partition, the results are sorted on the emp_no column, which is specified in the
OVER order by clause.

If you wanted to add the employee number to the above aggregate query, you would add the emp_
no column to the GROUP BY clause. For results, you would get emp_count=1 for each row—
unless the data contained employees with the same emp_no value. For example:

SELECT dept_no, emp_no, COUNT(*)
AS emp_count

FROM employees
GROUP BY dept_no, emp_no ORDER BY 1, 2;
dept_no | emp_no | emp_count

---------+--------+-----------
10 | 1 | 1

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 392 of 817

10 | 4 | 1
20 | 6 | 1
20 | 7 | 1
20 | 8 | 1
20 | 9 | 1
20 | 10 | 1
20 | 11 | 1
30 | 2 | 1
30 | 3 | 1
30 | 5 | 1

(11 rows)

See Also
l Analytic Query Examples

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 393 of 817

The Window OVER() Clause
TheOVER() clause contains what is called a window. The window defines partitioning, ordering,
and framing for an analytic function—important elements that determine what data the analytic
function takes as input with respect to the current row. The analytic function then operates on a
query result set, which are the rows that are returned after the FROM, WHERE, GROUP BY, and
HAVING clauses have been evaluated.

You can also the OVER() clause with certain analytic functions to define amoving window of data
for every row within a partition.

When used with analytic aggregate functions, OVER() does not require any of the windowing
clauses; in this case, the aggregate returns the same aggregated value for each row of the result
set.

The OVER() clausemust follow the analytic function, as in the following syntax:

ANALYTIC_FUNCTION (arguments)
OVER(window_partition_clause

window_order_clause
window_frame_clause)

Window Partitioning
Window partitioning is optional. When specified, the window_partition_clause divides the rows in
the input based on user-provided expressions, such as aggregation functions like SUM(x). Window
partitioning is similar to the GROUP BY clause except that it returns only one result row per input
row. If you omit the window_partition_clause, all input rows are treated as a single partition.

The analytic function is computed per partition and starts over again (resets) at the beginning of
each subsequent partition. The window_partition_clause is specified within the OVER() clause.

Syntax
OVER(window_partition_clause

window_order_clause
window_frame_clause)

Examples
The examples in this topic use the allsales schema defined in How Analytic Functions Work.

CREATE TABLE allsales(state VARCHAR(20), name VARCHAR(20), sales INT);
INSERT INTO allsales VALUES('MA', 'A', 60);
INSERT INTO allsales VALUES('NY', 'B', 20);
INSERT INTO allsales VALUES('NY', 'C', 15);
INSERT INTO allsales VALUES('MA', 'D', 20);
INSERT INTO allsales VALUES('MA', 'E', 50);
INSERT INTO allsales VALUES('NY', 'F', 40);
INSERT INTO allsales VALUES('MA', 'G', 10);
COMMIT;

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 394 of 817

Median of Sales Within Each State
The following query uses the analytic window_partition_clause to calculate themedian of sales
within each state. The analytic function is computed per partition and starts over again at the
beginning of the next partition.

=> SELECT state, name, sales, MEDIAN(sales)
OVER (PARTITION BY state) AS median from allsales;

Results are grouped into partitions for MA (35) and NY (20) under themedian column.

state | name | sales | median
-------+------+-------+--------
NY | C | 15 | 20
NY | B | 20 | 20
NY | F | 40 | 20

MA | G | 10 | 35
MA | D | 20 | 35
MA | E | 50 | 35
MA | A | 60 | 35

(7 rows)

Median of Sales Among All States
This query calculates themedian of total sales among states. When you useOVER() with no
parameters, there is one partition, the entire input:

=> SELECT state, sum(sales), median(SUM(sales))
OVER () AS median FROM allsales GROUP BY state;

state | sum | median
-------+-----+--------
NY | 75 | 107.5
MA | 140 | 107.5

(2 rows)

Sales Larger Than Median (evaluation order)
Remember that analytic functions are evaluated after all other clauses except the query's final SQL
ORDER BY clause. So if you were to write a query like the following, which asks for all rows with
sales larger than themedian, HP Vertica would return an error because theWHERE clause is
applied before the analytic function andm does not yet exist

=> SELECT name, sales, MEDIAN(sales) OVER () AS m
FROM allsales WHERE sales > m;
ERROR 2624: Column "m" does not exist

You can work around this by having the 'WHERE sales > m' predicate complete in a subquery:

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 395 of 817

=> SELECT * FROM
(SELECT name, sales, MEDIAN(sales) OVER () AS m FROM allsales) sq
WHERE sales > m;

name | sales | m
------+-------+----
F | 40 | 20
E | 50 | 20
A | 60 | 20

(3 rows)

For additional examples, see Analytic Query Examples.

Window Ordering
Window ordering sorts the rows specified by the OVER() clause and specifies whether data is
sorted in ascending or descending order as well as the placement of null values; for example:
ORDER BY expr_list [ASC | DESC] [NULLS { FIRST | LAST | AUTO]. The ordering of the data
affects the results.

Using ORDER BY in anOVER clause changes the default window to RANGE UNBOUNDED
PRECEDINGAND CURRENT ROW, which is described inWindow Framing.

The following table shows the default null placement, with bold clauses to indicate what is implicit:

Ordering Null placement

ORDER BY column1 ORDER BY aASC NULLS LAST

ORDER BY column1 ASC ORDER BY aASC NULLS LAST

ORDER BY column1DESC ORDER BY aDESC NULLS FIRST

Because the window_order_clause is different from a query's final ORDER BY clause, window
orderingmight not guarantee the final result order; it specifies only the order within a window result
set, supplying the ordered set of rows to the window_frame_clause (if present), to the analytic
function, or to both. Use the SQLORDER BY clause to guarantee ordering of the final result set.
(See also NULL Placement By Analytic Functions and Designing Tables toMinimize Run-Time
Sorting of NULL Values in Analytic Functions.)

Syntax
OVER(window_partition_clause window_order_clause

window_frame_clause)

Examples
The below examples use the the allsales table schema, defined in How Analytic Functions Work.

CREATE TABLE allsales(state VARCHAR(20), name VARCHAR(20), sales INT);
INSERT INTO allsales VALUES('MA', 'A', 60);

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 396 of 817

INSERT INTO allsales VALUES('NY', 'B', 20);
INSERT INTO allsales VALUES('NY', 'C', 15);
INSERT INTO allsales VALUES('MA', 'D', 20);
INSERT INTO allsales VALUES('MA', 'E', 50);
INSERT INTO allsales VALUES('NY', 'F', 40);
INSERT INTO allsales VALUES('MA', 'G', 10);
COMMIT;

Example 1 Example 2

In this example, the query orders the sales
inside each sales partition:

In this example, the final ORDER BY clause
sorts the results by name:

SELECT state, sales, name, RANK()OVER (PARTI
TION BY state

ORDER BY sales) AS RANK
FROM allsales;
state | sales | name | RANK

-------+-------+------+----------
MA | 10 | G | 1
MA | 20 | D | 2
MA | 50 | E | 3
MA | 60 | A | 4

NY | 15 | C | 1
NY | 20 | B | 2
NY | 40 | F | 3

(7 rows)

SELECT state, sales, name, RANK()OVER (PARTI
TION by state

ORDER BY sales) AS RANK
FROM allsales ORDER BY name;
state | sales | name | RANK

-------+-------+------+----------
MA | 60 | A | 4
NY | 20 | B | 2
NY | 15 | C | 1
MA | 20 | D | 2
MA | 50 | E | 3
NY | 40 | F | 3
MA | 10 | G | 1

(7 rows)

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 397 of 817

Window Framing
Window framing represents a unique construct, called amoving window. It defines which values in
the partition are evaluated relative to the current row. You specify a window frame type by using the
RANGE or ROWS keywords, described in the next topics. Both RANGE and ROWS are
respective to the CURRENT ROW, which is the next row for which the analytic function computes
results. As the current row advances, the window boundaries are recomputed (move) along with it,
determining which rows fall into the current window.

An analytic function with a window frame specification is computed for each row based on the rows
that fall into the window relative to that row. If you omit the window_frame_clause, the default
window is RANGE UNBOUNDED PRECEDINGAND CURRENT ROW.

Syntax

OVER(window_partition_clause
window_order_clause
window_frame_clause)

See window_frame_clause in the SQLReferenceManual for more detailed syntax.

Schema for Examples
The window framing examples that follow use the following emp table schema:

CREATE TABLE emp(deptno INT, sal INT, empno INT);
INSERT INTO emp VALUES(10,101,1);
INSERT INTO emp VALUES(10,104,4);
INSERT INTO emp VALUES(20,100,11);
INSERT INTO emp VALUES(20,109,7);
INSERT INTO emp VALUES(20,109,6);
INSERT INTO emp VALUES(20,109,8);
INSERT INTO emp VALUES(20,110,10);
INSERT INTO emp VALUES(20,110,9);
INSERT INTO emp VALUES(30,102,2);
INSERT INTO emp VALUES(30,103,3);
INSERT INTO emp VALUES(30,105,5);
COMMIT;

CREATE TABLE emp(deptno INT, sal INT, empno INT);
INSERT INTO emp VALUES(10,101,1);
INSERT INTO emp VALUES(10,104,4);
INSERT INTO emp VALUES(20,100,11);
INSERT INTO emp VALUES(20,109,7);
INSERT INTO emp VALUES(20,109,6);
INSERT INTO emp VALUES(20,109,8);
INSERT INTO emp VALUES(20,110,10);

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 398 of 817

INSERT INTO emp VALUES(20,110,9);
INSERT INTO emp VALUES(30,102,2);
INSERT INTO emp VALUES(30,103,3);
INSERT INTO emp VALUES(30,105,5);
COMMIT;

Windows with a Physical Offset (ROWS)
ROWS specifies the window as a physical offset. Using ROWS, defines a start and end point of a
window by the number of rows before or after the current row. The value can be INTEGER data type
only.

Note: : The value returned by an analytic function with a physical offset could produce
nondeterministic results unless the ordering expression results in a unique ordering. You
might have to specify multiple columns in the window_order_clause to achieve this unique
ordering.

Examples

The examples on this page use the emp table schema defined inWindow Framing:

CREATE TABLE emp(deptno INT, sal INT, empno INT);
INSERT INTO emp VALUES(10,101,1);
INSERT INTO emp VALUES(10,104,4);
INSERT INTO emp VALUES(20,100,11);
INSERT INTO emp VALUES(20,109,7);
INSERT INTO emp VALUES(20,109,6);
INSERT INTO emp VALUES(20,109,8);
INSERT INTO emp VALUES(20,110,10);
INSERT INTO emp VALUES(20,110,9);
INSERT INTO emp VALUES(30,102,2);
INSERT INTO emp VALUES(30,103,3);
INSERT INTO emp VALUES(30,105,5);
COMMIT;

l The red line represents the partition

l The blue box represents the current row

l The green box represents the analytic window relative to the current row.

The following example uses the ROWS-based window for the COUNT() analytic function to return
the department number, salary, and employee number with a count. The window_frame_clause
specifies the rows between the current row and two preceding. Using ROWS in the window_frame_
clause specifies the window as a physical offset and defines the start- and end-point of a window
by the number of rows before and after the current row.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 399 of 817

SELECT deptno, sal, empno, COUNT(*) OVER (PARTITION BY deptno ORDER BY sal
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW)

AS count FROM emp;

Notice that the partition includes department 20, and the current row and window are the same
because there are no rows that precede the current row within that partition, even though the query
specifies 2 preceding. The value in the count column (1) represents the number of rows in the
current window.

As the current row moves, the window spans from 1 preceding to the current row, which is as far as
it can go within the constraints of the window_frame_clause. COUNT() returns the number of rows
in the window, even if 2 preceding is specified. In the count column, (2) includes the current row and
the row above, which is themaximum the statement of 2 preceding allows within the current
partition.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 400 of 817

The current row moves again, and the window can now span 2 preceding the current row within the
partition. The count (3) includes the number of rows in the partition (2 above + current), which is the
maximum the statement of 2 preceding allows within the current partition.

When the current row moves, the window alsomoves tomaintain 2 preceding and current row. The
count of 3 repeats because it represents the number of rows in the window, which has not changed:

The current row advances again, and the window is defined by the samewindow, so the count does
not change.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 401 of 817

In this example, the current row advances oncemore. Notice the current row has reached the end
of the deptno partition.

Windows with a Logical Offset (RANGE)
The RANGE keyword specifies the window as a logical offset, such as time. The range valuemust
match the window_order_clause data type, which can be NUMERIC, DATE/TIME, FLOAT or
INTEGER.

Note: The value returned by an analytic function with a logical offset is always deterministic.

During the analytical computation, rows are excluded or included based on the logical offset, or
value (RANGE). relative to the current row, which is always the reference point.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 402 of 817

TheORDER BY column (window_order_clause) is the columnwhose value is used to compute
the window span.

Only one window_order_clause column is allowed, and the data typemust be NUMERIC,
DATE/TIME, FLOAT or INTEGER, unless the window specifies one of following frames:

l RANGE BETWEEN UNBOUNDED PRECEDINGAND CURRENT ROW

l RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

l RANGE BETWEEN UNBOUNDED PRECEDINGAND UNBOUNDED FOLLOWING

INTERVAL Year to Month can be used in an analytic RANGE window when theORDER BY
column type is TIMESTAMP/TIMESTAMPWITH TIMEZONE, or DATE. TIME/TIMEWITH
TIMEZONE are not supported.

INTERVALDay to Second can be used when theORDER BY column type is
TIMESTAMP/TIMESTAMPWITH TIMEZONE, DATE, and TIME/TIMEWITH TIMEZONE.

Examples

The examples on this page use the emp table schema defined inWindow Framing:

CREATE TABLE emp(deptno INT, sal INT, empno INT);
INSERT INTO emp VALUES(10,101,1);
INSERT INTO emp VALUES(10,104,4);
INSERT INTO emp VALUES(20,100,11);
INSERT INTO emp VALUES(20,109,7);
INSERT INTO emp VALUES(20,109,6);
INSERT INTO emp VALUES(20,109,8);
INSERT INTO emp VALUES(20,110,10);
INSERT INTO emp VALUES(20,110,9);
INSERT INTO emp VALUES(30,102,2);
INSERT INTO emp VALUES(30,103,3);
INSERT INTO emp VALUES(30,105,5);
COMMIT;

l The red line represents the partition

l The blue box represents the current row

l The green box represents the analytic window relative to the current row.

In the following query, RANGE specifies the window as a logical offset (value-based). TheORDER
BY column is the column on which the range is applied.

SELECT deptno, sal, empno, COUNT(*) OVER (PARTITION BY deptno ORDER BY sal
RANGE BETWEEN 2 PRECEDING AND CURRENT ROW)

AS COUNT FROM emp;

The partition includes department 20, and the current row and window are the same because there
are no rows that precede the current row within that partition:

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 403 of 817

In the next example, the ORDER BY column value is 109, so 109 - 2 = 107. The window would
include all rows whoseORDER BY column values are between 107 and 109 inclusively.

Here, the current row advances, and 107-109 are still inclusive.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 404 of 817

Though the current row advances again, the window is the same.

The current row advances so that the ORDER BY column value becomes 110 (before it was 109).
Now the window would include all rows whoseORDER BY column values were between 108 and
110, inclusive, because 110 - 2 = 108.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 405 of 817

As the current row advances, the window still includes rows for 108-110, inclusive.

Remember that a window frame can also be time based, such as the following query:

SELECT ts, bid, avg(bid) OVER
(ORDER BY ts RANGE BETWEEN '40 SECONDS' PRECEDING AND CURRENT ROW)
FROM ticks WHERE stock = 'VERT'
GROUP BY bid, ts ORDER BY ts;

Reporting Aggregates
Some of the analytic functions that take the window_frame_clause are the reporting aggregates.
These functions let you compare a partition's aggregate values with detail rows, taking the place of

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 406 of 817

correlated subqueries or joins.

l AVG()

l COUNT()

l MAX() andMIN()

l SUM()

l STDDEV(), STDDEV_POP(), and STDDEV_SAMP()

l VARIANCE(), VAR_POP(), and VAR_SAMP()

If you use a window aggregate with an empty OVER() clause, the analytic function is used as a
reporting function, where the entire input is treated as a single partition.

About Standard Deviation and Variance Functions

With standard deviation functions, a low standard deviation indicates that the data points tend to be
very close to themean, whereas high standard deviation indicates that the data points are spread
out over a large range of values.

Standard deviation is often graphed and a distributed standard deviation creates the classic bell
curve.

Variance functions measure how far a set of numbers is spread out.

Examples

Think of the window for reporting aggregates as a window defined as UNBOUNDED PRECEDING
and UNBOUNDED FOLLOWING. The omission of a window_order_clausemakes all rows in the
partition also the window (reporting aggregates).

SELECT deptno, sal, empno, COUNT(sal)
OVER (PARTITION BY deptno) AS COUNT FROM emp;

deptno | sal | empno | count
--------+-----+-------+-------

10 | 101 | 1 | 2
10 | 104 | 4 | 2

20 | 110 | 10 | 6
20 | 110 | 9 | 6
20 | 109 | 7 | 6
20 | 109 | 6 | 6
20 | 109 | 8 | 6
20 | 100 | 11 | 6

30 | 105 | 5 | 3
30 | 103 | 3 | 3
30 | 102 | 2 | 3

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 407 of 817

(11 rows)

If the OVER() clause in the above query contained a window_order_clause (for example, ORDER
BY sal), it would become amoving window (window aggregate) query with a default window of
RANGE BETWEEN UNBOUNDED PRECEDINGAND CURRENT ROW:

SELECT deptno, sal, empno, COUNT(sal) OVER (PARTITION BY deptno ORDER BY sal) AS COUNT F
ROM emp;
deptno | sal | empno | count

--------+-----+-------+-------
10 | 101 | 1 | 1
10 | 104 | 4 | 2

20 | 100 | 11 | 1
20 | 109 | 7 | 4
20 | 109 | 6 | 4
20 | 109 | 8 | 4
20 | 110 | 10 | 6
20 | 110 | 9 | 6

30 | 102 | 2 | 1
30 | 103 | 3 | 2
30 | 105 | 5 | 3

(11 rows)

What About LAST_VALUE()?

Youmight wonder why you couldn't just use the LAST_VALUE() analytic function.

For example, for each employee, get the highest salary in the department:

SELECT deptno, sal, empno,LAST_VALUE(empno) OVER (PARTITION BY deptno ORDER BY sal) AS lv
FROM emp;

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 408 of 817

Due to default window semantics, LAST_VALUE does not always return the last value of a
partition. If you omit the window_frame_clause from the analytic clause, LAST_VALUE operates
on this default window. Results, therefore, can seem non-intuitive because the function does not
return the bottom of the current partition. It returns the bottom of the window, which continues to
change along with the current input row being processed.

Remember the default window:

OVER (PARTITION BY deptno ORDER BY sal)

is the same as:

OVER(PARTITION BY deptno ORDER BY salROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 409 of 817

If you want to return the last value of a partition, use UNBOUNDED PRECEDINGAND
UNBOUNDED FOLLOWING.

SELECT deptno, sal, empno, LAST_VALUE(empno)
OVER (PARTITION BY deptno ORDER BY sal
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv
FROM emp;

Vertica recommends that you use LAST_VALUE with the window_order_clause to produce
deterministic results.

In the following example, empno 6, 7, and 8 have the same salary, so they are in adjacent rows.
empno 8 appears first in this case but the order is not guaranteed.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 410 of 817

Notice in the output above, the last value is 7, which is the last row from the partition deptno = 20. If
the rows have a different order, then the function returns a different value:

Now the last value is 6, which is the last row from the partition deptno = 20. The solution is to add a
unique key to the sort order. Even if the order of the query changes, the result will always be the
same, and so deterministic.

SELECT deptno, sal, empno, LAST_VALUE(empno)
OVER (PARTITION BY deptno ORDER BY sal, empno
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lv
FROM emp;

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 411 of 817

Notice how the rows are now ordered by empno, the last value stays at 8, and it does not matter the
order of the query.

Naming Windows
You can use theWINDOW clause to name one or more windows and avoid typing longOVER()
clause syntax. TheWINDOW clause takes the following form:

WINDOW window_name AS (window_definition_clause);

[window_partition_clause] [window_order_clause]

The window_definition_clause is described in detail in the SQLReferenceManual.

Example
In the following example, RANK() and DENSE_RANK() use the partitioning and ordering
specifications in the window definition for a window named w:

=> SELECT RANK() OVER w , DENSE_RANK() OVER w
FROM employee_dimension

WINDOW w AS (PARTITION BY employee_region ORDER by annual_salary);

Though analytic functions can reference a namedwindow to inherit the window_partition_clause,
you can define your ownwindow_order_clause; for example:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) , DENSE_RANK() OVER(w ORDER BY
annual_salary DESC)

FROM employee_dimension
WINDOW w AS (PARTITION BY employee_region);

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 412 of 817

Notes:
l Each window defined in the window_definition_clausemust have a unique name.

l The window_partition_clause is defined in the namedwindow specification, not in the OVER()
clause.

l The OVER() clause can specify its own window_order_clause only if the window_
definition_clause did not already define it. For example, if the second example above is
rewritten as follows, the system returns an error:

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC) ,
DENSE_RANK() OVER(w ORDER BY annual_salary DESC)
FROM employee_dimension
WINDOW w AS (PARTITION BY employee_region ORDER BY annual_salary);
ERROR: cannot override ORDER BY clause of window "w"

l A window definition cannot contain a window_frame_clause.

l Each window defined in the window_definition_clausemust have a unique name.

You can reference window names within their scope only. For example, because namedwindow
w1 below is defined before w2, w2 is within the scope of w1:

=> SELECT RANK() OVER(w1 ORDER BY sal DESC),
RANK() OVER w2
FROM EMP
WINDOW w1 AS (PARTITION BY deptno), w2 AS (w1 ORDER BY sal);

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 413 of 817

Analytic Query Examples

Calculating a Median Value
A median is described as the numerical value separating the higher half of a sample from the lower
half. Themedian of a finite list of numbers can be found by arranging all the observations from
lowest value to highest value and picking themiddle one.

If there is an even number of observations, then there is no single middle value. Themedian is then
defined to be themean (average) of the twomiddle values.

The examples that follow use the allsales table schema, defined in How Analytic Functions Work.

Allsales Table Schema
CREATE TABLE allsales(state VARCHAR(20), name VARCHAR(20), sales INT);
INSERT INTO allsales VALUES('MA', 'A', 60);
INSERT INTO allsales VALUES('NY', 'B', 20);
INSERT INTO allsales VALUES('NY', 'C', 15);
INSERT INTO allsales VALUES('MA', 'D', 20);
INSERT INTO allsales VALUES('MA', 'E', 50);
INSERT INTO allsales VALUES('NY', 'F', 40);
INSERT INTO allsales VALUES('MA', 'G', 10);
COMMIT;

Table allsales:

=> SELECT * FROM allsales;
state | name | sales

-------+------+-------
MA | A | 60
NY | B | 20
NY | C | 15
MA | D | 20
MA | E | 50
NY | F | 40
MA | G | 10

(7 rows)

The following query calculates themedian of sales from the allsales table. Note that when you use
OVER() with no parameters, the query returns the same aggregated value for each row of the result
set:

=> SELECT name, sales, MEDIAN(sales) OVER() AS median FROM allsales;
name | sales | median

------+-------+--------
G | 10 | 20
C | 15 | 20
D | 20 | 20
B | 20 | 20
F | 40 | 20
E | 50 | 20

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 414 of 817

A | 60 | 20
(7 rows)

Without analytics, you'd have to write an overly complex query to get themedian sales, but
performance will suffer, and the query returns only one row:

=> SELECT sales MEDIAN FROM
(

SELECT a1.name, a1.sales, COUNT(a1.sales) Rank
FROM allsales a1, allsales a2
WHERE a1.sales < a2.sales OR

(a1.sales=a2.sales AND a1.name <= a2.name)
GROUP BY a1.name, a1.sales
ORDER BY a1.sales desc

) a3
WHERE Rank =
(SELECT (COUNT(*)+1) / 2 FROM allsales);

MEDIAN

20
(1 row)

Getting Price Differential for Two Stocks
The following subquery selects out two stocks of interest. The outer query uses the LAST_VALUE
() andOVER() components of analytics, with IGNORE NULLS.

Schema

DROP TABLE Ticks CASCADE;

CREATE TABLE Ticks (ts TIMESTAMP, Stock varchar(10), Bid float);
INSERT INTO Ticks VALUES('2011-07-12 10:23:54', 'abc', 10.12);
INSERT INTO Ticks VALUES('2011-07-12 10:23:58', 'abc', 10.34);
INSERT INTO Ticks VALUES('2011-07-12 10:23:59', 'abc', 10.75);
INSERT INTO Ticks VALUES('2011-07-12 10:25:15', 'abc', 11.98);
INSERT INTO Ticks VALUES('2011-07-12 10:25:16', 'abc');
INSERT INTO Ticks VALUES('2011-07-12 10:25:22', 'xyz', 45.16);
INSERT INTO Ticks VALUES('2011-07-12 10:25:27', 'xyz', 49.33);
INSERT INTO Ticks VALUES('2011-07-12 10:31:12', 'xyz', 65.25);
INSERT INTO Ticks VALUES('2011-07-12 10:31:15', 'xyz');

COMMIT;

ticks Table

SELECT * FROM ticks;
ts | stock | bid

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 415 of 817

---------------------+-------+-------
2011-07-12 10:23:59 | abc | 10.75
2011-07-12 10:25:22 | xyz | 45.16
2011-07-12 10:23:58 | abc | 10.34
2011-07-12 10:25:27 | xyz | 49.33
2011-07-12 10:23:54 | abc | 10.12
2011-07-12 10:31:15 | xyz |
2011-07-12 10:25:15 | abc | 11.98
2011-07-12 10:25:16 | abc |
2011-07-12 10:31:12 | xyz | 65.25

(9 rows)

Query

SELECT ts, stock, bid, last_value(price1 IGNORE NULLS)
OVER(ORDER BY ts) - last_value(price2 IGNORE NULLS)
OVER(ORDER BY ts) as price_diff

FROM
(SELECT ts, stock, bid,

CASE WHEN stock = 'abc' THEN bid ELSE NULL END AS price1,
CASE WHEN stock = 'xyz' then bid ELSE NULL END AS price2
FROM ticks
WHERE stock IN ('abc','xyz')

) v1
ORDER BY ts;

ts | stock | bid | price_diff
---------------------+-------+-------+------------
2011-07-12 10:23:54 | abc | 10.12 |
2011-07-12 10:23:58 | abc | 10.34 |
2011-07-12 10:23:59 | abc | 10.75 |
2011-07-12 10:25:15 | abc | 11.98 |
2011-07-12 10:25:16 | abc | |
2011-07-12 10:25:22 | xyz | 45.16 | -33.18
2011-07-12 10:25:27 | xyz | 49.33 | -37.35
2011-07-12 10:31:12 | xyz | 65.25 | -53.27
2011-07-12 10:31:15 | xyz | | -53.27

(9 rows)

Calculating the Moving Average
Calculate a 40-secondmoving average of bids for one stock.

Note: This examples uses the ticks table schema defined in Getting Price Differential for Two
Stocks.

Query

SELECT ts, bid, AVG(bid)

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 416 of 817

OVER(ORDER BY ts
RANGE BETWEEN INTERVAL '40 seconds'
PRECEDING AND CURRENT ROW)

FROM ticks
WHERE stock = 'abc'
GROUP BY bid, ts
ORDER BY ts;

ts | bid | ?column?
---------------------+-------+------------------
2011-07-12 10:23:54 | 10.12 | 10.12
2011-07-12 10:23:58 | 10.34 | 10.23
2011-07-12 10:23:59 | 10.75 | 10.4033333333333
2011-07-12 10:25:15 | 11.98 | 11.98
2011-07-12 10:25:16 | | 11.98

(5 rows)

DROP TABLE Ticks CASCADE;

CREATE TABLE Ticks (ts TIMESTAMP, Stock varchar(10), Bid float);
INSERT INTO Ticks VALUES('2011-07-12 10:23:54', 'abc', 10.12);
INSERT INTO Ticks VALUES('2011-07-12 10:23:58', 'abc', 10.34);
INSERT INTO Ticks VALUES('2011-07-12 10:23:59', 'abc', 10.75);
INSERT INTO Ticks VALUES('2011-07-12 10:25:15', 'abc', 11.98);
INSERT INTO Ticks VALUES('2011-07-12 10:25:16', 'abc');
INSERT INTO Ticks VALUES('2011-07-12 10:25:22', 'xyz', 45.16);
INSERT INTO Ticks VALUES('2011-07-12 10:25:27', 'xyz', 49.33);
INSERT INTO Ticks VALUES('2011-07-12 10:31:12', 'xyz', 65.25);
INSERT INTO Ticks VALUES('2011-07-12 10:31:15', 'xyz');

COMMIT;

Avoiding GROUPBY HASH with Projection Design
If your query contains a GROUP BY clause, HP Vertica computes the result with either the GROUPBY
PIPELINED or GROUPBY HASH algorithm.

Both algorithms compute the same results and have similar performance when the query produces
a small number of distinct groups (typically a thousand per node in the cluster). For queries that
contain a large number of groups, GROUPBY PIPELINED uses less memory and can be faster but is
only used when the input data is pre-sorted on the GROUP BY columns.

To improve the performance of a query that has a large number of distinct groups that is currently
using the GROUP BY HASH algorithm, you can enable the use of the GROUPBY PIPELINED algorithm,
as this section describes.

To determine which algorithm your query is using, run the EXPLAIN statement on the query.

The three conditions described in this section refer to the following schema.

CREATE TABLE sortopt (
a INT NOT NULL,
b INT NOT NULL,

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 417 of 817

c INT,
d INT

);
CREATE PROJECTION sortopt_p (

a_proj,
b_proj,
c_proj,
d_proj)

AS SELECT * FROM sortopt
ORDER BY a,b,c
UNSEGMENTED ALL NODES;
INSERT INTO sortopt VALUES(5,2,13,84);
INSERT INTO sortopt VALUES(14,22,8,115);
INSERT INTO sortopt VALUES(79,9,401,33);

Condition #1
All columns in the query's GROUP BY clausemust be included in the projection's sort columns. If
even one column in the GROUP BY clause is excluded from the projection's ORDER BY clause, HP
Vertica uses GROUPBY HASH instead of GROUPBY PIPELINED:

Given a projection sort order ORDER BY a, b, c:

GROUP BY a

GROUP BY a,b

GROUP BY b,a

GROUP BY a,b,c

GROUP BY c,a,b

The query optimizer uses GROUPBY PIPELINED because columns a, b, and c
are included in the projection sort columns.

GROUP BY a,b,c,d The query optimizer uses GROUPBY HASH because column d is not part of the
projection sort columns.

Condition #2
If the number of columns in the query's GROUP BY clause is less than the number of columns in the
projection's ORDER BY clause, columns in the query's GROUP BY clausemust occur first in the
projection's ORDER BY clause.

Given a projection sort order ORDER BY a, b ,c:

GROUP BY a

GROUP BY a,b

GROUP BY b,a

GROUP BY a,b,c

GROUP BY c,a,b

The query optimizer uses GROUPBY PIPELINED because columns a, b, c are
included in the projection sort columns.

GROUP BY a,c The query optimizer uses GROUPBY HASH because columns a and c do not occur
first in the projection sort columns.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 418 of 817

Condition #3
If the columns in a query's GROUP BY clause do not appear first in the projection's ORDER BY clause,
then any early-appearing projection sort columns that aremissing in the query's GROUP BY clause
must be present as single-column constant equality predicates in the query's WHERE clause.

Given a projection sort order ORDER BY a, b, c:

SELECT a FROM tab WHERE a = 10 GROUP BY b The query optimizer uses GROUPBY PIPELINED
because all columns preceding b in the
projection sort order appear as constant
equality predicates.

SELECT a FROM tab WHERE a = 10 GROUP BY a, b The query optimizer uses GROUPBY PIPELINED
even if redundant grouping column a is present.

SELECT a FROM tab WHERE a = 10 GROUP BY b, c The query optimizer uses GROUPBY PIPELINED
because all columns preceding b and c in the
projection sort order appear as constant
equality predicates.

SELECT a FROM tab WHERE a = 10 GROUP BY c, b The query optimizer uses GROUPBY PIPELINED
because all columns preceding b and c in the
projection sort order appear as constant
equality predicates.

SELECT a FROM tab WHERE a = 10 GROUP BY c The query optimizer uses GROUPBY HASH
because all columns preceding c in the
projection sort order do not appear as constant
equality predicates.

Getting Latest Bid and Ask Results
The following query fills in missing (null) values to create a full book order showing latest bid and
ask price and size, by vendor id. Original rows have values for (typically) one price and one size, so
use last_value with "ignore nulls" to find themost recent non-null value for the other pair each time
there is an entry for the ID. Sequenceno provides a unique total ordering.

Schema:

CREATE TABLE bookorders(
vendorid VARCHAR(100),
date TIMESTAMP,
sequenceno INT,
askprice FLOAT,
asksize INT,
bidprice FLOAT,
bidsize INT);

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 419 of 817

INSERT INTO bookorders VALUES('3325XPK','2011-07-12 10:23:54', 1, 10.12, 55, 10.23, 59);
INSERT INTO bookorders VALUES('3345XPZ','2011-07-12 10:23:55', 2, 10.55, 58, 10.75, 57);
INSERT INTO bookorders VALUES('445XPKF','2011-07-12 10:23:56', 3, 10.22, 43, 54);
INSERT INTO bookorders VALUES('445XPKF','2011-07-12 10:23:57', 3, 10.22, 59, 10.25, 61);
INSERT INTO bookorders VALUES('3425XPY','2011-07-12 10:23:58', 4, 11.87, 66, 11.90, 66);
INSERT INTO bookorders VALUES('3727XVK','2011-07-12 10:23:59', 5, 11.66, 51, 11.67, 62);
INSERT INTO bookorders VALUES('5325XYZ','2011-07-12 10:24:01', 6, 15.05, 44, 15.10, 59);
INSERT INTO bookorders VALUES('3675XVS','2011-07-12 10:24:05', 7, 15.43, 47, 58);
INSERT INTO bookorders VALUES('8972VUG','2011-07-12 10:25:15', 8, 14.95, 52, 15.11, 57);
COMMIT;

Query:

SELECT
sequenceno Seq,
date "Time",
vendorid ID,
LAST_VALUE (bidprice IGNORE NULLS)
OVER (PARTITION BY vendorid ORDER BY sequenceno

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Bid Price",
LAST_VALUE (bidsize IGNORE NULLS)
OVER (PARTITION BY vendorid ORDER BY sequenceno

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Bid Size",
LAST_VALUE (askprice IGNORE NULLS)
OVER (PARTITION BY vendorid ORDER BY sequenceno

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Ask Price",
LAST_VALUE (asksize IGNORE NULLS)
OVER (PARTITION BY vendorid order by sequenceno

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
AS "Ask Size"

FROM bookorders
ORDER BY sequenceno;

Seq | Time | ID | Bid Price | Bid Size | Ask Price | Ask Size
-----+---------------------+---------+-----------+----------+-----------+----------

1 | 2011-07-12 10:23:54 | 3325XPK | 10.23 | 59 | 10.12 | 55
1 | 2011-07-12 10:23:54 | 3325XPK | 10.23 | 59 | 10.12 | 55
2 | 2011-07-12 10:23:55 | 3345XPZ | 10.75 | 57 | 10.55 | 58
2 | 2011-07-12 10:23:55 | 3345XPZ | 10.75 | 57 | 10.55 | 58
3 | 2011-07-12 10:23:56 | 445XPKF | 54 | 61 | 10.22 | 43
3 | 2011-07-12 10:23:57 | 445XPKF | 10.25 | 61 | 10.22 | 59
3 | 2011-07-12 10:23:56 | 445XPKF | 54 | 61 | 10.22 | 43
3 | 2011-07-12 10:23:57 | 445XPKF | 10.25 | 61 | 10.22 | 59
4 | 2011-07-12 10:23:58 | 3425XPY | 11.9 | 66 | 11.87 | 66
4 | 2011-07-12 10:23:58 | 3425XPY | 11.9 | 66 | 11.87 | 66
5 | 2011-07-12 10:23:59 | 3727XVK | 11.67 | 662 | 11.66 | 51
5 | 2011-07-12 10:23:59 | 3727XVK | 11.67 | 62 | 11.66 | 51
6 | 2011-07-12 10:24:01 | 5325XYZ | 15.1 | 59 | 15.05 | 44
6 | 2011-07-12 10:24:01 | 5325XYZ | 15.1 | 59 | 15.05 | 44
7 | 2011-07-12 10:24:05 | 3675XVS | 58 | | 15.43 | 47
7 | 2011-07-12 10:24:05 | 3675XVS | 58 | | 15.43 | 47
8 | 2011-07-12 10:25:15 | 8972VUG | 15.11 | 57 | 14.95 | 52

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 420 of 817

8 | 2011-07-12 10:25:15 | 8972VUG | 15.11 | 57 | 14.95 | 52
(18 rows)

Event-Based Windows
Event-based windows let you break time series data into windows that border on significant events
within the data. This is especially relevant in financial data where analysis often focuses on specific
events as triggers to other activity.

There are two event-based window functions in HP Vertica. These functions are an HP Vertica
extension and are not part of the SQL-99 standard:

l CONDITIONAL_CHANGE_EVENT() assigns an event window number to each row, starting
from 0, and increments by 1 when the result of evaluating the argument expression on the
current row differs from that on the previous row. This function is similar to the analytic function
ROW_NUMBER, which assigns a unique number, sequentially, starting from 1, to each row
within a partition.

l CONDITIONAL_TRUE_EVENT() assigns an event window number to each row, starting from
0, and increments the number by 1 when the result of the boolean argument expression
evaluates true.

These functions are described in greater detail below.

Note: The CONDITIONAL_CHANGE_EVENT and CONDITIONAL_TRUE_EVENT
functions do not allow Window Framing.

Example Schema

The examples in this topic use the following schema:

CREATE TABLE TickStore3 (
ts TIMESTAMP,
symbol VARCHAR(8),
bid FLOAT

);
CREATE PROJECTION TickStore3_p (ts, symbol, bid) AS
SELECT * FROM TickStore3
ORDER BY ts, symbol, bid UNSEGMENTED ALL NODES;
INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:00', 'XYZ', 10.0);
INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:03', 'XYZ', 11.0);
INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:06', 'XYZ', 10.5);
INSERT INTO TickStore3 VALUES ('2009-01-01 03:00:09', 'XYZ', 11.0);
COMMIT;

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 421 of 817

Using the CONDITIONAL_CHANGE_EVENT
Function

The analytical function CONDITIONAL_CHANGE_EVENT returns a sequence of integers
indicating event window numbers, starting from 0. The function increments the event window
number when the result of evaluating the function expression on the current row differs from the
previous value.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_CHANGE_EVENT function on the bid column. Since each bid row
value is different from the previous value, the function increments the window ID from 0 to 3:

SELECT ts, symbol, bidFROM Tickstore3
ORDER BY ts;

SELECT CONDITIONAL_CHANGE_EVENT(bid)
OVER(ORDER BY ts)
FROM Tickstore3;

ts | symbol | bid
---------------------+--------+------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:03 | XYZ | 11
2009-01-01 03:00:06 | XYZ | 10.5
2009-01-01 03:00:09 | XYZ | 11

(4 rows)

==> ts | symbol | bid | cce
---------------------+--------+------+-----
2009-01-01 03:00:00 | XYZ | 10 | 0
2009-01-01 03:00:03 | XYZ | 11 | 1
2009-01-01 03:00:06 | XYZ | 10.5 | 2
2009-01-01 03:00:09 | XYZ | 11 | 3

(4 rows)

The following figure is a graphical illustration of the change in the bid price. Each value is different
from its previous one, so the window ID increments for each time slice:

So the window ID starts at 0 and increments at every change in from the previous value.

In this example, the bid price changes from $10 to $11 in the second row, but then stays the same.
The CONDITIONAL_CHANGE_EVENT function increments the event window ID in row 2, but not
subsequently:

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 422 of 817

SELECT ts, symbol, bidFROM Ticksto
re3
ORDER BY ts;

SELECT CONDITIONAL_CHANGE_EVENT(bid) OVER(ORDER B
Y ts)
FROM Tickstore3;

ts | symbol | bi
d
---------------------+--------+---

2009-01-01 03:00:00 | XYZ |

10
2009-01-01 03:00:03 | XYZ |

11
2009-01-01 03:00:06 | XYZ |

11
2009-01-01 03:00:09 | XYZ |

11

=
=>

ts | symbol | bid | cce
---------------------+--------+------+-----
2009-01-01 03:00:00 | XYZ | 10 | 0
2009-01-01 03:00:03 | XYZ | 11 | 1
2009-01-01 03:00:06 | XYZ | 11 | 1
2009-01-01 03:00:09 | XYZ | 11 | 1

The following figure is a graphical illustration of the change in the bid price at 3:00:03 only. The price
stays the same at 3:00:06 and 3:00:09, so the window ID remains at 1 for each time slice after the
change:

Using the CONDITIONAL_TRUE_EVENT Function
Like CONDITIONAL_CHANGE_EVENT, the analytic function CONDITIONAL_TRUE_EVENT
also returns a sequence of integers indicating event window numbers, starting from 0. The
difference between the two functions is that the CONDITIONAL_TRUE_EVENT function
increments the window ID each time its expression evaluates to true, while CONDITIONAL_
CHANGE_EVENT increments on a comparison expression with the previous value.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_TRUE_EVENT function to test whether the current bid is greater
than a given value (10.6). Each time the expression tests true, the function increments the window
ID. The first time the function increments the window ID is on row 2, when the value is 11. The
expression tests false for the next row (value is not greater than 10.6), so the function does not

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 423 of 817

increment the event window ID. In the final row, the expression is true for the given condition, and
the function increments the window:

SELECT ts, symbol, bidFRO
M Tickstore3
ORDER BY ts;

SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)
OVER(ORDER BY ts)
FROM Tickstore3;

ts | sy
mbol | bid
---------------------+---
-----+------
2009-01-01 03:00:00 | XY

Z | 10
2009-01-01 03:00:03 | XY

Z | 11
2009-01-01 03:00:06 | XY

Z | 10.5
2009-01-01 03:00:09 | XY

Z | 11

=
=
>

ts | symbol | bid | cte------------------
---+--------+------+-----
2009-01-01 03:00:00 | XYZ | 10 | 0
2009-01-01 03:00:03 | XYZ | 11 | 1
2009-01-01 03:00:06 | XYZ | 10.5 | 1
2009-01-01 03:00:09 | XYZ | 11 | 2

The following figure is a graphical illustration that shows the bid values and window ID changes.
Because the bid value is greater than $10.6 on only the second and fourth time slices (3:00:03 and
3:00:09), the window ID returns <0,1,1,2>:

In the following example, the first query returns all records from the TickStore3 table, ordered by the
tickstore values (ts). The second query uses the CONDITIONAL_TRUE_EVENT function to
increment the window ID each time the bid value is greater than 10.6. The first time the function
increments the event window ID is on row 2, where the value is 11. The window ID then increments
each time after that, because the expression (bid > 10.6) tests true for each time slice:

SELECT ts, symbol, bidFRO
M Tickstore3
ORDER BY ts;

SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)
OVER(ORDER BY ts)
FROM Tickstore3;

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 424 of 817

ts | sy
mbol | bid
---------------------+---
-----+------
2009-01-01 03:00:00 | XY

Z | 10
2009-01-01 03:00:03 | XY

Z | 11
2009-01-01 03:00:06 | XY

Z | 11
2009-01-01 03:00:09 | XY

Z | 11

=
=
>

ts | symbol | bid | cte------------------
---+--------+------+-----
2009-01-01 03:00:00 | XYZ | 10 | 0
2009-01-01 03:00:03 | XYZ | 11 | 1
2009-01-01 03:00:06 | XYZ | 11 | 2
2009-01-01 03:00:09 | XYZ | 11 | 3

The following figure is a graphical illustration that shows the bid values and window ID changes.
The bid value is greater than 10.6 on the second time slice (3:00:03) and remains for the remaining
two time slices. The function increments the event window ID each time because the expression
tests true:

Advanced Use of Event-Based Windows
In event-based window functions, the condition expression accesses values from the current row
only. To access a previous value, you can use amore powerful event-based window that allows the
window event condition to include previous data points. For example, the LAG(x, n) analytic
function retrieves the value of column X in the nth to last input record. In this case, LAG() shares the
OVER() clause specifications of the CONDITIONAL_CHANGE_EVENT or CONDITIONAL_
TRUE_EVENT function expression.

In the following example, the first query returns all records from the TickStore3 table. The second
query uses the CONDITIONAL_TRUE_EVENT function with the LAG() function in its boolean
expression. In this case, the CONDITIONAL_TRUE_EVENT function increments the event
window ID each time the bid value on the current row is less than the previous value. The first time
CONDITIONAL_TRUE_EVENT increments the window ID starts on the third time slice, when the
expression tests true. The current value (10.5) is less than the previous value. The window ID is not
incremented in the last row because the final value is greater than the previous row:

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 425 of 817

SELECT ts, symbol, bidFROM Tickstore3
ORDER BY ts;

SELECT CONDITIONAL_TRUE_EVENT(bid < LAG(bid))
OVER(ORDER BY ts)
FROM Tickstore;

ts | symbol | bid
---------------------+--------+------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:03 | XYZ | 11
2009-01-01 03:00:06 | XYZ | 10.5
2009-01-01 03:00:09 | XYZ | 11

ts | symbol | bid | cte
---------------------+--------+------+-----
2009-01-01 03:00:00 | XYZ | 10 | 0
2009-01-01 03:00:03 | XYZ | 11 | 0
2009-01-01 03:00:06 | XYZ | 10.5 | 1
2009-01-01 03:00:09 | XYZ | 11 | 1

The following figure illustrates the second query above. When the bid price is less than the previous
value, the window ID gets incremented, which occurs only in the third time slice (3:00:06):

See Also
l Sessionization with Event-BasedWindows

l Using Time Series Analytics

l CONDITIONAL_CHANGE_EVENT [Analytic]

l CONDITIONAL_TRUE_EVENT [Analytic]

l LAG [Analytic]

Sessionization with Event-Based Windows
Sessionization, a special case of event-based windows, is a feature often used to analyze click
streams, such as identifying web browsing sessions from recorded web clicks.

In HP Vertica, given an input clickstream table, where each row records aWeb page click made by
a particular user (or IP address), the sessionization computation attempts to identify Web browsing
sessions from the recorded clicks by grouping the clicks from each user based on the time-intervals

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 426 of 817

between the clicks. If two clicks from the same user aremade too far apart in time, as defined by a
time-out threshold, the clicks are treated as though they are from two different browsing sessions.

Example Schema

The examples in this topic use the followingWebClicks schema to represent a simple clickstream
table:

CREATE TABLE WebClicks(userId INT, timestamp TIMESTAMP);
INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:00 pm');
INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:25 pm');
INSERT INTO WebClicks VALUES (1, '2009-12-08 3:00:45 pm');
INSERT INTO WebClicks VALUES (1, '2009-12-08 3:01:45 pm');
INSERT INTO WebClicks VALUES (2, '2009-12-08 3:02:45 pm');
INSERT INTO WebClicks VALUES (2, '2009-12-08 3:02:55 pm');
INSERT INTO WebClicks VALUES (2, '2009-12-08 3:03:55 pm');
COMMIT;

The input table WebClicks contains the following rows:

=> SELECT * FROM WebClicks;
userId | timestamp

--------+---------------------
1 | 2009-12-08 15:00:00
1 | 2009-12-08 15:00:25
1 | 2009-12-08 15:00:45
1 | 2009-12-08 15:01:45
2 | 2009-12-08 15:02:45
2 | 2009-12-08 15:02:55
2 | 2009-12-08 15:03:55

(7 rows)

In the following query, sessionization performs computation on the SELECT list columns, showing
the difference between the current and previous timestamp value using LAG(). It evaluates to true
and increments the window ID when the difference is greater than 30 seconds.

=> SELECT userId, timestamp,
CONDITIONAL_TRUE_EVENT(timestamp - LAG(timestamp) > '30 seconds')
OVER(PARTITION BY userId ORDER BY timestamp) AS session FROM WebClicks;

userId | timestamp | session
--------+---------------------+---------

1 | 2009-12-08 15:00:00 | 0
1 | 2009-12-08 15:00:25 | 0
1 | 2009-12-08 15:00:45 | 0
1 | 2009-12-08 15:01:45 | 1
2 | 2009-12-08 15:02:45 | 0
2 | 2009-12-08 15:02:55 | 0
2 | 2009-12-08 15:03:55 | 1

(7 rows)

In the output, the session column contains the window ID from the CONDITIONAL_TRUE_
EVENT function. The window ID evaluates to true on row 4 (timestamp 15:01:45), and the ID that
follows row 4 is zero because it is the start of a new partition (for user ID 2), and that row does not
evaluate to true until the last line in the output.

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 427 of 817

Youmight want to give users different time-out thresholds. For example, one user might have a
slower network connection or bemulti-tasking, while another user might have a faster connection
and be focused on a singleWeb site, doing a single task.

To compute an adaptive time-out threshold based on the last 2 clicks, use CONDITIONAL_TRUE_
EVENT with LAG to return the average time between the last 2 clicks with a grace period of 3
seconds:

SELECT userId, timestamp, CONDITIONAL_TRUE_EVENT(timestamp - LAG(timestamp) >
(LAG(timestamp, 1) - LAG(timestamp, 3)) / 2 + '3 seconds')
OVER(PARTITION BY userId ORDER BY timestamp) AS session
FROM WebClicks;
userId | timestamp | session

--------+---------------------+---------
2 | 2009-12-08 15:02:45 | 0
2 | 2009-12-08 15:02:55 | 0
2 | 2009-12-08 15:03:55 | 0
1 | 2009-12-08 15:00:00 | 0
1 | 2009-12-08 15:00:25 | 0
1 | 2009-12-08 15:00:45 | 0
1 | 2009-12-08 15:01:45 | 1

(7 rows)

Note: You cannot define amoving window in time series data. For example, if the query is
evaluating the first row and there’s no data, it will be the current row. If you have a lag of 2, no
results are returned until the third row.

See Also
l Event-BasedWindows

l CONDITIONAL_TRUE_EVENT [Analytic]

HP Vertica Programmer's Guide
Using SQL Analytics

HP Vertica Analytics Platform (7.0.x) Page 428 of 817

Using Time Series Analytics
Time series analytics evaluate the values of a given set of variables over time and group those
values into a window (based on a time interval) for analysis and aggregation.

Common scenarios are changes over time, such as stock market trades and performance, as well
as charting trend lines over data.

Because both time and the state of data within a time series are continuous, it can be challenging to
evaluate SQL queries over time. Input records usually occur at non-uniform intervals, whichmeans
they might have gaps. HP Vertica provides gap-filling functionality—which fills in missing data
points, as—and an interpolation scheme, which is amethod of constructing new data points within
the range of a discrete set of known data points. HP Vertica interpolates the non-time series
columns in the data (such as analytic function results computed over time slices) and adds the
missing data points to the output. Gap filling and interpolation are described in detail in this section.

You can also use Event-BasedWindows to break time series data into windows that border on
significant events within the data. This is especially relevant in financial data where analysis might
focus on specific events as triggers to other activity. Sessionization, a special case of event-based
windows, is a feature often used to analyze click streams, such as identifying web browsing
sessions from recorded web clicks.

HP Vertica provides additional support for time series analytics with the following SQL extensions,
which you can read about in the SQLReferenceManual.

l The SELECT..TIMESERIES clause supports gap-filling and interpolation (GFI) computation.

l TS_FIRST_VALUE and TS_LAST_VALUE are time series aggregate functions that return the
value at the start or end of a time slice, respectively, which is determined by the interpolation
scheme.

l TIME_SLICE is a (SQL extension) date/time function that aggregates data by different fixed-
time intervals and returns a rounded-up input TIMESTAMP value to a value that corresponds
with the start or end of the time slice interval.

See Also
l Using SQL Analytics

l Event-BasedWindows

l Sessionization with Event-BasedWindows

HP Vertica Analytics Platform (7.0.x) Page 429 of 817

Gap Filling and Interpolation (GFI)
The examples and graphics that explain the concepts in this topic use the following simple schema:

CREATE TABLE TickStore (ts TIMESTAMP, symbol VARCHAR(8), bid FLOAT);
INSERT INTO TickStore VALUES ('2009-01-01 03:00:00', 'XYZ', 10.0);
INSERT INTO TickStore VALUES ('2009-01-01 03:00:05', 'XYZ', 10.5);
COMMIT;

In HP Vertica, time series data is represented by a sequence of rows that conforms to a particular
table schema, where one of the columns stores the time information.

Both time and the state of data within a time series are continuous. This means that evaluating SQL
queries over time can be challenging because input records usually occur at non-uniform intervals
and could contain gaps. Consider, for example, the following table, which contains two input rows
five seconds apart, at 3:00:00 and 3:00:05.

=> SELECT * FROM TickStore;
ts | symbol | bid

---------------------+--------+------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:05 | XYZ | 10.5

(2 rows)

Given those two inputs, how would you determine a bid price that fell between the two points, such
as at 3:00:03 PM?

The TIME_SLICE function, which normalizes timestamps into corresponding time slices, might
seem like a logical candidate; however, TIME_SLICE does not solve the problem of missing inputs
(time slices) in the data. Instead, HP Vertica provides gap-filling and interpolation (GFI)
functionality, which fills in missing data points and adds new (missing) data points within a range of
known data points to the output using time series aggregate functions and the SQL TIMESERIES
clause.

But first, we'll illustrate the components that make up gap filling and interpolation in HP Vertica,
starting with Constant Interpolation.

The images in the following topics use the following legend:

l The x-axis represents the timestamp (ts) column

l The y-axis represents the bid column.

l The vertical blue lines delimit the time slices.

l The red dots represent the input records in the table, $10.0 and $10.5.

l The blue stars represent the output values, including interpolated values.

HP Vertica Analytics Platform (7.0.x) Page 430 of 817

Constant Interpolation
Given known input timestamps at 03:00:00 and 03:00:05 in the sample TickStore schema, how
might you determine the bid price at 03:00:03?

A common interpolation scheme used on financial data is to set the bid price to the last seen value
so far. This scheme is referred to as constant interpolation, in which HP Vertica computes a new
value based on the previous input records.

Note: Constant is HP Vertica's default interpolation scheme. Another interpolation scheme,
linear, is discussed in an upcoming topic.

Returning to the problem query, here is the table output, which shows a 5-second lag between bids
at 03:00:00 and 03:00:05:

=> SELECT * FROM TickStore;
ts | symbol | bid

---------------------+--------+------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:05 | XYZ | 10.5

(2 rows)

Using constant interpolation, the interpolated bid price of XYZ remains at $10.0 at 3:00:03, which
falls between the two known data inputs (3:00:00 PM and 3:00:05). At 3:00:05, the value changes
to $10.5. The known data points are represented by a red dot, and the interpolated value at 3:00:03
is represented by the blue star.

In order to write a query that makes the input rows more uniform, you first need to understand the
TIMESERIES clause and time series aggregate functions.

The TIMESERIES Clause and Aggregates
The SELECT..TIMESERIES clause and time series aggregates help solve the problem of gaps in
input records by normalizing the data into 3-second time slices and interpolating the bid price when
it finds gaps.

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 431 of 817

The TIMESERIES Clause
The TIMESERIES clause is an important component of time series analytics computation. It
performs gap filling and interpolation (GFI) to generate time slices missing from the input records.
The clause applies to the timestamp columns/expressions in the data, and takes the following form:

TIMESERIES slice_time AS 'length_and_time_unit_expression'
OVER (... [window_partition_clause [, ...]]
... ORDER BY time_expression)
... [ORDER BY table_column [, ...]]

Note: The TIMESERIES clause requires anORDER BY operation on the timestamp column.

Time Series Aggregate (TSA) Functions
Timeseries Aggregate (TSA) functions evaluate the values of a given set of variables over time and
group those values into a window for analysis and aggregation.

TSA functions process the data that belongs to each time slice. One output row is produced per
time slice or per partition per time slice if a partition expression is present.

The following table shows 3-second time slices where:

l The first two rows fall within the first time slice, which runs from 3:00:00 to 3:00:02. These are
the input rows for the TSA function's output for the time slice starting at 3:00:00.

l The second two rows fall within the second time slice, which runs from 3:00:03 to 3:00:05.
These are the input rows for the TSA function's output for the time slice starting at 3:00:03.

The result is the start of each time slice.

Example
The following statement uses both the TIMESERIES clause and the TS_FIRST_VALUE TSA
function to process the data that belongs to each 3-second time slice. The query returns the values
of the bid column, as determined by the specified constant interpolation scheme:

=> SELECT slice_time, TS_FIRST_VALUE(bid, 'CONST') bid FROM TickStore
TIMESERIES slice_time AS '3 seconds' OVER(PARTITION by symbol ORDER BY ts);

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 432 of 817

Now the original data inputs (at left) look like the output on the right because HP Vertica interpolated
the last known value and filled in themissing datapoint, returning 10 at 3:00:03:

Original query Interpolated value

slice_time | bid
---------------------+-----
2009-01-01 03:00:00 | 10
2009-01-01 03:00:03 |10.5

(2 rows)

==> slice_time | bid
---------------------+-----
2009-01-01 03:00:00 | 10
2009-01-01 03:00:03 | 10

(2 rows)

Linear Interpolation
Instead of interpolating data points based on the last seen value (Constant Interpolation), linear
interpolation is where HP Vertica interpolates values in a linear slope based on the specified time
slice.

The query that follows uses linear interpolation to place the input records in 2-second time slices
and return the first bid value for each symbol/time slice combination (the value at the start of the
time slice):

=> SELECT slice_time, TS_FIRST_VALUE(bid, 'LINEAR') bid FROM Tickstore
TIMESERIES slice_time AS '2 seconds' OVER(PARTITION BY symbol ORDER BY ts);

slice_time | bid
---------------------+------
2009-01-01 03:00:00 | 10
2009-01-01 03:00:02 | 10.2
2009-01-01 03:00:04 | 10.4

(3 rows)

The following figure illustrates the previous query results, showing the 2-second time gaps (3:00:02
and 3:00:04) in which no input record occurs. Note that the interpolated bid price of XYZ changes to
10.2 at 3:00:02 and 10.3 at 3:00:03 and 10.4 at 3:00:04, all of which fall between the two known
data inputs (3:00:00 and 3:00:05). At 3:00:05, the value would change to 10.5.

Note: The known data points above are represented by a red dot, and the interpolated values
are represented by blue stars.

The following is a side-by-side comparison of constant and linear interpolation schemes.

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 433 of 817

CONST interpolation LINEAR interpolation

GFI Examples
This topic illustrates some of the queries you can write using the constant and linear interpolation
schemes.

Constant Interpolation
The first query uses TS_FIRST_VALUE() and the TIMESERIES clause to place the input records
in 3-second time slices and return the first bid value for each symbol/time slice combination (the
value at the start of the time slice).

Note: The TIMESERIES clause requires anORDER BY operation on the TIMESTAMP
column.

=> SELECT slice_time, symbol, TS_FIRST_VALUE(bid) AS first_bid FROM TickStore
TIMESERIES slice_time AS '3 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Because the bid price of stock XYZ is 10.0 at 3:00:03, the first_bid value of the second time
slice, which starts at 3:00:03 is till 10.0 (instead of 10.5) because the input value of 10.5 does not
occur until 3:00:05. In this case, the interpolated value is inferred from the last value seen on stock
XYZ for time 3:00:03:

slice_time | symbol | first_bid
---------------------+--------+-----------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:03 | XYZ | 10

(2 rows)

The next example places the input records in 2-second time slices to return the first bid value for
each symbol/time slice combination:

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 434 of 817

=> SELECT slice_time, symbol, TS_FIRST_VALUE(bid) AS first_bid FROM TickStore
TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

The result now contains three records in 2-second increments, all of which occur between the first
input row at 03:00:00 and the second input row at 3:00:05. Note that the second and third output
record correspond to a time slice where there is no input record:

slice_time | symbol | first_bid
---------------------+--------+-----------
2009-01-01 03:00:00 | XYZ | 10

2009-01-01 03:00:02 | XYZ | 10
2009-01-01 03:00:04 | XYZ | 10
(3 rows)

Using the same table schema, the next query uses TS_LAST_VALUE(), with the TIMESERIES
clause to return the last values of each time slice (the values at the end of the time slices).

Note: Time series aggregate functions process the data that belongs to each time slice. One
output row is produced per time slice or per partition per time slice if a partition expression is
present.

=> SELECT slice_time, symbol, TS_LAST_VALUE(bid) AS last_bid FROM TickStore
TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Notice that the last value output row is 10.5 because the value 10.5 at time 3:00:05 was the last
point inside the 2-second time slice that started at 3:00:04:

slice_time | symbol | last_bid
---------------------+--------+----------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:02 | XYZ | 10
2009-01-01 03:00:04 | XYZ | 10.5

(3 rows)

Remember that because constant interpolation is the default, the same results are returned if you
write the query using the CONST parameter as follows:

=> SELECT slice_time, symbol, TS_LAST_VALUE(bid, 'CONST') AS last_bid FROM TickStore
TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Linear Interpolation
Based on the same input records described in the constant interpolation examples, which specify 2-
second time slices, the result of TS_LAST_VALUE with linear interpolation is as follows:

=> SELECT slice_time, symbol, TS_LAST_VALUE(bid, 'linear') AS last_bid FROM TickStore
TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 435 of 817

In the results, no last_bid value is returned for the last row because the query specified TS_LAST_
VALUE, and there is no data point after the 3:00:04 time slice to interpolate.

slice_time | symbol | last_bid
---------------------+--------+----------
2009-01-01 03:00:00 | XYZ | 10.2
2009-01-01 03:00:02 | XYZ | 10.4
2009-01-01 03:00:04 | XYZ |

(3 rows)

Using Multiple Time Series Aggregate Functions
Multiple time series aggregate functions can exists in the same query. They share the same gap-
filling policy as defined in the TIMESERIES clause; however, each time series aggregate function
can specify its own interpolation policy. In the following example, there are two constant and one
linear interpolation schemes, but all three functions use a three-second time slice:

=> SELECT slice_time, symbol,
TS_FIRST_VALUE(bid, 'const') fv_c,
TS_FIRST_VALUE(bid, 'linear') fv_l,
TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore
TIMESERIES slice_time AS '3 seconds' OVER(PARTITION BY symbol ORDER BY ts);

In the following output, the original output is compared to output returned by multiple time series
aggregate functions.

ts | symbol | bid
----------+--------+------
03:00:00 | XYZ | 10
03:00:05 | XYZ | 10.5

(2 rows)

==> slice_time | symbol | fv_c | fv_l | lv_c
---------------------+--------+------+------+------
2009-01-01 03:00:00 | XYZ | 10 | 10 | 10
2009-01-01 03:00:03 | XYZ | 10 | 10.3 | 10.5

(2 rows)

Using the Analytic LAST_VALUE() Function
Here's an example using LAST_VALUE(), so you can see the difference between it and the GFI
syntax.

=> SELECT *, LAST_VALUE(bid) OVER(PARTITION by symbol ORDER BY ts)
AS "last bid" FROM TickStore;

There is no gap filling and interpolation to the output values.

ts | symbol | bid | last bid
---------------------+--------+------+----------
2009-01-01 03:00:00 | XYZ | 10 | 10

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 436 of 817

2009-01-01 03:00:05 | XYZ | 10.5 | 10.5
(2 rows)

Using slice_time
In a TIMESERIES query, you cannot use the column slice_time in theWHERE clause because
theWHERE clause is evaluated before the TIMESERIES clause, and the slice_time column is
not generated until the TIMESERIES clause is evaluated. For example, HP Vertica does not
support the following query:

=> SELECT symbol, slice_time, TS_FIRST_VALUE(bid IGNORE NULLS) AS fv
FROM TickStore
WHERE slice_time = '2009-01-01 03:00:00'
TIMESERIES slice_time as '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

ERROR: Time Series timestamp alias/Time Series Aggregate Functions not allowed in WHERE
clause

Instead, you could write a subquery and put the predicate on slice_time in the outer query:

=> SELECT * FROM (
SELECT symbol, slice_time,

TS_FIRST_VALUE(bid IGNORE NULLS) AS fv
FROM TickStore
TIMESERIES slice_time AS '2 seconds'
OVER (PARTITION BY symbol ORDER BY ts)) sq

WHERE slice_time = '2009-01-01 03:00:00';
symbol | slice_time | fv

--------+---------------------+----
XYZ | 2009-01-01 03:00:00 | 10

(1 row)

Creating a Dense Time Series
The TIMESERIES clause provides a convenient way to create a dense time series for use in an
outer join with fact data. The results represent every time point, rather than just the time points for
which data exists.

The examples that follow use the same TickStore schema described in Gap Filling and Interpolation
(GFI), along with the addition of a new inner table for the purpose of creating a join:

=> CREATE TABLE inner_table (
ts TIMESTAMP,
bid FLOAT

);
=> CREATE PROJECTION inner_p (ts, bid) as SELECT * FROM inner_table

ORDER BY ts, bid UNSEGMENTED ALL NODES;
=> INSERT INTO inner_table VALUES ('2009-01-01 03:00:02', 1);
=> INSERT INTO inner_table VALUES ('2009-01-01 03:00:04', 2);
=> COMMIT;

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 437 of 817

You can create a simple union between the start and end range of the timeframe of interest in order
to return every time point. This example uses a 1-second time slice:

=> SELECT ts FROM (
SELECT '2009-01-01 03:00:00'::TIMESTAMP AS time FROM TickStore
UNION
SELECT '2009-01-01 03:00:05'::TIMESTAMP FROM TickStore) t

TIMESERIES ts AS '1 seconds' OVER(ORDER BY time);
ts

2009-01-01 03:00:00
2009-01-01 03:00:01
2009-01-01 03:00:02
2009-01-01 03:00:03
2009-01-01 03:00:04
2009-01-01 03:00:05

(6 rows)

The next query creates a union between the start and end range of the timeframe using 500-
millisecond time slices:

=> SELECT ts FROM (
SELECT '2009-01-01 03:00:00'::TIMESTAMP AS time
FROM TickStore
UNION
SELECT '2009-01-01 03:00:05'::TIMESTAMP FROM TickStore) t

TIMESERIES ts AS '500 milliseconds' OVER(ORDER BY time);
ts

2009-01-01 03:00:00
2009-01-01 03:00:00.5
2009-01-01 03:00:01
2009-01-01 03:00:01.5
2009-01-01 03:00:02
2009-01-01 03:00:02.5
2009-01-01 03:00:03
2009-01-01 03:00:03.5
2009-01-01 03:00:04
2009-01-01 03:00:04.5
2009-01-01 03:00:05

(11 rows)

The following query creates a union between the start- and end-range of the timeframe of interest
using 1-second time slices:

=> SELECT * FROM (
SELECT ts FROM (

SELECT '2009-01-01 03:00:00'::timestamp AS time FROM TickStore
UNION
SELECT '2009-01-01 03:00:05'::timestamp FROM TickStore) t
TIMESERIES ts AS '1 seconds' OVER(ORDER BY time)) AS outer_table

LEFT OUTER JOIN inner_table ON outer_table.ts = inner_table.ts;

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 438 of 817

The union returns a complete set of records from the left-joined table with thematched records in
the right-joined table. Where the query found nomatch, it extends the right side columnwith null
values:

ts | ts | bid
---------------------+---------------------+-----
2009-01-01 03:00:00 | |
2009-01-01 03:00:01 | |
2009-01-01 03:00:02 | 2009-01-01 03:00:02 | 1
2009-01-01 03:00:03 | |
2009-01-01 03:00:04 | 2009-01-01 03:00:04 | 2
2009-01-01 03:00:05 | |

(6 rows)

When Time Series Data Contains Null Values
Null values are not common inputs for gap-filling and interpolation (GFI) computation, but if null
values do exist, you can use time series aggregate functions (TS_FIRST_VALUE/TS_LAST_
VALUE) with the IGNORE NULLS arguments to affect output of the interpolated values. The TSA
functions are treated similarly to their analytic counterparts (FIRST_VALUE/LAST_VALUE) in that
if the timestamp itself is null HP Vertica filter out those rows before gap filling and interpolation
occurs.

The three images below will illustrate the points that follow on how HP Vertica handles time series
data that contains null values.

Figure 1. Interpolated bid
values when the input has no
NULLs

Figure 2. CONST-
interpolated bid values when
the input has NULL values

Figure 3. LINEAR-
interpolated bid values when
the input has NULL values

Constant Interpolation with Null Values
Figure 1 illustrates a default (constant) interpolation result on four input rows where none of the
inputs contains a NULL value. Figure 2 shows the same input rows with the addition of another

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 439 of 817

input record whose bid value is NULL, and whose timestamp (ts) value is 3:00:03.

For constant interpolation, the bid value starting at 3:00:03 is null until the next non-null bid value
appears in time. In Figure 2, the presence of the null row makes the interpolated bid value null in the
time interval denoted by the shaded region. As a result, if TS_FIRST_VALUE(bid) is evaluated with
constant interpolation on the time slice that begins at 3:00:02, its output is non-null. However, TS_
FIRST_VALUE(bid) on the next time slice produces null. If the last value of the 3:00:02 time slice is
null, the first value for the next time slice (3:00:04) is null. However, if you were to use a TSA
function with IGNORE NULLS, then the value at 3:00:04 would be the same value as it was at
3:00:02.

To illustrate, insert a new row into the TickStore table at 03:00:03 with a null bid value, HP Vertica
will output a row for the 03:00:02 record with a null value but no row for the 03:00:03 input:

=> INSERT INTO tickstore VALUES('2009-01-01 03:00:03', 'XYZ', NULL);
=> SELECT slice_time, symbol, TS_LAST_VALUE(bid) AS last_bid FROM TickStore
-> TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

slice_time | symbol | last_bid
---------------------+--------+----------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:02 | XYZ |
2009-01-01 03:00:04 | XYZ | 10.5

(3 rows)

If you specify IGNORE NULLS, HP Vertica fills in themissing data point using a constant
interpolation scheme. Here, the bid price at 03:00:02 is interpolated to the last known input record
for bid, which was $10 at 03:00:00:

=> SELECT slice_time, symbol, TS_LAST_VALUE(bid IGNORE NULLS) AS last_bid FROM TickStore
-> TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

slice_time | symbol | last_bid
---------------------+--------+----------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:02 | XYZ | 10
2009-01-01 03:00:04 | XYZ | 10.5

(3 rows)

Now if you were to insert a row where the timestamp column contained a null value, HP Vertica
would filter out that row before gap filling and interpolation occurred.

=> INSERT INTO tickstore VALUES(NULL, 'XYZ', 11.2);
=> SELECT slice_time, symbol, TS_LAST_VALUE(bid) AS last_bid FROM TickStore
-> TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

Notice there is no output for the 11.2 bid row:

slice_time | symbol | last_bid
---------------------+--------+----------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:02 | XYZ |
2009-01-01 03:00:04 | XYZ | 10.5

(3 rows)

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 440 of 817

Linear Interpolation with Null Values
For linear interpolation, the interpolated bid value becomes null in the time interval, which is
represented by the shaded region in Figure 3. In the presence of an input null value at 3:00:03, HP
Vertica cannot linearly interpolate the bid value around that time point.

HP Vertica takes the closest non null value on either side of the time slice and uses that value. For
example, if you use a linear interpolation scheme and you do not specify IGNORE NULLS, and
your data has one real value and one null, the result is null. If the value on either side is null, the
result is null. Therefore, to evaluate TS_FIRST_VALUE(bid)with linear interpolation on the time
slice that begins at 3:00:02, its output is null. TS_FIRST_VALUE(bid) on the next time slice remains
null.

=> SELECT slice_time, symbol, TS_FIRST_VALUE(bid, 'linear') AS fv_l FROM TickStore
-> TIMESERIES slice_time AS '2 seconds' OVER (PARTITION BY symbol ORDER BY ts);

slice_time | symbol | fv_l
---------------------+--------+------
2009-01-01 03:00:00 | XYZ | 10
2009-01-01 03:00:02 | XYZ |
2009-01-01 03:00:04 | XYZ |

(3 rows)

HP Vertica Programmer's Guide
Using Time Series Analytics

HP Vertica Analytics Platform (7.0.x) Page 441 of 817

Event Series Joins
An event series join is an HP Vertica SQL extension that enables the analysis of two series when
their measurement intervals don’t align precisely, such as with mismatched timestamps. You can
compare values from the two series directly, rather than having to normalize the series to the same
measurement interval.

Event series joins are an extension of Outer Joins, but instead of padding the non-preserved side
with NULL values when there is nomatch, the event series join pads the non-preserved side values
that it interpolates from the previous value.

The difference in how you write a regular join versus an event series join is the INTERPOLATE
predicate, which is used in the ON clause. For example, the following two statements show the
differences, which are shown in greater detail inWriting Event Series Joins.

Regular full outer join Event series join

SELECT * FROM hTicks h FULL OUTER JOIN aTicks
a
ON (h.time = a.time);

SELECT * FROM hTicks h FULL OUTER JOIN aTick
s a
ON (h.time INTERPOLATE PREVIOUS VALUE a.tim
e);

Similar to regular joins, an event series join has inner and outer join modes, which are described in
the topics that follow.

For full syntax, including notes and restrictions, see INTERPOLATE in the SQLReferenceManual

Sample Schema for Event Series Joins
Examples

If you don't plan to run the queries and just want to look at the examples, you can skip this topic and
move straight toWriting Event Series Joins.

Schema of hTicks and aTicks Tables
The examples that follow use the following hTicks and aTicks tables schemas:

CREATE TABLE hTicks (
stock VARCHAR(20),
time TIME,
price NUMERIC(8,2)

);
CREATE TABLE aTicks (

stock VARCHAR(20),
time TIME,
price NUMERIC(8,2)

);

Although TIMESTAMP is more commonly used for the event series column, the examples in this
topic use TIME to keep the output simple.

HP Vertica Analytics Platform (7.0.x) Page 442 of 817

INSERT INTO hTicks VALUES ('HPQ', '12:00', 50.00);
INSERT INTO hTicks VALUES ('HPQ', '12:01', 51.00);
INSERT INTO hTicks VALUES ('HPQ', '12:05', 51.00);
INSERT INTO hTicks VALUES ('HPQ', '12:06', 52.00);
INSERT INTO aTicks VALUES ('ACME', '12:00', 340.00);
INSERT INTO aTicks VALUES ('ACME', '12:03', 340.10);
INSERT INTO aTicks VALUES ('ACME', '12:05', 340.20);
INSERT INTO aTicks VALUES ('ACME', '12:05', 333.80);
COMMIT;

Output of the two tables:

hTicks aTicks

=> SELECT * FROM hTicks;

Notice there are no entry records between
12:02-12:04:

stock | time | price
-------+----------+-------
HPQ | 12:00:00 | 50.00
HPQ | 12:01:00 | 51.00
HPQ | 12:05:00 | 51.00
HPQ | 12:06:00 | 52.00

(4 rows)

=> SELECT * FROM aTicks;

Notice there are no entry records at 12:01, 12:02
and at 12:04:

stock | time | price
-------+----------+--------
ACME | 12:00:00 | 340.00
ACME | 12:03:00 | 340.10
ACME | 12:05:00 | 340.20
ACME | 12:05:00 | 333.80

(4 rows)

Example Query Showing Gaps
A full outer join shows the gaps in the timestamps:

=> SELECT * FROM hTicks h FULL OUTER JOIN aTicks a ON h.time = a.time;
stock | time | price | stock | time | price

-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:01:00 | 51.00 | | |
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20
HPQ | 12:06:00 | 52.00 | | |

| | | ACME | 12:03:00 | 340.10
(6 rows)

Schema of Bid and Asks Tables
The examples that follow use the following hTicks and aTicks tables schemas:

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 443 of 817

CREATE TABLE bid(stock VARCHAR(20), time TIME, price NUMERIC(8,2));
CREATE TABLE ask(stock VARCHAR(20), time TIME, price NUMERIC(8,2));
INSERT INTO bid VALUES ('HPQ', '12:00', 100.10);
INSERT INTO bid VALUES ('HPQ', '12:01', 100.00);
INSERT INTO bid VALUES ('ACME', '12:00', 80.00);
INSERT INTO bid VALUES ('ACME', '12:03', 79.80);
INSERT INTO bid VALUES ('ACME', '12:05', 79.90);
INSERT INTO ask VALUES ('HPQ', '12:01', 101.00);
INSERT INTO ask VALUES ('ACME', '12:00', 80.00);
INSERT INTO ask VALUES ('ACME', '12:02', 75.00);
COMMIT;

Output of the two tables:

bid ask

=> SELECT * FROM bid;

Notice there are no entry records for stock
ORCL at 12:02 and at 12:04:

stock | time | price
-------+----------+--------
HPQ | 12:00:00 | 100.10
HPQ | 12:01:00 | 100.00
ACME | 12:00:00 | 80.00
ACME | 12:03:00 | 79.80
ACME | 12:05:00 | 79.90

(5 rows)

=> SELECT * FROM ask;

Notice there are no entry records for stock IBM at
12:00 and none for ORCL at 12:01:

stock | time | price
-------+----------+--------
HPQ | 12:01:00 | 101.00
ACME | 12:00:00 | 80.00
ACME | 12:02:00 | 75.00

(3 rows)

Example Query Showing Gaps
A full outer join shows the gaps in the timestamps:

=> SELECT * FROM bid b FULL OUTER JOIN ask a ON b.time = a.time;
stock | time | price | stock | time | price

-------+----------+--------+-------+----------+--------
HPQ | 12:00:00 | 100.10 | ACME | 12:00:00 | 80.00
HPQ | 12:01:00 | 100.00 | HPQ | 12:01:00 | 101.00
ACME | 12:00:00 | 80.00 | ACME | 12:00:00 | 80.00
ACME | 12:03:00 | 79.80 | | |
ACME | 12:05:00 | 79.90 | | |

| | | ACME | 12:02:00 | 75.00
(6 rows)

Writing Event Series Joins
The examples in this topic contains mismatches between timestamps—just as you'd find in real life
situations; for example, there could be a period of inactivity on stocks where no trade occurs, which
can present challenges when you want to compare two stocks whose timestamps don't match.

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 444 of 817

The hTicks and aTicks Tables
As described in the example ticks schema, tables, hTicks is missing input rows for 12:02, 12:03,
and 12:04, and aTicks is missing inputs at 12:01, 12:02, and 12:04.

hTicks aTicks

=> SELECT * FROM hTicks;
stock | time | price

-------+----------+-------
HPQ | 12:00:00 | 50.00
HPQ | 12:01:00 | 51.00
HPQ | 12:05:00 | 51.00
HPQ | 12:06:00 | 52.00

(4 rows)

=> SELECT * FROM aTicks;
stock | time | price

-------+----------+--------
ACME | 12:00:00 | 340.00
ACME | 12:03:00 | 340.10
ACME | 12:05:00 | 340.20
ACME | 12:05:00 | 333.80

(4 rows)

Querying Event Series Data with Full Outer Joins
Using a traditional full outer join, this query find amatch between tables hTicks and aTicks at 12:00
and 12:05 and pads themissing data points with NULL values.

=> SELECT * FROM hTicks h FULL OUTER JOIN aTicks a ON (h.time = a.time);
stock | time | price | stock | time | price

-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:01:00 | 51.00 | | |
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20
HPQ | 12:06:00 | 52.00 | | |

| | | ACME | 12:03:00 | 340.10
(6 rows)

To replace the gaps with interpolated values for thosemissing data points, use the
INTERPOLATE predicate to create an event series join. The join condition is restricted to the ON
clause, which evaluates the equality predicate on the timestamp columns from the two input tables.
In other words, for each row in outer table hTicks, the ON clause predicates are evaluated for each
combination of each row in the inner table aTicks.

Simply rewrite the full outer join query to use the INTERPOLATE predicate with the required
PREVIOUS VALUE keywords. Note that a full outer join on event series data is themost common
scenario for event series data, where you keep all rows from both tables

=> SELECT * FROM hTicks h FULL OUTER JOIN aTicks a
ON (h.time INTERPOLATE PREVIOUS VALUE a.time);

HP Vertica interpolates themissing values (which appear as NULL in the full outer join) using that
table's previous value:

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 445 of 817

Note: The output ordering above is different from the regular full outer join because in the event
series join, interpolation occurs independently for each stock (hTicks and aTicks), where the
data is partitioned and sorted based on the equality predicate. This means that interpolation
occurs within, not across, partitions.

If you review the regular full outer join output, you can see that both tables have amatch in the time
column at 12:00 and 12:05, but at 12:01, there is no entry record for ACME. So the operation
interpolates a value for ACME (ACME,12:00,340) based on the previous value in the aTicks table.

Querying Event Series Data with Left Outer Joins
You can also use left and right outer joins. Youmight, for example, decide you want to preserve
only hTicks values. So you'd write a left outer join:

=> SELECT * FROM hTicks h LEFT OUTER JOIN aTicks a
ON (h.time INTERPOLATE PREVIOUS VALUE a.time);

stock | time | price | stock | time | price
-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:01:00 | 51.00 | ACME | 12:00:00 | 340.00
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20
HPQ | 12:06:00 | 52.00 | ACME | 12:05:00 | 340.20

(5 rows)

Here's what the same data looks like using a traditional left outer join:

=> SELECT * FROM hTicks h LEFT OUTER JOIN aTicks a ON h.time = a.time;
stock | time | price | stock | time | price

-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:01:00 | 51.00 | | |
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20
HPQ | 12:06:00 | 52.00 | | |

(5 rows)

Note that a right outer join has the same behavior with the preserved table reversed.

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 446 of 817

Querying Event Series Data with Inner Joins
Note that INNER event series joins behave the sameway as normal ANSI SQL-99 joins, where all
gaps are omitted. Thus, there is nothing to interpolate, and the following two queries are equivalent
and return the same result set:

A regular inner join:

=> SELECT * FROM HTicks h JOIN aTicks a
ON (h.time INTERPOLATE PREVIOUS VALUE a.time);

stock | time | price | stock | time | price
-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20

(3 rows)

An event series inner join:

=> SELECT * FROM HTicks h INNER JOIN aTicks a ON (h.time = a.time);
stock | time | price | stock | time | price

-------+----------+-------+-------+----------+--------
HPQ | 12:00:00 | 50.00 | ACME | 12:00:00 | 340.00
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 333.80
HPQ | 12:05:00 | 51.00 | ACME | 12:05:00 | 340.20

(3 rows)

The Bid and Ask Tables
Using the example schema for the bid and ask tables, write a full outer join to interpolate the
missing data points:

=> SELECT * FROM bid b FULL OUTER JOIN ask a
ON (b.stock = a.stock AND b.time INTERPOLATE PREVIOUS VALUE a.time);

In the below output, the first row for stock HPQ shows nulls because there is no entry record for
HPQ before 12:01.

stock | time | price | stock | time | price
-------+----------+--------+-------+----------+--------
ACME | 12:00:00 | 80.00 | ACME | 12:00:00 | 80.00
ACME | 12:00:00 | 80.00 | ACME | 12:02:00 | 75.00
ACME | 12:03:00 | 79.80 | ACME | 12:02:00 | 75.00
ACME | 12:05:00 | 79.90 | ACME | 12:02:00 | 75.00
HPQ | 12:00:00 | 100.10 | | |
HPQ | 12:01:00 | 100.00 | HPQ | 12:01:00 | 101.00

(6 rows)

Note also that the same row (ACME,12:02,75) from the ask table appears three times. The first
appearance is because nomatching rows are present in the bid table for the row in ask, so Vertica
interpolates themissing value using the ACME value at 12:02 (75.00). The second appearance

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 447 of 817

occurs because the row in bid (ACME,12:05,79.9) has nomatches in ask. The row from ask that
contains (ACME,12:02,75) is the closest row; thus, it is used to interpolate the values.

If you write a regular full outer join, you can see where themismatched timestamps occur:

=> SELECT * FROM bid b FULL OUTER JOIN ask a ON (b.time = a.time);
stock | time | price | stock | time | price

-------+----------+--------+-------+----------+--------
ACME | 12:00:00 | 80.00 | ACME | 12:00:00 | 80.00
ACME | 12:03:00 | 79.80 | | |
ACME | 12:05:00 | 79.90 | | |
HPQ | 12:00:00 | 100.10 | ACME | 12:00:00 | 80.00
HPQ | 12:01:00 | 100.00 | HPQ | 12:01:00 | 101.00

| | | ACME | 12:02:00 | 75.00
(6 rows)

HP Vertica Programmer's Guide
Event Series Joins

HP Vertica Analytics Platform (7.0.x) Page 448 of 817

Event Series Pattern Matching
The SQLMATCH clause syntax (described in the SQLReferenceManual) lets you screen large
amounts of historical data in search of event patterns. You specify a pattern as a regular expression
and can then search for the pattern within a sequence of input events. MATCH provides
subclauses for analytic data partitioning and ordering, and the patternmatching occurs on a
contiguous set of rows.

Patternmatching is particularly useful for clickstream analysis where youmight want to identify
users' actions based on theirWeb browsing behavior (page clicks). A typical online clickstream
funnel is:

Company home page -> product home page -> search -> results -> purchase online

Using the above clickstream funnel, you can search for amatch on the user's sequence of web
clicks and identify that the user:

l landed on the company home page

l navigated to the product page

l ran a search

l clicked a link from the search results

l made a purchase

Clickstream Funnel Schema
The examples in this topic use this clickstream funnel and the following clickstream_log table
schema:

HP Vertica Analytics Platform (7.0.x) Page 449 of 817

CREATE TABLE clickstream_log (
uid INT, --user ID
sid INT, --browsing session ID, produced by previous sessionization computati

on
ts TIME, --timestamp that occurred during the user's page visit
refURL VARCHAR(20), --URL of the page referencing PageURL
pageURL VARCHAR(20), --URL of the page being visited
action CHAR(1) --action the user took after visiting the page ('P' = Purchase, 'V'

= View)
);
INSERT INTO clickstream_log VALUES (1,100,'12:00','website1.com','website2.com/home', 'V');
INSERT INTO clickstream_log VALUES (1,100,'12:01','website2.com/home','website2.com/floby',
'V');
INSERT INTO clickstream_log VALUES (1,100,'12:02','website2.com/floby','website2.com/shamwo
w', 'V');
insert into clickstream_log values (1,100,'12:03','website2.com/shamwow','website2.com/bu
y', 'P');
insert into clickstream_log values (2,100,'12:10','website1.com','website2.com/home', 'V');
insert into clickstream_log values (2,100,'12:11','website2.com/home','website2.com/forks',
'V');
insert into clickstream_log values (2,100,'12:13','website2.com/forks','website2.com/buy',
'P');
COMMIT;

Here's the clickstream_log table's output:

=> SELECT * FROM clickstream_log;
uid | sid | ts | refURL | pageURL | action

-----+-----+----------+----------------------+----------------------+--------
1 | 100 | 12:00:00 | website1.com | website2.com/home | V
1 | 100 | 12:01:00 | website2.com/home | website2.com/floby | V
1 | 100 | 12:02:00 | website2.com/floby | website2.com/shamwow | V
1 | 100 | 12:03:00 | website2.com/shamwow | website2.com/buy | P
2 | 100 | 12:10:00 | website1.com | website2.com/home | V
2 | 100 | 12:11:00 | website2.com/home | website2.com/forks | V
2 | 100 | 12:13:00 | website2.com/forks | website2.com/buy | P

(7 rows)

Example
This example includes the HP Vertica patternmatching functions to analyze users' browsing
history over website2.com. It identifies patterns where the user performed the following tasks:

l Landed on website2.com from another web site (Entry)

l Browsed to any number of other pages (Onsite)

l Made a purchase (Purchase)

In the following statement, pattern P (Entry Onsite* Purchase) consist of three event types:
Entry, Onsite, and Purchase. When HP Vertica finds amatch in the input table, the associated
pattern instancemust be an event of type Entry followed by 0 or more events of typeOnsite, and an
event of type Purchase

HP Vertica Programmer's Guide
Event Series PatternMatching

HP Vertica Analytics Platform (7.0.x) Page 450 of 817

SELECT uid,
sid,
ts,
refurl,
pageurl,
action,
event_name(),
pattern_id(),
match_id()

FROM clickstream_log
MATCH

(PARTITION BY uid, sid ORDER BY ts
DEFINE

Entry AS RefURL NOT ILIKE '%website2.com%' AND PageURL ILIKE '%website2.com%',
Onsite AS PageURL ILIKE '%website2.com%' AND Action='V',
Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

PATTERN
P AS (Entry Onsite* Purchase)

RESULTS ALL ROWS);

In the output below, the first four rows represent the pattern for user 1's browsing activity, while the
following three rows show user 2's browsing habits.

uid | sid | ts | refurl | pageurl | action | event_name
| pattern_id | match_id
-----+-----+----------+----------------------+----------------------+--------+-----------
-+------------+----------

1 | 100 | 12:00:00 | website1.com | website2.com/home | V | Entry
| 1 | 1

1 | 100 | 12:01:00 | website2.com/home | website2.com/floby | V | Onsite
| 1 | 2

1 | 100 | 12:02:00 | website2.com/floby | website2.com/shamwow | V | Onsite
| 1 | 3

1 | 100 | 12:03:00 | website2.com/shamwow | website2.com/buy | P | Purchase
| 1 | 4

2 | 100 | 12:10:00 | website1.com | website2.com/home | V | Entry
| 1 | 1

2 | 100 | 12:11:00 | website2.com/home | website2.com/forks | V | Onsite
| 1 | 2

2 | 100 | 12:13:00 | website2.com/forks | website2.com/buy | P | Purchase
| 1 | 3
(7 rows)

See Also
l MATCH Clause

l PatternMatching Functions

l Perl Regular Expressions Documentation

HP Vertica Programmer's Guide
Event Series PatternMatching

HP Vertica Analytics Platform (7.0.x) Page 451 of 817

http://perldoc.perl.org/perlre.html

Optimizing Query Performance
When you submit a query to HP Vertica for processing, the HP Vertica query optimizer
automatically chooses a set of operations to compute the requested result. These operations
together are called a query plan. The choice of operations can drastically affect the run-time
performance and resource consumption needed to compute the query results. Depending on the
properties of the projections defined in your database, the query optimizer can choose faster and
more efficient operations to compute the query results.

This section describes the different operations that the optimizer uses and how you can get the
optimizer to use themost efficient operations to compute the results of your query.

Note: Database response time depends on factors such as type and size of the application
query, database design, data size and data types stored, available computational power, and
network bandwidth. Adding nodes to a database cluster does not necessarily improve the
system response time for every query, especially if the response time is already short, e.g.,
less then 10 seconds, or the response time is not hardware bound.

HP Vertica Analytics Platform (7.0.x) Page 452 of 817

First Steps for Improving Query Performance
To improve the performance of your queries, take the steps described in the following sections to
ensure that the database is optimized for query performance:

Run Database Designer
Your first step should always be to run Database Designer. Database Designer creates a physical
schema for your database that provides optimal query performance. The first time you run
Database Designer, create a comprehensive design andmake sure Database Designer has
relevant sample queries and data on which to base the design. If you develop performance issues
later, consider loading additional queries that you run frequently and rerun Database Designer to
create an incremental design.

For more information about running Database Designer, see Using the Database Designer.

When you run Database Designer, choose theUpdate Statistics option. The HP Vertica query
optimizer uses statistics about the data to create a query plan. Statistics help the optimizer
determine:

l Multiple eligible projections to answer the query

l The best order in which to perform joins

l Data distribution algorithms, such as broadcast and re-segmentation

If your statistics become out of date, run the ANALYZE_STATISTICS or ANALYZE_HISTOGRAM
function to update statistics for a given schema, table, or column. For more information, see
Collecting Database Statistics.

Check Query Events Proactively
TheQUERY_EVENTS system table identifies whether there are issues with the planning phase of
a query. In particular, the following values in the EVENT_TYPE columnmight indicate a problem
that needs to be addressed:

l PREDICATE OUTSIDE HISTOGRAM: The optimizer encountered a predicate that was false
for the entire histogram created by ANALYZE_STATISTICS or ANALYZE HISTOGRAM.

l NOHISTOGRAM: The optimizer encountered a predicate on a column for which it does not
have a histogram.

l MEMORY LIMIT HIT: The optimizer used all its allocatedmemory creating the query plan. If you
see this value, simplify your query instead of increasing thememory allocation.

TheQUERY_EVENTS table also gives a detailed description of each issue and suggests
solutions. For more information about this system table, seeQUERY_EVENTS.

HP Vertica Analytics Platform (7.0.x) Page 453 of 817

Review the Query Plan
A query plan is a sequence of step-like paths that the Vertica query optimizer selects to access or
alter information in your Vertica database. There are two ways to get information about the query
plan:

l Run the EXPLAIN command. Each step (path) represents a single operation that the optimizer
uses for its execution strategy.

l Query the QUERY_PLAN_PROFILES system table. This table provides detailed execution
status for currently running queries. Output from theQUERY_PLAN_PROFILES table shows
the real-time flow of data and the time and resources consumed for each path in each query plan.

For more information, see How to get query plan information.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 454 of 817

Optimizing Encoding to Improve Query
Performance

You can potentially make queries faster by changing the encoding of the columns. Encoding
reduces the on-disk size of your data so that the amount of I/O required for queries is reduced,
resulting in faster execution times. Make sure that all columns and projections included in the query
are using the correct encoding for the data. To do this, take the following steps:

1. Run Database Designer to create an incremental design. Database Designer implements the
optimum encoding and projection design.

2. After creating the incremental design, update statistics using the ANALYZE_STATISTICS
function.

3. Run EXPLAIN with one or more of the queries you submitted to the design tomake sure it is
using the new projections.

Alternatively, run DESIGNER_DESIGN_PROJECTION_ENCODINGS to re-evaluate the current
encoding and update it if necessary.

Improving the Compression of FLOAT Columns
If you are seeing slow performance or a large storage footprint with your FLOAT data, evaluate the
data and your business needs to to see if it can be contained in a NUMERIC columnwith a
precision of 18 digits or less. Converting a FLOAT column to a NUMERIC column can improve data
compression, reduce the on-disk size of your database, and improve the performance of queries on
that column.

When you define a NUMERIC data type, you specify the precision and the scale; NUMERIC data
are exact representations of data. FLOAT data types represent variable precision and approximate
values; they take upmore space in the database.

Converting FLOAT columns to NUMERIC columns is most effective when:

l The precision of the NUMERIC column is 18 digits or less. Vertica has finetuned the
performance of NUMERIC data for the common case of 18 digits of precision. Vertica does not
recommend converting FLOAT columns to NUMERIC columns that require a precision of more
than 18 digits.

l The precision of the FLOAT values is bounded, and the values will all fall within a specified
precision for a NUMERIC column. One example is monetary values like product prices or
financial transaction amounts. For example, a column defined as NUMERIC(11,2) can
accommodate prices from 0 to a few million dollars and can store cents, and compresses more
efficiently than a FLOAT column.

If you try to load a value into a NUMERIC column that exceeds the specified precision, Vertica
gives an error and does not load the data. If you assign a value with more decimal digits than the
specified scale, the value is rounded tomatch the specified scale and stored in that column.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 455 of 817

Formore information, see Numeric Data Types.

Using Run Length Encoding (RLE) to Improve Query
Performance

If you run Database Designer and choose to optimize for loads, whichminimizes database
footprint, Database Designer applies themost appropriate encodings, including RLE, to columns in
order to maximize query performance.

In an HP Vertica database, run length encoding (RLE) replaces sequences (runs) of identical data
values in a columnwith a set of pairs, where each pair represents the value and number of
occurrences. For example, a gender columnmight have 47 instances of F and 56 instances of M.
Using RLE, HP Vertica can save disk space by storing the pairs (47, F) and (56, M).

The advantage of RLE is that it reduces disk I/O and results in a smaller storage footprint for the
database. Use RLE for low-cardinality columns, where the average repetition count is less than 10.
For example, a gender columnwith 47 F values and 56M values can benefit from RLE. A gender
columnwith 6 F values and 10M values, where the average repetition count is 8, does not benefit
from RLE.

Optimizing Projections for Queries with
Predicates

If your query contains one or more predicates, you canmodify the projections to improve the
query's performance, as described in the following two examples.

Example 1: Queries That Use Date Ranges
This first example shows how to encode data using RLE and change the projection sort order to
improve the performance of a query that retrieves all data within a given date range.

Suppose you have a query that looks like this:

=> SELECT * FROM trades
WHERE trade_date BETWEEN '2007-11-01' AND '2007-12-01';

To optimize this query, determine whether all of the projections can perform the SELECT operation
in a timely manner. Run SELECT COUNT(*) statement for each projection, specifying the date
range, and note the response time. For example:

=> SELECT COUNT(*) FROM [projection_name]
WHERE trade_date BETWEEN '2007-11-01' AND '2007-12-01;

If one or more of the queries is slow, check the uniqueness of the trade_date column and
determine if it needs to be in the projection’s ORDER BY clause and/or can be encoded usingRLE.
RLE replaces sequences of the same data values within a column by a pair that represents the
value and a count. For best results, order the columns in the projection from lowest cardinality to
highest cardinality, and use RLE to encode the data in low-cardinality columns.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 456 of 817

Note: For an example of using sorting and RLE, see Choosing Sort Order: Best Practices.

If the number of unique columns is unsorted, or if the average number of repeated rows is less than
10, trade_date is too close to being unique and cannot be encoded using RLE. In this case, add a
new column tominimize the search scope.

The following example adds a new column trade_year:

1. Determine if the new column trade_year returns amanageable result set. The following query
returns the data grouped by trade_year:

=> SELECT DATE_TRUNC('trade_year', trade_date), COUNT(*)
FROM trades
GROUP BY DATE_TRUNC('trade_year',trade_date);

2. Assuming that trade_year = 2007 is near 8k, add a column for trade_year to the trades
table. The SELECT statement then becomes:

=> SELECT * FROM trades
WHERE trade_year = 2007
AND trade_date BETWEEN '2007-11-01' AND '2007-12-01';

As a result, you have a projection that is sorted on trade_year, which can be encoded using
RLE.

Example 2: Queries for Tables with a High-
Cardinality Primary Key

This example demonstrates how you canmodify the projection to improve the performance of
queries that select data from a table with a high-cardinality primary key.

Suppose you have the following query:

=> SELECT FROM [table]
WHERE pk IN (12345, 12346, 12347,...);

Because the primary key is a high-cardinality column, HP Vertica has to search a large amount of
data.

To optimize the schema for this query, create a new column named buckets and assign it the value
of the primary key divided by 10000. In this example, buckets=(int) pk/10000. Use the buckets
column to limit the search scope as follows:

=> SELECT FROM [table]
WHERE buckets IN (1,...)
AND pk IN (12345, 12346, 12347,...);

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 457 of 817

Creating a lower cardinality column and adding it to the query limits the search scope and improves
the query performance. In addition, if you create a projection where buckets is first in the sort order,
the query may run even faster.

Optimizing Projections for MERGE Operations
The HP Vertica query optimizer automatically picks the best projections to use for queries, but you
can help improve the performance of MERGE operations by ensuring projections are designed for
optimal use.

Good projection design lets HP Vertica choose the faster merge join between the target and source
tables without having to perform additional sort and data transfer operations.

HP recommends that you first useDatabase Designer to generate a comprehensive design and
then customize projections, as needed. Be sure to first review the topics in Planning Your Design.
Failure to follow those considerations could result in non-functioning projections.

In the following MERGE statement, HP Vertica inserts and/or updates records from the source
table's column b into the target table's column a:

=> MERGE INTO target t USING source s ON t.a = s.b WHEN

HP Vertica can use a local merge join if tables target and source use one of the following
projection designs, where their inputs are pre-sorted through the CREATE PROJECTION ORDER BY
clause:

l Replicated projections that are sorted on:

n Column a for target

n Column b for source

l Segmented projections that are identically segmented on:

n Column a for target

n Column b for source

n Corresponding segmented columns

Tip: For best merge performance, the source table should be smaller than the target table.

See Also
l Optimized Versus Non-OptimizedMERGE

l Best Practices for OptimizingMERGE Statements

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 458 of 817

Optimizing GROUP BY Queries
This section explains several ways you can design your projections to optimize the performance of
your GROUP BY queries.

Partially Sorted GROUPBY
Partially sorted GROUPBY is an optimization for queries for which a projection is sorted on a
subset of the aggregated columns.

When processing aggregate queries on large data sets, the HP Vertica optimizer automatically
uses the partially sorted GROUPBY optimization to prevent or reduce the chance that hash tables
will spill to disk during query processing. This optimization has a significant impact when a query
uses two or more DISTINCT aggregate functions, such as COUNT or SUM.

The partially sorted GROUPBY optimization does not optimize queries where the data sets are
small enough to fit entirely in mainmemory.

For two examples of queries that use the partially sorted GROUPBY optimization:

l Partially Sorted GROUPBY with Multiple DISTINCT Aggregate Function Calls

l Partially Sorted GROUPBY WhenGROUP BY ColumnCrosses Join

Partially Sorted GROUPBY with Multiple
DISTINCT Aggregate Function Calls

The following example shows the EXPLAIN query plan that uses partially sorted GROUPBY. To try
this example, take these steps to create and populate tables in the VMart database and then
generate the query plan:

$ cd /opt/Vertica/examples/VMart_Schema
$ ls vmart_gen
$ vsql
-- create and populate the example tables from the .tbl files
=>\i vmart_create_schema.sql
=>\i vmart_load_data.sql
-- verify table population
=> SELECT COUNT(*) FROM store.store_sales_fact;
COUNT

5000000
(1 row)
=> CREATE PROJECTION store.store_sales_fact_by_store_and_date AS
SELECT * FROM store.store_sales_fact f
ORDER BY f.store_key, f.date_key;
=> SELECT START_REFRESH(); -- wait a few seconds before running queries

The query plan shows that optimizer uses the partially sorted GROUPBY optimization because the
GROUP BY column, store_key, is one of the sort columns in the projection, store.store_sales_

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 459 of 817

fact_by_store_and_date, and contains more than one call to a COUNT or SUM function with the
DISTINCT keyword. The partially sorted GROUPBY optimization can have a significant impact on
the performance of such queries.

VMart=> EXPLAIN SELECT COUNT(distinct customer_key) AS cntd_cust,
store_key,
COUNT(DISTINCT product_key) AS cntd_prod,
COUNT(DISTINCT promotion_key) AS cntd_promo,
SUM(sales_dollar_amount) AS sum_sales_dollar,
SUM(cost_dollar_amount) AS sum_cost_dollar

FROM store.store_sales_fact
GROUP BY store_key
ORDER BY cntd_cust DESC
LIMIT 25;

Access Path:

+-SELECT LIMIT 25 [Cost: 43K, Rows: 25 (NO STATISTICS)] (PATH ID: 0)
| Output Only: 25 tuples
| +---> SORT [TOPK] [Cost: 43K, Rows: 10K (NO STATISTICS)] (PATH ID: 1)
| | Order: "Sqry$_1".cntd_cust DESC
| | Output Only: 25 tuples
| | +---> JOIN MERGEJOIN(inputs presorted) [Cost: 43K, Rows: 10K (NO STATISTICS)] (PATH I
D: 2)
| | | Join Cond: ("Sqry$_2".store_key <=> "Sqry$_3".store_key)
| | | +-- Outer -> JOIN MERGEJOIN(inputs presorted) [Cost: 32K, Rows: 10K (NO STATISTIC
S)] (PATH ID: 3)
| | | | Join Cond: ("Sqry$_1".store_key <=> "Sqry$_2".store_key)
| | | | +-- Outer -> SELECT [Cost: 22K, Rows: 10K (NO STATISTICS)] (PATH ID: 4)
| | | | | +---> GROUPBY HASH (SORT OUTPUT) (LOCAL RESEGMENT GROUPS) [Cost: 22K, Rows: 10K
(NO STATISTICS)] (PATH ID: 5)
| | | | | Aggregates: count(DISTINCT store_sales_fact.customer_key), sum(<SVAR>), su
m(<SVAR>)
| | | | | | Group By: store_sales_fact.store_key
| | | | | | Partially sorted keys: 1
| | | | | | +---> GROUPBY HASH (LOCAL RESEGMENT GROUPS) [Cost: 22K, Rows: 10K (NO STATIST
ICS)] (PATH ID: 6)
| | | | | | | Aggregates: sum(store_sales_fact.sales_dollar_amount), sum(store_sale
s_fact.cost_dollar_amount)
| | | | | | | Group By: store_sales_fact.store_key, store_sales_fact.customer_key
| | | | | | | Partially sorted keys: 1
| | | | | | | +---> STORAGE ACCESS for store_sales_fact [Cost: 18K, Rows: 5M (NO STATISTI
CS)] (PATH ID: 7)
...

Partially Sorted GROUPBY When GROUP BY Column
Crosses Join

The following example illustrates a query that uses partially sorted GROUPBY. To try this example,
take these steps to create and populate tables in the VMart database and then generate the query
plan:

$ cd /opt/Vertica/examples/VMart_Schema
$ ls vmart_gen
$ vsql

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 460 of 817

-- create and populate the example tables from the .tbl files
=>\i vmart_create_schema.sql
=>\i vmart_load_data.sql
-- verify table population
=> SELECT COUNT(*) FROM store.store_sales_fact;
COUNT

5000000
(1 row)
=> CREATE PROJECTION store.store_sales_fact_by_store_and_date AS
SELECT * FROM store.store_sales_fact f
ORDER BY f.store_key, f.date_key;
=> SELECT START_REFRESH(); -- wait a few seconds before running queries

If the GROUP BY columns are a subset of the sort order and descriptive attributes joined from
another table (typically, a dimension table), the optimizer may choose a partially sorted GROUPBY
optimization if it estimates that doing so would reduce the cost of query execution.

In the following example, the fact table has an available projection sorted on store_key, but the
query results are to be grouped on themore descriptive attribute store_name. TheGROUP BY
query can be restructured as a nested query in which the subquery is an optimized query against
the fact table, while the outer query joins with the dimension table to provide the store_name
column:

Access Path:
+-SELECT LIMIT 25 [Cost: 44K, Rows: 25 (NO STATISTICS)] (PATH ID: 0)
| Output Only: 25 tuples
| +---> SORT [TOPK] [Cost: 44K, Rows: 10K (NO STATISTICS)] (PATH ID: 1)
| | Order: subq.cntd_cust DESC
| | Output Only: 25 tuples
| | +---> JOIN MERGEJOIN(inputs presorted) [Cost: 43K, Rows: 10K (NO STATISTICS)] (PATH I
D: 2)
| | | Join Cond: (subq.store_key = sdim.store_key)
| | | +-- Outer -> SELECT [Cost: 43K, Rows: 10K (NO STATISTICS)] (PATH ID: 3)
| | | | +---> JOIN MERGEJOIN(inputs presorted) [Cost: 43K, Rows: 10K (NO STATISTICS)] (PA
TH ID: 4)
| | | | | Join Cond: ("Sqry$_2".store_key <=> "Sqry$_3".store_key)
| | | | | +-- Outer -> JOIN MERGEJOIN(inputs presorted) [Cost: 32K, Rows: 10K (NO STATIST
ICS)] (PATH ID: 5)
| | | | | | Join Cond: ("Sqry$_1".store_key <=> "Sqry$_2".store_key)
| | | | | | +-- Outer -> SELECT [Cost: 22K, Rows: 10K (NO STATISTICS)] (PATH ID: 6)
| | | | | | | +---> GROUPBY HASH (SORT OUTPUT) (LOCAL RESEGMENT GROUPS) [Cost:22K, Rows:
10K (NO STATISTICS)] (PATH ID: 7)
| | | | | | | | Aggregates: count(DISTINCT store_sales_fact.customer_key), sum(<SVA
R>), sum(<SVAR>)
| | | | | | | | Group By: store_sales_fact.store_key
| | | | | | | | Partially sorted keys: 1
| | | | | | | | +---> GROUPBY HASH (LOCAL RESEGMENT GROUPS) [Cost: 22K, Rows: 1 0K (NO ST
ATISTICS)] (PATH ID: 8)
| | | | | | | | | Aggregates: sum(store_sales_fact.sales_dollar_amount), sum(store_s
ales_fact.cost_dollar_amount)
| | | | | | | | | Group By: store_sales_fact.store_key, store_sales_fact.customer_ke
y
| | | | | | | | | Partially sorted keys: 1
| | | | | | | | | +---> STORAGE ACCESS for store_sales_fact [Cost: 18K, Rows: 5M (NO

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 461 of 817

STATISTICS)] (PATH ID: 9)
| | | | | | | | | | Materialize: store_sales_fact.store_key, store_sales_fact.custom
er_key, store_sales_fact.sales_dollar_amount, store_sales_fact.cost_dollar_amount
| | | | | | | | | | Runtime Filters: (SIP2(MergeJoin): "Sqry$_1".store_key), (SIP2(M
ergeJoin): "Sqry$_1".store_key), (SIP3(MergeJoin): subq.store_key)
| | | | | | +-- Inner -> SELECT [Cost: 11K, Rows: 10K (NO STATISTICS)] (PATH ID: 10)
| | | | | | | +---> GROUPBY HASH (SORT OUTPUT) (LOCAL RESEGMENT GROUPS) [Cost:11K, Rows:
10K (NO STATISTICS)] (PATH ID: 11)
| | | | | | | | Aggregates: count(DISTINCT store_sales_fact.product_key)
| | | | | | | | Group By: store_sales_fact.store_key
| | | | | | | | Partially sorted keys: 1
| | | | | | | | +---> GROUPBY HASH (LOCAL RESEGMENT GROUPS) [Cost: 11K, Rows: 1 0K (NO ST
ATISTICS)] (PATH ID: 12)
| | | | | | | | | Group By: store_sales_fact.store_key, store_sales_fact.product_key
| | | | | | | | | Partially sorted keys: 1
| | | | | | | | | +---> STORAGE ACCESS for store_sales_fact [Cost: 9K, Rows: 5M (NO STATI
STICS)] (PATH ID: 13)
...

Avoiding GROUPBY HASH with Projection Design
If your query contains a GROUP BY clause, HP Vertica computes the result with either the GROUPBY
PIPELINED or GROUPBY HASH algorithm.

Both algorithms compute the same results and have similar performance when the query produces
a small number of distinct groups (typically a thousand per node in the cluster). For queries that
contain a large number of groups, GROUPBY PIPELINED uses less memory and can be faster but is
only used when the input data is pre-sorted on the GROUP BY columns.

To improve the performance of a query that has a large number of distinct groups that is currently
using the GROUP BY HASH algorithm, you can enable the use of the GROUPBY PIPELINED algorithm,
as this section describes.

To determine which algorithm your query is using, run the EXPLAIN statement on the query.

The three conditions described in this section refer to the following schema.

CREATE TABLE sortopt (
a INT NOT NULL,
b INT NOT NULL,
c INT,
d INT

);
CREATE PROJECTION sortopt_p (

a_proj,
b_proj,
c_proj,
d_proj)

AS SELECT * FROM sortopt
ORDER BY a,b,c
UNSEGMENTED ALL NODES;
INSERT INTO sortopt VALUES(5,2,13,84);
INSERT INTO sortopt VALUES(14,22,8,115);
INSERT INTO sortopt VALUES(79,9,401,33);

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 462 of 817

Condition #1
All columns in the query's GROUP BY clausemust be included in the projection's sort columns. If
even one column in the GROUP BY clause is excluded from the projection's ORDER BY clause, HP
Vertica uses GROUPBY HASH instead of GROUPBY PIPELINED:

Given a projection sort order ORDER BY a, b, c:

GROUP BY a

GROUP BY a,b

GROUP BY b,a

GROUP BY a,b,c

GROUP BY c,a,b

The query optimizer uses GROUPBY PIPELINED because columns a, b, and c
are included in the projection sort columns.

GROUP BY a,b,c,d The query optimizer uses GROUPBY HASH because column d is not part of the
projection sort columns.

Condition #2
If the number of columns in the query's GROUP BY clause is less than the number of columns in the
projection's ORDER BY clause, columns in the query's GROUP BY clausemust occur first in the
projection's ORDER BY clause.

Given a projection sort order ORDER BY a, b ,c:

GROUP BY a

GROUP BY a,b

GROUP BY b,a

GROUP BY a,b,c

GROUP BY c,a,b

The query optimizer uses GROUPBY PIPELINED because columns a, b, c are
included in the projection sort columns.

GROUP BY a,c The query optimizer uses GROUPBY HASH because columns a and c do not occur
first in the projection sort columns.

Condition #3
If the columns in a query's GROUP BY clause do not appear first in the projection's ORDER BY clause,
then any early-appearing projection sort columns that aremissing in the query's GROUP BY clause
must be present as single-column constant equality predicates in the query's WHERE clause.

Given a projection sort order ORDER BY a, b, c:

SELECT a FROM tab WHERE a = 10 GROUP BY b The query optimizer uses GROUPBY PIPELINED
because all columns preceding b in the
projection sort order appear as constant
equality predicates.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 463 of 817

SELECT a FROM tab WHERE a = 10 GROUP BY a, b The query optimizer uses GROUPBY PIPELINED
even if redundant grouping column a is present.

SELECT a FROM tab WHERE a = 10 GROUP BY b, c The query optimizer uses GROUPBY PIPELINED
because all columns preceding b and c in the
projection sort order appear as constant
equality predicates.

SELECT a FROM tab WHERE a = 10 GROUP BY c, b The query optimizer uses GROUPBY PIPELINED
because all columns preceding b and c in the
projection sort order appear as constant
equality predicates.

SELECT a FROM tab WHERE a = 10 GROUP BY c The query optimizer uses GROUPBY HASH
because all columns preceding c in the
projection sort order do not appear as constant
equality predicates.

Avoiding Resegmentation During GROUP BY
Optimization with Projection Design

To compute the correct result of a query that contains a GROUP BY clause, HP Verticamust ensure
that all rows with the same value in the GROUP BY expressions end up at the same node for final
computation. If the projection design already guarantees the data is segmented by the GROUP BY
columns, no resegmentation is required ar run time.

To avoid resegmentation, the GROUP BY clausemust contain all the segmentation columns of the
projection, but it can also contain other columns.

When your query includes a GROUP BY clause and joins, the joins are performed first. The result of
the join operation is the input to the GROUP BY clause. The segmentation of those intermediate
results may not be consistent with the GROUP BY clause in your query, resulted in resegmentation at
run time.

If your query does not include joins, the GROUP BY clauses are processed using the existing
database projections.

Examples
Assume the following projection:

CREATE PROJECTION … SEGMENTED BY HASH(a,b) ALL NODES

The following table explains whether or not resegmentation occurs at run time and why.

GROUP BY a Requires resegmentation at run time. The query does not contain all the
projection segmentation columns.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 464 of 817

GROUP BY a, b Does not require resegmentation at run time. The GROUP BY clause contains
all the projection segmentation columns.

GROUP BY a, b, c Does not require resegmentation at run time. The GROUP BY clause contains
all the projection segmentation columns.

GROUP BY a+1, b Requires resegmentation at run time because of the expression on column a.

To determine if resegmentation will occurs during your GROUP BY query, look at the EXPLAIN plan.

For example, the following plan uses GROUPBY PIPELINED sort optimization and requires
resegmentation to perform the GROUP BY calculation:

+-GROUPBY PIPELINED (RESEGMENT GROUPS) [Cost: 194, Rows: 10K (NO STATISTICS)]
(PATH ID: 1)

The following plan uses GROUPBY PIPELINED sort optimization, but does not require
resegmentation:

+-GROUPBY PIPELINED [Cost: 459, Rows: 10K (NO STATISTICS)] (PATH ID: 1)

Optimizing DISTINCT in a SELECT Query List
This section describes how to optimize queries that have the DISTINCT keyword in their SELECT list.
The techniques for optimizing DISTINCT queries are similar to the techniques for optimizing
GROUP BY queries because when processing queries that use DISTINCT, the HP Vertica
optimizer rewrites the query as a GROUP BY query.

The examples in this section use the following table:

CREATE TABLE table1 (
a INT,
b INT,
c INT

);

The following section give examples for specific situations:

l If the Query Has No Aggregates in the SELECT List

l Optimizing COUNT (DISTINCT) andOther DISTINCT Aggregates

l If the Query Has a Single DISTINCT Aggregate

l If the Query Has Multiple DISTINCT Aggregates

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 465 of 817

If the Query Has No Aggregates in the SELECT List
If your query has no aggregates in the SELECT list, internally, Vertica treats the query as if it uses
GROUP BY instead.

For example, you can rewrite the following query:

SELECT DISTINCTa, b, c FROM table1;

as:

SELECT a, b, c FROM table1 GROUP BY a, b, c;

For fastest execution, apply the optimization techniques for GROUP BY queries described in
Optimizing GROUP BY Queries.

Optimizing COUNT (DISTINCT) and Other DISTINCT
Aggregates

Computing a DISTINCT aggregate generally requires muchmore work than other aggregates, so if
your query can be expressed without DISTINCT aggregates, the query executes faster. Similarly, a
query that uses a single DISTINCT aggregate requires less time and resources to compute than a
query with multiple DISTINCT aggregates. Internally, Vertica handles queries with a single
DISTINCT aggregate differently from queries with multiple DISTINCT aggregates.

The examples in this section use the following table:

CREATE TABLE table1 (
a INT,
b INT,
c INT

);

Optimizing COUNT (DISTINCT) by Calculating
Approximate Counts

HP Vertica provides the COUNT(DISTINCT) function to compute the exact number of distinct
values in a data set. If projections are available that allow COUNT(DISTINCT) to execute using the
GROUPBY PIPELINED algorithm, COUNT(DISTINCT) performs well. In some situations,
however, using APPROXIMATE_COUNT_DISTINCT performs better than COUNT(DISTINCT).

A COUNT [Aggregate] operation performs well when:

l One of the sorted projections delivers an order that enables sorted aggregation to be performed.

l The number of distinct values is fairly small.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 466 of 817

l Hashed aggregation is required to execute the query.

When an approximate value will suffice or the values need to be rolled up, consider using the
APPROXIMATE_COUNT_DISTINCT* functions.

Note: The APPROXIMATE_COUNT_DISTINCT* functions cannot appear in the same
query block as DISTINCT aggregates.

When to Use the Approximate Count Distinct Functions
Use APPROXIMATE_COUNT_DISTINCT as a direct replacement for COUNT (DISTINCT)
when:

l You have a large data set and you do not require an exact count of distinct values.

l The performance of COUNT(DISTINCT) on a given data set is insufficient.

l You calculate several distinct counts in the same query.

l The plan for COUNT(DISTINCT) uses hashed aggregation.

Most of the time, APPROXIMATE_COUNT_DISTINCT executes faster than a comparable
COUNT(DISTINCT) operation when hashed.

The expected value that APPROXIMATE_COUNT_DISTINCT returns is equal to COUNT
(DISTINCT), with an error that is lognormally distributed with standard deviation s. You can control
the standard deviation directly by setting the error_tolerance.

Use APPROXIMATE_COUNT_DISTINCT_SYNOPSIS and APPROXIMATE_COUNT_
DISTINCT_OF_SYNOPSIS together when:

l You have a large data set and you don't require an exact count of distinct values.

l The performance of COUNT(DISTINCT) on a given data set is insufficient.

and

l Youwant to pre-compute the distinct counts and later combine them in different ways.

Pass APPROXIMATE_COUNT_DISTINCT_SYNOPSIS the data set and a normally distributed
confidence interval. The function returns amaterialized view of the data, called a synopsis;

Pass the synopsis to the APPROXIMATE_COUNT_DISTINCT_OF_SYNOPSIS function, which
then performs an approximate count distinct on the synopsis.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 467 of 817

If the Query Has a Single DISTINCT Aggregate
Vertica computes a DISTINCT aggregate by first removing all duplicate values of the aggregate's
argument to find the distinct values. Then it computes the aggregate.

For example, you can rewrite the following query:

SELECT a, b, COUNT(DISTINCT c) AS dcnt FROM table1 GROUP BY a, b;

as:

SELECT a, b, COUNT(dcnt) FROM
(SELECT a, b, c AS dcnt FROM table1 GROUP BY a, b, c)

GROUP BY a, b;

For fastest execution, apply the optimization techniques for GROUP BY queries.

If the Query Has Multiple DISTINCT Aggregates
If your query has multiple DISTINCT aggregates, there is no straightforward SQL rewrite that can
compute them. The following query cannot easily be rewritten for improved performance:

SELECT a, COUNT(DISTINCT b), COUNT(DISTINCT c) AS dcnt FROM table1 GROUP BY a;

For a query with multiple DISTINCT aggregates, there is no projection design that can avoid using
GROUPBY HASH and resegmenting the data. To improve performance of this query, make sure that it
has large amounts of memory available. For more information about memory allocation for queries,
see The ResourceManager.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 468 of 817

Optimizing JOIN Queries
When you run a query that references more than one table, HP Verticamay need to do one or both
of the following operations to join the tables together:

l Sort the data

l Resegment the data

The following sections provide recommendations for designing your projections and your queries to
reduce query run time and improve the performance of queries that perform joins.

Hash Joins vs. Merge Joins
When processing a join, the HP Vertica optimizer has two algorithms to choose from:

l Merge join—If both inputs are pre-sorted on the join column, the optimizer chooses the faster
merge join, which also uses less memory. Vertica can only perform merge joins on queries that
have INSERT and SELECT operations.

l Hash join—Using the hash join algorithm, HP Vertica uses the smaller (inner) joined table to
build an in-memory hash table on the join column. HP Vertica then scans the outer (larger) table
and probes the hash table for matches. A hash join has no sort requirement, but it consumes
morememory because a hash table is built with the values in the inner table.The cost of
performing a hash join is low if the entire hash table can fit in memory, but the cost rises when
the hash table is written to disk. The optimizer chooses a hash join when projections are not
sorted on the join columns.

The optimizer automatically chooses themost appropriate algorithm given the query and
projections in a system. You can facilitate amerge join by adding a projection that is sorted on the
join key.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 469 of 817

Optimizing for Merge Joins
To have HP Vertica perform amerge join, which is usually faster than a hash join, design
projections where the join key is the first sorted column. HP Vertica also performs amerge join if
the join key is second in the sort order, following the column used in the equality predicate.
Otherwise, use a subquery to sort the table on the join key before performing the join.

The following projections are ordered by join_key, so the SELECT statement executes as amerge
join:

CREATE TABLE first (
data INT,
join_key INT
);

CREATE TABLE second (
data INT,
join_key INT
);

CREATE PROJECTION first_p (data, join_key) AS
SELECT data, join_key FROM first
ORDER BY join_key;

CREATE PROJECTION second_p (data, join_key) AS
SELECT data, join_key FROM second
ORDER BY join_key;

SELECT first.data, second.data FROM first, second
WHERE first.join_key = second.join_key;

You also get amerge join if your query has an equality predicate in your query and the join key
immediately follows the column used in the equality predicate, as in the following example. After
applying the predicate, the data is sorted by the join_key column:

CREATE TABLE first (
data INT,
join_key INT
);

CREATE TABLE second (
data INT,
join_key INT
);

CREATE PROJECTION first_p (data, join_key)
AS SELECT data, join_key FROM first
ORDER BY data, join_key;

CREATE PROJECTION second_p (data, join_key)
AS SELECT data, join_key FROM second
ORDER BY join_key;

SELECT first.data, second.data FROM first, second
WHERE first.join_key = second.join_key AND first.data = 5;

Using Equality Predicates to Optimize Joins
Joins run faster if all the columns on the left side of the equality predicate come from one table and
all the columns on the right side of the equality predicate come from another table. For example:

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 470 of 817

=> SELECT * FROM T JOIN X WHERE T.a + T.b = X.x1 - X.x2;

The following query requires muchmore work to compute:

=> SELECT * FROM T JOIN X WHERE T.a = X.x1 + T.b

Specifying INNER and OUTER Tables to Optimize
Joins

To improve the performance of queries that perform joins, make sure that HP Vertica chooses the
larger table as the outer (left hand) input by ensuring that any applicable constraints are defined.

Avoiding Resegmentation During Joins
To improve query performance when you join multiple tables, create projections that are identically
segmented on the join keys. These are called identically-segmented projections (ISPs). Identically-
segmented projections allow the joins to occur locally on each node without any datamovement
across the network during query processing.

To determine if the projections are identically-segmented on the query join keys, create a query plan
with EXPLAIN. If the query plan contains RESEGMENT or BROADCAST, the projections are not
identically segmented.

The HP Vertica optimizer chooses a projection to supply rows for each table in a query. If two
chosen projections to be joined are segmented, the optimizer uses their segmentation expressions
and the join expressions in the query to determine if the rows are correctly placed to perform the join
without any datamovement.

Note: Executing queries that join identically-segmented projections is relevant for multi-node
databases.

Join Conditions for Identically Segmented Projections
(ISPs)

A projection p is segmented on join columns if all column references in p’s segmentation expression
are a subset of the columns in the join expression.

The following conditions must be true for two segmented projections p1 of table t1 and p2 of table
t2 to participate in a join of t1 to t2:

l The join conditionmust have the following form:

t1.j1 = t2.j1 AND t1.j2 = t2.j2 AND ... t1.jN = t2.jN

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 471 of 817

l The join columns must share the same base data type. For example:

n If t1.j1 is an INTEGER, t2.j1 can be an INTEGER but it cannot be a FLOAT.

n If t1.j1 is a CHAR(10), t2.j1 can be any CHAR or VARCHAR (for example, CHAR(10),
VARCHAR(10), VARCHAR(20)), but t2.j1 cannot be an INTEGER.

l If p1 is segmented by an expression on columns {t1.s1, t1.s2, ... t1.sN}, each
segmentation column t1.sXmust be in the join column set {t1.jX}.

l If p2 is segmented by an expression on columns {t2.s1, t2.s2, ... t2.sN}, each
segmentation column t2.sXmust be in the join column set {t2.jX}.

l The segmentation expressions of p1 and p2must be structurally equivalent. For example:

n If p1 is SEGMENTED BY hash(t1.x) and p2 is SEGMENTED BY hash(t2.x), p1 and p2 are
identically segmented.

n If p1 is SEGMENTED BY hash(t1.x) and p2 is SEGMENTED BY hash(t2.x + 1), p1 and p2 are
not identically segmented.

l p1 and p2must have the same segment count.

l The assignment of segments to nodes must match. For example, if p1 and p2 use an OFFSET
clause, their offsets must match.

l If HP Vertica finds projections for t1 and t2 that are not identically segmented, the data is
redistributed across the network during query run time, as necessary.

Tip: If you are creating custom designs, try to use segmented projections for joins
whenever possible. See the following section "Designing Identically Segmented
Projections for K-Safety".

The following statements create two tables and specify ISP conditions:

CREATE TABLE t1 (id INT, x1 INT, y1 INT) SEGMENTED BY HASH(id) ALL NODES;
CREATE TABLE t2 (id INT, x2 INT, y2 INT) SEGMENTED BY HASH(id) ALL NODES;

Corresponding to this design, the following syntax shows ISP-supported join conditions:

SELECT * FROM t1 JOIN t2 ON t1.id = t2.id; -- ISP
SELECT * FROM t1 JOIN t2 ON t1.id = t2.id AND t1.x1 = t2.x2; -- ISP
SELECT * FROM t1 JOIN t2 ON t1.x1 = t2.x2; -- NOT ISP
SELECT * FROM t1 JOIN t2 ON t1.id = t2.x2; -- NOT ISP

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 472 of 817

Designing Identically Segmented Projections for K-Safety
ForK-safety, if A and B are two identically segmented projections, their buddy projections, Abuddy
and Bbuddy, should also be identically segmented to each another.

The following syntax illustrates suboptimal buddy projection design because the projections are not
identically segmented to each other because their OFFSET values differ:

CREATE PROJECTION t1_b1 (id, x1, y1)
AS SELECT * FROM t1
SEGMENTED BY HASH(id)
ALL NODES OFFSET 1;

CREATE PROJECTION t2_b1 (id, x2, y2)
AS SELECT * FROM t2
SEGMENTED BY HASH(id)
ALL NODES OFFSET 2;

The following syntax is another example of suboptimal buddy projection design. The projections are
not identically segmented to each other because their segmentation expressions differ, so the
projections do not qualify as buddies:

CREATE PROJECTION t1_b2 (id, x1, y1)
AS SELECT * FROM t1
SEGMENTED BY HASH(id, x1)
ALL NODES OFFSET 1;

CREATE PROJECTION t2_b2 (id, x2, y2)
AS SELECT * FROM t2
SEGMENTED BY HASH(id)
ALL NODES OFFSET 2;

Buddy projections can use different sort orders. For details, see Hash Segmentation in the SQL
ReferenceManual.

Notes
l HP Vertica recommends that you useDatabase Designer to create projections, which uses

HASH and ALL NODES syntax.

l HP Vertica recommends that all tables use hash segmentation or be replicated.

See Also
l Partitioning and Segmenting Data

l CREATE PROJECTION

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 473 of 817

Optimizing ORDER BY Queries
You can improve the performance of queries that contain only ORDER BY clauses if the columns in a
projection's ORDER BY clause are the same as the columns in the query.

Pre-Sorting Projections to Optimize ORDER BY
Clauses

If you define the projection sort order in the CREATE PROJECTION statement, the HP Vertica query
optimizer does not have to sort projection data before performing certain ORDER BY queries.

The following table, sortopt, contains the columns a, b, c, and d. Projection sortopt_p specifies
to order on columns a, b, and c.

CREATE TABLE sortopt (
a INT NOT NULL,
b INT NOT NULL,
c INT,
d INT

);
CREATE PROJECTION sortopt_p (

a_proj,
b_proj,
c_proj,
d_proj)

AS SELECT * FROM sortopt
ORDER BY a,b,c
UNSEGMENTED ALL NODES;
INSERT INTO sortopt VALUES(5,2,13,84);
INSERT INTO sortopt VALUES(14,22,8,115);
INSERT INTO sortopt VALUES(79,9,401,33);

Based on this sort order, if a SELECT * FROM sortopt query contains one of the following ORDER
BY clauses, the query does not have to resort the projection:

l ORDER BY a

l ORDER BY a, b

l ORDER BY a, b, c

For example, HP Vertica does not have to resort the projection in the following query because the
sort order includes columns specified in the CREATE PROJECTION..ORDER BY a, b, c clause,
whichmirrors the query's ORDER BY a, b, c clause:

=> SELECT * FROM sortopt ORDER BY a, b, c;
a | b | c | d

----+----+-----+-----
5 | 2 | 13 | 84

14 | 22 | 8 | 115

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 474 of 817

79 | 9 | 401 | 33
(3 rows)

If you include column d in the query, HP Verticamust re-sort the projection data because column d
was not defined in the CREATE PROJECTION..ORDER BY clause. Therefore, the ORDER BY d query
won't benefit from any sort optimization.

You cannot specify an ASC or DESC clause in the CREATE PROJECTION statement's ORDER
BY clause. HP Vertica always uses an ascending sort order in physical storage, so if your query
specifies descending order for any of its columns, the query still causes HP Vertica to re-sort the
projection data. For example, the following query requires HP Vertica to sort the results:

=> SELECT * FROM sortopt ORDER BY a DESC, b, c;
a | b | c | d

----+----+-----+-----
79 | 9 | 401 | 33
14 | 22 | 8 | 115
5 | 2 | 13 | 84

(3 rows)

See Also
l CREATE PROJECTION

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 475 of 817

Optimizing SQL-99 Analytic Functions
The following sections describe how to optimizing the SQL-99 analytic functions that HP Vertica
supports.

Avoiding Single-Node Execution By Avoiding Empty
OVER() Clauses

The OVER() clause does not require a windowing clause. If your query uses an analytic function like
SUM(x) and you specify an empty OVER() clause, the analytic function is used as a reporting
function, where the entire input is treated as a single partition; the aggregate returns the same
aggregated value for each row of the result set. The query executes on a single node, potentially
resulting in poor performance.

If you add a PARTITION BY clause to the OVER() clause, the query executes onmultiple nodes,
improving its performance.

NULL Placement By Analytic Functions
By default, projection column values are stored in ascending order, but the placement of NULLs
depends on a column's data type.

The analytic OVER(window_order_clause) and the SQL ORDER BY clause have slightly different
semantics:

OVER(ORDER BY ...) (SQL) ORDER BY

The analytic window_order_clause sorts data, based on
the results of the analytic function, as either ascending
(ASC) or descending (DESC) and specifies where NULL
values appear in the sorted result as either NULLS FIRST
or NULLS LAST.

The following is the analytics default sort order and NULL
placement:

l If you order ASC, the null placement is NULLS LAST.
NULL values appear at the end of the sorted result.

l If you order DESC, the null placement is NULLS FIRST.
NULL values appear at the beginning of the sorted
result.

The SQL ORDER BY clause specifies
only ascending or descending order.

In HP Vertica, however, default
NULL placement depends on that
column's data type:

l NUMERIC, INTEGER, DATE,
TIME, TIMESTAMP, and
INTERVAL columns: NULLS
FIRST (NULL values appear at
the beginning of a sorted
projection.)

l FLOAT, STRING, and
BOOLEAN columns: NULLS
LAST (NULL values appear at the
end of a sorted projection.)

If you do not care about NULL placement in queries that involve analytic computations, or if you
know that columns contain no NULL values, specify NULLS AUTO—irrespective of data type. HP

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 476 of 817

Vertica chooses the placement that gives the fastest performance. Otherwise, specify NULLS
FIRST or NULLS LAST.

You can carefully formulate queries so HP Vertica can avoid sorting the data and process the query
quicker, as illustrated by the following example. HP Vertica sorts inputs from table t on column x,
as specified in the OVER(ORDER BY) clause, and then evaluates RANK():

=> CREATE TABLE t (
x FLOAT,
y FLOAT);

=> CREATE PROJECTION t_p (x, y) AS SELECT * FROM t
ORDER BY x, y UNSEGMENTED ALL NODES;

=> SELECT x, RANK() OVER (ORDER BY x) FROM t;

In the preceding SELECT statement, HP Vertica eliminates the ORDER BY clause and runs the query
quickly because column x is a FLOAT data type. As a result, the projection sort order matches the
analytic default ordering (ASC + NULLS LAST). HP Vertica can also avoid having to sort the data
when the underlying projection is already sorted.

However, if column x is defined as INTEGER, HP Verticamust sort the data because the
projection sort order for INTEGER data types (ASC + NULLS FIRST) does not match the default
analytic ordering (ASC + NULLS LAST). To help HP Vertica eliminate the sort, specify the
placement of NULLs tomatch the default ordering:

=> SELECT x, RANK() OVER (ORDER BY x NULLS FIRST) FROM t;

If column x is a STRING, the following query eliminates the sort:

=> SELECT x, RANK() OVER (ORDER BY x NULLS LAST) FROM t;

If you omit NULLS LAST in the preceding query, it eliminates the sort because ASC + NULLS LAST is
the default sort specification for both the analytic ORDER BY clause and for string-related columns in
HP Vertica.

If you do not care about NULL placement in queries that involve analytic computations, or if you
know that columns contain no NULL values, specify NULLS AUTO. In the following query, HP
Vertica chooses the placement that gives the fastest performance:

=> SELECT x, RANK() OVER (ORDER BY x NULLS AUTO) FROM t;

See Also
l Designing Tables toMinimize Run-Time Sorting of NULL Values in Analytic Functions

l Using SQL Analytics

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 477 of 817

Designing Tables to Minimize Run-Time Sorting of
NULL Values in Analytic Functions

By carefully writing queries or creating your design (or both), you can help the HP Vertica query
optimizer skip sorting all columns in a table when performing an analytic function, which can
improve query performance.

Tominimize HP Vertica's need to sort projections during query execution, redefine the employee
table and specify that NULL values are not allowed in the sort fields:

DROP TABLE employee CASCADE;

CREATE TABLE employee
(empno INT,
deptno INT NOT NULL,
sal INT NOT NULL);

CREATE PROJECTION employee_p AS
SELECT * FROM employee
ORDER BY deptno, sal;

INSERT INTO employee VALUES(101,10,50000);
INSERT INTO employee VALUES(103,10,43000);
INSERT INTO employee VALUES(104,10,45000);
INSERT INTO employee VALUES(105,20,97000);
INSERT INTO employee VALUES(108,20,33000);
INSERT INTO employee VALUES(109,20,51000);

=> SELECT * FROM employee;
empno | deptno | sal

-------+--------+-------
101 | 10 | 50000
103 | 10 | 43000
104 | 10 | 45000
105 | 20 | 97000
108 | 20 | 33000
109 | 20 | 51000

(6 rows)
=> SELECT deptno, sal, empno, RANK() OVER

(PARTITION BY deptno ORDER BY sal)
FROM employee;

deptno | sal | empno | ?column?
--------+-------+-------+----------

10 | 43000 | 103 | 1
10 | 45000 | 104 | 2
10 | 50000 | 101 | 3
20 | 33000 | 108 | 1
20 | 51000 | 109 | 2
20 | 97000 | 105 | 3

(6 rows)

Tip: If you do not care about NULL placement in queries that involve analytic computations, or
if you know that columns contain no NULL values, specify NULLS AUTO in your queries.HP
Vertica attempts to choose the placement that gives the fastest performance. Otherwise,

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 478 of 817

specify NULLS FIRST or NULLS LAST.

Optimizing LIMIT Queries with ROW_NUMBER
Predicates

Queries that use the LIMIT Clause with ORDER BY or the SQL-99 analytic function ROW_NUMBER()
return a specific subset of rows in the query result. HP Vertica processes these queries efficiently
using Top-K Optimization, which is a database query ranking process. Top-K optimization avoids
sorting (and potentially writing to disk) an entire data set to find a small number of rows. This can
significantly improve query performance.

For example, in the following query, HP Vertica extracts only the three smallest rows from column
x:

=> SELECT * FROM t1 ORDER BY x LIMIT 3;

If table t1 contains millions of rows, it is time consuming to sort all the x values. Instead, HP
Vertica keeps track of the smallest three values in x.

Note: If you omit the ORDER BY clause, when using the LIMIT clause, the results can be
nondeterministic.

Sort operations that precede a SQL analytics computation benefit from Top-K optimization if the
query contains an OVER(ORDER BY) clause and a predicate on the ROW_NUMBER function, as in the
following example:

=> SELECT x FROM (SELECT *, ROW_NUMBER() OVER (ORDER BY x) AS row
FROM t1) t2 WHERE row <= 3;

The preceding query has the same behavior as the following query, which uses a LIMIT clause:

=> SELECT ROW_NUMBER() OVER (ORDER BY x) AS RANK FROM t1 LIMIT 3;

You can use ROW_NUMBER()with the analytic window_partition_clause, something you cannot do if
you use LIMIT:

=> SELECT x, y FROM
(SELECT *, ROW_NUMBER() OVER (PARTITION BY x ORDER BY y)
AS row FROM t1) t2 WHERE row <= 3;

Note:When the OVER() clause includes the window_partition_clause, Top-K optimization
occurs only when the analytic sort matches the input's sort, for example, if the projection is
sorted on columns x and y in table t1.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 479 of 817

If you still want to improve the performance of your query, consider using the optimization
techniques described in Optimizing ORDER BY Queries.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 480 of 817

Optimizing INSERT-SELECT Operations
There are several ways to optimize an INSERT-SELECT query that has the following format:

INSERT /*+direct*/ INTO destination SELECT * FROM source;

Optimizing INSERT-SELECT Queries for Tables with
Pre-Join Projections

If you have an INSERT-SELECT query where the SELECT clause includes a join, HP Vertica
determines the order for the SELECT part using the rules defined in Hash Joins vs. Merge Joins.
When inserting into a pre-join projection, a join must be performed during the INSERT-SELECT query.
If the incoming data is not already sorted correctly for amerge join, add an ORDER BY clause that
matches the sort order of the dimension table's projection to the SELECT clause to facilitate the
merge join.

To determine whether your query is using a hash join or amerge join, run the EXPLAIN statement
on the query.

The following example generates a hash join instead of amerge join for a FK-PK validation when
inserting into a pre-join projection:

-- Would like to use a MERGE JOIN for FK-PK validation, but getting a HASH JOIN
DROP TABLE f1 CASCADE;
DROP TABLE d1 CASCADE;
DROP TABLE f1_staging CASCADE;
CREATE TABLE f1(a varchar(10) NOT NULL, b varchar(10) NOT NULL);
CREATE TABLE d1(a varchar(10) NOT NULL, b varchar(10) NOT NULL);
CREATE TABLE f1_staging(a varchar(10) NOT NULL, b varchar(10) NOT NULL);
ALTER TABLE d1 ADD CONSTRAINT d1_pk PRIMARY KEY (a, b);
ALTER TABLE f1 ADD CONSTRAINT f1_fk FOREIGN KEY (a, b) references d1 (a, b);
CREATE PROJECTION f1_super(a, b) AS SELECT * FROM f1 ORDER BY a, b;
CREATE PROJECTION d1_super(a, b) AS SELECT * FROM d1 ORDER BY a, b;
CREATE PROJECTION f1_staging_super(a, b) AS SELECT * FROM f1_staging ORDER BY a, b;
CREATE PROJECTION prejoin(f1_a, f1_b, d1_a, d1_b)
AS SELECT f1.a, f1.b, d1.a, d1.b
FROM f1 join d1 on f1.a=d1.a and f1.b=d1.b
ORDER BY d1.a, d1.b;
COPY d1 FROM stdin delimiter ' ' direct;
one one
two two
\.
COPY f1 FROM stdin delimiter ' ' direct;
one one
two two
\.
INSERT INTO f1_staging values('one', 'one');
-- Performing HASH JOIN instead of MERGE JOIN
INSERT INTO f1
SELECT f1s.a, f1s.b
FROM f1_staging f1s join d1

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 481 of 817

on f1s.a=d1.a and f1s.b=d1.b;
-- Adding an ORDER BY clause to force a MERGE JOIN
INSERT INTO f1
SELECT f1s.a, f1s.b
FROM f1_staging f1s join d1
on f1s.a=d1.a and f1s.b=d1.b ORDER BY f1s.a, f1s.b;

Optimizing INSERT-SELECT Queries By Matching
Sort Orders

When performing INSERT-SELECT operations, to avoid the sort phase of the INSERT, make sure that
the sort order for the SELECT query matches the projection sort order of the target table.

For example, on a single-node database:

=> CREATE TABLE source (col1 INT, col2 INT, col3 INT);
=> CREATE PROJECTION source_p (col1, col2, col3)

AS SELECT col1, col2, col3 FROM source
ORDER BY col1, col2, col3
SEGMENTED BY HASH(col3)
ALL NODES;

=> CREATE TABLE destination (col1 INT, col2 INT, col3 INT);
=> CREATE PROJECTION destination_p (col1, col2, col3)

AS SELECT col1, col2, col3 FROM destination
ORDER BY col1, col2, col3
SEGMENTED BY HASH(col3)
ALL NODES;

The following INSERT does not require a sort because the query result has the column order of the
projection:

=> INSERT /*+direct*/ INTO destination SELECT * FROM source;

The following INSERT requires a sort because the order of the columns in the SELECT statement
does not match the projection order:

=> INSERT /*+direct*/ INTO destination SELECT col1, col3, col2 FROM source;

The following INSERT does not require a sort. The order of the columns doesn't match, but the
explicit ORDER BY causes the output to be sorted by c1, c3, c2 in HP Vertica:

=> INSERT /*+direct*/ INTO destination SELECT col1, col3, col2 FROM source
GROUP BY col1, col3, col2
ORDER BY col1, col2, col3 ;

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 482 of 817

Avoiding Resegmentation of INSERT-SELECT
Queries

When performing an INSERT-SELECT operation from a segmented source table to a segmented
destination table, segment both projections on the same column to avoid resegmenting the data, as
in the following example:

CREATE TABLE source (col1 INT, col2 INT, col3 INT);
CREATE PROJECTION source_p (col1, col2, col3) AS

SELECT col1, col2, col3 FROM source
SEGMENTED BY HASH(col3) ALL NODES;

CREATE TABLE destination (col1 INT, col2 INT, col3 INT);
CREATE PROJECTION destination_p (col1, col2, col3) AS

SELECT col1, col2, col3 FROM destination
SEGMENTED BY HASH(col3) ALL NODES;

INSERT /*+direct*/ INTO destination SELECT * FROM source;

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 483 of 817

Optimizing DELETE and UPDATE Queries
HP Vertica is optimized for query-intensive workloads, so DELETE and UPDATE queries might not
achieve the same level of performance as other queries. A DELETE and UPDATE operation has to
update all projections, so the operation is as slow as the slowest projection. For additional
information, see Using INSERT, UPDATE, and DELETE.

The topics that follow discuss best practices for optimizing DELETE and UPDATE queries in HP
Vertica.

Performance Considerations for DELETE and
UPDATE Queries

To improve the performance of your DELETE and UPDATE queries, consider the following issues:

l Query performance after large deletes—A large number of (unpurged) deleted rows can
negatively affect query performance.

To eliminate rows that have been deleted from the result, a query must do extra processing. If
10% ormore of the total rows in a table have been deleted, the performance of a query on the
table degrades. However, your experiencemay vary depending on the size of the table, the table
definition, and the query. If a table has a large number of deleted rows, consider purging those
rows to improve performance. For more information on purging, see Purging Deleted Data.

l Recovery performance—Recovery is the action required for a cluster to restore K-safety after
a crash. Large numbers of deleted records can degrade the performance of a recovery. To
improve recovery performance, purge the deleted rows. For more information on purging, see
Purging Deleted Data.

l Concurrency—DELETE and UPDATE take exclusive locks on the table. Only one DELETE or
UPDATE transaction on a table can be in progress at a time and only when no loads (or INSERTs)
are in progress. DELETEs and UPDATEs on different tables can be run concurrently.

l Pre-join projections—Avoid pre-joining dimension tables that are frequently updated. DELETE
and UPDATE operations on pre-join projections cascade to the fact table, causing large DELETE or
UPDATE operations.

For detailed tips about improving DELETE and UPDATE performance, seeOptimizing DELETEs and
UPDATEs for Performance.

Caution: HP Vertica does not remove deleted data immediately but keeps it as history for the
purposes of historical query. A large amount of history can result in slower query
performance. For information about how to configure the appropriate amount of history to
retain, see Purging Deleted Data.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 484 of 817

Optimizing DELETEs and UPDATEs for Performance
The process of optimizing DELETE and UPDATE queries is the same for both operations. Some
simple steps can increase the query performance by tens to hundreds of times. The following
sections describe several ways to improve projection design and improve DELETE and UPDATE
queries to significantly increase DELETE and UPDATE performance.

Note: For large bulk deletion, HP Vertica recommends using Partitioned Tables where
possible because they provide the best DELETE performance and improve query performance.

Projection Column Requirements for Optimized Deletes
When all columns required by the DELETE or UPDATE predicate are present in a projection, the
projection is optimized for DELETEs and UPDATEs. DELETE and UPDATE operations on such
projections are significantly faster than on non-optimized projections. Both simple and pre-join
projections can be optimized.

For example, consider the following table and projections:

CREATE TABLE t (a INTEGER, b INTEGER, c INTEGER);
CREATE PROJECTION p1 (a, b, c) AS SELECT * FROM t ORDER BY a;
CREATE PROJECTION p2 (a, c) AS SELECT a, c FROM t ORDER BY c, a;

In the following query, both p1 and p2 are eligible for DELETE and UPDATE optimization because
column a is available:

DELETE from t WHERE a = 1;

In the following example, only projection p1 is eligible for DELETE and UPDATE optimization because
the b column is not available in p2:

DELETE from t WHERE b = 1;

Optimized Deletes in Subqueries
To be eligible for DELETE optimization, all target table columns referenced in a DELETE or UPDATE
statement's WHERE clausemust be in the projection definition.

For example, the following simple schema has two tables and three projections:

CREATE TABLE tb1 (a INT, b INT, c INT, d INT);
CREATE TABLE tb2 (g INT, h INT, i INT, j INT);

The first projection references all columns in tb1 and sorts on column a:

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 485 of 817

CREATE PROJECTION tb1_p AS SELECT a, b, c, d FROM tb1 ORDER BY a;

The buddy projection references and sorts on column a in tb1:

CREATE PROJECTION tb1_p_2 AS SELECT a FROM tb1 ORDER BY a;

This projection references all columns in tb2 and sorts on column i:

CREATE PROJECTION tb2_p AS SELECT g, h, i, j FROM tb2 ORDER BY i;

Consider the following DML statement, which references tb1.a in its WHERE clause. Since both
projections on tb1 contain column a, both are eligible for the optimized DELETE:

DELETE FROM tb1 WHERE tb1.a IN (SELECT tb2.i FROM tb2);

Restrictions
Optimized DELETEs are not supported under the following conditions:

l With pre-join projections on nodes that are down

l With replicated and pre-join projections if subqueries reference the target table. For example, the
following syntax is not supported:

DELETE FROM tb1 WHERE tb1.a IN (SELECT e FROM tb2, tb2 WHERE tb2.e = tb1.e);

l With subqueries that do not returnmultiple rows. For example, the following syntax is not
supported:

DELETE FROM tb1 WHERE tb1.a = (SELECT k from tb2);

Projection Sort Order for Optimizing Deletes
Design your projections so that frequently-used DELETE or UPDATE predicate columns appear in the
sort order of all projections for large DELETEs and UPDATEs.

For example, supposemost of the DELETE queries you perform on a projection look like the
following:

DELETE from t where time_key < '1-1-2007'

To optimize the DELETEs, make time_key appear in the ORDER BY clause of all your projections.
This schema design results in better performance of the DELETE operation.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 486 of 817

In addition, add additional sort columns to the sort order such that each combination of the sort key
values uniquely identifies a row or a small set of rows. For more information, see Choosing Sort
Order: Best Practices. To analyze projections for sort order issues, use the EVALUATE_DELETE_
PERFORMANCE function.

HP Vertica Programmer's Guide
Optimizing Query Performance

HP Vertica Analytics Platform (7.0.x) Page 487 of 817

Using External Procedures
An external procedure is a procedure external to HP Vertica that you create, maintain, and store on
the server. External procedures are simply executable files such as shell scripts, compiled code,
code interpreters, and so on.

HP Vertica Analytics Platform (7.0.x) Page 488 of 817

Implementing External Procedures
To implement an external procedure:

1. Create an external procedure executable file.

See Requirements for External Procedures.

2. Enable the UID attribute for the file and allow read and execute permission for the group (if the
owner is not the database administrator). For example:

chmod 4777 helloplanet.sh

3. Install the external procedure executable file.

4. Create the external procedure in HP Vertica.

Once a procedure is created in HP Vertica, you can execute or drop it, but you cannot alter it.

Requirements for External Procedures
External procedures have requirements regarding their attributes, where you store them, and how
you handle their output. You should also be cognizant of their resource usage.

Procedure File Attributes
A procedure file must be owned by the database administrator (OS account) or by a user in the
same group as the administrator. The procedure file owner cannot be root andmust have the set
UID attribute enabled and allow read and execute permission for the group if the owner is not the
database administrator.

Note: The file should end with exit 0, and exit 0 must reside on its own line. This naming
convention instructs HP Vertica to return 0when the script succeeds.

Handling Procedure Output
HP Vertica does not provide a facility for handling procedure output. Therefore, youmust make your
own arrangements for handling procedure output, which should include writing error, logging, and
program information directly to files that youmanage.

Handling Resource Usage
The HP Vertica resourcemanager is unaware of resources used by external procedures.
Additionally, HP Vertica is intended to be the only major process running on your system. If your
external procedure is resource intensive, it could affect the performance and stability of HP Vertica.

HP Vertica Analytics Platform (7.0.x) Page 489 of 817

Consider the types of external procedures you create and when you run them. For example, you
might run a resource-intensive procedure during off hours.

Sample Procedure File

#!/bin/bash
echo "hello planet argument: $1" >> /tmp/myprocedure.log
exit 0

Installing External Procedure Executable Files
To install an external procedure, use the Administration Tools from either the graphical user
interface or the command line.

Graphical User Interface
a. Run theAdministration Tools.

$ /opt/vertica/bin/adminTools

b. On the AdminTools Main Menu, click Configuration Menu, and then click OK.

c. On theConfiguration Menu, click Install External Procedure and then click OK.

d. Select the database on which you want to install the external procedure.

e. Either select the file to install or manually type the complete file path, and then click OK.

f. If you are not the superuser, you are prompted to enter your password and click OK.

HP Vertica Programmer's Guide
Using External Procedures

HP Vertica Analytics Platform (7.0.x) Page 490 of 817

The Administration Tools automatically create the <database_catalog_
path>/procedures directory on each node in the database and installs the external
procedure in these directories for you.

g. Click OK in the dialog that indicates that the installation was successful.

Command Line
If you use the command line, be sure to specify the full path to the procedure file and the password
of the Linux user who owns the procedure file;

For example:

$ admintools -t install_procedure -d vmartdb -f /scratch/helloworld.sh -p ownerpassword
Installing external procedure...
External procedure installed

Once you have installed an external procedure, you need tomake HP Vertica aware of it. To do so,
use the CREATE PROCEDURE statement, but review Creating External Procedures first.

Creating External Procedures
Once you have installed an external procedure, you need tomake HP Vertica aware of it. To do so,
use the CREATE PROCEDURE statement.

By default, only a superuser can create and execute a procedure. However, a superuser can grant
the right to execute a stored procedure to a user on the operating system. (SeeGRANT
(Procedure).)

Once created, a procedure is listed in the V_CATALOG.USER_PROCEDURES system table. Users can
see only those procedures that they have been granted the privilege to execute.

Example
This example creates a procedure named helloplanet for the helloplanet.sh external
procedure file. This file accepts one VARCHAR argument. The sample code is provided in
Requirements for External Procedures.

=> CREATE PROCEDURE helloplanet(arg1 VARCHAR) AS 'helloplanet.sh' LANGUAGE 'external'
USER 'release';

This example creates a procedure named proctest for the copy_vertica_database.sh script.
This script copies a database from one cluster to another, and it is included in the server RPM
located in the /opt/vertica/scripts directory.

=> CREATE PROCEDURE proctest(shosts VARCHAR, thosts VARCHAR, dbdir VARCHAR)
AS 'copy_vertica_database.sh' LANGUAGE 'external' USER 'release';

HP Vertica Programmer's Guide
Using External Procedures

HP Vertica Analytics Platform (7.0.x) Page 491 of 817

See Also
l CREATE PROCEDURE

l GRANT (Procedure)

Executing External Procedures
Once you define a procedure through the CREATE PROCEDURE statement, you can use it as a
meta command through a simple SELECT statement. HP Vertica does not support using procedures
in more complex statements or in expressions.

The following example runs a procedure named helloplanet:

=> SELECT helloplanet('earthlings');
helloplanet

0

(1 row)

The following example runs a procedure named proctest. This procedure references the copy_
vertica_database.sh script that copies a database from one cluster to another. It is installed by
the server RPM in the /opt/vertica/scripts directory.

=> SELECT proctest(
'-s qa01',
'-t rbench1',
'-D /scratch_b/qa/PROC_TEST');

Note: External procedures have no direct access to database data. If available, use ODBC or
JDBC for this purpose.

Procedures are executed on the initiating node. HP Vertica runs the procedure by forking and
executing the program. Each procedure argument is passed to the executable file as a string. The
parent fork process waits until the child process ends.

To stop execution, cancel the process by sending a cancel command (for example, CTRL+C)
through the client. If the procedure program exits with an error, an error message with the exit status
is returned.

Permissions
To execute an external procedure, the user needs:

l EXECUTE privilege on procedure

l USAGE privilege on schema that contains the procedure

HP Vertica Programmer's Guide
Using External Procedures

HP Vertica Analytics Platform (7.0.x) Page 492 of 817

See Also
l CREATE PROCEDURE

l External Procedure Privileges

Dropping External Procedures
Only a superuser can drop an external procedure. To drop the definition for an external procedure
from HP Vertica, use the DROP PROCEDURE statement. Only the reference to the procedure is
removed. The external file remains in the <database_catalog_path>/procedures directory on
each node in the database.

Note: The definition HP Vertica uses for a procedure cannot be altered; it can only be dropped.

Example

=> DROP PROCEDURE helloplanet(arg1 varchar);

See Also
l DROP PROCEDURE

HP Vertica Programmer's Guide
Using External Procedures

HP Vertica Analytics Platform (7.0.x) Page 493 of 817

Using User-Defined SQL Functions
User-Defined SQL Functions let you define and store commonly-used SQL expressions as a
function. User-Defined SQL Functions are useful for executing complex queries and combining HP
Vertica built-in functions. You simply call the function name you assigned in your query.

A User-Defined SQL Function can be used anywhere in a query where an ordinary SQL expression
can be used, except in the table partition clause or the projection segmentation clause.

For syntax and parameters for the commands and system table discussed in this section, see the
following topics in the SQLReferenceManual:

l CREATE FUNCTION

l ALTER FUNCTION

l DROP FUNCTION

l GRANT (Function)

l REVOKE (Function)

l V_CATALOG.USER_FUNCTIONS

Creating User-Defined SQL Functions
A user-defined SQL function can be used anywhere in a query where an ordinary SQL expression
can be used, except in the table partition clause or the projection segmentation clause.

To create a SQL function, the user must have CREATE privileges on the schema. To use a SQL
function, the user must have USAGE privileges on the schema and EXECUTE privileges on the
defined function.

This following statement creates a SQL function called myzeroifnull that accepts an INTEGER
argument and returns an INTEGER result.

=> CREATE FUNCTION myzeroifnull(x INT) RETURN INT
AS BEGIN

RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);
END;

You can use the new SQL function (myzeroifnull) anywhere you use an ordinary SQL expression.
For example, create a simple table:

=> CREATE TABLE tabwnulls(col1 INT);
=> INSERT INTO tabwnulls VALUES(1);
=> INSERT INTO tabwnulls VALUES(NULL);
=> INSERT INTO tabwnulls VALUES(0);
=> SELECT * FROM tabwnulls;

HP Vertica Analytics Platform (7.0.x) Page 494 of 817

a

1
0

(3 rows)

Use the myzeroifnull function in a SELECT statement, where the function calls col1 from table
tabwnulls:

=> SELECT myzeroifnull(col1) FROM tabwnulls;
myzeroifnull

1
0
0

(3 rows)

Use the myzeroifnull function in the GROUP BY clause:

=> SELECT COUNT(*) FROM tabwnulls GROUP BY myzeroifnull(col1);
count

2
1

(2 rows)

If you want to change a user-defined SQL function's body, use the CREATE OR REPLACE syntax.
The following commandmodifies the CASE expression:

=> CREATE OR REPLACE FUNCTION myzeroifnull(x INT) RETURN INT
AS BEGIN

RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);
END;

To see how this information is stored in the HP Vertica catalog, see Viewing Information About SQL
Functions in this guide.

See Also
l CREATE FUNCTION (SQL Functions)

l USER_FUNCTIONS

Altering and Dropping User-Defined SQL
Functions

HP Vertica allows multiple functions to share the same namewith different argument types.
Therefore, if you try to alter or drop a SQL function without specifying the argument data type, the
system returns an error message to prevent you from dropping the wrong function:

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 495 of 817

=> DROP FUNCTION myzeroifnull();
ROLLBACK: Function with specified name and parameters does not exist: myzeroifnull

Note: Only a superuser or owner can alter or drop a SQL Function.

Altering a User-Defined SQL Function
The ALTER FUNCTION command lets you assign a new name to a user-defined function, as well
as move it to a different schema.

In the previous topic, you created a SQL function called myzeroifnull. The following command
renames the myzeroifnull function to zerowhennull:

=> ALTER FUNCTION myzeroifnull(x INT) RENAME TO zerowhennull;
ALTER FUNCTION

This next commandmoves the renamed function into a new schema called macros:

=> ALTER FUNCTION zerowhennull(x INT) SET SCHEMA macros;
ALTER FUNCTION

Dropping a SQL Function
The DROP FUNCTION command drops a SQL function from the HP Vertica catalog.

Like with ALTER FUNCTION, youmust specify the argument data type or the system returns the
following error message:

=> DROP FUNCTION zerowhennull();
ROLLBACK: Function with specified name and parameters does not exist: zerowhennull

Specify the argument type:

=> DROP FUNCTION macros.zerowhennull(x INT);
DROP FUNCTION

HP Vertica does not check for dependencies, so if you drop a SQL function where other objects
reference it (such as views or other SQL Functions), HP Vertica returns an error when those objects
are used, not when the function is dropped.

Tip: To view a list of all user-defined SQL functions on which you have EXECUTE privileges,
(which also returns their argument types), query the V_CATALOG.USER_FUNCTIONS
system table.

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 496 of 817

See Also
l ALTER FUNCTION

l DROP FUNCTION

Managing Access to SQL Functions
Before a user can execute a user-defined SQL function, he or shemust have USAGE privileges on
the schema and EXECUTE privileges on the defined function. Only the superuser or owner can
grant/revoke EXECUTE usage on a function.

To grant EXECUTE privileges to user Fred on the myzeroifnull function:

=> GRANT EXECUTE ON FUNCTION myzeroifnull (x INT) TO Fred;

To revoke EXECUTE privileges from user Fred on the myzeroifnull function:

=> REVOKE EXECUTE ON FUNCTION myzeroifnull (x INT) FROM Fred;

See Also
l GRANT (Function)

l REVOKE (Function)

Viewing Information About User-Defined SQL
Functions

You can access information about any User-Defined SQL Functions on which you have EXECUTE
privileges. This information is available in the system table V_CATALOG.USER_FUNCTIONS
and from the vsql meta-command \df.

To view all of the User-Defined SQL Functions on which you have EXECUTE privileges, query the
USER_FUNCTIONS table:

=> SELECT * FROM USER_FUNCTIONS;
-[RECORD 1]----------+---
schema_name | public
function_name | myzeroifnull
function_return_type | Integer
function_argument_type | x Integer
function_definition | RETURN CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END
volatility | immutable
is_strict | f

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 497 of 817

If you want to change a User-Defined SQL Function's body, use the CREATE OR REPLACE
syntax. The following commandmodifies the CASE expression:

=> CREATE OR REPLACE FUNCTION myzeroifnull(x INT) RETURN INT
AS BEGIN

RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);
END;

Now when you query the USER_FUNCTIONS table, you can see the changes in the function_
definition column:

=> SELECT * FROM USER_FUNCTIONS;
-[RECORD 1]----------+---
schema_name | public
function_name | myzeroifnull
function_return_type | Integer
function_argument_type | x Integer
function_definition | RETURN CASE WHEN (x IS NULL) THEN 0 ELSE x END
volatility | immutable
is_strict | f

If you use CREATE OR REPLACE syntax to change only the argument name or argument type (or
both), the systemmaintains both versions of the function. For example, the following command
tells the function to accept and return a numeric data type instead of an integer for the
myzeroifnull function:

=> CREATE OR REPLACE FUNCTION myzeroifnull(z NUMERIC) RETURN NUMERIC
AS BEGIN

RETURN (CASE WHEN (z IS NULL) THEN 0 ELSE z END);
END;

Now query the USER_FUNCTIONS table, and you can see the second instance of myzeroifnull
in Record 2, as well as the changes in the function_return_type, function_argument_type,
and function_definition columns.

Note: Record 1 still holds the original definition for the myzeroifnull function:

=> SELECT * FROM USER_FUNCTIONS;
-[RECORD 1]----------+--
schema_name | public
function_name | myzeroifnull
function_return_type | Integer
function_argument_type | x Integer
function_definition | RETURN CASE WHEN (x IS NULL) THEN 0 ELSE x END
volatility | immutable
is_strict | f
-[RECORD 2]----------+--
schema_name | public
function_name | myzeroifnull
function_return_type | Numeric
function_argument_type | z Numeric

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 498 of 817

function_definition | RETURN (CASE WHEN (z IS NULL) THEN (0) ELSE z END)::numeric
volatility | immutable
is_strict | f

Because HP Vertica allows functions to share the same namewith different argument types, you
must specify the argument type when you alter or drop a function. If you do not, the system returns
an error message:

=> DROP FUNCTION myzeroifnull();
ROLLBACK: Function with specified name and parameters does not exist: myzeroifnull

See Also
l USER_FUNCTIONS

Migrating Built-In SQL Functions
If you have built-in SQL functions from another RDBMS that do not map to an HP Vertica-supported
function, you canmigrate them into your HP Vertica database by using a user-defined SQL
function.

The example scripts below show how to create user-defined functions for the following DB2 built-in
functions:

l UCASE()

l LCASE()

l LOCATE()

l POSSTR()

UCASE()
This script creates a user-defined SQL function for the UCASE() function:

=> CREATE OR REPLACE FUNCTION UCASE (x VARCHAR)
RETURN VARCHAR
AS BEGIN
RETURN UPPER(x);
END;

LCASE()
This script creates a user-defined SQL function for the LCASE() function:

=> CREATE OR REPLACE FUNCTION LCASE (x VARCHAR)

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 499 of 817

RETURN VARCHAR
AS BEGIN
RETURN LOWER(x);
END;

LOCATE()
This script creates a user-defined SQL function for the LOCATE() function:

=> CREATE OR REPLACE FUNCTION LOCATE(a VARCHAR, b VARCHAR)
RETURN INT
AS BEGIN
RETURN POSITION(a IN b);
END;

POSSTR()
This script creates a user-defined SQL function for the POSSTR() function:

=> CREATE OR REPLACE FUNCTION POSSTR(a VARCHAR, b VARCHAR)
RETURN INT
AS BEGIN
RETURN POSITION(b IN a);
END;

HP Vertica Programmer's Guide
Using User-Defined SQL Functions

HP Vertica Analytics Platform (7.0.x) Page 500 of 817

Developing and Using User Defined
Extensions

Usr Defined Extensions (abbreviated as UDx) are extensions to HP Vertica developed using the
APIs in the HP Vertica Software Development Kits (SDKs). UDxs are broken into several
categories:

l User Defined Functions (UDFs) which are used in SQL statements similarly to HP Vertica's
own functions. There are several different types of UDFs, each of which is designed for a
different data processing task.

l User Defined Loads (UDLs) which define custom data loadmodules.

HP Vertica supports developing UDxs in three languages:

l C++

l Java

l R

Not all types of extensions and functions are supported by each language. All of the supported
languages allow developing UDFs, but some languages do not support all UDF types. You can only
develop UDLs in C++.

This chapter describes how to develop and use UDxs.

How UDxs Work
User Defined Extensions (UDxs) are contained in libraries. Multiple extensions can be defined in a
library, andmultiple libraries can be loaded by HP Vertica. You load a library by:

1. Copying the library file to a location on the initiator node.

2. Connecting to the initiator node using vsql.

3. Using the CREATE LIBRARY statement, passing it the path where you saved the library file.

The initiator node takes care of distributing the library file to the rest of the nodes in the cluster.

Once the library is loaded, you define individual User Defined Functions or User Defined Loads
using SQL statements such as CREATE FUNCTION and CREATE SOURCE. These statement
assigns SQL function names to the extension classes in the library. From then on, you are able to
use your extension within your SQL statements. Whenever you call a UDx, HP Vertica creates an
instance of the UDx class on each node in the cluster and uses .

The CREATE FUNCTION statement adds the UDF to the database catalog. They remain available
after a database restart. The database superuser can grant access privileges to the UDFs for
users. SeeGRANT (User Defined Extension) in the SQLReferenceManual for details.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 501 of 817

Fenced Mode
User Defined Extensions (UDxs) written in the C++ programming language have the option of
running in unfencedmode, whichmeans running directly within the HP Vertica process. Since they
run within HP Vertica, unfenced UDxs have little overhead, and can perform almost as fast as HP
Vertica's own built-in functions. However, since they run within HP Vertica directly, any bugs in
their code (memory leaks, for example) can destabilize themain HP Vertica process that can bring
one or more database nodes down.

You can instead opt to runmost C++ UDxs in fencedmode, which runs the UDxs code outside of
themain HP Vertica process in a separate zygote process. UDx code that crashes while running in
fencedmode does not impact the core HP Vertica process. There is a small performance impact
when running UDx code in fencedmode. On average, using fencedmode adds about 10% more
time to execution compared to unfencedmode.

Fencedmode is currently available for all C++ UDx's with the exception of User Defined
Aggregates and User Defined Load. All UDxs developed in the R and Java programming languages
must run in fencedmode, since the R and Java runtimes cannot be directly run within the HP
Vertica process.

Using fencedmode does not affect the development of your UDx. Fencedmode is enabled by
default for UDx's that support fencedmode. The CREATE FUNCTION command can optionally be
issued with the NOT FENCED modifier to disable fencedmode for the function. Also, you can
enable or disable fencedmode on any fencedmode-supported C++ UDx by using the ALTER
FUNCTION command.

About the Zygote Process
The HP Vertica zygote process starts when HP Vertica starts. Each node has a single zygote
process. Side processes are created "on demand". The zygote listens for requests and spawns a
UDx side session that runs the UDx in fencedmode when a UDx is called by the user.

About Fenced Mode Logging:
UDx code that runs in fencedmode is logged in the UDxZygote.log and is stored in the UDxLogs
directory in the catalog directory of HP Vertica. Log entries for the side process are denoted by the
UDx language (for example, C++), node, and zygote process ID, and the UdxSideProcess ID.

For example, for the following processes...

dbadmin => select * from UDX_FENCED_PROCESSES;
node_name | process_type | session_id | pid | port |

status
------------------+------------------+----------------------------------+-------+-------+

v_vmart_node0001 | UDxZygoteProcess | | 27468 | 51900 |

UP
v_vmart_node0001 | UDxSideProcess | localhost.localdoma-27465:0x800b | 5677 | 44123 |

UP

... the corresponding log file displays:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 502 of 817

2012-05-16 11:24:43.990 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 UDx s
ide process started
11:24:43.996 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 Finished settin

g up signal handlers.
11:24:43.996 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 My port: 44123
11:24:43.996 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 My address: 0.0

.0.0
11:24:43.996 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 Vertica port: 5

1900
11:24:43.996 [C++-localhost.localdoma-27465:0x800b-5677] 0x2b3ff17e7fd0 Vertica addres

s: 127.0.0.1
11:25:19.749 [C++-localhost.localdoma-27465:0x800b-5677] 0x41837940 Setting memory reso

urce limit to -1
11:30:11.523 [C++-localhost.localdoma-27465:0x800b-5677] 0x41837940 Exiting UDx side pr

ocess

The last line indicates that the side process was killed. In this case it was killed when the user
session (vsql) closed.

About Fenced Mode Configuration Parameters
Fencedmode supports two configuration parameters:

l FencedUDxMemoryLimitMB - Themaximummemory size, in MB, to use for FencedMode
processes. The default is -1 (no limit). The side process is killed if this limit is exceeded.

l ForceUDxFencedMode -When set to 1, force all UDx's that support fencedmode to run in
fencedmode even if their definition specified NOT FENCED. The default is 0 (disabled).

See Also
l CREATE LIBRARY

l CREATE FUNCTION

l CREATE TRANSFORM FUNCTION

l CREATE ANALYTIC FUNCTION

l ALTER FUNCTION

l UDX_FENCED_PROCESSES

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 503 of 817

Developing User Defined Functions (UDFs)
User-Defined Functions (UDFs) are functions contained in external shared libraries that you
develop in C++, R, or Java, and load into HP Vertica using the CREATE LIBRARY statement.
They are best suited for analytic operations that are difficult to perform in SQL, and need to be
performed frequently enough that their speed is amajor concern.

UDFs primary strengths are:

l They can be usedmuchmore flexibly than external procedures within SQL statements.
Generally, they can be used anywhere an internal function can be used.

l They take full advantage of HP Vertica's distributed computing features. Functions are executed
in parallel on each node in the cluster.

l HP Vertica handles the distribution of the UDF library to the individual nodes. You only need to
copy the library to the initiator node.

l All of the complicated aspects of developing a distributed piece of analytic code are handled for
you by HP Vertica. Your main programming task is to read in data, process it, and then write it
out using the HP Vertica SDK APIs.

There are a few things to keep inmind about developing UDFs:

l If you choose to run a C++ UDF in unfencedmode (directly within the HP Vertica process), any
bugs in its code can cause database instability. You should thoroughly test any UDF you intend
to run in unfencedmode before deploying them in a live environment. You should consider
whether the performance boost of running a C++ UDF unfenced is worth the potential database
instability that a buggy UDF can cause.

l UDFs can be developed in a three programming languages: C++, Java, and R. If you want to
use another programming language to extend HP Vertica, you could develop an external
procedure. However, external procedures are less efficient than UDFs.

l Since UDFs run on the HP Vertica cluster, they can take processor time andmemory away from
the database processes. UDFs that consume large amounts of computing resources can
negatively impact database performance.

This section explains how to create and use user-defined functions (UDFs).

Types of UDFs
There are five different types of user defined functions:

n User Defined Scalar Functions (UDSFs) take in a single row of data and return a single value.
These functions can be used anywhere a native HP Vertica function can be used, except
CREATE TABLE BY PARTITION and SEGMENTED BY expressions.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 504 of 817

n User Defined Transform Functions (UDTFs) operate on table segments and return zero or more
rows of data. The data they return can be an entirely new table, unrelated to the schema of the
input table, including having its own ordering and segmentation expressions. They can only be
used in the SELECT list of a query. For details see Using User Defined Transforms.

l User Defined Aggregate Functions (UDAF) allow you to create custom aggregate functions
specific to your needs. They read one column of data, and return one output column.

l User Defined Analytic Functions (UDAnF) are similar to UDSFs, in that they read a row of data
and return a single row. However, the function can read input rows independently of outputting
rows, so that the output values can be calculated over several input rows.

The User Defined Load (UDL) feature allows you to create custom routines to load your data into
HP Vertica. You create custom libraries using the HP Vertica SDK to handle various steps in the
loading process.

There aremany similarities in developing the different types of functions. They can even coexist in
the same library. Themain difference is the base class you use for your UDF (see Developing a
UDF for details).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 505 of 817

Developing a User Defined Function in C++
To create a User Defined Function (UDF) in C++, you need to create two classes:

l A function class that performs the actual processing you want the UDF to perform.

l A factory class that tells HP Vertica the name of the UDF and its parameters and return values.

The class you use depends on whether you are creating a scalar or transform UDF (see UDF Types
for details).

The following sections explain how you develop and compile the code for your UDF.

HP Vertica C++ SDK Data Types
The HP Vertica SDK has typedefs and classes for representing HP Vertica data types within your
UDF code. Using these typedefs ensures data type compatibility between the data your UDF
processes and generates and the HP Vertica database. The following table describes some of the
typedefs available. Consult the HP Vertica SDK API Documentation for a complete list, as well as
lists of helper functions to convert andmanipulate these data types.

Type
Definition Description

Interval An HP Vertica interval

IntervalYM AnHP Vertica year-to-month interval.

Timestamp AnHP Vertica timestamp

vint A standard HP Vertica 64-bit integer

vint_null A null value for integer values

vbool A Boolean value in HP Vertica

vbool_null A null value for a Boolean data types

vfloat An HP Vertica floating point value

VString String data types (such as varchar and char)

Note: Do not use a VString object to hold an intermediate result. Use a std::string
or char[] instead.

VNumeric Fixed-point data types from HP Vertica

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 506 of 817

Notes

l Whenmaking someHP Vertica SDK API calls (such as VerticaType::getNumericLength) on
objects that have the correct data type. Tominimize overhead and improve performance, most
of the APIs do not check the data types of the objects on which they are called. Calling a
function on an incorrect data type can result in an error.

l A NULLHP Vertica value string data type is converted into an empty C++ string.

Setting up a C++ UDF Development Environment
You should develop your UDF code on the same Linux platform that you use on your HP Vertica
database cluster. This will ensure that your UDF library is compatible with the HP Vertica version
deployed on your cluster.

At aminimum, you need to install the following on your development machine:

l g++ and its associated tool chain such as ld. (Note: some Linux distributions package g++
separately from gcc.)

l A copy of the HP Vertica SDK. See The HP Vertica SDK for details.

Note: The HP Vertica binaries are compiled using the default version of g++ installed on the
supported Linux platforms. While other versions of g++ (or even entirely different compilers)
may produce compatible libraries, only the platform’s default g++ version is supported for
compiling UDFs.

While not required, the following additional software packages are highly recommended:

l make, or some other build-management tool.

l gdb or some other debugger.

l Valgrind, or similar tools that detect memory leaks.

You should also have access to a non-production HP Vertica database for testing and debugging.
Youmay want to install a single-node HP Vertica database on your development machine for easier
development.

If you want to use any third-party libraries (for example, statistical analysis libraries), you need to
install them on your development machine. (If you do not statically link these libraries into your UDF
library, you also have to install them on every node in the cluster. See Compiling Your C++ UDF for
details.)

The C++ HP Vertica SDK
The HP Vertica C++ Software Development Kit (SDK) is distributed as part of the server
installation. It contains the source and header files you need to create your UDF library, as well as

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 507 of 817

http://gcc.gnu.org/ GCC homepage

several sample source files that you can use as a basis for your ownUDFs.

The SDK files are located in the sdk subdirectory off of the root HP Vertica server directory
(usually, /opt/vertica/sdk). This directory contains:

l includewhich contains the headers and source files needed to compile UDF libraries.

l exampleswhich contains the source code and sample data for UDF examples.

l docwhich contains the API documentation for the HP Vertica SDK.

Running the Examples

See the README file in the examples directory for instructions on compiling and running the
examples. Running the examples not only helps you understand how aUDF works, it also helps
you ensure your development environment is properly set up to compile UDF libraries.

Note: You can copy /opt/vertica/sdk/examples to your home directory and run "make" to build
the example libraries. Youmust have a g++ development environment installed. To install a
g++ development environment on Red Hat systems, run yum install gcc gcc-c++ make.

Include File Overview

There are two files in the include directory you need when compiling your UDF:

l Vertica.h is themain header file for the SDK. Your UDF code needs to include this file in order
to find the SDK's definitions.

l Vertica.cpp contains support code that needs to be compiled into the UDF library.

Much of the HP Vertica SDK API is defined in the VerticaUDx.h header file (which is included by
the Vertica.h file). If you're curious, youmay want to review the contents of this file in addition to
reading the API documentation.

The HP Vertica C++ SDK API Documentation
This documentation only provides a brief overview of the classes and class functions defined by the
C++ User Defined Function API. To learnmore, see the HP Vertica SDK API. You can find this
documentation in two locations:

l In the same directory as the other HP Vertica SDK files: /opt/vertica/sdk/doc.

l Included with the full documentation set, available either online or for download. See Installing
HP Vertica Documentation in the Installation Guide.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 508 of 817

Developing a User Defined Scalar Function
A UDSF function returns a single value for each row of data it reads. It can be used anywhere a
built-in HP Vertica function can be used. You usually develop a UDF to perform datamanipulations
that are too complex or too slow to perform using SQL statements and functions. UDFs also let you
use analytic functions provided by third-party libraries within HP Vertica while still maintaining high
performance.

The topics in this section guide you through developing a UDSF.

UDSF Requirements

There are several requirements for your UDSF:

l Your UDSFmust return a value for every input row (unless it generates an error, see Handling
Errors for details). Failing to return a value for a row will result in incorrect results (and potentially
destabilizing the HP Vertica server if not run in FencedMode).

l A UDSF cannot havemore than 32 arguments.

If you intend your UDSF to run in unfencedmode, it is vital you pay attention to these additional
precautions (although fenced-mode UDSFs should following these guidelines as well).

l Your UDSFmust not allow an exception to be passed back to HP Vertica. Doing so could result
in amemory leak, as any memory allocated by the exception will not be reclaimed. It is a good
practice to use a top-level try-catch block to catch any stray exceptions that may be thrown by
your code or any functions or libraries your code calls.

l If your UDSF allocates its ownmemory, youmust make absolutely sure it properly frees it.
Failing to free even a single byte of allocatedmemory can have huge consequences if your UDF
is called to operate on amulti-million row table. Instead of having your code allocate its own
memory, you should use the vt_alloc macro, which uses HP Vertica's ownmemory manager
to allocate and track memory. This memory is guaranteed to be properly disposed of when your
UDSF completes execution. See Allocating Resources for UDFs for more information.

l In general, remember that unfenced UDSFs run within the HP Vertica process. Any problems it
causes may result in database instability or even data loss.

UDSF Class Overview

You create your UDSF by subclassing two classes defined by the HP Vertica SDK:
Vertica::ScalarFunction and Vertica::ScalarFunctionFactory.

The ScalarFunctionFactory performs two roles:

l It lists the parameters accepted by the UDSF and the data type of the UDSF's return value. HP
Vertica uses this data when you call the CREATE FUNCTION SQL statement to add the

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 509 of 817

function to the database catalog.

l It returns an instance of the UDSF function's ScalarFunction subclass that HP Vertica can
call to process data.

The ScalarFunction class is where you define the processBlock function that performs the
actual data processing. When a user calls your UDSF function in a SQL statement, HP Vertica
bundles together the data from the function parameters and sends it to the processBlock
statement.

The input and output of the processBlock function are supplied by objects of the
Vertica::BlockReader and Vertica::BlockWriter class. They define functions that you use to
read the input data and write the output data for your UDSF.

In addition to processBlock, the ScalarFunction class defines two optional class functions that
you can implement to allocate and free resources: setup and destroy. You should use these class
functions to allocate and deallocate resources that you do not allocate through the UDF API (see
Allocating Resources for UDFs for details).

The ServerInterface Class

All of the class functions that you will define in your UDSF receive an instance of the
ServerInterface class as a parameter. This object is used by the underlying HP Vertica SDK
code tomake calls back into the HP Vertica process. For example, themacro you use to instantiate
amember of your ScalarFunction subclass (vt_createFuncObj) needs a pointer to this object to
able able to ask HP Vertica to allocate thememory for the new object. You generally will not
interact with this object directly, but instead pass it along to HP Vertica SDK function andmacro
calls.

Subclassing ScalarFunction

The ScalarFunction class is the heart of a UDSF. Your own subclass must contain a single class
function named processBlock that carries out all of the processing that you want your UDSF to
perform.

Note:While the name you choose for your ScalarFunction subclass does not have tomatch
the name of the SQL function you will later assign to it, HP considers making the names the
same a best practice.

The following example shows a very basic subclass of ScalarFunction called Add2ints. As the
name implies it adds two integers together, returning a single integer result. It also demonstrates
including themain HP Vertica SDK header file (HP Vertica.h) and using the HP Vertica
namespace. While not required, using the namespace saves you from having to prefix every HP
Vertica SDK class reference with HP Vertica::.

// Include the top-level Vertica SDK file
#include "Vertica.h"

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 510 of 817

// Using the Vertica namespace means we don't have to prefix all
// class references with Vertica::
using namespace Vertica;
/*
* ScalarFunction implementation for a UDSF that adds
* two numbers together.
*/

class Add2Ints : public ScalarFunction
{

public:
/*
* This function does all of the actual processing for the UDF.
* In this case, it simply reads two integer values and returns
* their sum.
*
* The inputs are retrieved via arg_reader
* The outputs are returned via arg_writer
*/
virtual void processBlock(ServerInterface &srvInterface,

BlockReader &arg_reader,
BlockWriter &res_writer)

{
// While we have input to process

do {
// Read the two integer input parameters by calling the
// BlockReader.getIntRef class function
const vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
// Call BlockWriter.setInt to store the output value, which is the
// two input values added together
res_writer.setInt(a+b);
// Finish writing the row, and advance to the next output row
res_writer.next();
// Continue looping until there are no more input rows

} while (arg_reader.next());
}

};

Themajority of the work in developing a UDSF is creating your processBlock class function. This
is where all of the processing in your function occurs. Your ownUDSF should follow the same
basic pattern as this example:

l Read in a set of parameters from the BlockReader object using data-type-specific class
functions.

l Process the data in somemanner.

l Output the resulting value using one of the BlockWriter class's data-type-specific class
functions.

l Advance to the next row of output and input by calling BlockWriter.next() and
BlockReader.next().

This process continues until there are nomore rows data to be read (BlockReader.next() returns
false).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 511 of 817

Notes

l Youmust make sure that processBlock reads all of the rows in its input and outputs a single
value for each row. Failure to do so can corrupt the data structures that HP Vertica reads to get
the output of your UDSF. The only exception to this rule is if your processBlock function uses
the vt_report_errormacro to report an error back to HP Vertica (see Handling Errors for
more). In that case, HP Vertica does not attempt to read the incomplete result set generated by
the UDSF.

l Writing toomany output rows can cause HP Vertica an out of bounds error.

Subclassing ScalarFunctionFactory

The ScalarFunctionFactory class tells HP Verticametadata about your User Defined Scalar
Function (UDSF): its number of parameters and their data types, as well as the data type of its
return value. It also instantiates amember of the UDSF's ScalarFunction subclass for HP
Vertica.

After defining your factory class, you need to call the RegisterFactorymacro. This macro
instantiates amember of your factory class, so HP Vertica can interact with it and extract the
metadata it contains about your UDSF.

The following example shows the ScalarFunctionFactory subclass for the example
ScalarFunction function subclass shown in Subsclassing ScalarFunction.

/*
* This class provides metadata about the ScalarFunction class, and
* also instantiates a member of that class when needed.
*/

class Add2IntsFactory : public ScalarFunctionFactory
{

// return an instance of Add2Ints to perform the actual addition.
virtual ScalarFunction *createScalarFunction(ServerInterface &interface)
{

// Calls the vt_createFuncObj to create the new Add2Ints class instance.
return vt_createFuncObj(interface.allocator, Add2Ints);

}
// This function returns the description of the input and outputs of the
// Add2Ints class's processBlock function. It stores this information in
// two ColumnTypes objects, one for the input parameters, and one for
// the return value.
virtual void getPrototype(ServerInterface &interface,
ColumnTypes &argTypes,
ColumnTypes &returnType)
{

// Takes two ints as inputs, so add ints to the argTypes object
argTypes.addInt();
argTypes.addInt();
// returns a single int, so add a single int to the returnType object.
// Note that ScalarFunctions *always* return a single value.
returnType.addInt();

}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 512 of 817

};

There are two required class functions youmust implement your ScalarFunctionFactory
subclass:

l createScalarFunction instantiates amember of the UDSF's ScalarFunction class. The
implementation of this function is simple—you just supply the name of the ScalarFunction
subclass in a call to the vt_createFuncObjmacro. This macro takes care of allocating and
instantiating the class for you.

l getPrototype tells HP Vertica about the parameters and return type for your UDSF. In addition
to a ServerInterface object, this function gets two ColumnTypes objects. All you ned to do in
this function is to call class functions on these two objects to build the list of parameters and the
single return value type.

After you define your ScalarFunctionFactory subclass, you need to use the RegisterFactory
macro tomake the factory available to HP Vertica. You just pass this macro the name of your
factory class.

The getReturnType Function

If your function returns a sized column (a return data type whose length can vary, such as a
varchar) or a value that requires precision, you need to implement a class function named
getReturnType. This function is called by HP Vertica to find the length or precision of the data
being returned in each row of the results. The return value of this function depends on the data type
your processBlock function returns:

l CHAR or VARCHAR return themaximum length of the string.

l NUMERIC types specify the precision and scale.

l TIME and TIMESTAMP values (with or without timezone) specify precision.

l INTERVAL YEAR TOMONTH specifies range.

l INTERVALDAY TOSECOND specifies precision and range.

If your UDSF does not return one of these data types, it does not need a getReturnType function.

The input to getReturnType function is a SizedColumnTypes object that contains the input
argument types along with their lengths that will be passed to an instance of your processBlock
function. Your implementation of getReturnType has to extract the data types and lengths from
this input and determine the length or precision of the output rows. It then saves this information in
another instance of the SizedColumnTypes class.

The following demonstration comes from one of the UDSF examples that is included with the HP
Vertica SDK. This function determines the length of the VARCHAR data being returned by a UDSF
that removes all spaces from the input string. It extracts the return value as a VerticaType object,
then uses the getVarcharLength class function to get the length of the string.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 513 of 817

// Determine the length of the varchar string being returned.
virtual void getReturnType(ServerInterface &srvInterface,

const SizedColumnTypes &argTypes,
SizedColumnTypes &returnType)

{
const VerticaType &t = argTypes.getColumnType(0);
returnType.addVarchar(t.getVarcharLength());

}

The RegisterFactory Macro

Once you have completed your ScalarFunctionFactory subclass, you need to register it using
the RegisterFactorymacro. This macro instantiates your factory class andmakes themetadata it
contains available for HP Vertica to access. To call this macro, you just pass it the name of your
factory class.

// Register the factory with HP Vertica
RegisterFactory(Add2IntsFactory);

Setting Null Input and Volatility Behavior

Normally, HP Vertica calls your UDSF for every row of data in the query. There are two cases
where HP Vertica could avoid calling your UDSF code:

l If your function returns NULLwhen any parameter is a NULL, HP Vertica can just return NULL
without having to call the function. This optimization is also helpful since you do not need to
handle null input parameters in your UDSF code.

l If your function produces the same output value given the same input parameters, HP Vertica
can cache the function's return value. If the UDSF is called with the same set of input
parameters again, it can return the cached value, rather than calling your UDSF.

Letting HP Vertica know about these behaviors of your function allows it to optimize queries
containing your UDSF.

You indicate the volatility and null handling of your function by setting the vol and strict fields in
your ScalarFunctionFactory class's constructor.

Volatility Settings

To indicate your function's volatility, set the vol field to one of the following values:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 514 of 817

Value Description

VOLATILE Repeated calls to the function with the same input parameters always result in
different values. HP Vertica always calls volatile functions for each invocation.

IMMUTABLE Calls to the function with the same input parameters always results in the same
output.

STABLE Repeated calls to the function with the same input within the same statement
returns the same output. For example, a function that returns the current user
namewould be stable since the user cannot change within a statement, but
could change between statements.

DEFAULT_
VOLATILITY

The default volatility. This is the same as VOLATILE.

The following example code shows a version of the Add2ints example factory class that makes the
function immutable.

class Add2intsImmutableFactory : public Vertica::ScalarFunctionFactory
{

virtual Vertica::ScalarFunction *createScalarFunction(Vertica::ServerInterface &srvIn
terface)

{ return vt_createFuncObj(srvInterface.allocator, Add2ints); }
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}

public:
Add2intsImmutableFactory() {vol = IMMUTABLE;}

};
RegisterFactory(Add2intsImmutableFactory);

Null Input Behavior

To indicate how your function reacts to NULL input, set the strictness field to one of the following
values.

Value Description

CALLED_ON_NULL_INPUT The functionmust be called, even if one or more input values are
NULL.

RETURN_NULL_ON_
NULL_INPUT

The function always returns a NULL value if any of its inputs are
NULL.

STRICT A synonym for RETURN_NULL_ON_NULL_INPUT

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 515 of 817

Value Description

DEFAULT_STRICTNESS The default strictness setting. This is the same as CALLED_
ON_NULL_INPUT.

The following example demonstrates setting the null behavior of Add2ints so HP Vertica does not
call the function with NULL values.

class Add2intsNullOnNullInputFactory : public Vertica::ScalarFunctionFactory
{

virtual Vertica::ScalarFunction *createScalarFunction(Vertica::ServerInterface &srvIn
terface)

{ return vt_createFuncObj(srvInterface.allocator, Add2ints); }
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}

public:
Add2intsNullOnNullInputFactory() {strict = RETURN_NULL_ON_NULL_INPUT;}

};
RegisterFactory(Add2intsNullOnNullInputFactory);

Deploying and Using UDSFs

To deploy a UDSF on your HP Vertica database:

1. Copy the UDF shared library file (.so) that contains your function to a node on your HP Vertica
cluster.

2. Connect to the node where you copied the library (for example, using vsql).

3. Use the CREATE LIBRARY statement to load the UDF library into HP Vertica. You pass this
statement the location of the UDF library file you copied to the node earlier. HP Vertica
distributes the library to each node in the cluster, and each HP Vertica process loads a copy of
the library.

4. Use the CREATE FUNCTION statement to add the functions to HP Vertica's catalog. This
maps a SQL function name to the name of the UDSF's factory class. If you are not sure of the
name of the UDSF's factory class, you can list all of the UDFs in the library (see Listing the
UDFs Contained in a Library for details).

The following example demonstrates loading the Add2ints UDSF that is included in the SDK
examples directory. It assumes that the ScalarFunctions.so library that contains the function has
been copied to the dbadmin user's home directory on the initiator node.

=> CREATE LIBRARY ScalarFunctions AS

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 516 of 817

-> '/home/dbadmin/ScalarFunctions.so';
CREATE LIBRARY
=> CREATE FUNCTION Add2Ints AS LANGUAGE 'C++'
-> NAME 'Add2IntsFactory' LIBRARY ScalarFunctions;
CREATE FUNCTION

After creating the Add2ints UDSF, it can be used almost everywhere a built-in function can be
used:

=> SELECT Add2Ints(27,15);
Add2ints

42

(1 row)
=> SELECT * FROM MyTable;

a | b
-----+----

7 | 0
12 | 2
12 | 6
18 | 9
1 | 1

58 | 4
450 | 15

(7 rows)
=> SELECT * FROM MyTable WHERE Add2ints(a, b) > 20;

a | b
-----+----

18 | 9
58 | 4

450 | 15
(3 rows)

See Also

l CREATE LIBRARY

l CREATE FUNCTION (UDF)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 517 of 817

Developing a User Defined Transform Function in C++
A User Defined Transform Function (UDTF) reads one or more arguments (treated as a row of
data), and returns zero or more rows of data consisting of one or more columns. The schema of the
output table does not need to correspond to the schema of the input table—they can be totally
different. The UDTF can return any number of output rows for each row of input.

UDTFs can only be used in the SELECT list that contains just the UDTF call and a required OVER
clause.

Unlike other types of User Defined Functions, UDTFs do not have a limit on the number of
arguments that they can accept. Most other types of UDFs have amaximum of 32 arguments..

The topics in this section guide you through developing a UDTF.

UDTF Requirements

There are several requirements for UDTFs:

l UDTF's are run after 'group by', but before the final 'order by', when used in conjunction with
'group by' and 'order by' in a statement.

l The UDTF can produce as little or as many rows as it wants as output. However, each row it
outputs must be complete. Advancing to the next row without having added a value for each
column results in incorrect results.

l Your UDTFmust not allow an exception to be passed back to Vertica. You should use a top-
level try-catch block to catch any stray exceptions that may be thrown by your code or any
functions or libraries your code calls.

l If your UDTF allocates its ownmemory, youmust make absolutely sure it properly frees it.
Failing to free even a single byte of allocatedmemory can have huge consequences if your UDF
is called to operate on amulti-million row table. Instead of having your code allocate its own
memory, you should use the vt_alloc macro, which uses Vertica's ownmemory manager to
allocate and track memory. This memory is guaranteed to be properly disposed of when your
UDTF finishes executing. See Allocating Resources for UDFs for more information.

l If you intend your UDTF to run in unfencedmode, you need to ensure it is error-free. Any errors
in an unfenced UDF can result in database instability or even data loss.

UDTF Class Overview

You create your UDTF by subclassing two classes defined by the HP Vertica SDK:
Vertica::TransformFunction and Vertica::TransformFunctionFactory.

The TransformFunctionFactory performs two roles:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 518 of 817

l It provides the number of parameters and their and data types accepted by the UDTF and the
number of output columns and their data types UDTF's output. HP Vertica uses this data when
you call the CREATE FUNCTION SQL statement to add the function to the database catalog.

l It returns an instance of the UDTF function's TransformFunction subclass that HP Vertica can
call to process data.

The TransformFunction class is where you define the processPartition function, which
performs the data processing that you want your UDTF to perform. When a user calls your UDTF
function in a SQL SELECT statement, HP Vertica sends a partition of data to the
processPartition statement.

The input and output of the processPartition function are supplied by objects of the
Vertica::PartitionReader and Vertica::PartitionWriter class. They define functions that
you use to readthe input data and write the output data for your UDTF.

In addition to processPartition, the TransformFunction class defines two optional class
functions that you can implement to allocate and free resources: setup and destroy. You should
use these class functions to allocate and deallocate resources that you do not allocate through the
UDF API (see Allocating Resources for UDFs for details).

The ServerInterface Class

All of the class functions that you will define in your UDF receive an instance of the
ServerInterface class as a parameter. This object is used by the underlying HP Vertica SDK
code tomake calls back into the HP Vertica process. For example, themacro you use to instantiate
amember of your TransformFunction subclass (vt_createFuncObj) needs a pointer to a class
function on this object to able able to ask HP Vertica to allocate thememory for the new object. You
generally will not interact with this object directly, but instead pass it along to HP Vertica SDK
function andmacro calls.

Subclassing TransformFunction

Your subclass of Vertica::TransformFunction is where you define the processing you want your
UDTF to perform. The only required function in this class is processPartition, which reads the
parameters sent to your UDTF via a Vertica::PartitionReader object, and writes output values
to a Vertica::PartitionWriter object.

The following example shows a subclass of TransformFunction named StringTokenizer that
breaks input strings into individual words, returning each on its own row. For example:

=> SELECT * FROM t;
text

row row row your boat
gently down the stream

(2 rows)
=> SELECT tokenize(text) OVER (partition by text) FROM t;
words

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 519 of 817

gently
down
the
stream
row
row
row
your
boat

(9 rows)

Notice that the number of rows in the result table (and the name of the results column) are different
than the input table. This is one of the strengths of a UDTF.

The following code defines the StringTokenizer class.

#include "Vertica.h"
#include <sstream>
// Use the Vertica namespace to make referring
// to SDK classes easier.
using namespace Vertica;
using namespace std;
// The primary class for the StringTokenizer UDTF.
class StringTokenizer : public TransformFunction {

// Called for each partition in the table. Recieves the data from
// The source table and
virtual void processPartition(ServerInterface &srvInterface,

PartitionReader &inputReader,
PartitionWriter &outputWriter) {

try {
// Loop through the input rows
do {

// Get a single varchar as input.
const VString &sentence = inputReader.getStringRef(0);
// If input string is NULL, then output is NULL as well
if (sentence.isNull())
{

VString &word = outputWriter.getStringRef(0);
word.setNull();
outputWriter.next();

}
else
{

// Otherwise, let's tokenize the string and output the words
std::string tmp = sentence.str();

istringstream ss(tmp);
do
{

std::string buffer;
ss >> buffer;

// Copy to output
if (!buffer.empty()) {

VString &word = outputWriter.getStringRef(0);
word.copy(buffer);

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 520 of 817

outputWriter.next();
}

} while (ss);
}

} while (inputReader.next()); // Loop until no more input rows
} catch (exception& e) {

// Standard exception. Quit.
vt_report_error(0, "Exception while processing partition: [%s]", e.what());

}
}

};

The processPartition function in this example follows a pattern that you will follow in your own
UDTF: it loops over all rows in the table partition that HP Vertica sends it, processing each row. For
UDTF's you do not have to actually process every row. You can exit your function without having
read all of the input without any issues. Youmay choose to do this if your UDTF is performing some
sort search or some other operation where it can determine that the rest of the input is unneeded.

Extracting Parameters

The first task your UDTF function needs to perform in its main loop is to extract its parameters. You
call a data-type specific function in the PartitionReader object to extract each input parameter.
All of these functions take a single parameter: the column number in the input row that you want to
read. In this example, processPartition extracts the single VString input parameter from the
PartitionReader object. The VString class represents an HP Vertica string value (VARCHAR or
CHAR).

In more complex UDTFs, youmay need to extract multiple values. This is done the sameway as
shown in the example, calling the data-type specific function to extract the value of each column in
the input row.

Note: In some cases, youmay want to determine the number and types of parameters using
PartitionReader's getNumCols and getTypeMetaData functions, instead of just hard-coding
the data types of the columns in the input row. This is useful if you want your
TransformFunction to be able to process input tables with different schemas. You can then
use different TransformFunctionFactory classes to definemultiple function signatures that
call the same TransformFunction class. See Subclassing TransformFunctionFactory for
more information.

Handling Null Values

When developing UDTFs, you often need to handle NULL input values in a special manner. In this
example, a NULL input value results in a NULL output value, which is handled as a special case.
After writing a NULL to the output, processPartitionmoves on to the next input row.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 521 of 817

Processing Input Values

After handling any NULL values, the processPartition shown in the examplemoves on to
performing the actual processing. It breaks the string into individual words and adds each word to
its own row in the output.

Writing Output

After your UDTF has performed its processing, it may need to write output. Unlike a UDSF,
outputting data is optional for a UDTF. However, if it does write output, it must supply values for all
of the output columns you defined for your UDTF (see Subclassing TransformFunctionFactory for
details on how you specify the output columns of your UDTF) . There are no default values for your
output. If you want to output a NULL value in one of the columns, youmust explicitly set it.

Similarly to reading input columns, there are function on the PartitionWriter object for writing
each type of data to the output row. In this case, the example calls the PartitionWriter object's
getStringRef function to allocate a new VString object to hold the word it needs to output. Once it
has copied the buffer containing the word, the example calls PartitionWriter.next() to
complete the output row.

Advancing to the Next Input Row

In most UDTFs, processing will continue until all of the rows of input have been read. You advance
to the next row by calling ProcessReader.next(). This function returns true if there is another row
of input data to process and false if all the data in the partition has been read. Once the input rows
are exhausted, your UDTF usually exits so its results are returned back to HP Vertica.

Subclassing TransformFunctionFactory

Your subclass of the TransformFunctionFactory provides metadata about your UDTF to HP
Vertica. Included in this information is the function's name, number and data type of parameters,
and the number and data types of output columns.

There are three required functions you need to implement in your TransformFunctionFactory:

l getPrototype returns two ColumnTypes objects that describe the columns your UDTF takes as
input and returns as output.

l createTransformFunction instantiates amember of your TransformFunction subclass that
HP Vertica can call to process data.

l getReturnType tells HP Vertica details about the output values: the width of variable sized data
types (such as VARCHAR) and the precision of data types that have settable precision (such as
TIMESTAMP). You can also set the names of the output columns using in this function.

Note: The getReturnType function is optional for User Defined Scalar Functions since they do

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 522 of 817

not return a table, and therefore do not require column names. It is required for UDTFs.

The following example shows the factory class that corresponds to the TransformFunction
subclass shown in Subclassing TransformFunction.

class TokenFactory : public TransformFunctionFactory {
// Tell Vertica that StringTokenizer reads in a row with 1 string,

// and returns a row with 1 string
virtual void getPrototype(ServerInterface &srvInterface, ColumnTypes

&argTypes, ColumnTypes &returnType) {
argTypes.addVarchar();
returnType.addVarchar();

}
// Tell Vertica the maxiumu return string length will be, given the input
// string length. Also names the output column. This function is only
// necessary for columns that have a variable size (i.e. strings) or
// have to report their precision.
virtual void getReturnType(ServerInterface &srvInterface,

const SizedColumnTypes &input_types,
SizedColumnTypes &output_types) {

int input_len = input_types.getColumnType(0).getStringLength();
// Output size will never be more than the input size
// Also sets the name of the output column.
output_types.addVarchar(input_len, "words");

}
virtual TransformFunction *createTransformFunction(ServerInterface

&srvInterface) {
return vt_createFuncObj(srvInterface.allocator, StringTokenizer);

}
};

The getPrototype function is straightforward. You call functions on the ColumnTypes objects to
set the data types of the input and output columns for your function. In this example, the UDTF
takes a single VARCHAR column as input and returns a single VARCHAR column as output, so it
calls the addVarchar() function on both of the ColumnTypes objects. See the ColumnTypes entry in
the HP Vertica API documentation for a full list of the data type functions you can call to set input
and output column types.

The getReturnType function is similar to getPrototype, but instead of returning just the data types
of the output columns, this function returns the precision of data types that require it (INTERVAL,
INTERVAL YEAR TOMONTH, TIMESTAMP, TIMESTAMPWITH TIMEZONE, or VNumeric) or
themaximum length of variable-width columns (VARCHAR). This example just returns the length
of the input string, since the output will never be longer than the input string. It also sets the name of
the output column to "words."

Note: You do not have to supply a name for an output column in this function, since the column
name has a default value of "". However, if you do not supply a column name here, the SQL
statements that call your UDTFmust provide aliases for the unnamed columns or they will fail
with an error message. From a usability standpoint, its easier for you to supply the column
names here once, rather than to force all of the users of your function to supply their own
column names for each call to the UDTF.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 523 of 817

createTransformFunction is essentially boilerplate code. It just calls the vt_returnFuncObj
macro with the name of the TransformFunction class associated with this factory class. This
macro takes care of instantiating a copy of the TransformFunction class that HP Vertica can use
to process data.

Registering the UDTF Factory Subclass

The final step in creating your UDTF is to call the RegisterFactorymacro. This macro ensures
that your factory class is instantiated when HP Vertica loads the shared library containing your
UDTF. having your factory class instantiated is the only way that HP Vertica can find your UDTF
and determine what its inputs and outputs are.

The RegisterFactorymacro just takes the name of your factory class:

RegisterFactory(TokenFactory);

Creating Multi-Phase UDTFs

Multi-phase UDTFs let you break your data processing into multiple steps. Using this feature, your
UDTFs can perform processing in a way similar to Hadoop or other MapReduce frameworks. You
can use the first phase to break down and gather data, and then use subsequent phases to process
the data. For example, the first phase of your UDTF could extract specific types of user interactions
from aweb server log stored in the column of a table, and subsequent phases could perform
analysis on those interactions.

Multi-phase UDTFs also let you decide where processing should should occur: locally on each
node, or throughout the cluster. If your multi-phase UDTF is like aMapReduce process, you want
the first phase of your multi-phase UDTF to process data that is stored locally on the node where
the instance of the UDTF is running. This prevents large segments of data from being copied
around the HP Vertica cluster. Depending on the type of processing being performed in later
phases, youmay choose to have the data segmented and distributed across the HP Vertica
cluster.

Each phase of the UDTF is the same as a traditional (single-phase) UDTF: it receives a table as
input, and generates a table as output. The schema for each phase's output does not have tomatch
its input, and each phase can output as many or as few rows as it wants. You create a subclass of
TransformFunction to define the processing performed by each stage. If you already have a
TransformFunction from a single-phase UDTF that performs the processing you want a phase of
your multi-phase UDTF to perform, you can easily adapt it to work within themulti-phase UDTF.

What makes amulti-phase UDTF different from a traditional UDTF is the factory class you use.
You define amulti-phase UDTF using a subclass of MultiPhaseTransformFunctionFactory,
rather than the TransformFunctionFactory. This factory class acts as a container for all of the
phases in your multi-step UDTF. It provides HP Vertica with the input and output requirements of
the entire multi-phase UDTF (through the getPrototype function), and a list of all the phases in the
UDTF.

Within your subclass of the MultiPhaseTransformFunctionFactory class, you define one or
more subclasses of TransformFunctionPhase. These classes fill the same role as
TransformFunctionFactory class for each phase in your multi-phase UDTF. They define the input

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 524 of 817

and output of each phase and create instances of their associated TransformFunction classes to
perform the processing for each phase of the UDTF. In addition to these subclasses, your
MultiPhaseTransformFunctionFactory includes fields that provide a handle to an instance of
each of the TransformFunctionPhase subclasses.

The following code fragment is from the InvertedIndex UDTF example distributed with the HP
Vertica SDK. It demonstrates subclassing the MultiPhaseTransformFunctionFactory including
two TransformFunctionPhase subclasses that defines the two phases in this UDTF.

class InvertedIndexFactory : public MultiPhaseTransformFunctionFactory
{
public:

/**
* Extracts terms from documents.
*/

class ForwardIndexPhase : public TransformFunctionPhase
{

virtual void getReturnType(ServerInterface &srvInterface,
const SizedColumnTypes &inputTypes,
SizedColumnTypes &outputTypes)

{
// Sanity checks on input we've been given.
// Expected input: (doc_id INTEGER, text VARCHAR)
vector<size_t> argCols;
inputTypes.getArgumentColumns(argCols);
if (argCols.size() < 2 ||

!inputTypes.getColumnType(argCols.at(0)).isInt() ||
!inputTypes.getColumnType(argCols.at(1)).isVarchar())
vt_report_error(0, "Function only accepts two arguments"

"(INTEGER, VARCHAR))");
// Output of this phase is:
// (term_freq INTEGER) OVER(PBY term VARCHAR OBY doc_id INTEGER)
// Number of times term appears within a document.
outputTypes.addInt("term_freq");
// Add analytic clause columns: (PARTITION BY term ORDER BY doc_id).
// The length of any term is at most the size of the entire document.
outputTypes.addVarcharPartitionColumn(

inputTypes.getColumnType(argCols.at(1)).getStringLength(),
"term");

// Add order column on the basis of the document id's data type.
outputTypes.addOrderColumn(inputTypes.getColumnType(argCols.at(0)),

"doc_id");
}
virtual TransformFunction *createTransformFunction(ServerInterface

&srvInterface)
{ return vt_createFuncObj(srvInterface.allocator, ForwardIndexBuilder); }

};
/**
* Constructs terms' posting lists.
*/

class InvertedIndexPhase : public TransformFunctionPhase
{

virtual void getReturnType(ServerInterface &srvInterface,
const SizedColumnTypes &inputTypes,
SizedColumnTypes &outputTypes)

{
// Sanity checks on input we've been given.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 525 of 817

// Expected input:
// (term_freq INTEGER) OVER(PBY term VARCHAR OBY doc_id INTEGER)
vector<size_t> argCols;
inputTypes.getArgumentColumns(argCols);
vector<size_t> pByCols;
inputTypes.getPartitionByColumns(pByCols);
vector<size_t> oByCols;
inputTypes.getOrderByColumns(oByCols);
if (argCols.size() != 1 || pByCols.size() != 1 || oByCols.size() != 1 ||

!inputTypes.getColumnType(argCols.at(0)).isInt() ||
!inputTypes.getColumnType(pByCols.at(0)).isVarchar() ||
!inputTypes.getColumnType(oByCols.at(0)).isInt())
vt_report_error(0, "Function expects an argument (INTEGER) with "

"analytic clause OVER(PBY VARCHAR OBY INTEGER)");
// Output of this phase is:
// (term VARCHAR, doc_id INTEGER, term_freq INTEGER, corp_freq INTEGER).
outputTypes.addVarchar(inputTypes.getColumnType(

pByCols.at(0)).getStringLength(),"term");
outputTypes.addInt("doc_id");
// Number of times term appears within the document.
outputTypes.addInt("term_freq");
// Number of documents where the term appears in.
outputTypes.addInt("corp_freq");

}

virtual TransformFunction *createTransformFunction(ServerInterface
&srvInterface)

{ return vt_createFuncObj(srvInterface.allocator, InvertedIndexBuilder); }
};
ForwardIndexPhase fwardIdxPh;
InvertedIndexPhase invIdxPh;
virtual void getPhases(ServerInterface &srvInterface,

std::vector<TransformFunctionPhase *> &phases)
{

fwardIdxPh.setPrepass(); // Process documents wherever they're originally stored.
phases.push_back(&fwardIdxPh);
phases.push_back(&invIdxPh);

}
virtual void getPrototype(ServerInterface &srvInterface,

ColumnTypes &argTypes,
ColumnTypes &returnType)

{
// Expected input: (doc_id INTEGER, text VARCHAR).
argTypes.addInt();
argTypes.addVarchar();
// Output is: (term VARCHAR, doc_id INTEGER, term_freq INTEGER, corp_freq INTEGER)
returnType.addVarchar();
returnType.addInt();
returnType.addInt();
returnType.addInt();

}
};
RegisterFactory(InvertedIndexFactory);

Most of the code in this example is similar to the the code in a TransformFunctionFactory class:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 526 of 817

l Both TransformFunctionPhase subclasses implement the getReturnType function, which
describes the output of each stage. This is the similar to the getPrototype function from the
TransformFunctionFactory class. However, this function also lets you control how the data is
partitioned and ordered between each phase of your multi-phase UDTF.

The first phase calls SizedColumnTypes::addVarcharPartitionColumn (rather than just
addVarcharColumn) to set the phase's output table to be partitioned by the column containing
the extracted words. It also calls SizedColumnTypes::addOrderColumn to order the output
table by the document ID column. It calls this function instead of one of the data-type-specific
functions (such as addIntOrderColumn) so it can pass the data type of the original column
through to the output column.

Note: Any order by column or partition by column set by the final phase of the UDTF in its
getReturnType function is ignored. Its output is returned to the initiator node rather than
partitioned and reordered then sent to another phase.

l The MultiPhaseTransformFunctionFactory class implements the getPrototype function,
that defines the schemas for the input and output of themulti-phase UDTF. This function is the
same as the TransformFunctionFactory::getPrototype function.

The unique function implemented by the MultiPhaseTransformFunctionFactory class is
getPhases. This function defines the order in which the phases are executed. The fields that
represent the phases are pushed into this vector in the order they should execute.

The MultiPhaseTransformFunctionFactory.getPhase function is also where you flag the first
phase of the UDTF as operating on data stored locally on the node (called a "pre-pass" phase)
rather than on data partitioned across all nodes. Using this option increases the efficiency of your
multi-phase UDTF by avoiding having tomove significant amounts of data around the HP Vertica
cluster.

Note: Only the first phase of your UDTF can be a pre-pass phase. You cannot havemultiple
pre-pass phases, and no later phase can be a pre-pass phase.

Tomark the first phase as pre-pass, you call the TransformFunctionPhase::setPrepass function
of the first phase's TransformFunctionPhase instance from within the getPhase function.

Notes

l You need to ensure that the output schema of each phasematches the input schema expected
by the next phase. In the example code, each TransformFunctionPhase::getReturnType
implementation performs a sanity check on its input and output schemas. Your
TransformFunction subclasses can also perform these checks in their processPartition
function.

l There is no built-in limit on the number of phases that your multi-phase UDTF can have.
However, more phases usemore resources. When running in fencedmode, HP Verticamay
terminate UDTFs that use toomuchmemory. See UDF Resource Use.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 527 of 817

Deploying and Using User Defined Transforms

To deploy a UDTF on your HP Vertica database:

1. Copy the UDF shared library file (.so) that contains your function to a node on your HP Vertica
cluster.

2. Connect to the node where you copied the library (for example, using vsql).

3. Use the CREATE LIBRARY statement to load the UDF library into HP Vertica. You pass this
statement the location of the UDF library file you copied to the node earlier. HP Vertica
distributes the library to each node in the cluster.

4. Use the CREATE TRANSFORM FUNCTION statement to add the function to the HP Vertica
catalog. This maps a SQL function name to the name of the UDF's factory class. If you are not
sure of the name of the UDF's factory class, you can list all of the UDFs in the library (see
Listing the UDFs Contained in a Library for details).

The following example demonstrates loading the Tokenize UDTF that is included in the SDK
examples directory. It assumes that the TransformFunctions.so library that contains the function
has been copied to the dbadmin user's home directory on the initiator node.

=> CREATE LIBRARY TransformFunctions AS
-> '/home/dbadmin/TransformFunctions.so';
CREATE LIBRARY
=> CREATE TRANSFORM FUNCTION tokenize
-> AS LANGUAGE 'C++' NAME 'TokenFactory' LIBRARY TransformFunctions;
CREATE TRANSFORM FUNCTION
=> CREATE TABLE T (url varchar(30), description varchar(2000));
CREATE TABLE
=> INSERT INTO T VALUES ('www.amazon.com','Online retail merchant and provider of cloud s
ervices');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.hp.com','Leading provider of computer hardware and imaging
solutions');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.vertica.com','World''s fastest analytic database');
OUTPUT

1

(1 row)
=> COMMIT;
COMMIT
=> -- Invoke the UDT
=> SELECT url, tokenize(description) OVER (partition by url) FROM T;

url | words

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 528 of 817

-----------------+-----------
www.amazon.com | Online
www.amazon.com | retail
www.amazon.com | merchant
www.amazon.com | and
www.amazon.com | provider
www.amazon.com | of
www.amazon.com | c
www.amazon.com | loud
www.amazon.com | services
www.hp.com | Leading
www.hp.com | provider
www.hp.com | of
www.hp.com | computer
www.hp.com | hardware
www.hp.com | and
www.hp.com | im
www.hp.com | aging
www.hp.com | solutions
www.vertica.com | World's
www.vertica.com | fastest
www.vertica.com | analytic
www.vertica.com | database

(22 rows)

UDTF Query Restrictions

A query that includes a UDTF cannot contain:

n Any statements other than the SELECT statement containing the call to the UDTF and a
PARTITION BY expression

n Any other analytic function

n A call to another UDTF

n A TIMESERIES clause

n A patternmatching clause

n A gap filling and interpolation clause

Partitioning By Data Stored on Nodes

UDTFs usually need to process data partitioned in a specific way. For example, a UDTFmay
process a web server log file to determine how many hits were referred from each partner web site.
This UDTF needs to have its input partitioned by a referrer column, so that each instance of the
UDTF sees the hits generated by a particular partner so it can total the number of hits. When you
execute this UDTF, you supply a PARTITION BY clause to partition data in this way—each node in
the HP Vertica database partitions the the data it stores, sends some of these partitions off to other
nodes, and then consolidates the partitions it receives from other nodes runs an instance of the
UDTF to process them.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 529 of 817

If your UDTF does not need to process data partitioned in a particular way, you canmake its
processingmuchmore efficient by eliminating the overhead of partitioning the data. Instead, each
instance of the UDTF processes just the data that is stored locally by the node on which it is
running. As long as your UDTF does not need to see data partitioned in any particular manner (for
example, a UDTF that parses data out of an Apache log file), you can tremendously speed up its
processing using this option.

You tell your UDTF to only process local data by using the PARTITION AUTO clause, rather than
specifying a column or expression to use to partition the data. For example, to call a UDTF that
parses a locally-stored Apache log file, you could use the following statement:

SELECT ParseLogFile('/data/apache/log*') OVER (PARTITION AUTO);

Using PARTITION AUTO to Process Local Data

UDTFs usually need to process data partitioned in a specific way. For example, a UDTF that
processes a web server log file to count the number of hits referred by each partner web site UDTF
needs to have its input partitioned by a referrer column. Each instance of the UDTF sees the hits
referred by a particular partner site so it can count them. When you execute this UDTF, you supply
a PARTITION BY clause to partition data in this way—each node in the HP Vertica database
partitions the the data it stores, sends some of these partitions off to other nodes, and then
consolidates the partitions it receives from other nodes runs an instance of the UDTF to process
them.

If your UDTF does not need its input data partitioned in a particular way, you canmake its
processingmuchmore efficient by eliminating the overhead of partitioning the data. Instead, you
have each instance of the UDTF process just the data that is stored locally by the node on which it
is running. As long as your UDTF does not need to see data partitioned in any particular manner (for
example, a UDTF that parses data out of an Apache log file), you can tremendously speed up its
processing using this option.

You tell your UDTF to only process local data by using the PARTITION AUTO clause, rather than
specifying a column or expression to use to partition the data. You need to supply a source table
that is replicated across all nodes and contains a single row (similar to the DUAL table). For
example, to call a UDTF that parses locally-stored Apache log files, you could use the following
statements:

=> CREATE TABLE rep (dummy INTEGER) UNSEGMENTED ALL NODES;
CREATE TABLE
=> INSERT INTO rep VALUES (1);
OUTPUT

1

(1 row)
=> SELECT ParseLogFile('/data/apache/log*') OVER (PARTITION AUTO) FROM rep;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 530 of 817

Developing a User Defined Aggregate Function
Aggregate Functions perform an operation on a set of values and return one value. HP Vertica
provides standard built-in Aggregate Functions such as AVG, MAX, andMIN. User Defined
Aggregate Functions (UDAF) allow you to create custom aggregate functions specific to your
needs.

UDAF's perform operations on a set of rows and reads one input argument and returns one output
column.

Example code for User Defined Aggregates is available in
/opt/vertica/sdk/examples/AggregateFunctions. See Setting up a C++ UDF Development
Environment for details on setting up your environment and The HP Vertica SDK for details on
building the examples.

User Defined Aggregate Function Requirements

User Defined Aggregates work similarly to the built in HP Vertica aggregate functions.

User Defined Aggregates:

l Support a single input column (or set) of values.

l Provide a single output column.

l Supports automatic RLE decompression. RLE input is decompressed before it is sent to a User
Defined Aggregate.

l Can be used with the GROUP BY and HAVING clauses. Only columns appearing in the
GROUP BY clause can be selected.

l Correlated subquery with User Defined Aggregates is not supported.

l Cannot be used in a query containingmultiple distinct User Defined Aggregate functions.

l Cannot be used in a query containing a single User Defined Aggregate and one or more non-
distinct User Defined Aggregate functions.

l Must not allow an exception to be passed back to HP Vertica. Doing so could result in amemory
leak, because any memory allocated by the exception is not reclaimed. It is a best practice to
use a top-level try-catch block to catch any stray exceptions that may be thrown by your code or
any functions or libraries your code calls.

UDAF Class Overview

You create your UDAF by subclassing two classes defined by the Vertica SDK:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 531 of 817

l Vertica::AggregateFunctionFactory

l Vertica::AggregateFunction

The AggregateFunctionFactory Class

The AggregateFunctionFactory class specifies metadata information such as the argument and
return types of your aggregate function. It provides thesemethods for you to customize:

l getPrototype() - Defines the number of parameters and data types accepted by the function.
There is a single parameter for aggregate functions.

l getIntermediateTypes() - Defines the intermediate variable(s) used by the function.

l getParameterType() - Defines the names and types of parameters that this function uses
(optional).

l getReturnType() - Defines the type of the output column.

HP Vertica uses this data when you call the CREATE AGGREGATE FUNCTION SQL statement
to add the function to the database catalog.

The AggregateFunctionFactory returns an AggregateFunction instance that HP Vertica can call to
process data.

The AggregateFunction Class

The AggregateFunction class provides thesemethods for you to customize:

l initAggregate() - Initializes the class, defines variables, and sets the starting value for the
variables. This functionmust be idempotent.

l aggregate() - Themain aggregation operation.

l combine() - If multiple instances of aggregate is run, then combine is called to combine all the
sub-aggregations into a final aggregation. Although this methodmay not be called, it must be
defined.

l terminate() - Terminates the function and returns the result as a column.

Important: The aggregate() functionmay be not operate on the complete input set all at once.
Depending on how the data is stored, multiple instances of aggregatemay run on the data set.
For this reason, initAggregate() must be idempotent.

The AggregateFunction class also provides optional methods that you can implement to allocate
and free resources: setup and destroy. You should use these class functions to allocate and
deallocate resources that you do not allocate through the UDAF API (see Allocating Resources for
UDFs for details).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 532 of 817

The ServerInterface Class

All of the class functions that you will define in your UDAF receive an instance of the
ServerInterface class as a parameter. This object is used by the underlying HP Vertica SDK code
tomake calls back into the Vertica process. For example, themacro you use to instantiate a
member of your AggregateFunction subclass (vt_createFuncObj) needs a pointer to a class
function on this object to able able to ask HP Vertica to allocate thememory for the new object. You
generally will not interact with this object directly, but instead pass it along to HP Vertica SDK
function andmacro calls.

Subclassing Aggregate Function

Example Subclass of AggregateFunction

The following shows a subclass of AggregateFunction named ag_max that returns the highest
value from a column of numbers.

The initAggregate function in this example gets the first argument to the function as a vfloat and
sets the initial value to zero. Note that the example, as written for simplicity, does not take into
account negative input values. Any negative values are returned as 0.

virtual void initAggregate(ServerInterface &srvInterface,
IntermediateAggs &aggs)

{
vfloat &max = aggs.getFloatRef(0);
max = 0;

}

The aggregate function compares the current maximum with themaximum value it has seen so
far, and if the new value is higher, then the new value becomes the highest value.

void aggregate(ServerInterface &srvInterface,
BlockReader &arg_reader,
IntermediateAggs &aggs)

{
vfloat &max = aggs.getFloatRef(0);
do {

const vfloat &input = arg_reader.getFloatRef(0);
// if input is bigger than the current max, make the max = input
if (input > max) {

max = input;
}

} while (arg_reader.next());
}

The combine function takes as its input the intermediate results of other invocations of aggregate
method(s) and determines the overall max value from the complete input set.

virtual void combine(ServerInterface &srvInterface,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 533 of 817

IntermediateAggs &aggs,
MultipleIntermediateAggs &aggs_other)

{
vfloat &myMax = aggs.getFloatRef(0);
// Combine all the other intermediate aggregates
do {

const vfloat &otherMax = aggs_other.getFloatRef(0);
// if input is bigger than the current max, make the max = input
if (otherMax > myMax) {

myMax = otherMax;
}

} while (aggs_other.next());
}

The terminate function is called when all input has been evaluated by the aggregatemethod. It
returns themax value to the result writer.

virtual void terminate(ServerInterface &srvInterface,
BlockWriter &res_writer,
IntermediateAggs &aggs)
{

// Metadata about the type (to allow creation)
const vfloat max = aggs.getFloatRef(0);
res_writer.setFloat(max);

}

Example Code:

class Max : public AggregateFunction
{

virtual void initAggregate(ServerInterface &srvInterface,
IntermediateAggs &aggs)
{

vfloat &max = aggs.getFloatRef(0);
max = 0;

}
void aggregate(ServerInterface &srvInterface,
BlockReader &arg_reader,
IntermediateAggs &aggs)
{

vfloat &max = aggs.getFloatRef(0);
do {

const vfloat &input = arg_reader.getFloatRef(0);
// if input is bigger than the current max, make the max = input
if (input > max) {

max = input;
}

} while (arg_reader.next());
}
virtual void combine(ServerInterface &srvInterface,
IntermediateAggs &aggs,
MultipleIntermediateAggs &aggs_other)
{

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 534 of 817

vfloat
&myMax = aggs.getFloatRef(0);
// Combine all the other intermediate aggregates
do {

const vfloat &otherMax = aggs_other.getFloatRef(0);
// if input is bigger than the current max, make the max = input
if (otherMax > myMax) {

myMax = otherMax;
}

} while (aggs_other.next());
}
virtual void terminate(ServerInterface &srvInterface,
BlockWriter &res_writer,
IntermediateAggs &aggs)
{

// Metadata about the type (to allow creation)
const vfloat max = aggs.getFloatRef(0);
res_writer.setFloat(max);

}
InlineAggregate()

};

InlineAggregate() is called at the end of the class. You do not need to implement this function, but
it automatically optimizes aggregates and speeds up calculations when called on your code.

Subclassing AggregateFunctionFactory

Example Subclass of AggregateFunctionFactory

The following shows a subclass of AggregateFunctionFactory named ag_maxFactory.

The getPrototypemethod allows you to define the variables that are sent to your aggregate
function and returned to HP Vertica after your aggregate function runs. The example below accepts
and returns a float from/to HP Vertica:

virtual void getPrototype(ServerInterface &srvfloaterface, ColumnTypes &argTypes,
ColumnTypes &returnType)

{
argTypes.addFloat();
returnType.addFloat();

}

The getIntermediateTypesmethod defines any intermediate variables that you use in your
aggregate function. Intermediate variables are used to pass data betweenmultiple invocations of an
aggregate function ("max" in the example below) to combine results until a final result can be
computed:

virtual void getIntermediateTypes(ServerInterface &srvInterface,
const SizedColumnTypes &input_types,
SizedColumnTypes &intermediateTypeMetaData)

{

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 535 of 817

intermediateTypeMetaData.addFloat("max");
}

The getParameterTypemethod defines the name and types of parameters that the aggregate
function uses:

virtual void getParameterType(ServerInterface &srvInterface, SizedColumnTypes
¶meter_types)

{
parameter_types.addFloat();

}

The getReturnTypemethod defines and assigns a value to the variable that is sent back to HP
Vertica when the aggregate function completes:

virtual void getReturnType(ServerInterface &srvfloaterface,
const SizedColumnTypes &input_types,
SizedColumnTypes &output_types)

{
output_types.addFloat("max");

}

Example Code:

class MaxFactory : public AggregateFunctionFactory
{

virtual void getPrototype(ServerInterface &srvfloaterface, ColumnTypes &argTypes,
ColumnTypes &returnType)

{
argTypes.addFloat();
returnType.addFloat();

}
virtual void getIntermediateTypes(ServerInterface &srvInterface,

const SizedColumnTypes &input_types,
SizedColumnTypes &intermediateTypeMetaData)

{
intermediateTypeMetaData.addFloat("max");

}
virtual void getReturnType(ServerInterface &srvfloaterface,

const SizedColumnTypes &input_types,
SizedColumnTypes &output_types)

{
output_types.addFloat("max");

}
virtual AggregateFunction *createAggregateFunction(ServerInterface &srvfloaterface)
{ return vt_createFuncObj(srvfloaterface.allocator, Max); }

};

User Defined Aggregate - Complete Example

This is a complete working example of a User Defined Aggregate:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 536 of 817

#include "Vertica.h"
#include <sstream>
#include <iostream>
using namespace Vertica;
using namespace std;
/****
* Example implementation of Aggregate "Max" Function
***/

class Max : public AggregateFunction
{

virtual void initAggregate(ServerInterface &srvInterface,
IntermediateAggs &aggs)

{
vfloat &max = aggs.getFloatRef(0);
max = 0;

}

void aggregate(ServerInterface &srvInterface,
BlockReader &arg_reader,
IntermediateAggs &aggs)

{
vfloat &max = aggs.getFloatRef(0);
do {

const vfloat &input = arg_reader.getFloatRef(0);
// if input is bigger than the current max, make the max = input

if (input > max) {
max = input;

}
} while (arg_reader.next());

}
virtual void combine(ServerInterface &srvInterface,

IntermediateAggs &aggs,
MultipleIntermediateAggs &aggs_other)

{
vfloat &myMax = aggs.getFloatRef(0);
// Combine all the other intermediate aggregates
do {

const vfloat &otherMax = aggs_other.getFloatRef(0);
// if input is bigger than the current max, make the max = input
if (otherMax > myMax) {

myMax = otherMax;
}

} while (aggs_other.next());
}
virtual void terminate(ServerInterface &srvInterface,

BlockWriter &res_writer,
IntermediateAggs &aggs)

{
// Metadata about the type (to allow creation)
const vfloat max = aggs.getFloatRef(0);
res_writer.setFloat(max);

}
InlineAggregate()

};
class MaxFactory : public AggregateFunctionFactory
{

virtual void getIntermediateTypes(ServerInterface &srvInterface,
const SizedColumnTypes &input_types,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 537 of 817

SizedColumnTypes &intermediateTypeMetaData)
{

intermediateTypeMetaData.addFloat("max");
}
virtual void getPrototype(ServerInterface &srvfloaterface,

ColumnTypes &argTypes,
ColumnTypes &returnType)

{
argTypes.addFloat();
returnType.addFloat();

}
virtual void getReturnType(ServerInterface &srvfloaterface,

const SizedColumnTypes &input_types,
SizedColumnTypes &output_types)

{
output_types.addFloat("max");

}
virtual AggregateFunction *createAggregateFunction(ServerInterface &srvfloaterface)
{ return vt_createFuncObj(srvfloaterface.allocator, Max); }

};
RegisterFactory(MaxFactory);

Example usage:

=> CREATE LIBRARY AggregateFunctions AS
-> '/opt/vertica/sdk/examples/build/AggregateFunctions.so';
CREATE LIBRARY
=> create aggregate function ag_max as LANGUAGE 'C++'
-> name 'MaxFactory' library AggregateFunctions;
CREATE AGGREGATE FUNCTION
=> select * from example;
i

1
1
8
2
3
0
5
13
21

(9 rows)
=> select ag_max(i) from example;
ag_max

21

(1 row)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 538 of 817

Developing a User Defined Analytic Function
User Defined Analytic Functions (UDAnFs) are User Defined Functions that are used for analytics.
See Using SQL Analytics for an overview of HP Vertica's built-in analytics. Like User Defined
Scalar Functions (UDSFs), UDAnFs must output a single value for each row of data read. Unlike
UDSFs, the UDAnF's input reader and output reader can be advanced independently. This feature
lets you create UDAnF's where the output value is calculated over multiple rows of data. By
advancing the reader and writer independently, you can create functions similar to the built-in
analytic functions such as LAG, which uses data from prior rows to output a value for the current
row.

Note: Analytic functions are only supported in C++. They cannot be developed in R or Java.

User Defined Analytic Function Requirements

User Defined Analytic Functions (UDAnFs) must meet several requirements:

l They must produce a single output value for each row in the partition of data they are given to
process.

l They must have 32 or fewer arguments.

l Like all UDF's, they must not allow an exception to be passed back to HP Vertica. Doing so
could lead to issues such as memory leaks (caused by thememory allocated by the exception
never being freed). Your UDAnF should always contain a top-level try-catch block to catch any
stray exceptions caused by your code or libraries your code calls.

l If they allocate resources on their own, they must properly free it. Even a single byte of allocated
memory that is not freed can become an issue in a UDAnF that is called over millions of rows.
This is especially true if your UDAnF runs in unfencedmode (directly within the HP Vertica
process) since it could destabilize the database. Instead of directly allocatingmemory, your
function should use thememory allocationmacros in the HP Vertica SDK. See Allocating
Resources for UDFs for details.

UDAnF Class Overview

To create a UDAnF, you need to subclass two classes defined by the HP Vertica SDK:

l Vertica::AnalyticFunctionwhich carries out the processing you want your function to
perform.

l Vertica::AnalyticFunctionFactorywhich defines the input and output data types of your
function. It instantiates your AnalyticFunction subclass when needed.

The AnalyticFunction class is where you define the processPartition function that performs
the analytic processing you want your function to perform. When a user calls your UDAnF function

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 539 of 817

in a SQL SELECT statement, HP Vertica breaks the data into partitions as specified in the OVER
clause of the query, and calls the processPartition function to process them. If the query does
not a partition by column, the

The input and output of the processPartition function are supplied by objects of the
Vertica::AnalyticPartitionReader and Vertica::AnalyticPartitionWriter class. They
define functions that you use to read the input data and write the output data for your UDAnF.

In addition to processPartition, the AnalyticFunction class defines two optional class
functions that you can implement to allocate and free resources: setup and destroy. You use
these class functions to allocate and deallocate resources that you do not allocate through the UDF
API (see Allocating Resources for UDFs for details).

The ServerInterface Class

All of the class functions that you define in your UDAnF receive a ServerInterface object as a
parameter. It is used by the underlying HP Vertica SDK code tomake calls back into the HP
Vertica process. For example, themacro you use to instantiate amember of your
AnalyticFunction subclass (vt_createFuncObj) needs a pointer to this object to able able to ask
HP Vertica to allocate thememory for the new object. You generally will not interact with this object
directly, but instead pass it along to HP Vertica SDK function andmacro calls.

Subclassing AnalyticFunction

Your subclass of Vertica::AnalyticFunction is where your User Defined Analytic Function
(UDAnF) performs its processing. The one function in the class that youmust implement,
processPartition, reads a partition of data, performs some sort of processing, and outputs single
value for each input row.

For example, a UDAnF that ranks rows based on how they are ordered has a processPartition
function that reads each row, determines how to rank the row, and outputs the rank value. An
example of running a rank function, named an_rank is:

=> SELECT * FROM hits;
site | date | num_hits

-----------------+------------+----------
www.example.com | 2012-01-02 | 97
www.vertica.com | 2012-01-01 | 343435
www.example.com | 2012-01-01 | 123
www.example.com | 2012-01-04 | 112
www.vertica.com | 2012-01-02 | 503695
www.vertica.com | 2012-01-03 | 490387
www.example.com | 2012-01-03 | 123

(7 rows)
=> SELECT site,date,num_hits,an_rank()
-> OVER (PARTITION BY site ORDER BY num_hits DESC)
-> AS an_rank FROM hits;

site | date | num_hits | an_rank
-----------------+------------+----------+---------
www.example.com | 2012-01-03 | 123 | 1
www.example.com | 2012-01-01 | 123 | 1
www.example.com | 2012-01-04 | 112 | 3

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 540 of 817

www.example.com | 2012-01-02 | 97 | 4
www.vertica.com | 2012-01-02 | 503695 | 1
www.vertica.com | 2012-01-03 | 490387 | 2
www.vertica.com | 2012-01-01 | 343435 | 3

(7 rows)

As with the built-in RANK analytic function, rows that have the same value for the ORDER BY
column (num_hits in this example) have the same rank, but the rank continues to increase, so that
next row that has a different ORDER BY key gets a rank value based on the number of rows that
preceded it.

HP Vertica calls the processPartition() function once for each partition of data. It supplies the
partition using an AnalyticPartitionReader object from which your function reads its input data.
In addition, there is a unique function on this object named isNewOrderByKey, which returns a
Boolean value indicating whether your function has seen a row with the sameORDER BY key (or
keys). This function is very useful for analytic functions (such as the example RANK function)
which need to to handle rows with identical ORDER BY keys differently than rows with different
ORDER BY keys.

Note: You can specify multiple ORDER BY columns in the SQL query you use to call your
UDAnF. The isNewOrderByKey function returns true if any of the ORDER BY keys are
different than the previous row.

Once your function has finished processing the row of data, you advance it to the next row of input
by calling the AnalyticPartitionReader::next function.

Your function writes its output value using a AnalyticPartitionWriter object that HP Vertica
supplies as a parameter to the processPartition function. This object has data-type-specific
functions to write the output value (such as setInt). After setting the output value, call the
AnalyticPartitionWriter::next function to advance to the next row in the output.

Note: Youmust be sure that your function produces a row of output for each row of input in the
partition. Youmust also not output more rows than are in the partition, otherwise the zygote
size process (if running in FencedMode) or HP Vertica itself could generate an out of bounds
error.

The following example code defines a AnalyticFunction subclass named Rank, which
implements the ranking function demonstrated earlier. It is based on example code distributed in the
examples directory of the SDK.

/**
* User defined analytic function: Rank - works mostly the same as SQL-99 rank
* with the ability to define as many order by columns as desired
*
*/

class Rank : public AnalyticFunction
{

virtual void processPartition(ServerInterface &srvInterface,
AnalyticPartitionReader &inputReader,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 541 of 817

AnalyticPartitionWriter &outputWriter)
{

// Always use a top-level try-catch block to prevent exceptions from
// leaking back to Vertica or the fenced-mode side process.
try {

rank = 1; // The rank to assign a row
rowCount = 0; // Number of rows processed so far
do {

rowCount++;
// Do we have a new order by row?
if (inputReader.isNewOrderByKey()) {

// Yes, so set rank to the total number of rows that have been
// processed. Otherwise, the rank remains the same value as
// the previous iteration.
rank = rowCount;

}
// Write the rank
outputWriter.setInt(0, rank);
// Move to the next row of the output
outputWriter.next();

} while (inputReader.next()); // Loop until no more input
} catch(exception& e) {

// Standard exception. Quit.
vt_report_error(0, "Exception while processing partition: %s", e.what());

}
}

private:
vint rank, rowCount;

};

In this example, the processPartition function does not actually read any of the data from the
input row, it just advances through the rows. It does not need to read data since just needs to count
the number of rows that have been read and determine whether those rows have the sameORDER
BY key as the previous row. If the current row is a new ORDER BY key, then the rank is set to the
total number of rows that have been processed. If the current row has the sameORDER BY value
as the previous row, then the rank remains the same.

Note that the function has a top-level try-catch block. All of your UDF functions should always have
one to prevent stray exceptions from being passed back to HP Vertica (if you run the function
unfenced) or the side process.

Subclassing AnalyticFunctionFactory

Your subclass of the AnalyticFunctionFactory class provides the followingmetadata about your
UDAnF to HP Vertica:

l The number and data types of your function's input arguments

l Your function's output data type (and its width or precision, if it returns a variable-width data type
such as VARCHAR or a data type that has settable precision such as TIMESTAMP)

l The AnalyticFunction subclass that implements your function. HP Vertica calls your factory
class to instantiate members of this class when it needs to execute your UDAnF.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 542 of 817

There are three required functions that your AnalyticFunctionFactory subclass must implement:

l getPrototype describes the input parameters and output value of your function. You set these
values by calling functions on two ColumnTypes objects that provided to the function via
parameters.

l createAnalyticFunction supplies an instance of your AnalyticFunction factory that HP
Vertica can call to process a UDAnF function call.

l getReturnType provides details about your function's output. This function is where you set the
width of the output value if your function returns a variable-width value (such as VARCHAR) or
the precision of the output value if it has a settable precision (such as TIMESTAMP).

The following example code defines the AnalyticFunctionFactory that corresponds with the
example Rank class shown in Subclassing AnalyticFunction.

class RankFactory : public AnalyticFunctionFactory
{

virtual void getPrototype(ServerInterface &srvInterface,
ColumnTypes &argTypes, ColumnTypes &returnType)

{
returnType.addInt();

}
virtual void getReturnType(ServerInterface &srvInterface,

const SizedColumnTypes &inputTypes,
SizedColumnTypes &outputTypes)

{
outputTypes.addInt();

}
virtual AnalyticFunction *createAnalyticFunction(ServerInterface

&srvInterface)
{ return vt_createFuncObj(srvInterface.allocator, Rank); }

};

The first function defined by the RankFactory subclass, getPrototype, sets the data type of the
return value. Since the Rank UDAnF does not read input, it does not define any arguments by
calling functions on the ColumnTypes object passed in the argTypes parameter.

The next function is getReturnType. If your function returns a data type that needs to define a
width or precision, your implementation of the getReturnType function calls a function on the
SizedColumnType object passed in as a parameter to tell HP Vertica the width or precision. See the
SDK entry for SizedColumnTypes for a list of these functions. Rank returns a fixed-width data type
(an INTEGER) so it does not need to set the precision or width of its output; it just calls addInt to
report its output data type.

Finally, RankFactory defines the createAnalyticFunction function that returns an instance of
the AnalyticFunction class that HP Vertica can call. This code is mostly boilerplate. All you need
to do is add the name of your analytic function class in the call to vt_createFuncObj()which
takes care of allocating the object for you.

Deploying and Using User Defined Analytic Functions

To deploy a UDAnF on your HP Vertica database:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 543 of 817

1. Copy the UDF shared library file (.so) that contains your function to a node on your HP Vertica
cluster.

2. Connect to the node where you copied the library (for example, using vsql).

3. Use the CREATE LIBRARY statement to load the UDF library into HP Vertica. You pass this
statement the location of the UDF library file you copied to the node earlier. HP Vertica
distributes the library to each node in the cluster.

4. Use the CREATE ANALYTIC FUNCTION statement to add the function to the HP Vertica
catalog. This maps a SQL function name to the name of the UDF's factory class. If you are not
sure of the name of the UDF's factory class, you can list all of the UDFs in the library (see
Listing the UDFs Contained in a Library for details).

The following example demonstrates loading and using the Rank UDAnF that is included in the
SDK examples directory. It assumes that the AnalyticFunctions.so library that contains the
function has been copied to the dbadmin user's home directory on the initiator node.

=> CREATE LIBRARY AnalyticFunctions AS '/home/dbadmin/AnalyticFunctions.so';
CREATE LIBRARY
=> CREATE ANALYTIC FUNCTION an_rank AS LANGUAGE 'C++'
-> NAME 'RankFactory' LIBRARY AnalyticFunctions;
CREATE ANALYTIC FUNCTION
=> SELECT * FROM hits;

site | date | num_hits
-----------------+------------+----------
www.example.com | 2012-01-02 | 97
www.vertica.com | 2012-01-01 | 343435
www.example.com | 2012-01-01 | 123
www.example.com | 2012-01-04 | 112
www.vertica.com | 2012-01-02 | 503695
www.vertica.com | 2012-01-03 | 490387
www.example.com | 2012-01-03 | 123

(7 rows)
=> SELECT site,date,num_hits,an_rank() over (partition by site order by num_hits desc)
-> from hits;

site | date | num_hits | ?column?
-----------------+------------+----------+----------
www.example.com | 2012-01-03 | 123 | 1
www.example.com | 2012-01-01 | 123 | 1
www.example.com | 2012-01-04 | 112 | 3
www.example.com | 2012-01-02 | 97 | 4
www.vertica.com | 2012-01-02 | 503695 | 1
www.vertica.com | 2012-01-03 | 490387 | 2
www.vertica.com | 2012-01-01 | 343435 | 3

(7 rows)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 544 of 817

Notes

l UDAnFs do not support framing windows using ROWS.

l As with HP Vertica's built-in analytic functions, UDAnFs cannot be used with PatternMatching
Functions.

See Also

l CREATE LIBRARY

l CREATE ANALYTIC FUNCTION

Compiling Your C++ UDF
g++ is the only supported compiler for compiling User Defined Function libraries (see Setting up a
C++ UDF Development Environment for details). You should compile your UDF code on the same
version of Linux that you use on your HP Vertica cluster.

There are several requirements for compiling your library:

l Youmust pass the -shared and -fPIC flags to the linker. The easiest method is to just pass
these flags to g++ when you compile and link your library.

l You should also use the -Wno-unused-value flag to suppress warnings whenmacro arguments
are not used. Otherwise, youmay get "left-hand operand of comma has no effect" warnings.

l Youmust compile sdk/include/Vertica.cpp and link it into your library. The easiest way to do
this is to include it in the g++ command to compile your library. This file contains support
routines that help your UDF communicate with HP Vertica. Supplying this file as C++ source
rather than a library limits library compatibility issues.

l Add the HP Vertica SDK include directory in the include search path using the g++ -I flag.

The following command line compiles a UDF contained in a single source file named MyUDF.cpp
into a shared library named MyUDF.so:

g++ -D HAVE_LONG_INT_64 -I /opt/vertica/sdk/include -Wall -shared -Wno-unused-value \
-fPIC -o MyUDF.so MyUDF.cpp /opt/vertica/sdk/include/Vertica.cpp

The above command line assumes that the HP Vertica SDK directory is located at
/opt/vertica/sdk/include (the default location).

Note: HP only supports UDF development on 64-bit architectures. If youmust compile your
UDF code on a 32-bit system, add the flag -D__Linux32__ to your compiler command line.

Once you have debugged your UDF and are ready to deploy it, you should recompile using the -O3
flag to enable compiler optimization.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 545 of 817

You can add additional source files to your library by adding them to the command line. You can
also compile them separately and then link them together on your own.

Note: The examples subdirectory in the HP Vertica SDK directory contains amake file that
you can use as starting point for your ownUDF project.

Handling External Libraries

If your UDF code relies on additional libraries (either ones you have developed, or provided by third-
parties) you have two options on how you link them to your UDF library:

l Statically link them into your UDF. This is the best option, since your UDF library will not rely on
any external files. Since HP Vertica takes care of distributing your library to each node in your
cluster, bundling the additional library into your UDF library eliminates any additional work to
deploy your UDF.

l Dynamically link the library to your UDF. Youmay need to use dynamic linking for some third-
party libraries that do not allow static linking. In this case, you will need tomanually install this
external library on each of your HP Vertica nodes. This increases themaintenance you need to
perform. It also adds a new step when adding new nodes to the cluster, since you need
remember to install the library before adding the node. In addition, you need to ensure the version
of the library is the same on each node.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 546 of 817

Handling Different Numbers and Types of Arguments
Usually, your UDFs accept a set number of arguments that are a specific data type (called its
signature). You can create UDFs that handlemultiple signatures, or even accept all arguments
supplied to them by the user, using either of these techniques:

l Overloading your UDF by creatingmultiple factory classes, each of which defines a unique
function signature. This technique is best if your UDF just needs to accept a few different
signatures (for example, accepting two required and one optional argument).

l Using the special "Any" argument type that tells HP Vertica to send all arguments that the user
supplies to your function. Your UDF decides whether it can handle the arguments or not.

The following topics explain each of these techniques.

User Defined Function Overloading

Youmay want your UDF to accept several different signatures (sets of arguments). For example,
youmight want your UDF to accept:

l One ormore optional arguments.

l One ormore argument that can be one of several data types.

l Completely distinct signatures (either all INTEGER or all VARCHAR, for example).

You can create a function with this behavior by creating several factory classes each of which
accept a different signature (the number and data types of arguments), and associate a single SQL
function namewith all of them. You can use the same SQL function name to refer to multiple factory
classes as long as the signature defined by each factory is unique. When a user calls your UDF,
HP Verticamatches the number and types of arguments supplied by the user to the arguments
accepted by each of your function's factory classes. If onematches, HP Vertica uses it to
instantiate a function class to process the data.

Multiple factory classes can instantiate the same function class, so you can re-use one function
class that is able to process multiple sets of arguments and then create factory classes for each of
the function signatures. You can also createmultiple function classes if you want.

The following example code demonstrates creating a User Defined Scalar Function (UDSF) that
adds two or three integers together. The Add2or3ints class is prepared to handle two or three
arguments. The processBlock function checks the number of arguments that have been passed to
it, and adds all two or three of them together. It also exits with an error message if it has been called
with less than 2 or more than 3 arguments. In theory, this should never happen, since HP Vertica
only calls the UDSF if the user's function call matches a signature on one of the factory classes
you create for your function. In practice, it is a good idea to perform this sanity checking, in case
your (or someone else's) factory class inaccurately reports a set of arguments your function class
cannot handle.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 547 of 817

#include "Vertica.h"
using namespace Vertica;
using namespace std;
// a ScalarFunction that accepts two or three
// integers and adds them together.
class Add2or3ints : public Vertica::ScalarFunction
{
public:

virtual void processBlock(Vertica::ServerInterface &srvInterface,
Vertica::BlockReader &arg_reader,
Vertica::BlockWriter &res_writer)

{
const size_t numCols = arg_reader.getNumCols();

// Ensure that only two or three parameters are passed in
if (numCols < 2 || numCols > 3)

vt_report_error(0, "Function only accept 2 or 3 arguments, "
"but %zu provided", arg_reader.getNumCols());

// Add two integers together
do {

const vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
vint c = 0;

// Check for third argument, add it in if it exists.
if (numCols == 3)

c = arg_reader.getIntRef(2);
res_writer.setInt(a+b+c);
res_writer.next();

} while (arg_reader.next());
}

};
// This factory accepts function calls with two integer arguments.
class Add2intsFactory : public Vertica::ScalarFunctionFactory
{

virtual Vertica::ScalarFunction *createScalarFunction(Vertica::ServerInterface
&srvInterface)

{ return vt_createFuncObj(srvInterface.allocator, Add2or3ints); }
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{ // Accept 2 integer values
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}
};
RegisterFactory(Add2intsFactory);
// This factory defines a function that accepts 3 ints.
class Add3intsFactory : public Vertica::ScalarFunctionFactory
{

virtual Vertica::ScalarFunction *createScalarFunction(Vertica::ServerInterface
&srvInterface)

{ return vt_createFuncObj(srvInterface.allocator, Add2or3ints); }
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{ // accept 3 integer values
argTypes.addInt();

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 548 of 817

argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}
};
RegisterFactory(Add3intsFactory);

The example has two ScalarFunctionFactory classes, one for each signature that the function
accepts (two integers and three integers). There is nothing unusual about these factory classes,
except that their implementation of ScalarFunctionFactory::createScalarFunction both
create Add2or3ints objects.

The final step is to bind the same SQL function name to both factory classes. You can assign
multiple factories to the same SQL function, as long as the signatures defined by each factory's
getPrototype implementation are different.

=> CREATE LIBRARY add2or3IntsLib AS '/home/dbadmin/Add2or3Ints.so';
CREATE LIBRARY
=> CREATE FUNCTION add2or3Ints as NAME 'Add2intsFactory' LIBRARY add2or3IntsLib FENCED;
CREATE FUNCTION
=> CREATE FUNCTION add2or3Ints as NAME 'Add3intsFactory' LIBRARY add2or3IntsLib FENCED;
CREATE FUNCTION
=> SELECT add2or3Ints(1,2);
add2or3Ints

3

(1 row)
=> SELECT add2or3Ints(1,2,4);
add2or3Ints

7

(1 row)
=> SELECT add2or3Ints(1,2,3,4); -- Will generate an error
ERROR 3467: Function add2or3Ints(int, int, int, int) does not exist, or
permission is denied for add2or3Ints(int, int, int, int)
HINT: No function matches the given name and argument types. You may
need to add explicit type casts

The error message in response to the final call to the add2or3Ints function was generated by HP
Vertica, since it could not find a factory class associated with add2or3Ints that accepted four
integer arguments. To expand add2or3Ints further, you could create another factory class that
accepted this signature, and either change the Add2or3ints ScalarFunction class or create a totally
different class to handle addingmore integers together. However, addingmore classes to accept a
each variation in the arguments quickly becomes overwhelming. In that case, you should consider
creating a polymorphic UDF (see Creating a Polymorphic UDF for more information).

Creating a Polymorphic UDF

Polymorphic UDFs accept any number and type of argument that the user supplies. HP Vertica
does not check the number or types of argument that the user passes to the UDF—it just passes
the UDF all of the arguments supplied by the user. It is up to your polymorphic UDF's main

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 549 of 817

processing function (for example, processBlock in User Defined Scalar Functions) to examine the
number and types of arguments it received and determine if it can handle them.

Note: User Defined Transform Functions (UDTFs) can have an unlimited number of
arguments. All other UDFs except UDTFs are limited to amaximum number of 32 arguments.

Polymorphic UDFs aremore flexible than usingmultiple factory classes for your function (see User
Defined Function Overloading), since you function can determine at run time if it can process the
arguments rather than accepting specific sets of arguments. However, your polymorphic function
needs to perform more work to determine whether it can process the arguments that it has been
given.

Your polymorphic UDF declares it accepts any number of arguments in its factory's getPrototype
function by calling the addAny function on the ColumnTypes object that defines its arguments. This
"any parameter" argument type is the only one that your function can declare. You cannot define
required arguments and then call addAny to declare the rest of the signature as optional. If your
function has requirements for the arguments it accepts, your process functionmust enforce them.

The following example shows an implementation of a ScalarFunction that adds together two or
more integers.

#include "Vertica.h"
using namespace Vertica;
using namespace std;
// Adds two or more integers together.
class AddManyInts : public Vertica::ScalarFunction
{
public:

virtual void processBlock(Vertica::ServerInterface &srvInterface,
Vertica::BlockReader &arg_reader,
Vertica::BlockWriter &res_writer)

{
// Always catch exceptions to prevent causing the side process or
// Vertica itself from crashing.
try
{

// Find the number of arguments sent.
size_t numCols = arg_reader.getNumCols();

// Make sure at least 2 arguments were supplied
if (numCols < 2)

vt_report_error(0, "Function expects at least 2 integer parameters");

// Make sure all types are ints
const SizedColumnTypes &inTypes = arg_reader.getTypeMetaData();
for (int param=0; param < (int)numCols; param++) {

const VerticaType &t = inTypes.getColumnType(param);
if (!t.isInt())
{

string typeDesc = t.getPrettyPrintStr();
// Report that the user supplied a non-integer value.
vt_report_error(0, "Function expects all arguments to be "

"INTEGER. Argument %d was %s", param+1,
typeDesc.c_str());

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 550 of 817

}
}
do
{ // total up the arguments and write out the total.

vint total = 0;
int x;
// Loop over all params, adding them up.
for (x=0; x<(int)numCols; x++) {

total += arg_reader.getIntRef(x);
}
res_writer.setInt(total);
res_writer.next();

} while (arg_reader.next());
} catch(exception& e) {

// Standard exception. Quit.
vt_report_error(0, "Exception while processing partition: [%s]",

e.what());
}

}
};
// Defines the AddMany function.
class AddManyIntsFactory : public Vertica::ScalarFunctionFactory
{

// Return the function object to process the data.
virtual Vertica::ScalarFunction *createScalarFunction(

Vertica::ServerInterface &srvInterface)
{ return vt_createFuncObj(srvInterface.allocator, AddManyInts); }
// Define the number and types of arguments that this function accepts
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{
argTypes.addAny(); // Must be only argument type.
returnType.addInt();

}
};
RegisterFactory(AddManyIntsFactory);

Most of the work in the example is done by the ScalarFunction.processBlock function. It
performs two checks on the arguments that have been passed in through the BlockReader object:

l Ensures there are at least two arguments

l Checks the data type of all arguments to ensure they are all integers

Once the checks are performed, the example processes the block of data by looping over the
arguments and adding them together.

You assign a SQL name to your polymorphic UDF using the same statement you use to assign one
to a non-polymorphic UDF. The following demonstration shows how you load and call the
polymorphic function from the example.

=> CREATE LIBRARY addManyIntsLib AS '/home/dbadmin/AddManyInts.so';
CREATE LIBRARY
=> CREATE FUNCTION addManyInts AS NAME 'AddManyIntsFactory' LIBRARY addManyIntsLib

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 551 of 817

FENCED;
CREATE FUNCTION
=> SELECT addManyInts(1,2);
addManyInts

3

(1 row)
=> SELECT addManyInts(1,2,3,40,50,60,70,80,900);
addManyInts

1206

(1 row)
=> SELECT addManyInts(1); -- Too few parameters
ERROR 3412: Failure in UDx RPC call InvokeProcessBlock(): Error calling
processBlock() in User Defined Object [addManyInts] at
[AddManyInts.cpp:51], error code: 0, message: Exception while processing
partition: [Function expects at least 2 integer parameters]
=> SELECT addManyInts(1,2.232343); -- Wrong data type
ERROR 3412: Failure in UDx RPC call InvokeProcessBlock(): Error
calling processBlock() in User Defined Object [addManyInts] at
[AddManyInts.cpp:51], error code: 0, message: Exception while
processing partition: [Function expects all arguments to be INTEGER.
Argument 2 was Numeric(7,6)]

Notice that the errors returned by last two calls to the function were generated by the processBlock
function. It is up to your UDF to ensure that the user supplies the correct number and types of
arguments to your function and exit with an error if it cannot process them.

Polymorphic UDFs and Schema Search Paths

If a user does not supply a schema name as part of a function call, HP Vertica searches each
schema in the schema search path for a function whose name and signaturematch the function
call. See Setting Schema Search Paths in the Administrator's Guide for more information about
schema search paths.

Since polymorphic functions do not have a specific signature associated with them, HP Vertica
initially skips them when searching for a function to handle the function call. If none of the
schemas in the search path contain a function whose name and signaturematch the function call,
HP Vertica searches the schema search path again for a polymorphic function whose name
matches the function name in the function call.

This behavior gives precedence to functions whose signature exactly matches the function call. It
allows you to create a "catch all" polymorphic function that is called only if none of the non-
polymorphic functions with the same name havematching signatures.

This behavior may cause confusion if your users expect the the first polymorphic function in the
schema search path to handle a function call. To avoid confusion, you should:

n Avoid using the same name for different functions. You should always uniquely name functions
unless you intend to create an overloaded function with multiple signatures.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 552 of 817

n When you cannot avoid having functions with the same name in different schemas, always
supply the schema name as part of the function call. Using the schema name prevents
ambiguity and ensures that HP Vertica uses the correct function to process your function calls.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 553 of 817

UDF Parameters
Parameters let you define arguments for your UDFs that remain constant across all of the rows
processed by the SQL statement that calls you UDF. Typically, your UDFs accept arguments that
come from columns in a SQL statement. For example, in the following SQL statement, the
arguments a and b to the add2ints UDSF change value for each row processed by the SELECT
statement:

=> SELECT a, b, add2ints(a,b) AS 'sum' FROM example;
a | b | sum

---+----+-----
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

Parameters remain constant for all the rows your UDF processes. You can alsomake parameters
optional so that if the user does not supply it, your UDF uses a default value. For example, the
following example demonstrates calling a UDSF named add2intsWithConstant that has a single
parameter value named constant whose value is added to each the arguments supplied in each row
of input:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS constant=42)
-> AS 'a+b+42' from example;
a | b | a+b+42

---+----+--------
1 | 2 | 45
3 | 4 | 49
5 | 6 | 53
7 | 8 | 57
9 | 10 | 61

(5 rows)

Note:When calling a UDF with parameters, there is no comma between the last argument and
the USINGPARAMETERS clause.

The topics in this section explain how develop UDFs that accept parameters.

Defining the Parameters Your UDF Accepts

You define the parameters that your UDF accepts in its factory class (ScalarFunctionFactory,
AggregateFunctionFactory, etc.) by implementing the getParameterType function. This function
is similar to the getReturnType function: you call data-type-specific functions on a
SizedColumnTypes object that is passed in as a parameter. Each function call sets the name, data
type, and width or precision (if the data type requires it) of the parameter.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 554 of 817

The following code fragment demonstrates adding a single parameter to the add2ints UDSF
example. The getParameterType function defines a single integer parameter that is named
constant.

class Add2intsWithConstantFactory : public ScalarFunctionFactory
{

// return an instance of Add2ints to perform the actual addition.
virtual ScalarFunction *createScalarFunction(ServerInterface &interface)
{

// Calls the vt_createFuncObj to create the new Add2ints class instance.
return vt_createFuncObj(interface.allocator, Add2intsWithConstant);

}
// Report the argument and return types to Vertica
virtual void getPrototype(ServerInterface &interface,

ColumnTypes &argTypes,
ColumnTypes &returnType)

{
// Takes two ints as inputs, so add ints to the argTypes object
argTypes.addInt();
argTypes.addInt();
// returns a single int.
returnType.addInt();

}
// Defines the parameters for this UDSF. Works similarly to defining
// arguments and return types.
virtual void getParameterType(ServerInterface &srvInterface,

SizedColumnTypes ¶meterTypes)
{

// One INTEGER parameter named constant
parameterTypes.addInt("constant");

}
};
RegisterFactory(Add2intsWithConstantFactory);

See the HP Vertica SDK entry for SizedColumnTypes for a full list of the data-type-specific
functions you can call to define parameters.

Getting Parameter Values in UDFs

Your UDF uses the parameter values it declared in its factory class (see Defining the Parameters
Your UDF Accepts) in its function class's process function (for example, processBlock or
processPartition). It gets its parameter values from a ParamReader object, which is available
from the ServerInterface object that is passed to your process function. Reading parameters
from this object is similar to reading argument values from BlockReader or PartitionReader
objects: you call a data-type-specific function with the name of the parameter to retrieve its value.
For example:

// Get the parameter reader from the ServerInterface to see if
// there are supplied parameters
ParamReader paramReader = srvInterface.getParamReader();
// Get the value of an integer parameter named constant
const vint constant = paramReader.getIntRef("constant");

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 555 of 817

Note: String data values do not have any of their escape characters processed before they are
passed to your function. Therefore, your functionmay need to process the escape sequences
itself if it needs to operate on unescaped character values.

Testing Whether the User Supplied Parameter Values

Unlike arguments, HP Vertica does not immediately return an error if a user's function call does not
include a value for a parameter defined by your UDF's factory class. This means that your function
can attempt to read a parameter value that the user did not supply. If it does so, HP Vertica returns
a non-existent parameter error to the user, and the query containing the function call is canceled.
This behavior is fine if you want a parameter to be required by your UDF—just attempt to access its
value. If the user didn't supply a value, HP Vertica reports the resulting error about amissing
parameter to the user.

If you want your parameter to be optional, you can test whether the user supplied a value for the
parameter before attempting to access its value. Your function determines if a value exists for a
particular parameter by calling the ParamReader::containsParameter function with the
parameter's name. If this function returns true, your function can safely retrieve the value. If this
function returns false, your UDF can use a default value or change its processing in some other
way to compensate for not having the parameter value. As long as your UDF does not try to access
the non-existent parameter value, HP Vertica does not generate an error or warning about missing
parameters.

Note: If the user passes your UDF a parameter that it has not defined, HP Vertica issues a
warning that the parameter is not used. It still executes the SQL statement, ignoring the
parameter.

The following code fragment demonstrates using the parameter value that was defined in the
example shown in Defining the Parameters Your UDF Accepts. The Add2intsWithConstant class
defines a function that adds two integer values. If the user supplies it, the function also adds the
value of the optional integer parameter named constant.

/**
* A UDSF that adds two numbers together with a constant value.
*
*/

class Add2intsWithConstant : public ScalarFunction
{
public:

// Processes a block of data sent by Vertica
virtual void processBlock(ServerInterface &srvInterface,

BlockReader &arg_reader,
BlockWriter &res_writer)

{
try

{
// The default value for the constant parameter is 0.
vint constant = 0;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 556 of 817

// Get the parameter reader from the ServerInterface to see if
// there are supplied parameters
ParamReader paramReader = srvInterface.getParamReader();
// See if the user supplied the constant parameter
if (paramReader.containsParameter("constant"))

// There is a parameter, so get its value.
constant = paramReader.getIntRef("constant");

// While we have input to process
do

{
// Read the two integer input parameters by calling the
// BlockReader.getIntRef class function
const vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
// Add arguments plus constant
res_writer.setInt(a+b+constant);
// Finish writing the row, and advance to the next
// output row
res_writer.next();
// Continue looping until there are no more input rows

}
while (arg_reader.next());

}
catch (exception& e)

{
// Standard exception. Quit.
vt_report_error(0, "Exception while processing partition: %s",

e.what());
}

}
};

Using Parameters in the Factory Class

In addition to using parameters in your UDF function class, you can also access the parameters in
the factory class. Youmay want to access the parameters to let the user control the input or output
values of your function in someway. For example, your UDF can have a parameter that lets the
user choose to have your UDF return a single or double-precision value. The process of accessing
parameters in the factory class is the same as accessing it in the function class: get a
ParamReader object from the ServerInterface::getParamReader function, them read the
parameter values.

Calling UDFs with Parameters

You pass parameters to a UDF by adding a USINGPARAMETERS clause in the function call after
the last argument. There is no comma between the last argument and the USINGPARAMETERS
clause. After the USINGPARAMETERS clause you add one or more parameter definitions which
contains the parameter name, followed by an equal sign, then the parameter's value. Multiple
parameter definitions are separated by commas.

Note: Parameter values can be a constant expression (for example 1234 + SQRT(5678)). You

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 557 of 817

cannot use volatile functions (such as RANDOM) in the expression, since they do not return a
constant value. If you do supply a volatile expression as a parameter value, HP Vertica returns
an incorrect parameter type warning, and tries to run the UDF without the parameter value. If
the UDF requires the parameter, it returns its own error which cancels the query.

The following example demonstrates calling the add2intsWithConstant UDSF example from
Defining the Parameters Your UDF Accepts andGetting Parameter Values in UDFs:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS constant=42)
-> AS 'a+b+42' from example;
a | b | a+b+42

---+----+--------
1 | 2 | 45
3 | 4 | 49
5 | 6 | 53
7 | 8 | 57
9 | 10 | 61

(5 rows)

Multiple parameters are separated by commas. The following example calls a version of the
tokenize UDTF that has parameters to limit the shortest allowed word and force the words to be
output in uppercase.

=> SELECT url, tokenize(description USING PARAMETERS
-> minLength=4, uppercase=true) OVER (partition by url) FROM T;

url | words
-----------------+-----------
www.amazon.com | ONLINE
www.amazon.com | RETAIL
www.amazon.com | MERCHANT
www.amazon.com | PROVIDER
www.amazon.com | CLOUD
www.amazon.com | SERVICES
www.hp.com | LEADING
www.hp.com | PROVIDER
www.hp.com | COMPUTER
www.hp.com | HARDWARE
www.hp.com | IMAGING
www.hp.com | SOLUTIONS
www.vertica.com | WORLD'S
www.vertica.com | FASTEST
www.vertica.com | ANALYTIC
www.vertica.com | DATABASE

(16 rows)

The add2intsWithConstant UDSF's constant parameter is optional; calling it without the parameter
does not return an error or warning:

=> SELECT a,b,add2intsWithConstant(a, b) AS 'sum' FROM example;
a | b | sum

---+----+-----
1 | 2 | 3
3 | 4 | 7

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 558 of 817

5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

Calling a UDF with incorrect parameters does generate a warning, but the query still runs:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS wrongparam=42)
-> AS 'result' from example;
WARNING 4332: Parameter wrongparam was not registered by the function and cannot
be coerced to a definite data type
a | b | result

---+----+--------
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 559 of 817

UDF Resource Use
Your UDFs consume at least a small amount of memory by instantiating classes and creating local
variables. This basic memory usage by UDFs is small enough that you do not need to be concerned
about it.

If your UDF needs to allocatemore than one or twomegabytes of memory for data structures, or
requires access additional resources such as files, youmust inform HP Vertica about its resource
use. HP Vertica can then ensure that the resources your UDF requires are available before running
a query that uses it. Evenmoderatememory use (10MB per invocation of a UDF, for example) can
become an issue if there aremany simultaneous queries that call it.

Allocating Resources for UDFs

You have two options for allocatingmemory and file handles for your User Defined Functions
(UDFs):

l UseHP Vertica SDK macros to allocate resources. This is the best method, since it uses HP
Vertica's own resourcemanager, and guarantees that resources used by your UDF are
reclaimed. See Allocating Resources with the SDK Macros.

l Allocate resources in your UDFs yourself using standard C++ methods (instantiating objects
using new, allocatingmemory blocks using malloc, etc.). Youmust manually free these
resources before your UDF exits.

Note: Youmust be extremely careful if you choose to allocate your own resources in your
UDF. Failing to free resources properly will have significant negative impact, especially if your
UDF is running in unfencedmode.

Whichever method you choose, you usually allocate resources in a function named setup
(subclassed from (Vertica::UDXObject::setup) in your function class. This function is called
after your UDF function object is instantiated, but before HP Vertica calls it to process data.

If you allocatememory on your own in setup function, youmust free it in a function named destroy
(subclassed from Vertica::UDXObject::destroy) in your function class. This functions is called
after your UDF has performed all of its processing. This function is also called if your UDF returns
an error (see Handling Errors).

Note: Always use the setup and destroy functions to allocate and free resources instead your
own constructors and destructors. Thememory for your UDF object is allocated from one of
HP Vertica's ownmemory pools. HP Vertica always calls your UDF's destroy function before
the it deallocates the object's memory. There is no guarantee that your UDF's destructor is will
be called before the object is deallocated. Using the destroy function ensures that your UDF
has a chance to free its allocated resources before it is destroyed.

The following code fragment demonstrates allocating and freeingmemory using a setup and
destroy function.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 560 of 817

class MemoryAllocationExample : public ScalarFunction
{
public:

uint64* myarray;
// Called before running the UDF to allocate memory used throughout
// the entire UDF processing.
virtual void setup(ServerInterface &srvInterface, const SizedColumnTypes

&argTypes)
{

try
{

// Allocate an array. This memory is directly allocated, rather than
// letting Vertica do it. Remember to properly calculate the amount
// of memory you need based on the data type you are allocating.
// This example divides 500MB by 8, since that's the number of
// bytes in a 64-bit unsigned integer.
myarray = new uint64[1024 * 1024 * 500 / 8];

}
catch (std::bad_alloc &ba)
{

// Always check for exceptions caused by failed memory
// allocations.
vt_report_error(1, "Couldn't allocate memory :[%s]", ba.what());

}

}

// Called after the UDF has processed all of its information. Use to free
// any allocated resources.
virtual void destroy(ServerInterface &srvInterface, const SizedColumnTypes

&argTypes)
{

// srvInterface.log("RowNumber processed %d records", *count_ptr);
try
{

// Properly dispose of the allocated memory.
delete[] myarray;

}
catch (std::bad_alloc &ba)
{

// Always check for exceptions caused by failed memory
// allocations.
vt_report_error(1, "Couldn't free memory :[%s]", ba.what());

}

}

Allocating Resources with the SDK Macros

The HP Vertica SDK provides threemacros to allocatememory:

l vt_alloc allocates a block of memory to fit a specific data type (vint, struct, etc.).

l vt_allocArray allocates a block of memory to hold an array of a specific data type.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 561 of 817

l vt_allocSize allocates an arbitrarily-sized block of memory.

All of thesemacros allocate their memory frommemory pools managed by HP Vertica. Themain
benefit of allowing HP Vertica tomanage your UDF's memory is that thememory is automatically
reclaimed after your UDF has finished. This ensures there is nomemory leaks in your UDF.

Because Vertica Analytics Platform frees this memory automatically, do not attempt to free any of
thememory you allocate through any of thesemacros. Attempting to free this memory results in
run-time errors.

Informing HP Vertica of Resource Requirements

When you run your UDF in fencedmode, HP Verticamonitors its use of memory and file handles. If
your UDF uses more than a few megabytes of memory or any file handles, it should tell HP Vertica
about its resource requirements. Knowing the resource requirements of your UDF allows HP
Vertica to determine whether it can run the UDF immediately or needs to queue the request until
enough resources become available to run it.

Determining how muchmemory your UDF requires can be difficult in some case. For example, if
your UDF extracts unique data elements from a data set, and there is potentially no bounds on the
number of data items. In this case, a useful technique is to run your UDF in a test environment and
monitor its memory use on a node as it handles several differently-sized queries, then extrapolate
its memory use based on the worst case scenario it may face in your production environment. In all
cases, it's usually a good idea to add a safety margin to the amount of memory you tell HP Vertica
your UDF uses.

Note: The information on your UDF's resource needs that you pass to HP Vertica is used
when planning the query execution. There is no way to change the amount of resources your
UDF requests from HP Vertica while the UDF is actually running.

Your UDF informs HP Vertica of its resource needs by implementing the
getPerInstanceResources function in its factory class (see
Vertica::UDXFactory::getPerInstanceResources in the SDK documentation). If your UDF's
factory class implements this function, HP Vertica calls it to determine the resources your UDF
requires.

The getPerInstanceResources function receives an instance of the Vertica::VResources struct,
which contains fields setting the amount of memory and the number of file handles your UDFmay
need to use. Your implementation of this function sets these fields based on themaximum
resources your UDFmay consume for each instance of the UDF function. So, if your UDF's
ProcessBlock function creates a data structure that uses at most 100MB of memory, your UDF
should set the VResources.scratchMemory field to at least 104857600 (the number of bytes in
100MB). Rounding up to a number like 115000000 (just under 110MB) is a good idea.

The following ScalarFunctionFactory class demonstrates calling getPerInstanceResources to
inform HP Vertica about thememory requirements of the MemoryAllocationExample class shown
in Allocating Resources for UDFs. It tells HP Vertica that the UDSF requires 510MB of memory
(which is a bit more than the UDSF actually allocates, to be on the safe size).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 562 of 817

class MemoryAllocationExampleFactory : public ScalarFunctionFactory
{

virtual Vertica::ScalarFunction *createScalarFunction(Vertica::ServerInterface
&srvInterface)

{
return vt_createFuncObj(srvInterface.allocator, MemoryAllocationExample);

}
virtual void getPrototype(Vertica::ServerInterface &srvInterface,

Vertica::ColumnTypes &argTypes,
Vertica::ColumnTypes &returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}
// Tells Vertica the amount of resources that this UDF uses.
virtual void getPerInstanceResources(ServerInterface &srvInterface,

VResources &res)
{

res.scratchMemory += 1024LL * 1024 * 510; // request 510MB of memory
}

};

Setting Memory Limits for Fenced Mode UDFs

HP Vertica calls fenced-mode UDF's implementation of
Vertica::UDXFactory::getPerInstanceResources to determine if there are enough free
resources to run the query containing the UDF (see Informing HP Vertica of Resource
Requirements). Since these reports are not generated by actual memory use, they can be
inaccurate. Once started by HP Vertica, a UDF could allocate far morememory or file handles than
it reported it needs.

The FencedUDxMemoryLimitMB configuration parameter lets you create an absolute memory limit
for UDFs. Any attempt by a UDF to allocatemorememory than this limit results in a bad_alloc
exception. For more information on configuration parameters, see Configuration Parameters in the
Administrator's Guide. For an example of setting FencedUDxMemoryLimitMB, see How Resource
Limits Are Enforced.

How Resource Limits Are Enforced

Before running a query, HP Vertica determines how muchmemory it requires to run. If the query
contains a fenced-mode UDF which implements the getPerInstanceResources function in its
factory class, HP Vertica calls it to determine the amount of memory the UDF needs and adds this
to the total required for the query. Based on these requirements, HP Vertica decides how to handle
the query:

l If the total amount of memory required (including the amount that the UDFs report that they
need) is larger than the session's MEMORYCAP or resource pool'sMAXMEMORYSIZE

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 563 of 817

setting, HP Vertica rejects the query. For more information about resource pools, see Resource
Pool Architecture in the Administrator's Guide.

l If the amount of memory is below the limit set by the session and resource pool limits, but there
is currently not enough freememory to run the query, HP Vertica queues it until enough
resources become available.

l If there is enough free resources to run the query, HP Vertica executes it.

Note: HP Vertica has no other way to determine the amount of resources a UDF requires other
than the values it reports using the getPerInstanceResources function. A UDF could use
more resources than it claims, which could cause performance issues for other queries that are
denied resources. You can set an absolute limit on the amount of memory UDFs can allocate.
See SettingMemory Limits for FencedMode UDFs for more information.

If the process executing your UDF attempts to allocatemorememory than the limit set by the
FencedUDxMemoryLimitMB configuration parameter, it receives a bad_alloc exception. For more
information about FencedUDxMemoryLimitMB, see SettingMemory Limits for FencedMode
UDFs.

Below is the output of loading a UDSF that consumes 500MB of memory, then changing the
memory settings to cause out of memory errors. TheMemoryAllocationExample UDSF in the
following example is just the Add2Ints UDSF example altered as shown in Allocating Resources for
UDFs and Informing HP Vertica of Resource Requirements to allocate 500MB of RAM.

=> CREATE LIBRARY mylib AS '/home/dbadmin/MemoryAllocationExample.so';
CREATE LIBRARY
=> CREATE FUNCTION usemem AS NAME 'MemoryAllocationExampleFactory' LIBRARY mylib
-> FENCED;
CREATE FUNCTION
=> SELECT usemem(1,2);
usemem

3

(1 row)

The following statements demonstrate setting the session's MEMORYCAP to lower than the
amount of memory that the UDSF reports it uses. This causes HP Vertica to return an error before it
executes the UDSF.

=> SET SESSION MEMORYCAP '100M';
SET
=> SELECT usemem(1,2);
ERROR 3596: Insufficient resources to execute plan on pool sysquery
[Request exceeds session memory cap: 520328KB > 102400KB]
=> SET SESSION MEMORYCAP = default;
SET

The resource pool can also prevent a UDF from running if it requires morememory than is
available in the pool. The following statements demonstrate the effect of creating and using a

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 564 of 817

resource pool that has too little memory for the UDSF to run. Similar to the session's
MAXMEMORYCAP limit, the pool's MAXMEMORYSIZE setting prevents HP Vertica from
executing the query containing the UDSF.

=> CREATE RESOURCE POOL small MEMORYSIZE '100M' MAXMEMORYSIZE '100M';
CREATE RESOURCE POOL
=> SET SESSION RESOURCE POOL small;
SET
=> CREATE TABLE ExampleTable(a int, b int);
CREATE TABLE
=> INSERT /*+direct*/ INTO ExampleTable VALUES (1,2);
OUTPUT

1

(1 row)
=> SELECT usemem(a, b) FROM ExampleTable;
ERROR 3596: Insufficient resources to execute plan on pool small
[Request Too Large:Memory(KB) Exceeded: Requested = 523136, Free = 102400 (Limit = 10240
0, Used = 0)]
=> DROP RESOURCE POOL small CASCADE; --Dropping the pool resets the session's pool
DROP RESOURCE POOL

Finally, setting the FencedUDxMemoryLimitMB configuration parameter to lower than the UDF
actually allocates results in the UDF throwing an exception. This is a different case than either of
the previous two examples, since the query actually executes. The UDF's code needs to catch and
handle the exception. In this example, it uses the vt_report_errormacro to report the error back
to HP Vertica and exit.

=> SELECT set_config_parameter('FencedUDxMemoryLimitMB','300');
set_config_parameter

Parameter set successfully

(1 row)
=> SELECT usemem(1,2);
ERROR 3412: Failure in UDx RPC call InvokeSetup(): Error calling setup() in
User Defined Object [usemem] at [MemoryAllocationExample.cpp:32], error code:
1, message: Couldn't allocate memory :[std::bad_alloc]

=> SELECT set_config_parameter('FencedUDxMemoryLimitMB','-1');
set_config_parameter

Parameter set successfully

(1 row)
=> SELECT usemem(1,2);
usemem

3

(1 row)

See Also

l SET SESSION RESOURCE_POOL

l SET SESSION MEMORYCAP

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 565 of 817

l SET_CONFIG_PARAMETER

Handling Errors
If your UDF encounters some sort of error, it can report it back to HP Vertica using the vt_report_
errormacro. When called, this macro halts the execution of the UDF and causes the statement
that called the function to fail. Themacro takes two parameters: an error number and a error
message string. Both the error number andmessage appear in the error that HP Vertica reports to
the user. The error number is not defined by HP Vertica. You can use whatever value that you wish.

For example, the following ScalarFunction class divides two integers. To prevent division by
zero, it tests the second parameter. If it is zero, the function reports the error back to HP Vertica.

/*
* Demonstrate reporting an error
*/

class Div2ints : public ScalarFunction
{
public:

virtual void processBlock(ServerInterface &srvInterface,
BlockReader &arg_reader,
BlockWriter &res_writer)

{
// While we have inputs to process
do

{
const vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
if (b == 0)

{
vt_report_error(1,"Attempted divide by zero");

}
res_writer.setInt(a/b);
res_writer.next();

}
while (arg_reader.next());

}
};

Loading and invoking the function demonstrates how the error appears to the user.

=> CREATE LIBRARY Div2IntsLib AS '/home/dbadmin/Div2ints.so';
CREATE LIBRARY
=> CREATE FUNCTION div2ints AS LANGUAGE 'C++' NAME 'Div2intsInfo' LIBRARY Div2IntsLib;
CREATE FUNCTION
=> SELECT div2ints(25, 5);
div2ints

5

(1 row)
=> SELECT * FROM MyTable;
a | b

----+---

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 566 of 817

12 | 6
7 | 0

12 | 2
18 | 9

(4 rows)
=> SELECT * FROM MyTable WHERE div2ints(a, b) > 2;
ERROR: Error in calling processBlock() for User Defined Scalar Function
div2ints at Div2ints.cpp:21, error code: 1, message: Attempted divide by zero

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 567 of 817

Handling Cancel Requests
You can cancel a query that calls your UDF (usually, by by pressing CTRL+C in vsql). How HP
Vertica handles the cancelation of the query and your UDF depends on whether your UDF is
running in fenced or unfencedmode:

l If your UDF is running in unfencedmode, HP Vertica either stops the function when it requests a
new block of input or output, or waits until your function completes running and discards the
results.

l If your UDF is running in FencedMode, HP Vertica kills the zygote process that is running your
function if it continues processing past a timeout.

See FencedMode for more information about running functions in fencedmode.

To give youmore control over what happens to your function when the user cancels its query, the
HP Vertica SDK includes an API for someUDFs to handle cancelation. Any function class that
inherits from the Vertica::UDXObjectCancelable class can test whether the query calling it has
been canceled using a function named isCanceled. Your function can also implement a callback
function named cancel that HP Vertica calls when the function's query is canceled. Currently, the
two classes that inherit from UDXObjectCancelable are TransformFunction and
AnalyticFunction.

The topics in this section explain how to use the cancel API.

Exiting When the Calling Query Has Been Canceled

The processPartition function in your User Defined Transform Function (UDTF) or Analytic
Function (UDAnF) can call Vertica::UDXObjectCancelable.isCancled to determine if the user
has canceled the query that called it. If isCanceled returns true, the query has been canceled and
your processPartition function should exit immediately to prevent it from wasting CPU time. If
your UDF is not running in FencedMode, HP Vertica cannot halt your function, and has to wait for it
to finish. If it is running in fencedmode, HP Vertica can eventually kill the side process running it,
but not until it has wasted some processing time.

How often your processPartition function calls isCanceled depends on how much processing it
performs on each row of data. Calling isCanceled does add some overhead to your function, so
you shouldn't call it too often. For transforms that do not perform lengthy processing, you could
check for cancelation every 100 or 1000 rows or so. If your processPartition performs extensive
processing for each row, youmay want to check isCanceled every 10 or so rows.

The following code fragment shows how you could have the StringTokenizerUDTF example
check whether its query has been canceled:

// The primary class for the StringTokenizer UDTF.
class StringTokenizer : public TransformFunction {

// Called for each partition in the table. Recieves the data from
// The source table and
virtual void processPartition(ServerInterface &srvInterface,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 568 of 817

PartitionReader &inputReader,
PartitionWriter &outputWriter) {

try {
// Loop through the input rows
int rowCount = 0; // Count the number of rows processed.
do {

rowCount++; // Processing a new row of data
// Check for cancelation every 100 rows.
if (rowCount % 100 == 0)
{

if (isCanceled()) // See if query has been canceled
{

// Log cancelation
srvInterface.log("Got canceled!");
return; // Exit out of UDTF immediately.

}
}
// Rest of the function here
. . .

This example checks for cancelation after processing 100 rows in the partition of data. If the query
has been canceled, the example logs amessage, then returns to the caller to exit the function.

Note: You need to strike a balance between adding overhead to your functions by calling
isCanceled and having your functions waste CPU time by running after their query has been
canceled (usually, a rare event). For functions such as StringTokenizerwhich have a low
overall processing cost, it usually does not make sense to test for cancelation. The cost of
adding overhead to all function calls outweigh the amount of resources wasted by having the
function run to completion or having its zygote process killed by HP Vertica on the rare
occasions that its query is canceled.

Implementing the Cancel Callback Function

Your User Defined Transform Function (UDTF) or Analytic Function (UDAnF) can implement a
cancel callback function that HP Vertica calls if the query that called the function has been
canceled. You usually implement this function to perform an orderly shutdown of any additional
processing that your UDF spawned. For example, you can have your cancel function shut down
threads that your UDF has spawned or signal a third-party library that it needs to stop processing
and exit. Your cancel function should leave your UDF's function class ready to be destroyed, since
HP Vertica calls the UDF's destroy function after the cancel function has exited.

Notes

l If your UDTF or UDAnF does not implement cancel, HP Vertica assumes your UDF does not
need to perform any special cancel processing, and calls the function class's destroy function
to have it free any resources (see UDF Resource Use).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 569 of 817

l Your cancel function is called from a different thread than the thread running your UDF's
processPartition function.

l The call to the cancel function is not synchronized in any way with your UDF's
processPartition function. If you need your processPartition function to exit before your
cancel function performs some action (killing threads, for example) you need to have the two
function synchronize their actions.

l If your cancel function runs for too long, HP Vertica kills the side process running your function,
if it is running in FencedMode.

UDF Debugging Tips
Youmust thoroughly debug your UDF before deploying it to a production environment. The
following tips can help you get your UDF is ready for deployment.

Use a Single Node For Initial Debugging

You can attach to the HP Vertica process using a debugger such as gdb to debug your UDF code.
Doing this in amulti-node environment, however, is very difficult. Therefore, consider setting up a
single-node HP Vertica test environment to initially debug your UDF.

Write Messages to the HP Vertica Log

You can write to log files using the ServerInterface.log function. Every function in your UDF
receives an instance of the ServerInterface object, so you can call the log function from anywhere
in your UDF. The function acts similarly to printf, taking a formatted string, and an optional set of
values and writing the string to a log file. Where themessage is written depends on whether your
function runs in fencedmode or unfencedmode:

l Functions running in unfencedmode write their messages into the vertica.log file in the
catalog directory.

l Functions running in fencedmode write their messages into a log file named
UDxLogs/UDxFencedProcesses.log in the catalog directory.

To help identify your function's output, HP Vertica adds the SQL function name bound to your UDF
function (see Deploying and Using UDSFs for an explanation) to the logmessage.

The following code fragment shows how you can add a call to srvInterface.log in the Add2ints
example code's processBlock function to log its input values:

const vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
srvInterface.log("got a: %d and b: %d", (int) a, (int) b);

This code generates an entries in the log file for each row the UDF processes. For example:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 570 of 817

11-05-06 14:37:20.838 nameless:0x3f3a210 [UserMessage] <UDx> Add2ints - got a: 1 and b: 2
11-05-06 14:37:20.838 nameless:0x3f3a210 [UserMessage] <UDx> Add2ints - got a: 2 and b: 2
11-05-06 14:37:20.838 nameless:0x3f3a210 [UserMessage] <UDx> Add2ints - got a: 3 and b: 2
11-05-06 14:37:20.838 nameless:0x3f3a210 [UserMessage] <UDx> Add2ints - got a: 1 and b: 4
11-05-06 14:37:20.838 nameless:0x3f3a210 [UserMessage] <UDx> Add2ints - got a: 5 and b: 2

SeeMonitoring the Log Files in the Administrator's Guide for details on viewing the HP Vertica log
files.

Adding Metadata to C++ Libraries
You can addmetadata, such as author name, the version of the library, a description of your library,
and so on to your library. This metadata lets you track the version of your function that is deployed
on an Vertica Analytics Platform cluster and lets third-party users of your function know who
created the function. Your library's metadata appears in the USER_LIBRARIES system table after
your library has been loaded into the Vertica Analytics Platform catalog.

You declare themetadata for your library by calling the RegisterLibrary function in one of the
source files for your UDx. If there is more than one function call in the source files for your UDx,
whichever gets interpreted last as Vertica Analytics Platform loads the library is used to determine
the library's metadata.

The RegisterLibrary function takes eight string parameters:

RegisterLibrary(author, library_build_tag, library_version, library_sdk_version,
source_url, description, licenses_required, signature);

l author contains whatever name you want associated with the creation of the library (your own
name or your company's name for example).

l library_build_tag is a string you want to use to represent the specific build of the library (for
example, the SVN revision number or a timestamp of when the library was compiled). This is
useful for tracking instances of your library as you are developing them.

l library_version is the version of your library. You can use whatever numbering or naming
scheme you want.

l library_sdk_version is the version of the Vertica Analytics Platform SDK Library for which
you've compiled the library.

Note: This field isn't used to determine whether a library is compatible with a version of the
Vertica Analytics Platform server. The version of the Vertica Analytics Platform SDK you
use to compile your library is embedded in the library when you compile it. It is this
information that Vertica Analytics Platform server uses to determine if your library is
compatible with it.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 571 of 817

l source_url is a URL where users of your function can findmore information about it. This can
be your company's website, the GitHub page hosting your library's source code, or whatever
site you like.

l description is a concise description of your library.

l licenses_required is a placeholder for licensing information. In this release of Vertica
Analytics Platform, youmust leave this field as an empty string.

l signature is a placeholder for a signature that will authenticate your library. In this release of
Vertica Analytics Platform, youmust leave this field as an empty string.

For example, the following code demonstrates addingmetadata to the Add2Ints example (see
Subclassing ScalarFunction and Subclassing ScalarFunctionFactory

// Include the top-level Vertica SDK file
#include "Vertica.h"
// Using the Vertica namespace means we don't have to prefix all
// class references with Vertica::
using namespace Vertica;
/*
* ScalarFunction implementation for a UDSF that adds
* two numbers together.
*/

class Add2Ints : public ScalarFunction
{
public:

/*
* This function does all of the actual processing for the UDF.
* In this case, it simply reads two integer values and returns
* their sum.
*
* The inputs are retrieved via arg_reader
* The outputs are returned via arg_writer
*/
virtual void processBlock(ServerInterface &srvInterface,

BlockReader &arg_reader,
BlockWriter &res_writer)

{
// While we have input to processdo

{
// Read the two integer input parameters by calling the
// BlockReader.getIntRef class functionconst
vint a = arg_reader.getIntRef(0);
const vint b = arg_reader.getIntRef(1);
// Call BlockWriter.setInt to store the output value, which is the
// two input values added together
res_writer.setInt(a+b);
// Finish writing the row, and advance to the next output row
res_writer.next();
// Continue looping until there are no more input rows

}
while (arg_reader.next());

}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 572 of 817

};

/*
* This class provides metadata about the ScalarFunction class, and
* also instantiates a member of that class when needed.
*/
class Add2IntsFactory : public ScalarFunctionFactory
{

// return an instance of Add2Ints to perform the actual addition.
virtual ScalarFunction *createScalarFunction(ServerInterface &interface)
{

// Calls the vt_createFuncObj to create the new Add2Ints class instance.
return vt_createFuncObj(interface.allocator, Add2Ints);

}

// This function returns the description of the input and outputs of the
// Add2Ints class's processBlock function. It stores this information in
// two ColumnTypes objects, one for the input parameters, and one for
// the return value.
virtual void getPrototype(ServerInterface &interface,

ColumnTypes &argTypes,
ColumnTypes &returnType)

{
// Takes two ints as inputs, so add ints to the argTypes object
argTypes.addInt();
argTypes.addInt();
// returns a single int, so add a single int to the returnType object.
// Note that ScalarFunctions *always* return a single value.
returnType.addInt();

}
};

// Register the factory with HP Vertica
RegisterFactory(Add2IntsFactory);

// Register the library's metadata.
RegisterLibrary("Whizzo Analytics Ltd.",

"1234",
"2.0",
"7.0.0",
"http://www.example.com/add2ints",
"Add 2 Integer Library",
"",
"");

Loading the library and querying the USER_LIBRARIES system table shows themetadata
supplied in the call to RegisterLibrary:

=> CREATE LIBRARY add2intslib AS '/home/dbadmin/add2ints.so';
CREATE LIBRARY
=> \x
Expanded display is on.
=> SELECT * FROM USER_LIBRARIES WHERE lib_name = 'add2intslib';
-[RECORD 1]-----+--
schema_name | public
lib_name | add2intslib

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 573 of 817

lib_oid | 45035996273869808
author | Whizzo Analytics Ltd.
owner_id | 45035996273704962
lib_file_name | public_add2intslib_45035996273869808.so
md5_sum | 732c9e145d447c8ac6e7304313d3b8a0
sdk_version | v7.0.0-20131105
revision | 125200
lib_build_tag | 1234
lib_version | 2.0
lib_sdk_version | 7.0.0
source_url | http://www.example.com/add2ints
description | Add 2 Integer Library
licenses_required |
signature |

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 574 of 817

Developing a User Defined Function in R
HP Vertica supports User Defined Functions written in the R programming language. R is a free,
open source programming language used for statistical computing.

The topics in this section guide you through developing a User Defined Function in R.

User Defined Functions in R Notes and Considerations
l Youmust first install The R Language Pack for HP Vertica before creating R functions inside of

HP Vertica.

l User Defined Functions developed in R always run in FencedMode in a process outside of the
main HP Vertica process.

l You can create Scalar Functions and Transform Functions using the R language. Other UDx
types are not supported with the R language.

l NULL values in HP Vertica are translated to R NA values when sent to the R function. R NA
values are translated into HP Vertica null values when returned from the R function to HP
Vertica.

l R supports different data types than those available in HP Vertica, so data types aremapped
between the two systems. This table details the data-typemapping for R:

HP Vertica Data Type
R Data
Type

Boolean logical

Date/Time:
DATE, DATETIME, SMALLDATETIME, TIME, TIMESTAMP, TIMESTAMPZ,
TIMETZ

numeric

Approximate Numeric:
DOUBLE PRECISION, FLOAT, REAL

numeric

Exact Numeric:
BIGINT, DECIMAL, INT, NUMERIC, NUMBER, MONEY

numeric

BINARY, VARBINARY character

CHAR, VARCHAR character

Installing/Upgrading the R Language Pack for HP Vertica
To use R with HP Vertica, install the RPM (or Debian .deb) R language package that matches your
server version. The R language pack includes the R runtime and associated libraries for interfacing
with HP Vertica.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 575 of 817

http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.html#Missing-values

This topic details:

l HP Vertica R Language Pack Prerequisites

l Installing the HP Vertica R Language Pack

l Upgrading the the HP Vertica R Language Pack

Important: Youmust install the R Language Pack on each node in the cluster.

Note:When upgrading from HP Vertica 6.1.0/6.1.1 (which uses R 2.14) to 6.1.2 or later, see
the upgrade instructions at the end of this topic if you have installed additional R packages. If
you do not follow the upgrade instructions then your additional R packages may not work.

HP Vertica R Language Pack Prerequisites

The R Language Pack RPM requires libgfortran.so.1, whichmay not be installed by default on your
system. Install the RPM that contains libgfortran.so.1. See the table below to determine how to
install libgfortran.so.1:

Linux Version How to Install libgfortran

RHEL 6 and CentOS 6 Install the compat-libgfortran-41 RPMwith the command:
yum install compat-libgfortran-41

RHEL 5 and CentOS 5 Install the libgfortran RPMwith the command: yum
install libgfortran

Other supported platforms that use
yum, such as Suse11.

You can determine the RPM needed for libgfortran.so.1 with
the command:
yum whatprovides /usr/lib64/libgfortran.so.1

Typical packages that include libgfortran.so.1 include:

l libgfortran-41-<any_minor_version>.rpm

l compat-libgfortran-41-<any_minor_version>.rpm;

l gcc41-fortran.rpm

To Install the HP Vertica R Language Pack:

1. Download the R language package by going to themyVertica portal, clicking the downloads
tab, and selecting the vertica-R-lang_-version.rpm (or .deb) file for your server version. The R
language package versionmust match your server version to three decimal points. For
example, if your server version is 6.1.1, then the R Language Pack versionmust also be 6.1.1.

2. Install the package as root or using sudo:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 576 of 817

http://my.vertica.com/

n RPM: rpm -Uvh vertica-R-lang_-version.rpm

n Debian: dpkg -i vertica-R-lang_-version.deb

The installer puts the R binary in /opt/vertica/R. The installer also adds the file vertica-udx-
R.conf to /etc/ld.so.conf.d/. This file is removed if you uninstall the package.

To Upgrade the HP Vertica R Language Pack:

When upgrading from HP Vertica 6.1.0 or 6.1.1 (which uses R 2.14) to 6.1.2 or later (which uses R
3.0), any R packages that you havemanually installedmay not work with R 3.0 andmay have to be
reinstalled. If you don't update your package(s), then R returns an error if the package cannot be
used in R 3.0: Error: package ‘[package name]’ was built before R 3.0.0: please re-install it.
Instructions for upgrading these packages are below.

Note: The R packages provided in the R Language Pack are automatically upgraded and do
not need to be reinstalled.

1. Youmust uninstall the R_lang RPM before upgrading the server RPM. Any additional R
packages that youmanually installed remain in /opt/vertica/R and are not removed when
you uninstall the RPM.

2. Upgrade your server RPM as detailed in Upgrading HP Vertica to a New Version.

3. After the server RPM has been updated, install the new R Language Pack on each host as
detailed above in To install the HP Vertica R Language Pack.

4. If you have installed additional R packages, on each node:

a. as root run /opt/vertica/R/bin/R and issue the command:
update.packages(checkBuilt=TRUE)

b. Select a CRAN mirror from the list displayed.

c. You are prompted to update each package that has an update available for it. DoNOT
update:

o Rcpp

o Rinside

You can optionally update any other packages installed with the R Language Pack. You
must update any packages that youmanually installed and are not compatible with R
3.0.

The packages you selected to be updated are installed. Quit R with the command: quit
()

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 577 of 817

Note: HP Vertica UDx functions written in R do not need to be compiled and you do not need
to reload your HP Vertica-R libraries and functions after an upgrade.

R Packages
The HP Vertica R Language Pack includes the following R packages in addition to the default
packages bundled with R:

l Rcpp

l RInside

l IpSolve

l lpSolveAPI

You can install additional R packages not included in the HP Vertica R Language Pack by using
one of twomethods. Youmust install the same packages on all nodes.

1. By using R Language Pack R binary at the command line and using the install.packages() R
command. For example:

/opt/vertica/R/bin/R ...
> install.packages("Zelig");

2. By running the following command:

/opt/vertica/R/bin/R CMD INSTALL <path-to-package-tgz>

The install places the packages in: /opt/vertica/R/library.

Using the HP Vertica SDK R Examples
HP Vertica provides example R functions in /opt/vertica/sdk/examples/RFunctions/RFunctions.R

You can load the examples into HP Vertica with the command:

CREATE LIBRARY rLib AS '/opt/vertica/sdk/examples/RFunctions/RFunctions.R' LANGUAGE 'R';

You can then load the example functions included in the library. For example:

CREATE FUNCTION mul AS LANGUAGE 'R' NAME 'mulFactory' LIBRARY rLib;

Creating R Functions
To create a user defined R function, you define:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 578 of 817

l AnR Factory Function.

l A main R function.

l Optionally, an outtypecallback function to define the type(s) and precision of the values returned
to HP Vertica and a parametertype callback function to define parameter names and types.

About the R Factory Function

User Defined Functions in R require a single factory function. The factory function wraps all of the
information required by HP Vertica to load the user-defined R function. The factory function allows
you to define the following:

Parameter Description

name The name of the primary R function in this User Defined Function.

udxtype The type of User Defined function. Can be either "scalar" or
"transform".

intype The type(s) of arguments accepted by the function. See the supported
types below.

Note:User Defined Scalar Functions (UDSFs) can have amaximum
limit of 32 arguments. User Defined Scalar Functions (UDSFs) have no
limitation on the number of arguments.

outtype The type(s) of arguments returned by the function. See the supported
types below.

outtypecallback (optional) The callback function to call before sending the data back to
HP Vertica. It defines the types and precision that themain function
returns.

parametertypecallback (optional) The callback function to send parameter types and names to
HP Vertica.

volatility Indicate whether the function returns the same output given the same
input, can be one of three types.

strictness Indicate whether the function always returns null when any of its input
arguments is null.

Factory Function - Supported Data Types

The following data types are supported in the factory function:

l boolean

l int

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 579 of 817

l float

l real

l char

l varchar

l long varchar

l date

l datetime

l smalldatetime

l time

l timestamp

l timestamptz

l timetz

l numeric

l varbinary

l binary

l long varbinary

Example Factory Function

The following example is a factory function for a scalar function written in R namedmul that takes
two floats and returns a float. It also defines an outtypecallback function namedmulReturnType.

mulFactory <- function()
{

list(name=mul,udxtype=c("scalar"),intype=c("float","float"), outtype=c("float"), outtype
callback=mulReturnType)
}

About the Main R Function

Themain function (which is defined in the name parameter of the factory function) is the first
function called when HP Vertica runs your function. Themain function takes as input exactly one
data frame and returns a single data frame. The factory function converts the intype arguments into
a data frame for the primary function. For example, intype=c("float","float") is converted by the

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 580 of 817

factory function into a two-dimensional matrix. The primary function returns a data frame, and the
data frame is converted into the type defined by the outtype parameter of the factory function.

The followingmain function corresponds to the factory function defined earlier. It takes a data frame
as input (converted from two floats) andmultiplies the two values in each row of the data frame,
then returns a data frame, which is converted to a single column of floats and passed back to HP
Vertica.

mul<- function(x)
{

pr <- x[,1] * x[,2]
pr

}

About the Outtypecallback Function

You can optionally create an outtypecallback function to define the type(s), length/precision, and
scale of the data being returned to HP Vertica. You return up to a four-columnmatrix:

1. data type

2. length/precision

3. scale

4. name of the column in the output (optional)

If any of the columns are left blank (or the outtypecallback function is omitted entirely), then HP
Vertica uses default values.

When creating the outtypecallback function, you define one row for each value returned, using the
same order as the outtypes that were defined in the factory function.

For example, if your function returns a data framewith three columns, containing INT, VARCHAR
(24) and VARCHAR(2) data types, you could define the outtype as:

ret[1,1] = "int"
ret[1,4] = "product"
ret[2,1] = "varchar"
ret[2,2] = "24"
ret[3,1] = "varchar"
ret[3,2] = "2"

Note:When specifying long varchar or long varbinary data types, include the space between
the two words. For example:

ret[1,1] = "long varchar"

The following outtypecallback examplemimics the defaults used by HP Vertica. If the
outtypecallback function were omitted, then HP Vertica provides these settings as defaults.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 581 of 817

mulReturnType <- function(x)
{

ret = data.frame(datatype = rep(NA,1), length = rep(NA,1), scale = rep(NA,1), name = re
p(NA,1))

ret[1,1] = "float"
ret[1,4] = "product"
ret

}

Deploying the Function into HP Vertica

l To deploy a Scalar Function, see Deploying and Using UDSFs.

l To deploy a Transform Function, see Deploying and Using User Defined Transforms.

Also see CREATE LIBRARY and CREATE FUNCTION in the SQLReferenceManual.

Example R Scalar Function

##########
Example: Multiplication
Filename: mul.R
##########
###
@brief multiplies col1 and col2 of the input data frame.
###
mul<- function(x)
{

pr <- x[,1] * x[,2]
pr

}
mulFactory <- function()
{

list(name=mul,udxtype=c("scalar"),intype=c("float","float"), outtype=c("float"), outtype
callback=mulReturnType)
}
mulReturnType <- function(x)
{

ret = data.frame(datatype = rep(NA,1), length = rep(NA,1), scale = rep(NA,1), name = re
p(NA,1))

ret[1,1] = "float"
ret[1,4] = "Multiplied"
ret

}

Example Usage:

=> select * from twocols;
x | y

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 582 of 817

---+---
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9

(9 rows)
=> CREATE LIBRARY mulLib AS '/home/dbadmin/mul.R' LANGUAGE 'R';
CREATE LIBRARY
=> CREATE FUNCTION mul AS NAME 'mulFactory' LIBRARY mulLib;
=> select mul(x,y) from twocols;
Multiplied

1
4
9

16
25
36
49
64
81

(9 rows)

Setting Null Input and Volatility Behavior for R Functions

Starting in version 6.1, HP Vertica supports defining volatility and null-input settings for functions
written in R. Both settings aid in the performance of your R function:

l Volatility settings describe the behavior of the function to the HP Vertica optimizer. For example,
if you have identical rows of input data and you know the function is immutable, then you can
define the function as IMMUTABLE. This tells the HP Vertica optimizer that it can return a
cached value for subsequent identical rows on which the function is called rather than having the
function run on each identical row.

l Null input setting determine how to respond to rows that have null input. For example, you can
choose to return null if any inputs are null rather than calling the function and having the function
deal with a NULL input.

Volatility Settings

To indicate your function's volatility, set the volatility parameter of your R factory function to one of
the following values:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 583 of 817

Value Description

VOLATILE Repeated calls to the function with the same input parameters always result in
different values. HP Vertica always calls volatile functions for each invocation.

IMMUTABLE Calls to the function with the same input parameters always results in the same
output.

STABLE Repeated calls to the function with the same input within the same statement
returns the same output. For example, a function that returns the current user
namewould be stable since the user cannot change within a statement, but
could change between statements.

DEFAULT_
VOLATILITY

The default volatility. This is the same as VOLATILE.

If you do not define a volatility, then the function is considered to be VOLATILE.

The following example sets the volatility to STABLE in themulFactory function:

mulFactory <- function(){
list(name=mulwithparams,udxtype=c("scalar"),intype=c("float","float"),
outtype=c("float"), volatility=c("stable"), parametertypecallback=mulparams)

}

Null Input Behavior

To indicate how your function reacts to NULL input, set the strictness parameter of your R factory
function to one of the following values:

Value Description

CALLED_ON_NULL_INPUT The functionmust be called, even if one or more input values are
NULL.

RETURN_NULL_ON_
NULL_INPUT

The function always returns a NULL value if any of its inputs are
NULL.

STRICT A synonym for RETURN_NULL_ON_NULL_INPUT

DEFAULT_STRICTNESS The default strictness setting. This is the same as CALLED_
ON_NULL_INPUT.

If you do not define a null input behavior, then the function is called on every row of data regardless
of the presence of NULLS.

The following example sets the null input behavior to STRICT in themulFactory function:

mulFactory <- function()
{

list(name=mulwithparams,udxtype=c("scalar"),intype=c("float","float"),

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 584 of 817

outtype=c("float"), strictness=c("strict"), parametertypecallback=mulparams)
}

Using Parameters in R

Starting in version 6.1, HP Vertica supports using parameters in functions written in R. Parameters
are passed to the R function with theUSING PARAMETERS keyword followed by a series of key-
value pairs. The function accesses parameters as the second argument it receives, which is a list
of key-value pairs.

You alsomust specify a field in the factory function called parametertypecallback. This field
points to the callback function that defines the parameters expected by the function. The callback
function simply defines a four-column data frame:

1. data type

2. length/precision

3. scale

4. name of the column in the output (optional)

If any of the columns are left blank (or the outtypecallback function is omitted entirely), then HP
Vertica uses default values.

Syntax

SELECT <function-name>(<argument> [, ...] [USING PARAMETERS <key>=<value> [, ...]])
FROM foo;

SELECT <function-name>(<argument> [, ...] [USING PARAMETERS <key>=<value> [, ...]])
OVER (...) FROM foo;

Example Usage

In version 6.0, if you created a kmeans function, you would have to hard code the value of K (the
number of clusters in to which to group the data points) into your function. In version 6.1 and later
you can, for example, specify a parameter for the value of K and assign a value to K when you call
the function from within HP Vertica. For example:

SELECT kmeans(geonameid, latitude, longitude, country_code USING PARAMETERS k = 5)
OVER (ORDER BY country_code) FROM geotab_kmeans;

Your R function receives everything before 'USINGPARAMETERS' as the first dataframe, and the
parameters are contained in the second parameter, which is a list.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 585 of 817

Complete R Example

mykmeansparams <- function(x, y)
{

error check and get the number of clusters to be formed
The y argument contains the parameters from the USING PARAMETERS clause in
your SQL function call.
if(!is.null(y[['k']]))

k=as.numeric(y[['k']])
else

stop("Expected parameter k")
get the number of columns in the input data frame
cols = ncol(x)
run the kmeans algorithm
cl <- kmeans(x[,2:cols-1], k)
get the cluster information from the result of above
Result <- cl$cluster
#return result to vertica
Result <- data.frame(VCol=Result1)
Result

}

call back function to return parameter types
kmeansParameters <- function()
{

params <- data.frame(datatype=rep(NA, 1), length=rep(NA,1), scale=rep(NA,1),
name=rep(NA,1))

param[1,1] = "int"
param[1,4] = "k"
param

}

Function that tells vertica the name of the actual R function, the parameter types and
the return types
keansFactoryParams <- function()
{

list(name=mykmeansparams,udxtype=c("transform"), intype=c("int","float","float","floa
t",

"float","varchar"), outtype=c("int"),
parametertypecallback=kmeansParameters, volatility=c("stable"),
strict=c("called_on_null_input"))

}

Polymorphic Functions in R

Polymorphism in R functions allow you to easily modify how the function is used on different
datasets. Polymorphic functions in R can accept any number and type of argument that the user
supplies. HP Vertica does not check the number or types of argument that the user passes to the
function - it just passes all of the arguments supplied by the user. It is up to your polymorphic-
function's main function to examine the number and types of arguments it received and determine if
it can handle them.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 586 of 817

Note: : Transform functions written in R can have an unlimited number of arguments. Scalar
functions written in R are limited to amaximum number of 32 arguments.

Polymorphic functions aremore flexible than usingmultiple factory classes for your function (see
User Defined Function Overloading), since your function can determine at run time if it can process
the arguments rather than accepting specific sets of arguments. However, your polymorphic
function needs to perform more work to determine whether it can process the arguments that it has
been given.

Declare the Function As Polymorphic

Your polymorphic R function declares it accepts any number of arguments in its factory's function
by specifying "any" as the argument to the intype parameter and optionally the outtype parameter. If
you define "any" argument for intype or outtype, then it is the only type that your function can
declare for the respective parameter. You cannot define required arguments and then call "any" to
declare the rest of the signature as optional. If your function has requirements for the arguments it
accepts, your process functionmust enforce them.

For example, this is a factory function that declares that the function is polymorphic:

RFactory <- function()
{

list(
name=RFunction,
udxtype=c("transform"),
intype=c("any"),
outtype=c("any"),
outtypecallback=ReturnType

)
}

Define the outtypecallback for Polymorphic Functions

The outtypecallback method is used to indicate the argument types and sizes it has been called
with, and is expected to indicate the types and sizes that the function returns. The outtypecallback
method can also be used to check for unsupported types and/or number of arguments. For
example, the functionmay require only integers, with nomore than 10 of them:

This function returns the same number and types as was input
ReturnType <- function(x)
{

ret <- NULL
if(nrow(x) > 10)
{

stop("The function cannot accept more than 10 arguments")
}
for(i in nrow(x))
{

if(x[i,2] != "int")
{

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 587 of 817

stop("The function only accepts integers")
}

rbind(ret,x{i,]) -> ret
}
ret

}

Complete Example

The examples below uses the popular Iris Flower Dataset to demonstrate how the R k-means
algorithm clusters the data and how you can use the polymorphic properties of the function to run
kmeans against different columns.

#The k-means ploymorphic algorithm

Input: A dataframe with 5 columns
Output: A dataframe with one column that tells the cluster to which each data
point belongs

mykmeansPoly <- function(x,y)
{

get the number of clusters to be formed
if(!is.null(y[['k']]))

k=as.numeric(y[['k']])
else

stop("Expected parameter k")

get the number of columns in the input data frame
cols = ncol(x)

run the kmeans algorithm
cl <- kmeans(x[,2:cols-1], k)

get the cluster information from the result of above
Result <- cl$cluster

#return result to vertica
Result <- data.frame(VCol=Result)
Result

}

Function that tells vertica the name of the actual R function, and the
polymorphic parameters
kmeansFactoryPoly <- function()
{

list(name=mykmeansPoly,udxtype=c("transform"), intype=c("any"), outtype=c("int"),
parametertypecallback=kmeansParameters)

}

call back function to return parameter types
kmeansParameters <- function()
{

params <- data.frame(datatype=rep(NA, 1), length=rep(NA,1), scale=rep(NA,1),
name=rep(NA,1))

params[1,1] = "int"
params[1,4] = "k"
params

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 588 of 817

http://en.wikipedia.org/wiki/Iris_flower_data_set

}

To Use the Example

1. Create a table to hold the Iris data:

create table iris (sl FLOAT, sw FLOAT, pl FLOAT, pw FLOAT, spec VARCHAR(32));

2. Create a CSV version of the Iris Flower Dataset and copy it into HP Vertica:

copy iris from '/home/dbadmin/iris.csv' DELIMITER ','
EXCEPTIONS '/home/dbadmin/iris_exceptions.txt';

3. Copy and paste the example into a file named kmean.r in the dbadmin home directory. Using
vsql, create the library:

create library rlib2 as '/home/dbadmin/kmean.r' language 'R';

4. Create the function:

create transform function mykmeansPoly as language 'R' name 'kmeansFactoryPoly'
library rlib2;

5. Run the function:

select spec, mykmeansPoly(sl,sw,pl,pw,spec USING PARAMETERS k = 3) over(partition by
spec) as kmean from iris;

6. Run the function with different number of arguments:

select spec, mykmeansPoly(sl,pl,spec USING PARAMETERS k = 3) over(partition by spec)
as kmean from iris;

7. To clean up the example library, function, and table:

drop transform function mykmeansPoly();drop library rlib2;
drop table iris;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 589 of 817

http://en.wikipedia.org/wiki/Iris_flower_data_set

Adding Metadata to R Libraries

You can addmetadata, such as author name, the version of the library, a description of your library,
and so on to your library. This metadata lets you track the version of your function that is deployed
on an Vertica Analytics Platform cluster and lets third-party users of your function know who
created the function. Your library's metadata appears in the USER_LIBRARIES system table after
your library has been loaded into the Vertica Analytics Platform catalog.

You declare themetadata for your library by calling the RegisterLibrary function in one of the
source files for your UDx. If there is more than one function call in the source files for your UDx,
whichever gets interpreted last as Vertica Analytics Platform loads the library is used to determine
the library's metadata.

The RegisterLibrary function takes eight string parameters:

RegisterLibrary(author, library_build_tag, library_version, library_sdk_version,
source_url, description, licenses_required, signature);

l author contains whatever name you want associated with the creation of the library (your own
name or your company's name for example).

l library_build_tag is a string you want to use to represent the specific build of the library (for
example, the SVN revision number or a timestamp of when the library was compiled). This is
useful for tracking instances of your library as you are developing them.

l library_version is the version of your library. You can use whatever numbering or naming
scheme you want.

l library_sdk_version is the version of the Vertica Analytics Platform SDK Library for which
you've compiled the library.

Note: This field isn't used to determine whether a library is compatible with a version of the
Vertica Analytics Platform server. The version of the Vertica Analytics Platform SDK you
use to compile your library is embedded in the library when you compile it. It is this
information that Vertica Analytics Platform server uses to determine if your library is
compatible with it.

l source_url is a URL where users of your function can findmore information about it. This can
be your company's website, the GitHub page hosting your library's source code, or whatever
site you like.

l description is a concise description of your library.

l licenses_required is a placeholder for licensing information. In this release of Vertica
Analytics Platform, youmust leave this field as an empty string.

l signature is a placeholder for a signature that will authenticate your library. In this release of
Vertica Analytics Platform, youmust leave this field as an empty string.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 590 of 817

For example, the following code demonstrates addingmetadata to the R mul example (Example R
Scalar Function) Subclassing ScalarFunctionFactory

########### Example: Multiplication
Filename: mul.R
##########
###
@brief multiplies col1 and col2 of the input data frame.
###
mul<- function(x)
{

pr <- x[,1] * x[,2]
pr

}
mulFactory <- function()
{

list(name=mul,udxtype=c("scalar"),intype=c("float","float"), outtype=c("float"), outtype
callback=mulReturnType)
}
mulReturnType <- function(x)
{

ret = data.frame(datatype = rep(NA,1), length = rep(NA,1), scale = rep(NA,1), name = re
p(NA,1))

ret[1,1] = "float"
ret[1,4] = "Multiplied"
ret

}

Register the library's metadata.
RegisterLibrary("Whizzo Analytics Ltd.",

"1234",
"1.0",
"7.0.0",
"http://www.example.com/mul.R",
"Multiplier R Library",
"",
"");

Loading the library and querying the USER_LIBRARIES system table shows themetadata
supplied in the call to RegisterLibrary:

dbadmin=> CREATE LIBRARY rLib AS '/home/dbadmin/mul.R' LANGUAGE 'R';
CREATE LIBRARY

dbadmin=> select * from user_libraries where lib_name = 'rLib';
-[RECORD 1]-----+---------------------------------
schema_name | public
lib_name | rLib
lib_oid | 45035996453516356
author | Whizzo Analytics Ltd.
owner_id | 45035996273704962
lib_file_name | public_rLib_45035996453516356.R
md5_sum | 72548af5510fc43db9c5e187931a1835
sdk_version |
revision |

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 591 of 817

lib_build_tag | 1234
lib_version | 1.0
lib_sdk_version | 7.0.0
source_url | http://www.example.com/mul.R
description | Multiplier R Library
licenses_required |
signature |

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 592 of 817

Developing User Defined Functions in Java
User-Defined Functions (UDFs) are functions contained in external shared libraries that you
develop in supported programming languages and load into HP Vertica using the CREATE
LIBRARY and CREATE FUNCTION statements. They are best suited for analytic operations that
are difficult to perform in SQL, and need to be performed frequently enough that their speed is a
major concern.

You can develop UDFs in the Java programming language using the HP Vertica Java SDK.

In order to create a UDF in Java, youmust create two subclasses:

l A function class that carries out the processing you want your UDF to perform.

l A factory class that provides metadata about the function class, and creates an instance of it to
handle function calls.

UDFs written in Java always run in FencedMode, since the Java Virtual Machine that executes
Java programs cannot run directly within the HP Vertica process.

The following sections explain how to develop a UDF using Java.

Supported Features
The HP Vertica Java SDK supports the following features:

l INTEGER, FLOAT, DATE, CHAR, VARCHAR, BINARY, VARBINARY, NUMERIC,
LONG VARCHAR, LONG VARBINARY, and TIMESTAMP data types (see Java and HP
Vertica Data Type Conversions).

l User Defined Scalar Functions (UDSFs) , User Defined Transform Functions (UDTFs), and
User Defined Load (UDLs) (see Supported Java SDK Function Types).

l Overloaded and Polymorphic User Defined Functions which are capable of handing different
sets of input values (see Accepting Different Numbers and Types of Arguments).

l UDx parameters (see

Supported Java SDK Function Types
There are several different types of UDFs which each have their own purpose. They are used in
different types of SQL statements and process different sets of input and output values. The HP
Vertica Java SDK defines two types of UDFs which are described below.

User Defined Scalar Functions (UDSFs)

UDSFs are the simplest form of UDF: they take between zero and thirty-two arguments (which is
treated as a row of data) and return a single value. They must return a value for each row of data
read in. They can be used inmost places that HP Vertica's own built-in functions can be used. For

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 593 of 817

example, one of the sample UDSFs, add2ints, accepts two INTEGER values as arguments and
returns their sum. You can use it within a query like this:

=> SELECT * from T;
a | b

---+---
3 | 4
5 | 6
1 | 2

(3 rows)
=> SELECT a, b, add2ints(a,b) FROM T ORDER BY a ASC;
a | b | add2ints

---+---+----------
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11

(3 rows)

SeeDeveloping a User Defined Scalar Function in Java for details of creating a UDSF using the
Java SDK.

User Defined Transform Functions (UDTF)

UDTFs read zero or more arguments and optionally return one or more values. They let you create
functions that transform a table of data into another table. The row of data it outputs does not have
to correspond in any way to the row of data it reads in, and it can return as many or as few rows as it
wants. You can only use UDTFs in a SELECT statement, which can only contain the UDTF
function call and a required OVER clause. The SELECT statement can contain any subset of the
PARTITION BY clause used in the OVER statement. For example, the sample tokenize UDTF
takes a single VARCHAR string, breaks it into individual words, and returns each word in its own
row. The following example demonstrates calling tokenize:

=> CREATE TABLE T (url varchar(30), description varchar(2000));
CREATE TABLE
=> INSERT INTO T VALUES ('www.amazon.com',
-> 'Online retail merchant and provider of cloud services');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.hp.com',
-> 'Leading provider of computer hardware and imaging solutions');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.vertica.com','World''s fastest analytic database');
OUTPUT

1

(1 row)
dbadmin=> COMMIT;
COMMIT

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 594 of 817

=> SELECT url, tokenize(description) OVER (partition by url) FROM T;
url | Tokens

-----------------+-----------
www.hp.com | Leading
www.hp.com | provider
www.hp.com | of
www.hp.com | computer
www.hp.com | hardware
www.hp.com | and
www.hp.com | imaging
www.hp.com | solutions
www.vertica.com | World's
www.vertica.com | fastest
www.vertica.com | analytic
www.vertica.com | database
www.amazon.com | Online
www.amazon.com | retail
www.amazon.com | merchant
www.amazon.com | and
www.amazon.com | provider
www.amazon.com | of
www.amazon.com | cloud
www.amazon.com | services

(20 rows)

SeeDeveloping a User Defined Transform Function in Java for details on developing a UDSF using
the HP Vertica Java SDK.

The Vertica Analytics Platform Java SDK also supports developing User Defined Load (UDL)
 functions. See Developing UDLs in Java.

Java UDF Resource Management
Java Virtual Machines (JVMs) allocate a set amount of memory when they start. This set memory
allocation complicates memory management for Java UDFs, since (unlike UDFs developed in
C++)memory cannot be dynamically allocated and freed by the UDF as it is processing data.

To control the amount of memory consumed by Java UDFs, HP Vertica has amemory pool named
jvm that HP Vertica uses to allocatememory for Java UDF JVMs. If this memory pool is
exhausted, queries that call Java UDFs block until enoughmemory in the pool becomes free to
start a new JVM.

By default, the jvm pool has:

l nomemory of its own assigned to it, so it borrows memory from theGENERAL pool.

l its MAXMEMORYSIZE set to either 10% of systemmemory or 2GB, whichever is smaller.

l its PLANNEDCONCURRENCY set to AUTO, so that it inherits the GENERAL pool's
PLANNEDCONCURRENCY setting.

When a SQL statement calls a Java UDF, HP Vertica checks the jvmmemory pool to determine if
there is enoughmemory in it to start a new JVM instance to handle the function call. HP Vertica

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 595 of 817

starts each new JVM with its heapmemory size set to approximately the jvm pool's
MAXMEMORYSIZE parameter divided by its PLANNEDCONCURRENCY parameter.

If your Java UDF attempts to consumemorememory than has been allocated to the JVM's heap
size, it exits with amemory error. You can attempt to resolve this issue by:

l increasing the jvm pool's MAXMEMORYSIZE parameter.

l decreasing the jvm pool's PLANNEDCONCURRENCY parameter.

l changing your Java UDF's code to consume less memory.

SeeManagingWorkloads in the Administrator's Guide for details on how to tune the parameters of
the jvm and other resource pools.

Notes

l The jvm resource pool is only used to allocatememory for the Java UDF functionc alls in a
statement. The rest of the resources required by the SQL statement come from other memory
pools.

l The first time a Java UDF is called, HP Vertica starts a JVM to execute some Javamethods to
get metadata about the UDF during the query planning phase. Thememory for this JVM is also
taken from the jvmmemory pool.

Installing Java on HP Vertica Hosts
Youmust install a Java Virtual Machine (JVM) on every host in your cluster in order for HP Vertica
to be able to execute your Java UDFs.

Installing Java on your HP Vertica cluster is a two-step process:

1. Download and install the Java installation package on all of the hosts in your cluster.

2. Set the JavaBinaryForUDx configuration parameter to tell HP Vertica the location of the Java
executable.

Downloading and Installing the Java Installation Package

For Java-based features, HP Vertica requires a 64-bit Java Standard Edition 6 (Java version 1.6) or
later runtime from Oracle. TheOpenJDK environment is not supported. You can choose to install
either the Java Runtime Environment (JRE) or Java Development Kit (JDK), since the JDK also
includes the JRE. See the Java Standard Edition (SE) Download Page to download an installation
package for your Linux platform. You usually run the installation package as root in order to install it.
See the download page for instructions.

Once you have installed a JVM on each host, ensure that the java command is in the search path
and calls the correct JVM by running the command:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 596 of 817

http://www.oracle.com/technetwork/java/javase/downloads/index.html

$ java -version

This command should print something similar to:

java version "1.6.0_37"Java(TM) SE Runtime Environment (build 1.6.0_37-b06)
Java HotSpot(TM) 64-Bit Server VM (build 20.12-b01, mixed mode)

Note: Any previously installed Java VM (such as OpenJDK or an earlier unsupported version
of Java) on your hosts may interfere with a newly installed Java runtime. See your Linux
distribution's documentation for instructions on configuring which JVM is the default. Unless
absolutely required, you should uninstall any incompatible version of Java before installing the
Oracle Java 6 or Java 7 runtime.

Setting the JavaBinaryForUDx Configuration Parameter

The JavaBinaryForUDx configuration parameter tells HP Vertica where to look for the JRE to
execute Java UDxs. After you have installed the JRE on all of the nodes in your cluster, set this
parameter to the absolute path of the Java executable. You can use the symbolic link that some
Java installers create (for example /usr/bin/java). If the Java executable is in your shell search
path, you can get the path of the Java executable by running the following command from the Linux
command line shell:

$ which java
/usr/bin/java

If the java command is not in the shell search path, use the path to the Java executable in the
directory where you installed the JRE. Suppose you installed the JRE in /usr/java/default
(which is where the installation package supplied by Oracle installs the Java 1.6 JRE). In this case
the Java executable is /usr/java/default/bin/java.

You set the configuration parameter by executing the following statement as a database
superuser:

=> SELECT SET_CONFIG_PARAMETER('JavaBinaryForUDx','/usr/bin/java');

See SET_CONFIG_PARAMETER in the SQLReferenceManual for more information on setting
configuration parameters.

To view the current setting of the configuration parameter, query the CONFIGURATION_
PARAMETERS system table:

=> \x
Expanded display is on.
=> SELECT * FROM CONFIGURATION_PARAMETERS WHERE parameter_name = 'JavaBinaryForUDx';
-[RECORD 1]-----------------+--
node_name | ALL

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 597 of 817

parameter_name | JavaBinaryForUDx
current_value | /usr/bin/java
default_value |
change_under_support_guidance | f
change_requires_restart | f
description | Path to the java binary for executing UDx written in Java

Once you have set the configuration parameter, HP Vertica can find the Java executable on each
node in your cluster.

Note: Since the location of the Java executable is set by a single configuration parameter for
the entire cluster, youmust ensure that the Java executable is installed in the same path on all
of the hosts in the cluster.

Configuring Your Java Development Environment
Before you start developing your UDF in Java, you need to configure your development
environment. You can choose to develop your Java UDF on a node in a development HP Vertica
database (not in a production environment) or on a desktop system.

Install the Java Development Kit (JDK) version on your development system that matches the
Java version you have installed on your database hosts (see Installing Java on HP Vertica Hosts).

You also need two files from the Java support package:

l /opt/vertica/bin/VerticaSDK.jar contains the HP Vertica Java SDK and other supporting
files.

l /opt/vertica/sdk/com/vertica/sdk/BuildInfo.java contains version information about
the SDK. Youmust compile this file and include it within your Java UDF JAR files.

If you are not using a node in a development database as a development system, you can copy
these files from one of the database nodes to your development system.

Compiling BuildInfo.java

You need to compile the BuildInfo.java into a class file, so you can include it in your Java UDF
JAR library. If you are using an HP Vertica node as a development system, you can either copy the
BuildInfo.java file to another location on your host, or compile it in place if you have root
privileges. Only root has privileges to write files to the /opt/vertica/sdk directory.

To compile the file into a class file, use the command:

$ javac -classpath /opt/vertica/bin/VerticaSDK.jar \
/path/BuildInfo.java

replacing pathwith the path to the file. If you want to compile it in place, use the command:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 598 of 817

$ sudo javac -classpath /opt/vertica/bin/VerticaSDK.jar \
/opt/vertica/sdk/com/vertica/sdk/BuildInfo.java

If you want to develop your Java UDFs on a system other than one of your database hosts, you
must copy BuildInfo.java to your development system and compile it.

Note: If you use an IDE such as Eclipse, you can include the BuildInfo.java file in your
project, and add the VerticaSDK.jar file to the project's build path. See your IDE's
documentation for details on how to include files and libraries in your projects.

The HP Vertica Java SDK Documentation
You can find detailed documentation of all of the classes in the HP Vertica Java SDK in the SDK
documentation. This documentation is included in the same package containing this document.

Java and HP Vertica Data Type Conversions
The HP Vertica Java SDK converts HP Vertica's native data types into the appropriate Java data
type. The following table lists the HP Vertica data types and their corresponding Java data types.

HP Vertica Data Type Java Data Type

INTEGER long

FLOAT double

NUMERIC com.vertica.sdk.VNumeric

DATE java.sql.Date

CHAR, VARCHAR, LONG VARCHAR com.vertica.sdk.VString

BINARY, VARBINARY, LONG VARBINARY com.vertica.sdk.VString

TIMESTAMP java.sql.Timestamp

Note: SomeVertica Analytics Platformdata types are not supported.

Testing for Null Values

You can test whether a value being read from HP Vertica is NULL by using data-type-specific
methods (such as isLongNull, isDoubleNull, and isBooleanNull) on the BlockReader or
PartitionReader object that your UDF uses to read data from HP Vertica :

// See if the Long value in column 0 is a NULL
if (inputReader.isLongNull(0)) {

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 599 of 817

// value is null
. . .

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 600 of 817

Developing a User Defined Scalar Function in Java
A UDSF function returns a single value for each row of data it reads. It can be used anywhere a
built-in HP Vertica function can be used. You usually develop a UDF to perform datamanipulations
that are too complex or too slow to perform using SQL statements and functions. UDFs also let you
use analytic functions provided by third-party libraries within HP Vertica while still maintaining high
performance.

To create your UDSF, you create subclasses of two classes defined by the HP Vertica Java SDK:

l The ScalarFunction class, which carries out whatever processing you want your UDSF to
perform.

l The ScalarFunctionFactory class which defines themetadata about your UDSF such as its
arguments and return type, and creates an instance of your ScalarFunction subclass.

Developing a UDSF in Java can be broken down into three steps:

l Subclassing the ScalarFunction Class to define your UDSF's data processing.

l Defining the Arguments and Return Type for Your UDSF by overriding the
ScalarFunctionFactory.getPrototypemethod.

l Overriding createScalarFunction to create an instance of your ScalarFunction subclass.

The topics in this section explain these steps.

Java UDSF Requirements

Your UDSFmust meet several requirements:

l It must always return an output value for each input row. Not doing so can result in incorrect
query results or other issues.

l It can expect between zero and thirty-two arguments.

l If it depends on third party libraries, youmust either include them in the JAR file along with your
UDSF's classes or youmust install them on each host in your cluster in a directory that's in your
CLASSPATH environment variable.

Subclassing the ScalarFunction Class

Your subclass of ScalarFunction is where you define your UDSF's data processing. You have
two choices of where to define your subclass of ScalarFunction:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 601 of 817

l Define it as an inner class of your ScalarFunctionFactory subclass (whichmeans placing its
source code within the code of your ScalarFunctionFactory class). This is the simplest
method, since you do not need tomanage an additional source file to contain your
ScalarFunction class. Java allows just one top-level public class per source file, so
ScalarFunctionmust be an inner class of ScalarFunctionFactory if you want them to share
a source file.

Defining your ScalarFunction subclass as an inner class can become cumbersome if you have
a lot of code or you have broken the processing performed by your UDSF intomultiple
subclasses.

l Define it in its own source file. This requires a bit moremanagement, but is the best solution of
your UDSF code is complex. Youmust define it in its own source file if you want to use your
ScalarFunction class with multiple ScalarFunctionFactory classes to accept multiple
function signatures (see Accepting Different Numbers and Types of Arguments).

Your subclass of ScalarFunctionmust at least override the processBlockmethod, which
performs the actual processing for your UDSF. It reads a row of arguments, performs some
operation on those arguments, and then outputs a value. It repeats this process until it has read
every row of input.

The parameters passed to this method are:

l An instance of the ServerInterface class which provides some utility methods to interact with
the HP Vertica server. See Communicating with HP Vertica Using ServerInterface for more
information.

l An instance of the BlockReader class that your method uses to read data.

l An instance of the BlockWriter class that your method uses to write its output.

Your processBlockmethod reads its input arguments from the BlockReader instance by using
data-type-specific getters, such as getLong and getString. It then performs whatever processing
is required on the data to get the result. When your processBlockmethod has finished processing
the input, it writes its return value by calling a data type specific method on the BlockWriter object,
then advances to the next row of output by calling BlockWriter.next.

Once it has finished processing the first row of data, your processBlockmethodmust call
BlockReader.next to advance to the next row of input until it returns false, indicating that there are
nomore input rows to be processed.

The following example code is for a ScalarFunction subclass named Add2ints that reads two
integer values, adds them together, and returns their sum.

public class Add2ints extends ScalarFunction
{

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 602 of 817

throws UdfException, DestroyInvocation
{

do {
// The input and output objects have already loaded
// the first row, so you can start reading and writing
// values immediately.

// Get the two integer arguments from the BlockReader
long a = argReader.getLong(0);
long b = argReader.getLong(1);

// Process the arguments and come up with a result. For this
// example, just add the two arguments together.
long result = a+b;

// Write the integer output value.
resWriter.setLong(result);

// Advance the output BlocKWriter to the next row.
resWriter.next();

// Continue processing input rows until there are no more.
} while (argReader.next());

}
}

Notes

l Your implementation of processBlock cannot assume it is called from the same thread that
instantiated the ScalarFunction object.

l The same instance of your ScalarFunction subclass can be called on to process multiple
blocks of data.

l The rows of input sent to your processBlockmethod are not guaranteed to be any particular
order.

Defining the Arguments and Return Type for Your UDSF

You define the inputs and outputs used in your User Defined Scalar Function (UDSF) in your
subclass of the ScalarFunctionFactory class. Youmust override one or twomembers of this
class, depending on the data types of the arguments and the return type:

l getPrototype defines the data types of the input columns and output value. Youmust always
override this method in your ScalarFunctionFactory subclass.

l getReturnType defines the width of the output value if its data type is variable-width, or the
precision of output value if its data type requires precision. It can also optionally name the output
column. You are only required to override this method if your UDSF returns a data type that
requires precision or has a variable width. If it does not, youmay still choose to override this
method in order to name your output column.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 603 of 817

Overriding getPrototype

HP Vertica calls the ScalarFunctionFactory.getPrototypemethod to get the number and data
types of its arguments, and the data type of its return value. This method gets three arguments: an
instance of the ServerInterface class (see Communicating with HP Vertica Using
ServerInterface), and two instances of the ColumnTypes class. You use the first instance to set the
arguments your function expects and the second to set the data type of your function's return value.

The ColumnTypes class has a set of methods that start with the word "add" (such as addInt and
addFloat) that set the data type for an argument. On the first instance of ColumnTypes passed to
your getPrototypemethod, you call one of thesemethods to add each argument that your UDSF
expects. Since UDSFs only return one value, you call a single method on the second instance of
ColumnTypes to set the output data type.

The following example code demonstrates creating a subclass of ScalarFunctionFactory named
Add2intsFactorywhich overrides the getPrototypemethod so the UDSF accepts two integer
values as arguments and returns an integer value.

// You will need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.example;
// Import all of the Vertica SDK
import com.vertica.sdk.*;
public class Add2intsFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}

Setting Precision, Width, and Name of the Output Value in getReturnType

The getReturnTypemethod lets you set additional information about your UDSF's output
argument. Youmust override this method if your UDSF returns a value that is variable-width
(VARCHAR or BINARY, for example) or requires precision.

The getReturnTypemethod gets three parameters: an instance of ServerInterface (see
Communicating with HP Vertica Using ServerInterface), and two instances of SizedColumnTypes.
These instances describes the width and precision of columns. The first instance is pre-populated
with the width and precision information of the arguments to your function. You can use this object
to get the precision, width, or column name of any of the arguments. Your override of
getReturnType calls amethod on the second SizedColumnTypes instance to set the precision,
width, and optionally a column name of your UDSF's return value.

Note:When developing your getReturnTypemethod, youmust ensure that the columnwidth

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 604 of 817

or precision you set in the SizedColumnTypes object match the output value type you defined
in the getProtypemethod. For example, setting width on a fixed-width value can generate
errors.

The following example code is from aUDSF that takes two VARCHAR arguments as input, and
returns the shorter of the two strings as an output value. Since the return value is a VARCHAR, it
has to override the getReturnTypemethod to report the width of the value it will output. In this
case, it will return the shorter of the two strings, so it sets the output value's width to the size of the
shorter input string.

// Factory class for UDSF that returns the shorter of two strings.
public class ShorterStringFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
// Accepts two VARCHAR arguments and returns two.
argTypes.addVarchar();
argTypes.addVarchar();
returnType.addVarchar();

}
@Override
// Report the width of the output value. This is equal to
// the length of the shorter of the arguments. This method can
// actually handle any number of input arguments. It compares the
// length of the first argument string to the subsequent arguments,
// and sets the output length to the shortest string found.
public void getReturnType(ServerInterface srvInterface,

SizedColumnTypes argTypes,
SizedColumnTypes returnType)

{
// Get length of first argument string
int len = argTypes.getColumnType(0).getStringLength();
// Loop through remaining arguments, and see if any of their
// lengths are shorter.
for (int i = 1; i < argTypes.getColumnCount(); ++i) {

int arg_len = argTypes.getColumnType(i).getStringLength();
if (len > arg_len) len = arg_len;

}
// Set the width of the output to the width of the shortest string
// found.
returnType.addVarchar(len);

}
. . .

Overriding createScalarFunction

The last piece of your ScalarFunctionFactory class is to override the createScalarFunction
method. HP Vertica calls this method to create an instance of your ScalarFunction subclass to
process a block of data. All this method needs to do is return an instance of your ScalarFunction

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 605 of 817

class. The following example demonstrates overriding the createScalarFunction to instantiate a
member of the Add2ints class defined in Subclassing the ScalarFunction Class.

@Override
public ScalarFunction createScalarFunction(ServerInterface srvInterface)
{

return new Add2ints();
}

Complete Java UDSF Example

The following code example is the full source of the Add2ints example UDSF described in
Subclassing the ScalarFunction Class, Defining the Arguments and Return Type for Your UDSF,
andOverriding createScalarFunction. To simplify handling the source code, the ScalarFunction
class is defined as an inner class of the ScalarFunctionFactory class.

// You will need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.example;
// Import all of the Vertica SDK
import com.vertica.sdk.*;
public class Add2intsFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}

// This ScalarFunction is defined as an inner class of
// its ScalarFunctionFactory class. This gets around having
// to have a separate source file for this public class.

public class Add2ints extends ScalarFunction
{

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

throws UdfException, DestroyInvocation
{

do {
// The input and output objects have already loaded
// the first row, so you can start reading and writing
// values immediately.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 606 of 817

// Get the two integer arguments from the BlockReader
long a = argReader.getLong(0);
long b = argReader.getLong(1);

// Process the arguments and come up with a result. For this
// example, just add the two arguments together.
long result = a+b;

// Write the integer output value.
resWriter.setLong(result);

// Advance the output BlocKWriter to the next row.
resWriter.next();

// Continue processing input rows until there are no more.
} while (argReader.next());

}
}

@Override
public ScalarFunction createScalarFunction(ServerInterface srvInterface)
{

return new Add2ints();
}

}

Deploying and Using Your Java UDSF

Once you have finished developing the code for your Java UDSF, you need to deploy it:

1. Compile your code and package it into a JAR file. See Compiling and Packaging a Java UDF.

2. Copy your UDSF JAR file to a host in your database. You only need to copy it to a single
host—HP Vertica automatically distributes the JAR file to the rest of the hosts in your
database when you add the library to the database catalog.

3. Connect to the host as the database administrator.

4. Connect to the database using vsql.

5. Add your library to the database catalog using the CREATE LIBRARY statement.

=> CREATE LIBRARY libname AS '/path_to_jar_file/filename.jar'
-> LANGUAGE 'Java';

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 607 of 817

Where libname is the name you want to use to reference the library and path_to_jar_
file/filename.jar is the fully-qualified pathname to the JAR file you copied to the host.

For example, if you created a JAR file named Add2intsLib.jar and copied it to the dbadmin
account's home directory, you would use this command to load the library:

=> CREATE LIBRARY add2intslib AS '/home/dbadmin/Add2intsLib.jar'
-> LANGUAGE 'Java';

6. Define your UDSF in the catalog using the CREATE FUNCTION statement.

=> CREATE FUNCTION functionName AS LANGUAGE 'Java' NAME
-> 'namespace.factoryClassName' LIBRARY libname;

The functionName is the name you want to give your function. The
namespace.factoryClassName is the fully-qualified name (namespace and class name) of
your UDSF's factory class. The libname is the name you gave your Java UDF library in step
5.

For example, to define the Add2ints function shown in Complete Java UDSF Example, you
would use the command:

=> CREATE FUNCTION add2ints AS LANGUAGE 'Java' NAME
-> 'com.mycompany.example.Add2intsFactory' LIBRARY add2intslib;

7. You can now call your Java UDSF the sameway you call any other function:

=> select add2ints(123, 567);
add2ints

690

(1 row)
=> SELECT * from T;
a | b

---+---
3 | 4
5 | 6
1 | 2

(3 rows)
=> SELECT a, b, add2ints(a,b) FROM T ORDER BY a ASC;
a | b | add2ints

---+---+----------
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11

(3 rows)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 608 of 817

Developing a User Defined Transform Function in Java
A User Defined Transform Function (UDTF) reads one or more arguments (treated as a row of
data), and returns zero or more rows of data consisting of one or more columns. The schema of the
output table does not need to correspond to the schema of the input table—they can be totally
different. The UDTF can return any number of output rows for each row of input.

UDTFs can only be used in the SELECT list that contains just the UDTF call and a required OVER
clause.

Unlike other types of User Defined Functions, UDTFs do not have a limit on the number of
arguments that they can accept. Most other types of UDFs have amaximum of 32 arguments..

Note: Your UDTFmust set a value for each column in any row of data it writes. Columns do
not have any sort of default value. Writing a row of data with missing values can result in
errors.

To create your UDTF, you create subclasses of two classes defined by the HP Vertica Java SDK:

l The TransformFunction class, which carries out the processing you want your UDTF to
perform.

l The TransformFunctionFactory class, which provides HP Vertica with metadata about your
UDTF such as its arguments and output columns, and also creates an instance of your
TransformFunction subclass.

The topics in this section explain how to create your UDTF by subclassing these classes.

Subclassing the TransformFunction Class

Your subclass of TransformFunction is where you define your UDTF's data processing. You can
define this subclass in one of two places:

l Define it as an inner class of your TransformFunctionFactory subclass (whichmeans placing
its source code within the code of your TransformFunctionFactory class). This is the simpler
method, since you do not need tomanage an additional source file to contain your
TransformFunction class. Java only allows one top-level public class per source file, so you
cannot define your TransformFunction in the same source file as your
TransformFunctionFactory class unless it is an inner class. Defining your
TransformFunction subclass as an inner class can become cumbersome if you have a lot of
code, or have broken the processing performed by your UDTF intomultiple subclasses.

l Define it in its own source file. This requires a bit moremanagement, but is the best solution of
your UDTF code is complex. Youmust define it in its own source file if you want to use your
TransformFunction class with multiple TransformFunctionFactory classes to accept
multiple function signatures (see Accepting Different Numbers and Types of Arguments).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 609 of 817

Your subclass of TransformFunctionmust override the processPartitionmethod, which
performs the actual processing for your UDTF. HP Vertica sends this method a partition of data to
be processed. The processPartitionmethods reads rows of data by callingmethods on an
instance of PartitionReader, performs some operation on the data, and optionally outputs one or
more rows of output by callingmethods on an instance of PartitionWriter.

The following example code is for a class that breaks the contents in a single VARCHAR column
into individual words (substrings separated by one or more spaces). This class corresponds to the
factory class described in Defining Your Java UDTF's Input andOutput Table Columns.

public class TokenizeString extends TransformFunction
{

@Override
public void processPartition(ServerInterface srvInterface,

PartitionReader inputReader,
PartitionWriter outputWriter)

throws UdfException, DestroyInvocation
{

// Loop over all rows passed in in this partition.
do {

// First test if the input string is NULL. If so, return NULL
if (inputReader.isStringNull(0)) {

outputWriter.setStringNull(0);
} else {

// Get the string value in column zero and break it into a
// it into words. Output each word as its own
// value.
String[] tokens = inputReader.getString(0).split("\\s+");
// Output each word on a separate row.
for (int i = 0; i < tokens.length; i++) {

// Output a string value in column 0 of the output
outputWriter.getStringWriter(0).copy(tokens[i]);
// Move to the next row of output
outputWriter.next();

}
}

// Loop until there are no more input rows in partition.
} while (inputReader.next());

}
}

Defining Your Java UDTF's Input and Output Table Columns

You define the input and output of your User Defined Transform Function (UDTF) in your subclass
of the TransformFunctionFactory class. You need to override one or twomethods in this class,
depending on data types of its input and output values:

l getPrototype defines the data types of the input and output columns. Youmust always
override this method in your TransformFunctionFactory subclass.

l getReturnType defines the width of any variable-width output columns, the precision of data
types that require precision, and optionally names the output columns. You are only required to
override this method if your UDTF returns one or more columns that have a data type that

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 610 of 817

requires precision or a variable width. If none of your columns are variable-width or require
precision, youmay still choose to override this method in order to name your output columns.

Note: Java UDx does not currently support data types that require precision.

Overriding getPrototype

The TransformFunctionFactory.getPrototypemethod gets three parameters as input: an
instance of ServerInterface (see Communicating with HP Vertica Using ServerInterface), and
two instances of ColumnTypes, one representing the columns in the input rows, and the other the
columns in the output rows.

On both of these objects, you need to call data-type-specific methods (such as addInt and
addVarchar) to define your UDTF's the input and output columns. The order in which you call these
methods defines input and output table schemas. The following example code is from aUDTF
named TokenFactory that parses a single VARCHAR column into individual words. it defines a
single VARCHAR input and output column:

// Break a single string input into individual words (substrings delimited by
// one or more spaces).
public class TokenFactory extends TransformFunctionFactory
{

// Set the number and data types of the columns in the input and output rows.
@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes, ColumnTypes returnType)
{

// One column in the input row: a Varchar
argTypes.addVarchar();
// One column in the output row: a Varchar
returnType.addVarchar();

}

Overriding getReturnType

The getReturnTypemethod gets three parameters: an instance of ServerInterface (see
Communicating with HP Vertica Using ServerInterface), and two instances of SizedColumnTypes.
These instances describes the width and precision of columns. The first instance is pre-populated
with the width and precision information of the input rows. You can use this object to get the
precision, width, or column name of any of the columns in the input row. Your override of
getReturnType call methods on the second SizedColumnTypes instance to set the precision,
width, and column name of your UDTF's output columns.

Note:When developing your getReturnTypemethod, youmust ensure that the columnwidths
and precision you set in the SizedColumnTypes object match the columns you defined in the
getProtypemethod. For example, setting width on a fixed-width column can generate errors.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 611 of 817

Since the getProtoypemethod in the previous example defined a variable-width column (a
VARCHAR), the TokenFactory class must override the getReturnTypemethod to set the width of
the output column. The following code example demonstrates setting the width of the single output
column to the width of the input column, since the longest string the UDTF could return is the full
input string (in the case where there are no spaces in the input string).

// Set the width of any variable-width output columns, and also name
// the columns.
@Override
public void getReturnType(ServerInterface srvInterface, SizedColumnTypes

inputTypes, SizedColumnTypes outputTypes)
{

// Set the maximum width of the return column to the width
// of the input column and name the output column "Tokens"
outputTypes.addVarchar(

inputTypes.getColumnType(0).getStringLength(), "Tokens");
}

Overriding the createTransformFunction Method

The last step in creating your TransformFunctionFactory class is to override the
createTransformFunctionmethod. HP Vertica calls this method to create an instance of your
TransformFunction subclass to process a partition of data. All this method needs to do is return an
instance of your TransformFunction class. The following example demonstrates overriding the
createTransformFunction to instantiate amember of the TokenizeString class defined in
Subclassing the TransformFunction Class.

@Override
public TransformFunction createTransformFunction(ServerInterface srvInterface)
{ return new TokenizeString(); }

Complete Java UDTF Example

The example code below is the complete code of the example developed in the topics Defining Your
Java UDTF's Input andOutput Table Columns, Subclassing the TransformFunction Class, and
Overriding the createTransformFunctionMethod. Tomake codemanagement simpler, the
TransformFunction class is defined as an inner class of the TransformFactoryClass.

// You will need to specify the full package when creating functions based on // the clas
ses in your library.
package com.mycompany.example;
// Import the entire Vertica SDK
import com.vertica.sdk.*;

// Break a single string input into individual words (substrings delimited by
// one or more spaces).
public class TokenFactory extends TransformFunctionFactory

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 612 of 817

{
// Set the number and data types of the columns in the input and output rows.
@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes, ColumnTypes returnType)
{

// One column in the input row: a Varchar
argTypes.addVarchar();
// One column in the output row: a Varchar
returnType.addVarchar();

}

// Set the width of any variable-width output columns, and also name
// the columns.
@Override
public void getReturnType(ServerInterface srvInterface, SizedColumnTypes

inputTypes, SizedColumnTypes outputTypes)
{

// Set the maximum width of the return column to the width
// of the input column and name the output column "Tokens"
outputTypes.addVarchar(

inputTypes.getColumnType(0).getStringLength(), "Tokens");
}

public class TokenizeString extends TransformFunction
{

@Override
public void processPartition(ServerInterface srvInterface,

PartitionReader inputReader,
PartitionWriter outputWriter)

throws UdfException, DestroyInvocation
{

// Loop over all rows passed in in this partition.
do {

// First test if the input string is NULL. If so, return NULL
if (inputReader.isStringNull(0)) {

outputWriter.setStringNull(0);
} else {

// Get the string value in column zero and break it into a
// it into words. Output each word as its own
// value.
String[] tokens = inputReader.getString(0).split("\\s+");
// Output each word on a separate row.
for (int i = 0; i < tokens.length; i++) {

// Output a string value in column 0 of the output
outputWriter.getStringWriter(0).copy(tokens[i]);
// Move to the next row of output
outputWriter.next();

}
}

// Loop until there are no more input rows in partition.
} while (inputReader.next());

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 613 of 817

}
}

@Override
public TransformFunction createTransformFunction(ServerInterface srvInterface)
{ return new TokenizeString(); }

}

// Break a single string input into individual words (substrings delimited by
// one or more spaces).
public class TokenFactory extends TransformFunctionFactory
{

// Set the number and data types of the columns in the input and output rows.
@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes, ColumnTypes returnType)
{

// One column in the input row: a Varchar
argTypes.addVarchar();
// One column in the output row: a Varchar
returnType.addVarchar();

}

// Set the width of any variable-width output columns, and also name
// the columns.
@Override
public void getReturnType(ServerInterface srvInterface, SizedColumnTypes

inputTypes, SizedColumnTypes outputTypes)
{

// Set the maximum width of the return column to the width
// of the input column and name the output column "Tokens"
outputTypes.addVarchar(

inputTypes.getColumnType(0).getStringLength(), "Tokens");
}

public class TokenizeString extends TransformFunction
{

@Override
public void processPartition(ServerInterface srvInterface,

PartitionReader inputReader,
PartitionWriter outputWriter)

throws UdfException, DestroyInvocation
{

// Loop over all rows passed in in this partition.
do {

// First test if the input string is NULL. If so, return NULL
if (inputReader.isStringNull(0)) {

outputWriter.setStringNull(0);
} else {

// Get the string value in column zero and break it into a

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 614 of 817

// it into words. Output each word as its own
// value.
String[] tokens = inputReader.getString(0).split("\\s+");
// Output each word on a separate row.
for (int i = 0; i < tokens.length; i++) {

// Output a string value in column 0 of the output
outputWriter.getStringWriter(0).copy(tokens[i]);
// Move to the next row of output
outputWriter.next();

}
}

// Loop until there are no more input rows in partition.
} while (inputReader.next());

}
}

@Override
public TransformFunction createTransformFunction(ServerInterface srvInterface)
{ return new TokenizeString(); }

}

Deploying and Using Your Java UDTF

Once you have finished developing the code for your Java UDTF, you need to deploy it:

1. Compile your code and package it into a JAR file. See Compiling and Packaging a Java UDF.

2. Copy your UDTF JAR file to a host in your database. You only need to copy it to a single
host—HP Vertica automatically distributes the JAR file to the rest of the hosts in your
database when you add the library to the database catalog.

3. Connect to the host as the database administrator.

4. Connect to the database using vsql.

5. Add your library to the database catalog using the CREATE LIBRARY statement.

=> CREATE LIBRARY libname AS '/path_to_jar_file/filename.jar'
-> LANGUAGE 'Java';

The libname is the name you want to use to reference the library, path_to_jar_
file/filename.jar is the fully-qualified pathname to the JAR file you copied to the host.

For example, if you created a JAR file named TokenizeStringLib.jar and copied it to the
dbadmin account's home directory, you would use this command to load the library:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 615 of 817

=> CREATE LIBRARY tokenizelib AS '/home/dbadmin/TokenizeStringLib.jar'-> LANGUAGE 'Ja
va';

6. Define your UDTF in the catalog using the CREATE TRANSFORM FUNCTION statement:

=> CREATE TRANSFORM FUNCTION functionName AS LANGUAGE 'Java' NAME
S-> 'namespace.factoryClassName' LIBRARY libname;

The functionName is the namewant to give your function. The
namespace.factoryClassName is the fully-qualified name (namespace and class name) of
your UDTF's factory class. The libname is the name you gave your Java UDF library in step 5.

For example, to define the tokenize function whose code is shown in Complete Java UDTF
Example, you would use the command:

=> CREATE TRANSFORM FUNCTION tokenize AS LANGUAGE 'Java' NAME
-> 'com.mycompany.example.TokenFactory' LIBRARY tokenizelib;

7. You can now call your UDTF. For example:

=> CREATE TABLE T (url varchar(30), description varchar(2000));
CREATE TABLE
=> INSERT INTO T VALUES ('www.amazon.com','Online retail merchant and provider of clo
ud services');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.hp.com','Leading provider of computer hardware and imag
ing solutions');
OUTPUT

1

(1 row)
=> INSERT INTO T VALUES ('www.vertica.com','World''s fastest analytic database');
OUTPUT

1

(1 row)
=> COMMIT;
COMMIT
=> SELECT url, tokenize(description) OVER (partition by url) FROM T;

url | Tokens
-----------------+-----------
www.hp.com | Leading
www.hp.com | provider
www.hp.com | of
www.hp.com | computer
www.hp.com | hardware
www.hp.com | and

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 616 of 817

www.hp.com | imaging
www.hp.com | solutions
www.vertica.com | World's
www.vertica.com | fastest
www.vertica.com | analytic
www.vertica.com | database
www.amazon.com | Online
www.amazon.com | retail
www.amazon.com | merchant
www.amazon.com | and
www.amazon.com | provider
www.amazon.com | of
www.amazon.com | cloud
www.amazon.com | services

(20 rows)

Compiling and Packaging a Java UDF
Before you can use your Java UDF, you need to compile it and package it into a JAR file.

Compiling Your Java UDF

You need to include the HP Vertica Java SDK JAR file in the classpath when you compile your
Java UDF source files into classes, so the Java compiler can resolve the HP Vertica Java SDK
API calls. If you are using the command-line Java compiler on a host in your database cluster, you
would use the command:

$ javac -classpath /opt/vertica/bin/VerticaSDK.jar factorySource.java \
[functionSource.java...]

If you usemultiple source files in your UDF, youmust compile all of them into class files. The
easiest method is to use the wildcard *.java to compile all of the Java files in the directory.

If you are using an IDE, make sure that a copy of the VerticaSDK.jar file is in the build path. For
example, if you are using Eclipse on aWindows system to develop and compile your UDF, you will
need to copy VerticaSDK.jar to it and then include it in your UDF's project.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 617 of 817

Packaging Your UDF into a JAR File

Once you have compiled your UDF, youmust package its class files and the BuildInfo.class file
into a JAR file (see Configuring Your Java Development Environment).

Note: You can package as many UDFs as you want into the same JAR file. Bundling your
UDFs together saves you from having to loadmultiple libraries.

If you are using the jar command packaged as part of the JDK, youmust have your UDF class files
organized into a directory structure that match your class's package. For example, if your UDF's
factory class has a fully-qualified name of com.mycompany.udfs.Add2ints, your class files must
must be in the directory hierarchy com/mycompany/udfs relative to the your project's base
directory. In addition, youmust have a copy of the BuildInfo.class in the path com/vertica/sdk
so it can be included in the JAR file. This class must be present in your JAR file to indicate the SDK
version that was used to compile your Java UDF.

Note: The BuildInfo.class and VerticaSDK.jar that you used to compile your class files
must be from the same SDK version, and that bothmust match the version of the SDK files on
your HP Vertica hosts. Versioning is only an issue if you are not compiling your UDFs on an
HP Vertica host. If you are compiling on a separate development system, always refresh your
copies of these files and recompile your UDFs just before deploying them.

For example, the Add2ints UDSF example explained in Developing a User Defined Scalar Function
in Java could have the following directory structure after it has been compiled:

com/vertica/sdk/BuildInfo.class
com/mycompany/example/Add2intsFactory.class
com/mycompany/example/Add2intsFactory$Add2ints.class

To create a JAR file from the command line:

1. Change to the root directory of your project.

2. Use the jar command to package the BuildInfo.class file and all of the classes in your UDF:

jar -cvf libname.jar com/vertica/sdk/BuildInfo.class \
packagePath/*.class

where libname is the filename you have chosen for your JAR file (choose whatever name you
like), and packagePath is the path to the directory containing your UDF's class files.

For example, to package the files from the Add2ints example, you use the command:

jar -cvf Add2intsLib.jar com/vertica/sdk/BuildInfo.class \
com/mycompany/example/*.class

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 618 of 817

Note: Youmust include all of the class files that make up your UDF in your JAR file. Your
UDF always consists of at least two classes (the factory class and the function class).
Even if you defined your function class as an inner class of your factory class, Java
generates a separate class file for the inner class.

Once you have packaged your UDF into a JAR file, you are ready to deploy it to your HP Vertica
database. See Deploying and Using Your Java UDSF and Deploying and Using Your Java UDTF
for details.

Handling Dependencies

There are several methods you can use to handle any JARs that your UDF relies on:

l Install the JAR files on each host in your database and add the directory containing them to the
host's CLASSPATH environment variable. This method has several drawbacks, since you need
to remember to copy the JARs over to any newly-deployed nodes and you need to ensure that
the same version of the library is installed on each node.

l Bundle the JARs into your UDF JAR file using a tool such as One-JAR or Eclipse's Runnable
JAR Export Wizard to package dependencies into the JAR file.

l Try unpacking the JAR file and repacking its contents in your UDF's JAR file.

Handling Errors
If your UDF encounters an unrecoverable error, it should instantiate and throw a UdfException.
The exception causes the transaction containing the function call to be rolled back.

The UdfException constructor takes a numeric code (which can be anything you want since it is
just reported in the error message) and an error message string. If you want to report additional
diagnostic information about the error, you can write messages to a log file before throwing the
exception (seeWritingMessages to the Log File).

The following code fragment demonstrates adding error checking to the Add2ints UDSF example
(shown in Complete Java UDSF Example). If either of the arguments are NULL, the processBlock
method throws an exception.

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

throws UdfException, DestroyInvocation
{

do {
// Test for NULL value. Throw exception if one occurs.
if (argReader.isLongNull(0) || argReader.isLongNull(1)) {

// No nulls allowed. Throw exception
throw new UdfException(1234, "Cannot add a NULL value");

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 619 of 817

http://one-jar.sourceforge.net/

}

Note: This example isn't realistic, since you would likely just replace the NULL value with a
zero or return a NULL value. Your UDF should only throw an exception if there is no way to
compensate for the error.

When your UDF throws an exception, the side process running your UDF reports the error back to
HP Vertica and exits. HP Vertica displays the error message contained in the exception and a
stack trace to the user:

=> SELECT add2ints(2, NULL);
ERROR 3399: Failure in UDx RPC call InvokeProcessBlock(): Error in User Defined Object [
add2ints], error code: 1234
com.vertica.sdk.UdfException: Cannot add a NULL value

at com.mycompany.example.Add2intsFactory$Add2ints.processBlock(Add2intsFactory.ja
va:37)

at com.vertica.udxfence.UDxExecContext.processBlock(UDxExecContext.java:700)
at com.vertica.udxfence.UDxExecContext.run(UDxExecContext.java:173)
at java.lang.Thread.run(Thread.java:662)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 620 of 817

Handling Cancel Requests
The query that calls your UDF can be canceled (usually, by the user pressing CTRL+C in vsql).
When the calling query is canceled, HP Vertica begins a process of shutting down your UDF. Since
UDTFs can perform lengthy and costly processing, the HP Vertica Java SDK defines several ways
that HP Vertica attempts to signal UDTFs to terminate before it takes the step of killing the fenced-
mode JVM process that is executing the UDTF. These attempts to signal the UDTF can help
reduce the amount of CPU andmemory that is wasted by having the UDF process continue
processing after its results are no longer required.

When the user cancels a UDF, HP Vertica takes the following steps:

1. It sets the isCanceled property on UDTFs to true. Your processPartitionmethods can test
this property to see if the function call has been canceled.

2. It calls UDTF's TransformFunction.cancelmethod. You should override this method to
perform any shutdown tasks (such as killing threads).

3. It calls all types of UDF's destroymethod. You should implement this method to free any
resources your UDF has allocated.

4. It kills the JVM process running your UDF.

The topics in this section explain how your UDTF can use the cancel API.

Exiting When the Calling Query Has Been Canceled

Since User Defined Transform Functions (UDTFs) often perform lengthy and CPU-intensive
processing, it makes sense for them to terminate if the query that called them has been canceled.
Exiting when the query has been canceled helps prevent wasting CPU cycles andmemory on
continued processing.

The TransformFunction class has a getter named .isCanceled that returns true if the calling
query has been canceled. Your processPartitionmethod can periodically check the value of this
getter to determine if the query has been canceled, and exit if it has.

How often your processPartition function calls isCanceled depends on how much processing it
performs on each row of data. Calling isCanceled does add overhead to your function, so you
shouldn't call it too often. For transforms that do not perform lengthy processing, you could check
for cancelation every 100 or 1000 rows. If your processPartition performs extensive processing
for each row, youmay want to check isCanceled every 10 or so rows.

The following code fragment shows how you could have the StringTokenizerUDTF example
check whether its query has been canceled:

public class CancelableTokenizeString extends TransformFunction
{

@Override
public void processPartition(ServerInterface srvInterface,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 621 of 817

PartitionReader inputReader,
PartitionWriter outputWriter)

throws UdfException, DestroyInvocation
{

// Loop over all rows passed in in this partition.

int rowcount = 0; // maintain count of rows processed
do {

rowcount++; // Processing new row

// Check for cancelation every 100 rows
if (rowcount % 100 == 0) {

// Check to see if Vertica marked this class as canceled
if (this.isCanceled()) {

srvInterface.log("Got canceled! Exiting...");
return;

}
}
// Rest of the function here
. . .

This example checks for cancelation after processing 100 rows in the partition of data. If the query
has been canceled, the example logs amessage, then returns to the caller to exit the function.

Note: You need to strike a balance between adding overhead to your functions by calling
isCanceled and having your functions waste CPU time by running after their query has been
canceled (a rare event). For functions such as StringTokenizerwhich have a low overall
processing cost, it usually does not make sense to test for cancelation. The cost of adding
overhead to all function calls outweigh the amount of resources wasted by having the function
run to completion or having its JVM process killed by HP Vertica on the rare occasions that its
query is canceled.

Overriding the Cancel Method

Your User Defined Transform Function (UDTF) can override the TransformFunction.cancel
method that HP Vertica calls if the query that called the function has been canceled. You should
override this method to perform an orderly shutdown of any additional processing that your UDF
spawned. For example, you can have your cancelmethod shut down threads that your UDTF has
spawned or signal a third-party library that it needs to stop processing and exit. Your cancel
methodmust leave your UDTF's function class ready to be destroyed, since HP Vertica calls the
UDF's destroymethod after the cancelmethod has exited.

Notes

l If your UDTF does not override cancel, HP Vertica assumes your UDTF does not need to
perform any special cancel processing and calls the function class's destroymethod to have it
free any resources.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 622 of 817

l Your cancelmethod is called from a different thread than the thread running your UDF's
processPartition function.

l The call to the cancelmethod is not synchronized in any way with your UDTF's
processPartitionmethod. If you need your processPartition function to exit before your
cancelmethod performs some action (killing threads, for example) you need to have the two
methods synchronize their actions.

l If your cancelmethod runs for too long, HP Vertica kills the JVM side process your UDF.

Communicating with HP Vertica Using ServerInterface
Every method in the HP Vertica SDK that you override to create your UDF receives an instance of
the ServerInterface class object. This class is used to query information from and pass
information back to the HP Vertica server.

There are twomethods in this class that you can use in your UDFs:

l logwrites amessage to a log file stored in the UDxLogs directory of the database's catalog
directory. SeeWritingMessages to the Log File for more information.

l getLocale gets the current session's locale.

Writing Messages to the Log File
Writingmessages to a log is useful when you are debugging your Java UDFs, or you want to output
additional information about an error condition. Your UDFs write messages to a log file by calling
the ServerInterface.logmethod, passing it a printf-style String value along with any variables
referenced in the string (see the java.util.Formatter class documentation for details of formatting
this string value). An instance of the ServerInterface class is passed to every method you can
override in the Java SDK (see Communicating with HP Vertica Using ServerInterface for more
information).

The following code fragment demonstrates how you could log the values passed into the Add2ints
UDSF example (see Complete Java UDSF Example for the full code).

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

throws UdfException, DestroyInvocation
{

do {
// Get the two integer arguments from the BlockReader
long a = argReader.getLong(0);
long b = argReader.getLong(1);
// Log the input values
srvInterface.log("Got values a=%d and b=%d", a, b);

Themessages are written to a log file stored in the catalog directory's UDxlog subdirectory named
UDxFencedProcessesJava.log:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 623 of 817

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html java.uti.Formatter documentation

$ tail VMart/v_vmart_node0001_catalog/UDxLogs/UDxFencedProcesses.log
2012-12-12 10:23:47.649 [Java-2164] 0x01 UDx side process (Java) started
2012-12-12 10:23:47.871 [Java-2164] 0x0b [UserMessage] add2ints - Got
values a=5 and b=6
2012-12-12 10:23:48.598 [Java-2164] 0x0c Exiting UDx side process

The SQL name of the UDF is added to the logmessage, along with the string [UserMessage] to
mark the entry as amessage added by a call to the logmethod. These additions make it easier for
you to filter the log to find themessages generated by your UDF.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 624 of 817

Accepting Different Numbers and Types of Arguments
Usually, your UDFs accept a set number of arguments that are a specific data type (called its
signature). You can create UDFs that handlemultiple signatures, or even accept all arguments
supplied to them by the user, using either of these techniques:

l Overloading your UDF by assigning the same SQL function name tomultiple factory classes,
each of which defines a unique function signature. When a user uses the function name in a
query, HP Vertica tries tomatch the signature of the function call to the signatures declared by
the factory's getPrototypemethod. This is the best technique to use if your UDF needs to
accept a few different signatures (for example, accepting two required and one optional
argument).

l Creating a polymorphic UDF by using the special "Any" argument type that tells Vertica to send
all arguments that the user supplies to your function. Your UDF decides whether it can handle
the arguments or not.

The following topics explain each of these techniques.

Overloading Your Java UDFs

Youmay want your UDF to accept several different signatures (sets of arguments). For example,
youmight want your UDF to accept:

l One ormore optional arguments.

l One ormore argument that can be one of several data types.

l Completely distinct signatures (either all INTEGER or all VARCHAR, for example).

You can create a function with this behavior by creating several factory classes each of which
accept a different signature (the number and data types of arguments), and associate a single SQL
function namewith all of them. You can use the same SQL function name to refer to multiple factory
classes as long as the signature defined by each factory is unique. When a user calls your UDF,
HP Verticamatches the number and types of arguments supplied by the user to the arguments
accepted by each of your function's factory classes. If onematches, HP Vertica uses it to
instantiate a function class to process the data.

Multiple factory classes can instantiate the same function class, so you can re-use one function
class that is able to process multiple sets of arguments and then create factory classes for each of
the function signatures. You can also createmultiple function classes if you want.

The following example code demonstrates creating a User Defined Scalar Function (UDSF) that
adds two or three integers together. The Add2or3ints class is prepared to handle two or three
arguments. It checks the number of arguments that have been passed to it, and adds all two or
three of them together. The processBlockmethod checks whether it has been called with less than
2 or more than 3 arguments. In theory, this should never happen, since HP Vertica only calls the
UDSF if the user's function call matches a signature on one of the factory classes you create for
your function. In practice, it is a good idea to perform this sanity checking, in case your (or someone

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 625 of 817

else's) factory class reports that your function class accepts a set of arguments that it actually
does not.

// You need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.multiparamexample;
// Import the entire Vertica SDK
import com.vertica.sdk.*;
// This ScalarFunction accepts two or three integer arguments. It tests
// the number of input columns to determine whether to read two or three
// arguments as input.
public class Add2or3ints extends ScalarFunction
{

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

throws UdfException, DestroyInvocation
{

// See how many arguments were passed in
int numCols = argReader.getNumCols();

// Return an error if less than two or more than 3 aerguments
// were given. This error only occurs if a Factory class that
// accepts the wrong number of arguments instantiates this
// class.
if (numCols < 2 || numCols > 3) {

throw new UdfException(0,
"Must supply 2 or 3 integer arguments");

}

// Process all of the rows of input.
do {

// Get the first two integer arguments from the BlockReader
long a = argReader.getLong(0);
long b = argReader.getLong(1);

// Assume no third argument.
long c = 0;

// Get third argument value if it exists
if (numCols == 3) {

c = argReader.getLong(2);
}

// Process the arguments and come up with a result. For this
// example, just add the three arguments together.
long result = a+b+c;

// Write the integer output value.
resWriter.setLong(result);

// Advance the output BlocKWriter to the next row.
resWriter.next();

// Continue processing input rows until there are no more.
} while (argReader.next());

}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 626 of 817

}

Themain difference between the Add2ints class and the Add2or3ints class is the inclusion of a
section that gets the number of arguments by calling BlockReader.getNumCols. This class also
tests the number of columns it received from HP Vertica to ensure it is in the range it is prepared to
handle. This test will only fail if you create a ScalarFunctionFactorywhose getPrototype
method defines a signature that accepts less than two or more than three arguments. This is not
really necessary in this simple example, but for amore complicated class it is a good idea to test
the number of columns and data types that HP Vertica passed your function class.

Within the do loop, Add2or3ints uses a default value of zero if HP Vertica sent it two input
columns. Otherwise, it retrieves the third value and adds that to the other two. Your own class
needs to use default values for missing input columns or alter its processing in some other way to
handle the variable columns.

Youmust define your function class in its own source file, rather than as an inner class of one of
your factory classes since Java does not allow the instantiation of an inner class from outside its
containing class. You factory class has to be available for instantiation by multiple factory classes.

Once you have created a function class or classes, you create a factory class for each signature
you want your function class to handle. These factory classes can call individual function classes,
or they can all call the same class that is prepared to accept multiple sets of arguments.

The following example ScalarFunctionFactory class is almost identical to the Add2intsFactory
example explained in Defining the Arguments and Return Type for Your UDSF. The only difference
is that its createScalarFunctionmethod instantiates amember of the Add2or3ints class, rather
than amember of Add2ints.

// You will need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.multiparamexample;
// Import the entire Vertica SDK
import com.vertica.sdk.*;
public class Add2intsFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
// Accept two integers as input
argTypes.addInt();
argTypes.addInt();
// writes one integer as output
returnType.addInt();

}
@Override

public ScalarFunction createScalarFunction(ServerInterface srvInterface)
{

// Instantiate the class that can handle either 2 or 3 integers.
return new Add2or3ints();

}
}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 627 of 817

The following ScalarFunctionFactory subclass accepts three integers as input. It, too,
instantiates amember of the Add2or3ints class to process the function call:

// You will need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.multiparamexample;
// Import the entire Vertica SDK
import com.vertica.sdk.*;
public class Add3intsFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
// Accepts three integers as input
argTypes.addInt();
argTypes.addInt();
argTypes.addInt();
// Returns a single integer
returnType.addInt();

}
@Override

public ScalarFunction createScalarFunction(ServerInterface srvInterface)
{

// Instantiates the Add2or3ints ScalarFunction class, which is able to
// handle eitehr 2 or 3 integers as arguments.
return new Add2or3ints();

}
}

The factory classes and the function class or classes they call must be packaged into the same
JAR file (see Compiling and Packaging a Java UDF for details). If a host in the database cluster
has the JDK installed on it, you could use the following commands to compile and package the
example:

$ cd pathToJavaProject$ javac -classpath /opt/vertica/bin/VerticaSDK.jar \
> com/mycompany/multiparamexample/*.java
$ jar -cvf Add2or3intslib.jar com/vertica/sdk/BuildInfo.class \
> com/mycompany/multiparamexample/*.class
added manifest
adding: com/vertica/sdk/BuildInfo.class(in = 1202) (out= 689)(deflated 42%)
adding: com/mycompany/multiparamexample/Add2intsFactory.class(in = 677) (out= 366)(deflat
ed 45%)
adding: com/mycompany/multiparamexample/Add2or3ints.class(in = 919) (out= 601)(deflated 3
4%)
adding: com/mycompany/multiparamexample/Add3intsFactory.class(in = 685) (out= 369)(deflat
ed 46%)

Once you have packaged your overloaded UDF, you deploy it the sameway as you do a regular
UDF (see Deploying and Using Your Java UDSF and Deploying and Using Your Java UDTF),
except you usemultiple CREATE FUNCTION statements to define the function, once for each
factory class.

=> CREATE LIBRARY add2or3intslib as '/home/dbadmin/Add2or3intslib.jar'

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 628 of 817

-> language 'Java';
CREATE LIBRARY
=> CREATE FUNCTION add2or3ints as LANGUAGE 'Java' NAME 'com.mycompany.multiparamexample.A
dd2intsFactory' LIBRARY add2or3intslib;
CREATE FUNCTION
=> CREATE FUNCTION add2or3ints as LANGUAGE 'Java' NAME 'com.mycompany.multiparamexample.A
dd3intsFactory' LIBRARY add2or3intslib;
CREATE FUNCTION

You call the overloaded function the sameway you call any other function.

=> SELECT add2or3ints(2,3);
add2or3ints

5

(1 row)
=> SELECT add2or3ints(2,3,4);
add2or3ints

9

(1 row)
=> SELECT add2or3ints(2,3,4,5);
ERROR 3457: Function add2or3ints(int, int, int, int) does not exist, or permission is de
nied for add2or3ints(int, int, int, int)
HINT: No function matches the given name and argument types. You may need to add explici
t type casts

The last error was generated by HP Vertica, not the UDF code. It returns an error if it cannot find a
factory class whose signaturematches the function call's signature.

Creating an overloaded UDF is useful if you want your function to accept a limited set of potential
arguments. If you want to create amore flexible function, you can create a polymorphic function
(see Creating a Polymorphic Java UDF).

Creating a Polymorphic Java UDF

Polymorphic UDFs accept any number and type of argument that the user supplies. HP Vertica
does not check the number or types of argument that the user passes to the UDF—it just passes
the UDF all of the arguments supplied by the user. It is up to your polymorphic UDF's main
processingmethod (for example, processBlock in User Defined Scalar Functions) to examine the
number and types of arguments it received and determine if it can handle them.

Note: User Defined Transform Functions (UDTFs) can have an unlimited number of
arguments. All other UDFs except UDTFs are limited to amaximum number of 32 arguments.

Polymorphic UDFs aremore flexible than usingmultiple factory classes for your function (see
Overloading Your Java UDFs), since you function can determine at run time if it can process the
arguments rather than accepting specific sets of arguments. However, your polymorphic function
needs to perform more work to determine whether it can process the arguments that it has been
given.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 629 of 817

Your polymorphic UDF declares it accepts any number of arguments in its factory's getPrototype
method by calling the addAnymethod on the ColumnTypes object that defines its input arguments.
This "any argument" argument type is the only one that your function can declare. You cannot
define required arguments and then call addAny to declare the rest of the signature as optional. If
your function has requirements for the arguments it accepts, its process methodmust enforce
them.

The following example shows an implementation of a ScalarFunctionFactory class with an inner
ScalarFunction class that adds together two or more integers.

// You will need to specify the full package when creating functions based on
// the classes in your library.
package com.mycompany.multiparamexample;
// Import the entire Vertica SDK
import com.vertica.sdk.*;
// Factory class to create polymorphic UDSF that adds all of the integer
// arguments it recieves and returns a sum.
public class AddManyIntsFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
// Accepts any number and type or arguments. The ScalarFunction
// class handles parsing the arguments.
argTypes.addAny();
// writes one integer as output
returnType.addInt();

}
// This polymorphic ScalarFunction adds all of the integer arguments passed
// to it. Returns an error if there are less than two arguments, or if one
// argument is not an integer.
public class AddManyInts extends ScalarFunction
{

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader argReader,
BlockWriter resWriter)

throws UdfException, DestroyInvocation
{

// See how many arguments were passed in
int numCols = argReader.getNumCols();

// Return an error if less than two arguments were given.
if (numCols < 2) {

throw new UdfException(0,
"Must supply at least 2 integer arguments");

}

// Make sure all input columns are integer.
SizedColumnTypes inTypes = argReader.getTypeMetaData();
for (int param = 0; param < numCols; param++) {

VerticaType paramType = inTypes.getColumnType(param);
if (!paramType.isInt()) {

throw new UdfException(0, "Error: Argument " + (param+1) +
" was not an integer. All arguments must be integer.");

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 630 of 817

}
}

// Process all of the rows of input.
do {

long total = 0; // Hold the running total of arguments

// Get all of the arguments and add them up
for (int x = 0; x < numCols; x++) {

total += argReader.getLong(x);
}

// Write the integer output value.
resWriter.setLong(total);

// Advance the output BlocKWriter to the next row.
resWriter.next();

// Continue processing input rows until there are no more.
} while (argReader.next());

}
}

@Override
public ScalarFunction createScalarFunction(ServerInterface srvInterface)

{
// Instantiate the polymorphic UDF class.
return new AddManyInts();

}
}

The ScalarFunctionFactory.getPrototypemethod calls the addAnymethod to declare that the
UDSF is polymorphic.

Most of the work in the example is done by the ScalarFunction.processBlockmethod. It
performs two checks on the arguments that have been passed in through the BlockReader object:

l There are at least two arguments.

l The data type of all arguments are integers.

It is up to your polymorphic UDF to determine that all of the input passed to it is valid.

Once the processBlock validates its arguments, it loops over the them, adding them together.

You assign a SQL name to your polymorphic UDF using the same statement you use to assign one
to a non-polymorphic UDF. The following demonstration shows how you load and call the
polymorphic function from the example.

=> CREATE LIBRARY addmanyintslib AS '/home/dbadmin/AddManyIntsLib.jar'
-> LANGUAGE 'Java';
CREATE LIBRARY
=> CREATE FUNCTION addmanyints AS LANGUAGE 'Java' NAME
-> 'com.mycompany.multiparamexample.AddManyIntsFactory' LIBRARY addmanyintslib;
CREATE FUNCTION

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 631 of 817

=> SELECT addmanyints(1,2,3,4,5,6,7,8,9,10);
addmanyints

55

(1 row)
=> SELECT addmanyints(1); --Too few parameters
ERROR 3399: Failure in UDx RPC call InvokeProcessBlock(): Error in User
Defined Object [addmanyints], error code: 0
com.vertica.sdk.UdfException: Must supply at least 2 integer arguments

at
com.mycompany.multiparamexample.AddManyIntsFactory$AddManyInts.processBlock
(AddManyIntsFactory.java:39)

at com.vertica.udxfence.UDxExecContext.processBlock(UDxExecContext.java:700)
at com.vertica.udxfence.UDxExecContext.run(UDxExecContext.java:173)
at java.lang.Thread.run(Thread.java:662)

=> SELECT addmanyints(1,2,3.14159); --Non-integer parameter
ERROR 3399: Failure in UDx RPC call InvokeProcessBlock(): Error in User
Defined Object [addmanyints], error code: 0
com.vertica.sdk.UdfException: Error: Argument 3 was not an integer. All
arguments must be integer.

at
com.mycompany.multiparamexample.AddManyIntsFactory$AddManyInts.processBlock(AddManyIntsFa
ctory.java:48)

at com.vertica.udxfence.UDxExecContext.processBlock(UDxExecContext.java:700)
at com.vertica.udxfence.UDxExecContext.run(UDxExecContext.java:173)
at java.lang.Thread.run(Thread.java:662)

Polymorphic UDFs and Schema Search Paths

If a user does not supply a schema name as part of a function call, HP Vertica searches each
schema in the schema search path for a function whose name and signaturematch the function
call. See Setting Schema Search Paths in the Administrator's Guide for more information about
schema search paths.

Since polymorphic functions do not have a specific signature associated with them, HP Vertica
initially skips them when searching for a function to handle the function call. If none of the
schemas in the search path contain a function whose name and signaturematch the function call,
HP Vertica searches the schema search path again for a polymorphic function whose name
matches the function name in the function call.

This behavior gives precedence to functions whose signature exactly matches the function call. It
allows you to create a "catch all" polymorphic function that is called only if none of the non-
polymorphic functions with the same name havematching signatures.

This behavior may cause confusion if your users expect the the first polymorphic function in the
schema search path to handle a function call. To avoid confusion, you should:

n Avoid using the same name for different functions. You should always uniquely name functions
unless you intend to create an overloaded function with multiple signatures.

n When you cannot avoid having functions with the same name in different schemas, always
supply the schema name as part of the function call. Using the schema name prevents
ambiguity and ensures that HP Vertica uses the correct function to process your function calls.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 632 of 817

UDF Parameters
Parameters let you define arguments for your UDFs that remain constant across all of the rows
processed by the SQL statement that calls you UDF. Typically, your UDFs accept arguments that
come from columns in a SQL statement. For example, in the following SQL statement, the
arguments a and b to the add2ints UDSF change value for each row processed by the SELECT
statement:

=> SELECT a, b, add2ints(a,b) AS 'sum' FROM example;
a | b | sum

---+----+-----
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

Parameters remain constant for all the rows your UDF processes. You can alsomake parameters
optional so that if the user does not supply it, your UDF uses a default value. For example, the
following example demonstrates calling a UDSF named add2intsWithConstant that has a single
parameter value named constant whose value is added to each the arguments supplied in each row
of input:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS constant=42)
-> AS 'a+b+42' from example;
a | b | a+b+42

---+----+--------
1 | 2 | 45
3 | 4 | 49
5 | 6 | 53
7 | 8 | 57
9 | 10 | 61

(5 rows)

Note:When calling a UDF with parameters, there is no comma between the last argument and
the USINGPARAMETERS clause.

The topics in this section explain how develop UDFs that accept parameters.

Defining the Parameters Your Java UDF Accepts

You define the parameters that your UDF accepts in its factory class (ScalarFunctionFactory,
TransformFunctionFactory, etc.) by implementing the getParameterTypemethod. This method
is similar to the getReturnTypemethod: you call data-type-specific methods on a
SizedColumnTypes object that is passed in as an argument. Each of thesemethod calls sets the
name, data type, and width or precision (if the data type requires it) of the parameter.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 633 of 817

The following code fragment demonstrates adding a single parameter to the add2ints UDSF
example (see Developing a User Defined Scalar Function in Java). The getParameterTypemethod
defines a single integer parameter that is named constant.

package com.mycompany.example;
import com.vertica.sdk.*;
public class Add2intsWithConstantFactory extends ScalarFunctionFactory
{

@Override
public void getPrototype(ServerInterface srvInterface,

ColumnTypes argTypes,
ColumnTypes returnType)

{
argTypes.addInt();
argTypes.addInt();
returnType.addInt();

}

@Override
public void getReturnType(ServerInterface srvInterface,

SizedColumnTypes argTypes,
SizedColumnTypes returnType)

{
returnType.addInt("sum");

}

// Defines the parameters for this UDSF. Works similarly to defining
// arguments and return types.
public void getParameterType(ServerInterface srvInterface,

SizedColumnTypes parameterTypes)
{

// One INTEGER parameter named constant
parameterTypes.addInt("constant");

}

@Override
public ScalarFunction createScalarFunction(ServerInterface srvInterface)
{

return new Add2intsWithConstant();
}

}

See the HP Vertica Java SDK entry for SizedColumnTypes for a full list of the data-type-specific
methods you can call to define parameters.

Accessing Parameter Values

Your UDF uses the parameter values it declared in its factory class (see Defining the Parameters
Your Java UDF Accepts) in its function class's process method (for example, processBlock or
processPartition). It reads parameter values from a ParamReader object, which is available from
the ServerInterface object that is passed to your process method. Reading parameters from this
object is similar to reading argument values from BlockReader or PartitionReader objects: you
call a data-type-specific method with the name of the parameter whose value you want to read. For
example:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 634 of 817

// Get the parameter reader from the ServerInterface to see if
// there are supplied parameters
ParamReader paramReader = srvInterface.getParamReader();
// Get the value of an integer parameter named constant
long constant = paramReader.getLong("constant");

Note: String data values do not have any of their escape characters processed before they are
passed to your function. Therefore, your functionmay need to process the escape sequences
itself if it needs to operate on unescaped character values.

Testing Whether the User Supplied Parameter Values

Unlike arguments, HP Vertica does not immediately return an error if a user's UDF function call
does not include a value for a parameter defined by your UDF's factory class. This means that your
function can attempt to read a parameter value that the user did not supply. If it does so, HP Vertica
returns a non-existent parameter error to the user, and the query containing the function call is
canceled. This behavior is fine if you want a parameter to be required by your UDF—just attempt to
access its value. If the user didn't supply a value, HP Vertica reports the resulting error about a
missing parameter to the user.

If you want your parameter to be optional, you can test whether the user supplied a value for the
parameter before attempting to access its value. Your function determines if a value exists for a
particular parameter by calling the ParamReader.containsParametermethod with the parameter's
name. If this function returns true, your function can safely retrieve the value. If this function returns
false, your UDF can use a default value or change its processing in some other way to compensate
for not having the parameter value. As long as your UDF does not try to access the non-existent
parameter value, HP Vertica does not generate an error or warning about missing parameters.

Note: If the user passes your UDF a parameter that it has not defined, HP Vertica issues a
warning that the parameter is not used. It still executes the SQL statement, ignoring the
parameter.

The following code fragment demonstrates using the parameter value that was defined in the
example shown in Defining the Parameters Your Java UDF Accepts . The Add2intsWithConstant
class defines a UDF that adds two integer values. If the user supplies it, the function also adds the
value of the optional integer parameter named constant.

// Actual function class, declared here as a subclass of the factory to
// keep things simple.
public class Add2intsWithConstant extends ScalarFunction
{

@Override
public void processBlock(ServerInterface srvInterface,

BlockReader arg_reader,
BlockWriter res_writer)

throws UdfException,DestroyInvocation
{

long constant = 0;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 635 of 817

// Get the parameter reader from the ServerInterface to see if
// there are supplied parameters
ParamReader paramReader = srvInterface.getParamReader();
// See if the user supplied the constant parameter
if (paramReader.containsParameter("constant"))

// There is a parameter, so get its value.
constant = paramReader.getLong("constant");

do {
long a = arg_reader.getLong(0);
long b = arg_reader.getLong(1);
// srvInterface.log("a = %d, b = %d", a, b);
res_writer.setLong(a+b+constant);
// srvInterface.log("writing result = %d", a+b);
res_writer.next();

} while (arg_reader.next());
}

}

Using Parameters in the Factory Class

In addition to using parameters in your UDF function class, you can also access the parameters in
the factory class. Youmay want to access the parameters to let the user control the input or output
values of your function in someway. For example, your UDF can have a parameter that lets the
user choose to have your UDF return a single or double-precision value. The process of accessing
parameters in the factory class is the same as accessing it in the function class: get a
ParamReader object from the ServerInterface.getParamReader function, them read the
parameter values.

Calling UDFs with Parameters

You pass parameters to a UDF by adding a USINGPARAMETERS clause in the function call after
the last argument. There is no comma between the last argument and the USINGPARAMETERS
clause. After the USINGPARAMETERS clause you add one or more parameter definitions which
contains the parameter name, followed by an equal sign, then the parameter's value. Multiple
parameter definitions are separated by commas.

Note: Parameter values can be a constant expression (for example 1234 + SQRT(5678)). You
cannot use volatile functions (such as RANDOM) in the expression, since they do not return a
constant value. If you do supply a volatile expression as a parameter value, HP Vertica returns
an incorrect parameter type warning, and tries to run the UDF without the parameter value. If
the UDF requires the parameter, it returns its own error which cancels the query.

The following example demonstrates calling the add2intsWithConstant UDSF example from
Defining the Parameters Your UDF Accepts andGetting Parameter Values in UDFs:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS constant=42)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 636 of 817

-> AS 'a+b+42' from example;
a | b | a+b+42

---+----+--------
1 | 2 | 45
3 | 4 | 49
5 | 6 | 53
7 | 8 | 57
9 | 10 | 61

(5 rows)

Multiple parameters are separated by commas. The following example calls a version of the
tokenize UDTF that has parameters to limit the shortest allowed word and force the words to be
output in uppercase.

=> SELECT url, tokenize(description USING PARAMETERS
-> minLength=4, uppercase=true) OVER (partition by url) FROM T;

url | words
-----------------+-----------
www.amazon.com | ONLINE
www.amazon.com | RETAIL
www.amazon.com | MERCHANT
www.amazon.com | PROVIDER
www.amazon.com | CLOUD
www.amazon.com | SERVICES
www.hp.com | LEADING
www.hp.com | PROVIDER
www.hp.com | COMPUTER
www.hp.com | HARDWARE
www.hp.com | IMAGING
www.hp.com | SOLUTIONS
www.vertica.com | WORLD'S
www.vertica.com | FASTEST
www.vertica.com | ANALYTIC
www.vertica.com | DATABASE

(16 rows)

The add2intsWithConstant UDSF's constant parameter is optional; calling it without the parameter
does not return an error or warning:

=> SELECT a,b,add2intsWithConstant(a, b) AS 'sum' FROM example;
a | b | sum

---+----+-----
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

Calling a UDF with incorrect parameters does generate a warning, but the query still runs:

=> SELECT a, b, add2intsWithConstant(a, b USING PARAMETERS wrongparam=42)
-> AS 'result' from example;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 637 of 817

WARNING 4332: Parameter wrongparam was not registered by the function and cannot
be coerced to a definite data type
a | b | result

---+----+--------
1 | 2 | 3
3 | 4 | 7
5 | 6 | 11
7 | 8 | 15
9 | 10 | 19

(5 rows)

Adding Metadata to Java UDx Libraries
You can addmetadata, such as author name, the version of the library, a description of your library,
and so on to your library. This metadata lets you track the version of your function that is deployed
on an Vertica Analytics Platform cluster and lets third-party users of your function know who
created the function. Your library's metadata appears in the USER_LIBRARIES system table after
your library has been loaded into the Vertica Analytics Platform catalog.

To addmetadata to your Java UDx library, you create a subclass of the UDXLibrary class that
contains your library's metadata. You then include this class within your JAR file. When you load
your class into the Vertica Analytics Platform catalog using the CREATE LIBRARY statement,
looks for a subclass of UDXLibrary for the library's metadata.

In your subclass of UDXLibrary, you need to implement eight getters that return String values
containing the library's metadata. The getters in this class are:

l getAuthor() returns the name you want associated with the creation of the library (your own
name or your company's name for example).

l getLibraryBuildTag() returns whatever String you want to use to represent the specific build
of the library (for example, the SVN revision number or a timestamp of when the library was
compiled). This is useful for tracking instances of your library as you are developing them.

l getLibraryVersion() returns the version of your library. You can use whatever numbering or
naming scheme you want.

l getLibrarySDKVersion() returns the version of the Vertica Analytics Platform SDK Library for
which you've compiled the library.

Note: This field isn't used to determine whether a library is compatible with a version of the
Vertica Analytics Platform server. The version of the Vertica Analytics Platform SDK you
use to compile your library is embedded in the library when you compile it. It is this
information that Vertica Analytics Platform server uses to determine if your library is
compatible with it.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 638 of 817

l getSourceUrl() returns a URL where users of your function can findmore information about it.
This can be your company's website, the GitHub page hosting your library's source code, or
whatever site you like.

l getDescription() returns a concise description of your library.

l getLicensesRequired() returns a placeholder for licensing information. In this release of
Vertica Analytics Platform, youmust leave this field as an empty string.

l getSignature() returns a placeholder for a signature that will authenticate your library. In this
release of Vertica Analytics Platform, youmust leave this field as an empty string.

For example, the following code demonstrates creating a UDXLibrary subclass to be included in the
Add2Ints UDSF example JAR file (see Complete Java UDSF Example).

// Import the UDXLibrary class to hold the metadata
import com.vertica.sdk.UDXLibrary;

public class Add2IntsLibrary extends UDXLibrary
{

// Return values for the metadata about this library.

@Override public String getAuthor() {return "Whizzo Analytics Ltd.";}
@Override public String getLibraryBuildTag() {return "1234";}
@Override public String getLibraryVersion() {return "1.0";}
@Override public String getLibrarySDKVersion() {return "7.0.0";}
@Override public String getSourceUrl() {

return "http://example.com/add2ints";
}
@Override public String getDescription() {

return "My Awesome Add 2 Ints Library";
}
@Override public String getLicensesRequired() {return "";}
@Override public String getSignature() {return "";}

}

When the library containing the Add2IntsLibrary class loaded, themetadata appears in the USER_
LIBRARIES system table:

=> CREATE LIBRARY JavaAdd2IntsLib AS :libfile LANGUAGE 'JAVA';
CREATE LIBRARY
>=> CREATE FUNCTION JavaAdd2Ints as LANGUAGE 'JAVA' name 'com.mycompany.example.Add2Ints
Factory' library JavaAdd2IntsLib;
CREATE FUNCTION
>=> \x
Expanded display is on.
>=> SELECT * FROM USER_LIBRARIES WHERE lib_name = 'JavaAdd2IntsLib';
-[RECORD 1]-----+---
schema_name | public
lib_name | JavaAdd2IntsLib
lib_oid | 45035996273869844
author | Whizzo Analytics Ltd.
owner_id | 45035996273704962

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 639 of 817

lib_file_name | public_JavaAdd2IntsLib_45035996273869844.jar
md5_sum | f3bfc76791daee95e4e2c0f8a8d2737f
sdk_version | v7.0.0-20131105
revision | 125200
lib_build_tag | 1234
lib_version | 1.0
lib_sdk_version | 7.0.0
source_url | http://example.com/add2ints
description | My Awesome Add 2 Ints Library
licenses_required |
signature |

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 640 of 817

Developing User Defined Load (UDL) Functions
The COPY statement is the primary way to load data into HP Vertica. This statement performs
several steps while loading data:

l It reads data from a file or input stream.

l It optionally filters or converts it in somemanner,such as decompressing the data using GZIP.

l It parses the data into tuples (for example, by breaking comma-separated data into individual
columns).

After the final step, COPY inserts the data into a table (or rejects it, if it is not in the correct format).

In some cases, youmay want to change how the COPY statement performs one or more of these
steps. The User Defined Load (UDL) feature lets you develop one or more functions that change
how the COPY statement operates. To align with the threemajor steps required to load data, you
can implement three types of UDLs:

l User Defined Source: Controls how the COPY statement obtains the data it loads into the
database. For example, by fetching it via HTTP or through cURL.

l User Defined Filter: Filters the data. For example, unzipping a file or converting UTF-16 to UTF-
8, or by doing both in sequence. You can chainmultiple User Defined Filters together to
transform data in several ways.

l User Defined Parser: Parses the data into tuples that are ready to be inserted into a table. For
example, extracting data from an XML-like format. You can optionally define a User Defined
Chunker (UDChunker), to have the parser perform parallel parsing.

UDL Requirements
User Defined Load Functions:

l Are written using the HP Vertica C++ or Jave SDK and compiled into a shared library.

l Can have up to one source process. This single process can obtain data frommultiple sources.

l Can have zero or more Filters.

l Can have up to one Parser.

Note: You can define a UDChunker for parsers written in C++, but UDL parsers written in Java
do not support the UDChunker.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 641 of 817

Deploying User Defined Load Functions
You use the CREATE LIBRARY statement to load your compiled UDL library into HP Vertica. For
each function, youmust use the appropriate CREATE statement to load the function into HP
Vertica. There is a CREATE statement for each type of UDL:

l CREATE SOURCE

l CREATE FILTER

l CREATE PARSER

Important: Installing an untrusted UDL function can compromise the security of the server.
UDx's can contain arbitrary code. In particular, UD Source functions can read data from any
arbitrary location. It is up to the developer of the function to enforce proper security limitations.
Superusers must not grant access to UDx's to untrusted users.

Conversely, you remove UDL libraries with DROP LIBRARY and remove UDL functions with the
following:

l DROP SOURCE

l DROP FILTER

l DROP PARSER

Note: You cannot ALTER UDL functions.

Developing UDLs in C++
C++ is one of the supported development languages for UDLs. See Setting up a C++ UDF
Development Environment for more information.

Requirements for C++ UDLs
C++ UDLs:

l Can run in FencedMode starting in version 7.0. Fencedmode is enabled by default when you
create the filter, parser, or source function in HP Vertica unless you explicitly state otherwise.
UDL code created before version 7.0 does not need to bemodified to work in fencedmode.

l Must not permit an exception to be passed back to HP Vertica. Doing so could lead to issues
such as memory leaks (caused by thememory allocated by the exception never being freed).
Your UDL should always contain a top-level try-catch block to catch any stray exceptions
caused by your code or libraries your code calls.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 642 of 817

l Must properly free any resources that the UDL function allocates. Even a single byte of
allocatedmemory that is not freed can become an issue in a UDL that is called over millions of
rows. Instead of allocatingmemory directly, your function should use thememory allocation
macros in the HP Vertica SDK. See Allocating Resources for UDFs for details.

The header files that define themajority of classes andmethods are VerticaUDx.h and
VerticaUDl.h. These header files, along with themain Vertica.h header file, are available in
/opt/vertica/sdk/include.

The SDK documentation is available in the SDK itself at /opt/vertica/sdk/doc and online: HP
Vertica SDK documentation.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 643 of 817

UDL Source

Developing Source Functions for User Defined Load

UDLSource functions allow you to process a source of data using amethod that is not built into HP
Vertica. For example, accessing the data from anHTTP source using cURL. Only a single User
Defined Source can be defined in a COPY statement, but that source function can pull data from
multiple sources.

A Source can optionally be used with UDFilters and a UDParser. The source can be obtained using
a UDSource function, passed through one or more UDFilters, and finally parsed by a UDParser
before being loaded.

Youmust implement a UDSource class and a SourceFactory class for sources.

The HP Vertica SDK provides example source functions in
/opt/vertica/sdk/examples/SourceFunctions.

Subclassing SourceFactory

About the Source Factory Class

The SourceFactory class performs initial validation and planning of the query and instantiates
objects to perform further initialization on each node once the query has been distributed.

SourceFactory Methods:

You implement the followingmethods in your SourceFactory class:

l plan() - The planmethod is used to check parameters, populate the plan data, and assign the
work to one or more nodes.

When developing your plan() method you should check the parameters that have been passed
from the function call and provide a helpful error message if the arguments do not conform, but it
is not required. You can also optionally populate the NodeSpecifyingPlanContext object with
any information that must be passed to the other nodes doing the work from the initiator node.
Finally, youmust specify which nodes the source(s) are obtained from. You can split up the
work so that one or multiple specific nodes load data, or specify that any node load the data.

l prepareUDSources() - This method directly instantiates all provided sources and returns a
vector of the sources.

l getParameterType() - The getParameterType() method allows you to define the name and types
of parameters that the function uses. HP Vertica uses this information to warn function callers
that certain parameters that they provide have no effect, or that certain parameters are not being
set and are reverting to default values. You should, as a best practice, define the types and
parameters for your function, but using this method is optional.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 644 of 817

The name of the factory class is the value used for the NAME modifier in the in the CREATE
SOURCE statement.

After creating your SourceFactory, youmust register it with RegisterFactory();

Example SourceFactory

The following example is provided is part of:
/opt/vertica/sdk/examples/SourceFunctions/cURL.cpp. It defines the factory function for the
curl source function.

class CurlSourceFactory : public SourceFactory {public:
virtual void plan(ServerInterface &srvInterface,

NodeSpecifyingPlanContext &planCtxt) {
std::vector<std::string> args = srvInterface.getParamReader().getParamNames();

/* Check parameters */
if (args.size() != 1 || find(args.begin(), args.end(), "url") == args.end()) {

vt_report_error(0, "You must provide a single URL.");
}
/* Populate planData */
planCtxt.getWriter().getStringRef("url").copy(

srvInterface.getParamReader().getStringRef("url"));

/* Assign Nodes */
std::vector<std::string> executionNodes = planCtxt.getClusterNodes();
while (executionNodes.size() > 1) executionNodes.pop_back();
// Only run on the first node in the list.
planCtxt.setTargetNodes(executionNodes);

}
virtual std::vector<UDSource*> prepareUDSources(ServerInterface &srvInterface,

NodeSpecifyingPlanContext &planCtxt) {
std::vector<UDSource*> retVal;
retVal.push_back(vt_createFuncObj(srvInterface.allocator, CurlSource,

planCtxt.getReader().getStringRef("url").str()));
return retVal;

}
virtual void getParameterType(ServerInterface &srvInterface,

SizedColumnTypes ¶meterTypes) {
parameterTypes.addVarchar(65000, "url");

}
};
RegisterFactory(CurlSourceFactory);

Subclassing UDSource

About the UDSource Class

The UDSource class is responsible for acquiring the data from an external source and producing
that data in a streamingmanner. A wrapper is also provided for UDSource called
ContinuousUDSource. ContinuousUDSource provides an abstraction that allows you to treat the
input data as a continuous stream of data. This allows you to write the data from the source "at will"
instead of having to create an iterator to use the base UDSourcemethod. ContinuousUDSource is
available in /opt/vertica/sdk/examples/HelperLibraries/ContinuousUDSource.h.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 645 of 817

UDSource Methods:

l setup() - Invoked before the first time that process() is called. Use this method to do things such
as open file handles.

l destroy() - Invoked after the last time that process() is called. Use this method to do things such
as close file handles.

l process() - Invoked repeatedly until it returns DONE or the query is canceled by the function
caller. On each invocation, process() acquires more data and writes the data to the DataBuffer
specified by 'output'.

Returns OUTPUT_NEEDED if this source has more data to produce or DONE if it has nomore
data to produce.

l getSize() - Returns the estimates number of bytes that process() will return. This value is an
estimate only and is used to indicate the file size in the LOAD_STREAMS table. getSize() can
be called before setup is called. See the SDK documentation for additional important details
about the getSize() method.

ContinuousUDSource Functions:

The ContinuousUDSource wrapper allows you to write and process the data "at will" instead of
having to iterate through the data. An example of using ContinuousUDSource is provided in
/opt/vertica/sdk/examples/SourceFunctions/MultiFileCurlSource.cpp.

l initialize() - Invoked before run(). You can optionally override this function to perform setup and
initialization.

l run() - Processes the data. Use write() on the ContinuousWriter to write the data from the
source.

l deinitialize() - Invoked after run() has returned. You can optionally override this function to
perform tear-down and destruction.

Functions that are already implemented that you use in your code:

l yield() - use to yield control back to the server during idle or busy loops so the server can check
for status changes or query cancelations.

l cw - A ContinuousWriter which is defined in
/opt/vertica/sdk/examples/HelperLibraries/CoroutineHelpers.h. Used to write the
data to the output data buffer.

Example UDSource

The following example loads the source with the url_freadmethod in the helper library available in
/opt/vertica/sdk/examples/HelperLibraries/. It allows you to use cURL to open and read in

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 646 of 817

a file over HTTP. The data is loaded in chunks. If EndOf File is received then the process() method
returns DONE, otherwise it returns OUTPUT_NEEDED and process() processes another chunk of
data. The functions included in the helper library (url_fread(), url_fopen, etc.) are based on
examples that comewith the libcurl library. For example, see
http://curl.haxx.se/libcurl/c/fopen.html.

For setup, the handle to the file is opened, again using a function from the help library.

For destroy, the handle to the file is closed using a function from the helper library.

class CurlSource : public UDSource {private:
URL_FILE *handle;
std::string url;
virtual StreamState process(ServerInterface &srvInterface, DataBuffer &output) {

output.offset = url_fread(output.buf, 1, output.size, handle);
return url_feof(handle) ? DONE : OUTPUT_NEEDED;

}
public:

CurlSource(std::string url) : url(url) {}
void setup(ServerInterface &srvInterface) {

handle = url_fopen(url.c_str(),"r");
}
void destroy(ServerInterface &srvInterface) {

url_fclose(handle);
}

};

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 647 of 817

http://curl.haxx.se/libcurl/c/fopen.html

UDL Filter

Developing Filter Functions for User Defined Load

UDL Filter functions allow you tomanipulate data obtained from a source in various ways. For
example, you could process a compressed file in a compression format not natively supported by
vertica, or take UTF-16 encoded data and transcode it to UTF-8 encoding, or even perform search
and replace operations on data before it is loaded into HP Vertica.

You can also pass data throughmultiple filters before it is loaded into HP Vertica. For instance, you
could unzip a file compressed with 7Zip, convert the content from UTF-16 to UTF-8, and finally
search and replace various text strings before loading the data.

Filters can optionally be used with UDSources and UDParsers. The source can be obtained using a
UDSource function, passed through one or more UDFilters, and finally parsed by a UDParser
before being loaded.

Youmust implement a UDFilter class and a FilterFactory class for your filter.

The HP Vertica SDK provides example filter functions in
/opt/vertica/sdk/examples/FilterFunctions.

Subclassing FilterFactory

About the Filter Factory Class:

The Filter Factory class performs initial validation and planning of the query and instantiates objects
to perform further initialization on each node once the query has been distributed.

FilterFactory Methods:

You implement the followingmethods in your FilterFactory class:

l plan() - Like the UDSource and UDParser plan() methods, the UDFilter plan() method is used to
check parameters and populate the plan data. However, you cannot specify the nodes on which
the work is done. HP Vertica automatically selects the best nodes to complete the work based
on available resources.

When developing your plan() method you should check the parameters that have been passed
from the function call and provide a helpful error message if the arguments do not conform, but it
is not required. You can also optionally populate the NodeSpecifyingPlanContext object with
any information that must be passed to the other nodes doing the work from the initiator node.
Finally, youmust specify which nodes the source(s) are obtained from. You can split up the
work so that one or multiple specific nodes load data, or specify that any node load the data.

l prepare() - This method is called on each node prior to Load operator execution. It creates the
function object using the vt_createFuncObj method.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 648 of 817

l getParameterType() - The getParameterType() method allows you to define the name and types
of parameters that the function uses. HP Vertica uses this information to warn function callers
that certain parameters that they provide have no effect, or that certain parameters are not being
set and are reverting to default values. You should, as a best practice, define the types and
parameters for your function, but using this method is optional.

The name of the factory class is the value used for the NAME modifier in the in the CREATE
FILTER statement.

After creating your FilterFactory, youmust register it with RegisterFactory();

Example FilterFactory

The following example is provided as part of
/opt/vertica/sdk/examples/SourceFunctions/Iconverter.cpp. It defines the factory class
for the IConverter filter function.

class IconverterFactory : public FilterFactory{
public:

virtual void plan(ServerInterface &srvInterface,
PlanContext &planCtxt) {

std::vector<std::string> args = srvInterface.getParamReader().getParamNames();
/* Check parameters */
if (!(args.size() == 0 ||

(args.size() == 1 && find(args.begin(), args.end(), "from_encoding")
!= args.end()) || (args.size() == 2
&& find(args.begin(), args.end(), "from_encoding") != args.end()
&& find(args.begin(), args.end(), "to_encoding") != args.end())))

{
vt_report_error(0, "Invalid arguments. Must specify either no arguments, or

"
"'from_encoding' alone, or 'from_encoding' and 'to_encodin

g'.");
}
/* Populate planData */
// By default, we do UTF16->UTF8, and x->UTF8
VString from_encoding = planCtxt.getWriter().getStringRef("from_encoding");
VString to_encoding = planCtxt.getWriter().getStringRef("to_encoding");
from_encoding.copy("UTF-16");
to_encoding.copy("UTF-8");
if (args.size() == 2)
{

from_encoding.copy(srvInterface.getParamReader().getStringRef("from_encodin
g"));

to_encoding.copy(srvInterface.getParamReader().getStringRef("to_encoding"));
}
else if (args.size() == 1)
{

from_encoding.copy(srvInterface.getParamReader().getStringRef("from_encodin
g"));

}
if (!from_encoding.length()) {

vt_report_error(0, "The empty string is not a valid from_encoding value");
}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 649 of 817

if (!to_encoding.length()) {
vt_report_error(0, "The empty string is not a valid to_encoding value");

}
}
virtual UDFilter* prepare(ServerInterface &srvInterface,

PlanContext &planCtxt) {
return vt_createFuncObj(srvInterface.allocator, Iconverter,

planCtxt.getReader().getStringRef("from_encoding").str(),
planCtxt.getReader().getStringRef("to_encoding").str());

}
virtual void getParameterType(ServerInterface &srvInterface,

SizedColumnTypes ¶meterTypes) {
parameterTypes.addVarchar(32, "from_encoding");
parameterTypes.addVarchar(32, "to_encoding");

}
};
RegisterFactory(IconverterFactory);

Subclassing UDFilter

About the UDFilter Class

The UDFilter class is responsible for reading raw input data from a source and preparing it to be
loaded into HP Vertica or processed by a parser. This preparationmay involve decompression, re-
encoding, or any other sort of binary manipulation. A wrapper is also provided for UDFilter called
ContinuousUDFilter. ContinuousUDFilter provides an abstraction that allows you to treat the input
data as a continuous stream of data. This allows you to write the filtered data and process it "at will"
instead of having to create an iterator to use the base UDFilter method. ContinuousUDFilter is
available in /opt/vertica/sdk/examples/HelperLibraries/ContinuousUDFilter.h.

UDFilter Methods:

l setup() - Invoked before the first time that process() is called.

Note: UDFilters must be restartable. If loading large numbers of files, a given UDFilter may be
re-used for multiple files. HP Vertica follows the worker-pool design pattern: At the start of
COPY execution, several Parsers and several Filters are instantiated per node by calling the
corresponding prepare() methodmultiple times. Each Filter/Parser pair is then internally
assigned to an initial Source (UDSource or internal). At that point, setup() is called; then process
() is called until it is finished; then destroy() is called. If there are still sources in the pool waiting
to be processed, then the UDFilter/UDSource pair will be given a second Source; setup() will be
called a second time, then process() until it is finished, then destroy(). This repeats until all
sources have been read.

l destroy() - Invoked after the last time that process() is called.

l process() - Invoked repeatedly until it returns DONE or the query is canceled by the function
caller. On each invocation, process() acquires more data and writes the data to the DataBuffer
specified by 'output'.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 650 of 817

Returns:

n OUTPUT_NEEDED if this source has more data to produce.

n INPUT_NEEDED if it requires more data to continue working.

n DONE if it has nomore data to produce.

n KEEP_GOING if it cannot proceed for an extended period of time. It will be called again. Do
not block indefinitely. If you do, then you prevent the user from canceling the query.

Process() must set `input.offset` to the number of bytes that were successfully read from the
`input` buffer, and that will not need to be re-consumed by a subsequent invocation of process().
If 'input_state' == END_OF_FILE, then the last byte in 'input' is the last byte in the input stream
and returning INPUT_NEEDED does not result in any new input appearing. process() should
return DONE in this case as soon as this operator has finished producing all output that it is
going to produce.

process() must set `output.offset` to the number of bytes that were written to the `output` buffer.
This may not be larger than `output.size`. If it is set to 0, this indicates that process() requires a
larger output buffer.

ContinuousUDFilter Functions:

The ContinuousUDFilter wrapper allows you to write and process the data "at will" instead of
having to iterate through the data. An example of using ContinuousUDFilter is provided in
/opt/vertica/sdk/examples/FilterFunctions/SearchAndReplaceFilter.cpp.

l initialize() - Invoked before run(). You can optionally override this function to perform setup and
initialization.

l run() - Processes the data. Use reserve() and seek(), or read() of the ContinuousReader to read
(), and reserve() on the ContinuousWriter andmemcopy to write the data to the output buffer.

l deinitialize() - Invoked after run() has returned. You can optionally override this function to
perform tear-down and destruction.

Functions that are already implemented that you use in your code:

l yield() - use to yield control back to the server during idle or busy loops so the server can check
for status changes or query cancelations.

l cr - A ContinuousReader which is defined in
/opt/vertica/sdk/examples/HelperLibraries/CoroutineHelpers.h. Used to read from
the data stream.

l cw - A ContinuousWriter which is defined in
/opt/vertica/sdk/examples/HelperLibraries/CoroutineHelpers.h. Used to write the
filtered data to the output data buffer.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 651 of 817

Example UDFilter

The following example shows how to convert encoding for a file from one type to another. The
example converts UTF-16 encoded data to UTF-8 encoded data. This example is available in the
SDK at /opt/vertica/sdk/examples/FilterFunctions/IConverter.cpp.

class Iconverter : public UDFilter{
private:

std::string fromEncoding, toEncoding;
iconv_t cd; // the conversion descriptor opened
uint converted; // how many characters have been converted

protected:
virtual StreamState process(ServerInterface &srvInterface, DataBuffer &input,

InputState input_state, DataBuffer &output)
{

char *input_buf = (char *)input.buf + input.offset;
char *output_buf = (char *)output.buf + output.offset;
size_t inBytesLeft = input.size - input.offset, outBytesLeft = output.size - outp

ut.offset;
// end of input
if (input_state == END_OF_FILE && inBytesLeft == 0)
{

// Gnu libc iconv doc says, it is good practice to finalize the
// outbuffer for stateful encodings (by calling with null inbuffer).
//
// http://www.gnu.org/software/libc/manual/html_node/Generic-Conversion-Inter

face.html
iconv(cd, NULL, NULL, &output_buf, &outBytesLeft);
// output buffer can be updated by this operation
output.offset = output.size - outBytesLeft;
return DONE;

}
size_t ret = iconv(cd, &input_buf, &inBytesLeft, &output_buf, &outBytesLeft);
// if conversion is successful, we ask for more input, as input has not reached E

OF.
StreamState retStatus = INPUT_NEEDED;
if (ret == (size_t)(-1))
{

// seen an error
switch (errno)
{
case E2BIG:

// input size too big, not a problem, ask for more output.
retStatus = OUTPUT_NEEDED;
break;

case EINVAL:
// input stops in the middle of a byte sequence, not a problem, ask for m

ore input
retStatus = input_state == END_OF_FILE ? DONE : INPUT_NEEDED;
break;

case EILSEQ:
// invalid sequence seen, throw
// TODO: reporting the wrong byte position
vt_report_error(1, "Invalid byte sequence when doing %u-th conversion", c

onverted);

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 652 of 817

case EBADF:
// something wrong with descriptor, throw
vt_report_error(0, "Invalid descriptor");

default:
vt_report_error(0, "Uncommon Error");
break;

}
}
else converted += ret;
// move position pointer
input.offset = input.size - inBytesLeft;
output.offset = output.size - outBytesLeft;
return retStatus;

}
public:

Iconverter(const std::string &from, const std::string &to)
: fromEncoding(from), toEncoding(to), converted(0)
{

// note "to encoding" is first argument to iconv...
cd = iconv_open(to.c_str(), from.c_str());
if (cd == (iconv_t)(-1))
{

// error when creating converters.
vt_report_error(0, "Error initializing iconv: %m");

}
}
~Iconverter()
{

// free iconv resources;
iconv_close(cd);

}
};

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 653 of 817

UDL Parser

Developing Parser Functions for User Defined Load

Parsers take a stream of bytes and pass a corresponding sequence of tuples to the HP Vertica load
process. UDL Parser functions can be used to parse data in formats not understood by the HP
Vertica built-in parser, or for data that require more specific control than the built-in parser supplies.
For example, you could load a CSV file using a specific CSV library. TwoCSV examples are
provided with the HP Vertica SDK.

COPY supports a single UDL Parser that can be used in conjunction with a UDSource and zero or
more UDFilters.

Youmust implement a UDParser class and a ParserFactory class for your parser.

You can optionally implement a UDChunker to organize data for parallel parsing during data load
operations for delimited or fixed width data. If you do not implement the UDChunker class, parsing
continues in single-threadedmode on one core of the node.

The HP Vertica SDK provides the following example parsers in
/opt/vertica/sdk/examples/ParserFunctions:

Parser Name Purpose

BasicIntegerParser_continuous.cpp Parses a continuous string of integer values
separated by non-numeric characters.

BasicIntegerParser_raw.cpp Parses a string of integer values separated
by non-numeric characters.

ExampleDelimitedParser.cpp Delimited parser with the UDChunker class,
as defined in
ExampleDelimitedChunker.cpp.

Rfc4180CsvParser.cpp RFC 4180 CSV parser

TraditionalCsvParser.cpp Traditional CSV parser

The traditional CSV parser uses the boost::tokenizer library to read the CSV output from
common programs such as Microsoft Excel. The RFC 4180 parser parses CSV files written to the
RFC 4180 standard and uses libcsv.

Subclassing ParserFactory

About the ParserFactory Class

The ParserFactory class performs initial validation and planning for the query and instantiates
objects to perform further initialization on each node once the query has been distributed.
Subclasses of ParserFactory should be stateless,with no fields containing data, only methods.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 654 of 817

http://tools.ietf.org/html/rfc4180

The name of the factory class is the value used for the NAMEmodifier in the in the CREATE
PARSER statement.

After creating your ParserFactory, youmust register it with RegisterFactory().

ParserFactory Methods:

You implement the followingmethods in your ParserFactoryClass:

l plan() – Instantiates a UDParser instance. Like the UDSource and UDFilter plan()methods,
this plan()method checks parameters and populates the plan data. You cannot specify the
nodes on which the work is done. HP Vertica automatically selects the best nodes to complete
the work based on available resources. The plan()methodmust not modify any global
variables or state, only variables supplied as arguments.

l prepare() – This method is called on each node prior to Load operator execution. It creates the
function object using the vt_createFuncObjmethod. The prepare()methodmust not modify
any global variables or state, only variables supplied as arguments.

l prepareChunker() –Optional method to support parallel parsing.

l getParserReturnType() – This method defines the return types (and length/precision if
necessary) for this UDX.

By default, HP Vertica uses the same output column types as the destination table. This
requires that the UDParser validate the expected output column types and emit appropriate
tuples. Users can use COPY expressions to perform typecasting and conversion if necessary.

Define the output types as follows:

n For CHAR/VARCHAR types, specify themax length.

n For NUMERIC types, specify the precision and scale.

n For Time/Timestamp types (with or without time zone), specify the precision, where -1means
unspecified.

n For IntervalYM/IntervalDS types, specify the precision and range.

n For all other types, no length/precision specification is required.

l getParameterType() – The getParameterType()method lets you define the name and types
of parameters that the function uses. HP Vertica uses this information to warn function callers
that certain parameters that they provide have no effect, or that certain parameters are not
being set and are reverting to default values. As a best practice, you should define the types
and parameters for your function, but using this method is optional.

UDChunker Methods

Implement this method to have the parser participate in cooperative parsing:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 655 of 817

l UDChunker::prepareChunker() – Invoked after UDParser::prepare() to set up the
UDChunker.

Returns a UDChunker object if the parser supports consumer/producer parallelism, or NULL if
UDChunker is not implemented. :

ParserFactory Class Example

The following example is provided as part of
/opt/vertica/sdk/examples/ParserFunctions/ExampleDelimitedParser.cpp. It defines the
parser factory for the GenericDelimitedParserFrameworkExampleFactory parser, and includes
prepareChunker().

class GenericDelimitedParserFrameworkExampleFactory : public ParserFactory
{
public:

virtual void plan(ServerInterface &srvInterface,
PerColumnParamReader &perColumnParamReader,
PlanContext &planCtxt) {

/* Check parameters */
// TODO: Figure out what parameters I should have; then make sure I have them

/* Populate planData */
// Nothing to do here

}

// todo: return an appropriate udchunker
virtual UDChunker* prepareChunker(ServerInterface &srvInterface,

PerColumnParamReader &perColumnParamReader,
PlanContext &planCtxt,
const SizedColumnTypes &returnType)

{
// Defaults.
std::string delimiter(","), record_terminator("\n");
std::vector<std::string> formatStrings;

//return NULL;
return vt_createFuncObject<ExampleDelimitedUDChunker>

(srvInterface.allocator,
delimiter[0],
record_terminator[0],
formatStrings

);
}

virtual UDParser* prepare(ServerInterface &srvInterface,
PerColumnParamReader &perColumnParamReader,
PlanContext &planCtxt,
const SizedColumnTypes &returnType)

{
ParamReader args(srvInterface.getParamReader());

// Defaults.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 656 of 817

std::string delimiter(","), record_terminator("\n");
std::vector<std::string> formatStrings;

// Args.
if (args.containsParameter("delimiter"))

delimiter = args.getStringRef("delimiter").str();
if (args.containsParameter("record_terminator"))

record_terminator = args.getStringRef("record_terminator").str();

// Validate.
if (delimiter.size()!=1) {

vt_report_error(0, "Invalid delimiter \"%s\": single character required",
delimiter.c_str());

}
if (record_terminator.size()!=1) {

vt_report_error(1, "Invalid record_terminator \"%s\": single character requir
ed",

record_terminator.c_str());
}

// Extract the "format" argument.
// Default to the global setting, but let any per-column settings override for th

at column.
if (args.containsParameter("format"))

formatStrings.resize(returnType.getColumnCount(), args.getStringRef("format")
.str());

else
formatStrings.resize(returnType.getColumnCount(), "");

for (size_t i = 0; i < returnType.getColumnCount(); i++) {
const std::string &cname(returnType.getColumnName(i));
if (perColumnParamReader.containsColumn(cname)) {

ParamReader &colArgs = perColumnParamReader.getColumnParamReader(cname);
if (colArgs.containsParameter("format")) {

formatStrings[i] = colArgs.getStringRef("format").str();
}

}
}

return vt_createFuncObject<DelimitedParserFrameworkExample<StringParsersImpl> >
(srvInterface.allocator,
delimiter[0],
record_terminator[0],
formatStrings

);
}

virtual void getParserReturnType(ServerInterface &srvInterface,
PerColumnParamReader &perColumnParamReader,
PlanContext &planCtxt,
const SizedColumnTypes &argTypes,
SizedColumnTypes &returnType)

{
returnType = argTypes;

}

virtual void getParameterType(ServerInterface &srvInterface,
SizedColumnTypes ¶meterTypes) {

parameterTypes.addVarchar(1, "delimiter");
parameterTypes.addVarchar(1, "record_terminator");

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 657 of 817

parameterTypes.addVarchar(256, "format");
}

};

typedef GenericDelimitedParserFrameworkExampleFactory<StringParsers> DelimitedParserFrame
workExampleFactory;
RegisterFactory(DelimitedParserFrameworkExampleFactory);

Subclassing UDParser

About the UDParser Class

The UDParserClass is responsible for parsing an input stream into tuples/rows for insertion into an
HP Vertica table. A wrapper is also provided for UDParser called ContinuousUDParser.
ContinuousUDParser provides an abstraction that allows you to treat the input data as a continuous
stream of data. This allows you to read from the data and process it at will, instead of having to
create an iterator to use the base UDParsermethod. ContinuousUDParser is available in
/opt/vertica/sdk/examples/HelperLibraries/ContinuousUDParser.h.

UDParser Methods:

l setup() – Invoked before the first time that process() is called.

UDParsers must be restartable. If loading large numbers of files, a given UDParser may be re-
used for multiple files. HP Vertica follows the worker-pool design pattern: At the start of COPY
execution, several Parsers and several Filters are instantiated per node by calling the
corresponding prepare()methodmultiple times. Each Filter/Parser pair is then internally
assigned to an initial Source (UDSource or internal). At that point,setup() is called; then
process() is called until it is finished, after which destroy() is called. If sources to be
processed in the pool are still waiting, then the UDFilter/UDSource pair will be given a second
chance. The UDSourcesetup() is called a second time, then process() until it is finished, then
destroy(). This process repeats until all sources have been read.

l process() – Invoked repeatedly during query execution until it returns DONE or until the query is
canceled by the user.

On each invocation, process() is given an input buffer. Themethod reads data from that buffer,
converting it to fields and tuples. The tuples are written through awriter.

Once process() has consumed as much data as is reasonable (for example, the last complete
row in the input buffer), process() returns oneshould return INPUT_NEEDED to indicate that it
requires more data, or DONE to indicate that it has completed parsing this input stream and will
not be readingmore bytes from it.

If input_state == END_OF_FILE, then the last byte in input is the last byte in the input stream.
Returning INPUT_NEEDED does not result in any new input appearing. The process() should

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 658 of 817

return DONE in this case as soon as this operator has finished producing all output that it is going
to produce.

Note that input can contain null bytes, if the source file contains them. Note also that input is
NOT automatically null-terminated.

Returns:

n INPUT_NEEDED if this UDParser has more data to produce.

n DONE if it has nomore data to produce.

n REJECT to reject a row (see "Row Rejection" below)

l destroy() – Invoked after the last time that process() is called.

l getRejectedRecord() – returns information about the rejected data.

l writer – A member variable of the class, type StreamWriter, and used to write parsed tuples
to. This is the same API as PartitionWriter used in the User Defined Transforms framework.

Row Rejection

To reject some data, there parser needs to do two things:

l Create a getRejectedRecord()method on your Parser class that returns an object of type
Vertica::RejectedRecord, which contains the data that you want to reject, a string describing
the reason for rejection, the size of the data, and the terminator string. See RejectedRecord in
VerticaUDl.h for details or view the SDK Documentation.

l When the parser encounters a rejected data, have process() return REJECT. After returning
REJECT, HP Vertica calls getRejectedRecord() to process the rejected record before the next
call to process().

One simple way of fulfilling this is to include code in your parser class such as:

Vertica::RejectedRecord myRejRec;
Vertica::RejectedRecord getRejectedRecord() {

return myRejRec;
}

In your process() method, add code such as:

(...) if (some rejection condition) {
RejectedRecord rr("Bad Record!", "foo data", 8, "\n");
myRejRec = rr;
return Vertica::REJECT;

}
(...)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 659 of 817

That is just one simple approach. The only requirement is that there exist a getRejectedRecord()
function that can (and always will) be called after process() returns REJECT, and it returns the data
that HP Vertica needs to process the rejection.

ContinuousUDParser Functions:

The ContinuousUDParserwrapper allows you to read and process the data stream at will instead
of having to iterate through the data.

l initialize() – Invoked before run(). You can optionally override this function to perform setup
and initialization.

l run() – Processes the data. Use reserve() and seek(), or read() to read the data and the writer
StreamWriter object to write data to HP Vertica.

l deinitialize() – Invoked after run() has returned. You can optionally override this function to
perform tear-down and destruction.

Functions that are already implemented that you use in your code:

l yield() – Used to yield control back to the server during idle or busy loops so the server can
check for status changes or query cancellations.

l cr – A ContinuousReader used to read from the data stream and defined in
/opt/vertica/sdk/examples/HelperLibraries/CoroutineHelpers.h.

l crej – A ContinuousReaderused tomanage rejected rows, and defined in
/opt/vertica/sdk/examples/HelperLibraries/CoroutineHelpers.h.

UDParser Class Example:

The following example parses a single column of integers using the ContinuousUDParser and
writes them to tuples using the writer object. This example uses the ContinuousUDParser
wrapper.

class BasicIntegerParser : public ContinuousUDParser {private:
// campaign for the conservation of keystrokes
char *ptr(size_t pos = 0) { return ((char*)cr.getDataPtr()) + pos; }
vint strToInt(const string &str) {

vint retVal;
stringstream ss;
ss << str;
ss >> retVal;
return retVal;

}
public:

virtual void run() {
// WARNING: This implementation is not trying for efficiency.
// It is trying to exercise ContinuousUDParser,
// and to be quick to implement.
// This parser assumes a single-column input, and

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 660 of 817

// a stream of ASCII integers split by non-numeric characters.
size_t pos = 0;
size_t reserved = cr.reserve(pos+1);
while (!cr.isEof() || reserved == pos+1) {

while (reserved == pos+1 && (*ptr(pos) >= '0' && *ptr(pos) <= '9')) {
pos++;
reserved = cr.reserve(pos+1);

}
string st(ptr(), pos);
writer->setInt(0, strToInt(st));
writer->next();
while (reserved == pos+1 && !(*ptr(pos) >= '0' && *ptr(pos) <= '9')) {

pos++;
reserved = cr.reserve(pos+1);

}
cr.seek(pos);
pos = 0;
reserved = cr.reserve(pos+1);

}
}

};

Subclassing UDChunker

About the UDChunker Class

The UDChunkerClass is responsible for separating parsing record boundaries.

UDChunker Methods:

l UDChunker::setup() – Invoked before the first time that process() is called.

l UDChunker::process() – Invoked repeatedly during query execution until it returns DONE or until
the query is canceled by the user.

l UDChunker::destroy() – Invoked after the last time that process() is called. You can override
this method to perform tear-down and destructive tasks. Recall that UDChunkersmust be
restartable.

On each invocation, process() is given an input buffer. Themethod should read data from that
buffer, find record boundaries, and align the input.offsetwith the end of the last record in the
buffer. Once process() has consumed as much data as is reasonable (for example, the last
complete row in the input buffer), process() should return one of these values:

l OUTPUT_NEEDED to indicate that it requires more buffer size

l INPUT_NEEDED to indicatemore data is required.

l DONE to indicate that it has completed parsing this input stream and will not be readingmore
bytes from it.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 661 of 817

If input_state == END_OF_FILE, then the last byte in input is the last byte in the input stream.
Returning INPUT_NEEDED does not result in any new input appearing. The process() should return
DONE in this case as soon as this operator has finished producing all output that it is going to
produce.

Note: The input data can contain null bytes, if the source file contains them. Note also that
input is NOT automatically null-terminated.

The UDChunker::process()methodmust not block indefinitely. If it is cannot proceed for an
extended period of time, it should return KEEP_GOING, after which it will be called again shortly.
Failing to return KEEP_GOING has several consequences, including preventing the user from being
able to cancel the query.

UDChunker Class Example:

The following example illustrates an implemented UDChunker::process() method. The source
code is available at:

/opt/vertica/sdk/examples/ParserFunctions/ExampleDelimitedChunker.cpp

ExampleDelimitedUDChunker::ExampleDelimitedUDChunker(char delimiter = ',',
char recordTerminator = '\n',
std::vector<std::string> formatStrin

gs =
std::vector<std::string>()) : delimi

ter(delimiter),
recordTerminator(recordTerminator),
formatStrings(formatStrings) {}

StreamState ExampleDelimitedUDChunker::process(ServerInterface &srvInterface,
DataBuffer &input,
InputState input_state)

{
size_t termLen = 1;
char* terminator = &recordTerminator;

size_t ret = input.offset, term_index = 0;
for (size_t index = input.offset; index < input.size; ++index) {

char c = input.buf[index];
if (c == terminator[term_index])
{

++term_index;
if (term_index == termLen)
{

ret = index + 1;
term_index = 0;

}
continue;

}
else if (term_index > 0)

index -= term_index;

term_index = 0;
}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 662 of 817

// if we were able to find some rows, move the offset to point at the start of the ne
xt (potential) row, or end of block

if (ret > input.offset) {
input.offset = ret;
return OUTPUT_NEEDED;

}

if (input_state == END_OF_FILE) {
input.offset = input.size;
return DONE;

}

return INPUT_NEEDED;
}

Developing UDLs in Java
The HP Vertica Java SDK support developing UDLs. If you have not already done so, you need to
configure your database hosts to run Java User Defined Extensions (UDxs). For instructions see:

l Installing Java on HP Vertica Hosts

l Configuring Your Java Development Environment

Developing User Defined Source Functions
You create UDL Source functions (referred to as UDSource or UDS) to process a source of data
that is not natively supported by the COPY statement. For example, you can create a UDL that
accesses data from aweb server using a RESTful web API. You can use a single UDSource
function in a COPY statement, but that source function can pull data frommultiple sources (reading
files frommultiple URLs, for example).

You can use a UDSource function in a COPY statement with UDFilter functions, a UDParser
function, or the built-in filtering and parsing feature of the COPY statement.

To create a UDSource function, youmust subclass both the UDSource and SourceFactory
classes.

The HP Vertica Java SDK provides an example source function in
/opt/vertica/sdk/examples/JavaUDx/UDLFuctions. The example explained in this section is
based on the example code provided with the SDK.

The following sections demonstrate how to create a simple UDSource function that loads files from
the host's filesystem, similar to how the COPY statement natively loads files.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 663 of 817

UDSource Example Overview
The example shown in the following sections is a simple UDL Source function named FileSource
that loads data from files stored on the host's filesystem (similar to the standard COPY statement).
To call it, youmust supply a parameter named file that contains the absolute path to one or more
files on the host filesystem. You can specify multiple files as a comma-separated list.

The FileSource function also accepts an optional parameter named nodes that indicates which
nodes should load the files. If you do not supply this parameter, the function defaults to loading data
on the initiator host only. Since this is a simple example, the nodes only load the files off of their
own file system. Any files in the file parameter must exist on all of the hosts in the nodes parameter.
The FileSourceUDSource attempts to load all of the files in the file parameter on all of the hosts
in the nodes parameter.

You can use the following Python script to generate files and distribute them to hosts in your HP
Vertica cluster to experiment with the example UDSource function. You run it using the database
administrator account on one of your database hosts, as it requires passwordless-SSH logins in
order to copy the files to the other hosts.

#!/usr/bin/python
Save this file as UDLDataGen.py
import string
import random
import sys
import os

Read in the dictionary file to provide random words. Assumes the words
file is located in /usr/share/dict/words
wordFile = open("/usr/share/dict/words")
wordDict = []
for line in wordFile:

if len(line) > 6:
wordDict.append(line.strip())

MAXSTR = 4 # Maximum number of words to concatentate
NUMROWS = 1000 # Number of rows of data to generate
#FILEPATH = '/tmp/UDLdata.txt' # Final filename to use for UDL source
TMPFILE = '/tmp/UDLtemp.txt' # Temporary filename.

Generate a random string by concatenating several words together. Max
number of words set by MAXSTR
def randomWords():

words = [random.choice(wordDict) for n in xrange(random.randint(1, MAXSTR))]
sentence = " ".join(words)
return sentence

Create a temporary data file that will be moved to a node. Number of
rows for the file is set by NUMROWS. Adds the name of the node which will
get the file, to show which node loaded the data.
def generateFile(node):

outFile = open(TMPFILE, 'w')
for line in xrange(NUMROWS):

outFile.write('{0}|{1}|{2}\n'.format(line,randomWords(),node))
outFile.close()

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 664 of 817

Copy the temporary file to a node. Only works if passwordless SSH login
is enabled, which it is for the database administrator account on
HP Vertica hosts.
def copyFile(fileName,node):

os.system('scp "%s" "%s:%s"' % (TMPFILE, node, fileName))

Loop through the comma-separated list of nodes given in the first
parameter, creating and copying data files whose full comma-separated
paths are passed in the second parameter
for node in [x.strip() for x in sys.argv[1].split(',')]:

for fileName in [y.strip() for y in sys.argv[2].split(',')]:
print "generating file", fileName, "for", node
generateFile(node)
print "Copying file to",node
copyFile(fileName,node)

You call this script by giving it a comma-separated list of hosts to receive the files, and a comma-
separated list of absolute paths of files to generate. For example:

python UDLDataGen.py node01,node02,node03 /tmp/UDLdata01.txt,/tmp/UDLdata02.txt,\
UDLdata03.txt

This script generates files that contain a thousand rows of pipe character (|) delimited columns: an
index value, a set of random words, and the node for which the file was generated. The output files
look like this:

0|megabits embanks|node01
1|unneatly|node01
2|self-precipitation|node01
3|antihistamine scalados Vatter|node01

The following example demonstrates loading and using the FileSourceUDSource:

=> --Load library and create the source function
=> CREATE LIBRARY JavaLib AS '/home/dbadmin/JavaUDlLib.jar'
-> LANGUAGE 'JAVA';
CREATE LIBRARY
=> CREATE SOURCE File as LANGUAGE 'JAVA' NAME
-> 'com.mycompany.UDL.FileSourceFactory' LIBRARY JavaLib;
CREATE SOURCE FUNCTION
=> --Create a table to hold the data loaded from files
=> CREATE TABLE t (i integer, text VARCHAR, node VARCHAR);
CREATE TABLE
=> -- Copy a single file from the currently host using the FileSource
=> COPY t SOURCE File(file='/tmp/UDLdata01.txt');
Rows Loaded

1000

(1 row)

=> --See some of what got loaded.
=> SELECT * FROM t WHERE i < 5 ORDER BY i;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 665 of 817

i | text | node
---+-------------------------------+--------
0 | megabits embanks | node01
1 | unneatly | node01
2 | self-precipitation | node01
3 | antihistamine scalados Vatter | node01
4 | fate-menaced toilworn | node01

(5 rows)

=> TRUNCATE TABLE t;
TRUNCATE TABLE
=> -- Now load a file from three hosts. All of these hosts must have a file
=> -- named /tmp/UDLdata01.txt, each with different data
=> COPY t SOURCE File(file='/tmp/UDLdata01.txt',
-> nodes='v_vmart_node0001,v_vmart_node0002,v_vmart_node0003');
Rows Loaded

3000

(1 row)

=> --Now see what has been loaded
=> SELECT * FROM t WHERE i < 5 ORDER BY i,node ;
i | text | node

---+---+--------
0 | megabits embanks | node01
0 | nimble-eyed undupability frowsier | node02
0 | Circean nonrepellence nonnasality | node03
1 | unneatly | node01
1 | floatmaker trabacolos hit-in | node02
1 | revelrous treatableness Halleck | node03
2 | self-precipitation | node01
2 | whipcords archipelagic protodonatan copycutter | node02
2 | Paganalian geochemistry short-shucks | node03
3 | antihistamine scalados Vatter | node01
3 | swordweed touristical subcommanders desalinized | node02
3 | batboys | node03
4 | fate-menaced toilworn | node01
4 | twice-wanted cirrocumulous | node02
4 | doon-head-clock | node03

(15 rows)

=> TRUNCATE TABLE t;
TRUNCATE TABLE
=> --Now copy from several files on several hosts
=> COPY t SOURCE File(file='/tmp/UDLdata01.txt,/tmp/UDLdata02.txt,/tmp/UDLdata03.txt'
-> ,nodes='v_vmart_node0001,v_vmart_node0002,v_vmart_node0003');
Rows Loaded

9000

(1 row)

=> SELECT * FROM t WHERE i = 0 ORDER BY node ;
i | text | node

---+---+--------
0 | Awolowo Mirabilis D'Amboise | node01
0 | sortieing Divisionism selfhypnotization | node01

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 666 of 817

0 | megabits embanks | node01
0 | nimble-eyed undupability frowsier | node02
0 | thiaminase hieroglypher derogated soilborne | node02
0 | aurigraphy crocket stenocranial | node02
0 | Khulna pelmets | node03
0 | Circean nonrepellence nonnasality | node03
0 | matterate protarsal | node03

(9 rows)

The following sections explain how to create the FileSourceUDSource fuinction.

Subclassing SourceFactory in Java
Your subclass of the HP Vertica SDK's SourceFactory class to is responsible for:

l performing the initial validation of the parameters in the function call your UDSource function.

l setting up any data structures your UDSource subclass instances will need to perform their work.
This information can include recording which nodes will read which data source.

l creating one instance of your UDSource subclass for each data source your function will read
from on each host.

SourceFactory Methods

The SourceFactory class defines the followingmethods your subclass can override. You class
must override prepareUDSources().

l plan() - HP Vertica calls this method once on the initiator node. It should perform the following
tasks:

n Check the parameters the user supplied to the function call in the COPY statement and
provide a helpful error message if there are any issues. It reads the parameters by getting a
ParamReader object from the instance of ServerInterface passed into the plan()method.

n Decide which hosts in the cluster will read the data source. How you divide up the work
depends on the source your function is reading. Some sources can easily be split across
many hosts (such as reading data frommany URLs, or from aRESTful API which allows you
to segment data). Others, such an individual local file on a host's filesystem, can only be read
by a single specific host.

You store the list of hosts to read the data source by calling the setTargetNodes()method
on the NodeSpecifyingPlanContext object passed into your plan()method.

n Store any information that the individual hosts need in order to process the data sources in the
NodeSpecifyingPlanContext instance passed in the planCtxt parameter. For example,
you could store assignments that tell each host which data sources to process. This object is
the only means of communication between the plan()method (which only runs on the

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 667 of 817

initiator node) and the prepareUDSources() method (which runs on each host reading from a
data source).

You store data in the NodeSpecifyingPlanContext by getting a ParamWriter object from
the getWriter() method. You then write parameters by callingmethods on the ParamWriter
such as setString().

Note: ParamWriter only offers the ability to store simple data types. For complex types,
you will need to serialize the data in somemanner and store it as a string or long string.

l prepareUDSources() - HP Vertica calls this method on all hosts that were chosen to load data
by the plan()method. It instantiates one or more of your subclass of the UDSource class (one
for each of the sources that the host has been assigned to process), returning it in an
ArrayList.

l getParameterType() - defines the name and types of parameters that your function uses. HP
Vertica uses this information to warn function callers that any unknown parameters that they
provide will have no effect, or that parameters they did not provide will use default values. You
should define the types and parameters for your function, but overriding this method is optional.

Users will supply the name of your subclass of SourceFactory to the CREATE SOURCE
statement when defining your UDSource function in the HP Vertica catalog, so you should choose
a logical name for it.

Example SourceFactory Subclass

The following example amodified version of the example Java UDsource function provided in the
Java UDx support package, located at
/opt/vertica/sdk/examples/JavaUDx/UDLFuctions/com/vertica/JavaLibs/FileSourceFac
tory.java. Its override of the plan()method verifies that the user supplied the required file
parameter. If the user also supplied the optional nodes parameter, this method ensures that the
nodes exist in the Vertica Analytics Platform cluster. If there is a problem with either parameter, the
method throws an exception to return an error to the user. If there are no issues with the
parameters, the plan() method stores their values in the plan context object.

package com.mycompany.UDL;

import java.util.ArrayList;
import java.util.Vector;
import com.vertica.sdk.NodeSpecifyingPlanContext;
import com.vertica.sdk.ParamReader;
import com.vertica.sdk.ParamWriter;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.SizedColumnTypes;
import com.vertica.sdk.SourceFactory;
import com.vertica.sdk.UDSource;
import com.vertica.sdk.UdfException;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 668 of 817

public class FileSourceFactory extends SourceFactory {

// Called once on the initiator host to do initial setup. Checks
// parameters and chooses which nodes will do the work.
@Override
public void plan(ServerInterface srvInterface,

NodeSpecifyingPlanContext planCtxt) throws UdfException {

String nodes; // stores the list of nodes that will load data

// Get copy of the parameters the user supplied to the UDSource
// function call.
ParamReader args = srvInterface.getParamReader();

// A list of nodes that will perform work. This gets saved as part
// of the plan context.
ArrayList<String> executionNodes = new ArrayList<String>();

// First, ensure the user supplied the file parameter
if (!args.containsParameter("file")) {

// Withut a file parameter, we cannot continue. Throw an
// exception that will be caught by the Java UDx framework.
throw new UdfException(0, "You must supply a file parameter");

}

// If the user specified nodes to read the file, parse the
// comma-separated list and save. Otherwise, assume just the
// Initiator node has the file to read.
if (args.containsParameter("nodes")) {

nodes = args.getString("nodes");

// Get list of nodes in cluster, to ensure that the node the
// user specified actually exists. The list of nodes is available
// from the planCTxt (plan context) object,
ArrayList<String> clusterNodes = planCtxt.getClusterNodes();

// Parse the string parameter "nodes" which
// is a comma-separated list of node names.
String[] nodeNames = nodes.split(",");

for (int i = 0; i < nodeNames.length; i++){
// See if the node the user gave us actually exists
if(clusterNodes.contains(nodeNames[i]))

// Node exists. Add it to list of nodes.
executionNodes.add(nodeNames[i]);

else{
// User supplied node that doesn't exist. Throw an
// exception so the user is notified.
String msg = String.format("Specified node '%s' but no" +

" node by that name is available. Available nodes "
+ "are \"%s\".",
nodeNames[i], clusterNodes.toString());

throw new UdfException(0, msg);
}

}
} else {

// User did not supply a list of node names. Assume the initiator
// is the only host that will read the file. The srvInterface

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 669 of 817

// instance passed to this method has a getter for the current
// node.
executionNodes.add(srvInterface.getCurrentNodeName());

}

// Set the target node(s) in the plan context
planCtxt.setTargetNodes(executionNodes);

// Set parameters for each node reading data that tells it which
// files it will read. In this simple example, just tell it to
// read all of the files the user passed in the file parameter
String files = args.getString("file");

// Get object to write parameters into the plan context object.
ParamWriter nodeParams = planCtxt.getWriter();

// Loop through list of execution nodes, and add a parameter to plan
// context named for each node performing the work, which tells it the
// list of files it will process. Each node will look for a
// parameter named something like "filesForv_vmart_node0002" in its
// prepareUDSources() method.
for (int i = 0; i < executionNodes.size(); i++) {

nodeParams.setString("filesFor" + executionNodes.get(i), files);
}

}

// Called on each host that is reading data from a source. This method
// returns an array of UDSource objects that process each source.
@Override
public ArrayList<UDSource> prepareUDSources(ServerInterface srvInterface,

NodeSpecifyingPlanContext planCtxt) throws UdfException {

// An array to hold the UDSource subclasses that we instaniate
ArrayList<UDSource> retVal = new ArrayList<UDSource>();

// Get the list of files this node is supposed to process. This was
// saved by the plan() method in the plancontext
String myName = srvInterface.getCurrentNodeName();
ParamReader params = planCtxt.getReader();
String fileNames = params.getString("filesFor" + myName);

// Note that you can also be lazy and directly grab the parameters
// the user passed to the UDSource functon in the COPY statement directly
// by getting parameters from the ServerInterface object. I.e.:

//String fileNames = srvInterface.getParamReader().getString("file");

// Split comma-separated list into a single list.
String[] fileList = fileNames.split(",");
for (int i = 0; i < fileList.length; i++){

// Instantiate a FileSource object (which is a subclass of UDSource)
// to read each file. The constructor for FileSource takes the
// file name of the
retVal.add(new FileSource(fileList[i]));

}

// Return the collection of FileSource objects. They will be called,
// in turn, to read each of the files.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 670 of 817

return retVal;
}

// Declares which parameters that this factory accepts.
@Override
public void getParameterType(ServerInterface srvInterface,

SizedColumnTypes parameterTypes) {
parameterTypes.addVarchar(65000, "file");
parameterTypes.addVarchar(65000, "nodes");

}
}

Subclassing UDSource in Java
Your subclass of the UDSource class is responsible for reading data from a single external source
and producing a data stream that the next stage in the data load process consumes. Your
SourceFactory.prepareUDSources() method instantiates amember of this subclass for each
data source that a host has been requested to read. Each instance of your UDSource subclass
reads from a single data source. Examples of a single data source are a single file, or the results of
a single function call to a RESTful web application.

UDSource Methods

The UDSource class has the followingmethods your subclass can override. It must override the
process() method.

l setup() - performs any necessary setup steps to access the data source. This method
establishes network connections, opens files, and other similar initial tasks that need to be
performed before the UDSource instance can read data from the data source.

l process() - reads data from the source and place it into the buf field on an instance of the
DataBuffer it recievd as a parameter. If it runs out of input or fills the output buffer, it must return
the value StreamState.OUTPUT_NEEDED.When HP Vertica gets this return value, it will call the
method again after the output buffer has been processed by the next stage in the data load
process. When process() reads the last chunk of data from the data source, it returns
StreamState.DONE to indicate that all of the data has been read from the source.

l destroy() - performs whatever cleanup operations are necessary after the UDSource has
finished reading the data source or when the query has been canceled. It frees resources such
as file handles or network connections that the setup() method allocated.

l getSize() - estimates the amount of in bytes data that the UDSource will read from the data
source. Vertica Analytics Platform may call this method before it calls setup(). Therefore
getSize() must not rely on any resources that setup() allocates. See UDSource in the SDK
documentation for additional important details about the getSize()method. Overriding this
method is optional.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 671 of 817

Caution: This method should not leave any resources open. For example, do not save any
file handles opened by getSize() for use by the process()method. Doing so can lead to
exhausting the available resources, since HP Vertica calls getSize() on all instances of
your UDSource subclass before any data is loaded. If many data sources are being opened,
these open file handles could use up the system's supply of file handles, leaving none free
to perform the actual data load.

l getUri() - returns the URI of the data source being read by this UDSource. This value is used to
update status information to indicate which resources are currently being loaded. Overriding this
method is optional.

Example UDSource

The following example shows the source of the FileSource class that reads a file from the host
filesystem. The constructor for the class (which is called by
FileSourceFactory.prepareUDSources, see Subclassing SourceFactory in Java) gets the
absolute path for the file containing the data to be read. The setup() method opens the file, and the
destroy()method closes it. The process()method reads from the file into a buffer provided by
the instance of the DataBuffer class passed to it as a parameter. If the read operation filled the
output buffer, it returns OUTPUT_NEEDED. This value tells Vertica Analytics Platform to call it again
after the next stage of the load has processed the output buffer. If the read did not fill the output
buffer, then process() returns DONE to indicate it has finished processing the data source.

package com.mycompany.UDL;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.RandomAccessFile;

import com.vertica.sdk.DataBuffer;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.State.StreamState;
import com.vertica.sdk.UDSource;
import com.vertica.sdk.UdfException;

public class FileSource extends UDSource {

private String filename; // The file for this UDSource to read
private RandomAccessFile reader; // handle to read from file

// The constructor just stores the absolute filename of the file it will
// read.
public FileSource(String filename) {

super();
this.filename = filename;

}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 672 of 817

// Called before HP Vertica starts requesting data from the data source.
// In this case, setup needs to open the file and save to the reader
// property.
@Override
public void setup(ServerInterface srvInterface) throws UdfException{

try {
reader = new RandomAccessFile(new File(filename), "r");

} catch (FileNotFoundException e) {
// In case of any error, throw a UDfException. This will terminate
// the data load.
String msg = e.getMessage();
throw new UdfException(0, msg);

}
}

// Called after data has been loaded. In this case, close the file handle.
@Override
public void destroy(ServerInterface srvInterface) throws UdfException {

if (reader != null) {
try {

reader.close();
} catch (IOException e) {

String msg = e.getMessage();
throw new UdfException(0, msg);

}
}

}

@Override
public StreamState process(ServerInterface srvInterface, DataBuffer output)

throws UdfException {

// Read up to the size of the buffer provided in the DataBuffer.buf
// property. Here we read directly from the file handle into the
// buffer.
long offset;
try {

offset = reader.read(output.buf,output.offset,
output.buf.length-output.offset);

} catch (IOException e) {
// Throw an exception in case of any errors.
String msg = e.getMessage();
throw new UdfException(0, msg);

}

// Update the number of bytes processed so far by the data buffer.
output.offset +=offset;

// See end of data source has been reached, or less data was read
// than can fit in the buffer
if(offset == -1 || offset < output.buf.length) {

// No more data to read.
return StreamState.DONE;

}else{
// Tell HP Vertica to call again when buffer has been emptied
return StreamState.OUTPUT_NEEDED;

}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 673 of 817

}
}

Developing Filter Functions in Java
UDL Filter functions (often referred to as UDFilters) manipulate data read from a data source. For
example, a UDFilter can decompress data in a compression format not natively supported by HP
Vertica, or take UTF-16 encoded data and transcode it to UTF-8 encoding, or perform search and
replace operations on data before it is loaded into HP Vertica.

You can usemultiple filters in a single COPY statement. For instance, you could unzip a file
compressed with 7Zip, convert the content from UTF-16 to UTF-8, and finally search and replace
various data before passing the data on to the parser stage of the load process.

UDFilters work with UDSource and UDParser functions as well as the native data source and
parser in the COPY statement.

To create a UDFilter function, youmust implement subclasses of the UDFilter and
FilterFactory classes.

The HP Vertica Java SDK provides an example filter function in
/opt/vertica/sdk/examples/JavaUDx/UDLFuctions. The example explained in this section was
derived from the sample in the SDK.

Java UDL Filter Example Overview
The examples the following sections demonstrate creating a UDFilter that replaces any
occurrences of a character in the input stream with another character in the output stream. This
example is highly simplified, and assumes the input stream is ASCII data. You should always
remember that the input and output stream in a UDFilter is actually binary data. If you are
performing character transformations using a UDFilter, you should converts the data stream from a
string of bytes into a properly encoded string. For example, if the input stream consists of UTF-8
encoded text, you should be sure to transform the raw binary being read from the buffer into a UTF
string beforemanipulating it.

The example UDFilter has two required parameters: from_char specifies the character to be
replaced, and to_char specifies the replacement character. The following example demonstrates
loading the UDFilter and filtering several lines of data.

=> CREATE LIBRARY JavaLib AS '/home/dbadmin/JavaUDlLib.jar'
->LANGUAGE 'JAVA';
CREATE LIBRARY
=> CREATE FILTER ReplaceCharFilter as LANGUAGE 'JAVA'
->name 'com.mycompany.UDL.ReplaceCharFilterFactory' library JavaLib;
CREATE FILTER FUNCTION
=> CREATE TABLE t (text VARCHAR);
CREATE TABLE
=> COPY t FROM STDIN WITH FILTER ReplaceCharFilter(from_char='a', to_char='z');
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 674 of 817

>> Mary had a little lamb
>> a man, a plan, a canal, Panama
>> \.

=> SELECT * FROM t;
text

Mzry hzd z little lzmb
z mzn, z plzn, z cznzl, Pznzmz

(2 rows)

=> --Calling the filter with incorrect parameters returns errors
=> COPY t from stdin with filter ReplaceCharFilter();
ERROR 3399: Failure in UDx RPC call InvokePlanUDL(): Error in User Defined Object [
ReplaceCharFilter], error code: 0
com.vertica.sdk.UdfException: You must supply two parameters to ReplaceChar: 'from_char'
and 'to_char'

at com.vertica.JavaLibs.ReplaceCharFilterFactory.plan(ReplaceCharFilterFactory.ja
va:22)

at com.vertica.udxfence.UDxExecContext.planUDFilter(UDxExecContext.java:889)
at com.vertica.udxfence.UDxExecContext.planCurrentUDLType(UDxExecContext.java:86

5)
at com.vertica.udxfence.UDxExecContext.planUDL(UDxExecContext.java:821)
at com.vertica.udxfence.UDxExecContext.run(UDxExecContext.java:242)
at java.lang.Thread.run(Thread.java:662)

Subclassing FilterFactory in Java
Your subclasse of the Filter Factory class performs the initial validation and planning of the
function execution and instantiates UDFilter objects on each host that will be filtering data.

FilterFactory Methods

The FilterFactory class has the followingmethods that you can override in your subclass. You
must override prepare().

l plan() - HP Vertica calls this method once on the initiator node. It should perform the following
tasks:

n Check the parameters that have been passed from the function call in the COPY statement
and provide a helpful error message if there are any issues. You read the parameters by
getting a ParamReader object from the instance of ServerInterface passed into your plan
()method.

n Store any information that the individual hosts need in order to filter data in the PlanContext
instance passed in the planCtxt parameter. For example, you could store details of the input
format the filter will read and output the format that the filter should produce. This object is the
only means of communication between the plan()method (which only runs on the initiator
node) and the prepare() method (which runs on each host reading from a data source).

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 675 of 817

You store data in the PlanContext by getting a ParamWriter object from the getWriter()
 method. You then write parameters by callingmethods on the ParamWriter such as
setString.

Note: ParamWriter only offers the ability to store simple data types. For complex types,
you need to serialize the data in somemanner and store it as a string or long string.

l prepare() - instantiates amember of your UDFilter subclass to perform the data filtering. It
can pass information your filter will need to perform its work (such as the values of the
parameters the user supplied) in the call to your UDSource subclass's constructor.

l getParameterType() - defines the name and types of parameters that your function uses. HP
Vertica uses this information to warn function callers that any unknown parameters that they
provide will have no effect, or that parameters they did not provide will use default values. You
should define the types and parameters for your function, but overriding this method is optional.

Users will supply the name of your subclass of FilterFactory to the CREATE FILTER statement
when defining your function in the HP Vertica catalog, so you should choose a logical name for it.

Example FilterFactory

The following example subclass of FilterFactory named ReplaceCharFilterFactory requires
two parameters (from_char and to_char). The plan() method ensures the function call contained
these parameters, and tha they are single-character strings. It then stores them in the plan context.
The prepare()method gets the parameter values and passes them to the ReplaceCharFilter
objects it instantiates to perform the filtering.

package com.vertica.JavaLibs;

import java.util.ArrayList;
import java.util.Vector;

import com.vertica.sdk.FilterFactory;
import com.vertica.sdk.PlanContext;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.SizedColumnTypes;
import com.vertica.sdk.UDFilter;
import com.vertica.sdk.UdfException;

public class ReplaceCharFilterFactory extends FilterFactory {

// Run on the initiator node to perform varification and basic setup.
@Override
public void plan(ServerInterface srvInterface,PlanContext planCtxt)

throws UdfException {
ArrayList<String> args =

srvInterface.getParamReader().getParamNames();

// Ensure user supplied two arguments
if (!(args.contains("from_char") && args.contains("to_char"))) {

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 676 of 817

throw new UdfException(0, "You must supply two parameters" +
" to ReplaceChar: 'from_char' and 'to_char'");

}

// Verify that the from_char is a single character.
String fromChar = srvInterface.getParamReader().getString("from_char");
if (fromChar.length() != 1) {

String message = String.format("Replacechar expects a single " +
"character in the 'from_char' parameter. Got length %d",
fromChar.length());

throw new UdfException(0, message);
}

// Save the from character in the plan context, to be read by
// prepare() method.
planCtxt.getWriter().setString("fromChar",fromChar);

// Ensure to character parameter is a single characater
String toChar = srvInterface.getParamReader().getString("to_char");
if (toChar.length() != 1) {

String message = String.format("Replacechar expects a single "
+ "character in the 'to_char' parameter. Got length %d",

toChar.length());
throw new UdfException(0, message);

}
// Save the to character in the plan data
planCtxt.getWriter().setString("toChar",toChar);

}

// Called on every host that will filter data. Must instantiate the
// UDFilter subclass.
@Override
public UDFilter prepare(ServerInterface srvInterface, PlanContext planCtxt)

throws UdfException {
// Get data stored in the context by the plan() method.
String fromChar = planCtxt.getWriter().getString("fromChar");
String toChar = planCtxt.getWriter().getString("toChar");

// Instantiate a filter object to perform filtering.
return new ReplaceCharFilter(fromChar, toChar);

}

// Describe the parameters accepted by this filter.
@Override
public void getParameterType(ServerInterface srvInterface,

SizedColumnTypes parameterTypes) {
parameterTypes.addVarchar(1, "from_char");
parameterTypes.addVarchar(1, "to_char");

}
}

Subclassing UDFilter in Java
Your subclass of the UDFilter class is where you implement the filtering that you want your
UDL Filter function to perform. Your subclass is instantiated by the FilterFactory.setup()
 method on each host in the HP Vertica cluster that is performing filtering for the data source.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 677 of 817

UDFilter Methods

Your subclass of UDFilter can override the followingmethods. It must override the process()
 method.

l setup() - performs any initial setup tasks (such as retrieving parameters from the class context
structure or initializing data structures that will be used during filtering) that your class needs to
filter data. This method is called before HP Vertica calls the process() method for the first time.

Note: UDFilter objects must be restartable. Once an instance of your subclass finishes
filtering all of the data in a data source, Vertica Analytics Platform calls its destroy()
 method so it can deallocate any resources it allocated. If there are still data sources that
have not yet been processed, Vertica Analytics Platform may later call setup() on the
object again and have it filter the data in a new data stream. Therefore, your destroy()
 method should leave an object of your UDFilter subclass in a state where the setup()
 method can prepare it to be reused.

l destroy() - frees any resources used by your UDFilter subclass (which are usually set up in
the setup() method). Vertica Analytics Platform calls this method after the process()method
indicates it has finished filtering all of the data in the data stream.

l process() - performs the actual filtering of data. It gets two instances of the DataBuffer class
among its parameters. Your override of this method should read data from the input
DataBuffer.buf byte array, manipulate it on somemanner (decompress it, filter out bytes,
etc.), and write the result to the output DataBuffer object. Since theremay not be a 1 to 1
correlation between the number of bytes your implementation reads and the number it writes,it
should process data until it either runs out of data to read, or until it runs out of space in the
output buffer. When one of these conditions occur, your method should return one of the values
defined by StreamState:

n OUTPUT_NEEDED if it needs more room in its output buffer.

n INPUT_NEEDED if it has run out of input data (but the data source has not yet been fully
processed).

n DONE if it has processed all of the data in the data source.

n KEEP_GOING if it cannot proceed for an extended period of time. It will be called again. Do
not block indefinitely. If you do, then you prevent the user from canceling the query.

Before returning, your process()methodmust set the input DataBuffer object's offset
property to the number of bytes that it successfully read from the input, and the offset property of
the output DataBuffer to the number of bytes it wrote. Setting these properties ensures that the
next call to process()will resume reading and writing data at the correct points in the buffers.
Your process() method also needs to check the InputState object passed to it to determine if
there is more data in the data source. When this object is equal to END_OF_FILE, then the data

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 678 of 817

remaining in the input data is the last data in the data source. Once it has processed all of the
remaining data, process() must return DONE.

Example UDFilter

The following example UDFilter subclass, named ReplaceCharFilter, corresponds to the
factory class explained in Subclassing FilterFactory. It reads the data stream, replacing each
occurrence of a user-specified character with another character.

package com.vertica.JavaLibs;

import com.vertica.sdk.DataBuffer;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.State.InputState;
import com.vertica.sdk.State.StreamState;
import com.vertica.sdk.UDFilter;

public class ReplaceCharFilter extends UDFilter {

private byte[] fromChar;
private byte[] toChar;

public ReplaceCharFilter(String fromChar, String toChar){
// Stores the from char and to char as byte arrays. This is
// not a robust method of doing this, but works for this simple
// example.
this.fromChar= fromChar.getBytes();
this.toChar=toChar.getBytes();

}
@Override
public StreamState process(ServerInterface srvInterface, DataBuffer input,

InputState input_state, DataBuffer output) {

// Check if there is no more input and the input buffer has been completely
// processed. If so, filtering is done.
if (input_state == InputState.END_OF_FILE && input.buf.length == 0) {

return StreamState.DONE;
}

// Get current position in the input buffer
int offset = output.offset;

// Determine how many bytes to process. This is either until input
// buffer is exhausted or output buffer is filled
int limit = Math.min((input.buf.length - input.offset),

(output.buf.length - output.offset));

for (int i = input.offset; i < limit; i++) {
// This example just replaces each instance of from_char
// with to_char. It does not consider things such as multi-byte
// UTF-8 characters.
if (input.buf[i] == fromChar[0]) {

output.buf[i+offset] = toChar[0];
} else {

// Did not find from_char, so copy input to the output

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 679 of 817

output.buf[i+offset]=input.buf[i];
}

}

input.offset += limit;
output.offset += input.offset;

if (input.buf.length - input.offset < output.buf.length - output.offset) {
return StreamState.INPUT_NEEDED;

} else {
return StreamState.OUTPUT_NEEDED;

}
}

}

Developing UDL Parser Functions in Java
User Defined Load Parser functions (also referred to as UDParsers) are used within a
COPY statement to read a stream of bytes and output a sequence of tuples that HP Vertica inserts
into a table. UDL Parser functions can parse data in formats not understood by the
COPY statement's built-in parser, or for data that require more specific control that the built-in
parser allows. For example, you could load a CSV file using a specific CSV library.

You can use a single UDL Parser function within a COPY statement. You can use UDL Parser
functions in conjunction with UDSource and UDFilter functions as well as the COPY statement's
built-in data source and filter.

To create a UDL Parser function, youmust implement a subclass of both UDParser and
ParserFactory classes defined by the Vertica Analytics Platform Java SDK.

The HP Vertica Java SDK provides an example parser functions in
/opt/vertica/sdk/examples/JavaUDx/UDLFuctions.

Java UDL Parser Example Overview
The example UDL Parser (named NumericTextParser) shown in the following sections parses
integer values spelled out in words rather than digits (for example "One Two Three" for one-hundred
twenty three). The parser:

l accepts a single parameter to set the character that separates columns in a row of data. The
separator defaults to the pipe (|) character.

l ignores extra spaces and the capitalization of the words used to spell out the digits.

l recognizes the digits using the following words: zero, one, two, three, four, five, six, seven,
eight, nine.

l expects the words spelling out an integer to be separated by at least one space.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 680 of 817

l rejects any row of data that cannot be completely parsed into integers.

l generates an error if the output table has a non-integer column.

The following example demonstrates loading the library and defining the NumericTextParser
function in the HP Vertica catalog, and then using the parser to interactively load data using the
COPY statement.

=> CREATE LIBRARY JavaLib AS '/home/dbadmin/JavaLib.jar' LANGUAGE 'JAVA';
CREATE LIBRARY

=> CREATE PARSER NumericTextParser AS LANGUAGE 'java'
-> NAME 'com.myCompany.UDParser.NumericTextParserFactory'
-> LIBRARY JavaLib;
CREATE PARSER FUNCTION
=> CREATE TABLE t (i INTEGER);
CREATE TABLE
=> COPY t FROM STDIN WITH PARSER NumericTextParser();
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> One
>> Two
>> One Two Three
>> \.
=> SELECT * FROM t ORDER BY i;

i

1
2

123
(3 rows)

=> DROP TABLE t;
DROP TABLE
=> -- Parse multi-column input
=> CREATE TABLE t (i INTEGER, j INTEGER);
CREATE TABLE
=> COPY t FROM stdin WITH PARSER NumericTextParser();
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> One | Two
>> Two | Three
>> One Two Three | four Five Six
>> \.
=> SELECT * FROM t ORDER BY i;

i | j
-----+-----

1 | 2
2 | 3

123 | 456
(3 rows)

=> TRUNCATE TABLE t;
TRUNCATE TABLE
=> -- Use alternate separator character
=> COPY t FROM STDIN WITH PARSER NumericTextParser(separator='*');

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 681 of 817

Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> Five * Six
>> seven * eight
>> nine * one zero
>> \.
=> SELECT * FROM t ORDER BY i;
i | j

---+----
5 | 6
7 | 8
9 | 10

(3 rows)

=> TRUNCATE TABLE t;
TRUNCATE TABLE

=> -- Rows containing data that does not parse into digits is rejected.
=> DROP TABLE t;
DROP TABLE
=> CREATE TABLE t (i INTEGER);
CREATE TABLE
=> COPY t FROM STDIN WITH PARSER NumericTextParser();
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> One Zero Zero
>> Two Zero Zero
>> Three Zed Zed
>> Four Zero Zero
>> Five Zed Zed
>> \.
SELECT * FROM t ORDER BY i;

i

100
200
400

(3 rows)

=> -- Generate an error by trying to copy into a table with a non-integer column
=> DROP TABLE t;
DROP TABLE
=> CREATE TABLE t (i INTEGER, j VARCHAR);
CREATE TABLE
=> COPY t FROM STDIN WITH PARSER NumericTextParser();
vsql:UDParse.sql:94: ERROR 3399: Failure in UDx RPC call
InvokeGetReturnTypeParser(): Error in User Defined Object [NumericTextParser],
error code: 0
com.vertica.sdk.UdfException: Column 2 of output table is not an Int

at com.myCompany.UDParser.NumericTextParserFactory.getParserReturnType
(NumericTextParserFactory.java:70)
at com.vertica.udxfence.UDxExecContext.getReturnTypeParser(
UDxExecContext.java:1464)
at com.vertica.udxfence.UDxExecContext.getReturnTypeParser(
UDxExecContext.java:768)
at com.vertica.udxfence.UDxExecContext.run(UDxExecContext.java:236)
at java.lang.Thread.run(Thread.java:662)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 682 of 817

Subclassing ParserFactory in Java
Your subclass of the HP Vertica SDK's ParserFactory class to is responsible for:

l performing the initial validation of the parameters in the function call your UDParser function.

l setting up any data structures your UDPaerser subclass instances need to perform their work.
This information can include any parameters passed by the user to the function.

l creating an instance of your UDParser subclass.

ParserFactory Methods

You can override the followingmethods in your subclass of ParserFactory:

l plan() - HP Vertica calls this method once on the initiator node. It should perform the following
tasks:

n Check any parameters that have been passed from the function call in the COPY statement
and provide a helpful error message if they have errors. You read the parameters by getting a
ParamReader object from the instance of ServerInterface passed into your plan()method.

n Store any information that the individual hosts need in order to parse the data. For example,
you could store parameters in the PlanContext instance passed in via the planCtxt
parameter. This object is the only means of communication between the plan()method
(which only runs on the initiator node) and the prepareUDSources() method (which runs on
each host reading from a data source).

You store data in the PlanContext by getting a ParamWriter object from the getWriter()
 method. You then write parameters by callingmethods on the ParamWriter such as
setString.

Note: ParamWriter only offers the ability to store simple data types. For complex types,
you will need to serialize the data in somemanner and store it as a string or long string.

l prepare() - instantiates amember of your UDFilter subclass to perform the data filtering.

l getParameterType() - defines the name and types of parameters that your function uses. HP
Vertica uses this information to warn function callers that any unknown parameters that they
provide will have no effect, or that parameters they did not provide will use default values. You
should define the types and parameters for your function, but overriding this method is optional.

l getParserReturnType() - defines the data types (and if applicable, the size, precision, or scale
of the data types) of the table columns that the parser will output. Usually, your implementation
of this method reads data types of the output table from the argType and
perColumnParamReader arguments, then verifies that it can output the appropriate data type. If
it is prepared to output the data types, it calls methods on the SizedColumnTypes object passed

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 683 of 817

in the returnType argument. In addition to the data type of the output column, your method
should also specify any additional information about the column's data type:

n For CHAR/VARCHAR types, specify its maximum length.

n For NUMERIC types, specify its precision and scale.

n For Time/Timestamp types (with or without time zone), specify its precision (-1means
unspecified).

n For all other types, no length/precision specification is required.

Example ParserFactory

The following example is a subclass of ParserFactory named NumericTextParserFactory. The
NumericTextParser accepts a single optional parameter named separator, which is defined in the
override of the getParameterType()method, and whose values is stored by the override of the
plan() method. Since NumericTextParser only outputs integer values, the override of the
getParserReturnType()method throws an exception if the output table contains a columnwhose
data type is not integer.

package com.myCompany.UDParser;

import java.util.regex.Pattern;

import com.vertica.sdk.ParamReader;
import com.vertica.sdk.ParamWriter;
import com.vertica.sdk.ParserFactory;
import com.vertica.sdk.PerColumnParamReader;
import com.vertica.sdk.PlanContext;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.SizedColumnTypes;
import com.vertica.sdk.UDParser;
import com.vertica.sdk.UdfException;
import com.vertica.sdk.VerticaType;

public class NumericTextParserFactory extends ParserFactory {

// Called once on the initiator host to check the parameters and set up the
// context data that hosts performing processing will need later.
@Override
public void plan(ServerInterface srvInterface,

PerColumnParamReader perColumnParamReader,
PlanContext planCtxt) {

String separator = "|"; // assume separator is pipe character

// See if a parameter was given for column separator
ParamReader args = srvInterface.getParamReader();
if (args.containsParameter("separator")) {

separator = args.getString("separator");
if (separator.length() > 1) {

throw new UdfException(0,

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 684 of 817

"Separator parameter must be a single character");
}
if (Pattern.quote(separator).matches("[a-zA-Z]")) {

throw new UdfException(0,
"Separator parameter cannot be a letter");

}
}

// Save separator character in the Plan Data
ParamWriter context = planCtxt.getWriter();
context.setString("separator", separator);

}

// Define the data types of the output table that the parser will return.
// Mainly, this just ensures that all of the columns in the table which
// is the target of the data load are integer.
@Override
public void getParserReturnType(ServerInterface srvInterface,

PerColumnParamReader perColumnParamReader,
PlanContext planCtxt,
SizedColumnTypes argTypes,
SizedColumnTypes returnType) {

// Get access to the output table's columns
for (int i = 0; i < argTypes.getColumnCount(); i++) {

if (argTypes.getColumnType(i).isInt()) {
// Column is integer... add it to the output
returnType.addInt(argTypes.getColumnName(i));

} else {
// Column isn't an int, so throw an exception.
// Technically, not necessary since the
// UDx framework will automatically error out when it sees a
// Discrepancy between the type in the target table and the
// types declared by this method. Throwing this exception will
// provide a clearer error message to the user.
String message = String.format(

"Column %d of output table is not an Int", i + 1);
throw new UdfException(0, message);

}
}

}

// Instantiate the UDParser subclass named NumericTextParser. Passes the
// separator characetr as a paramter to the constructor.
@Override
public UDParser prepare(ServerInterface srvInterface,

PerColumnParamReader perColumnParamReader, PlanContext planCtxt,
SizedColumnTypes returnType) throws UdfException {

// Get the separator character from the context
String separator = planCtxt.getReader().getString("separator");
return new NumericTextParser(separator);

}

// Describe the parameters accepted by this parser.
@Override
public void getParameterType(ServerInterface srvInterface,

SizedColumnTypes parameterTypes) {
parameterTypes.addVarchar(1, "separator");

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 685 of 817

}
}

Subclassing UDParser in Java
Your subclass of the UDParser class defines how your UDL Parser Function parses data. Its
process()method parses an input stream into rows and tuples that the COPY statement inserts
into an HP Vertica table. UDParser subclasses are typically used to parse data that is in a format
that the COPY statement's native parser cannot handle.

UDParser Methods

The UDParser class defines the followingmethods your subclass can override. It must override the
process() and getRejectedRow()methods.

l setup() - performs any initial setup tasks (such as retrieving parameters from the class context
structure or initializing data structures that will be used during filtering) that your class needs to
parse data. This method is called before HP Vertica calls the process() method for the first
time.

Note: UDParser objects must be restartable. Once an instance of your subclass finishes
parsing all of the data in a data source, Vertica Analytics Platform calls its destroy()
 method so it can deallocate any resources it allocated. If there are still data sources that
have not yet been processed, Vertica Analytics Platform may later call setup() on the
object again and have it parse the data in a new data stream. Therefore, your destroy()
 method should leave an object of your UDParser subclass in a state where the setup()
 method can prepare it to be reused.

l process() - performs the parsing of data. HP Vertica passes this method a buffer of data it must
parse into columns and rows. It must reject any data that it cannot parse, so that HP Vertica can
write the reason for the rejection and the rejected data to files.

The process()method needs to parse as much data as it can in the input buffer. There is no
guarantee that the buffer ends on a complete row, so it may have to stop parsing in themiddle of
a row and ask Vertica Analytics Platformmore data.

Once your parser has extracted a column value, it should write it to the output using themethods
on the StreamObject object available from the writer field. This field is set up automatically by
the UDParser constructor, so it is vital that if you create an override of the constructor that you
have it call super(). The StreamObject class has data type-specific methods to add data to the
parser's output stream.

When your parser finishes processing a row of data (usually by encountering an end of row
marker) it must call writer.next() to advance the output stream to a new row.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 686 of 817

When your process() method finishes the buffer, it should determine if it has processed the
entire input stream by checking the InputState object passed in the input_state parameter to
see if it indicates the input data stream has been full read. Your process() method's return
value tells HP Vertica its current state:

n INPUT_NEEDED means it the parser has reached the end of the buffer and needs more data
to parse.

n DONE means it has reached the end of the input data stream.

n REJECTmeans it has rejected the last row of data it read (see below).

l destroy() - frees up any resources reserved by the setup() or process()method. HP Vertica
calls this method after the process()method indicates it has completed parsing the data
source.

l getRejectedRecord() - returns information about the last rejected row of data. Usually, this
method just returns amember of the RejectedRecord class with details of the rejected row.

Rejecting Rows

If your parser finds data it cannot parse, it rejects the row by:

1. Saving details about the rejected row data and the reason for the rejection. These pieces of
information can be directly stored in a RejectedRecord object, or (as in the example shown
below) in fields on your UDParser subclass until they are needed.

2. Updating its position in the input buffer by updating input.offset buffer so it can resume
parsing after the rejected row.

3. Signaling that it has rejected a row by returning with the value StreamState.REJECT.

4. HP Vertica calls your UDParser subclass's getRejectedRecordmethod to get all of the
information it needs about the rejected row. Your override of this methodmust return an
instance of the RejectedRecord class with the details about the rejected row.

Example UDParser

The following example parses text strings representing integers as described in Java UDL Parser
Example Overview.

package com.myCompany.UDParser;

import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;

import com.vertica.sdk.DataBuffer;

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 687 of 817

import com.vertica.sdk.DestroyInvocation;
import com.vertica.sdk.RejectedRecord;
import com.vertica.sdk.ServerInterface;
import com.vertica.sdk.State.InputState;
import com.vertica.sdk.State.StreamState;
import com.vertica.sdk.StreamWriter;
import com.vertica.sdk.UDParser;
import com.vertica.sdk.UdfException;

public class NumericTextParser extends UDParser {

private String separator; // Holds column separator character

// List of strings that we accept as digits.
private List<String> numbers = Arrays.asList("zero", "one",

"two", "three", "four", "five", "six", "seven",
"eight", "nine");

// Hold information about the last rejected row.
private String rejectedReason;
private String rejectedRow;

// Constructor gets the separator character from the Factory's prepare()
// method.
public NumericTextParser(String sepparam) {

super();
this.separator = sepparam;

}

// Called to perform the actual work of parsing. Gets a buffer of bytes
// to turn into tuples.
@Override
public StreamState process(ServerInterface srvInterface, DataBuffer input,

InputState input_state) throws UdfException, DestroyInvocation {

int i=input.offset; // Current position in the input buffer
// Flag to indicate whether we just found the end of a row.
boolean lastCharNewline = false;
// Buffer to hold the row of data being read.
StringBuffer line = new StringBuffer();

//Continue reading until end of buffer.
for(; i < input.buf.length; i++){

// Loop through input until we find a linebreak: marks end of row
char inchar = (char) input.buf[i];
// Note that this isn't a robust way to find rows. It should
// accept a user-defined row separator. Also, the following
// assumes ASCII line break metheods, which isn't a good idea
// in the UTF world. But it is good enough for this simple example.
if (inchar != '\n' && inchar != '\r') {

// Keep adding to a line buffer until a full row of data is read
line.append(inchar);
lastCharNewline = false; // Last character not a new line

} else {
// Found a line break. Process the row.
lastCharNewline = true; // indicate we got a complete row
// Update the position in the input buffer. This is updated
// whether the row is successfully processed or not.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 688 of 817

input.offset = i+1;
// Call procesRow to extract values and write tuples to the
// output. Returns false if there was an error.
if (!processRow(line)) {

// Processing row failed. Save bad row to rejectedRow field
// and return to caller indicating a rejected row.
rejectedRow = line.toString();
// Update position where we processed the data.
return StreamState.REJECT;

}
line.delete(0, line.length()); // clear row buffer

}
}

// At this point, process() has finished processing the input buffer.
// There are two possibilities: need to get more data
// from the input stream to finish processing, or there is
// no more data to process. If at the end of the input stream and
// the row was not terminated by a linefeed, it may need
// to process the last row.

if (input_state == InputState.END_OF_FILE && lastCharNewline) {
// End of input and it ended on a newline. Nothing more to do
return StreamState.DONE;

} else if (input_state == InputState.END_OF_FILE && !lastCharNewline) {
// At end of input stream but didn't get a final newline. Need to
// process the final row that was read in, then exit for good.
if (line.length() == 0) {

// Nothing to process. Done parsing.
return StreamState.DONE;

}
// Need to parse the last row, not terminated by a linefeed. This
// can occur if the file being read didn't have a final line break.
if (processRow(line)) {

return StreamState.DONE;
} else {

// Processing last row failed. Save bad row to rejectedRow field
// and return to caller indicating a rejected row.
rejectedRow = line.toString();
// Tell HP Vertica the entire buffer was processed so it won't
// call again to have the line processed.
input.offset = input.buf.length;
return StreamState.REJECT;

}
} else {

// Stream is not fully read, so tell Vertica to send more. If
// process() didn't get a complete row before it hit the end of the
// input buffer, it will end up re-processing that segment again
// when more data is added to the buffer.
return StreamState.INPUT_NEEDED;

}
}

// Breaks a row into columns, then parses the content of the
// columns. Returns false if there was an error parsing the
// row, in which case it sets the rejected row to the input
// line. Returns true if the row was successfully read.
private boolean processRow(StringBuffer line)

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 689 of 817

throws UdfException, DestroyInvocation {
String[] columns = line.toString().split(Pattern.quote(separator));
// Loop through the columns, decoding their contents
for (int col = 0; col < columns.length; col++) {

// Call decodeColumn to extract value from this column
Integer colval = decodeColumn(columns[col]);
if (colval == null) {

// Could not parse one of the columns. Indicate row should
// be rejected.
return false;

}
// Column parsed OK. Write it to the output. writer is a field
// provided by the parent class. Since this parser only accepts
// integers, there is no need to verify that data type of the parsed
// data matches the data type of the column being written. In your
// UDParsers, you may want to perform this verification.
writer.setLong(col,colval);

}
// Done with the row of data. Advance output to next row.

// Note that this example does not verify that all of the output columns
// have values assigned to them. If there are missing values at the
// end of a row, they get automatically get assigned a default value
// (0 for integers). This isn't a robust solution. Your UDParser
// should perform checks here to handle this situation and set values
// (such as null) when appropriate.
writer.next();
return true; // Successfully processed the row.

}

// Gets a string with text numerals, i.e. "One Two Five Seven" and turns
// it into an integer value, i.e. 1257. Returns null if the string could not
// be parsed completely into numbers.
private Integer decodeColumn(String text) {

int value = 0; // Hold the value being parsed.

// Split string into individual words. Eat extra spaces.
String[] words = text.toLowerCase().trim().split("\\s+");

// Loop through the words, matching them against the list of
// digit strings.
for (int i = 0; i < words.length; i++) {

if (numbers.contains(words[i])) {
// Matched a digit. Add the it to the value.
int digit = numbers.indexOf(words[i]);
value = (value * 10) + digit;

} else {
// The string didn't match one of the accepted string values
// for digits. Need to reject the row. Set the rejected
// reason string here so it can be incorporated into the
// rejected reason object.
//
// Note that this example does not handle null column values.
// In most cases, you want to differentiate between an
// unparseable column value and a missing piece of input
// data. This example just rejects the row if there is a missing
// column value.
rejectedReason = String.format(

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 690 of 817

"Could not parse '%s' into a digit",words[i]);
return null;

}
}
return value;

}

// HP Vertica calls this method if the parser rejected a row of data
// to find out what went wrong and add to the proper logs. Just gathers
// information stored in fields and returns it in an object.
@Override
public RejectedRecord getRejectedRecord() throws UdfException {

return new RejectedRecord(rejectedReason,rejectedRow.toCharArray(),
rejectedRow.length(), "\n");

}
}

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 691 of 817

Updating UDx Libraries
There are two cases where you need to update libraries that you have already deployed:

l When you have upgraded HP Vertica to a new version that contains changes to the SDK API.
For your libraries to work with the new server version, you need to recompile them with new
version of the SDK. See UDx Library Compatibility with New Server Versions for more
information.

l When you havemade changes to your UDxs and you want to deploy these changes. Before
updating your UDx library, you need to determine if you have changed the signature of any of the
functions contained in the library. If you have, you need to drop the functions from the HP
Vertica catalog before you update the library.

UDx Library Compatibility with New Server Versions
When you compile your User Defined Extension (UDx) library, you link it with the HP Vertica SDK
version that accompanies the version of the HP Vertica server you have installed on your cluster.
When you upgrade your HP Vertica database to a new server version, the UDx libraries defined in
your HP Vertica catalogmay be incompatible with the new server if the HP Vertica SDK changed
between the two server versions. Libraries linked against an old version of the SDK do not work
with a server that uses a new version of the SDK.

Note: Since the R language is interpreted, UDFs written in R are not linked to the HP Vertica
SDK. Therefore, changes to the HP Vertica SDK between HP Vertica versions will not
necessarily make your R-based UDF libraries incompatible with a new server version. They
will only need to be updated if the APIs in the SDK that your UDFs call actually change (i.e.
change the number or data types of their arguments).

Changes to the SDK usually only take place betweenmajor version upgrades (from version 6.0 and
version 6.1, for example). Usually, there is no change to the SDK betweenminor server updates
(for example, from version 7.0..0 to 7.0..1).

Note: In rare cases, theremay be changes to the SDK betweenminor versions of the HP
Vertica server. You should review the HP Vertica release notes before performing an upgrade
to determine if your old UDx libraries will need to be recompiled to work with the new server
version.

If you upgrade your HP Vertica server to a new version and there was no change to the SDK
between the two versions of HP Vertica, your UDx libraries will continue to work without you having
to take any further steps. If the SDK of the new server version is incompatible with the old SDK,
you need to recompile and redeploy the UDx library before your extensions will work. In the
meantime, any attempt to use UDFs or UDLs defined in the incompatible library result in an error
message:

ERROR 2858: Could not find function definitionHINT:

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 692 of 817

This usually happens due to missing or corrupt libraries, libraries built
with the wrong SDK version, or due to a concurrent session dropping the library
or function. Try recreating the library and function

If your UDx library is incompatible with the new version of the HP Vertica server, youmust:

1. Recompile your UDx library using the new version of the HP Vertica SDK. See Compiling Your
C++ UDF for more information.

2. Deploy the new version of your library. See Deploying A New Version of Your UDx Library.

Determining If a UDF Signature Has Changed
You need to be careful whenmaking changes to UDF libraries that contain functions you have
already deployed in your HP Vertica database. When you deploy a new version of your UDF library,
HP Vertica does not ensure that the signatures of the functions that are defined in the library match
the signature of the function that is already defined in the HP Vertica catalog. If you have changed
the signature of a UDF in the library then update the library in the HP Vertica database, calls to the
altered UDF will produce errors.

Making any of the following changes to a UDF alters its signature:

l Changing the number of arguments accepted or the data type of any argument accepted by your
function (not including polymorphic functions).

l Changing the number or data types of any return values or output columns.

l Changing the name of the factory class that HP Vertica uses to create an instance of your
function code.

l Changing the null handling or volatility behavior of your function.

l Removed the function's factory class from the library completely.

The following changes do not alter the signature of your function, and do not require you to drop the
function before updating the library:

l Changing the number or type of arguments handled by a polymorphic function. HP Vertica does
not process the arguments the user passes to a polymorphic function.

l Changing the the name, data type, or number of parameters accepted by your function. The
parameters your function accepts are not determined by the function signature. Instead, HP
Vertica passes all of the parameters the user included in the function call, and your function
processes them at runtime. See UDF Parameters for more information about parameters.

l Changing any of the internal processing performed by your function.

l Adding new UDFs to the library.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 693 of 817

After you drop any functions whose signatures have changed, you load the new library file, then re-
create your altered functions. If you have not made any changes to the signature of your UDFs, you
can just update the library file in your HP Vertica database without having to drop or alter your
function definitions. As long as the UDF definitions in the HP Vertica catalogmatch the signatures
of the functions in your library, function calls will work transparently after you have updated the
library. See Deploying A New Version of Your UDx Library.

Deploying A New Version of Your UDx Library
You need to deploy a new version of your UDx library if:

l You havemade changes to the library that you now want to roll out to your HP Vertica database.

l You have upgraded your HP Vertica to a new version whose SDK is incompatible with the
previous version.

The process of deploying a new version of your library is similar to deploying it initially.

1. If you are deploying a UDx library developed in C++ or Java, youmust compile it with the
current version of the HP Vertica SDK. See Compiling Your C++ UDF for details.

2. Copy your UDx's library file (a .so file for libraries developed in C++, or a .jar file for libraries
developed in Java) or R source file to a host in your HP Vertica database.

3. Connect to the host using vsql.

4. If you have changed the signature of any of the UDFs or UDLs in the shared library, youmust
drop them using DROP statements such as DROP FUNCTION or DROP SOURCE. If you
are unsure whether any of the signatures of your functions have changed, see Determining If a
UDF Signature Has Changed.

Note: If all of the UDF or UDL signatures in your library have changed, youmay find it
more convenient to drop the library using the DROP LIBRARY statement with the
CASCADE option to drop the library and all of the functions and loaders that reference it.
This can save you the time it would take to drop each UDF or UDL individually. You can
then reload the library and recreate all of the extensions using the same process you used
to deploy the library in the first place. See CREATE LIBRARY in the SQLReference
Manual.

5. Use the ALTER LIBRARY statement to update the UDx library definition with the file you
copied in step 1. For example, if you want to update the library named ScalarFunctions with a
file named ScalarFunctions-2.0.so in the dbadmin user's home directory, you could use the
command:

ALTER LIBRARY ScalarFunctions AS '/home/dbadmin/ScalarFunctions-2.0.so';

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 694 of 817

Once you have updated the UDx library definition to use the new version of your shared library,
the UDFs and UDLs that are defined using classes in your UDx library begin using the new
shared library file without any further changes.

6. If you had to drop any functions in step 4, recreate them using the new signature defined by the
factory classes in your library. See CREATE FUNCTION Statements in the SQLReference
Manual.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 695 of 817

Listing the UDxs Contained in a Library
Once a library has been loaded using the CREATE LIBRARY statement, you can find the UDFs
and UDLs it contains by querying the USER_LIBRARY_MANIFEST system table:

=> CREATE LIBRARY ScalarFunctions AS '/home/dbadmin/ScalarFunctions.so';
CREATE LIBRARY
=> \x
Expanded display is on.
=> SELECT * FROM USER_LIBRARY_MANIFEST WHERE lib_name = 'ScalarFunctions';
-[RECORD 1]-------------------
schema_name | public
lib_name | ScalarFunctions
lib_oid | 45035996273792402
obj_name | RemoveSpaceFactory
obj_type | Scalar Function
arg_types | Varchar
return_type | Varchar
-[RECORD 2]-------------------
schema_name | public
lib_name | ScalarFunctions
lib_oid | 45035996273792402
obj_name | Div2intsInfo
obj_type | Scalar Function
arg_types | Integer, Integer
return_type | Integer
-[RECORD 3]-------------------
schema_name | public
lib_name | ScalarFunctions
lib_oid | 45035996273792402
obj_name | Add2intsInfo
obj_type | Scalar Function
arg_types | Integer, Integer
return_type | Integer

The obj_name column lists the factory classes contained in the library. These are the names you
use to define UDFs and UDLs in the database catalog using statements such as CREATE
FUNCTION and CREATE SOURCE.

HP Vertica Programmer's Guide
Developing and Using User Defined Extensions

HP Vertica Analytics Platform (7.0.x) Page 696 of 817

Appendix: Error Codes

SQLSTATEs and Error Codes
HP Vertica reports warnings and errors via two different mechanisms: SQLSTATEs and error
messages. SQLSTATEs are intended for use by client applications, such as those accessing HP
Vertica via ODBC or JDBC. Error messages are displayed to interactive users (for example, users
connected to HP Vertica through vsql) and written to error logs.

SQLSTATE
HP Vertica reports the success or failure of each statement it executes to client applications using
a five-character SQLSTATE value. Many of these values are defined by the SQL standard. Others
(identified by the letter "V" in their values) are HP Vertica-specific.

SQLSTATE values are grouped into classes which are defined by the first two characters in the
SQLSTATE value. The last three characters indicate a specific condition within a class. For
example, the SQLSTATE class 22 represents all data errors. The specific SQLSTATE value 22012
represents a division by zero error. SQLSTATE classes let an application that does not recognize a
specific SQLSTATE value to still get a general idea of the result.

Warning and Error Messages
Each error and warningmessage displayed to interactive users or written to a log file by HP Vertica
has its own numeric error code assigned to it. For example:

ERROR 3117: Division by zeroWARNING 4098: No projections found
ERROR 5617: Multiple WITH clauses not allowed

The error code number is not related to the SQLSTATE value. However, error and warning
messages do correspond to a specific SQLSTATE. They are just amore-specific human-readable
message compared to the SQLSTATE, which is mainly intended for client applications.

For example, all warningmessages displayed by HP Vertica correspond to the SQLSTATE class
01. The warningmessage "WARNING 3084: Design Workspace couldn't be dropped"
corresponds to the SQLSTATE value 01000 ERRCODE_WARNING.

Error codes do not change change between HP Vertica releases, but individual error and warning
messages may be added or removed in new releases. Your client application should not depend on
particular error code appearing from one release to the next. Instead, it should use the SQLSTATE
value to determine the result of executing a statement.

See the SQL State List for a list of all the SQLSTATE classes and values defined by HP Vertica.
This table also links to lists of error or warningmessages that are associated with each SQLSTATE
value.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 697 of 817

SQL State List
The following table lists the SQLSTATE classes and individual SQLSTATE codes.

SQLState Description Details

Class 00—Successful Completion

00000 ERRCODE_SUCCESSFUL_COMPLETION

Class 01—Warning

01000 ERRCODE_WARNING associated warning
messages

01003 ERRCODE_WARNING_NULL_VALUE_ELIMINATED_
IN_SET_FUNCTION

01004 ERRCODE_WARNING_STRING_DATA_RIGHT_
TRUNCATION

01006 ERRCODE_WARNING_PRIVILEGE_NOT_REVOKED associated warning
messages

01007 ERRCODE_WARNING_PRIVILEGE_NOT_GRANTED associated warning
messages

01008 ERRCODE_WARNING_PRIVILEGE_ALREADY_
GRANTED

01009 ERRCODE_WARNING_PRIVILEGE_ALREADY_
REVOKED

0100C ERRCODE_WARNING_DYNAMIC_RESULT_SETS_
RETURNED

01V01 ERRCODE_WARNING_DEPRECATED_FEATURE associated warning
messages

01V02 ERRCODE_WARNING_QUERY_RETRIED

Class 02—No Data

02000 ERRCODE_NO_DATA

02001 ERRCODE_NO_ADDITIONAL_DYNAMIC_RESULT_
SETS_RETURNED

Class 03—SQL Statement Not Yet Complete

03000 ERRCODE_SQL_STATEMENT_NOT_YET_COMPLETE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 698 of 817

SQLState Description Details

Class 08—Client Connection Exception

08000 ERRCODE_CONNECTION_EXCEPTION associated error
messages

08001 ERRCODE_SQLCLIENT_UNABLE_TO_ESTABLISH_
SQLCONNECTION

associated error
messages

08003 ERRCODE_CONNECTION_DOES_NOT_EXIST associated error
messages

08004 ERRCODE_SQLSERVER_REJECTED_
ESTABLISHMENT_OF_SQLCONNECTION

08006 ERRCODE_CONNECTION_FAILURE associated error
messages

08007 ERRCODE_TRANSACTION_RESOLUTION_UNKNOWN

08V01 ERRCODE_PROTOCOL_VIOLATION associated error
messages

Class 09—Triggered Action Exception

09000 ERRCODE_TRIGGERED_ACTION_EXCEPTION

Class 0A—Feature Not Supported

0A000 ERRCODE_FEATURE_NOT_SUPPORTED associated error
messages

Class 0B—Invalid Transaction Initiation

0B000 ERRCODE_INVALID_TRANSACTION_INITIATION associated error
messages

Class 0F—Locator Exception

0F000 ERRCODE_LOCATOR_EXCEPTION

0F001 ERRCODE_L_E_INVALID_SPECIFICATION

Class 0L—Invalid Grantor

0L000 ERRCODE_INVALID_GRANTOR

0LV01 ERRCODE_INVALID_GRANT_OPERATION associated error
messages

Class 0P—Invalid Role Specification

0P000 ERRCODE_INVALID_ROLE_SPECIFICATION

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 699 of 817

SQLState Description Details

Class 21—Cardinality Violation

21000 ERRCODE_CARDINALITY_VIOLATION

Class 22—Data Exception

22000 ERRCODE_DATA_EXCEPTION associated error
messages

22001 ERRCODE_STRING_DATA_RIGHT_TRUNCATION associated error
messages

22002 ERRCODE_NULL_VALUE_NO_INDICATOR_
PARAMETER

22003 ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE associated error
messages

22004 ERRCODE_NULL_VALUE_NOT_ALLOWED associated error
messages

22005 ERRCODE_ERROR_IN_ASSIGNMENT

22007 ERRCODE_INVALID_DATETIME_FORMAT associated error
messages

22008 ERRCODE_DATETIME_FIELD_OVERFLOW associated error
messages

22009 ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_
VALUE

associated error
messages

2200B ERRCODE_ESCAPE_CHARACTER_CONFLICT associated error
messages

2200C ERRCODE_INVALID_USE_OF_ESCAPE_CHARACTER

2200D ERRCODE_INVALID_ESCAPE_OCTET associated error
messages

2200F ERRCODE_ZERO_LENGTH_CHARACTER_STRING

2200G ERRCODE_MOST_SPECIFIC_TYPE_MISMATCH

22010 ERRCODE_INVALID_INDICATOR_PARAMETER_
VALUE

22011 ERRCODE_SUBSTRING_ERROR associated error
messages

22012 ERRCODE_DIVISION_BY_ZERO associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 700 of 817

SQLState Description Details

22015 ERRCODE_INTERVAL_FIELD_OVERFLOW associated error
messages

22018 ERRCODE_INVALID_CHARACTER_VALUE_FOR_
CAST

22019 ERRCODE_INVALID_ESCAPE_CHARACTER associated error
messages

2201B ERRCODE_INVALID_REGULAR_EXPRESSION associated error
messages

2201E ERRCODE_INVALID_ARGUMENT_FOR_LOG

2201F ERRCODE_INVALID_ARGUMENT_FOR_POWER_
FUNCTION

2201G ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_
BUCKET_FUNCTION

associated error
messages

22020 ERRCODE_INVALID_LIMIT_VALUE

22021 ERRCODE_CHARACTER_NOT_IN_REPERTOIRE associated error
messages

22022 ERRCODE_INDICATOR_OVERFLOW

22023 ERRCODE_INVALID_PARAMETER_VALUE associated error
messages

22024 ERRCODE_UNTERMINATED_C_STRING

22025 ERRCODE_INVALID_ESCAPE_SEQUENCE associated error
messages

22026 ERRCODE_STRING_DATA_LENGTH_MISMATCH

22027 ERRCODE_TRIM_ERROR

2202E ERRCODE_ARRAY_ELEMENT_ERROR

22906 ERRCODE_NONSTANDARD_USE_OF_ESCAPE_
CHARACTER

associated error
messages

22V01 ERRCODE_FLOATING_POINT_EXCEPTION

22V02 ERRCODE_INVALID_TEXT_REPRESENTATION associated error
messages

22V03 ERRCODE_INVALID_BINARY_REPRESENTATION associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 701 of 817

SQLState Description Details

22V04 ERRCODE_BAD_COPY_FILE_FORMAT associated error
messages

22V05 ERRCODE_UNTRANSLATABLE_CHARACTER

22V0B ERRCODE_ESCAPE_CHARACTER_ON_NOESCAPE associated error
messages

22V21 ERRCODE_INVALID_EPOCH associated error
messages

22V22 ERRCODE_PLPGSQL_ERROR

22V23 ERRCODE_RAISE_EXCEPTION associated error
messages

22V24 ERRCODE_COPY_PARSE_ERROR associated error
messages

Class 23—Integrity Constraint Violation

23000 ERRCODE_INTEGRITY_CONSTRAINT_VIOLATION

23001 ERRCODE_RESTRICT_VIOLATION

23502 ERRCODE_NOT_NULL_VIOLATION associated error
messages

23503 ERRCODE_FOREIGN_KEY_VIOLATION associated error
messages

23505 ERRCODE_UNIQUE_VIOLATION associated error
messages

23514 ERRCODE_CHECK_VIOLATION

Class 24—Invalid Cursor State

24000 ERRCODE_INVALID_CURSOR_STATE

Class 25—Invalid Transaction State

25000 ERRCODE_INVALID_TRANSACTION_STATE

25001 ERRCODE_ACTIVE_SQL_TRANSACTION

25002 ERRCODE_BRANCH_TRANSACTION_ALREADY_
ACTIVE

25003 ERRCODE_INAPPROPRIATE_ACCESS_MODE_FOR_
BRANCH_TRANSACTION

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 702 of 817

SQLState Description Details

25004 ERRCODE_INAPPROPRIATE_ISOLATION_LEVEL_
FOR_BRANCH_TRANSACTION

25005 ERRCODE_NO_ACTIVE_SQL_TRANSACTION_FOR_
BRANCH_TRANSACTION

25006 ERRCODE_READ_ONLY_SQL_TRANSACTION

25007 ERRCODE_SCHEMA_AND_DATA_STATEMENT_
MIXING_NOT_SUPPORTED

25008 ERRCODE_HELD_CURSOR_REQUIRES_SAME_
ISOLATION_LEVEL

25V01 ERRCODE_NO_ACTIVE_SQL_TRANSACTION associated error
messages

25V02 ERRCODE_IN_FAILED_SQL_TRANSACTION

Class 26—Invalid SQL Statement Name

26000 ERRCODE_INVALID_SQL_STATEMENT_NAME

Class 27—Triggered Data Change Violation

27000 ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION

Class 28—Invalid Authorization Specification

28000 ERRCODE_INVALID_AUTHORIZATION_
SPECIFICATION

associated error
messages

28001 ERRCODE_ACCOUNT_LOCKED

28002 ERRCODE_PASSWORD_EXPIRED

28003 ERRCODE_PASSWORD_IN_GRACE_PERIOD

Class 2B—Dependent Privilege Descriptors Still Exist

2B000 ERRCODE_DEPENDENT_PRIVILEGE_
DESCRIPTORS_STILL_EXIST

2BV01 ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST associated error
messages

Class 2D—Invalid Transaction Termination

2D000 ERRCODE_INVALID_TRANSACTION_TERMINATION

Class 2F—SQL Routine Exception

2F000 ERRCODE_SQL_ROUTINE_EXCEPTION

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 703 of 817

SQLState Description Details

2F002 ERRCODE_S_R_E_MODIFYING_SQL_DATA_NOT_
PERMITTED

2F003 ERRCODE_S_R_E_PROHIBITED_SQL_STATEMENT_
ATTEMPTED

2F004 ERRCODE_S_R_E_READING_SQL_DATA_NOT_
PERMITTED

2F005 ERRCODE_S_R_E_FUNCTION_EXECUTED_NO_
RETURN_STATEMENT

Class 34—Invalid Cursor Name

34000 ERRCODE_INVALID_CURSOR_NAME

Class 38—External Routine Exception

38000 ERRCODE_EXTERNAL_ROUTINE_EXCEPTION

38001 ERRCODE_E_R_E_CONTAINING_SQL_NOT_
PERMITTED

38002 ERRCODE_E_R_E_MODIFYING_SQL_DATA_NOT_
PERMITTED

38003 ERRCODE_E_R_E_PROHIBITED_SQL_STATEMENT_
ATTEMPTED

38004 ERRCODE_E_R_E_READING_SQL_DATA_NOT_
PERMITTED

Class 39—External Routine Invocation Exception

39000 ERRCODE_EXTERNAL_ROUTINE_INVOCATION_
EXCEPTION

39001 ERRCODE_E_R_I_E_INVALID_SQLSTATE_
RETURNED

39004 ERRCODE_E_R_I_E_NULL_VALUE_NOT_ALLOWED

39V01 ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_
VIOLATED

39V02 ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED

Class 3B—Savepoint Exception

3B000 ERRCODE_SAVEPOINT_EXCEPTION

3B001 ERRCODE_S_E_INVALID_SPECIFICATION

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 704 of 817

SQLState Description Details

Class 3D—Invalid Catalog Name

3D000 ERRCODE_INVALID_CATALOG_NAME

Class 3F—Invalid Schema Name

3F000 ERRCODE_INVALID_SCHEMA_NAME

Class 40—Transaction Rollback

40000 ERRCODE_TRANSACTION_ROLLBACK

40001 ERRCODE_T_R_SERIALIZATION_FAILURE

40002 ERRCODE_T_R_INTEGRITY_CONSTRAINT_
VIOLATION

40003 ERRCODE_T_R_STATEMENT_COMPLETION_
UNKNOWN

40V01 ERRCODE_T_R_DEADLOCK_DETECTED associated error
messages

Class 42—Syntax Error or Access Rule Violation

42000 ERRCODE_SYNTAX_ERROR_OR_ACCESS_RULE_
VIOLATION

42501 ERRCODE_INSUFFICIENT_PRIVILEGE associated error
messages

42601 ERRCODE_SYNTAX_ERROR associated error
messages

42602 ERRCODE_INVALID_NAME associated error
messages

42611 ERRCODE_INVALID_COLUMN_DEFINITION associated error
messages

42622 ERRCODE_NAME_TOO_LONG associated error
messages

42701 ERRCODE_DUPLICATE_COLUMN associated error
messages

42702 ERRCODE_AMBIGUOUS_COLUMN associated error
messages

42703 ERRCODE_UNDEFINED_COLUMN associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 705 of 817

SQLState Description Details

42704 ERRCODE_UNDEFINED_OBJECT associated error
messages

42710 ERRCODE_DUPLICATE_OBJECT associated error
messages

42712 ERRCODE_DUPLICATE_ALIAS associated error
messages

42723 ERRCODE_DUPLICATE_FUNCTION associated error
messages

42725 ERRCODE_AMBIGUOUS_FUNCTION associated error
messages

42803 ERRCODE_GROUPING_ERROR associated error
messages

42804 ERRCODE_DATATYPE_MISMATCH associated error
messages

42809 ERRCODE_WRONG_OBJECT_TYPE associated error
messages

42830 ERRCODE_INVALID_FOREIGN_KEY associated error
messages

42846 ERRCODE_CANNOT_COERCE associated error
messages

42883 ERRCODE_UNDEFINED_FUNCTION associated error
messages

42939 ERRCODE_RESERVED_NAME associated error
messages

42P20 ERRCODE_WINDOWING_ERROR associated error
messages

42V01 ERRCODE_UNDEFINED_TABLE associated error
messages

42V02 ERRCODE_UNDEFINED_PARAMETER associated error
messages

42V03 ERRCODE_DUPLICATE_CURSOR associated error
messages

42V04 ERRCODE_DUPLICATE_DATABASE associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 706 of 817

SQLState Description Details

42V05 ERRCODE_DUPLICATE_PSTATEMENT

42V06 ERRCODE_DUPLICATE_SCHEMA associated error
messages

42V07 ERRCODE_DUPLICATE_TABLE associated error
messages

42V08 ERRCODE_AMBIGUOUS_PARAMETER associated error
messages

42V09 ERRCODE_AMBIGUOUS_ALIAS associated error
messages

42V10 ERRCODE_INVALID_COLUMN_REFERENCE associated error
messages

42V11 ERRCODE_INVALID_CURSOR_DEFINITION associated error
messages

42V12 ERRCODE_INVALID_DATABASE_DEFINITION

42V13 ERRCODE_INVALID_FUNCTION_DEFINITION associated error
messages

42V14 ERRCODE_INVALID_PSTATEMENT_DEFINITION

42V15 ERRCODE_INVALID_SCHEMA_DEFINITION associated error
messages

42V16 ERRCODE_INVALID_TABLE_DEFINITION associated error
messages

42V17 ERRCODE_INVALID_OBJECT_DEFINITION associated error
messages

42V18 ERRCODE_INDETERMINATE_DATATYPE associated error
messages

42V21 ERRCODE_UNDEFINED_PROJECTION associated error
messages

42V22 ERRCODE_UNDEFINED_NODE

42V23 ERRCODE_UNDEFINED_PERMUTATION

42V24 ERRCODE_UNDEFINED_USER

42V25 ERRCODE_PATTERN_MATCH_ERROR associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 707 of 817

SQLState Description Details

42V26 ERRCODE_DUPLICATE_NODE associated error
messages

Class 44—WITH CHECK OPTION Violation

44000 ERRCODE_WITH_CHECK_OPTION_VIOLATION

Class 53—Insufficient Resources

53000 ERRCODE_INSUFFICIENT_RESOURCES associated error
messages

53100 ERRCODE_DISK_FULL associated error
messages

53200 ERRCODE_OUT_OF_MEMORY associated error
messages

53300 ERRCODE_TOO_MANY_CONNECTIONS

Class 54—Program Limit Exceeded

54000 ERRCODE_PROGRAM_LIMIT_EXCEEDED associated error
messages

54001 ERRCODE_STATEMENT_TOO_COMPLEX associated error
messages

54011 ERRCODE_TOO_MANY_COLUMNS associated error
messages

54023 ERRCODE_TOO_MANY_ARGUMENTS associated error
messages

Class 55—Object Not In Prerequisite State

55000 ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE associated error
messages

55006 ERRCODE_OBJECT_IN_USE associated error
messages

55V02 ERRCODE_CANT_CHANGE_RUNTIME_PARAM associated error
messages

55V03 ERRCODE_LOCK_NOT_AVAILABLE associated error
messages

55V04 ERRCODE_TM_MARKER_NOT_AVAILABLE associated error
messages

Class 57—Operator Intervention

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 708 of 817

SQLState Description Details

57000 ERRCODE_OPERATOR_INTERVENTION

57014 ERRCODE_QUERY_CANCELED associated error
messages

57015 ERRCODE_SLOW_DELETE associated error
messages

57V01 ERRCODE_ADMIN_SHUTDOWN associated error
messages

57V02 ERRCODE_CRASH_SHUTDOWN

57V03 ERRCODE_CANNOT_CONNECT_NOW associated error
messages

Class 58—System Error

58030 ERRCODE_IO_ERROR associated error
messages

58V01 ERRCODE_UNDEFINED_FILE associated error
messages

58V02 ERRCODE_DUPLICATE_FILE

Class V1—Vertica-specific multi-node errors class

V1001 ERRCODE_LOST_CONNECTIVITY associated error
messages

V1002 ERRCODE_K_SAFETY_VIOLATION associated error
messages

V1003 ERRCODE_CLUSTER_CHANGE associated error
messages

Class V2—Vertica-specific miscellaneous errors class

V2000 ERRCODE_AUTH_FAILED associated error
messages

V2001 ERRCODE_LICENSE_ISSUE associated error
messages

V2002 ERRCODE_MOVEOUT_ABORTED

Class VC—Configuration File Error

VC001 ERRCODE_CONFIG_FILE_ERROR associated error
messages

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 709 of 817

SQLState Description Details

VC002 ERRCODE_LOCK_FILE_EXISTS

Class VD—DB Designer errors

VD001 ERRCODE_DESIGNER_FUNCTION_ERROR associated error
messages

Class VP—User procedure errors

VP000 ERRCODE_USER_PROC_ERROR associated error
messages

VP001 ERRCODE_USER_PROC_EXEC_ERROR associated error
messages

Class VX—Internal Error

VX001 ERRCODE_INTERNAL_ERROR associated error
messages

VX002 ERRCODE_DATA_CORRUPTED associated error
messages

VX003 ERRCODE_INDEX_CORRUPTED associated error
messages

Warning Messages Associated with SQLSTATE
01000

This topic lists the warning associated with the SQLSTATE 01000.

SQLSTATE 01000 Description
ERRCODE_WARNING

Warning messages associated with this SQLState
WARNING 2021: string Directory for errors files was not created.

Unable to write errors for this instance of COPY command

WARNING 2022: string Directory for exceptions files was not created.
Unable to write errors for this instance of COPY command

WARNING 2023: string Directory for rejected data files was not created.
Unable to write errors for this instance of COPY command

WARNING 2362: Cannot begin transaction; transaction is already running

WARNING 3084: Design couldn't be dropped

WARNING 3152: Duplicate values in columns marked as UNIQUE will now be ignored for the remaind
er of your session or until reenable_duplicate_key_error() is called

WARNING 3372: Failed to disable profiling: string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 710 of 817

WARNING 3373: Failed to enable profiling: string

WARNING 3539: Incorrect results are possible. Please contact Vertica Support if unsure

WARNING 3791: Invalid view string: string

WARNING 4071: NO COMMIT option will be ignored for external table "string"

WARNING 4088: No new valid default roles specified. Retaining previous set of default roles fo
r user string

WARNING 4098: No projections found

WARNING 4102: No rows are inserted into table "string"."string" because ON COMMIT DELETE ROWS
is the default for create temporary table

WARNING 4116: No super projections created for table string.

WARNING 4246: Only GLOBAL scope is supported for clearing string profiles

WARNING 4463: Projection string is not up to date

WARNING 4468: Projection <string> is not available for query processing. Execute the select st
art_refresh() function to copy data into this projection.

The projection must have a sufficient number of buddy projections and all n
odes must be up before starting a refresh

WARNING 4792: Storage option "string" will be ignored for external table "string"

WARNING 4871: System view string for tuning rule string is currently invalid

WARNING 4873: System view for tuning rule string does not exist

WARNING 4996: This request may deadlock the system. Please report the details to technical su
pport

WARNING 5068: Total declared length of columns of one of the constraints exceeds the limit, tr
uncation may happen

WARNING 5119: UDx code didn't respond when Vertica tried to get function prototype for string
in library string: string

WARNING 5448: View string is currently invalid

WARNING 5451: Violations of some of foreign key constraints may not be reported because of no
privilege on the foreign tables

WARNING 5642: Projection string is not persistent or not up to date; it will not be copied

WARNING 5643: Projection string is prejoin projection; it will not be copied

WARNING 5717: No statistics has been exported. Either the DB is empty or you try to export an
external table or you do not have access to the available objects

WARNING 5724: Segmentation clause contains a string - data loads may be slowed significantly

WARNING 5727: Sort clause contains a string - data loads may be slowed significantly

WARNING 5741: View string depends on other relations

WARNING 5819: Design could not be reset

WARNING 5821: Detected keys sharing the same case-insensitive key name

WARNING 5860: Due to the data isolation of temp tables with an on-commit-delete-rows policy, t
he compute_flextable_keys() and compute_flextable_keys_and_build_view() functions cannot
access this table's data. The build_flextable_view() function can be used with a user-pro
vided keys table to create a view, but involves a DDL commit which will delete the table's
rows

WARNING 5873: Failed to add table string of hcatalog schema string to catalog: string

WARNING 5875: Failed to alter table string of hcatalog schema string to catalog: string

WARNING 5880: Failed to describe table string in hcatalog database string: string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 711 of 817

WARNING 5881: Failed to describe table string in schema string: HCatalog database string does
not exist

WARNING 5884: Failed to list hcatalog tables of hcatalog schema string: string

WARNING 5886: Failed to mirror table string in schema string: string

WARNING 5900: Files in the Vertica DFS are not rebalanced

WARNING 5909: Found and ignored keys with names longer than the maximum column-name length lim
it

WARNING 5912: HASH() arguments contain irregular expressions

WARNING 5917: Ignored some keys since the total key count exceeds the view column limit

WARNING 5922: Insufficient privileges to alter table string

WARNING 5923: Insufficient privileges to drop table string

WARNING 5991: Projection basename "string" hint was ignored. "string" is used as the basename

WARNING 5993: Projection is irregularly segmented by column

WARNING 6053: The view creation involved a DDL commit which deleted the table's rows

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Warning Messages Associated with SQLSTATE
01006

This topic lists the warning associated with the SQLSTATE 01006.

SQLSTATE 01006 Description
ERRCODE_WARNING_PRIVILEGE_NOT_REVOKED

Warning messages associated with this SQLState
WARNING 4925: The string "string" cannot be string string "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Warning Messages Associated with SQLSTATE
01007

This topic lists the warning associated with the SQLSTATE 01007.

SQLSTATE 01007 Description
ERRCODE_WARNING_PRIVILEGE_NOT_GRANTED

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 712 of 817

http://my.vertica.com/
http://my.vertica.com/

Warning messages associated with this SQLState
WARNING 5682: USAGE privilege on schema "string" also needs to be granted to "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Warning Messages Associated with SQLSTATE
01V01

This topic lists the warning associated with the SQLSTATE 01V01.

SQLSTATE 01V01 Description
ERRCODE_WARNING_DEPRECATED_FEATURE

Warning messages associated with this SQLState
WARNING 2693: Configuration parameter string has been deprecated; setting it has no effect

WARNING 4736: set_local_segment_threshold has been deprecated; setting it has no effect

WARNING 5669: The command has been deprecated

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 08000
This topic lists the error associated with the SQLSTATE 08000.

SQLSTATE 08000 Description
ERRCODE_CONNECTION_EXCEPTION

Error messages associated with this SQLState
ERROR 2029: string from stdin failed: string

ERROR 2708: Connection to database [string] is invalid

ERROR 2896: Could not receive data from server:string

ERROR 2908: Could not send data to server: string

ERROR 3276: Error while waiting on socket. value

ERROR 4342: Password encryption failed

ERROR 5197: Unknown authentication method (value) requested by server

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 713 of 817

http://my.vertica.com/
http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 08001
This topic lists the error associated with the SQLSTATE 08001.

SQLSTATE 08001 Description
ERRCODE_SQLCLIENT_UNABLE_TO_ESTABLISH_SQLCONNECTION

Error messages associated with this SQLState
ERROR 2322: Cancel() -- connect() failed:

ERROR 2324: Cancel() -- socket() failed:

ERROR 2823: Could not connect to server [string]: string
 Is the server running and accepting
 TCP/IP connections on port string?

ERROR 2824: Could not connect to server: string
 Is the server running on host [string] and accepting
 TCP/IP connections on port string?

ERROR 2839: Could not create socket: string

ERROR 2865: Could not get client address from socket: string

ERROR 2869: Could not get socket error status: string

ERROR 2912: Could not set socket to close-on-exec mode: string

ERROR 2913: Could not set socket to non-blocking mode: string

ERROR 2914: Could not set socket to TCP no delay mode: string

ERROR 2921: Could not translate host name "string" to address: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 08003
This topic lists the error associated with the SQLSTATE 08003.

SQLSTATE 08003 Description
ERRCODE_CONNECTION_DOES_NOT_EXIST

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 714 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 4717: Server closed the connection unexpectedly

 This probably means the server terminated abnormally
 before or while processing the request.

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 08006
This topic lists the error associated with the SQLSTATE 08006.

SQLSTATE 08006 Description
ERRCODE_CONNECTION_FAILURE

Error messages associated with this SQLState
ERROR 2323: Cancel() -- send() failed: string

ERROR 2606: Client failed when looking for pending signals

ERROR 2607: Client has disconnected

ERROR 4539: Received no response from stringstring

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 08V01
This topic lists the error associated with the SQLSTATE 08V01.

SQLSTATE 08V01 Description
ERRCODE_PROTOCOL_VIOLATION

Error messages associated with this SQLState
ERROR 2055: string Unexpected message type string reading from stdin

ERROR 2257: Bind message has value parameter formats but value parameters

ERROR 2258: Bind message has value result formats but query has value columns

ERROR 3334: Expected a RowDescription Message

ERROR 3335: Expected a SendExport Message

ERROR 3575: Insufficient data left in message

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 715 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 3631: Invalid CLOSE message subtype value

ERROR 3651: Invalid DESCRIBE message subtype value

ERROR 3699: Invalid message format

ERROR 3701: Invalid message type

ERROR 3702: Invalid message type value

ERROR 3755: Invalid string in message

ERROR 3887: Lost synchronization with server: length value

ERROR 4074: No data left in message

ERROR 4718: Server did not identify with a pid & key

ERROR 5181: Unexpected message type 0xhex value

ERROR 5208: Unknown message from server

ERROR 5872: Expected to flush an end-of-batch client message but received a message of type va
lue. Attempting to recover...

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 0A000
This topic lists the error associated with the SQLSTATE 0A000.

SQLSTATE 0A000 Description
ERRCODE_FEATURE_NOT_SUPPORTED

Error messages associated with this SQLState
ERROR 2009: string can not be used in function string

ERROR 2013: string clause is not supported for expressions

ERROR 2014: string Concatenated GZIP/BZIP is not supported with NATIVE/NATIVE VARCHAR formats

ERROR 2036: string is not a legal time unit

ERROR 2058: string VIEW is not supported

ERROR 2074: (OEE) External Tables not supported in this context

ERROR 2089: A correlated column in a subquery expression is not supported

ERROR 2114: ADD COLUMN over temporary tables is not supported

ERROR 2130: Aggregate function string (value) is not supported

ERROR 2133: Aggregate function calls cannot contain subqueries

ERROR 2138: Aggregate functions can only be called on columns of a table

ERROR 2161: ALL subquery with a correlated expression is not supported

ERROR 2165: ALTER COLUMN TYPE over temporary tables is not supported

ERROR 2166: ALTER TABLE does not support ADD COLUMN with other clauses

ERROR 2167: ALTER TABLE does not support ALTER COLUMN TYPE with other clauses

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 716 of 817

http://my.vertica.com/

ERROR 2168: ALTER TABLE does not support DROP COLUMN with other clauses

ERROR 2169: ALTER TABLE does not support SET SCHEMA with other clauses

ERROR 2178: An expression containing a correlated subquery with aggregate function is not supp
orted

ERROR 2183: Analytic functions are not allowed in an ORDER BY on a UNION/INTERSECT/EXCEPT

ERROR 2184: Analytic functions are not supported in the ORDER BY of an analytic function OVER
clause

ERROR 2190: Analytics query with having clause expression that involves aggregates and subquer
y is not supported

ERROR 2192: ANALYZE_CONSTRAINTS is currently not supported in non-default locales

ERROR 2208: Another Design/Deployment is in progress

ERROR 2210: ANTI join with segmented inner not supported

ERROR 2220: Argument string must not contain subqueries

ERROR 2226: Argument to seeded random_must be a constant

ERROR 2233: Array References are not supported

ERROR 2235: ArrayExpr is not supported

ERROR 2329: Cannot accept a value of type any

ERROR 2330: Cannot accept a value of type anyarray

ERROR 2331: Cannot accept a value of type anyelement

ERROR 2332: Cannot accept a value of type internal

ERROR 2333: Cannot accept a value of type language_handler

ERROR 2334: Cannot accept a value of type opaque

ERROR 2335: Cannot accept a value of type trigger

ERROR 2340: Cannot add IDENTITY/AUTO-INCREMENT columns

ERROR 2345: Cannot alter a column's default when a node is down

ERROR 2350: Cannot alter type of column "string" since it is referenced in the constraint "str
ing"

ERROR 2351: Cannot alter type of column "string" since it is referenced in the default express
ion of column "string"

ERROR 2352: Cannot alter type of column "string" since it is referenced in the partition expre
ssion

ERROR 2353: Cannot alter type of column "string" since it is referenced in the segmentation ex
pression of projection "string"

ERROR 2354: Cannot alter type of column with a default expression

ERROR 2360: Cannot assign to system column "string"

ERROR 2363: Cannot broadcast non-subquery outer input to a join

ERROR 2368: Cannot change owner of temporary table

ERROR 2377: Cannot convert column "string" from "string" to type "string"

ERROR 2392: Cannot delete from a view

ERROR 2399: Cannot display a value of type any

ERROR 2400: Cannot display a value of type anyelement

ERROR 2401: Cannot display a value of type internal

ERROR 2402: Cannot display a value of type language_handler

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 717 of 817

ERROR 2403: Cannot display a value of type opaque

ERROR 2404: Cannot display a value of type trigger

ERROR 2407: Cannot drop a table column when a node is down

ERROR 2411: Cannot drop column "string" since it is referenced in the partition expression

ERROR 2412: Cannot drop column "string" since it is referenced in the primary key constraint

ERROR 2425: Cannot export virtual string string

ERROR 2443: Cannot insert into a view

ERROR 2458: Cannot mergeout uncommitted data in the presence of savepoints

ERROR 2461: Cannot moveout uncommitted data in the presence of savepoints

ERROR 2503: Cannot set a subfield to DEFAULT

ERROR 2504: Cannot set an array element to DEFAULT

ERROR 2532: Cannot update a view

ERROR 2533: Cannot Update/Merge with Limit clause without an Order By on all columns

ERROR 2546: Cannot use aggregate functions in default expressions

ERROR 2547: Cannot use analytic or time series aggregate functions in default expressions

ERROR 2549: Cannot use DISTINCT with user-defined transform functions

ERROR 2552: Cannot use meta function or non-deterministic function in PARTITION BY expression

ERROR 2556: Cannot use SAVEPOINT with uncommitted tuple mover enabled

ERROR 2557: Cannot use subqueries in default expressions

ERROR 2558: Cannot use subquery in EXECUTE parameter

ERROR 2559: Cannot use subquery in expressions within COPY

ERROR 2560: Cannot use subquery in PARTITION BY expression

ERROR 2561: Cannot use subquery in SEGMENTED BY expression

ERROR 2562: Cannot use Vertica's built-in file source and a UDSource in the same query

ERROR 2569: Catalog object string does not exist

ERROR 2602: Clause "NO PROJECTION" conflicts with the column list

ERROR 2603: Clause "NO PROJECTION" is supported only on temporary tables

ERROR 2618: CoerceToDomain is not supported

ERROR 2619: CoerceToDomainValue is not supported

ERROR 2628: Column "string" in PARTITION BY expression is not allowed, since it contains NULL
values

ERROR 2646: Column string has the NOT NULL constraint set and has no default value defined

ERROR 2648: Column string in PARTITION BY expression is not allowed, since it is not present i
n some projections

ERROR 2649: Column string in PARTITION BY expression is not allowed, since it may contain NULL
values

ERROR 2652: Column string occurred multiple times in the definition of Projection string

ERROR 2660: Column column string is no longer at position value in table string

ERROR 2667: Column name list is not allowed in CREATE TABLE / AS EXECUTE

ERROR 2672: Column type int2 is not supported

ERROR 2673: Column type int4 is not supported

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 718 of 817

ERROR 2676: Command string is not supported

ERROR 2679: COMMENT not supported for system objects

ERROR 2680: COMMENT not supported for this object type

ERROR 2692: Conditional UNION/INTERSECT/EXCEPT statements are not implemented

ERROR 2698: Conflicting or redundant column options

ERROR 2721: ConvertRowtypeExpr is not supported

ERROR 2725: Copy cannot return rejected rows from executor nodes

ERROR 2726: Copy cannot return rejected rows from more than one file

ERROR 2739: COPY force not null is available only in CSV mode, but CSV mode is not supported

ERROR 2740: COPY force quote is available only in CSV mode, but CSV mode is not supported

ERROR 2741: COPY FROM does not support the BINARY option

ERROR 2742: COPY FROM does not support the CSV option

ERROR 2743: COPY FROM does not support the OIDS option

ERROR 2744: COPY LOCAL does not support rejected row numbers with exceptions or rejected data
options

ERROR 2751: COPY quote is available only in CSV mode, but CSV mode is not supported

ERROR 2770: Correlated EXISTS/NOT EXISTS subquery containing having clause with aggregates is
not supported

ERROR 2772: Correlated EXISTS/NOT EXISTS subquery with limit 0 is not supported

ERROR 2773: Correlated EXISTS/NOT EXISTS with aggregate COUNT is not supported

ERROR 2776: Correlated EXISTS/NOT EXISTS with User Defined Aggregate is not supported

ERROR 2777: Correlated expression in ON clause is not supported

ERROR 2778: Correlated expression in set operator subquery is not supported

ERROR 2779: Correlated expressions in SELECT list of subquery are not supported

ERROR 2780: Correlated subqueries cannot have more than one level

ERROR 2781: Correlated subqueries with analytics in the select list is not supported

ERROR 2782: Correlated subqueries with no group by and a non-strict expression containing an a
ggregate in the select list is not supported

ERROR 2783: Correlated subquery column in select/gby/oby not supported

ERROR 2784: Correlated subquery could not be flattened as a join

ERROR 2785: Correlated subquery could not get flattened, a correlated expression could not be
treated as a join

ERROR 2786: Correlated subquery expression without aggregates and with limit is not supported

ERROR 2787: Correlated subquery expressions under OR not supported

ERROR 2788: Correlated subquery in expression with operator <> is not supported

ERROR 2790: Correlated subquery with aggregate and limit 0 is not supported

ERROR 2792: Correlated subquery with aggregate function COUNT is not supported

ERROR 2793: Correlated subquery with distinct/group by is not supported

ERROR 2794: Correlated subquery with having clause expression that involves aggregates and sub
query is not supported

ERROR 2795: Correlated subquery with NOT IN is not supported

ERROR 2796: Correlated subquery with outer joins and uncorrelated exists is not supported

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 719 of 817

ERROR 2797: Correlated subquery with User Defined Aggregate is not supported

ERROR 2854: Could not find array type for data type string

ERROR 2856: Could not find column string in table string

ERROR 2942: CREATE ASSERTION is not supported

ERROR 2943: CREATE FUNCTION / INOUT parameters are not supported

ERROR 2944: CREATE FUNCTION / OUT parameters are not supported

ERROR 2980: Data type not supported

ERROR 2981: Data type not supported (value)

ERROR 2983: Database "string" does not exist

ERROR 2987: Database references are not supported: "string.string.string"

ERROR 3019: Default expressions may not refer to other columns with default expressions

ERROR 3020: Default expressions must not return a set

ERROR 3026: Defining query must have a from clause

ERROR 3115: DistinctExpr not supported

ERROR 3116: Distrib overrides are too restrictive. Can not find completed Join Order

ERROR 3118: DML on projection/view is not supported

ERROR 3119: DML query with a predicate that could not be pushed below joins and does not refer
solely to the target table is not supported

ERROR 3123: DROP ASSERTION is not supported

ERROR 3126: DROP COLUMN over temporary tables is not supported

ERROR 3132: DROP SEQUENCE does not support CASCADE

ERROR 3135: drop_location for DATA locations is not supported

ERROR 3141: Dropping local and global objects in one statement is not supported

ERROR 3157: Dynamic load not supported

ERROR 3163: Embedded SQL involving local objects is not supported

ERROR 3174: ENCODED BY is supported in CREATE TABLE ... AS SELECT statement only

ERROR 3246: Error parsing distrib overrides (unexpected end of override); string

ERROR 3247: Error parsing distrib value; string

ERROR 3291: Event ANY_ROW is not supported

ERROR 3317: Executing when OPT:PLAN_ALL_NODES_ACTIVE option is set

ERROR 3343: Explicit JOIN clause contains a join predicate between relations previously joined

ERROR 3351: Expressions in COPY may not contain aggregate functions

ERROR 3352: Expressions in COPY may not contain analytic or Time Series Aggregate Functions

ERROR 3353: Expressions not supported in Times Series Aggregate Function

ERROR 3357: External tables only support files or a User Defined Source

ERROR 3403: FieldSelect is not supported

ERROR 3404: FieldStore is not supported

ERROR 3417: Final phase output size mismatch

ERROR 3420: First argument of date_part must be a constant string

ERROR 3434: For INSERT SELECT statement, replicated/broadcasted source data not supported

ERROR 3436: For SELECT DISTINCT, ORDER BY expressions must appear in the SELECT clause

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 720 of 817

ERROR 3451: Function string can't be used as a case expression

ERROR 3452: Function string can't be used in a boolean

ERROR 3453: Function string can't be used in a WHEN clause

ERROR 3454: Function string can't be used in as a segment expression

ERROR 3455: Function string can't be used with an operator

ERROR 3488: Group By, Order By, Aggregates, Having & limits not allowed in update/delete

ERROR 3510: IGNORE NULLS argument must be a Boolean constant

ERROR 3553: INHERITS not supported

ERROR 3566: Input of anonymous composite types is not implemented

ERROR 3600: Interpolated predicates can accept arguments of the same type only

ERROR 3601: Interpolated predicates can be part of AND expressions only

ERROR 3613: Interval units "string" not supported

ERROR 3821: Joins with an interpolated predicate can have a conjunctive expression containing
equality predicates. The equality predicates cannot have expressions or column references
with different modifiers

ERROR 3822: Joins with an interpolated predicate cannot have expressions or column references
with different modifiers in any of the expressions

ERROR 3857: Library built with unsupported version of Vertica SDK [Version: string, Revision:
string]

ERROR 3859: Library file [string] is not valid for language [string]

ERROR 3876: Locale must be a constant

ERROR 3900: MATCH PARTIAL is not supported

ERROR 3972: Multi-column subquery expressions can only be used with the =, <=> and <> operator
s

ERROR 3973: Multi-column subquery type ALL can only be used with the = and <=> operators

ERROR 3974: Multi-column subquery type ANY can only be used with the =, <=> and <> operators

ERROR 4106: No single-source bulk loads have been executed in this session

ERROR 4147: Node issuing the query cannot be marked as down

ERROR 4160: Non-equality correlated subquery expression is not supported

ERROR 4170: Not a Star or Snow-Flake Query block

ERROR 4171: Not a Star or Snow-Flake Query block; dimension table not a star or snowflake

ERROR 4172: Not a Star or Snow-Flake Query block; no fact table found

ERROR 4173: Not a Star or Snow-Flake Query block; there are multiple fact tables

ERROR 4197: NULL value found in a column used by a subquery

ERROR 4228: ON COMMIT DROP not supported in CREATE TABLE

ERROR 4238: Only a temporary table projection can be pinned

ERROR 4248: Only inner joins are allowed in the projection defining query

ERROR 4256: Only relations and subqueries are allowed in the FROM clause

ERROR 4258: Only super user can call export_catalog with an output file name

ERROR 4259: Only super user can get the rebalance data script

ERROR 4263: Only superuser can drop system schema

ERROR 4264: Only superuser can rebalance data

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 721 of 817

ERROR 4265: Only superuser can rebalance data for replicated projections

ERROR 4266: Only superuser can rebalance data for segmented projections

ERROR 4280: Operator string (value) is not supported

ERROR 4281: Operator string is not supported for row expressions

ERROR 4298: ORDER BY on a UNION/INTERSECT/EXCEPT result must be on one of the result columns

ERROR 4299: ORDER mode not supported

ERROR 4306: OUTER join with broadcasted outer data not supported

ERROR 4307: OUTER or SEMI join - done through CROSS join and FILTER - with replicated outer an
d segmented inner not supported

ERROR 4308: OUTER relation in OUTER join is not the fact table nor a snowflake dimension table

ERROR 4309: Outer replicated/segmented input to a join cannot be resegmented

ERROR 4310: LEFTOUTER/SEMI/ANTI join with replicated/broadcasted outer data not supported

ERROR 4329: Partition Auto cannot be used with pattern matching

ERROR 4331: PARTITION BY expression cannot return a tuple

ERROR 4332: PARTITION BY expression has an unknown type

ERROR 4333: PARTITION BY expression may not contain aggregate functions

ERROR 4335: Partitioning expression not supported for temporary tables

ERROR 4336: Partitioning not supported for temporary tables

ERROR 4352: Pattern "E" is not supported

ERROR 4375: PINNED clause conflicts with KSAFE setting

ERROR 4376: PINNED clause is not supported in CREATE TABLE statement

ERROR 4412: Prepared statements are currently unsupported

ERROR 4465: Projection string of local temporary table cannot be created under user schema str
ing

ERROR 4471: Projection choices are too restrictive - cannot create correct join between tables

ERROR 4486: Projections are always created and persisted in the default Vertica locale. The cu
rrent locale is string

ERROR 4502: Query Repository has been deprecated

ERROR 4584: RENAME COLUMN over temporary tables is not supported

ERROR 4586: replicate_catalog has been shut off

ERROR 4628: Row Expressions are not supported in this context

ERROR 4631: ROW syntax is not supported

ERROR 4644: Scalar array expression cannot contain column references or subqueries

ERROR 4645: Scalar array op string (value) is not supported

ERROR 4664: Segmentation clause can not have offset in CREATE TABLE statement

ERROR 4665: Segmentation clause with offset conflicts with KSAFE setting

ERROR 4666: Segmentation expression must have integer type

ERROR 4671: SELECT FOR UPDATE cannot be applied to a function

ERROR 4672: SELECT FOR UPDATE cannot be applied to a join

ERROR 4673: SELECT FOR UPDATE cannot be applied to NEW or OLD

ERROR 4674: SELECT FOR UPDATE is not allowed with EXTERNAL TABLES

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 722 of 817

ERROR 4675: SELECT FOR UPDATE is not allowed with libraries

ERROR 4676: SELECT FOR UPDATE is not allowed with sequences

ERROR 4677: SELECT FOR UPDATE is not allowed with UNION/INTERSECT/EXCEPT

ERROR 4678: SELECT FOR UPDATE is not allowed with views

ERROR 4680: Self joins in UPDATE statements are not allowed

ERROR 4703: Sequence cannot be moved between system schema and user schema

ERROR 4711: Sequence or IDENTITY/AUTO_INCREMENT column in merge query is not supported

ERROR 4714: Sequences are not allowed in default expressions of local temp tables

ERROR 4715: Sequences cannot be called in views

ERROR 4716: Sequences cannot be created under system schemas

ERROR 4728: Set Operator string ALL not supported

ERROR 4730: Set Operator queries without a FROM clause are not supported

ERROR 4733: SET SCHEMA over temporary tables is not supported

ERROR 4735: Set-valued function called in context that cannot accept a set

ERROR 4747: SetToDefault is not supported

ERROR 4786: Statement string is not supported

ERROR 4808: Subqueries are not supported as the left hand argument to another subquery

ERROR 4809: Subqueries are not supported in the ORDER BY of a timeseries OVER clause

ERROR 4810: Subqueries are not supported in the ORDER BY of an analytic function OVER clause

ERROR 4812: Subqueries are not supported in the PARTITION BY of an analytic function OVER clau
se

ERROR 4816: Subqueries in the ON clause are not supported

ERROR 4817: Subqueries in the SELECT or ORDER BY are not supported if the query has aggregates
and the subquery is not part of the GROUP BY

ERROR 4818: Subqueries in the SELECT or ORDER BY are not supported if the subquery is not part
of the GROUP BY

ERROR 4820: Subqueries in UPDATE/DELETE/MERGE is not supported

ERROR 4821: Subqueries not allowed in target of insert

ERROR 4822: Subqueries referring to no outer columns in HAVING clause when query has aggregate
s and no GROUP BY are not supported

ERROR 4824: Subquery aggregate expression that refers a correlated column is not supported

ERROR 4839: Subquery type ARRAY is not supported

ERROR 4842: Subquery without a from clause is not supported

ERROR 4850: Support for UPDATE/DELETE/MERGE is not enabled

ERROR 4854: SyncMarkers are not supported

ERROR 4865: System table string cannot be created under user schema string

ERROR 4869: System view "string" cannot be dropped

ERROR 4870: System view string cannot be created under user schema string

ERROR 4884: Table string cannot be created under system schema string

ERROR 4897: Table cannot be moved between system schema and user schema

ERROR 4910: Table revalidation error

ERROR 4918: Temporary Sequences are not supported

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 723 of 817

ERROR 4933: The argument types in a subquery expression in the where/having clause do not matc
h

ERROR 4938: The constant value following the LIMIT clause cannot be negative

ERROR 4939: The constant value following the OFFSET clause cannot be negative

ERROR 4948: The fourth input argument of TIME_SLICE must be START or END

ERROR 4960: The ORDER BY ... USING clause is not supported

ERROR 4966: The second parameter of export_catalog is invalid: string

ERROR 4968: The slice length parameter of TIME_SLICE must be a positive integer

ERROR 5005: Time Series Aggregate Function with interpolation scheme LINEAR may only have an I
NTEGER or FLOAT type as its first argument

ERROR 5016: Time units "string" not supported

ERROR 5023: Timeseries output functions are not supported in the ORDER BY of a timeseries OVER
clause

ERROR 5028: Timestamp units "string" not supported

ERROR 5110: Type string (value) is not supported

ERROR 5159: Uncorrelated EXISTS subqueries are not supported when the query has both HAVING cl
ause subqueries involving aggregates and when the query has either OUTER JOINS or NOT IN
subqueries

ERROR 5160: Uncorrelated EXISTS subqueries in HAVING clause when query has aggregates and no G
ROUP BY are not supported

ERROR 5195: UNIQUE predicate is not supported

ERROR 5262: Unsafe use of string constant with Unicode escapes

ERROR 5264: Unsupported access to session-scoped (LOCAL) object

ERROR 5270: Unsupported COPY command clause

ERROR 5275: Unsupported Join in From clause

ERROR 5276: Unsupported Join in From clause: FULL OUTER JOINS not supported

ERROR 5278: Unsupported join of two non-alike segmented projections

ERROR 5280: Unsupported mix of Joins

ERROR 5284: Unsupported query syntax

ERROR 5289: Unsupported subquery expression

ERROR 5291: Unsupported use of aggregates

ERROR 5292: Unsupported use of cursors

ERROR 5293: Unsupported use of DISTINCT clause

ERROR 5294: Unsupported use of FROM clause

ERROR 5295: Unsupported use of GROUP BY or DISTINCT clause

ERROR 5296: Unsupported use of HAVING clause

ERROR 5297: Unsupported use of LIMIT/OFFSET clause

ERROR 5298: Unsupported use of ORDER BY clause

ERROR 5299: Unsupported use of outer joins

ERROR 5300: Unsupported use of query/subquery without FROM clause

ERROR 5301: Unsupported use of sub-queries

ERROR 5302: Unsupported use of target relation

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 724 of 817

ERROR 5303: Unsupported use of UDF in WHERE clause

ERROR 5304: Unsupported use of UNION/INTERSECT/EXCEPT

ERROR 5313: Update is disallowed on Primary/Foreign Keys columns. Use Delete followed by Inser
t instead

ERROR 5314: UPDATE may not refer to tables in prejoin projections

ERROR 5366: User defined aggregate cannot be used in query with other distinct aggregates

ERROR 5388: User has insufficient privilege on string string

ERROR 5392: User must have the DBDUSER role to run the database designer

ERROR 5396: User projection string cannot be created under system schema string

ERROR 5402: User-defined transform functions are not supported in the ORDER BY clause

ERROR 5407: VALINDEX column must be the first column in ORDER BY list

ERROR 5426: Vertica currently allows a maximum of value physical storage containers per projec
tion

ERROR 5427: Vertica does not support GRANT / REVOKE ON LANGUAGE

ERROR 5428: Vertica does not support GRANT / REVOKE ON TABLESPACE

ERROR 5447: View string cannot be created under system schema string

ERROR 5456: Volatile functions may not be used in fillers when other computed columns refer to
them

ERROR 5465: Window frame exclusion is not supported

ERROR 5530: Audit of external tables is not supported

ERROR 5537: Cannot alter user-defined type "string" of column "string"

ERROR 5550: COPY from UDSource does not support rejected row numbers with exceptions or reject
ed data options

ERROR 5551: COPY LOCAL cannot process more than ONE NATIVE or NATIVE VARCHAR file at a time

ERROR 5562: Creating temp tables by LIKE clause is not supported

ERROR 5595: Invalid argument type string in function string

ERROR 5607: Language of replacement library [string] must match language of existing library
[string]

ERROR 5681: Unsupported base type string for User-defined type string

ERROR 5698: Cannot export statistics for the specified object

ERROR 5725: Size specification not supported for User Defined Type string

ERROR 5731: The second parameter must be a table/projection/column name

ERROR 5758: Can not drop Filesystem proc string

ERROR 5759: Can not drop library "string": referenced by storage locations

ERROR 5763: Can't create a managed external table with non-file sources

ERROR 5764: Cannot alter the data type of a table column when a node is down

ERROR 5781: Cannot use meta function or non-deterministic function in SEGMENTED BY expression

ERROR 5859: Due to the data isolation of temp tables with an on-commit-delete-rows policy, the
compute_flextable_keys() and compute_flextable_keys_and_build_view() functions cannot acc
ess this table's data

ERROR 5864: Error parsing table (invalid table): string

ERROR 5914: HCatalog schema string not permitted in search path

ERROR 5990: Projection string cannot be created under hcatalog schema string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 725 of 817

ERROR 5992: Projection cannot be created for HCatalog table string

ERROR 6005: Remote table string.string found in design query

ERROR 6019: Sequence string cannot be created under hcatalog schema string

ERROR 6020: Sequence string cannot be moved between system schema and hcatalog schema string

ERROR 6023: Setting the CPU affinity of the built-in pool "string" is not supported

ERROR 6038: Table string cannot be created under hcatalog schema string

ERROR 6039: Table string cannot be moved under hcatalog schema string

ERROR 6092: Unsupported access to flex table: No string support

ERROR 6108: View string cannot be created under hcatalog schema string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 0B000
This topic lists the error associated with the SQLSTATE 0B000.

SQLSTATE 0B000 Description
ERRCODE_INVALID_TRANSACTION_INITIATION

Error messages associated with this SQLState
ERROR 2321: Can't start a Transaction in this context

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 0LV01
This topic lists the error associated with the SQLSTATE 0LV01.

SQLSTATE 0LV01 Description
ERRCODE_INVALID_GRANT_OPERATION

Error messages associated with this SQLState
ERROR 2120: Admin option for a role cannot be granted to string"public"

ERROR 2601: Circular assignation of roles is not allowed

ERROR 3484: Grant option for a privilege cannot be granted to "public"

ERROR 3485: Grant option for a privilege cannot be granted to (and thus revoked from) "public"

ERROR 3486: Grant options cannot be granted back to your own grantor

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 726 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 3616: Invalid string statement

ERROR 3719: Invalid option specified for string statement

ERROR 3723: Invalid privilege type "string"

ERROR 3724: Invalid privilege type string for aggregate function

ERROR 3725: Invalid privilege type string for analytic function

ERROR 3726: Invalid privilege type string for database

ERROR 3727: Invalid privilege type string for function

ERROR 3728: Invalid privilege type string for library

ERROR 3729: Invalid privilege type string for procedure

ERROR 3730: Invalid privilege type string for relation

ERROR 3731: Invalid privilege type string for resource pool

ERROR 3732: Invalid privilege type string for schema

ERROR 3733: Invalid privilege type string for sequence

ERROR 3734: Invalid privilege type string for storage location

ERROR 3735: Invalid privilege type string for transform

ERROR 3745: Invalid role name string

ERROR 4056: New string

ERROR 4613: Role "string" cannot be set as default

ERROR 5601: Invalid privilege type string for filter function

ERROR 5602: Invalid privilege type string for parser function

ERROR 5603: Invalid privilege type string for source function

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22000
This topic lists the error associated with the SQLSTATE 22000.

SQLSTATE 22000 Description
ERRCODE_DATA_EXCEPTION

Error messages associated with this SQLState
ERROR 3646: Invalid Datum pointer

ERROR 4163: Non-positive value supplied to randomint: value

ERROR 4921: Test Error @string

ERROR 4922: Test Error from @string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 727 of 817

http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 22001
This topic lists the error associated with the SQLSTATE 22001.

SQLSTATE 22001 Description
ERRCODE_STRING_DATA_RIGHT_TRUNCATION

Error messages associated with this SQLState
ERROR 2991: Date 'string'string too long for type string(value)

ERROR 3426: Float 'string'string too long for type string

ERROR 3589: Integer 'string'string is too long for type string(value)

ERROR 3605: Interval 'string'string too long for type string(value)

ERROR 4208: Numeric 'string' is too long for type string

ERROR 4315: Padded octet length (value) exceeds the value octet limit

ERROR 4604: Result (value characters) exceeds the field width (value)

ERROR 4800: String of value octets is too long for type string(value)

ERROR 5004: Time 'string'string too long for type string(value)

ERROR 5024: Timestamp 'string'string too long for type string(value)

ERROR 5032: Timestamptz 'string'string too long for type string(value)

ERROR 5035: Timetz 'string'string too long for type string(value)

ERROR 5417: Value too long for type character varying(value)

ERROR 5418: Value too long for type character(value)

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22003
This topic lists the error associated with the SQLSTATE 22003.

SQLSTATE 22003 Description
ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE

Error messages associated with this SQLState
ERROR 2429: Cannot find matching query in the system

ERROR 2828: Could not convert 'string'string to an int8

ERROR 3425: Float "value" is out of range for type string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 728 of 817

http://my.vertica.com/

ERROR 3675: Invalid input for string, exceeds 32 bits: "string"

ERROR 3676: Invalid input for string, exceeds 64 bits: "string"

ERROR 3786: Invalid value for float: "string"

ERROR 4200: Number of buckets must be a positive integer

ERROR 4361: Percentile value must be a number between 0 and 1

ERROR 4704: Sequence exceeded max value

ERROR 4705: Sequence exceeded min value

ERROR 4756: Smoothing factor must between 0 and 1

ERROR 4795: String "string"string is out of range as a float8

ERROR 4796: String "string"string is out of range as an int8

ERROR 4845: Sum() overflowed

ERROR 5408: Value "value" is out of range for type string

ERROR 5409: Value "string" is out of range for type int8

ERROR 5411: Value exceeds range of type string

ERROR 5412: Value is too long for type string: "value"

ERROR 6063: Total number of significant digits for value string is more than what is defined.
Buffer size is value while actual length of word is value instead

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22004
This topic lists the error associated with the SQLSTATE 22004.

SQLSTATE 22004 Description
ERRCODE_NULL_VALUE_NOT_ALLOWED

Error messages associated with this SQLState
ERROR 2110: ACL arrays must not contain null values

ERROR 2501: Cannot set a NOT NULL column (value) to a NULL value in value statement

ERROR 2502: Cannot set a NOT NULL column (string) to a NULL value in INSERT/UPDATE statement

ERROR 2514: Cannot set NOT NULL columns (string) to a NULL value in INSERT/UPDATE statement

ERROR 4195: NULL value detected in data partitioning expression

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22007
This topic lists the error associated with the SQLSTATE 22007.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 729 of 817

http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 22007 Description
ERRCODE_INVALID_DATETIME_FORMAT

Error messages associated with this SQLState
ERROR 2171: AM/PM hour (value) must be between 1 and 12

ERROR 2364: Cannot calculate day of year without year information

ERROR 3439: Format string is invalid for an Interval value

ERROR 3535: Inconsistent use of year value and "BC"

ERROR 3647: Invalid day-of-week 'string'

ERROR 3679: Invalid input syntax for string: "string"

ERROR 3721: Invalid partition key

ERROR 3785: Invalid value for string: "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22008
This topic lists the error associated with the SQLSTATE 22008.

SQLSTATE 22008 Description
ERRCODE_DATETIME_FIELD_OVERFLOW

Error messages associated with this SQLState
ERROR 2992: Date/time field value out of range: "string"

ERROR 4065: next_day(infinity, DOW) is not defined

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22009
This topic lists the error associated with the SQLSTATE 22009.

SQLSTATE 22009 Description
ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 730 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 3768: Invalid timezone interval displacement

ERROR 5044: Timezone displacement out of range: "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 2200B
This topic lists the error associated with the SQLSTATE 2200B.

SQLSTATE 2200B Description
ERRCODE_ESCAPE_CHARACTER_CONFLICT

Error messages associated with this SQLState
ERROR 2699: Conflicting or redundant options

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 2200D
This topic lists the error associated with the SQLSTATE 2200D.

SQLSTATE 2200D Description
ERRCODE_INVALID_ESCAPE_OCTET

Error messages associated with this SQLState
ERROR 3285: ESCAPE strings must be a single octet, not "value"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22011
This topic lists the error associated with the SQLSTATE 22011.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 731 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 22011 Description
ERRCODE_SUBSTRING_ERROR

Error messages associated with this SQLState
ERROR 4034: Negative count not allowed

ERROR 4035: Negative length not allowed

ERROR 4036: Negative or zero substring start position not allowed

ERROR 4039: Negative substring length not allowed

ERROR 4784: Start position cannot be 0

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22012
This topic lists the error associated with the SQLSTATE 22012.

SQLSTATE 22012 Description
ERRCODE_DIVISION_BY_ZERO

Error messages associated with this SQLState
ERROR 3117: Division by zero

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22015
This topic lists the error associated with the SQLSTATE 22015.

SQLSTATE 22015 Description
ERRCODE_INTERVAL_FIELD_OVERFLOW

Error messages associated with this SQLState
ERROR 3606: Interval field value out of range: "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 732 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 22019
This topic lists the error associated with the SQLSTATE 22019.

SQLSTATE 22019 Description
ERRCODE_INVALID_ESCAPE_CHARACTER

Error messages associated with this SQLState
ERROR 2729: COPY DELIMITER for column string must be a single character

ERROR 2730: COPY delimiter must be a single character

ERROR 2731: COPY ENCLOSED BY cannot be a whitespace character

ERROR 2732: COPY ENCLOSED BY for column string cannot be a whitespace character

ERROR 2733: COPY ENCLOSED BY for column string must be a single character

ERROR 2734: COPY ENCLOSED BY must be a single character

ERROR 2736: COPY ESCAPE AS for column string must be a single character

ERROR 2737: COPY ESCAPE must be a single character

ERROR 2758: COPY TRIM for column string must be an empty string or a single character

ERROR 2759: COPY trim must be an empty string or a single character

ERROR 3284: ESCAPE strings must be a single character, not "value"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 2201B
This topic lists the error associated with the SQLSTATE 2201B.

SQLSTATE 2201B Description
ERRCODE_INVALID_REGULAR_EXPRESSION

Error messages associated with this SQLState
ERROR 3742: Invalid regexp match_param: 'character'

ERROR 4552: Regexp match or recursion limit exceeded (rc value)

ERROR 4553: Regexp pattern error at offset value: string

ERROR 4554: Regexp pattern study error: string

ERROR 5064: Too many regular expression subexpressions

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 733 of 817

http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 2201G
This topic lists the error associated with the SQLSTATE 2201G.

SQLSTATE 2201G Description
ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION

Error messages associated with this SQLState
ERROR 2939: Count must be greater than zero

ERROR 3888: Lower and upper bounds must be finite

ERROR 3889: Lower bound cannot equal upper bound

ERROR 4277: Operand, lower bound and upper bound cannot be NaN

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22021
This topic lists the error associated with the SQLSTATE 22021.

SQLSTATE 22021 Description
ERRCODE_CHARACTER_NOT_IN_REPERTOIRE

Error messages associated with this SQLState
ERROR 4551: Regexp encountered an invalid UTF-8 character

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22023
This topic lists the error associated with the SQLSTATE 22023.

SQLSTATE 22023 Description
ERRCODE_INVALID_PARAMETER_VALUE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 734 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2007: string can not be greater than PASSWORD_MAX_LENGTH value

ERROR 2008: string can not be set to a negative number

ERROR 2028: string exceptions and rejected_data can not be the same filename

ERROR 2033: string input file and exceptions can not be the same filename

ERROR 2034: string input file and rejected_data can not be the same filename

ERROR 2042: string must be a positive integer

ERROR 2048: string Path [string] is a directory

ERROR 2049: string Path [string] is a socket

ERROR 2051: string Record terminator length (value) is larger than load read buffer size (valu
e)

ERROR 2056: string Unrecognized format 'string' for column value

ERROR 2071: 'string' is not a valid size description

ERROR 2075: @INCLUDE without filename in timezone file "string", line value

ERROR 2077: [string] cannot be dropped. There will be no storage locations for data files

ERROR 2078: [string] cannot be dropped. There will be no storage locations for temporary files

ERROR 2079: [string] cannot be retired. There will be no storage locations for data files

ERROR 2080: [string] cannot be retired. There will be no storage locations for temporary files

ERROR 2081: [string] is not a valid storage location on node string

ERROR 2108: ACL array contains wrong data type

ERROR 2109: ACL arrays must be one-dimensional

ERROR 2158: All columns of soft unique key statistics must be from the same table

ERROR 2194: analyze_statistics: Can not analyze statistics of a non-local temporary table/proj
ection 'string'

ERROR 2195: analyze_statistics: Can not analyze statistics of a virtual table/projection strin
g

ERROR 2196: analyze_statistics: Cannot analyze statistics of a virtual table string

ERROR 2197: analyze_statistics: invalid accuracy value A number between 0 and 100 is required

ERROR 2254: Bad snapshot name 'string' (cannot contain / or start with a .)

ERROR 2298: Can not lock/unlock super user account

ERROR 2300: Can not reuse any recent passwords

ERROR 2301: Can not reuse current password

ERROR 2302: Can not reuse the previous value passwords

ERROR 2317: Can't purge projection(s); AHM is at epoch 0

ERROR 2319: Can't set a REJECTED file on node 'string', which the current query is not executi
ng on

ERROR 2320: Can't set an EXCEPTIONS file on node 'string', which the current query is not exec
uting on

ERROR 2365: Cannot calculate week number without year information

ERROR 2370: Cannot close a protected session

ERROR 2414: Cannot drop extended statistics on a projection (string)

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 735 of 817

ERROR 2415: Cannot drop extended statistics on projection string. Dropping base statistics onl
y

ERROR 2452: Cannot load data from node string as it is down

ERROR 2457: Cannot merge partitions in multiple tables at the same time

ERROR 2468: Cannot partition by value multiple tables at the same time

ERROR 2478: Cannot release savepoint; no transaction in progress

ERROR 2500: Cannot set string maxConcurrency to unlimited

ERROR 2508: Cannot set maxConcurrency of string pool to 0

ERROR 2509: Cannot set maxMemorySize of string pool to string [value KB], as it is above 75%%
[75%% = value KB]

ERROR 2510: Cannot set maxMemorySize of string pool to none, as this could prevent moveout fro
m running

ERROR 2511: Cannot set maxMemorySize of recovery pool to string [value KB], as it is below 2
5%% [value KB]

ERROR 2513: Cannot set memorySize of general pool

ERROR 2523: Cannot specify exceptions or rejected-data files ON ANY NODE

ERROR 2540: Cannot use 0 for a key, used internally

ERROR 2548: Cannot use both COPY LOCAL and ON ANY NODE: LOCAL files are stored on the client,
not on any Vertica node

ERROR 2621: Collection type must be specified

ERROR 2624: Column "string" does not exist

ERROR 2653: Column string of projection string has ACCESSRANK < 0

ERROR 2695: Conflicting "datestyle" keywords

ERROR 2720: Conversion to timezone "string" failed

ERROR 2722: COPY .. LOCAL cannot store string on a Vertica node

ERROR 2723: COPY ... LOCAL can read files from the client only

ERROR 2724: COPY ... LOCAL can read files with same compression only

ERROR 2727: COPY column option string not supported with format string

ERROR 2728: COPY delimiter stringmust not appear in the NULL specification

ERROR 2735: COPY ENCLOSING CHARACTER stringmust not appear in the NULL specification

ERROR 2748: COPY NULL must be an empty string or a single character for FIXED WIDTH data

ERROR 2749: COPY option string not supported

ERROR 2750: COPY option string not supported with format string

ERROR 2752: COPY RECORD TERMINATOR must be at least ONE character long

ERROR 2753: COPY REJECTMAX should be >= 0

ERROR 2756: COPY skip characters should be >= 0

ERROR 2757: COPY skip should be >= 0

ERROR 2760: COPY WITH PARSER Error (column value): Parser specified a column of type [string];
table needs [string]

ERROR 2761: COPY WITH PARSER Error: Parser specified value column(s); table needs value column
(s)

ERROR 2765: COPY: width and length of null string does not match for column string

ERROR 2766: COPY: width for column string has to be greater than 0

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 736 of 817

ERROR 2830: Could not convert to timezone "string"

ERROR 2932: Couldn't find the specified task

ERROR 2950: Current design does not meet the requirements for K = value
 Current design is valid for K string value

string

ERROR 2963: CURRENT_TIME(value) precision must not be negative

ERROR 2964: CURRENT_TIME(value) precision reduced to maximum allowed, value

ERROR 2965: CURRENT_TIMESTAMP(value) precision must not be negative

ERROR 2966: CURRENT_TIMESTAMP(value) precision reduced to maximum allowed, value

ERROR 2993: Datepart "string" not recognized

ERROR 2994: Datepart is invalid

ERROR 3006: DDL statement interfered with snapshot; an object no longer exists

ERROR 3007: DDL statement interfered with this statement

ERROR 3012: DECIMAL precision value must be between 1 and value

ERROR 3013: DECIMAL scale value must be between 0 and precision value

ERROR 3032: Delimiter and record terminator cannot be the same value

ERROR 3033: Delimiter and record terminator for string cannot be the same value

ERROR 3137: drop_statistics: Can not drop base or histogram statistics of a non-local temporar
y table/projection string

ERROR 3138: drop_statistics: Can not drop statistics for a virtual table/projection string

ERROR 3139: drop_statistics: Invalid stats type 'string'. Valid values are 'base', 'histogram
s' and 'extended'

ERROR 3168: ENCLOSED BY and delimiter stringcan not be the same value

ERROR 3169: ENCLOSED BY and ESCAPE AS stringcan not be the same value

ERROR 3170: ENCLOSED BY and record terminator stringcan not be the same value

ERROR 3178: ENFORCELENGTH cannot be specified for string

ERROR 3280: ESCAPE AS and delimiter stringcan not be the same value

ERROR 3281: ESCAPE AS and NULL specification stringcan not be the same value

ERROR 3282: ESCAPE AS and record terminator stringcan not be the same value

ERROR 3383: Failed to parse object name string

ERROR 3423: Fixed width record size (value) is too large. Record size has to be lesser than va
lue (0xvalue)

ERROR 3424: Fixed width record size is too large. Record size has to be lesser than value (0xv
alue)

ERROR 3440: Format cannot be specified for string

ERROR 3503: ICU string error: 'string'

ERROR 3505: ICU does not support locale 'string'

ERROR 3513: Illegal argument to change_runtime_priority: NULL

ERROR 3514: Illegal argument to set_config_parameter: NULL

ERROR 3524: In the SAMPLE STORAGE n or SAMPLE STORAGE n,b clause, n must be a constant greater
than or equal to 0

ERROR 3525: In the SAMPLE STORAGE n PERCENT or SAMPLE STORAGE n PERCENT,b clause, n must be a
constant greater than or equal to 0 and less than or equal to 100

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 737 of 817

ERROR 3526: In the SAMPLE STORAGE n PERCENT,b clause, n must be a constant greater than or equ
al to 0 and less than or equal to 100, while b must be a constant greater than or equal to
0

ERROR 3527: In the SAMPLE STORAGE n,b clause, both n and b must be constants greater than or e
qual to 0

ERROR 3528: In the SAMPLE STORAGE n,b or SAMPLE STORAGE n PERCENT,b clause, b must be a consta
nt greater than or equal to 0

ERROR 3540: Incorrect statement ID for session

ERROR 3541: Increase in pool size to string [value KB] causes general pool to fall below minim
um [25%% = value KB]

ERROR 3607: INTERVAL leading field precision increased to value

ERROR 3608: INTERVAL leading field precision reduced to value

ERROR 3610: INTERVAL SECOND precision reduced to value

ERROR 3612: Interval units "value" not recognized

ERROR 3618: Invalid accuracy value for analyze_histogram

ERROR 3632: Invalid collection type string specified

ERROR 3652: Invalid Directives type: string

ERROR 3673: Invalid hint identifier 'string'

ERROR 3686: Invalid interval value for timezone

ERROR 3688: Invalid K value: value K cannot be less than zero

ERROR 3689: Invalid K value: value Maximum K value for value nodes is: value

ERROR 3692: Invalid limit type (string): must be HIGH or LOW

ERROR 3695: Invalid list syntax for "datestyle"

ERROR 3707: Invalid node: [string]

ERROR 3710: Invalid number for timezone offset in timezone file "string", line value

ERROR 3741: Invalid range

ERROR 3743: Invalid resource type (string)

ERROR 3746: Invalid runtime priority string

ERROR 3750: Invalid service name for 'string'

ERROR 3759: Invalid syntax in timezone file "string", line value

ERROR 3767: Invalid timezone file name "string"

ERROR 3777: Invalid Usage type: string

ERROR 3780: Invalid user/role name "string"

ERROR 3783: Invalid value string=string

ERROR 3787: Invalid value for parameter

ERROR 3788: Invalid value for parameter string: string

ERROR 3789: Invalid value for search path: "string"

ERROR 3840: Keyword 'string' (string=string) is not supported

ERROR 3845: Latency should be > 0

ERROR 3852: Length for type string cannot exceed value

ERROR 3853: Length for type string must be at least 1

ERROR 3877: LOCALTIME(value) precision must not be negative

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 738 of 817

ERROR 3878: LOCALTIME(value) precision reduced to maximum allowed, value

ERROR 3879: LOCALTIMESTAMP(value) precision must not be negative

ERROR 3880: LOCALTIMESTAMP(value) precision reduced to maximum allowed, value

ERROR 3912: maxMemorySize of string [value KB] is not in bounds [max is value KB]

ERROR 3920: memoryCap of string (value KB) would exceed [value KB]

ERROR 3922: memorySize string [value KB] would exceed maxMemorySize string [value KB]

ERROR 3923: memorySize of string [value KB] would exceed [value KB]

ERROR 3960: Missing timezone abbreviation in timezone file "string", line value

ERROR 3961: Missing timezone offset in timezone file "string", line value

ERROR 3967: More than one string specified for a node

ERROR 4027: Must supply a CATALOGPATH

ERROR 4028: Must supply a HOSTNAME

ERROR 4037: Negative run time cap is not allowed

ERROR 4038: Negative runTimeCap is not allowed

ERROR 4084: No interruptible statement running

ERROR 4089: No objects specified

ERROR 4174: Not allowed to cancel statement

ERROR 4175: Not allowed to close session

ERROR 4186: NULL is an invalid K value

ERROR 4187: NULL is invalid object name for analyze_extended_statistics

ERROR 4188: NULL is invalid object name for analyze_histogram

ERROR 4189: NULL is invalid object name for drop_statistics

ERROR 4190: NULL is invalid scope type for analyze_extended_statistics

ERROR 4191: NULL is invalid statistics type for analyze_extended_statistics

ERROR 4192: NULL is invalid statistics type for drop_statistics

ERROR 4194: NULL string and record terminator stringcan not be the same value

ERROR 4211: NUMERIC precision value must be between 1 and value

ERROR 4212: NUMERIC scale value must be between 0 and precision value

ERROR 4222: Occurrence number must be > 0

ERROR 4250: Only ONE exception file should be specified for a LOCAL copy

ERROR 4252: Only ONE rejected data file should be specified for a LOCAL copy

ERROR 4318: Parameter string in default profile can not be set to DEFAULT

ERROR 4319: Parameter string may not exceed 9999

ERROR 4330: PARTITION BY clause must contain table columns in a valid expression

ERROR 4334: Partition key too long

ERROR 4344: PASSWORD_MAX_LENGTH must be within the range from value to value

ERROR 4345: PASSWORD_MIN_DIGITS + PASSWORD_MIN_SYMBOLS + PASSWORD_MIN_LETTERS value can not be
greater than PASSWORD_MAX_LENGTH value

ERROR 4346: PASSWORD_MIN_DIGITS + PASSWORD_MIN_SYMBOLS + PASSWORD_MIN_LOWERCASE_LETTERS + PASS
WORD_MIN_UPPERCASE_LETTERS value can not be greater than PASSWORD_MAX_LENGTH value

ERROR 4347: Path cannot be an empty string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 739 of 817

ERROR 4399: populate_projection_statistics doesn't take empty parameter string

ERROR 4400: populate_projection_statistics: Can not populate statistics for a virtual table/pr
ojection string

ERROR 4401: populate_projection_statistics: Can only populate statistics for a projection, not
for a table

ERROR 4402: populate_projection_statistics: Invalid table/projection name string

ERROR 4406: Precision for type float must be at least 1 bit

ERROR 4407: Precision for type float must be less than 54 bits

ERROR 4408: Precision must be less than value; result would be numeric(value,value)

ERROR 4454: Projection string cannot be analyzed, because it is not up to date

ERROR 4456: Projection string cannot drop statistics, because it is not up to date

ERROR 4529: Rebalance skew percent must be in the range [0,100]

ERROR 4556: Regexp starting position must be greater than zero

ERROR 4595: Resource pool "string" is an internal pool and cannot be dropped

ERROR 4606: Retention settings must be less than 2TB

ERROR 4639: Run time cap cannot exceed 1 year

ERROR 4642: runTimeCap cannot exceed 1 year

ERROR 4647: Scaling factor must be greater than zero

ERROR 4648: Scaling factor must be less than 33

ERROR 4653: Schema string is virtual

ERROR 4701: Sequence string is already owned by string

ERROR 4702: SEQUENCE CACHE should be greater than 0

ERROR 4708: SEQUENCE MAXVALUE is too large and will overflow

ERROR 4709: SEQUENCE MINVALUE is too small and will underflow

ERROR 4710: SEQUENCE MINVALUE should be lesser than MAXVALUE

ERROR 4712: SEQUENCE START WITH should be between MINVALUE and MAXVALUE

ERROR 4723: SET string takes only one argument

ERROR 4745: Setting sysdata maxMemorySize below 4 MB to string [value KB] will prevent system
table queries from running

ERROR 4766: Specified too few widths for the given number of columns

ERROR 4770: Specify at least one table-column for soft unique key statistics

ERROR 4802: STROKE collations are not supported

ERROR 4807: Subnet mask is empty

ERROR 4862: System pool priority must be between -110 and 110 inclusive

ERROR 4889: Table string is already owned by string

ERROR 4892: Table string is not partitioned

ERROR 4893: Table string is session scoped

ERROR 4894: Table string is virtual

ERROR 4923: That password is not acceptable

ERROR 4937: The confidence level must be between 0 and 100 inclusive.
string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 740 of 817

ERROR 4961: The permissible error must between 0 and 100 inclusive.
string

ERROR 4985: There is no reason to set string.string. Consult documentation

ERROR 5002: Throughput should be > 0

ERROR 5014: Time units "value" not recognized

ERROR 5015: Time units "string" not recognized

ERROR 5019: TIME(value)string precision must not be negative

ERROR 5020: TIME(value)string precision reduced to maximum allowed, value

ERROR 5026: Timestamp units "value" not recognized

ERROR 5027: Timestamp units "string" not recognized

ERROR 5029: TIMESTAMP(value) precision reduced to maximum allowed, value

ERROR 5030: TIMESTAMP(value)string precision must not be negative

ERROR 5031: TIMESTAMP(value)string precision reduced to maximum allowed, value

ERROR 5034: TIMESTAMPTZ(value) precision must not be negative

ERROR 5036: TIMETZ(value) precision must not be negative

ERROR 5037: TIMETZ(value) precision reduced to maximum allowed, value

ERROR 5038: Timezone "string" not recognized

ERROR 5039: Timezone "string" uses leap seconds

ERROR 5041: Timezone abbreviation "string" is multiply defined

ERROR 5042: Timezone abbreviation "string" is too long (maximum value characters) in timezone
file "string", line value

ERROR 5045: Timezone file recursion limit exceeded in file "string"

ERROR 5046: Timezone offset value is not a multiple of 900 sec (15 min) in timezone file "stri
ng", line value

ERROR 5047: Timezone offset value is out of range in timezone file "string", line value

ERROR 5048: Timezone value "string" is more than value hours

ERROR 5067: Total data collector memory retention of valueKB is too large given system memory
size

ERROR 5106: TuningRecommendations data collection is disabled

ERROR 5118: UDL specified no execution nodes; at least one execution node must be specified

ERROR 5136: Unable to log this tuning analysis event

ERROR 5202: Unknown configuration parameter

ERROR 5209: Unknown node: string

ERROR 5211: Unknown or unsupported object: string

ERROR 5213: Unknown session ID

ERROR 5215: Unknown value string=string

ERROR 5220: Unrecognized "datestyle" keyword: "string"

ERROR 5229: Unrecognized format 'string'

ERROR 5248: Unrecognized privilege type: "string"

ERROR 5258: Unrecognized timezone name: "string"

ERROR 5271: Unsupported format code: value

ERROR 5316: Usage cannot be an empty string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 741 of 817

ERROR 5317: Usage of [string] cannot be changed from string to string

ERROR 5319: Usage of [string] cannot be changed to string. There will be no storage locations
for data files

ERROR 5320: Usage of [string] cannot be changed to string. There will be no storage locations
for temporary files

ERROR 5322: Usage:

ERROR 5393: User pool priority must be between -100 and 100 inclusive

ERROR 5437: Vertica should not be run with less than 1GB of RAM

ERROR 5520: string compresses network traffic. string does NOT compress network traffic. Pleas
e change the configuration to be consistent

ERROR 5521: string does NOT compresses network traffic. string compresses network traffic. Ple
ase change the configuration to be consistent

ERROR 5538: Cannot COPY user-defined types directly. Please compute them using copy expressio
ns

ERROR 5542: Cannot INSERT or COPY user-defined types directly. Please compute them using appr
opriate user-defined functions

ERROR 5545: Cluster layout must include all non-ephemeral nodes and should also not include an
y ephemeral nodes

ERROR 5549: Conversion from string to DataType string failed. Invalid value

ERROR 5571: Empty storage tier label is not allowed

ERROR 5576: Every non-ephemeral node should only be listed once

ERROR 5598: Invalid or unavailable type 'LONG VARBINARY'

ERROR 5599: Invalid or unavailable type 'LONG VARCHAR'

ERROR 5605: Invalid projection createtype 'string'

ERROR 5613: Length for type string must be between 1 and value

ERROR 5631: Object string does not exist or is not of supported type

ERROR 5632: Object string is not a table

ERROR 5634: Path [string] is a directory

ERROR 5644: Projection basename "string" is not a prefix of projection name "string"

ERROR 5645: Projection basename cannot be empty

ERROR 5646: Projection createtype cannot be empty

ERROR 5647: Provided Node "string" does not exist

ERROR 5648: Provided Node "string" is ephemeral

ERROR 5668: Target table name can not be empty

ERROR 5685: User Defined Filter expected but found string

ERROR 5686: User Defined Parser expected but found string

ERROR 5687: User Defined Source expected but found string

ERROR 5693: Using 1 year for QUEUETIMEOUT

ERROR 5703: Couldn't find the specified task, or the Resource Manager has not recieved the req
uest

ERROR 5728: Specified too many widths (value) for the given number of columns (value)

ERROR 5740: 'string' is not a valid value for database option string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 742 of 817

ERROR 5746: analyze_statistics: invalid number of buckets value. A number > 0 is required

ERROR 5750: Attempt to configure CPU affinity mode conflicts with configuration of resource po
ol 'string'

ERROR 5751: Attempt to configure CPU affinity set to 'string' conflicts with configuration of
resource pool 'string'

ERROR 5752: Attempt to configure CPU affinity set to 'string' in exclusive mode would not leav
e any CPUs available for system queries

ERROR 5753: Attempt to configure CPU affinity to exclusive mode would not leave any CPUs avail
able for system queries

ERROR 5761: Can only specify shared storage for all nodes

ERROR 5762: Can only specify user defined file system for DATA and/or TEMP storage locations

ERROR 5767: Cannot do LOCAL and REJECTED DATA AS TABLE in the same query; rejected records can
only be saved to one location

ERROR 5768: Cannot do RETURNREJECTED and REJECTED DATA AS TABLE in the same query; rejected re
cords can only be saved to one location

ERROR 5774: Cannot resolve node address [string]

ERROR 5775: Cannot resolve node control address [string]

ERROR 5778: Cannot specify both a rejected file and a rejected table in the same statement

ERROR 5779: Cannot specify both an exceptions file and a rejected table in the same statement

ERROR 5780: Cannot specify shared storage for built-in linux file system

ERROR 5793: Control set size out of bounds -1 <= value <= 128

ERROR 5804: CPU #value is not available to this server, because of server-level processor pinn
ing

ERROR 5885: Failed to load catalog file

ERROR 5918: Improperly formatted broadcast address [string]

ERROR 5925: Interface IPv4 address "string" is invalid

ERROR 5933: Invalid state for UDFilter: REJECT

ERROR 5934: Invalid state for UDSource: INPUT_NEEDED

ERROR 5935: Invalid state for UDSource: REJECT

ERROR 5954: memoryCap of string [value KB] would exceed [value KB]

ERROR 5962: Must request a positive key count to materialize: value

ERROR 5963: Must specify shared storage for built-in hadoop file system

ERROR 5976: Object already exists: string. Can't create a rejections table with the same name

ERROR 6006: Request for value percent of value CPUs rounds to zero CPUs

ERROR 6007: Request for reservation of CPU #value conflicts with another pool's reservation

ERROR 6010: Resource pool 'string' not found

ERROR 6031: STRENGTH value must be in [0.0,1.0]

ERROR 6032: Subnet IPv4 address "string" is invalid

ERROR 6044: Table already exists: string. Can't create a rejections table with the same name

ERROR 6045: The CPU affinity mode cannot be SHARED or EXCLUSIVE if the affinity set is empty

ERROR 6073: Unable to allocate value CPUs for resource pool in string affinity mode

ERROR 6088: Unknown control mode string

ERROR 6090: Unknown database option 'string'

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 743 of 817

ERROR 6097: User-Defined Load function indicated that it consumed value bytes, when only value
were available

ERROR 6098: User-Defined Load function indicated that UDChunker returned an illegal state from
process()

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22025
This topic lists the error associated with the SQLSTATE 22025.

SQLSTATE 22025 Description
ERRCODE_INVALID_ESCAPE_SEQUENCE

Error messages associated with this SQLState
ERROR 3656: Invalid escape sequence

ERROR 3657: Invalid escape string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22906
This topic lists the error associated with the SQLSTATE 22906.

SQLSTATE 22906 Description
ERRCODE_NONSTANDARD_USE_OF_ESCAPE_CHARACTER

Error messages associated with this SQLState
ERROR 4166: Nonstandard use of \' in a string literal at or near "string"

ERROR 4167: Nonstandard use of \\ in a string literal at or near "string"

ERROR 4168: Nonstandard use of escape in a string literal at or near "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V02
This topic lists the error associated with the SQLSTATE 22V02.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 744 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 22V02 Description
ERRCODE_INVALID_TEXT_REPRESENTATION

Error messages associated with this SQLState
ERROR 2825: Could not convert "string"string to a boolean

ERROR 2826: Could not convert "string"string to a float8

ERROR 2827: Could not convert "string"string to an int8

ERROR 3677: Invalid input for string: "string"

ERROR 3680: Invalid input syntax for boolean: "string"

ERROR 3681: Invalid input syntax for integer: "string"

ERROR 3682: Invalid input syntax for numeric: "value"

ERROR 3711: Invalid number: "string"

ERROR 3712: Invalid numeric format string

ERROR 3714: Invalid numeric value: "string"

ERROR 3751: Invalid Session ID format

ERROR 3757: Invalid syntax for float: "string"

ERROR 3758: Invalid syntax for numeric: "string"

ERROR 3894: Malformed record literal: "string"

ERROR 4169: Not a number: "string"

ERROR 4198: Number exceeds format: "string"

ERROR 5930: Invalid numeric format string. Expected precision is value and scale is value

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V03
This topic lists the error associated with the SQLSTATE 22V03.

SQLSTATE 22V03 Description
ERRCODE_INVALID_BINARY_REPRESENTATION

Error messages associated with this SQLState
ERROR 2829: Could not convert integer valuestring to a boolean

ERROR 3536: Incorrect binary data format in bind parameter value

ERROR 3623: Invalid binary input syntax: 'value'

ERROR 3624: Invalid bitstring "string"

ERROR 3671: Invalid hex string "string"

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 745 of 817

http://my.vertica.com/

ERROR 3678: Invalid input syntax for string

ERROR 3716: Invalid octal string format "string"

ERROR 3717: Invalid octal string format (octal string length

ERROR 5416: Value too long for type string(value)

ERROR 5936: Invalid string format "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V04
This topic lists the error associated with the SQLSTATE 22V04.

SQLSTATE 22V04 Description
ERRCODE_BAD_COPY_FILE_FORMAT

Error messages associated with this SQLState
ERROR 2006: string value records have been rejected

ERROR 2031: string Header size (value) is corrupted

ERROR 2032: string Header size (value) is too small

ERROR 2035: string Input record value has been rejected (string)

ERROR 2053: string Row size (value) is corrupted

ERROR 2054: string Unexpected EOF while reading header. Expected value but read value

ERROR 2738: COPY file signature not recognized

ERROR 2767: COPY: Wrong Header size value. Expected value

ERROR 3562: Input has extra trailing bytes

ERROR 3640: Invalid COPY file header (unsupported Version Number)

ERROR 4206: Number of fields is value, expected value

ERROR 4627: Row delimiter not found; corrupt file input (read value bytes from input)

ERROR 5495: Wrong size value for bool column value (string)

ERROR 5496: Wrong size value for date column value (string)

ERROR 5497: Wrong size value for float column value (string)

ERROR 5498: Wrong size value for integer column value (string)

ERROR 5499: Wrong size value for Interval column value (string)

ERROR 5500: Wrong size value for Numeric column value (string)

ERROR 5501: Wrong size value for Time column value (string)

ERROR 5502: Wrong size value for Timestamp column value (string)

ERROR 5503: Wrong size value for TimestampTz column value (string)

ERROR 5504: Wrong size value for TimeTz column value (string)

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 746 of 817

http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V0B
This topic lists the error associated with the SQLSTATE 22V0B.

SQLSTATE 22V0B Description
ERRCODE_ESCAPE_CHARACTER_ON_NOESCAPE

Error messages associated with this SQLState
ERROR 2746: COPY NO ESCAPE cannot also contain an ESCAPE clause

ERROR 2747: COPY NO ESCAPE for column string cannot also contain an ESCAPE clause

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V21
This topic lists the error associated with the SQLSTATE 22V21.

SQLSTATE 22V21 Description
ERRCODE_INVALID_EPOCH

Error messages associated with this SQLState
ERROR 2144: AHM can't advance past the cluster last backup epoch. (Last Backup Epoch: value)

ERROR 2145: AHM can't advance past the cluster last backup time. (Last Backup time: string)

ERROR 2146: AHM can't advance past the cluster last good epoch (LGE) time (Cluster LGE time: s
tring)

ERROR 2147: AHM can't advance past the cluster last good epoch (LGE). (Cluster LGE: value)

ERROR 2148: AHM can't advance past the latest epoch time (Latest epoch time: string)

ERROR 2153: AHM must be less than the current epoch (Current Epoch: value)

ERROR 2154: AHM must lag behind the create epoch of unrefreshed projection string (Create epoc
h: value)

ERROR 2155: AHM must lag behind the create time of unrefreshed projection string (Create time:
string)

ERROR 2318: Can't run historical queries at epochs prior to the Ancient History Mark

ERROR 3184: Epoch specified is not in historical epoch range

ERROR 3559: Input epoch must be greater than or equal to the earliest epoch (earliest epoch: v
alue)

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 747 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 3560: Input epoch must be greater than the current AHM (Current AHM: value)

ERROR 3561: Input epoch must be less than or equal to the AHM epoch (AHM epoch: value)

ERROR 3567: Input time can't be rounded down to an epoch higher than the current AHM epoch (Cu
rrent AHM epoch: value, Current AHM time: string)

ERROR 3568: Input time must be greater than or equal to the earliest epoch time (Earliest epoc
h time: string)

ERROR 3569: Input time must be greater than the current AHM time (Current AHM time: string)

ERROR 3570: Input time must be less than or equal to the AHM epoch time (AHM epoch time: strin
g)

ERROR 3654: Invalid epoch

ERROR 3844: Last good epoch not set

ERROR 3926: MergeOut start epoch (=value) greater than end epoch (=value)

ERROR 4940: The current AHM is already value

ERROR 5013: Time specified is not in historical epoch range

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V23
This topic lists the error associated with the SQLSTATE 22V23.

SQLSTATE 22V23 Description
ERRCODE_RAISE_EXCEPTION

Error messages associated with this SQLState
ERROR 5783: Client error: string (in function string() at string:value)

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 22V24
This topic lists the error associated with the SQLSTATE 22V24.

SQLSTATE 22V24 Description
ERRCODE_COPY_PARSE_ERROR

Error messages associated with this SQLState
ERROR 2518: Cannot set trailing column to NULL as column value (string) is NOT NULL

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 748 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 3401: Field size (value) is corrupted for column value (string)

ERROR 3402: Field size (value) is corrupted for column value (string). It does not fit within
the row

ERROR 3565: Input numeric value OUT OF RANGE for column value (string)

ERROR 3588: int8 out of range 'string' for column value (string)

ERROR 3617: Invalid string value 'string' for column value (string).string

ERROR 3625: Invalid boolean format 'string' for column value (string)

ERROR 3643: Invalid date format 'string' for column value (string)

ERROR 3644: Invalid date format 'string' for column value (string).string

ERROR 3665: Invalid float format 'string' for column value (string)

ERROR 3666: Invalid float format 'string' for column value (string):No digits were found

ERROR 3683: Invalid integer format 'string' for column value (string)

ERROR 3684: Invalid integer format 'string' for column value (string):No digits were found

ERROR 3685: Invalid interval format 'string' for column value (string).string

ERROR 3713: Invalid numeric format 'string' for column value (string)

ERROR 3763: Invalid time format 'string' for column value (string).string

ERROR 3764: Invalid timestamp format 'string' for column value (string).string

ERROR 3765: Invalid timestamptz format 'string' for column value (string).string

ERROR 3766: Invalid timetz format 'string' for column value (string).string

ERROR 3784: Invalid value 'string' for column value (string).string

ERROR 4196: Null value for NOT NULL column value (string)

ERROR 4209: Numeric out of range 'string' for column value (string)

ERROR 4749: Size value too large for Binary/Varbinary column value (string)

ERROR 4750: Size value too large for Char/Varchar column value (string)

ERROR 4924: The value-byte value is too long for type string(value), column value (string)

ERROR 5017: Time value value microseconds OUT OF RANGE for column value (string)

ERROR 5018: Time value value OUT OF RANGE for column value (string)

ERROR 5040: Timezone value secs OUT OF RANGE for column value (string)

ERROR 5053: Too few columns found

ERROR 5059: Too many columns found

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 23502
This topic lists the error associated with the SQLSTATE 23502.

SQLSTATE 23502 Description
ERRCODE_NOT_NULL_VIOLATION

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 749 of 817

http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2416: Cannot drop NOT NULL constraint on column "string" when it is referenced in PARTIT

ION BY expression

ERROR 2417: Cannot drop NOT NULL constraint on column "string" when it is referenced in primar
y key constraint

ERROR 2623: Column "string" definition changed to NOT NULL

ERROR 4182: NOT NULL constraint on column "string" already exists

ERROR 4183: NOT NULL constraint on column "string" does not exist

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 23503
This topic lists the error associated with the SQLSTATE 23503.

SQLSTATE 23503 Description
ERRCODE_FOREIGN_KEY_VIOLATION

Error messages associated with this SQLState
ERROR 4165: Nonexistent foreign key value detected in FK-PK join [string]; value [string]

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 23505
This topic lists the error associated with the SQLSTATE 23505.

SQLSTATE 23505 Description
ERRCODE_UNIQUE_VIOLATION

Error messages associated with this SQLState
ERROR 3147: Duplicate MERGE key detected in join [string]; value [string]

ERROR 3149: Duplicate primary/unique key detected in join [string]; value [string]

ERROR 4840: Subquery used as an expression returned more than one row

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 750 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 25V01
This topic lists the error associated with the SQLSTATE 25V01.

SQLSTATE 25V01 Description
ERRCODE_NO_ACTIVE_SQL_TRANSACTION

Error messages associated with this SQLState
ERROR 2342: Cannot advance epoch without a transaction

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 28000
This topic lists the error associated with the SQLSTATE 28000.

SQLSTATE 28000 Description
ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION

Error messages associated with this SQLState
ERROR 2701: Conflicting, redundant or unsupported option: string

ERROR 2702: Conflicting, redundant or unsupported option: groupElts

ERROR 2959: Current user cannot be dropped

ERROR 4293: Option "string" not recognized

ERROR 4722: Session user cannot be dropped

ERROR 4846: Superuser cannot be dropped

ERROR 5387: User does not exist

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 2BV01
This topic lists the error associated with the SQLSTATE 2BV01.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 751 of 817

http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 2BV01 Description
ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST

Error messages associated with this SQLState
ERROR 3052: Dependent privileges exist

ERROR 3128: DROP failed due to dependencies

ERROR 3130: DROP PROFILE failed due to dependencies

ERROR 3131: DROP ROLE failed due to dependencies

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 40V01
This topic lists the error associated with the SQLSTATE 40V01.

SQLSTATE 40V01 Description
ERRCODE_T_R_DEADLOCK_DETECTED

Error messages associated with this SQLState
ERROR 3010: Deadlock: string - string

ERROR 3011: Deadlock: [Txn value] string - string error string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42501
This topic lists the error associated with the SQLSTATE 42501.

SQLSTATE 42501 Description
ERRCODE_INSUFFICIENT_PRIVILEGE

Error messages associated with this SQLState
ERROR 2065: string: Invalid table/projection/column string

ERROR 2198: analyze_statistics: Requires modify permissions for table/projection/column string

ERROR 2347: Cannot alter predefined role "string"

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 752 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 2348: Cannot alter superuser string's default roles

ERROR 2349: Cannot alter superuser roles

ERROR 2389: Cannot create system built-in tuning rule

ERROR 2419: Cannot drop system built-in tuning rule

ERROR 2460: Cannot move user string to general pool, they lack privileges

ERROR 2481: Cannot remove memoryCap

ERROR 2482: Cannot remove runTimeCap

ERROR 2484: Cannot remove tempSpaceCap

ERROR 2515: Cannot set resource pool: user string lacks privileges on resource pool string

ERROR 2812: Could not add location [string]: Permission denied

ERROR 2935: Couldn't nice(value) thread: value

ERROR 2953: Current password must be supplied to set new password

ERROR 2958: Current user can't change runtime priority of another user's task

ERROR 2960: Current user doesn't have the privilege to change the task runtime priority to be
higher than its resource pool

ERROR 3577: Insufficient permissions on projection "string"

ERROR 3578: Insufficient permissions on schema "string"

ERROR 3579: Insufficient permissions on table "string"

ERROR 3580: Insufficient privilege: USAGE on SCHEMA 'string' not granted for current user

ERROR 3581: Insufficient privileges for projection string

ERROR 3582: Insufficient privileges for table string

ERROR 3583: Insufficient privileges on string

ERROR 3584: Insufficient privileges on string, modify privileges (INSERT|UPDATE|DELETE) needed

ERROR 3585: Insufficient privileges to populate statistics for projection string

ERROR 3722: Invalid passphrase: string

ERROR 3919: memoryCap of value KB would exceed user limit of value KB

ERROR 3989: Must be owner of string string

ERROR 3990: Must be owner of string [string]

ERROR 3991: Must be superuser to alter database

ERROR 3992: Must be superuser to alter profile

ERROR 3993: Must be superuser to alter tuning rule

ERROR 3994: Must be superuser to alter user default roles

ERROR 3995: Must be superuser to audit license size

ERROR 3996: Must be superuser to audit license term

ERROR 3998: Must be superuser to clear Query/EE profiles

ERROR 3999: Must be superuser to crash the database

ERROR 4000: Must be superuser to create interface

ERROR 4001: Must be superuser to create library

ERROR 4002: Must be superuser to create profile

ERROR 4003: Must be superuser to create subnet

ERROR 4004: Must be superuser to create tuning rule

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 753 of 817

ERROR 4005: Must be superuser to create users

ERROR 4006: Must be superuser to drop an interface

ERROR 4007: Must be superuser to drop library

ERROR 4008: Must be superuser to drop profile

ERROR 4009: Must be superuser to drop resource pool

ERROR 4010: Must be superuser to drop role

ERROR 4011: Must be superuser to drop subnet

ERROR 4012: Must be superuser to drop tuning rule

ERROR 4013: Must be superuser to drop users

ERROR 4014: Must be superuser to modify resource pools

ERROR 4015: Must be superuser to rename interface

ERROR 4016: Must be superuser to rename profile

ERROR 4017: Must be superuser to rename role

ERROR 4018: Must be superuser to rename subnet

ERROR 4019: Must be superuser to run string

ERROR 4020: Must be superuser to run analyze_workloadstring()

ERROR 4059: New runTimeCap value ms would exceed user limit of value ms

ERROR 4061: New tempSpaceCap value KB would exceed user limit of value KB

ERROR 4178: Not enough privileges for projection string

ERROR 4179: Not enough privileges for table string

ERROR 4244: Only database superuser can drop procedures

ERROR 4260: Only superuser can check privileges on other users

ERROR 4261: Only superuser can create roles

ERROR 4269: Only the database super user can create procedures

ERROR 4366: Permission denied

ERROR 4367: Permission denied for string string

ERROR 4368: Permission denied for string [string]

ERROR 4369: Permission denied to create temporary tables

ERROR 4370: Permission denied: "string" is a system catalog

ERROR 4453: Projection string already has statistics

ERROR 4546: RecvFiles on string: Can't write to file [string]

ERROR 4741: setThreadCPUNiceValue: couldn't nice(value) thread: value

ERROR 4742: setThreadIONiceValue: couldn't ionice(value) thread: value

ERROR 5149: Unable to set role "string"

ERROR 5389: User has insufficient privileges on schema string

ERROR 5458: We do not populate statistics for prejoin projections

ERROR 5488: Workspace schema string does not exist

ERROR 5517: Your Vertica license is invalid or has expired

ERROR 5618: Must be superuser to alter fault group

ERROR 5619: Must be superuser to create fault group

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 754 of 817

ERROR 5620: Must be superuser to drop fault group

ERROR 5622: Must be superuser to use remote_file_copy

ERROR 5635: Path to file [string] contains a symbolic link

ERROR 5715: Must be superuser to close_all_sockets

ERROR 5716: Must have create permissions in schema string to drop type

ERROR 5818: Deployment script will not be generated since the user does not have appropriate p
ermissions to write to [string]

ERROR 5820: Design script will not be generated since the user does not have appropriate permi
ssions to write to [string]

ERROR 5956: Must be superuser to ALTER NODE

ERROR 5957: Must be superuser to create filesystem

ERROR 5958: Must be superuser to create location

ERROR 5959: Must be superuser to CREATE NODEs

ERROR 5960: Must be superuser to realign_control_nodes

ERROR 5961: Must be superuser to supply 'user_name' argument to HAS_ROLE() function
 HINT: Non-superusers run HAS_ROLE('role_name')

ERROR 5975: Not enough privileges for string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42601
This topic lists the error associated with the SQLSTATE 42601.

SQLSTATE 42601 Description
ERRCODE_SYNTAX_ERROR

Error messages associated with this SQLState
ERROR 2030: string has been deprecated as string string Vertica option

ERROR 2069: 'string' is not a table name in the current search_path

ERROR 2085: A column cannot occur in an equality predicate and an interpolation predicate

ERROR 2086: A column definition list is only allowed for functions that return "record"

ERROR 2087: A column definition list is required for functions returning "record"

ERROR 2093: A join can have only one set of interpolated predicates

ERROR 2100: A query with Time Series Aggregate Function string must have a timeseries clause

ERROR 2156: All columns are evaluated by expressions. At least one column should be read from
input

ERROR 2157: All columns in select list must be columns used by projection

ERROR 2164: Alter Column Type driver: Unrecognized command type

ERROR 2180: Analytic function string must have an OVER clause

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 755 of 817

http://my.vertica.com/

ERROR 2191: ANALYZE CONSTRAINT is not supported

ERROR 2203: Anchor table not found

ERROR 2214: Argument value has invalid type value in ANALYZE_WORKLOAD

ERROR 2215: Argument value in ANALYZE_WORKLOAD must be constant

ERROR 2223: Argument in ANALYZE_CONSTRAINTS must be constant

ERROR 2230: Arguments of row IN must all be row expressions

ERROR 2238: At least two arguments are required

ERROR 2239: At most one path number can be entered

ERROR 2346: Cannot alter a sequence with START

ERROR 2374: Cannot compare row expressions of zero length

ERROR 2381: Cannot create a sequence with RESTART

ERROR 2444: Cannot insert into or update IDENTITY/AUTO_INCREMENT column "string"

ERROR 2445: Cannot insert into system column "string"

ERROR 2446: Cannot insert multiple commands into a prepared statement

ERROR 2521: Cannot specify anything other than user defined transforms string in the string li
st

ERROR 2525: Cannot specify more than one user-defined transform function in the SELECT list

ERROR 2526: Cannot specify more than one window clause with a user defined transform

ERROR 2534: Cannot use "PR" with "S"/"PL"/"MI"/"SG"

ERROR 2535: Cannot use "S" with "MI"

ERROR 2536: Cannot use "S" with "PL"

ERROR 2537: Cannot use "S" with "PL"/"MI"/"SG"/"PR"

ERROR 2538: Cannot use "S" with "SG"

ERROR 2539: Cannot use "V" with a decimal point

ERROR 2545: Cannot use aggregate function in VALUES

ERROR 2627: Column "string" in ENCODED BY clause is not found in the table

ERROR 2641: Column "string.string" must appear in the PARTITION BY list of Timeseries clause o
r be used in a Time Series Aggregate Function

ERROR 2642: Column string cannot be evaluated

ERROR 2645: Column string has other computed columns in its expression

ERROR 2647: Column string in ORDER BY list is not found in TABLE

ERROR 2659: Column alias list for "string" has too many entries

ERROR 2669: COLUMN OPTION is not supported

ERROR 2670: Column options are not supported

ERROR 2696: Conflicting INTERVAL subtypes

ERROR 2697: Conflicting NULL/NOT NULL declarations for column "string" of table "string"

ERROR 2715: Constraint declared INITIALLY DEFERRED must be DEFERRABLE

ERROR 2754: COPY requires a data source; either a FROM clause or a WITH SOURCE for a user-defi
ned source

ERROR 2764: COPY: Expression for column string cannot be coerced

ERROR 2946: CREATE TABLE AS specifies too many column names

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 756 of 817

ERROR 2947: CREATE VIEW specifies more column names than columns

ERROR 2986: Database name is required (too few dotted names): string

ERROR 3023: Default values specified for IDENTITY/AUTO_INCREMENT column "string" of table "str
ing"

ERROR 3125: Drop Column driver: Unrecognized command type

ERROR 3142: Duplicate column "string" in create table statement

ERROR 3143: Duplicate column string in constraint

ERROR 3146: Duplicate columns in select list of projection not allowed

ERROR 3151: Duplicate tables in projection not allowed

ERROR 3155: Duplicated parameters string not allowed

ERROR 3158: Each string query must have the same number of columns

ERROR 3164: Empty column name is invalid

ERROR 3165: Empty constraint name is invalid

ERROR 3171: ENCODED BY is not supported in CREATE PROJECTION statement when column renaming li
st is defined

ERROR 3172: ENCODED BY is not supported in CREATE PROJECTION statement with column definition
list

ERROR 3173: ENCODED BY is not supported in CREATE TABLE AS SELECT statement when column list i
s defined

ERROR 3176: End epoch (value) number out of range

ERROR 3177: End epoch (value) precedes start epoch (value)

ERROR 3183: Epoch number out of range

ERROR 3185: Epoch time out of range

ERROR 3261: Error setting string in string: Unknown Property

ERROR 3262: Error setting basic directives: 'string

ERROR 3263: Error setting designer directives: 'string

ERROR 3264: Error setting optimizer directives: 'string

ERROR 3344: EXPORT ... SELECT may not specify INTO

ERROR 3348: Expression "(<string> - <string>) <interval qualifier>" is not supported

ERROR 3349: Expression for column string cannot be coerced

ERROR 3458: Function string is not allowed in Time Series queries

ERROR 3461: Function string requires at least one argument

ERROR 3487: Group by is not allowed in a projection

ERROR 3500: HAVING / GROUP BY not allowed with Time Series query

ERROR 3511: IGNORE NULLS can only be used with FIRST_VALUE or LAST_VALUE

ERROR 3517: Improper %%TYPE reference (too few dotted names): string

ERROR 3518: Improper %%TYPE reference (too many dotted names): string

ERROR 3519: Improper qualified column name: string

ERROR 3520: Improper qualified name (too many dot): string

ERROR 3521: Improper qualified name (too many dots): string

ERROR 3522: Improper qualified name (too many dotted names): string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 757 of 817

ERROR 3523: Improper relation name (too many dotted names): string

ERROR 3538: Incorrect parameter type provided: string is supposed to be of type string

ERROR 3548: Indirection is not allowed in a target column

ERROR 3549: Indirection is not allowed in the name of a FILLER column

ERROR 3571: INSERT ... SELECT may not specify INTO

ERROR 3572: INSERT has more expressions than target columns

ERROR 3573: INSERT has more target columns than expressions

ERROR 3599: Interpolated predicates are allowed only in ON CLAUSE of ANSI Join syntax

ERROR 3602: Interpolated predicates should refer to columns from both relations of the join

ERROR 3615: INTO is only allowed on first SELECT of UNION/INTERSECT/EXCEPT

ERROR 3619: Invalid argument type value in ANALYZE_CONSTRAINTS

ERROR 3672: Invalid hexadecimal number at or near "string"

ERROR 3706: Invalid node name in hint

ERROR 3709: Invalid number at or near "string"

ERROR 3738: Invalid projection name in hint: string

ERROR 3775: Invalid Unicode escape character 'character'

ERROR 3776: Invalid Unicode hex number "string"

ERROR 3812: Join condition in merge query must include at least one table attribute

ERROR 3841: Label can accept only one argument

ERROR 3865: LIMIT #,# syntax is not supported

ERROR 3944: Misplaced DEFERRABLE clause

ERROR 3945: Misplaced INITIALLY DEFERRED clause

ERROR 3946: Misplaced INITIALLY IMMEDIATE clause

ERROR 3947: Misplaced NOT DEFERRABLE clause

ERROR 3949: Missing argument

ERROR 3958: Missing savepoint name

ERROR 3959: Missing the path number

ERROR 3976: Multiple assignments to same column "string"

ERROR 3978: Multiple decimal points

ERROR 3979: Multiple default values specified for column "string" of table "string"

ERROR 3980: Multiple DEFERRABLE/NOT DEFERRABLE clauses not allowed

ERROR 3981: Multiple FOR UPDATE clauses are not allowed

ERROR 3982: Multiple INITIALLY IMMEDIATE/DEFERRED clauses not allowed

ERROR 3984: Multiple LIMIT clauses are not allowed

ERROR 3985: Multiple OFFSET clauses are not allowed

ERROR 3986: Multiple ORDER BY clauses are not allowed

ERROR 4023: Must specify memorySize parameter

ERROR 4024: Must specify one new name for each schema

ERROR 4025: Must specify one new name for each table

ERROR 4026: Must specify one new name for each view

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 758 of 817

ERROR 4062: NEW used in query that is not in a rule

ERROR 4066: No actions specified

ERROR 4070: No columns specified in select list

ERROR 4072: No constraints defined

ERROR 4105: No second argument needed when analyzing all constraints

ERROR 4136: Node "string" does not exist

ERROR 4161: Non-integer constant in string

ERROR 4164: Nonexistent columns: 'string'

ERROR 4203: Number of columns defined in CREATE TABLE statement is less than in SELECT query o
utput

ERROR 4204: Number of columns defined in CREATE TABLE statement is more than in SELECT query o
utput

ERROR 4205: Number of columns in the PROJECTION statement must be the same as the number of co
lumns in the SELECT statement

ERROR 4225: OLD used in query that is not in a rule

ERROR 4227: ON COMMIT clause may only be specified for TEMPORARY tables

ERROR 4237: Only a single "S" is allowed

ERROR 4239: Only ASC is allowed in ORDER BY list of auto projection for CREATE TABLE

ERROR 4240: Only columns are allowed in ORDER BY list of auto projection for CREATE TABLE

ERROR 4241: Only columns are allowed in SELECT list of projection

ERROR 4247: Only inner joins are allowed in a projection defining query

ERROR 4253: Only one table allowed

ERROR 4268: Only tables are allowed in FROM clause of projection

ERROR 4291: Operator too long at or near "string"

ERROR 4294: Option string conflicts with prior options

ERROR 4296: Options not set

ERROR 4297: ORDER BY column in timeseries OVER clause must be Timestamp type

ERROR 4325: Parameters can only contain constants or constant expressions

ERROR 4327: Parsing error "string" at or near "string"

ERROR 4328: PARTITION AUTO can only be used with single-phase user defined transform functions

ERROR 4348: Path Number must be in [0, value]

ERROR 4350: Pattern "0" must come before "PR"

ERROR 4351: Pattern "9" must come before "PR"

ERROR 4383: plannedConcurrency must be greater than 0

ERROR 4487: Projections can only be sorted in ascending order

ERROR 4629: Row expressions being compared must have the same number of entries

ERROR 4669: SELECT * with no tables specified is not valid

ERROR 4670: SELECT DISTINCT ON is not standard SQL, use just SELECT DISTINCT

ERROR 4706: Sequence functions accept constant strings arguments only

ERROR 4707: Sequence Manipulation functions are allowed in OUTER SELECT LIST only and cannot b
e in SELECT LIST of a WITH clause

ERROR 4732: Set Operators are not allowed in a projection

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 759 of 817

ERROR 4761: Sort key string should be in the target list

ERROR 4814: Subqueries in a MERGE statement are not allowed

ERROR 4815: Subqueries in MERGE statement are not allowed

ERROR 4828: Subquery has too few columns

ERROR 4829: Subquery has too many columns

ERROR 4831: Subquery in FROM may not have SELECT INTO

ERROR 4833: Subquery in FROM must have an alias

ERROR 4835: Subquery must return a column

ERROR 4836: Subquery must return only one column

ERROR 4837: Subquery not allowed in a projection

ERROR 4838: Subquery not allowed in SELECT list and/or ORDER BY clause for Time Series queries

ERROR 4855: Syntactic Optimizer requires joins written using ANSI JOIN syntax

ERROR 4856: Syntax error at or near "string"

ERROR 4947: The foreign key in this constraint has already been defined as a foreign key for r
elation "string"

ERROR 4955: The number of target columns (value) does not match the number of columns (value)
in the EXPORT statement

ERROR 4956: The number of target columns (value) is less than the number of columns (value) in
the EXPORT statement

ERROR 5007: Time Series Aggregate Functions cannot be nested

ERROR 5008: Time Series queries cannot refer to column of outer query

ERROR 5009: Time Series queries cannot refer to column of outer query: "string.string"

ERROR 5011: Time slice length must be a positive integer constant

ERROR 5012: Time slice length must be an interval constant

ERROR 5161: Unequal number of entries in row expression

ERROR 5162: Unequal number of entries in row expressions

ERROR 5272: Unsupported From clause expression

ERROR 5285: Unsupported SET option

ERROR 5286: Unsupported SET option string

ERROR 5287: Unsupported SHOW option string

ERROR 5290: Unsupported transaction option string

ERROR 5305: Unterminated /* comment at or near "string"

ERROR 5306: Unterminated bit string literal at or near "string"

ERROR 5307: Unterminated dollar-quoted string at or near "string"

ERROR 5308: Unterminated hexadecimal string literal at or near "string"

ERROR 5310: Unterminated quoted identifier at or near "string"

ERROR 5311: Unterminated quoted string at or near "string"

ERROR 5323: Usage: clear_profiling(string , string)

ERROR 5324: Usage: disable_profiling(string)

ERROR 5325: Usage: enable_profiling(string)

ERROR 5326: Use "string(*)" to call this aggregate function

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 760 of 817

ERROR 5383: User Defined Transform Functions are allowed only in a SELECT list

ERROR 5386: User defined transform will return value columns, whereas value aliases provided

ERROR 5401: User-defined transform function string must have an OVER clause

ERROR 5413: Value must be either "units" or "plain"

ERROR 5415: Value must be either ON or OFF

ERROR 5452: Virtual tables are not allowed in FROM clause of projection

ERROR 5492: Wrong number of parameters for prepared statement "string"

ERROR 5493: Wrong number of parameters on left side of OVERLAPS expression

ERROR 5494: Wrong number of parameters on right side of OVERLAPS expression

ERROR 5505: You can specify a node name only once in a create projection statement, node strin
g appears more than once

ERROR 5518: Zero-length delimited identifier at or near "string"

ERROR 5524: A projection can have only one basename

ERROR 5525: A projection can have only one createtype

ERROR 5566: Dimension tables may not have data that shorter lived than the fact table

ERROR 5577: Expression for user-defined type column string cannot be coerced

ERROR 5600: Invalid predicate in projection-select. Only PK=FK equijoins are allowed

ERROR 5617: Multiple WITH clauses not allowed

ERROR 5629: Not a Star or Snow-Flake Query

ERROR 5630: Nullable FKs are not allowed in projection definition

ERROR 5651: Recursive With is not supported

ERROR 5664: Subqueries not allowed in projection definition

ERROR 5665: Subquery in MERGE is not supported

ERROR 5670: The number of alias columns must be the same as the number of selected columns

ERROR 5691: User-defined function string is not a supported scalar function

ERROR 5696: WITH query name "string" specified more than once

ERROR 5711: Invalid function arguments

ERROR 5714: Missing the random seed

ERROR 5730: The second argument, sampling method, should be always be 1 -- naive sampling(bias
ed)

ERROR 5733: The third argument must be large than 0

ERROR 5734: Three arguments at most: sampling seed, sampling method (optional, default 1), sam
pling size (optional,default 10)

ERROR 5916: If specified, maximum error percentage must be a numeric constant

ERROR 5926: Internal error parsing function string

ERROR 5929: Invalid maximum error percentage specified

ERROR 6034: Syntax Error: 'string' is a built in type

ERROR 6048: The minimum value that may be specified for maximum error percentage is 0.0779

ERROR 6061: Too many arguments to string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 761 of 817

http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 42602
This topic lists the error associated with the SQLSTATE 42602.

SQLSTATE 42602 Description
ERRCODE_INVALID_NAME

Error messages associated with this SQLState
ERROR 2383: Cannot create projections due to naming conflicts with existing projections

ERROR 2398: Cannot determine the best encoding options for some columns in table string.string
due to insufficient data

ERROR 3059: DEPRECATED syntax. Segment expression "string" is a projection column name, segmen
ting on attribute "string"stringstringstring instead

ERROR 3378: Failed to generate a unique relation or sequence name

ERROR 3674: Invalid identifier name (value octets) "string"

ERROR 3703: Invalid name syntax

ERROR 3747: Invalid savepoint identifier string

ERROR 4159: Non-ASCII characters in names are prohibited

ERROR 4267: Only table column names & filler column names can appear in the list

ERROR 4451: Projection "string" does not exist

ERROR 4506: Query weight must be positive

ERROR 5360: User "string" does not exist

ERROR 5403: User/role "string" already exists

ERROR 5569: Either column "string" does not exist or table alias "string" is not allowed in "W
HEN MATCHED THEN UPDATE SET"

ERROR 5769: Cannot drop the main vertica license

ERROR 5968: No such license string to drop

ERROR 5970: Node string is not a control node

ERROR 6089: Unknown control node string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42611
This topic lists the error associated with the SQLSTATE 42611.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 762 of 817

http://my.vertica.com/

SQLSTATE 42611 Description
ERRCODE_INVALID_COLUMN_DEFINITION

Error messages associated with this SQLState
ERROR 2506: Cannot set default for column "string" since it is referenced in default expressio

n of column "string"

ERROR 3017: Default expression for column "string" may not refer to itself

ERROR 6099: Using LONG column 'string' in a constraint

ERROR 6100: Using PARTITION expression that returns a string value

ERROR 6101: Using PARTITION expression that returns a LONG value

ERROR 6102: Using PARTITION expression that returns a LONG value: 'string'

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42622
This topic lists the error associated with the SQLSTATE 42622.

SQLSTATE 42622 Description
ERRCODE_NAME_TOO_LONG

Error messages associated with this SQLState
ERROR 2462: Cannot open FileColumn because path is too long string

ERROR 3507: Identifier "string" is value octets long. Maximum limit is value octets

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42701
This topic lists the error associated with the SQLSTATE 42701.

SQLSTATE 42701 Description
ERRCODE_DUPLICATE_COLUMN

Error messages associated with this SQLState
ERROR 2629: Column "string" is already of type "string"

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 763 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 2638: Column "string" specified more than once

ERROR 2654: Column string specified more than once

ERROR 2655: Column string specified more than once in options list

ERROR 2662: Column name "string" already exists

ERROR 2663: Column name "string" appears more than once in USING clause

ERROR 2664: Column name "string" does not exist

ERROR 3144: Duplicate column string in ORDER BY list

ERROR 3145: Duplicate column name

ERROR 3150: Duplicate projection column name (projection: string)

ERROR 3154: Duplicated parameter "string" in parameter list

ERROR 5450: View definition can not contain duplicate column names "string"

ERROR 5878: Failed to create table string: duplicate column name string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42702
This topic lists the error associated with the SQLSTATE 42702.

SQLSTATE 42702 Description
ERRCODE_AMBIGUOUS_COLUMN

Error messages associated with this SQLState
ERROR 2604: Clause string "string" is ambiguous

ERROR 2671: Column reference "string" is ambiguous

ERROR 2681: Common column name "string" appears more than once in left table

ERROR 2682: Common column name "string" appears more than once in right table

ERROR 5904: Flex table "string" has no internal "string" column

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42703
This topic lists the error associated with the SQLSTATE 42703.

SQLSTATE 42703 Description
ERRCODE_UNDEFINED_COLUMN

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 764 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2359: Cannot assign to field "string" of column "string" because there is no such column

in data type string

ERROR 2625: Column "string" does not exist;
 Vertica does not support 'SELECT <table_name> FROM <table_name>'

ERROR 2633: Column "string" named as primary key does not exist

ERROR 2634: Column "string" not found in data type string

ERROR 2635: Column "string" of relation "string" does not exist

ERROR 2636: Column "string" specified in USING clause does not exist in left table

ERROR 2637: Column "string" specified in USING clause does not exist in right table

ERROR 2639: Column "string"."string" does not exist as a projection column

ERROR 2643: Column string does not exist

ERROR 2644: Column string does not exist in table

ERROR 2651: Column string must be loaded or computed

ERROR 2656: Column string.string does not exist

ERROR 2870: Could not identify column "string" in record data type

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42704
This topic lists the error associated with the SQLSTATE 42704.

SQLSTATE 42704 Description
ERRCODE_UNDEFINED_OBJECT

Error messages associated with this SQLState
ERROR 2067: 'string' is not a known granularity for audits.

string

ERROR 2068: 'string' is not a known TM task.
string

ERROR 2070: 'string' is not a valid granularity for string.
string

ERROR 2073: 'string' is not supported by index tool

ERROR 2274: Bootstrap error (most likely in Bootstrap.cpp): Unregistered name string

ERROR 2275: Bootstrap error (most likely in Bootstrap.cpp): Unregistered oid value

ERROR 2710: Constraint "string" does not exist

ERROR 2711: Constraint "string" does not exist on table "string"

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 765 of 817

http://my.vertica.com/

ERROR 3001: DDL statement interfered with string.nextval

ERROR 3256: Error reported by client: string

ERROR 3442: Found eligible value processes to invite, but no matching nodes in catalog

ERROR 3637: Invalid Component Name 'string'

ERROR 3655: Invalid epoch range

ERROR 3698: Invalid mergeout task identifier (Possible values are: [0, value])

ERROR 3715: Invalid object name

ERROR 3748: Invalid scope in ANALYZE_WORKLOADstring: schema or table string was altered

ERROR 3749: Invalid scope in ANALYZE_WORKLOAD: schema or table string does not exist

ERROR 3756: Invalid Sub-Component Name 'string'

ERROR 3769: Invalid TM operation

ERROR 3779: Invalid user ID: value

ERROR 3842: Language does not exist: string

ERROR 3855: Library "string" does not exist

ERROR 3862: Library with name 'string' does not exist

ERROR 4046: Network Interface "string" does not exist

ERROR 4047: Network Interface "string" is setup on another node

ERROR 4101: No role "string" exists

ERROR 4109: No storages in the specified epoch range

ERROR 4110: No such node string

ERROR 4111: No such object

ERROR 4112: No such projection

ERROR 4113: No such projection 'string'

ERROR 4123: No user or role "string" exists

ERROR 4129: No value found for parameter "string"

ERROR 4130: No value found for parameter value

ERROR 4137: Node string does not exist

ERROR 4216: Object 'string' is not a projection

ERROR 4217: Object 'string' is not a table

ERROR 4218: Object 'string' is not a table or projection

ERROR 4223: OID value is not a sequence

ERROR 4224: OID value is not a Table or a View

ERROR 4446: Profile "string" does not exist

ERROR 4447: Profile 'string' does not exist

ERROR 4594: Resource pool "string" does not exist

ERROR 4596: Resource pool 'string' does not exist

ERROR 4614: Role "string" does not exist

ERROR 4616: Role "string" not found

ERROR 4650: Schema "string" does not exist

ERROR 4656: Schema, table, or projection "string" does not exist.
string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 766 of 817

ERROR 4697: Sequence "string" does not exist

ERROR 4713: Sequence with name 'string' does not exist

ERROR 4806: Subnet "string" does not exist

ERROR 4876: Table "string" does not exist

ERROR 4926: The string "string" does not exist

ERROR 4928: The string ["string"] does not exist

ERROR 5105: Tuning rule "string" does not exist

ERROR 5108: Type "string" does not exist

ERROR 5109: Type "string" is only a shell

ERROR 5112: Type string is only a shell

ERROR 5115: Type with OID value does not exist

ERROR 5227: Unrecognized drop object type: value

ERROR 5362: User or Role "string" not found

ERROR 5365: User available location ["string"] does not exist on node ["string"]

ERROR 5446: View "string" does not exist

ERROR 5459: Window "string" does not exist

ERROR 5532: Can not find any eligible locations in tier string

ERROR 5585: Fault Group "string" does not exist

ERROR 5614: Library string does not exist

ERROR 5688: User Defined Type "string" does not exist

ERROR 5797: Could not find the JVM resource pool

ERROR 5913: HCatalog database string does not exist

ERROR 5931: Invalid Policy Name 'string'

ERROR 5965: New node cannot be placed in a non-existent Fault Group "string"

ERROR 5969: No table or projection named string exists

ERROR 5974: Node doesn't exist

ERROR 5977: Object does not exist

ERROR 6071: Type value with odbc_subtype value is not supported

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42710
This topic lists the error associated with the SQLSTATE 42710.

SQLSTATE 42710 Description
ERRCODE_DUPLICATE_OBJECT

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 767 of 817

http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2101: A sequence named "string" already exists

ERROR 2105: A table named "string" already exists

ERROR 2107: A view named "string" already exists

ERROR 2273: Bootstrap error (most likely in Bootstrap.cpp): Oid value is already registered

ERROR 2276: Bootstrap error (most likely in Bootstrap.cpp):Name string is already registered

ERROR 2713: Constraint string already exists

ERROR 3153: Duplicated local temp table found in design queries: string

ERROR 3327: Existing object "string" is not a view

ERROR 3881: Location [string] already exists for node string

ERROR 4043: Network Interface "string" already exists

ERROR 4135: Node "string" already exists

ERROR 4213: Object "string" already exists

ERROR 4445: Profile "string" already exists

ERROR 4482: Projection with base name "string" already exists

ERROR 4564: Relation "string" already exists

ERROR 4565: Relation "string" already exists in schema "string"

ERROR 4593: Resource pool "string" already exists

ERROR 4621: Role\User "string" already exists

ERROR 4804: Subnet "string" already exists

ERROR 4805: Subnet "string" already exists for [string]

ERROR 5582: Fault Group "string" already exists

ERROR 5584: Fault Group "string" cannot depend on itself directly or indirectly

ERROR 5615: Location [string] conflicts with existing location [string] on node string

ERROR 5623: Network Interface "string" already exists for [string]

ERROR 5736: Unable to guarantee the same base name for all replicated buddy projections

ERROR 5737: Unable to guarantee the same base name for all segmented buddy projections

ERROR 6009: Resource pool string already exists

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42712
This topic lists the error associated with the SQLSTATE 42712.

SQLSTATE 42712 Description
ERRCODE_DUPLICATE_ALIAS

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 768 of 817

http://my.vertica.com/

Error messages associated with this SQLState
ERROR 4901: Table name "string" specified more than once

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42723
This topic lists the error associated with the SQLSTATE 42723.

SQLSTATE 42723 Description
ERRCODE_DUPLICATE_FUNCTION

Error messages associated with this SQLState
ERROR 2278: Built-in function with the same name already exists: string

ERROR 3472: Function with same name and number of parameters already exists: string

ERROR 4220: Object with same name and number of parameters already exists: string

ERROR 4428: Procedure/Function with same name and number of parameters already exists in schem
a string

ERROR 4429: Procedure/Function with same name and number of parameters already exists: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42725
This topic lists the error associated with the SQLSTATE 42725.

SQLSTATE 42725 Description
ERRCODE_AMBIGUOUS_FUNCTION

Error messages associated with this SQLState
ERROR 3459: Function string is not unique

ERROR 4289: Operator is not unique: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 769 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

Error Messages Associated with SQLSTATE 42803
This topic lists the error associated with the SQLSTATE 42803.

SQLSTATE 42803 Description
ERRCODE_GROUPING_ERROR

Error messages associated with this SQLState
ERROR 2134: Aggregate function calls in subqueries cannot refer to columns in parent (outer) q

uery

ERROR 2135: Aggregate function calls may not be nested

ERROR 2140: Aggregates not allowed in GROUP BY clause

ERROR 2141: Aggregates not allowed in JOIN conditions

ERROR 2142: Aggregates not allowed in WHERE clause

ERROR 2219: Argument string must not contain aggregates

ERROR 2543: Cannot use aggregate function in EXECUTE parameter

ERROR 2544: Cannot use aggregate function in function expression in FROM

ERROR 2640: Column "string.string" must appear in the GROUP BY clause or be used in an aggrega
te function

ERROR 4634: Rule WHERE condition may not contain aggregate functions

ERROR 4667: SEGMENTED BY expression may not contain aggregate functions

ERROR 4841: Subquery uses ungrouped column "string.string" from outer query

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42804
This topic lists the error associated with the SQLSTATE 42804.

SQLSTATE 42804 Description
ERRCODE_DATATYPE_MISMATCH

Error messages associated with this SQLState
ERROR 2217: Argument string must be type float, not type string

ERROR 2218: Argument string must be type integer, not type string

ERROR 2222: Argument string must not return a set

ERROR 2224: Argument of string must be type boolean, not type string

ERROR 2225: Argument of string must not return a set

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 770 of 817

http://my.vertica.com/

ERROR 2231: Array assignment requires type string but expression is of type string

ERROR 2232: Array assignment to "string" requires type string but expression is of type string

ERROR 2234: Array subscript must have type integer

ERROR 2358: Cannot assign to field "string" of column "string" because its type string is not
a composite type

ERROR 2527: Cannot subscript type string because it is not an array

ERROR 2630: Column "string" is of type string but default expression is of type string

ERROR 2631: Column "string" is of type string but expression is of type string

ERROR 2846: Could not determine actual result type for function "string" declared to return ty
pe string

ERROR 2850: Could not determine row description for function returning record

ERROR 3429: For 'string', types string and string are inconsistent

ERROR 3447: Function "string" in FROM has unsupported return type string

ERROR 3545: Index expression may not return a set

ERROR 3801: IS DISTINCT FROM requires = operator to yield boolean

ERROR 3943: Mismatched types in VALUES LESS THAN expressions

ERROR 4069: No column alias was provided

ERROR 4199: Number of aliases does not match number of columns

ERROR 4284: Operator string must not return a set

ERROR 4285: Operator string must return type boolean, not type string

ERROR 4317: Parameter $value of type string cannot be coerced to the expected type string

ERROR 4625: Row comparison operator must not return a set

ERROR 4626: Row comparison operator must yield type boolean, not type string

ERROR 4803: Subfield "string" is of type string but expression is of type string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42809
This topic lists the error associated with the SQLSTATE 42809.

SQLSTATE 42809 Description
ERRCODE_WRONG_OBJECT_TYPE

Error messages associated with this SQLState
ERROR 2037: string is not a supported analytic function

ERROR 2062: string(*) specified, but string is not an aggregate function

ERROR 2131: Aggregate function calls cannot contain analytic function calls

ERROR 2132: Aggregate function calls cannot contain sequence function calls

ERROR 2668: Column notation .string applied to type string, which is not a composite type

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 771 of 817

http://my.vertica.com/

ERROR 2755: COPY requires relation string to be a Table, not a string

ERROR 2810: Could not add location [string]: Directory not empty

ERROR 2811: Could not add location [string]: Not a directory

ERROR 3114: DISTINCT specified, but string is not an aggregate function

ERROR 3421: First argument to modularhash_wrapper must be an integer constant

ERROR 3422: First argument to modularhash_wrapper must be of type integer, not string

ERROR 3463: Function string(string) is not an aggregate

ERROR 3552: Inherited relation "string" is not a table

ERROR 3669: Invalid function given

ERROR 3965: modularhash_wrapper must have two arguments: an integer constant and a call to mod
ularhash_internal

ERROR 3966: modularhash_wrapper second argument is not modularhash_internal or a constant

ERROR 4215: Object "string" is not a projection

ERROR 4270: Op ANY/ALL (array) requires array on right side

ERROR 4271: Op ANY/ALL (array) requires operator not to return a set

ERROR 4272: Op ANY/ALL (array) requires operator to yield boolean

ERROR 4542: Record type has not been registered

ERROR 4657: Second argument to string must be a non-negative integer constant

ERROR 4931: The argument to string cannot be null

ERROR 4932: The argument to string must be a constant

ERROR 4987: Third argument to string must be a constant

ERROR 5111: Type string is not composite

ERROR 6036: Table "string" is not a flex table

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42830
This topic lists the error associated with the SQLSTATE 42830.

SQLSTATE 42830 Description
ERRCODE_INVALID_FOREIGN_KEY

Error messages associated with this SQLState
ERROR 3438: Foreign keys not specified

ERROR 3531: Incompatible data types between primary and foreign key columns: fk: string, pk: s
tring

ERROR 4207: Number of primary and foreign keys must be the same

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 772 of 817

http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42846
This topic lists the error associated with the SQLSTATE 42846.

SQLSTATE 42846 Description
ERRCODE_CANNOT_COERCE

Error messages associated with this SQLState
ERROR 2015: string could not convert type string to string

ERROR 2366: Cannot cast type string to string

ERROR 2632: Column "string" is of type string but the default expression is of type string

ERROR 4986: Third argument of string could not be converted from type string to type string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42883
This topic lists the error associated with the SQLSTATE 42883.

SQLSTATE 42883 Description
ERRCODE_UNDEFINED_FUNCTION

Error messages associated with this SQLState
ERROR 2126: Aggregate string(string) does not exist

ERROR 2127: Aggregate string(*) does not exist

ERROR 3456: Function string does not exist

ERROR 3457: Function string does not exist, or permission is denied for string

ERROR 3462: Function string with the specified arguments does not exist

ERROR 3930: Meta-function string cannot be used in COPY

ERROR 3931: Meta-function string cannot be used in INSERT

ERROR 3932: Meta-function string cannot be used in UPDATE

ERROR 3933: Meta-function string cannot be used with FROM

ERROR 3934: Meta-function ("string") can be used only in the Select clause

ERROR 3935: Meta-function ("string") cannot be used with non-Select clauses

ERROR 3936: Meta-functions cannot be used in default expressions

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 773 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 4067: No binary input function available for type string

ERROR 4068: No binary output function available for type string

ERROR 4083: No input function available for type string

ERROR 4091: No output function available for type string

ERROR 4286: Operator does not exist: string

ERROR 4290: Operator requires run-time type coercion: string

ERROR 5394: User procedure call (value) is not supported with FROM

ERROR 5455: VOLATILE functions cannot be used in a default expression when adding a column

ERROR 5910: Function string with the specified type and arguments does not exist

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42939
This topic lists the error associated with the SQLSTATE 42939.

SQLSTATE 42939 Description
ERRCODE_RESERVED_NAME

Error messages associated with this SQLState
ERROR 2297: Can not drop default profile

ERROR 2299: Can not rename default profile

ERROR 2418: Cannot drop role "string"

ERROR 2488: Cannot rename role string

ERROR 2489: Cannot rename system column epoch

ERROR 2665: Column name "string" is reserved

ERROR 2666: Column name string is reserved

ERROR 3778: Invalid use of reserved the column name "string"

ERROR 4030: Names starting with "v_" are reserved names

ERROR 4953: The name "string" is a reserved name

ERROR 4962: The prefix "sys_" is reserved for system tuning rule

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42P20
This topic lists the error associated with the SQLSTATE 42P20.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 774 of 817

http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 42P20 Description
ERRCODE_WINDOWING_ERROR

Error messages associated with this SQLState
ERROR 2011: string cannot use the WITHIN GROUP clause

ERROR 2041: string may only have one sort expression in the WITHIN GROUP clause

ERROR 2043: string must contain an ORDER BY clause within its analytic clause

ERROR 2044: string must NOT contain an ORDER BY clause or WINDOWING clause within its analytic
clause

ERROR 2045: string must NOT contain WINDOWING clause within its analytic clause

ERROR 2047: string only supports the Integer, Float, Interval and Numeric data types

ERROR 2182: Analytic functions are allowed only in a SELECT list and/or ORDER BY clause

ERROR 2185: Analytic functions are not supported in the PARTITION BY of an OVER clause

ERROR 2187: Analytic functions cannot be nested

ERROR 2188: Analytic functions must have a FROM clause

ERROR 2189: Analytic functions not allowed in string

ERROR 2305: Can't cast the window bound into Int

ERROR 2306: Can't cast the window bound into the same data type of the ORDER BY column

ERROR 2465: Cannot override ORDER BY clause of window "string"

ERROR 2466: Cannot override PARTITION BY clause of window "string"

ERROR 2524: Cannot specify frame clause of window "string"

ERROR 3435: For range moving window, OrderBy expression must be one of Int, Float, Time, Times
tamp, Interval, Date or Numeric

ERROR 3446: Frame clause not allowed without windowing order by

ERROR 3839: Keyword "ALL" is invalid in analytic functions

ERROR 4362: PERCENTILE_CONT/PERCENTILE_DISC must have the WITHIN GROUP clause

ERROR 4363: PERCENTILE_CONT/PERCENTILE_DISC must NOT contain an ORDER BY clause or WINDOWING c
lause within its analytic clause

ERROR 4811: Subqueries are not supported in the PARTITION BY of a timeseries OVER clause

ERROR 5006: Time Series Aggregate Functions are not supported in the PARTITION BY of a timeser
ies OVER clause

ERROR 5010: Time Series timestamp alias/Time Series Aggregate Functions not allowed in string

ERROR 5460: Window "string" is already defined

ERROR 5461: Window frame cannot end with PRECEDING if start is CURRENT ROW

ERROR 5462: Window frame cannot end with PRECEDING or CURRENT ROW if start is FOLLOWING

ERROR 5463: Window frame cannot end with UNBOUNDED PRECEDING

ERROR 5464: Window frame cannot start with UNBOUNDED FOLLOWING

ERROR 5466: Window frame logical offset must be a non-negative number to be consistent with th
e sort column type

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 775 of 817

ERROR 5467: Window frame logical offset must be an Interval (Day to Second or Year to Month) t
o be consistent with the sort column type

ERROR 5468: Window frame logical offset must be an Interval (Day to Second) to be consistent w
ith the sort column type

ERROR 5469: Window frame logical offset must be an interval to be consistent with the sort col
umn type

ERROR 5470: Window frame logical offset must be Int when the sort column type is Int

ERROR 5471: Window frame logical offset must be the same type as the sort column type (Interva
l Day to Second)

ERROR 5472: Window frame logical offset must be the same type as the sort column type (Interva
l Year to Month)

ERROR 5473: Window frame logical or physical offset must be a constant

ERROR 5474: Window frame logical or physical offset must be non-negative number or interval

ERROR 5475: Window frame physical offset must be non-negative number

ERROR 5477: Window ordering clause can only contain a single sort key if RANGE is used

ERROR 5478: Windowing not supported for User Defined Analytic functions

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V01
This topic lists the error associated with the SQLSTATE 42V01.

SQLSTATE 42V01 Description
ERRCODE_UNDEFINED_TABLE

Error messages associated with this SQLState
ERROR 2072: 'string' is not a valid table

ERROR 2308: Can't find anchor table

ERROR 2312: Can't find table

ERROR 2313: Can't find table "string"

ERROR 2714: Constraint string does not exist

ERROR 2948: CTAS: table "string" was dropped in another session (DDL interference)

ERROR 3367: Failed to create projection for 'string'

ERROR 3642: Invalid CTAS query: string

ERROR 3760: Invalid table name

ERROR 3761: Invalid table name "string"

ERROR 3762: Invalid table name string

ERROR 3953: Missing FROM-clause entry for table "string"

ERROR 3954: Missing FROM-clause entry in subquery for table "string"

ERROR 4416: Primary table "string" does not exist

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 776 of 817

http://my.vertica.com/

ERROR 4566: Relation "string" does not exist

ERROR 4567: Relation "string" in FOR UPDATE clause not found in FROM clause

ERROR 4568: Relation "string.string" does not exist

ERROR 4570: Relation with OID value does not exist

ERROR 4883: Table "string.string" does not exist

ERROR 4898: Table does not exist (oid=value)

ERROR 4911: Table with OID value does not exist

ERROR 4912: Table/View with name 'string' does not exist

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V02
This topic lists the error associated with the SQLSTATE 42V02.

SQLSTATE 42V02 Description
ERRCODE_UNDEFINED_PARAMETER

Error messages associated with this SQLState
ERROR 3638: Invalid configuration parameter string; aborting configuration change

ERROR 4321: Parameter value is not set

ERROR 4984: There is no parameter $value

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V03
This topic lists the error associated with the SQLSTATE 42V03.

SQLSTATE 42V03 Description
ERRCODE_DUPLICATE_CURSOR

Error messages associated with this SQLState
ERROR 2615: Closing existing cursor "string"

ERROR 2968: Cursor "string" already exists

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 777 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V04
This topic lists the error associated with the SQLSTATE 42V04.

SQLSTATE 42V04 Description
ERRCODE_DUPLICATE_DATABASE

Error messages associated with this SQLState
ERROR 2706: Connection to database [string] already exists

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V06
This topic lists the error associated with the SQLSTATE 42V06.

SQLSTATE 42V06 Description
ERRCODE_DUPLICATE_SCHEMA

Error messages associated with this SQLState
ERROR 4649: Schema "string" already exists

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V07
This topic lists the error associated with the SQLSTATE 42V07.

SQLSTATE 42V07 Description
ERRCODE_DUPLICATE_TABLE

Error messages associated with this SQLState
ERROR 4753: Skip lazy projection creation since super projection for table string.string alrea

dy exists

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 778 of 817

http://my.vertica.com/
http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V08
This topic lists the error associated with the SQLSTATE 42V08.

SQLSTATE 42V08 Description
ERRCODE_AMBIGUOUS_PARAMETER

Error messages associated with this SQLState
ERROR 2848: Could not determine data type of parameter $value

ERROR 3534: Inconsistent types deduced for parameter $value

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V09
This topic lists the error associated with the SQLSTATE 42V09.

SQLSTATE 42V09 Description
ERRCODE_AMBIGUOUS_ALIAS

Error messages associated with this SQLState
ERROR 4908: Table reference "string" is ambiguous

ERROR 4909: Table reference value is ambiguous

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V10
This topic lists the error associated with the SQLSTATE 42V10.

SQLSTATE 42V10 Description
ERRCODE_INVALID_COLUMN_REFERENCE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 779 of 817

http://my.vertica.com/
http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2046: string not allowed in string clause

ERROR 2050: string position value is not in select list

ERROR 2221: Argument string must not contain variables

ERROR 3467: Function expression in FROM may not refer to other relations of same query level

ERROR 3820: JOIN/ON clause refers to "string", which is not part of JOIN

ERROR 4832: Subquery in FROM may not refer to other relations of same query level

ERROR 4877: Table "string" has value columns available but value columns specified

ERROR 5057: Too many column aliases specified for function string

ERROR 5194: UNION/INTERSECT/EXCEPT member statement may not refer to other relations of same q
uery level

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V11
This topic lists the error associated with the SQLSTATE 42V11.

SQLSTATE 42V11 Description
ERRCODE_INVALID_CURSOR_DEFINITION

Error messages associated with this SQLState
ERROR 2522: Cannot specify both SCROLL and NO SCROLL

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V13
This topic lists the error associated with the SQLSTATE 42V13.

SQLSTATE 42V13 Description
ERRCODE_INVALID_FUNCTION_DEFINITION

Error messages associated with this SQLState
ERROR 2038: string is not a supported Time Series Aggregate Function

ERROR 2139: Aggregates may not return sets

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 780 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 2173: An error occurred on node [string] when setting up the function [string]: [string]

ERROR 2177: An error occurred when setting up function "string"

ERROR 2397: Cannot determine result data type

ERROR 2451: Cannot load data from 0 sources; please specify 1 or more (on node [string])

ERROR 2494: Cannot RETURNREJECTED with multiple files or data sources

ERROR 3113: DISTINCT is supported only for single-argument aggregates

ERROR 3476: Functions in language string can be created only in fenced mode

ERROR 3604: Interpolation scheme string for Time Series Aggregate Function string is not suppo
rted

ERROR 3708: Invalid null argument for TSA function string

ERROR 3843: Language(string) does not match the language associated with the library(string)

ERROR 3854: Length of a string in a return type must be greater than zero

ERROR 3860: Library file is not loaded

ERROR 3861: Library not found: string

ERROR 3929: Meta functions cannot be used in UDx definitions

ERROR 4086: No language specified

ERROR 4095: No procedure source specified

ERROR 4096: No procedure user specified

ERROR 4243: Only COUNT() can have star(*) as its argument

ERROR 4249: Only MIN/MAX are allowed to use DISTINCT

ERROR 4251: Only one expression is allowed

ERROR 4257: Only simple "RETURN expression" is allowed

ERROR 4409: Precision of a numeric in a return type must be greater than zero

ERROR 4608: Return type string is not supported for SQL functions

ERROR 4609: Return type mismatch in a function declared to return string

ERROR 4610: Return type mismatch in function declared to return string

ERROR 4746: Setting up function "string" failed

ERROR 4794: Strictness in the DDL and the function factory class don't match. Function was not
created

ERROR 4858: Syntax error in syntax definition at offset value

ERROR 4949: The interpolation argument for Time Series Aggregate Function string must be a con
stant string

ERROR 5457: Volatility in the DDL and the function factory class don't match. Function was not
created

ERROR 5476: Window functions cannot return sets

ERROR 5777: Cannot set up function [string] on node: string

ERROR 6072: UDFileSystem only supports C++ unfenced mode

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 781 of 817

http://my.vertica.com/

Error Messages Associated with SQLSTATE 42V15
This topic lists the error associated with the SQLSTATE 42V15.

SQLSTATE 42V15 Description
ERRCODE_INVALID_SCHEMA_DEFINITION

Error messages associated with this SQLState
ERROR 2470: Cannot plan query because no super projections are safe, some node(s) are down

ERROR 2945: CREATE specifies a schema (string) different from the one being created (string)

ERROR 3365: Failed to create default projections for table "string"."string": string

ERROR 3586: Insufficient projections to answer query

ERROR 4097: No projections eligible to answer query

ERROR 4878: Table "string" has an out-of-date super projection "string"

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V16
This topic lists the error associated with the SQLSTATE 42V16.

SQLSTATE 42V16 Description
ERRCODE_INVALID_TABLE_DEFINITION

Error messages associated with this SQLState
ERROR 2104: A table cannot have only IDENTITY/AUTO-INCREMENT columns

ERROR 2420: Cannot drop the constraint. (Table "string" has a foreign key constraint referenci
ng the specified primary key constraint)

ERROR 2421: Cannot drop the constraint. (There is at least one prejoin projection dependent on
the specified foreign key constraint)

ERROR 2588: CHECK constraints not supported

ERROR 2622: Column "string" cannot be declared SETOF

ERROR 2626: Column "string" from table "string" in the SEGMENTED BY expression is required to
be present in the projection, but is not

ERROR 2712: Constraint "string" for relation "string" already exists

ERROR 3508: IDENTITY/AUTO-INCREMENT columns are not allowed in temporary tables

ERROR 3874: Local temporary table constraint cannot reference a non-local table

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 782 of 817

http://my.vertica.com/

ERROR 3901: MATCH types other than SIMPLE (the default) are not supported for foreign key cons
traints

ERROR 3987: Multiple primary keys for table "string" are not allowed

ERROR 4162: Non-local table constraint cannot reference a local temporary table

ERROR 4229: ON DELETE actions other than NO ACTION are not supported for foreign key constrain
ts

ERROR 4234: ON UPDATE actions other than NO ACTION are not supported for foreign key constrain
ts

ERROR 4413: Primary constraint for relation "string" already exists

ERROR 4415: Primary keys not specified

ERROR 4469: Projection anchor table is not partitioned

ERROR 4550: Referenced primary key constraint does not exist

ERROR 4881: Table "string" is not partitioned

ERROR 4899: Table is not partitioned

ERROR 4900: Table must have at least one column

ERROR 5269: Unsupported constraint type

ERROR 5548: Constraint not supported for user defined type column string

ERROR 5552: Correlation constraint not supported for user defined types

ERROR 5874: Failed to add table string of hcatalog schema string to catalog: no columns

ERROR 5876: Failed to alter table string of hcatalog schema string to catalog: no columns

ERROR 5879: Failed to describe hcatalog table

ERROR 5948: Local temporary objects may not specify a schema name

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V17
This topic lists the error associated with the SQLSTATE 42V17.

SQLSTATE 42V17 Description
ERRCODE_INVALID_OBJECT_DEFINITION

Error messages associated with this SQLState
ERROR 2387: Cannot create projections involving external table string

ERROR 3075: Design type string is invalid

ERROR 3078: Optimization objective string is invalid

ERROR 3199: Error during deployment querying deployment projections table for workspace string

ERROR 3200: Error during deployment querying design projections table for design string in wor
kspace string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 783 of 817

http://my.vertica.com/

ERROR 3201: Error during deployment while querying deployment projections table for workspace
string

ERROR 3204: Error during drop design from deployment for workspace string

ERROR 3206: Error during extend catalog while querying deployments table for workspace string

ERROR 3207: Error during getDesignTablesFromDeployment in workspace string

ERROR 3213: Error during remove deployment drops from deployment string for workspace string

ERROR 3227: Error in querying string.string

ERROR 3269: Error while checking whether there are only incremental design deployed for deploy
ment string in workspace string

ERROR 3271: Error while querying designs table for workspace string

ERROR 3968: More than one IDENTITY/AUTO_INCREMENT column defined for table "string"

ERROR 3983: Multiple instances of deployment string in workspace string

ERROR 4128: No valid projections found

ERROR 4230: ON DELETE rule may not use NEW

ERROR 4231: ON INSERT rule may not use OLD

ERROR 4232: ON SELECT rule may not use NEW

ERROR 4233: ON SELECT rule may not use OLD

ERROR 4635: Rule WHERE condition may not contain references to other relations

ERROR 4636: Rules with WHERE conditions may only have SELECT, INSERT, UPDATE, or DELETE action
s

ERROR 4919: Temporary table projections are not allowed for this operation

ERROR 4982: There is no deployment string in workspace string

ERROR 4989: This function cannot be called on design string located in design workspace string

ERROR 4990: This function cannot be called on design string, when its design mode is string

ERROR 5367: User defined aggregate must return exactly one column.Function string returns valu
e

ERROR 5369: User defined analytic must return exactly one column

ERROR 5384: User defined transform must provide names or aliases for return columns

ERROR 5385: User defined transform must return at least one column

ERROR 5527: An error occurred on node string when setting up the type, message:
string

ERROR 5721: Purge is not allowed on temporary tables

ERROR 6095: UseLongStrings has been deprecated

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V18
This topic lists the error associated with the SQLSTATE 42V18.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 784 of 817

http://my.vertica.com/

SQLSTATE 42V18 Description
ERRCODE_INDETERMINATE_DATATYPE

Error messages associated with this SQLState
ERROR 2847: Could not determine data type of column $value

ERROR 3609: Interval must be single datetime field

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V21
This topic lists the error associated with the SQLSTATE 42V21.

SQLSTATE 42V21 Description
ERRCODE_UNDEFINED_PROJECTION

Error messages associated with this SQLState
ERROR 2311: Can't find projection value

ERROR 2430: Cannot find projection column value

ERROR 3005: DDL statement interfered with refresh operation

ERROR 3736: Invalid projection name

ERROR 3737: Invalid projection name string

ERROR 4452: Projection "string" does not exist or was just dropped

ERROR 4474: Projection does not exist

ERROR 4905: Table or projection "string" does not exist

ERROR 5563: DDL statement interfered with this operation

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V25
This topic lists the error associated with the SQLSTATE 42V25.

SQLSTATE 42V25 Description
ERRCODE_PATTERN_MATCH_ERROR

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 785 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2227: Argument to test_pattern_event_eval must be > 0 and less than the total number of

events

ERROR 2228: Argument to test_pattern_event_eval must be a constant

ERROR 2553: Cannot use more than one pattern

ERROR 2555: Cannot use pattern test functions with pattern match functions

ERROR 3025: Defining more than 52 events is not supported

ERROR 3288: Event "string" in PATTERN clause is not defined in the DEFINE clause

ERROR 3289: Event ANY_ROW cannot be used under *, +, ?, or | when the select list contains the
pattern function event_name()

ERROR 3290: Event ANY_ROW is a reserved event and cannot be user defined

ERROR 3294: Event expressions cannot contain analytic functions

ERROR 3295: Event expressions cannot contain correlated expressions

ERROR 3296: Event expressions cannot contain subqueries

ERROR 3297: Event name "string" defined more than once

ERROR 4353: Pattern events must be mutually exclusive

ERROR 4354: Pattern match query cannot contain having clause, group clause, aggregates, or dis
tinct

ERROR 4355: Pattern match query cannot contain timeseries clause

ERROR 4356: Pattern matching recursion limit reached

ERROR 4358: PatternMatchingMaxPartition must be greater than 0

ERROR 4359: PatternMatchingMaxPartitionMatches must be greater than 0

ERROR 4360: PatternMatchingPerMatchWorkspaceSize must be greater than 0 and less than 1024

ERROR 4494: Queries with user-defined transform functions (string) cannot have a MATCH clause

ERROR 4507: Query with analytic function string cannot have a MATCH clause

ERROR 4509: Query with pattern matching function string must include a MATCH clause

ERROR 4605: RESULTS GROUPED BY MATCH is not supported

ERROR 5283: Unsupported pattern operator

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 42V26
This topic lists the error associated with the SQLSTATE 42V26.

SQLSTATE 42V26 Description
ERRCODE_DUPLICATE_NODE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 786 of 817

http://my.vertica.com/

Error messages associated with this SQLState
ERROR 4058: New node matches existing node string

ERROR 4063: New values for node string matches existing node string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 53000
This topic lists the error associated with the SQLSTATE 53000.

SQLSTATE 53000 Description
ERRCODE_INSUFFICIENT_RESOURCES

Error messages associated with this SQLState
ERROR 2245: Attempted to create too many ROS containers for projection string

ERROR 2843: Could not create thread for recoverProjectionLocal

ERROR 2844: Could not create thread for SubsessionHandler

ERROR 2845: Could not create thread for SubsessionHandler Hurry

ERROR 2997: DBDesigner memory usage (value bytes) exceeded system limit

ERROR 3300: Exceeded temp space cap, requested value with value remaining (used value) bytes

ERROR 3416: Filter tried to allocate too much memory (value, out of value allowed)

ERROR 3587: Insufficient resources to execute plan on pool string [string]

ERROR 3921: MemoryPool string used more memory than allowed

ERROR 3937: MIN/MAX window function could not operate in memory

ERROR 4764: Source tried to allocate too much memory (value, out of value allowed)

ERROR 5000: Thread limit value, but statement needs value threads

ERROR 5001: ThreadManager failed to create thread string: string

ERROR 5022: Timer service failed to run value: string

ERROR 5065: Too many ROS containers exist for the following projections: string

ERROR 5921: Insufficient memory available for database designer

ERROR 5924: Insufficient resources to get resource from JVM pool [string]

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 53100
This topic lists the error associated with the SQLSTATE 53100.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 787 of 817

http://my.vertica.com/
http://my.vertica.com/

SQLSTATE 53100 Description
ERRCODE_DISK_FULL

Error messages associated with this SQLState
ERROR 2475: Cannot rebalance cluster. Insufficient disk space on the following nodes: string

ERROR 2927: Could not write to [string]: string

ERROR 5661: Storage Location string has value free bytes left, but the plan requires at least
value bytes

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 53200
This topic lists the error associated with the SQLSTATE 53200.

SQLSTATE 53200 Description
ERRCODE_OUT_OF_MEMORY

Error messages associated with this SQLState
ERROR 2296: Calloc of value bytes for string failed

ERROR 2344: Cannot allocate sufficient memory for COPY statement (value requested, value permi
tted)

ERROR 3499: Hash table out of memory

ERROR 3811: Join [string] inner partition did not fit in memory; value [string]

ERROR 3813: Join did not fit in memory

ERROR 3814: Join inner did not fit in memory

ERROR 3815: Join inner did not fit in memory [string]

ERROR 3816: Join NULLs did not fit in memory [string]

ERROR 3819: Join table did not fit in memory

ERROR 3895: Malloc of value bytes for string failed

ERROR 4176: Not enough memory for test directive numTopKHeaps

ERROR 4302: Out of memory

ERROR 4303: Out of memory when expanding glob: string

ERROR 4305: Out of system WOS memory during catalog SELECT

ERROR 4357: Pattern partition will not fit into memory

ERROR 4381: Plan memory limit exhausted: [string]

ERROR 4495: Query value exceeded memory usage limit. Design result for this query might be sub
optimal

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 788 of 817

http://my.vertica.com/

ERROR 4512: Ran out of WOS memory during string

ERROR 4524: Realloc of value bytes for string failed

ERROR 5062: Too many hash table entries

ERROR 5063: Too many matches in a single partition

ERROR 5147: Unable to reserve memory (value K) for the WOS

ERROR 5952: Malloc of value bytes in Block Memory Manager failed

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 54000
This topic lists the error associated with the SQLSTATE 54000.

SQLSTATE 54000 Description
ERRCODE_PROGRAM_LIMIT_EXCEEDED

Error messages associated with this SQLState
ERROR 2052: string Row size value is too large

ERROR 2472: Cannot prepare statement - too many prepared statements

ERROR 3460: Function string may give a value-octet result; the limit is value octets

ERROR 3626: Invalid buffer enlargement request size value

ERROR 3866: Line is too long in timezone file "string", line value

ERROR 4282: Operator string may give a value-octet Varbinary result; the limit is value octets

ERROR 4283: Operator string may give a value-octet Varchar result; the limit is value octets

ERROR 4557: regexp_replace result is too long

ERROR 4913: Target lists can have at most value entries

ERROR 5043: Timezone directory stack overflow

ERROR 5060: Too many data partitions

ERROR 5263: Unsupported access to external table

ERROR 5265: Unsupported access to virtual schema

ERROR 5266: Unsupported access to virtual table

ERROR 5267: Unsupported access to virtual view

ERROR 5749: Array size exceeds the maximum allowed (value)

ERROR 5961: Size of compressed serialized plan (value bytes) is too large

ERROR 6064: Transaction commit delta is too large (value)

ERROR 6076: Unable to fork to start spread: value

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 789 of 817

http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE 54001
This topic lists the error associated with the SQLSTATE 54001.

SQLSTATE 54001 Description
ERRCODE_STATEMENT_TOO_COMPLEX

Error messages associated with this SQLState
ERROR 4588: Request size too big. Please try to simplify the query

ERROR 4963: The query contains a SET operation tree that is too complex to analyze

ERROR 4964: The query contains an expression that is too complex to analyze

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 54011
This topic lists the error associated with the SQLSTATE 54011.

SQLSTATE 54011 Description
ERRCODE_TOO_MANY_COLUMNS

Error messages associated with this SQLState
ERROR 2106: A table/projection/view can only have up to value columns -- this create statement

has value

ERROR 2118: Adding column causes row size (value) to exceed MaxRowSize (value)

ERROR 2136: Aggregate function cannot have value input argument(s)

ERROR 2137: Aggregate function cannot have value return value(s)

ERROR 2181: Analytic function cannot have value return value(s)

ERROR 2291: Call to ColumnTypes.addAny() is not allowed in Aggregate functions

ERROR 3466: Function cannot have value return value(s)

ERROR 4202: Number of columns (value) exceeds limit (value)

ERROR 4481: Projection row size (value) exceeds MaxRowSize (value)

ERROR 4630: Row size exceeds MaxRowSize: value > value

ERROR 4875: Table "string" can only have up to value columns -- adding one will exceed this li
mit

ERROR 5898: File system cannot have value input argument(s)

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 790 of 817

http://my.vertica.com/

ERROR 5899: File system cannot have value return value(s)

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 54023
This topic lists the error associated with the SQLSTATE 54023.

SQLSTATE 54023 Description
ERRCODE_TOO_MANY_ARGUMENTS

Error messages associated with this SQLState
ERROR 2441: Cannot have more than value segmentation columns

ERROR 2469: Cannot pass more than value arguments to a function

ERROR 4431: Procedures cannot have more than value parameters

ERROR 4646: Scalar/Transform functions cannot have more than value parameters

ERROR 5055: Too many arguments

ERROR 5056: Too many arguments to evaluate_delete_performance function

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 55000
This topic lists the error associated with the SQLSTATE 55000.

SQLSTATE 55000 Description
ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE

Error messages associated with this SQLState
ERROR 2088: A concurrent load into the partition or a concurrent mergeout operation interfered

with this statement

ERROR 2143: AHM advanced beyond snapshot epoch

ERROR 2149: AHM can't be set

ERROR 2150: AHM can't be set while retentive refresh is running

ERROR 2151: AHM can't be set. (value nodes are down, out of value.)

ERROR 2152: AHM can't be set. (value nodes are down.)

ERROR 2159: All nodes must be UP to rebalance a cluster

ERROR 2163: Already released

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 791 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 2174: An error occurred when loading library file string. Details: string

ERROR 2175: An error occurred when loading library file on node string, message:
string

ERROR 2200: AnalyzeStatsPlanMaxColumns configuration parameter 'value' invalid; must be greate
r than zero

ERROR 2201: AnalyzeStatsSampleBands configuration parameter 'value' invalid; must be greater t
han zero

ERROR 2241: Attempt to create view using an invalid relation

ERROR 2242: Attempt to run multi-node KV plan

ERROR 2294: CALL_USE_SESSION_NODES used without setting nodes

ERROR 2303: Can not tell if tables have data, too few responses (value) to be conclusive

ERROR 2316: Can't match imported node 'string' to node in current database

ERROR 2371: Cannot commit DML/DDL while a node is shutting down

ERROR 2378: Cannot convert column "string" to type "string"

ERROR 2380: Cannot create a library without an initialized LibraryPath on node: string

ERROR 2388: Cannot create projections on a temporary table that has data

ERROR 2409: Cannot drop any more columns in string

ERROR 2410: Cannot drop column "string" since it is referenced in the default expression of co
lumn "string"

ERROR 2413: Cannot drop column "string" since it was referenced in the default expression of a
dded column "string"

ERROR 2422: Cannot Drop: string string depends on string string

ERROR 2424: Cannot execute query with temporary table because a node has recovered since the s
tart of this session

ERROR 2448: Cannot issue this command in a read-only transaction

ERROR 2459: Cannot modify temporary table string because a node has recovered or rebalance dat
a took place since the start of this string

ERROR 2467: Cannot overwrite object

ERROR 2476: Cannot reference Storage

ERROR 2483: Cannot remove snapshots without an initialized SnapshotPath

ERROR 2496: Cannot revoke EXECUTE permission from the owner: string

ERROR 2497: Cannot revoke EXECUTE permission from the super user

ERROR 2498: Cannot revoke USAGE permissions on the resource pool to which user string is assig
ned

ERROR 2505: Cannot set column "string" in table "string" to NOT NULL since it contains null va
lues

ERROR 2512: Cannot set memoryCap for session whose current user has been dropped

ERROR 2516: Cannot set runTimeCap for session whose current user has been dropped

ERROR 2517: Cannot set tempSpaceCap for session whose current user has been dropped

ERROR 2531: Cannot undelete storage

ERROR 2541: Cannot use addAny() with any other input column types

ERROR 2542: Cannot use addAny() with any other output column types

ERROR 2550: Cannot use KV hint with a non-query

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 792 of 817

ERROR 2551: Cannot use KV query inside a transaction

ERROR 2563: Cannot validate DV storage

ERROR 2564: Cannot validate storage

ERROR 2587: Changes cannot be made to [string]. It has been retired

ERROR 2691: Concurrent DDL interfered with this statement

ERROR 2762: COPY: Cannot load into IDENTITY column "string"

ERROR 2763: COPY: Cannot specify parsing options for IDENTITY column "string"

ERROR 2903: Could not reset epoch because DML locks are held

ERROR 2904: Could not reset epoch because projections exist

ERROR 2933: Couldn't force partition projection string

ERROR 2934: Couldn't force partition projections string

ERROR 2954: Current phase of recovery failed due to missed event at epoch value

ERROR 2955: Current set of up nodes do not satisfy dependencies

ERROR 2956: Current set of up nodes do not satisfy dependencies for table string

ERROR 2961: Current user has been dropped so no defaults are available

ERROR 2962: Current user has been dropped so no roles are available

ERROR 2969: Cursor can only scan forward

ERROR 3000: DDL interfered with this statement

ERROR 3002: DDL statement interfered with alter column type

ERROR 3018: Default expression of IDENTITY/AUTO_INCREMENT column "string" cannot be altered

ERROR 3136: drop_partition failed for string on node string. The projection contains unpartiti
oned data

ERROR 3196: Error deserializing objects

ERROR 3216: Error during setting up function string, message: string

ERROR 3229: Error loading library file:[string]

ERROR 3254: Error reading from file

ERROR 3278: Error writing to file

ERROR 3318: Execution aborted by node state change

ERROR 3392: Failed to update local min/max objects for column "string"

ERROR 3807: JobTracker::getMarkedStorages(): Unknown job value

ERROR 3808: JobTracker::jobComplete(string): Unknown job value

ERROR 3809: JobTracker::setDetails(value,value,value): Unknown job value

ERROR 3810: JobTracker::setJobDescription(string): Unknown job value

ERROR 3838: Key value already in use

ERROR 3882: Location cannot be dropped as it stores data files

ERROR 3911: maxMemorySize for string can be changed only when the string WOS is empty

ERROR 3924: merge_partitions() failed on string because of unpartitioned data

ERROR 3925: Mergeout failed: projection string is not up-to-date

ERROR 4032: Naming conflict: string exists

ERROR 4092: No plan received at node

ERROR 4120: No transaction running on node

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 793 of 817

ERROR 4121: No transaction running, does previous load_snapshot_prep succeeded?

ERROR 4127: No valid cache found

ERROR 4138: Node string is not available for queries

ERROR 4144: Node has not been set up for plan execution

ERROR 4146: Node is not active or recovering, cannot plan query

ERROR 4148: Node not prepared to accept plan

ERROR 4151: Node unprepared for rebalance

ERROR 4177: Not enough nodes are up for Projection <string> to be available, marking it as out
of date

ERROR 4219: Object oid value reused

ERROR 4403: Portal "string" cannot be run

ERROR 4457: Projection string checkpoint epoch lags snapshot epoch

ERROR 4458: Projection string contains data in the WOS

ERROR 4459: Projection string create epoch is greater than the epoch in the query

ERROR 4462: Projection string has HSE > snapshot epoch and buddy string has HSE <= snapshot ep
och

ERROR 4464: Projection string is not up-to-date

ERROR 4467: Projection (name: string, oid: value) is newly added during current recovery

ERROR 4485: Projections string contain data in the WOS

ERROR 4530: Rebalance unable to moveout all data on projection string

ERROR 4592: reset_epoch is disabled because the EnableResetEpoch configuration parameter is 0

ERROR 4611: Returned string value '[string]' with length [value] is greater than declared fiel
d length of [value] of field [string] at output column index [value]

ERROR 4698: Sequence "string" has been created by an IDENTITY/AUTO_INCREMENT column and cannot
be dropped

ERROR 4699: Sequence "string" has been created by an IDENTITY/AUTO_INCREMENT column and cannot
be used in a default expression

ERROR 4700: Sequence string has not been accessed in the session

ERROR 4757: SnapshotMemento does not match. Oid conflicts are possible

ERROR 4760: Some nodes are down. These nodes will not receive the configuration change unless
a manual step is taken, or the set_config_parameter utility is reissued after the node is
brought back up

ERROR 4765: Specified K-safety for projection creation is insufficient to support currently do
wn nodes

ERROR 4791: Storage extends beyond specified segment range

ERROR 4793: Stream error: string

ERROR 4860: System is not k-safe. DDL is disallowed

ERROR 4861: System is not k-safe. DDL/DML is disallowed

ERROR 4879: Table "string" has projections in non-up-to-date state

ERROR 4880: Table "string" has projections that are not up-to-date that can refresh from buddy

ERROR 4903: Table no longer exists

ERROR 4934: The attribute "string" in table "string" needs to be included in projection "strin
g" because it is used in the partitioning expression

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 794 of 817

ERROR 4941: The data type requires length/precision specification

ERROR 4965: The restore violates K safety

ERROR 4972: The types/sizes of source column (index value, length value) and destination colum
n (index value, length value) do not match

ERROR 5049: TM interfered with object-level backup

ERROR 5084: Tried to add field 'string' that already exists

ERROR 5085: Tried to add unknown node 'string' to user-defined query plan

ERROR 5132: Unable to evaluate the delete performance after dropping this column for projectio
n "string"

ERROR 5151: Unable to validate data in string: string

ERROR 5204: Unknown data type

ERROR 5210: Unknown object: string

ERROR 5321: Usage of [string] cannot be changed. It has been retired

ERROR 5381: User Defined Scalar Function can only have 1 return column, but value is provided

ERROR 5491: Wrong MD5 checksum for library file string

ERROR 5522: A concurrent operation interfered with this statement

ERROR 5533: Can not move partition to the same table

ERROR 5534: Can't create table in specified target schema

ERROR 5535: Can't find target table's schema

ERROR 5543: Cannot use column type 'any' with any other input column types

ERROR 5544: Cannot use column type 'any' with any other output column types

ERROR 5568: DVWos can not be moved

ERROR 5572: Error during setting up type string, message: string

ERROR 5583: Fault Group "string" already exists in a fault group

ERROR 5587: Fault Group "string" not found in Fault Group "string"

ERROR 5590: Found value unsegmented projections with basename string; inconsistent with perman
ent nodes count value

ERROR 5626: Node "string" already exists in a fault group

ERROR 5627: Node "string" not found in Fault Group "string"

ERROR 5659: Source and target table does not match

ERROR 5660: Source table can not be temp, virtual, system, or external

ERROR 5662: Storage tier string has not been found on all nodes

ERROR 5666: Table "string" has prejoin projections

ERROR 5667: Target table can not be temp, virtual, system, or external

ERROR 5674: TM interfered with this statement

ERROR 5676: Unable to move partitions because some projection(s) contain unpartitioned data

ERROR 5705: Dvmergeout failed: projection string is not up-to-date

ERROR 5712: JobTracker::reportStart: Unknown job value

ERROR 5735: Tier string is referenced by storage policies. Can not make storage location chang
es as requested

ERROR 5742: A design/deployment process is currently executing in this design space

ERROR 5760: Can only change setting when all started nodes are UP

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 795 of 817

ERROR 5765: Cannot change control node away from self because other nodes depend on this node
to be their control node

ERROR 5766: Cannot change final control node away from self until at least one other node is p
romoted to be a control node

ERROR 5772: Cannot manually alter automatically generated fault groups

ERROR 5786: Column value does not have corresponding storages yet. A concurrent add column ope
ration might be running

ERROR 5883: Failed to list hcatalog tables

ERROR 6001: Recovery failed because DVROS straddles discard epoch

ERROR 6002: Recovery failed because ROS value [0xvalue, 0xvalue] straddles endEpoch value to d
iscard

ERROR 6003: Recovery failed because ROS straddles discard epoch

ERROR 6035: Table "string" has no non-null records under the column key_name

ERROR 6037: Table "string_string" cannot be found or was not created internally

ERROR 6065: Tried to allocate and initialize a value-byte string with value zero bytes; VStrin
g is too small

ERROR 6066: Tried to copy a value-byte string to value-byte VString object; VString is too sma
ll

ERROR 6070: Trying to set the column "string" to size of value All data type lengths in table
"string" must not be greater than value, the current maximum raw size for flex table valu
es. If you need a larger value, please contact your Feedback Program coordinators

ERROR 6078: Unable to move partitions as some nodes are doing recovery

ERROR 6105: View "string" is already linked to flex table "string". Linked views will not be
overwritten

ERROR 6106: View "string" is already linked to this table. Linked views will not be overwritt
en

ERROR 6107: View "string_string" cannot be found or was not created internally

ERROR 6109: WebHCat query (string) failed: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 55006
This topic lists the error associated with the SQLSTATE 55006.

SQLSTATE 55006 Description
ERRCODE_OBJECT_IN_USE

Error messages associated with this SQLState
ERROR 2060: string WOS is not empty; cannot renew. Do a moveout

ERROR 2307: Can't drop self

ERROR 3003: DDL statement interfered with Database Designer

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 796 of 817

http://my.vertica.com/

ERROR 3004: DDL statement interfered with query replan

ERROR 3896: Manual mergeout not supported while tuple mover is running

ERROR 3897: Manual moveout not supported while tuple mover is running

ERROR 4122: No up-to-date super projection left on the anchor table of projection string

ERROR 4139: Node string transitioned to state UP during this statement

ERROR 4145: Node is active and cannot be altered

ERROR 4455: Projection string cannot be dropped because K-safety would be violated

ERROR 4470: Projection cannot be dropped because history after AHM would be lost

ERROR 4488: Projections cannot be dropped or data would be lost due to down nodes

ERROR 4527: Rebalance is already running

ERROR 4528: Rebalance is already scheduled to run in the background

ERROR 4882: Table "string" is used as a dimension in a prejoined projection

ERROR 4896: Table (value) has been dropped

ERROR 4971: The status of one or more nodes changed during query planning

ERROR 6052: The system must retain at least one control node after the drop

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 55V02
This topic lists the error associated with the SQLSTATE 55V02.

SQLSTATE 55V02 Description
ERRCODE_CANT_CHANGE_RUNTIME_PARAM

Error messages associated with this SQLState
ERROR 4324: Parameter will not take effect until database restart

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 55V03
This topic lists the error associated with the SQLSTATE 55V03.

SQLSTATE 55V03 Description
ERRCODE_LOCK_NOT_AVAILABLE

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 797 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 5156: Unavailable: string - Locking failure: string

ERROR 5157: Unavailable: [Txn value] string - string error string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 55V04
This topic lists the error associated with the SQLSTATE 55V04.

SQLSTATE 55V04 Description
ERRCODE_TM_MARKER_NOT_AVAILABLE

Error messages associated with this SQLState
ERROR 2082: A string operation is already in progress on projection string.string [container v

alue txnid value session string]

ERROR 2083: A string operation is already in progress on projection string.string [txnid value
session string]

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 57014
This topic lists the error associated with the SQLSTATE 57014.

SQLSTATE 57014 Description
ERRCODE_QUERY_CANCELED

Error messages associated with this SQLState
ERROR 2246: Audit canceled

ERROR 2279: Bulk Import canceled

ERROR 2310: Can't find projection

ERROR 2325: Canceled (in string)

ERROR 2326: Canceled: string - Locking canceled: string

ERROR 2327: Canceled: [Txn value] string - string string

ERROR 2576: Catchup recovery interrupted

ERROR 2704: Connection canceled

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 798 of 817

http://my.vertica.com/
http://my.vertica.com/

ERROR 2996: DBDesigner canceled by user

ERROR 3086: Design/Deployment canceled by user

ERROR 3286: evaluate_delete_performance canceled

ERROR 3319: Execution canceled (compile)

ERROR 3320: Execution canceled (prepare)

ERROR 3321: Execution canceled (start)

ERROR 3322: Execution canceled by operator

ERROR 3323: Execution got unlucky!

ERROR 3324: Execution intentionally failed

ERROR 3326: Execution time exceeded run time cap of string

ERROR 3515: import_catalog_objects canceled

ERROR 4114: No super projection available for analyze_statistics

ERROR 4142: Node failure during execution

ERROR 4143: Node failure in string

ERROR 4287: Operator intervention on string

ERROR 4380: Plan canceled prior to execute call

ERROR 4439: Processing aborted by peer on string

ERROR 4496: Query canceled while waiting for resources

ERROR 4787: Statement abandoned due to subsequent DDL

ERROR 4789: Statement is canceled

ERROR 4843: Subsession interrupted

ERROR 5757: build_flextable_view canceled

ERROR 5787: compute_flextable_keys canceled

ERROR 5915: Hcatalog webservices query canceled

ERROR 5953: materialize_flextable_columns canceled

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 57015
This topic lists the error associated with the SQLSTATE 57015.

SQLSTATE 57015 Description
ERRCODE_SLOW_DELETE

Error messages associated with this SQLState
ERROR 5822: Detected slow delete

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 799 of 817

http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 57V01
This topic lists the error associated with the SQLSTATE 57V01.

SQLSTATE 57V01 Description
ERRCODE_ADMIN_SHUTDOWN

Error messages associated with this SQLState
ERROR 3556: Initiating node is down

ERROR 4150: Node status is not UP

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 57V03
This topic lists the error associated with the SQLSTATE 57V03.

SQLSTATE 57V03 Description
ERRCODE_CANNOT_CONNECT_NOW

Error messages associated with this SQLState
ERROR 2863: Could not fork UDx zygote process, string

ERROR 2929: Couldn't create new UDx side process, failed to get UDx side process info from zyg
ote: string

ERROR 2930: Couldn't create new UDx side process, the language string is not supported

ERROR 2937: Couldn't set TCP_NODELAY option, might get latency in RPC message delivery: string

ERROR 3363: Failed to connect to side process, string

ERROR 3364: Failed to connect to UDx zygote, string

ERROR 3366: Failed to create new UDx side process, couldn't connect to it: string

ERROR 4720: Session manager cannot add an external session - disabled

ERROR 4973: The UDx zygote process is down, restarting it...

ERROR 5699: Cannot find java binary: neither the Linux environment variable JAVA_HOME nor Vert
ica config parameter JavaBinaryForUDx is set

ERROR 5702: Couldn't create new UDx side process: string

ERROR 5803: Couldn't create new UDx side process, failed to set locale information: string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 800 of 817

http://my.vertica.com/
http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 58030
This topic lists the error associated with the SQLSTATE 58030.

SQLSTATE 58030 Description
ERRCODE_IO_ERROR

Error messages associated with this SQLState
ERROR 2024: string Error occurred during BZIP decompression. BZIP error code: value

ERROR 2026: string Error occurred during ZLIB decompression. ZLIB error code: value, Message:
string

ERROR 2253: Bad return from WaitForMultipleObjects: value (value)

ERROR 2432: Cannot get LibraryPath from node: string

ERROR 2433: Cannot get MD5 checksum from node: string

ERROR 2600: Checksums do not match (computed=0xvalue, fromdisk=0xvalue) discarding checkpoint!

ERROR 2674: ColumnAccessBase open error

ERROR 3197: Error deserializing snapshot info from file string

ERROR 3255: Error reading from file string

ERROR 3303: Exception during measurement deserialization

ERROR 3304: Exception during ProjectionSnapshot deserialization:string

ERROR 3305: Exception during Stats deserialization:string

ERROR 3370: Failed to create socket waiting event: value

ERROR 3385: Failed to reset socket waiting event: value

ERROR 3408: File size on disk does not match catalog for string

ERROR 3412: FileColumnReader: Get block string @ value error

ERROR 3478: getnameinfo_all() failed: string

ERROR 3550: Info file string does not exist

ERROR 3796: IO_ERROR writing data file [string]

ERROR 4364: Performance measurement of [string] failed

ERROR 4377: Pixw finish error

ERROR 4378: Pixw open error

ERROR 4379: Pixw write error

ERROR 4518: Read error when expanding glob: string

ERROR 4632: RowAccessBase open error

ERROR 5124: Unable to close catalog file [string]

ERROR 5126: Unable to create catalog file [string]

ERROR 5131: Unable to drop catalog file [string]

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 801 of 817

http://my.vertica.com/

ERROR 5133: Unable to fsync catalog file [string] errno=value

ERROR 5141: Unable to open file [string]

ERROR 5152: Unable to write catalog file [string]

ERROR 5153: Unable to write checksum to catalog file [string]

ERROR 5154: Unable to write object to catalog file [string]

ERROR 5887: Failed to mount file system value: string

ERROR 5901: Filesystem does not pass basic test: string

ERROR 5902: Filesystem does not pass basic test: I/O data differ

ERROR 6074: Unable to close catalog file after fsync [string] errno=value

ERROR 6077: Unable to fsync catalog dir [string] errno=value

ERROR 6079: Unable to open catalog dir fd for fsync [string] errno=value

ERROR 6080: Unable to open catalog dir for fsync [string] errno=value

ERROR 6081: Unable to open catalog file for fsync [string] errno=value

ERROR 6082: Unable to open spread conf file string for writing

ERROR 6084: Unable to stat file string: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE 58V01
This topic lists the error associated with the SQLSTATE 58V01.

SQLSTATE 58V01 Description
ERRCODE_UNDEFINED_FILE

Error messages associated with this SQLState
ERROR 3664: Invalid filename. Input filename is an empty string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE V1001
This topic lists the error associated with the SQLSTATE V1001.

SQLSTATE V1001 Description
ERRCODE_LOST_CONNECTIVITY

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 802 of 817

http://my.vertica.com/
http://my.vertica.com/

Error messages associated with this SQLState
ERROR 2709: Connection to spread closed

ERROR 4048: NetworkReceive: Decompression failed

ERROR 4054: NetworkSend on string: failed to open connection to node string (string)

ERROR 4055: NetworkSend on string: failed to send to node string [string]

ERROR 4140: Node string was not successfully added to the cluster

ERROR 4533: Receive: Decompression failed

ERROR 4534: Receive on string: Message receipt from string failed [string]

ERROR 4536: Receive on string: open failed for node string (string)

ERROR 4541: ReceiveFiles on string: Unexpected end of stream from string [string]

ERROR 4547: RecvFiles on string: Open failed on node [string] (string)

ERROR 4572: RemoteSend: Open failed on node [string] (string)

ERROR 4683: Send: Connection not open [string tag:value plan value]

ERROR 4684: Send: Open failed on node [string] (string)

ERROR 4689: SendFiles on string: Open failed on node [string] (string)

ERROR 5579: Failure in send on socket string: string

ERROR 5624: NetworkReceive on string: failed to open connection to node string (string)

ERROR 5625: NetworkReceive on string: Message receipt from string failed: string

ERROR 5658: Send on string: Open failed on node [string] (Address lookup for string(string) fa
iled)

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE V1002
This topic lists the error associated with the SQLSTATE V1002.

SQLSTATE V1002 Description
ERRCODE_K_SAFETY_VIOLATION

Error messages associated with this SQLState
ERROR 2406: Cannot drop value nodes from a value node cluster with value nodes down - cluster

would appear partitioned and database would shutdown. Bring some nodes up and try again

ERROR 2529: Cannot support K=value on only value nodes

ERROR 2957: Current system KSAFE level is not fault tolerant

ERROR 4477: Projection KSAFE value can not be met with only value nodes

ERROR 4478: Projection KSAFE override value cannot be less than current system K-safe value va
lue

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 803 of 817

http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE V1003
This topic lists the error associated with the SQLSTATE V1003.

SQLSTATE V1003 Description
ERRCODE_CLUSTER_CHANGE

Error messages associated with this SQLState
ERROR 2094: A node has come UP which missed ALTER COLUMN check

ERROR 2095: A node has come UP which missed drop partition keys check

ERROR 2096: A node has come UP which missed partitioning check

ERROR 2097: A node has entered the cluster since the session started

ERROR 2098: A node has entered the cluster since the session was started

ERROR 2099: A node has entered/left the database cluster

ERROR 3428: Following nodes are UP but not in the backup node set: string

ERROR 3941: Mismatch between plan and session node states (possibly because a node entered/le
ft the cluster since the session was started)

ERROR 5312: Up node set changed in between load_snapshot_prep and load_snapshot

ERROR 5523: A node has come UP which missed ADD COLUMN statement

ERROR 6011: Restoring to a cluster with increased number of nodes requires UP/DOWN states of
all nodes during backup remain the same during restore; UP nodes during backup: string; UP
nodes during restore (excluding new nodes): string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE V2000
This topic lists the error associated with the SQLSTATE V2000.

SQLSTATE V2000 Description
ERRCODE_AUTH_FAILED

Error messages associated with this SQLState
ERROR 3493: GSS error: string. Error details: (string/string)

ERROR 3718: Invalid old password

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 804 of 817

http://my.vertica.com/
http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE V2001
This topic lists the error associated with the SQLSTATE V2001.

SQLSTATE V2001 Description
ERRCODE_LICENSE_ISSUE

Error messages associated with this SQLState
ERROR 2382: Cannot create another node. The current license permits value node(s) and the data

base catalog already contains value node(s)

ERROR 2447: Cannot install new license to the database. New license permits value node(s) but
the database catalog already contains value node(s)

ERROR 3248: Error parsing license end date

ERROR 3863: License issue: string

ERROR 4943: The Enterprise Edition is installed. You cannot downgrade from the Enterprise Edit
ion to the Community Edition

ERROR 5943: License corrupt: string requires license string, but it is corrupt

ERROR 5944: License expired: string requires license string, but it has expired

ERROR 5946: License issue: string (required by string)

ERROR 5955: Missing license: string requires license string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VC001
This topic lists the error associated with the SQLSTATE VC001.

SQLSTATE VC001 Description
ERRCODE_CONFIG_FILE_ERROR

Error messages associated with this SQLState
ERROR 2879: Could not load server certificate file "string": string

ERROR 3833: Kerberos keytab file must be owned by the database user, and have no permissions f
or "group" or "other"

ERROR 4951: The Kerberos keytab file is either empty or too small in size to be valid

ERROR 5261: Unsafe permissions on private key file "string"

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 805 of 817

http://my.vertica.com/
http://my.vertica.com/

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VD001
This topic lists the error associated with the SQLSTATE VD001.

SQLSTATE VD001 Description
ERRCODE_DESIGNER_FUNCTION_ERROR

Error messages associated with this SQLState
ERROR 2010: string cannot be NULL

ERROR 2012: string clause does not exist in the query

ERROR 2202: Anchor table for projection string does not exist, so it cannot be added to deploy
ment

ERROR 2204: Anchor table of projection string is a Session scoped table

ERROR 2205: Anchor table of projection string is a System table

ERROR 2211: API string not available in old DBD engine

ERROR 2212: API cannot take query input file and query string, only one can be set

ERROR 2304: Can only load value string under the string design type

ERROR 2328: Cannot string as design was created already

ERROR 2336: Cannot add another Comprehensive design to deployment string

ERROR 2337: Cannot add design projections in extend catalog type deployment string in workspac
e string

ERROR 2338: Cannot add design tables to design string because there are populated designs

ERROR 2339: Cannot add design to deployment string because design string has not been populate
d

ERROR 2369: Cannot clear design tables from design string because there are populated designs

ERROR 2375: Cannot compute projections to be dropped for only incremental designs deployment

ERROR 2384: Cannot create projections for a NULL table

ERROR 2385: Cannot create projections for a system table

ERROR 2386: Cannot create projections for a temporary table

ERROR 2394: Cannot design encoding for Projection string as it does not have any AUTO encoded
columns

ERROR 2395: Cannot design encoding for Projection string as it is not SAFE -- Create its buddi
es

ERROR 2396: Cannot design/deploy for virtual system schema string

ERROR 2423: Cannot execute deployment when there are non-up-to-date safe projections for table
string

ERROR 2434: Cannot get script for a NULL table

ERROR 2435: Cannot get script for a system table

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 806 of 817

http://my.vertica.com/

ERROR 2436: Cannot get script for a temporary table

ERROR 2454: Cannot load invalid query: string

ERROR 2456: Cannot load queries as design was populated already

ERROR 2463: Cannot output design projections because design is not available

ERROR 2464: Cannot output query because query id is invalid

ERROR 2471: Cannot populate drop projections in extend catalog type deployment string in works
pace string

ERROR 2477: Cannot refresh projections for table value as it was dropped

ERROR 2480: Cannot remove any design table from design string because there are populated desi
gns

ERROR 2485: Cannot remove workspace string because it does not exist

ERROR 2492: Cannot retrieve design tables for design string in workspace string

ERROR 2493: Cannot retrieve information for design string in workspace string

ERROR 2507: Cannot set k-safety when design string has been populated

ERROR 2657: Column 'string' does not exist in Table string

ERROR 2658: Column 'string' is duplicated in the column list

ERROR 3053: Deployment string already exists in workspace string

ERROR 3054: Deployment got canceled

ERROR 3056: Deployment ksafety should be equal or greater than design ksafety. Deployment ksa
fety is value and design ksafety is value

ERROR 3057: Deployment name cannot be NULL

ERROR 3058: Deployment Projections status is set to Error

ERROR 3060: Design string already exists

ERROR 3061: Design string already exists for workspace string

ERROR 3063: Design string has already been added to deployment string

ERROR 3064: Design string has not been populated in workspace string so projection cannot be a
dded

ERROR 3065: Design string hasn't been populated

ERROR 3066: Design string in workspace string is not available

ERROR 3067: Design string is already populated

ERROR 3068: Design string is populated, remove design first (designer_remove_design)

ERROR 3071: Design name cannot have more than value characters

ERROR 3072: Design name may contain only alphanumeric or underscore characters

ERROR 3073: Design did not complete successfully, so deployment did not start

ERROR 3074: Design K-safety should be 0

ERROR 3077: Design name cannot have character '.'

ERROR 3079: Optimization objective cannot be NULL

ERROR 3080: Design query with design_query_id value does not exist

ERROR 3081: Design Query with design_query_id string does not exist

ERROR 3082: Design string does not exist

ERROR 3087: design_override_type string for query (design_query_id value) already exists

ERROR 3088: design_override_type string for table string already exists

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 807 of 817

ERROR 3089: design_override_type string for table string does not exist

ERROR 3100: Did not find any projections to design encodings for

ERROR 3101: Did not find design projections for projection ids given

ERROR 3102: Did not find design projections for tablePattern string

ERROR 3103: Did not find design tables to add

ERROR 3104: Did not find design tables to remove

ERROR 3105: Did not find projection id value in deployment string in workspace string

ERROR 3106: Did not find projections for design string in workspace string

ERROR 3107: Did not find rows in deployment table for deployment string in workspace string

ERROR 3108: Did not find rows in designs table for workspace string

ERROR 3140: Dropping design without getting design projections, API call is of no use

ERROR 3166: Empty design name is not allowed

ERROR 3188: Error after projection refresh: string

ERROR 3194: Error creating workspace: Invalid workspace name

ERROR 3195: Error deleting deployment status table

ERROR 3202: Error during deployment while setting ksafety before deployment starts

ERROR 3203: Error during design: string

ERROR 3205: Error during drop projections: string

ERROR 3208: Error during projection creation: string

ERROR 3214: Error during remove design string

ERROR 3215: Error during rename projections: string

ERROR 3241: Error opening query input file [string]

ERROR 3250: Error querying deployment projections statements table

ERROR 3251: Error querying deployment projections table

ERROR 3252: Error querying design projections table for design string in workspace string

ERROR 3253: Error querying: string

ERROR 3266: Error status for projections to add for table string

ERROR 3267: Error status for projections to drop for table string

ERROR 3268: Error updating deployment projections table

ERROR 3270: Error while loading statistics into design tables for design string

ERROR 3277: Error writing to string

ERROR 3356: External table string is not a design table

ERROR 3358: Failed during select mark_design_ksafe(value)

ERROR 3415: Filename cannot be NULL

ERROR 3480: Given design string does not exist

ERROR 3489: Group-by override value on query value cannot be satisfied

ERROR 3543: Incremental design needs a query or an input query file to be set

ERROR 3574: INSERT query without SELECT is not supported: string

ERROR 3649: Invalid Deploy Operation string string

ERROR 3650: Invalid deploy status string string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 808 of 817

ERROR 3740: Invalid query input file [string]

ERROR 3795: Invalid design creator name

ERROR 3817: Join override value on query value cannot be satisfied

ERROR 3824: K cannot be value (maximum allowed is value)

ERROR 3825: K must be equal to or greater than value, cannot reduce current k-safety level

ERROR 3826: K-safety can be between 0 and value

ERROR 3827: K-safety cannot be NULL

ERROR 3867: List of projections cannot be NULL

ERROR 3898: mark_design_ksafe(value) failed; some projections may not be k-safe

ERROR 4031: Namespace for LOCAL temporary tables cannot be used to add design tables

ERROR 4057: New ksafety cannot be less than 0

ERROR 4078: No deployment data in string.string

ERROR 4080: No drop entries found for deployment string in workspace string

ERROR 4099: No projections found for the projection ids string string

ERROR 4103: No rows in deployment projections table

ERROR 4117: No tables found in schema string

ERROR 4118: No tables found in the table pattern given

ERROR 4119: No tables to design projections for

ERROR 4235: One of the design tables no longer exist

ERROR 4311: Override (design_override_id value) is ignored because the table string is no long
er a design table

ERROR 4312: Override (design_override_id value) is ignored because the table does not exist

ERROR 4313: override_type string for query (design_query_id value) does not exist

ERROR 4314: override_type string is invalid

ERROR 4460: Projection string does not exist

ERROR 4461: Projection string does not exist

ERROR 4466: Projection string to be refreshed was dropped

ERROR 4475: Projection id cannot be NULL

ERROR 4476: Projection id list cannot be NULL

ERROR 4479: Projection name cannot be NULL

ERROR 4497: Query Id cannot be NULL

ERROR 4498: Query referencing EPOCH column is not supported

ERROR 4499: Query referencing local temporary table string is not supported: string

ERROR 4500: Query referencing projection string is not supported: string

ERROR 4501: Query without referencing any catalog table is not supported: string

ERROR 4503: Query table string does not exist

ERROR 4504: Query table contains multiple entries with qid = value

ERROR 4505: Query weight must be a positive number

ERROR 4525: Rebalance data cannot proceed when there are non-up-to-date projections in the cat
alog

ERROR 4526: Rebalance data failed during select mark_design_ksafe(value)

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 809 of 817

ERROR 4651: Schema string does not exist

ERROR 4652: Schema string is not a designer created schema, so it cannot be dropped

ERROR 4655: Schema name cannot be NULL

ERROR 4721: Session scoped table string is not a design table

ERROR 4783: Start deploy: deploy is already running on this node

ERROR 4819: Subqueries in UPDATE/DELETE is not supported: string

ERROR 4866: System table string is not a design table

ERROR 4874: Systems tables within system schema string cannot be added as design tables

ERROR 4885: Table string does not exist

ERROR 4886: Table string does not exist anymore in the catalog

ERROR 4888: Table string has no statistics or data. As a result, the proposed projections on t
his table may be suboptimal

ERROR 4890: Table string is not a design table

ERROR 4891: Table string is not a design table, referenced in query (qid=value): string

ERROR 4902: Table name cannot be NULL

ERROR 4907: Table pattern cannot be NULL

ERROR 4920: Terminated after SO enum. See log for the content of the SOs

ERROR 4942: The design table entry with table name string.string is corrupted, as that table h
as been renamed in the Vertica catalog

ERROR 4976: There are value nodes. Deployment K = value is not possible

ERROR 4977: There are no projections to add in deployment string for workspace string so no pr
ojections can be dropped

ERROR 4980: There is 1 node. Deployment K = value is not possible

ERROR 4981: There is more than one design string in workspace string

ERROR 4983: There is no design tables system table in workspace string

ERROR 4991: This invalid query cannot be loaded: string

ERROR 4994: This non-SELECT query is not supported: string

ERROR 4995: This query is not supported in DBDesigner

ERROR 5363: User string does not have privileges to access design table: string

ERROR 5364: User string does not have privileges to access table: string

ERROR 5390: User has insufficient privileges on table string

ERROR 5480: Workspace string cannot be a virtual system schema

ERROR 5481: Workspace string does not exist

ERROR 5482: Design string is configured for extend_catalog so no designs can be computed

ERROR 5483: Design string is configured for extend_catalog so remove drops is not supported

ERROR 5484: Design string is configured for extend_catalog so there are no design tables

ERROR 5485: Design string is configured for extend_catalog, there are no design tables

ERROR 5486: Workspace cannot be NULL

ERROR 5487: Design name cannot be NULL

ERROR 5564: Deployment Parallelism cannot be less than zero

ERROR 5565: Deployment parallelism cannot be NULL

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 810 of 817

ERROR 5573: Error generating results set

ERROR 5575: Error querying designs table

ERROR 5588: Fenced mode false is not supported for string functions

ERROR 5589: Fenced mode is not supported for SQL functions

ERROR 5591: Hurryup parameter cannot be NULL

ERROR 5597: Invalid input query: 'string'

ERROR 5650: Query without referencing any design tables is not supported: string

ERROR 5657: Segmentation type of the projection string is not supported for encoding design, s
kipping

ERROR 5694: Weight for query_text 'string' is 'value'. Only positive weight values are accepte
d

ERROR 5747: analyzeStats flag cannot be NULL

ERROR 5773: Cannot output deployment script because design is not available

ERROR 5792: continueAfterError flag cannot be NULL

ERROR 5817: Deploy flag cannot be NULL

ERROR 5855: Did not find any tables to analyze correlations on

ERROR 5857: dropDesignAndCtx flag cannot be NULL

ERROR 5858: dropProjs flag cannot be NULL

ERROR 5866: Error while analyzing correlations for design table string.string

ERROR 5867: Error while analyzing count distincts for design table string.string

ERROR 5868: Error while analyzing count distincts on correlation sample for design table strin
g.string

ERROR 5869: Error while analyzing segmentation skew for design table string.string

ERROR 5870: Error while dropping existing correlations in design table string

ERROR 5871: Error while loading or analyzing correlations in design tables for design string

ERROR 5907: Force option cannot be NULL

ERROR 5908: forceRecomputation flag cannot be NULL

ERROR 5919: Input cannot be NULL

ERROR 5938: isAdminUser flag cannot be NULL

ERROR 5939: K-safety of incremental designs must match the current system k-safety (which is v
alue)

ERROR 5979: onlyScript flag cannot be NULL

ERROR 5980: outputScript flag cannot be NULL

ERROR 6040: Table string has no correlations

ERROR 6041: Table string has no data. As a result, no correlations were analyzed on this table

ERROR 6042: Table string has no statistics or data. As a result, no correlations were analyzed
on this table

ERROR 6043: Table string has no statistics or data. As a result, no correlations were read int
o this table

ERROR 6049: The mode of analyzing correlations cannot be NULL

ERROR 6050: The mode of analyzing correlations is invalid

ERROR 6096: User has insufficient privileges on table string.string

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 811 of 817

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VP000
This topic lists the error associated with the SQLSTATE VP000.

SQLSTATE VP000 Description
ERRCODE_USER_PROC_ERROR

Error messages associated with this SQLState
ERROR 2059: string with specified name and parameters does not exist: string

ERROR 2315: Can't have more than one parameters with the same name: string

ERROR 3354: External procedures directory has not been set

ERROR 3355: External procedures have not been installed

ERROR 3465: Function cannot be moved into a system schema

ERROR 4322: Parameter must have names

ERROR 4323: Parameter type is not valid for an external procedure: string

ERROR 4373: Phase value of multi-phase transform function marked prepass

ERROR 4430: Procedures cannot be created in a system schema

ERROR 5232: Unrecognized identifier: string

ERROR 5368: User Defined Aggregates do not support fenced execution mode

ERROR 5372: User Defined Function type not found

ERROR 5374: User Defined Scalar Function string is giving bad numeric precision value, the max
imum is value

ERROR 5375: User Defined Scalar Function string is giving bad string typmod value, the minimum
is value

ERROR 5376: User Defined Scalar Function string is giving typmod of precision value, larger th
an the max precision value

ERROR 5377: User Defined Scalar Function string provided non-zero precision (value) for Interv
al Year To Month

ERROR 5378: User Defined Scalar Function string provided precision value, larger than the maxi
mum precision value

ERROR 5379: User Defined Scalar Function string provided range for Day To Second, but the func
tion's return type is Interval Year To Month

ERROR 5380: User Defined Scalar Function string provided range for Year To Month, but the func
tion's return type is Interval Day To Second

ERROR 5684: User Defined Extension cannot be created in a system schema

ERROR 6051: The schema has been dropped

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 812 of 817

http://my.vertica.com/
http://my.vertica.com/

may help you resolve these errors.

Error Messages Associated with SQLSTATE VP001
This topic lists the error associated with the SQLSTATE VP001.

SQLSTATE VP001 Description
ERRCODE_USER_PROC_EXEC_ERROR

Error messages associated with this SQLState
ERROR 2376: Cannot connect to UDx side process (pid = value) during cancel: string

ERROR 2837: Could not create pipe for user procedure execution, errno=value

ERROR 2853: Could not execute user procedure: fork error

ERROR 2858: Could not find function definition

ERROR 2861: Could not find running procedure for string, proc ID=[value]

ERROR 3223: Error in calling string() for User Defined Function string at [string:value], erro
r code: value, message: string

ERROR 3224: Error in calling string() for User Defined Scalar Function string at
[string:value], error code: value, message: string

ERROR 3398: Failure in UDx RPC call string() (pid = value): string

ERROR 3399: Failure in UDx RPC call string(): string

ERROR 4424: Procedure execution error: exit status=value

ERROR 4425: Procedure execution error: procedure killed by signal (value)

ERROR 4538: Received message with unexpected type string

ERROR 5170: Unexpected exception from in calling string() for User Defined Scalar Function str
ing

ERROR 5171: Unexpected exception in calling string() in User Defined Function string

ERROR 5205: Unknown error killing procedure string

ERROR 5395: User procedure execution failed

ERROR 5398: User-defined Analytic Function string produced fewer output rows than input rows

ERROR 5399: User-defined Scalar Function string outputted a timezone (value) not in allowed ra
nge (value, value)

ERROR 5400: User-defined Scalar Function string produced fewer output rows (value) than input
rows (value)

ERROR 5430: Vertica process is not allowed to kill procedure string

ERROR 5580: Failure sending parameters block because the value parameters require value bytes,
which exceeds the maximum size of value bytes

ERROR 5604: Invalid procedure file: [string]

ERROR 5638: Procedure file [string] cannot be owned by root

ERROR 5639: Procedure file [string] must be executable by vertica user (dbAdmin)

ERROR 5640: Procedure file [string] must be owned by specified procedure user

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 813 of 817

ERROR 5641: Procedure file [string] must enable set UID attribute

ERROR 5656: Root cannot execute external procedure

ERROR 5683: User 'string' not found on node

ERROR 5861: Error calling string() in User Function string at [string:value], error code: valu
e, message: string

ERROR 5863: Error during setting up function, message: string

ERROR 6085: Unexpected exception calling string() User Function in string

ERROR 6086: Unexpected exception calling destroyUDxFenced()

ERROR 6087: Unexpected exception thrown by UDFileSystem at [string:value], error code: value,
message: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VX001
This topic lists the error associated with the SQLSTATE VX001.

SQLSTATE VX001 Description
ERRCODE_INTERNAL_ERROR

Error messages associated with this SQLState
ERROR 2025: string Error occurred during BZIP initialization. BZIP error code: value

ERROR 2027: string Error occurred during ZLIB initialization. ZLIB error code: value, Message:
string

ERROR 2405: Cannot do boundary analysis on type value

ERROR 2616: Cluster recovery failed, try again

ERROR 2928: Couldn't check this session's state

ERROR 3099: Did not find a variable

ERROR 3198: Error dropping table partition, data in WOS

ERROR 3211: Error during recovery running string queries, cannot continue: string

ERROR 3212: Error during recovery running string: string

ERROR 3220: Error generating query for: string

ERROR 3245: Error parsing string

ERROR 3257: Error retrieving string in string: string

ERROR 3292: Event apply failed

ERROR 3302: Exception decoding the response we just locally encoded

ERROR 3483: Got unexpected error code from spread: value, string

ERROR 3818: JOIN qualifications to not refer to the correct relation(s)

ERROR 3969: More than one variable found

ERROR 4372: pg_analyze_and_rewrite for View query failed

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 814 of 817

http://my.vertica.com/

ERROR 4514: Raw parse of View query string failed

ERROR 4545: Recovery Error: Cannot get projections on local node

ERROR 5236: Unrecognized node type value

ERROR 5237: Unrecognized node type value in postprocess conditions

ERROR 5526: Already have a ready_recv string, ignoring

ERROR 5539: Cannot find buddy projection's statistics for collecting row counts, min and max

ERROR 5540: Cannot find buddy projections for collecting row counts, min and max

ERROR 5541: Cannot find the up-nodes of buddy projection for collecting row counts, min and ma
x

ERROR 5679: Unrecognized order by expression

ERROR 5680: Unrecognized select column list

ERROR 5695: With query is not a Select Statement

ERROR 5719: Path Sampling failed. Try a different random seed for the pathSampling hint

ERROR 5802: Could not stop all dirty transactions

ERROR 5865: Error while analyzing approximate count distincts on table string.string

ERROR 6062: Too Many User defined types

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VX002
This topic lists the error associated with the SQLSTATE VX002.

SQLSTATE VX002 Description
ERRCODE_DATA_CORRUPTED

Error messages associated with this SQLState
ERROR 2940: CRC Check Failure Details:

 File Name: string
 File Offset: value
 Compressed size in file: value
 Memory Address of Read Buffer: value
 Pointer to Compressed Data: value
 Memory Contents:

string

ERROR 3030: Delete: could not find a data row to delete (data integrity violation?)

ERROR 3217: Error finalizing data file [string]

ERROR 3218: Error finalizing ROS DataTarget

ERROR 3219: Error flushing data file [string]

ERROR 3409: FileColumnReader: block string @ value 's CRC value doesn't match record value

ERROR 3410: FileColumnReader: Decompression error in string at offset value

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 815 of 817

http://my.vertica.com/

ERROR 4762: Sort Order Violation:
 Row Position: value
 Column Index: value
 Last Row: string
 This Row: string

ERROR 5704: Delete (Join): could not find a data row to delete (data integrity violation?)

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

Error Messages Associated with SQLSTATE VX003
This topic lists the error associated with the SQLSTATE VX003.

SQLSTATE VX003 Description
ERRCODE_INDEX_CORRUPTED

Error messages associated with this SQLState
ERROR 3544: Index corruption. string: string

Note: ThemyVertica portal's Solutions tab contains helpful troubleshooting information that
may help you resolve these errors.

HP Vertica Programmer's Guide
Appendix: Error Codes

HP Vertica Analytics Platform (7.0.x) Page 816 of 817

http://my.vertica.com/
http://my.vertica.com/

We appreciate your feedback!
If you have comments about this document, you can contact the documentation team by email. If
an email client is configured on this system, click the link above and an email window opens with
the following information in the subject line:

Feedback on HP Vertica Programmer's Guide (Vertica Analytics Platform 7.0.x)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client,
and send your feedback to vertica-docfeedback@hp.com.

HP Vertica Analytics Platform (7.0.x) Page 817 of 817

mailto:vertica-docfeedback@hp.com?subject=Feedback on HP Vertica Programmer's Guide (Vertica Analytics Platform 7.0.x)

	Contents
	HP Vertica Client Libraries
	Client Driver Standards
	Client Driver and Server Version Compatibility
	Version 4.1 to 5.1 Client Driver Transition
	HP Vertica ODBC/JDBC Client Installers
	ODBC/JDBC Multiple Version Installations
	HP Vertica ADO.NET Client Installers

	Installing the HP Vertica Client Drivers
	Client Driver Standards
	Driver Prerequisites
	ODBC Prerequisites
	Operating System
	ODBC Driver Manager
	UTF-8, UTF-16 and UTF-32 Support

	ADO.NET Prerequisites
	Operating System
	Memory
	.NET Framework

	Python Prerequisites
	Python Driver
	Supported Operating Systems

	Perl Prerequisites
	Perl Drivers
	Supported Client Systems

	PHP Prerequisites
	PHP Modules
	Supported Client Systems

	Installing the Client Drivers
	Installing Driver Managers Linux and Other UNIX-like Platforms
	Installing ODBC Drivers on Linux, Solaris, AIX, and HP-UX
	Installation Procedure
	Post Driver Installation Configuration

	Installing the Client RPM on Red Hat and SUSE
	Installing JDBC Driver on Linux, Solaris, AIX, and HPUX
	Installing ODBC/JDBC Client Drivers and vsql Client on Windows
	To Download the Windows client-drivers:
	To Install the Windows Client-Drivers and vsql client:
	To Silent-Install the Windows Client-Drivers and vsql client:
	After You install:

	Modifying the Java CLASSPATH
	Linux, Solaris, AIX, HP-UX, and OS X
	Windows
	Specifying the Library Directory in the Java Command

	Installing the JDBC Driver on Macintosh OS X
	Downloading the JDBC Driver
	Ensuring Java Can Find the JDBC Driver

	Installing the ODBC Driver on Macintosh OS X
	Download the Driver
	Decide Where to Install the Driver
	Unpack the Driver

	Using Legacy Drivers

	Creating an ODBC Data Source Name (DSN)
	Creating an ODBC DSN for Linux, Solaris, AIX, and HP-UX
	odbc.ini File Structure
	Configuring the odbc.ini file:
	Using an odbcinst.ini File
	Configuring Additional ODBC Settings
	Testing a DSN Using Isql

	Creating an ODBC DSN for Windows Clients
	Setting Up a DSN
	To set up a DSN:
	Setting up a 32-Bit DSN on 64-Bit Versions of Windows

	Testing a DSN Using Excel 2007

	Creating an ODBC DSN for Macintosh OS X Clients
	odbc.ini File Structure
	Configuring the odbc.ini file:
	Using an odbcinst.ini File
	Configuring Additional ODBC Settings

	DSN Parameters
	Required Connection Parameters
	Optional Parameters
	Advanced Settings
	Identification
	Encryption
	Third-Party Compatibility
	Kerberos Connection Parameters

	Setting DSN Parameters
	Upgrading the HP Vertica Client Drivers

	Additional ODBC Driver Configuration Settings
	Location of the Additional Driver Settings
	Creating a vertica.ini File
	Required Settings
	Setting the VERTICAINI Environment Variable
	Example vertica.ini File

	Additional Parameter Settings
	Logging Settings
	ODBC-specific Settings
	ADO.NET-specific Settings

	Programming ODBC Client Applications
	ODBC Architecture
	ODBC Feature Support
	Updating ODBC Client Code From Previous Driver Versions
	DSN Parameter Changes
	Removed DSN Parameters
	Changed DSN Parameters
	New DSN Parameter
	New DSN Parameter Alias

	Function Changes
	Removed Functions
	Interval and TimeStamp Changes

	New Additional Driver Information

	HP Vertica-specific ODBC Header File
	Connecting to HP Vertica
	Notes

	Enabling Native Connection Load Balancing in ODBC
	ODBC Connection Failover
	Choosing a Failover Method
	Using DNS Failover
	Using the Backup Host List

	Prompting Windows Users for Missing Connection Parameters
	Prompting Windows Users for Passwords
	No Password Entry vs. Empty Passwords

	Setting the Locale for ODBC Sessions
	AUTOCOMMIT and ODBC Transactions
	Retrieving Data Through ODBC
	Loading Data Through ODBC
	Using a Single Row Insert
	Using Prepared Statements
	Using Batch Inserts
	Batch Insert Steps
	Tracking Load Status (ODBC)
	Finding the Number of Accepted Rows
	Finding the Accepted and Rejected Rows

	Error Handling During Batch Loads
	Loading Batches in Parallel

	Using the COPY Statement
	Streaming Data From the Client Using COPY LOCAL

	Programming JDBC Client Applications
	JDBC Feature Support
	Multiple SQL Statement Support
	Multiple Batch Conversion to COPY Statements
	Multiple JDBC Version Support

	Updating Application Code From Previous Driver Versions
	Updating Client Code From 4.1 or Earlier JDBC Driver Versions
	Driver Package and Interface Name Changes
	Interface Name Changes
	Removed Classes

	Converting From PGConnection to VerticaConnection
	Property Setters and Getters
	Deprecated Methods
	Savepoint Support
	Updatable Result Set Changes

	Converting From PGStatement to VerticaStatement
	Deprecated Methods
	Bulk Loading Method Changes
	Connection Property Setters and Getters
	Multiple Statement Support

	Connection Property Changes
	New Connection Properties
	Renamed Properties
	Removed Connection Properties

	New Features in the HP Vertica Version 7.0 JDBC Driver
	JNDI Service Registration
	Exception Class Improvements
	Wrapper Interface Support
	Additional DatabaseMetaData Methods
	Improved Connection Pooling
	Native Connection Load Balancing Support
	Connection Failover Support

	Creating and Configuring a Connection
	Importing SQL Packages
	Opening the Connection
	JDBC Connection Properties
	Connection Properties
	General Properties
	Logging Properties
	Kerberos Connection Parameters
	Key/Value API Connection Parameters

	Setting and Getting Connection Property Values
	Setting Properties When Connecting
	Getting and Setting Properties After Connecting

	Setting the Locale for JDBC Sessions
	Notes:

	Changing the Transaction Isolation Level
	Using a Pooling Data Source
	Enabling Native Connection Load Balancing in JDBC
	JDBC Connection Failover
	Choosing a Failover Method
	Using DNS Failover
	Using the Backup Host List

	JDBC Data Types
	HP Vertica Numeric Data Alias Conversion
	Using Intervals with JDBC
	Using Intervals in Batch Inserts
	Reading Interval Values

	Executing Queries Through JDBC
	Executing DDL (Data Definition Language) Queries
	Executing Queries That Return Result Sets
	Executing DML (Data Manipulation Language) Queries Using executeUpdate

	Loading Data Through JDBC
	Using a Single Row Insert
	Batch Inserts Using JDBC Prepared Statements
	Streaming Batch Inserts
	Notes
	Loading Batches Directly into ROS
	Error Handling During Batch Loads
	Identifying Accepted and Rejected Rows (JDBC)
	Rolling Back Batch Loads on the Server

	Bulk Loading Using the COPY Statement
	Streaming Data Via JDBC
	Using VerticaCopyStream
	Getting Rejected Rows

	Using COPY LOCAL with JDBC

	Handling Errors
	Vertica Analytics Platform SQLState Mapping to Java Exception Classes
	Error Handling Example

	About the JDBC Key/Value API
	Creating Tables and Projections for use with the Key/Value API
	Creating a Connection for Key/Value Queries
	Defining the Query for Key/Value Lookups
	Key/Value Performance and Troubleshooting

	Programming ADO.NET Applications
	Updating ADO.NET Client Code From Previous Driver Versions
	Auto Commit Change
	Performance Improvements
	Namespace Change
	Connection Properties
	Result Buffering
	Logging Changes
	Data Type Changes
	Multiple Commands Now Supported

	Setting the Locale for ADO.NET Sessions
	Connecting to the Database
	Using SSL: Installing Certificates on Windows
	Import the Server and Client Certificates into the Windows Key store:
	Import the Public Certificate of Your CA:
	Enable SSL in Your ADO.NET Applications

	Opening and Closing the Database Connection (ADO.NET)
	To Manually Create a Connection string:
	To Use the VerticaConnectionStringBuilder Class to Create a Connection String...
	To Close the connection:
	Example Usage:

	ADO.NET Connection Properties
	Enabling Native Connection Load Balancing in ADO.NET
	ADO.NET Connection Failover
	Choosing a Failover Method
	Using DNS Failover
	Using the Backup Host List

	Configuring Log Properties (ADO.Net)
	VerticaLogProperties
	Setting Log Properties
	SetLogPath
	SetLogNamespace
	SetLogLevel
	Getting Log Properties
	Setting and Getting Log Properties Example

	Querying the Database Using ADO.NET
	Inserting Data (ADO.NET)
	To Insert a Single Row of data:
	Example Usage:
	Using Parameters
	Using Parameters

	Creating and Rolling Back Transactions
	Creating Transactions
	To Create a Transaction in HP Vertica Using the ADO.NET driver:
	Rolling Back Transactions
	Commit and Rollback Example
	Setting the Transaction Isolation Level

	Reading Data (ADO.Net)
	To Read Data From the Database Using VerticaDataReader:

	Loading Data Through ADO.Net
	Using the HP Vertica Data Adapter
	Batching Updates
	Reading Data From HP Vertica Using the Data adapter:
	Reading Data From HP Vertica into a Data set and Changing data:

	Using Batch Inserts and Prepared Statements
	Example Batch Insert Using Parameters and Transactions
	Loading Batches Directly into ROS

	Streaming Data Via ADO.NET
	Streaming From the Client Via VerticaCopyStream
	Using Copy with ADO.NET

	Handling Messages (ADO.NET)
	To Use the VerticaInfoMessageEventHander class:

	Getting Table Metadata (ADO.Net)
	ADO.NET Data Types

	Programming Python Client Applications
	Python on Linux
	Python on Windows
	The Python Driver Module (pyodbc)
	Configuring the ODBC Run-Time Environment on Linux
	Querying the Database Using Python

	Programming Perl Client Applications
	Perl Client Prerequisites
	Supported Perl Versions
	Perl on Linux
	Perl on Windows
	The Perl Driver Modules (DBI and DBD::ODBC)
	Installing Missing Perl Modules

	Connecting to HP Vertica Using Perl
	Setting ODBC Connection Parameters in Perl
	Setting Perl DBI Connection Attributes
	Connecting From Perl Without a DSN

	Executing Statements Using Perl
	Batch Loading Data Using Perl
	Using COPY LOCAL to Load Data in Perl
	Querying HP Vertica Using Perl
	Binding Variables to Column Values
	Preparing, Querying, and Returning a Single Row

	Conversions Between Perl and HP Vertica Data Types
	Perl Unicode Support

	Programming PHP Client Applications
	PHP on Linux
	PHP on Windows
	The PHP ODBC Drivers
	Setup
	Example odbc.ini
	Example odbcinst.ini
	Verify the HP Vertica UnixODBC or iODBC Library
	Test Your ODBC Connection
	PHP Unicode Support
	Querying the Database Using PHP

	Using vsql
	General Notes
	Installing the vsql Client
	How to Install vsql on Unix-Based systems:
	Installing vsql on Windows:
	vsql Notes for Windows Users

	Connecting From the Administration Tools
	Connecting From the Command Line
	Command Line Options
	Connecting From a Non-Cluster Host

	Meta-Commands
	! [COMMAND]
	?
	a
	b
	c (or \connect) [Dbname [Username]]
	C [STRING]
	cd [DIR]
	The \d [PATTERN] Meta-Commands
	d [PATTERN]
	Df [PATTERN]
	Dj [PATTERN]
	Dn [PATTERN]
	Dp [PATTERN]
	ds [PATTERN]
	dS [PATTERN]
	dt [PATTERN]
	dT [PATTERN]
	Dtv [PATTERN]
	Du [PATTERN]
	Dv [PATTERN]

	e \edit [FILE]
	echo [STRING]
	f [String]
	g
	H
	h \help
	i FILE
	l
	Locale
	Viewing the Current Locale Setting
	Overriding the Default Local for a Session

	o
	p
	Password [USER]
	pset NAME [VALUE]
	q
	Qecho [STRING]
	r
	s [FILE]
	set [NAME [VALUE [...]]]
	Using Backquotes to Read System Variables

	t
	T [STRING]
	Timing
	Unset [NAME]
	w [FILE]
	x
	z

	Variables
	SQL Interpolation
	AUTOCOMMIT
	Notes

	DBNAME
	ECHO
	ECHO_HIDDEN
	ENCODING
	HISTCONTROL
	HISTSIZE
	HOST
	IGNOREEOF
	ON_ERROR_STOP
	PORT
	PROMPT1 PROMPT2 PROMPT3
	QUIET
	SINGLELINE
	SINGLESTEP
	USER
	VERBOSITY
	VSQL_HOME

	Prompting
	Command Line Editing
	Notes

	vsql Environment Variables
	Locales
	To Change Settings on Linux
	To Change Settings on Windows Using PuTTy
	Notes

	Files
	Exporting Data Using vsql
	Copying Data Using vsql
	Monitoring Progress (optional)

	Output Formatting Examples

	Writing Queries
	Multiple Instances of Dimension Tables in the FROM Clause
	Historical (Snapshot) Queries
	Temporary Tables
	SQL Queries
	Simple Queries
	Joins
	Cross Joins
	Subqueries
	Sorting Queries
	Special Note About Query Results

	Subqueries
	Subqueries Used in Search Conditions
	Logical Operators AND and OR
	OR Subqueries (complex expressions)
	How AND Queries Are Evaluated

	In Place of an Expression
	Comparison Operators
	LIKE Pattern Matching
	ANY (SOME) and ALL
	Notes
	ANY Subqueries
	ANY Subquery Examples
	ALL Subqueries

	EXISTS and NOT EXISTS
	IN and NOT IN

	Subqueries in the SELECT List
	WITH Clauses in SELECT
	Using WITH Clauses

	Noncorrelated and Correlated Subqueries
	Flattening FROM Clause Subqueries and Views
	Flattening Views
	Examples

	Subqueries in UPDATE and DELETE Statements
	UPDATE Subqueries
	DELETE Subqueries

	Subquery Examples
	Single-Row Subqueries
	Multiple-Row Subqueries
	Multicolumn Subqueries
	HAVING Clause Subqueries

	Subquery Restrictions

	Joins
	The ANSI Join Syntax
	Join Conditions vs. Filter Conditions
	Inner Joins
	Equi-Joins and Non Equi-Joins
	Natural Joins
	Cross Joins

	Outer Joins
	Left Outer Joins
	Right Outer Joins
	Full Outer Joins

	Range Joins
	Key Ranges
	Slowly-Changing Dimensions

	Pre-Join Projections and Join Predicates
	Join Notes and Restrictions

	About Running Database Designer Programmatically
	When to Run Database Designer Programmatically
	Categories Database Designer Functions
	Privileges for Running Database Designer Functions
	DBDUSER Capabilities and Limitations
	DBDUSER Privileges

	Workflow for Running Database Designer Programmatically

	Using SQL Analytics
	How Analytic Functions Work
	Evaluation Order

	Analytic Functions Versus Aggregate Functions
	The Window OVER() Clause
	Window Partitioning
	Syntax
	Examples
	Median of Sales Within Each State
	Median of Sales Among All States
	Sales Larger Than Median (evaluation order)

	Window Ordering
	Window Framing
	Syntax
	Schema for Examples
	Windows with a Physical Offset (ROWS)
	Examples

	Windows with a Logical Offset (RANGE)
	Reporting Aggregates
	About Standard Deviation and Variance Functions
	What About LAST_VALUE()?

	Naming Windows
	Analytic Query Examples
	Calculating a Median Value
	Allsales Table Schema

	Getting Price Differential for Two Stocks
	Calculating the Moving Average
	Avoiding GROUPBY HASH with Projection Design
	Getting Latest Bid and Ask Results

	Event-Based Windows
	Using the CONDITIONAL_CHANGE_EVENT Function
	Using the CONDITIONAL_TRUE_EVENT Function
	Advanced Use of Event-Based Windows

	Sessionization with Event-Based Windows

	Using Time Series Analytics
	Gap Filling and Interpolation (GFI)
	Constant Interpolation
	The TIMESERIES Clause and Aggregates
	The TIMESERIES Clause
	Time Series Aggregate (TSA) Functions

	Linear Interpolation
	GFI Examples
	Constant Interpolation
	Linear Interpolation
	Using Multiple Time Series Aggregate Functions
	Using the Analytic LAST_VALUE() Function
	Using slice_time
	Creating a Dense Time Series

	When Time Series Data Contains Null Values
	Constant Interpolation with Null Values
	Linear Interpolation with Null Values

	Event Series Joins
	Sample Schema for Event Series Joins Examples
	Schema of hTicks and aTicks Tables
	Example Query Showing Gaps
	Schema of Bid and Asks Tables
	Example Query Showing Gaps

	Writing Event Series Joins
	The hTicks and aTicks Tables
	Querying Event Series Data with Full Outer Joins
	Querying Event Series Data with Left Outer Joins
	Querying Event Series Data with Inner Joins
	The Bid and Ask Tables

	Event Series Pattern Matching
	Clickstream Funnel Schema

	Optimizing Query Performance
	First Steps for Improving Query Performance
	Run Database Designer
	Check Query Events Proactively
	Review the Query Plan

	Optimizing Encoding to Improve Query Performance
	Improving the Compression of FLOAT Columns
	Using Run Length Encoding (RLE) to Improve Query Performance

	Optimizing Projections for Queries with Predicates
	Example 1: Queries That Use Date Ranges
	Example 2: Queries for Tables with a High-Cardinality Primary Key

	Optimizing Projections for MERGE Operations
	Optimizing GROUP BY Queries
	Partially Sorted GROUPBY
	Partially Sorted GROUPBY with Multiple DISTINCT Aggregate Function Calls
	Partially Sorted GROUPBY When GROUP BY Column Crosses Join

	Avoiding GROUPBY HASH with Projection Design
	Avoiding Resegmentation During GROUP BY Optimization with Projection Design

	Optimizing DISTINCT in a SELECT Query List
	If the Query Has No Aggregates in the SELECT List
	Optimizing COUNT (DISTINCT) and Other DISTINCT Aggregates
	Optimizing COUNT (DISTINCT) by Calculating Approximate Counts
	When to Use the Approximate Count Distinct Functions

	If the Query Has a Single DISTINCT Aggregate
	If the Query Has Multiple DISTINCT Aggregates

	Optimizing JOIN Queries
	Hash Joins vs. Merge Joins
	Optimizing for Merge Joins
	Using Equality Predicates to Optimize Joins
	Specifying INNER and OUTER Tables to Optimize Joins
	Avoiding Resegmentation During Joins
	Join Conditions for Identically Segmented Projections (ISPs)
	Designing Identically Segmented Projections for K-Safety

	Optimizing ORDER BY Queries
	Pre-Sorting Projections to Optimize ORDER BY Clauses

	Optimizing SQL-99 Analytic Functions
	Avoiding Single-Node Execution By Avoiding Empty OVER() Clauses
	NULL Placement By Analytic Functions
	Designing Tables to Minimize Run-Time Sorting of NULL Values in Analytic Func...

	Optimizing LIMIT Queries with ROW_NUMBER Predicates
	Optimizing INSERT-SELECT Operations
	Optimizing INSERT-SELECT Queries for Tables with Pre-Join Projections
	Optimizing INSERT-SELECT Queries By Matching Sort Orders
	Avoiding Resegmentation of INSERT-SELECT Queries

	Optimizing DELETE and UPDATE Queries
	Performance Considerations for DELETE and UPDATE Queries
	Optimizing DELETEs and UPDATEs for Performance
	Projection Column Requirements for Optimized Deletes
	Optimized Deletes in Subqueries
	Projection Sort Order for Optimizing Deletes

	Using External Procedures
	Implementing External Procedures
	Requirements for External Procedures
	Procedure File Attributes
	Handling Procedure Output
	Handling Resource Usage
	Sample Procedure File

	Installing External Procedure Executable Files
	Graphical User Interface
	Command Line

	Creating External Procedures

	Executing External Procedures
	Permissions

	Dropping External Procedures

	Using User-Defined SQL Functions
	Creating User-Defined SQL Functions
	Altering and Dropping User-Defined SQL Functions
	Altering a User-Defined SQL Function
	Dropping a SQL Function

	Managing Access to SQL Functions
	Viewing Information About User-Defined SQL Functions
	Migrating Built-In SQL Functions
	UCASE()
	LCASE()
	LOCATE()
	POSSTR()

	Developing and Using User Defined Extensions
	How UDxs Work
	Fenced Mode
	About the Zygote Process
	About Fenced Mode Logging:
	About Fenced Mode Configuration Parameters
	See Also

	Developing User Defined Functions (UDFs)
	Types of UDFs
	Developing a User Defined Function in C++
	HP Vertica C++ SDK Data Types
	Notes

	Setting up a C++ UDF Development Environment
	The C++ HP Vertica SDK
	Running the Examples
	Include File Overview

	The HP Vertica C++ SDK API Documentation
	Developing a User Defined Scalar Function
	UDSF Requirements
	UDSF Class Overview
	The ServerInterface Class

	Subclassing ScalarFunction
	Subclassing ScalarFunctionFactory
	The getReturnType Function
	The RegisterFactory Macro

	Setting Null Input and Volatility Behavior
	Volatility Settings
	Null Input Behavior

	Deploying and Using UDSFs

	Developing a User Defined Transform Function in C++
	UDTF Requirements
	UDTF Class Overview
	The ServerInterface Class

	Subclassing TransformFunction
	Extracting Parameters
	Handling Null Values
	Processing Input Values
	Writing Output
	Advancing to the Next Input Row

	Subclassing TransformFunctionFactory
	Registering the UDTF Factory Subclass

	Creating Multi-Phase UDTFs
	Notes

	Deploying and Using User Defined Transforms
	UDTF Query Restrictions
	Partitioning By Data Stored on Nodes

	Using PARTITION AUTO to Process Local Data

	Developing a User Defined Aggregate Function
	User Defined Aggregate Function Requirements
	UDAF Class Overview
	The AggregateFunctionFactory Class
	The AggregateFunction Class
	The ServerInterface Class

	Subclassing Aggregate Function
	Example Subclass of AggregateFunction

	Subclassing AggregateFunctionFactory
	Example Subclass of AggregateFunctionFactory

	User Defined Aggregate - Complete Example

	Developing a User Defined Analytic Function
	User Defined Analytic Function Requirements
	UDAnF Class Overview
	The ServerInterface Class

	Subclassing AnalyticFunction
	Subclassing AnalyticFunctionFactory
	Deploying and Using User Defined Analytic Functions
	Notes

	Compiling Your C++ UDF
	Handling External Libraries

	Handling Different Numbers and Types of Arguments
	User Defined Function Overloading
	Creating a Polymorphic UDF
	Polymorphic UDFs and Schema Search Paths

	UDF Parameters
	Defining the Parameters Your UDF Accepts
	Getting Parameter Values in UDFs
	Testing Whether the User Supplied Parameter Values
	Using Parameters in the Factory Class

	Calling UDFs with Parameters

	UDF Resource Use
	Allocating Resources for UDFs
	Allocating Resources with the SDK Macros
	Informing HP Vertica of Resource Requirements
	Setting Memory Limits for Fenced Mode UDFs
	How Resource Limits Are Enforced

	Handling Errors
	Handling Cancel Requests
	Exiting When the Calling Query Has Been Canceled
	Implementing the Cancel Callback Function
	Notes

	UDF Debugging Tips
	Use a Single Node For Initial Debugging
	Write Messages to the HP Vertica Log

	Adding Metadata to C++ Libraries

	Developing a User Defined Function in R
	User Defined Functions in R Notes and Considerations
	Installing/Upgrading the R Language Pack for HP Vertica
	HP Vertica R Language Pack Prerequisites
	To Install the HP Vertica R Language Pack:
	To Upgrade the HP Vertica R Language Pack:

	R Packages
	Using the HP Vertica SDK R Examples
	Creating R Functions
	About the R Factory Function
	Factory Function - Supported Data Types
	Example Factory Function
	About the Main R Function
	About the Outtypecallback Function
	Deploying the Function into HP Vertica
	Example R Scalar Function
	Example Usage:

	Setting Null Input and Volatility Behavior for R Functions
	Volatility Settings
	Null Input Behavior

	Using Parameters in R
	Complete R Example

	Polymorphic Functions in R
	Declare the Function As Polymorphic
	Define the outtypecallback for Polymorphic Functions
	Complete Example
	To Use the Example

	Adding Metadata to R Libraries

	Developing User Defined Functions in Java
	Supported Features
	Supported Java SDK Function Types
	User Defined Scalar Functions (UDSFs)
	User Defined Transform Functions (UDTF)

	Java UDF Resource Management
	Installing Java on HP Vertica Hosts
	Downloading and Installing the Java Installation Package
	Setting the JavaBinaryForUDx Configuration Parameter

	Configuring Your Java Development Environment
	Compiling BuildInfo.java

	The HP Vertica Java SDK Documentation
	Java and HP Vertica Data Type Conversions
	Testing for Null Values

	Developing a User Defined Scalar Function in Java
	Java UDSF Requirements
	Subclassing the ScalarFunction Class
	Notes

	Defining the Arguments and Return Type for Your UDSF
	Overriding getPrototype
	Setting Precision, Width, and Name of the Output Value in getReturnType

	Overriding createScalarFunction
	Complete Java UDSF Example
	Deploying and Using Your Java UDSF

	Developing a User Defined Transform Function in Java
	Subclassing the TransformFunction Class
	Defining Your Java UDTF's Input and Output Table Columns
	Overriding getPrototype
	Overriding getReturnType

	Overriding the createTransformFunction Method
	Complete Java UDTF Example
	Deploying and Using Your Java UDTF

	Compiling and Packaging a Java UDF
	Compiling Your Java UDF
	Packaging Your UDF into a JAR File
	Handling Dependencies

	Handling Errors
	Handling Cancel Requests
	Exiting When the Calling Query Has Been Canceled
	Overriding the Cancel Method

	Communicating with HP Vertica Using ServerInterface
	Writing Messages to the Log File
	Accepting Different Numbers and Types of Arguments
	Overloading Your Java UDFs
	Creating a Polymorphic Java UDF
	Polymorphic UDFs and Schema Search Paths

	UDF Parameters
	Defining the Parameters Your Java UDF Accepts
	Accessing Parameter Values
	Testing Whether the User Supplied Parameter Values
	Using Parameters in the Factory Class

	Calling UDFs with Parameters

	Adding Metadata to Java UDx Libraries

	Developing User Defined Load (UDL) Functions
	UDL Requirements
	Deploying User Defined Load Functions
	Developing UDLs in C++
	Requirements for C++ UDLs
	UDL Source
	Developing Source Functions for User Defined Load
	Subclassing SourceFactory
	About the Source Factory Class
	SourceFactory Methods:
	Example SourceFactory

	Subclassing UDSource
	About the UDSource Class
	UDSource Methods:
	ContinuousUDSource Functions:
	Example UDSource

	UDL Filter
	Developing Filter Functions for User Defined Load
	Subclassing FilterFactory
	About the Filter Factory Class:
	FilterFactory Methods:
	Example FilterFactory

	Subclassing UDFilter
	About the UDFilter Class
	UDFilter Methods:
	ContinuousUDFilter Functions:
	Example UDFilter

	UDL Parser
	Developing Parser Functions for User Defined Load
	Subclassing ParserFactory
	About the ParserFactory Class
	ParserFactory Methods:
	UDChunker Methods
	ParserFactory Class Example

	Subclassing UDParser
	About the UDParser Class
	UDParser Methods:
	Row Rejection
	ContinuousUDParser Functions:
	UDParser Class Example:

	Subclassing UDChunker
	About the UDChunker Class
	UDChunker Methods:
	UDChunker Class Example:

	Developing UDLs in Java
	Developing User Defined Source Functions
	UDSource Example Overview
	Subclassing SourceFactory in Java
	SourceFactory Methods
	Example SourceFactory Subclass

	Subclassing UDSource in Java
	UDSource Methods
	Example UDSource

	Developing Filter Functions in Java
	Java UDL Filter Example Overview
	Subclassing FilterFactory in Java
	FilterFactory Methods
	Example FilterFactory

	Subclassing UDFilter in Java
	UDFilter Methods
	Example UDFilter

	Developing UDL Parser Functions in Java
	Java UDL Parser Example Overview
	Subclassing ParserFactory in Java
	ParserFactory Methods
	Example ParserFactory

	Subclassing UDParser in Java
	UDParser Methods
	Rejecting Rows
	Example UDParser

	Updating UDx Libraries
	UDx Library Compatibility with New Server Versions
	Determining If a UDF Signature Has Changed
	Deploying A New Version of Your UDx Library

	Listing the UDxs Contained in a Library

	Appendix: Error Codes
	SQLSTATEs and Error Codes
	SQLSTATE
	Warning and Error Messages

	SQL State List
	Warning Messages Associated with SQLSTATE 01000
	Warning Messages Associated with SQLSTATE 01006
	Warning Messages Associated with SQLSTATE 01007
	Warning Messages Associated with SQLSTATE 01V01
	Error Messages Associated with SQLSTATE 08000
	Error Messages Associated with SQLSTATE 08001
	Error Messages Associated with SQLSTATE 08003
	Error Messages Associated with SQLSTATE 08006
	Error Messages Associated with SQLSTATE 08V01
	Error Messages Associated with SQLSTATE 0A000
	Error Messages Associated with SQLSTATE 0B000
	Error Messages Associated with SQLSTATE 0LV01
	Error Messages Associated with SQLSTATE 22000
	Error Messages Associated with SQLSTATE 22001
	Error Messages Associated with SQLSTATE 22003
	Error Messages Associated with SQLSTATE 22004
	Error Messages Associated with SQLSTATE 22007
	Error Messages Associated with SQLSTATE 22008
	Error Messages Associated with SQLSTATE 22009
	Error Messages Associated with SQLSTATE 2200B
	Error Messages Associated with SQLSTATE 2200D
	Error Messages Associated with SQLSTATE 22011
	Error Messages Associated with SQLSTATE 22012
	Error Messages Associated with SQLSTATE 22015
	Error Messages Associated with SQLSTATE 22019
	Error Messages Associated with SQLSTATE 2201B
	Error Messages Associated with SQLSTATE 2201G
	Error Messages Associated with SQLSTATE 22021
	Error Messages Associated with SQLSTATE 22023
	Error Messages Associated with SQLSTATE 22025
	Error Messages Associated with SQLSTATE 22906
	Error Messages Associated with SQLSTATE 22V02
	Error Messages Associated with SQLSTATE 22V03
	Error Messages Associated with SQLSTATE 22V04
	Error Messages Associated with SQLSTATE 22V0B
	Error Messages Associated with SQLSTATE 22V21
	Error Messages Associated with SQLSTATE 22V23
	Error Messages Associated with SQLSTATE 22V24
	Error Messages Associated with SQLSTATE 23502
	Error Messages Associated with SQLSTATE 23503
	Error Messages Associated with SQLSTATE 23505
	Error Messages Associated with SQLSTATE 25V01
	Error Messages Associated with SQLSTATE 28000
	Error Messages Associated with SQLSTATE 2BV01
	Error Messages Associated with SQLSTATE 40V01
	Error Messages Associated with SQLSTATE 42501
	Error Messages Associated with SQLSTATE 42601
	Error Messages Associated with SQLSTATE 42602
	Error Messages Associated with SQLSTATE 42611
	Error Messages Associated with SQLSTATE 42622
	Error Messages Associated with SQLSTATE 42701
	Error Messages Associated with SQLSTATE 42702
	Error Messages Associated with SQLSTATE 42703
	Error Messages Associated with SQLSTATE 42704
	Error Messages Associated with SQLSTATE 42710
	Error Messages Associated with SQLSTATE 42712
	Error Messages Associated with SQLSTATE 42723
	Error Messages Associated with SQLSTATE 42725
	Error Messages Associated with SQLSTATE 42803
	Error Messages Associated with SQLSTATE 42804
	Error Messages Associated with SQLSTATE 42809
	Error Messages Associated with SQLSTATE 42830
	Error Messages Associated with SQLSTATE 42846
	Error Messages Associated with SQLSTATE 42883
	Error Messages Associated with SQLSTATE 42939
	Error Messages Associated with SQLSTATE 42P20
	Error Messages Associated with SQLSTATE 42V01
	Error Messages Associated with SQLSTATE 42V02
	Error Messages Associated with SQLSTATE 42V03
	Error Messages Associated with SQLSTATE 42V04
	Error Messages Associated with SQLSTATE 42V06
	Error Messages Associated with SQLSTATE 42V07
	Error Messages Associated with SQLSTATE 42V08
	Error Messages Associated with SQLSTATE 42V09
	Error Messages Associated with SQLSTATE 42V10
	Error Messages Associated with SQLSTATE 42V11
	Error Messages Associated with SQLSTATE 42V13
	Error Messages Associated with SQLSTATE 42V15
	Error Messages Associated with SQLSTATE 42V16
	Error Messages Associated with SQLSTATE 42V17
	Error Messages Associated with SQLSTATE 42V18
	Error Messages Associated with SQLSTATE 42V21
	Error Messages Associated with SQLSTATE 42V25
	Error Messages Associated with SQLSTATE 42V26
	Error Messages Associated with SQLSTATE 53000
	Error Messages Associated with SQLSTATE 53100
	Error Messages Associated with SQLSTATE 53200
	Error Messages Associated with SQLSTATE 54000
	Error Messages Associated with SQLSTATE 54001
	Error Messages Associated with SQLSTATE 54011
	Error Messages Associated with SQLSTATE 54023
	Error Messages Associated with SQLSTATE 55000
	Error Messages Associated with SQLSTATE 55006
	Error Messages Associated with SQLSTATE 55V02
	Error Messages Associated with SQLSTATE 55V03
	Error Messages Associated with SQLSTATE 55V04
	Error Messages Associated with SQLSTATE 57014
	Error Messages Associated with SQLSTATE 57015
	Error Messages Associated with SQLSTATE 57V01
	Error Messages Associated with SQLSTATE 57V03
	Error Messages Associated with SQLSTATE 58030
	Error Messages Associated with SQLSTATE 58V01
	Error Messages Associated with SQLSTATE V1001
	Error Messages Associated with SQLSTATE V1002
	Error Messages Associated with SQLSTATE V1003
	Error Messages Associated with SQLSTATE V2000
	Error Messages Associated with SQLSTATE V2001
	Error Messages Associated with SQLSTATE VC001
	Error Messages Associated with SQLSTATE VD001
	Error Messages Associated with SQLSTATE VP000
	Error Messages Associated with SQLSTATE VP001
	Error Messages Associated with SQLSTATE VX001
	Error Messages Associated with SQLSTATE VX002
	Error Messages Associated with SQLSTATE VX003

	We appreciate your feedback!

