

HP Service Activator

Inventory Subsystem
Edition: V62-1A

for Microsoft Windows® Server 2008 R2, HP-UX 11i v3,

Red Hat Enterprise Linux 6.4

Manufacturing Part Number: None

October 15, 2013

 Copyright 2001-2013 Hewlett-Packard Company

Service Activator Inventory Subsystem

2

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained
from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.

©Copyright 2001-2013 Hewlett-Packard Company, all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices.

Java™ is a registered trademark of Oracle and/or its affiliates.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc.

EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and
are hereby acknowledged.

Document id: p158-pd001310

 Service Activator Inventory Subsystem
 Document Information

 Contents

 3

1 Introduction .. 7
Overview of Service Activator Inventory ... 7

Inventory Solution Development Process .. 8
Example Data Model Used in this Manual (DocEx) ... 10

2 Resource Definitions .. 11
Localization .. 11
XML Vocabulary Quick Reference .. 11
Resource Definition Elements .. 19

The <Bean> Element ... 19
The <Field> Element ... 23
The <Key> Element and findBy Methods ... 29
The <Operations> Element ... 35

Reservable Resources ... 36
Methods to Reserve Resources .. 37
Inheriting Reservability ... 37

Generated SQL ... 37
findBy Where Clauses ... 37
Table Name Aliases ... 38
Unique and distinct findBy results ... 38

Generated Java Bean Classes ... 39

3 Inventory Builder ... 41
Details for Step 1 .. 43
Details for Step 2 .. 44

4 Inventory Tree Definitions .. 47
Inventory Tree Designer ... 47
Localization .. 49
XML Vocabulary Quick Reference .. 49
General Properties of InventoryTree .. 55

Privileges for Trees, Branches and Operations .. 55
Case Packet .. 56
Filter .. 56

Branches ... 57
Parameter Values ... 57
Condition Expressions ... 58
General Properties of Branch ... 59
Determining Instances of a Branch .. 60
Orphan’s Parent ... 60
Child Branches .. 61

Operations in Instance View... 61
General Properties of Operation .. 61
Inventory Actions .. 62
Workflow Actions ... 62
Customizing and Adding Own Operations .. 64

Operations in Class View ... 65

Service Activator Inventory Subsystem
Document Information

Contents

4

Adding a Data Source for Inventory UI ... 66

5 Inventory Tree Deployer ... 67

6 Localizing Inventory .. 71

 Service Activator Inventory Subsystem
 Document Information

 5

Install Location Descriptors
The following names are used to define install locations throughout this guide.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of Service Activator.
The UNIX® location is /opt/OV/ServiceActivator
The Windows® location is
<install drive>:\HP\OpenView\ServiceActivator

$ACTIVATOR_ETC The install location of specific Service Activator files.
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\etc

$ACTIVATOR_VAR The install location of specific Service Activator files.
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\var

$ACTIVATOR_BIN The install location of specific Service Activator files.
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is
<install
drive>:\HP\OpenView\ServiceActivator\bin

$JBOSS_HOME The install location for JBoss.
The UNIX location is /opt/HP/jboss
The Windows location is <install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator JEE components.
The UNIX location is
/opt/HP/jboss/server/standalone/deployments
The Windows location is
<install
drive>:\HP\jboss\server\standalone\deployments

$JBOSS_EAR_LIB Location for libraries (Java *.jar files) to be executed by the
HPSA engine (workflow manager and resource manager):
$JBOSS_DEPLOY/hpsa.ear/lib

$JBOSS_ACTIVATOR More specific location of Service Activator UI components
deployed in JBoss:
$JBOSS_DEPLOY/hpsa.ear/activator.war

Service Activator Inventory Subsystem
Document Information

6

In This Guide
This guide describes Service Activator’s inventory subsystem from the perspective of
customization.

Audience
The audience for this guide is:

• Systems Integrator, who will use it as a resource for customizing solutions.

 Service Activator Inventory Subsystem
 1. Introduction

 7

1 Introduction
This chapter introduces the Service Activator inventory subsystem by presenting an overview of
the subsystem and the related tools.

Overview of Service Activator Inventory
This manual is about the repository of solution data that is customized for a Service Activator
solution, also known as the inventory. As system integrator you are free to define the data model to
be stored in the inventory, depending on the requirements of the solution.

Packaged with the Service Activator core product is a data model that is suitable for a provider’s
network infrastructure, the Common Network Resource Model. If that model is suitable for your
solution, possibly with modifications, you can use it as a starting point. For information about the
Common Network Resource Model, see HP Service Activator, System Integrator’s Overview.

The design process that precedes the definition of the model (understand the reality to be modelled
in the inventory and the details that will be needed for activation, analyze and understand the
relationships between the different entities that are modelled) is not taught here, as the knowledge
needed for the analysis and design is of a general nature; it is not specific to a Service Activator
solution. This manual covers the data model definitions that you must prepare, how to present the
data model and provide access to it via the operator UI, and the principles for accessing inventory
data from your Service Activator workflows.

NOTE Since historically Service Activator inventory has been used primarily to manage resources in a service
provider’s network and service infrastructure and indeed has special features for reserving and releasing
objects that represent reservable resources, a data object is - in the parlance of this manual - generally called
a “resource”; it is defined in a “resource definition file”. This does not imply that you are restricted to modelling
objects that can reasonably be thought of as resources. In many applications, it is natural to divide the
inventory in three portions: resource inventory including network resources, service inventory possibly
including multiple classes of objects to represent services, and solution configuration data. In object-oriented
terms, think of a resource as an object class. In database terms it is a table.

Service Activator’s inventory subsystem stores instances of the defined resources in tables in the
database which is used as part of the Service Activator platform (see HP Service Activator, System
Integrator’s Overview for more information about use of the database in general and configuration
of data sources, i.e. pools of database connections, in particular). The inventory subsystem makes
the data repository accessible from workflows for creation, query, updating and deletion of data
instances, and it supports a powerful UI to view resources and perform operations on them; the UI
is easily customized so the data is arranged in a way that is natural for the user of the activation
solution.

The Service Activator core product includes these parts which are used in the inventory subsystem,
some of them as tools during solution customization:

• A preinstalled underlying database is a prerequiste for Service Activator.

Service Activator Inventory Subsystem
1. Introduction

8

• A command line tool called Inventory Builder. This tool takes inventory object definitions
written in a special XML syntax as input and generates three types of artifacts:

 Java beans that manage instances of your inventory resources and use JDBC to access the
database.

 SQL table definitions that you can use to create inventory resource tables and indexes in
the database.

 UI files supporting capabilities to manually view, search, create, update, and delete
inventory resources from the inventory UI.

NOTE UI files are generated to fit into the Struts framework. These files comprise Java Server Pages (JSPs), Struts
Java classes, Struts config files and property files.

• A workflow manager module called the database module that manages a pool of JDBC
connections to the database to allow workflow jobs to access inventory data. Refer to HP
Service Activator, Workflows and the Workflow Manager for more information about this
module.

• A set of nodes in the workflow manager node library that interact with the Java beans
generated by Inventory Builder to create, query, update, reserve, release and delete resources in
inventory. There are some additional nodes in the library that can execute explicitly provided
SQL statements to query and update data in database tables; these nodes do not use the
generated Java beans. Refer to HP Service Activator, Workflows and the Workflow Manager
for more information about these nodes.

• A separately launchable window in the operator UI that presents the inventory resources in
hierarchical tree structures viewable from an Internet Explorer Web browser, providing search
functions and allowing access to operations defined for each resource. Refer to the chapter
“Inventory User Interface” in HP Service Activator, User’s and Administrator’s Guide for a
description of the capabilities of the inventory UI. You can define several trees, each one for a
different part or a different view of the inventory. If you choose to divide your inventory across
multiple physical databases, each tree can only access resources that are stored within a single
database. The inventory UI window must be configured with definitions of one or more
presentation trees. See chapter 4 for full information about presentation trees.

• A tool called Inventory Tree Designer. This tool can be used in graphical interactive mode to
define and edit inventory presentation trees and to manage their deployment. It can also
perform tree deployment management in command-line mode Tree definitions must be
deployed into Service Activator’s static repository to become active and control the behaviour
of the inventory UI.

Inventory Solution Development Process
The list below gives an overview of the activities you will undertake to develop and deploy a
Service Activator inventory solution. Not all the activities are needed for all solutions. Details for
most of these activities are described in the following chapters.

• Analyze the desired solution to understand what resources will be stored in your inventory.
This should include a list of all of the resources and their attributes. You might produce a
document or a diagram in any convenient notation such as UML. From the analysis you can
determine the degree to which the Common Network Resource Model will be applicable.

• Write resource definition files for the resources in your solution. There will be one file for each
type of resource. The file encodes information gathered during your preceeding analysis. An
XML syntax is defined for this purpose. The vocabulary and associated features for managing
resources are described in detail in chapter 2.

• Process your resource definition files with the Inventory Builder tool supplied with Service
Activator. Then deploy the output produced: compile the Java beans and move the generated

 Service Activator Inventory Subsystem
 1. Introduction

 9

UI files to the proper location for use by the JEE engine. See chapter 3 for information about
the Inventory Builder.

• Prepare one or more inventory tree definitions to specify the presentation of your inventory
data. There is an XML syntax defined for this purpose and a graphical tool, the Inventory Tree
Designer, to facilitate editing of the definition. With this tool you can also deploy your tree(s)
into the static repository for testing. See chapter 4 for full information about presentation trees
and how to define them.

• Design the physical implementation of your inventory. The default implementation is to place
all tables in a single tablespace belonging to the same database user in the same database
instance as the predefined tables in Service Activator’s repositories (see description at the
beginning of this chapter). If you want to use multiple tablespaces and/or multiple database
instances, you must create them explicitly. The tables to hold the different resources you have
defined are created by running the SQL command files generated by the Inventory Builder. If
you use multiple databases you must configure the workflow manager with a database module
to connect to each of them and prepare your worfklows to access each resource through the
proper database module. Refer to HP Service Activator, Workflows and the Workflow Manager
for information about configuring the workflow manager.

• Populate your inventory with appropriate resource instances to model the provider’s network
and service infrastructure and anything else you are modelling. For modest numbers of
resource instances you can create them manually from the inventory UI page. Alternatively,
you may use SQL tools to populate the database directly.

Service Activator Inventory Subsystem
1. Introduction

10

Example Data Model Used in this Manual (DocEx)
The following chapters use a small but meaningful data model to demonstrate the capabilities of
the Service Activator Inventory subsystem. The example relates to the hardware resources that
would be deployed by a provider offering web services. When Service Activator has been installed
you can find the files for this example in
$ACTIVATOR_OPT/examples/doc_example/DocEx.zip. You can use the Deployment
Manager to install the example as a solution named DocEx. In the resource definition files you can
find examples of most of the concepts described in chapter 2, and similarly the tree definition uses
most of the features described in chapter 4.

Here is a UML class diagram showing the complete data model for the example.

Figure 1-1 Example Data Model

+name : String
+phone : String
+resDate : Date
+secure : Boolean
+Switch : String

Room

+name : String
+room : String

Rack

+name : String
+password : String
+IP : String
+port : int
+AverageDelay : float
+user : String
+rack : String

WebServer

+name : String

WinWebServer

+name : String
+servertype : String

UnixWebServer

+VendorID : String
+name : String
+description : String

Vendor

+name : String
+password : String
+confirmpassword : String
+IP : String
+description : String
+rack : String
+vendor : String

Switch

1 0...n 1 0...n

0...n

1

1

0...n

 Service Activator Inventory Subsystem
 2. Resource Definitions

 11

2 Resource Definitions
This chapter explains how to write the resource definition files to describe the resources to be
managed in your inventory system.

A resource definition is an XML document. In overview its main parts are:

• A header with optional attributes, defining general properties of the resource

• Field specifications, defining the data members of the JavaBean which correspond to columns
of the database table

• Key specifications, indicating the primary key and other search keys

• Operation declarations, indicating what operations may be performed on the resource

There is not a special graphical tool for creating resource definitions. Use your preferred text
editor to prepare resource definition files.

The section “XML Vocabulary Quick Reference” provides a quick reference to the contents of a
resource definition. It is followed by a longer section containing thorough explanations of the
individual attributes and elements with examples.

The XML syntax for a resource definition is specified in file bean.dtd that is found in
$ACTIVATOR_THIRD_PARTY/inventory. As you can see in the DocEx files, resource definition
files must begin with a header including a <!DOCTYPE> element to reference bean.dtd. The
syntax is also easily understood from Table 2-1 below.

Localization
In a resource definition you will define several names - for the resource, for its fields, etc. These
names will be used for the Java beans that are generated by the Inventory Builder based on the
resource definition, and must contain only ASCII characters (with further restrictions). For a
localized solution using a language with a different character set, they may not be suitable for
displaying to the user. You can then override them for presentation use. The general rule is that a
resource definition must contain only ASCII characters, except for the following elements and
attributes, which are the ones you need to localize; they can be specified in local language:
<Beanlabel>, <Label>, <Description>, <Column>, <Default>, <DBTable>, <HistDBTable>,
<Value>, show, message.

XML Vocabulary Quick Reference
Table 2-1 describes the XML vocabulary for resource definitions. For each element that can occur
in a resource definition, starting with the root tag <Bean>, all its attributes and tagged child
elements are listed and briefly explained in one row each, attributes before tagged child elements,
tags enclosed in angle brackets <..>. When reading the descriptions, beware that many features
pertain to the inventory UI. More thorough descriptions are given for most elements and attributes
in the next section, “Resource Definition Elements”. Explanation pertaining to generated SQL
statements are gathered in the section “Generated SQL” at the end of this chapter.

Service Activator Inventory Subsystem
2. Resource Definitions

12

Table 2-1 Resource Definition Quick Reference

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

<Bean> audit false activates generation of audit records

 maxCount declares resource reservable with
automatic resource counter

 hideCount false makes resource counter hidden on
View and Update

 inheritsFrom defines inheritance relationship

 inheritsSolution Solution solution to which the (parent)
superclass resource belongs

 extAttributes declares user may add fields to the
resource at run-time

 history declares history table shall exist for
the resource

 <Name> M name of resource (bean name)

 <Solution> name of solution to which resource
belongs

 <Beanlabel> (bean) Name presentation name for resource

 <ConstraintName> (bean) Name name to use for bean when generating
names of constraints on database
tables; these names combine bean and
field names

 <SequenceName> name of database sequence to be used
for the bean

 <Package> M package for generated Java bean

 <DBTable> (bean) Name database table name for the resource

 <DBAlias> Solution#Name overrides generated alias name for the
resource table

 <HistDBTable> HistDBTable history table name for the resource

 <Fields> M encloses field declarations, see entries
below

 <DisplaySequence> encloses definition of sequence in
which fields will appear in forms on
UI

 <ParentFields> encloses <ParaentField> element

 <JoinBridges> encloses global definitions of join
bridges

 <Keys> M encloses key declarations, see entries
below

 <Operations> encloses operation declarations, see
entries below

 Service Activator Inventory Subsystem
 2. Resource Definitions

 13

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Construction> Java code that is added to the
generated constructor for the bean
class

 <Validation> Java code that is added to the validate
method in the bean, used to validate
field values when a resource instance
is created or updated

 <DBInitCustomCode> Java code appended to field
initialization code of methods to
instantiate the bean.

 <GuiStorage> Java code inserted in Struts action
beans for store, update and delete
forms.

 <GuiUpdate>

 <GuiDeletion>

 <FormValidations> encloses form validation declarations,
see entries below

<DBTable>
<HistDBTable>

tablespace specifies database tablespace where
resource table is stored

 index_tablespace specifies database tablespace where
indexes for the resource are stored

<Fields> <Field> repeatable, defines one field, has
attributes and inner tags

<Field> mandatory true makes field value mandatory on
Create and Update

 hiddenView false makes field hidden on View

 hiddenUpdate false makes field hidden on Update

 update true makes field editable on Update

 hiddenCreate false makes field hidden on Create

 create true makes field editable on Create

 sequence false generates field value from database
sequence

 sequenceStart 1 starting value for database sequence

 searchable true makes field searchable

 maxCount false declares resource reservable with field
as resource counter

 dateFormat specifies format of date field

 integerFormat true for fields of type integer or long: apply
integer formatting according to locale
(for some locales thousands separator
will be displayed)

 password false displays field as password

Service Activator Inventory Subsystem
2. Resource Definitions

14

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 encrypt false password is stored in encrypted form
in database

 store true creates a column to store field value in
database

 <Name> M name of field

 <Column> (field) Name name of database column for the field

 <Label> (field) Name presentation name for field

 <Type> M type of field, one of: String, int, long,
Clob, Blob, long, boolean, double,
float, Date

 <Default> default value for field

 <Description> description for field, displayed on UI

 <ListOfValues> defines selectable values for the field
on Create/Update, either explicitly (list
of <Value> elements), or to be found
from associated foreign bean
(<BeanName>, <Label>, <Method>,
<Param>)

 <Loader> for field that is not stored in database
(attribute store=”false”), defines Java
code to calculate value to display

 <ShowConditions> encloses and combines one or more
<ShowCondition> elements

<ShowConditions> <ShowCondition> repeatable, defines a condition for the
field to be visible

 operator and defines operator to combine several
boolean condition values (‘and’ or
‘or’)

<ShowCondition> empty false if true, an empty condition, otherwise
a pattern match condition

<ShowCondition> <FieldName> M specifies the field the condition
depends on

 <Pattern> must be present unless empty is “true”,
specifies the pattern that must match
the value of the field (<FieldName>)

<ListOfValues> withoutForeignKey false true: to use <BeanName> on field
which is not foreign key

 <Value> explicitly defines one possible value
for the field, repeatable, see attributes
below

 <BeanName> fully qualified name of foreign bean
(or just bean)

 Service Activator Inventory Subsystem
 2. Resource Definitions

 15

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Label> primary key (foreign) bean field to show in drop-
down list

 <Method> findAll find method to select candidates

 <Param> parameter for find method, repeatable,
order is significant

<Value> show specifies string to show in drop-down
list, allowing it to be different from the
element value that is assigned to the
field and stored in the database

 selected false identifies preselected value, only one
value can be selected

<DisplaySequence> <FieldName> name of field in display sequence

<ParentFields> <ParentField> contains definitions to override
properties of an inherited superclass

<ParentField> hiddenView
hiddenUpdate
update
hiddenCreate
create
searchable
dateFormat
integerFormat

 overrides value of superclass (parent)
attribute for the inheriting (child) class

<ParentField> <Name>
<Label>
<Description>
<ListOfValues>
<Loader>

 overrides value of superclass (parent)
element for the inheriting (child) class

<JoinBridges> <JoinBridge> repeatable, defines a bridge two beans

<JoinBridge> name identifies a globally defined
JoinBridge, either in the definition or
where it is used

 origin name of origin bean of bridge

 originSolution Solution solution to which the origin bean
belongs

 destination name of destination bean of bridge

 destinationSolution Solution solution to which the destination bean
belongs

 jumpField resolves ambiguity when origin bean
has multiple foreign keys to first jump
(or destination)

 inverseJumpField resolves ambiguity when destination
bean has multiple foreign keys to
previous jump (or origin)

Service Activator Inventory Subsystem
2. Resource Definitions

16

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Jump> repeatable, identifies a bean as jump
pillar of the bridge

<Jump> jumpSolution Solution solution to which the jump bean
belongs

 jumpField resolves ambiguity when jump bean
has multiple foreign keys to next jump
or destination of the bridge

 inverseJumpField resolves ambiguity when jump bean
has multiple foreign keys to previous
jump or origin of the bridge

<Keys> <Key> repeatable, defines one key, has
attributes and inner tags

<Key> pk false identifies primary key

 foreignBean declares the key as foreign key and
identifies the bean it will reference

 foreignSolution Solution solution to which the foreign bean
belongs

 includeBean requests a special bean method related
to a foreign key

 inverseIncludeBean requests a special bean method related
to a foreign key

 unique false requests database to enforce
uniqueness of the field value over all
resources of same type (the column)

 distinct false requests database to enforce
uniqueness of the field value over all
resources of same type (the column)

 advancedSearch false requests generation of a special bean
method needed for advanced search

 makeIndex true indicates whether a database index
shall be created for the column
holding the field

 restrict false for foreign key: indicates whether to
restrict (prevent) deletion of
referenced resource instance

 nullOnDelete false indicates whether to foreign key to
null when referenced resource instance
is deleted

 uniqueResults false true: findBy method must return
unique results

 distinct false true: findBy method must return
distinct results

 Service Activator Inventory Subsystem
 2. Resource Definitions

 17

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 joinedBy AND specifies how <KeyField> values are
combined in findBy method, values:
AND, OR, MAP

 <Name> composed from
names of key fields

defines a name for the key

 <KeyField> associates a field with the key,
multiple fields can be combined to
form a key

 <JoinBridge> join bridge used in <Key> may
reference global definition or may be
defined where it is used

 <WhereMap> when joinedBy=”MAP”: explicit
where clause map

<KeyField> foreignField for foreign key only: identifies the
foreign field, i.e. the field on the
foreign bean that this field matches

 externalBean name of external resource which holds
key for findBy method that will join
the tables

 externalSolution Solution solution to which the external bean
belongs

 alias alternative name of externalBean table
to be used in generated SQL

 joinField for use when target resource has
multiple foreign keys to external
resource to select the one to use for
join

 externalJoinField for use when external resource has
multiple foreign keys to target
resource to select the one to use for
join

 ignoreCase false ignore upper/lower case of letters in
findBy parameter generated from the
key field

 comparator = SQL operator used to compare the
value of the key field

 compareTo findBy argument operand (in SQL) compared to key
field

<Operations> <Store> empty element indicating Create
operation shall be possible

 <Update> empty element indicating Edit
operation shall be possible

 <Remove> empty element indicating Delete
operation shall be possible

Service Activator Inventory Subsystem
2. Resource Definitions

18

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <CreatePartial> empty element indicating CreatePartial
operation shall be possible

 <DeletePartial> empty element indicating DeletePartial
operation shall be possible

 <FindBy> repeatable element specifying how
results from a findBy method shall be
ordered

<FindBy> key Keyname identifying a
findByKeyname method; omitted for
findAll

 <OrderField> name of field by whose value results
of the method will be ordered

<OrderField> desc false specifies sorting by descending value
of the field

 convertTo convert order field to number, string or
date

 format used with date format

<FormValidations> <FormValidation> repeatable, contains Java code for one
validation action that will be appended
to the validate method of the generated
form bean

<FormValidation> entry defines the name of a message
property to use in the Java code

 message must be present together with entry:
specifies the actual message string
referenced by the property

 Service Activator Inventory Subsystem
 2. Resource Definitions

 19

Resource Definition Elements
This section contains the detailed explanations, some of them with examples, of the elements of
the resource definition and the features of the inventory subsystem which they are used to control.
There are four subsections, one for each of the main parts of the resource definition:

• the outermost element <Bean>, its attributes and immediate child elements, except <Fields>,
<Keys> and <Operations>, which are described in the other subsections;

• the <Field> element, its attributes and child elements, which is used to define a field of the
resource; in object-oriented terms the field equates to an object attribute, and in database terms
it equates to a column of the table that stores the resource;

• the <Key> element, its attributes and child elements, which is used to indicate which fields of a
resource are searchable with database indexes and to establish foreign key relationships to
other resources, modelling entity relationships;

• the <Operations> element and its child elements, which are used to define methods of the
generated Java bean and operations that can be used in the presentation tree.

Each of these four sections have a subsection for each attribute or child element that is described.
The headings of the subsections comprise the tag of the parent element combined with the name of
the attribute or the tag of the child element.

The <Bean> Element
The attributes and child elements of the <Bean> element define properties of the resource as a
whole.

<Bean> audit
Service Activator can be configured to build an audit trail in its audit repository with records of
worfklow actions. The audit trail can be inspected in the Work Area/Audit Messages frame in the
main Service Activator UI window. Records of inventory operations can also be included in the
audit trail. Recorded information includes the time and date that the action took place, the user
who performed it, the operation, the bean and the primary key. Recorded operations include create,
update and delete.

Writing of audit records must be enabled per resource bean. Use the “audit” attribute of the
<Bean> element to enable auditing.

<Bean audit="true">

<Bean> maxCount - Reservable Resource, <Bean> hideCount
Service Activator inventory provides functions that support the management of reservable
resources. There are two ways to declare a resource to be reservable. One way is to set the
maxCount attribute on the bean field, as described here. The other way is to set the maxCount
attribute on a field of the resource, as described in the subsection “<Field> maxCount”. In both
cases there will be a field to hold a value indicating - at any time - how many units are available
for reservation on the resource. When its value reaches 0, the resource is fully occupied.

With the maxCount attribute on a Bean element you must provide a value specifying the maximum
number of simultaneous reservations that shall be possible; a field named count__ will
automatically be generated as the “availability counter” for the resource and initialized to the
specified value whenever a new instance of the resource is created. The count__ field will only be
settable by the methods to reserve and release resources.

For example, to specify that a resource you are defining can be reserved for up to 5 simultaneous
users, declare your bean as follows:

<Bean maxCount="5">

Service Activator Inventory Subsystem
2. Resource Definitions

20

The count__ field is hidden from the View and Edit forms when the hideCount attribute is “true”.

For more information on reservable resources, refer to the section “Reservable Resources” at the
end of this chapter.

<Bean> inheritsFrom, <Bean> inheritsSolution, <Bean> <ParentFields>
A resource may inherit the properties of another resource. Inheritance is a concept from object
orientation. In Java a subclass can inherit the properties of a superclass. With respect to the
generated Java bean, inheritance in Service Activator inventory is similar to Java inheritance.
Service Activator only supports single inheritance.

In the database separate tables are created for the super- and subclass resources. Generated Java
code and SQL statements will join the two tables to access subclass resources. The primary key
field(s) of the superclass resource are duplicated in the table of the inheriting resource to enable
the joining. It is not possible to redefine or extend the primary key in the definition of the
inheriting resource.

Use the inheritsFrom attribute of the <Bean> tag to specify the superclass bean when you are
defining a resource that will use inheritance. For example, to define a resource that must inherit
from the WebServer bean, declare the bean as follows:

<Bean inheritsFrom="WebServer">

NOTE No field added to an inheriting bean can have the same name as any field of the superclass bean.
Setting the extAttributes attribute on the superclass will not enable the user to add fields to the inheriting
resource. It is recommended not to set extAttributes on a superclass resource.

If the superclass belongs to a different solution, specify that solution with the inheritsSolution
attribute.

In the definition of an inheriting (subclass) resource it is possible to modify a number of the
properties of fields of the supercless. You can do this with the <ParentFields> element, where for
each field you can include a <ParentField> element to override a number of the attributes and
elements specified with the corresponding <Field> elements in the resource definition of the
superclass. The attributes and child elements of <ParentField> have the same names as those they
override.

<Bean> extAttributes
The feature controlled by this attribute allows the user to extend a resource with additional fields.
Additional fields can be added while the solution is in use from the inventory UI (see “Operations
in Class View” in chapter 4). The primary table that is created based on the resource definition,
with a column per field, is not modified by this process. Additional fields are placed in a secondary
extension table with the same name as the primary table followed by the suffix ‘Ext’. The
extension table has the same primary key as the primary table. For each field that is added, a
column named like the field is added to the extension table to hold the field value for each
resource instance. A record of the relationship between the field and the resource is written as a
row in the table EXTENDED_ATTRIBUTES_CATALOG, which controls the processing of
added fields.

NOTE If your inventory uses a database different from the one specified for Service Activator’s repositories at
installation time, make sure the EXTENDED_ATTRIBUTES_CATALOG table is created in the database that
stores the resource you are extending. You can use the SQL script file named createInvExtAttrDB.sql found
in $ACTIVATOR_ETC\sql.

From the description above you will appreciate that the processing of user added fields adds some
overhead compared to fields specified in the resource definition.

To allow user defined fields to be added to a resource bean, declare the bean as follows:
<Bean extAttributes="class">

 Service Activator Inventory Subsystem
 2. Resource Definitions

 21

<Bean> history
Setting the history attribute ”true” causes SQL statements to be generated that will create a table
intended to hold historical records moved from the main table that stores the resource, i.e. with
identical columns. By default the history table is named by prefixing the name of the main table
with ‘Hist’; it can be overriden by a name specified with the <HistDBTable> element. Methods
will be included in the Java bean that can move records between the two tables (moveToHistory
and recoverFromHistory).

NOTE If you use inheritance, superclass and subclass resources must be defined with the same value of the history
attribute.

<Bean> <Name>
The value of the <Name> element specifies the name of the resource. It is used to name the
generated Java bean and, unless you override it using a <DBTable> element, also the database
table that will hold the resource instances.

The bean name must only contain alphanumeric characters and underscores, and it must begin with
a letter.

NOTE The bean name cannot be a Java keyword or an HPSA reserved keyword. Unless overridden with
<DBTable> it also cannot be an SQL reserved word. See “Resource Definition Validation” in “Using Inventory
Builder” for more detailed information about the validation.

<Bean> <Solution>
The value of the <Solution> element optionally specifies the name of the solution that the resource
belongs to. It must be the same in all resource definitions that belong together and are processed
together by the Inventory Builder.

NOTE The solution name becomes part of the complete class name for generated Java classes for Struts, therefore
should consist of alphanumeric and underscore characters only.

<Bean> <Package>
You must place the resource Java bean in a Java package specified as the value of the <Package>
element.

It is recommend to begin the package path with “com.hp.activator” and then add your own
hierarchy, starting with the solution name.

If you specify:
<Bean>
 <Name>mybean</Name>
 <Solution>MySolution</Solution>
 <Package>com.hp.activator.mysolution</Package>
</Bean>

the fully qualified Java class name of the bean will be “com.hp.activator.mysolution.mybean”.

<Bean> <DBTable>
By default the bean name will also be used for the database table which will hold the resource
data. You may specify a different table name by using the <DBTable> tag.

In order to ensure that database tables for different solutions have unique names (and that all tables
belonging to the same solution appear contiguously in alphabetically sorted lists), it is
recommended to use the solution name (possibly abbreviated) as a prefix for the database table
name.

Service Activator Inventory Subsystem
2. Resource Definitions

22

NOTE The table name must adhere to SQL naming restrictions. It can be neither a SQL keyword nor an HPSA
reserved keyword. Table names are not case sensitive, although Java classes are.

<Bean> <Fields>
The <Fields> child element of the <Bean> element encloses the definitions of the fields of the
resource, each one given as a <Field> element, as described in the section “The <Field> Element”
below.

<Bean> <DisplaySequence>
By default the fields of a resource are displayed in generated forms in the order of definition, with
fields of a subclass appearing after fields of its superclass. To change the order, typically if you
want to move some subclass fields up, you can specify the complete sequence of fields for display
purposes with the <DisplaySequence> element, which will contain a sequence of <FieldName>
child elements, each one with the name of a field as its value.

<Bean> <Keys>
The <Keys> child element of the <Bean> element encloses the definitions of the keys of the
resource, each one given as a <Key> element, as described in the section “The <Key> Element and
findBy Methods” below.

<Bean> <Operations>
See the section “The <Operations> Element” below.

<Bean> <Construction>
As all Java classes, the bean for the resource has a constructor which is invoked when the bean is
instantiated at run-time, for example as a case packet variable in a workflow job in response to a
query. With the <Construction> element you can specify code to be added to the constructor. To
use this feature, it is recommended that you first prepare the resource definition without the
<Construction> element and process it with the Inventory Builder. Then study the constructor in
the generated java source file and write your additional code so it will work in the context, edit it
into the <Construction> element, and rerun Inventory Builder.

<Bean> <DBInitCustomCode>
With this element you can include some Java code to be executed in methods which retrieve data
from the database to instantiate the bean (i.e. findBy methods, see “The <Key> Element and
findBy Methods”). Your code will be included after the constructor and all other actions to
initialize fields of the bean, including code specified with the <Field> <Loader> element.

<Bean> <GuiStorage>, <Bean> <GuiUpdate>, <Bean> <GuiDeletion>
Use these elements if you want to add some code to the Struts action beans that are generated for
the Create, Update and Delete forms for the bean without having to find, edit and maintain the
action bean code. Your code is inserted just before the call of the main method (store, update or
delete). You will have available three parameters con, bean and formBean. The first one is a
database connection which you must use if you need to make database access. The other two are
the resource bean and the Struts form bean.

<Bean> <Validation>
The Inventory Builder automatically generates code that validates whether all of the mandatory
fields contain a value. This validation code is run within the JavaBean, prior to a completing a
store or update method. It is applied regardless of whether the method is called from the UI or
from a workflow.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 23

You can write Java code that will be added to the validation method to perform some specific
validation of the properties of your resource instances, for example reject numbers outside of a
meaningful range.

Use the <Validation> element to provide your validation code. It is recommended to follow a
process similar to the one described above for <Construction> when applying the <Validation>
element.

Do not use the less-than or greater-than symbols (<, >) in your validation code because the XML
parser will confuse them with the beginning and end of a tag. Use < and > as shown in the
following example:

<Validation>
 if (WebPort <= 0)
 throw new RuntimeException("Incorrect value for WebPort");
</Validation>

You can also find an example in the definition of the Switch resource in the DocExample.

<Bean> <FormValidations>
Form validation is done in the form validation Java classes which are deployed with Struts for the
inventory UI. These Java classes are generated and deployed by the Inventory Builder. Validations
done on forms are based directly on the data that is entered into the fields of the forms. With the
<FormValidations> element you can append code to the validate method that is generated for the
resource in the form validation class. After running Inventory Builder you can find form validation
classes as well as other generated Struts (action) classes in a directory hierarchy under
struts_classes. The form validation Java file for the Bean resource will be named BeanForm.java.
Along with each validation you can define an error message as a property that will appear in the
file BeanApplicationResources.properties file which is colocated with the generated Java files. The
property must consist of an entry name that you reference in the Java code and a displayable
string. You can then localize the displayable message by editing the properties file.

The <FormValidations> element encloses definitions of individual form validations for the
resource, each one given as a <FormValidation> element, which is repeatable.

The value of the <FormValidation> element is the Java code to be added to the validate method in
the (Struts) form validation class for the resource. If you choose to define an error message as a
property, use the attributes entry and message to define the name of the property and the message,
respectively.

You can find an example form validation in the definition of the Switch resource in the
DocExample..

The <Field> Element
This section details how to define fields for your resources. Each field in your resource definition
translates into a property in the JavaBean and a column in the database table.

Each field has a type. Service Activator supports the field types shown in Table 2-2.

Table 2-2 Supported Field Types

Type Description Default
value

Database type

String Text string with a maximum
length of 200 characters

null VARCHAR2(200)

String(n) 0<n<=4000, defines max length
of string

null VARCHAR2(n)

int 32-bit integer number 0 NUMERIC(10)

Service Activator Inventory Subsystem
2. Resource Definitions

24

Type Description Default
value

Database type

long 64-bit integer number 0 NUMERIC(20)

float Floating point number 0.0 REAL

double Floating point number (double
precision)

0.0 FLOAT

boolean Boolean value: “true” or “false” “false” CHAR(1)

Date Displayed as a formatted string;
stored as seconds since January 1,
1970

null TIMESTAMP

Blob Binary large object null BLOB

Clob Character large object null CLOB

Values for fields of Blob type can be assigned by workflows, but they cannot be entered from or
shown on the inventory UI. These fields cannot have the mandatory attribute set to “true”, and
they will be hidden in Create and Edit operation forms, regardless of the hiddenCreate and
hiddenUpdate attributes. In the View operation form, the value is shown as ‘Binary data (XX
bytes)’.

Fields of Clob type will be truncated to 200 characters when shown in View operation forms.

The notation for field values in a resource definition follows Java. Surrounding quotes are omitted
when an element value is interpreted as a field value (such as in the <Default> and <Value>
elements).

All field declarations are enclosed within the <Fields>...</Fields> tags. A field declaration has the
following general form:

<Field>
 <Name>fieldname</Name>
 <Column>columnname</Column>
 <Label>showname</Label>
 <Type>String</Type>
 <Description>A meaningful description of the field</Description>
 <ListOfValues>
 <Value>valA</Value>
 <Value>valB</Value>
 <Value>valC</Value>
 </ListOfValues>
</Field>

The only mandatory tags are <Name> and <Type>.

<Field> mandatory
By default each field must have a value (mandatory=“true”, except for fields of type Blob). This is
enforced when an instance of the resource is created or updated by an operation from the inventory
UI, and also when it is written to the database as a table row (columns are declared as NOT NULL
in SQL statements to create tables). The latter is significant when resource instances are written to
the database from workflows or by SQL scripts to populate the database.

You can override both behaviours by setting the mandatory attribute “false”.

NOTE Fields of certain types, including String, do not have default values unless explicitly defined (see Table 2-2).
For these fields, if an initial value is not defined by the <Default> element or as a parameter of the Create
action specified in the tree definition (see “Inventory Actions” in chapter 4), you must set the mandatory
attribute “false”. For type Blob it is not possible in any way to define a default or initial value; hence for a field
of this type the default is mandatory=“false”.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 25

The syntax for allowing the value of a field to be omitted is:
<Field mandatory=”false”>

<Field> hiddenView
By default each field of a resource will be shown with its value in the View operation form on the
inventory UI. You can force a field to be hidden in the View form by setting its hiddenView
attribute “true”.

The syntax for declaring a field to be hidden in the View operation form is:
<Field hiddenView=”true”>

<Field> hiddenUpdate
By default each field of a resource will be shown with an editable value in the Update operation
form on the inventory UI. You can force a field to be hidden in the Update form by setting its
hiddenUpdate attribute “true”.

The syntax for declaring a field to be hidden in the Update operation form is:
<Field hiddenUpdate=”true”>

<Field> update
By default each field of a resource that is shown will be editable in the Update operation form on
the inventory UI. You can prevent editing of the value by setting the update attribute “false”.

The syntax for preventing editing of a field in the Update operation form is:
<Field update=”false”>

<Field> hiddenCreate
By default each field of a resource will be shown and allow a value to be entered in the Create
operation form on the inventory UI. You can force a field to be hidden in the Create form by
setting its hiddenCreate attribute “true”.

When data entry is prevented in this way the value for the field may be a default value for the field
or the type, or it may originate from a parameter for the Create action specified in the tree
definition.

The syntax for declaring a field to be hidden in the Create operation form is:
<Field hiddenCreate=”true”>

<Field> create
By default each field of a resource that is shown will allow a value to be entered or edited in the
Create operation form on the inventory UI. You can prevent editing of the value by setting its
create attribute “false”. The prepopulated field value that is shown is then greyed out. It may be a
default value for the field or the type, or it may originate from a parameter for the Create action
specified in the tree definition.

The syntax for preventing editing of a field in the Create operation form is:
<Field create=”false”>

<Field> sequence, <Field> sequenceStart, <Bean> <SequenceName>
You can specify by setting the sequence attribute ”true”, that the value for a field must come from
a database sequence. This feature is suited to generate unique primary keys for resources.

The type of the field must be int, long or String.

By default the sequence attribute is ”false”, and no sequence is created.

Service Activator Inventory Subsystem
2. Resource Definitions

26

By default, values will start from 1, incrementing by 1 for each resource instance. The starting
value can be controlled by the sequenceStart attribute.

The syntax for generating sequence numbers, starting from 100, for a field is:
<Field sequence=”true” sequenceStart=”100”>

NOTE A field whose value comes from a database sequence is hidden on the Create form, as the value has not
been drawn yet, and there is nothing to enter.

By default, the name of the database sequence is generated from the name of the bean and the
field. You can specify a value to use with the <SequenceName> child element of the <Bean>
element.

NOTE Only one field in a bean can be associated with a database sequence.

<Field> searchable
By default all fields can be used to build search conditions on the inventory UI, and all field values
are shown in search result lists. You can override this by setting the searchable attribute “false”,
the field will then be hidden in search operation forms.

<Field> maxCount
Setting the maxCount attribute “true” on a field declares the resource to which the field belongs to
be reservable, as if the maxCount attribute had been set on the <Bean> element (see the section
“<Bean> maxCount - Reservable Resource”, above). The value assigned to the field, when an
instance of the resource is created, will serve as the initial value of the “availability counter”
implemented with the automatically generated field named count__. In this way the number of
reservable units does not have to be specified statically in the resource definition, and it can vary
among instances of the resources.

The field must be of type int or long. The maxCount attribute cannot be set on more than one field,
and if it is set on the bean, it cannot be set on a field. The value must be specified as a boolean, the
default value is “false”.

<Field> dateFormat
By default fields of type Date are formatted according to the locale and must also be entered in this
format. You can override the format defined by the locale by setting the dateFormat attribute. The
legal values for this attribute are those of the Java type SimpleDateFormat, for example:

<Field dateFormat=”yyyy-MM-dd”>

<Field> integerFormat
By default, when values of type int or long are shown on the UI, they will be formatted according
to the locale setting. Typically, punctuation is used as a thousands separator. If you want to show
the raw integer format, you can disable this behaviour for a field:

<Field integerFormat=”false”>

<Field> password
By setting the password attribute “true” you declare that the value of the field shall be treated as a
password, i.e. it is shown on the UI as a sequence of asterisks. By default the attribute is “false”.

The password attribute should not be used for primary key fields or foreign key fields.

<Field> encrypt
By setting the encrypt attribute “true” on a field which also has password = “true”, you specify that
the field value shall be stored in the database in encrypted form. By default the attribute is “false”.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 27

NOTE There are several ways to decrypt the password when it has been retrieved from the database. It can be
done in a workflow or in a plug-in before the password is sent to a target.

<Field> store, <Field> <Loader>
By default each field of a resource will be stored in the database and its value retrieved when it
needs to be shown. You can define a field with a value that is calculated when it needs to be shown
in the UI, but without any corresponding column in the database table. This behaviour is
accomplished by setting the store attribute ”false” and providing Java code to calculate the value
using the <Loader> element.

If the field is a primary key, the store attribute will be ignored.

The Java code you provide in the <Loader> element will be inserted as the body for a method in
the bean, which will be used to define the value for the field. The method has a parameter con, a
database connection which makes it possible for you to perform database queries in the body code.
Disregarding the database connection, your code should look like this (assuming the type of your
field is int):

int val;
// your calculations here, setting a value for val
this.fieldname = val;

For further study: The class WebServer in the DocExample uses this feature. Look at the definition
of the <Loader> element used for the field AverageDelay and explore further by finding the
getValueAverageDelay method in the generated Java code.

<Field> <Name>
The field name must be unique within each resource. It must contain only alphanumeric characters
or underscores, and must start with a letter. It is used to name the corresponding property (with
getter and setter) in the Java bean as well as the database column, unless overwritten with the
<Column> element. If you do not override it with the <Label> element, it will also appear on the
UI.

NOTE The field name must not equal the name of the bean to which the field belongs, or of any bean in the
inheritance chain.

NOTE The field name cannot be a Java keyword or an HPSA reserved keyword. Unless overridden with <Column>,
it also cannot be an SQL reserved word. See “Resource Definition Validation” in “Using Inventory Builder” for
more detailed information about the validation.

<Field> <Column>

Each field in your resource has a corresponding column in a database table. By default the name of
the column is the same as the name of the field. You can override this default with the <Column>
element. Do so if the name you want for the field is an SQL reserved word. Column names must
contain only alphanumeric characters or underscores, and must start with a letter.

As an example, in the definition file for WebServer, there is a field with name “user”. As this is an
SQL reserved word, we define the column name “User_Name” as follows:

<Field>
 <Name>user</Name>
 <Column>User_Name</Column>
</Field>

Note： The column name must adhere to SQL naming restrictions.

Service Activator Inventory Subsystem
2. Resource Definitions

28

<Field> <Label>
Each field in your resource has a corresponding label in inventory UI. By default the value of the
label is the same as the name of the field. You can override this default by using the <Label>
element.

<Field>
 <Name>ipaddress</Name>
 <Column>ip_addr</Column>
 <Label>IP</Label>
</Field>

<Field> <Type>
Every field must have its type specified. Use the <Type> element to define the type of field you
are creating. See Table 2-2 for a list of supported types.

<Field> <Default>
Use the <Default> element to specify the default value for the field.

NOTE It is not possible to specify a value of type Blob. Clob values are like String values, unquoted strings. When
you specify the default value for a field of date type, use the dateFormat value that applies, for example:

<Default>2008-01-30</Default>

<Field> <Description>
Use the <Description> element to specify a short description that is presented on the UI forms to
describe the field. The description should add information to the name. If the name says it all, omit
the <Description>.

<Field> <ListOfValues>
The <ListOfValues> element controls the behaviour of the resource in operation forms on the
inventory UI. It has no impact on the generated Java bean code. With this element you specify the
valid values for the field, so that on the Create and Edit operation forms the user is presented with
a drop-down list to select from, and will not need to type a value for the field.

There are two ways to specify the valid values. The first way is to enumerate them, using a
<Value> element for each one. The second way uses a findBy method to retrieve candidate
instances of a specified bean.

The <Value> child element of <ListOfValues> specifies one valid value for the field. The value
displayed in the drop-down list is also the value assigned to the field if picked by the user, unless
the display value is overriden with a string specified using the show attribute on the <Value>
element. The selected attribute can be set “true” on at most one <Value>, causing that value to be
preselected in the drop-down list. Here is a simple example showing the form of the
<ListOfValues> element:

<Field>
 <Name>example</Name>
 <Type>String</Type>
 <ListOfValues>
 <Value>A</Value>
 <Value selected=”true”>B</Value>
 <Value>C</Value>
 </ListOfValues>
</Field>

 Service Activator Inventory Subsystem
 2. Resource Definitions

 29

Alternatively, you can use the <BeanName>, <Label> (optional), <Method> (optional) and
<Param> (optional) child elements of <ListOfValues>, in that order, to specify a query that will
retrieve the values to be shown in the drop-down list, as follows:

<BeanName> the complete Java class name of a bean (not necessarily a resource bean)

<Label> names a field on the foreign bean whose value will be shown in the drop-
down list

<Method> the method on the bean which is used to retrieve candidate instances; default
is findAll; it must be a method which returns an array of instances of the
specified bean

<Param> parameter for the method (findAll takes no parameters); here you use
constants and names of non-editable fields of the target bean (the one in
whose definition the <ListOfValues> occurs)

By default, the specification with <BeanName>, etc., applies to a foreign key field (see “The
<Key> Element and findBy Methods” below). In this case the specified bean must be the foreign
bean or a specialized (child) bean that inherits from it.

The default can be overridden by setting the attribute withoutForeignKey “true” on the
<ListOfValues> element. Then any bean can be used.

The value selected for the target field will be the primary key of the selected bean instance,
regardless of which field is shown as determined by <Label>. If, for example, the primary key is a
sequence number, then the <Label> allows you to present a more user-friendly name. The primary
key must consist of single field.

NOTE The value of the <Label> field of the the foreign bean will also be shown in the View form.

<Field> <ShowConditions>
With the <ShowConditions> element you can make the appearance of the field in UI forms
dependent on conditions involving other fields of the resource. There can be several conditions,
each one represented by one <ShowCondition> element; they will be combined using an operator
specified by the operator attribute, which can be ‘and’ (the default) - all conditions must be true -
or ‘or’ - at least one condition must be true.

Each condition refers to one field specified by <FieldName> and is either the “empty” condition
(if the empty attribute is “true”) or a pattern match condition (the default). The empty condition is
true if the field has no value (is null). The pattern match condition is true if the value of the field
matches the regular pattern specified by <Pattern>.

Show conditions are evaluated dynamically when field values change. For example, if field A is
shown on condition that field B is empty, then field A will appear when the contents of field B is
deleted.

The <Key> Element and findBy Methods
By defining keys for a resource you control important aspects of the Java bean and the database
table for the resource:

• the methods that can be used to find unique resource instances or lists of resource instances
matching supplied field values

• the primary key of the database table

• indexes on the database table to facilitate efficient searches

• uniqueness constraints on the database table

• modelling of references between resource instances enforcing referential integrity

Service Activator Inventory Subsystem
2. Resource Definitions

30

A key on a resource is one or more fields used in combination. You must define exactly one
primary key for each resource. It may consist of multiple fields, but in most real cases it is a single
field. The primary key must be unique: it is not possible to create a new resource instance with a
primary key value equal to that of an existing instance. Hence, when you search for instances with
a given primary key value, you will get zero or one match. The same is true for any other unique
key.

For every key you define on a resource, the generated Java bean will contain a findByKeyname
method to find all instances which match a value specified by a parameter - or several parameters
in the case of a multi-field key.

NOTE The Keyname used to name the findBy method is derived from the name of the key (see “<Key> <Name>”
below) as follows: if the first character is in lower case, it is replaced with a capital letter; capital letters in any
other position are changed to lower case.

If the key is unique, the findByKeyname method will either fail or return a bean holding the single
matching instance. If the key is not unique, the method may return multiple matching instances
and will therefore always return an array of beans (0, 1 or more). Every resource Java bean will
also contain a findAll method with no parameters, which will return all instances of the resource,
one for each row in the database table. The findAll method can be used whereever you can specify
a findBy method.

If you want a findBy method to join two (or more) tables, you can specify a key field which
belongs to a different resource than the key. For details, see “<Key> <KeyField>” below.

The QueryInventory and ReserveResource nodes which you can use in workflows to retrieve or
reserve resources make use of the findBy methods. The findBy methods are also used in the
inventory UI to retrieve the lists of branches which appear when an existing branch is expanded.

NOTE You can set up the QueryInventory node to return an array of beans, even if the key used by the findBy
method you specify is unique, so that the method returns a single bean or fails.

All key definitions in a bean are enclosed between the <Keys>...</Keys> tags. Each one is given
as a <Key> element. Each field of the key is defined by a <KeyField> child element.

Descriptions of attributes and elements of the <Key> element follow.

<Key> pk
Exactly one key in each bean must be declared as the primary key by setting its pk attribute “true”
(default is “false”). The primary key will be enforced as unique. The types of each field of a
primary key must be one of: String, Date, boolean, int, long.

NOTE If the resource you are defining inherits from another type, then you should not repeat the primary key
specification. A derived type automatically inherits the same primary key as the base type.

<Key> unique
If you set the unique attribute “true” (default is “false”), the key will be enforced as unique, and an
index will be generated for the key on the database table, regardless of the setting of the
makeIndex attribute.

<Key> makeIndex
By default, each key translates into an index on your database table. Indexes are automatically
used by the database when they apply to queries that are made, for example by findBy methods.
You can overrule this and prevent generation of the index by setting makeIndex “false”. Do this if
you want the resulting findBy method, but you know that an index on the key would be inefficient.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 31

<Key> foreignBean, <Key> foreignSolution
A foreign key is a key which can reference an instance of a specified resource (normally different
from the resource it is part of). The referenced resource is called the foreign bean. When a foreign
key has a value (if not mandatory, it could also be null), it must equal the value of the primary key
of an existing instance of the foreign bean (referential integrity).

The case where the primary key of the foreign bean comprises multiple fields is not ruled out by
the syntax, but it is not generally supported. Some simple cases may work. If you want to make
foreign bean references to a resource it is recommended to define a single-field primary key for it,
for example a sequence number, even when some combination of other fields is known to be
unique and might serve as the primary key.

You define the foreign key relationship by setting the foreignBean attribute equal to the name of
the foreign bean. For each field of the foreign bean’s primary key you must define a <KeyField>
child element to define the matching field within the key. In the <KeyField> element the
corresponding field in the foreign bean is specified by the foreignField arribute.

For example, assume that you want to set up a foreign key relationship between a new bean and
the WebServer bean from the DocExample as foreign bean. The primary key of the WebServer has
only one field, name. It appears as the foreignField of the foreign key specification. You have
already defined a field of your new bean named webserver to be used for the foreign key and then
declare the foreign key as follows:

<Key foreignBean="WebServer">
 <KeyField foreignField="name">webserver</KeyField>
</Key>

If the foreign bean is in a different solution then that solution must be specified with the
foreignSolution attribute.

<Key> restrict
By default, entity relationships may cause cascade deletion (restrict=“false”). If bean A has a
foreign key which references bean B, then when an instance of B is deleted, those instances of A
which are related to that instance (have a primary key matching its foreign key) will also be
deleted, and this behavior may cascade to other beans which have foreign key relationship to bean
A, etc.

If cascade deletion is unwanted, you can set restrict “true”. Then the attempt to delete an instance
which would cause cascade deletion, such as the B instance described above, will be prevented. In
other words, the system checks that any references to an instance have been removed before that
instance can be deleted.

<Key> nullOnDelete
The nullOnDelete attribute provides an alternative to the restrict attribute. When restrict=”false”,
but nullOnDelete=”true”, a bean instance A which references B that is deleted will not be
(cascade) deleted, but its foreign key field(s) will be set to null. Default is “false”.

<Key> advancedSearch
This construct is related to advanced searches in the inventory UI, described in “HP Service
Activator, User’s and Administrator’s Guide”. Advanced searches are based on nested child
branches in the tree structure. For each child branch the child instances are determined by a findBy
method. Typically this method involves a field on the child which is a foreign key identifying the
parent. It does not have to be the only key field of the findBy method; there can be additional
fields to narrow the results. Advanced search relies on a special method beased on the <Key>
behind the findBy method used in tree, in addition to the findBy method itself. Whenever a <Key>
includes a key field which on its own is a foreign key, such an additional method is automatically
included in the generated bean code. In particular this is true for the <Key> with foreignBean.

Service Activator Inventory Subsystem
2. Resource Definitions

32

Now, if you want to use a <Key> to select the instances of a child branch, but it does not include a
foreign key field, and you want to be able to use the child branch in advanced searches, then you
must set advancedSearch “true” for that <Key>, and the necessary method will then be included in
the bean.

<Key> joinedBy, <Key> <WhereMap>
With this attribute and element you can control how multiple fields of a key are combined in the
generated findBy method. There are three possible values for the joinedBy attribute: “AND”,
“OR” and “MAP”; default is “AND”, meaning the findBy method will retrieve resource instances
which match all key field arguments. “OR” means at least one key field must match.

The value “MAP” allows you to control in more detail with the value of the <WhereMap> element
how to construct the SQL select statement to be used; see the section “Generated SQL”.

<Key> <Name>
The important use of the name of a key is in the naming of the generated findBy method. By
default the key inherits its name from the field(s) of the key. If there is more than one key field, the
names are concatenated. You can override the default naming by explicitly specifying a name with
the <Name> element. Example:

<Key>
 <Name>addrAndPort</Name>
 <KeyField>addr</KeyField>
 <KeyField>port</KeyField>
</Key>

The findBy method will then be findByAddrandport. Without the <Name> element, the name of
this key would have been addrport (the findBy method would have been findByAddrport).

<Key> <KeyField>
The <KeyField> element can be repeated; there must be at least one (in each key). Each
occurrence of the <KeyField> element specifies a key field by stating the name of the field, which
must be defined by a <Field> element. The order of the key fields determines how the (default)
name of the key is constructed.

NOTE In the definition of an inheriting (subclass) resource it is possible to use a field of the superclass as key field,
if such a key was not already defined on the superclass. The subclass will then have a findBy method which
the superclass (and sibling classes) does not have. You can find an example of this in the UnixWebServer
resource definition.

When resources are related by foreign keys, you may want to be able to find instances of one
resource, the target resource, based on the value of a field of another related resource (in database
terms you want to join the tables). You can then use the externalBean attribute to specify that a key
field does not belong to the same resource (the target) as the key, but to a different, external
resource, identified by the value of the attribute. The foreign key, which makes the joining
possible, is not mentioned in the definition of the key field. The relationship can go either way: the
target resource can have a foreign key that references the external resource or vice versa. It cannot
go both ways; that is an impossible construction. But it is possible that there can be more than one
foreign key in the same direction, you must then resolve the ambiguity by means of the joinField
or externalJoinField attribute.

The <KeyField> element has the following attributes:

foreignField for a foreign key, defines the foreign field (see “<Key> foreignBean” above)

externalBean optional; specifies a resource different from the target resource and requests
that the findBy method shall join the two resources

alias optional; if a key contains two or more external fields belonging to (different
instances of) the same external bean, the alias attribute must define different

 Service Activator Inventory Subsystem
 2. Resource Definitions

 33

names for the occurrences of the external resource to be used in the generated
SQL statement

joinField optional; if the target resource has multiple foreign keys referencing the
external resource, the value of joinField must identify the one to use

externalJoinField optional; if the external resource has multiple foreign keys referencing the
target resource, the value of externalJoinField must identify the one to use

ignoreCase optional; when “true”, generated findBy method will not distinguish letters in
upper and lower case when parameters are matched to values of key fields

comparator, for fine control (along with <WhereMap>) of the where clause of the SQL
compareTo select statement that will be generated by the findBy method. See the section

“Generated SQL” for details.

As an example of the use of external keys, consider the resources depicted in Figure 2-1.

Figure 2-1 Find by External Key

ElementModel

PK ModelId

 Name
 Backup
FK1 ManufacturerId

Manufacturer

PK ManufacturerId

 Name

NetworkElement

PK NetworkElementId

 Name
 Description
 Backup
FK2 NetworkId
 Xpos
 Ypos
FK1 ModelId

Network

PK NetworkId

 Name
 Type
 Description

Connection

PK ConnectionId

 Name
FK1 NE1
FK2 NE2

If you want a findBy method (in the NetworkElement bean) to find those NetworkElements which
are produced by a specific manufacturer - with known ManufacturerId, you will need to use
ElementModel as an externalBean, because the ManufacturerId is not found as a field on the
NetworkElement itself. You can define the <Key> to cause this method to be generated as part of
the definition of NetworkElement as follows:

<Key>
 <KeyField externalBean=”ElementModel”>
 ManufacturerId
 </KeyField>
<Key>

Remember this external key was enabled by the existence of the foreign key from
NetworkElement to ElementModel:

<Key foreignBean=”ElementModel”>
 <KeyField foreignField=”ModelId”>
 ModelId
 </KeyField>
<Key>

The Inventory Builder will combine the information defined by these <Key> elements in the
findBy method generated for the key ManufacturerId.

Service Activator Inventory Subsystem
2. Resource Definitions

34

By using a key with two externalBean fields you could request a method to find all
NetworkElements of a named model in a named network:

<Key>
 <Name>ModelAndNetwork</Name>
 <KeyField externalBean=”ElementModel”>
 Name
 </KeyField>
 <KeyField externalBean=”Network”>
 Name
 </KeyField>
<Key>

A more complex example is to find all Connections between two named NetworkElements. Here
you need the alias and joinField attributes to distinguish between the two occurrences. This <Key>
definition will belong to the Connection resource:

<Key>
 <Name>FirstToSecond</Name>
 <KeyField externalBean=”NetworkElement alias=”first” joinField=”NE1”>
 Name
 </KeyField>
 <KeyField externalBean=”NetworkElement alias=”second” joinField=”NE2”>
 Name
 </KeyField>
<Key>

<Key> <JoinBridge>, <Bean> <JoinBridges>
The <JoinBridge> element is used with external key fields which are described in the preceding
section “<Key> <KeyField>”.

Join bridges are used in cases where you need additional resources to bridge a gap between the
target resource, the one you want to create a findBy method for, and the external resource, the one
you can provide a parameter value for. In the first example above, to find the NetworkElements
produced by a certain manufacturer, suppose you want to provide the name of the manufacturer as
parameter instead of the Id, then your external resource will need to be the Manufacturer, not the
ElementModel, because the ElementModel does not hold the manufacturer’s name. However,
there is no direct relationship between the NetworkElement and Manufacturer resources. You can
solve that with a <JoinBridge> element to specify the intermediate resource that you need to jump
from external to target. To cover also the case where your bridge will require more than one jump,
the jump is specified with a repeatable child element of <JoinBridge>, called <Jump>. In the
example, the jump resource needed is ElementModel, because it has the necessary relationships to
both the external and the target resource. The <Key> element (belonging to the target, i.e.
NetworkElement) will look like this:

<Key>
 <KeyField externalBean=”Manufacturer”>
 Name
 </KeyField>
 <JoinBridge origin=”NetworkElement” destination=”Manufacturer”>
 <Jump>ElementModel</Jump>
 </JoinBridge>
<Key>

Even with a bridge, the relationships between neighboring resources in the chain can go both
ways. The findBy method will be generated so it takes the direction of the relationship into
account.

The <JoinBridge> element has two mandatory attributes origin and destination. They identify (by
name) the target and external beans that are being joined and establish forward (origin to
destination) and reverse direction. Identification of the external bean is important if there is more
than one external key field in a <Key> element.

The findBy methods generated by keys with <JoinBridge> elements may produce duplicate
results. To avoid that, set uniqueResults=“true” on the <Key> element.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 35

The value of the <Jump> element identifies the jump resource by its name. To resolve the
ambiguity if there is more than one foreign key from a jump resource to a neighbour (other jump,
external or target), the <Jump> element has two optional attributes to point out which one to use:
jumpField for the forward direction, inverseJumpField for the reverse direction. Similarly
jumpField and inverseJumpField can be used on the <JoinBridge> element to resolve ambiguity
on the origin and destination beams, respectively.

NOTE Wherever there can be a reference to a bean outside of the one being defined, that bean may belong to a
different solution, in which case the solution must also be identified. For the externalBean attribute in the
KeyField element this is done with the externalSolution attribute, likewise for origin and destination in
JoinBridge with originSolution and destinationSolution, and for the Jump element with the solution attribute.

Join bridges can defined - with origin, destination and jumps - globally within the <JoinBridges>
element, or locally within the <Key> element. A global definition introduces also a name for the
join bridge. Global join bridges can be applied in several <Key> elements; the <JoinBridge>
element which appears at the point of application (in the <Key>) then contains only the name of
the join bridge.

The <Operations> Element
The inventory UI uses Java Server Pages and other files that are deployed in the Struts framework
to show resource-specific operations form to create, view, edit, delete and search for resources.
Some of these files (for Create, Edit and Delete) along with methods they call in the Java bean
(store, update and remove) are only generated when requested in the resource definition. Normally
you will want to generate them, but if your inventory is populated from an external source, you
may not want to enable these operations; then you can save generation of the files.

NOTE To enable operations on the UI you must also add them to branches of the presentation tree, as described in
chapter 4.

You use the child elements of the <Operations> element to specify which UI operations and
associated bean methods you want to be able to use.

<Operations> <Store>
This element has no value. Its presence specifies that the UI files needed for the Create operation
and the associated store() method in the Java bean shall be generated.

<Operations> <Update>
This element has no value. Its presence specifies that the UI files needed for the Edit operation and
the associated update() method in the Java bean shall be generated.

<Operations> <Remove>
This element has no value. Its presence specifies that the UI files needed for the Delete operation
and the associated delete() method in the Java bean shall be generated.

<Operations> <CreatePartial>
This element has no value. It can only be used in a subclass bean (inheriting resource definitions).
Its presence specifies that the UI files needed for the operation to extend an instance of the
superclass (parent bean) to become an instance of the subclass (child bean) and the associated
createPartial() method in the Java bean shall be generated.

<Operations> <DeletePartial>
This element has no value. It can only be used in a subclass bean (inheriting resource definitions).
Its presence specifies that the UI files needed for the operation to reduce an instance of the

Service Activator Inventory Subsystem
2. Resource Definitions

36

subclass (child bean) to an instance of the superclass (parent bean) and the associated
deletePartial() method in the Java bean shall be generated.

<Operations> <FindBy> and <FindBy> <OrderField> Element and Attributes
The optional <FindBy> element belongs functionally to the <Key> element, see “The <Key>
Element and findBy Methods” above. It is used to specify how the results returned by the findBy
method that is generated for a key shall be ordered and is only relevant for non-unique keys. The
result order controls how instances of a child branch are ordered when their parent branch is
expanded in the instance view of the inventory UI. It is also significant when workflows use the
methods to make queries.

The <FindBy> element must be repeated for each findBy method for which you want to control
the order of results returned. You specify the method by the key attribute:

key specifies the findBy method to control by the name of the key from which it
was generated; omit the key attribute to specify the findAll method

The ordering of results is specified by the <OrderField> child element:

<OrderField> The value of the element is the name of a field whose value is used to sort the
results; details of the sorting process can be controlled by attributes of this
element:

desc if “true”, sorting will be done in descending order, default value is “false”

For example, to specify that the findByPort method (for the Web server resource) shall return
results ordered by their IP addresses, use:

<FindBy key="port">
 <OrderField>ipaddr</OrderField>
</FindBy>

Reservable Resources
Often in activation solutions it will be necessary to allocate and reserve specific resources. In some
integrated solutions, this function may be performed by a different subsystem. In TMF eTOM
(Release 8, see GB921, eTOM Business Process Framework, Addendum D) allocation of resources
is identified as part of the level 3 process 1.1.3.2.1, Allocate & Install Resource, whereas
activation takes place in the level 3 process 1.1.3.2.2, Configure & Activate Resource, both of
these belonging to the level 2 process 1.1.3.2, Resource Provisioning.

Typically a resource is reserved for a unique end customer (service subscriber) of the service
provider, for example a port on an access device where the subscriber’s access connection is
attached, or an immaterial resource such as an IP address. Other types of resources may offer a
capacity that can be shared among multiple users, up to a maximum number. The selection and
identification of resources is a significant step in the overall provisioning process, as discussed in
the eTOM standard reference above.

To facilitate the reservation of resources in Service Activator inventory, a reservable resource is
modelled with an availability counter in an autogenerated int field named count__with label
‘Unused’ on the resource bean, where a value of 0 indicates that the resource is fully booked, and a
value greater than 0 is the number of units that are available for reservation. A new booking is
made by executing a reserveResource method, which will decrement the availability counter.
Conversely a resource is released from a reservation by a call on a releaseResource method which
will increment the availability counter.

The initial (and maximum) value of the count__ attribute can be defined in two ways: as a static
value defined on the bean, using the maxCount attribute (see “<Bean> maxCount - Reservable
Resource”), or as a value supplied when an instance of the bean is created. In the latter case you
must define a field to hold the value and set the maxCount attribute on this field (to “true”, not the
maximum number, see “<Field> maxCount”).

 Service Activator Inventory Subsystem
 2. Resource Definitions

 37

Normally reservation and releasing of resources take place in workflows. Workflow nodes
dedicated to these functions - ReserveResource and ReleaseResource - are available in the
workflow node library (see HP Service Activator, Workflows and the Workflow Manager). These
workflow nodes use methods that will automatically be generated as part of the Java bean for a
reservable resource (see below).

It is also possible to reserve and release resources by performing operations on selected resources
from the inventory UI. These operations will also use the methods in the Java bean. See “Inventory
Actions” in chapter 4.

Methods to Reserve Resources
The Java bean for a reservable resource will include, for each findByKeyname method, a matching
method reserveResourceByKeyname. For example, a method findByPrimaryKey() has a matching
method reserveResourceByPrimaryKey(). The reserveResource() method matches the findAll()
method, i.e. the candidates are all instances of the resource class.

If the key is unique, the method will attempt to reserve the unique resource identified by the
parameter(s). If the key is not unique, then the method will attempt to select a resource instance
that matches the key parameter(s) and is not already reserved.

In the implementation, the reserveResourceKeyname() method performs the equivalent
findByKeyname() query with the additional qualification that the availability counter must be
greater than 0. It then chooses the first resource returned from the query, reserves that resource,
and returns it to the caller.

Inheriting Reservability
The methods to reserve resources can also be called on beans of an inheriting subclass, in other
words the property of being reservable is inherited.

When defining inheriting resources that must be reservable, set the maxCount attribute on either
the superclass or the subclass, but not on both. Where to set it should be decided based on what is
being modelled. If all instances of a superclass will be reservable for a common reason, set it on
the superclass. If reservability is thought of as a property of the subclass(es), and it might not apply
to all possible subclasses of a superclass, set it on the subclass(es).

Generated SQL
All the generated SQL statements that are used by generated Java beans are separated out from the
Java code and placed in subdirectories of the jsql directory under the inventory directory.

findBy Where Clauses
For each <Key> element in a resource definition a findBy method is generated. This method will
use an SQL select statement which will include a where clause to express the condition determined
from the <KeyField> elements. There will be an expression for each key field, combined by
operators. The expression will compare values in a given column of the database table holding the
candidate beans instances to an argument (or several) of the findBy method. The first operand in
each expression is the name of the column, the second is a string including ‘?’ (question marks) to
represent the arguments. By default the operator is ‘=’ (equal sign) and the second operator a
single ‘?’. For example, the name key in bean Rack in in the Doc_Example:

<Key pk="true">
 <KeyField>name</KeyField>
</Key>

results in the where clause:
name = ?

With the attributes comparator and compareTo you can specify the operator and the second
operand to overrule the defaults. You will rarely need to define compareTo, as there is a suitable
default for each possible value of comparator, as shown in the following list:

Service Activator Inventory Subsystem
2. Resource Definitions

38

Comparator default value of CompareTo

= ?

LIKE ‘%’||?||‘%’

BETWEEN ? AND ?

IN (?, ?, ?, , ?)

When the key has multiple key fields the where clause will contain an expression (as described
above) for each one, combined with AND, OR and possibly parentheses. By default, all the
expressions will be combined with AND. You can use the joinedBy attribute on the <Key> to
overrule this default. You can set it to OR, meaning all expressions will be combined with OR, or
you can the value MAP, which lets you define a map for the where clause with the <WhereMap>
element. The map combines references to key fields with AND, OR and parentheses, for example:

(${kf1} AND ${kf2}) OR ${kf3}

Here ${kf} represents the expression for the key field whose name is kf.

The references to key fields take different forms depending on how the key field is defined.

Key field named kf, defined as: Key field reference takes this
form:

simple local key field ${kf}

external key field, external bean named eb ${eb.kf}

external key field, external bean named eb, with
joinField named jf

${eb.jf.kf}

When an external bean is used, the code to join the tables by the foregn key (or join bridge) that
ties them together is automatically inserted in the expression generated for each key field
reference.

The map may also contain parts of the where clause which do not refer to key fields, written in
literal form; only the recognized key field references will be expanded to expressions.

It is even possible for a <KeyField> with externalBean to leave empty the value of the field, in the
terms from above kf is the empty string. Then you cannot use the first form, but the second and
third forms are still possible, now they will be only ${eb} and ${eb.jf}(no dot before the
empty kf) The code generated for these forms of the key field reference will only be the join code,
any comparison expression must be written explicitly.

Table Name Aliases
All generated sql statements use aliases for the table names. For example for resource definition
Rack in the Doc_Example the alias will be DocEx#Rack. The alias is introduced in the SQL
statement from clause. When the alias is taken into account, the where clause shown above for the
name of Rack will be:

DocEx#Rack.name = ?

You can overrule the generated alias by including <DBAlias>. This is mandatory if the bean name
is longer than 18 characters. The maximum allowed length of the alias is 27 characters.

Unique and distinct findBy results
Two attributes are available to avoid duplicates in the results from findBy methods: uniqueResults
and distinct. The difference is in the SQL keyword that is inserted to achieve the effect, the first
one uses UNIQUE, the seconds uses DISTINCT.

 Service Activator Inventory Subsystem
 2. Resource Definitions

 39

Generated Java Bean Classes
For every resource definition (we name it bean), two Java class source files will be generated:

bean_.java this file contains the bulk of the generated code in a superclass named bean_

bean.java this a short file defining the class bean which inherits from class bean_; there is
only a small amount of code in this file that depends on the contents of the
resource definition

The two file approach is used to allow you to extend the generated code with explicitly Java code,
typically findBy methods in addition to those generated from <Key> elements of the resource
definition. If you do that, place your own code in the bean.java file. Then, if you happen to
modify the resource definition, the task of merging your hand written code with the generated code
will be quite simple. All the complex generated code goes in file bean_.java, which you should
not need to modify.

Service Activator Inventory Subsystem
2. Resource Definitions

40

 Service Activator Inventory Subsystem
 3. Inventory Builder

 41

3 Inventory Builder
This chapter describes how to use the Inventory Builder tool to process resource definition files to
generate the Java files, SQL files and UI files and to deploy them.

Inventory Builder is invoked from a command line. It has no UI for control.

For each resource definition, as shown in Figure 3-1, Inventory Builder typically generates:

• One Java bean code file.

• SQL data definition statements to create and drop the table, sequences, and indexes needed to
implement the resource in the database.

• UI files: Structs form action and validation classes with associated property files, JSPs for
presenting forms in a web browser, and Struts configuration file to tie it all together.

Figure 3-1 Inventory Builder

UI files

Inventory Builder

Resource
Definitions

SQL Schema
JavaBean

JSPs Struts Java
Classes

Struts config
file Property files

You use Inventory Builder in two steps:

• In step 1 you generate the artifacts (files) described above; this typically takes place in
directories outside of the hierarchy used by a running system.

• In step 2 you compile the Java code and deploy the final artifacts as parts of an operational
Service Activator system. The Java classes are packed in a Java archive file (.jar file) and
copied along with UI files to the proper locations for use by the JEE engine (including
workflow manager). The SQL data definition scripts are executed to create the database tables
to store resources.

You must run the Inventory Builder in each step with different arguments.

Service Activator Inventory Subsystem
3. Inventory Builder

42

For step 1 the command line syntax is:
InventoryBuilder <generation option>* <sql option>* <other option>*
<source file>+

Typically, without any options, to process all resource definition files in the inventory directory:
C:\....\inventory> InventoryBuilder *.xml

For step 2 the command line syntax is:
InventoryBuilder <deployment option>+ <db option>* <other option>*

Typically, with deployment options to compile all Java files and to deploy all compiled beans and
JSPs:

C:\....\inventory> InventoryBuilder -compile -deployBEAN -deployJSP

This is typical, but not complete; the example is missing the –deploySQL option to create the
database tables, but it is often convenient to do that separately.

The presence of at least one <deployment option> determines that the Inventory Builder is running
in deployment mode (step 2).

NOTE Options are not case-sensitive. Values containing space(s) must be surrounded by double-quotes (”).

For both steps, the current directory of the command line processor, shown as ‘inventory’ in the
examples above, plays an important roles. By default, all the resulting files from step 1 processing
are written to subdirectories of the current directory, and in step 2 these files are read from the
same directories. In Figure 3-2 you can see the hierarchy of directories created in step 1 under the
inventory directory.

Figure 3-2 Inventory Builder Directory Structure

Files generated by the Inventory Builder are placed as follows:

classes resource bean Java files, one for each resource, in the subdirectory
determined by the complete Java class name including package

jsp JSPs for operation forms; if a solution is specified in the resource definitions,
the JSPs are placed in a sub-directory named like the solution; there are
several JSPs for each resource, for different operations

 Service Activator Inventory Subsystem
 3. Inventory Builder

 43

sql SQL scripts with data definitions to create and delete tables, etc; statements
for all resource definitions processed together are grouped in two files:
create.sql<Solution> and delete<Solution>.sql, to create and delete,
respectively, the tables, indexes and sequences for the resources

struts_classes Java classes for operation forms and form validation, several for each
resource, in subdirectories determined by the complete Java class name
including package

struts_config Struts configuration file. If a solution is specified, a Struts module is
generated and its configuration file is placed in a subdirectory named like the
solution under the modules directory. If not, the configuration file is placed
directly in the struts_config directory.

In step 2 all the Java class files will be packed in a Java archive (.jar) file and placed in the lib
directory (not shown in Figure 3-2). It is the .jar file which is actually deployed to the JEE engine.

Details for Step 1
Command line syntax for step 1:

InventoryBuilder <generation option>* <sql option>* <other option>*
<source file>+

Resulting artifacts (files) are generated for resource definition files which are specified as <source
file> on the command line. You can process a single file or many files together. However, all
artifacts that have been generated in the results directories are deleted for each new run.

Resource definition files can be located anywhere, referenced by path names, possibly in multiple
directories. Wildcarding can be used in the file name, as shown in the (typical) example above. If
resource definition files to be processed contain references to other resources (transitively), which
are not listed as files to be processed, then the definitions for those resources must be located in
one or more directories declared with the -xmlpath option.

Table 3-1 Generation Options

Option Description

-noJSP omit generation of JSPs (and other files to be deployed in Struts)

-noSQL omit generation of SQL data definitions scripts

-noBEAN omit generation of resource bean Java source code files

-user_classes_path absolute path of file folder containing user-written Java bean source code
for the resources in question (see the section “Generated Java Bean
Classes” in chapter 2), i.e. the parent folder of the com root folder. These
Java files will be copied instead of generating from the resource
definitions.

Service Activator Inventory Subsystem
3. Inventory Builder

44

Table 3-2 SQL Options

Option Description

-hpsa_data_tablespace <tablespace> generated data definitions will place data tables
(except history data) in the specified tablespace

-hpsa_index_tablespace <tablespace> generated data definitions will place indexes for data
tables in the specified tablespace

-hist_data_tablespace <tablespace> generated data definitions will place history data
tables in the specified tablespace

-hist_index_tablespace <tablespace> generated data definitions will place indexes for
history data tables in the specified tablespace

Table 3-3 Other Options (for step 1)

Option Description

-app <directory> overrides the current directory of the command processor as the master
directory for generated files

-xmlpath specifies directory(ies) other than current directory where Inventory
Builder will look for referenced resource definition files. Multiple
directories can be separated with “:” or “;”

-i <imports> specifies name of java class(es) for which import statement(s) will be
included in each generated Java Bean class. If there is more than one class,
they can be separated with “:” or “;”

-scf <directory> specifies struts config file in the specified directory will be merged with
the generated struts config file.
Note: The names of the files to be merged must be identical; the file name
may include the solution name.

-debug adds debug information to generated Java bean

-verbose causes Inventory Builder to output verbose progress information including
stack trace if an errors occurs

-help outputs list of valid options

-version outputs the version of the product

Details for Step 2
Command line syntax for step 2:

InventoryBuilder <deployment option>+ <db option>* <other option>*

There are six different deployment actions, each one needs to be specified with one of the options
listed in Table 3-4 Several or all actions can be specified with a single command; compilation will
be done before classes are deployed, database drops will be done before creates.

Java classes and UI files (forms implemented with Struts) are deployed by copying them to the
JBoss JEE application server runtime locations under $JBOSS_ACTIVATOR.

As an alternative to the SQL options you can extract the data definition SQL commands from the
generated files and execute them with a different tool such as sqlplus.

 Service Activator Inventory Subsystem
 3. Inventory Builder

 45

Table 3-4 Deployment Options

Option Description

-compile compile all generated Java classes under classes and struts-classes

-beanjar name the .jar file containing compiled Java classes; the recommended name
is inventory_solution.jar, where solution is the name of the solution

-deployJSP copy UI files: JSPs, Struts classes and configuration files, to run-time
locations

-deployBEAN copy .jar archive with compiled beans to run-time location

-deploySQL execute the generated file create.sql to create tables, indexes and sequences
in database; requires DB options to connect to database

-undeploySQL execute the generated file delete.sql to drop tables, indexes and sequences
from database; requires DB options to connect to database

Table 3-5 DB Options

Option Description

-dbHost <DBHOST> name of the database host

-dbName <DBINSTANCE> name of database instance

-dbPort <DBPORT> port where database is accessed

-dbUser <DBUSER> name of database user

-dbPassword <DBPASSWORD> password for database user

DB options are used only with SQL deployment options to specify and provide credentials to
access the database instance for the inventory data.

The first three db options, if omitted, get default values from data source for the workflow
manager (mwfmDB) in the JBoss configuration file $JBOSS_ACTIVATOR/standalone.xml.
This file is created when Service Activator is installed with the values specified at that time.

NOTE Regardless of the underlying database product, Oracle or Postgres Plus Advanced Server (PPAS) from
EnterpriseDB, the database instance and the database user in combination specify the database schema
that is used to store the inventory data.

The username and password, if omitted, can get values from the file
$ACTIVATOR_ETC/config/dbAccess.cfg. The syntax is:

username=username
password=password

NOTE The dbAccess.cfg file is intended as a convenience for a development environment; it should not be present
on a production system.

Service Activator Inventory Subsystem
3. Inventory Builder

46

Table 3-6 Other Options (for Step 2)

Option Description

-filebyfile specifies Java files are compiled one by one, not grouped by directory;
slow, but easier to track

-app <directory> specifies a directory to override current directory as master directory for
generated artifacts

-i <imports> specifies Java class/jar files required at compile time; only needed if you
have added import statements to generated code (by editing, or with
features in resource definition)

-verbose causes Inventory Builder to output verbose progress information including
stack trace if an error occurs

-help outputs list of valid options

-version outputs the version of the product

 Service Activator Inventory Subsystem
 4. Inventory Tree

 47

4 Inventory Tree Definitions
Presentation of inventory data and associated operations is organized by means of explorer-style
trees. You can and you must customize one or more trees; there is no default inventory data model,
and there is no auto-generated presentation. You must think about and design how to organize the
resources you have defined based on their entity relationships. This chapter is about the definition
of an inventory presentation tree. Before you read it, you must have an idea about the actual user
interface, how it works when a tree definition has been prepared and deployed. That topic is
covered, based on the same DocExample that is used for this manual, in the chapter “Inventory
User Interface” in HP Service Activator, User’s and Administrator’s Guide. It is assumed here
that you have studied it.

A tree definition first defines some general aspects of the tree: its name, the solution it belongs to,
declarations of operator privileges associated with branches and operations, and then the bulk of it
will be branch definitions. For each branch there are a number of items to define: the associated
resource, icon and label to display on the branch line, privilege needed to see the branch, method
to determine the instances of the branch, given its specific ancestors in the instance view (for
example, show the switches which belong to a particular rack), operations associated with the
branch. Operations typically make up the bulky part of branch definitions.

You can define several inventory trees, each one in a separate file.

The XML syntax for a resource definition is specified in file inventoryTree.dtd that is found in
$ACTIVATOR_ETC/config. As you can see in the DocExample files, resource definition files
must begin with a header including a <!DOCTYPE> element to reference inventoryTree.dtd. The
syntax is also easily understood from Table 4-1 below.

Inventory Tree Designer
The Inventory Tree Designer is a tool with a graphical user interface provided to help you create
and edit tree definition files. Like other HP Service Activator tools it can be launched (on
Windows) from the start -> All Programs -> HP Service Activator menu or from a
desktop icon.

As you can see in the screenshot in Figure 4-1, the Inventory Tree Designer window has a Beans
frame to the left and a Tree frame to the right. The beans frame provides reference (view and copy)
to resource definitions that are relevant for the tree being defined, typically those defined for the
solution the tree belongs to. The tree frame is the working area where a tree definition is created
and modified. It has two subframes, the upper frame showing the tree structure, the lower frame
showing details of the root or branch selected in the top frame.

The directory (multiple directories are also possible) from which resource definitions are retrieved
can be configured persistently with the Set beans directory... command in the Settings
menu, or a directory can be opened for a single session with the Import beans... command in
the File menu.

The File menu has the usual commands for opening tree definitions from source files or as new,
closing them and saving to files.

The commands in the Deployment menu are used to manage deployment of inventory tree
definitions. You can deploy the currently open tree, or manage deployed trees. The latter function

Service Activator Inventory Subsystem
4. Inventory Tree

48

allows you to list all deployed tree definitions and to select one of them to extract (download) to a
file or to delete (undeploy).

The Deployment menu also has a function to assign a sequence number to a solution. This
assignment which is also stored in the static repository defines the ordering of the tree tabs in the
inventory user interface window when trees for multiple solutions are open.

The inventory tree deployment functions are described in more detail in chapter 5.

Figure 4-1 Inventory Tree Designer

The root of the tree shown in the upper part of the tree definition frame is always InventoryTree,
i.e. the outermost element of the XML document. When it is selected, the lower part will show the
non-branch child elements of the <InventoryTree> element; these elements define general
properties of the target tree. The first branch (like Catalog in Figure 4-1), specifies the root branch
of the target tree.

You can edit the branch structure of the target tree in the upper frame and details of each branch in
the lower frame, when the branch is selected in the upper frame. Likewise general properties of the
tree can also be edited in the lower frame, when InventoryTree is selected in the upper frame.

Menus that allow you to add new empty branches, and to copy or delete existing branches appear
when you right click on a branch in the upper frame. You can also move a branch up or down
among its siblings.

In the lower frame each tagged element or attribute of an element appears on a separate line, with
element encloser and element-attribute relationships shown as indentation. Within each element is
shown first its attributes, whose names begin with lower case letters, then its child elements,
whose names begin with capital letters. Elements can be expanded or closed by clicking the +/-
icon. The values of attributes and elements that appear in the right hand column are editable.

The tree designer is aware of the resource definitions in the beans frame. This is helpful when you
add a new branch to a tree: the designer will let you choose the bean class to be associated with the
branch from a drop-down list. Similarly when you edit a <Find-By> element in the context of a

 Service Activator Inventory Subsystem
 4. Inventory Tree

 49

resource, you can choose from the methods defined for that resource, and the <Key> child
elements will be prepopulated.

NOTE For a non-leaf element (which does not itself have a value) the value that appears and can be edited to the
right of the element name is actually the value of its first child leaf element. Most often, but not always, this is
a <Name> element. The tag of the leaf element is not shown.

In many cases a menu will appear when you click on an element. If the element is optional, you
can delete the occurrence. If it has optional child elements for which additional occurrences can be
added, you can do that. You can also move an element up or down among its similar siblings.

Localization
A tree definition includes several strings which will be displayed to the user. In general these
strings can be localized through resource bundle files. By means of the attribute bundle which
applies to many elements you can specify the name of a file where the localized value of such a
string element will be defined. The file name is interpreted relative to the classpath. It is
recommeded to put your resource bundle file(s) under
$JBOSS_ACTIVATOR/WEB-INF/classes/resources/<Solution>. If you do this, the
specified file name must start with resources.

The value of the string element is then not taken as the final value to be displayed, but only as the
key to access the actual value within the resource bundle.

The bundle attribute can be used on several elements. It can be specified at an outer level of the
tree, e.g. on the <InventoryTree> element, which means the whole tree definition, and will then
apply to all inner elements where it is relevant.

XML Vocabulary Quick Reference
Table 4-1 describes the XML vocabulary for presentation tree definitions. For each element that
can occur in a resource definition, starting with the root tag <InventoryTree>, all its attributes and
tagged child elements are listed and briefly explained in one row each, attributes before tagged
child elements, tags enclosed in angle brackets <..>. You can print Table 4-1 as a handy reference
when you work with resource definitions. For more thorough descriptions, refer to the following
sections.

In a resource definition you will define several names and strings that will be shown on the UI. All
of these names are candidates for localization. There are just a couple of names, of the inventory
tree and the solution, for which you cannot use special characters and non-ASCII characters.

Table 4-1 Presentation Tree Definition Quick Reference

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

<InventoryTree> default false a tree with default=”true” is opened automatically
when the inventory UI is launched

 allowClassView true determines if class view shall be possible for the
tree

 bundle name of localization resource bundle (applies to
the whole tree)

 <Name> M name of the tree, shown in tree menu

 <SequenceNumber> 0 determines order in which trees are shown in
menu on inventory UI

Service Activator Inventory Subsystem
4. Inventory Tree

50

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Solution> encloses solution definition

 <Description> description of the tree, displayed by tools

 <DataSource> names the database module to access database
tables

 <OperationTypeName> encloses an operation privilege definition, repeatable

 <BranchTypeName> encloses a branch privilege definition, repeatable

 <Branch> encloses a branch definition, repeatable

 <Filter> encloses filter definition

 <InitialCasePacket> encloses definitions of case packet “variables”

<Name> bundle name of localization resource bundle

<Solution> <Name> M name of the solution

 <Label> overrides solution name for display on inventory
UI

<OperationTypeName> <Name> M name of the operation privilege

 <Description> description of the operation privilege

<BranchTypeName> <Name> M name of the branch privilege

 <Description> description of the branch privilege

<Branch> bundle name of localization resource bundle

 <Name> M name of the branch

 <DefName> overrides branch name for display in class view

 <Condition> boolean expression, repeatable; when present, at
least one expression must evaluate to “true”,
otherwise the branch is not shown in instance
view

<DefName> bundle name of localization resource bundle

<Condition> role condition is true if user has the role given as
attribute value

<Branch> (cont’d) <BranchType> privilege required for the branch, must be defined
by <BranchTypeName>

 <Type> name for reference to one of several branches
used in similar roles in the tree

 <Image> file name of the branch icon, when unconditional;
repeatable with conditions

<Image> <Condition> boolean expression; when a condition evaluates
to “true”, icon name is taken from <Value>

 <Value> file name of branch icon

<Branch> (cont’d) <ReservedImage> file name of icon shown instead of one defined by
<Image>, when the branch instance is reserved

 Service Activator Inventory Subsystem
 4. Inventory Tree

 51

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Class-Name> complete name of Java bean class (including
package) for branch resource

 <Find-By> encloses specification of how to find instances of
branch upon expansion of parent branch,
repeatable with conditions

<Find-By> <Condition> boolean expression, repeatable; when one
condition evaluates to “true”, the method (in the
same <Find-By>) is selected for execution

 <Method> M name of method to call on the branch class to find
branch instances, normally a findBy method

 <Key> repeatable element; each occurrence specifies one
parameter for the findBy method, order of <Key>
elements must match order of parameters

<Key> parentKey false “true” to indicate that the <Key> (on a method
with multiple parameters) identifies the parent
instance (if such methods are used in the tree, this
attribute must be set in order for advanced search
to work correctly)

 type String specifies the type of the parameter

<Branch> (cont’d) encloses specifications for the font to display the
branch, repeatable with conditions

 bold false when “true”, branch is displayed in bold

 italic false when “true”, branch is displayed in italic

 <Condition> boolean expression, when a condition evaluates
to “true”, the element it belongs to is
selected

 <TextColor> color of text, name or hexadecimal RGB color
value

<Branch> (cont’d) <Label> label for the branch icon, when unconditional;
repeatable with conditions

<Label> bundle name of localization resource bundle

 <Condition> boolean expression; when a condition evaluates
to “true”, label is taken from <Value>

 <Value> actual label value

<Value> bold false when “true”, label is displayed in bold

 italic false when “true”, label is displayed in italic

 textColor color of text, name or hexadecimal RGB color
value

 bundle name of localization resource bundle

<Branch> (cont’d) <Scroll> declares children of the branch shall be shown as
scrolling list, value is number of children in the
list

Service Activator Inventory Subsystem
4. Inventory Tree

52

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <Parent-Find-By> specifies a method on parent class and parameters
for it to determine parent of orphan

 <Children> encloses child specifications

<Children> <Child> repeatable, name of child branch

<Branch> (cont’d) <Operation> repeatable, specifies an operation that can be
launched from the branch in instance view

<Operation> default “false” if “true”, operation can be launched by clicking
the branch

 warning “false” if “true”, confirmation will be required before
operation is launched

 flag specifies generic operation: “reserve” or “release”

 bundle name of localization resource bundle

 <Name> M name of the operation, displayed in menu and on
tab

 <Condition> boolean expression, repeatable; when present, at
least one expression must evaluate to “true”,
otherwise the operation is disabled (not shown in
menu)

 <Image> M specifies operation icon, similar to <Image> in
<Branch> element

 <Object> can show branch label as part of operation name

 <OperationType> privilege required for the operation, must be
defined by <OperationTypeName>

 <Action> M specification of action to execute operation

<Action> <Page> M Struts action name or JSP file name to be invoked

 <Param> repeatable, specifies one parameter for Struts
action or JSP; not used together with
<Workflow>

 <Workflow> specification of workflow to run, including input
parameters and result

<Param> <Name> parameter name

 <Value> M parameter value

<Workflow> method startJob specifies whether or not to wait for workflow job
completion: “startJob” or “startAndWaitForJob”

 <Name> M name of workflow to start

 <Label> name to display in UI

 <Bean> repeatable, encloses specification of a bean object
to retrieve as source for workflow input
parameters

 Service Activator Inventory Subsystem
 4. Inventory Tree

 53

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 <WFParam> repeatable, encloses specification of an input
parameter for the workflow, i.e. initialization of a
case-packet variable

 <Result> repeatable, encloses specification of a case-packet
variable whose final value is displayed as a result
of running the workflow

<Bean> <Name> M name of bean object, used for reference from
<WFParam>

 <Class-Name> M complete name of Java bean class (including
package) for the bean object

 <Find-By> M encloses specification of how to find the bean
object (possibly multiple instances); not
repeatable, no conditions

<WFParam> source branch “branch”: <PValue> interpreted relative to the
tree; “bean”: <PValue> interpreted as field of
bean object

 dataType String type of the parameter, one of: String, int, float,
long, double, boolean, Date

 dateFormat specifies format of field of type Date

 editable true false: value not editable when presented to the
user before workflow start

 dropdown false true: value selectable from dropdown list

 <Name> M name of the parameter, i.e. the workflow case-
packet variable

 <DisplayName> displayed name of parameter, if omitted defaults
to <Name>

 <Description> description of parameter, displayed together with
name and value

 <BeanName> when source=”bean”, specifies name of the bean
object

 <PValue> repeatable, specifies value of the parameter
according to source

<Result> <Name> M name of workflow case-packet variable to be
displayed as result

 <DisplayName> displayed name of result

<Branch> (cont’d) <DefOperation> repeatable, specifies an operation that can be
launched from the branch in class view, similar to
<Operation>, but cannot be gated by
<Conditions>

<DefOperation> defFlag extend specifies generic operation to add user-defined
fields

 default false true: operation can be launched by clicking the
branch

Service Activator Inventory Subsystem
4. Inventory Tree

54

Parent tag Attribute name/
child element tag

Mandatory/
default value

Description

 warning false true: confirmation will be required before
operation is launched

 bundle name of localization resource bundle

 <Name> M name of the operation

 <Image> M specifies operation icon, similar to <Image> on
<Branch> and <Operation> elements, but not
repeatable

 <Object> not used

 <OperationType> privilege required for the operation, must be
defined by <OperationTypeName>

 <Action> M specification of action to execute operation

<Filter> <Field> defines one variable of the filter

<Field> variable M name of the variable

 label label to show for the variable

 bundle name of localization resource bundle, to localize
the label

 type M type of the variable, can be text, checkbox, select
or date

 group default name of group the variable belongs to

 <ListOfValues> defines for a variable of type select

<ListOfValues> <Value> repeatable, defines one value

 <BeanName> alternative to <Value>: full name of a (bean)
class to use

 <Attribute> name of field on the bean class

 <Method> name of (findBy) method on the class which must
return an array of beans

 <ParameterValue> repeatable, specifies a parameter for the method

<InitialCasePacket> <VariableValue> defines one case packet “variable”

<VariableValue> name name of the variable

 value value of the variable, constant:value or
session:attribute

 Service Activator Inventory Subsystem
 4. Inventory Tree

 55

General Properties of InventoryTree
A tree is opened and shown automatically when the Inventory UI is launched, if its default
attribute is “true”.

The first child elements of <InventoryTree>: <Name>, <SequenceNumber>, <Solution> and
<DataSource> specify some general properties of the tree. Other general properties are privileges,
case packet, and filter.

Every tree has a name, defined as the value of the <Name> element. When multiple trees are
deployed on the same system, the tree the user wants to view can be selected by name in the tree
menus of the inventory UI.

Available trees are listed in the menus ordered first by sequence number of the solution, second by
the sequence number of the tree, and finally by the name of the tree. Trees which do not belong to
a solution are shown first. The tree sequence number is given as the value of the
<SequenceNumber> element, which must be a positive number; default is 0. The solution
sequence number is settable by means of a special command of the Inventory Tree Deployer; see
chapter 5.

When a tree belongs to a solution, the solution must be identified by means of the <Solution>
element. The <Solution> element includes both <Name> and <Label>, the latter being optional.
The name of the solution is also shown in the tree menus of the inventory UI as part of the
identification of the tree. Here the <Label>, if present, will override the <Name>. To localize the
displayed name, use the <Label>.

The inventory UI web server component will need to access the database through a so-called data
source, which is actually a pool of database connections to a specific database schema
(combination of database instance and database user). Each tree uses a unique data source which
can be named by the <DataSource> element. This means you cannot combine data from different
databases in a single tree. Normally there is only a single database, and this database is accessed
by default if you the <DataSource> element is omitted from the tree definition. See the section
“Adding a Data Source for Inventory UI” below for the case where you need a add non-default
data source.

Privileges for Trees, Branches and Operations
Privileges that you can use to control which users can view individual trees, view specific
branches in the tree and perform specific operations, can be declared, named and associated with
individual branches and operations.

For each tree you define a privilege is implicitly defined, which makes the views of the tree
selectable in the main menu of the inventory UI. The privilege has the same name as the tree.

The privilege to view and access a certain collection of branches is declared by the
<BranchTypeName> element. In this element you provide a name and a description for the
privilege. Membership of the collection is declared by the <BranchType> child element of
<Branch>.

NOTE Do not confuse the branch privilege with branch type, defined by the <Type> child element of <Branch>

The privilege to perform a certain set of operations is declared by the <OperationTypeName>
element which is similar to a <BranchTypeName> element. Membership of the set is declared by
the <OperationType> child element of <Operation>.

Assignment of privileges to user roles can be done by a system administrator from functions in the
User Management UI. The descriptions of the privileges are displayed in the forms that are
displayed to the system administrator.

For general information about user roles and privileges and a description of the User Management
UI refer to chapter 6 of HP Service Activator, Introduction and Overview.

Service Activator Inventory Subsystem
4. Inventory Tree

56

Case Packet
With the <InitialCasePacket> element you can declare and assign values to so-called case packet
variables, which you can reference as parameter values or in expressions throughout the tree
definition. There is no way of setting values other than the initial one to these “variables”, which
are actually more like centralled defined constants.

You can define values for variables either as explicit constant values, using the notation
constant:value, or as user session attributes, using the notation session:attribute. In this example,
the session attribute refers to the user name that was authenticated for the session:

<InitialCasePacket>
 <VariableValue>name=”debuglevel” value=”constant:3”</VariableValue>
 <VariableValue>name=”user” value=”session:user”</VariableValue>
</InitialCasePacket>

These variables can then be referenced as variable:debuglevel and variable:user,
respectively.

Filter
The filter, which optionally is part of a tree definition, is another collection of variables in addition
to the case-packet. Values for filter variable can be set in a pop-up window from the user
interface. The variables can be organized in groups in the window.

The values of the variables may be used in condition expressions and as arguments for <Find-By>
methods on branches in order to filter the data shown in the instance tree and leave only the
branches which are of interest to the user, hence the name filter (you can do the same with case-
packet variables). See the next section ,”Branches”, to understand how to select which branches
will appear in the instance tree. You must gate your references to the variables by use of the
boolean operand isFiltered in a condition. This operand will be true when the filter has been
applied to the active tree, otherwise false. Here is a simple example of a boolean (checkbox) filter
variable applied in a branch condition:
<Condition>!isFiltered || (variable.filter:showWWS == constant:true)</Condition>

An instance of the filter, i.e. a set of values for the variables, can be named and saved as a stored
filter, to be recalled and applied at a later time, by the same user or even a different user. Stored
filters can be made available to users by the system administrator; how it is done is described in
HP Service Activator, User’s and Administrator’s Guide. See that manual also for a description of
how to set filter variable values and apply stored filters from the user interface.

NOTE It is not mandatory that all variables have values when a filter is applied. When you use a filter variable in a
branch definition, typically as an argument for a <Find-By> method you may need to gate the usage by a
condition to ensure that the variable has a value (!= null) to avoid passing a null value to the method.

With the <Filter> element you can define the set of filter variables for a tree. The following
example shows the definition of a filter with one group (g1) and two variables (velocity and color).

<Filter>
 <Field variable=”velocity” label=”speed” type=”text” group=”g1”/>
 <Field variable=”color” label=”colour” type=”select” group=”g1”/>
 <ListOfValues>
 <Value>constant:red</Value>
 <Value>constant:green</Value>
 </ListOfValues>
 </Field>
</Filter>

Each <Field> element defines a variable in the filter. The variable attribute names the variable.
Groups are defined when they are mentioned. The label, if present, is shown instead of the variable
name in the pop-up window where values are set for the filter variables. The type can be text, in
which case variable values are simply typed in an open field, or select, in which case possible
values are defined in a <ListOfValues>, and the actual value is selected from a drop-down list.
Values are given with the constant prefix as for case packet variables. Alternatively you can

 Service Activator Inventory Subsystem
 4. Inventory Tree

 57

refer to a value already defined for a case-packet variable by using the prefix variable and the
name of that variable.

You can also specify with an second variant of the <ListOfValues> element that the value must be
selected from a list returned from a method of a bean class, using <BeanName> to specify the
complete name of the bean class, <Attribute> to specify a field of the bean, <Method> to specify a
method of the bean with argument values specified with <Parameter> elements. The method must
return an array of occurrences of the bean. From each element of the array is picked the value of
the specified field (<Attribute>), the rest is discarded. These values are shown in a drop-down list
and one of them must be selected as the value for the filter variable.

Two more types allowed for filter variables are checkbox (boolean with values true and false, but
shown to the user as Yes or No in a dropdown list) and date.

For <Parameter> you can use the same forms as for <Value> in the first variant of
<ListOfValues>, as described above.

Branches
The bulk of an inventory tree definition file will consist of branch specifications. There will
generally be a branch specification for each resource in your inventory, though you may choose
not to display every resource. It is also possible to define more than one presentation for each
resource, for use in different contexts. You can also define title branches which are not associated
with resources, but only serve to make the tree more readable. When a branch is expanded in
instance view, each child branch which is a title branch will be shown just once, whereas for a
child branch associated with a resource a findBy method will be executed to determine the list of
instances of the resource to show.

An important part of a branch definition specifies the operations that can be launched from an
occurrence of the branch in instance view. Operations are executed as JSPs or Struts action forms.
Definitions of operations are discussed in the section “Operations”.

Parameter Values
Within a branch definition you can specify parameters for findBy methods and for operations
(actions, see “Actions”). In a parameter specification you can use the name of a branch to refer to
an instance of a resource associated with an occurrence of the named branch in the instance view
tree; it is always evaluated for the actual instances that are represented in the tree as it is shown.
You can use the name of the branch in which the specification occurs or any of its ancestors in the
tree except title branches.

A parameter value can take four forms:

branch the name of a branch, refers to the value of the primary key of the associated
resource instance; commonly used to identify the immediate parent as
parameter of a findByParentKey method and the branch itself for operations
such as View, Edit, Delete

branch.field the name of a branch and the name of one of its field, refers to the value of
that field on the assocated resource instance

constant:value a value stated right there

variable:name the value of the case packet variable named name, which must be declared
and defined with the <InitialCasePacket> element at the outher level of the
tree definition

variable.filter:name the value of the filter variable named name, which must be declared and
defined with the <Filter> element at the outer level of the tree definition

Service Activator Inventory Subsystem
4. Inventory Tree

58

Condition Expressions
Conditions are used in several elements within a <Branch> definition. A condition is a boolean
expression that can be evaluated at run-time. The elements that can have conditions are <Branch>
(i.e. the condition is directly enclosed by the <Branch> tag), <Image>, , <Label> and
<Find-By>.

Boolean expressions can be composed of operands and operators. Operands can be specified in the
following ways:

• a parameter value in one of the forms described above

• branch.BeanName representing the resource bean

• a field name

• an SQL expression enclosed within a pair of ‘@’ characters; expressions may include
parameters in the forms described above, quoted within pairs of ‘?’ characters

• isFiltered, true when a filter has been applied to the active tree, otherwise false

Instead of the branch name, branch (in any operand of a boolean expression) can also be a branch
type. This will refer to the nearest branch in the lineage (ancestor path) which has a matching
<Type> value.

The following operators are allowed:

! boolean not

|| boolean or

&& boolean and

== equals

!= not equals

< less than

<= less than or equal

> greater than

>= greater than or equal

Expressions with more than one operator must include parentheses to determine the order the
operands are applied. The types of the operands must match the operators that are applied.

When your expression includes characters, such as ‘<’ or ‘>’ which could be interpreted as XML-
delimeters, you must use CDATA sections to escape these characters. A CDATA section is like
this : <![CDATA[your escaped data including <>/ characters]]>.

Here is a simple example <Condition> (which may not make much sense):
<Condition>
 variable:user == Switch.name
</Condition>

And here is a condition using an SQL statement (think about the effect of adding this condition to
the Switch branch in the tree definition of the DocExample):

<Condition>
 @select count(*) from Doc_Switch where rack = ‘?Rack.name?’@ != constant:0
</Condition>

As an alternative to using an expression a condition can be defined by the role attribute of the
<Condition> element. The value of the role attribute can be given as a parameter value in one of
the forms described above. The value of the attribute is interpreted as the name of a role, and the
value of the condition will be true if the user has the role in question. For example:

<Condition role=”Region.ManagerRole”/>

 Service Activator Inventory Subsystem
 4. Inventory Tree

 59

Assuming Region is the current branch or one of its ancestors and associated with a resource
instance representing a region of a network, the ManagerRole field could hold the value of the
operator role responsible for managing that region.

General Properties of Branch
The following child elements of <Branch> define overall properties of the branch: <Name>,
<DefName>, <BranchType>, <Type>, <Class-Name>, ,<Label>, <Scroll>, <Image> and
<ReservedImage>.

<Name> - Every branch has a name, defined as the value of the <Name> element. The name is
mainly used to refer to the branch, for example as described for parameter values above. In the
class view the name is displayed to represent the branch unless it is overridden with the optional
<DefName> element.

<BranchType> - Membership of the collection of branches for which a given privilege is required
before occurrences can appear when parent branches are expanded is declared by <BranchType>
element, whose value must equal the name of the privilege, as defined with <BranchTypeName>.
See “Privileges for Trees, Branches and Operations” above.

NOTE <BranchType> refers to a privilege, not to the <Type> of the branch.

<Condition> - Appearance of a branch can be gated by one or more conditions, specified with the
<Condition> element. If one condition evaluates to “true”, the branch is shown.

<Type> - Suppose you define a branch which can appear as a child of more than one parent
branch in the tree, and you need to make reference from the child branch to a field of the parent
resource. To make it possible to name the parent without having to use its branch name, a name
that can be common to multiple branches is introduced with the <Type> element. The common
name does not need to be declared outside of the branches which it can name.

NOTE The branches that belong to the same type must be similar enough to have the same names for fields that
you want to reference using the type name.

<Class-Name> - For a branch to be associated with a resource, the complete Java class name of
the resource Java bean must be specified. Omit the <Class-Name> element for a title branch.

 - For each branch you can specify, some attributes of the font with which the branch is
displayed are controllable with the element. Bold and italic font can be specified by setting
the Bold and Italic attribute, respectively, “true”. The color of the font can be specified by the
value of <TextColor> child element. The value of <TextColor> can be a color name supported the
browser or a hexadecimal RGB color value.

The element can be repeated, with a <Condition> element in each occurrence except the
last one. The first element for which the condition evaluates to “true” at the time the branch is
displayed, or the last unconditional one, will then be applied.

<Label> - Each branch in the instance view has a label which is displayed to identify the branch
and/or its associated instance to the user. The default label for a branch that is associated with a
resource instance is the primary key of the instance. The default label for a title branch is the
branch name.

You can specify a label different from the default one as the value of the <Label> element. You
can use any string, and in the string you can quote a branch instance field value by using the same
notation as in parameter values (see “Parameter Values” above), enclosed within $-characters. For
example, you can combine the name of the resource, which you give literally, with the quoted
name of the instance, like this:

<Label>Switch $Switch$</Label>

The <Label> element can be repeated, with a <Condition> element in each occurrence except the
last one. The first element for which the condition evaluates to “true” at the time the branch is

Service Activator Inventory Subsystem
4. Inventory Tree

60

displayed, or the last unconditional one, will then be applied. If there is no unconditional <Label>,
the default value will be the fall-back.

In a conditional <Label> element, you specify the label with an inner <Value> element, like:
<Label>
 <Condition>your condition here</Condition>
 <Value>label shown when condition is true</Value>
</Label>

<Scroll> - When a branch is expanded in instance view, a huge number of child branches can
potentially appear. When a <Scroll> is present (in the parent, the branch which is expanded) only a
limited number of child branches will be shown in a window that can be scrolled. The value of the
<Scroll> element specifies the size of the scroll window. When a branch has a smaller number of
child branches than the size of the scroll window, they are shown with no scrolling adornments.

NOTE If the branch has more than one child branch, there will be a scroll window for each one.

<Image> - The icon that will graphically represent the branch in the presentation tree is specified
with the <Image> element. The value must be the name of a file that contains the image. You can
use all of the formats supported by the web browser (JPEG, GIF, etc.). File names are relative to
$JBOSS_ACTIVATOR/images/inventory-gui/tree.

The <Image> element can be repeated, with a <Condition> element in each occurrence except the
last one. The first element for which the condition evaluates to “true” at the time the branch is
displayed, or the last unconditional one, will then be applied. When a condition is present, the file
name must be given in a <Value> element.

Determining Instances of a Branch
When a branch is expanded in the instance view, then all appropriate instances of its child
branches must be found and shown. How to find the instances is specified in the defintion of the
(child) branch by <Find-By> elements. There can be multiple <Find-By> elements, and each one
can be gated by conditions. The method defined in the first <Find-By> element that passes its gate,
i.e. if there are conditions then at least one of them evaluates to “true”, is executed and returns a
list of instances of the child class. Parameters for findBy methods are specified by <Key>
elements; here you can use the forms described in the section “Parameter Values” above. If the
type of the parameter is not string, it must be specified by the type attribute of the <Key> element.

The most common cases are findAll (no parameters), at the root of a tree or when lineage does not
provide information to filter, and findbyParentKey (one parameter), when a (child) branch
resource has a foreign key that identifies its parent, to retrieve all children of a parent branch.

NOTE The advanced search function works top down in the class tree. For each child branch it assumes the <Find-
By> methods relates the instances to the immediate parent in the instance tree. This is normally the case
(findbyParentKey is used). If it is not the case, advanced search will not work.

NOTE findBy methods are not used for title branches.

If the <Branch> element is also gated by one or more <Condition> elements, each instance (or
title branch) must also pass at least one of these conditions before it is added to the instance view
tree.

Orphan’s Parent
If the definition of a branch (or one of its children) contains a reference to the parent branch, then -
when the branch is to be presented (expanded when the occurrence is in a child branch) - it is
necessary to know the parent instance. Normally, this is straightforward, because the parent as well
as other ancestors are part of the same tree structure. But, if the branch was selected from a list of
search results to become the root of an instance tree, then it is an orphan, and there is no immediate
way to know the parent.

 Service Activator Inventory Subsystem
 4. Inventory Tree

 61

The resource class of the parent will be known from the parent branch definition in the tree. The
<Parent-Find-By> element allows you to specify within the definition of the child branch a method
that will be evaluated as if it occurred on the parent branch and provide parameters for it that will
retrieve the desired parent instance. Typically the child resource bean will have a foreign key that
points to the parent, but a method evaluated in the context of the parent branch cannot have a child
field value as a normal parameter, so you will need to resort to a where clause, which can be
passed as a parameter to the findAll method. You can find an example of this on the Switch branch
in the DocExample.

Child Branches
The branching structure of the tree is defined by declaring child branches for each branch, using
the <Children> and <Child> elements. A branch without children is a leaf. Branch definitions may
occur in any order, parent can come before or after child.

Operations in Instance View
Most operations are launched from branches in instance view. Each of these operations is defined
by an occurrence of the <Operation> element inside the <Branch> element. One operation on a
branch can be designated as the default operation, by setting its default attribute “true”. The default
operation can be launched by clicking on the branch, other operations must be selected from the
right-click menu of the branch. The operation is launched in the context of the selected branch, so
field values of the instances associated with the branch and its lineage can be used as parameters.

The standard operations are Create, View, Edit and Delete. These operations are implemented by
Struts actions and form beans generated by the Inventory builder. Generic actions and forms can
be used to perform Reserve and Release operations on reservable resources and to launch
workflow jobs.

General Properties of Operation
<Operation> elements have three attributes: default (see above), warning and flag. If you set
“warning” true, a confirmation window pops up before the operation form is shown. The flag must
be set for generic operations (reserve, release) to indicate that the action class is generic, not
specific to the solution. The operation which has flag=“reserve” is hidden when all units of the
resource instance are already reserved, the operation with flag=“release” is hidden when no units
are reserved.

The following child elements of <Operation> define overall properties of the operation: <Name>,
<Condition>, <Image>, <Object> and <OperationType>.

<Name> and <Object> - The name of an operation is shown in the operations menu, and once the
operation has been launched, also in tab for the operation form. It is concatenated from two parts,
defined with the <Name> and <Object> elements, respectively. Typically one of the names
‘Create’, ‘View’, ‘Edit’ and ‘Delete’ (as well as ‘Reserve’ and ‘Release’) followed by the name of
the resource (bean) are used for the standard operations, but you are free to use different names.
<Object> can be used if you want to include the label of the branch in the operation name; to
achieve this effect the value specified with <Object> must equal the name of the branch. Any other
value specified with <Object> will be taken literally.

<Condition> - The appearance of an operation in the menu can be gated by one or more
conditions, specified with the <Condition> element. If one condition evaluates to “true”, the
branch is shown, otherwise it is not.

<Image> - The icon that will graphically represent the operation in the menu is specified with the
<Image> element. The value must be the name of a file that contains the image. You can use all of
the formats supported by the web browser (JPEG, GIF, etc.). File names are relative to
$JBOSS_ACTIVATOR/images/inventory-gui/tree.

The <Image> element can be repeated, with a <Condition> element in each occurrence except the
last one. The first element for which the condition evaluates to “true” at the time the branch is

Service Activator Inventory Subsystem
4. Inventory Tree

62

displayed, or the last unconditional one, will then be applied. When a condition is present, the file
name must be given in a <Value> element.

<OperationType> - An operation may require a privilege, specified with the <OperationType>
element, and defined with an <OperationTypeName> element of the tree definition. If the user
does not have a role to which the privilege has been assigned, the operation will not appear in the
menu. See “Privileges for Trees, Branches and Operations” above.

Inventory Actions
The most important part of each operation is the action it performs. The standard inventory
operations - Create, View, Edit, Delete - use actions which are executed in the Struts framework as
action classes and JSPs that are generated by the Inventory Builder based on resource definitions.

In addition to the standard operations which only affect inventory it is possible to launch a
workflow job. This is specified using a different form of the <Action> element, as described in the
next section.

Parameters can be specified for actions as (name, value) pairs. Of the actions for the standard
operations, Create needs no parameters (everything must be specified by the user in the form), for
the other operations you need to specify (field name, field value) for each field which belongs to
the primary key, normally only one.

For the standard operations, you need to provide the name of the form action name, including the
name of the resource, which enables Struts to run the action, as follows:

Create CreationFormBeanAction.do

View ViewFormBeanAction.do

Update UpdateFormBeanAction.do

Delete DeleteFormBeanAction.do

Reserve and release actions are generic, they don’t need the name of the resource:

Reserve InstanceReserveAction.do

Release InstanceReleaseAction.do

You use the <Action> element with its enclosed elements <Page>, <Param>, <Name> and
<Value> to provide the form action name (with <Page>) and parameter names and values. An
example from the DocExample is shown here, note that ‘Switch’ in <Value> is the name of the
branch, which refers to the value of the primary key of the associated instance:

<Action>
 <Page>UpdateFormSwitchAction.do</Page>
 <Param>
 <Name>name</Name>
 <Value>Switch</Value>
 </Param>
</Action>

Workflow Actions
In addition to the inventory actions which work directly on the inventory it is also possible as an
operation associated with a branch in the inventory tree to launch a workflow job. This feature
comes in two flavors, selectable by the method attribute of the <Workflow> element:

• method=”startJob”: start the workflow job without waiting for completion, display the job id

• method=”startAndWaitForJob”: wait for the job to finish and display selected case packet
variables as results

In an <Operation> element used to invoke a workflow the value of the <Page> element must be
StartWorkflow.do; the <Param> element is not used; and the details of the workflow are all
specified by the <Workflow> element: its name and case-packet variables to be initialized as input
parameters and retrieved for display as output parameters.

 Service Activator Inventory Subsystem
 4. Inventory Tree

 63

Input parameter case-packet variables and values to initialize their values are specified using
<WFParam> child elements of the <Workflow> element. The data type of each value can be
specified using the dataType attribute, which can take the values String (default), int, float, long,
double, boolean and Data. It should match the data type declared for the case-packet variable in
the workflow. The name of the case-packet variable is specified with the <Name> child element.

To allow flexibility in the specification of input parameter values several different sources can be
used:

• <WFParam> element with source=”branch” (default): field values from resource instances
associated with branches in the inventory tree, either the branch that the workflow operation
belongs to or a branch in its lineage, using one of the forms branch or branch.field, as
described under “Parameter Values” in the “Branches” section. The other forms specified
under “Parameter Values”, i.e. constants and case-packet variables of the tree, can also be used.

• <WFParam> element with source=”bean”: field values from resource bean objects that are
retrieved specifically for this purpose, independently of the inventory tree, as specified by
<Bean> child elements of the <Workflow> element. The reference from the <WFParam>
element to the bean object is made by the value of the <BeanName> child element which must
equal the name of the bean object. The name of the field to extract is specified with the
<PValue> child element.

• User input. Before the values from <WFParam> elements are passed to the workflow to be
started, they are shown to the user and can be edited. Parameters for which no source value has
been specified (no <PValue> child element in the <WFParam> element) will appear as empty
input fields. A <WFParam> element may specify more than one possible value, and the user
can then select one of the options from a dropdown list, provided the dropdown attribute on the
<WFParam> element is “true”. When source=”branch”, multiple values can be specified with
multiple occurrences of the <PValue> child element. When source=”bean”, multiple values
may occur when a non-unique findBy method is used.

Before a bean object can be used in a <WFParam> element, it must be defined with a <Bean>
element. The bean is named and can be referenced in <WFParam> elements with the value of the
<Name> child element. The class of the bean is specified as the value of the <Class> child
element, and the findBy method with its key field parameters is specified by a <Find-By> child
element, which has the same form as when it is used to determine occurrences of a branch, except
that <Condition> cannot be used (see “Determing Instances of a Branch” under “Branches”).

Both <Workflow> and <WFParam> have a child element <Name>, defining the name of the
workflow and case-packet variable, respectively. These names will also be used on the UI, unless
overridden with values specified by a <DisplayName> element.

The <WFParam> element has attributes dateFormat and editable, to control how a value of type
Date is shown and whether the value can be edited by the user (editable=“true” by default). The
format of values of type Data behaves in the same way as for resource fields, see the section
“<Field> dateFormat”, under “The <Field> Element” in chapter 2.

When a workflow is run with method=“startAndWaitForJob”, final values of case-packet variables
can be shown as results. The case-packet variables to be shown are specified with <Result> child
elements of <Workflow>. The name (possibly overridden with <DisplayName>) of each result
case-packet variables is specified with the <Name> child element of <Result>.

A complete example of an operation that can be included in the inventory definition for the
DocExample is shown below. A workflow named DocExampleWF will be executed. Three case
packet-variables of the workflow: a, b and c, will be initialized as input parameter. Two other case-
packet varaiables: d and e, will be retrieved when the workflow has finished and shown as results.

The value for a will come from the Switch branch, the value for b will be selected from a
dropdown list among the names of all switch resource instances, and the value for c will come
from user input.

Service Activator Inventory Subsystem
4. Inventory Tree

64

<Operation>
 <Name>Run Workflow</Name>
 <Image>conmutar.gif</Image>
 <Action>
 <Page>/activator/inventory/startWorkflow.do</Page>
 <Workflow method="startAndWaitForJob">
 <Name>DocExampleWF</Name>

 <Bean>
 <Name>Switch</Name>
 <Class>com.hp.ov.activator.docExample.Switch</Class>
 <Find-By>
 <Method>findAll</Method>
 </Find-By>
 </Bean>

 <WFParam>
 <Name>a</Name>
 <PValue>Switch.name</PValue>
 </WFParam>

 <WFParam source="bean" dropdown="true">
 <Name>b</Name>
 <BeanName>Switch</BeanName>
 <PValue>name</PValue>
 </WFParam>

 <WFParam>
 <Name>c</Name>
 </WFParam>

 <Result>
 <Name>d</Name>
 </Result>

 <Result>
 <Name>e</Name>
 </Result>
 </Workflow>
 </Action>
</Operation>

Customizing and Adding Own Operations
If you want to change the action forms and JSPs generated by the Inventory Builder, you will first
need to locate the generated files. See chapter 3 for this information. All the Java code needed for
the actions of the different standard operations is in action classes. The Java code for validation of
data entered in forms is in form validation classes. The screen forms are in JSPs. In the running
system, after deployment, all these files are located under $JBOSS_ACTIVATOR, as shown in
Figure 4-2 where the Doc_Example is deployed as a solution. JSPs are under jsp/inventory,
action classes under WEB-INF/classes/com, localizable resources under
WEB-INF/classes/resources, and the Struts configuration which ties everything together is
under struts-config/modules.

 Service Activator Inventory Subsystem
 4. Inventory Tree

 65

Figure 4-2 Structure of Deployed Struts Action Classes and JSPs

If you add your own non-standard operations, you can choose to develop them as classic JSPs with
embedded Java code, or use a Struts approach.

If you write classic JSPs (not integrated into the Struts structure) and place them in the
jsp/inventory/<your solution> directory, you can refer to them from <Page> elements
within <Operation> <Action> simply by stating the file names.

NOTE If you need to make cross-references between JSPs (for example, to execute another JSP after a Submit
button is pressed), you need to state a full path name like
/activator/jsp/inventory/<your solution>/<your jsp>

If you use the Struts approach you will need to provide one or more Struts configuration files with
Struts action specifications and/or modify the generated one for the Struts module that is generated
for the solution. If you create additional files, you must deploy them in the
WEB-INF/struts-config/modules/<your solution> directory, alongside the file
containing specifications generated by the Inventory Builder.

You can use the Inventory Builder in combination with the Deployment Manager to manage the
files you change or add in a solution hierarchy outside of the running system, to compile any Java
files and to deploy the resulting files into the runtime structure. For pure additions, you can create
a structure similar to the necessary part of the hierarchy under activator.war and place it under
$ACTIVATOR_OPT/solutions/<your solution>/UI. For example, if you write classic JSPs,
it will just be your JSPs in jsp/inventory/<your solution> (in Figure 4-2 the solution is
Doc_Example).

Operations in Class View
The main operations that can be performed in the class view are the search operations, simple and
advanced search. They are available for all classes, cannot be enabled, disabled or customized.

Service Activator Inventory Subsystem
4. Inventory Tree

66

In addition to searches, the operation to add user defined fields to a resource is also available in the
class view, but only as specified by a <DefOperation> element, just like the instance operations
need to be specified with <Operation>.

The way to specify general properties of operations in class view is the same as for operations in
instance view, except you use child elements of <DefOperation> instead of <Operation>. There is
one exception: these operations cannot be gated by conditions.

Actions for operations in class view are also specified with <Action> elements in exactly the same
way as for operations in instance view.

The <Page> value to specify for the operation to add user fields is
ext_attribute_class.do?beanClassName=complete name of bean Java class. This action takes no
parameters. The defFlag attribute on the <DefOperation> element must have the value “extend”,
like this example:

<DefOperation defFlag="extend"'>
 <Name>Add fields</Name>
 <Image>edit.gif</Image>
 <Action>
 <Page>ext_attribute_class.do?beanClassName=com.hp.sa.inventory.AccessDe
vice</Page>
 </Action>
</DefOperation>

You can also implement your own actions, as JSPs with or without Struts classes, and make them
available as operations, just as for the instance view.

Adding a Data Source for Inventory UI
To enable the inventory UI web server function to access database tables which do not belong to
the database user and the database instance that was specified at Service Activator installation
time, an additional data source will be needed.

See HP Service Activator, User’s and Administrator’s Guide for information about how to
configure the data source itself. We assume here it is named DSNAME. In the tree definition for
the inventory UI, you must specify the name as the value of the <DataSource> element.
Additionally, to make the data source available for the inventory UI, you must add corresponding
elements that refer to it in two files in the directory $JBOSS_ACTIVATOR\WEB-INF.

In “jboss-web.xml” add:
<resource-ref>
 <res-ref-name>jdbc/DSNAME</res-ref-name>
 <jndi-name>java:/hpsa/jdbc/DSNAME</jndi-name>
</resource-ref>

In “web.xml” add (to the other similar data sources):
<resource-ref>
 <res-ref-name>jdbc/DSNAME</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

To make the changes take effect, restart Service Activator.

 Service Activator Inventory Subsystem
 5. Inventory Tree Deployer

 67

5 Inventory Tree Deployer
This chapter describes how to use the Inventory Tree Deployer to process tree definition files and
deploy them to a running system. The Inventory Tree Deployer is actually the same program as the
Inventory Tree Designer described in chapter 4, just called from a command line.

The servlet supporting inventory UI builds its run-time representation of the trees that are
displayed in client browsers from a database table representation of the tree definitions in Service
Activator’s static repository. It regularly updates the run-time representation from the repository,
so it is not necessary to restart Service Activator after deploying one or more tree definitions. The
update frequency can be configured as parameter reload-time in the UI configuration file
$JBOSS_ACTIVATOR/WEB-INF/web.xml.

The essential function of the Inventory Tree Deployer, the deploy function, is to analyze tree
definitions, translate them to the tabular representation and write it into the repository, as shown in
Figure 5-1. Information about privilges for branches and operations is written into tables not
shown in this figure. It also provides complementary functions for managing inventory trees: list
known trees by tree name and solution name, delete a tree from the repository, extract a tree
definition from the repository to XML format.

Figure 5-1 Inventory Tree Deployer

Inventory
Tree Deployer

Inventory Tree
Definition file

Record(s) in tables
VIEWTREE,

BRANCHTREE, and
OPERATIONTREE

The command line syntax is:
InventoryTreeDesigner <function> <DB options> <other options> <tree file>*

The <function> part identifies the requested function and function-specific options. The other parts
are similar for all functions. The common parts are described first, followed by a small section for
each function.

NOTE Options are not case-sensitive. Value containing space(s) must be surrounded by double-quotes (”).

Service Activator Inventory Subsystem
5. Inventory Tree Deployer

68

Table 5-1 DB Options

Option Description

-dbHost <DBHOST> optional, name of the database host

-dbName <DBSID> optional, name of database instance

-dbPort <DBPORT> optional, port where database is accessed
-dbUser <DBUSER> mandatory, name of database user
-dbPassword <DBPASSWORD> mandatory, password for database user

DB options can get values from configuration files, in the same way as for the Inventory Builder.
See chapter 3 for details.

Table 5-2 Other Options

Option Description

-verbose causes Inventory Tree Deployer to output verbose progress information
including stack trace if an error occurs

-help outputs list of valid options and syntax information

-version outputs the version of the product

Deploy Trees
In the command to deploy one or more trees the <function> part has this form:

-deployTrees

It is possible to specify the name of a single tree definition file or the name of a directory; in the
latter case all files with .xml suffix in the directory are processed as tree definitions. The file
names are not stored in the repository. Tree definitions are identified by the tree name and,
optionally, solution name that are defined by the respective elements of the tree definition.

List Trees
In the command to list trees found in the repository the <function> part has this form:

-listTrees

No names of tree definition files can be entered for this function.

Delete Tree
In the command to delete a tree from the repository the <function> part has this form:

-deleteTree [-force] [-solution <SOLUTION>] -treeName <TREENAME>

No names of tree definition files can be entered for this function.

The -force option must be present if the specified tree contains definitions of privileges for
branches or operations.

The <SOLUTION> and <TREENAME> values are the names whereby the tree is identified in the
repository. They originate from the respective elements of the tree definition.

 Service Activator Inventory Subsystem
 5. Inventory Tree Deployer

 69

Extract Tree
In the command to extract a tree from the repository to XML format the <function> part has this
form:

-downloadTree [-solution <SOLUTION>] -treeName <TREENAME>

One file name must be given to name the target file. The options identify the tree definition in the
repository in the same way as for -deleteTree.

Set Solution Sequence Number
The sequence number of a solution, which determines the order in which trees are shown in the
tree menus of the inventory UI, is controlled by using a <function> part with the keyword
-setSolutionSequence:

-setSolutionSequence <number> -solution <SOLUTION>

The number must be greater than 0. The command will apply to all trees which belong to the
specified solution.

Service Activator Inventory Subsystem
5. Inventory Tree Deployer

70

 Service Activator Inventory Subsystem
 6. Localizing Inventory

6 Localizing Inventory
You may want to customize the labels, strings, error messages, etc., which appear on the inventory
UI, in a language different from English.

For the tree definitions which control a major part of the UI, all of these strings can be localized
using resource bundles as described in the section “Localization” in the beginning of chapter 4. In
resource definition files they are defined as values of XML elements. The elements (tags) that are
suitable for localization are listed in the beginning of chapter 2 (for resource definitions) .

Some additional items can be localized in the properties files that are generated by the Inventory
Builder in step 1 for use by the inventory UI servlet (Struts). When deployed, the properties files
for the resources belonging to your solution will be placed in the directory
$JBOSS_ACTIVATOR/WEB-INF/classes/resources/<solution-name> (see Figure 4-2).

You can prepare a localized version of each properties file with an editor. Then, using the Java
utility native2ascii, you should convert the file to an ASCII encoding and add the identification of
the local language to the file name, like this:

>native2ascii example.properties example_zh_CN.properties

When you have localized all desired property files, you can copy them to deployment directory.
See “Customizing and Adding Own Operations” in chapter 4 for a discussion of how to arrange
files for a customized inventory UI for use with the DeploymentManager.

You may also want to localize the built-in properties of the inventory UI. They are found (already
deployed) in
$JBOSS_ACTIVATOR/WEB-INF/classes/InventoryResources.properties.

Service Activator Inventory Subsystem
6. Localizing Inventory

72

	1 Introduction
	Overview of Service Activator Inventory
	Inventory Solution Development Process
	Example Data Model Used in this Manual (DocEx)

	2 Resource Definitions
	Localization
	XML Vocabulary Quick Reference
	Resource Definition Elements
	The <Bean> Element
	<Bean> audit
	<Bean> maxCount - Reservable Resource, <Bean> hideCount
	<Bean> inheritsFrom, <Bean> inheritsSolution, <Bean> <ParentFields>
	<Bean> extAttributes
	<Bean> history
	<Bean> <Name>
	<Bean> <Solution>
	<Bean> <Package>
	<Bean> <DBTable>
	<Bean> <Fields>
	<Bean> <DisplaySequence>
	<Bean> <Keys>
	<Bean> <Operations>
	<Bean> <Construction>
	<Bean> <DBInitCustomCode>
	<Bean> <GuiStorage>, <Bean> <GuiUpdate>, <Bean> <GuiDeletion>
	<Bean> <Validation>
	<Bean> <FormValidations>

	The <Field> Element
	<Field> mandatory
	<Field> hiddenView
	<Field> hiddenUpdate
	<Field> update
	<Field> hiddenCreate
	<Field> create
	<Field> sequence, <Field> sequenceStart, <Bean> <SequenceName>
	<Field> searchable
	<Field> maxCount
	<Field> dateFormat
	<Field> integerFormat
	<Field> password
	<Field> encrypt
	<Field> store, <Field> <Loader>
	<Field> <Name>
	<Field> <Column>
	<Field> <Label>
	<Field> <Type>
	<Field> <Default>
	<Field> <Description>
	<Field> <ListOfValues>
	<Field> <ShowConditions>

	The <Key> Element and findBy Methods
	<Key> pk
	<Key> unique
	<Key> makeIndex
	<Key> foreignBean, <Key> foreignSolution
	<Key> restrict
	<Key> nullOnDelete
	<Key> advancedSearch
	<Key> joinedBy, <Key> <WhereMap>
	<Key> <Name>
	<Key> <KeyField>
	<Key> <JoinBridge>, <Bean> <JoinBridges>

	The <Operations> Element
	<Operations> <Store>
	<Operations> <Update>
	<Operations> <Remove>
	<Operations> <CreatePartial>
	<Operations> <DeletePartial>
	<Operations> <FindBy> and <FindBy> <OrderField> Element and Attributes

	Reservable Resources
	Methods to Reserve Resources
	Inheriting Reservability

	Generated SQL
	findBy Where Clauses
	Table Name Aliases
	Unique and distinct findBy results

	Generated Java Bean Classes

	3 Inventory Builder
	Details for Step 1
	Details for Step 2

	4 Inventory Tree Definitions
	Inventory Tree Designer
	Localization
	XML Vocabulary Quick Reference
	General Properties of InventoryTree
	Privileges for Trees, Branches and Operations
	Case Packet
	Filter

	Branches
	Parameter Values
	Condition Expressions
	General Properties of Branch
	Determining Instances of a Branch
	Orphan’s Parent
	Child Branches

	Operations in Instance View
	General Properties of Operation
	Inventory Actions
	Workflow Actions
	Customizing and Adding Own Operations

	Operations in Class View
	Adding a Data Source for Inventory UI

	5 Inventory Tree Deployer
	Deploy Trees
	List Trees
	Delete Tree
	Extract Tree
	Set Solution Sequence Number

	6 Localizing Inventory

