
HP Service Activator

Workflows and the Workflow Manager

Edition: V62-1A

for Microsoft Windows® Server 2008 R2, HP-UX 11i v3, 
and Red Hat Enterprise Linux 6.4 operating systems
Manufacturing Part Number: None

October 17, 2013

© Copyright 2001-2013 Hewlett-Packard Development Company, L.P.



Legal Notices 
Warranty. 

Hewlett-Packard makes no warranty of any kind with regard to this document, including, 
but not limited to, the implied warranties of merchantability and fitness for a particular 
purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct, 
indirect, special, incidental or consequential damages in connection with the furnishing, 
performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be 
obtained from your local Sales and Service Office. 

Restricted Rights Legend. 

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set 
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software 
clause in DFARS 252.227-7013. 

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 
52.227-19(c)(1,2). 

Copyright Notices. 

©Copyright 2001-2013 Hewlett-Packard Development Company, L.P., all rights 
reserved.

No part of this document may be copied, reproduced, or translated to another language 
without the prior written consent of Hewlett-Packard Company. The information 
contained in this material is subject to change without notice.

Trademark Notices.

Java™ is a registered trademark of Oracle and/or its affiliates.

Linux is a U.S. registered trademark of Linus Torvalds.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc.

EnterpriseDB® is a registered trademark of EnterpriseDB.

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of the Open Group. 

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark 
holders and are hereby acknowledged.

Document id: p158-pd001509
2



Contents
1. Understanding Workflows and Workflow Manager
What Is A Workflow? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Workflow Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Understanding the Workflow Manager  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Workflow Manager Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Programming Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Creating and Deploying Workflows
Understanding Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

General Structure of Workflow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Startup Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Workflow Persistence Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Audit and Statistics Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Setting Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Workflow Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Conventions for Node and Handler Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Case-Packet Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Initial Case-Packet Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Workflow Contract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Default Case-Packet Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References to Complex Data Types in Workflow Node Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Advanced Workflow Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Spawning Child Workflows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Using Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Using Prioritization in Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Uploading Data from a Task Activation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Deploying Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Clustering Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3. Using the Workflow Designer
Navigating the Workflow Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Understanding Workflow Designer Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Using the Main Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Using the Main Utilities Toolbox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Using the Visual Properties Toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Using the Context Sensitive Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Using the Workflow Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Copying and Pasting Workflow Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Deleting Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Using the Node Tree  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Using the Overview Pane  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Using the Node Properties View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Lock / Unlock Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Using the Edit Node Properties Dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3



Contents
Using the Action Parameters Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Command Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Using Keyboard Shortcuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4. Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Default Workflow Node Persistence Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Activate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Add. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
AppendToTaskList  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
AskFor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Assign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Audit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
ChangeRoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
ComposeMessage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ConcatenateTaskLists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ConfirmResourceReservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
CreateBean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CreateInventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
CreateTaskList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
CreateUCMDBCIsAndRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
DateConverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Decrypt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DeleteCache  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DeleteInventory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
DeleteScheduledJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DeleteServiceInstance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DeleteUCMDBCIsAndRelations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DoNothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Encrypt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ExecuteMacro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
ExecSQLQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
ExecSQLStatement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
ExecuteExternal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
ForEach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
GenericUIDialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
GetBaseFileName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
GetBeansNNMNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
GetBusinessHoursAfterDuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
GetCalendarTimezone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
GetNextIncludedTime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
GetTimeRangesOfBusinessDay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
GetOperatingSystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
GreaterThan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
GreaterThanOrEqual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4



Contents
HTTPGet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
HTTPRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
InsertIntoTasklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
InvokeInventoryMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
InvokeMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
IsModuleConfigured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
IsTimeIncluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
IsTrue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
JavaRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
JavaSwitch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
KillJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
LessThan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
LessThanOrEqual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
MapData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
MatchDBQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
MatchDBStore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
MethodRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
ModifyScheduledJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
MoveFile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
MultiAssign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
NAAddConfigurationPolicy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
NAAddDevice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
NAAddDeviceGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
NAAddDeviceToGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
NAAddRuleToPolicy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
NABuildConditionList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
NABuildRuleList  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
NADeleteDeviceGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
NADeletePolicy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
NAGetSnapshot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
NAListConfigId. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
NAListDevice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
NAModifyConditionsOnRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
NARemoveDeviceFromGroup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
NARemoveRuleFromPolicy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
NARunAdvancedScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
NARunCommandScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
NARunScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
NAShowConfig  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
NAShowDiagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
NAShowTask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
PAYG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
5



Contents
PatternMatch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
PPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
PutMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
QueryInventory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
QueryScheduledJob  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
QueryServiceInstance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
QueryServiceInstanceAll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
QueryUCMDBCIsAndRelations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
RandomInteger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
ReadData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
ReadDataFromDatabase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
ReadFile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
RediscoverHostsNNMNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
ReleaseResource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
RemoveData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
RemoveFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Replace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
ReserveResource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
RetrieveSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
ScheduleCurrentJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
ScheduleJob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
SendAlarm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
SendMessage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
SendSNMPTrap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Sleep  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
StartJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
StartJobAndWait  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Switch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Sync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
ThrowError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
ThrowException  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
ThrowRuntimeException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
TransformXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
UpdateBean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
UpdateCustomAttributesNNMNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
UpdateInProgress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
UpdateInventory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
UpdateServiceInstance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
UpdateUCMDBCIsAndRelations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
VariableMapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
WasPreviousNodeOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
WriteCasePacket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
WriteDataToDatabase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
XMLMapper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
XMLParser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6



Contents
ComposeMessageHandler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
MultiAssignHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
DoNothingHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
PutMessageHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
ReleaseResourceHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
SendMessageHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
SyncHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
VariableMapperHandler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

5. Configuring the Workflow Manager
Setting the Workflow Manager Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Understanding Workflow Manager Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Required and Typical Workflow Manager Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

6. Workflow Manager Module Library
Using the Workflow Manager Module Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
ActivationModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
AuditModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
BusinessCalendarModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
CacheModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
CasePacketDistModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
CheckTimeModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
DatabaseAdvancedAuthModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
DBTransactionModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
HPUXAdvancedAuthModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
HTTPRenderer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
HTTPSenderModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
JMSListenerModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
JMSSenderModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
JNDIDatabaseModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
KeepAliveModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
LDAPAuthModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
LinuxAdvancedAuthModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
LoadFactorDistModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
LogSearchModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
MailHook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
NARequestModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
NNMRequestModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
OVOMessageModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
QueueDistModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
RoundRobinDistModule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
SchedulerModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
SelfMonitoringModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
SNMPSenderModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
SocketListenerModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
7



Contents
SocketSenderModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
SolutionXMLLogModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
SyncModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
UCMDBRequest Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
UsageMonitoringModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
WindowsAdvancedAuthModule  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
WorkManagerModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
XMLLogModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

7. Writing Custom Workflow Nodes
Understanding Workflow Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Accessing Workflow Manager Capabilities: WFContext & WFManager  . . . . . . . . . . . . . . . . . . . . . 439
Example Source Code for Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Writing Custom Process Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Writing Custom Rule Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Writing Custom Switch Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Writing Error and End Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Deploying Workflow Nodes and Handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Using Custom Nodes and Handlers in Designer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

8. Writing New Workflow Modules
Writing New Workflow Manager Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Example Source Code for Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Implementation of Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
Master-Slave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Writing New Authenticator Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Writing New Queue Hook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Writing New Sender Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Writing New Message Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

Deploying Workflow Manager Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

9. Writing Workflow Manager Clients
Writing Workflow Manager External Interface Clients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Creating a Workflow Manager Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

A. Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Using SSL with Service Activator: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Preparing to Use SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Getting Organized  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Configuring Service Activator to Use SSL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Understanding the Required Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Configuring JSSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Preparing to Load the Certificate Keystore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Managing Keys and Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Configuring SSL for HTTPS (Operator UI)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
8



Contents
Step 1: Loading the Server Keystore (Operator UI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Step 2: Modifying the JBoss Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Step 3: Starting Service Activator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

Configuring SSL for Secure Message Transmission (Workflow Manager) . . . . . . . . . . . . . . . . . . . . . . 480
Step 1: Loading the Server Keystore (Workflow Manager)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Step 2: Modifying the Workflow Manager Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Step 3: Restarting the HP Service Activator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Finding Additional Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

B. mwfmtool
mwfmtool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

C. Creating Additional Data Source
9



Contents
10



In This Guide
This guide describes the HP Service Activator Workflow Manager and the workflows 
required to use Service Activator. 

Audience The audience for this guide is the Solutions Integrator (SI). The SI has a combination of 
some or all of the following capabilities:

• Understands and has a solid working knowledge of:

— UNIX® commands

— Windows® system administration

• Understands networking concepts and language

• Is able to program in Java™ and XML

• Understands security issues

• Understands the customer’s problem domain
 11



12



Conventions
The following typographical conventions are used in this guide.

Font What the Font 
Represents Example

Italic Book or manual 
titles, and manpage 
names

Refer to the HP Service Activator — Workflows 
and the Micro-Workflow Manager and the 
Javadocs manpage for more information.

Provides emphasis You must follow these steps.

Specifies a variable 
that you must supply 
when entering a 
command

Run the command: 

InventoryBuilder <sourceFiles>

Parameters to a 
method

The assigned_criteria parameter returns an 
ACSE response.

Bold New terms The distinguishing attribute of this class...

Computer Text and items on the 
computer screen

The system replies: Press Enter

Command names Use the InventoryBuilder command ...

Method names The get_all_replies() method does the 
following...

File and directory 
names

Edit the file 
$ACTIVATOR_ETC/config/mwfm.xml

Process names Check to see if mwfm is running.

Window/dialog box 
names

In the Test and Track dialog...

XML tag references Use the <DBTable> tag to...

Computer 
Bold

Text that you must 
type

At the prompt, type: ls -l

Keycap Keyboard keys Press Return. 

[Button] Buttons on the user 
interface

Click [Delete]. 

Click the [Apply] button.
 9



Menu 
Items

A menu name 
followed by a colon (:) 
means that you select 
the menu, then the 
item. When the item 
is followed by an 
arrow (->), a 
cascading menu 
follows.

Select Locate:Objects->by Comment

Font What the Font 
Represents Example
10



Install Location Descriptors
The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents

$ACTIVATOR 
$ACTIVATOR_OPT

The base install location of Service Activator.
The UNIX location is /opt/OV/ServiceActivator
The Windows location is 
<install drive>:\HP\OpenView\ServiceActivator\

$ACTIVATOR_ETC The install location of specific Service Activator files. 
The UNIX location is /etc/opt/OV/ServiceActivator
The Windows location is 
<install drive>:\HP\OpenView\ServiceActivator\etc\

$ACTIVATOR_VAR The install location of specific Service Activator files. 
The UNIX location is /var/opt/OV/ServiceActivator
The Windows location is 
<install drive>:\HP\OpenView\ServiceActivator\var\

$ACTIVATOR_BIN The install location of specific Service Activator files. 
The UNIX location is /opt/OV/ServiceActivator/bin
The Windows location is 
<install drive>:\HP\OpenView\ServiceActivator\bin\

$JBOSS_HOME The install location for JBoss.
The UNIX location is
/opt/HP/jboss
The Windows location is
<install drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.
The UNIX location is
/opt/HP/jboss/standalone/deployments
The Windows location is
<install drive>:\HP\jboss\standalone\deployments

$JBOSS_EAR_LIB The location for libraries (Java *.jar files) to be executed by the HPSA 
engine (workflow manager and resource manager).
The UNIX location is
/opt/HP/jboss/standalone/deployments/hpsa.ear/lib
The Windows location is
<install drive>:\HP\jboss\standalone\deployments\hpsa.ear\lib

$ACTIVATOR_DB_USER The database user name you define. 
Suggestion: ovactivator

$ACTIVATOR_SSH_USER The Secure Shell user name you define. 
Suggestion: ovactusr
 11



12



1 Understanding Workflows and 
Workflow Manager
Chapter 1 17



Understanding Workflows and Workflow Manager
What Is A Workflow?
What Is A Workflow?
A workflow generally represents some business process or activation process that is 
being automated. In a workflow, the process is broken down into discrete steps called 
nodes. The workflow executes these nodes in the proper sequence and allows conditional 
branching within the process.

Business processing steps that you can automate using workflow nodes include activities 
such as: 

• Extracting data from an incoming XML message.

• Calculating derived parameters.

• Requesting and updating data from external repositories such as an inventory 
database.

• Sending messages to external processes.

• Waiting for input from a human operator or external process.

• Activation—performing hardware or software configuration according to gathered 
parameters.

A workflow always has a collection of variables called the case-packet. The case-packet 
maintains the state of the workflow. The nodes in the workflow examine and may update 
the values in the case-packet.

Since a workflow sounds very similar to a computer program, you may wonder why you 
might choose to write a workflow rather than encoding your business process in another 
programming language or scripting language. You should keep in mind that workflows 
generally represent potentially long running business processes. The business process 
must continue across stops and restarts of a machine. To this end, the Workflow 
Manager is able to make the state of a running job persistent and to resume the job at 
any point. Additionally, these jobs may require external interaction (with a user, for 
example) that may not happen in a predetermined amount of time. Workflows are 
capable of posting a request for input and then effectively removing themselves from 
active processing until the external process (or user) sends the needed input.

Workflow Nodes

A workflow consists of a sequence of workflow nodes. Workflow nodes, which are 
implemented by Java classes, provide the operational logic that allows Service Activator 
to interact with many sources of information and perform various tasks. 

There are tree categories of nodes:

• Process nodes, which perform some tasks and typically change the state of the 
workflow case-packet.

• Rule nodes, which perform a simple test that causes a branch in the workflow.

• Switch nodes, which select one of multiple branches based on a simple test

Most business process and activation tasks can be accomplished using the process, rule, 
and switch nodes from the library provided with Service Activator. However, it is 
possible to implement your own nodes to perform complex business logic or to interact 
with a different information source. 
Chapter 118



Understanding Workflows and Workflow Manager
What Is A Workflow?
For more information on workflow nodes, see Chapter 4, “Workflow Node and Handler 
Library,” on page 87. To create your own nodes, see Chapter 7, “Writing Custom 
Workflow Nodes,” on page 437.
Chapter 1 19



Understanding Workflows and Workflow Manager
Understanding the Workflow Manager
Understanding the Workflow Manager
The Workflow Manager, is a program that provides the ability to run multiple— even 
thousands of—simultaneous workflows. As mentioned earlier, the Workflow Manager 
maintains the state of all running workflows and takes care of the processing necessary 
to enable the workflows to be restarted should the Workflow Manager be shutdown 
(gracefully or catastrophically).

The open architecture of the Workflow Manager allows extension of this engine in two 
ways:

• To allow communication with external systems using mechanisms other than those 
provided with Service Activator. This is done via configurable Workflow Manager 
modules.

• To specify custom functionality for applying business logic to steps in the activation 
process. This is done by writing new workflow nodes.

You can configure the Workflow Manager using specific parameters or by adding and 
configuring Workflow Manager modules. All of this configuration takes place in the file 
$ACTIVATOR_ETC/config/mwfm.xml. When the product is first installed, the Workflow 
Manager is given an initial configuration that will be appropriate during development 
and in some customer installations. For most customer installations, additional 
configuration will be necessary. For details see Chapter 5, “Configuring the Workflow 
Manager,” on page 343.

Workflow Manager Modules

Workflow Manager modules are Java classes that provide communication between 
external processes and systems and the Workflow Manager. These modules provide 
functionality such as:

• Authenticating users.

• Receiving and sending XML documents (via sockets or on a bus, for example).

• Providing access to a database.

• Monitoring the Workflow Manager and making those statistics available externally.

• Sending messages to HP OpenView Operations (OVO).

• Sending e-mail.

• Logging actions that the Workflow Manager performs.

• Gaining access to the activation engine, which is a separate piece in the Service 
Activator architecture.

You can also implement new Workflow Manager modules to extend the reach of Service 
Activator. For example, you might want to provide an interface between the Workflow 
Manager and a new communication bus.

Modules must be configured before they can be used by the Workflow Manager. Some 
modules must also be configured to work properly in the environment (the 
DatabaseModule, for example, must identify the proper database with which to 
communicate). 
Chapter 120



Understanding Workflows and Workflow Manager
Understanding the Workflow Manager
See “Understanding Workflow Manager Modules” on page 348 for general information 
about modules. For more information on the Workflow Manager modules provided with 
Service Activator, see “Using the Workflow Manager Module Library” on page 354. To 
create your own modules, see Chapter 8, “Writing New Workflow Modules,” on page 451.
Chapter 1 21



Understanding Workflows and Workflow Manager
Programming Analogy
Programming Analogy
A programming analogy is helpful for understanding the Workflow Manager and 
workflows:

• The Workflow Manager is analogous to an operating system (OS). It runs as a JBoss 
service inside JBoss.

• A workflow is analogous to an interpreted, executable program. A workflow can be 
depicted like a flowchart. A workflow exists on disk as an XML file when usedby the 
Workflow Designer, but in the database when the workflow is deployed

• A running workflow (a job) is analogous to a process within the OS.

• Nodes are analogous to a library of procedures that can be called from the workflow. 
Nodes can be depicted as steps in the flowchart. A node can be configured to behave 
in a certain way within each workflow and can be used multiple times within the 
same workflow (and differently each time).

• A case-packet is analogous to a set of global variables. All of the variables in the 
case-packet are accessible (readable and writable) by all of the nodes in the workflow.

• Modules are analogous to device drivers in that a driver usually adheres to an 
abstract interface but has a concrete implementation that knows how to 
communicate with a specific outside entity.
Chapter 122



2 Creating and Deploying Workflows

This chapter describes the structure of a workflow definition and explains how 
workflows are deployed in a Service Activator installation.
Chapter 2 23



Creating and Deploying Workflows
Understanding Workflows
Understanding Workflows
Everything about a workflow is defined within the XML file. Because a workflow is fully 
defined in an XML file, you can create a workflow using your favorite text editor. 
However, there is a graphical tool that greatly simplifies the process of writing 
workflows. The Workflow Designer tool is described in Chapter 3, “Using the Workflow 
Designer,” on page 57.

The rest of this chapter describes the XML structure of a workflow.

General Structure of Workflow

A workflow definition includes the following parts:

• The name of the workflow.

• The name of the solution the workflow belongs to (optional).

• A description of the workflow (optional).

• Role settings for who may perform various actions with respect to this workflow 
(optional).

• Which node in the workflow to start with.

• The collection of nodes in the workflow.

• Error handlers indicating what to do in the case of an exception being raised during 
the processing of the workflow (optional).

• End handlers indicating what to do at the end of the workflow (optional).

• The collection of case packet variables.

• The initial case packet values (optional).

• Graphical layout details (optional).

• The workflow contract

To take full advantage of solution separation then the workflow should include the 
solution name. For more details see the document “Solution Separation and the 
Deployment Manager”.

See the workflow.dtd file (in $ACTIVATOR_ETC/workflows/) for details about the exact 
ordering of all possible tags. A general XML workflow structure looks similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Workflow SYSTEM "workflow.dtd">
<Workflow>

<Name>ExampleWorkflow</Name>
<Solution>Example</Solution>
<Description>Example showing the structure of a workflow</Description>
<Default-Role>operator</Default-Role>
<Start-Node>Initial node</Start-Node>
<Nodes>
. . .
</Nodes>
<Case-Packet>
. . .
Chapter 224



Creating and Deploying Workflows
Understanding Workflows
</Case-Packet>
<Initial-Case-Packet>
. . .
</Initial-Case-Packet>

</Workflow>

NOTE If you create a workflow in a text editor, your workflow will not include any graphical 
layout information. Once the workflow has been edited in the Workflow Designer, the 
workflow will include graphical layout details at the end of the workflow. These can 
usually be ignored when editing manually. However, if you delete nodes or change their 
names, the layout details will become inconsistent with the rest of the workflow, and you 
may need to completely delete the layout details before the workflow can again be edited 
with the Workflow Designer.

Startup Attributes 

There are two optional startup attributes that you can set as part of the <Workflow> tag. 
They are:

• Init-On-Startup. When set to “true,” it starts the workflow automatically (without 
user intervention) when the Workflow Manager starts. The default is “false”. 

• Unique. When set to “true”, it restricts the use of the workflow to one instance at a 
time. The default is “false”.

To set both of these attributes to “true,” use the following structure in the <Workflow> 
tag: 

<Workflow Init-On-Startup="true" Unique="true">

NOTE Although you can set these attributes individually, it is best to use the Unique attribute 
(set to “true”) whenever you set the Init-On-Startup to “true.” Otherwise, if the 
Workflow Manager shuts down unexpectedly, another workflow of the same type is 
launched when the system restarts. Set the Unique option to “true” to prevent more 
than one instance of a workflow when the Init-On-Startup attribute is set to “true.”

Workflow Persistence Attribute

The disablePersistence attribute indicates if persistence of the workflow should be done. 
If disablePersistence is set to true the worklow will not be stored during its execution, 
which means that if Service Activator is stopped while the workflow is running it will 
not be started again when Service Activator is restarted. This will also be the case even 
if the transaction module is confiugred. The default value is “false”.

Here is an example of how the the attribute is used:

<Workflow disablePersistence="false">
Chapter 2 25



Creating and Deploying Workflows
Understanding Workflows
Audit and Statistics Attributes

There are three optional attributes which control collecting additional data for a 
workflow. They can be set as part of the <Workflow> tag. Below are the three attributes:

• auditEnabled. If this attribute is set to “false”, audit records are not collected for the 
workflow. The default value is “true”.

• autoAuditEnabled. Set this attribute to “false”, if you do not want to collect 
automatically generated audit.

• statEnabled. If this attribute is set to “false”, statistical records are not collected for 
the workflow. The default value is “true”.

Here is an example of how the three attributes are used:

<Workflow auditEnabled=”false” autoAuditEnabled=”true” statEnabled=”true”>
Chapter 226



Creating and Deploying Workflows
Understanding Workflows
Setting Roles

Roles specify who can perform a given operation or interact with a workflow.

The following roles can be specified for the entire workflow:

• Default role (<Default-Role>...</Default-Role>). Indicates who is allowed to 
perform the Start/Trace/Kill functions if not otherwise specified. It also indicates 
who can interact with the workflow or see messages from the workflow. See the 
AskFor and PutMessage nodes for more description of how roles affect these nodes.

• Start role (<Start-Role>...</Start-Role>). Indicates who is allowed to start this 
workflow. Anyone in the given role can start the workflow. If this is not specified, this 
takes the value of the <Default-Role>. This only applies when someone tries to 
start the workflow from the command line or from the operator UI.

• Trace role (<Trace-Role>...</Trace-Role>). Indicates who is allowed to view the 
current state of the workflow. If this is not specified, it takes the value of the 
<Default-Role>.

• Kill role (<Kill-Role>...</Kill-Role>). Indicates who is allowed to kill this 
workflow. If this is not specified, it takes the value of the <Trace-Role>.

You can also specify a role in an individual node to indicate which users are allowed to 
interact with or receive a message from that node. This node setting overrides the 
Default-Role that is set in the workflow heading. Generally this is only appropriate for 
those nodes that perform an interactive task such as AskFor or PutMessage. The syntax 
for this node setting is described in “Process Nodes” on page 29.

Roles are statically set in the workflow, but can be changed dynamically on individual 
jobs either from the ChangeRoles node or from the UI as administrator.

NOTE Service Activator also provides the ability to do advanced role mapping, making it 
possible to write a workflow in a generic way using logical or virtual role names. These 
generic names can then be mapped to the real roles or groups that are meaningful in the 
customer’s environment. See the following sections for more information on roles:

• “Authentication” on page 349.

• “Roles, Privileges and Authentication” in HP Service Activator System Integrator’s 
Overview.

NOTE To stop a job from the Operator UI, the user must be assigned to both the Trace-Role and 
the Kill-Role.
Chapter 2 27



Creating and Deploying Workflows
Understanding Workflows
Workflow Nodes

Workflow nodes carry out the work of a workflow. You should notice that a node always 
has a <Name> and an <Action>. The <Name>, which is unique within the workflow, is 
simply the handle to this node within the workflow. The <Action> is what defines the 
behavior of the step in the workflow. 

A workflow node has one optional attribute disablePersistence. If this attribute is set to 
“true” no persistence will be done after the processing of the node. The default is 
“false”. If persistence is done a boble will be displayed in the upper left corner of the 
icon of the node in the Workflow Designer.

Here is an example of how the the attribute is used:

<Rule-Node disablePersistence="true">

All nodes delivered with Service Activator are configured with a default behaviour. The 
general behavior of Process Nodes is to persist where the Rule and Switch Nodes do not 
persist. A table about which nodes persist can be found in a table before the description 
of each node.

The general behavior of the node is indicated by the <Action><Class-Name> tag. This 
indicates a Java class that implements the behavior of the node. Although each node has 
a general behavior, it must usually be configured for the specific behavior that should 
occur at a given step in the workflow. This specific behavior is specified in the 
parameters of the action. Each parameter has a name and a value. For example, a 
parameter with the name “task” is used by the Activate node. The value of the task 
parameter is the name of the atomic or compound task to be activated. Each node class 
supports a different set of parameters. These parameters are described in detail in 
Chapter 4, “Workflow Node and Handler Library,” on page 87.

There are tree categories of nodes:

• Process nodes perform activities such as querying the inventory, asking a human 
operator for information, invoking the activation of a compound task, and so on. 
They are represented as rectangles in the Workflow Designer.

• Rule nodes are the decision nodes that branch the workflow depending on given 
conditions. For example, if a given condition is true, the workflow branches one 
direction; if false, it branches a different direction. Rule nodes are depicted as 
diamonds in the Workflow Designer.

• Switch nodes are very similar to Rule nodes. A switch node can have multiple 
branches but requires at least a default branch. The switch node evaluates its 
expression and executes the appropriate case where case is the same as a branch. 
For example, if a given expression evaluates to 5, the workflow select the case with 
the value 5; if a case cannot be found the default branch is selected. Switch nodes are 
depicted as parallelograms in the Workflow Designer.
Chapter 228



Creating and Deploying Workflows
Understanding Workflows
Process Nodes

The general structure of a Process Node definition in a workflow looks like this:

<Process-Node>

<Name>Create a new directory</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.engine.component.builtin.Activate

</Class-Name>
 <Param name="task" value="UXOS_addDir"/>
 <Param name="param0" value="machine"/>
 <Param name="param1" value="dirname"/>
 <Param name="param2" value="login"/>
 <Param name="param3" value="constant:users"/>
 <Param name="param4" value="constant:775"/>
 <Param name="param5" value="tarfile"/>
</Action>

</Process-Node>

Process nodes optionally have a <Role>, <State>, and a <Next-Node> tag. The role 
indicates which user or users can interact with the node or receive messages from the 
node. The role of a node overrides the Default-Role setting in the workflow. Setting the 
role of a node is only meaningful if the node performs some user interaction or sends a 
message. The state of a node is a value that can be used to group a set of workflow nodes 
into coarse-grained states. The <Next-Node> tag indicates which node in the workflow 
will be processed after this one. If no <Next-Node> tag is present, then this node 
represents an end node of the workflow.

Inactive Process Nodes  

Without changing the structure of a workflow you can tell the Workflow Manager to skip 
over individual process nodes in the workflow. This may be helpful during development 
when testing your workflows. It may also be helpful after development is completed and 
you want to eliminate some processing from the workflow that is not necessary when the 
workflow is running in a production environment. The syntax for this is:

<Process-Node inactive=”true”>

This can be accomplished in the Workflow Designer, by setting the Inactive Node flag in 
the context sensitive pop-up menu associated with a node.

Test Process Nodes  

Very similar to Inactive Procccess Nodes. The difference is that the process node is 
skipped if the parameter Test-Mode is set to false in the mwfm.xml configuration file and 
executed if set to true. The syntax for this is:

<Process-Node test=”true”>

This can be accomplished in the Workflow Designer, by setting the Test Node flag in the 
context sensitive pop-up menu associated with a node.
Chapter 2 29



Creating and Deploying Workflows
Understanding Workflows
Rule Nodes

The general structure of a Rule Node definition in a workflow looks like this:

<Rule-Node disablePersistence="true">

<Name>CheckSuccess</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Equal

</Class-Name>
<Param name="op0" value="RET_VALUE”/>
<Param name="op1" value="constant:0"/>

</Action>
<True-Next-Node>CheckSuccess</True-Next-Node>
<False-Next-Node>CheckSuccess</False-Next-Node>

</Rule-Node>

The structure of a Rule Node is similar to a Process Node. The distinction is that a Rule 
Node must have a <True-Next-Node> and a <False-Next-Node> to indicate which node 
should be processed next in the flow depending on the outcome of the test.

Rule nodes may not have a <Role> tag. 

Switch Nodes

The general structure of a SwitchNode definition in a workflow looks like this:

<Rule-Node disablePersistence="true">

<Name>CheckSwitch</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SwitchCase

</Class-Name>
<Param name="key" value="value"/>
<Param name="case0" value="constant:red"/>
<Param name="case1" value="constant:green"/>

</Action>
<Switch name="case0">PutMessage1</Switch>
<Switch name="case1">PutMessage2</Switch>
<Default>PutMessage3</Default>

</Rule-Node>

The structure of a SwitchNode is similar to a Process Node. The distinction is that a 
Switch Node must have a <Default> tag and a optional number of <Switch> tag to 
indicate which node should be processed next in the flow depending on the outcome of 
the test.

Switch nodes may not have a <Role> tag. 
Chapter 230



Creating and Deploying Workflows
Understanding Workflows
Handlers

These workflow elements run at the completion of a workflow before a running job is 
removed from the system. These are similar to nodes in a workflow, but do not appear in 
the standard flow of a workflow. A workflow may have both end and error handlers. 

No matter what causes a workflow to end, whether it completes normally or with an 
error, the end handlers (if one is declared) are executed in the sequence they are defined. 
In addition, if error handlers are declared, and an exception is raised during workflow 
processing, the error handlers are executed in the sequence they are defined before the 
end handlers are executed.

• Error handlers are invoked when a workflow process causes an exception and ends 
the workflow.

• End handlers are invoked when the workflow finishes, typically to release 
resources the workflow might have acquired.

Handlers do not appear as icons in the Workflow Designers Drawing View, since they do 
not happen with the general flow of the workflow. The error and end handlers are 
displayed in the Workflow Designers Handler View as two sequence of icons.

It is possible to define a sequence of error handlers to be executed and the same for end 
handlers, but the intention is not to move the workflow logic from the workflow to the 
handler part. The handler must only be used for typically end activites and it is not 
possible to make any loops or branches. 

The general structure of a handler declaration is similar to a node declaration, but it has 
some distinctive features:

<Error-Handler>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.ReleaseResourcHandler
</Class-Name>
<Param name="variable0" value=”dbServer”/>
<Param name="variable1" value=”ipaddr”/>

</Error-Handler>

Notice that the <Class-Name> and <Param> declarations do not appear inside of an 
<Action> declaration.
Chapter 2 31



Creating and Deploying Workflows
Understanding Workflows
Conventions for Node and Handler Parameters

All workflow nodes and handlers are configured to perform some specific behavior by 
setting their parameters. A parameter consists of a name and a value. Each node has a 
unique set of parameters that it responds to, and the node interprets those parameters 
appropriately to the behavior that it encapsulates.

The following list describes some of the different conventions used that allow nodes to 
make use of these parameter name/value pairs: 

• Some parameters always take a constant value. For example, the ExecSQLQuery 
node takes a parameter that indicates the query which should be performed against 
the database. The parameter name is query. 

• Some parameters indicate the name of a case-packet variable that the node should 
use for a specific purpose. For example, the ReadFile node takes a parameter with 
the name destination and a value that is the name of a case-packet variable in 
which the node should store the contents of the file that it reads. 

• Some parameters allow either a variable name or a constant value. In this case, a 
special syntax is needed to distinguish between the two. The parameter typically has 
a default, but the alternative must be indicated by a prefix. Some parameters expect 
a variable name; if a constant is to be specified, the value is preceded by the 
“constant:” prefix. Some parameters expect a constant value; if a variable name is to 
be specified, the value is preceded by the “variable:” prefix. 

For example, the Sleep node has a parameter to indicate the amount of time to 
sleep. The name of this parameter is time. The node expects the value to indicate the 
name of a case-packet variable that contains the number of milliseconds to sleep, but 
the value can also be specified as constant:10000 to indicate that the node should 
sleep for 10 seconds.

NOTE The node descriptor files indicate the convention expected for each parameter; thus, 
the Workflow Designer will usually take care to prepend the appropriate prefix.

• Some parameters are Boolean in nature, meaning that the value of the parameter is 
either “true” or “false.” For example, the ExecuteExternal node takes a parameter 
with the name wait and a value of “true” to indicate the node should wait until the 
process ends before the workflow proceeds to the next node. 

• Some parameters are processed as a group with a related purpose. In this case, the 
parameter names start with a fixed string and have a number appended. For 
example, the Add node takes a list of parameters that are added together. In this 
case, the parameter names start with the string op (for operand). Any number of 
parameters can be specified, beginning with op0 and incrementing from there (op0, 
op1, op2, and so on). The actual order that these parameters appear in the node 
definition does not matter, they are processed in their numeric order.

• Some parameters use a convention that is a reversal of the previous conventions. In 
this case, the parameter name is not fixed, but rather is the name of a case-packet 
variable. The value of the parameter indicates how to set the value of the specified 
case-packet variable. For example, the ExecSQLQuery node performs an SQL query 
and can set the value of case-packet variables according to the fetched columns. In 
this case a parameter name might be specified as customer_name and the parameter 
value might be col0. This indicates that the case-packet variable customer_name 
should get the value of the first column fetched from the query. 
Chapter 232



Creating and Deploying Workflows
Understanding Workflows
Case-Packet Variables

Every workflow has a case-packet. A case-packet is a collection of variables that are 
global to the entire workflow, meaning that each node within the workflow has access to 
the complete case-packet. The nodes can get and set the value of any case-packet 
variable. 

Each variable in the case-packet has a type. The types supported are:

String
Boolean
Integer - (internally a Long value)
Float - (internally a Double value)
Object - (for example, java bean, Array, Map)

Most of the nodes provided with Service Activator can only interact with variables of 
type String, Boolean, Integer, and Float. A few nodes can operate on variables of type 
Object. The nodes ReserveResource, ReleaseResource, and QueryInventory treat the 
Objects as JavaBeans; that is, they must be classes that adhere to the conventions for 
JavaBeans. Other Service Activator nodes that can support the variable of type Object 
are UpdateServiceInstance, QueryServiceInstance, QueryServiceInstanceAll, 
MatchDBQuery, and MatchDBStore. These nodes are not aware of the actual type of 
variable used because they merely serialize and unserialize the variables to store them 
to and read them from a database. If you use the variable type Object in your custom 
nodes, carefully determine the actual type of the value of the variable and use it 
appropriately.

Case-packet variable declarations appear in the <Case-Packet> section of a workflow. 
Each variable declaration specifies the name and type of the variable. It looks like this:

<Variable name=”service” type=”String”/>

NOTE By convention your case-packet variables should not be named in all capital letters, since 
this is the convention that is used for the standard variables that are automatically 
included in the case-packet (see “Default Case-Packet Variables” on page 34).

Initial Case-Packet Values

Each case-packet variable is initialized to a specific value. This value may be a default 
value, or it may be explicitly stated in the workflow specification. The default values are: 

String  an empty string 
Boolean false 
Integer 0 
Float  0.0
Object null

You can explicitly specify an initial value for any case-packet variable (except for those of 
type Object). These declarations are in the <Initial-Case-Packet> section that 
immediately follows the <Case-Packet> section. Each specification of an initial value 
looks like this:

<Variable-Value name=”stdNewUserPassword” value=”ChangeMe”/>
Chapter 2 33



Creating and Deploying Workflows
Understanding Workflows
Workflow Contract

A Workflow Contract is used to define input and output parameters for a given workflow. 
Input parameters consist of zero or more mandatory parameters follow by zero of more 
optional parameters. 

If a workflow is started without providing all the mandatory input parameters an 
exception is thrown and the workflow is not started.

Only the defined output parameters will be returned when in the returned hashmap.

Default Case-Packet Variables

Every workflow has a set of standard variables that are automatically included in the 
case-packet, whether they are declared or not. This table lists the set of default variables 
for workflows. Notice that all of these variables are, by convention, specified in all capital 
letters.

Table 2-1 Default Case-Packet Variables

Name Type Description

RET_VALUE Integer RET_VALUE is a default case-packet variable, which 
is updated after each node execution. Each node 
has an internal attribute called ret_value, which 
can be changed at runtime. After node execution, 
the Workflow Manager automatically updates the 
system case-packet variable RET_VALUE 
accordingly. Because RET_VALUE is set after each 
node execution, a check of the node success or 
failure must be done in the next node. If the 
RET_VALUE has the value 0, then the node was 
executed correctly. If the value is -1 then an 
internal exception was handled by the framework. 
Any other value is node specific. It is highly 
recommended to use the WasPreviousNodeOk node 
to verify whether or not a node was successful.

RET_TEXT String If the RET_VALUE system case-packet variable is 
not equal to 0, then the RET_TEXT system 
case-packet variable holds a description of the 
failure or the exception returned from the previous 
node. As for the RET_VALUE, all nodes have an 
internal attribute ret_text, which controls the 
content of the variable. It is possible to use the 
WasPreviousNodeOk node to save this information 
in another case-packet variable for later use or 
presentation.

EX_STEP_NAME String After execution of a workflow node the 
EX_STEP_NAME case-packet variable is set in 
case the node execution fails. The value is set to the 
step name of the node which failed. The 
information can then be used in an error handler to 
better determ what to do.
Chapter 234



Creating and Deploying Workflows
Understanding Workflows
JOB_ID Integer Unique identifier for each running job. You cannot 
modify this value from within a node.

STEP_NAME String Unique name of the node currently being 
processed. You cannot modify this value from 
within a node.

HOST_NAME String The name of the host where the job is running. You 
cannot modify this value from within a node.

WORKFLOW_NAME String The name of the workflow the job is running. You 
cannot modify this value from within a node.

WORKFLOW_VERS
ION

Integer The workflow version. You cannot modify this 
value from within a node.

SOLUTION_NAME String The Solution Name of the workflow. You cannot 
modify this value from within a node.

SUBSTEP String This variable is not suitable for access by workflow 
writers.  It is useful in rare cases by writers of 
custom workflow nodes.  Workflow nodes can use 
this to record an indication about partial 
processing that they have done for a node prior to 
full completion of the node.  This variable is 
accessed via the WFContext.getSubstep() and 
WFContext.setSubstep() methods.  The setter 
method ensures that the case-packet gets persisted 
when this value is set.

The Activate node and the AskFor node are the 
only nodes that currently use this variable. They 
use this to resume a workflow safely.  If an 
activation is in the middle of execution when the 
workflow engine is killed (not safely), the workflow 
engine will resume the workflow and try to 
re-execute the current node.  This would mean that 
the activation is tried again but this could be 
catastrophic if the activation is partially 
completed.  To avoid this the Activate node uses the 
SUBSTEP variable to record the fact that the 
activation has actually been initiated.  If the node 
is executed again and the SUBSTEP indicates this, 
the activation will not be retried, and the node will 
fail (activation_major_code=1, 
activation_minor_code=2...that is, 
ERROR/INCONSISTENT). For the AskFor node the 
input parameters provided to the workflow are 
saved before the node continuous its work.

Table 2-1 Default Case-Packet Variables (Continued)

Name Type Description
Chapter 2 35



Creating and Deploying Workflows
Understanding Workflows
START_TIME Integer Universal time coordinates (UTC) time when the 
the flow began. This value is maintained in the 
case of failures and cannot be modified from within 
a node. 

TIMEOUT Boolean If true, indicates that a timeout occurred in a 
previous node (such as AskFor) while waiting for 
interaction.

PRIORITY Integer The priority with which workflows are processed is 
based on the value of this variable when the 
PriorityEngineQueue or WeightedEngineQueue is 
configured in the WorkManagerModule (page 433). 
This variable is used by e.g. the ActivationModule 
(page 355) to determine the order in which items 
on the queue are processed.

DEFAULT_ROLE String The workflow’s default role.

KILL_ROLE String The workflow’s kill role.

TRACE_ROLE String The workflow’s trace role

START_ROLE String The workflow’s start role

Table 2-1 Default Case-Packet Variables (Continued)

Name Type Description
Chapter 236



Creating and Deploying Workflows
Understanding Workflows
STATUS String Indicates the state of the workflow. This state 
variable is set internally by the Workflow Manager, 
so it cannot be changed by nodes. Valid status for a 
workflow includes: 

Initted. The workflow has just been started. 

Recovered. The workflow has just been recovered 
after a system shut down.

Running. The workflow is currently running code 
within a node.

Transit. The workflow is moving from one node to 
the next one.

Handling Error. An unexpected, uncaught 
exception was thrown from within a workflow 
node, and the error handler is currently running.

Waiting. The workflow is blocked in a node waiting 
for some input from a request queue.

Awakened. The workflow has just been awakened, 
unblocking it from the queue on which it was 
waiting.

Finishing. The end handler for this workflow is 
currently being run.

ETC String The full path to the $ACTIVATOR_ETC directory.

VAR String The full path to the $ACTIVATOR_VAR directory.

FILE_URL_PREF
IX

String This variable can be used to in conjunction with 
other system case-packet variables to construct a 
system independent file url. On unix the value is 
file:// and on windows file:///.

SOLUTION_ETC String The full path to the solution/etc directory.

SOLUTION_VAR String The full path to the solution/var directory.

UNIQUE_WORKFL
OW

Integer Indicateds if the workflow is unique or not.

Table 2-1 Default Case-Packet Variables (Continued)

Name Type Description
Chapter 2 37



Creating and Deploying Workflows
Understanding Workflows
SERVICE_ID String The Service Id of the workflow. This varibale can be 
used to correlate a number of jobs to the same 
service. This varible must be set by the workflow to 
get a value. Per default it is empty. The varible is 
shown on the UI in a number of views e.g. the job 
view.

WORKFLOW_
ORDER_ID

String The Order Id of the workflow. This varibale can be 
used to correlate a number of jobs to the same 
order id. This varible must be set by the workflow 
to get a value. Per default it is empty. The varible is 
shown on the UI in a number of views e.g. the job 
view.

WORKFLOW_
TYPE

String The workflow type. This variable can be used to 
indicate which type of workflow it is. This varible 
must be set by the workflow to get a value. Per 
default it is empty. The varible is shown on the UI 
in a number of views e.g. the job view

WORKFLOW_
STATE

String The workflow state. This variable can be used to 
indicate in which state the workflow is. This 
varible must be set by the workflow to get a value. 
Per default it is empty. The varible is shown on the 
UI in a number of views e.g. the job view.

SCHEDULED_INF
O

Object Used to save scheduled information.

THROW_EXCE
P

Boolean This will set the behaviour for all the nodes in the 
workflow if the throw_excep parameter is not set at 
the node level. Default value is true.

SCHEDULED_INF
O

Object Used to save scheduled information.

BREAK_POIN
T

String Used to indicate where a break point is set if 
running in debug mode

EMPTY_STRI
NG

String Can be used by SI to assign a case-packet variable 
to an empty string.

FILE_URL_PR
EFIX

String Can be used by SI when it is necessary to provide 
full url path to a string. By using this it is possible 
to make the workflow platform independet.

NULL Object Can be used by SI to assign a case-packet variable 
to a null value

Table 2-1 Default Case-Packet Variables (Continued)

Name Type Description
Chapter 238



Creating and Deploying Workflows
Understanding Workflows
Table 2-2 Special Case Packet Variables

Name Type Description

activation_major_
code

Integer Required for use by the Activate node.

After the completion of an activation the 
Activate node will set this variable to hold the 
major_code returned by the 
ExecutionDescriptor from the activation.

activation_minor_
code

Integer Optional for use by the Activate node.

After the completion of an activation, if this 
variable exists in the case-packet, the 
Activate node will set this variable to hold the 
minor_code returned by the 
ExecutionDescriptor from the activation.

activation_stdout String Optional for use by the Activate node.

After the completion of an activation, if this 
variable exists in the case-packet, the 
Activate node will set this variable to hold the 
stdout returned by the ExecutionDescriptor 
from the activation.

activation_stderr String Optional for use by the Activate node.

After the completion of an activation, if this 
variable exists in the case-packet, the 
Activate node will set this variable to hold the 
stderr returned by the ExecutionDescriptor 
from the activation.

activation_
description

String Optional for use by the Activate node.

After the completion of an activation, if this 
variable exists in the case-packet, the 
Activate node will set this variable to hold the 
description returned by the 
ExecutionDescriptor from the activation.

skip_activation Boolean Optional for use by the Activate node.

The Activate node will first determine 
whether this variable exists. If it exists and 
has a “true” value, the Activate node will not 
actually perform the activation.  It will 
instead set the activation_major_code to 
either 0 or the current value of 
skip_activation_major_code (if it exists), 
and it will set the activation_minor_code 
to either 0 or the current value of 
skip_activation_minor_code (if it exists).
Chapter 2 39



Creating and Deploying Workflows
Understanding Workflows
skip_activation_
major_code

Integer Optional for use by the Activate node.

The Activate node will use this to set the 
activation_major_code if the value of 
skip_activation is “true”.

skip_activation_
minor_code

Integer Optional for use by the Activate node.

The Activate node will use this to set the 
activation_minor_code if the value of 
skip_activation is “true”.

RUNTIME Object Optional variable containing a Map.

If this variable exists, the workflow engine 
will update it to include details about the 
execution of each node in the workflow. For 
most nodes, it only records the timestamp of 
when the node executed. Some nodes record 
additional information, for example the 
AskFor node and the Activate node. 

The variable is actually a Map of Maps. The 
first Map is keyed by the step name. The Map 
for each step contains another map that is 
keyed by special identifiers such as 
“timestamp”. These keys are noted in any 
node description that records additional 
information in the RUNTIME variable.

Here is an example of accessing both the 
timestamp from the execution of the 
ConfirmActivationDetails node and the user 
who did the interaction:

RUNTIME{'ConfirmActivationDetails'}{'
timestamp'}

RUNTIME{'ConfirmActivationDetails'}{'
username'}

RESERVATIONS Object Optional variable containing an Array of Java 
Beans.

The ReserveResource, ReleaseResource, 
ConfirmResourceReservation nodes and 
ReleaseResourceHandler make use of this 
variable to record resources that have been 
reserved.  See details in the description of 
these components.

Table 2-2 Special Case Packet Variables (Continued)

Name Type Description
Chapter 240



Creating and Deploying Workflows
Understanding Workflows
References to Complex Data Types in Workflow Node Parameters

Many node parameters accept a case-packet variable for the value. Normally you would 
simply refer to the name of the case-packet variable that contains the value. However, in 
some cases the case-packet variable is of a more complex data type than one of the 
simple base types (String, Integer, Float, Boolean), such as an Array or an object that 
adheres to the JavaBean specification. There are special syntaxes for obtaining values 
from such objects. 

Some workflow nodes will set a case-packet variable of type Object to a complex data 
type such as an Array. For example, the XMLMapper node supports the ability to find 
multiple tags of the same name, in which case it will save all of the values of those tags 
into an Array. Similarly, the QueryInventory node will return an Object that is a 
JavaBean or as an array of JavaBeans. 

Subsequent nodes in the workflow can refer to these complex data types using special 
syntaxes appropriate to the data type.

NOTE These syntaxes are only supported when fetching the value of a case-packet variable, not 
when setting the value.

Arrays or Vectors

If the case-packet variable contains an Array or a Vector, you may use one of the 
following syntaxes:

message_url String Optional variable containing the name of a 
file or database message id passed from the 
SocketListenerModule.

The SocketListenerModule sets this variable 
to indicate the name of the file or message id. 
This tell the workflow from where the 
message received from the socket is saved.  
The variable is required for the module to 
start a workflow.  The module will get an 
error if the variable is not part of the 
case-packet.

module_name String Contains information about who have created 
the message in the database. This case packet 
is used together with the message_url when 
starting a job.

Table 2-2 Special Case Packet Variables (Continued)

Name Type Description

variable# Indicates the number of elements in the array or vector.  This is 
useful for looping through all of the elements of arrays and 
vectors.
Chapter 2 41



Creating and Deploying Workflows
Understanding Workflows
Collections

If the case-packet variable contains a Collection, you may use the following syntax:

JavaBeans

If the case-packet variable contains an object that adheres to the JavaBean specification, 
you may use the following syntax to refer to a property of the bean:

Maps

If a workflow node sets a case-packet variable to contain a Map (a HashMap, for example), 
the elements of that map can be accessed from the WFContext.getAttribute() method 
using the following syntax:

• mapVarName{“key”} index by a constant key value

• mapVarName{ keyvar } index by the value in another case-packet

• mapVarName# indicates the number of elements in the map

The syntax supported for all complex data type access in the Workflow Manager is fully 
recursive. The examples shown in Table 2-3 demonstrate this capability.

NOTE If the # operator is applied to a null object the result is 0 (zero).

variable[n] Indicates the nth element of the array or vector.  In this case, n 
may be a constant integer value, or the name of another 
case-packet variable of type Integer.  If the array or vector does 
not contain as many elements as indicated by the index, an 
exception will be thrown.

variable# Indicates the number of elements in the Collection.

variable.property This will cause the method variable.getProperty() to 
be invoked to get the value of the property.  If the object 
does not have a method by that name, an exception will 
be thrown.

Table 2-3 Examples of Complex Data Type Access

Description Syntax

Arrays indexed by constants arrVarName[0]

Arrays indexed by variables arrVarName[intVar]

Length of an array arrVarName#

Arrays of arrays arrVarName[0][1]

Fields of beans beanVar.field

Arrays of beans arrVarName[0].field

Elements of maps of maps RUNTIME{“askForSwitchName”}{“timestamp”}
Chapter 242



Creating and Deploying Workflows
Understanding Workflows
NOTE The MapData node offers an alternate method of extracting data from a HashMap. See 
“MapData” on page 203 for additional information.

Fields of beans that are maps beanVar.field{“key1”}

Arrays indexed by bean fields arrVarName[beanVarName.field]

Vectors indexed by constants vecVarName[4]

Vectors indexed by variables vecVarName[intVar]

Size of a vector vecVarName#

Number of elements in a 
HashMap (Map)

hashVarName#

Number of elements in a List 
(Collection)

listVarName#

Complex expressions mapVarName{beanVar.field[intVar]}
{arrVarName[3]}.field#

vecVarName[3][intVar][“key2”]

Table 2-3 Examples of Complex Data Type Access (Continued)

Description Syntax
Chapter 2 43



Creating and Deploying Workflows
Understanding Workflows
Queues

Various workflow nodes post messages or requests for interaction onto queues. The term 
queue is perhaps a misnomer, since there is not any implied ordering of items in the 
queue. 

There are two types of queues:

• Message queues are for messages that do not require (or allow) any response. The 
message is a simple string. The message is placed on the queue and the workflow 
proceeds without waiting. The workflow node that typically posts messages to a 
message queue is PutMessage.

• Request queues are for input requests made by a workflow. There is an external 
API by which someone may respond to the requests on a request queue. Thus, the 
request may be satisfied by an operator at the UI or by any other external program. 
Additionally, the request may be satisfied by another workflow. The workflow node 
that typically posts requests to a request queue is AskFor.

One special feature of requests is that they may have a time-out specified. If the 
request is not satisfied within the time-out period, the request will be removed from 
the queue, and the workflow proceeds but with a special flag set to indicate that the 
preceding request timed out (see “TIMEOUT” in Table 2-1 on page 34).

Queue Names

By default there are no predefined queues.  A queue is created simply by the creation of 
a message or request.  Also, a queue is normally removed as soon as the queue becomes 
empty.  However, both of these behaviors may be overridden in the workflow manager 
configuration.

• Permanent queues may be declared. These queues will never be removed, even if 
they become empty. Moreover you may declare roles for these permanent queues to 
indicate who should be allowed to see the queue, even if the queue does not contain 
items for that user. Use the tag <Permanent-Queue> to declare each of these queues.

NOTE Any role assigned to a permanent queue only affects whether the user should see the 
queue in the case where there are no messages for the user. This role setting does not 
grant users the right to see messages that they would not otherwise be able to see.

• Use the configuration parameter <Queue-Timeout-Seconds> to indicate that 
nonpermanent queues should exist for a finite time after they become empty. This is 
useful in the case that some queues are frequently empty for a short period of time. 
Without such a time-out value, the operator user interface might not show the queue 
and then the user might not see a new message on the queue when they are 
expecting to see it.

Queues and Roles

Roles are associated with messages and requests, not queues. A queue is not tied to a 
specific role. When an item is placed on a queue, the workflow indicates what role the 
user must have to see the message or request. The role is set by virtue of the DefaultRole 
set in the workflow, or by having a specific role set on the node.
Chapter 244



Creating and Deploying Workflows
Advanced Workflow Techniques
Advanced Workflow Techniques
It is not always obvious how to accomplish certain behaviors using workflows. This 
section provides some example workflows to illustrate useful techniques.

Spawning Child Workflows

This example consists of two workflows. It illustrates how one workflow (the parent) can 
start a second workflow (the child) to accomplish a specific task. The parent waits for the 
child to complete.

This is a typical arrangement. The child workflow may be written to accomplish a 
specific activation task given a set of input values. The parent workflow may be written 
to gather the data from a specific input source. Either the parent or the child could be 
replaced with a new implementation without changing the other.

In this simple example, the parent workflow gathers some data from the operator. It 
then passes this data to the child workflow and waits for the child to complete. The child 
performs its actions (in this case, it simply adds the two values together) and returns the 
result to the parent. The parent then displays the value to the operator.

Example 2-1 parent

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Workflow SYSTEM "workflow.dtd">

<Workflow>
<Name>parent</Name>
<Description>

An example parent workflow that gathers some input, spawns a child to
process it, waits for the child to complete, issues a message with the
result of the operation.

</Description>
<Start-Node>Gather Input</Start-Node>

  <Nodes>
   <Process-Node>
     <Name>Gather Input</Name>
     <Description>Asks for the two operands</Description>
     <Action>
      <Class-Name>com.hp.ov.activator.mwfm.component.builtin.AskFor</Class-Name>

  <Param name="variable0" value="operand1" />
  <Param name="variable1" value="operand2" />
  <Param name="queue"   value="common_queue" />

     </Action>
 <Next-Node>Start work</Next-Node>

   </Process-Node>

   <Process-Node>
     <Name>Start work</Name>

 <Description>Starts another workflow to do the summation</Description>
 <Action>

      <Class-Name>
com.hp.ov.activator.mwfm.component.builtin.StartJobAndWait

 </Class-Name>
  <Param name="workflow_name"   value="constant:child"/>
  <Param name="variable0" value="operand1" />
Chapter 2 45



Creating and Deploying Workflows
Advanced Workflow Techniques
  <Param name="variable1" value="operand2" />
  <Param name="variable2" value="JOB_ID"/>
  <Param name="destination2" value="parent_job_id"/>
  <Param name="queue"   value="sync" />
  <Param name="outputvar0" value="sum" />
  <Param name="outputvar1" value="status" />
 </Action>
 <Next-Node>Show result</Next-Node>
</Process-Node>

   <Process-Node>
     <Name>Show result</Name>
     <Description></Description>
     <Action>
      <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.PutMessage
 </Class-Name>

      <Param name="message"  value="Status %s   Sum %s" />
      <Param name="param0"  value="status"/>
      <Param name="param1"  value="sum"/>
      <Param name="queue"   value="info" />
     </Action>
   </Process-Node>

  </Nodes>

  <Case-Packet>
<Variable name="operand1"    type="Integer"/>
<Variable name="operand2"    type="Integer"/>
<Variable name="status"    type="String"/>
<Variable name="sum" type="Integer"/>

  </Case-Packet>
  
  <Initial-Case-Packet>
   <Variable-Value name="operand1" value="10"/>

<Variable-Value name="operand2" value="5"/>
<Variable-Value name="status" value="unknown"/>

  </Initial-Case-Packet>
</Workflow>
Chapter 246



Creating and Deploying Workflows
Advanced Workflow Techniques
Example 2-2 child

This trivial child workflow is not attempting to demonstrate the tasks that can be 
accomplished in a workflow, but rather only trying to elucidate a proper technique for 
synchronizing between a parent and child workflow.

The important point to note about the child workflow is its use of the SyncHandler. 
Since the parent workflow is waiting for the child, we need to be sure that no matter 
what causes the child workflow to end, the parent gets notified that the child is complete. 
If there is some error in processing the child workflow, or if it gets terminated in a 
unexpected fashion, then the regular flow of the child will be interrupted. Thus, we use 
an end handler to send the result back to the waiting parent. Then, regardless of what 
causes the child to end, the parent will get a notification.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Workflow SYSTEM "workflow.dtd">

<Workflow>
<Name>child</Name>
<Start-Node>Add</Start-Node>

<Nodes>
<Process-Node disablePersistence="true">

<Name>Add</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Add

</Class-Name>
<Param name="op1" value="operand2"/>
<Param name="op0" value="operand1"/>

</Action>
<Next-Node>VariableMapper</Next-Node>

</Process-Node>

<Process-Node>
<Name>VariableMapper</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.VariableMapper

</Class-Name>
<Param name="status" value="done"/>

</Action>
</Process-Node>

</Nodes>

<End-Handler>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.SyncHandler
</Class-Name>
<Param name="job_id" value="parent_job_id"/>
<Param name="variable0" value="operand1"/>
<Param name="queue" value="constant:sync"/>
<Param name="destination0" value="sum"/>
<Param name="variable1" value="status"/>

</End-Handler>

   <Case-Packet>
<Variable name="JOB_ID" type="Integer"/>
<Variable name="controller_job_id" type="Integer"/>
<Variable name="operand1" type="Integer"/>
Chapter 2 47



Creating and Deploying Workflows
Advanced Workflow Techniques
<Variable name="operand2" type="Integer"/>
<Variable name="status" type="String"/>

</Case-Packet>
<Initial-Case-Packet>

<Variable-Value name="status" value="error"/>
</Initial-Case-Packet>

</Workflow>
Chapter 248



Creating and Deploying Workflows
Advanced Workflow Techniques
Using Timeouts

When your workflow is waiting for external input (from a user or another executable), 
you may want to ensure that the workflow does not wait indefinitely. The way to 
accomplish this is with a timeout. The AskFor node provides this capability.

In this example, the workflow starts and then pauses to allow the user to enter a text. If 
the user does not do this within ten seconds, a timeout message is sent. Otherwise, a 
message including the user’s string is sent.

Notice how the workflow checks the value of the variable TIMEOUT to see whether a 
timeout has occurred.

Example 2-3 timeout 

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Workflow SYSTEM "workflow.dtd">

<Workflow>
  <Name>timeout</Name>
  <Description>Small timeout test</Description>
  <Start-Node>Request string</Start-Node>
  <Nodes>
   <Process-Node>
     <Name>Request string</Name>
     <Description>Request the string from the user</Description>
     <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.AskFor

</Class-Name>
<Param name="variable0" value="your_string" />

 <Param name="queue"   value="operator" />
   <Param name="timeout"  value="10000" />

 </Action>
 <Next-Node>Was there a timeout?</Next-Node>
</Process-Node>

<Rule-Node disablePersistence="true">
     <Name>Was there a timeout?</Name>

 <Description>Checks state of TIMEOUT variable</Description>
 <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Equal

</Class-Name>
<Param name="op1"   value="TIMEOUT" />
<Param name="op2"    value="constant:true" />

 </Action>
 <True-Next-Node>Yes timeout</True-Next-Node>
 <False-Next-Node>No timeout</False-Next-Node>
</Rule-Node>

<Process-Node>
 <Name>Yes timeout</Name>

     <Description>Shows timeout message"</Description>
     <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
<Param name="message"  value="No input was received before the timeout." />
<Param name="queue"   value="operator" />

 </Action>
</Process-Node>
Chapter 2 49



Creating and Deploying Workflows
Advanced Workflow Techniques
<Process-Node>
     <Name>No timeout</Name>
     <Description>Shows string</Description>
     <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
<Param name="message" value="Your string was: ‘%s’" />
<Param name="param0" value="your_string" />
<Param name="queue"   value="operator" />

     </Action>
   </Process-Node>
  </Nodes>

  <Case-Packet>
 <Variable name="your_string"      type="String"/>

  </Case-Packet>

  <Initial-Case-Packet>
 <Variable-Value name="your_string"   value="Hello world!!!"/>

  </Initial-Case-Packet>
</Workflow>
Chapter 250



Creating and Deploying Workflows
Advanced Workflow Techniques
Using Prioritization in Workflows

You can prioritize the order in which workflows are processed by the Workflow Manager. 
You can also prioritize activation items. 

Prioritizing Workflow Node Processing

There are multiple threads (the number is configurable) in the Workflow Manager that 
are dedicated to working on jobs. Each node in a workflow is handled as an independent 
piece of work. When the job starts, the “start-node” is placed at the end of the work 
queue. Eventually one of the worker threads picks it up and executes it. When that node 
completes, the worker thread puts the “next-node” at the end of the work queue, and so 
on.

The WorkManagerModule can be configured to use the SimpleEngineQueue, 
WeightedEngineQueue, or the PriorityEngineQueue. The SimpleEngineQueue simply 
does not handle prioritization of workflow nodes. The WeightedEngineQueue and 
PriorityEngineQueue, however, do.

You can specify the priority of a workflow by using the PRIORITY default case-packet 
variable. Then, if you specify the PriorityEngineQueue in the WorkManagerModule, 
nodes from higher priority workflows will be placed in the work queue ahead of nodes 
from lower priority workflows. If the PRIORITY case-packet variable is not found, the 
priority for all nodes in that workflow is assumed to be 0. Negative priority values are 
supported. The WeightedEngineQueue is very similar to the PriorityEngineQueue 
exception for it makes it prioritization in a weighted way, i.e. if you have high priority 
jobs then they will be executed first with the exception that sometimes a low priority job 
will also be executed. By using the WeightedEngineQueue you avoid starvation.

Prioritizing Activation Items   

To use the Workflow Manager, you must configure an activation module. One class 
aresupplied for this purpose: ActivationModule. 

The ActivationModule has its own pools of threads (the number is configurable), 
separate from the engine worker threads, that perform activations, thereby freeing the 
worker threads to operate on nodes in other workflows while the activations are being 
performed. Thus, it is possible to have hundreds of pending activations while other 
workflows are being processed. These threads pull activation requests off a queue. Like 
the WorkManagerModule, the ActivationModule can be configured to use the 
SimpleEngineQueue, WeightedEngineQueue, or the PriorityEngineQueue. 

The default installation configures the ActivationModule but uses the 
WeightedEngineQueue. 

How to Determine Whether Prioritization is Working  

Prioritization manifests itself in a number of ways. It only comes into effect when there 
is a backlog of work. If there are enough threads available to process the work, then 
prioritization will have no effect.

Testing Prioritization in Working Threads  

Unless you have configured Min-Threads differently, there are typically 5 worker 
threads running in the system for processing workflows. If there are fewer than 6 jobs 
performing active work—not waiting for input or waiting for an 
Chapter 2 51



Creating and Deploying Workflows
Advanced Workflow Techniques
activation—prioritization will have almost no effect. This is because every time a work 
item is placed on the queue, a worker thread will be available to work on it regardless of 
its priority.

Follow these steps to verify that the prioritization of working threads is functioning 
correctly:

1. Set the value of Min-Threads value to 1.  This will make a single worker thread 
available for working on workflows.

NOTE Max-Threads only causes new worker threads to be spawned if the 
Spawn-List-Length is exceeded.

2. Restart the Service Activator.  

3. Write a workflow that will run for a long time (by looping many times, say 1000 
loops). Do NOT use a Sleep node. 

4. Copy that workflow, and rename it.  

5. In the second workflow, set the initial value of PRIORITY to 1.  

6. Start the low-priority workflow first. 

7. While the low-priority workflow is running, start the high-priority workflow.  

8. The high-priority workflow should finish first.

NOTE Remember though, prioritization at this level is not very deterministic.  It is still 
possible for the low-priority jobs to get some processing slices.

Testing Prioritization of Activation Threads  

If you have configured the ActivationModule, there are multiple threads available for 
performing activations (default is max_threads=20). Thus, if 20 workflows reach their 
Activate node, they can all be processed simultaneously. Prioritization will come into 
effect only if more workflows reach their activate node while the 20 threads wait for 
activations to complete.

Follow these steps to verify that the prioritization of activation threads functions 
correctly:

1. Configure the ActivationModule with both min_threads and max_threads set to 1.  
Now there is a single activation thread available.  

2. Write a workflow that performs a simple activation (that takes a few seconds to 
complete).  

3. Copy that workflow, rename it, and set the initial value of PRIORITY to 1.  

4. Now start 3 copies of the low-priority workflow followed by 3 copies of the 
high-priority workflow.  

5. You should see the first low-priority workflow complete its activation first, since it 
would have initially reached the Activate node and started its activation before the 
other workflows were started. You should then see the 3 high-priority workflows 
complete their activation, followed by the other two low-priority workflows.
Chapter 252



Creating and Deploying Workflows
Advanced Workflow Techniques
See Also

• “ActivationModule” on page 355

• “WorkManagerModule” on page 433
Chapter 2 53



Creating and Deploying Workflows
Advanced Workflow Techniques
Uploading Data from a Task Activation

Arbitrary (Serializable) data can be uploaded (returned) from a task activation for use by 
the invoking workflow. An atomic task may need to query a target device and return 
state information to the workflow, for example.

The data uploading capability is provided by the PARContext interface available to a 
plug-in. See HP Service Activator—Developing Plug-ins & Compound Tasks and the 
Javadocs for PARContext and DataUploader for additional information.

The Activate node makes uploaded data available in a case-packet variable stored as a 
HashMap. Data can be extracted from the HashMap in one of the two ways: using the 
workflow syntax for accessing maps or using the MapData node.

See Also

• “Activate” on page 94 for more information about making uploaded data available in 
a case-packet variable stored as a HashMap

• “Maps” on page 42 for more information about using the workflow syntax for 
accessing maps to extract uploaded data from a Map

• “MapData” on page 203 for more information about using the MapData node to 
extract uploaded data from a Map
Chapter 254



Creating and Deploying Workflows
Deploying Workflows
Deploying Workflows
The workflows will typically be placed under $ACTIVATOR_ETC/workflows if Solution 
Separation is not used. Where the workflows will be placed under the solution directory 
in case Solution Separation is used. The files require an.xml extension so that the 
Workflow Manager recognizes them as valid workflow files. The Workflow Designer 
automatically starts to read and puts new workflows into the directory 
$ACTIVATOR_ETC/workflows.

The workflows must be deployed to the system database to be used by the Workflow 
Manager. This can be done by the Workflow Designer either from the command line or 
the UI. Then after the workflows are deployed either Service Activator must be restarted 
or the reload workflow operation must be performed from the Operator Interface.
Chapter 2 55



Creating and Deploying Workflows
Clustering Considerations
Clustering Considerations
When writing workflows you need first of all to consider if the workflow is going to be 
used in a cluster solution or not. Then next if you are going to use persistence or not. If 
the answer is yes to both questions then there are a number of things which needs to be 
considered.

Temporary files are very often used to pass information around in a workflow which is 
possible if persistence are done at the right places. If this is not considered and the 
cluster node where the job is running fails the access to the temporary file is lost at the 
job will continue its execution on an other cluster node. To use temporary files no 
persistence must be done from the workflow node which generate the file is executed to 
the end of the use of the temporary file.

An alternative to this would be to save the data to the database which all cluster nodes 
have access to. Two workflow nodes can be used to read and write data to a message 
database. The ReadDataFromDatabase and WriteDataToDatabase. To remove database 
from the database the node RemoveData can be used. When using the nodes the 
identifier for the data is a message id and it is this identifier which must be passed 
around in the workflow.

The SocketListenerModule can be configured to generate both kind of input and the 
SocketSenderModule is also capable to read the information from both a file and the 
database.

The XMLMapper can be used directly to read data from the database or the file system 
and by combining this with the SocketListenerModule a workflow can be written 
which will work both when the SocketListenerModule is configured to write 
information to the file system and to the database.

Also the plugins can read data from the database and write data to the database. Two 
methods exist there two. One for reading data and one for writing data. So it is easy to 
pass data from or to the plugin by using the message data database and then just send 
the message id to the plugin as an argument or receive the message id in the upload data 
object.
Chapter 256



3 Using the Workflow Designer

The HP Service Activator Workflow Designer is a graphical tool you can use to easily 
create and edit workflows. Creating workflows requires knowledge about the available 
workflow nodes and workflow modules.

To retain compatibility across all supported platforms, you must use the forward slash ‘/ 
‘ as file path separators.
Chapter 3 57



Using the Workflow Designer
Navigating the Workflow Designer
Navigating the Workflow Designer
This tool allows you to edit workflows graphically. The graphical editor supports all the 
functionality of a workflow. Its main benefits are found in laying out the workflow so 
that it can be easily understood, connecting nodes or changing the sequence of a 
workflow, and setting the parameters of the various workflow nodes.

The Workflow Designer stores workflows in an XML format. A workflow can be edited 
using the Workflow Designer even if it was created outside of Workflow Designer. In that 
case, all nodes will have the same position and it is up to the user to place the nodes in 
proper positions. In addition, the Workflow Designer allows you to view the XML source 
file in text mode.

The Workflow Designer graphical editor consists of five sections: the toolbar (at the top), 
the node tree view (at the top-left), the worlflow view (top-right), the overview pane 
(bottom-left), and the node attributes view (bottom-right). The Workflow Overview and 
the Node Attributes view can be hidden and displayed as desired.
Chapter 358



Using the Workflow Designer
Navigating the Workflow Designer
Figure 3-1 Workflow Designer

Understanding Workflow Designer Features

When you have edited a workflow file but not yet saved it, the file name shown in the 
title bar is followed by asterisks (***), as shown here:

The following table shows the different styles in which process nodes can be displayed:

Table 3-1 Process Nodes

Basic layout of a process node; the name of the node is 
always displayed.
Chapter 3 59



Using the Workflow Designer
Navigating the Workflow Designer
In the worlflow view, rule nodes are always displayed using a diamond shaped icon as 
shown below:

In the worlflow view, switch nodes are always displayed using a parallelogram shaped 
icon as shown below:

Process node displaying the node’s class name.

Process node displaying the node class name and icon.

Process node displaying the node icon.

Process node displaying the role.

Process node displaying the node class name and role.

Process node displaying the node class name, node 
icon, and role.

Process node displaying the node icon and role.

Table 3-1 Process Nodes
Chapter 360



Using the Workflow Designer
Using the Main Menu
Using the Main Menu
Figure 3-2 shows the main menu of the Workflow Designer.

Figure 3-2 Workflow Designer Main Menu

The main menu is the only visible part of the application when you launch it the first 
time (before you load any files). The menu bar at the top of the toolbar consists of the 
following menus:

1. File

The File menu contains the usual commands: create a new workflow, open an 
existing workflow, save a workflow, save all workflows, save a workflow under a 
different name (Save As…), print a workflow, close a workflow, and quit the 
application.

You can also quit the application by clicking the  button on the top right corner 

window title bar.

The File menu also contains then menu entry Switch Directory, which makes it 
possible to switch the default directory. The default directory is used by the workflow 
designer when trying to open a workflow.

2. Edit

The Edit menu contains commands and actions for editing a workflow. There are 
four options available:

Undo : undo the last operation.

Copy: copy the currently selected nodes to the clipboard.

Paste: paste the nodes currently in the clipboard into the currently active workflow. 
This operation can not be used to copy nodes from one workflow to another.

Paste Special : If the nodes in the clipboard were copied from another workflow, 
you must use this operation to paste them into the currently displayed workflow.

3. View

Select this to change certain visual aspects of a workflow. There are six options 
available: 

View Node Class: shows/hides the class name of the process nodes.

View Node Icons: shows/hides the node icon of the process nodes.

View Roles: shows/hides the roles of the process nodes.

True/False Tags: shows/hides the rule nodes tags that mark its true and false 
branches and show/hides the switch nodes tags that mark the value of the branches.

View Workflow Overview: shows/hides the overview pane. If Workflow Overview is 
selected the State Overview is hidden.
Chapter 3 61



Using the Workflow Designer
Using the Main Menu
View State Overview show/hides the overview pane. If State Overview is selected 
then Workflow Overview would be hidden.

View Node Attributes: shows/hides the note attributes view. The node attributes 
view shows the attributes of the currently selected nodes in a workflow.

4. Workflow

This menu allows you to change almost every non-visual aspect of the workflow 
configuration:

a. Workflow Settings...

Shows the Workflow Settings dialog, which contains four tabs:

1. General - Allows you to set the name of the workflow and to set an indication 
of whether this workflow should be automatically started when the Workflow 
Manager is started, and to set an indication of whether the Workflow 
Manager should only allow a single instance of this workflow to be running 
at any one time. 

Unique Workflow :Check the Unique Workflow check box to create a unique 
workflow. If only one instance of workflow exists, it is known as a unique 
workflow.

Initialize Workflow: Check the Initialize Workflow check box to start 
a workflow automatically when the workflow engine starts.

Here you can also enable or disable collecting audit and/or statistical records 
aswell as statechange records for the workflow. Uncheck the Enable auto 
generated audit check box to exclude autogenerated audit messages.

Persist Nodes: Check the Persist Nodes check box to enable persistence 
of workflow data. Persistence allows you to save workflow data from time to 
time.

2. Description - Provides a large text area for composing a multi-line 
description of the workflow.

3. Roles - Allows you to edit the roles that may carry out operations on this 
workflow.

b. Add New Roles...

Goes directly to the Roles tab of the Workflow Properties dialog for adding, 
deleting, and assigning workflow rules.

c. Edit Case-Packet...

Shows the Case-Packet dialog for adding, modifying and deleting case-packet 
variables, including setting the initial value of variables.

d. Workflow Contract...

Goes directly to the Workflow Contract dialog for adding and deleting 
case-packet variables to the contract.

e. Persistency
Chapter 362



Using the Workflow Designer
Using the Main Menu
Allows you to enable or disable persistency. If persistence is enabled, the 
workflow data is stored in the database.

5. Deployment

Deploying workflows to the database.

a. Deploy Current Workflow...

Allows to deploy the workflow on which the user is currently working on.

b. Deploy All Open Workflows...

Allows to deploy all the workflows that are opened or exist in the Workflow 
Designer UI.

c. Deploy Workflows...

Allows to select and deploy workflows that exist in the file system.

First time deployment is done the user will be promt for database user and password 
and optionally for database instance, port, and host name. The values should match 
the values provided when running ActivatorConfig, which are the values for the 
system database. The Workflow Designer will then remeber the values as long as it 
is running.

6. Preferences

a. XML Default Directory...

Sets the default directory where the application looks for workflow XML files. 
The program recalls any change made to this parameter in future uses.

7. Help

Select this to see information about the Workflow Designer.
Chapter 3 63



Using the Workflow Designer
Using the Main Utilities Toolbox
Using the Main Utilities Toolbox
The main utilities toolbox consists of the first six buttons on the left side of the toolbar.

Figure 3-3 Workflow Designer Main Utilities Toolbox

1. New File

Select this to create a new workflow. The application displays a Workflow Settings 
dialog box so that you can assign initial workflow properties.

2. Open File

Select this to open an existing workflow. You can use this to load an already existing 
workflow or workflows in the Workflow Designer window.

3. Save File

Select this to save an open workflow using its current name. To save your file under 
a different name, choose File from the drop-down menu, and then choose Save As...

4. Print Workflow

Select this to see the Print dialog box and send a graphical representation of the 
workflow to the specified printer.

5. Check Workflow

Select this to check the validity of the workflow you have designed. The application 
detects any errors in the workflow and displays a warning message that describes 
them. The most valuable check performed verifies that all required parameters in 
the nodes have been assigned a value.

6. Undo

Select this to undo the last action. 

NOTE The Undo operation can only undo delete operations. The undo buffer does not keep a 
record of other operations such as adding nodes, moving nodes, changing node 
parameters, and so on.

7. Back

Navigate back to previous workflow. 
Chapter 364



Using the Workflow Designer
Using the Visual Properties Toolbox
Using the Visual Properties Toolbox
When editing a workflow graphically, the Workflow Designer is in one of a few modes. 
The current mode is indicated by the highlighted button in the toolbox. 

By default, the Workflow Designer is in the Select mode, represented by the white 
pointer icon. Some modes only last for a single operation before the mode reverts to the 
Select mode. The other buttons in the toolbox do not represent modes. Two of the buttons 
are used to align nodes vertically or horizontally; you must select at least two nodes in 
the workflow to operate on for these buttons to have an effect. The last three buttons are 
toggle buttons used for showing or hiding node class names, node icons, and roles.

Figure 3-4 Workflow Designer Visual Properties Toolbox

The icons in the visual properties toolbox represent the following modes or functions: 

1. Select

This represents the default mode of the Workflow Designer. The following functions 
are available in this mode:

• Add a new node

Click a node in the node palette; then, click in the design window to create a new 
node at that location.

• Move a node

Click a node in the design window, and drag it to a new location. Any arrows 
connecting it to other nodes are automatically pulled along with it.

• Select/move multiple nodes

Hold down the control key (CTRL) while clicking nodes, or click and drag the 
cursor to make a box around the nodes you want to select. Each selected node 
becomes highlighted. At this point you can perform multi-node functions such as 
moving all of the selected nodes (hold down the CTRL key and drag the cursor) or 
aligning all of the selected nodes by clicking the Horizontal Align icon or the 
Vertical Align icon in the toolbox.

• Delete

Click a node in the design window, and press the delete key to remove a node and 
its connecting arrows.

• Edit node properties

Double-click a node to bring up the Edit Node Properties dialog. For details on 
editing node properties, see Using the Edit Node Properties Dialog.

• Context sensitive menu

Right-click a node to get a context sensitive menu for that node. 

2. Draw Arrow

Used to draw an arrow between two nodes:
Chapter 3 65



Using the Workflow Designer
Using the Visual Properties Toolbox
a. Click the Draw Arrow icon

b. Click a source node (arrow starting node)

c. Click an end node (arrow ending node).

If you select a rule node as the starting node for an arrow, the application asks you if 
this arrow should point to the node associated with true or false.

If you select a switch node as the starting node for an arrow, the application asks you 
if this arrow should point to the node associated with default or case0, case1, etc.

3. Set Initial Node

a. Click the Initial Node icon

b. Click a node that should become the starting node in the workflow. A red triangle 
is attached to the node to indicate that it is now the initial node.

4. Vertical Align or Horizontal Align

Use these options when you want the arrows connecting the nodes to be perfectly 
vertical or horizontal.

a. Select multiple nodes that are to be aligned. You may use any method to select 
multiple nodes (see “Select” on page 65).

b. Click the Vertical Align or Horizontal Align icon. All of the selected nodes will be 
moved to align with the first node selected.

5. Show/hide class name,icon and roles for process nodes

These five toggle buttons are used to change the view mode for the current workflow.

6. Zoom

a. Click and select one of the available zoom percentages from the drop down list. 
Node icons are only displayed if the zoom level is set to 100%.

NOTE When adding a new node to a workflow by clicking a node from the workflow node 
tree, the cursor will change to a cross-hair and the leftmost buttons in the Visual 
Properties Toolbox will become disabled.

7. Search

a. When clicking this button a pop dialog is shown which makes it possible to enter 
different search criteria to searhc for workflow nodes.

NOTE When adding a new node to a workflow by clicking a node from the workflow node 
tree, the cursor will change to a cross-hair and the leftmost buttons in the Visual 
Properties Toolbox will become disabled.

8. SelectWorkflow Node

a. Click and select one of the available workflow nodes.

9. SelectWorkflow state

a. Click and select one of the available workflow states.
Chapter 366



Using the Workflow Designer
Using the Context Sensitive Menu
Using the Context Sensitive Menu
Right-click a node in the workflow design window to bring up a context sensitive menu. 

Figure 3-5 Context Sensitive Menu

The menu contains the following actions:

1. Action Parameters

Shows the Edit Node Properties dialog for this node (with the Action Parameters tab 
active). This is the same dialog that appears if you double-click a node.

2. Initial Node

Set this node to be the starting node of the workflow.

3. Inactive Node (only for a Process Node)

Toggles whether this node is active or inactive. When the workflow is executed, the 
Workflow Manager will ignore any inactive node, skipping to the next node in the 
workflow (if there is one). Rule and switch nodes do not have this option since the 
Workflow Manager would not know how to proceed from the node.

4. Test Node

Toggles whether this is a active or test node. When the workflow is executed, the 
Workflow Manger will not execute the test node unless the Test-Mode is set to true 
in the mwfm.xml configuration file.

5. Persist Node

Toggles whether persistence should be done after execution of the node.

6. Arrow Properties

Set what kind of arrow comes out of this node. By default all arrows are “Straight”. 
You may also choose one of the arrows with elbows to make the workflow easier to 
read.

7. Node Attributes
Chapter 3 67



Using the Workflow Designer
Using the Context Sensitive Menu
Shows the Edit Node Properties dialog for this node (with the “Node Attribute” tab 
active). This is the same dialog that appears if you double-click a node.

8. Remove Arrows

Removes any arrow(s) emanating from this node. You can change the destination of a 
node simply by clicking the “Connect Nodes” icon from the toolbox and clicking the 
two nodes to be connected; you must use this menu item to remove an arrow from a 
node.

9. Delete

Remove the node from the workflow. You can also select the node and press the 
[Delete] key.
Chapter 368



Using the Workflow Designer
Using the Workflow Views
Using the Workflow Views
The Workflow Designer can display workflows graphically or as XML code (read-only). 
You can switch between the tree views by clicking the Drawing View tab, Handler View 
tab, or the XML Code View tab. 

Figure 3-6 Workflow Drawing View

If a single node is selected while switching from Drawing View to XML Code View the 
Workflow Designer will scroll down to the XML definition of the selected node and the 
node name will become highlighted. An example of this is shown in Figure 3-7.

If multiple nodes are selected the node that was most recently selected will be 
highlighted in the XML Code View.
Chapter 3 69



Using the Workflow Designer
Using the Workflow Views
In the Handlers view the end and error handers which are defined will be shown in two 
different columns. If no handlers are defined the Handler View will be empty.

Figure 3-7 Handlers View

In the Descripton view the overall description of the workflow can be seen. The 
description field can be edited in the workflow settings. 

Figure 3-8 Description View
Chapter 370



Using the Workflow Designer
Using the Workflow Views
The state view shows the workflow represented as a (simplified) state diagram.

Figure 3-9 State View

The XML Code View show the xml content.

Figure 3-10 Workflow XML Code View

A maximum of 20 workflows can be opened simultaneously. When you reach this limit, 
you will have to close one or more workflows in order to be able to open new workflows. 
In addition, you can not open two workflows with identical workflow names; this 
restriction also applies if their file names are different.

You can switch between the open workflows by clicking the corresponding tabs or by 
using the CTRL-q keyboard shortcut. Additionally, you can close the currently displayed 
workflow by using the CTRL-w keyboard shortcut.
Chapter 3 71



Using the Workflow Designer
Copying and Pasting Workflow Nodes
Copying and Pasting Workflow Nodes
The Workflow Designer has the following copy and paste capabilities:

• Copying and pasting one or more nodes within the same workflow

• Copying and pasting one or more nodes between workflows opened in the same 
instance of Workflow Designer, the Edit:Paste Special menu option must be 
used for this operation.

• Copying and pasting workflow nodes to another application. For example, Microsoft 
Notepad.

When you copy and paste multiple nodes the Workflow Designer will preserve all arrows 
for which the source as well as the destination nodes exists in the copy buffer; other 
arrows will be deleted. This is illustrated in Figure 3-8 where five nodes were copied and 
then pasted into the same workflow.

Figure 3-11 Copy and Paste of Multiple Nodes

If you copy one or more workflow nodes in one workflow and paste them into another 
workflow by using Edit:Paste Special, the Workflow Designer will display a warning 
dialog; see Figure 3-9. The warning dialog is displayed to make it clear to the user that 
Chapter 372



Using the Workflow Designer
Copying and Pasting Workflow Nodes
issues may occur if case-packet variables in the pasted nodes are in conflict with 
case-packet variables already existing in the destination workflow. For example, 
conflicting types.

Figure 3-12 Paste Special Warning Dialog

Finally, it is possible to copy workflow nodes in Workflow Designer and paste them to 
another application, such as Microsoft Notepad. In that case the workflow nodes will be 
pasted as formatted XML – see Figure 3-10.

Figure 3-13 Workflow Nodes Copied to Microsoft Notepad
Chapter 3 73



Using the Workflow Designer
Deleting Nodes
Deleting Nodes
The Workflow Designer UI is enhanced to support single/multiple nodes deletion. Before 
deleting, you will be prompted with a message to confirm the deletion.

• Deleting a single node: In the Workflow Designer UI, you can select a single node 
and press the Delete key to delete the node.

Figure 3-14 Deleting a Single Node
Chapter 374



Using the Workflow Designer
Deleting Nodes
• Deleting multiple nodes: In the Workflow Designer UI, you can select more than one 
node and press the Delete key to delete all the selected nodes.

Figure 3-15 Deleting Multiple Nodes
Chapter 3 75



Using the Workflow Designer
Using the Node Tree
Using the Node Tree
The node tree allows you to arrange the nodes into groups with related behavior. If 
needed, a node can be a member of several groups. Nodes that are not members of any 
group will all be listed after the last group.

The node tree view may look different on your system depending on installed solutions, 
your own customizations, etc.

Figure 3-16 Workflow Node Tree

To add a new node to the workflow, select a node from this node tree and place the node 
in the workflow using left mouse button.

NOTE Drag and drop is not supported for adding new nodes.

It is possible for the Workflow Designer to handle more than one node tree. Each 
subdirectory in the $ACTIVATOR_ETC/designer/nodes directory will translate into a 
new tab shown above the node tree. These tabs allow the user to easily navigate between 
nodes and node trees in different directories.

In each of these subdirectories the workflow nodes are grouped by their behavior (or by 
any other criteria decided by the user) based on the contents of the XML file 
workflowNodeGroups.xml which is located in the same directory as the workflow nodes.
Chapter 376



Using the Workflow Designer
Using the Node Tree
NOTE The workflowNodeGroups.xml file is not mandatory. If there is no such file, all nodes 
will simply be show in a flat list.

By default, the $ACTIVATOR_ETC/designer/nodes directory contains a single 
subdirectory called builtin.  The user (or solutions) can create additional directories for 
new nodes and group them by defining a custom workflowNodeGroups.xml file in each 
of these directories.

The following XML snippet shows the contents of the workflowNodeGroups.xml file for 
the two first groups shown in Figure 3-11:
Chapter 3 77



Using the Workflow Designer
Using the Overview Pane
Using the Overview Pane

Figure 3-17 Workflow Overview Pane

The workflow overview pane displays the entire workflow regardless of its size. At all 
times the overview pane shows a red box around the area of the workflow that is 
currently visible in the workflow view. This is particularly useful when you are editing a 
large workflow. Selected nodes and nodes marked as “inactive” can be identified by their 
color-coding; arrow heads are not displayed in the overview pane.

NOTE It is not possible to use the workflow overview pane to navitage the workflow.
Chapter 378



Using the Workflow Designer
Using the Node Properties View
Using the Node Properties View

Figure 3-18 Workflow Designer Node Properties View - Node Attributes Tab

When you bring up a workflow in the design window, the node properties dialog box for 
that workflow is also displayed. This properties window can be used for reviewing the 
node properties, but also to change the properties. An other way to change the node 
properties is to double-click the node to bring up the Edit Node Properties dialog. 

The Node Attributes tab (shown in Figure 3-18) shows the name, description, action 
class, and role of a node. The role is only shown for process nodes.

The Action Parameters tab (shown in Figure 3-19) shows the action parameters (name 
and value) for the node action. It is also here possible to edit the values directly when it 
is a process node.

Figure 3-19 Workflow Designer Node Properties Window - Action Parameters Tab
Chapter 3 79



Using the Workflow Designer
Lock / Unlock Function
Lock / Unlock Function
When editing a node it is sometimes convenient to be able to view the properties of 
another node in order to use it as a template. This is possible by using the node 
properties view’s lock/unlock function.

The contents of the node properties view can be locked (and unlocked) by pressing the F2 
key. To indicate that the properties are locked the text “[Locked]” is appended to the 
border titles; an example is shown in Figure 3-15.

Figure 3-20 Node Properties View - with Locked contents
Chapter 380



Using the Workflow Designer
Using the Edit Node Properties Dialog
Using the Edit Node Properties Dialog
You may edit a workflow node’s properties by either double-clicking the node you want to 
edit or right-clicking on that node and selecting Edit Node Properties.

Figure 3-21 Workflow Designer Edit Node Properties Dialog (Node Attributes Tab)

Use this tab to modify general node attributes. 

• Node name 

The name is set automatically based on the node class. You may set any name you 
want. The name may include spaces.

• Node’s action class 

Setting the action class may have unintended consequences. If the class name you 
specify is not recognized by the designer, then the Action Parameters tab will 
disappear.

• Node’s assigned role (for Process Nodes) 

The role may be chosen from the current list of roles available in this workflow. To 
add a new role to the potential list you must edit the Workflow Settings (see 
page 62).

• Node’s description 

The description is helpful as a documentation of the node. The description generally 
is not visible to an operator when the workflow is running; the exception to this is a 
node that performs a user interaction. When the workflow is paused waiting for 
input, the operator can see the description of the current node.
Chapter 3 81



Using the Workflow Designer
Using the Edit Node Properties Dialog
Make your changes and click the Apply button to make them permanent. 

Click the Reset button to revert back to the last applied state of the node.

The Help button will show the definition of the current node class.

Using the Action Parameters Tab

Figure 3-22 Workflow Designer Edit Properties Dialog (Action Parameters Tab)

All workflow nodes are configured to perform some specific behavior by setting their 
parameters. A parameter consists of a name and a value. Each node has a unique set of 
parameters that it responds to. The node interprets those parameters appropriately to 
the behavior that it encapsulates. The Workflow Designer is aware of the parameters 
supported and required by each node.

Use the Action Parameters tab to add, modify and delete action parameters. Action 
parameters fall into two categories: required and optional. Required parameters must be 
defined for the workflow to execute properly in the workflow engine. Notice that task in 
the figure above is a required parameter, because the label REQUIRED is printed after the 
parameter name in the Parameter Name field. The value of required parameters is 
initialized to “You must change this.” This string will show up in the workflow’s XML 
code if the parameter is not given a value, and the workflow probably will not execute 
properly. The toolbox action “Check Workflow” will see if there are any parameters that 
still have a value that must be changed (see Using the Main Utilities Toolbox).

NOTE The Description Field of the action parameters tab displays the generic description of 
the currently selected action parameter. Look there to get hints about the use and data 
types.
Chapter 382



Using the Workflow Designer
Using the Edit Node Properties Dialog
To modify an existing action parameter, select the Action Parameter text field. Either 
select an existing case-packet variable from the Value drop down menu, or type in a new 
value in the Value text field. Click the [Modify] button to make the change.

To add a new action parameter to the node, type the name in the Action Parameter 
text field. Then, select or type its desired value into the Value text field, and click [Add] 
to make the changes.

To delete an action parameter from the node, select the name in the Action Parameter 
text field. Then, click [Delete] to make the changes.

Remember you cannot delete REQUIRED action parameters. The [Delete] button will be 
disabled while a required action parameter is selected.
Chapter 3 83



Using the Workflow Designer
Command Line Options
Command Line Options
The Workflow Designer can be invoked from the command line using the designer 
script. The command line options are:

• -version: Display version information and exit.

• -native: Set native look and feel.

• -config cfg: Alternate configuration file.

• -dbHost <DBHOST>: Name of the database host. Defaults to configured db host.

• -dbName <DBSID>: Name of the database instance.

• -dbPort <DBPORT>: Database port. Default is 1521.

• -dbUser <DBUSER>: User name of the database instance.

• -dbPassword <DBPASSWD>: Password of db user name.

• -listWorkflows: List deployed workflows.

• -downloadWorkflow wf: Download the specified workflows.

• -deleteWorkflows wf: Mark the specified workflows as deleted.

• -deployWorkflows wf: Deploy the specified workflows.

NOTE On Windows; If the Workflow Designer tool is opened, the -deployWorkflows option 
cannot be used. 
Chapter 384



Using the Workflow Designer
Using Keyboard Shortcuts
Using Keyboard Shortcuts
Here is the list of the supported keyboard shortcuts. 

Shortcut Purpose

Delete Deletes the currently selected node.

CTRL-o Open Workflow—open an existing workflow

CTRL-n New Workflow—create a new workflow

CTRL-s Save Workflow—save the currently open 
workflow

CTRL-p Print Workflow—print the currently open 
workflow

CTRL-w Close Workflow—close the currently open 
workflow

CTRL-q Switch between the open workflow views

CTRL-c Copy the currently selected node (nodes) from 
the current workflow into the clipboard

CTRL-v Paste the node (or nodes) that are currently 
in the clipboard into the currently active 
workflow

CTRL-z Undo the last delete action

CTRL-a Select all nodes in a workflow

F2 Lock/Unlock the Node Properties view

Cursor Keys (arrows) Moves any selected nodes.
Chapter 3 85



Using the Workflow Designer
Using Keyboard Shortcuts
Chapter 386



4 Workflow Node and Handler Library

The Workflow Manager comes with an extensive library of workflow nodes and handlers 
that are useful to carry out many provisioning and activation tasks. Each supplied node 
and handler is described in detail here.
Chapter 4 87



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Process Nodes, Rule Nodes, and Switch Nodes
This section describes the process nodes, the rule nodes, and the Switch nodes that are 
included in Service Activator. Each node is implemented by a Java class. The name of a 
node is the name of the class that implements it. Note, however, that it is a full name 
(including the package name) that uniquely identifies a node. All of the built-in nodes 
shipped with Service Activator are from the same package 
(com.hp.ov.activator.mwfm.component.builtin).

Each process node has the throw_excep parameter. This parameter tells the framework 
whether exceptions thrown inside a process node must be automatically handled or if 
they must be thrown, which terminates the job. Set the parameter to “true” to indicate to 
the system that any exception raised inside a node must terminate the job. Set the 
parameter to “false” to indicate to the system that all exceptions must be handled by the 
framework. So, if errors occur, the system will set the RET_VALUE case-packet variable 
to -1; the RET_TEXT case-packet variable will present an error description. The 
exception handling can also be controlled at the workflow level by setting the 
THROW_EXCEP system case-packet variable. This will set the behavior for all the 
nodes in a workflow if the throw_excep parameter is not set at the node level. The 
default value for THROW_EXCEP is true.

Default Workflow Node Persistence Setting

All built-in workflow nodes come with a default persistence setting. The Table 4-1 shows 
the default persistence settings for all nodes. In the definition of the nodes, you can find 
the XML element DisablePersistence and if the value of this element is set to FALSE, it 
means that the state of the workflow job will be persisted after the node has been 
executed.

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence

Activate FALSE

Add TRUE

AppendToTaskList TRUE

AskFor FALSE

Assign TRUE

Audit FALSE

ChangeRoles TRUE

ComposeMessage TRUE

ConcatenateTaskLists TRUE

ConfirmResourceReservation TRUE

CreateInventory FALSE

CreateBean TRUE
Chapter 488



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
CreateTaskList TRUE

CreateUCMDBCIsAndRelatio
ns

FALSE

DateConverter TRUE

DeleteCache TRUE

DeleteInventory FALSE

DeleteScheduleJob FALSE

DeleteServiceInstance FALSE

DoNothing TRUE

DeleteUCMDBCIsAndRelation
s

FALSE

Decrypt TRUE

Encrypt TRUE

Equal TRUE

ExecSQLQuery TRUE

ExecSQLStatement FALSE

ExecuteExternal FALSE

ExecuteMacro TRUE

ForEach FALSE

GenericUIDialog FALSE

GetBaseFileName TRUE

GetBeansNNMNode TRUE

GetBusinessHoursAfterDurati
on

TRUE

GetCalendarTimezone TRUE

GetNextIncludedTime TRUE

GetOperatingSystem TRUE

GetTimeRangesOfBusinessDa
y

TRUE

GreaterThan TRUE

GreaterThanOrEqual TRUE

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence
Chapter 4 89



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
HTTPGet FALSE

HTTPRequest FALSE

InsertIntoTaskList TRUE

InvokeInventoryMethod FALSE

InvokeMethod FALSE

IsTimeIncluded TRUE

IsTrue TRUE

IsModule TRUE

Java FALSE

JavaRule TRUE

JavaSwitch TRUE

KillJob FALSE

LessThan TRUE

LessThanOrEqual TRUE

Log FALSE

MapData TRUE

MatchDBQuery TRUE

MatchDBStore TRUE

MethodInvoke FALSE

ModifyScheduledJob FALSE

MoveFile FALSE

MultiAssign TRUE

Multiply TRUE

Not TRUE

NAAddConfigurationPolicy FALSE

NAAddDevice FALSE

NAAddDeviceGroup FALSE

NAAddDeviceToGroup FALSE

NAAddRuleToPolicy FALSE

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence
Chapter 490



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NABuildConditionList TRUE

NABuildRuleList TRUE

NADeleteDeviceGroup FALSE

NADeletePolicy FALSE

NAGetSnapshot FALSE

NAListConfigId TRUE

NAListDevice TRUE

NAListDeviceId TRUE

NAModifyConditionsOnRule FALSE

NARemoveDeviceFromGroup FALSE

NARemoveRuleFromPolicy FALSE

NARunAdvancedScript FALSE

NARunCommandScript FALSE

NARunScript FALSE

NAShowConfig TRUE

NAShowDiagnostic TRUE

NAShowTask TRUE

PatternMatch FALSE

PAYG FALSE

PPU FALSE

PutMessage FALSE

QueryInventory TRUE

QueryScheduledJobs TRUE

QueryServiceInstance TRUE

QueryUCMDBCIsAndRelation
s

FALSE

QueryServiceInstanceAll TRUE

RandomInteger TRUE

ReadDataFromDatabase TRUE

ReadFile TRUE

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence
Chapter 4 91



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RediscoverHostsNNMNode TRUE

RecordOVISEvent FALSE

ReleaseResource FALSE

RemoveData FALSE

RemoveFile FALSE

Replace TRUE

ReserveResource FALSE

RetrieveSequence FALSE

ScheduleCurrentJob FALSE

ScheduleJob FALSE

SendAlarm FALSE

SendMessage FALSE

SendSNMPTrap TRUE

Sleep TRUE

StartJob FALSE

StartJobAndWait FALSE

Sync FALSE

Switch TRUE

ThrowError FALSE

ThrowException FALSE

ThrowRuntimeException FALSE

TransformXML TRUE

UpdateBean TRUE

UpdateCustomAttributesNNM
Node

FALSE

UpdateInProgress FALSE

UpdateInventory FALSE

UpdateServiceInstance FALSE

UpdateUCMDBCIsAndRelatio
ns

FALSE

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence
Chapter 492



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
VariableMapper TRUE

WasPreviousNodeOK TRUE

WriteCasePacket FALSE

WriteDataToDatabase FALSE

XMLMapper TRUE

XMLParser TRUE

Table 4-1 Default Peristence Settings for all Nodes

Node Name Disable Persistence
Chapter 4 93



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Activate

com.hp.ov.activator.mwfm.component.builtin.Activate

The node contacts the activation engine to activate an atomic task, a compound task, or 
a task list. To invoke an atomic or compound task, you must specify the name of the task 
to be activated and its parameters. To invoke a previously constructed task list, you 
must specify the task list. See “CreateTaskList” on page 120 for additional information 
about using the Activate node with a task list.

The Activate node requires that the case-packet contains a variable named 
activation_major_code. After the Activate node completes, it sets the value of 
activation_major_code to indicate the status of activation. A value of 0 indicates 
successful activation; a value of 1 indicates an error. 

If the following variables exist in the case-packet, the Activate node will also set them 
when activation completes:

• activation_minor_code

• activation_stdout

• activation_stderr

• activation_description

The values set for these case-packet variables are determined by aggregating the fields 
of the ExecutionDescriptor objects returned by all of the atomic tasks involved in the 
task activation. 

The Activate node takes two special parameters to make it easier to respond to 
activation errors: error_queue and error_message. If an activation error occurs, (that 
is, if the activation_major_code is nonzero) and the error_queue parameter is set, 
then a message is posted to the specified queue. By default, the message will have the 
following form: 

Error activating task “<taskname>” for job #<job_id>

The format of the message to be posted can be overridden by setting error_message. 
This message can be parameterized as in this example:

<Param name="error_message" value="Minor code %activation_minor_code% when 
activating task %activation_task%"/>

You can also control whether or not the Activate node really does an activation. You can 
control this at runtime by the values of case-packet variables. The Activate node looks 
in the case-packet (not a parameter) for the existence of a Boolean variable: 
skip_activation. If this has a value of “true”, the Activate node will not perform 
activation. In addition, if the value is “true”, then other case-packet variables are 
consulted to determine how to set the activation_major_code and 
activation_minor_code.

If skip_activation_major_code is set, then activation_major_code will be set to its 
value. If skip_activation_minor_code is set, then activation_minor_code will be set 
to its value. The activation_description will be set to the following string: 
“Activation skipped via workflow configuration. Task: + <taskname>.”
Chapter 494



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The Activate node can consume data uploaded from a task activation if you specify the 
uploaded_data_var parameter. See “Uploading Data from a Task Activation” on 
page 54 for additional information.

The Activate node uses the built-in variable SUBSTEP. It uses this to resume a workflow 
safely. If activation is in the middle of execution when the workflow engine is killed (not 
safely), the workflow engine resumes the workflow and tries to re-execute the current 
node. This would mean that the activation is tried again but this can be catastrophic if 
the activation is partially complete. To avoid this, the Activate node uses the SUBSTEP 
variable to record the fact that activation has actually been initiated. If the node is 
executed again and the SUBSTEP indicates this, activation is not be retried, and the node 
fails.

(activation_major_code=1, activation_minor_code=2...that is, 
ERROR/INCONSISTENT).

The ActivationModule is specially aware of the SUBSTEP variable. The SUBSTEP is not 
set until activation is actually begun. The SUBSTEP is not set until one of the activation 
threads actually takes the activation request from the activation queue and begins 
working on it.

The Activate node sets an entry in the RUNTIME variable (if it exists) to indicate the 
task that was executed. The key for this value is 'task_name'.

See Also

• “ActivationModule” on page 355 in this guide

• “Job Counters” on page 96 in HP Service Activator - Introduction and Overview

Table 4-2 Activate Parameters

Name Required Description Default Type

task Yes, if 
task_list
_var is not 
used

A string indicating the name 
of a single atomic or 
compound task to execute. 
This parameter is mutually 
exclusive with the 
task_list_var parameter.

None String

param0
param1...
paramN

Yes, if 
task is 
used

Specifies the values to pass 
for each parameter of the 
single task being activated. 
This assumes the task has 
been previously deployed 
using Service Builder. These 
parameters are mutually 
exclusive with the 
task_list_var parameter.

None String
Chapter 4 95



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
task_list_var Yes, if 
task is not 
used

A case-packet variable of 
type Object that contains a 
list of tasks to execute. This 
object is created by the 
CreateTaskList node. The 
AppendToTaskList node is 
then used to add individual 
tasks to the task list. 

This parameter is mutually 
exclusive with the 
parameters task and 
param0, param1... paramN.

None Object

activation_module No Specifies the name of the 
activation module to use. If 
not specified, a module called 
activator is assumed.

“activator” String

error_queue No Specifies the name of a queue 
to which a message will be 
sent if the activation fails.

None Queue

error_message No Specifies the format of any 
error message that may be 
sent (if the error_queue 
parameter is set).

None String

ignore_lock_argum
ent

No When set to 'true' the 
resource manager will not do 
locking on the lock 
arguments  (Default: false)

false Boolea
n

uploaded_data_var No The value for this parameter 
must be a case-packet 
variable of type Object. When 
the Activate node is executed, 
this case-packet variable is 
set to a HashMap containing 
the data uploaded by the 
activation. If no data is 
uploaded during the 
activation, the case-packet 
variable is set to an empty 
HashMap. 

You only need to specify the 
uploaded_data_var action 
parameter if you wish to 
receive the uploaded data 
from the activation—it is 
never an error not to specify 
this parameter, even if the 
activation does, in fact, 
upload data.

None Object

Table 4-2 Activate Parameters (Continued)

Name Required Description Default Type
Chapter 496



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-1 Activate a Single Task

This example invokes the UXOS_addDir atomic task:

<Process-Node>
<Name>Create a new directory</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.engine.component.builtin.Activate

</Class-Name>
 <Param name="task" value="UXOS_addDir"/>
 <Param name="param0" value="machine"/>
 <Param name="param1" value="dirname"/>
 <Param name="param2" value="login"/>
 <Param name="param3" value="constant:users"/>
 <Param name="param4" value="constant:775"/>
 <Param name="param5" value="tarfile"/>
 </Action>

</Process-Node>

Example 4-2 Activate a Task List 

This example activates a task list called my_task_list. This list was previously created 
using the CreateTaskList node; individual tasks were added to the list using the 
AppendToTaskList node.

<Process-Node>
<Name>Activate the Task List Called my_task_list</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.engine.component.builtin.Activate

</Class-Name>
<Param name="task_list_var" value="my_task_list"/>

 </Action>
</Process-Node>
Chapter 4 97



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Add

com.hp.ov.activator.mwfm.component.builtin.Add

Adds a list of values (numeric variables and constants). The operation is similar to 
writing a statement such as operand0 = operand0 + operand1. The result of the 
computation is stored back in the first variable. 

If you specify only one variable, the node computes a simple increment, similar to 
writing a statement such as operand0 = operand0 + 1.

Example 4-3 Add - use in the workflow

This example adds a list of variables and constants together. The process is similar to 
writing a statement such as x = x + y + 10.

<Process-Node disablePersistence="true">
<Name>compute total time</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.engine.component.builtin.Add

</Class-Name>
<Param name="op0" value="x"/>

 <Param name="op1" value="y"/>
 <Param name="op2" value="constant:10"/>
</Action>

</Process-Node>

Table 4-3 Add Parameters

Name Required Description Default Type

op0, op1...opN Yes, at 
least one

Each operand (other than op0), can 
be a case-packet variable or a 
constant (specified as constant:X 
where X is the constant). op0 can 
only be a case-packet variable since 
that is where the result is stored.

None Numeric
Chapter 498



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
AppendToTaskList

com.hp.ov.activator.mwfm.component.builtin.tasklist.AppendToTaskList 

The node adds a single task to a list of tasks created using the CreateTaskList node. 
This task can be an atomic task or a compound task.

You can view the contents of a task list using the PutMessage node. This is helpful when 
you are debugging, as it allows you to see the contents of the task list. In the PutMessage 
node, specify a message such as “The task list is: %s” and supply the task list as 
param0.

See Also

• “CreateTaskList” on page 120 for more information about creating a new task list

• “ConcatenateTaskLists” on page 114

• “InsertIntoTasklist” on page 178

• “PutMessage” on page 241

• “Activate” on page 94 for more information about the Activate node

Table 4-4 AppendToTaskList Parameters

Name Required Description Default Type

task_list_var Yes A case-packet variable of type 
Object that contains the task 
list. Before tasks can be 
appended, the list must be 
created by CreateTaskList. 

None Object

task Yes Name of the atomic or compound 
task to add to the list. The task 
must have been previously 
deployed with Service Builder.

None String

param0
param1...
paramN

Yes Specifies the values to pass for 
each parameter of the single task 
being appended to the task list. 

None Depends 
on the 
task’s 
argument 
type
Chapter 4 99



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-4 AppendToTaskList - use in the workflow

This example appends a single task to a list called my_task_list:

<Process-Node disablePersistence="true">
<Name>AppendToTaskList</Name>
<Description>Append a Task to an Existing List</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.tasklist.AppendToTaskList

</Class-Name>
<Param name="task_list_var" value="my_task_list"/>
<Param name="task" value="UXOS_addDir"/>

 <Param name="param0" value="machine"/>
 <Param name="param1" value="dirname"/>
 <Param name="param2" value="login"/>
 <Param name="param3" value="constant:users"/>
 <Param name="param4" value="constant:775"/>
 <Param name="param5" value="tarfile"/>
</Action>
<Next-Node>AppendToTaskList</Next-Node>

</Process-Node>
Chapter 4100



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
AskFor

com.hp.ov.activator.mwfm.component.builtin.AskFor

The node causes a workflow to pause and wait for user interaction (or input from 
another workflow or an external process). The node places a request on a request queue 
and the workflow does not proceed until the request is satisfied.

You can specify a timeout period that allows the workflow to proceed without the values 
if the values are not submitted before the timeout period expires. If the request does 
timeout, the workflow sets the TIMEOUT variable in the case-packet to “true” to indicate 
that the timeout occurred. The workflow can then choose to take some action to deal with 
the timeout.

You can also specify a Java class for validating the supplied values. This Java class must 
implement the “Validator Interface” on page 105.

The AskFor node sets an entry in the RUNTIME variable (if it exists) to indicate the user 
that responded to the request. The key for this value is 'username'.

The AskFor node can be configured to make the parent workflow wait on multiple 
children. If you want to use the functionality of the parent workflow waiting on multiple 
children, you have to first specify the waiting condition. This can be specified in the 
wait_for_child parameter. This parameter will take values as “ALL”, “ANY” or “COUNT”.

• ALL - This waiting condition signifies that the parent workflow is configured to wait 
on all the child workflows that are specified in the "child_workflow_job_idX" 
parameters.

• ANY - This signifies that the parent workflow is configured to wait on any one of the 
configured child workflows.

• COUNT - This signifies that the parent workflow is configured to wait on "number" 
of child workflows.

The wait_for_child parameter should be set for the parent workflow to register with 
the Sync module. If this is not set, the AskFor node will not communicate with the sync 
module. So, if the children spawned by the parent workflow responds to the parent 
workflow, the parent workflow will never know about this as the children will 
communicate with the sync module directly to send its responses.

If the parent workflow is configured to wait on all the child workflows, the parent 
workflow will look into the “child_workflow_job_idX” parameters and will wait in the 
configured queue (queue parameter) till all of them have completed before collecting the 
response. The response that it should send should also match the case packet that the 
parent workflow is waiting on. If the response from the child is to a different case packet 
that the parent is not expecting, the parent workflow will keep waiting even though the 
all the children have responded.

If the parent workflow is configured to wait on any one of the child workflows, the parent 
workflow will wait in the configured queue till one of the child workflow responds (child 
workflows are configured in the “child_workflow_job_idX” parameters).

If the waiting condition is ALL / ANY and the “child_workflow_job_idX" parameters are 
not set, the parent workflow will fail.

If the waiting condition is set to any other values other than ALL / ANY / COUNT, the 
parent workflow will fail.
Chapter 4 101



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
If the parent workflow is configured to wait on a number of child workflows, the parent 
workflow will look into the “children_count” parameter and will wait for the 
“children_count” number of workflows to respond before collecting the response and 
moving out of the AskFor node. In this case, the variables “child_workflow_job_idX” will 
not have any values. If the "children_count" is not set and the waiting condition is 
COUNT, the parent workflow will fail. 

See Also

• “Sync” on page 292 for information about how to respond to an AskFor request from 
another workflow.

• “SyncModule” on page 422

Table 4-5 AskFor Parameters

Name Required Description Default Type

queue Yes Name of the request queue in 
which to place the request. The 
value can be either a constant 
string or a case-packet 
variable.

None String

variable0, 
variable1...
variableN

Yes, at 
least one

One or more case-packet 
variables whose values are 
being requested.

None String

description0, 
description1 ...
descriptionN

No You can provide a description 
for each requested variable. 
This description appears in the 
automatically generated form 
to help indicate to an operator 
what the value means. The 
value is a constant string.

None String

label0,
label1...
labelN

No You can provide a label for 
each requested variable. If you 
do not specify a label, the 
variable name is used the set 
the label.

None String

editable0
editable1...
editableN

No A Boolean value (“true” or 
“false”) to indicate whether 
the field created for this 
variable in the automatically 
generated form should be 
editable (“true”) or not 
(“false”).

“true” Boolean

required0
required1...
requiredN

No A Boolean value (“true” or 
“false”) to indicate whether a 
value must be supplied for 
each field in the automatically 
generated form (“true”), or if it 
can be left empty (“false”).

“false” Boolean
Chapter 4102



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
timeout No The value can be a case-packet 
variable or a constant 
(specified as constant:X 
where X is the constant). The 
value indicates the amount of 
time (in milliseconds) to wait 
before proceeding to the 
following node in the workflow. 
If not specified, there is no 
timeout.

None Integer

response No A constant string message that 
is returned once the valid 
values are supplied for the 
requested variables. The user 
sees this message in the 
Operator UI. If you set the 
validation parameter, the 
response parameter is 
ignored.

None String

validation No The name of a Java class that 
implements the Validator 
interface. If you specify this 
class, the validate() method 
is invoked after the requested 
values are supplied. The class 
verifies that the values 
supplied are consistent. 
Further, if you specify this 
class, the response parameter 
is ignored because the 
validate method returns a 
response message.

None String

Wait_for_child No Name of the case packet 
variable that will hold the 
parent waiting condition. This 
can have values as "ALL", 
"ANY" or "COUNT". This 
along with the combination of 
the below parameters are 
mandatory for the AskFor 

None String

Children_count No Name of the case packet 
variable that will hold the 
count of children that the 
parent workflow will be 
waiting on in case the waiting 
condition is "COUNT"

None Integer

Table 4-5 AskFor Parameters (Continued)

Name Required Description Default Type
Chapter 4 103



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-5 AskFor - use in the workflow

This example waits for the operator to specify a new customer name and password.

<Process-Node>
 <Name>Ask for input</Name>
 <Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.AskFor
</Class-Name>

 <Param name="queue" value="operator_input"/>
 <Param name="variable0" value="custname"/>
  <Param name="variable1" value="passwd"/>
  <Param name="description0" value="New customer name" />
  <Param name="description1" value="User password (at least 8 chars)"/>
  <Param name="required1" value="true" />
  <Param name="response" value="New customer name and password accepted"/>
</Action>

</Process-Node>

Form Presentation

When a user chooses to interact with a workflow waiting for input, a form is 
automatically generated to prompt the user for the requested values. Parameters can 
configure the behavior of the form indicating the following things:

• An optional description to accompany the field

• Whether each element of the form can be editable or not

• Whether the element is required

By default, the form is presented in the following way:

• Any string, numeric or object variable is presented as a text field. If the field is 
indicated to be not editable, then the variable is presented as static text.

• Boolean variables are presented as radio button with values true or false.

• Variables of type object get set to a string value.

Child_workflow_j
ob_id0,

Child_workflow_j
ob_id1 ...

Child_workflow_j
ob_idN

No Case packet variables to hold 
the child job IDs that the 
parent workflow will have to 
wait if the waiting condition is 
ALL or ANY

None

swap No Instructs the Workflow 
manager to swap-out the 
case-packets while the job 
waits in the request queue, in 
order to reduce memory 
footprint

false Boolean

Table 4-5 AskFor Parameters (Continued)

Name Required Description Default Type
Chapter 4104



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Creating Custom Forms

It is possible to override the default form that is presented. Normally, the form is 
presented by an internally generated JSP that is not saved. However, you can tell the 
system first to look for a custom JSP in the file system. If one is not found, the system 
will generate one on the fly and will save it to disk so that it can be edited for a custom 
presentation.

To enable this you must edit a parameter in the 
$JBOSS_DEPLOY/hpsa.ear/activator.war/WEB-INF/web.xml file.

1. Look for the section with the comment “Interact with running jobs”

2. Set the value of the parameter customizeAskForNodeJSP to “true.”

3. Optionally, set the value of the parameter fileSavedInfo to “true.” This will cause 
the generated form to present the file name in which the generated JSP is saved.

These custom JSPs must be placed in a specific location based on the name of the 
workflow, the step name and the queue name. The base location is indicated in the 
web.xml file. The file path is:

$JBOSS_DEPLOY/hpsa.ear/activator.war/customJSP/<workflow>/<stepname>/<qu
eue>.jsp

NOTE If you customize one of these JSPs and then subsequently alter the node to add or 
remove some variables, then you will have to re-customize the page to match these 
changes. Also, if you change the name of the workflow, the step name or the queue, then 
you will have to move the customized workflow to the matching directory.

Validator Interface

As indicated in the discussion of the AskFor node on page 101, it is possible to write a 
Java class that can perform some validation on a collection of case-packet variables to 
ensure that the appropriate values have been supplied.

The Validator interface has a single method that is called after a set of the requested 
values has been supplied. The method is passed a HashMap containing the set of 
case-packet variables and their values. The method should evaluate the set of variables 
for consistency and either throw a WFInvalidCasePacketException, or return a 
response message to indicate that the values are valid.

public interface Validator
{

/*****************
Validates a case-packet sent by an external entity.

@param requestedCasePacket The case-packet to be validated

@return An object holding a mssage to be passed up to the client

@exception WFInvalidCasePacketException In case of any error in the returned
case-packet information

************************/
public Object validate( HashMap requestedCasePacket ) throws

WFInvalidCasePacketException;
}

Chapter 4 105



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Assign

com.hp.ov.activator.mwfm.component.builtin.Assign

The node is a component used for assigning value to case-packet variable. Using the 
VariableMapper or the MultiAssign node instead is recommended because the are more 
flexible.

See Also

• “VariableMapper” on page 315

• “MultiAssign” on page 213

Example 4-6 Assign - use in the workflow

This example sets the counter variable to a value of 0.

<Process-Node disablePersistence="true">
<Name>Reset the counter</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Assign

</Class-Name>
<Param name="variable" name="counter" />

 <Param name="value" name="constant:0" />
</Action>

</Process-Node>

Table 4-6 Assign Parameters

Name Required Description Default Type

variable Yes Case-packet variable to be set. None String / 
Integer / 
Float / 
Boolean / 
Object

value Yes New value to set for the variable. It 
can be a case-packet variable or a 
constant (specified as constant:X 
where X is the constant).

None Depends 
on the 
variable 
type.
Chapter 4106



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Audit

com.hp.ov.activator.mwfm.component.builtin.Audit

The node writes an audit record using the specified audit module. 

See Also

• “AuditModule” on page 357 for more details on how to enable or disable event types.

Table 4-7 Audit Parameters

Name Required Description Default Type

audit_module No Specifies the name of the 
audit module to use. If not 
specified, the module called 
“auditor” is assumed. 

“auditor” String

event_type No Specifies the type of event 
being audited. The type can 
be any string however a list of 
limitations exists, see the 
AuditModule description for 
details.

If not specified, “LOG_EVENT” 
is used. The value can be a 
case packet variable or a 
constant preceded by 
“constant:”

“LOG_EVENT” String

timestamp No Specifies the time when the 
audited event occurred. The 
argument can be set to the 
value of a case packet 
variable for example the 
START_TIME case-packet 
variable or the “time” entry 
for a workflow step from the 
RUNTIME case-packet variable. 
If timestamp is not specified, 
the current system time is 
used. The format for 
timestamp is given in 
milliseconds. If the format of 
the argument is invalid, the 
node fails with RET_VALUE set 
to 1. The explanation is given 
in the RET_TEXT case-packet 
variable.

Current time String
Chapter 4 107



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
user No Specifies the name of the user 
who is responsible for the 
event being audited. A case 
packet variable can be used, 
such as the “user” entry for a 
workflow step from the 
RUNTIME case packet variable. 
Or you can use a constant 
preceded by “constant:” 
If in your workflow you 
declare a case-packet variable 
called RUNTIME with the type 
Object, it will automatically 
be filled with some different 
information during the run of 
the workflow. The RUNTIME 
CP is a map. In addition to 
other things, it is updated 
with the username used at 
every interaction (ASKFOR) 
and can, therefore, be used if 
you want to know the user 
who last interacted with this 
job. Access to maps has been 
made generally available so if 
you need this information you 
can fetch it by typing 
RUNTIME{“username“} in the 
“user” field of the audit node.

None String

step_name No The name of the step being 
audited. If not specified, the 
name of the audit step is 
used. This can be a case 
packet variable or you can use 
a constant preceded with 
“constant:”

Audit step 
name

String

message No A message for the audit 
event. This can be a case 
packet variable or you can use 
a constant preceded by 
“constant:”

None String

identifier No The Service Id for the audit 
event. This can be a case 
packet variable or you can use 
a constant preceded by 
“constant:”

None String

Table 4-7 Audit Parameters (Continued)

Name Required Description Default Type
Chapter 4108



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-7 Audit - use in the workflow

This example adds an audit record using values from the RUNTIME case packet 
variable for the step name "Add User".

<Process-Node> 
<Name>Write an Audit Record</Name> 
<Action> 

<Class-Name> 
om.hp.ov.activator.mwfm.component.builtin.Audit

</Class-Name> 
<Param name="timestamp" value="RUNTIME{&quot;Add User&quot;} 

 {&quot;timestamp&qout;}"/> 
<Param name="step_name" value="constant:Add User"/> 
<Param name="message" value="Add_User_Message"/> 
<Param name="attrib_name0" value="constant:Task Name"/> 
<Param name="attrib_value0" 

value="RUNTIME{&quot;Add User&quot;}{&quot;task_name&quot;}"/> 
</Action>

</Process-Node>

attrib_name0
attrib_name1…
attrib_nameN

No The name of the name-value 
pair of data stored for this 
audit event. This can be 
either a case packet variable 
or a constant preceded with 
“constant:”

When the key is a case packet 
variable, the case packet 
variable name will be used. A 
lookup of the case packet 
variable value will not occur.

This allows expedient use of 
Workflow Designer to select 
case packet variables as 
names, and the use of case 
packet variable values as the 
value in the attrib_value 
parameter.

None String

attrib_value0
attrib_value1…
attrib_valueN

No The value of the name-value 
pair of data stored for this 
audit event. This is the name 
of a case packet variable or a 
constant preceded with 
“constant:”

None Object

Table 4-7 Audit Parameters (Continued)

Name Required Description Default Type
Chapter 4 109



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ChangeRoles

com.hp.ov.activator.mwfm.component.builtin.ChangeRoles

This node is used to change the roles dynamically within a running workflow. It is only 
possible to change the roles of the current job. The roles are validated against the 
validroles list set in the authentication module before changes are committed. If a role is 
invalid, no changes are done but the RET_VALUE variable is set to 1.

Example 4-8 ChangeRoles - use in the workflow

This example sets all tree dynamic roles of the workflow.

<Process-Node disablePersistence="true">

<Name>ChangeRoles</Name>

<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ChangeRoles

</Class-Name>

<Param name="Default-Role" value="constant:roleA"/>

<Param name="Trace-Role" value="constant:roleB"/>

<Param name="Kill-Role" value="constant:roleC"/>

</Action>

</Process-Node>

Table 4-8 ChangeRoles Parameters

Name Required Description Default Type

Default-Role No The new value for the default role. 
This can either be a constant or a 
case packet variable.

None String

Trace-Role No The new value for the trace role. 
This can either be a constant or a 
case packet variable.

None String

Kill-Role No The new value for the kill role. 
This can either be a constant or a 
case packet variable.

None String
Chapter 4110



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ComposeMessage

com.hp.ov.activator.mwfm.component.builtin.ComposeMessage

The node uses a template string and the current values in the case-packet to compose a 
new string according to the template. Placeholders in the template are replaced with the 
values of case-packet variables.

The template for the message can come from a file, or it can be the contents of multiple 
case-packet variables. If the message is to be composed from case-packet variable, 
multiple instances of template_var parameters must be mapped. The composed 
message can also be output to a file, or to a case-packet variable.

If the value of the output_file parameter indicates a file name that does not have an 
absolute directory path but has some directory above the file name (such as 
error_messages/myfile), the file is created under $ACTIVATOR_VAR. If the file specified 
is just a file name (no directory), the composed file is created under 
$ACTIVATOR_VAR/tmp.

The template is typically an XML message, though this is not required. The template file 
can contain placeholders of the form:

%case-packet-variable-name% 

Each placeholder in the template is replaced with the value of the case-packet variable 
indicated in the placeholder. In the placeholder, you can also specify a default value so 
that it is used instead if the case-packet variable does not have a value. If the message 
cannot be composed for any reason, the case-packet variable RET_VALUE is set to 1. If the 
composition is successful, then RET_VALUE is set to 0. The syntax for the notation is:

%case-packet-variable-name > default-value%

Table 4-9 ComposeMessage Parameters

Name Required Description Default Type

template_file Yes, if 
template_var 
is not used

Name of the file in which the 
template is to be found. The 
value of this parameter can be a 
case-packet variable that 
contains the name of the file, or 
can be a constant (specified as 
constant:X where X is the name 
of the file). 

The file is expected to exist in the 
directory 
$ACTIVATOR_ETC/template_
files

None String

template_var0,
template_var1,
...
template_varN

Yes, if 
template_file 
is not used

Name of a case-packets available 
that contains the template 
strings.

None String
Chapter 4 111



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-9 ComposeMessage - use in the workflow

The following example shows the use of the ComposeMessage node.

<Process-Node disablePersistence="true">
<Name>Compose success message</Name>
<Action>

<Class-Name>com.hp.ov.activator.mwfm.component.builtin.ComposeMessage</Class-Name>
<Param name="output_var" value="out_message"/>
<Param name="template_file" value="constant:OK_message.template"/>

</Action>
<Next-Node>Remove message file</Next-Node>

</Process-Node>

where the template file is located in 
C:\hp\OpenView\ServiceActivator\etc\template_files, and contains

<response_msg>
<header>

<message_id><!-- Template:message_id --></message_id>
<service_id><!-- Template:service_id --></message_id>

</header>

<body>
<message>OK</message>

</body>
</response_msg>

During execution, the ComposeMessage node will substitute <!-- 
Template:message_id --> with the value of the message_id case-packet variable.

use_solution_di
r

No When set to "true", the nodes will 
read from 
$SOLUTION_ETC/template_file
s instead of 
$ACTIVATOR_ETC/template_fil
es.

true Boolean

output_file Yes, if 
output_var is 
not used

Name of the file to which the 
composed message is to be 
written. The value of this 
parameter can be a case-packet 
variable that contains the name 
of the file, or it can be a constant 
(specified as constant:X where X 
is the name of the file).

If the path name to the file is not 
an absolute path, the file is 
created relative to 
$ACTIVATOR_VAR/tmp

None String

output_var Yes, if 
output_file is 
not used

Name of a case-packet variable 
in which the composed message 
is placed.

None String

Table 4-9 ComposeMessage Parameters (Continued)

Name Required Description Default Type
Chapter 4112



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-10 ComposeMessage using multipe case-packet variables

<Process-Node disablePersistence= “true”>
<Name>ComposeMessage</Name>
<Action>

<Class-Name>com.hp.ov.activator.mwfm.component.builtin.ComposeMessage</Class-Name>
<Param name="output_var" value="composedMessage"/>
<Param name="template_var0 value="message_id"/>
<Param name="template_var1 value="service_id"/>

</Action>
<Next-Node>PutMessage</Next-Node>

</Process-Node>

During execution, the ComposeMessage node will compose a string with the value of the 
message_id and service_id case-packet variables and store it in a case-packet variable 
composedMessage.

Example 4-11 ComposeMessage using multipe case-packet variables, whose value contains 
template strings

<Process-Node disablePersistence= “true”>
<Name>ComposeMessage</Name>
<Action>

<Class-Name>com.hp.ov.activator.mwfm.component.builtin.ComposeMessage</Class-Name>
<Param name="output_var" value="composedMessage"/>
<Param name="template_var0 value="message_id"/>
<Param name="template_var1 value="servicetemplate"/>

</Action>
<Next-Node>PutMessage</Next-Node>

</Process-Node>

The case-packets messagetemplate and servicetemplate contain values message_id 
and service_id respectively.

During execution, the ComposeMessage node will substitute message_id and 
service_id with the value of message_id and service_id case-packet variables 
respectively. The composed message is stored in a case-packet variable 
composedMessage.
Chapter 4 113



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ConcatenateTaskLists

com.hp.ov.activator.mwfm.component.builtin.tasklist.ConcatenateTaskLists

The node concatenates two task lists. The resulting task list is saved in the task_list 
variable, which can be activate later using the Activate node.

See Also

• “CreateTaskList” on page 120 for more information about creating a new task list.

• “AppendToTaskList” on page 99

• “InsertIntoTasklist” on page 178

• “Activate” on page 94 for more information about the Activate node.

Example 4-12 ConcatenateTaskLists - use in the workflow

The following example concatenates two task lists my_task_list and 
my_subtask_list.

<Process-Node disablePersistence="true">
<Name>ConcatenateTaskLists</Name>
<Description>Create a Task List</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.tasklist.ConcatenateTaskLists

</Class-Name>
<Param name="task_list_var" value="my_task_list"/>
<Param name="variable" value="my_subtask_list"/>

</Action>
<Next-Node>PutMessage</Next-Node>

</Process-Node>

Table 4-10 ConcatenateTaskLists Parameters

Name Required Description Default Type

task_list
_var

Yes Case-packet variable of object 
type holding a list of tasks to be 
executed.

None Object

variable Yes Case-packet variable of object 
type holding a list of tasks to be 
appended to first list.

None Object
Chapter 4114



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ConfirmResourceReservation

com.hp.ov.activator.mwfm.component.builtin.ConfirmResourceReservation

The node helps to manipulate the contents of the RESERVATIONS variable by removing 
resources from this variable. This is valuable when you choose to use the 
ReleaseResourceHandler to deal with abnormal workflow termination. This handler 
automatically releases resources in the RESERVATIONS variable.

At some point in your workflow, you might reserve a resource, then later in the workflow 
you actually use the resource (in an Activate node). If the workflow terminates 
abnormally before the Activate node is reached, you want the 
ReleaseResourceHandler to release the resource. However, after the Activate node 
runs, it is no longer appropriate to release the resource, even in an abnormal 
termination.

Therefore, the ConfirmResourceReservation node removes the given resource from the 
RESERVATIONS variable, ensuring that the ReleaseResourceHandler does not release 
the resource.

See Also

• “ReserveResource” on page 273 for more information about the RESERVATIONS 
variable

• “ReleaseResource” on page 268 for more information about the RESERVATIONS 
variable

Table 4-11 ConfirmResourceReservation Parameters

Name Required Description Default Type

variable0,
variable1...
variableN

No Indicates the variables that contain 
reserved resources. If no 
variableN parameters are 
specified, all of the entries in the 
RESERVATIONS variable are 
removed.

None Any
Chapter 4 115



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
CreateBean

com.hp.ov.activator.mwfm.component.builtin.CreateBean 

This node creates and inventory bean object in memory; i.e. the object is not stored in the 
inventory database after being created..

Table 4-12 CreateBean Parameters

Name Required Description Default Type

Bean Yes Name of the JavaBean class that 
is used for creating the inventory 
bean object.

None String

Key_fiel
d0
key_fie
ld1
...
key_field
N

Yes Name of a key in the JavaBean 
that is created. The parameter 
must be repeated for all 
attributes in the JavaBean being 
assigned.
Note that when a JavaBean is 
updated the primary key must 
always be present in the list of 
keys.

None String

Key_valu
e0
key_val
ue1
...
key_valu
eN

Yes Used in conjunction with the 
key_field attributes to specify the 
values of the individual attributes 
in the JavaBean.

None Any

bean_va
riable

Yes Name of the variable where the 
created JavaBean instance is 
returned

None Object
Chapter 4116



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-13 CreateBean- use in the workflow

This example creates in memory an inventory object representing a UNIX user.

<Process-Node disablePersistence="true">
 <Name>CreateUnixUser</Name>
 <Description>Create a new UNIX user</Description>
 <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.CreateBean

</Class-Name>
 <Param name="bean_variable" value="user"/>

<Param name="key_field0" value="constant:uid"/>
<Param name="key_field1" value="constant:gid"/>
<Param name="key_field2" value="constant:name"/>
<Param name="key_field3" value="constant:home"/>
<Param name="key_value0" value="next_uid_seq_number"/>
<Param name="key_value1" value="next_gid_seq_number"/>
<Param name="key_value2" value="user_name"/>
<Param name="key_value3" value="home_directory"/>

 </Action>
</Process-Node>
Chapter 4 117



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
CreateInventory

com.hp.ov.activator.mwfm.component.builtin.CreateInventory

The node is in essence a wrapper around the UpdateInventory node with the only 
difference that it runs in “strict create” mode by default.

Values can be passed to an inventory object either by specifying a list of 
key_field/key_value pairs or by passing an object containing the inventory bean.

Table 4-13 CreateInventory Parameters

Name Required Description Default Type

db No Name of the database module to be 
used.

“db” String

bean Yes Name of the JavaBean class 
that is used for storing the data.

None String

bean_object No The name of the variable 
containing the inventory bean 
object to by stored in the 
inventory.

None Object

key_field0, 
key_field1..
.
key_fieldN

No Name of a key in the JavaBean 
that is updated or created. The 
parameter must be repeated for 
all attributes in the JavaBean 
being updated or initially 
assigned.

Note that when a JavaBean is 
updated the primary key must 
always be present in the list of 
keys, even if it is not updated.

None String

key_value0,
key_value1..
.
key_valueN

No Used in conjunction with the 
key_field attributes to specify 
the new value of the individual 
attributes in the JavaBean.

None Any

bean_variabl
e

No Name of the variable where the 
created/updated JavaBean 
instance is returned.

None Object

strict_creat
e

No When set to “true” the node 
will run in “strict create” mode 
which means that the node will 
fail if a bean with the specified 
key does already exist.

Can not be used together with 
the strict_update parameter

“true” Boolean
Chapter 4118



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-14 CreateInventory - use in the workflow

<Process-Node>
<Name>Create User</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.CreateInventory

</Class-Name>
<Param name="bean" value="constant:com.hp.ov.avtivator.triplemy.User"/>
<Param name="db" value="db_name"/>
<Param name="key_field0" value="constant:id"/>
<Param name="key_value0 value="user_id"/>
<Param name="key_field1" value="constant:firstName"/>
<Param name="key_value1" value="user_first_name"/>
<Param name="key_field2" value="constant:lastName"/>
<Param name="key_value2” value="user_last_name"/>
<Param name="key_field3" value="constant:region"/>
<Param name="key_value3" value="region_id"/>
</Action>

</Process-Node>
<Case-Packet>
<Variable name="db_name" type="String"/>
<Variable name="user_id" type="String"/>
<Variable name="user_first_name" type="String"/>
<Variable name="user_last_name" type="String"/>
<Variable name="region_id" type="Integer"/>

</Case-Packet>

strict_updat
e

No When set to “true” the node 
will run in “strict update” mode 
which means that the node will 
fail if a bean with the specified 
key does not exist.

Can not be used together with 
the strict_create parameter.

“false” Boolean

store_audit No If audit is enabled in the 
Workflow Manager’s 
configuration file as well as in 
the Inventory Bean’s XML 
resource definition file an audit 
record will be written each time 
this node is executed.

To disable audit for the node, 
set this parameter to “false”.

“true” Boolean

Table 4-13 CreateInventory Parameters (Continued)

Name Required Description Default Type
Chapter 4 119



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
CreateTaskList

com.hp.ov.activator.mwfm.component.builtin.tasklist.CreateTaskList 

The node assigns a new task list to a case-packet variable of type Object. Tasks are then 
added to the list by the AppendToTaskList node. After the list is constructed, it is 
executed as a single transaction by the Activate node. 

A task list is useful if you need to execute multiple tasks as part of a single transaction 
(with rollback capability), but you do not know in advance how many tasks you will need 
to execute. For instance, if you want to perform a certain task once for each switch in a 
switch fabric, but you do not know exactly how many switches there are in that fabric, 
you can first query your inventory to determine the number of switches and then add 
that number of tasks to your task list. 

NOTE Task lists are not intended to replace compound tasks. You should use a compound task 
when you know prior to run-time which tasks you will need to execute and how many 
times you will need to execute each task. 

Figure 4-1 shows a portion of a workflow that creates a task list and then appends tasks 
to that list. It uses a counter to keep track of the number of tasks it appends to the list, 
incrementing the counter once for each task. When the counter reaches a specified value, 
the workflow stops adding tasks to the list.

Figure 4-1 Creating a Task List at Run-Time
Chapter 4120



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
See Also

• “AppendToTaskList” on page 99 for more information about adding individual tasks 
to an existing task list

• “ConcatenateTaskLists” on page 114

• “InsertIntoTasklist” on page 178

• “Activate” on page 94 for more information about the Activate node

Example 4-15 CreateTaskList - use in the workflow

The following example creates a new task list called my_task_list:

<Process-Node disablePersistence="true">
<Name>CreateTaskList</Name>
<Description>Create a Task List</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.tasklist.CreateTaskList

</Class-Name>
<Param name="task_list_var" value="my_task_list"/>

</Action>
<Next-Node>AppendToTaskList</Next-Node>

</Process-Node>

NOTE If you call the CreateTaskList node more than once in a given workflow using the same 
task_list_var case-packet variable, any existing contents of the task list are deleted 
and a fresh task list is created.

Table 4-14 CreateTaskList Parameters

Name Required Description Default Type

task_list_var Yes A case-packet variable of type 
Object that will store a task list. 
It is used by AppendToTaskList, 
ConcatenateTaskList, 
InsertIntoTaskList and consumed 
by Activate.

None Object
Chapter 4 121



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
CreateUCMDBCIsAndRelations

com.hp.ov.activator.mwfm.component.builtin.CreateUCMDBCIsAndRelations

The createUCMDBCIsAndRelations node will create the specified CIs and Relations in 
the uCMDB.  

This node can create multiple Cis and relations in a single request. The node sets a 
response variable which will be a map with the temporary id specified as the key and the 
actual uCMDB ID as the value. This node throws a UCMDBException in case there is an 
error while processing the request.

Table 4-15 CreateUCMDBCIsAndRelations Parameters

Name Required Description Default Type

module_name Yes The name of the 
UCMDBRequestModule to be used

None String

response No The name of the case-packet 
variable name in which the 
result is stored. The type of the 
case-packet variable should be 
Object. The result returned 
will be a map of temporary id 
specified and the actual CMDB 
id

None Object

ci_id0
ci_id1...
ci_idN

Yes (At 
least one 
is 
mandatory 
if no 
relations 
are 
specified. 
Not 
mandatory 
if relations 
are 
specified)

Temporary Id of the CI which 
needs to be added. A single CI 
can have multiple properties. 
This can be specified by giving 
the same CI temporary Id 
again.

None String

ci_type0
ci_type1...
ci_typeN

Yes(If ci_id 
has been 
specified)

Type of the CI. It can be any 
type defined in uCMDB

None String

ci_prop_name0
ci_prop_name1
...
ci_prop_name
N

No Name of the property to be 
associated with the CI

None String
Chapter 4122



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ci_prop_value0
ci_prop_value1
...
ci_prop_value
N

No Value of the property name 
specified earlier. In case the 
property type is StringList or 
IntList then the property 
values can be a list of values. 
This can be specified by 
separating the values with the 
# character
The ci_prop_value can also be 
specified as a case-packet 
variable. In case the property 
type is a StringList or an 
IntList then the case-packet 
variable has to be of type 
Object, Internally it can 
contain either a String[] or a 
List

None String

ci_prop_type0 No The type of the property. This 
can take the following values:

String
Byte
Integer
Long
Float
Double
Boolean
Date
XML
StringList
IntList

None String

rel_id0
rel_id1...
rel_idN

Yes 
(Atleast 
one is 
mandatory 
if no CIs 
are 
specified. 
Not 
mandatory 
if CIs are 
specified)

Temporary Id of the Relation 
which needs to be added. A 
single Relation can have 
multiple properties. This can 
be specified by giving the same 
CI temporary Id again

None String

rel_type0
rel_type1...
rel_typeN

Yes (If 
relation id 
has been 
specified)

Type of the Releation None String

Table 4-15 CreateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4 123



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
rel_end1_id1
rel_end1_id2...
rel_end1_idN

Yes (If 
relation id 
has been 
specified)

End 1id of the relation. The ID 
of the CI at end 1 of the 
relation.

None String

rel_end2_id1
rel_end2_id2...
rel_end2_idN

Yes (If 
relation id 
has been 
specified)

End 2 id of the relation. The ID 
of the CI at end 2 of the 
relation.

None String

rel_prop_name
0
rel_prop_name
1
....
rel_prop_name
N

No Name of the property to be 
associated with the Relation

None String

rel_prop_value
0
rel_prop_value
1
...
rel_prop_value
N

No Value of the property name 
specified earlier In case the 
property type is StringList or 
IntList then the property 
values can be a list of values. 
This can be specified by 
separating the values with the 
# character.
The rel_prop_value can also be 
specified as a case-packet 
variable. In case the property 
type is a StringList or an 
IntList then the case-packet 
variable has to be of type 
Object, Internally it can 
contain either a String[] or a 
List

None String

rel_prop_type0
rel_prop_type1
...
rel_prop_type
N

No The type of the property. This 
can take the following values:

String
Byte
Integer
Long
Float
Double
Boolean
Date
XML
StringList
IntList

None String

Table 4-15 CreateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4124



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
date_format No Specifies the format in which 
the ci_property_value and 
rel_prop_values have been 
defined in case the property 
type is Date. The date format 
can be specified using standard 
java conventions used while 
defining a date format (as in 
the SimpleDateFormat class). 
In case this parameter is not 
specified then the date format 
is taken as the default one for 
the current locale in which 
HPSA has been deployed.

System's 
Locale's 
date 
format 
is taken

String

Table 4-15 CreateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4 125



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DateConverter

com.hp.ov.activator.mwfm.component.builtin.DateConverter

This node can fetch date and time, either current time from the system, or converted 
from a case packet variable in any given format as string or as milliseconds since 
January 1, 1970 00:00:00.000 GMT.

If the time is fetched from the case packet as a user-defined date-time string it is 
interpreted according to the format defined in DateStringFormat. More information on 
formatting options is available below.

If time is available as a number of milliseconds since January 1, 1970 00:00:00.000 GMT 
then it is possible to pass this number directly to the node.

One and only one input source must be present per node. If the user does not provide 
any, or if several input sources are provided a configuration exception will be thrown 
during WF start.

It is possible to perform simple actions on the obtained data s.a. increment or decrement 
date and time in a flexible way. Time can be modified by a certain number of 
milliseconds, which can be positive or negative. Units are also allowed in the format 
UNIT:NUMBER where allowed units are: Year, Month, Day, Hour, Minute, Second. If no 
unit is specified milliseconds is used.

As well as for input it is possible to define the format of the desired output. Names of 
return parameters are self descriptive and the same rule as for input parameters exists; 
it is possible to have only one of them per node.

The resulting value will be saved to the workflow case packet variable specified in the 
result parameter after all operations on the date and time have been completed.

If a problem occurs during node execution a workflow exception will be thrown. In some 
workflows, where input is dynamic, it is inconvenient to break workflow execution in 
case of an error. To handle such issues the throw_exception (see beginning of section) 
argument should be used to control whether exceptions should be thrown or handled by 
setting the RET_VALUE and RET_TEXT workflow case packet variables. 

The allowed format for the time format strings can be found on Sun’s homepage 
(http://java.sun.com) in the API specification for the SimpleDateFormat class.

Table 4-16 DateConverter Parameters

Name Required Description Default Type

in_date_millis No Milliseconds since January 1, 
1970 00:00:00.000 GMT.

NOTE: cannot be used if 
in_date_string, in_date_seconds, 
or in_current_time is defined.

None Numeric

in_date_seconds No Seconds since January 1, 1970 
00:00:00.000 GMT.

NOTE: cannot be used if 
in_date_string, in_date_millis, or 
in_current_time is defined.

None Numeric
Chapter 4126



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
in_date_string No Date formatted according to the 
date_string_format string.

NOTE: cannot be used if 
in_current_time or in_date_millis 
is defined. date_string_format 
must be defined.

None Numeric

in_current_time No Initializes the node with the 
current time plus this amount 
added in milliseconds or units 
specified by ‘Year:’, ‘Month:’, 
‘Day:’, ‘Hour:’, ‘Minute:’, ‘Second:’ 
(0 = now).

NOTE: cannot be used if 
in_date_string, in_date_seconds, 
or in_date_millis is defined.

None String

return_formatted_
date

No Returns a date as string in result, 
formatted according to the format 
given here, e.g. yyyyMMddhhmm.

NOTE: cannot be used with any 
other Return method. 

None String

return_date_field No Returns a specific field of a date, 
i.e. Year, Month, MonthName, 
Day, DayName, Hour, Minute or 
Second.

NOTE: cannot be used with any 
other Return method.

None String

return_date_secon
ds

No Returns the number of seconds 
since January 1, 1970 
00:00:00.000 GMT. The number 
specified here is added as seconds 
or units specified by ‘Year:’, 
‘Month:’, ‘Day:’, ‘Hour:’, ‘Minute:’, 
‘Second:’ (0 for no addition).

NOTE: cannot be used with any 
other Return method.

None String

return_date_milli
s

No Returns the number of 
milliseconds since January 1, 
1970 00:00:00.000 GMT. The 
number specified here is added as 
milliseconds or units specified by 
‘Year:’, ‘Month:’, ‘Day:’, ‘Hour:’, 
‘Minute:’, ‘Second:’ (0 for no 
addition).

NOTE: cannot be used with any 
other Return method.

None String

Table 4-16 DateConverter Parameters

Name Required Description Default Type
Chapter 4 127



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
result Yes String variable where returned 
result is to be stored.

None String

date_string_forma
t

No The format of the in_date_string, 
e.g. yyyyMMddhhmm.

NOTE: cannot be used without 
in_date_string.

None String

Table 4-16 DateConverter Parameters

Name Required Description Default Type
Chapter 4128



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-16 DateConverter - use in the workflow

This example saves the date 1970 January 1 03:01 in the form [yy-MM-dd hh:mm] to the 
workflow variable result.

<Start-Node>DateConverter</Start-Node> 
<Process-Node disablePersistence=”true”>
  <Name>DateConverter</Name>
  <Action>
    
<Class-Name>com.hp.ov.activator.mwfm.component.builtin.DateConverter</Class-Name>
      <Param name="in_date_string" value="010119700301"/>
      <Param name="date_string_format" value="MMddyyyyhhmm"/>
      <Param name="date_string_format" value="yy-MM-dd hh:mm"/>
      <Param name="result" value="result"/>
</Action>
</Process-Node>
. . .
<Case-Packet>
   <Variable name="result" type="String"/>
</Case-Packet>
Chapter 4 129



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Decrypt

com.hp.ov.activator.mwfm.component.builtin.Decrypt

The node node transforms an ecrypted string to clear text.

Use this node just before the password must be used in clear text as it recommented to 
never store the password in clear text. An encrypted password can be provided e.g. from 
an inventory bean.

Example 4-17 Decrypt - use in the workflow

The example below uses the Decrypt node to transform a password to clear text.

<Process-Node>
<Name>Decrypt password</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Decrypt

</Class-Name>
<Param name="decrypted_text" value="password"/>
<Param name="encrypted_text" value="enc_password"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name=”enc_password” type=”String”/>
<Variable name=”password” type=”String”/>

</Case-Packet>

Table 4-17 Decrypt Parameters

Name Required Description Default Type

encrypted_text Yes The string to be decrypted. None String

decrypted_text Yes The decrypted text output 
(clear text)

None String
Chapter 4130



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DeleteCache

com.hp.ov.activator.mwfm.component.builtin.DeleteCache

The node is use to delete one or all instances which are kept in the caching module. It 
works together with the QueryInventory node. The QueryInventory node can be 
configured to save the result in a caching_module. The DeleteCache node can then be 
used to delete the corresponding instances again.

If the parameter delete_all is set to true then all instances will be deleted. If delete_all is 
set to false then the parameters bean, find_by_method, and key_value identify which 
instance in the caching module should be deleted. These parameters must have the same 
values as when the QueryInventory node was used.

See Also

• “QueryInventory” on page 245

• “VariableMapper” on page 315

Table 4-18 Assign Parameters

Name Required Description Default Type

caching_mo
dule

Yes Identified which caching module 
the object is saved in.

None String 

delete_all No New value to set for the variable. It 
can be a case-packet variable or a 
constant (specified as constant:X 
where X is the constant).

false Boolean

bean Yes if 
delete_all is 
set to false

The inventory JavaBean class that 
was used when inserting the 
instance in the caching module

None String

find_by_me
thod

No Then name of the method which 
was used when inserting the 
instance in the caching module.

findByPrim
aryKye

String

key_value0
, 
key_value1
... 
key_valueN

No Value of the key(s) which was used 
when inserting the instance in the 
caching module.

None Object
Chapter 4 131



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DeleteInventory

com.hp.ov.activator.mwfm.component.builtin.DeleteInventory

The node is used to delete an instance in the inventory. It sets RET_VALUE to 0 if 
successful and to 1 if delete fails.

Example 4-18 DeleteInventory - use in the workflow

The example below uses the DeleteInventory node to delete a VPN service.

<Process-Node>
<Name>Delete L2 VPN</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.DeleteInventory

</Class-Name>
<Param name="key_field0" value="constant:ServiceId"/>
<Param name="key_value0" value="service_id"/>
<Param name="bean" value="com.hp.ov.activator.example.L2VPN"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name=”service_id” type=”String”/>

</Case-Packet>

Table 4-19 DeleteInventory Parameters

Name Required Description Default Type

db No Name of the database module to be 
used.

“db” String

bean Yes Name of the JavaBean class 
that is used for deleting data.

None String

key_field0, 
key_field1... 
key_fieldN

Yes Name of a key in the 
JavaBean. The parameter is 
used to identify the data being 
deleted. Parameters must be 
repeated for each of the keys in 
the JavaBean.

None String

key_value0, 
key_value1... 
key_valueN

Yes Used in conjunction with the key 
key_field attributes to specify 
the key values of the data being 
deleted.

None Any

store_audit No If audit is enabled in the 
Workflow Manager’s 
configuration file as well as in 
the Inventory Bean’s XML 
resource definition file, an 
audit record will be written 
each time this node is 
executed.

To disable audit for the node 
set this parameter to “false”.

true Boolean
Chapter 4132



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DeleteScheduledJob

com.hp.ov.activator.mwfm.component.builtin.DeleteScheduledJob 

The node allows you to delete a scheduled job. You must specify the ID of the scheduled 
job you want to delete. 

The SchedulerModule checks if the specified ID of the scheduled job exists on the list of 
scheduled jobs. If it exists, then the SchedulerModule deletes the job. 

If the DeleteScheduledJob node finishes without errors, the RET_VALUE case-packet 
variable is set to 0. Upon an error in the node, RET_VALUE is set to 1. The RET_TEXT 
case-packet variable contains more information about the problem. If you attempt to 
delete a job, that is not in the list of scheduled jobs, the node sets RET_VALUE to 1, adds 
an error description to RET_TEXT and continues to the next node. 

See Also

• “SchedulerModule” on page 408

Table 4-20 DeleteScheduledJob Parameters

Name Required Description Default Type

scheduled_job_id Yes The ID of the scheduled job you 
want to deleted from the list of 
scheduled jobs.

None Integer
Chapter 4 133



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DeleteServiceInstance

com.hp.ov.activator.mwfm.component.builtin.DeleteServiceInstance 

The node deletes service instance parameters from the service-instance repository. The 
unique identifier that this data is tied to is specified by means of the service_id 
parameter (name of a case-packet variable).

Example 4-19 DeleteServiceInstance - use in the workflow

The following example deletes all the service-instance parameters in the 
service-instance repository related to a given customer identifier (stored in the 
case-packet variable customer_id).

<Process-Node>
<Name>Delete technical inventory</Name>

 <Action>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.DeleteServiceInstance
</Class-Name>

  <Param name="service_id" value="customer_id"/>  
  <Param name="db" value="db"/>
 </Action>
</Process-Node>

Table 4-21 DeleteServiceInstance Parameters

Name Required Description Default Type

db No Database module to use in order 
to perform the query.

“db” String

service_id Yes A case-packet variable that holds 
the unique identifier for the 
service instance that is being 
deleted.

None Integer
Chapter 4134



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DeleteUCMDBCIsAndRelations

com.hp.ov.activator.mwfm.component.builtin.DeleteUCMDBCIsAndRelations

The deleteUCMDBCIsAndRelations node will delete the specified CIs and Relations 
from the uCMDB. 

The node throws a UCMDBException in case there is an error while processing the 
request.

Table 4-22 DeleteUCMDBCIsAndRelations Parameters

Name Required Description Default Type

module_name Yes The name of the 
UCMDBRequestModule to be used

None String

ci_id0
ci_id1...
ci_idN

Yes (At 
least one 
is 
mandatory 
if no 
relations 
are 
specified. 
Not 
mandatory 
if relations 
are 
specified)

UCMDB Id of the CI which 
needs to be deleted.

None String

ci_type0
ci_type1...
ci_typeN

Yes(If ci_id 
has been 
specified)

Type of the CI. It can be any 
type defined in uCMDB

None String

rel_id0
rel_id1...
rel_idN

Yes 
(Atleast 
one is 
mandatory 
if no CIs 
are 
specified. 
Not 
mandatory 
if CIs are 
specified)

UCMDB Id of the Relation 
which needs to be deleted.

None String

rel_type0
rel_type1...
rel_typeN

Yes (If 
relation id 
has been 
specified)

Type of the Releation None String

rel_end1_id1
rel_end1_id2...
rel_end1_idN

Yes (If 
relation id 
has been 
specified)

End 1id of the relation. The ID 
of the CI at end 1 of the 
relation.

None String
Chapter 4 135



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
rel_end2_id1
rel_end2_id2...
rel_end2_idN

Yes (If 
relation id 
has been 
specified)

End 2 id of the relation. The ID 
of the CI at end 2 of the 
relation.

None String

Table 4-22 DeleteUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4136



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
DoNothing

com.hp.ov.activator.mwfm.component.builtin.DoNothing 

A sample process node that simply logs a message when the node is entered and another 
when the node is exited.

Example 4-20 DoNothing - use in the workflow

The following example could represent the end node of any workflow.

<Process-Node disablePersistence="true">
 <Name>End</Name>
 <Description>Ends workflow</Description>
 <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.DoNothing

</Class-Name>
 </Action>

</Process-Node>

Example 4-21 DoNothing - use in the workflow

A message is printed each time the workflow executes this node.

<Process-Node disablePersistence="true">
<Name>Debug node</Name>
<Description>Sends a message when you pass through this node</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.DoNothing

</Class-Name>
 <Param name="message" value="*** Pass by debug node***"
</Action>

</Process-Node>

Table 4-23 DoNothing Parameters

Name Required Description Default Type

message No The message to be logged when the 
node is entered. A standard message 
is printed on exit.

None String
Chapter 4 137



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Encrypt

com.hp.ov.activator.mwfm.component.builtin.Encrypt

The node node transforms a clear text string into an encrypted string.

This node must be used e.g. before storing an encrypted password in the inventory 
system.

Example 4-22 Encrypt - use in the workflow

The example below uses the Encrypt node to transform a password into an encrypted 
string.

<Process-Node>
<Name>Encrypt password</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Encrypt

</Class-Name>
<Param name="encrypted_text" value="enc_password"/>
<Param name="text" value="password"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name=”enc_password” type=”String”/>
<Variable name=”password” type=”String”/>

</Case-Packet>

Table 4-24 Ecrypt Parameters

Name Required Description Default Type

text Yes The string to be encrypted. None String

encrypted_text Yes The encrypted text output None String
Chapter 4138



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ExecuteMacro

com.hp.ov.activator.mwfm.component.builtin.ExecuteMacro

This node executes a workflow as a macro inside the current workflow, i.e. no new job is 
started. The current workflow (parent workflow) waits until the execution of macro 
workflow is finished. 

The parameters input and output must match the workflow contract defined in the 
macro workflow (child workflow). The sequece must be the same as defined in the 
contract, but the names can be different.

Conceptually the workflow node is very similar to the StartJobAndWait workflow node. 
The difference is that no new job is started, i.e. the child workflow will be executed in the 
same cluster node as the parent workflow.. Also if the macro workflow node uses the 
swap functionalty then the case-packet variables from the parent workflow node will 
also be removed from memory.

In the web UI job page the workflow and step name will show the macro workflow name 
and the step currently executed in this workflow.

See Also

• “Workflow Contract” on page 34

Example 4-23 ExecuteMacro - use in the workflow

The example below uses the ExecuteMacro node to .

<Process-Node>
<Name>start work</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ExecuteMacro

</Class-Name>
<Param name="workflow_name" value="constant:MacroChild"/>
<Param name="input0" value="first"/>
<Param name="input1" value="second"/>

Table 4-25 ExecuteMacro Parameters

Name Required Description Default Type

workflow_name Yes The name of the workflow to 
execute

None String

input0,
input1,
...
inputN

Yes, if 
contract for 
macro 
workflow 
requires 
this

Case-packet variables that are 
to be passed to initialize 
variables in the new workflow 
being executed.

None Any

output0,
output1,
...
outputN

Yes, if 
contract for 
macro 
workflow 
requires 
this

Case-packet variables where 
the output case-packet 
variables in the macro 
workflow node should be stored

None Any
Chapter 4 139



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Param name="output0" value="childOutput"/>
</Action>

</Process-Node>
Chapter 4140



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Equal

com.hp.ov.activator.mwfm.component.builtin.Equal 

The node allows you to compare whether variable or constant values are the same.

Example 4-24 Equal - use in the workflow

This example establishes whether SendCasePacketOK is true or false. Depending on 
the value, the job continues to either the End node or to the Sleep node.

<Rule-Node disablePersistence="true">
<Name>Resend?</Name>

   <Description> Checks the Boolean variable SendCasePacketOK to end or resend
the sum result

</Description>
<Action>

     <Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Equal

</Class-Name>
     <Param name="op1" value="SendCasePacketOK"/>
     <Param name="op2" value="constant:true" />

</Action>
   <True-Next-Node>End</True-Next-Node>
   <False-Next-Node>Sleep node</False-Next-Node>
</Rule-Node>

Table 4-26 Equal Parameters

Name Required Description Default Type

op1 Yes The two parameters are variables or 
constants. Constant is specified as 
constant:X . If the two variables are 
not of the same type, their values are 
converted into strings and they are 
compared lexically.

None Any

op2 Yes Same as above. None Any
Chapter 4 141



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ExecSQLQuery

com.hp.ov.activator.mwfm.component.builtin.ExecSQLQuery 

This node allows a SQL query to run against a database and assigns the results to 
case-packet variables. The component logs warnings if the query returns no data or 
returns more than one row. If the query returns no data, case-packet variables are not 
overwritten, preserving their value. If the query returns more than one row, the extra 
rows are ignored.

Example 4-25 ExecSQLQuery - use in the workflow

This example gathers two values (group_name and IP address) for a web server, and 
stores these values in the case-packet variables named group and ipaddr, respectively.

<Process-Node disablePersistence="true">
<Name>Get Web Server Details</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ExecSQLQuery

</Class-Name>
<Param name="query" value="select group_name, IP from
      demo_webserver where name= ?”/>

Table 4-27 ExecSQLQuery Parameters

Name Required Description Default Type

db No Specifies the database module 
to use in order to gain access to 
a database.

“db” String

query Yes Query to be performed, 
specified as a constant string. 
The query can contain free 
variables to put data from the 
variables in the case-packet. A 
question mark is used to 
indicate a free variable.

None String

param0, 
param1...paramN

No If free variables have been 
specified in the query 
statement, you must supply 
the value of each variable. For 
this purpose, you can use as 
many param parameters as 
needed. The value of these 
parameters must be 
case-packet variable names.

None Any

name of a 
case-packet 
variable

Yes, at 
least one

Once the query has been run, 
the values in the first row of 
the result can be assigned to 
case-packet variables. The way 
to specify which column goes to 
which variable is to indicate 
the name of a case-packet 
variable as the name of the 
parameter, and col<n> for the 
value.

None Depends 
on the 
SQL 
query 
column 
type
Chapter 4142



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Param name="group" value="col0/>
<Param name="ipaddr" value="col1"/>
<Param name="param0" value="web-server"/>

</Action> 
</Process-Node>
Chapter 4 143



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ExecSQLStatement

com.hp.ov.activator.mwfm.component.builtin.ExecSQLStatement 

The node runs an SQL statement (such as insert, update, or delete) against a 
database.

Example 4-26 ExecSQLStatement 

<Process-Node disablePersistence="true">
 <Name>Get Web Server Details1</Name>
 <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ExecSQLStatement

</Class-Name>
  <Param name="statement" value="update demo_webserver 
       set port=? where server_name=?"/>
  <Param name="param0" value="port"/>
 <Param name="param1" value="web-server"/>

  </Action>
</Process-Node>

Table 4-28 ExecSQLStatement Parameters

Name Required Description Default Type

db No This parameter specifies the 
database module to use in order 
to access a database.

“db” String

statement Yes This is the SQL statement to 
run. It can contain free variables 
to be replaced by values from 
case-packet variables. In this 
case, a question mark is used to 
indicate a free variable.

None String

param0, 
param1...
paramN 

No If free variables have been 
specified in the query statement, 
you must supply the value of 
each variable. For this purpose, 
you can use as many param 
parameters as needed.

None Any
Chapter 4144



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ExecuteExternal

com.hp.ov.activator.mwfm.component.builtin.ExecuteExternal

The node runs an external program and optionally allows output from the program to be 
captured to set the value of case-packet variables.

In HP OVSA 4.1 version, the node was designed in a such that param0, param1, 
...paramN parameters was not supporting constant values. However in HP SA 5.1 
version, a user can enter constants as parameters.

The command-line for the program is specified as a constant string, but it can be 
parameterized by replacing free variables (% s) in the statement with the value of 
parameters.

It is also possible to pass all or a few of the current values of the case-packet variables to 
the executed program on its stdin. By default, all of the case-packet variables are sent 
to the program. Alternately, you may specify a subset of the variables to be sent, using 
the variableN parameters. If you want to pass no variables to the program, set the 
parameter “variable0” to an empty string or a value of a single dash, “-”.

It is possible to capture the output from the program into a single case-packet variable 
with the output_var parameter. Additionally, if this is not specified, the output from the 
program is interpreted as a series of lines indicating the variable to set and its new 
value. The lines must be of the form:

  variableName=newVariableValue

NOTE A frequent mistake is to forget that the output from the program is treated as a list of 
variables and their values. Do not forget to use the output_var parameter if you do not 
want the output interpreted in this manner.

By default, the executed command is started with a current working directory of 
$ACTIVATOR_VAR. This can be overridden with the cwd parameter.

Table 4-29 ExecuteExternal Parameters

Name Required Description Default Type

cmd_line Yes The name of the program to run, 
along with its directory and 
command-line arguments. May 
include free variables (%s) to be 
replaced by paramN parameters.

None String

wait No Indicates whether the node should 
wait for the command to complete 
before continuing. Specify a value 
of "false" if no wait is desired.

“true” Boolean

param0,
param1...
paramN

No Indicates the names of case-packet 
variables whose values are used to 
replace the free variables (%s) in 
the cmd_line. Specify as many 
param parameters as necessary 
(param0, param1...paramN).

None Any
Chapter 4 145



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-27 ExecuteExternal - use in the workflow

This example copies a file.

<Process-Node>
<Name>Save message file</Name>
<Description>Copies file message_file to c:\tmp</Description>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ExecuteExternal

</Class-Name>
 <Param name="cmd_line" value="cmd.exe /c copy %s c:\tmp" />
 <Param name="param0" value="message_file" />
 <Param name="variable0" value="" />
</Action>

</Process-Node>

output_var No Indicates the name of a variable to 
capture the output of the executed 
program.

None Object

cwd No Indicates the working directory in 
which the command should be run.

$ACTIVAT
OR_VAR

Object

variable0,
variable1...
variableN

No Indicates the names of case-packet 
variables that should be passed to 
the running program on its 
stdin. If unspecified, each 
variable in the case-packet will be 
sent. 

None Any

Table 4-29 ExecuteExternal Parameters (Continued)

Name Required Description Default Type
Chapter 4146



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ForEach

com.hp.ov.activator.mwfm.component.builtin.ForEach

The node allows you to iterate over a list. The list can be an Array, Collection, or a String 
object. The node will iterate over the list and returns each element found in the list. Only 
a single element is returned at a time.The return parameter element gives you the 
iterated element. To get the next element in the list, you must recall the node. For 
example, if you want to get ‘n’ elements from the list where ‘n’ is the number of element, 
the node must be called ‘n’ times.

The iterated element will be stored in the return parameter element. The list attribute 
contains the original list elements and the remaining parameter contains the rest of the 
elements to be iterated. After the element is iterated from the list, the node will update 
the following parameters:

• remaining - contains the remaining elements in the list to be iterated.

• idx - contains the index of the last iterated element (index starts from 0). 

• count - contains the number of elements iterated from the list (count starts from 1).

Table 4-30 ForEach Parameters

Name Required Description Default Type

list Yes The list to iterate over. A list can 
be an Array, Collection or a String 
object. The string can be a XML 
String, or a string where the 
elements are separated using the 
patterns defined in 
java.util.regex.Matcher, or 
a string where the elements are 
defined based on the patterns and 
groups defined in 
java.util.regex.Matcher.

None String, 
Collection
, Array 
Object

element Yes Contains the last iterated 
element from the list.

Object

remaining Yes Contains the remaining 
elements in the list to be 
iterated. 

None Object

idx No Contains the index of the last 
iterated element. The index 
starts from 0.

None Integer

count No Contains the number of 
iterations. The count starts 
from 1. 

None Integer

tag No Contains the XML String and 
the elements in the string list 
are iterated based on the 
defined XML String.

None String
Chapter 4 147



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-28 ForEach - use in the workflow

This example illustrates an attempt by ForEach node to iterate each element in the 
string list, where the elements are represented by using the comma (,) separator. 

<Rule-Node>
<Name>ForEach</Name>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ForEach

</Class-Name>
 <Param name="count" value="cntVar"/>
 <Param name="element" value="elementName"/>

<Param name=”idx” value=”idxVar”/>
<Param name=”list” value=”listSeparatorString”/>
<Param name=”remaining” value=”remainingListVar”/>
<Param name=”separator” value=”separatorStr”/>

</Action>
</Rule-Node>

...
<Case-Packet>

<Variable name=”cntVar” type=”Integer”/>
<Variable name=”elementName” type=”String”/>

 <Variable name="idxVar" type="Integer"/>
<Variable name=”listSeparatorString” type=”String”/>
<Variable name=”remaininglistVar” type=”Object”/>
<Variable name=”separatorStr” type=”String”/>

</Case-Packet>
...
<Initial-Case-Packet>

<Variable-Value name=”listSeperatorString” value=”AB, C,”/>
<Variable-Value name=”seperatorStr” value=”,”/>

</Initial-Case-Packet>

separator No Contains the separator pattern 
string and the elements in the 
list are iterated based on the 
defined pattern string. 
Patterns are defined in 
java.util.regex.Matcher.

None String

skip_if_empt
y

No Used with the separator to 
indicate whether a completely 
empty string is treated as an 
empty list. By default, it is set 
to true.

“true” Boolean

pattern No Contains the pattern string and 
the elements in the list are 
iterated based on the defined 
pattern string. If the pattern 
contains groups, only groups will 
be returned. Patterns and groups 
are defined in 
java.util.regex.Matcher

None String

Table 4-30 ForEach Parameters (Continued)

Name Required Description Default Type
Chapter 4148



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GenericUIDialog

com.hp.ov.activator.mwfm.component.builtin.GenericUIDialog

This node allows the workflow manager to handle failures or display data during 
workflow execution.

The node can do the following:

• Present attributes in the same way as it is possible in the AskFor node

• Define options that the user can select between

• Display any kind of dialog data that can be read from a database or from a file and 
optionally format it too using XML style sheets

• Retrieve activation dialog data using an identifier and optionally format it using 
XML style sheets

• In the above options, data and identifier are mutually exclusive. Options and AskFor 
style attributes are not mutually exclusive. Any combination of the three options can 
be configured in the node

The node can be placed after any potential failure points in the workflow. For e.g. the 
node could be placed after an Activate node. Once an Activate node returns, check the 
return code and then if it a failure use a GenericUIDialog node to display the Activation 
dialog from the database and decide what the next course of action should be. Based on 
the selected choice in the UI Dialog, the user can design the workflow in so as to retry 
the Activate node or execute any other node. The user can not only select an option but 
also specify value for case-packet variables in the UI dialog.

The node causes a workflow to pause and waits for a user interaction. The node places a 
request on a request queue and the workflow does not proceed until the request is 
satisfied. If options to choose are configured in the node then the choice selected by the 
user is set to an output case-packet which can then be used by a Rule node, ideally a 
Switch node, to decide the next path

You can specify a timeout period that allows the workflow to proceed without the user 
selecting an option if the user does not interact before the timeout period expires. If the 
request does timeout, the workflow sets the TIMEOUT variable in the case-packet to 
"true" to indicate that the timeout occurred

The options to be displayed in the Failure Dialog when the user interacts with the job 
can be configured using the option0, option1…optionN parameters.  Labels for these 
options can be specified using option_label0,option_label1...option_labelN 
parameters. The choice selected by the user will be set to a case-packet mapped to the 
parameter output_value.

A default output can also be specified using the parameter default_out_value which 
will also be displayed as an additional option in the UI Dialog. A default output is 
required if a timeout is configured and optionN parameters are also configured in which 
case this will be set as the outcome of the node.

Case-packets to be edited could be specified using the variable0, 
variable1…variableN parameters.
Chapter 4 149



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The data to be displayed can be specified using the parameter dialog_data0, 
dialog_data1… dialog_dataN or using an identifier. The dialog_data0 parameter 
could be a plain text or URL. The URL could be a database id or a file path (an absolute 
path, or a filename relative to $ACTIVATOR_VAR) containing failure details. The 
syntax is db:message_id or file:file_path.

The identifier can only be a plain text.

In order to present the data the user can specify data_tab0, data_tab1…data_tabN 
and xsl_url0, xsl_url1…xsl_urlN parameters. The XML style sheet could be a 
filename relative to $ACTIVATOR_VAR or can be specified directly.

The GenericUIDialog node can be configured to swap out case-packets from memory 
when the job waits in a request queue by setting the swap parameter to true. This 
reduces the memory footprint if there are huge numbers of jobs waiting in a request 
queue. The list of case-packets to be retained in memory can also be specified in the 
mwfm.xml. When the user interacts with the job the swapped out case-packets are 
restored in the memory.

Table 4-31 GenericUIDialog Parameters

Name Required Description Default Type

title Yes Title of the GenericUIDialog 
Interactable window

None String

queue Yes Queue in which the request 
will wait

None String

dialog_data0
dialog_data1...
dialog_dataN

No Stores the details about data to 
be displayed. It could be an 
exception or a message or a 
URL. The URL could be a 
database id or a file path (an 
absolute path, or a filename 
relative to 
$ACTIVATOR_VAR) 
containing failure details. The 
syntax is db:message_id or 
file:file_path. Cannot be 
specified if an identifier is 
configured

None String

identifier No An identifier that points to 
activation dialogs in the 
database. Cannot be specified 
if dialog_data is configured

None String

dialog_label No Label for the dialog details. 
Required only if dialog_data or 
identifier is specified

None String
Chapter 4150



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
xsl_url0
xsl_url1...
xsl_urlN

No The URL to the XML style 
sheet (XSL file). The URL 
could directly contain the style 
sheet or a file path (an absolute 
path, or a filename relative to 
$ACTIVATOR_VAR) 
containing the style sheet. The 
syntax for a file name is 
file:file_path

None String

data_tab0
data_tab1
data_tab2

No The tab names None String

output_value Yes, if 
options are 
specified

Stores the next course of action 
selected by the user

None String

default_output
_value

No The default output that stores 
the next course of action if a 
timeout occurs before user 
interaction. Specify a value 
only if a timeout is specified 
and user options are also 
specified

None String

option0,
option1 ...
optionN

No Options that are available to 
the user to decide the next 
course of action. Necessary 
only if default_output_value is 
not specified

None String

option_label0
option_label1...
option_labelN

No Label for the options in a GUI 
presentation. The number of 
options and labels specified 
must be the same

None String

variable_label No Label for all the attributes 
being modified.

None String

variable0,
variable1 ...
variableN

No One or more case-packet 
variables whose values are 
being requested.

None String

description0,
description1 ...
descriptionN

No You can provide a description 
for each requested variable. 
This description appears in the 
automatically generated form 
to help indicate to an operator 
what the value means. The 
value is a constant string

None String

Table 4-31 GenericUIDialog Parameters

Name Required Description Default Type
Chapter 4 151



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
label0,
label1..
labelN

No You can provide a label for each 
requested variable. If you do 
not specify a label, the variable 
name is used the set the label.

None String

editable0,
editable1 ...
editableN

No A Boolean value ("true" or 
"false") to indicate whether the 
field created for this variable in 
the automatically generated 
form should be editable ("true") 
or not ("false").

true Boolean

required0
required1 ...
requiredN

No A Boolean value ("true" or 
"false") to indicate whether a 
value must be supplied for 
each field in the automatically 
generated form ("true"), or if it 
can be left empty ("false").

false Boolean

response No A constant string message that 
is returned once the valid 
values are supplied for the 
requested variables. The user 
sees this message in the 
Operator UI. If you set the 
validation parameter, the 
response parameter is ignored.

None String

timeout No Wait time in milliseconds 
before jumping to the next 
node and setting the variable 
TIMEOUT=true

None Integer

swap No Instructs the Workflow 
manager to swap-out the 
case-packets while the job 
waits in the request queue, in 
order to reduce memory 
footprint

false Boolean

Table 4-31 GenericUIDialog Parameters

Name Required Description Default Type
Chapter 4152



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-29 GenericUIDialog - use in the workflow

Display data by specifying dialog_data that retrieves it from the database.

<Process-Node disablePersistence="true">
<Name>GenericUIDialog</Name>
<Description></Description>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.GenericUIDialog

</Class-Name>
 <Param name="title" value="constant:Activation Failure dialog”/>
 <Param name="dialog_label" value="constant:Task 1 failure”/>
 <Param name="queue" value="constant:uidialog”/>
 <Param name="failure_details" value="WORKFLOW_EXCEPTION”/>
 <Param name="timeout" value="constant:20000”/>
 <Param name="swap" value="constant:true”/>
 <Param name="output_value" value="userschoice”/>
 <Param name="default_output_value" value="constant:Default”/>
 <Param name="option0" value="constant:choice1”/>
 <Param name="option1" value="constant:choice2”/>
 <Param name="option2" value="constant:choice3”/>
 <Param name="option_label0" value="constant:choose first choice”/>
 <Param name="option_label1" value="constant:choose secondchoice”/>
 <Param name="option_label2" value="constant:choose third choice”/>
 <Param name="variable_label" value="Modify Attributes...”/>
 <Param name="variable0" value="firstvar”/>
 <Param name="variable1" value="secondvar”/>
 <Param name="variable2" value="thirdvar”/>
 <Param name="dialog_data0" value="messageid1”/>
 <Param name="dialog_data1" value="messageid2”/>
 <Param name="dialog_data2" value="messageid3”/>
 <Param name="data_tab0" value="constant:tab1”/>
 <Param name="data_tab1" value="constant:tab2”/>
 <Param name="data_tab2" value="constant:tab3”/>
 <Param name="xsl_url0" value="constant:file:simplexml1_stylesheet.xsl”/>
 <Param name="xsl_url1" value="constant:file:simplexml2_stylesheet.xsl”/>
 <Param name="xsl_url2" value="constant:file:simplexml3_stylesheet.xsl”/>
</Action>

</Process-Node>
<Case-Packet>

<Varaible name=”firstvar” type=”String”/>
<Variable name=”secondvar” type=”String”/>
<Variable name=”thirdvar” type=”String”/>

</Case-Packet>
Chapter 4 153



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-30 GenericUIDialog - use in the workflow

Display data by specifying an identifier that retrieves multiple rows from the database.

<Process-Node disablePersistence="true">
<Name>GenericUIDialog</Name>
<Description></Description>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.GenericUIDialog

</Class-Name>
 <Param name="title" value="constant:Activation Failure dialog”/>
 <Param name="dialog_label" value="constant:Task 1 failure”/>
 <Param name="queue" value="constant:uidialog”/>
 <Param name="failure_details" value="WORKFLOW_EXCEPTION”/>
 <Param name="timeout" value="constant:20000”/>
 <Param name="swap" value="constant:true”/>
 <Param name="output_value" value="userschoice”/>
 <Param name="default_output_value" value="constant:Default”/>
 <Param name="option0" value="constant:choice1”/>
 <Param name="option1" value="constant:choice2”/>
 <Param name="option2" value="constant:choice3”/>
 <Param name="option_label0" value="constant:choose first choice”/>
 <Param name="option_label1" value="constant:choose secondchoice”/>
 <Param name="option_label2" value="constant:choose third choice”/>
 <Param name="variable_label" value="Modify Attributes...”/>
 <Param name="variable0" value="firstvar”/>
 <Param name="variable1" value="secondvar”/>
 <Param name="variable2" value="thirdvar”/>
 <Param name="identifier" value="identifierVal”/>
 <Param name="data_tab0" value="constant:tab1”/>
 <Param name="data_tab1" value="constant:tab2”/>
 <Param name="data_tab2" value="constant:tab3”/>
 <Param name="xsl_url0" value="constant:file:simplexml1_stylesheet.xsl”/>
 <Param name="xsl_url1" value="constant:file:simplexml2_stylesheet.xsl”/>
 <Param name="xsl_url2" value="constant:file:simplexml3_stylesheet.xsl”/>
</Action>

</Process-Node>
<Case-Packet>

<Varaible name=”firstvar” type=”String”/>
<Variable name=”secondvar” type=”String”/>
<Variable name=”thirdvar” type=”String”/>
<Varaible name=”identifierVal” type=”String”/>

</Case-Packet>

Form Presentation

When a user chooses to interact with a workflow waiting for input, a UI Dialog form is 
automatically generated to prompt the user to select an option.

Parameters can configure the behaviour of the form indicating the following things:

• Labels for the user options using parameters
option_label0, option_label1, option_labelN which will be displayed in the UI 
Dialog instead of the options themselves.

• A title for the UI Dialog can be specified using the parameter title.

• A label for the UI details can be specified using the parameter dialog_label

• A label for case-packets to be edited can be specified using the parameter 
vaiable_label
Chapter 4154



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The options are displayed as radio buttons with the accompanying text set to either the 
option values or their corresponding labels.

The dialog data details are displayed in a non editable TextArea. .

The dialog data can also displayed in any fashion based on the style sheets and tabs 
configured. For e.g. if the activation dialog from a GenericCLI is to be displayed in two 
tabs "CLI OUTPUT" and "CLI INPUT" the values of data_tab0 and data_tab1 must be 
set to "CLI OUTPUT" and "CLI INPUT". When the first tab is clicked the activation 
dialog from the CLI plug-in is displayed and when the second tab is clicked the input 
XML sent to CLI plug-in is displayed. In order to format the data the appropriate style 
sheets must be specified using the parameters xsl_url0 and xsl_url1.

Creating Custom Forms

It is possible to override the default form that is presented. Normally, the form is 
presented by an internally generated JSP that is not saved. However, you can tell the 
system first to look for a custom JSP in the file system. If one is not found, the system 
will generate one on the fly and will save it to disk so that it can be edited for a custom 
presentation.

To enable this you must edit a parameter in the 
$JBOSS_DEPLOY/hpsa.ear/activator.war/WEB-INF/web.xml file.

1. Look for the section with the comment “Interact with running jobs (GenericUIDialog 
node”

2. Set the value of the parameter customizeGenericUIDialogNodeNodeJSP to “true.”

3. Optionally, set the value of the parameter fileSavedInfo to “true.” This will cause 
the generated form to present the file name in which the generated JSP is saved.

These custom JSPs must be placed in a specific location based on the name of the 
workflow, the step name and the queue name. The base location is indicated in the 
web.xml file. The file path is: 
$JBOSS_DEPLOY/hpsa.ear/activator.war/customJSP/<workflow>/<stepname>/<queue>
.jsp 
Chapter 4 155



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetBaseFileName

com.hp.ov.activator.mwfm.component.builtin.GetBaseFileName 

The node removes any path information and returns only the file name.

Table 4-32 GetBaseFileName Parameters

Name Required Description Default Type

file_var Yes Variable containing the file name. 
The file name is placed in this 
variable unless output_var is 
supplied.

None String

output_var No The optional variable which holds 
the file name

None String
Chapter 4156



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetBeansNNMNode

com.hp.ov.activator.mwfm.component.builtin.nnmrequest.GetBeansNNMNode 

The node supports the NNM operations getNodes, getInterfaces, getIPAddresses, 
getL2Connections and getIPSubnets. As part of the call to this node from the workflow it 
will be necessary to specify a beanType node parameter in order to determine which of 
the five available types will be retrieved.

Depending on the bean_type the node will return a list of beans with the following 
attributes:

If a condition_name parameter is specified then a condition_value and 
condition_operation must also be specified. The same is the case for the constraint 
parameters. If a constraint_name is specified then a constrait_value must also be 
specified.

Table 4-33

bean_type Available Attributes

NNM_NODE_BEAN capabilities
created
customAttributes
deviceCategory
deviceDescription
deviceFamily
deviceModel
deviceVendor
discoveryState
endNode
iPv4Router
id
lanSwitch
longName
managementMode
modified
name
notes
snmpSupported
snmpVersion
status
systemContact
systemDescription
systemLocation
systemName
systemObjectId
uuid
Chapter 4 157



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NNM_INTERFACE_BEAN administrativeState
capabilities
connectionId
created
customAttributes
hostedOnId
id
ifAlias
ifDescr
ifIndex
ifName
ifSpeed
ifType
managementMode
modified
name
notes
operationalState
physicalAddress
status
uuid

NNM_L2CONNECTION_BEAN created
id
modified
name
notes
status
uuid

NNM_IPSUBNET_BEAN created
id
modified
name
notes
prefix
prefixLength
uuid

NNM_IPADDRESS_BEAN created
hostedOnId
id
inInterfaceId
ipSubnetId
ipValue
managementMode
modified
notes
prefixLength
uuid

Table 4-33

bean_type Available Attributes
Chapter 4158



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Table 4-34 GetBeansNNMNode Parameters

Name Required Description Default Type

module_name Yes The name of the NNMi module used 
to connect to a specific NNMi server

None String

bean_type Yes The name of a bean type. The 
bean type can have one of the 
following values: 
NNM_NODE_BEAN
NNM_INTERFACE_BEAN
NNM_L2CONNECTION_BEAN
NNM_IPSUBNET_BEAN
NNM_IPADDRESS_BEAN

None String

result_var Yes The case packet variable where the 
operation result will be stored

None Object

condition_
name0,
condition_na
me1,
....
condition_na
meN

False Condition name for filtering 
purposes

None String

condition_
value0,
condition_va
lue1,
....
condition_va
lueN

False Condition value for filtering purposes None String

condition_
operator0,
condition_op
erator1,
....
condition_op
eratorN

False Condition value for filtering 
purposes. The following values can 
be specified:
{"EQ", "NE", "LT", "GT", 
"LE", "GE", "LIKE", "NOT_IN"} 

None String

constraint
_name0,
constraint
_name1,
...
constraint
_nameN

False The constraint name can have 
one of the following values (note 
default value is specified in 
parentheses):
offset (0)
maxObjects (1000)
includeCias (false)
includeCustomAttributes 
(false)

None String
Chapter 4 159



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-31 Filtering Example for GetBeansNNMNode in a workflow

<Process-Node disablePersistence="true">
<Name>GetBeansNode_example1</Name>
<Description>

Get all nodes (including their custom attributes). Max number of nodes retrieved to 
be 10

</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.nnmrequest.GetBeansNNMNode

</Class-Name>
<Param name="bean_type" value="constant:NNM_NODE_BEAN"/>
<Param name="result_var" value="result"/>
<Param name="module_name" value="constant:nnmrequest"/>
<Param name="constraint_name0" value="constant:includeCustomAttributes"/>
<Param name="constraint_value0” value="constant:true"/>
<Param name="constraint_name1" value="constant:maxObjects"/>
<Param name="constraint_value1” value="constant:10"/>
<Param name="expression_operator" value="constant:AND"/>

    </Action>
 <Next-Node>whatever_node</Next-Node>

</Process-Node>

  . . .

<Case-Packet>
   <Variable name="result"    type="Object"/>

</Case-Packet>

constraint
_name0,
constraint
_name1,
...
constraint
_nameN

False None String

constraint
_value0,
constraint
_value1,
...
constraint
_valueN

False The parameter indicates how all 
the specified conditions and 
constrains must be joined within 
the expression query sent to the 
NNMi. 
This is a mandatory parameter 
when either conditions or 
constraints are specified.
There are only two options for the 
expression_operator parameter: 
{"AND", "OR"}.

None String

Table 4-34 GetBeansNNMNode Parameters (Continued)

Name Required Description Default Type
Chapter 4160



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-32  GetBeansNNMNode - use in the workflow

Get all interfaces having "name==my_name" and "status!=NORMAL". Max interfaces 
retrieved to be  20.

<Process-Node>
<Name>GetBeansNode_example2</Name>
<Description></Description>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.nnmrequest.GetBeansNNMNode

</Class-Name>
 <Param name="bean_type" value="constant:NNM_INTERFACE_BEAN”/>
 <Param name="result_var" value="result”/>
 <Param name="module_name" value="constant:nnmrequest”/>
 <Param name="condition_name0" value="constant:name”/>
 <Param name="condition_value0" value="constant:my_name”/>
 <Param name="condition_operator0" value="constant:EQ”/>
 <Param name="condition_name1" value="constant:status”/>
 <Param name="condition_value1" value="constant:NORMAL”/>
 <Param name="condition_operator1" value="constant:NE”/>
 <Param name="constraint_name0" value="constant:maxObjects”/>
 <Param name="constraint_value0" value="constant:20”/>
 <Param name="expression_operator" value="constant:AND”/>
</Action>
 <Next-Node>whatever_node</Next-Node>

</Process-Node>
Chapter 4 161



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetBusinessHoursAfterDuration

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetBusinessHoursAf
terDuration

This node calculates the business time after a particular number of hours or minutes 
using the Business Calendar Module. 

The result returned is a string or an integer depending on the case-packet variable type. 

In case this variable is of type Integer, then the value returned will be the date, time 
value represented as milliseconds since January 1, 1970.

In case the variable type is string then the value returned is a date string. In case the 
date_format parameter has been specified, the result will be formatted with the same 
date format. Otherwise the output string will have the default date format of the locale 
of the system in which Service Activator is running.

Each calendar has a defined time-zone. In case the input time is in a different time-zone, 
then the conversion to the calendar's time-zone will be taken care of by the node, if the 
timezone parameter has been specified. The value of this parameter can be any of the 
values which are defined by the java TimeZone API (the values returned by the 
TimeZone.getAvailableIds method in the java.util package).

Table 4-35 GetBusinessHoursAfterDuration Parameters

Name Required Description Default Type

response Yes The name of the case-packet 
variable name in which the result 
is stored. The type of the 
case-packet variable should be 
either of type Integer or String. 
The actual business time after the 
given duration is populated in the 
case-packet variable. 

None String/
Integer

calendar_na
me

Yes The name of the calendar which 
needs to be used. 

None String

date_value Yes The start time to which the 
duration specified needs to be 
added. This parameter must have 
the date and the time specified as 
a string (including AM/PM, if 
applicable). The string can either 
be in the format of the default 
locale or conform to the date 
format specified by the 
date_format parameter.

None String
Chapter 4162



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-33 GetBusinessHoursAfterDuration - In a workflow

To get business hours 1 hour from Aug 21, 2009 1:30 pm (specified in the default format 
of US locale), which is defined as working day in a calendar named "calendarName". The 
business hours are from 8 am to 6 pm.

With no date format specified:

<Process-Node disablePersistence="true">
<Name>GetBusinessHoursAfterDuration</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetBusinessHoursAfterD
uration

</Class-Name>
 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="date_value" value="constant:Aug 21, 2009 1:30:00 PM”/>
 <Param name="duration" value="constant:1”/>
 <Param name="response" value="response_var”/>
 <Param name="time_unit" value="constant:hours”/>
</Action>

</Process-Node>

duration Yes This parameter indicates the 
duration which will be added to 
the value of the date_value 
parameter to get the business 
hour. The value of this parameter 
must be a positive integer.

None Integer

time_unit No The allowed values are "hours" 
or "minutes". 

minutes String

date_format No Specifies the format in which the 
date_value parameter has been 
defined. The date format can be 
specified using standard java 
conventions for defining a date 
format (as in the 
SimpleDateFormat class). In case 
this parameter is not specified the 
current locale is used.

System' 
Locale's 
date 
format is 
used

String

timezone No The timezone in which the 
date_value is specified. If this 
parameter is specified then the 
time is converted to the calendar's 
timezone. The value of this 
parameter must be any of the 
values used by the java TimeZone 
class.

Current 
timezone 
of the 
system 
in which 
Service 
Activator 
is 
running. 

String

Table 4-35 GetBusinessHoursAfterDuration Parameters (Continued)

Name Required Description Default Type
Chapter 4 163



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The value returned will be Aug 21, 2009 2:30:00 PM.

<Process-Node disablePersistence="true">
<Name>GetBusinessHoursAfterDuration</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetBusinessHoursAfterD
uration

</Class-Name>
 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="date_format" value="constant:ddMMyyyyhhmmaa”/>
 <Param name="date_value" value="constant:210820090130pm”/>
 <Param name="duration" value="constant:1”/>
 <Param name="response" value="response_var”/>
 <Param name="time_unit" value="constant:hours”/>
</Action>

</Process-Node>
Chapter 4164



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetCalendarTimezone

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetCalendarTimezon
e

The node lets the user find out which timezone the calendar is set to. 

Example 4-34 GetCalendarTime - In a workflow

To get the calendar time zone.

<Process-Node disablePersistence="true">
<Name>GetCalendarTimezone</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetCalendarTimezone
</Class-Name>

 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="response" value="response_var”/>
</Action>

</Process-Node>

Table 4-36 GetCalendarTimezone Parameters

Name Required Description Default Type

response Yes The name of the case-packet 
variable name in which the result 
is stored. The type of the 
case-packet variable should be 
String. 

None String/
Integer

calendar_na
me

Yes The name of the calendar which 
needs to be used. 

None String
Chapter 4 165



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetNextIncludedTime

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetNextIncludedTim
e

The node calculates the next business time using the Business Calendar Module. 

The node takes a given time and calculates the start time for the next business hour. In 
case the time specified is within the business hours, then the value returned is the same 
time. In case the value given is after the business hours or falls on a holiday, then the 
next time which is in the business hours is returned. 

The result returned is a string or an integer depending on the case-packet variable type.

In case this variable is of type Integer, then the value returned will be the date, time 
value represented as milliseconds since January 1, 1970.

In case the variable type is string then the value returned is a date string. In case the 
date_format parameter has been specified, then the result will be formatted with the 
same date format. Otherwise the output string will have the default date format of the 
locale of the system in which Service Activator is running.

Each calendar has a defined time-zone. In case the input time is in a different time-zone, 
then the conversion to the calendar's time-zone will be taken care of by the node, if the 
timezone parameter has been specified. The value of this parameter can be any of the 
values which are defined by the java TimeZone API (the values returned by the 
TimeZone.getAvailableIds method in the java.util package).

Table 4-37 GetNextIncludedTime Parameters

Name Required Description Default Type

response Yes The name of the case-packet 
variable name in which the result 
is stored. The type of the 
case-packet variable should be 
either of type Integer or String. 
The next included time is 
populated in the case-packet 
variable. 

None String/
Integer

calendar_na
me

Yes The name of the calendar which 
needs to be used. 

None String

date_value Yes The time after which the next 
included time needs to be found. 

This parameter must have the 
date and the time specified as a 
string (including AM/PM, if 
applicable). The string can either 
be in the format of the default 
locale or conform to the date 
format specified by the 
date_format parameter

None String
Chapter 4166



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-35 GetNextIncludedTime - In a workflow

To get the next business time after Aug 17, 2009 5 pm, which is defined as working day 
in a calendar named "calendarName". The business hours are from 8 am to 6 pm.

<Process-Node disablePersistence="true">
<Name>GetNextIncludedTime</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetNextIncludedTime
</Class-Name>

 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="date_value" value="constant:170820090500pm”/>
 <Param name="date_format" value="ddMMyyyyhhmmaa”/>
 <Param name="response" value="response_var”/>
</Action>

</Process-Node>

The value returned will be 170820090500pm.

date_format No Specifies the format in which the 
date_value parameter has been 
defined. The date format can be 
specified using standard java 
conventions for defining a date 
format (as in the 
SimpleDateFormat class). In case 
this parameter is not specified the 
current locale is used.

System' 
Locale's 
date 
format is 
used

String

timezone No The timezone in which the 
date_value is specified. If this 
parameter is specified then the 
time is converted to the calendar's 
timezone. The value of this 
parameter must be any of the 
values used by the java TimeZone 
class.

Current 
timezone 
of the 
system 
in which 
Service 
Activator 
is 
running. 

String

Table 4-37 GetNextIncludedTime Parameters (Continued)

Name Required Description Default Type
Chapter 4 167



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetTimeRangesOfBusinessDay

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetTimeRangesOfBus
inessDay

The node retrieves the start and end times of a given day using the Business Calendar 
Module.

The node takes a given time and calculates start and end times for the day of the week 
as defined in the business calendar. The start time is populated in the case-packet 
variable specified using the start_time_range parameter and the end time is 
populated in the case-packet variable specified using the end_time_range parameter. 
It is not mandatory to specify both of these parameters. In case only one of these 
parameters have been specified, only the corresponding value is populated.

The result returned is a string or an integer depending on the case-packet variable 
types. If the start_time_range and the end_time_range variables are of type 
Integer and the date_value has been specified then the value returned the start/end 
time on the date specified represented as milliseconds since January 1, 1970.

If the variable types are of type string then the value returned is a date string. In case 
the date_format parameter has been specified, then the result will be formatted with the 
same date format. Otherwise the output string will have the default date format (with 
only the time) of the locale of the system in which Service Activator is running.

In case both the day_of_week and date_value parameter have been specified then the 
value specified by date_value parameter is taken into account and the other is ignored.

Table 4-38 GetTimeRangesOfBusinessDay Parameters

Name Required Description Default Type

start_time_r
ange

No The name of the case-packet 
variable in which the start time of 
the day is stored. The type of the 
case-packet variable should be 
either of type Integer or String. 

In case day_of_week parameter 
has been specified then the 
casepacket variable type must be 
string.

None String/
Integer

end_time_ra
nge

No The name of the case-packet 
variable in which the end time of 
the day is stored. The type of the 
case-packet variable should be 
either of type Integer or String. 

In case day_of_week parameter 
has been specified then the 
casepacket variable type must be 
string.

None String/
Integer
Chapter 4168



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-36 GetTimeRangesOfBusinessDay - In a workflow

To get the calendar time zone.

<Process-Node disablePersistence="true">
<Name>GetTimeRangesOfBusinessDay</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.GetTimeRangesOfBusines
sDay

</Class-Name>
 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="date_format" value="constant:ddMMyyyyhhmmaa”/>
 <Param name="date_value" value="constant:070920090500pm”/>
 <Param name="end_time_range" value="end_time”/>
 <Param name="start_time_range" value="start_time”/>
</Action>

</Process-Node>

The value returned will be 070920090800am and 070920090600pm.

calendar_na
me

Yes The name of the calendar which 
needs to be used. 

None String

date_value Yes This parameter specifies the day 
of the week on which the start 
and end time ranges need to be 
found. The valid values for this 
parameter are "sunday", 
"monday", "tuesday", 
"wednesday", "thursday", "friday", 
"saturday

None String

date_format No Specifies the format in which the 
date_value parameter has been 
defined. The date format can be 
specified using standard java 
conventions for defining a date 
format (as in the 
SimpleDateFormat class). In case 
this parameter is not specified the 
current locale is used.

System's 
Locale's 
date 
format is 
taken

String

Table 4-38 GetTimeRangesOfBusinessDay Parameters (Continued)

Name Required Description Default Type
Chapter 4 169



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GetOperatingSystem

com.hp.ov.activator.mwfm.component.builtin.GetOperatingSystem

The node allows the mwfm to provide a means to retrieve the operating system on which 
the current workflow is running. 

The operating system type is retrieved and stored in a case packet that is mapped to the 
action parameter “output_var.”

Example 4-37 GetOperatingSystem

This example retrieves the operating system.

<Process-Node disablePersistence="true">
<Name>GetOperatingSystem</Name>
<Description></Description>
<Action>  

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.GetOperatingSystem

</Class-Name>
 <Param name="output_var" value="operatingSystem”/>
</Action>

</Process-Node>

Table 4-39 GetOperatingSystem Parameters

Name Required Description Default Type

output_var Yes The name of the case packet 
variable to return the operating 
system type.

None String

throw_excep No Controls whether the node should 
throw exceptions upon failures, or 
the framework should handle 
them. If set to 'false' the 
framework handles the failure by 
setting the RET_VALUE case 
packet variable to -1. The 
RET_TEXT variable will hold the 
failure text. (Default is 'true')

None String
Chapter 4170



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GreaterThan

com.hp.ov.activator.mwfm.component.builtin.GreaterThan 

The node allows you to establish whether a variable or a constant is strictly greater than 
another. It works with all types of variables. If two variables are of different types, they 
are compared like strings.

Example 4-38 GreaterThan - use in the workflow

This example determines whether the value of var1 is strictly greater than 0.

<Rule-Node disablePersistence="true">
<Name>Greater than?</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.GreaterThan 

</Class-Name>
<Param name="op1" value="var1"/>
<Param name="op2" value="constant:0"/>

    </Action>
 <True-Next-Node>Greater than</True-Next-Node>
 <False-Next-Node>Less or equal</False-Next-Node>

</Rule-Node>

  . . .

<Case-Packet>
   <Variable name="var1"    type="Integer"/>
</Case-Packet>

Table 4-40 GreaterThan Parameters

Name Required Description Default Type

op1 Yes The two parameters are variables or 
constants. Constant is specified as 
constant:X . If the two variables are 
not of the same type, their values are 
converted into strings and they are 
compared lexically.

None Numeric

op2 Yes Same as above. None Numeric
Chapter 4 171



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
GreaterThanOrEqual

com.hp.ov.activator.mwfm.component.builtin.GreaterThanOrEqual 

The node allows you to establish whether a variable or a constant is greater than or 
equal to another. It works with all types of variables. If two variables are of different 
types, they are compared like strings.

Example 4-39 GreaterThanOrEqual - use in the workflow

The following example determines whether the value of var1 is greater than or 
equal to 0.

<Rule-Node disablePersistence="true">
<Name>Greater than or equal?</Name>
<Description></Description>
<Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.GreaterThanOrEqual
</Class-Name>

  <Param name="op1" value="var1"/>
  <Param name="op2" value="constant:0"/>

     </Action>
 <True-Next-Node>Greater than or equal to</True-Next-Node>
 <False-Next-Node>Strictly less</False-Next-Node>

</Rule-Node>

  . . .

<Case-Packet>
   <Variable name="var1"    type="Integer"/>
</Case-Packet>

Table 4-41 GreaterThanOrEqual Parameters

Name Required Description Default Type

op1 Yes The two parameters are variables or 
constants. Constant is specified as 
constant:X. If the two variables are 
not of the same type, their values are 
converted into strings and they are 
compared lexically.

None Numeric

op2 Yes Same as above. None Numeric
Chapter 4172



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
HTTPGet

com.hp.ov.activator.mwfm.component.builtin.HTTPGet 

The node is used to send a HTTP(S) GET request to some target server and receives a 
response. It also supports the following additional features.

• HTTPS Server/Client side certificates

• Proxy server

• HTTP basic username/password authentication for network connection

• Customizable timeout value

• Cookies

NOTE This node must be used with care. It must only be used when the time to perform the 
operation is very limited. The reason for this is because the workfer thead which is ued 
to execute the node is NOT freed when sending the HTTP get request. 

Table 4-42 HTTPGet Parameters

Name Required Description Default Type

URL Yes The target URL for the HTTP(S) 
connection.

None String

username No Username for network connection 
authentication

None String

password No Password for network connection 
authentication

None String

keystore No The location of the keystore file, 
necessary for HTTPS client 
authentication.

None String

storepass No The password to access the 
keystore file, necessary for 
HTTPS client authentication.

None String

keypass No The password for the public 
certificate/private key pair, 
necessary for HTTPS client 
authentication. 

Note that the parameters 
keystore, storepass, and 
keypass must all be set to some 
non-empty values for the plug-in 
to do HTTPS client 
authentication; otherwise there 
will be no effect.

None String

proxy_ser
ver

No Name of a proxy server. None String
Chapter 4 173



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-40 HTTPGet - use in the workflow

This example uses the HTTPGet node to send HTTP(S) request to some target server 
and receive response. The result is saved in the case packet variable response, and the 
returned cookie is saved in the case packet variable return_cookie, if any..

<Process-Node>
<Name>Send HTTP GET Request</Name>
<Description></Description>
<Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.HTTPGet
</Class-Name>

  <Param name="URL" value="targetURL"/>
  <Param name="username" value="username"/>

<Param name="password" value="password"/>
<Param name="keystore" value="keystore"/>
<Param name="storepass" value="storepass"/>
<Param name="keypass" value="keypass"/>
<Param name="proxy_server" value="proxyhost"/>
<Param name="proxy_port" value="proxyport"/>
<Param name="cookie" value="cookie"/>
<Param name="connect_timeout" value="connectTimeout"/>
<Param name="read_timeout" value="readTimeout"/>
<Param name="response" value="response"/>
<Param name="return_cookie" value="cookie_result"/>
</Action>

 </Process-Node>

<Case-Packet>
   <Variable name="targetURL"    type="String"/>

<Variable name="username"    type="String"/> 
<Variable name="password"    type="String"/>

proxy_por
t

No Port of a proxy server.

Note that the parameters 
proxy_server and proxy_port 
must both be set to some 
non-empty values in order for the 
plug-in to set up the proxy 
connection. Setting only one of 
them will not have any effect.

None String

cookie No Cookie of the HTTP(S) request None String

connect_t
imeout

No Connection timeout value, in 
milliseconds.

None String

read_time
out

No Read timeout value, in 
milliseconds.

None String

response Yes Case-packet variable holding the 
HTTP(S) response.

None String

return_co
okie

No Case-packet variable holding the 
returned cookie, if any.

None String

Table 4-42 HTTPGet Parameters (Continued)

Name Required Description Default Type
Chapter 4174



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Variable name="keystore"    type="String"/>
<Variable name="storepass"    type="String"/>
<Variable name="keypass"    type="String"/>
<Variable name="proxyhost"    type="String"/>
<Variable name="proxyport"    type="String"/>
<Variable name="cookie"    type="String"/>
<Variable name="connectTimeout"    type="String"/>
<Variable name="readTimeout"    type="String"/>
<Variable name="response"    type="String"/>
<Variable name="cookie_result"    type="String"/>
</Case-Packet>
Chapter 4 175



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
HTTPRequest

com.hp.ov.activator.mwfm.component.builtin.HTTPRequest 

The node is used to send a HTTP(S) GET or POST request to some target server and 
receives a response.

The following parameters need to set to make a HTTP(s) request:

• request_type: The type of request. It can either POST or GET

• response: Returned result for the HTTP(S) GET or POST request

The node makes the HTTP(S) request using a HTTPSenderModule.

The message to be sent to the HTTP server in case of a POST can be specified using the 
parameter request. This can either be a message or a file URL of a file containing the 
message. For the second case, the URL must start with "file://". This must be 
specified in case of a POST.

Cookie returned by the HTTP server can be stored in a case-packet by specifying the 
parameter return_cookie. The returned cookie can be used by subsequent GET or 
POST request to enable the HTTP server to track the request.

The HTTPSenderModule process the request asynchronously thus freeing up the worker 
thread. The module posts the job in a request queue and sends the response once the 
HTTP(S) is processed.

In case of successful processing the response sent by the HTTP server is set to the 
case-packet mapped to response and any returned cookie is set to the corresponding 
case-packet.

In case of a failure the RET_VALUE is set to 1 to indicate failure and the exception is 
logged.

Table 4-43 HTTPRequest Parameters

Name Required Description Default Type

request_ty
pe

Yes The type of request. It can either 
POST or GET

None String

module Yes The name of the HTTP module None String

request No The message to be sent to the HTTP 
server. This can either be a message 
or a file URL of a file containing the 
message. For the second case, the 
URL must start with "file://. This 
must be specified in case of a POST

None String

return_co
okie

No Returned cookie value None String

response Yes Returned result for the HTTP(S) 
GET or POST request

None String
Chapter 4176



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-41 HTTPRequest - use in the workflow

<Process-Node>
<Name>HTTP Request</Name>
<Description></Description>
<Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.HTTPRequest
</Class-Name>

  <Param name="module" value="constant:http_example_sender"/>
  <Param name="request_type" value="constant:GET"/>

<Param name="response" value="response"/>
<Param name="return_cookie" value="cookie_result"/>
</Action>

 </Process-Node>

Example 4-42 HTTPRequest - use in the workflow

<Process-Node>
<Name>HTTP Request</Name>
<Description></Description>
<Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.HTTPRequest
</Class-Name>

  <Param name="module" value="constant:http_example_sender"/>
  <Param name="request_type" value="constant:POST"/>

<Param name="response" value="postResult"/>
<Param name="request" value="constant:HP Service Activator"/>
</Action>

 </Process-Node>
Chapter 4 177



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
InsertIntoTasklist

com.hp.ov.activator.mwfm.component.builtin.tasklist.InsertIntoTasklist

The node is used to insert a task into a task list at a specified position. The task can then 
be activated using the Activate node.

See Also

• “CreateTaskList” on page 120 for more information about creating a new task list.

• “ConcatenateTaskLists” on page 114

• “Activate” on page 94 for more information about the Activate node.

• “AppendToTaskList” on page 99 for more information about appending a task to the 
end of a task list.

Example 4-43 InsertIntoTasklist - use in the workflow

The following example inserts the task my_task in the top of the task list 
my_subtask_list.

<Process-Node disablePersistence="true">
<Name>InsertToTasklist</Name>
<Description>Create a Task List</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.tasklist.InsertIntoTasklist

</Class-Name>
<Param name="task_list_var" value="my_task_list"/>
<Param name="position" value="constant:0"/>
<Param name="task" value="constant:my_task"/>
<Param name="param0" value="constant:my_task_param0"/>

Table 4-44 InsertIntoTasklist Parameters

Name Required Description Default Type

task_list_var Yes Indicates the variable 
containing the task list to 
insert into. (Created using 
CreateTaskList)

None Object

task Yes A variable or a constant 
containing the name of the 
task to be inserted in the 
list.

None String

param0, 
param1,...,
paramN

Yes Specifies the values of the 
parameters for the task 
being inserted. At least 
one value must be 
specified.

None Depends 
on the 
task 
parameter 
type

position No Position of the new task in 
the list after insert is 
performed.

0 Integer
Chapter 4178



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
</Action>
<Next-Node>CreateTaskList</Next-Node>

</Process-Node>
Chapter 4 179



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
InvokeInventoryMethod

com.hp.ov.activator.mwfm.component.builtin.InvokeInventoryMethod

The node used to invoke an arbitrary method on the inventory bean object. This node 
relies on the JavaBeans generated by the InventoryBuilder tool. The first argument of 
the method must always be a database connection object. It sets the RET_VALUE to 0 if 
the method returns an object different from null; otherwise the RET_VALUE is set to 1. 
No explicit commit is done.

Table 4-45 InvokeInventoryMethod Parameters

Name Required Description Default Type

db No Name of the database module to 
be used.

“db” String

bean Yes Name of the JavaBean to be 
used.

None String

arg0
arg1...
argN

Yes Arguments to be passed to the 
method. If its value begins with 
constant: the key is the value 
provided after this. Otherwise, 
the key indicates the name of a 
variable that holds the key 
value.

None Depend 
on the 
bean

variable Yes Case-packet variable holding 
the invoked method’s return 
value.

None String

method No Name of the method to be 
invoked.

“findBy
Primary
Key”

String
Chapter 4180



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
InvokeMethod

com.hp.ov.activator.mwfm.component.builtin.InvokeMethod

The node used to invoke an arbitrary method on an object. The object may be a JavaBean 
generated by the InventoryBuilder tool or it may be any other Java object. The method 
may be static or dynamic.

The method is allowed (but not required) to take one database connection parameter in 
any position, as long as the type is java.sql.Connection. If such a parameter exists in the 
method, the InvokeMethod node will automatically supply a database connection as 
specified by the "db" parameter given to the node.

By default, the connection object will not be in autocommit-mode, but when the method 
execution completes, the node will always issue a commit() call on the connection. This 
means that the method may use commit() and rollback() methods on the connection as 
needed. If the method throws an exception, the node will automatically call rollback() 
instead of commit().

The node automatically converts the arg0..argN parameters to the expected parameter 
types of the method following the same rules as the JavaNode. Since most parameter 
conversions are possible, overloading of Java methods should be avoided, except on the 
number of paramters.

If the method returns a value (i.e. is not void), the return value may be captured in an 
optional "variable" parameter. The node automatically converts the return value to the 
type of the given case-packet variable. String representations of numbers can be 
converted to int, long, etc. Conversion to boolean type supports the following values (not 
case-sensitive):

Table 4-46

Type Value boolean Comment

String “true” true

String “yes” true

String “enabled” true

String “0” true

String “false” false

String “no” false

String “disabled” false

String “1” false

String “” false Only return 
value - not 
supported 
for 
arguments
Chapter 4 181



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Note that 0 is interpreted as true in order to comply with the handling of RET_VALUE. 
In other contexts, this may be a surprising conversion.

If the method throws an exception, the node follows the conventions of the standard 
throw_excep parameter.

String “ ” false Only return 
value; any 
number of 
whitespace 
characters

String “ ” false Only return 
value; any 
number of 
whitespace 
characters

int 0 true Same for 
Integer, 
long, float, 
etc.

int 1 true Same for 
Integer, 
long, float, 
etc.

int null true

int not null true

Table 4-46

Type Value boolean Comment

Table 4-47 InvokeMethod Parameters

Name Required Description Default Type

db No Name of the database module to 
be used if the method takes a 
Connection argument.

“db” String

bean Yes A case-packet variable 
containing the object on which 
to invoke the method. 
Alternatively, its value can 
begin with constant: followed by 
the fully qualified name of the 
class on which to invoke a static 
method

None String/
Object
Chapter 4182



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
arg0
arg1...
argN

No Arguments to be passed to the 
method. If its value begins with 
constant: the key is value 
provided after this. Otherwise, 
the key indicates the name of a 
variable that holds the key 
value. If the method takes a 
parameter of type 
java.sql.Connection, it is passed 
implicitly, and should not be 
listed among the arg 
parameters to InvokeMethod

None Any

variable Yes Case-packet variable holding 
the invoked method’s return 
value.

None Any

method Yes Name of the method to be 
invoked.

None String

Table 4-47 InvokeMethod Parameters (Continued)

Name Required Description Default Type
Chapter 4 183



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
IsModuleConfigured

com.hp.ov.activator.mwfm.component.builtin.IsModuleConfigured

The node checks if a specified Workflow Manager module is configured.

Table 4-48 IsTrue Parameters

Name Required Description Default Type

module Yes The name of the module to be 
checked.

None String
Chapter 4184



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
IsTimeIncluded

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.IsTimeIncluded

The node returns true or false depending on whether or not the provided time is within 
business hours. 

Each calendar has a defined time-zone. In case the input time is in a different time-zone, 
then the conversion to the calendar's time-zone will be taken care of by the node, if the 
timezone parameter has been specified. The value of this parameter can be any of the 
values which are defined by the java TimeZone API (the values returned by the 
TimeZone.getAvailableIds method in the java.util package).

Table 4-49 IsTimeIncluded Parameters

Name Required Description Default Type

response Yes The name of the case-packet 
variable name in which the result 
is stored. 

None String/
Integer

calendar_na
me

Yes The name of the calendar which 
needs to be used. 

None String

date_value Yes The time after which the next 
included time needs to be found. 

This parameter must have the 
date and the time specified as a 
string (including AM/PM, if 
applicable). The string can either 
be in the format of the default 
locale or conform to the date 
format specified by the 
date_format parameter.

None String

date_format No Specifies the format in which the 
date_value parameter has been 
defined. The date format can be 
specified using standard java 
conventions for defining a date 
format (as in the 
SimpleDateFormat class). In case 
this parameter is not specified the 
current locale is used.

System' 
Locale's 
date 
format is 
used

String

timezone No The timezone in which the 
date_value is specified. If this 
parameter is specified then the 
time is converted to the calendar's 
timezone. The value of this 
parameter must be any of the 
values used by the java TimeZone 
class.

Current 
timezone 
of the 
system 
in which 
Service 
Activator 
is 
running. 

String
Chapter 4 185



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-44 IsTimeIncluded - In a workflow

To test if Aug 17, 2009 5 pm is within business hours, which is a defined as working day 
in a calendar named "calendarName". The business hours are from 8 am to 6 pm.

<Process-Node disablePersistence="true">
<Name>IsTimeIncluded</Name>
<Description></Description>
<Action>  

<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.businesscalendar.IsTimeIncluded
</Class-Name>

 <Param name="calender_name" value="constant:calendarName”/>
 <Param name="date_value" value="constant:170820090500pm”/>
 <Param name="date_format" value="ddMMyyyyhhmmaa”/>
 <Param name="response" value="response_var”/>
</Action>

</Process-Node>

The value returned will be true.
Chapter 4186



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
IsTrue

com.hp.ov.activator.mwfm.component.builtin.IsTrue

The node checks if a case-packet variable of type Boolean is true or false.

Table 4-50 IsTrue Parameters

Name Required Description Default Type

op1 Yes The name of a Boolean 
case-packet variable, whose 
value must be tested.

None Boolean
Chapter 4 187



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Java

com.hp.ov.activator.mwfm.component.builtin.JavaNode

This is a process node designed to execute the Java code contained in a template file, or 
embedded as a Java string, or a simple Java expression. The result can be saved in a 
case-packet variable. The node parameters can be found in Table 4-51.

The javacode or javafile parameter is used to generate a body of the class in which the 
desired method is declared. The javacode parameter is intended for only a minor code 
block as it is difficult to use the workflow designer for writing large blocks of Java code. 
The javafile parameter can be conveniently used to generate complex classes with a 
number of methods. At the same time, the content of the javacode parameter adheres to 
the same rules as the content of the javafile parameter. 

The javafile parameter references a java template file. It works similarly to other HP 
Service Activator templates (e.g. XSL): it is read at every node call; if the template 
changes, the changes take effect immediately. Just like in case of XSL, the filename can 
be taken directly from a case-packet variable. This allows parameterization of the 
template name.

If necessary, it is possible to pass arguments to the created method from the workflow. 
The number of the arg0-argN must fit during runtime – type conversion is tried as good 
as possible. Overloaded methods, therefore, should be used with caution. Type 
conversion is also used for the output_var. 

The class name is generated as a summary of the content of the class body. It is only 
recompiled if the content changes and loaded only if it has not already been loaded to 
avoid time penalty. The used compilation string is “javac –d <dirname> –classpath 
classpath <filename>”. The classpath is formed during the startup of HP Service 
Activator.

If scope rules are disabled (strict_scope is set to false), all case-packet variables available 
within the workflow are created as member variables in the generated class and are 
initialized with current values. Therefore, all case-packet variables are available as 
member-variables in the generated class. They can be type safely reached directly from 
the methods of the class (or from the expression parameter).

If scope rules are enabled, all builtin HP Service Activator variables can be seen and 
changed (unless declared constant), but variables originating from the workflow cannot 
be seen or changed unless the variable is listed in the in_scope list.

Changed values are automatically transferred back to the case-packets of the workflow.

As mentioned above, new .java and .class files are created every time the code is 
changed. If the called method throws either an in-compile or run-time exception, the 
process node will throw a WFException and the workflow execution will terminate 
abnormally. This of course depends on the THROW_EXCEP settings for the workflow or 
the node. If it is setup to handle exception automatically, then the RET_VALUE will be 
set to -1 and the RET_TEXT will contain the exception text.

The generated files are placed in the path specified by Dyn-Class-Path in the mwfm.xml 
configuration file. If the path is not specified, it defaults to $ACTIVATOR_VAR/Dyn. It is 
impossible to detect when dynamic generated files become outdated. They are left on the 
disc and must be deleted if necessary. They will reappear if needed. Deleting such files 
too often causes performance problems due to compilation time. 

The format of the previously mentioned template file differs from Java because it has to 
reserve room for the auto generated name of the class and code. 
Chapter 4188



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The template format is described below. Schematically it can be presented as follows:

<jtp> ::= <import>* [<extends>] <implements>* <class-body>

<import> ::= "import" <package> [";"] "\n"

<extends> ::= "extends" <class-name> [";"] "\n"

<implements> ::= "implements" <interfaces> [";"] "\n"

<interfaces> ::= <interface-name> ["," <interfaces>]

<class-body> ::= any valid java code

Comments are allowed only in the class body part. The file must always start with the 
above described keywords. If anything else than the expected keyword is found, it is 
assumed to be java declarations. Examples of the java template file and the generated 
code can be found in Example 4-46 on page 191 and Example 4-47 on page 191.

Table 4-51 Java Parameters

Name Required Description Default Type

javafile No Name on the java template file 
passed in the string 
case-packet variable or as a 
constant. The default place to 
look for the template is 
$ACTIVATOR_ETC/template_f
iles. The default file extension 
is .jtp (java template). It can be 
combined with method name 
as <file>::<method> in order to 
force specified method to be 
called for execution. But it 
must not be combined with the 
method parameter.

None String

javacode No The contents of a java template 
as defined by <jtp> format. 
Note that it should only be 
used for minor operations.

None String

method No Name of the method to call, 
which can be case-packet 
variable of constant. If it is 
omitted, the method name is 
derived from javafile or 
expression.

None String

expression No Simple Java expression. None String
Chapter 4 189



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-45 Java - use in the workflow

This example compiles and executes Java code generated according to the data found in 
the template file $ACTIVATOR_ETC/template_files/Attributes.jtp. The method chosen 
for execution is sms(). It takes an argument of type String. The argument is set in arg0 
as constant string “any”. The output is saved in the out_var case-packet variable.

<Process-Node>

  <Name>Java</Name>

  <Action>

    <Class-Name>com.hp.ov.activator.mwfm.component.builtin.JavaNode</Class-

    <Param name="output_var" value="out_var"/>

    <Param name="javafile" value="filename"/>

    <Param name="arg0" value="any"/>

  </Action>

</Process-Node>

arg0...argN No Parameters or arguments to 
pass to the method. Care 
should be taken to pass the 
correct number of parameters 
taken by the method. This 
parameter cannot be combined 
with expression.

None Depends 
on the 
method 
argume-
nt type

output_var No Optional variable for the 
return value. Type of the 
variable should coincide with 
return type of the executed 
method.

None Object

cleanup No Optional string containing the 
name of a method to be 
executed in the NodeExited 
method. See javadoc Class 
WFProcessNode.

None String

strict_scop
e

No This Java node adheres to 
scoping rules(As explained 
above)

True Boolean

in_scope No List of variables brought into 
scope if strict_scope is true.

None String

use_solution_
dir

No When set to "true", the nodes 
will read from 
$SOLUTION_ETC/template_fi
les instead of 
$ACTIVATOR_ETC/template_f
iles.

false Boolean

Table 4-51 Java Parameters (Continued)

Name Required Description Default Type
Chapter 4190



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Case-Packet>

  <Variable name="filename" type="String"/>

</Case-Packet>

<Initial-Case-Packet>

  <Variable-Value name="filename" value="Attributes.jtp::sms"/>

</Initial-Case-Packet>

Example 4-46 Java Template (jtp) File

import com.fut.byt.*

extends Goo;

implements Foo, Bar;

implements Baz

public void f() {

  x = x + 1;

}

NOTE The example is not intended to provide a valid code. It rather shows where the template 
declarations can be found in the generated file. Therefore, compilation of the Java file 
generated according to the template will fail. The case-packet variable x should be 
defined in the workflow in order for this code to work. Assuming that the case-packet 
variable is of type Integer, the generated code will be similar to the code shown in 
Example 4-47.

Example 4-47 Generated Java Code

package com.hp.ov.activator.dyn;

/// DYNAMICALLY GENERATED CLASS - please do not edit!!!

import com.hp.ov.activator.mwfm.component.*;

import com.hp.ov.activator.mwfm.component.builtin.*;

import com.hp.ov.activator.mwfm.component.builtin.java.*;

import com.hp.ov.activator.mwfm.engine.object.*;

import com.hp.ov.activator.mwfm.engine.module.*;

import java.sql.*;

import java.util.*;

import com.fut.byt.*;

public class Dyn2529779203829335138 extends Goo implements DynNodeIF, Foo, Bar, Baz

{

  public Dyn2529779203829335138()

  {}

WFContext wfContext;

  private long x = 0;

  public void f() {

    x = x + 1;

  }
Chapter 4 191



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
}

Much of the code for handling initialization and reversing case-packet variables follows 
the code in Example 4-47. Please note that direct access to the WFContext is available as 
a member variable. There are some utility methods provided to enable easy access to the 
database.

private DatabaseModule getDBModule(String db) { ... }

private Connection getConnection(String db) { ... }

private Connection getConnection() { return getConnection("db"); }

The connection is released automatically in a cleanup_ method in the auto-generated 
code, which makes it impossible for the database connection to remain unreleased.
Chapter 4192



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
JavaRule

com.hp.ov.activator.mwfm.component.builtin.JavaRule

The JavaRule node works in the same way as the Java node. The main difference is that 
JavaRule is a rule node, which processes Boolean expressions. Therefore, it is convenient 
for use in condition branching. The node parameters are presented in Table 4-52.

The node returns WFException and workflow execution fails if:

• A runtime exception is returned during code execution although the code has been 
compiled and run successfully. 

• The result of code execution cannot be converted to a Boolean. 

The true or false branch of the node adheres to the following rules:

• Boolean or boolean, directly from the value.

• String understands “true”, “false”, “yes”, “no”, “enabled”, “disabled” (case 
insensitive).

• Object is converted to String and hereafter handled as such.

• Integer will give true if its value is 0 (zero).

• If the value cannot be converted according the rules above, method execution will 
throw a WFException, and workflow execution will fail

See Also

• “Java” on page 188 for more information about the parameters and Java code usage

Table 4-52 JavaRule Parameters

Name Required Description Default Type

javafile No Name of the java template file. 
If used as <file>::<method>, 
then the method specified is 
called instead of the one 
specified by the method 
parameter.

None String

javacode No Java functional declaration. None String

method No Name of the method to call. None String

expression No Java expression. Expression 
can be combined with 
javafile/javacode and can be 
wrapped in an extra dummy 
method.

None String
Chapter 4 193



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-48 JavaRule - use in the workflow

<Rule-Node disablePersistence="true">

   <Name>JavaRule</Name>

   <Action>

      <Class-Name>com.hp.ov.activator.mwfm.component.builtin.JavaRule</Class-Name>

      <Param name="expression" value="x == 1"/>

   </Action>

   <True-Next-Node> PutMessageTrue</True-Next-Node>

   <False-Next-Node>PutMessageFalse</False-Next-Node>

</Rule-Node>

arg0...argN No Parameters or arguments to 
pass to the method; cannot be 
combined with expression.

None Depends 
on the 
method 
argument 
type

strict_scop
e

No This Java node adheres to 
scoping rules(As explained 
above)

True Boolean

in_scope List of variables brought into 
scope if strict_scope is true.

None String

use_solution
_dir

No When set to "true", the nodes 
will read from 
$SOLUTION_ETC/template_fi
les instead of 
$ACTIVATOR_ETC/template_
files.

false Boolean

Table 4-52 JavaRule Parameters (Continued)

Name Required Description Default Type
Chapter 4194



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
JavaSwitch

com.hp.ov.activator.mwfm.component.builtin.JavaSwitch

This node allows the workflow manager to provide conditional if-then-else branching of 
workflow paths based on the value of a switch key.

The switch key can be computed by complex calculation using a Java code contained in a 
template file, or embedded as a Java string, or a simple Java expression. The computed 
key can optionally be saved in a case-packet variable.

The JavaSwitch node works in the same way as the Java node. The main difference is 
that JavaSwitch is a switch node and the computed value of the switch key can only be a 
String or an Integer. Long, Float and Double return types are stored as an Integer key.

The node returns WFException and workflow execution fails if:

• A runtime exception is returned during code execution although the code has been 
compiled and run successfully. 

• The result of code execution cannot be converted to a Boolean. 

The case values that govern the multiple paths from the Switch node are specified using 
the action parameters case0, case1...caseN. When the JavaSwitch node is connected to 
another node, the user is prompted to enter the case value that governs this path; this 
could be a constant or a case-packet variable of type integer or String. The case params 
are displayed in a drop down option in the "Arrow drawing UI" along with the default 
option. The user can select either a case param or the default option.

The default path for the JavaSwitch node is mandatory. The case params are optional. A 
JavaSwitch node can be connected to the same node and each connection is governed by 
a different case value.

During workflow execution when the JavaSwitch node is processed, the key is evaluated 
and an attempt is made to find the matching case value. If a match is found then the 
workflow node for the case path becomes the next node to be processed by the workflow 
engine. If a match is not found then the workflow node in the default path is chosen.

The node returns WFException and workflow execution fails if:

• The computed value of the switch key is neither an Integer nor a String

• "The data types of the key and the value values are different

• "Two or more case values have the same value

See Also

• “Java” on page 188 for more information about the parameters and Java code usage
Chapter 4 195



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Table 4-53 JavaSwitch Parameters

Name Required Description Default Type

javafile No Name of the java template file. 
If used as <file>::<method>, 
then the method specified is 
called instead of the one 
specified by the method 
parameter.

None String

javacode No Java functional declaration. None String

method No Name of the method to call. None String

expression No Java expression. Expression 
can be combined with 
javafile/javacode and can be 
wrapped in an extra dummy 
method.

None String

arg0...argN No Parameters or arguments to 
pass to the method; cannot be 
combined with expression.

None Depends 
on the 
method 
argument 
type

strict_scop
e

No This Java node adheres to 
scoping rules(As explained 
above)

True Boolean

in_scope List of variables brought into 
scope if strict_scope is true.

None String

computed_ke
y

No Optional variable to capture 
the computed value of switch 
key

None Object

case0...caseN No New value to set for the 
variable. It can be a 
case-packet variable or a 
constant (specified as 
constant:X where X is the 
constant).

None Depends 
on the 
variable 
type.

use_solution_
dir

No When set to "true", the nodes 
will read from 
$SOLUTION_ETC/template_fi
les instead of 
$ACTIVATOR_ETC/template_
files.

false Boolean
Chapter 4196



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-49 JavaSwitch - using a Java expression to compute the switch key

<Switch-Node>

   <Name>JavaSwitch</Name>

   <Action>

<Class-Name>com.hp.ov.activator.mwfm.component.builtin.JavaSwitch</Class-Name>
<Param name="computed_key" value="computedKey"/>
<Param name="expression" value="constant:operand1+operan2"/>
<Param name="strict_scope" value="false"/>
<Param name="case0" value="add"/>
<Param name="case1" value="multiply"/>
<Param name="case2" value="sleep"/>

</Action>

<Switch name=”case0”>Add</Switch>
<Switch name=”case1”>Multiply</Switch>
<Switch name=”case2”>Sleep</Switch>
<Switch name=”default”>DoNothing</Switch>

</Switch-Node>
Chapter 4 197



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
KillJob

com.hp.ov.activator.mwfm.component.builtin.KillJob 

The node is used to end a workflow.

Example 4-50 KillJob - use in the workflow

The identifier of the flow to terminate is in the wf variable.

<Process-Node>
<Name>End flow</Name>
<Description>Ends a specified flow</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.KillJob

</Class-Name>
 <Param name="job_id" value="wf"/>
</Action>

</Process-Node>

  . . .

<Case-Packet>
     <Variable name="wf" type="Integer"/>
</Case-Packet>

Table 4-54 KillJob Parameters

Name Required Description Default Type

job_id Yes Name of the variable that contains 
the identifier of the workflow that you 
want to stop. The variable must be of 
the Integer type.

None Integer
Chapter 4198



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
LessThan

com.hp.ov.activator.mwfm.component.builtin.LessThan 

The node allows you to establish whether a variable or a constant is strictly smaller than 
another. It works with all types of variables. If two variables are of different types, they 
are compared like strings.

Example 4-51 LessThan - use in the workflow

It determines whether the value of var1 is strictly smaller than 0.

<Rule-Node disablePersistence="true">
<Name>Less than?</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.LessThan

</Class-Name>
<Param name="op1" value="var1"/>
<Param name="op2" value="constant:0"/>

</Action>
<True-Next-Node>Strictly smaller</True-Next-Node>
<False-Next-Node>Greater or equal</False-Next-Node>

</Rule-Node>

Table 4-55 LessThan Parameters

Name Required Description Default Type

op1 Yes The two parameters are variables 
or constants. Constant is specified 
as constant:X . If the two 
variables are not of the same type, 
their values are converted into 
strings and they are compared 
lexically.

None Numeric

op2 Yes Same as above. None Numeric
Chapter 4 199



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
LessThanOrEqual

com.hp.ov.activator.mwfm.component.builtin.LessThanOrEqual 

The node allows you to establish whether a variable or a constant is smaller than or 
equal to another. It works with all types of variables. If two variables are of different 
types, they are compared like strings.

Example 4-52 LessThanOrEqual - use in the workflow

This example determines whether the value of var1 is smaller than or equal to 0.

<Rule-Node disablePersistence="true">
     <Name>Less than or equal?</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.LessThanOrEqual
</Class-Name>

   <Param name="op1" value="var1"/>
   <Param name="op2" value="constant:0"/>
 </Action>
 <True-Next-Node> Smaller or equal</True-Next-Node>
 <False-Next-Node>Strictly smaller</False-Next-Node>

</Rule-Node>

  . . .

<Case-Packet>
   <Variable name="var1"    type="Integer"/>
</Case-Packet>

Table 4-56 LessThanOrEqual Parameters

Name Required Description Default Type

op1 Yes The two parameters are variables or 
constants. Constant is specified as 
constant:X . If the two variables 
are not of the same type, their 
values are converted into strings 
and they are compared lexically.

None Numeric

op2 Yes Same as above. None Numeric
Chapter 4200



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Log

com.hp.ov.activator.mwfm.component.builtin.Log 

The node allows you to log an entry in a log file from a workflow. The output log can be 
seen from the Logs page in the UI, under the respective module name.

Example 4-53 Log - use in the workflow

<Process-Node>
     <Name>Log</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.Log</Class-Name>
   <Param name="component_name" value="Log Node"/>
   <Param name=”log_level” value= “INFORMATIVE”/>

<Param name=”log_message” value= “From MWFM lognode”/>
<Param name=”part_name” value= “FRAMEWORK”/>
<Param name=”topic_name” value=”NO_TOPIC”/>

 </Action>

Table 4-57 Log Parameters

Name Required Description Default Type

component_n
ame

Yes Name of the component logging the 
message. 

None String

service_id No This parameter is used during 
Solution Logging. The default value 
is the system case-packet 
SERVICE_ID.

SERVICE
_ID

String

log_level Yes Indicates Logging levels. The value 
should be DEBUG, DEBUG2, 
INFORMATIVE,WARNING, or ERROR.

None String

log_message Yes The message to be logged. None String

param0,
param1,
...
paramN

No Parameters to replace free variables 
in the message.

None String

part_name No Indicates the name of the part 
logging the message. The value can 
be either FRAMEWORK or 
COMPONENT.

COMPO
NENT

String

topic_name No Indicates the name of the topic for 
the message. The value can be 
NO_TOPIC, TOPIC_STATISTICS, 
TOPIC_STARTUP, 
TOPIC_RECOVERY, 
TOPIC_COMMON_OPERATION, or 
TOPIC_SHUTDOWN.

NO_TOP
IC

String

log_manager No Name of the log module used for 
storing and accessing the logs.

log_mana
ger

String
Chapter 4 201



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
 </Process-Node>
Chapter 4202



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MapData

com.hp.ov.activator.mwfm.component.builtin.MapData 

This node is a general purpose node that is used to extract data from Maps (for example, 
HashMaps). You can use it in conjunction with the Activate node to extract data 
uploaded from activation, or you can use it to extract data from your own Map. The 
MapData node is very similar in functionality to the map syntax in the Workflow 
Manager (see “Maps” on page 42). The primary difference between the two is that the 
MapData node allows keys to be embedded with variables. For example, machine%num% is 
a valid key.

The map_var parameter points to a previously constructed Map. To extract the data from 
a Map that was uploaded during a task activation, for example, set the value of the 
map_var parameter to the value of the uploaded_data_var parameter that was 
populated by the Activate node. 

The names of the subsequent parameters of the MapData node indicate the names of 
case-packet variables that will be written to with data extracted from the Map. The 
values of these parameters indicate the keys that will be used to extract data from the 
Map. You can specify one or more case-packet variable parameters.

NOTE If a requested key is not found in the Map, the MapData node will throw a WFException.

Table 4-58 MapData Parameters

Name Required Description Default Type

map_var Yes Case-packet variable of type 
Object that contains the map.

None Object

name of a 
case-packe
t variable

Yes The name provided is the name of 
a case-packet variable. The value 
provided is a key into the map 
indicated by map_var. The call to 
MapData sets the value of the 
named case-packet variable to the 
value of the map entry associated 
with this key.

You can specify one or more 
case-packet variable parameters.

None
Chapter 4 203



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-54 MapData - use in the workflow

This example assumes that the map “my_map” contains a key “db2” with the value 
“db2.domain.com” and a second key “web2” with the value “web2.domain.com.” The 
case-packet variable “num” is set to the value 2, and two case-packet variables of type 
String are defined with the names “webServerMachine” and “dbServerMachine.” The 
following node entry sets the case-packet variable “webServerMachine” to have the 
value “web2.domain.com” and the case-packet variable “dbServerMachine” to have the 
value “db2.domain.com”.

<Process-Node disablePersistence="true">
<Name>Map Data</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.MapData

</Class-Name>
<Param name="map_var" value="my_map" />
<Param name="dbServerMachine" value="db%num%" />
<Param name="webServerMachine" value="web%num%" />

</Action>
</Process-Node>

NOTE Example 4-54 uses keys and values that are of type String. Any Object type can be used 
for the key and value, however. The key must correctly override the method 
Object.equals() and, if the Map is a HashMap, the method Object.hashCode().
Chapter 4204



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MatchDBQuery

com.hp.ov.activator.mwfm.component.builtin.MatchDBQuery 

The node provides means to use the results of a database query to set the values of 
multiple case-packet variables in one query. The query is expected to return two columns 
of data where each row returned from the query sets the value of one case-packet 
variable. The columns in the row indicate which variable to set and what value to set. 
Thus, the query should return only two columns.

Example 4-55 MatchDBQuery - use in the workflow

This example does not use free variables in the SQL query.

<Process-Node disablePersistence="true">
<Name>Read table</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.MatchDBQuery

</Class-Name>
 <Param name="db" value="db"/>

<Param name="query" value="select name, value from mytable"/>
 <Param name="attribute_name" value="name"/>
 <Param name="attribute_value" value="value"/>
</Action>

</Process-Node>

Table 4-59 MatchDBQuery Parameters

Name Required Description Default Type

db No Specifies the database module 
to use in order to perform the 
query.

“db” String

query Yes Query to be carried out. Query 
must only select two columns. 
One column is matched to the 
attribute name and the other to 
its value.

None String

attribute_name No The name of the column to be 
used as the attribute name.

“name” String

attribute_value No The name of the column to be 
used as the attribute value.

“value” String

param0, 
param1...paramN

Yes A series of these parameters 
can be used to specify the 
values for free variables 
(question marks) in the 
statement.

None String

no_error No If a row is selected but it is not 
in the case-packet then no 
exception is thrown if no_error 
is set to true.

“false” Boolean
Chapter 4 205



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-56 MatchDBQuery - using free variables in the query

This example shows the use of free variables in the SQL query. In this case, the value for 
the free variable is the one held in the myvar case-packet variable.

<Process-Node disablePersistence="true">
 <Name>Read table 2</Name>
 <Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.MatchDBQuery

</Class-Name>
 <Param name="db" value="db"/>
 <Param name="query" value="select name, value from 

 mytable where cust_name= ?"/>
 <Param name="attr_name" value="name"/>
 <Param name="attr_value" value="value"/>
 <Param name="param0" value="myvar"/>
 </Action>

</Process-Node>
...
<Case-Packet>

 <Variable name="myvar" type="String"/>
...
</Case-Packet>
...
Chapter 4206



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MatchDBStore

com.hp.ov.activator.mwfm.component.builtin.MatchDBStore 

The node provides means to store some or all of the case-packet contents into a database 
table. An SQL statement is run once for each variable to be stored. Thus, the statement 
should be an insert or update statement.

The statement must provide at least two free variables (typically the last two) to insert 
each attribute name and its value. The other free variables (if any) can be used for any 
purpose. If the free variables are to be used for the name and value of the variables, do 
not occupy the last two positions in the statement, two additional parameters are 
supported to indicate their position. Use attr_name_col and attr_value_col for this 
purpose.

Table 4-60 MatchDBStore Parameters

Name Required Description Default Type

db No Specifies the database module to 
use in order to perform the 
statement.

“db” String

statement Yes SQL statement to be carried out 
for each variable.

None String

attr_name_col No Indicates the number of the free 
variable in the SQL statement 
that should be replaced by the 
name of the case-packet variable 
being stored. Note: Use the value 
1, not 0, to refer to the first free 
variable in the SQL statement.

None Numeric

attr_value_col No Indicates the number of the free 
variable in the SQL statement 
that should be replaced by the 
value of the case-packet variable 
being stored. Note: Use the value 
1, not 0, to refer to the first free 
variable in the SQL statement.

None Numeric

param0, 
param11...
paramN

No A series of these parameters can 
be used to specify the values for 
free variables (question marks) 
in the statement.

None String

variable0, 
variable1...
variableN.

Yes List of case-packet variables to 
be stored. There can be as many 
variable parameters as needed.

None String
Chapter 4 207



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-57 MatchDBStore - use in the workflow

This example stores the case-packet variables username and password into a database 
table called footable. These variables have an additional flag in the database with the 
same value as the one that the state variables had when the SQL statement was run.

<Process-Node disablePersistence="true">
<Name>Store variables</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.MatchDBStore

</Class-Name>
<Param name="db" value="db"/>
<Param name="statement" value="insert into footable (name, 

value,customer_id) values(?, ?, ?)"/>
<Param name="attr_name_col" value="1"/>
<Param name="attr_value_col" value="2"/>
<Param name="param0" value="customer_id"/>
<Param name="variable0" value="username"/>
<Param name="variable1" value="password"/>

</Action>
</Process-Node>
...

<Case-Packet>
...

<Variable name="customer_id" type="String"/>
<Variable name="username" type="String"/>
<Variable name="password" type="String"/>

...

</Case-Packet>

Assuming the case-packet variables have the following values, the statement will insert 
two new rows into the table as shown:

customer_id = 501
username = “AlphaGraphics”
password = “designer6”

username AlphaGraphics 501

password designer6 501
Chapter 4208



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MethodRule

com.hp.ov.activator.mwfm.component.builtin.MethodRule

The MethodRule node works in the same way as the InvokeMetod node. The difference 
is that MethodRule is a rule node, which will branch according to the result of the 
invoked method. The result is interpreted as a boolean according to the rule defined for 
the return-value of the InvokeMethod. If the method throws an exception, and the 
throw_excep argument is false, then the rule will follow the false-arrow of the rule in the 
workflow.

Table 4-61 MethodRule Parameters

Name Required Description Default Type

db No Name of the database module to 
be used if the method takes a 
Connection argument.

“db” String

bean Yes A case-packet variable 
containing the object on which 
to invoke the method. 
Alternatively, its value can 
begin with constant: followed by 
the fully qualified name of the 
class on which to invoke a static 
method

None String/
Object

arg0
arg1...
argN

No Arguments to be passed to the 
method. If its value begins with 
constant: the key is value 
provided after this. Otherwise, 
the key indicates the name of a 
variable that holds the key 
value. If the method takes a 
parameter of type 
java.sql.Connection, it is passed 
implicitly, and should not be 
listed among the arg 
parameters to InvokeMethod

None Any

variable Yes Case-packet variable holding 
the invoked method’s return 
value.

None Any

method Yes Name of the method to be 
invoked.

None String
Chapter 4 209



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ModifyScheduledJob

com.hp.ov.activator.mwfm.component.builtin.ModifyScheduledJob 

The node allows you to modify a scheduled job from inside the workflow. It works 
similarly to the ScheduleJob node. One of the node parameters is the ID of the 
scheduled job which must be modified. If the ID is not found on the list of scheduled jobs, 
you receive an error message that the specified scheduled job does not exist. 

If the node finishes without errors, the RET_VALUE case-packet variable is set to 0. In 
case of any error in the node, RET_VALUE is set to 1. RET_TEXT holds information about 
the exception. 

If you set the throw_excep parameter to “false”, the node finishes normally even if the 
specified scheduled job ID does not exist on the list of scheduled jobs. However, 
RET_VALUE is set to 1 and RET_TEXT contains information that the specified scheduled 
job does not exist on the scheduled jobs list.

See Also

• “ScheduleJob” on page 278.

Table 4-62 ModifyScheduledJob Parameters

Name Required Description Default Type

scheduled_job_id Yes The ID of the 
scheduled job you want 
to modify.

None Integer

schedule_time No The date and the time 
to start the workflow. 
This parameter accepts 
date and time as 
milliseconds with the 
value starting from 
January 1, 
1970:00:00:00:000. The 
value should be 
numeric.

current 
time

Integer

group_id No Used to group a set of 
scheduled jobs. Also 
used in connection with 
timed services and 
reoccurring scheduled 
workflows where a 
common identifier is 
needed.

None String
Chapter 4210



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
reoccurence_freq No Reoccurrence 
frequency period. This 
parameter has to be 
specified if the 
scheduled job has to be 
run repeatedly. If 
reoccurence_freq is not 
specified, the 
parameter accepts the 
value as seconds. The 
value should be 
numeric.

0 Integer

reoccurence_end_
time

No The time when 
reoccurrence of 
schedule job must end. 
This parameter accepts 
the date and time as 
millisceonds with the 
value starting value 
from January 1, 1970 
00:00.00:000 GMT. The 
value should be 
numeric.

0 Integer

description No Description of a 
scheduled job. The 
default value is an 
empty string.

None String

status No Status of a scheduled 
job. The default value 
is an empty string.

None String

reoccurrence_freq
_units

No Reoccurrence 
frequency units: 
1-second, 2 minutes, 
3-hours, 4-days, 
5-weeks, 6-months. The 
default value is 
1-second. The value 
should be numeric and 
can start from 1 to 6.

None Integer

Table 4-62 ModifyScheduledJob Parameters (Continued)

Name Required Description Default Type
Chapter 4 211



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MoveFile

com.hp.ov.activator.mwfm.component.builtin.MoveFile 

The node moves or renames a file.

Table 4-63 MoveFile Parameters

Name Required Description Default Type

file Yes The name of the file you want to 
move. You can specify a 
case-packet variable or a 
constant. If the path is relative, 
it is interpreted as relative to 
$ACTIVATOR_VAR

None String

destination Yes The destination of the moved 
file. You can specify a 
case-packet variable or a 
constant. This can be a new file 
name or a directory. If the path 
is relative, it will be interpreted 
as relative to $ACTIVATOR_VAR

None String
Chapter 4212



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
MultiAssign

com.hp.ov.activator.mwfm.component.builtin.MultiAssign

The node is a component used for assigning values to case-packet variables.

See Also

• “VariableMapper” on page 315

• “Assign” on page 106

Example 4-58 MultiAssign - use in the workflow

This example sets the counter variable to a value of 0 and the operator value to 
the value brown.

<Process-Node disablePersistence="true">
<Name>Reset the counter</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.MultiAssign

</Class-Name>
<Param name="variable0" name="counter" />

 <Param name="value0" name="constant:0" />
<Param name="variable1" name="operator" />

 <Param name="value1" name="constant:brown" />
</Action>

</Process-Node>

Table 4-64 MultiAssign Parameters

Name Required Description Default Type

variable0
variable1
...
variableN

Yes Case-packet variables to be set. None String / 
Integer / 
Float / 
Boolean / 
Object

value0
value1...
valueN

Yes New value to set for the variable. It 
can be a case-packet variable or a 
constant (specified as constant:X 
where X is the constant).

None Depends 
on the 
variable 
type.
Chapter 4 213



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Multiply

com.hp.ov.activator.mwfm.component.builtin.Multiply 

The node multiplies two values.

Example 4-59 Multiply - use in the workflow

This example demonstrates an operation comparable to the statement x = x * 10 in a 
language such as Java. 

<Process-Node disablePersistence="true">
<Name>Multiply by a factor of 10</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Multiply

</Class-Name>
<Param name="op0" value="x"/>
<Param name="op1" value="constant:10"/>

 </Action>
</Process-Node>

Table 4-65 Multiply Parameters

Name Required Description Default Type

op0 Yes Name of a case-packet variable that 
is the first variable to be multiplied. 
This is also the variable in which the 
result is saved.

None Numeric

op1 Yes Name of a case-packet variable that 
is the second variable to be 
multiplied. A hard-coded value can 
be specified using constant:X where 
X is the constant value.

None Numeric
Chapter 4214



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAAddConfigurationPolicy

com.hp.ov.activator.mwfm.component.builtin.narequest.NAAddConfigurationPolicy 

The node adds a policy and a set of configuration rules to a specified device group in NA 
to check service configuration presence. When a policy is created for each service it is 
recommended to use a policy-tag such as "HPSA VPN Service". This helps the NA 
operator to filter numerous policies in the NA GUI .

If the event_rule parameter is specified, an event rule will be assigned to the policy 
which will launch a dummy workflow on violation.

The rule_list parameter is an array of Maps with the following keys:

• start_pattern: The pattern defining where the text block starts for condition 
checking as a String.

• end_pattern: The pattern defining where the text block ends for condition checking 
as a String.

• name: The rule name as a String. This is optional, if the provided Map does not 
contain the 'name' key the rule name will be set to <policy_name><rule_number>.

• conditions: A String array with the condition values. The NABuildConditionList 
node may be used to generate one.

This parameter can be generated dynamically by a Java node or by using 
NABuildRuleList and NABuildConditionList nodes.

The new policy id is returned in result_var as a String.

Table 4-66 NAAddConfigurationPolicy Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_va
r

Yes The case packet variable where the 
result will be stored.

None String

policy_n
ame

Yes The name of the policy to be created. None String

policy_d
escripti
on

No A human readable description for the 
policy to be created.

None String

policy_t
ag

No Adds a tag to the policy. The policy 
tag helps the operator filter the 
policies in the GUI.

None String

group_na
me

Yes The name of the device group the 
policy should be applied to.

If the group does not exist, the 
group will be created.

None String
Chapter 4 215



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
rule_lis
t

No Rule definitions to be added to 
the policy. The 
NABuildRuleList workflow 
node can be used to generate 
such rule definitions.

None Object

(Map[])

event_ru
le

No Name of the event rule the policy 
should be associated to. If this 
parameter is not present, the 
policy will not be added to any 
event rule.

None String

Table 4-66 NAAddConfigurationPolicy Parameters (Continued)

Name Required Description Default Type
Chapter 4216



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAAddDevice

com.hp.ov.activator.mwfm.component.builtin.narequest.NAAddDevice 

The node adds a device to NA.

Table 4-67 NAAddDevice Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

comment No Additional information regarding the 
device.

None String

consoleip No Device console IP. None String

consoleport No Device console port number. None String

description No The descriptive name of the device None String

hostname Yes, if ip is 
not used

Device host name. None String

ip Yes, if 
hostname 
is not used

Device IP. None String

model No Device model. None String

vendor No Device vendor. None String
Chapter 4 217



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAAddDeviceGroup

com.hp.ov.activator.mwfm.component.builtin.narequest.NAAddDeviceGroup 

The node can be used to add a device group to NA.

If no parent_group is specified the device group will be the top parent group.

Table 4-68 NAAddDeviceGroup Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

group_na
me

Yes The name of the device group to be 
created.

None String

parent_gro
up_name

No The parent_group for the group. If 
the group does not exist it will be 
created. If no parent_group is 
specified the device group will be the 
top parent group.

top 
parent 
group

String

comment No Optional device group comment. None String
Chapter 4218



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAAddDeviceToGroup

com.hp.ov.activator.mwfm.component.builtin.narequest.NAAddDeviceToGroup 

The node adds a device to a specify device group in NA.

Table 4-69 NAAddDeviceToGroup Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

device_i
d

Yes The device identifier. None String

group_na
me

Yes The device group name. None String
Chapter 4 219



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAAddRuleToPolicy

com.hp.ov.activator.mwfm.component.builtin.narequest.NAAddRuleToPolicy 

Adds a rule and the associated set of conditions to an existing policy. The NA type of 
rules being created is Configuration.  For each rule a configuration block is defined.  A 
configuration block is defined by its start and end delimiters, and one or more conditions 
are defined for each one. A condition is a regular expression defining the portion of text 
that must be present inside the corresponding block. When several conditions are 
specified for a rule (configuration block), a Boolean expression is used to calculate the 
result of the check..

Table 4-70 NAAddRuleToPolicy Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

policy_i
d

Yes, if 
policy_na
me is not 
used

The NA id of the policy to be 
modified.

None String

start_pa
ttern

Yes The pattern defining where the 
text block start for the checking 
of the conditions.

None String

end_patt
ern

Yes The pattern defining where the 
text blocks end for the checking of 
the conditions.

None String

rule_nam
e

Yes The name for the new rule. None String

conditio
ns

Yes The regular expressions defining 
the text that must be present 
inside the blocks. All conditions 
for a rule will we be evaluated 
with the "AND" operator in NA. 
The node 
NABuildConditionList can be 
used to generate these condition 
lists.

None String
Chapter 4220



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NABuildConditionList

com.hp.ov.activator.mwfm.component.builtin.narequest.NABuildConditionList 

The node takes a variable number of Strings as input and produces a String array 
from them that can be used as a condition list for the BuildRuleList operation on NA.

Table 4-71 NABuildConditionList Parameters

Name Required Description Default Type

result_v
ar

Yes The case packet varialbe where 
the result will be stored

None Object

condition
0,
condition
1,
...
condition
N

Yes, at least 
one

The regular expressions defining the 
text that must be present inside the 
blocks. All conditions for a rule will 
we be evaluated with the "AND" 
operator in NA

None String
Chapter 4 221



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NABuildRuleList

com.hp.ov.activator.mwfm.component.builtin.narequest.NABuildRuleList 

The node takes a variable number of rule information and produces a list of maps 
containing rule information to be used as input for the rule_list parameter of 
NAAddConfigurationPolicy. For each rule a configuration block is defined.  A 
configuration block is defined by its start and end delimiters, and one or more conditions 
are defined for each one. A condition is a regular expression defining the portion of text 
that must be present inside the corresponding block. When several conditions are 
specified for a rule (configuration block), a Boolean AND expression is used to calculate 
the result of the check.  The NA type of rules being created is Configuration..

Table 4-72 NABuildRuleList Parameters

Name Required Description Default Type

result_v
ar

Yes The case packet varialbe where 
the result will be stored

None Object

start_patt
ern0,
start_patt
ern1,
...
start_patt
ernN

Yes, at least 
one

The patterns defining where the text 
blocks start for the checking of the 
conditions.

None String

end_patte
rn0,
end_patte
rn1,
...
end_patte
rnN

Yes, at least 
one

The patterns defining where the text 
blocks end for the checking of the 
conditions. The number of end 
patterns must mach the number of 
start patterns.

None String

name0,
name1,
...
nameN

No The names for the rules to be 
created. A rule is created for each 
<start/end>_pattern pair 
regardless of the presence of this 
parameter (see 
AddConfigurationPolicy API for the 
default value for rule names when 
this is undefined).

None String

condition
s0,
condition
s1,
...
condition
sN

Yes, at least 
one

The regular expressions defining the 
text that must be present inside the 
blocks. All conditions for a rule will 
we be evaluated with the "AND" 
operator in NA

None Object
(Array 
of 
Strings)
Chapter 4222



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NADeleteDeviceGroup

com.hp.ov.activator.mwfm.component.builtin.narequest.NADeleteDeviceGroup 

The node deletes a device group in NA.

Table 4-73 NADeleteDeviceGroup Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

group_na
me

Yes The name of the device group to be 
deleted.

None String
Chapter 4 223



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NADeletePolicy

com.hp.ov.activator.mwfm.component.builtin.narequest.NADeletePolicy 

The node deletes a policy in NA.

Table 4-74 NADeletePolicy Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

policy_i
d

Yes The NA id of the policy to be deleted. None String
Chapter 4224



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAGetSnapshot

com.hp.ov.activator.mwfm.component.builtin.narequest.NAGetSnapshot 

The node takes a snapshot of the specified device in NA.

Table 4-75 NAGetSnapshot Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet varialbe where 
the snapshot will be stored.

None String

device_i
d

Yes Device identifier. None String

sync No Return only after the snapshot 
retrieval task is complete. Otherwise 
return immediately after the task is 
scheduled.

false Boolean

comment No Optional comment for the snapshot. None String
Chapter 4 225



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAListConfigId

com.hp.ov.activator.mwfm.component.builtin.narequest.NAListConfigId 

The node list all config identifiers present in NA unless any of the options to limit the 
listing are specified.

Table 4-76 NAListConfigId Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet varialbe where 
the result will be stored.
The result will be a list of 
identifiers returned as String[].

None Object

device_i
d

Yes Device identifier. None String

start No Display only those configs stored on 
or after the given date.

None String

end No Display only those configs stored on 
or before the given date.

None String
Chapter 4226



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAListDevice

com.hp.ov.activator.mwfm.component.builtin.narequest.NAListDevice 

Lists all device identifiers present in NA unless any of the options to limit the listing are 
specified.

Table 4-77 NAListDevice Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet varialbe where 
the result will be stored.
The result will be a Map[] 
containing device information as 
returned by NA.

None Object

group_na
me

No List only devices in this device group. None String

id No List only the device specified by this 
identifier.

None String

hostname No List only devices with this host 
name.

None String

ip No List only devices with this IP 
Address.

None String

limitcou
nt

No Return this many results. None String
Chapter 4 227



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAModifyConditionsOnRule

com.hp.ov.activator.mwfm.component.builtin.narequest.NAModifyConditionsOnRule 

The node can modifies existing conditions on a given policy rule.

If the new condition value is "" or null, the old condition will be deleted.  If the old condition value 
is "" or null, the new condition will be added. 

Table 4-78 NAModifyConditionsOnRule Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

policy_i
d

Yes, if 
policy name 
is not 
defined

The NA id of the policy to be 
modified.

None String

rule_nam
e

No The name of the rule to be modified. None String

old_cond
itions

Yes The values of the conditions that 
must be replaced. 
NABuildConditionList node can be 
used to generate these condition lists

None String[]

new_cond
itions

Yes The new values for the conditions. 
The number of new condition values 
must match the number of old ones, 
as each new_condition will replace 
the corresponding old condition. The 
NABuildConditionList can be used to 
generate these condition lists. 

None String[]

regexp No Specifies if the values in 
old_conditions should be considered 
regular expressions for matching.

false Boolean
Chapter 4228



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NARemoveDeviceFromGroup

com.hp.ov.activator.mwfm.component.builtin.narequest.NARemoveDeviceFromGroup 

The node can be used to remove a device from a group on NA.

Table 4-79 NARemoveDeviceFromGroup Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

device_i
d

Yes The device identifier. None String

group_na
me

Yes The device group name. None String
Chapter 4 229



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NARemoveRuleFromPolicy

com.hp.ov.activator.mwfm.component.builtin.narequest.NARemoveRuleFromPolicy 

The node can be used to remove a rule from a policy on NA.

Table 4-80 NARemoveRuleFromPolicy Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

policy_i
d

Yes, if 
policy_na
me is not 
used

The NA id of the policy to be 
removed.

None String

rule_nam
e

Yes The NA name of the rule to be 
removed.

None String
Chapter 4230



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NARunAdvancedScript

com.hp.ov.activator.mwfm.component.builtin.narequest.NARunAdvancedScript 

The node runs an existing advanced scritpt against a device or group of ddevices.

Table 4-81 NARunAdvancedScript Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet variable where 
the script result string will be 
stored.

None String

device_i
d

Yes The identifier of the device in which 
the script is to be run on.

None String

name Yes The name of the advanced script to 
run.

None String

paramete
rs

No Command line parameters for the 
advanced script to run.

None String

varibable
s

No A list of variables to be replaced in 
the script provided as a mapping of 
name=value pairs.

None String

sync No Return only after the run script task 
is complete. Otherwise return 
immediately after the task is 
scheduled.

false Boolean

nowait No Do not wait if there is another task 
currently running against the same 
device.

false Boolean

comment No An optional comment about the 
script being run.

None String
Chapter 4 231



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NARunCommandScript

com.hp.ov.activator.mwfm.component.builtin.narequest.NARunCommandScript 

The node runs an existing command script against a device.

Table 4-82 NARunCommandScript Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet variable where 
the script result string will be 
stored.

None String

device_i
d

Yes The identifier of the device in which 
the script is to be run on.

None String

name Yes The name of the command script to 
run.

None String

varibable
s

No A list of variables to be replaced in 
the script provided as a mapping of 
name=value pairs.

None String

linebyline No Indicates that line by line 
deployment is preferred, rather than 
file-based deployment.

false Boolean

sync No Return only after the run script task 
is complete. Otherwise return 
immediately after the task is 
scheduled.

false Boolean

nowait No Do not wait if there is another task 
currently running against the same 
device.

false Boolean

comment No An optional comment about the 
script being run.

None String
Chapter 4232



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NARunScript

com.hp.ov.activator.mwfm.component.builtin.narequest.NARunScript 

The node runs a script on a device.

Table 4-83 NARunScript Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The case packet variable where 
the script result string will be 
stored.

None String

device_i
d

Yes The identifier of the device in which 
the script is to be run on.

None String

mode No A command script mode to run the 
script in.

None String

script Yes The name of the script that should be 
run.

None String

sync No Return only after the run script task 
is complete. Otherwise return 
immediately after the task is 
scheduled.

false Boolean

nowait No Do not wait if there is another task 
currently running against the same 
device.

false Boolean

comment No An optional comment about the 
script being run.

None String
Chapter 4 233



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAShowConfig

com.hp.ov.activator.mwfm.component.builtin.narequest.NAShowConfig 

The node can be used to perform a ShowConfig on NA.

Table 4-84 NAShowConfig Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The name of the case-packet variable 
where the config text will be stored.

None String

id Yes The identifier of the config to show. None String

mask No Mask out sensitive information such 
as device passwords.

None Boolean
Chapter 4234



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAShowDiagnostic

com.hp.ov.activator.mwfm.component.builtin.narequest.NAShowDiagnostic 

The node can be used to perform a ShowDiagnostic on NA.

Table 4-85 NAShowDiagnostic Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The name of the case-packet variable 
where the diagnostic result text will 
be stored.

None String

id Yes The identifier of the diagnostic which 
results are to be shown.

None String
Chapter 4 235



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
NAShowTask

com.hp.ov.activator.mwfm.component.builtin.narequest.NAShowTask 

The node can be used to perform a ShowTask on NA.

Table 4-86 NAShowTask Parameters

Name Required Description Default Type

module_na
me

Yes The name of the NARequestModule 
to be used.

None String

result_v
ar

Yes The name of the case-packet variable 
where the task information will be 
stored.

None String

id Yes The task identifier whose details will 
be displayed.

None String
Chapter 4236



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Not

com.hp.ov.activator.mwfm.component.builtin.Not 

The node compares a variable or a constant to C programming language style, and 
returns “false” if the variable or the constant has a value of 0, or “true” in other cases.

Example 4-60 Not - use in the workflow

This example verifies whether the value of var1 is 0.

<Rule-Node disablePersistence="true">
     <Name>Not?</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.Not
  </Class-Name>
   <Param name="op1" value="var1"/>
 </Action>
 <True-Next-Node>Is zero</True-Next-Node>
 <False-Next-Node>Not zero</False-Next-Node>

</Rule-Node>

Table 4-87 Not Parameters

Name Required Description Default Type

op1 Yes Constant (specified as constant:X), 
Integer or String variable. If the 
string is empty, the result is “true”; 
if the integer is 0, the result is 
“false.”

None Any
Chapter 4 237



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
PAYG

com.hp.ov.activator.mwfm.component.builtin.PAYG 

The node PAYG - Pay As You Grow enables to design licensing mechanism for HP Service 
Activator Solutions.

The node will store the license type (PAYG), Solution Name, Unit (the name of the unit 
in the solution to be licensed) and Used (the license count) values into the database when 
invoked.

If increment is not set, then the default value is set as 1. If increment is set, then it 
must be a non negative integer value. 

A given solution and unit if defined in PAYG node must not be defined in PPU node.

See Also

• See “PPU” on page 240 

Example 4-61 PAYG - use in the workflow

This example creates a database entry for PAYG license type for Solution name MNP 
and Unit name Port and increments the Used count value by 3 when invoked.

<Process-Node>
     <Name>PAYG</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.PAYG
  </Class-Name>
   <Param name="unit" value="constant:Port"/>
   <Param name="solution" value="constant:MNP"/>
   <Param name="increment" value="constant:3"/>
 </Action>

</Process-Node>

Table 4-88 PAYG Parameters

Name Required Description Default Type

unit Yes A string indicating the name of a 
unit in a solution which needs to 
be licensed

None String

solution No A string indicating the name of a 
solution which needs to be 
licensed

None String

increment No The increment count value which 
needs to be added to the Used count.

1 Integer
Chapter 4238



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
PatternMatch

com.hp.ov.activator.mwfm.component.builtin.PatternMatch 

The node matches a string to regular expression pattern. The result is returned in a 
match variable or in group variables depending on the regular expression. At least if one 
match is found, the node returns true. If no matches are found, it returns false. 

Table 4-89 PatternMatch Parameters

Name Required Description Default Type

value Yes The string to be processed None String

pattern Yes  The regular expression as defined by 
the java.util.regex.Matcher 
class.

None String

startat No Variable indicating the index where 
matching starts. Updated to index 
after each match.

0 Integer

multilin
e

No Pattern spans multiple lines False Boolean

nocase No Matching case is insensitive False Boolean

match No Result of the entire match None String

group No Result of group pattern. Groups are 
counted from 0.

None String
Chapter 4 239



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
PPU

com.hp.ov.activator.mwfm.component.builtin.PPU 

The node PPU - Pay Per Use enables to design licensing mechanism for HP Service 
Activator Solutions.

The node will store the license type (PPU), Solution Name, Unit (the name of the unit in 
the solution to be licensed) and Used (the license count) values into the database when 
invoked.

If increment is not set, then the default value is set as 1. If increment is set, then it 
must be a non negative integer value. 

A given solution and unit if defined in PPU node must not be defined in PAYG node.

See Also

• See “PAYG” on page 238 

Example 4-62 PPU - use in the workflow

This example creates a database entry for PPU license type for Solution name MNP and 
Unit name Port and increments the Used count value by 3 when invoked.

<Process-Node>
     <Name>PAYG</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.PAYG
  </Class-Name>
   <Param name="unit" value="constant:MPLS"/>
   <Param name="solution" value="constant:VPM"/>
   <Param name="increment" value="constant:1"/>
 </Action>

</Process-Node>

Table 4-90 PAYG Parameters

Name Required Description Default Type

unit Yes A string indicating the name of a 
unit in a solution which needs to 
be licensed

None String

solution No A string indicating the name of a 
solution which needs to be 
licensed

None String

increment No The increment count value which 
needs to be added to the Used count.

1 Integer
Chapter 4240



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
PutMessage

com.hp.ov.activator.mwfm.component.builtin.PutMessage 

The node puts a message on a message queue. The messages will be persisted in the 
database. Optionally, the messages can also be associated with a solution.

NOTE If the message is more than 4000 bytes the message will be truncated to 4000 bytes.

Example 4-63 PutMessage - using a constant queue parameter

<Process-Node>
<Name>Show message</Name>
<Description>Shows result</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
 <Param name="message" value="The sum is %s"/>

Table 4-91 PutMessage Parameters

Name Required Description Default Type

queue Yes Queue where the message is 
left. This parameter can either 
be a constant or a case-packet 
variable. Spaces are not 
allowed.

None Queue

message Yes Message to be printed. Any % s 
symbols appearing in the string 
are replaced by consecutive 
paramN parameters. Functions 
similar to printf in the C 
programming language.

None String

param0, param1, … No If the message contains any % s 
symbols, the first one is 
replaced by the value of the 
variable indicated by param0, 
param1, and so on. The 
variables can be of any type. 
However, their value is 
converted to a string.

None Any

service_id No The Service Identifier value 
used for associating the 
message with a solution.

None String

order_id No The Order Identifier value 
used for associating the 
message with a solution.

None String

type No The type value of the 
workflow.

None String

state No The state value of the 
workflow.

None String
Chapter 4 241



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
 <Param name="param0" value="operand 1"/>
 <Param name="queue" value="sum_queue"/>
</Action>

</Process-Node>
<Case-Packet>

 <Variable name="operand 1" type="Integer"/>
</Case-Packet>
Chapter 4242



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-64 PutMessage - using a variable queue parameter

<Process-Node>
<Name>Show message</Name>
<Description>Shows result</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
 <Param name="message" value="The sum is %s"/>
 <Param name="param0" value="operand 1"/>
 <Param name="queue" value="variable:myqueuevar"/>
</Action>

</Process-Node>
<Case-Packet>

 <Variable name="operand 1" type="Integer"/>
</Case-Packet>

Example 4-65 PutMessage - using a constant service_id parameter

<Process-Node>
<Name>Show message</Name>
<Description>Shows result</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
 <Param name="message" value="The sum is %s"/>
 <Param name="param0" value="operand 1"/>
 <Param name="queue" value="sum_queue"/>

<Param name="service_id" value="serviceId1"/>
</Action>

</Process-Node>
<Case-Packet>

 <Variable name="operand 1" type="Integer"/>
</Case-Packet>

Example 4-66 PutMessage - using a variable service_id parameter

<Process-Node>
<Name>Show message</Name>
<Description>Shows result</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
 <Param name="message" value="The sum is %s"/>
 <Param name="param0" value="operand 1"/>
 <Param name="queue" value="sum_queue"/>

<Param name="service_id" value="variable:SERVICE_ID"/>
</Action>

</Process-Node>
<Case-Packet>

 <Variable name="operand 1" type="Integer"/>
</Case-Packet>
<Initial-Case-Packet>
<Variable-Value name= “SERVICE_ID” value= “srvc1”/>
</Initial-Case-Packet>
Chapter 4 243



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-67 PutMessage - using both constant and variable parameters

<Process-Node>
<Name>Put message</Name>
<Description>Shows result</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
 <Param name="message" value="The param value 0 is constant:%s and the param value 

1 is variable test:%s”/>
 <Param name="queue" value="info"/>
 <Param name="param0" value="constant:constantParameter"/>

<Param name="param1” value="Variable1"/>
</Action>

</Process-Node>
<Case-Packet>

 <Variable name="Variable1" type="Integer"/>
</Case-Packet>
Chapter 4244



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
QueryInventory

com.hp.ov.activator.mwfm.component.builtin.QueryInventory 

The node used to query the inventory. This node relies on the JavaBeans generated by 
the InventoryBuilder tool. It sets the RET_VALUE to 0 if successful and to 1 if it finds no 
row. If the return_array parameter is set to “true”, the node will always return an 
array containing zero or more beans.If the parameter use_cache is set to true then the 
result will be saved in the caching module aswell as beeing returned.

NOTE If the findBy method invoked by the QueryInventory node returns an array of beans, 
then the case-packet variable will contain the entire array of beans returned. You can 
then use the array indexing notation as described under the “Arrays  or Vectors” on 
page 41 in Chapter 2. 

Table 4-92 QueryInventory Parameters

Name Required Description Default Type

db No Name of the database module 
to be used.

“db” String

bean Yes Name of the JavaBean to be 
used.

None String

use_cache No If set to true then the result 
will be saved in the 
configured caching module.

false Boolean

caching_module Yes if 
use_cache 
is set to 
true

The name of the caching 
module to use.

None String

key_value0, 
key_value1... 
key_valueN

Yes Value of the key by which the 
element should be looked up. If 
its value begins with 
constant: the key is the value 
provided after this. Otherwise, 
the key indicates the name of a 
variable that holds the key 
value.

None Object

variable Yes Case-packet variable holding 
the returned bean or bean 
array. 

None Object

find_by_method No Name of the method to use for 
query.

“findByPr
imaryKey”

Integer
Chapter 4 245



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
where No This parameter appends a 
simple SQL “WHERE” clause 
to “SELECT” statement. The 
parameter may not be used 
if the find_by_method 
parameter is set to 
“findByPrimaryKey”. Any 
%s symbols appearing in the 
string are replaced by 
consecutive paramN 
parameters.

None String

preserve No If set to true (default), the 
node will preserve the value 
of the case-packet variable 
specified for the ‘variable’ 
parameter and that the 
query does not return any 
beans; otherwise, the node 
returns ‘null’, if the query 
does not find any beans.This 
option is ignored if 
‘return_array’ is set to 
‘true’. The default value is 
‘true’ (VARIABLE or 
CONSTANT).

True Object

param0,
param1...
paramN

No If the message contains any 
%s symbols, the first one is 
replaced by the value of the 
variable indicated by 
param0, and so on. The 
variables can be of any type. 
However, their values are 
converted to strings.

None Any

return_array No When set to “true” the node 
will always return an array 
containing zero (if the query 
does not return any beans), 
or more beans regardless of 
the return type of the bean 
method specified by the 
find_by_method parameter

False Object

Table 4-92 QueryInventory Parameters (Continued)

Name Required Description Default Type
Chapter 4246



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-68 QueryInventory - use in the workflow

This example uses the QueryInventory node to retrieve data about a VPN instance 
previously created with the InventoryBuilder. By default, the findByPrimaryKey 
method is used and the VPN instance has its id as the primary key. The resulting bean is 
saved in the case packet variable vpn_obj.

<Process-Node disablePersistence="true">
<Name>Get VPN instance</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.QueryInventory

</Class-Name>
<Param name="key_value0" value="vpn_id"/>
<Param name="variable" value="vpn_obj"/>
<Param name="bean" value="com.hp.ov.activator.example.VPN"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name="vpn_obj" type="Object"/>
<Variable name="vpn_id" type="String"/> 

</Case-Packet>
Chapter 4 247



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
QueryScheduledJob

com.hp.ov.activator.mwfm.component.builtin.QueryScheduledJob 

The node allows you to query the list of scheduled jobs and get an array of objects 
(ScheduledJobDescriptor). In HP OVSA 4.1 version, the node was designed in a such 
that param0, param1, ...paramN parameters was not supporting constant values. 
However in HP SA 5.1 version, a user can enter constants as parameters. From 
ScheduledJobDescriptor, you can get details about a scheduled job. 

There are two ways to query the list of scheduled jobs. You can use the 
scheduled_job_id parameter to specify a job ID and get details about one job. Or you 
can use the where parameter to make your selection criteria less restrictive. In the 
where parameter, you can write a statement using the same structure as in an SQL 
where clause. You would usually use the where parameter when you want to conduct a 
more complex query. (See the table of the node parameters for more details about using 
the where parameter.) To get a complete list of scheduled jobs, do not supply values for 
the scheduled_job_id and “where” attributes. The QueryScheduledJobs node can 
return an empty array if the list of scheduled jobs is empty. 

If the node finishes without errors, the RET_VALUE case-packet is set to 0. In case of any 
error in the node, RET_VALUE is set to 1 and the RET_TEXT case-packet variable holds 
more information about the problem. If the job being queried is not in the list of 
scheduled jobs, the node sets RET_VALUE to 1, puts the error description in RET_TEXT, 
and continues to the next node. 

Table 4-93 QueryScheduledJob Parameters

Name Required Description Default Type

scheduled_job_
id

No The ID of the scheduled job 
for which a 
SchedulerJobDescriptor must 
be returned.

0 Integer

ret_result Yes Query result in the form of an 
array of 
ScheduledJobDescriptor 
objects is returned to this 
parameter. If no data is found, 
query returns an empty array. 
This parameter must refer to 
a variable of Object type.

None Object

where No This parameter passes a 
simple SQL “WHERE” 
condition statement. In the 
statement, you can use “%” 
signs, which mean that 
parameters will appear in 
their places.

None String
Chapter 4248



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-69 QueryScheduledJobs - use in the workflow

This example shows how you can get a ScheduledJobDescriptor for a specific scheduled 
job

<Process-Node disablePersistence="true">
<Name>Query scheduled job by job id</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.QueryScheduledJobs

</Class-Name>
<Param name="scheduled_job_id" value="{the scheduled job id}"/>
<Param name="ret_result" value="result"/>

</Action>
<Next-Node>{next node name}</Next-Node>

</Process-Node>

After execution of this node the result variable contains query the result. To access the 
result object, use the VariableMapper node. In this example we fetch the description 
(desc) for the scheduled job identified by index. 

<Process-Node disablePersistence="true">
<Name>Get scheduled job description</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.VariableMapper

</Class-Name>
<Param name="in_desc" value="%result[{index}].desc%"/>

</Action>
<Next-Node>{next node name}</Next-Node>

</Process-Node>

param0,
param1, ...
paramN

No The parameters are used as 
free variables in the 
“WHERE” statement. The 
value of the case-packet 
variable appointed by param0 
is replaced with the first 
occurrence of %s in the where 
parameter, param1 is 
replaced with the second and 
so forth.

None String

order_by No This parameter passes a 
simple SQL “ORDER BY” 
statement.

None String

Table 4-93 QueryScheduledJob Parameters (Continued)

Name Required Description Default Type
Chapter 4 249



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-70 QueryScheduledJobs - use in the workflow

This example shows how you can get a ScheduledJobDescriptor list for nodes which have 
no reoccurrence and order the results by job ID in descending order.

<Process-Node disablePersistence="true">
<Name>Query scheduled jobs with where statement</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.QueryScheduledJobs

</Class-Name>
<Param name="where" value="constant:REOCCURRING_PERIOD is null"/>
<Param name=”ret_result” value=”result”/>
<Param name=”order_by” value=”constant:job_id desc”/>

</Action>
<Next-Node>{next node name}</Next-Node>

</Process-Node>
Chapter 4250



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
QueryServiceInstance

com.hp.ov.activator.mwfm.component.builtin.QueryServiceInstance 

The node retrieves the values of service-instance parameters. The node expects to have 
case-packet variables defined for each service-instance parameter stored in the 
inventory for the specified service_id. You can fetch all the service-instance 
parameters related to the service ID, or you can selectively fetch those of interest. If you 
do not list any variable parameters, then it fetches all the service-instance parameters 
for the given service_id.

If this node fails to find the requested data because the service_id specified is not 
found in the database, then the node sets the RET_VALUE case-packet variable to 1.

If the data is fetched from the database, but there is not a case-packet variable to catch 
the value, then the node continues without an error. A Warning message is logged.

Queries on non-existent service instances return warning messages reading: ”Query 
for service instance parameters returned no data.” These messages are placed 
under the mwfm_active tab in the Logs area of the Operator UI. 

Error messages are also possible. Usually, they are generated when the definition of any 
of the node parameters is incorrect. For instance, assigning the wrong value to a variable 
provokes the following error message: 
“...com.hp.ov.activator.mwfm.component.WFNoSuchAttributeException: 
variable “aaa” not present in case packet.” 

In this case “aaa” indicates the value assigned to a variable. Error messages are also 
located under the mwfm_active tab in the Logs area.

Example 4-71 QueryServiceInstance - use in the workflow

This example retrieves several service-instance parameters that are tied to a customer 
identifier.

Table 4-94 QueryServiceInstance Parameters

Name Required Description Default Type

db No Database module to use in order to 
perform the query.

“db” String

service_id Yes Name of a case-packet variable that 
holds the unique identifier that the 
data being queried is tied to. This 
identifier represents the customer 
and service that has been activated.

None String

variable0, 
variable1...
variableN

No Case-packet variables whose values 
are to be fetched. You can specify as 
many variable parameters as 
necessary. If you do not specify any 
variable parameters, all service 
instance parameters are fetched 
and the node expects case-packet 
variables to match each 
service-instance parameter.

None String
Chapter 4 251



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Process-Node disablePersistence="true">
<Name>Technical query inventory</Name>
<Description>

Queries the existing information about a customer_id from the service 
instance repository.

</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.QueryServiceInstance

</Class-Name>
  <Param name="db" value="db"/>
  <Param name="service_id"  value="customer_id"/>
  <Param name="variable0" value="web_domain"/>
  <Param name="variable1" value="group"/>
  <Param name="variable2" value="homedir"/>
  <Param name="variable3" value="ipaddress"/>
  <Param name="variable4" value="logdir"/>
  <Param name="variable5" value="login"/>
  <Param name="variable6" value="machine"/>
  <Param name="variable7" value="password"/>
  <Param name="variable8" value="port"/>
  <Param name="variable9" value="pre_domain"/>
  <Param name="variable10" value="rootdir"/>
  <Param name="variable11" value="uid"/>

</Action>
</Process-Node>
Chapter 4252



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
QueryServiceInstanceAll

com.hp.ov.activator.mwfm.component.builtin.QueryServiceInstanceAll

According to a given service ID, the node fetches all service instance parameters from 
the Inventory.

Table 4-95 QueryServiceInstanceAll Parameters

Name Required Description Default Type

service_id Yes The ID of the service instance 
to fetch.

None String

db No Name of the module to access 
the database.

“db” String
Chapter 4 253



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
QueryUCMDBCIsAndRelations

com.hp.ov.activator.mwfm.component.builtin.QueryUCMDBCIsAndRelations

The QueryUCMDBCIsAndRelations node query the ucmdb for the specified CIs and 
Relations from the uCMDB. This node sets the response from ucmdb in the response 
object. 

The node throws a UCMDBException in case of an error while executing the query.The 
response from uCMDB is received as a UCMDBResponse object. This object is a value 
object, which has methods getCIs and get Relations. The getCis method returns a 
List<UCMDBCI> objects and the getRelations return a List<UCMDBRelation> object. 
Both these objects are value objects

Both the  UCMDBCI and the UCMDBRelation objects have the following properties:

• Id - id of the object as a String value

• Object type - Ci/Relation type

• stringProperties - the value of the object is a Map<String, String>

• intStrProperties- the value of the object is a Map<String, String>

• booleanProperties- the value of the object is a Map<String, Boolean>

• floatProperties- the value of the object is a Map<String, Float>

• longProperties - the value of the object is a Map<String, Long>

• doubleProperties- the value of the object is a Map<String, Double>

• dateStringProperties- the value of the object is a Map<String, String>

• xmlProperties- the value of the object is a Map<String, String>

• stringListProperties- the value of the object is a Map<String, List<String>>

• intListProperties- the value of the object is a Map<String, List<Integer>>

In addition the UCMDBReleation has the following properties

• end1Id- Id of the CI at end 1 of the relation as a String value

• end2Id - Id of the CI at end 2 of the relation as a String value

The max_objects_returned parameter determines the number of objects(includes both 
Cis and Relations) returned from by this node.  The default value for this parameter is 
-1, which means all the results returned by uCMDB will be returned by this method.  
Results from uCMDB may be returned as chunks. Chunks may contain both CIs and 
Relations. In case a chunk contains both CIs and relations and if the number of CIs 
returned is more than 

The node throws a UCMDBException in case there is an error while processing the 
request.

Table 4-96 QueryUCMDBCIsAndRelations Parameters

Name Required Description Default Type

module_name Yes The name of the 
UCMDBRequestModule to be used

None String
Chapter 4254



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
response Yes The name of the case-packet 
variable name in which the 
result is stored. The type of the 
case-packet variable should be 
Object. The result returned 
will be a UCMDBResponse 
Object. The list of UCMDBCIs 
can be obtained by calling a 
getCIs and the list of 
UCMDBRelations can be 
obtained by calling a 
getRelations on this object.

Object

query_name Yes GetCIsById

GetCIsByType

GetCINeighbours

ExecuteTopologyQueryByNam
e

ExecuteTopologyQueryByNam
eWithParameters

ExecuteTopologyQueryWithPa
rameters

None String

query_ci_type0
query_ci_type1
...
query_ci_type
N

Yes(If if 
qualifier_p
rop)

Types of CIs/Relations that 
need to be retrieved from 
uCMDB

None String

qualifier_prop
0
qualifier_prop
1
....
qualifier_prop
N

No QualifierProperties for the 
query

None String

Table 4-96 QueryUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4 255



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
prop_type0
prop_type1...
prop_typeN

No The types of properties that 
needs to be retrieved. This can 
be from the following

CONCRETE- Returns the 
properties specific to the 
CI/Relation type

NAMING- Returns the naming 
attributes of the CI/Relation

DERIVED- Returns the 
attributes that have been 
derived from the superclass of 
the corresponding CI or 
Relation

Multiple values can be 
specified delimited by the # 
character in the form

CONCRETE#NAMING

None String

ucmdb_object_
type0
ucmdb_object_
type1
...
ucmdb_object_
typeN

No The ucmdb object type for 
which the properties above 
have been specified. Valid 
values are ci, relation and all

None String

query_key_na
me0
query_key_na
me1
...
query_key_na
me2

No Name of the parameter being 
passed to the query. This can 
be 

Id
Type
NeighbourType
TQLName
QueryXML

The id parameter can have 
multiple values. Hence each 
value needs to have a 
query_key_name and a 
corresponding 
query_key_value. 

None String

Table 4-96 QueryUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4256



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
max_objects_re
turned

No Maximum number of 
CIs/Relations that needs to be 
returned from the actual  
query results. The default 
value is -1 indicating all the 
CIs/Relations present in the 
query result is returned.

-1 Integer

The following properties are taken into consideration only if the query_name 
specified is (in this case at least one of each of the following parameters must be 
given): 
ExecuteTopologyQueryByNameWithParameters or 
ExecuteTopologyQueryWithParameters

ci_id0
ci_id1...
ci_idN

No Temporary id to specify 
parameters. 

None String

ci_type0
ci_type1...
ci_typeN

Yes (If 
ci_id 
parametes 
have been 
specified)

Label corresponding to the 
parametrized node in the 
query. This should be the same 
as specified 

None String

ci_prop_name0
ci_prop_name1
...
ci_prop_name
N

No Name of the property to be 
associated with the node in the 
query

None String

ci_prop_value0
ci_prop_value1
...
ci_prop_value
N

No Value of the property name 
specified earlier. In case the 
property type is StringList or 
IntList then the property 
values can be a list of values. 
This can be specified by 
separating the values with the 
# character.
The ci_prop_value can also be 
specified as a case-packet 
variable. In case the property 
type is a StringList or an 
IntList then the case-packet 
variable has to be of type 
Object, Internally it can 
contain either a String[] or a 
List

None String

Table 4-96 QueryUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4 257



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ci_prop_type0 No The type of the property. This 
can take the following values:

String
Byte
Integer
Long
Float
Double
Boolean
Date
XML
StringList
IntList

None String

Table 4-96 QueryUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4258



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RandomInteger

com.hp.ov.activator.mwfm.component.builtin.RandomInteger 

The node allows the mwfm to generate a random number between 0 and a maximum 
specified number.

The node accepts max_number parameter, which specifies the maximum random number 
to be returned. If unset, it defaults to 100. The random number is generated and stored 
in the case-packet mapped to the action parameter output_var. This must be of Integer 
type. 

Example 4-72 Random number with default “max_number”

<Process-Node disablePersistence=”true”>
<Name>RandomInteger</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.RandomInteger

 </Class-Name>
<Param name="output_var" value="randomNum" />

</Action>
</Process-Node>

Example 4-73 Random number with “max_number” set to 10

<Process-Node disablePersistence = “true”>
<Name>RandomInteger</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.RandomInteger

 </Class-Name>
<Param name="max_number" value="constant:10"/>
<Param name="output_var" value="randomNum" />
</Action>

</Process-Node>

Table 4-97 RandomInteger Parameters

Name Required Description Default Type

max_number No Maximum random number 
generated - default is 100.

100 Integer

output_var Yes Name of the case-packet variable 
to return the generated number. 

None Integer
Chapter 4 259



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ReadData

com.hp.ov.activator.mwfm.component.builtin.ReadData 

The node reads data saved in the DATABASE_MESSAGE table in the database, file system, 
or the string part of the message_url. The message_url can have the format 
db:<message id>, file:<file name>, or data:<string>.

This node is usefull to use if the workflow does not know e.g. how the 
socketlistenermodule is configured.

If message_url is set to data:<data string> then the <string> is returned in the case 
packet defined in output_var parameter.

If message_url is set to file:<file name> then the <file name> part is used to find 
the file and the content of the file is returned in the case packet defined in output_var 
parameter.

If message_url is not specified or message_url is set to db:<messageid> the data will 
always be read from the database. The data cat be retrieved in a number of different 
ways by specifying different query parameters. If no rows are found in the database 
RET_VALUE is set to 1 else 0. The data can be queried using any of the following 
parameters:

• message_url

• job_id

• module_name

• hostname

• identifier

• identifier and module_name

• module_name and hostname

The message_url query will return a DatabaseMessagesDescriptor bean. All the other 
queries will return an array of DatabaseMessagesDescriptor beans.

The retrieved data from the database is stored in the case packet mapped to the action 
parameter output_value.

The type of the output_value case-packet is very critical. For message_url based 
query, this parameter can either be of type String or Object. But, for all the other 
queries, this parameter should be Object. For message_url query, if this parameter is of 
type String, the ReadDataFromDatabase node will not return the 
DatabaseMessagesDescriptor bean. Instead, it will extract the message stored in the 
message field of DATABASE_MESSAGE table and will convert this data and will set it to the 
out_value action parameter.

Two optional parameters data_length and data_position are also provided to retrieve 
partial data. Partial retrieval is allowed only with message_url based query.
Chapter 4260



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The return_object_type action parameter is an optional parameter. If this is 
configured, the data in the message column of the DATABASE_MESSAGE table will be 
converted to the type. The parameter should contain the fully qualified package name.

Example 4-74 Retrieve Complete Data

The case packet newMessageId contains the message id. The retrieved data would be 
stored in the case packet retrievedData.

Table 4-98 ReadData Parameters

Name Required Description Default Type

message_url No Name of the case packet variable 
containing the message id. The 
syntax is db:<message_id>, 
file:<file name>, or 
data:<string>.

None String

job_id No Name of the case packet variable 
containing the job id

None String

module_name No Name of the case packet variable 
containing the module name

None String

hostname No Name of the case packet variable 
containing the hostname

None String

identifier No Name of the case packet variable 
containing the identifier

None String

output_value Yes When the node is executed, this 
case packet variable is set to 
data read from the database. See 
the description above. The value 
for this parameter must be a 
case-packet variable of type 
String or Object.

None Object 
or 
String

data_length No The value of this parameter is 
the number of consecutive bytes 
of the data to be retrieved.

None Integer

data_position No The value of paramenter is the 
ordinal position from where the 
data byte has to be extracted. 

None Integer

return_object

_type

No This parameter indicate which 
java type the data in the 
message field should be 
converted to. If no parameter is 
specified the data will be 
returned as a byte array.

None String

charset No The charset to be used when 
converting retrieved data to a 
String.

None String
Chapter 4 261



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Process-Node disablePersistence="true">
<Name>ReadDataFromDatabase</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReadData

 </Class-Name>
<Param name="message_url" value="newMessageId" />
<Param name="output_value" value="retrievedData" />

</Action>
</Process-Node>

Example 4-75 Retrieve Partial Data

The case packet messageId contains the message id. The retrieved data would be stored 
in the case packet retrievedData, and it contains data upto ”30 “ consecutive bytes 
starting from position “1”.

<Process-Node disablePersistence="true">
<Name>ReadFirstString</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReadData

 </Class-Name>
<Param name="data_length" value="30" />
<Param name="data_position" value="1" />
<Param name="message_url" value="messageid" />
<Param name="output_value" value="retrievedData" />

</Action>

</Process-Node>
Chapter 4262



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ReadDataFromDatabase

com.hp.ov.activator.mwfm.component.builtin.ReadDataFromDatabase 

The node reads data saved in the DATABASE_MESSAGE table in the database.

The data cat be retrieved in a number of different ways by specifying different query 
parameters. If no rows are found in the database RET_VALUE is set to 1 else 0. The data 
can be queried using any of the following parameters:

• message_url

• job_id

• module_name

• hostname

• identifier

• identifier and module_name

• module_name and hostname

The message_url query will return a DatabaseMessagesDescriptor bean. All the other 
queries will return an array of DatabaseMessagesDescriptor beans.

The retrieved data from the database is stored in the case packet mapped to the action 
parameter output_value.

The type of the output_value case-packet is very critical. For message_url based 
query, this parameter can either be of type String or Object. But, for all the other 
queries, this parameter should be Object. For message_url query, if this parameter is of 
type String, the ReadDataFromDatabase node will not return the 
DatabaseMessagesDescriptor bean. Instead, it will extract the message stored in the 
message field of DATABASE_MESSAGE table and will convert this data and will set it to the 
out_value action parameter.

Two optional parameters data_length and data_position are also provided to retrieve 
partial data. Partial retrieval is allowed only with message_url based query.

The return_object_type action parameter is an optional parameter. If this is 
configured, the data in the message column of the DATABASE_MESSAGE table will be 
converted to the type. The parameter should contain the fully qualified package name.

Table 4-99 ReadDataFromDatabase Parameters

Name Required Description Default Type

message_url No Name of the case packet variable 
containing the message id. The 
syntax is db:<message_id>.

None String

job_id No Name of the case packet variable 
containing the job id

None String

module_name No Name of the case packet variable 
containing the module name

None String

hostname No Name of the case packet variable 
containing the hostname

None String
Chapter 4 263



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-76 Retrieve Complete Data

The case packet newMessageId contains the message id. The retrieved data would be 
stored in the case packet retrievedData.

<Process-Node disablePersistence="true">
<Name>ReadDataFromDatabase</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReadDataFromDatabase

 </Class-Name>
<Param name="message_url" value="newMessageId" />
<Param name="output_value" value="retrievedData" />

</Action>
</Process-Node>

Example 4-77 Retrieve Partial Data

The case packet messageId contains the message id. The retrieved data would be stored 
in the case packet retrievedData, and it contains data upto ”30 “ consecutive bytes 
starting from position “1”.

<Process-Node disablePersistence="true">
<Name>ReadFirstString</Name>
<Action>

identifier No Name of the case packet variable 
containing the identifier

None String

output_value Yes When the node is executed, this 
case packet variable is set to 
data read from the database. See 
the description above. The value 
for this parameter must be a 
case-packet variable of type 
String or Object.

None Object 
or 
String

data_length No The value of this parameter is 
the number of consecutive bytes 
of the data to be retrieved.

None Integer

data_position No The value of paramenter is the 
ordinal position from where the 
data byte has to be extracted. 

None Integer

return_object

_type

No This parameter indicate which 
java type the data in the 
message field should be 
converted to. If no parameter is 
specified the data will be 
returned as a byte array.

None String

charset No The charset to be used when 
converting retrieved data to a 
String.

None String

Table 4-99 ReadDataFromDatabase Parameters (Continued)

Name Required Description Default Type
Chapter 4264



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReadDataFromDatabase

 </Class-Name>
<Param name="data_length" value="30" />
<Param name="data_position" value="1" />
<Param name="message_url" value="messageid" />
<Param name="output_value" value="retrievedData" />

</Action>

</Process-Node>
Chapter 4 265



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ReadFile

com.hp.ov.activator.mwfm.component.builtin.ReadFile 

The node reads a text file into a case-packet variable.

Example 4-78 ReadFile - use in the workflow

This example illustrates how to read a file called /tmp/example_file.txt into a 
case-packet variable called string_variable.

<Process-Node disablePersistence="true">
<Name>Read sample file</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReadFile

</Class-Name>
 <Param name="file" value="constant:/tmp/example_file.txt"/>  
 <Param name="destination" value="string_variable"/>
</Action>

</Process-Node>
<Case-Packet>

<Variable name="string_variable" type="String"/>
</Case-Packet>

Table 4-100 ReadFile Parameters

Name Required Description Default Type

file Yes Name of the file to read. The value 
of this parameter can be a 
case-packet variable that contains 
the name of the file, or can be a 
constant (specified as constant:X 
where X is the name of the file).

If the path name to the file is not 
an absolute path, the file is read 
relative to $ACTIVATOR_VAR.

None String

destination Yes Name of the case-packet variable 
to put the contents of the file into.

None String

charset No The charset to be used when 
converting retrieved data to a 
String.

None String
Chapter 4266



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RediscoverHostsNNMNode

com.hp.ov.activator.mwfm.component.builtin.nnmrequest.RediscoverHostsNNMNode 

The node requests NNM to rediscver a set of network elements identified by host names 
or IP addresses.

Rediscover a network element means rediscover/look for changes on the network 
element and the interfaces. This operation is performed by the NNM on a regular basic 
every hour (this is configurable). If for example a new interface has been added to a 
network element and the user runs the rediscover operation. Then the new interface will 
be added to the NNM system at that moment instead of relying on the automatic 
rediscover period.

Table 4-101 RediscoverHostsNNMNode Parameters

Name Required Description Default Type

module_name Yes The name of the NNMi module used 
to connect to a specific NNMi server

None String

host_to_re
discover0, 
host_to_re
discover1,
...
host_to_re
discoverN

Yes, at least 
one

The Hostname or IP address to 
rediscover

None String
Chapter 4 267



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ReleaseResource

com.hp.ov.activator.mwfm.component.builtin.ReleaseResource

The node releases poolable resources back into the inventory. To release a resource, 
specify a variable that contains a JavaBean that represents the resource to be released. 
This can be one or more case-packet variables that you list explicitly. If you do not specify 
any variables, the case-packet variable named RESERVATIONS is assumed, and all the 
reserved resources in that variable are released. After successful release, each released 
resource is removed from the RESERVATIONS variable. 

Multiple resources can be released in a single database transaction. Successful release of 
all the specified resources sets the RET_VALUE to 0.

See Also

• “ReserveResource” on page 273 for more information about the RESERVATIONS 
variable

• “ConfirmResourceReservation” on page 115 for more information about the 
RESERVATIONS variable

Example 4-79 ReleaseResource - use in the workflow

The following example releases a previously reserved UID.

<Process-Node>
<Name>Release UID</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReleaseResource

</Class-Name>
<Param name="variable0" value="uid"/>

/Action>
</Process-Node>

Table 4-102 ReleaseResource Parameters

Name Required Description Default Type

db No Database module to use in order 
to perform the query.

“db” String

variable0, 
variable1... 
variableN

No Name of a case-packet variable 
that holds the resource to be 
released. If you do not specify any 
variables, all reserved resources 
in the RESERVATIONS variable are 
released.

None Object
Chapter 4268



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RemoveData

com.hp.ov.activator.mwfm.component.builtin.RemoveData 

The node allows the mwfm to delete the data saved the DATABASE_MESSAGE in the 
database table or file system.

The data can be located either by using a message identifier or a file path, which is 
stored in the case-packet variable mapped to the action parameter url_name. You can 
delete the data in the database by specifying a message id, and the syntax is: 
db:<message id>. Alternatively, a file can also be deleted by specifying the file path, 
and the syntax is file:<file path>. The file path can be either absolute or relative. If a 
relative path is specified, the system tries to delete the file from $ACTIVATOR_VAR 
directory.

Alternativly the data can, if save in the DATABASE_MESSAGE table, also be located by 
specifying either the job_id, identifier, module_name, or hostname.

The "delete_count" action parameter will hold the number of rows deleted. 

Example 4-80 Remove data from database

<Process-Node>
<Name>RemoveData</Name>
<Description></Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.RemoveData

</Class-Name>
<Param name="url_name" value="messageId"/>

/Action>
</Process-Node>

Table 4-103 RemoveData Parameters

Name Required Description Default Type

url_name No Name of the case-packet variable 
holding the message id or the file 
path ( an absolute path, or a filename 
relative to $ACTIVATOR_VAR) to be 
removed. The syntax is 
db:message_id or 
file:file_path.

None String

job_id No Name of the case-packet variable 
holding the job id .

None String

identifier No Name of the case-packet variable 
holding the identifier.

None String

module_name No Name of the case-packet variable 
holding the module_name.

None String

hostname No Name of the case-packet variable 
holding the hostname.

None String

delete_coun
t

No This case packet variable, if defined, 
will contain the count of rows deleted 
by the node.

None Integer
Chapter 4 269



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The case-packet messageID must contain the message id, and its value must be 
db:<message id>.

Example 4-81 Remove data from file system, absolute path

<Process-Node>
<Name>RemoveData</Name>

<Action>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.RemoveData
</Class-Name>
<Param name="url_name" value="constant:file:c:/hp/ActivationData.txt"/>

</Action>

</Process-Node>

Example 4-82 Remove data from file system, relative path

<Process-Node>
<Name>RemoveData</Name>

<Action>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.RemoveData
</Class-Name>
<Param name="url_name" value="constant:file:ActivationData.txt"/>

</Action>
</Process-Node>

The sytem tries to locate the file and delete it from $ACTIVATOR_VAR directory.
Chapter 4270



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RemoveFile

com.hp.ov.activator.mwfm.component.builtin.RemoveFile 

The node deletes a file.

Table 4-104 RemoveFile Parameters

Name Required Description Default Type

file Yes Name of the file to be removed. The 
value of this parameter can be a 
case-packet variable that contains the 
name of the file, or can be a constant 
(specified as constant:X where X is 
the name of the file).

If the path name to the file is not an 
absolute path, the file is read relative 
to $ACTIVATOR_VAR.

None String
Chapter 4 271



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Replace

com.hp.ov.activator.mwfm.component.builtin.Replace 

The node carries out simple character substitutions.

Example 4-83 Replace - use in the workflow

This example replaces all instances of the letter “a” with the letter “A” in the string 
case-packet variable.

<Process-Node disablePersistence="true">
<Name>Replace a’s</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Replace

</Class-Name>
  <Param name="variable"  value="string"/>
  <Param name="origin"   value="a"/>
  <Param name="destination" value="A"/>
 </Action>
</Process-Node>
 

Table 4-105 Replace Parameters

Name Required Description Default Type

variable Yes Name of the case-packet variable 
in which substitutions are 
performed.

None String

origin Yes Character to be replaced. You can 
specify \n to indicate a carriage 
return.

None String

destination Yes Destination character. You can 
specify \n.

None String
Chapter 4272



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ReserveResource

com.hp.ov.activator.mwfm.component.builtin.ReserveResource

The node is used to reserve resources from the inventory. 

Multiple resources can be reserved in a single transaction. If any of the specified 
JavaBeans does not have a resource available for reservation, the transaction is rolled 
back and the RET_VALUE variable is set to 1 to indicate a failure. Successful reservation 
of all the specified resources sets the RET_VALUE to 0.

The reservation saves a reference to each JavaBean in a specified case-packet variable. 
In the workflow, you can refer to an individual field in the JavaBean using a special 
syntax. The syntax is similar to referencing a member of the Java class 
variable.field. The field name depends on the definition of the JavaBean that was 
specified when InventoryBuilder was used. See the example below for how this syntax is 
used.

It is also possible to use this node to reserve a resource by a composed foreign key; 
however, in this case it is only possible to reserve a single resource. To reserve a resource 
by a composed foreign key only a single bean and variable parameter can be specified 
while multiple key_field and key_value parameters may be specified.

If a case-packet variable with the name RESERVATIONS exists in the case-packet, then all 
of the reserved resources are added to it.

See Also

• “ReleaseResource” on page 268 for more information about the RESERVATIONS 
variable

• “ConfirmResourceReservation” on page 115 for more information about the 
RESERVATIONS variable

Table 4-106 ReserveResource Parameters

Name Required Description Default Type

db No Database module to use in order 
to perform the query.

“db” String

bean0, 
bean1...
beanN

Yes Name of the Java class 
generated by InventoryBuilder 
for a poolable resource from 
which to allocate the resource.

None String

key_field0, 
key_field1...k
ey_fieldN

No Name of the field by which the 
reservation is carried out. This 
defaults to doing a reservation 
by PrimaryKey.

None String

key_value0, 
key_value1...
key_valueN

No Name of a case-packet variable 
that contains the value of the 
key that is to be used for the 
reservation.

None Depends 
on the 
bean
Chapter 4 273



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
variable0, 
variable1...
variableN

Yes Name of a case-packet variable 
in which to catch the reserved 
resource.

None Object

Table 4-106 ReserveResource Parameters (Continued)

Name Required Description Default Type
Chapter 4274



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-84 ReserveResource - use in the workflow

This example reserves the next available UID, and then prints a message that contains 
the reserved ID.

<Process-Node>
<Name>Reserve UID</Name>
<Description>Reserves a free UID in the web server.</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReserveResource

</Class-Name>
<Param name="bean0" value="com.hp.ov.activator.example.UID"/>
<Param name="key_field0" value="WebServer"/>
<Param name="key_value0" value="web_server_name"/>
<Param name="variable0" value="uid"/>

</Action>
</Process-Node>

<Process-Node>
<Name>Tell operator</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.PutMessage

</Class-Name>
<Param name="queue" value="reservationInfo"/>
<Param name="message" value="Reserved UID %s in WebServer %s"/>
<Param name="param1" value="uid.web_server"/>
<Param name="param0" value="uid.userid"/>

</Action>
</Process-Node>

Example 4-85 ReserveResource - use in the workflow

This example reserves the next available IP number within a given region and city..

<Process-Node>
<Name>ReserveResource</Name>
<Description>Reserves a free IP number in a given region/city.</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.ReserveResource

</Class-Name>
<Param name="bean0" value="com.hp.ov.activator.example.IPNumber"/>
<Param name="key_field0" value="region"/>
<Param name="key_field1" value="city"/>
<Param name="key_value0" value="region_variable"/>
<Param name="key_value1" value="city_variable"/>
<Param name="variable0" value="reserved_ip_number"/>

</Action>
</Process-Node>
Chapter 4 275



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
RetrieveSequence

com.hp.ov.activator.mwfm.component.builtin.RetrieveSequence

The node generates a unique sequence number based on an Database sequence object. It 
is up to the workflow designer to ensure the sequence number exists in the database

Example 4-86 RetrieveSequence

The node retrieves the next value from the specified database sequence name in 
sequence_name attribute and stores it in the case-packed variable assigned to 
sequence_value.

The reason for haveing the output parameter of type object is it then makes it possible to 
return either the value as string or integer depending on the case-packet type.

<Process-Node>
<Name>RetrieveSequence</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.RetrieveSequence

</Class-Name>
<Param name="sequence_name" value="constant:TEST_WORKFLOW_NODE"/>
<Param name="sequence_value" value="seq_next_value"/>

</Action>
</Process-Node>

Table 4-107 RetrieveSequence Parameters

Name Required Description Default Type

db No The db module used to connect 
to the database. If unspecified 
in the workflow, it defaults to 
‘db’.

“db” String

sequence_name Yes Name of the specific sequence 
whose next value has to be 
retrieved from the database. 

None String

sequence_value No Holds the next value of the 
sequence as retrieved from the 
database by the process node.

None Object
Chapter 4276



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ScheduleCurrentJob

com.hp.ov.activator.mwfm.component.builtin.ScheduleCurrentJob

This node allows you to schedule a running job for later execution. This means that the 
job stops executing and gets persisted completely into the database. The job does not 
consume any resources while stored in the database. 

Use the sleep_time parameter to suspend the running job for a certain period of time or 
use the schedule_time parameter to suspend the job until a specified date and time. 

To schedule a running job, you must specify the ID of the running job and either 
sleep_time or schedule_time.

If the node finishes without errors, the RET_VALUE case-packet variable is set to 0. In 
case of any error in the node, RET_VALUE is set to 1 and the RET_TEXT case-packet 
variable holds more information about the problem. If the job being scheduled is not on 
the list of scheduled jobs, the node sets RET_VALUE to 1, puts an error description in 
RET_TEXT and continues to the next node. It is important to remember that the job being 
scheduled cannot have reoccurrence.

Table 4-108 ScheduleCurrentJob Parameters

Name Required Description Default Type

schedule_time No The date and the time when 
the running job must resume. 
This parameter accepts date 
and time as milliseconds with 
the value starting from 
January 1, 1970 00:0000:000 
GMT. The value should be 
numeric.

0 Integer

sleep_time No Sleep time to supend the 
running job for a certain 
period of time. The sleep time 
must be specified in seconds.

0 Integer

group No The group id of scheduled job. 0 String

description No The descrioption of scheduled 
job.

0 String

status No The status of the scheduled 
job

0 String
Chapter 4 277



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ScheduleJob

com.hp.ov.activator.mwfm.component.builtin.ScheduleJob

The node schedules a workflow for a specified time. The node works similarly to the 
StartJob node. It checks if the workflow to schedule has no errors, and only then adds it 
to the list of scheduled jobs. You can specify the schedule time, group id, status and 
description of a scheduled job. If you want to run the scheduled job repeatedly, specify 
repeating frequency and repeating end time. 

If the node finishes without errors, the RET_VALUE case-packet variable is set to 0. In 
case of any error in the node, RET_VALUE is set to 1. The RET_TEXT case-packet variable 
holds more information about the problem. 

See Also

•  “StartJob” on page 287 for more information.

Table 4-109 ScheduleJob Parameters

Name Required Description Default Type

workflow_name Yes The name of the workflow 
to schedule

None String

schedule_time Yes The date and time to start 
the workflow. This 
parameter accepts the date 
and time as milliseconds 
with the starting value 
from January 1, 1970 
00:00.00:000 GMT. The 
value should be numeric.

None Integer

group_id No This parameter is used to 
group a set of scheduled 
jobs. It is useful in 
connection with timed 
services and reoccurring 
scheduled workflows where 
a common identifier is 
needed.

None String

reoccurrence_
freq

No Reoccurrence frequency 
period. This parameter has 
to be specified if the 
scheduled job has to be run 
repeatedly. If 
reoccurence_freq is not 
specified, the parameter 
accepts the value as 
seconds. The value should 
be numeric.

0 Integer
Chapter 4278



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
reoccurrence_
end_time

No The time when 
reoccurrence of schedule 
job must end. This 
parameter accepts the date 
and time as millisceonds 
with the value starting 
value from January 1, 1970 
00:00.00:000 GMT. The 
value should be numeric.

0 Integer

description No Description of the 
scheduled job. The default 
value is an empty string.

None String

status No Status of the scheduled job. 
The default value is an 
empty string.

None String

variable0,
variable1,...
VariableN

No Case-packet variables from 
the current workflow that 
must be passed to 
scheduled workflow. This 
parameter must always be 
a case-packet variable. You 
can specify any number of 
variable{x} starting from 
variable0.

None Any

destination0,
destination1,..
destinationN

No Name of the case-packet 
variable, in the workflow 
being started, that must be 
initialized with the value of 
the case-packet variable 
specified by variable{x} of 
the same number. Per 
default the name of the 
case-packet variable to be 
initialize in the child 
workflow is assumed be the 
same as the parents.

None Depends 
on the 
variable

ret_scheduled_j
ob_id

No If the scheduled job was 
succesfully started the Job 
Id of the newly scheduled 
job is returned into this 
case-packet variable. On 
error the case-packet 
variable specified will get 
the value -1.

-1 Integer

Table 4-109 ScheduleJob Parameters (Continued)

Name Required Description Default Type
Chapter 4 279



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
reoccurrence_fr
eq_units

No Reoccurrence frequency 
units: 1-second, 2 minutes, 
3-hours, 4-days, 5-weeks, 
6-months. The default 
value is 1-second. The 
value should be numeric 
and can start from 1 to 6.

1 Integer

Table 4-109 ScheduleJob Parameters (Continued)

Name Required Description Default Type
Chapter 4280



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
SendAlarm

com.hp.ov.activator.mwfm.component.builtin.SendAlarm

The node is used to send messages to any workflow module that implements the 
MessageModule interface. This is typically used for sending a message to OVO using the 
OVOMessageModule.

See Also

• “OVOMessageModule” on page 405 for more information about how to send 
messages to OVO.

The SendAlarm node has a special way of handling parameters. It allows you to pass 
additional parameters to the MessageModule that the SendAlarm node may be unaware 
of. For example, the OVOMessageModule supports a special parameter to set the 
severity of the message. The special parameters supported by the OVOMessageModule 
are listed below. Note that these parameters may be supported by another module that 
you may use instead of the OVOMessageModule.

Table 4-110 SendAlarm Parameters

Name Required Description Default Type

module Yes Name of a module that will 
take care of sending the 
message.

None String

message Yes Message to be sent. By default, 
the message is specified as a 
case-packet variable that 
contains the message to be 
sent. To indicate a hard-coded 
message, use the syntax 
constant:X. The message can 
contain free variables 
(indicated by %s symbol) to be 
replaced with other 
parameters.

None String

param0, param1...
paramN

No Names of case-packet variables 
whose values replace the free 
variables in the message. 
Specify as many param as 
needed.

None Any
Chapter 4 281



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-87 SendAlarm - use in the workflow

This is an example of an alarm for the OVO MessageModule that uses two custom 
parameters called severity and object.

<Process-Node>
<Name>Send Alarm</Name>
<Description>Send an alarm to OVO</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SendAlarm

</Class-Name>
<Param name="module" value="ovo" />

 <Param name="message" value="Failure to activate the %s service." />
 <Param name="param0" value="service_name" />
 <Param name="severity" value="constant:critical" />
 <Param name="object" value="machine" />
</Action>

</Process-Node>

Table 4-111 SendAlarm Parameters - for use by OVOMessageModule

Name Required Description Default Type

severity No Set the severity of the message 
that is being sent to OVO. This 
overrides the default severity set in 
the OVOMessageModule 
configuration.

None

application No Set the indicator of the name of the 
application from which the 
message is coming. This overrides 
the default application name, 
which is typically 
“ServiceActivator”.

None

object No Set the name of the object on whose 
behalf the message will be sent. 
This overrides the default (blank).

None

msg_grp No Set the message group of the 
message that is being sent to OVO. 
This overrides the default message 
group set in the configuration of 
the OVOMessageModule.

None

node No Set the name of the node on whose 
behalf the message will be sent. 
This overrides the default (null).

None

service_id No Set the service_id for the message 
that is being sent to OVO. This 
overrides the default (blank).

None
Chapter 4282



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
SendMessage

com.hp.ov.activator.mwfm.component.builtin.SendMessage

The node sends messages using a SenderModule. It can use any module that implements 
the SenderModule interface. The typical module used in this case is the 
SocketSenderModule.

A message to be sent can come from a case-packet variable, or from a file, or from the 
database.

When the node completes, the value of the built-in case-packet variable RET_VALUE is set 
to 0 if the message was properly enqueued and to 1 if not.

See Also

• “SocketSenderModule” on page 418 for more information about how to send 
messages to a waiting program.

Example 4-88 SendMessage - use in the workflow

This example shows the SendMessage node being used to send a message via the 
tcp_example_sender module. The message to be sent is in the case-packet variable 
returnMessage, and the value is file:<file path>.

<Process-Node>
<Name>Send Message</Name>
<Description>Send a message to the CRM</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SendMessage

</Class-Name>
<Param name="sender" value="tcp_example_sender"/>
<Param name="message_url"  value="returnMessage"/>

</Action>
</Process-Node>

Table 4-112 SendMessage Parameters

Name Required Description Default Type

sender Yes Name of the Workflow Manager 
module that will send this 
message.

None String

message_var Yes, if 
message_url
is not used

Name of a case-packet variable 
that contains the message to be 
sent.

None String

message_url Yes, if 
message_var 
is not used

Name of a case-packet variable 
that contains the name of the file 
or a message id representing a 
row in DATABASE_MESSAGE 
containing the message. The 
syntax is db:message_id or file: 
file_path. A constant file name or 
message id can also be specified.

None String
Chapter 4 283



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-89 SendMessage - using a constant message_id parameter

<Process-Node>
<Name>Send Message</Name>
<Description>Send a message to the CRM</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SendMessage

</Class-Name>
<Param name="sender" value="tcp_example_sender"/>
<Param name="message_url"  value="db:1"/>

</Action>
</Process-Node>

Example 4-90 SendMessage - using a variable message_id parameter

<Process-Node>
<Name>Send Message</Name>
<Description>Send a message to the CRM</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SendMessage

</Class-Name>
<Param name="sender" value="tcp_example_sender"/>
<Param name="message_url"  value="messageId"/>

</Action>
</Process-Node>
</Case-Packet>
<Variable name= “messageId” type= “Integer”/>
<Initial-Case-Packet>
<Variable-value name= “messageId” value= “db:2”/>
</Initial-Case-Packet>
Chapter 4284



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
SendSNMPTrap

com.hp.ov.activator.mwfm.component.builtin.SendSNMPTrap 

This node will enable a workflow to send a custom SNMP trap using the 
SNMPSenderModule.The SNMPSenderModule should have been configured for this node 
to function. This will enable solutions to send custom traps.

The parameter trap_oid is the oid of the trap itself. Where the oid and trap_message can 
be used to add additional information.

Example 4-91 SendSNMPTrap - use in the workflow

<Process-Node>
     <Name>SendSNMPTrap</Name>

 <Description></Description>
 <Action>
  <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.SendSNMPTrap
  </Class-Name>
   <Param name="module" value="constant:snmp_sender"/>
   <Param name="trap_oid" value="constant:1.3.6.1.4.1.11.4.1"/>
   <Param name="oid0" value="constant:1.3.6.1.4.1.11.4.1"/>
   <Param name="trap_message0" value="constant:Test trap from snmp node"/>
 </Action>

</Process-Node>

Table 4-113 SendSNMPTrap Parameters

Name Required Description Default Type

module Yes The SNMP Sender module to be 
used

None String

trap_oid Yes Oid of the trap None String

oid0,
oid1,
...
oidN

No Additional oid to include in the 
trap

None String

trap_mess
age,
trap_mes
sage1,
...
trap_mess
ageN

No The trap message associated with 
the oid

None String
Chapter 4 285



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Sleep

com.hp.ov.activator.mwfm.component.builtin.Sleep 

The node pauses a workflow for a specified amount of time.

Example 4-92 Sleep - use in the workflow

This example blocks the flow for a second.

<Process-Node disablePersistence="true">
 <Name>Sleep node</Name>
 <Description>Blocks a workflow without using up the CPU</Description>
 <Action>
 <Class-Name>

com.hp.ov.activator.mwfm.component.builtin.Sleep
</Class-Name>

 <Param name="time"   value="constant:1000"/>
 </Action>
 <Next-Node>Another node</Next-Node>

</Process-Node>

Table 4-114 Sleep Parameters

Name Required Description Default Type

time Yes Indicates the name of a case-packet 
variable that contains the time to 
sleep (in milliseconds). A 
hard-coded value can be specified 
using the syntax constant:X.

None Numeric

swap No Instructs the Workflow manager 
to swap-out the case-packets 
while the job waits in the 
request queue, in order to 
reduce memory footprint

false Boolean
Chapter 4286



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
StartJob

com.hp.ov.activator.mwfm.component.builtin.StartJob

The node starts a new job and optionally passes some initial values to its case-packet 
variables. 

The current workflow does not wait for the newly started workflow to complete. The 
current workflow proceeds directly to the next node.

See Also

• “AskFor” on page 101 for more information about how one workflow can wait for 
another

Table 4-115 StartJob Parameters

Name Required Description Default Type

workflow_name Yes Name of a case-packet variable 
that contains the name of the 
workflow to be started. To specify 
a hard-coded value, use the syntax 
constant:X.

None String

variable0, 
variable1...
variableN

No Names of case-packet variables to 
be passed to the child workflow.

None Object

destination0, 
destination1...
destinationN

No Names of case-packet variables in 
the child workflow to receive the 
matching variable from this 
workflow. By default, the 
variables are passed to variables 
of the same name in the child 
workflow. Destination parameters 
can be specified selectively for 
some or each of the indicated 
variables.

None Object

output_job_id_v
ariable

No A case-packet variable to catch 
the JOB_ID of the newly started 
job

None Intege
r

Chapter 4 287



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-93 StartJob - use in the workflow

This example starts a child workflow and passes the current JOB_ID to the child. Note 
that it specifies the destination variable that will receive this JOB_ID. This is the 
standard way to start a child so that it can successfully communicate back to the parent. 

Typically, the next node in this workflow would do an AskFor to wait for some 
information back from the child. 

<Process-Node>
<Name>Start work</Name>
<Description>Creates another workflow</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.StartJob

</Class-Name>
<Param name="workflow_name" value="workflow"/>
<Param name="variable0" value="JOB_ID" />
<Param name="destination0" value="controller_job_id" />
<Param name="variable1" value="message_file" />

</Action>
</Process-Node>
Chapter 4288



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
StartJobAndWait

com.hp.ov.activator.mwfm.component.builtin.StartJobAndWait

This node starts a new job and blocks until the newly started job has synchronized with 
its parent where after it proceeds to the next node. It is optional to pass on case-packet 
variables to the new job; however, the child job needs at least information about the 
parent’s job_id in order to synchronize with its parent. The synchronization from the 
child job can be done either by using the Sync node or the SyncHandler. 

See Also

• “StartJob” on page 287

Table 4-116 StartJobAndWait Parameters

Name Required Description Default Type

workflow_name Yes Name of the workflow to start. None String

variable0, 
variable1... 
variableN

No Case-packet variables that are to 
be passed to initialize variables in 
the new workflow being started.

None Any

destination0, 
destination1... 
destinationN

No The name of the case-packet 
variable to initialize in the new 
workflow. By default the variable 
of the same name is initialized.

None Any

outputvar0, 
outputvar1... 
outputvarN

No Case-packet variables that the 
child should pass back.

None Object

queue No The name of the queue where 
the job will wait and where 
the child job must do the 
synchronization.

sync String

swap No Instructs the Workflow 
manager to swap-out the 
case-packets while the job 
waits in the request queue, in 
order to reduce memory 
footprint

false Boolean
Chapter 4 289



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-94 StartJobAndWait - use in the workflow

The StartJobAndWait node starts the job called “ThisJobWillBeStarted”. It sends the 
content of the case-packet variable called “parentVariable” to the child’s case-packet 
variable “childVariable”. It also sends the parent job_id to the child case-packet variable 
called “sync_jobid” from where it is used to sync with the parent later on. The queue to 
handle the synchronization between the jobs is set to be “JobSyncQueue”. The parent 
case-packet variable “passedFromChildToParent” must be set from the child before the 
synchronization can be accepted. The child SyncHandler uses the passed information to 
synchronize with the parent at the end of the child workflow.

StartJobAndWait node in the parent workflow.

<Name>StartJobAndWait</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.StartJobAndWait

</Class-Name>
<Param name="workflow_name" value="constant:ThisJobWillBeStarted"/>
<Param name="destination0" value="childVariable"/>
<Param name="outputvar0" value="passedFromChildToParent"/>
<Param name="variable0" value="parentVariable"/>
<Param name="destination1" value="sync_jobid"/>
<Param name="variable1" value="JOB_ID"/>
<Param name="queue" value="JobSyncQueue"/>

</Action>

Child workflow synchronization using SyncHandler

<End-Handler>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.SyncHandler
</Class-Name>

<Param name="job_id" value="sync_jobid"/>
<Param name="queue" value="constant:JobSyncQueue"/>
<Param name="destination0" value="passedFromChildToParent"/>
<Param name="variable0" value="SendThisToTheParent"/>

</End-Handler>
Chapter 4290



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Switch

com.hp.ov.activator.mwfm.component.builtin.SwitchCase

This node allows the Workflow Manager to provide branching depending on the value of 
the parameter key. The key can be a constant or a case-packet varaible of type String or 
Integer.

The case values that govern the multiple branches from the Switch node are specified 
using the action parameters case0, case1...caseN. In the Workflow Designer, when the 
Switch node is connected to another node, the user is prompted to enter the case value 
that governs this branch; this can be a constant or a case-packet variable of type 
Integer or String. The case parameters are displayed in a drop-down list in the "Arrow 
drawing window" along with the default option. The user can select either a case 
parameter or the default option. 

The default path for the Switch node is mandatory. The case parameters are optional.

During workflow execution, when the Switch node is processed, the key is evaluated and 
an attempt is made to find the matching case value. If a match is found then the 
workflow node for the matching case branch becomes the next node to be processed by 
the workflow manager. If a match is not found the workflow node in the default branch is 
chosen.

Example 4-95 Switch - use in the workflow

This example show how the workflow branch depending on the case-packet day.

<Switch-Node>
<Name>Branch on day</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.SwitchCase

</Class-Name>
<Param name="key" value="day" />
<Param name="case0" value="constant:day1" />
<Param name="case1" value="constant:day2" />
<Param name="case2" value="constant:day3" />

 </Action>
 <Switch name="case0">Sunday</Switch>
 <Switch name="case1">Monday</Switch>
 <Switch name="case2">Tuesday</Switch>
 <Default>DoNothing</Default>

</Switch-Node>

Table 4-117 Switch Parameters

Name Required Description Default Type

key Yes The key that is evaluated and 
which decides the workflow 
path to taken

None String 
or 
Integer

case0
case1...
caseN

Yes Case values specified for 
various branches. 

None Depend 
on the 
bean
Chapter 4 291



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Sync

com.hp.ov.activator.mwfm.component.builtin.Sync

The node responds to a workflow node that is waiting for interaction on a request queue 
(one that has done an AskFor). Use this node to synchronize a child workflow with its 
parent workflow.

The Sync node provides a way to determine whether the node actually was able to 
synchronize with the indicated job_id. The Sync node accepts a parameter with the 
name “ok.” This variable receives the value “true” if the node is able to respond to a 
waiting request for the given job_id in the given queue. The variable receives the value 
“false” if the given job_id is not waiting in the given queue. If this parameter is not 
used, there is no way to know if the synchronization was successful.

See Also

• “AskFor” on page 101 for information about how one workflow can wait for input 
from another workflow

Table 4-118 Sync Parameters

Name Required Description Default Type

job_id Yes Name of a case-packet variable 
that contains the job ID of the 
workflow waiting to 
synchronize.

None Integer

queue Yes Name of the queue on which the 
workflow is waiting, specified as 
a constant string.

None Queue

OK No Name of the Boolean 
case-packet variable to catch the 
indication of whether the Sync 
was successful or not.

None Boolean

variable0, 
variable1...
variableN

Yes Names of the case-packet 
variables to be passed to the 
waiting workflow. By default, 
the variables are passed to 
variables of the same name in 
the waiting workflow. 
destinationN parameters can 
be specified selectively for some 
or all of the indicated variables.

None Any

destination0, 
destination1...
destinationN

No Names of the case-packet 
variables in the parent workflow 
that are waiting to receive the 
matching variable from this 
workflow. 

None Any
Chapter 4292



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-96 Sync - use in the workflow

This example is a child workflow attempting to synchronize with its controller workflow.

<Process-Node>
<Name>Sync with controller</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.Sync

</Class-Name>
<Param name="job_id" value="controller_job_id" />
<Param name="queue" value="controller_queue" />
<Param name="variable0" value="activation_major_code" />
<Param name="destination0" value="operation_status" />

 </Action>

</Process-Node>
Chapter 4 293



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ThrowError

com.hp.ov.activator.mwfm.component.builtin.ThrowError

The node throws an error given by the message argument.

Table 4-119 ThrowError Pameters

Name Required Description Default Type

message No Message to be included as part of 
the error.

None String
Chapter 4294



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ThrowException

com.hp.ov.activator.mwfm.component.builtin.ThrowException

The node throws an exception with the message given by the message argument.

Table 4-120 ThrowException Parameters

Name Required Description Default Type

message No Message to be included as part 
of the exception.

None String
Chapter 4 295



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ThrowRuntimeException

com.hp.ov.activator.mwfm.component.builtin.ThrowRuntimeException

The node throws a runtime exception with the message given by the message argument.

Table 4-121 ThrowRuntimeException Parameters

Name Required Description Default Type

message No Message to be included as part of 
the exception.

None String
Chapter 4296



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
TransformXML

com.hp.ov.activator.mwfm.component.builtin.TransformXML

The node performs an XSL transform on an XML document using standard XSLT 
components. You may use any XSL specification to transform any XML document.

In addition to the ability to perform an XSL transform, it is also possible to replace 
elements in the XSL template with the current value of case-packet variables. When 
using this functionality, it is not even necessary to provide an input XML document since 
all the necessary information may be in the XSL itself. 

NOTE There are two different syntaxes for replacing parameters in the XSL document with 
case-packet variables. Refer to the example below for both syntaxes.

The XML input (if needed) may come from a case-packet variable or from a URL. 

The XSL input may come from a case-packet variable or from a URL.

The output may be put into a case-packet variable or maybe sent to a URL.

Table 4-122 TransformXML Parameters

Name Required Description Default Type

xml_url no The location of the XML input 
document. The location may be 
specified in any valid URL 
(http:/..., file:..., etc).

The parameter may indicate that 
the URL is found in a case-packet 
variable or as a constant in the 
form - constant:<url>

None String

xml_var no The name of a case-packet 
variable from which to get the 
XML input document.

None String

xsl_url either 
xsl_url or 
xsl_var

The location of the XSL template. 
The location may be specified in 
any valid URL (http:/..., file:..., 
etc).

The parameter may indicate that 
the URL is found in a case-packet 
variable or as a constant in the 
form - constant:<url>

None String

xsl_var either 
xsl_url or 
xsl_var

The name of a case-packet 
variable from which to get the 
XSL specification.

None String
Chapter 4 297



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-97 TransformXML - use in the workflow

This example creates a connection template for use in the GenericCLI plug-in. Notice 
that it does not provide an input XML document. The XSL template contains everything 
necessary to produce the desired output, it probably refers to case-packet variables, see 
the next example for an XSL template that would be meaningful in this case.

<Process-Node disablePersistence="true">
<Name>Prepare for PIX connection</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.engine.component.builtin.TransformXML

</Class-Name>
 <Param name="xsl_url"  value="constant:file:///C:/HP/Openview/ 

ServiceActivator/etc/cisco/
CiscoPIX_telnet_direct.xsl" />

 <Param name="output_var" value="ciscoConnectString"/>
 </Action>

</Process-Node>

output_url either 
output_url 
or 
output_var

The location for the output from 
the transform. The location may 
be specified in any valid URL 
(http:/..., file:..., etc).

The parameter may indicate that 
the URL is found in a case-packet 
variable or as a constant in the 
form - constant:<url>

None String

output_var either 
output_url 
or 
output_var

The name of a case-packet 
variable to catch the result of the 
XSL transform.

None String

use_solution_
dir

No When set to "true", the nodes 
will read from 
$SOLUTION_ETC/template_f
iles instead of 
$ACTIVATOR_ETC/template
_files.

false Boolea
n

end_of_line_st
yle

No The end of line style of the 
output document. Possible 
values are 'windows' or 'unix'. 
If not present the end of line 
will be the system default one

the hpsa 
operatio
n 
system

String

Table 4-122 TransformXML Parameters (Continued)

Name Required Description Default Type
Chapter 4298



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-98 TransformXML - XSL template

This example shows the form of an XSL template that replaces elements in the template 
with the value of case-packet variables. Notice the use of the xsl:param declaration near 
the top. This indicates that the template will refer to three variables in the body below. 
The workflow node will create XSL variables for each case-packet variable in the 
workflow. These can then be referred to in the XSL specification, as it is done for 
pix_pswd, pix_enable_pswd, and pix_timeout.

Notice the difference in the syntax when referring to the pix_timeout variable vs. the 
syntax used for pix_pswd. The different syntax is necessary because of the strict nature 
of XML. One syntax is necessary when referring to a parameter inside of a tag attribute. 
The other syntax is used to refer to the parameter as part of the element text.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output doctype-system="CLIv4.dtd"/>

<xsl:param name="pix_pswd" />
<xsl:param name="pix_enable_pswd" />
<xsl:param name="pix_timeout" />

<xsl:template match="/">

<CLI>
<Connect protocol="telnet">
<Do timeout="{$pix_timeout}" description="PIX device authentication failed.">

<Confirm>
<Pattern>^PIX passwd: $</Pattern>
<Command><xsl:value-of select="$pix_pswd"/></Command>

</Confirm>
<Error>^PIX passwd: $</Error>
<Prompt>> $</Prompt>

</Do>

<Do description="PIX privileged (enable) mode authentication failed.">
<Command>enable</Command>
<Confirm>

<Pattern>Password: $</Pattern>
<Command><xsl:value-of select="$pix_enable_pswd"/></Command>

</Confirm>
<Error>Password: $</Error>
<Error>^usage:</Error>
<Prompt># $</Prompt>

</Do>
</Connect>
</CLI>
</xsl:template>
</xsl:stylesheet>
Chapter 4 299



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-99 TransformXML - XSL template with complex data types

This example shows the form of an XSL template that replaces elements in the template 
with case-packet variables of the type object. The object can be of type maps,  java beans, 
and arrays. The syntax for specifying complex data types is the same as which is defined 
in References to Complex Data Types in Workflow Node Parameters with the modification 
that the special characters must be substituted as shown in Table 4-123.

Notice the use of the xsl:param declaration near the top. This indicates that the 
template will refer to variables in the body as below:

• The elements beanCP.attribute1 is directly referring to the member variables of 
the Java bean object.

• The element arrayCP [0] is written as arrayCP__LB__0__RB__, where the 
character “{“ is replaced by __LB__ and the character “]” is replaced by __RB__ .

• The element hashMapcp {"key1"} is written as 
hashMapcp__LC____Q__key1__Q____RC__ , where the character ‘{ ‘ is replaced by 
__LC__ and the character ‘ } ‘ is replaced by __RC__  and the ‘ ” ’ is replaced by __Q__ 

The other complex data types used below are combinations of maps, arrays, and bean 
objects.

The workflow node will create XSL variables for each case-packet variable in the 
workflow. These can then be referred to in the XSL specification, as it is done for 
$hashMapcp__LC____Q__key1__Q____RC__ ,   $arrayCP__LB__0__RB__ and 
$beanCP__D__attribute1.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<!--  We want to produce output for a HTML browser  -->
<xsl:output method="html"/>
<xsl:preserve-space elements="*"/>
<xsl:param name="beanCP.attribute1"/>
<xsl:param name="arrayCP__LB__0__RB__"/>
<xsl:param name="beanCP__D__attribute2__LB__0__RB__"/>
<xsl:param name="hashMapcp__LC____Q__key1__Q____RC__"/>
<xsl:param name="hashMapcp__LC__beanCP__D__attribute2__LB__0__RB____RC__"/>
<xsl:param
name="hashMapComplexcp__LC__beanCP__D__attribute2__LB__0__RB____RC____LC__a
rrayCP__LB__1__RB____RC____D__attribute2__H__"/>

Table 4-123 Complex data type usage in xslt

Symbol Replacement in xslt

{ _LC_

} _RC_

[ _LB_

] _RB_

“ _Q_

# _H_
Chapter 4300



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<xsl:template match="/">
<html>
<head>
<script>
</script>
</head>
<style>
.row0 {background-color: #E6E6E6;
font-family: Verdana, Helvetica, Arial, Sans-serif;
font-size: 8pt; }
row1 {background-color: #CCCCCC;
font-family: Verdana, Helvetica, Arial, Sans-serif;
font-size: 8pt; }
.heading {
background: #336699;
font-family: Verdana, Helvetica, Arial, Sans-serif;
font-size: 8pt;
color: white;
text-align: left;
vertical-align: middle;
border: 1px solid white;
}
</style>
<body style="font-family:Verdana, Helvetica, Arial,
Sans-serif;font-size:8pt" onMousemove="savePosition();">
<table width="100%">
<tr>
<td class="heading">Accessing attributes of Java Bean -
beanCP.attribute1</td>
<td class="heading">Accessing elements of an array - arrayCP[0]</td>
<td class="heading">Accessing elements of an array returned as attributes of
Java Bean - beanCP.attribute2[0]</td>
<td class="heading">Accessing Value of a hashMap using constant key - 
hashMapcp{"key1"}</td>
<td class="heading">Accessing Value of a hashMap using elements of an array
returned as attributes of Java Bean as key - hashMapcp{beanCP.attribute2[0]}
</td>
<td class="heading">Complex Data type -
hashMapComplexcp{beanCP.attribute2[0]}{arrayCP[1]}.attribute2#</td>
</tr>
<tr class="row{position() mod 2 }">
<xsl:call-template name="showdata" />
</tr>
</table>
</body>
</html>
</xsl:template>
<xsl:template name="showdata">
<td><xsl:value-of select="$beanCP.attribute1"/></td>
<td><xsl:value-of select="$arrayCP__LB__0__RB__"/></td>
<td><xsl:value-of select="$beanCP__D__attribute2__LB__0__RB__"/></td>
<td><xsl:value-of select="$hashMapcp__LC____Q__key1__Q____RC__"/></td>
<td><xsl:value-of
select="$hashMapcp__LC__beanCP__D__attribute2__LB__0__RB____RC__"/></td>
<td><xsl:value-of
select="$hashMapComplexcp__LC__beanCP__D__attribute2__LB__0__RB____RC____LC
__arrayCP__LB__1__RB____RC____D__attribute2__H__"/></td>
Chapter 4 301



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
</xsl:template>
</xsl:stylesheet>
<!-- Copyright 2007 Hewlett Packard Development Company, L.P. -->
Chapter 4302



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateBean

com.hp.ov.activator.mwfm.component.builtin.UpdateBean

This node updates an inventory bean object in memory; i.e. the object is not stored in the 
inventory database after being updated.

Table 4-124 UpdateBean Parameters

Name Required Description Default Type

bean_object Yes Name of the variable holding the 
inventory bean object to be 
updated.

None Object

key_field0, 
key_field1... 
key_fieldN

Yes Name of a key in the JavaBean 
that is updated. The parameter 
must be repeated for all 
attributes in the JavaBean 
being updated.

Since the object's primary key is 
implicitly passed to this node 
through the bean_object 
parameter there is no need for 
specifying the primary key

None String

key_value0, 
key_value1, 
key_valueN

Yes Used in conjunction with the 
key_field attributes to specify the 
values of the individual attributes 
in the JavaBean

None Any

bean_variable Yes Name of the variable where the 
created JavaBean instance is 
returned.

None Object
Chapter 4 303



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-100 UpdateBean - use in the workflow

This example updates  in memory an inventory object representing a UNIX user.

<Process-Node>
<Name>UpdateUnixUser</Name>
<Description>Update a UNIX user</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.UpdateBean

</Class-Name>
<Param name="bean_object" value="user"/>
<Param name="key_field0" value="constant:home"/>
<Param name="key_value0" value="new_home_directory"/>

</Action>
</Process-Node>
Chapter 4304



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateCustomAttributesNNMNode

com.hp.ov.activator.mwfm.component.builtin.nnmrequest.UpdateCustomAttributesNN
MNode 

The node supports the operation updateCustomAttributes (both in NodeBeanService 
and InterfaceBeanService). The bean_type parameter must be specified in order to 
determine which of the two available operations will be actually invoked..

Table 4-125 UpdateCustomAttributesNNMNode Parameters

Name Required Description Default Type

module_name Yes The name of the NNMi module used 
to connect to a specific NNMi server

None String

bean_type Yes The name of a bean type. The 
bean type can have one of the 
following values: 
NNM_NODE_BEAN
NNM_INTERFACE_BEAN

None String

bean_id Yes The the identifier of the bean whose 
custom attributes will be updated.

None String

action Yes The parameter determines which 
operation is to be performed: The 
value can be either "ADD" or 
"REMOVE".

None String

custom_att
ribute_nam
e0,
custom_attri
bute_name1,
....
custom_attri
bute_nameN

No Custom attribute name None String

custom_att
ribute_val
ue0,
custom_attri
bute_value1,
....
custom_attri
bute_valueN

No Custom attriubte value None String

custom_att
ribute_map 

Yes, If no 
custom_att
ribute_nam
e is 
specified

The key-value pair set within 
the Map will be the 
name-value list of custom 
attributes to be updated

None Object
Chapter 4 305



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateInProgress

com.hp.ov.activator.mwfm.component.builtin.UpdateInProgress 

The node updates the value of the service-instance parameter called IN_PROGRESS for a 
given service identifier.

Example 4-101 UpdateInProgress - use in the workflow

<Process-Node>
<Name>Update IN_PROGRESS</Name>

<Action>
<Class-Name>

com.hp.ov.activator.mwfm.component.builtin.UpdateInProgress
</Class-Name>
<Param name="service_id" value="customer_id"/>  
<Param name="status" value="available"/>

</Action>

</Process-Node>

Table 4-126 UpdateInProgress Parameters

Name Required Description Default Type

service_id Yes Unique identifier that the technical 
parameters are bound to.

None String

db No Name of the database pluggable 
module to be used. Defaults to db

“db” String

status Yes New status value to set the 
IN_PROGRESS 
service_instance_parameter to. 
This is specified as a constant 
string. You can use any set of strings 
for the status values that you want.

None String
Chapter 4306



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateInventory

com.hp.ov.activator.mwfm.component.builtin.UpdateInventory

The node creates or updates instances in the inventory. It sets RET_VALUE to 0 if 
successful, and to 1 if create or update fails. The supplied value of the primary key 
determines whether the node creates or updates instances in the inventory. If the key 
already exists, the specified attributes are modified otherwise a new instance is created 
in the inventory.

Values can be passed to an inventory object either by specifying a list of 
key_field/key_value pairs or by passing an object containing the inventory bean.

Table 4-127 UpdateInventory Parameters

Name Required Description Default Type

db No Name of the database module to be 
used.

“db” String

bean Yes Name of the JavaBean class that is 
used for storing the data.

None String

bean_object No The name of the variable 
containing the inventory bean 
object to by stored in the inventory.

None Object

key_field0, 
key_field1... 
key_fieldN

No Name of a key in the JavaBean that 
is updated or created. The parame-
ter must be repeated for all 
attributes in the JavaBean being 
updated or initially assigned. 
Note that when a JavaBean is 
updated the primary key must 
always be present in the list of 
keys, even if it is not updated.
Note that the key_fields may be 
case packet variables.

None String

key_value0, 
key_value1, 
key_valueN

No Used in conjunction with the 
key_field attributes to specify the 
new value of the individual 
attributes in the JavaBean

None Depends 
on the 
bean

bean_variable No Name of the variable where the 
created/updated JavaBean instance 
is returned.

None Object

strict_crea
te

No When set to “true” the node 
will run in “strict create” mode 
which means that the node will 
fail if a bean with the specified 
key does already exist.

Can not be used together with 
the strict_update parameter.

false Boolean
Chapter 4 307



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
strict_upda
te

No When set to “true” the node 
will run in “strict update” mode 
which means that the node will 
fail if a bean with the specified 
key does not exist.

Can not be used together with 
the strict_create parameter.

false Boolean

store_audit No If audit is enabled in the 
Workflow Manager’s 
configuration file as well as in 
the Inventory Bean’s XML 
resource definition file an audit 
record will be written each time 
this node is executed.

To disable audit for the node set 
this parameter to “false”.

true Boolean

Table 4-127 UpdateInventory Parameters

Name Required Description Default Type
Chapter 4308



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-102 UpdateInventory - use in the workflow

This example uses the UpdateInventory node to modify the state of a port. The primary 
key is held in the variable port_id and the new state variable is denoted by the text 
Exclusive.

<Process-Node>
<Name>PortUsage=Exclusive</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.UpdateInventory

</Class-Name>
<Param name="bean" value="com.hp.ov.activator.example.Port"/>
<Param name="key_field0" value="ElementComponentId"/>
<Param name="key_value0" value="port_id"/>
<Param name="key_field1" value="UsageState"/>
<Param name="key_value1" value="Exclusive"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name=”port_id” type=”String”/>

</Case-Packet>

The following example shows how to create a new instance in the inventory of the 
JavaBean L2VPN, which is a service instance for Layer 2 VPN. Note that the comments 
attribute is specified as constant:comments because it has the same name as the 
case-packet variable.

<Process-Node>
<Name>Create L2 VPN</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.UpdateInventory

</Class-Name>
<Param name="bean" value="com.hp.ov.activator.example.L2VPN"/>
<Param name=”bean_variable” value=”vpn_obj”/>
<Param name="key_value0" value="service_id"/>
<Param name="key_field0" value="ServiceId"/>
<Param name="key_field1" value="CustomerId"/>
<Param name="key_value1" value="customer_id"/>
<Param name="key_field2" value="constant:comments"/>
<Param name="key_value2" value="comments"/>
<Param name="key_field3" value="Name"/>
<Param name="key_value3" value="vpn_name"/>
<Param name="key_field4" value="ActivationDate"/>
<Param name="key_value4" value="date"/>

</Action>
</Process-Node>

<Case-Packet>
<Variable name=”service_id” type=”String”/>
<Variable name=”customer_id” type=”String”/>
<Variable name=”comments” type=”String”/>
<Variable name=”vpn_name” type=”String”/>
<Variable name=”date=” type=”String”/>

</Case-Packet>
Chapter 4 309



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateServiceInstance

com.hp.ov.activator.mwfm.component.builtin.UpdateServiceInstance 

The node updates the service-instance repository to set new values for the desired 
technical parameters tied to a given unique service identifier.

Example 4-103 UpdateServiceInstance - use in the workflow

This example updates several technical parameters that are tied to a customer identifier. 

<Process-Node>
<Name>Update technical inventory</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.UpdateServiceInstance

</Class-Name>
  <Param name="service_id" value="customer_id"/>  
  <Param name="db"     value="db"/>
  <Param name="variable0" value="web_domain"/>
  <Param name="variable1" value="group"/>
  <Param name="variable2" value="homedir"/>
  <Param name="variable3" value="ipaddress"/>
  <Param name="variable4" value="logdir"/>
  <Param name="variable5" value="login"/>
  <Param name="variable6" value="machine"/>
  <Param name="variable7" value="password"/>
  <Param name="variable8" value="port"/>
  <Param name="variable9" value="pre_domain"/>
  <Param name="variable10" value="rootdir"/>
  <Param name="variable11" value="uid"/>

</Action>
</Process-Node>

Table 4-128 UpdateServiceInstance Parameters

Name Required Description Default Type

service_id Yes Unique identifier to which the 
technical parameters are bound.

None String

db No Name of the database module to use. “db” String

variable0, 
variable1, …

Yes Names of the different technical 
parameters to update. You must 
specify at least variable0.

None String
Chapter 4310



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
UpdateUCMDBCIsAndRelations

com.hp.ov.activator.mwfm.component.builtin.UpdateUCMDBCIsAndRelations

The updateUCMDBCIsAndRelations node will update the specified CIs and Relations in 
the uCMDB. 

This node can update multiple Cis and Relations in a single request. The node throws a 
UCMDBException in case there is an error while processing the request.

Table 4-129 UpdateUCMDBCIsAndRelations Parameters

Name Required Description Default Type

module_name Yes The name of the 
UCMDBRequestModule to be used

None String

ci_id0
ci_id1...
ci_idN

Yes (At 
least one 
is 
mandatory 
if no 
relations 
are 
specified. 
Not 
mandatory 
if relations 
are 
specified)

UCMDB Id of the CI which 
needs to be updated. A single 
CI can have multiple 
properties. This can be 
specified by giving the same CI 
Id again. 

None String

ci_type0
ci_type1...
ci_typeN

Yes(If ci_id 
has been 
specified)

Type of the CI. It can be any 
type defined in uCMDB

None String

ci_prop_name0
ci_prop_name1
...
ci_prop_name
N

No Name of the property to be 
associated with the CI

None String
Chapter 4 311



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ci_prop_value0
ci_prop_value1
...
ci_prop_value
N

No Value of the property name 
specified earlier. In case the 
property type is StringList or 
IntList then the property 
values can be a list of values. 
This can be specified by 
separating the values with the 
# character.
The ci_prop_value can also be 
specified as a case-packet 
variable. In case the property 
type is a StringList or an 
IntList then the case-packet 
variable has to be of type 
Object, Internally it can 
contain either a String[] or a 
List

None String

ci_prop_type0 No The type of the property. This 
can take the following values:

String
Byte
Integer
Long
Float
Double
Boolean
Date
XML
StringList
IntList

None String

rel_id0
rel_id1...
rel_idN

Yes 
(Atleast 
one is 
mandatory 
if no CIs 
are 
specified. 
Not 
mandatory 
if CIs are 
specified)

UCMDB Id of the Relation 
which needs to be updated.

None String

rel_type0
rel_type1...
rel_typeN

Yes (If 
relation id 
has been 
specified)

Type of the Releation None String

Table 4-129 UpdateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4312



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
rel_end1_id1
rel_end1_id2...
rel_end1_idN

Yes (If 
relation id 
has been 
specified)

End 1id of the relation. The ID 
of the CI at end 1 of the 
relation.

None String

rel_end2_id1
rel_end2_id2...
rel_end2_idN

Yes (If 
relation id 
has been 
specified)

End 2 id of the relation. The ID 
of the CI at end 2 of the 
relation.

None String

rel_prop_name
0
rel_prop_name
1
....
rel_prop_name
N

No Name of the property to be 
associated with the Relation

None String

rel_prop_value
0
rel_prop_value
1
...
rel_prop_value
N

No Value of the property name 
specified earlier In case the 
property type is StringList or 
IntList then the property 
values can be a list of values. 
This can be specified by 
separating the values with the 
# character
The rel_prop_value can also be 
specified as a case-packet 
variable. In case the property 
type is a StringList or an 
IntList then the case-packet 
variable has to be of type 
Object, Internally it can 
contain either a String[] or a 
List

None String

rel_prop_type0
rel_prop_type1
...
rel_prop_type
N

No The type of the property. This 
can take the following values:

String
Byte
Integer
Long
Float
Double
Boolean
Date
XML
StringList
IntList

None String

Table 4-129 UpdateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4 313



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
date_format No Specifies the format in which 
the ci_property_value and 
rel_prop_values have been 
defined in case the property 
type is Date. The date format 
can be specified using standard 
java conventions used while 
defining a date format (as in 
the SimpleDateFormat class). 
In case this parameter is not 
specified then the date format 
is taken as the default one for 
the current locale in which 
HPSA has been deployed.

System's 
Locale's 
date 
format 
is taken

String

Table 4-129 UpdateUCMDBCIsAndRelations Parameters

Name Required Description Default Type
Chapter 4314



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
VariableMapper

com.hp.ov.activator.mwfm.component.builtin.VariableMapper 

The node sets the value of case-packet variables based on templates. A template for 
variable mapping is a string that can have embedded references to other case-packet 
variables. For example, to construct the name of a home directory, you might want to 
append the user name to a fixed root path. The template might be /home/%username%. 
The %varname% syntax indicates the portions of the template that should be replaced.

The mappings can be specified in the workflow node parameters or can be placed in a 
template file. The template file can then be referenced from multiple workflows.

It is valid to specify both a template_file and individual variables to be mapped.

The node always maps a string value to the case-packet variable specified. If you use the 
node to copy the value of a field in a bean when that value is null, then the resulting 
string will have the value “null”. If you need to copy an object, then use Assign node.

See Also

• “Assign” on page 106

 

Example 4-104 VariableMapper - use in the workflow

This example sets the value of the homedir variable to /home/ravi and the password 
variable to raviPW and assumes that the variable login has the value ravi.

<Process-Node disablePersistence="true">
<Name>Map Values</Name>
<Action>

<Class-Name>

Table 4-130 VariableMapper Parameters

Name Required Description Default Type

template_file No Name of a file that holds a list of 
mappings. The default path to find 
files is 
$ACTIVATOR_ETC/template_files. 
You can specify an absolute path 
name.

Mappings in the file are each on a 
separate line and have the following 
syntax var=template

None String

name of a 
case-packet 
variable

No Value of the parameter is a template 
string for setting the new value of the 
indicated case-packet variable.

None String

use_solution_
dir

No When set to "true", the nodes will 
read from 
$SOLUTION_ETC/template_files 
instead of 
$ACTIVATOR_ETC/template_file
s.

false boolea
n

Chapter 4 315



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
com.hp.ov.activator.mwfm.component.builtin.VariableMapper
 </Class-Name>

<Param name="homedir" value="/home/%login%" />
<Param name="password" value%login%PW" />

</Action>
</Process-Node>
Chapter 4316



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
WasPreviousNodeOK

com.hp.ov.activator.mwfm.component.builtin.WasPreviousNodeOK

The node tests whether the previous node was executed normally. If the previous node 
was processed correctly, the workflow follows the true branch otherwise it follows the 
false branch. The previous node was executed normally if the RET_VALUE has the value 
0.

Example 4-105 WasPreviousNodeOK - use in the workflow

This example checks whether the previous node in the workflow was processed correctly. 
If the node was processed correctly, the next node is PrintOkMessage otherwise the 
PrintFailedMessage node is next. The RET_VALUE and RET_TEXT variables from the 
previous node are saved in the case-packet variables last_ret_value and 
last_ret_text

<Rule-Node disablePersistence="true">
<Name>WasPreviousNodeOK</Name>
<Description>Check the previous node</Description>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.WasPreviousNodeOK

 </Class-Name>
<Param name="priv_ret_text" value="last_ret_text" />
<Param name="priv_ret_value" value="last_ret_value" />

</Action>
<True-Next-Node>PrintOkMessage</True-Next-Node>
<False-Next-Node>PrintFailedMessage</False-Next-Node>

</Rule-Node>

Table 4-131 WasPreviousNodeOK Parameters

Name Required Description Default Type

priv_ret_value No This argument makes it 
possible to save the value of 
the system case-packet 
variable RET_VALUE for the 
previous node. This value 
may be necessary to handle 
errors later on.

None Integer

priv_ret_text No This argument has the same 
functionality as the above 
apart from saving the 
RET_TEXT variable.

None String
Chapter 4 317



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
WriteCasePacket

com.hp.ov.activator.mwfm.component.builtin.WriteCasePacket 

The node provides a way to write the contents of a case-packet to a file or to a sender 
module. This is typically used for testing.

Table 4-132 WriteCasePacket Parameters

Name Required Description Default Type

file Yes, if 
sender is 
not specified

Name of the file to which the 
case-packet is written. The value of 
this parameter can be a case-packet 
variable that contains the name of the 
file, or can be a constant (specified as 
constant:X where X is the name of 
the file).

If the path name to the file is not an 
absolute path, the file is created 
relative to $ACTIVATOR_VAR/tmp

None String

sender Yes, if file 
is not 
specified

Module name of a sender module. None String
Chapter 4318



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
WriteDataToDatabase

com.hp.ov.activator.mwfm.component.builtin.WriteDataToDatabase

The node writes or updates data in the DATABASE_MESSAGE table in the database.

The first time data is written the message_url is not required. A message id will be 
returned as an identifier in the output parameter output_value.

When updating or appending data the message_url must contain the message id.

The data to be written must be given in the parameter message_data.

If an identifer must be written to the identifer column this information can be provided 
in the parameter identifier.

If the node is used to update existing data an optional parameter "data_position" is 
provided.

Example 4-106 Write Data

<Process-Node>
<Name>WriteDataToDatabase</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.WriteDataToDatabase

 </Class-Name>
<Param name="message_data" value="saveData" />
<Param name="output_value" value="newMessageId" />

</Action>
</Process-Node>

Table 4-133 WriteDataToDatabase Parameters

Name Required Description Default Type

message_url No Name of the case packet variable 
holding the message id. The 
syntax is db:<message_id>

None String

identifier No Name of the case packet variable 
holding the identifier. The 
information will be written in 
the identifier column

None String

output_value Yes Case packet variable holding the 
returned message id. The syntax 
is db:<message_id>.

None String

message_data Yes Name of the case packet variable 
containing the message to be 
written.

None Object 
or 
String

data_position No The value of this parameter is 
the ordinal position from where 
the data is written. 

None String
Chapter 4 319



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-107 Update Data

<Process-Node>
<Name>WriteDataToDatabase2</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.WriteDataToDatabase

 </Class-Name>
<Param name="data_position" value="31" />
<Param name="message_data" value="saveData" />
<Param name="message_id" value="newMessageId" />
<Param name="output_value" value="newMessageId" />

</Action>
</Process-Node>
Chapter 4320



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
XMLMapper

com.hp.ov.activator.mwfm.component.builtin.XMLMapper 

The node maps fields from an XML message to case-packet variables.

To set each case-packet variable, there is a specification for finding the proper element of 
the XML message. The specification is similar to a directory path. Each element in the 
tree is separated with the slash character. 

If you want to test an attribute of an element, put a pipe (|) character at the end, and 
append the name of the attribute to retrieve (Msg/Body|ID). It is valid to specify both a 
template_file and individual variables to be mapped.

The XMLMapper node supports the use of the hash character (#) for inserting lists. When 
# is used together with a numeric value (#<number>), reference is made to a specific 
entry in a list. For instance, (#5) fetches the 5th entry from a list.

By default, the XMLMapper node raises an exception if it cannot find specified tags for a 
mapping. You can indicate to the node whether it should ignore such cases or not. If the 
parameter ignore_missing_tags has a value of “true” and the tags for one of the 
specified mappings cannot be found in the XML file, an exception will not be raised, but 
the variable intended to receive the value will be set to a default value ( “ ” for Strings, 0 
for Integer and Float, “false” for Boolean). If this is the case, the XMLMapper node sets 
RET_VALUE to 1 to indicate that some values were not mapped.

The RET_VALUE variable is updated with a value of 0 if reading and parsing the XML file 
are successful or a value of 1 in case of an error. 

The XMLMapper node uses a special syntax to access multiple tags of the same name. For 
example, if the following statement appears in the XML file:

<Parameter name="option_type" value="/msg/body/option#/type"/>

The following code would be expected:

<msg>
<body>

<option>
  <type>A</type>
 </option>
 <option>
  <type>B</type>
 </option>
 <option>
  <type>C</type>
 </option>
</body>

</msg>

This would cause the option_type variable (a variable of type Object that was 
previously created) to contain an array of three values { "A", "B", "C" }.

It is also possible to extract information from an XML message which does not have a 
root element if the validation parameter is set to “false”. For example, for the following 
XML message: 

<A><B>b1</B><C>c1</C></A>
<A><B>b2</B></A>
<A><C>c3</C></A>
<A><B>b4</B></A>

With the mapping: 
Chapter 4 321



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<Parameter name=”varB” value=”A/B”/>

<Parameter name=”varC” value=”A/C”/>

Gives the following two objects: 

varB=Object[]{”b1”,”b2”,”b4”}

varC=Object[]{”c1”,”c3”}

The XMLMapper node supports the functionality to extract XML parts of the XML 
message. Using the above example and changing the mapping to the following: 

<Parameter name=”varB” value=”A”/>

Gives the following object:

varA= Object[]{”<B>b1</B><C>c1</C>”,”<B>b2</B>”,”<C>c3</C>”,”<B>b4</B>”}

The XML to be mapped is specified using the action parameter xml_url. This can be a 
file (an absolute path or a filename relative to $ACTIVATOR_VAR), or message id that 
refers to message stored in the database. Alternatively, the XML can also be specified 
using the action parameter xml_var.

Table 4-134 XMLMapper Parameters

Name Required Description Default Type

xml_url Yes (if not 
xml_var is 
specified)

The file to be mapped (an 
absolute path, or a filename 
relative to 
$ACTIVATOR_VAR), or the 
message id that refers to a 
message stored in the 
database, or a data string. 
The syntax is file:<file 
path>, data:<string>, 
or db:<message_id>.

None String

template_file No Name of a file that holds a 
list of mappings. The default 
path to find files is: 
$ACTIVATOR_ETC/template_
files. You can specify an 
absolute path name.

The mappings in the file are 
each on a separate line and 
have the following syntax: 
var = template

None String

<name of a 
case-packet 
variable>,…

No Value of the parameter is a 
template string for setting 
the new value of the 
indicated case-packet 
variable.

None String

validate No By default, the XML file is 
validated against its declared 
DTD. Set this parameter 
value=false if validation is 
not to be carried out.

None Boolean
Chapter 4322



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ignore_missing_
tags

No Indicates whether XML tags 
that are not found will cause 
an exception to be raised or 
not. Note that the parameter 
is ignored when inserting a 
list. When used together, the 
operators # and | must be 
grouped so that # comes last. 
For example, an array with 
values 1 and 2 can be fetched 
from 
<A><B b=”1”/><B 
b=”2”></A> 
by typing A/B|b# (not 
A/B#|b)

“false” Boolean

xml_var Yes (if not 
xml_url is 
specified)

The name of the 
case-packet variable 
containing the XML 
message.

None String

preserve_variabl
e_index

No Indicating if wheater an 
optional element having 
been missed out should be 
represented by a null 
value

False Boolean

use_solution_dir No When set to "true", the 
nodes will read from 
$SOLUTION_ETC/templ
ate_files instead of 
$ACTIVATOR_ETC/templ
ate_files.

false Boolean

Table 4-134 XMLMapper Parameters (Continued)

Name Required Description Default Type
Chapter 4 323



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Example 4-108 XMLMapper - use in the workflow

This example parses an incoming XML file to set the value of the variables custid and 
uid. The case-packet message_url contains the file path or message id.

<Process-Node>
<Name>XML mapper</Name>
<Action>

<Class-Name>
com.hp.ov.activator.mwfm.component.builtin.XMLMapper

</Class-Name>
<Param name="xml_url" value="message_url" />
<Param name="custid" value=”msg/header/customer_id" />
<Param name="uid" value=msg/body/login|uid" />

</Action>
</Process-Node>

Example 4-109 XMLMapper - incoming message to be parsed

This example of an XML message will set the custid to 12345 and the uid to 522.

<msg>
<header>
 <customer_id>12345</customer_id>
 <message_id>93456</message_id>
 <service_name>OVACT_ActivateWeb</service_name>
</header>
<body>
 <domain>storactive.cnd.hp.com</domain>
 <login uid=”522” group=”users”>mylogin0</login>
 <password>mypass01</password>
</body>

</msg>

XML Namespaces

The XMLMapper node has a basic understanding of XML namespaces. To specify a 
namespace, separate the namespace from the element with a colon (‘:’):

<soap:Envelope>

To select the above element, use:

/soap:Envelope/...

Example 4-110 XMLNamespaces

<?xml version=”1.0” encoding=”UTF-8”?>
<Document
 xmlns:ns1="http://www.hp.com/ns1"

xmlns:ns2="http://www.hp.com/ns2">
 <ns1:Test>

<ns1:value>test</ns1:value>
</ns1:Test>
<Underscore>_</Underscore>
<ns2:Test>

<ns2:value>succeeded</ns2:value>
</ns2:Test>
</Document>

In the above example ‘test’ value can be extracted by the following path:

/Document/ns1:Test/ns1:value
Chapter 4324



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
The ‘succeeded’ value can be extracted by the following path:

/Document/ns2:Test/ns2:value

The ‘underscore’ value can be extracted by the following path:

/Document/Underscore
Chapter 4 325



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
XMLParser

com.hp.ov.activator.mwfm.component.builtin.XMLParser 

The node allows validating an XML against a DTD or W3C Schema and also allows 
retrieval of data from the xml using the W3C XPath notation. The node will map values 
corresponding to the XPaths to the specified case-packet variables.

The XMLParser node will only support XPaths with absolute paths conforming to XPath 
1.0 specification. The XMLParser does not support specifying of paths in relative format 
nor does the node support the XPath AND operator(|).

This node can read an xml from a case-packet variable, or a file or from a database 
message. In case the xml is read from a case-packet variable then the xml_var 
parameter needs to be specified and in case the xml is read from a file or a db message id 
then the message_url parameter has to be specified. Specifying either one of these 
parameters is mandatory. However both these parameters cannot be specified together. 

The XMLParser node also supports parsing an xml which does not have root nodes. 
However to enable this, the "validate" parameter must be set to false. XMLParser node 
also supports an XML with namespaces. To parse an xml with namespaces the 
namespace prefixes and the namespace urls used in the XML needs to be specified using 
the namespace_prefix and the namespace_url parameters. Multiple prefixes and 
namespaces can be specified.

The input xml can either be validated against a DTD or a schema. The parameter 
"validate" determines if the input xml needs to be validated or not. The value of this 
parameter is set to "true" by default.  The value of the parameter definition_language 
determines whether the validation has to be against a DTD or a W3C Schema. The 
default value of this parameter is "W3CSchema".The schema or the DTD file can either 
be embedded as part of the input XML or specified separately using the definition_url 
parameter. In case schema/dtd has been specified in the definition_url parameter and 
also embedded in the document, then the xml is validated against the file specified by 
the definition_url parameter.

The XMLParser allows retrieval of data from the XML using the XPath notation. The 
result retrieved corresponds to the type of case-packet variable defined. In case the 
case-packet variable is of type Object, then the result retrieved will be a String array of 
values of all the nodes matching the XPath. In case the case-packet variable is of any 
other type then the value of the first node matching the XPath will be returned.

To set each case-packet variable, an XPath corresponding to the element or attribute 
whose value needs to be fetched has to be given.

Consider the XML:

<msg>
<body name=”item1”>

<option name=”1”>
  <type>A</type>

<colour>Red</colour>
 </option>
 <option>
  <type>B</type>
 </option>
 <option name=”2”>
  <type>C</type>

<colour>Black</colour>
 </option>
</body>
Chapter 4326



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
<body name=”item2”>
<option name=”3”>

<type>D</type>
<colour>Blue<colour>

</option>
<option name=”2”>

<type>F</type>
<colour>Yellow</colour>

</option>
</body>

</msg>

In case the value of the first type node needs to be fetched then the XPath can either be:

/msg/body/option/type 

Or

/msg/body/option[1]/type

It is to be noted that in case of XPath notations the index starts from 1 and not 0.  In 
both cases the case-packet variable needs to be of type String.  The value returned will 
be string "A".

In case the XMLParser  cannot find specified tags for an XPath, then by default,  the 
node returns default values, the variable intended to receive the value will be set to a 
default value ( " " for Strings, 0 for Integer and Float, "false" for Boolean).   In case an 
exception needs to be raised when a tag is not found then you can set the 
ignore_missing_tags parameter to false. The default value of this parameter is true. 
However the ignore_missing_tags parameter is not considered if the case-packet 
variable is of type Object.

In case multiple values need to be fetched, then the XPath /msg/body/option/type needs 
to be given with the case-packet variable set as Object. The value returned will be the 
string array {"A", "B", "C", "D", "E", "F"}.

In case the type of the case-packet variable is Object and the xml does not have the 
element corresponding to the XPath then an "" is placed in the string array as a 
placeholder for the element. For example, the element colour is not present in the second 
option node of the example. When the XPath has been specified as 
/msg/body/option/colour then the value returned will be a string array with the values 
{"Red", "", "Black", "Blue", "", "Yellow"}.

Attributes can be fetched by prefixing them with the @ symbol. The value of an attribute 
can be fetched by using the XPath /msg/body/option/@name.

XPaths can also be specified in a template file. The way to specify a variable in a 
template file is as follows <variablename>=<xpath>. For example if the case-packet 
variable name is option_type and the xpath that need to be defined is 
/msg/body/option/type then the same can be defined as 
option_type=/msg/body/option/type. It is to be noted that the case-packet variable name 
"option_type" needs to be defined in the workflow.

It is valid to specify both a template_file and individual variables to be mapped. In case 
the same variable name has been specified both in the template-file and the individual 
variable, then the XPath defined against the individual variable takes precedence.
Chapter 4 327



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
Table 4-135 XMLParser Parameters

Name Required Description Default Type

xml_var Yes (if 
message_u
rl is not 
given)

The case packet variable 
which contains the xml

None String

message_url Yes (yes if 
xml_url is 
not given)

The file to be mapped (an 
absolute path, or a filename 
relative to 
$ACTIVATOR_VAR), or the 
message id that refers to a 
message stored in the 
database, or a data string. 
The syntax is file:<file 
path>, data:<string>, 
or db:<message_id>.

None String

validation No Indicates whether the xml 
needs to be validated against 
a DTD/Schema

True Boolean

definition_langu
age

No Indicates the type of 
language used to validate 
the xml. Possible values 
are DTD and W3CSchema

W3CSch
ema

String

definition_url No The url to locate the 
schema or the DTD(an 
absolute path, or a 
filename relative to 
$ACTIVATOR_ETC/confi
g), The syntax is file:<file 
path>. 

None String

template_file No Name of a file that holds a 
list of mappings. The default 
path to find files is: 
$ACTIVATOR_ETC/template_
files. You can specify an 
absolute path name.

The mappings in the file are 
each on a separate line and 
have the following syntax: 
var = template

None String

use_solution_dir No When set to "true", the 
nodes will read from 
$SOLUTION_ETC/templ
ate_files instead of 
$ACTIVATOR_ETC/templ
ate_files.

false Boolean
Chapter 4328



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
variable0
variable1
...
variableN

No One or more case-packet 
variables whose values 
are being requested. In 
case any variable name 
matches with the one 
specified in a template file 
as well, then the XPath 
specified as variable in 
the node takes precedence 
over the one defined in the 
template-file.

None String/o
bject

xpath0
xpath1
...
xpathN

No The XPath that should be 
fetched against each 
corresponding variable. In 
case namespace_prefix 
values have been 
specified, then the xpaths 
should also contain the 
namespaces prefixed 
according to xpath 
conventions.

None String

namespace_prefi
x0
namespace_prefi
x1
...
namespace_prefi
xN

No The namespace prefixes 
that are used in the input 
XML

None String

namespace_url0
namespace_url1
...
namespace_urlN

Yes (if 
namespac
e_prefix 
has been 
specified.)

In case the XML contains 
namespaces, the 
namespace urls that map 
to the specified prefixes 
should be specified in this 
parameter.

Table 4-135 XMLParser Parameters (Continued)

Name Required Description Default Type
Chapter 4 329



Workflow Node and Handler Library
Process Nodes, Rule Nodes, and Switch Nodes
ignore_missing_
tags

No Indicates whether XML tags 
that are not found will cause 
an exception to be raised or 
not. Note that the parameter 
is ignored when inserting a 
list. When used together, the 
operators # and | must be 
grouped so that # comes last. 
For example, an array with 
values 1 and 2 can be fetched 
from 
<A><B b=”1”/><B 
b=”2”></A> 
by typing A/B|b# (not 
A/B#|b)

“false” Boolean

Table 4-135 XMLParser Parameters (Continued)

Name Required Description Default Type
Chapter 4330



Workflow Node and Handler Library
Handlers
Handlers
This section describes the handlers supplied with Service Activator. Each of these 
handlers is suitable as an error handler or an end handler. Each handler is implemented 
by a Java class. The name of the handler is the name of the class that implements it. 
Note, however, that it is the full name (including the package name) that uniquely 
identifies the handler. All of the built-in handlers shipped with Service Activator are 
from the same package (com.hp.ov.activator.mwfm.component.builtin).
Chapter 4 331



Workflow Node and Handler Library
Handlers
ComposeMessageHandler

com.hp.ov.activator.mwfm.component.builtin.ComposeMessageHandler

This handler behaves identically to the ComposeMessage node; i.e. the handler can com-
pose a message string based on a template and a number of case-packet variables..

See also

• “ComposeMessage” on page 111

Table 4-136 ComposeMessageHandler Parameters

Name Required Description Default

template_file Yes if 
template_va
r is not used

Name of the file in which the 
template is to be found. The value of 
this parameter can be a case-packet 
variable that contains the name of the 
file, or can be a constant (specified as 
constant:X where X is the name of the 
file).

The file is expected to exist in one of 
the directories 
$SOLUTION_ETC/template_files 
or 
$ACTIVATOR_ETC/template_file
s, depending on the value of the 
use_solution_dir parameter.

None

template_var0, 
template_var1, 
... 
template_varN

Yes if 
template_fi
le is not used

Name of a case-packets available that 
contains the template strings.

None

user_solution_dir No When set to “true”,the handler 
will read from 
$SOLUTION_ETC/template_files
instead of 
$ACTIVATOR_ETC/template_file

false

output_file Yes if 
output_var is 
not used

Name of the file to which the 
composed message is to be 
written. The value of this 
parameter can be a case-packet 
variable that contains the name 
of the file, or it can be a constant 
(specified as constant:X where X 
is the name of the file).

If the path name to the file is not 
an absolute path, the file is 
created relative to 
$ACTIVATOR_VAR/tmp

None
Chapter 4332



Workflow Node and Handler Library
Handlers
output_var Yes if 
output_file 
is not used

Name of a case-packet variable in 
which the composed message is 
placed.

None

Table 4-136 ComposeMessageHandler Parameters

Name Required Description Default
Chapter 4 333



Workflow Node and Handler Library
Handlers
MultiAssignHandler

com.hp.ov.activator.mwfm.component.builtin.MultiAssignHandler

This handler behaves identically to the MultiAssign node; i.e. the handler can assign val-
ues to multiple case-packet variables..

See also

• “MultiAssign” on page 213

Table 4-137 MultiAssignHandler Parameters

Name Required Description Default

Variable0, 
Variable1, 
...
VariableN

Yes Case-packet variables to be set. None

Value0, 
Value1, 
...
ValueN

Yes New value to set for the variable. 
It can be a case-packet variable or 
a constant (specified as 
constant:X where X is the 
constant).

None
Chapter 4334



Workflow Node and Handler Library
Handlers
DoNothingHandler

com.hp.ov.activator.mwfm.component.builtin.DoNothingHandler

The handler does nothing except for logging a message. The parameters of this handler 
are the same as those of the DoNothing node.

See also

• “DoNothing” on page 137

Table 4-138 DoNothingHandler Parameters

Name Required Description Default

message No The message to be logged. None
Chapter 4 335



Workflow Node and Handler Library
Handlers
PutMessageHandler

com.hp.ov.activator.mwfm.component.builtin.PutMessageHandler

The handler puts a message on a message queue. The messages will be persisted in th 
database. Optionally, the messages can also be associated with a solution. Since roles 

cannot be associated with handlers the workflow's default role will be used for posting 
the message.

NOTE If the message is more than 4000 bytes the message will be truncated to 4000 bytes.

Table 4-139 PutMessageHandler Parameters

Name Required Description Default

queue Yes Queue where the message is left. This 
parameter can either be a constant or 
a case-packet variable. Spaces are not 
allowed. 

None

message Yes Message to be printed. Any %s 
symbols appearing in the string are 
replaced by consecutive paramN 
parameters. Functions similar to 
printf in the C programming 
language.

None

param0,
param1,
...
paramN

No If the message contains any %s 
symbols, the first one is replaced by 
the value of the variable indicated by 
param0, the next by param1, and so 
on. The variables can be of any type. 
However, their values are converted 
to strings.

None

service_id No The Service Identifier value used for 
associating the message with a 
service or a solution.

None

order_id No The order Identifier value used for 
associating the message with a 
service or a solution.

None

type No The type value of the workflow None

state No The state value of the workflow None
Chapter 4336



Workflow Node and Handler Library
Handlers
ReleaseResourceHandler

com.hp.ov.activator.mwfm.component.builtin.ReleaseResourceHandler 

The handler releases resources that have been reserved within a workflow. It would 
typically be used as an error handler. If the workflow reserves a resource but terminates 
abnormally before the resource is actually put into use, it might be appropriate to 
release the resource before the workflow completes. This handler can be used to release 
resources contained in specifically listed variables (use the parameters 
variable0...variableN) or to release all of the resources currently held in the 
RESERVATIONS variable. The parameters of this handler are the same as those of the 
ReleaseResource node.

See Also

• “ConfirmResourceReservation” on page 115 

• “ReleaseResource” on page 268 

• “ReserveResource” on page 273 

Table 4-140 ReleaseResourceHandler Parameters

Name Required Description Default

db No Database module to use in order to 
perform the update.

“db”

variable0, 
variable1... 
variableN

No Name of a case-packet variable that 
holds the resource to be released. If 
no variables are specified then all 
reserved resources in the 
RESERVATIONS variable are released.

None
Chapter 4 337



Workflow Node and Handler Library
Handlers
SendMessageHandler

com.hp.ov.activator.mwfm.component.builtin.SendMessageHandler

This handler implement the same functionality as the SendMessage node; i.e. it sends 
messages using a SenderModule. It can use any module that implements the Sender-

Module interface (for instance, the SocketSenderModule or the JMSSenderModule).

The message to be sent can come from a case-packet variable, or from a file, or from the 
database.

When the handler completes, the value of the built-in case-packet variable RET_VALUE 
is set to 0 if the message was properly enqueued and to 1 if not.

See also

• “SendMessage” on page 283

Table 4-141 SendMessageHandler Parameters

Name Required Description Default

sender Yes Name of the Workflow Manager 
module that will send this message.

None

message_var Yes if 
message_url 
is not used

Name of a case-packet variable that 
contains the message to be sent.

None

message_url Yes if 
message_var 
is not used

Name of a case-packet variable that 
contains the name of the file or a 
message id representing a row in 
DATABASE_MESSAGE containing the 
message. The syntax is 
db:message_ido r 
file:filepath. A constant file 
name or message id can also be 
specified.

None
Chapter 4338



Workflow Node and Handler Library
Handlers
SyncHandler

com.hp.ov.activator.mwfm.component.builtin.SyncHandler 

The handler ensures that a child workflow synchronizes with its controller workflow 
before the workflow completes. Rather than placing a Sync node explicitly in every path 
of your workflow, you can use the SyncHandler to ensure that irrespective of the path 
the workflow follows, or even if the workflow terminates abnormally, the child workflow 
synchronizes with its parent workflow.

If you use the SyncHandler as an error handler, you can also specify a parameter to 
indicate what to do with the exception message. The value of the 
exception_destination parameter indicates the name of the case-packet variable in 
the target workflow that should receive the exception message.

The handler will ensure that the synchronization is done even in case where the child 
workflow tries to synchronize before the parent workflow enters the AskFor node. And 
irrespective of the parent waiting condition, the children workflows will not be parked in 
any queue. The sync module will record the response with the parent and the children 
will go on to completion.

See Also

• “AskFor” on page 101 

Table 4-142 SyncHandler Parameters

Name Required Description Default

job_id Yes Name of a case-packet variable 
that contains the job_id of the 
workflow waiting to synchronize.

None

queue Yes Name of the queue on which the 
workflow is waiting, specified as 
constant or a case packet variable 
that contains the queue name.

None

variable0, 
variable1...
variableN

Yes Names of the case-packet 
variables to be passed to the 
waiting workflow.

None

destination0, 
destination1...
destinationN

Nop Names of the case-packet 
variables in the parent workflow 
that are waiting to receive the 
matching variable from this 
workflow. By default, the 
variables are passed to variables 
of the same name in the waiting 
workflow. Destination parameters 
can be specified selectively for 
some or all of the indicated 
variables.

None
Chapter 4 339



Workflow Node and Handler Library
Handlers
exception_destination No The value of the 
exception_destination 
parameter indicates the name of a 
case-packet variable in the target 
workflow that should receive the 
exception message.

None

sync No Boolean value to indicate if a 
synchronization should be 
performed or not. Default value is 
true (synchronization will be 
performed).

true

Table 4-142 SyncHandler Parameters (Continued)

Name Required Description Default
Chapter 4340



Workflow Node and Handler Library
Handlers
VariableMapperHandler

com.hp.ov.activator.mwfm.component.builtin.VariableMapperHandler

This handler implement the same functionality as the VariableMapper node; i.e. it set 
the values of one or more case-packet variables based on templates and other 

case-packet variable values.

See also

• “VariableMapper” on page 315

Table 4-143 VariableMapperHandler Parameters

Name Required Description Default

template_file No Name of a file that holds a list of 
mappings. The directory to find files 
is$SOLUTION_ETC/template_fil
es or 
$ACTIVATOR_ETC/template_file
s, depending on the value of the 
use_solution_dir parameter.
You can specify an absolute path 
name.
Mappings in the file are each on a 
separate line and have the following 
syntax var=template

None

name of 
case-packet 
variable

No Name of a case-packets available that 
contains the template strings.

None

user_solution_dir No When set to “true”,the handler 
will read from 
$SOLUTION_ETC/template_files
instead of 
$ACTIVATOR_ETC/template_file

false
Chapter 4 341



Workflow Node and Handler Library
Handlers
Chapter 4342



5 Configuring the Workflow Manager

The Workflow Manager has many parameters that can be used to alter its behavior and 
tune its performance. Additionally, there are various Workflow Manager modules that 
can be configured to extend the capabilities of the Workflow Manager. These are all 
configured in the $ACTIVATOR_ETC/config/mwfm.xml file.
Chapter 5 343



Configuring the Workflow Manager
Setting the Workflow Manager Parameters
Setting the Workflow Manager Parameters
During installation, all of the Workflow Manager parameters are set either to default 
values or to the values provided by the administrator. To change the values after 
installation, use the following information:

1. Open the Workflow Manager configuration file in a text editor: 
$ACTIVATOR_ETC/config/mwfm.xml

Table 5-1 lists the variable parameters in this file. The only required parameters are 
Port and Max-Threads

2. After editing the file and saving the changes, stop and restart the Workflow Manager 
or press reload configuration in the UI. The ‘Reconfigurable’ column indicates all 
parameters specified in the mwfm.xml, whose value can be changed during runtime. 
The initial parameters of all configured modules can also be changed during 
runtime. For more details on reconfigurable parameters of individual nodes, see 
“Using the Workflow Manager Module Library” on page 354.

For example, if a user wants to change the maximum length of the pending items 
that is expected to be run by one of the worker threads in the pool, the value of 
Max-Work-List-Length must be modified so that the configuration can be reloaded 
from the UI.

Similarly, if the interval at which the cluster node must update its heartbeat status 
needs to be increased or decreased, the initial parameter keep_alive_time of the 
kee_alive module must be modified so that the configuration can be reloaded from 
the UI.

Table 5-1 Workflow Manager Parameters

Parameter Required Description Reconfigurable Default

Port Yes The port that the Workflow Manager is 
bound to. The RMI remote object that you 
can interact with is exported into this port.

No None

Max-Threads Yes The maximum number of threads that the 
Workflow Manager will use for its pool. 
This number limits the maximum number 
of process nodes being run at the same 
time. 

Yes None

Min-Threads No The minimum number of threads that the 
Workflow Manager will keep available to 
handle running workflows. 
If additional threads are required, the 
Workflow Manager creates dynamic 
threads up to the Max-Threads setting. 
(See the Spawn_List_Length 
discussion.) Dynamic threads expire after 
10 seconds of inactivity, or the time 
specified in Idle_Thread_Keep_
Alive.

Yes. Only increase is 
allowed, decrease 
will be ignored until 
next re-start

Max-Threads
Chapter 5344



Configuring the Workflow Manager
Setting the Workflow Manager Parameters
Idle_Thread
_Keep_Alive

No The amount of time (in seconds) that an 
idle dynamic thread exists before it expires 
and is destroyed (see the Min-Threads 
discussion) . This only refers to dynamic 
threads. 

Yes 10

Max-Work-
List-Length

No The maximum number of concurrently 
running jobs.

Yes 512

Max-Nodes-P
er-Thread

No The maximum number of workflow nodes 
for one job, which is executed in one worker 
thread before the worker thread is 
released. However the worker thread is 
always released when persistence is done.

Yes 5

Test-Mode No When set to true the workflow nodes which 
are marked with the test flag will be 
executed else they would not.

Yes false

Spawn-List-
Length

No If the number of pending work items 
exceeds this number, the Workflow 
Manager spawns a new dynamic thread to 
handle them (assuming it has not exceeded 
Max-Threads).

Yes 1% of 
Max_Work_
List_Length

Persistent-
Timeouts

No This parameter tells the Workflow 
Manager whether or not to reset the 
time-outs when recovering after a 
shutdown. The time that the system has 
been down is also taken into account when 
calculating timeout expirations.

Yes “true”

Initial-
Workflow-
Load

No If true, on start-up the Workflow Manager  
attempts to read and validate all of the 
workflows in the $ACTIVATOR_ETC/
workflows directory. Any errors are logged 
to the mwfm.stdout log file. 

No “true”

Statistics No Specifies the maximum workflow runtime 
history for the statistics manager within a 
Service Activator workflow. If this 
parameter is absent, no statistics are 
performed. Using the statistic manager 
might slow down the system.

No None

Admin-Role No Specifies the role that the Workflow 
Manager will consider to be an 
administrator. Some operations, such as 
the ability to delete all of the log files, are 
only authorized for users that are an 
administrator. In these cases, the Workflow 
Manager will test against this given role.

Yes None

Table 5-1 Workflow Manager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 5 345



Configuring the Workflow Manager
Setting the Workflow Manager Parameters
Queue-
Timeout-
Seconds

No This parameter indicates how long a 
nonpermanent queue will exist after it 
becomes empty. The default is 0 (zero) 
seconds; if this parameter is set to 0 
seconds, the Workflow Manager will 
demonstrate the same behavior that it did 
prior to the 4.0 release. 

Yes 0

Error-
Messages

No You can set the queue name and role to be 
used for internally generated error 
messages. The default queue is “Errors.” It 
is not created to be a permanent queue 
unless you declare it so. By default, the 
role associated with this queue is 
unassigned so anyone can view the error 
messages.

Use attributes on the <Error-Messages> 
tag to set these values, as shown here: 

<Error-Messages queue=“MyErrorQueue” 
role = “myrole” /> 

Yes “Errors”

Permanent-
Queue

No Unless declared to be a permanent queue, 
the message and request queues that are 
created during workflow steps (like 
PutMessage and AskFor) will be removed 
from the system when they become empty 
(after the declared timeout). You can 
declare some queues to be permanent and 
indicate one or more roles that will be able 
to see the queue even if there is nothing in 
the queue for that role. If the type 
attribute is not specified on the Queue tag, 
both a “request” and a “message” queue 
will be created. See the examples following 
this table for additional information.

Yes None

Java-Class-
Path

No Insert any extra jar or zip files to be 
searched by the java process and java 
rule nodes. The custom jar or zip files 
will be added to the head of the system 
generated list. Thus, any custom jar or 
zip files will be searched first when 
compiling/executing nodes.
<Java-Class-Path>your 
path</Java-Class-Path>

No None

Dyn-Class-P
ath

No Path the dynamic classes created by 
the java rule and java process nodes

No None

Resource-Ma
nager-RMI-H
ost

No The host name where the resource 
manger is running. Must be set to local 
host

No None

Table 5-1 Workflow Manager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 5346



Configuring the Workflow Manager
Setting the Workflow Manager Parameters
Example 5-1 Creating a Permanent Message and Request Queues Viewable by “rolex” and 
“roley” Users

<Permanent-Queue name="operator"> 
<Role>rolex</Role> 
<Role>roley</Role> 

</Permanent-Queue>

Example 5-2 Creating a Permanent Message Queue Viewable by “admin” Users Only

<Permanent-Queue name="admin" type="message"> 
<Role>admin</Role>

</Permanent-Queue>

Example 5-3 Creating a Permanent Request Queue Any User Can View

<Permanent-Queue name="sync" type="request"/>

Resource-Ma
nager-RMI-P
ort

No The RMI port for the Resource 
Manager.

No None

Resource-Ma
nager-RMI-N
ame

No The name with which the resource 
manager RMI interface is bound.

No None

Management
-Realm-User
name

Yes The user name for the HTTP 
connection to the JBoss CLI

No None

Management
-Realm-Pass
word

Yes The password for the HTTP connection 
to the JBoss CLI

No None

Table 5-1 Workflow Manager Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 5 347



Configuring the Workflow Manager
Understanding Workflow Manager Modules
Understanding Workflow Manager Modules
You can configure the Workflow Manager to enhance or customize the behavior of the 
system using configurable modules. Use the built-in Workflow Manager modules, or 
write custom Workflow Manager modules to provide a new or enhanced service for the 
Workflow Manager. 

You configure workflow modules in the file $ACTIVATOR_ETC/config/mwfm.xml. When 
the Workflow Manager starts, it reads mwfm.xml to determine which Workflow Manager 
modules to load and then loads these modules in the order that they are specified in the 
configuration file

You configure each module by specifying a name for the module and a Java class that 
provides the implementation. Additionally, some workflow modules allow or require 
configuration parameters to specify their behavior. The name you give to the module is 
important because that is how the engine or other modules or workflow nodes can find 
the module they are interested in using. Each workflow module has a unique name in 
mwfm.xml. This is distinct from the name of the Java class that implements it.

Some modules require a specific name because the Workflow Manager looks for a module 
with that name. For example, to be able to do user authentication, there must be a 
module named “authenticator”. See the detailed discussion of each module for an 
indication of whether it must be given a specific name.

Required and Typical Workflow Manager Modules

Some modules are required for Service Activator to function properly. In some cases, 
there is only one Java class that is available to provide the necessary functionality. In 
other cases, you have a choice of which Java classes to use to provide for the 
implementation.

Logging

The Workflow Manager looks for a module with the name “log_manager”. This module 
provides functions for logging operations. The “XMLLogModule” on page 434 is the 
built-in Java class to use for this functionality. The XMLLogModule logs messages using 
an XML format into regular files. The “SolutionXMLogModule” makes it possible for a 
solution to generate its own log files. 

Work Manager

The Workflow Manager processes the workflows one node at a time. When a workflow is 
started a work-item for processing the initial node of the workflow is placed on a work 
queue. The work queue is managed by a work manager module. As each node is 
completed, the thread processing the node places a new work-item for the next node in 
the workflow on the work queue, then the thread requests the next work item from the 
queue. Thus, the MWFM requires the presence of a work manager. If the mwfm.xml 
configuration file does not contain any module with the name “work_manager”, then the 
engine automatically uses the built-in WorkManagerModule introduced in release 3.6.
Chapter 5348



Configuring the Workflow Manager
Understanding Workflow Manager Modules
Transactional State

Using a transaction module, the Workflow Manager maintains the state of running 
workflows in a persistent fashion in the database or the file system. This means that, if 
the Workflow Manager is shutdown and restarted or the workflows are taken over by 
another cluster node, any workflows that were running at the time of shutdown resume 
running at the place they left off when the manager restarts. This also safely handles the 
case where the Workflow Manager shuts down unexpectedly. 

The Workflow Manager looks for a Workflow Manager module named 
“transaction_manager.” If it does not find a module with this name, it does not 
maintain a persistent state of running workflows.

When Running in a cluster environment you need to use the DBTransactionModule to 
ensure one cluster node can takeover jobs from another cluser node in case this node 
shut down unexpectedly.

If Service Activator is shut down while jobs are running and if the jobs must continue to 
run with the same workflow versions when restarted or when the jobs are taken over, a 
distribution module must be configured.

One class exists the “DBTransactionModule” on page 367 to use for this functionality.

Activation

An activation module provides the interface between the Workflow Manager and the 
activation engine (Resource Manager). Virtually all installations of Service Activator has 
one modules configured with the names “activator”. The “ActivationModule” on 
page 355 is the built-in Java classes to use for this functionality.

Authentication

The Workflow Manager looks for a module configured with the name “authenticator” 
and uses the module to answer three types of questions: 

• Authentication - Can a user with this name and this password log in to the system?

• Authorization - Is this user in the proper role to perform this task?

• Valid roles - Which roles are considered valid in the system?

If it does not find the “authenticator” module, the Workflow Manager does not perform 
any user authentication. Without an authentication module, any user can interact with 
the system and perform any task. If no authenticator is configured, then the answer to 
the first two questions above is always “yes”. The valid roles will in this case be none.

The system comes with five Workflow Manager modules for authentication. They are:

• DatabaseAdvancedAuthModule, which autheticates by using information saved in 
the database through the User Management Interface (see 
)“DatabaseAdvancedAuthModule” on page 364

HPUXAdvancedAuthModule, which authenticates HP-UX usernames 
(see “HPUXAdvancedAuthModule” on page 368).

• LDAPAuthModule, which authenticates usernames against an LDAP directory 
server (see “LDAPAuthModule” on page 384)

• LinuxAdvancedAuthModule, which authenticates Linux usernames 
(see “LinuxAdvancedAuthModule” on page 389)
Chapter 5 349



Configuring the Workflow Manager
Understanding Workflow Manager Modules
• WindowsAdvancedAuthModule, which authenticates Windows usernames 
(see “WindowsAdvancedAuthModule” on page 430)

It is also possible to provide your own authentication module. See “Writing New 
Authenticator Module” on page 459.

Database Access

The Workflow Manager looks for a module with the name “db”. This module will be used 
for all internal database access from the Workflow Manager. It is also this database 
which is often named “The System Database”.

One database module are provided with Service Activator the “JNDIDatabaseModule”. 
The module makes it possible to provide access to one or more databases that have a 
JDBC driver. It is typical to have a single module configured. Many of the built-in 
workflow nodes, by default, look for a module with the name “db” and a number of nodes 
would always use the module confiugred with the name “db”. 

Parent-Child Synchronization

The Workflow Manager looks for a module with the name "sync_module". Sync module 
will be used to synchronize parent and child workflows. The “SyncModule” on page 422 
is the only built-in Java class to use for this functionality. Every installation of Service 
Activator will have this module configured automatically. This will be used in both 
standalone and distributed mode of operation. The Workflow Manager requires the 
presence of a Sync module.

Receiving Messages

Typical configuration of the Workflow Manager have a module that receives messages 
and launches workflows to process each message. These messages arrive through a 
communication mechanism, such as a socket or bus.

The simplest communication mechanism is via sockets. The SocketListenerModule 
receives messages on a waiting socket and launches workflows to process each arriving 
message.

This functionality can be provided by a variety of Java classes, each using a different 
communication mechanism. The only module provided with Service Activator is the 
SocketListenerModule.

Because no other component of the system needs to obtain a handle to the 
SocketListenerModule, there are no other requirements for the name given to the 
module except that the name must be unique.

Sending Messages

Typical configurations of the Workflow Manager have a module to send messages from 
workflows to acknowledge the status of completed tasks. Here again is functionality that 
could be provided by a variety of Java classes.

The only module provided with Service Activator for this purpose is the 
SocketSenderModule. The SocketSenderModule sends messages from workflows to 
processes listening on a socket port.

The name given to the SocketSenderModule is important because your workflows (in the 
SendMessage nodes) need to refer to the module by its name. Although there is not any 
default or recommended name, “sender” is a useful convention to adopt.
Chapter 5350



Configuring the Workflow Manager
Understanding Workflow Manager Modules
Keep Alive

The keep alive module handles failover of jobs and monitoring of other cluster nodes in a 
distributed environment. Apart from this it is also monitoring the Resource Manager 
and the database connectivity to the System Database. This enables to overcome issues 
like machine failure or loss of database connectivity. This means that, if the workflow 
manager running in a cluster node is shutdown or a machine fails, the jobs running in 
that cluster node are continuously failed over to another cluster node.

The Workflow Manager must be configured with a module named “keep_alive.”

The “KeepAliveModule” on page 380 is the only built-in Java class to use for this 
functionality.

Distribution

Using a distribution module, the Workflow Manager handles load balancing in a 
distributed environment. This enables to distribute workflow execution to other nodes in 
a cluster. In case of an stanalone environment, it would distribute the jobs by itself.

If Service Activator is running with a distribution module configured and a request to 
start a job is received by the Workflow Manager, it requests the distribution module to 
handle the load balancing. 

The jobs are distributed among the currently active cluster nodes, which are online, not 
suspended, and not locked. If none of the nodes are active, an attempt will be made to 
start the job on the node which initiates the distribution. This is necessary in cases 
where a parent workflow starts a child workflow, and it should be permitted even if the 
cluster node is in a locked state.

A number of different distribution modules exits and the only difference between them 
are the algorithm used for load balancing. For a particular instance, only a single 
distribution module can be configured which will be used for distribution. All cluster 
nodes in a Service Activator installation must be running with the same distribution 
module.

The distribution module must be configured with the name “distribution_module”

The system comes with the following three load balancing schemes:

• RounbRobinDistModule, which distributes jobs across the cluster nodes in a round 
robin fashion. ( see “RoundRobinDistModule” on page 407)

• LoadFactorDistModule, which distributes jobs across the cluster nodes based on the 
load factor. ( see “LoadFactorDistModule” on page 391)

• QueueDistModule, which distributes jobs across the cluster nodes based on the 
numer of currently running jobs. (see “QueueDistModule” on page 406)
Chapter 5 351



Configuring the Workflow Manager
Understanding Workflow Manager Modules
Chapter 5352



6 Workflow Manager Module Library

The Workflow Manager comes with an extensive library of workflow modules. Each 
supplied module is described in detail here. Specific instructions for configuring each 
module are included.
Chapter 6 353



Workflow Manager Module Library
Using the Workflow Manager Module Library
Using the Workflow Manager Module Library
This chapter describes each of the built-in modules that you can use to configure the 
Workflow Manager. While it is always possible to write your own Java classes, in most 
cases these built-in modules provide all the functionality you need.

These modules are configured in the file $ACTIVATOR_ETC/config/mwfm.xml. The 
examples shown for each module are the XML that would be placed into this file.
Chapter 6354



Workflow Manager Module Library
ActivationModule
ActivationModule 
com.hp.ov.activator.mwfm.engine.module.ActivationModule

The ActivationModule links the Workflow Manager with the default activation engine 
(Resource Manager).

The module is accessed by the Activate workflow node. By default, the Activate node 
uses a module with the name “activator”. The Activate node may be configured to use 
a module with a different name.

If you do not use the default activation engine (ResourceManager), or if you do not use 
the Activate node, make sure this module is removed from the mwfm.xml file.

When using this module, the Activate node places an activation request on an 
activation queue for processing by the activation threads that are managed by this 
module. In addition, the node behaves like the AskFor node in that it posts a request on 
one of the request queues (named “activation”), thus, freeing the workflow thread for 
processing other workflows. The request is placed with the role “internal”. Thus, normal 
users do not see these requests unless they have the role “internal”. When activation 
completes, the module sends a response to the waiting request.

The activation threads also support prioritized handling of items in the activation queue. 
When an activation request is placed on the activation queue, the case-packet of the 
workflow is examined. If the case-packet contains a variable with the name PRIORITY, 
the value of it is used to order the processing of items in the queue. Items of a higher 
priority value are processed before items of a lower priority value. If the PRIORITY 
variable is not found, a priority of 0 is assumed. It is possible to assign a negative 
priority. The value of the PRIORITY variable is pass to the Resource Manager which 
then uses this value when an atomic task is finished with its use of a lock and another 
atomic task can be started.

The module is hardcoded to put all activations into the Activation queue. The job 
counter in the Operator UI uses this queue to calculate the number of outstanding 
activations.

See Also

• “Activate” on page 94 in this guide

• “Job Counters” on page 96 in HP Service Activator - Introduction and Overview

Table 6-1 ActivationModule Parameters

Parameter Required Description Reconfigurable Default

min_threads No The minimum number of threads to 
maintain for executing activations.

Yes. Only increase is 
allowed, decrease will be 
ignored until next 
re-start.

5

max_threads No The maximum number of threads to 
allow for executing activations.

Yes 20
Chapter 6 355



Workflow Manager Module Library
ActivationModule
See Also

• “Activate” on page 94 for more information about performing an activation from a 
workflow.

Example 6-1 ActivationModule

<Module> 
<Name>activator</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.ActivationModule
</Class-Name>
<Param name=”min_threads” value=”5”/>
<Param name=”max_threads” value=”20”/>

</Module>

queue_class No This can be set to the 
com.hp.ov.activator.mwfm.
module.WeightedEngineQueue, 
com.hp.ov.activator.mwfm.
module.SimpleEngineQueue, or
com.hp.ov.activator.mwfm.
module.PriorityEngineQueue

The WeightedEngineQueue use the 
PRIORITY case-packet variable in a 
weighted way to prioritize the items 
on which the activation threads 
operate. Items that have the same 
priority will be processed in FIFO 
order.

The SimpleEngineQueue will not do 
any prioritization of activation 
requests. They will be processed in 
FIFO order. 

The PriorityEngineQueue uses the 
PRIORITY case-packet variable to 
prioritize the items on which the 
activation threads operate. Items 
that have the same priority value 
will be processed in FIFO order.

No com.hp.ov.
activator.
mwfm.
module.
WeightedEn
gineQueue

refresh_interva
l

No The time interval between 
refreshing the internal cache 
which keeps data about which 
atomic tasks are deployed.

No 60000 
millisecond
s

Table 6-1 ActivationModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6356



Workflow Manager Module Library
AuditModule
AuditModule
com.hp.ov.activator.mwfm.engine.module.DBAuditModule

This workflow module provides the auditing mechanism that writes audit records using 
system database module. The AuditModule is used by the Audit node to write audit 
records and by the statistical servlet to collect workflow statistics. The module is also 
used to write an audit record when starting or killing a job and for erroneous workflow 
ends.

When the Audit node writes an audit record, the event type of the audit record will be 
“LOG_EVENT” by default. The event type used by the Audit node can be changed to any 
other event type (a String). Note that you can not use some reserved event types are 
these: 

• KILL_JOB_EVENT

• KILL_JOB_NULL_USER_EVENT

• START_JOB_EVENT

• END_JOB_EVENT

• EXCEPTIONAL_JOB_EVENT

• START_JOB_NULL_USER_EVENT

• INVENTORY_EVENT

The default audit module used by the Audit node is “auditor”. This can also be changed. 

When a job is started interactively (command line or operator UI), the event type is 
START_JOB_EVENT. If the start job occurs via another workflow or the 
SocketListenerModule, the event type is START_JOB_NULL_USER_EVENT. 

There are four different events for workflow end.

• END_JOB_EVENT. This event occurs when workflows finish their jobs gratefully.

• KILL_JOB_EVENT. This event occurs when a job is killed interactively (command line 
or the Operator UI).

• KILL_JOB_NULL_USER_EVENT. This event occurs when a job is killed via another 
workflow.

• EXCEPTIONAL_END_JOB_EVENT. This event occurs if a workflow is erroneous.

If an audit module with the name “auditor” is not specified, then auditing or collecting 
workflow statistics is not performed. You can enable or disable workflow statistics by 
setting the store_statistics parameter to “true” or “false”. Note that you can also 
enable or disable auditing or collecting workflow statistics for a particular (individual) 
workflow. To do this, change the workflow parameters in the Workflow Designer. 
Remember that workflow statistics are collected for END_JOB_EVENT only, which means 
that workflow statistics is not available for erroneous or killed workflows.

Information about which fields are written in an audit record can be found in 
$ACTIVATOR_ETC/sql/createAuditDB.sql.
Chapter 6 357



Workflow Manager Module Library
AuditModule
An audit record consists of one or more records in the database. It is possible to associate 
additional data to an audit record using the audit parameters. In the default setup, the 
value of a parameter is a string of max 200 characters. However you can modify the 
value to be of type LONG meaning that up to 2 GB of data can be stored. The change is 
only possible specifically for the Value column. 

Use the following command to alter the column type: 

alter table audit_record_params modify (value LONG)

To change the column type to the default, type: 

alter table audit_record_params modify (value VARCHAR2(200))

Audit records are always saved in the System Database. The database module 
configured with the name “db”.

Table 6-2 AuditModule Parameters

Parameter Required Description Reconfigurable Default

exclude0
exclude1...
excludeN

No Event types to exclude from 
auditing: 

KILL_JOB_EVENT
KILL_JOB_NULL_USER_EVENT
LOG_EVENT
START_JOB_EVENT
START_JOB_NULL_USER_EVENT
END_JOB_EVENT
EXCEPTIONAL_END_JOB_EVENT 

Your custom event type can also be 
excluded by specifying it in this 
list.

Yes. You can add 
or remove as many 
excludeX 
parameters as you 
need

None

store_statistics No Indicates whether to store or not 
workflow statistics.

Yes “false”

store_audit No Indicates whether to store or not 
audit records for all workflows.

Yes “false”
Chapter 6358



Workflow Manager Module Library
BusinessCalendarModule
BusinessCalendarModule
com.hp.ov.activator.mwfm.engine.module.umm.BusinessCalendarModule

The module enables workflows to work with the business calendars defined in Service 
Activator. Workflows use the nodes specially developed for the business calendar to 
retrieve and calculate business hours information.

The business calendar module retrieves the calendar definition from the database and 
stores the information in an in-memory cache, facilitating the use of the business 
calendar data by the workflow nodes. The business calendar module also serves as the 
interface for the Web UI to update calendar information such as business hours, holidays 
and recurring holidays.

This module supports reconfiguration. Reloading the configuration will re-initialize the 
in-memory cache.

The following is the configuration for the business calendar module. The name of the 
module must "business_calendar_module".

Example 6-2 BusinessCalendarModule 

This example configures the BusinessCalendarModule.

<Module>
<Name>business_calendar_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.BusinessCalendarModule
</Class-Name>

</Module>
Chapter 6 359



Workflow Manager Module Library
CacheModule
CacheModule
com.hp.ov.activator.mwfm.engine.module.CacheModule

The module provides a cache for inventory database queries. The module works with the 
QueryInventory node. The module can be configured more than once with different 
names. The name is also specified on the QueryInventory node to bind the node to the 
module instance.

Example 6-3 CacheModule 

This example configures the CacheModule.

<Module>
<Name>check_time</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.CacheModule
</Class-Name>
<Param name=”timeout” value=”60”/>
<Param name=”check_interval” value=”10”/>

</Module>

Table 6-3 CacheModule Parameters

Parameter Required Description Reconfigurable Default

timeout Yes Default timeout used when no 
value is provided by the node 
using this module. The value is 
specified in seconds.

No None

check_interva
l 

Yes Time, in seconds, between every 
check for expired content.

No None
Chapter 6360



Workflow Manager Module Library
CasePacketDistModule
CasePacketDistModule
com.hp.ov.activator.mwfm.engine.module.umm.CasePacketDistModule

This module allows the workflow manager to perform load balancing of workflow 
execution based on the value of a case-packet.

Load balancing can be switched off using the parameter "dispatch_local". The job is 
always executed in the local host.

The parameter "casepacket" specifies the case-packet that decides the load balancing. 
The possible values for this case-packet can be specified using the parameters value0, 
value1…valueN. The cluster nodes where the workflow can be processed are specified 
using the parameters hostname0, hostname1…hostnameN.

The number of possible values and possible hostnames specified must be the same.

Request to start a job with a set of initial case-packets

When a request to start a job is received then a check is made if the initial case-packets 
that accompany the request contain the case-packet. 

If the case-packet is found then its value is matched with the configured values. If a 
match is found then the workflow is dispatched to the corresponding host.

Request to start a job without a set of initial case-packets

If a request to start a job is received without any initial case-packets then job is 
dispatched to the default host. If the default host is not specified then its dispatched to 
the local host.

Table 6-4 CasePacketDistModule Parameters

Parameter Required Description Reconfigurable Default

dispatch_loca
l

No Configurable value which decides 
if load balancing is performed or 
not. If this parameter is set to 
true then load balancing is 
switched off and jobs are 
dispatched only to the     local 
cluster node

Yes. False

casepacket Yes The name of a case-packet 
variable which decides the 
distribution

Yes None

Value0,
Value1 ...
Value N

No The possible values for the 
parameter casepacket

Yes None

hostname0,
hostname1 ...
hostnameN

No The cluster nodes where the job 
can be distributed

Yes None
Chapter 6 361



Workflow Manager Module Library
CasePacketDistModule
Example 6-4 CasePacketDistModule 

If configuration is as follows:.

<Module>
<Name>distribution_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.CasePacketDistModule
</Class-Name>
<Param name=”dispatch_local” value=”false”/>
<Param name=”casepacket” value=”casepacket1”/>
<Param name=”value0” value=”value1”/>
<Param name=”value1” value=”value2”/>
<Param name=”value2” value=”value3”/>
<Param name=”hostname0” value=”host1”/>
<Param name=”hostname1” value=”host2”/>
<Param name=”hostname2” value=”host3”/>
<Param name=”default” value=”host3”/>

</Module>

If the value of the case-packet "casepacket1" in the initial case-packets is value1 then the 
job is dispatched to host1. The cluster node "host1" must be active.

If a match is not found then the job is dispatched to the host specified by the 
configuration parameter "default". The default host is optional. In this case the request 
is dispatched to the local host.

If the case-packet "casepacket1" is not found in the initial case-packets then the job is 
dispatched to the default host.

If the start of a job fails if the matching cluster node gets suspended or locked or its being 
shutdown or its max job limit has reached between the times when request is dispatched 
and when it reaches the cluster node, an attempt is made to dispatch the request to the 
default host.

default No The cluster node where the job 
will be distributed if the value of 
the specified case-packet does not     
match any of the values specified 
by value0, value1...valueN

Yes None

Table 6-4 CasePacketDistModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6362



Workflow Manager Module Library
CheckTimeModule
CheckTimeModule
com.hp.ov.activator.mwfm.engine.module.CheckTimeModule

The module checks if the system time on all cluster nodes are the same. With a given 
configurable interval the module will ask all the cluster nodes for their system time and 
if the time returned compared with the local system time is greater than the 
configurable time difference an ERROR message will be written in the log file.

This module should only be used when Service Activator is configured with more than 
one cluster node. The module can be started both when Service Activator is started or as 
part of a reconfiguration. The module uses the master slave approch so only one cluster 
node, the master, will perform requests to the other cluster nodes.

Example 6-5 CheckTimeModule 

This example configures the CheckTimeModule.

<Module>
<Name>check_time</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.CheckTimeModule
</Class-Name>
<Param name=”check_time_poll_interval” value=”10000”/>
<Param name=”allowable_time_delta” value=”20000”/>

</Module>

Table 6-5 CheckTimeModule Parameters

Parameter Required Description Reconfigurable Default

check_time_po
ll_interval

No Time interval in milliseconds at 
which this module will 
periodically ask each cluster node 
to give its system time 

Yes. 10000

allowable_tim
e_delta 

No Configurable value in 
milliseconds which is the 
allowable difference between the 
system times on master node and 
slave node.

Yes 20000
Chapter 6 363



Workflow Manager Module Library
DatabaseAdvancedAuthModule
DatabaseAdvancedAuthModule
com.hp.ov.activator.mwfm.engine.module.umm.DatabaseAdvancedAuthModule

This is Service Activator's native module for authentication of users and authorization to 
use roles. It is independent of the host operating system and uses data that is 
maintained by the user management functions available to system administrators and 
stored in the system database

This module is not configured at installation time.To use it, configure it with name 
authenticator.

During installation of Service Activator the system user and the roles “admin” and 
“internal” are created. The system user login account must be used to create other users 
and roles.

See Also

• “Roles, Privileges, and Authentication” in the HP Service Activator - System 
Integrator’s Overview

• “User Management” in HP Service Activator, HP Service Activator - User’s and 
Administrator’s Guide

• “Configuring Authentication or Authorization” on page 66 in HP Service 
Activator—Developing Plug-Ins and Compound Tasks

Table 6-6 DatabasedvancedAuthModule Parameters

Parameter Required Description Reconfigurable Default

mwfm_remote_u
rl

Yes URL where the module will 
access the RMI of  the Workflow 
Manager. When the default port 
is used (you can see the port at 
the beginning of the mwfm.xml 
file) the URL is:

//localhost:2000/wfm

No None

sleep_time No The time between the internal 
role cache is cleared.

No 30 min

eight_char_pass
word

No If password should be trucated to 
8 characters before 
authentication is done

No false

secure_user_na
me

No Transform the user name to a 
valid value, cutting the user 
name from the first invalid 
character.

No false

password_valid
ation

No true/false: specifies if  password 
validation and expiration shall 
apply

No false
Chapter 6364



Workflow Manager Module Library
DatabaseAdvancedAuthModule
expiry_days No Number of days from a password 
is assigned until it expires. 0 
means never.

No 0

expiry_alert_da
ys

No Starting a number of days before 
a password expires, the user is 
warned at login. This parameter 
specifies the number.

No 0

reuse_interval No The number of distinct values 
that must be assigned to a 
password over time before one 
can be reused.

No 0

teams_enabled No Name of the parameter which 
indicates whether teams will be 
used or not.

No false

format_checker
_class

No The format checker class, where 
the complexity of the password is 
analyzed before accepting it. 

HPSA provides a 
SimplePasswordFormatChecker 
which checks that the password 
is not equal to the user name and 
a 
ComplexPasswordFormatChecke
r which also checks the password 
strength: usage of numbers and 
case letters. 

Any other class may be defined 
here. If so, you can implement 
your password checker class just 
by extending the 
com.hp.ov.activator.mwfm.
engine.module.umm.pwd.Pass
wordFormatChecker.

No com.hp.o
v.activat
or.mwfm.
module.u
mm.Sim
plePassw
ordForm
atChecke
r 

allowed_invalid
_login_attempts

No The number of previous 
consecutive invalid login 
attempts allowed for each user 
before he becomes disabled. A 
value of 0 means that users will 
never be disabled.

No 0

Table 6-6 DatabasedvancedAuthModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 365



Workflow Manager Module Library
DatabaseAdvancedAuthModule
Example 6-6 DatabaseAdvancedAuthModule 

This example configures the DatabaseAdvancedAuthModule with the workflow Manager 
service.

<Module
<Name>authenticator</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.DatabaseAdvancedAuthModule
</Class-Name>
<Param name=”mwfm_remote_url” value=”//localhost:2000/wfm”/>

</Module>
Chapter 6366



Workflow Manager Module Library
DBTransactionModule
DBTransactionModule
com.hp.ov.activator.mwfm.engine.module.DBTransactionModule

This module allows the Workflow Manager to handle persistence and retrieval of 
running jobs information in the system database. This enables jobs to survive machine 
failurs in both distributed and standalone environment. In case of server failure, if the 
module is not specified, case packets and process states are lost. Make sure to specify the 
module name as "transaction_manager".

This module depends on the OracleDatabaseModule to obtain database connections. The 
database module which is used is the one named db.

If the Workflow Manager is shutdown while jobs are running, the module retrieves all 
the case-packet states from the database on restart and allows the jobs to be restarted 
from the same state.

When a job is started, it would use the current active workflow saved in the database 
and even if you reload a newer version of the workflow, the job will continue to use the 
one which it was started with. This would also be the situation if service activator is 
restarted or the job fails over on an other cluster node.

On completion of a job, the module also deletes the case-packet from the database and 
the workflow in case no other jobs are referring to this workflow and the workflow is not 
the newest version of the workflow.

The module works in conjunction with the KeepAlive module in a failover scenario to 
retrieve case-packets of jobs which were being executed by the failed node. 

See Also

• “JNDIDatabaseModule” on page 379

• “KeepAliveModule” on page 380

Example 6-7 DBTransactionModule 

<Module>
<Name>transaction_manager</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.DBTransactionModule
</Class-Name>
</Module>
Chapter 6 367



Workflow Manager Module Library
HPUXAdvancedAuthModule
HPUXAdvancedAuthModule
com.hp.ov.activator.mwfm.engine.module.umm.HPUXAdvancedAuthModule

This module provides authentication and authorization functionality based on the 
underlying HP-UX Operating System authentication mechanism. It is only suitable in a 
HP-UX installation.

The roles defined in the operating system and used by Service Activator must also be 
created through the User Managment Interface. Only users which have this 
configuration are able to login to Service Activator. During installation of Service 
Activator the roles “admin” and “internal” are created for User Managment. The “admin” 
role must be configured in the operating system to make it possible to enable the 
HPUXAdvancedAuthModule. However it is possible to use role mapping and hence 
create a different role for the System User in the underlying operating system.

Name this module “authenticator” in the configuration.

See Also

• “Roles, Privileges, and Authentication” in the HP Service Activator - System 
Integrator’s Overview

• “Configuring Authentication or Authorization” on page 66 in HP Service 
Activator—Developing Plug-Ins and Compound Tasks

Table 6-7 HPUXAdvancedAuthModule Parameters

Parameter Required Description Reconfigurable Default

mwfm_remote_u
rl

Yes Used to indicate from where to 
get the remote Workflow 
Manager service

No None

sleep_time No The time between the internal 
role cache is cleared.

No 30 min

eight_char_pass
word

No If password should be trucated to 
8 characters before 
authentication is done

No false

secure_user_na
me

No Transform the user name to a 
valid value, cutting the user 
name from the first invalid 
character.

No false
Chapter 6368



Workflow Manager Module Library
HPUXAdvancedAuthModule
Example 6-8 HPUXAdvancedAuthModule 

This example configures the HPUXAdvancedAuthModule with the workflow Manager 
service.

<Module
<Name>authenticator</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.HPUXAdvancedAuthModule
</Class-Name>
<Param name=”mwfm_remote_url” value=”//localhost:2000/wfm”/>

</Module>
Chapter 6 369



Workflow Manager Module Library
HTTPRenderer
HTTPRenderer
com.hp.ov.activator.mwfm.engine.module.monitor.HTTPRenderer

Use this module along with Monitor, described on page 397, to render (in HTML) data 
accumulated about the functioning of the Workflow Manager. Name this module 
“HTTPRenderer”.

Once configured, two different URLs become available:

• http://yourhost:renderer_port/server

Shows statistics about the Workflow Manager performance.

• http://yourhost:renderer_port/statistics

Shows statistics about the different workflows that have been run, taking into 
account the history size specified in the statistic parameter of the Workflow 
Manager configuration.

Specify the TCP port for the module to listen on to receive such information (the default 
is 7070).

The module does not support re-configuration.

The module should only be used during develpment as the module is very memory 
consuming. The module must not be used in production.

Example 6-9 HTTPRenderer 

<Module>
<Name>HTTPRenderer</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.monitor.HTTPRenderer
</Class-Name>

</Module>

NOTE Because the module consumes a lot of memory, it is advisable not to use this in a 
production environment. 
Chapter 6370



Workflow Manager Module Library
HTTPSenderModule
HTTPSenderModule
com.hp.ov.activator.mwfm.engine.module.monitor.HTTPSenderModule

The HTTPSenderModule provides a mechanism for the workflows to make HTTP(S) 
GET or POST requests.

The module opens an http(s) connection to target URL. The module can then be accessed 
by HTTPRequest workflow node to make an asynchronous GET or POST. You can 
configure multiple HTTPSenderModule; each must be given a unique name. The 
HTTPRequest can be configured to use any one of the modules using its name.

The module also supports the following additional features.

• HTTPS Server/Client side certificates

• Proxy server

• HTTP basic username/password authentication for network connection

• Customizable timeout value

The HTTPSenderModule ensures that multiple http requests are processed and 
incoming requests are not blocked while existing requests are being processed. When 
using this module, it places a request by the HTTPRequest node in a queue for 
processing by the http listener threads that are managed by this module. In addition, the 
node behaves like the AskFor node in that it posts a request on one of the request 
queues (named "httprequest"), thus, freeing the workflow thread for processing other 
workflows. The request is placed with the role "internal". Thus, normal users do not see 
these requests unless they have the role "internal". After processing the http request, 
the module sends the response and any returned cookie to the waiting request.

The only necessary items to configure is the for the HTTP(S) connection.

You can configure this module to make a normal http connection or a secure http 
connection to the server In order to make an https connection you must provide a valid 
SSL certificate identifying the server.

NOTE Keystore, storepass, and keypass must all be set to some non-empty values for the 
module to do HTTPS client authentication; otherwise there will be no effect

For network connection authentication the parameters username and password must 
be specified.

If the target URL must be accessed through a proxy server then the proxy_server and 
proxy_port must be specified.

NOTE Note that the parameters proxy_server and proxy_port must both be set to some 
non-empty values in order for the module to set up the proxy connection. Setting only 
one of them will not have any effect.

Connection and read timeouts can be specified using parameters connect_timeout 
and read_timeout.

The module does not support re-configuration.
Chapter 6 371



Workflow Manager Module Library
HTTPSenderModule
Table 6-8 HTTPSenderModule Parameters

Parameter Required Description Reconfigurable Default

host Yes The target URL for the HTTP(S) 
connection

No None

keystore No The location of the SSL keystore 
file necessary for HTTPS client 
authentication

No 30 min

keypass No The password for the public 
certificate/private key pair, 
necessary for HTTPS client       
authentication

No None

storepass No The password to access the 
keystore file, necessary for 
HTTPS 

No None

username No Username for network 
connection authentication

No None

password No Password for network connection 
authentication

No None

proxy_server No Name of a proxy server if proxy is 
to be used

No None

connection_time
out

No http(s) connection timeout value, 
in milliseconds

No None

password No Password for network connection 
authentication

No None

read_timeout No Read timeout value, in 
milliseconds

No None

min_threads No The minimum number of threads 
created to process http requests

No 1

max_threads No The maximum number of threads 
created to process http requests. 
This is the number of 
simultaneous requests that can 
be processed. Other incoming 
requests will be queued until one 
of the threads becomes available

No 3
Chapter 6372



Workflow Manager Module Library
JMSListenerModule
JMSListenerModule
com.hp.ov.activator.mwfm.engine.module.JMSListenerModule

The module connects to a JMS destination supported by a JMS Provider and waits for 
incoming messages. When a message arrives it is saved in a row of a database table that 
is used for temporary data (database_message), and a workflow job is started to process 
the message. A handle (URL) for the workflow job to retrieve the message is passed 
through the case-packet variable message_url. The workflow is responsible for 
cleaning up the database by removing the entry when it has been processed (using the 
RemoveData node).

The JMS destination can be a queue or a topic. The module must be configured with 
information to bind itself to the desired JMS destination by looking it up through a JNDI 
service. For a brief introduction to these JMS concepts refer to the appendix "Java 
Message Service" in Service Activator, System Integrator's Overview.

Configure as many instances of the JMSListenerModules as necessary. Each listener 
module must be given a unique name and destination to listen to and may start a unique 
workflow.

When Service Activator runs on a cluster of servers, the module should, like other 
workflow manager modules, be configured identically on all the cluster nodes. The JMS 
listener module will then only be active on one of the cluster nodes, the so-called master 
node; the nodes will not compete to extract received messages from the JMS provider. If 
the master node fails, a new master will be designated and its JMS listener module will 
become active. This behaviour is automatic and not configurable for the module.

The JMS Listener prefixed the value of the “jms_destination” parameter with “topic/” 
and “queue/” when running in “topic” and “queue” mode, respectively.

The module is multi-threaded and avoids blocking behavior.

By default the module will prefix an XML header to the beginning of each received 
message. The header will normally refer to a DTD file. It will look like this:

<?xml version="1.0" encoding="utf-8"/>
<!DOCTYPE msg SYSTEM 
"file://etc/opt/OV/ServiceActivator/config/exchange.dtd">

The name of the DTD file and the root tag can be configured. This behaviour can also be 
disabled.

NOTE Messages received by the JMSListenerModule must be in UTF-8 format. 

See Also

• “Java Message Service” in the HP Service Activator - System Integrator’s Overview
Chapter 6 373



Workflow Manager Module Library
JMSListenerModule
Table 6-9 JMSListenerModule Parameters

Parameter Required Description Reconfigurable Default

workflow Yes Name of the workflow that 
is run to process each 
received message.

Yes None

jndi_initial_
context_fact
ory

Yes The JNDI initial context 
factory

No None

jndi_url_pk
g_prefixes

No package prefixes to use 
when loading in URL 
context factories. For 
JBossMQ it is 
org.jboss.naming:org.jnp.int
erfaces

No None

jndi_url Yes The URL to reach the JNDI 
service to lookup the JMS 
destination. The format will 
<url 
prefix>://<ip>:<port>

No None

connection_f
actory_name

Yes JMS connection factory 
name

No None

jms_trans_
mode

Yes JMS transfer mode, "topic" 
or "queue"

No None

jms_destinat
ion

No Name of the destination to 
listen at (queue or topic)

No None

durable No Indicates if a durable 
subscription shall be 
created

No false

client_id Yes if 
duarble

Client id for durable topic 
subscription

No None

unsubscribe No Specifies whether the 
durable subscription must 
be unsubscribed when the 
module is stopped 

Yes false

username Yes User identity to create JMS 
connection

No None

password Yes Password to create JMS 
connection

No None

retry_interv
al

No Interval to wait between 
attempts to connecto the 
JMS provider. Defined in 
milliseconds

No 1000
Chapter 6374



Workflow Manager Module Library
JMSListenerModule
max_retry No Number of retries to 
connecto to the JMS 
provider before giving up. If 
set to 0 the module will 
continue to try to reconnect.

No 3

recover No When the module is started, 
if this parameter is true, all 
unprocessed messages (i.e. 
received into the database 
and not cleared by the 
workflow) will cause a 
workflow job to be started. 
This may be useful only if 
the Workflow Manager is 
not configured to persist the 
state of running workflows.

No false

header No Specifies whether or not to 
put an XML header before 
each received message. 
Possible values are true and 
false.

No true

dtd_root_tag No If a DTD is present (set 
with dtd parameter), the 
value of this parameter 
value will be put in each 
message header to identify 
the root of the message.

No msg

dtd No Specifies the document type 
definition for received 
messages. The DTD can be 
used by the workflow to 
validate the XML syntax of 
the message. You can 
specify the absolute location 
of the DTD file, or a path 
relative to 
$ACTIVATOR_ETC/config. 
To disable placing the DTD 
file name in the message 
header, set the value to 
NO_DTD.

No Exchang
e.dtd

min_threads No The minimum number of 
threads to use for 
processing arriving 
messages.

No 1

Table 6-9 JMSListenerModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 375



Workflow Manager Module Library
JMSListenerModule
max_thread
s

No The maximum number of 
threads to use for 
processing arriving 
messages.

No 1

max_queue_
length

No The maximum number of 
work items that can be 
present in the internal 
queue.

Work Items are added to 
this queue as and when 
messages are received from 
the JMS provider.

Only if the number of work 
items is below this value we 
will receive and process a 
new message.

Yes 50

Table 6-9 JMSListenerModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6376



Workflow Manager Module Library
JMSSenderModule
JMSSenderModule
com.hp.ov.activator.mwfm.engine.module.JMSSenderModule

The module works with the SendMessage workflow node to send messages to external 
systems via a JMS provider.

The module connects to a JMS destination, which can be a queue or a topic. It must be 
configured with information to bind itself to the desired JMS destination by looking it up 
through a JNDI service. For a brief introduction to these JMS concepts refer to the 
appendix "Java Message Service" in Service Activator, System Integrator's Overview.

Configure as many instances of the JMSSenderModules as necessary. Each sender 
module must be given a unique name and may send to a different destination.

See Also

• “Java Message Service” in the HP Service Activator - System Integrator’s Overview

Table 6-10 JMSSenderModule Parameters

Parameter Required Description Reconfigurable Default

jndi_initial_
context_fact
ory

Yes The JNDI initial context 
factory

No None

jndi_url_pk
g_prefixes

No package prefixes to use 
when loading in URL 
context factories. For 
JBossMQ it is 
org.jboss.naming:org.jnp.int
erfaces

No None

jndi_url Yes The URL to reach the JNDI 
service to lookup the JMS 
destination. The format will 
<url 
prefix>://<ip>:<port>

No None

connection_f
actory_name

Yes JMS connection factory 
name

No None

jms_trans_
mode

Yes JMS transfer mode, "topic" 
or "queue"

No None

jms_destinat
ion

No Name of the destination to 
listen at (queue or topic)

No None

username Yes User identity to create JMS 
connection

No None

password Yes Password to create JMS 
connection

No None
Chapter 6 377



Workflow Manager Module Library
JMSSenderModule
retry_interv
al

No Interval to wait between 
attempts to connecto the 
JMS provider. Defined in 
milliseconds

No 1000

max_retry No Number of retries to 
connect to the JMS provider 
before giving up

No 3

Table 6-10 JMSSenderModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6378



Workflow Manager Module Library
JNDIDatabaseModule
JNDIDatabaseModule
com.hp.ov.activator.mwfm.engine.module.JNDIDatabaseModule

The module provides access to a relational database using a datasource configured in 
JBoss. The JNDIDatabaseModule is the default and preferred database module.

You can configure as many database modules as necessary to provide access to one or 
more databases. Typically, you configure only a single database module named “db” 
which is also the system database. 

If you choose to configure multiple database modules, give each module a unique name.

During installation/configuration of Service Activator, one module is automatically 
configured. If you change the database then you will need to manually update the 
datasoure parameteres. Also the datasource which is configured in the module is created 
during installation/configuration. The datasource is configured in the file 
$JBOSS_HOME/standalone/configuration/standalone.xml.

NOTE The password used to establish the database connection is in clear-text here. To protect 
this password, be sure that the mwfm.xml file is readable only by users with the 
appropriate privileges.

Example 6-10 JNDIDatabaseModule

<Module>
<Name>db</Name> 
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.JNDIDatabaseModule 
</Class-Name>
<Param name="datasource_name" value="java:/hpsa/jdbc/mwfmDB"/>

</Module>

Table 6-11 JNDIDatabaseModule Parameters

Parameter Required Description Reconfigurable Default

datasource_nam
e

Yes The name of the datasource in JBoss 
which is used

No None
Chapter 6 379



Workflow Manager Module Library
KeepAliveModule
KeepAliveModule
com.hp.ov.activator.mwfm.engine.module.KeepAliveModule

The Workflow Manager requires a keep alive to perform the following tasks:

• Monitor the status of other nodes in a cluster and update its active status at regular 
intervals.

• Monitor the database connectivity of workflow manager and the resource manager, 
and also suspend the system in case of loss of database connectivity. 

• In case of a cluster node failure, perform failover of jobs continously by using the 
distribution module to distribute jobs among active cluster nodes.

• Update the running modules and the resource manager whenver a cluster node is 
down or starts up.

• Set and maintain administrative state of a cluster node or all cluster nodes to lock or 
unlock and update all modules and the resource manager when a cluster node is 
locked or unlocked. When a cluster node is locked, all running workflows on the node 
will continue to run, but all requests to start new workflows will be rejected.

• Set and maintain operational status of a cluster node or all cluster nodes to 
supspended or resumed and update all modules and the resource manager when a 
cluster node is suspended or resumed. When a cluster node is suspended, all 
activities are stopped, but the state of each job is maintained and all requests to 
start new workflows are rejected. 

This feature is implemented by having a specific table in the database a clusternode list 
with one row for each node which must be updated. For example, every second 
(configurable) for each cluster node by a specific keep alive thread. If the row is not 
updated after a configurable amount (longer than twice the keep_alive_time) of time, 
other cluster nodes will start to takeover the work that must be done- run workflows, 
rollback of the transactions, and release of the locks in the resource manager. The 
take_over_time parameter determines as to how long a node can continue to be down 
before another cluster node takes over the work.

The system database is used for persistent of lot of different data then if it is not possible 
to obtain a connection to the database all processing is suspended and the database is 
polled for connectivity. If a connection is established, jobs are resumed again but only 
after ensuring that no other Workflow Manager has taken over the work. 

The normal functioning of KeepAlive module can be turned off by setting the 
update_heartbeat parameter to false. This will be usually used when operating in a 
standalone environment. In this mode, only the database connectivity of the workflow 
manager and resource manager is performed.

The workflow manager also notifies the resource manager during its normal keep alive 
activities about node suspension, resumption, lock status, and cluster nodes which have 
been taken over. It also monitors the database connectivity of the resource manager.

One keep alive module must be configured with the name “keep_alive”.

The KeepAlive module can also be configured to setup a virtual IP address on unix 
platforms. The virtual IP address is configured when running ActivatorConfig. The if a 
cluster node crash the virtual IP address will be taken over by one of the other cluster 
nodes. The depending on the configuration of auto_virtual_ip_takeover the IP address 
Chapter 6380



Workflow Manager Module Library
KeepAliveModule
will automatically be taken over again by the original cluster node. This happens if set to 
true while if the parameter is set to false it is manual process which must be done via the 
user interface.

The KeepAlive module can also be configured to start a WatchDog process which will 
watch if Service Activator is running and if Service Activator crash the WatchDog 
process will restart Service Activator. The same will be the case it the WatchDog process 
crash then Service Activator will restart this process.

Table 6-12 KeepAlive Module Parameters

Parameter Required Description Reconfigurable Default

keep_alive_time No Configurable time at which 
the KeepAlive module must 
update the clusternodelist 
table to indicate that cluster 
node is active. The value is in 
milliseconds. 

Yes 10000

take_over_time No Configurable time after which 
the KeepAlive module takes 
over a failed cluster node. 
Genrally, this would be twice 
the value of 
keep_alive_time.

Yes 30000

job_startup_retry_c
ount

No Configurable number of retry 
attempts that the KeepAlive 
module tries to startup a job 
after it decides to take over 
jobs from a failed cluster 
node.

Yes 3

job_startup_retry_i
nterval

No Configurable interval time 
in milliseconds between 
retry attempts to start a 
job. 

Yes 10000

update_heartbeat No In standalone mode, this 
parameter can be set to 
false to indicate that 
normal processing of 
updating heartbeat time 
and monitoring of other 
cluster nodes should not be 
performed. 

No True
Chapter 6 381



Workflow Manager Module Library
KeepAliveModule
monitor_wait_interv
al

No Configurable interval time 
in milliseconds that the 
KeepAlive module will 
wait from the start of its 
initiation or after loosing 
the database connectivity, 
before it will start 
monitoring of other cluster 
nodes.

No 30000

db_poll_interval No Configurable interval time 
in milliseconds between 
attempts to get a db 
connection when the 
KeepAlive module polls 
the database during db 
failure.

Yes 10000

retrieve_jobs_buffer_si
ze

No The number of jobs 
retrieved at a time during 
failover. To avoid memory 
issues only a small chunk 
of jobs for the failed cluster 
node are retrieved at a 
time. 

Yes The 
default 
value is 
set to 
half the 
size of 
Max-Wo
rk-List-L
ength.

configure_virtual_ip Yes Indicates if the Keepalive 
module during startup 
must must try to set the 
configured virtual ip if any.

No None

auto_virtual_ip_takeo
ver

No Indicates if the cluster 
node during startup, must 
automatically take over its 
virtual ip if it is set up in 
another node in the 
cluster.

No true

virtual_ip_ping_timeo
ut

No Specifies the maximum 
amount of time the cluster 
node will try to ping and 
wait for a reply, to check if 
its configured virtual ip 
address is set up in 
another node in the 
cluster. The default value 
is 10000 miliseconds.

No 10000 
milliseco
nds

Table 6-12 KeepAlive Module Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6382



Workflow Manager Module Library
KeepAliveModule
Example 6-11 KeepAlive Module

<Module>
<Name>keep_alive</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.KeepAliveModule</Class-Name>
<Param name=”Keep_alive_time” value=”10000”/>
<Param name=”take_over_time” value=”30000”/>
<Param name=”job_startup_retry_count” value=”3”/>
<Param name=”job_startup_retry_interval” value=”10000”/>
<Param name=”update_heartbeat” value=”true”/>
<Param name=”monitor_wait_interval” value=”30000”/>
<Param name=”db_poll_interval” value=”10000”/>

</Module> 

start_watch_dog_proce
ss

No Indicates if the watch dog 
process must be started. 
Only relevant on unix 
platforms. It is not support 
on Windows.

No true

watch_dog_poll_interv
al

No Configurable interval at 
which the watch dog 
process started by 
KeepAlive module will 
check if Service Activator 
is running

No 30000 
milliseco
nds

Table 6-12 KeepAlive Module Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 383



Workflow Manager Module Library
LDAPAuthModule
LDAPAuthModule
com.hp.ov.activator.mwfm.engine.module.umm.LDAPAuthModule

The LDAP auth module authenticates users by looking them up with username and password in an 
LDAP directory service and authorizes each user to have a set of roles that are associated with the 
user’s entry in the directory.

The module can work with a number of LDAP servers, which can be active or backup. If there are 
multiple active servers, the load will be shared among them. Backup servers will only be contacted if 
it is not possible to contact any of the active servers. 

The LDAP auth module is based on the following assumptions about entries in the directory tree: 

• There is a root entry used to authenticate the module (HPSA) as a client of the directory service 
when it binds to the service.

• HPSA users are represented by entries which are children of a single entry (the user parent), 
typically an organizationUnit entry with ou=People. A special entry can be used for the system 
user.

• All user entries must have an attribute whose value is the Service Activator username. The name 
of this attribute is configurable. 

• User entries also contain the Service Activator password for the user. The name of the password 
attribute is ‘userPassword’. 

• Similarly, Service Activator roles are represented as entries which are children of a single entry 
(the role parent), typically an organizationUnit entry with ou=Roles. 

• All role entries must have an attribute whose value is the Service Activator role name. The name 
of this attribute is also configurable. 

• Each role entry has a multi-valued attribute (its name is configurable) with a value for each user 
who has the role. The value equals the distinguished name of the user entry. 

The roles defined in the LDAP server and used by Service Activator must also be created 
through the User Management Interface. Only users which have this configuration are 
able to login to Service Activator. During installation of Service Activator the roles 
“admin” and “internal” are created for User Management. The “admin” and “internal” 
roles must be configured in the LDAP server to make it possible to enable the 
LDAPAuthModule. However it is possible to use role mapping and hence create a 
different role for the System User in the underlying operating system.

NOTE You can configure this module to use normal TCP communication or Secure Socket Layer 
(SSL/TLS) communication. If SSL is configured and the server certificate is not signed 
by a trusted authority you must add the certificate into Java’s list of trusted certificates. 
Also, note that only server certificates are supported

Name this module “authenticator” in the configuration.

See Also

• “Roles, Privileges, and Authentication” in the HP Service Activator - System 
Integrator’s Overview
Chapter 6384



Workflow Manager Module Library
LDAPAuthModule
• “Configuring Authentication or Authorization” on page 66 in HP Service 
Activator—Developing Plug-Ins and Compound Tasks

• “Setting Roles” on page 27

Table 6-13 LDAPAuthModule Parameters

Parameter Required Description Reconfigurable Default

mwfm_remo
te_url

Yes Used to indicate from where 
to get the remote Workflow 
Manager service

No None

ldap_hostna
me_1,
ldap_hostna
me_2,
...
ldap_hostna
me_N

Yes at least 
one

Hostname of IP address of 
LDAP server

No None

ldap_port_1,
ldap_port_2,
...
ldap_port_N

Yes at least 
one

No None

ldap_active_
1,
ldap_active_
2;
...
ldap_active_
N

Yes at least 
one

 "true" for active servers, "false" 
for backup servers. One server 
must be configured as active.

No None

bindDN Yes Distinguished name of root 
entry, used to bind to the 
LDAP server.

No None

bindCredent
ial

Yes Password for bindDN. Must 
be encrypted with the crypt 
utility which can be found 
in $ACTIVATOR_OPT/bin.

No None

userDN Yes Distinguished name of user 
parent entry.

No None

userFilter Yes Name of the attribute 
which contains the user 
name to login to Service 
Activator

No None
Chapter 6 385



Workflow Manager Module Library
LDAPAuthModule
systemUser
DN

No Distinguished name of user 
parent entry. Only used 
when authenticating the 
system user. This can be 
used if another entry should 
be used for the system user 
compared with ordinary 
users

No The 
value set 
for 
userDN

systemUser
Filter

No Name of the attribute 
which contains the user 
name to login to Service 
Activator. Only used when 
authenticating the system 
user. This can be used if 
another entry should be 
used for the system user 
compared with ordinary 
users

No The 
value set 
for 
userFilte
r

rolesDN Yes Distinguished name of role 
parent entry.

No None

roleFilter Yes Name of the multi-valued 
attribute on a role entry 
that identifies the users 
who have the role. 
Suggestion: member.

No None

roleAttribut
e

Yes Name of the attribute on a 
role entry that holds the 
name of the role. 
Suggestion: cn.

No None

ssl No To use TLS/SSL encryption, 
set the value to “true”.

No false

showpasswo
rd

No Display password in Log 
file. Must run with log level 
DEBUG.

No false

searchTime
Limit

No Time limit to search and 
retrieve the username and 
password from the LDAP. 
Specifies the timeout value 
in milliseconds.

No 10000

Table 6-13 LDAPAuthModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6386



Workflow Manager Module Library
LDAPAuthModule
checkForEm
ptyPasswor
d

No If set to true the auth 
module will check for if the 
provided password when 
doing user authentication is 
empty or not. If empty then 
access to HPSA will be 
denied

No false

Table 6-13 LDAPAuthModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 387



Workflow Manager Module Library
LDAPAuthModule
Example 6-12 LDAPAuthModule Code

This example configures the LDAPAuthModule with the workflow Manager service.

<Module>
 <Name>authenticator</Name>
 <Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.LDAPAuthModule
 </Class-Name>
 <Param name=”mwfm_remote_url” value=”//localhost:2000/wfm”/>
 <Param name=”ldap_host_1” value=”localhost”>
 <Param name=”ldap_port_1” value=”389”/>
 <Param name=”ldap_active_1” value=”false”/>
 <Param name=”bindDN” value=”cn=Manager,dc=my-domain,dc=com”/>
 <Param name=”bindCredential” value=”cr1DYotDW0l2NISQkSevtg==”/>
 <Param name=”userDN” value=”ou=People,dc=my-domain,dc=com”/>
 <Param name=”userFilter” value=”uid”/>
 <Param name=”rolesDN” value=”ou=Roles,dc=my-domain,dc=com”/>
 <Param name=”roleFilter” value=”member/>
 <Param name=”roleAttribute” value=”cn”/>
 <Param name=”showpassword” value=”false”/>
 <Param name=”checkForEmptyPassword” value=”false”/>
 <Param name=”searchTimeLimit” value=”2000”/>

</Module> 
Chapter 6388



Workflow Manager Module Library
LinuxAdvancedAuthModule
LinuxAdvancedAuthModule
com.hp.ov.activator.mwfm.engine.module.umm.LinuxAdvancedAuthModule

The module provides authentication and authorization functionality based on the 
underlying Operating System authentication mechanism. It is only suitable for use on 
Linux.

The roles defined in the operating system and used by Service Activator must also be 
created through the User Management Interface. Only users which have this 
configuration are able to login to Service Activator. During installation of Service 
Activator the roles “admin” and “internal” are created for User Management. The 
“admin” role must be configured in the operating system to make it possible to enable 
the LinuxAdvancedAuthModule. However it is possible to use role mapping and hence 
create a different role for the System User in the underlying operating system.

Name this module “authenticator” in the configuration.

See Also

• “Roles, Privileges, and Authentication” in the HP Service Activator - System 
Integrator’s Overview

• “Configuring Authentication or Authorization” on page 66 in HP Service 
Activator—Developing Plug-Ins and Compound Tasks

• “Setting Roles” on page 27

Table 6-14 LinuxAdvancedAuthModule Parameters

Parameter Required Description Reconfigurable Default

mwfm_remo
te_url

Yes Used to indicate from where 
to get the remote Workflow 
Manager service

No None

sleep_time No The time between the 
internal role cache is 
cleared.

No 30 min

eight_char_
password

No If password should be 
trucated to 8 characters 
before authentication is 
done

No false

secure_user
_name

No Transform the user name to 
a valid value, cutting the 
user name from the first 
invalid character.

No false
Chapter 6 389



Workflow Manager Module Library
LinuxAdvancedAuthModule
Example 6-13 LinuxAdvancedAuthModule Code

This example configures the LinuxAdvancedAuthModule with the workflow Manager 
service and the valid roles activ_admin or activ_oper

<Module>
 <Name>authenticator</Name>
 <Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.LinuxAdvancedAuthModule
 </Class-Name>
 <Param name=”mwfm_remote_url” value=”//localhost:2000/wfm”/>
 <Param name=”validroles” value=”activ_admin, activ_oper”/>

</Module> 
Chapter 6390



Workflow Manager Module Library
LoadFactorDistModule
LoadFactorDistModule
com.hp.ov.activator.mwfm.engine.module.LoadFactorDistModule

The module allows the Workflow Manager to perform load balancing of workflow 
execution based on the load factor that is configured for each node in the cluster. 

The configuration parameter “ load_factor” determines the sequence in which the 
distribution of jobs is made among the cluster nodes. The dispatch_local parameter 
decides whether load balancing has to be performed or not. However the load balancing 
will be done in case the jobs should redistributed to one of the other cluster nodes in case 
of failover.

After a list of active nodes is retrieved, the jobs are distributed based on the configured 
load factor. Jobs are distributed to a cluster node till its load factor is reached, and 
subsequently they are distributed to the next node in the list. This distribution process is 
repeated until the last node in the cluster is reached, and then it begins from the first 
node in the list.

If a job fails to start, or the cluster node gets suspended or locked in-between the times 
when a request is dispatched and it reaches the cluster node, an attempt is made to start 
the job in the next cluster node that is in the list.

For example, if A, B, and C are three nodes in a cluster with load factor or 2, 3 and 2 
respectively, the distribution sequence would be as follows:

A, A, B, B, B, C, C, A, A, B, B, B, C, C……

Table 6-15 LoadFactorDistModule Parameters

Parameter Required Description Reconfigurable Default

load_factor Yes The configurable value that 
determines the sequence in 
which the distribution of jobs is 
made among the cluster nodes. 
Jobs are distributed to a cluster 
node till its load factor is 
reached, and subsequently they 
are distributed to the next node 
in the list.

Yes Not 
applicable

dispatch_local No Configurable value that decides 
whether load balancing has to be 
performed or not. If this 
parameter is set to true, then the 
load balancing is switched off 
and jobs are dispatched only to 
the local cluster node. However 
the load balancing will be 
done in case the jobs should 
redistributed to one of the 
other cluster nodes in case of 
failover.

Yes False
Chapter 6 391



Workflow Manager Module Library
LoadFactorDistModule
Example 6-14 LoadFactor Distribution Module

<Module>
<Name>distribution_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.LoadFactorDistModule
</Class-Name>
<Param name="load_factor" value="10"/>

</Module> 
Chapter 6392



Workflow Manager Module Library
LogSearchModule
LogSearchModule
com.hp.ov.activator.mwfm.engine.module.LogSearchModule

The module creates log index files for which the Log Search UI component can be used.

The log modules must be configured to use the Log Search UI and in addition the index 
parameter must be set to true for the log modules which should perform indexing..

The module must be named log_search_module.

See Also

• “XMLLogModule” on page 434 and “SolutionXMLLogModule” on page 420.

Table 6-16 LogSearchModule Parameters

Parameter Required Description Default

commit_interval No The maximum amount of 
milliseconds between two 
consecutive commit operations 
to the log file index (default is 30 
seconds). To optimize 
performance, the 
commit_interval should not be 
set to too small values.  
Typically, the default value (or 
higher) will suffice. Please note 
that log statements cannot be 
searched before they have been 
committed to the index.

30 seconds

commit_max_pending No The maximum number of log 
messages to queue before 
committing them to the index 
(default is 500). Please note that 
log statements cannot be 
searched before they have been 
committed to the index.

500

field_aliases No A comma-separated list of 
mappings between English log 
index field names and localized 
field names. If this parameter is 
defined, localized field names 
can be used in advanced search 
operations.

None
Chapter 6 393



Workflow Manager Module Library
LogSearchModule
display_first_day_of_we
ek

No This parameter must be set to 
an integer in the range 1 to 7. 
The parameter is used to define 
which day of the week to display 
first in the UI. The value are: 1 
= Sunday, 2 = Monday, ..., 7 = 
Saturday

None

use_24_hour_format No Set this parameter to "true" 
(default) to use 24-hour 
format and to "false" to use 
12-hour format on the UI.

“true”

date_format No This parameter is used to 
configure the date format to 
be used on the UI 

yyy-MM-dd

max_search_results No A comma-separated list of 
integers that define the 
possible number of results to 
retrieve during a log search 
operation.

50, 100, 200, 
500

Table 6-16 LogSearchModule Parameters (Continued)

Parameter Required Description Default
Chapter 6394



Workflow Manager Module Library
MailHook
MailHook
com.hp.ov.activator.mwfm.engine.module.MailHook

The module sends e-mail messages to distribution lists when new messages are posted to 
certain queues.

There may be multiple hook modules configured within the Workflow Manager. Each 
hook module will be informed of the new arrival of a message.

This happens in an order determined from the module names. Each hook module must 
be given the name “hookN”, where N is a number indicating the order in which the 
modules are informed of new messages.

Thus, if there is only one hook module configured, it must be named “hook0”. A second 
hook module is then named “hook1,” and so on.

The module does not support re-configuration.

See Also

• “Writing New Queue Hook” on page 462 for more information about Queue Hook 
modules.

Table 6-17 MailHook Parameters

Parameter Required Description Default

smtp_server Yes The name of the SMTP server to 
be used for delivering the mail 
messages.

None

mail_account Yes The mail account that is used to 
send the messages. It should be 
something of the form 
login@domain.

None

domain Yes The domain that is used when 
talking to the SMTP server.

None

queue0,
queue1...
queueN

Yes Specify queue0 at a minimum. 
This parameter sets the name of 
the queue that will send an 
e-mail notification to the 
addresses contained in the 
receiver0 text file. 

None

receiver0,
receiver1...
receiverN

Yes Names of the text files that 
contain the different e-mail 
addresses to send messages to 
when receiving messages in the 
queues specified by means of the 
queue parameters. The format 
for the file is one single e-mail 
address per line.

None
Chapter 6 395



Workflow Manager Module Library
MailHook
html No If set to “false”, messages are 
sent as plain text. Otherwise by 
default they are sent as HTML.

“true”

Table 6-17 MailHook Parameters (Continued)

Parameter Required Description Default
Chapter 6396



Workflow Manager Module Library
Monitor
Monitor
com.hp.ov.activator.mwfm.engine.module.monitor.Monitor

This module collects statistics about functioning of the Workflow Manager. This data can 
be used to understand the engine performance. Statistics gathered include CPU time, 
wait time, number of running workflows, number of user logged in, number of worker 
threads, and number of activation threads. 

Configure this module with the name “monitor”.

The module does not support re-configuration.

See Also

• “Statistical Reports” on page 132 in HP Service Activator- Introduction and Overview 
for details on how you can use data collected.

Example 6-15 Monitor 

<Module>
<Name>Monitor</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.monitor.Monitor
</Class-Name>
<Param name=”quantum” value=”10”/>

</Module>

Table 6-18 Monitor Parameters

Parameter Required Description Default

database_module Yes The database module to use 
for writing audit records. If 
the database module is not 
specified, “db” is used.

“db”

quantum Yes Specifies the time in 
seconds between two 
consecutive measurements. 
A very short time interval 
may slow down your system 
performance. The minimal 
value is 60 seconds.

None

store_statistics No Indicates whether the 
Workflow Manager 
statistics is stored.

“false”
Chapter 6 397



Workflow Manager Module Library
Monitor
Chapter 6398



Workflow Manager Module Library
NARequestModule
NARequestModule
com.hp.ov.activator.mwfm.engine.module.narequest.NARequestModule

NARequestModule enables workflows to execute request on NA. The workflows must 
use the nodes specially developed for interacting with NA.

If you choose to configure multiple NA modules, give each module a unique name.

NOTE The password used to establish the connection can be encrypted. Use the crypt utiity to 
encrypt the password.

The module support NA version 9.1.

Table 6-19 NARequestModule Parameters

Parameter Required Description Reconfigurable Default

na_username Yes The NA server user name for 
authenntication.

No None

na_password Yes The NA server paasword for 
authenntication.

No None

encrypted_pass
word

No Specifies if the provided na_password 
is encrypted.

No false

na_ws_url Yes NA server URL for WS connection. 
Several URLs can be specified 
separated by ';' if NA is running in 
multi-master mode so they can be used 
for fall-back when opening a new 
session if connection fails. URLs are 
http URLs. This parameter should 
contain the same number of URL as 
“na_ejb_url”.

No None

na_ejb_url Yes NA server URL for RMI connection. 
Several URLs can be specified 
separated by ';' if NA is running in 
multi-master mode so they can be used 
for fall-back when opening a new 
session if connection fails. URLs are in 
the form <hostname>:<port>.

No None
Chapter 6 399



Workflow Manager Module Library
NARequestModule
queue_class No This can be set to the 
com.hp.ov.activator.mwfm.
module.WeightedEngineQueue, 
com.hp.ov.activator.mwfm.
module.SimpleEngineQueue, or
com.hp.ov.activator.mwfm.
module.PriorityEngineQueue

The WeightedEngineQueue use the 
PRIORITY case-packet variable in a 
weighted way to prioritize the items on 
which the activation threads operate. 
Items that have the same priority will 
be processed in FIFO order.

The SimpleEngineQueue will not do 
any prioritization of activation 
requests. They will be processed in 
FIFO order. 

The PriorityEngineQueue uses the 
PRIORITY case-packet variable to 
prioritize the items on which the 
activation threads operate. Items that 
have the same priority value will be 
processed in FIFO order.

No com.hp.ov.
activator.
mwfm.eng
ine.modul
e.Weighte
dEngineQ
ueue

queue_name No The name of the queue the job will 
be waiting in while NA is 
processing a request

No external_r
equest_qu
eue

retry_count No Number of times to retry 
processing of the external request.

No 3

retry_interval No Number of times to retry 
processing of the external request.

No 3

min_threads No Number of times to retry 
processing of the external request.

No 1

max_threads No Number of times to retry 
processing of the external request.

No 3

Table 6-19 NARequestModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6400



Workflow Manager Module Library
NARequestModule
Chapter 6 401



Workflow Manager Module Library
NNMRequestModule
NNMRequestModule
com.hp.ov.activator.mwfm.engine.module.nnmrequest.NNMRequestModule

NNMRequestModule enables workflows to execute request on NNM. The workflows 
must use the nodes specially developed for interacting with NNM.

You can configure the NNMRequestModule to access one NNM server.

If you choose to configure multiple NNM modules, give each module a unique name.

NOTE The password used to establish the connection can be encrypted. Use the crypt utiity to 
encrypt the password.

The module supports NNMi v9.10.

Table 6-20 NNMRequestModule Parameters

Parameter Required Description Reconfigurable Default

nnm_username Yes The NNM server user name for 
authenntication.

No None

nnm_password Yes The NNM server paasword for 
authenntication.

No None

nnm_pass_is_en
crypted

No Specifies if the provided 
nnm_password is encrypted.

No false

nnm_hostname Yes The host name of the NNM server. No None

nnm_protocol No The protocol to be used for the 
connection to the NNM server 
(either HTTP or HTTPS).

No HTTP

nnm_port No The NNM server port. No 80 for 
HTTP and 
443 for 
HTTPS

nnm_keystore No Path to the keystore containing 
the NNMi certificate (used on 
HTTPS connections).

No $ACTIVA
TOR_ETC
/config
/mwfmSS
L.keyst
ore

nnm_keystore_p
ass

No The password for accessing and 
recovering keys from the 
KeyStore.

No changeit
Chapter 6402



Workflow Manager Module Library
NNMRequestModule
queue_class No This can be set to the 
com.hp.ov.activator.mwfm.
module.WeightedEngineQueue, 
com.hp.ov.activator.mwfm.
module.SimpleEngineQueue, or
com.hp.ov.activator.mwfm.
module.PriorityEngineQueue

The WeightedEngineQueue use the 
PRIORITY case-packet variable in a 
weighted way to prioritize the items on 
which the activation threads operate. 
Items that have the same priority will 
be processed in FIFO order.

The SimpleEngineQueue will not do 
any prioritization of activation 
requests. They will be processed in 
FIFO order. 

The PriorityEngineQueue uses the 
PRIORITY case-packet variable to 
prioritize the items on which the 
activation threads operate. Items that 
have the same priority value will be 
processed in FIFO order.

No com.hp.ov.
activator.
mwfm.eng
ine.modul
e.Weighte
dEngineQ
ueue

queue_name No No external_r
equest_qu
eue

retry_count No Number of times to retry 
processing of the external request.

No 3

retry_interval No Number of times to retry 
processing of the external request.

No 3

min_threads No Number of times to retry 
processing of the external request.

No 1

max_threads No Number of times to retry 
processing of the external request.

No 3

Table 6-20 NNMRequestModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 403



Workflow Manager Module Library
NNMRequestModule
Chapter 6404



Workflow Manager Module Library
OVOMessageModule
OVOMessageModule
com.hp.ov.activator.mwfm.engine.module.OVOMessageModule

The module allows the Workflow Manager to send messages to OVO. It assumes that the 
OVO agent software has been installed on the local machine and uses the opcmsg 
command to send the message to the OVO server.

You can send messages from a workflow to OVO by using the SendAlarm node. DO NOT 
confuse this node with the SendMessage node, which is designed to send messages via a 
different kind of module, such as the SocketSenderModule. For more information about 
sending messages to OVO, see the description of “SendAlarm” on page 281.

A number of the message settings, such as severity, have the default values that can be 
overridden when a message is sent. See the description of “SendAlarm” on page 281 for 
details about setting these parameters when a message is sent.

This module does not support re-configuration.

Example 6-16 OVOMessageModule 

<Module>
<Name>ovo_sender</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.OVOMessageModule
</Class-Name>
<Param name="opcmsgcommand" 

value="/usr/OV/bin/OpC/opcmsg.exe"/>
<Param name="application" value="ServiceActivator"/>
<Param name="msg_grp" value="misc"/>

</Module> 

Table 6-21 OVOMessageModule Parameters

Parameter Required Description Default

opcmsgcommand Yes Used to specify the path to the 
opcmsg command.

None

application No Used to specify a default 
application name for messages 
sent by this module. The caller 
of the sendMessage() method 
can override the caller of the 
application.

“Service
Activator”

msg_grp No Used to specify a default 
message group for messages 
sent by this module. The caller 
of the sendMessage() method 
can override the msg_grp.

“Misc”
Chapter 6 405



Workflow Manager Module Library
QueueDistModule
QueueDistModule
com.hp.ov.activator.mwfm.engine.module.QueueDistModule

The moudle allows the Workflow Manager to perform load balancing of workflow 
execution based on the number of jobs currently running in the cluster nodes. 

The dispatch_local parameter decides whether load balancing has to be performed or 
not. However the load balancing will be done in case the jobs should redistributed to one 
of the other cluster nodes in case of failover.

After a list of active nodes is retrieved, the cluster node with least number of currently 
running jobs is selected and workflow execution is assigned to it.

If a job fails to start, or the cluster node gets suspended or locked in-between the times 
when a request is dispatched and it reaches the cluster node, an attempt is made to start 
the job in the next cluster node that is in the list.

Example 6-17 Queue Distribution Module

<Module>
<Name>distribution_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.QueueDistModule
</Class-Name>
<Param name=”dispatch_local” value=”false”/>

</Module> 

Table 6-22 QueueDistModule Parameters

Parameter Required Description Default

dispatch_local No Configurable value that 
decides whether load balancing 
has to be performed or not. If 
this parameter is set to true, 
then the load balancing is 
switched off and jobs are 
dispatched only to the local 
cluster node. However the 
load balancing will be done 
in case the jobs should 
redistributed to one of the 
other cluster nodes in case 
of failover.

Yes
Chapter 6406



Workflow Manager Module Library
RoundRobinDistModule
RoundRobinDistModule
com.hp.ov.activator.mwfm.engine.module.RoundRobinDistModule

The module allows the Workflow Manager to perform load balancing of workflow 
execution requests in a round robin fashion.

The configuration parameter dispatch_local decides whether load balancing has to be 
performed or not. However the load balancing will be done in case the jobs should 
redistributed to one of the other cluster nodes in case of failover.

After a list of active nodes is retrieved, the jobs are distributed in a sequential fashion, 
such that the workflow execution is equally distributed among the cluster nodes.

If a job fails to start, or the cluster node gets suspended or locked in-between the times 
when a request is dispatched and it reaches the cluster node, an attempt is made to start 
the job in the next cluster node that is in the list.

For example, if A, B, and C are three nodes in a cluster, the distribution sequence is as 
follows:

A, B, C, A, B, C........

Example 6-18 RoundRobin Distribution Module

<Module>
<Name>distribution_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.RoundRobinDistModule
</Class-Name>
<Param name=”dispatch_local” value=”false”/>

</Module> 

Table 6-23 RoundRobinDistModule Parameters

Parameter Required Description Reconfigu-
rable Default

dispatch_local No Configurable value that 
decides whether load 
balancing has to be 
performed or not. If this 
parameter is set to true, 
then the load balancing 
is switched off and jobs 
are dispatched only to 
the local cluster node. 
However the load 
balancing will be done 
in case the jobs 
should redistributed 
to one of the other 
cluster nodes in case 
of failover.

Yes False
Chapter 6 407



Workflow Manager Module Library
SchedulerModule
SchedulerModule
com.hp.ov.activator.mwfm.engine.module.SchedulerModule

This module allows you to start a workflow at a specified time in the future. The module 
contains a thread pool to handle the actual job execution at the specified time. If the 
scheduled job is configured to reoccur the module will start a new job with the given 
frequency. All jobs started will have unique Job Ids.

The scheduled jobs can be managed either via the RMI interface, via the special nodes or 
via the UI.

This module follows the Master-Slave approach. If the module is a master, it will have 
the privilege to schedule a job, and start the job at the scheduled time. However, if the 
module is a slave, it cannot schedule a job or start a scheduled job. 

See Also

• “ScheduleJob” on page 278

• “ModifyScheduledJob” on page 210

• “QueryScheduledJob” on page 248

• “DeleteScheduledJob” on page 133

Table 6-24 SchedulerModule Parameters

Parameter Required Description Reconfigurable Default

db No Contains the name of the 
DatabaseModule used by the 
SchedulerModule.

No db

max_threads Yes The maximum amount of threads 
in the pool used for launching the 
jobs at the specified time.

Yes None

min_threads No The minimum amount of threads 
in the pool of scheduled activation 
threads. These threads remain 
alive for as long as the module is 
used. If additional threads are 
required, the SchedulerModule 
creates dynamic threads up to the 
max_threads limit. Dynamic 
threads expire after 10 seconds of 
inactivity, or after the time 
specified in 
idle_thread_keep_alive.

Yes max_threads
Chapter 6408



Workflow Manager Module Library
SchedulerModule
Example 6-19 SchedulerModule 

<Module>
<Name>scheduler_module</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.SchedulerModule
</Class-Name>
<Param name="db" value="db"/>
<Param name="min_threads" value="1"/>
<Param name="max_threads" value="2"/>
<Param name="idle_thread_keep_alive" value="20"/>

</Module> 

idle_thread
_keep_alive

No The amount of time (in seconds) for 
which an idle dynamic thread 
exists before it expires and is 
deleted (see the min_threads). 
This only applies to dynamic 
threads.

Yes 10

Table 6-24 SchedulerModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 409



Workflow Manager Module Library
SelfMonitoringModule
SelfMonitoringModule
com.hp.ov.activator.mwfm.engine.module.SelfMonitoringModule

The self monitoring module monitors the health of the Service Activator system and 
raises alarm when a set threshold is violated. The parameters that are monitored by the 
self monitoring module are:

• Heap size - The module checks if the current heap size exceeded the threshold set. 
The threshold heap size is set as a percentage value indicating the percentage of 
maximum heap size which should not be exceeded. OID="1.3.6.1.4.1.11.2.52.1.1"

• Maximum worklist length - The module checks if the current work list length has 
exceeded the percentage of maximum work list length as configured in the threshold 
setting. OID = "1.3.6.1.4.1.11.2.52.2.1".

• Internal Suspension - The module generates traps/alarms when a node undergoes 
internal suspension. OID="1.3.6.1.4.1.11.2.52.5.1".

• Node down - When HPSA is running in a cluster. If one of the cluster nodes go down, 
a notification is generated. OID="1.3.6.1.4.1.11.2.52.5.2.1".

The SelfMonitoringModule can generate an SNMP trap, log alarms to a file and insert 
audit records to the database. These can be enabled individually in the module 
configuration.

The Self Monitoring Module will also save time series in a Round-Robin database. This 
information can be seen in the User Interface. Data regarding memory, worker threads, 
activation threads, activation queue size, total number of jobs, and finally user sessions 
will be saved.

Table 6-25 SelfMonitoringModule Parameters

Parameter Required Description Reconfigurable Default

poll_intrval No The polling interval at which the 
parameters are verified.This is 
defined in microseconds. 

No 10000

threshold_perc
ent_heap_size

No This parameter indicates the 
percentage of heap size which will 
trigger an alarm.                                          
For example if it is  defined as 80, 
an alarm/trap will be sent when 
the heap usage is 80% of the max 
heap size defined. 

No 80

threshold_perc
ent_maxworkli
stlength

Yes This parameter indicates the 
percentage of max worklist length 
which will trigger an alarm.                                                
For example if it is  defined as 80, an 
alarm/trap will be sent when the work 
list length reaches 80% of the max 
work list length defined.

No 80
Chapter 6410



Workflow Manager Module Library
SelfMonitoringModule
Example 6-20 SelfMonitoringModule

<Module>
<Name>db</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.SimpleDatabaseModule
</Class-Name>
 <Param name="poll_interval"value="10000"/>
 <Param name="threshold_percent_heap_size" value="80"/>
 <Param name="threshold_percent_maxworklistlength" value="80"/>
 <Param name="snmp_module"  value="snmp_sender"/>
 <Param name="send_snmp_trap" value="true"/>
 <Param name="log_alarm" value="true"/>
 <Param name="max_alarm_entries" value="1000"/>
 <Param name="audit_events" value="false"/>

</Module>

snmp_module Yes, if 
send_snmp
_trap is set 
to true

The snmp module to be used to send 
SNMP traps. 

No None

send_snmp_t
rap

No This is a Boolean parameter which 
indicates whether SNMP traps should 
be sent.A value of true indicates that 
the traps should  be sent and false 
otherwise

No false

log_alarm No This is a boolean parameter indicating 
if a log entry should be written. A 
value of true indicates that a log entry 
is written.

No false

max_alarm_en
tries

No The maximum number of alarm 
entries that will be logged into a single 
file. 

No 1000

audit_events No This is a Boolean parameter which 
indicates whether threshold violations 
should be inserted as audit records.A 
value of true indicates that the audit 
records should be inserted and false 
otherwise. If this parameter has not 
been defined then the default   will be 
false. In addition to this auditing will 
depend on whether system wide 
auditing has been enabled or not.

No false

granularity No A comma seperated list which 
indicat which time series should 
be save in the RRD database 
maiained and handled by the 
module

No 1,5,30,2
40,1440
,10080

samples No The number of samples which are 
saved for each time serie.

No 360

Table 6-25 SelfMonitoringModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 411



Workflow Manager Module Library
SNMPSenderModule
SNMPSenderModule
com.hp.ov.activator.mwfm.engine.module.SNMPSenderModule

The module enable the Workflow Manager to to send snmp traps to an snmp manager. 

The module supports sending both SNMP v2c and SNMP v3 traps.

The module can be accessed by the SendSNMPTrap workflow node and must also be 
configured if the SelfMonitoringModule is configured.

Multiple SNMP modules can be configured to send traps to multiple SNMP managers.

Table 6-26 SNMPSenderModule Parameters

Parameter Required Description Default

host Yes host name of the SNMP 
manager. 

None

port No Port in which the SNMP 
manager is listening on

162

engine_id Yes, if SNMP 
version is 3

Engine Id of the agent. None

username Yes, if SNMP 
version is 3

User name to be used. Used 
for version 3 traps.

None

password Yes, if SNMP 
version is 3

Password to be used. Used 
for version 3 traps. The 
password has to encrypted 
using the crypt utility.

None

auth_protocol No Authorization protocol to be 
used. It can either be 
MD5/SHA1. Used for 
version 3 traps.

MD5

community No Community to be used 
while sending the SNMP 
trap. Used for version 2 
traps.

public

privacy_protocol No Protocol to be used for 
privacy. The value can 
either be DES/AES. Used 
for version 3 traps.

DES
Chapter 6412



Workflow Manager Module Library
SNMPSenderModule
Example 6-21 SNMP Sender Module

<Module>

<Name>SNMPSenderModule</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.SNMPSenderModule
</Class-Name>
<Param name=”host” value=”localhost”/>
<Param name=”port” value=”162”/>
<Param name=”engine_id” value=”800007e580fd791162bfae0042”/>
<Param name=”username” value=”AuthUser”/>
<Param name=”password” value=”caLbA9g6hlnl/lQXeTL/mQ==”/>
<Param name=”community” value=”public”/>
<Param name=”auth_protocol” value=”MD5”/>
<Param name=”privacy_protocol” value=”DES”/>
<Param name=”privacy_pwd” value=”caLbA9g6hlnl/lQXeTL/mQ==”/>
<Param name=”snmp_version” value=”3”/>

</Module> 

privacy_pwd No Privacy password to be 
used. 

In case the 
password 
parameter 
has been 
defined then 
the default 
value of 
privacy_pwd 
will be the 
same as that 
of the 
"password" 
parameter.

snmp_version No The snmp version to be 
used. Valid values are 2 and 
3.

3

Table 6-26 SNMPSenderModule Parameters (Continued)

Parameter Required Description Default
Chapter 6 413



Workflow Manager Module Library
SocketListenerModule
SocketListenerModule
com.hp.ov.activator.mwfm.engine.module.SocketListenerModule

The module opens a socket on a specified port and waits for incoming messages. When a 
message arrives, the listener, either saves the message to a file or in the database based 
on the configuration and starts a new workflow to process the message.

The listener passes the location of the message received in case-packet variable called 
message_url, , the value being data:<message>, file:<file path> or db:<message 
id> respectively. A workflow that is to be started by the SocketListenerModule must 
have a variable by this name. 

Configure as many SocketListenerModules as necessary. Configure each listener on a 
unique port and with a unique name. A listener can start any workflow as long as the 
workflow contains the message_url variable.

If the module is configured to save messages in a file, to avoid the risk of messages being 
accidentally overwritten or deleted, it is important to ensure that each 
SocketListenerModule configured in the mwfm.xml has its own directory to save 
arriving messages in. 

If the messages are saved in a file, workflows are responsible for deleting such message 
files, typically using the RemoveData node. If the messages are written to a database, 
they must also be deleted after the completion of corresponding workflow execution 
using the RemoveData node. If the message is passed to the workflow with the data url 
(data:message) no deletion is needed.

The module is multi-threaded and avoids the blocking behavior. Incoming client socket 
connections are placed in a queue for processing by socket listener threads that are 
managed by this module.

Use the recover parameter when you configure the SocketListenerModule so that, 
when the Workflow Manager starts, the listener module looks for all existing message 
files or unprocessed messages stored in the database and start a new workflow to handle 
each outstanding file or message in the database. This is not necessary if the Workflow 
Manager is configured to maintain persistent state of workflows (this is the default 
configuration).

If the module is configured to save messages in a database, it looks for all unprocessed 
messages received by the failed cluster node and starts a new workflow to handle each 
outstanding message in failover scenarios.

By default, the SocketListenerModule adds an XML header at the beginning of a 
message written to a file. You can configure whether or not the module writes the header, 
which DTD the header refers to, and the root tag. The default header looks similar to 
this:

<?xml version="1.0" encoding="utf-8" />

<!DOCTYPE msg SYSTEM
"file://etc/opt/OV/ServiceActivator/config/exchange.dtd">

NOTE Messages received by the SocketListenerModule must be in UTF-8 format so that the 
Workflow Manager can process them properly.
Chapter 6414



Workflow Manager Module Library
SocketListenerModule
NOTE You can configure this module to use normal TCP communication or Secure Socket Layer 
(SSL) communication. If you choose SSL, you must provide a valid SSL certificate 
identifying the server.

For additional information, see Appendix A, “Configuring Service Activator to Use 
Secure Socket Layer (SSL) Protocol,” on page 473.

NOTE If you use prioritized workflows, and you have a controller workflow configured for a 
SocketListenerModule, you must make sure that the priority of the controller workflow 
is at least as high as the priority of the workflows it starts. Otherwise, the controller 
workflow can be starved.

The module does not support re-configuration.

See Also

• “RemoveData” on page 269 for information about removing a file after a workflow 
has finished processing it.

• “SendMessage” on page 283 and “SocketSenderModule” on page 418 for information 
about sending messages back to a waiting program.

• “WorkManagerModule” on page 433 for information about workflow prioritization.

Table 6-27 SocketListenerModule Parameters

Parameter Required Description Default

workflow Yes The workflow to be started 
upon receipt of a message. A 
parameter with the name 
message_url (containing 
the file where the message 
is stored or the message id 
refering to a row in the table 
where the message is stored 
) is passed through to the 
new workflow instance just 
created.

None

port Yes The port on which the 
module listens.

None
Chapter 6 415



Workflow Manager Module Library
SocketListenerModule
recover No If set to “true”, on start-up, 
all existing messages in the 
directory 
received_messages or 
unprocessed messages in 
the DATABASE MESSAGE 
table starts workflows. This 
is only useful if the 
Workflow Manager is not 
configured to maintain the 
state of running workflows. 
In that case, a workflow 
might have been started to 
process an incoming 
message, but the Workflow 
Manager shut down before 
it completed its processing 
of the message.

“false”

directory No The directory 
($ACTIVATOR_VAR/) where 
messages are held until 
processing. 

$ACTIVATOR_VAR/
received_
messages

save_messages No Enables message logging to 
the 
$ACTIVATOR_VAR/received
_messages_log directory. 

“false”

header No Specifies whether the XML 
header should be put before 
the message being received 
or not. Possible values are 
true and false. 

“true”

dtd_root_tag No If you specify this 
parameter, the header of the 
XML document is set to 
point to it. If it is not 
specified and a DTD is 
present, its value is msg.

msg

dtd No Specifies the document type 
definition that should be 
used for validating the XML 
message. You can specify 
the absolute location of the 
DTD file, or a path relative 
to 
$ACTIVATOR_ETC/config. If 
you do not want to specify a 
DTD, set the value to 
"NO_DTD".

exchange.dtd

Table 6-27 SocketListenerModule Parameters (Continued)

Parameter Required Description Default
Chapter 6416



Workflow Manager Module Library
SocketListenerModule
keystore No The path of the SSL 
keystore to be used by the 
socket listener for 
identifying itself to clients. 
If you specify this 
parameter, an SSL 
connection is utilized. 

None

keystore_password No The password to use to open 
the keystore.

None

clientauth No If you specify this 
parameter by setting it to 
“true”, clients to this socket 
must present an SSL 
certificate to the socket 
listener. This is only 
available if the socket 
listener has been configured 
for SSL connections.

“false”

min_threads No The minimum number of 
threads to maintain for 
processing arriving 
messages.

1

max_threads No The maximun number of 
threads to maintain for 
processing arriving 
messages.

3

write_message_to Yes Indicates the storage 
medium of arriving 
messages, data, file, or 
database. 

None

Table 6-27 SocketListenerModule Parameters (Continued)

Parameter Required Description Default
Chapter 6 417



Workflow Manager Module Library
SocketSenderModule
SocketSenderModule
com.hp.ov.activator.mwfm.engine.module.SocketSenderModule

The module is used to configure a mechanism for sending messages through a TCP 
socket to a port on a remote (or local) server. Configure as many SocketSenderModules 
as necessary. Give each module a unique name.

When the Workflow Manager starts up, it initializes each configured 
SocketSenderModule to contact the host/port that has been configured.

NOTE You can configure this module to use normal TCP communication or Secure Socket Layer 
(SSL) communication. If you choose SSL, you must provide a valid SSL certificate 
identifying the server.

For additional information, see Appendix A, “Configuring Service Activator to Use 
Secure Socket Layer (SSL) Protocol,” on page 473.

The read_message_from db parameter indicates whether the messages have to be read 
from the database or the file system.

NOTE Before using this module with the fault_tolerant parameter set to “true”, be sure that 
you have a program waiting at the given host and port. 

With this parameter set to “true” the SocketSenderModule saves every message it 
attempts to send, if the parameter “read_message_from_db” is set to false, until the 
message can be sent successfully. If the “read_message_from_db” is true will the 
message in the database first be removed when the message is sent successfully. 

If there is no program to receive the message, then the unsent messages occupy much 
disk space or database space while the module wastes CPU resources attempting to 
resend the messages.

If the parameter “read_message_from_db” is set to true, in a distributed setup, the 
pending unsent messages are also taken over by the cluster node that takes over the 
failed cluster node. The parameter “read_message_from_db” is also used during startup 
to read unsent messages either from the file system or the database.

The module does not support re-configuration.

See Also

• “SendMessage” on page 283 for more information about sending messages from a 
workflow to a waiting program.

Table 6-28 SocketSenderModule Parameters

Parameter Required Description Default

host Yes The host to send the messages 
to.

None
Chapter 6418



Workflow Manager Module Library
SocketSenderModule
port Yes The port in the host to send the 
messages to.

None

fault_tolerant No If “true”, messages that cannot 
be sent for any reason are saved 
and retried after a few seconds 
(see sleep_time).

“false”

sleep_time No Use this parameter to specify a 
retry interval when 
fault-tolerant is set to true. 
Specify the number of seconds 
to wait before retry.

30

keystore No Use this parameter to send 
messages using SSL 
communication. This parameter 
specifies the path to the SSL 
certificate to be used. If the 
parameter is not specified, 
normal TCP protocol is used to 
send messages. 

None

keystore_password No The password to use to open the 
keystore.

None

pending_message_
directory

No Sets the pending messages 
directory. If you specify this 
parameter, you will override the 
default directory 
$ACTIVATOR_VAR/pending_mes
sages. This is useful if you have 
multiple SocketSenderModules 
configured.

None

read_data_from_db No Indicates the storage medium 
for reading messages, file or 
database. If the value is true the 
messages will be read from the 
database.

true

Table 6-28 SocketSenderModule Parameters (Continued)

Parameter Required Description Default
Chapter 6 419



Workflow Manager Module Library
SolutionXMLLogModule
SolutionXMLLogModule
com.hp.ov.activator.mwfm.engine.module.XMLLogModule

The Workflow Manager requires a module called log_manager to provide logging 
functionality. XMLLogModule is the preferred class for this purpose. However, for having 
solution-specific log files apart from the existing MWFM log files, 
SolutionXMLLogModule can be configured by specifying different module names. 

The module logs messages to files in the directory $ACTIVATOR_VAR/<hostname>/log, 
the file name specified by the solution _name parameter. The module also performs 
automatic rollover of log files after it has logged the configured number of messages.

See Also

• “Log” on page 201

Table 6-29 SolutionXMLLogModule Parameters

Parameter Required Description Reconfigurable Default

log_max_entries No The maximum number of log 
entries written to a log file 
before the log file is closed and a 
new one is created.

Yes 1000

log_level No The following log_level 
parameters set the type of 
information logged:
ERROR - to record only error 
messages logged .
WARNING - to record errors and 
warnings.
INFORMATIVE - to record errors, 
warnings and some additional 
information.
DEBUG - to get additional 
debugging information .
DEBUG2 - to get even more 
detailed debugging information.

Yes INFORMATIVE

log_allow_statistics No A value of “true” allows the 
logging of statistical data. This 
is distinct from the level of 
logging that is chosen.

No “false”

log_directory Yes The location where the log 
files will be stored under the 
hostname folder.

No VAR_HOME/l
og

solution_name Yes Specifies the name of the 
solution that is used to 
generate log files. 

No None
Chapter 6420



Workflow Manager Module Library
SolutionXMLLogModule
Example 6-22 SolutionXMLLogModule Code

<Module>
<Name>test_solution_manager</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.SolutionXMLLogModule
</Class-Name>
<Param name="log_level" value="INFORMATIVE"/>
<Param name="log_max_entries" value="1000"/>
<Param name="log_allow_statistics"  value="true"/>
<Param name= “log_directory” value=”C:/HP/OpenView/ServiceActivator/var/log”/>
<Param name= “solution_name” value=”test_solution”/>

</Module> 

log_max_files No The maximum number of log 
files that can exist. If the 
max number is reached the 
first file will be overwritten. 
The log module will always 
starts with creating log file 
with the number 0. So the log 
module will rotate the log 
files over time. By setting 
this option you can avoid that 
the size of the log files grows 
indefinitely. If the value is set 
to 0 (default value) no log 
rotation is done.

No 0

index No This optional parameter 
determines whether log 
messages will be indexed for 
searching or not. A value of 
"true" will enable indexing, 
while "false" (default value) 
or any other value will 
disable it

Yes false

Table 6-29 SolutionXMLLogModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 421



Workflow Manager Module Library
SyncModule
SyncModule
com.hp.ov.activator.mwfm.engine.module.SyncModule

The module handles parent-child workflow synchronization. All the parent and child 
workflows communicate via the Sync Module and there will be no direct interaction 
between them. The Sync module makes it possible for the parent workflow to wait for 
one or more children's response at the same time. Parent workflow communicates with 
the sync module through the AskFor node and the child workflow responds to the parent 
workflow either through Sync node or through the SyncHandler end handler. The 
synchronization will happen through a queue that is configured in the AskFor node and 
the Sync node / SyncHandler end handler.

The Sync Module allows the workflow manager to perform the following.

• Determine when to send the synchronization responses to the waiting parent 
workflow. This depends on the waiting condition configuration of the AskFor node. 
Please refer to the AskFor node documentation to understand more on this 
parameter.

• Keep the children waiting if the parent workflow has not entered into the 
synchronization process. The child workflow will be parked in the queue that is 
configured in the Sync node.

• Retry the child response whenever there is a synchronization failure. This is 
primarily in the distributed environment. The synchronization could fail due to the 
following reasons.

— Loss of Database Connectivity

— Network failure

— Node being suspended (operator)

— Node shutting down

• Retry wake up of children whenever there is a wake up failure. Wakeup failure could 
be due to the following reasons

— Network failure

— Loss of Database Connectivity

— Node where the child is waiting is suspended

— Node where the child is waiting is shutting down

— Unable to persist the data using File Transaction module

Sync Module gives the facility to make the parent workflow wait on

• All the children workflows that it spawns

• A combination of the children workflows that it spawns

• A "number" of children workflows that it spawns - count of workflows can be 
specified instead of the actual workflow job IDs.

• Any one of the children workflows that it spawns
Chapter 6422



Workflow Manager Module Library
SyncModule
The Sync Module will cache the response from the children in the database depending on 
the parent workflow's waiting condition that is configured as part of the AskFor node. 
Please refer to AskFor node documentation to know more about the parent waiting 
condition.

The scenarios where the child response will be cached in the database and the child 
workflow parked in the configured queue (queue configured in the Sync node) are:

• "Parent workflow waiting in the AskFor node and the responding child is not the last 
child (waiting condition of ALL / COUNT)

• "Parent workflow entering the AskFor  node for synchronization after the children 
have responded (waiting condition of ALL / COUNT / ANY)

The scenarios where the child response will not be cached in the database (and will not 
be parked anywhere) are:

• "Parent workflow waiting in the AskFor node for synchronization and the responding 
child is the last child (waiting condition of ALL / COUNT) or the first child (waiting 
condition of ANY). 

• "Parent waiting in the AskFor node for synchronization and the responding child is 
the only child (waiting condition where only one workflow is configured in ALL case 
or  count of workflows is set to 1 in case of waiting condition of COUNT)

The child workflows that are sending their synchronization responses through the 
SyncHandler end handler will never be parked in any queue even if the parent 
workflow's waiting condition is not met or the parent workflow is not found waiting for a 
response.

When the synchronization is complete, the data in the database will be cleaned up in 
addition to waking up of the waiting children.

There are different exception situations where the sync module's monitor threads will 
come into play. There are three monitor threads

• WakeUpMonitor - This thread will be used whenever the sync module couldn't wake 
up the parent or the child workflow. The wake up activity will be parked in this 
thread and this thread will retry till the wake up is successful.

• DBCleanUpMonitor - This thread will be used whenever the sync module couldn't 
clean up records in the child and child_response table.

• ParentSyncFailureMonitor - This thread will be used whenever the child workflow 
(through sync module) couldn't send a response to the parent workflow.

The scenarios where the workflows will be failed are listed below:

• When more than one child workflow is responding to the parent workflow using the 
same case packet variable, the parent workflow along with the waiting child 
workflows will be failed as this is a workflow design issue.

• When there are children workflows waiting for the parent workflow to synchronize 
and the parent workflow never attempted synchronization, those waiting children 
workflows will be failed at the end of the parent workflow.

• When a child workflow is attempting synchronization and the corresponding parent 
workflow is not running or the queue that is used to synchronize is not found, the 
child workflow will be failed
Chapter 6 423



Workflow Manager Module Library
SyncModule
• If the sync module encounters SQLException during the parent or child registration, 
the parent workflow along with the associated (only those registered in the sync 
module) will be failed.

• Parent workflow and any children waiting in the sync module will be failed if the 
parent workflow's AskFor node is not configured properly. Please refer to the AskFor 
node page for more information.

See Also

• “Roles, Privileges, and Authentication” in HP Service Activator System Integrator’s 
Overview

• HP Service ActivatorDeveloping Plug-Ins and Compound Tasks

• “Setting Roles” on page 27

• “AskFor” on page 101

Table 6-30 SyncModule Parameters

Parameter Required Description Reconfigurable Default

wakeup_mo
nitor_interv
al

No Configurable time interval 
that the Wake Up Monitor 
thread will sleep after every 
check to see if there are any 
pending wake up work. The 
value is in milliseconds. 

Yes 4000

db_cleanup_i
nterval

No Configurable time interval 
that the DB Cleanup Monitor 
thread will sleep after every 
check to see if there are any 
pending clean up. The value is 
in milliseconds. 

Yes 4000

parent_notific
ation_interva
l

No Configurable time interval 
that the Parent Sync Failure 
Monitor thread will sleep after 
every check to see if there are 
any pending parent 
synchronization. The value is 
in milliseconds

Yes 2000
Chapter 6424



Workflow Manager Module Library
SyncModule
Example 6-23 SyncModule Code

This example configures the SyncModule.

<Module>
 <Name>authenticator</Name>
 <Class-Name>

com.hp.ov.activator.mwfm.engine.module.SyncModule
 </Class-Name>
 <Param name=”wakeup_monitor_interval” value=”4000”/>
 <Param name=”db_cleanup_interval” value=”4000”/>
 <Param name=”parent_notification_interval” value=”2000”/>

</Module> 
Chapter 6 425



Workflow Manager Module Library
SyncModule
Chapter 6426



Workflow Manager Module Library
UCMDBRequest Module
UCMDBRequest Module
com.hp.ov.activator.mwfm.engine.module.UCMDBRequestModule

UCMDBRequestModule enables workflows to communicate with an uCMDB server. This 
module will enable communication with the UCMDB through the web services API 
exposed by it. 

This module serves as the web service client to the web. The following web services of 
UCMDB can be executed:

• createCIsAndRelations

• updateCIsAndRelations

• deleteCIsAndReleations

• getCIsByid

• getCIsByType

• getCINeighbours

• executeToplogyQueryByName

• executeToplogyQueryByNameWithParameters

• executeToplogyQueryWithParameters

Workflows must use the uCMDB nodes to get access to the web methods.

See Also

• For the node descriptions, see Chapter 4 of this guide.

This module is inherently multithreaded and the minimum and maximum threads can 
be configured as part of the module configuration.  This module is invoked in an 
asynchrounous fashion. After the node invokes this module, the module puts the node in 
a queue and notifies the node after the response is received from uCMDB

A single UCMDBRequestModule is configured as follows.

The module supports uCMDB 8.0.

Table 6-31 UCMDBRequestModule Parameters

Parameter Required Description Default

wsdl_url Yes The URL of the deployed 
UCMDB wsdl

none

username No Username to connect to the 
uCMDB

None
Chapter 6 427



Workflow Manager Module Library
UCMDBRequest Module
Example 6-24 UCMDBRequestModule 

<Module>
<Name>ucmdb_request</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.UCMDBRequestModule
</Class-Name>
<Param name=”wsdl_url” 

value=”http://localhost:5050/axis2/services/UcmdbService?wsdl”/>
<Param name="user_name" value="admin"/>
<Param name="password" value="ux8/AgHpqL8c7v6Nw668VA=="/>
<Param name="min_threads" value="1"/>
<Param name="max_threads" value="3"/>
<Param name="queue_class" 

value="com.hp.ov.activator.mwfm.engine.module.SimpleEngineQueue"/>

</Module> 

password No Password to connect to the 
uCMDB. Should be 
specified in encrypted 
format. Encryption of the 
password must be done 
using the crypt command in 
$ACTIVATOR_BIN

None

min_threads No The minimum number of 
threads that will be created 
to process uCMDB requests

1

max_threads No The maximum number of 
threads that will be created 
to process uCMDB 
requests. This is the 
number of simultaneous 
requests that can be 
processed. Other incoming 
requests will be queued 
until one of the threads 
becomes available.

3

queue_name No Name of the queue in which 
the waiting jobs will be put.

ucmdb

queue_class No This is the name of the java 
class that implements the 
queue for the work items. 
Valid values are 
com.hp.ov.activator.mwfm.e
ngine.module.SimpleEngin
eQueue and 
com.hp.ov.activator.mwfm.e
ngine.module.PriorityEngin
eQueue

com.hp.ov.acti
vator.mwfm.e
ngine.module.
SimpleEngine
Queue

Table 6-31 UCMDBRequestModule Parameters (Continued)

Parameter Required Description Default
Chapter 6428



Workflow Manager Module Library
UsageMonitoringModule
UsageMonitoringModule
com.hp.ov.activator.mwfm.engine.module.UsageMonitoringModule

This module collects usage information (service requests) and stores it in the form of 
usage records in the system database. The UsageMonitoringModule cannot be disabled.

The name of the module must be “usage_monitoring_module”.

The module does not support re-configuration.

Example 6-25 UsageMonitoringModule 

This example configures the UsageMonitoringModule.

<Module>
<Name>check_time</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.UsageMonitoringModule
</Class-Name>
<Param name=”collection_interval” value=”3600”/>
<Param name=”usage_thredshold” value=”0”/>

</Module>

Table 6-32 UsageMonitoringModule Parameters

Parameter Required Description Reconfigurable Default

collection_in
terval

No The interval (in seconds) between 
two consecutive usage data 
collection events.
The minimun allowed value for 
this parameter is 1 minute (60 
seconds).

No 3600

usage_thredsh
old 

No Determines the maximum 
number of allows services 
requests per configured interval. 
If the threshold is exceeded the 
module will warn the user. The 
minimum valid value 1. The 
value 0 is used to indicate “no 
limit”.

No 0 
(UNLIM
ITED)
Chapter 6 429



Workflow Manager Module Library
WindowsAdvancedAuthModule
WindowsAdvancedAuthModule
com.hp.ov.activator.mwfm.engine.module.umm.WindowsAdvancedAuthModule

The module provides authentication and authorization functionality based on the 
underlying Windows Operating System authentication mechanism. It is only suitable for 
use on Windows.

The roles defined in the operating system and used by Service Activator must also be 
created through the User Management Interface. Only users which have this 
configuration are able to login to Service Activator. During installation of Service 
Activator the roles “admin” and “internal” are created for User Management. The 
“admin” role must be configured in the operating system to make it possible to enable 
the WindowsAdvancedAuthModule. However it is possible to use role mapping and 
hence create a different role for the System User in the underlying operating system.

Note that usernames are groups written as DOMAIN\\USER and DOMAIN\\GROUP. 
If the group or user is on the local system, it is written as USER or GROUP.

Name this module “authenticator” in the configuration.

NOTE The Windows operating system itself must be configured properly to allow Service 
Activator to perform this kind of authentication. See the discussion “Update Local 
Security Policies” on page HIDDEN of the HP Service Activator Installation Guide for 
Windows.

See Also

• “Roles, Privileges, and Authentication” in the HP Service Activator - System 
Integrator’s Overview

• “Configuring Authentication or Authorization” on page 66 in HP Service 
Activator—Developing Plug-Ins and Compound Tasks

• “Setting Roles” on page 27

Table 6-33 WindowsAdvancedAuthModule Parameters

Parameter Required Description Reconfigurable Default

mwfm_remo
te_url

Yes Used to indicate from where 
to get the remote Workflow 
Manager service

No None

sleep_time No The time between the 
internal role cache is 
cleared.

No 30 min

eight_char_
password

No If password should be 
trucated to 8 characters 
before authentication is 
done

No false
Chapter 6430



Workflow Manager Module Library
WindowsAdvancedAuthModule
secure_user
_name

No Transform the user name to 
a valid value, cutting the 
user name from the first 
invalid character.

No false

Table 6-33 WindowsAdvancedAuthModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 431



Workflow Manager Module Library
WindowsAdvancedAuthModule
Example 6-26 WindowsAdvancedAuthModule Code

This example configures the WindowsAdvancedAuthModule with the workflow Manager 
service.

<Module>
 <Name>authenticator</Name>
 <Class-Name>

com.hp.ov.activator.mwfm.engine.module.umm.WindowsAdvancedAuthModule
 </Class-Name>
 <Param name=”mwfm_remote_url” value=”//localhost:2000/wfm”/>

</Module> 
Chapter 6432



Workflow Manager Module Library
WorkManagerModule
WorkManagerModule 
com.hp.ov.activator.mwfm.engine.module.WorkManagerModule

The Workflow Manager requires a work manager module to manage processing of work 
items. There is one class supplied to provide this functionality. 

In addition, this module may be parameterized with a queue class. The queue specified 
affects how the work items are ordered. By default, this module uses the 
SimpleEngineQueue. This queue orders work items from the workflows in a strictly 
round-robin fashion.

Instead of the SimpleEngineQueue, you can choose the PriorityEngineQueue or 
WeightedEngineQueue, in which case work-items are processed with varying priority. A 
typical usage is to have most workflows executed at a neutral priority (0). If an 
important activity is requested that needs immediate processing, however, the workflow 
can have a high priority set.

When using the PriorityEngineQueue or the WeightedEngineQueue, the module looks 
for a case-packet variable with the name PRIORITY to determine the priority for the work 
items. Items of a higher priority are processed before items of a lower priority. If the 
PRIORITY case-packet variable is not found, the priority for the workflow is assumed to 
be 0. It is possible for the priority of a workflow to change during its life-time. This queue 
will recognize the new priority value.

NOTE The Workflow Manager requires a work manager module. By default, the Workflow 
Manager uses this module as its work manager and uses the WeightedEngineQueue.

Example 6-27 WorkManagerModule

<Module> 
<Name>work_manager</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.WorkManagerModule
</Class-Name>
<Param name=”queue_class” 

value=”com.hp.ov.activator.mwfm.engine.module.PriorityEngineQueue”/>
</Module>

Table 6-34 WorkManager Parameters

Parameter Required Description Reconfigurable Default

queue_class No Indicates which class 
implements the queue for 
ordering work items.

No com.hp.ov.
activator.mwfm.
engine.module.
WeightedEngineQue
ue
Chapter 6 433



Workflow Manager Module Library
XMLLogModule
XMLLogModule
com.hp.ov.activator.mwfm.engine.module.XMLLogModule

The Workflow Manager requires a module called log_manager to provide logging 
functionality. XMLLogModule is the preferred class for this purpose. XMLLogModule logs 
messages to files in the directory $ACTIVATOR_VAR/log. 

XMLLogModule performs automatic rollover of log files after it has logged the configured 
number of messages.

Specify the module name as “log_manager.” 

See Also

• Appendix C, “Log Files,” on page 57 in HP Service Activator— Introduction and 
Overview for an example of log message format

Table 6-35 XMLLogModule Parameters

Parameter Required Description Reconfigurable Default

log_max_entries No The maximum number of log 
entries written to a log file 
before the log file is closed and a 
new one is created.

Yes 1000

log_max_files No The maximum number of log 
files which can exist. If the 
max number is reached the 
first file will be overwritten. 
The log module will always 
starts with creating log file 
with number 0. So the log 
module will rotate the log 
files over time. By setting 
this option the disc full 
situation can be avoided. If value 
is set to 0 no rotation is done.

No 0

log_level No The following log_level 
parameters set the type of 
information logged:
ERROR - to record only error 
messages logged .
WARNING - to record errors and 
warnings.
INFORMATIVE - to record errors, 
warnings and some additional 
information.
DEBUG - to get additional 
debugging information .
DEBUG2 - to get even more 
detailed debugging information.

Yes INFORMATIVE
Chapter 6434



Workflow Manager Module Library
XMLLogModule
log_allow_statistics No A value of “true” allows the 
logging of statistical data. This 
is distinct from the level of 
logging that is chosen.

No “false”

log_max_files No The maximum number of log 
files that can exist. If the 
max number is reached the 
first file will be overwritten. 
The log module will always 
starts with creating log file 
with the number 0. So the log 
module will rotate the log 
files over time. By setting 
this option you can avoid that 
the size of the log files grows 
indefinitely. If the value is set 
to 0 (default value) no log 
rotation is done.

No 0

log_directory Yes The location where the log 
files will be stored under the 
hostname folder.

No VAR_HOME/l
og

index No This optional parameter 
determines whether log 
messages will be indexed for 
searching or not. A value of 
"true" will enable indexing, 
while "false" (default value) 
or any other value will 
disable it

Yes false

Table 6-35 XMLLogModule Parameters (Continued)

Parameter Required Description Reconfigurable Default
Chapter 6 435



Workflow Manager Module Library
XMLLogModule
Example 6-28 XMLLogModule Code

<Module>
<Name>log_manager</Name>
<Class-Name>

com.hp.ov.activator.mwfm.engine.module.XMLLogModule
</Class-Name>
<Param name="log_level" value="INFORMATIVE"/>
<Param name="log_max_entries" value="1000"/>
<Param name="log_allow_statistics"  value="true"/>

</Module> 
Chapter 6436



7 Writing Custom Workflow Nodes

You may find it necessary to develop new workflow nodes to accomplish specific tasks in 
your business processes. This chapter provides conceptual information and instructions 
for writing new process nodes, rule nodes, and handlers.
Chapter 7 437



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Understanding Workflow Nodes
Each workflow node and handler is implemented by a Java class that is derived from the 
WFComponent class. 

Figure 7-1 is the inheritance hierarchy for WFProcessNode, WFRuleNode, WFSwitch, 
WFComponent, Handler, and ErrorHandler.

Figure 7-1 Workflow Component Inheritance Hierarchy

All components shown in Figure 7-1 are subclasses of WFComponent. 

There are five types of components, and each one is derived from a separate class:

NOTE All of the shipped WF Nodes and Handlers are part of the 
com.hp.ov.activator.mwfm.component.builtin package. Your new nodes and 
handlers should use a different package name.

WFComponent

WFProcessNode WFRuleNode Handler

ErrorHandler

Process 
nodes

com.hp.ov.activator.mwfm.component.WFProcessNode

Rule 
nodes

com.hp.ov.activator.mwfm.component.WFRuleNode

Switch 
nodes

com.hp.ov.activator.mwfm.component.WFSwitch

Error 
handler

com.hp.ov.activator.mwfm.component.ErrorHandler

End 
handler

com.hp.ov.activator.mwfm.component.Handler
Chapter 7438



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Accessing Workflow Manager Capabilities: WFContext & 
WFManager 

Workflow components (nodes and handlers) have access to two objects when they run: 
WFContext and WFManager. 

The com.hp.ov.activator.mwfm.component.WFContext interface offers an efficient 
way to work with the case-packet, write to logs, interact with modules, and to obtain a 
reference to the WFManager remote interface. 

The remote interface com.hp.ov.activator.mwfm.WFManager lets you interact with 
Service Activator Workflow Manager to start new jobs, get information on the status of 
these jobs, stop running jobs and pass values to a job that is paused waiting for input. 
The ability to pass values to the variables of a waiting job is an important feature that is 
discussed in detail later.

The base class of all Workflow Nodes contains a protected member variable, “context,” 
that provides access to the WFContext object. You obtain the interface to the WFManager 
through a context method.

The WFComponent class contains a series of helper methods for getting and setting case 
packet variables etc. These methods should be used to ensure consistent use of constant: 
and variable: plus a consistent behavior of the created nodes.

For details about the WFManager, WFComponent and WFContext classes see the 
Javadocs.

Example Source Code for Nodes

The source code for a few example nodes are shipped with the product. All of the example 
nodes can be found in $ACTIVATOR_OPT/examples/nodes.
Chapter 7 439



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Writing Custom Process Nodes

Process nodes are subclasses of com.hp.ov.activator.mwfm.component.WFProcessNode. 
They appear as:

public class Add extends WFProcessNode

These classes must declare a default constructor (with no parameters). When a workflow 
is started, one of these objects is instantiated for each node in the workflow. Thus, if a 
workflow has four Add nodes, then four objects of this class are instantiated.

They have two required public methods and one optional method:

• init() - required

• nodeEntered() - required

• nodeExited() - optional

init() Method

This method is invoked on each instantiated node object in a workflow when the 
workflow is first started. It allows you to verify that all parameters have been declared 
and to initialize the component. This method should do as much parameter verification 
as possible. Any exceptions that are thrown during the init() method prohibit the 
workflow from actually starting. 

The method is declared as follows:

public void init( HashMap config ) throws WFConfigException

The first statement in this method should send the configuration to the main class of the 
WFComponent using the following format:

super.init( config );

This way the WFComponent main class is properly initialized.

config is an object belonging to the HashMap class. It contains the parameters that are 
passed to the node. Each key is the name of the parameter and each value is the value as 
specified in the workflow definition.

If an error is detected during the init method, raise an exception belonging to the 
WFConfigException class in the following format:

throw new WFConfigException( "Some variable is needed" );

nodeEntered() Method 

This method is invoked when the workflow enters the corresponding node. Declare it in 
the following format:

public void nodeEntered() throws WFException

This is where you carry out the desired operations for your component.

If an error is detected, raise an exception belonging to the WFException class in the 
following format:

throw new WFException( "First param must be a variable" );

nodeExited() Method

This optional method is invoked when the workflow exits the corresponding node. 
Declare it in the following format:

public void nodeExited() throws WFException
Chapter 7440



Writing Custom Workflow Nodes
Understanding Workflow Nodes
This is where you can carry out the completion of the operation for your component. 
Typically, this method is not needed. 

Example 7-1 Add - Example of a Process Node

This example shows the code for the Add node. The node receives a list of variables and 
constant values that it adds together. The result is stored with the first parameter, which 
must be a variable.

package com.hp.ov.activator.mwfm.component.builtin;

import java.util.*;
import java.text.*;
import com.hp.ov.activator.mwfm.component.*;
import com.hp.ov.activator.mwfm.engine.object.*;

public class Add extends WFProcessNode
{

private String varToSet = null;
private Vector attributes;

public void init( HashMap config ) throws WFConfigException
{

super.init (config);
attributes = new Vector();

for ( int i=0 ; ; i++ ) {
    String str = (String) config.get( ObjectConstants.OPERAND + i);

if ( str == null )
break;

if ( i == 0 ) {
if ( str.startsWith(ObjectConstants.PREFIX_CONSTANT) ) {

throw new WFConfigException( MessageFormat.format("Parameter {0} 
must be a variable.",
new Object[]{ObjectConstants.OPERAND+0}) );

}
varToSet = str;

}
attributes.addElement( str );

}

if (attributes.isEmpty()) {
throw new WFConfigException( MessageFormat.format( "The parameter {0} 

must be specified.",
new Object[] {ObjectConstants.OPERAND+0} ) );

}
}

public void nodeEntered() throws WFException
{

double total = 0;
int count = attributes.size();

for ( int i=0 ; i < count ; i++ ) {
String var = (String)attributes.get(i);
// Fetch either the constant value or the
// case-packet variable pointed to!
String strVal = getStringValue(var);
double val;

try {
val = (double)Double.parseDouble( strVal );

} catch (Exception e) {
Chapter 7 441



Writing Custom Workflow Nodes
Understanding Workflow Nodes
throw new WFException( "The value specified is not numeric: " +
strVal );

}
total += val;

}

// if only one variable was given then we do a simple increment
if ( count == 1 )

total++;

if ( context.getAttributeType( varToSet ).equals( "Integer" ) ) {
Double d = new Double(total);

// convert to an integer
long longTotal = d.longValue();
setValue(varToSet, "" + longTotal);

} else {
setValue(varToSet, "" + total);

}

context.logDebug2( "new value for variable '" + varToSet + "' is " +
total );

}

}

Example 7-2 Use of WFContext.requestUserInteraction()

This is an example showing the use of the WFContext.requestUserInteraction() 
method within the nodeEntered() method of a process node. This is how a node can 
request the workflow to stop and wait for some values to be supplied by an external 
entity (either a human operator or a separate executable or workflow).

You should be aware that WFContext.requestUserInteraction() is non-blocking. The 
call returns after posting a request onto the given queue. After the nodeEntered() 
method returns, the Workflow Manager pauses the running workflow to wait for the 
requested input. After the user interacts with the workflow, the Workflow Manager 
executes the nodeExited() method of this node.

String[] vars = { “weekday”, “startTime” };
String[] descriptions = {

“What day to start the action”,
“Start time“ };

boolean[] editable = { true, true };

int timeout = 0; // no timeout
String newQueue = “operator”;
java.util.HashMap table = new HashMap();

// the days array will be used to give a pick-list for the weekday variable
String[] days = new String[7];
days[0]="Monday";
days[1]="Tuesday";
days[2]="Wednesday";
days[3]="Thursday";
days[4]="Friday";
days[5]="Saturday";
days[6]="Sunday";
table.put( vars[0], days );

context.requestUserInteraction( vars, descriptions, editable, table, newQueue, 
           new Validator() {
            public java.lang.Object validate(java.util.HashMap 
            requestedCasePacket)
Chapter 7442



Writing Custom Workflow Nodes
Understanding Workflow Nodes
              throws WFInvalidCasePacketException {
 
              if (vars[0]==null) {
              throw new WFInvalidCasePacketException 
                ("Variable are mandatory and cannot be empty.");
              }
              if (validator != null)
              return validator.validate (requestedCasePacket);
              }
            },

          timeout );
Chapter 7 443



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Writing Custom Rule Nodes

Custom rule nodes are subclasses of WFRule. They appear as:

public class Equal extends WFRule

They have two public methods that must be declared:

• init() Method

• eval() Method

init() Method

In the same way as process nodes, this method is invoked when you start the flow. It lets 
you verify that all parameters have been declared and initializes the component. It 
appears as follows:

public void init( HashMap config ) throws WFConfigException

Send the configuration to the main class of the WFComponent with the following 
statement:

super.init( config );

This is to start the WFComponent main class correctly.

config is an object belonging to the HashMap class. Each key is the name of a parameter 
that has been passed to the component.

If an error is detected, throw an exception belonging to the WFConfigException class in 
the following format:

throw new WFConfigException( "Some variable is needed" );

eval() Method

This method is invoked when the workflow enters the node. You declare it in the 
following format:

public boolean eval() throws WFException

It returns a Boolean value indicating whether the condition is true or false.

If an error is detected, throw an exception belonging to the WFException class in the 
following format:

throw new WFException( "First param must evaluate to a numeric value." );

Example 7-3 Not – Example of a Rule Node

If you pass a variable, constant or string to the Not component, and the component 
evaluates it as a NOT in the C programming language (the variable or constant value is 0 
or the string is empty), the returned value is “true.” Otherwise, it is “false.”

package com.hp.ov.activator.mwfm.component.builtin;

import com.hp.ov.activator.mwfm.component.*;
import java.util.*;

public class Not extends WFRule
{
 

Chapter 7444



Writing Custom Workflow Nodes
Understanding Workflow Nodes
  // Operand's name
  public static final String OP1   = "op1";
  // The prefix to be a constant
  public static final String CONSTANT = "constant:";

  /** Method invoked when the workflow is started */
  public void init (HashMap config) throws WFConfigException
  {
  super.init (config);

  if (!config.containsKey (OP1))
    throw new WFConfigException (OP1 + " is mandatory parameter for " + 
           "not nodes");
  }

// The method to evaluate a rule.
  public boolean eval() throws WFException
  {
    String op1; 
    long valor;
    
    op1 = (String) config.get (OP1);
    
    if (op1.startsWith(CONSTANT)){
      op1 = op1.substring(CONSTANT.length());
      try {
        valor = Long.parseLong(op1);
      } catch (Exception e) {
        throw new WFException("Constant seems not be a number");
      }
    } 
    else
    {
      String str = context.getAttributeType (op1);
      if (str.compareTo("String")==0) {
        value = ((String) context.getAttribute (op1)).length();
      } else if (str.compareTo("Integer")==0) {
        try {
          value = ((Long)context.getAttribute (op1)).longValue();
          //Long.parseLong((String) 
        } catch (NumberFormatException e) {
          throw new WFException("Integer not valid");
        }
      } else {
         throw new WFException("op1 is not a constant,string or integer");
      }
    }
    return valor!=0;
  }
}

Chapter 7 445



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Writing Custom Switch Nodes

Custom switch nodes are subclasses of WFSwitch. They appear as:

public class SwitchCase extends WFSwitch

They have two public methods that must be declared:

• init() Method

• evalKey() Method

init() Method

In the same way as process nodes, this method is invoked when you start the flow. It lets 
you verify that all parameters have been declared and initializes the component. It 
appears as follows:

public void init( HashMap config ) throws WFConfigException

Send the configuration to the main class of the WFComponent with the following 
statement:

super.init( config );

This is to start the WFComponent main class correctly.

config is an object belonging to the HashMap class. Each key is the name of a parameter 
that has been passed to the component.

If an error is detected, throw an exception belonging to the WFConfigException class in 
the following format:

throw new WFConfigException( "Some variable is needed" );

evalKey() Method

This method is invoked when the workflow enters the node. You declare it in the 
following format:

public string evalKey() throws WFException

It returns a String value indicating the value of the case branch.

If an error is detected, throw an exception belonging to the WFException class in the 
following format:

throw new WFException( "First param must evaluate to a numeric value." );
Chapter 7446



Writing Custom Workflow Nodes
Understanding Workflow Nodes
Writing Error and End Handlers

Error handlers and end handlers are special workflow components that allow a workflow 
to perform some last-minute functions before the workflow finishes running. There are 
only a few built-in handlers supplied; however, you can write your own.

The two types of handlers have only a single required method called execute(). This 
method is invoked when the workflow is being terminated. Since the handlers are also 
workflow components they have an init() method just like process and rule nodes. 
Thus, they can be parameterized in the same fashion as other workflow nodes. A handler 
that is intended to be an error handler must extend the ErrorHandler class. A handler 
intended to be used as an end handler need only extend the Handler class. 

It is possible to write a handler suitable for either purpose, in which case it should 
implement the ErrorHandler interface. 

If the handler is used only as an end handler, the setException() method is not called 
before the execute() method. The built-in handlers are written in this way:

Example 7-4 MyErrorHandler – Example of an Error Handler

This is an example of a handler that puts a message on the standard output of the 
Workflow Manager.

import java.util.*;

import com.hp.ov.activator.mwfm.component.*;
import com.hp.ov.activator.mwfm.engine.object.*;

// Invoked when the workflow encounters an error
public class MyErrorHandler extends ErrorHandler {

public void execute(){
System.out.println("**** Exception captured by MyErrorHandler ****");

}  
}

Chapter 7 447



Writing Custom Workflow Nodes
Deploying Workflow Nodes and Handlers
Deploying Workflow Nodes and Handlers
If you write custom workflow components, the Workflow Manager must be able to find 
them. The Workflow Manager uses the standard Java mechanism for finding such 
classes, the “classpath”.

Only jar files are supported so the new classes must be packed into jar file(s)..

The jar files must be placed in the directory $JBOSS_EAR_LIB. If a jar file is placed in 
this directory Service Activator must be restarted to find the jar file.

NOTE During development you may change the implementation of your new nodes. The 
Workflow Manager will not notice an updated jar file after Service Activator has be 
started. If you change your jar files, then you must stop and restart Service Activator to 
pick-up the new implementation.

Using Custom Nodes and Handlers in Designer

You can make your new components available when using the designer to create 
workflows. Each node must have a Component Descriptor file. 

To be recognized by the WF Designer, all of the Node Descriptor files must be placed 
under the directory $ACTIVATOR_ETC/designer/nodes. In this directory you see the 
directory “builtin.” This directory contains the descriptors for all of the built-in nodes. 
Your node descriptors may be placed in this directory, or they may be placed in other 
directories. The designer shows the list of available nodes in tabs on the left hand side of 
the workspace. For each directory that the designer finds, it creates a new tab. These 
tabs are built when the designer is started. If you add new node descriptors, then you 
need to restart the designer.

All of the Handler Descriptor files must be placed under the directory 
$ACTIVATOR_ETC/designer/handlers/end or 
$ACTIVATOR_ETC/designer/handlers/error. These handler directories do not support 
subdirectories as in the case of nodes.

Component Descriptor Vocabulary

These files are, as you might expect, written in a special XML vocabulary. The descriptor 
specifies:

• the name of the node or handler

• the name of the java class that implements it

• an image to display on the node button in place of the  or the  icon 

• a description of the component behavior

• the type of the component (process node, rule node, end handler, or error handler)

• a list of parameters supported by the component, and the details of each parameter

The XML vocabulary is defined in workflowComponent.dtd. This DTD is found in the 
nodes/builtin directory.
Chapter 7448



Writing Custom Workflow Nodes
Deploying Workflow Nodes and Handlers
Example 7-5 Node Descriptor Example

This example shows the node descriptor for the built-in node StartJob. Most of the 
content is self explanatory except for the attributes on the parameters. They are 
described below.

<?xml version=’1.0’ encoding-’utf-8’?>

<!DOCTYPE WorkflowComponent SYSTEM 'workflowComponent.dtd'>
<!-- Copyright  (c) 2000-2002 Hewlett-Packard Company.  All Rights Reserved -->

<WorkflowComponent>
<Name>StartJob</Name>
<NodeDescription>Begins execution of a new workflows.</NodeDescription>
<ClassName>com.hp.ov.activator.mwfm.component.builtin.StartJob</ClassName>
<Type>ProcessNode</Type>
<DisablePersistence>false</DisablePersistence>
<Params>

<Param Required="true" Constant="true">
    <Name>workflow_name</Name>
    <Description>

The name of the workflow to start. May be a variable or a constant.
</Description>

</Param>

<Param Multiple="true">
    <Name>variable</Name>
    <Description>

Case-packet variables that are to be passed to initialize variables 
in the new workflow being started.

</Description>
</Param>

<Param Multiple="true" Related_Param="variable">
    <Name>destination</Name>
    <Description>

The name of the case-packet variable to initialize in the new 
workflow.  By default the variable of the same name is initialized.

</Description>
</Param>

</Params>
</WorkflowComponent>

First, notice the parameter workflow_name. The attributes indicate that this parameter 
is required. Also you see the attribute Constant is set to true. This attribute indicates 
that the parameter, by default, accepts the name of a case-packet variable. Thus, if the 
user indicates that the parameter is a constant, then it should have the phrase 
“constant:” prepended.

Next, notice the parameter variable. The attributes indicate that this parameter may 
appear multiple times in the parameter list for this node. The designer automatically 
appends an incrementing number to the parameter name to distinguish and order these 
parameters.

Finally, notice the parameter “destination”. This is also a multiple parameter, but you 
can see that it is supposed to be related to the “variable” parameter. This means that a 
parameter with the name “destination5” is related to a parameter with the name 
“variable5”.

DTD Quick Reference. 
Chapter 7 449



Writing Custom Workflow Nodes
Deploying Workflow Nodes and Handlers
The following table describes the XML vocabulary that is used for the Node Descriptors. 
Your Descriptors must reference this DTD for Designer to be able to process them. See 
the StartJob example above for details about how the DTD specification is made.

<WorkflowComponent> - the root tag of the XML specification

• <Name> - tag declaring the name of this node

• <NodeDescription> - tag providing a complete description of the behavior of the node 
and any inter-parameter dependencies. The user of the designer can see this 
description by asking for help on the node.

• <ClassName> - tag specifying the java class (including package name) that 
implements this node

• <Image> - tag indicating an icon to show in place of the default  or  that is 
displayed on the button for this node. You may use the relative path to an icon in one 
of the jars that is in the classpath of the Workflow Designer, or you may specify a 
file path relative to the <ImagesDirectory> configured in the designer.xml file.

• <Type> - tag indicating whether this is a ProcessNode, RuleNode, EndHandler, or 
ErrorHandler

• <DisablePersistence> - tag indicating wheter this node should do persistence or 
not after execution of the node.

• <Params> - tag defining the list of supported parameters

— <Param> - tag defining a single parameter

— Requlred - optional attribute indicating whether the parameter is 
required for this node (default=false).

— Constant - optional attribute indicating that if the user specifies that 
the parameter value is a constant, then the designer should prepend 
“constant:” to the value (default=false).

— Variable - optional attribute indicating that if the user specifies that 
the parameter value is a variable, then the designer should prepend 
“variable:” to the value (default=false). None of the built-in nodes 
currently use this setting.

— Multiple - optional attribute indicating whether this parameter 
should be treated as repeatable parameter with an incrementing 
number automatically appended to the name (default=false).

— Related_Param - optional attribute indicating what other parameter 
this one is related to. This is only meaningful if both of them are 
“multiple” parameters.

— <Name> - tag specifying the name of the parameter

— <Description> - tag providing a description of the parameter. This 
appears in the parameter dialog when the user is editing the 
parameter value.
Chapter 7450



8 Writing New Workflow Modules

The Workflow Manager comes with a catalog of workflow modules. You may find it 
necessary to develop new workflow modules to communicate with new external systems. 
This chapter provides conceptual information and instructions for writing new modules.
Chapter 8 451



Writing New Workflow Modules
Writing New Workflow Manager Modules
Writing New Workflow Manager Modules
Service Activator ships with many built-in Workflow Manager modules as described in 
the previous section; however, it is possible to write new Workflow Manager modules to 
replace or enhance existing functionality. These include:

• Authenticator modules

• Queue hook modules

• Sender modules

• Alarm modules

• Listener modules

• Activation modules

You can even create new modules with special functionality to support the behavior of 
new nodes that you write.

Some modules are used by the workflow engine itself, other modules are used by certain 
nodes. Examples of Workflow Manager modules that the Workflow Manager uses include 
a logging module or an authenticator module. A module that supports specific node 
behavior is the SocketSenderModule, which is used by the SendMessage node. Workflow 
nodes that need to interact with a database use the DatabaseModule. In either case, 
these Workflow Manager modules must support the interface that is unique to the 
functionality they provide.

Example Source Code for Modules

The source code for a few example modules is shipped with the product. All of the 
example modules can be found in $ACTIVATOR_OPT/examples/modules.
Chapter 8452



Writing New Workflow Modules
Writing New Workflow Manager Modules
Implementation of Modules

Each Workflow Manager module is implemented by a Java class. The class must extend 
WorkflowManagerModule or must extend one of the existing classes that already extends 
WorkflowManagerModule. In some cases the module must also implement a specific Java 
interface (see the details provided in this chapter for specific interfaces or base classes 
that might be required for the particular type of module you are writing).

When the Workflow Manager starts up, it creates an instance of each Java class 
configured as a module in the mwfm.xml file. It then invokes setter methods for each of 
the parameters configured for the module. The naming of these setter methods adheres 
to the conventions for a JavaBean. For example, if the parameter name is maxPriority, 
then the name of the method is setMaxpriority. If there is not a setter method for the 
specified parameter, a warning message is logged.

After invoking setter methods for each configured parameter, the Workflow Manager 
invokes the init() method of the module. The init() method is passed a HashMap that 
contains all of the configuration parameters that are declared in the mwfm.xml file for 
that module. During the init method, the module checks for any required configuration 
parameters and saves the value of the parameters for later use by the module.

When the init method is called the module is in the suspended state. The module should 
not start to perform any normal activity like start of jobs or interaction with jobs until 
the method resume is called. 

Other methods of that class are used at the appropriate time. For example, if the class is 
a new authenticator module, then isUserPasswordPairValid() is invoked each time 
a user attempts to log on.

init Method

This method is common to all Workflow Manager modules and allows you to initialize 
the module, verify the parameters, and so on. As noted above, the preferred mechanism 
to set configurable parameters is via the setter methods. The init() method is still 
valuable when the module needs to enforce any inter-parameter prerequisites or needs 
to throw an exception if a parameter is missing. The module is in suspended state when 
this method is called. So no normal operation should be done in the init method. In case 
it is not possible to get an database connection then an WFConnectivityException should 
be thrown.

void init(HashMap params) throws WFConfigException, WFException

shutdown Method

Some modules need to perform a special shutdown procedure when the workflow engine 
is being shutdown in a graceful fashion. If the module does not need special processing in 
this case, it does not need to implement this method.

void shutdown()
Chapter 8 453



Writing New Workflow Modules
Writing New Workflow Manager Modules
isActive Method

When the engine attempts to shutdown gracefully, it first calls the isActive() method 
of each registered module. It does not shutdown until all the modules have responded 
with a value of “false”. The implementation of this method in the base class always 
returns “false”.

boolean isActive()

removeJob Method

Some modules keep track of running jobs. When a job is terminated prematurely (for 
example, by the operator killing the job), the engine needs to tell these modules that they 
should forget about that particular job. If the module does not track running jobs, it does 
not need to implement this method.

void removeJob( long jobId )

reconfigure Method

This method is called when a reload configuration is issued. The params HashMap 
include all the new configuration elements. If the module needs to support 
reconfiguration it must overwrite this method and handle the config changes. If the 
module does not support reconfiguration it does not need to implement this method.

void reconfigure( HashMap params )

suspend Method

When a cluster node is suspended either due to the loss of database connectivity or an 
operator suspend, the Workflow Manager calls the suspend() method of each registered 
module. When the system is suspended, each module will have its own implementation 
method to perform a suitable operation. For example, the socket listener module will 
suspend itself and stop processing requests when the system is suspended due to loss of 
database connectivity. If the module does not need special processing in this case, it does 
not need to implement this method.

void suspend()

resume Method

When a cluster node is resumed after the database connectivity is restored or an 
operator resume, the Workflow Manager calls the resume() method of each registered 
module. When the system is resumed, each module will have its own implementation 
method to perform a suitable operation. For example, the SocketListener Module will 
notifly all waiting threads to continue processing requests which were stopped when the 
system was suspended, or resumed due to restoration of database connectivity. If the 
module gets database connectivity problems during the resume the method 
setStateNotificationFailure must be called with the parameter “true” and the stop 
further processing until resume is called again. If the module does not need special 
processing in this case, it does not need to implement this method.

void resume()
Chapter 8454



Writing New Workflow Modules
Writing New Workflow Manager Modules
locked Method

When a cluster node is locked from the operator UI, the Workflow Manager calls the 
locked() method of each registered module. When the system is locked, each module will 
have its own implementation method to perform a suitable operation. For example, the 
Scheduler Module will stop scheduling jobs when the system is locked. If the module 
does not need special processing in this case, it does not need to implement this method.

void locked()

unlocked Method

When a cluster node is unlocked from the operator UI, the Workflow Manager calls the 
unlocked() method of each registered module. When the system is unlocked, each module 
will have its own implementation method to perform a suitable operation. For example, 
the Scheduler Module will restart scheduling of jobs when the system is unlocked. If the 
module does not need special processing in this case, it does not need to implement this 
method.

void unlocked()

nodeDown Method

When the online state of other cluster nodes change from online to offline, the KeepAlive 
Module that monitors the state, calls the nodeUp() method of each registered module. 
When another node comes online, each module will have its own implementation method 
to perform a suitable operation. If the module does not need special processing in this 
case, it does not need to implement this method.

void nodeDown(ClusterNodeBean node)

nodeUp Method

When the online state of other cluster nodes change from offline to online, the KeepAlive 
Module that monitors the state, calls the nodeDown() method of each registered module. 
When another node goes offline, each module will have its own implementation method 
to perform a suitable operation. For example, when a node goes offline, the Scheduler 
Module tries to become the master schedulder for the cluster. If the module does not need 
special processing in this case, it does not need to implement this method.

void nodeUp(ClusterNodeBean node)

nodeLocked Method

When the lock state of other cluster nodes change from unlocked to locked, the 
KeepAlive Module that monitors the state, calls the nodeLocked() method of each 
registered module. When a node is locked, each module will have its own implementation 
method to perform a suitable operation. For example, when a node is locked, the 
Scheduler Module tries to become the master schedulder for the cluster.

void nodeLocked(ClusterNodeBean node)
Chapter 8 455



Writing New Workflow Modules
Writing New Workflow Manager Modules
nodeUnlocked Method

When the lock state of other cluster nodes change from locked to unlocked, the 
KeepAlive Module that monitors the state, calls the nodeUnlocked() method of each 
registered module. When a node is unlocked, each module will have its own 
implementation method to perform a suitable operation. If the module does not need 
special processing in this case, it does not need to implement this method.

void nodeUnlocked(ClusterNodeBean node)

nodeSuspended Method

When the suspend state of other cluster nodes change from resumed to suspended due to 
an operator suspend, the KeepAlive Module that monitors the state, calls the 
nodeSuspended() method of each registered module. When a node is suspended, each 
module will have its own implementation method to perform a suitable operation. For 
example, when a node is suspended, the Scheduler Module tries to become the master 
scheduler for the cluster. If the module does not need special processing in this case, it 
does not need to implement this method.

void nodeSuspended(ClusterNodeBean node)

nodeResumed Method

When the suspend state of other cluster nodes change from suspended to resumed due to 
an operator resume, the KeepAlive Module that monitors the state, calls the 
nodeResumed() method of each registered module. When a node is resumed, each module 
will have its own implementation method to perform a suitable operation. If the module 
does not need special processing in this case, it does not need to implement this method.

void nodeResumed(ClusterNodeBean node)

takeover Method

When jobs have been successfully takenover by one cluster node then the modules are 
notified by this method is called. If the module does not need special processing in this 
case, it does not need to implement this method.

void takeover(ClusterNodeBean node)

refresh Method

When a cluster node takes over the jobs that were being executed in a failed node, the 
KeepAlive Module calls the refresh() method of each registered module. When a node is 
taken over, each module will have its own implementation method to perform a suitable 
operation. The isBeforeTakeOver flag is used by the module if it wishes to perform any 
tasks before and after a failover process. The refresh() method is invoked on sync module 
before and after failover process. For example, the Sync Module,before failover updates 
the information from the database as to which parent workflows have spawned which 
child workflows, so that they can synchronize with each other. If the module does not 
need special processing in this case, it does not need to implement this method.

void refresh(String hostName, boolean isBeforeTakeOver)
Chapter 8456



Writing New Workflow Modules
Writing New Workflow Manager Modules
discard Method

When a cluster node is suspended due to loss of database connectivity, it resumes 
operation after the restoration of database connectivity. If the node determines that it is 
being taken over by another node in the cluster, it waits till the completionof the take 
over process, and the the KeepAlive Module calls the discard() method of each registered 
module. After a node is taken over, each module will have its own implementation 
method to perform a suitable operation. For example, the Sync Module cleans up the 
information related to parent and child workflows that are waiting to synchronize with 
each other. If the module does not need special processing in this case, it does not need to 
implement this method.

void discard()

Master-Slave 

The master-slave approach helps modules to ensure that the same module is started on 
all the nodes in a cluster, even though the behaviour is different depending on their 
state; either master or a slave.

In a distributed environment only one module can be a master. The modules with the 
same name running on other cluster nodes will automatically become a slave. The 
master-slave behavior can be changed when the node in which the module is a master 
goes down or suspended or locked and another node takes over. The node which takes 
over the job will update the state of the failed node to the slave and then update its state 
to the master.

The master-slave approach is best suited to handle situations such as, a possible conflict 
when the same module is running on all cluster nodes tries to execute the same task due 
to lack of communication between the modules. Each module running on a cluster node 
and is using this concept will either be in master or slave state, and the modules function 
based on their state. The master-slave concept is very specific to a distributed 
environment and insignificant in a standalone environment. 

Any module running on a cluster node can implement this concept.

The following section explains the sequences to be followed by each module to implement 
this concept.

Step 1

Each module must overwrite init method of its super class. This is the starting point for 
the module and will be invoked by mwfm engine. Once started, it has to create a new 
entry in modules table with MasterSlaveState as ‘0’ (slave) as default, if no entry exists 
for this.. To do this, just call create MasterSlaveState() of its super class from this 
method.

Step 2

Each module must overwrite resume method of its super class and this method is 
invoked by the KeepAlive module. When this method is invoked, it should try to become 
a master. To do this, just call becomeMaster (null) of its super class. If the module 
becomes a master, the mehtod will return true, or else false.
Chapter 8 457



Writing New Workflow Modules
Writing New Workflow Manager Modules
Step 3

Each module must overwrite nodeDown method of its super class and this method is 
invoked by the KeepAlive module to inform the node down status of other nodes in the 
cluster system. When this method is invoked, it should try to become a master (take 
over), if the module running on the failed node is a master. To do this, just call 
becomeMaster () of its super class and pass the name of the node which failed as an 
argument to this function. If the module becomes a master, the method will return true, 
or else false.

Step 4

Each module must overwrite nodeSuspended method of its super class and this method 
is invoked by the KeepAlive module to inform the suspended status of other nodes in the 
cluster system. When this method s invoked, it should try to become a master (take 
over), if the module running on the suspended node is a master. To do this, just call 
becomeMaster () of its super class, and pass the name of the node which is suspended 
as an argument to this function. If the module becomes a master, the method will return 
true, or else false.

Step 5

Each module must overwrite nodeLocked method of its super class and this method is 
invoked by the KeepAlive module to inform the lock status of other nodes in the cluster 
system. When this method is invoked, it should try to become a master (take over), 
incase the module running on the locked node is a master. To do this, just call 
becomeMaster () of its super class and pass the name of the node which is locked as an 
argument to this function. If the module becomes a master, the method will return true, 
or else false.

Step 6

Each module must overwrite unlocked method of its super class and this method is 
invoked by the KeepAlive module to inform about the unlock status (the node is 
unlocked from lock state) of the same node.  When this method is invoked, it should try 
to become a master (take over), to find out if any other master already exists. To do this, 
just call becomeMaster (null) of its super class. If the module becomes a master, the 
method will return true, or else false.
Chapter 8458



Writing New Workflow Modules
Writing New Workflow Manager Modules
Writing New Authenticator Module

You can supply your own authenticator module to use instead of one of those shipped 
with Service Activator. To function as an authenticator, the module must extend the 
abstract com.hp.ov.activator.mwfm.engine.module.umm.AdvanceAuthModule class.

AdvancedAuthModule class extends AuthModule class and implements RoleMappingSupport 
and UserManagementManager interfaces 
com.hp.ov.activator.mwfm.engine.module.AuthModule
com.hp.ov.activator.mwfm.engine.module.RoleMappingSupport

com.hp.ov.activator.mwfm.UserManagementManager

AuthModule methods

The AuthModule class has a number of abstract methods which are implemented by the 
AdvancedAuthModule class.

AdvancedAuthModule methods

The AdvancedAuthModule class has one abstract method which must be implemented.

boolean authenticate(String username, String password) throws AuthException

This method is called when an user attempts to log on to the system. The method verfies 
tath the user is allowed to use Service Activator, and that the supplied password is 
appropriate for that user. It should return “true” to allow the user to log on, or “false” 
if not. AuthException should only be thrown if authentication could not be carried out.

Role Mapping

Authenticators should also support the functionality known as role mapping. This allows 
workflow definitions and inventory JavaBeans to be written using generic role names 
that might be suitable anywhere. Then role mapping can be used to map these generic 
roles to real roles that are meaningful in a particular customer environment.

Role Mapping Interface

To support role mapping, an authentication module must also implement an additional 
Java interface, com.hp.ov.activator.mwfm.engine.module.RoleMappingSupport, 
and a single method.

void setRoleMappings(RoleMapping roleMapping);

This method is called after init() to set the role mappings that the authenticator 
should recognize. The RoleMapping class has one important method that the 
authenticator can use to retrieve a list of roles that are mapped from a generic role.

String[] RoleMapping.getMappings( String role );

User Management Interface

To support The User Management Interface, the authenticator module must also 
implement an additional Java interface, 
com.hp.ov.activator.mwfm.engine.UserManagmentManger.

Almost all the methods in the UserManagmentManager (UMM) interface are 
implemented in a default way in the AdvancedAuthModule class and data handled by 
these methods are saved in system database.
Chapter 8 459



Writing New Workflow Modules
Writing New Workflow Manager Modules
The UMM methods can be divided into two categories; methods related to user and team 
configuration and the rest which is handling roles, inventory trees, inventory filters and 
searches. The first category of methods has a dummy implementation in the 
AdvancedAuthModule and is fully implemented by the DatabaseAdvancedAuth 
module. The methods related to team configuration cannot be overwritten by a new 
authenticator  module where the user part can be implemented in a different way when 
creating a new authenticator module. The role methods which are implemented in the 
AdvancedAuthModule should not be overwritten as these methods are used to 
configure which roles are know by Service Activator and the relation from roles to 
inventory tress, branch and operation types, filters and advanced search. However it is 
possible to extend the role methods to also create the roles in an additional system.

Two methods must always be implemented to to support the User Management interface 
when creating a new authenticator module:

boolean isDBAuth() throws RemoteException;

This method must return a boolean to indicate if the user dummy methods are 
implemented in a meaningful way or not. If implemented then the UMM user interface 
will present the user information too.

java.lang.String[] getUserRoles(String username) 

throws RemoteException, WFConnectivityException, WFDBException;

This method must return the list of roles the provided user has

The following user methods can be re-implemented. For a description of how to 
implement the methods pleease refer to Javadocs.

public void copyUser( String adminLogin, String adminPassword, String 
originalUserName, String userName, String password, String userDescription, String 
userRealName, String companyName, boolean restrictedUser, boolean firstTimeLogin, 
boolean neverExpire, boolean enable) throws RemoteException, 

WFConnectivityException, WFDBException;

public void createUser( String adminLogin, String adminPassword, String userName, 
String password, String userDescription, String userRealName, String[] roleNames, 
String companyName, boolean superUser, boolean restrictedUser, boolean 
firstTimeLogin, boolean neverExpire, String teamName, boolean isTeamAdmin, boolean 
enable) throws RemoteException, WFConnectivityException, WFDBException;

public void updateUser( String adminLogin, String adminPassword, String userName, 
String newUserName, String password, String userDescription, String userRealName, 
String companyName, boolean superUser, boolean restrictedUser, boolean 
firstTimeLogin, boolean neverExpire, boolean enable, String[] roleNames, String 
teamName, boolean isTeamAdmin) throws RemoteException, WFConnectivityException, 
WFDBException;

public void dropUser( String adminLogin, String adminPassword, String userName) 
throws RemoteException, WFConnectivityException, WFDBException;

public void assignUserRoles( String adminLogin, String adminPassword, String 
userName, String[] roleNames) throws RemoteException, WFConnectivityException, 
WFDBException;

public UserInfo[] getAllUsers( String adminLogin, String adminPassword) throws 
RemoteException, WFConnectivityException, WFDBException;

public UserInfo getUser( String adminLogin, String adminPassword, String username) 
throws RemoteException, WFConnectivityException, WFDBException;

public InvalidLoginAttempt[] getUserInvalidLoginAttempts(String userName) throws 
RemoteException, WFConnectivityException, WFDBException;
Chapter 8460



Writing New Workflow Modules
Writing New Workflow Manager Modules
public boolean isUserSuperUser( String userName) throws RemoteException, 
WFConnectivityException, WFDBException;

public boolean isUserRestricted (String userName) throws RemoteException, 
WFConnectivityException, WFDBException;

public void assignUserRoles( String adminLogin, String adminPassword, String 
userName, String[] roleNames) throws RemoteException, WFConnectivityException, 
WFDBException;

public String[] getUserRolesExt(String userName) throws RemoteException;

public UserInfo[] getRoleUsers( String adminLogin, String adminPassword, String 
roleName) throws RemoteException, WFConnectivityException, WFDBException;

public void assignRoleUsers( String adminLogin, String adminPassword, String 
roleName, String[] userNames) throws RemoteException, WFConnectivityException, 
WFDBException;

public boolean changeUserPassword(String userName, String oldPasswd, String 
newPasswd) throws RemoteException, WFConnectivityException, WFDBException, 
AdvancedAuthModuleException;

public void updateUserAuthenticated(String userName, String password) throws 
RemoteException, WFConnectivityException, WFDBException;

public void changePasswordFirstTimeLogin( String adminLogin, String adminPassword, 
String newPassword) throws RemoteException, WFConnectivityException, WFDBException, 
AdvancedAuthModuleException;

public void disableUser( String adminLogin, String adminPassword, String userName) 
throws RemoteException, WFConnectivityException, WFDBException;

public void enableUser( String adminLogin, String adminPassword, String userName) 
throws RemoteException, WFConnectivityException, WFDBException;

public String getExpiryAlertDays(String adminLogin, String adminPassword) throws 
RemoteException;

public boolean checkFirstTimeLoginOuter(String userName, String password) throws 
RemoteException;
Chapter 8 461



Writing New Workflow Modules
Writing New Workflow Manager Modules
Writing New Queue Hook

Queue hooks are invoked whenever a new message arrives in either the request or 
message queues. One Queue hook module (see “LogSearchModule” on page 393) is 
supplied with the product that allows you to configure the system to send e-mail when 
new messages arrive on various queues. New queue hook modules that you might write 
could be used for other purposes such as to page an administrator when messages arrive 
on a special queue, or to inform another application that it has a request that it should 
process.

When a Queue hook module is configured in the mwfm.xml file, it must be given a module 
name according to a special convention. Each queue hook module must be given the 
name “hookN” where N is a number indicating the order in which the modules are 
informed of new messages. Thus, if there is only one hook module configured then it 
must be given the name “hook0.” A second hook module would be given the name 
“hook1,” and so on.

NOTE This discussion of queue hook naming refers to the module name that the module is 
configured to have in the mwfm.xml file, NOT to the class name that implements the 
module.

A new queue hook must extend the WorkflowManagerModule class and implement the 
interface, com.hp.ov.activator.mwfm.engine.module.QueueHook. The 
QueueHookAdapter class is provided as a convenience.

QueueHook Methods

These are the methods that may be implemented to create a QueueHook.

void newAsynchronousMessage(MessageDescriptor md)

Invoked when a new message arrives on a message queue.

void newSynchronousMessage(String name, JobDescriptor jd)

Invoked when a new request arrives on a request queue.

Example 8-1 QueueHook example

The source for the MailHook is provided as an example of a QueueHook.

See $ACTIVATOR_OPT/examples/modules/MailHook.java
Chapter 8462



Writing New Workflow Modules
Writing New Workflow Manager Modules
Writing New Sender Module

A sender module is invoked from the SendMessage workflow node. The 
SocketSenderModule is an example of such a module. You might want to provide a 
sender module to send a message by a mechanism other than TCP sockets. A sender 
module must implement the interface, 
com.hp.ov.activator.mwfm.engine.module.SenderModule, and a single method.

SenderModule Methods

This method is invoked by the SendMessage workflow node to send a message.

void sendMessage( byte[] msg ) throws IOException;
Chapter 8 463



Writing New Workflow Modules
Writing New Workflow Manager Modules
Writing New Message Module

A message module is invoked to send an event (or an alarm) to a Fault Management 
system such as OpenView Operations. The OVOMessageModule is an example of such a 
module. You might want to provide your own message module to send a message to a 
different fault management system. A message module must implement the interface, 
com.hp.ov.activator.mwfm.engine.module.MessageModule, and a single method.

MessageModule Methods

Invoked by the SendAlarm workflow node to send an alarm.

void sendMessage( String msg, HashMap params ) throws IOException

The params argument contains a list of the name-value pairs that is used by the message 
module to parameterize the alarm. These parameter names that are meaningful are 
dependent upon the implementation of the alarm module. In case of OVOMessageModule, 
these are names like: severity and msg_grp.
Chapter 8464



Writing New Workflow Modules
Deploying Workflow Manager Modules
Deploying Workflow Manager Modules
If you write custom workflow modules, the Workflow Manager must be able to find them. 
The Workflow Manager uses the standard Java mechanism for finding such classes, the 
“classpath”. 

Only jar files are supported so the new classes must be packed into jar file(s)..

The jar files must be placed in the directory $JBOSS_EAR_LIB. If a jar file is placed in 
this directory Service Activator must be restarted to find the jar file.

NOTE During development you may change the implementation of your new modules. The 
Workflow Manager will not notice an updated jar file after Service Activator has be 
started. If you change your jar files, then you must stop and restart Service Activator to 
pick-up the new implementation.
Chapter 8 465



Writing New Workflow Modules
Deploying Workflow Manager Modules
Chapter 8466



9 Writing Workflow Manager Clients

You can write Java programs to interact with the Workflow Manager. These client 
programs can start workflows, interact with running jobs, examine message queues; 
most anything that can be done from the operator GUI. This chapter describes how to 
create such a program.
Chapter 9 467



Writing Workflow Manager Clients
Writing Workflow Manager External Interface Clients
Writing Workflow Manager External Interface Clients
This section describes the external RMI interface used to access the Workflow Manager, 
and provides some example programs that use the RMI interface. The details below 
assume that you are writing a Java client program. The RMI interface provides methods 
to perform the following operations: 

• Authenticate a user so he or she can gain access to the Workflow Manager.

• Determine whether the user has a specific role (or set of roles).

• Determine whether the user is considered an administrator.

• Obtain a list of workflows that the user can start.

• Obtain the description of a workflow.

• Start a new job (an instance of a workflow).

• Obtain a list of the running jobs.

• Obtain details about a running job.

• Kill a running job.

• Set case-packet variables of jobs that are waiting for input.

• Obtain a list of the currently posted messages.

• Obtain a list of the currently posted requests.

• Set and get roles.

• Get valid role names from the authentication module.

• Get case packet information about a single job.

• Change the sorting of jobs and messages.

• Schedule a workflow. Query, modify or delete scheduled jobs.

To see the complete interface and a description of all the available methods, refer to the 
Javadoc for the Java interface com.hp.ov.activator.mwfm.WFManager. 

There are other related classes in the same package. The rest of this section does not 
discuss the details of the interface, but discusses what is generally needed to use the 
interface.
Chapter 9468



Writing Workflow Manager Clients
Creating a Workflow Manager Client
Creating a Workflow Manager Client
To interact with the Workflow Manager, you must first obtain a remote reference to the 
Workflow Manager authenticator. To do this, perform a naming lookup on the host where 
the Workflow Manager is running. For example:

WFAuthenticator wfauth = (WFAuthenticator)Naming.lookup( "//localhost:2000/wfm" );

This example specifies both the host name and the port in the Naming.lookup. The host 
is any reachable host in the network; the port is the one that you configured for the 
Workflow Manager to listen on (in the mwfm.xml file for the running Workflow Manager 
that you wish to connect to). 

After you obtain a reference to the workflow authenticator, obtain a reference to the 
Workflow Manager itself by supplying a valid user name and password; you must be 
authenticated by the Workflow Manager.

WFManager wfm = (WFManager)wfauth.login( username, password ); 

If the supplied user and password are appropriate, then a WFManager object is 
returned. This object provides all of the functionality for gaining access to the Workflow 
Manager. You will have all of the restrictions according to the user by which you logged 
in; that is, you will be able to start, stop and interact with workflows according to the 
role(s) assigned to your user.
Chapter 9 469



Writing Workflow Manager Clients
Examples
Examples
Here are some example programs that demonstrating a few of the methods provided for 
interacting with the Workflow Manager.

Example 9-1 GetJobStatus

This client gets the status of the job whose identifier corresponds to the job identifier 
that you passed.

package com.hp.ov.activator.mwfm.client;

import java.rmi.*;
import java.rmi.registry.*;
import java.util.*;
import java.io.*;

import com.hp.ov.activator.mwfm.*;

/**
 * A sample program to get the status of a job.
 *
 * @version $Revision: 2 $
 */
public class GetJobStatus
{
  public static void main (String[] args) throws Exception
  {

if (args.length != 3) {
  System.out.println ("Usage: GetJobStatus <username> <password> <job-id>");
  System.exit (1);
}

WFAuthenticator wfauth = (WFAuthenticator) Naming.lookup ("//:2000/wfm");
WFManager wfm = (WFManager) wfauth.login (args[0], args[1]);
if (wfm == null) {
  System.err.println ("username/password incorrect");
  System.exit (2);
}

long l = Long.valueOf (args[2]).longValue();
System.out.println ("STATUS for job #" + l + ": " + wfm.getJobStatus(l));

  }
}

Chapter 9470



Writing Workflow Manager Clients
Examples
Example 9-2 SendCasePacket

This example shows how to send values to case-packet variables of a workflow waiting 
for external input.

package com.hp.ov.activator.mwfm.client;

import java.rmi.*;
import java.rmi.registry.*;
import java.util.*;
import java.io.*;

import com.hp.ov.activator.mwfm.*;

/**
 * A sample program to send case-packet variables
 * to a pending process.
 * <p>
 * The case-packet is received from the standard input
 * in an attribute=value fashion.
 *
 * @version $Revision: 3 $
 */
public class SendCasePacket
{
  public static void main (String[] args) throws Exception
  {

if (args.length != 4) {
  System.out.println ("Usage: SendCasePacket <username> <password> <queue>

                                  <jobId>");
  System.exit (1);
}

WFAuthenticator wfauth = (WFAuthenticator) Naming.lookup ("//:2000/wfm");
WFManager wfm = (WFManager) wfauth.login (args[0], args[1]);
if (wfm == null) {
  System.err.println ("username/password incorrect");
  System.exit (2);
}

HashMap hash = new HashMap();
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
String str;

// build a HashMap of name/value pairs
while ((str = br.readLine()) != null && !str.trim().equals("")) {
  StringTokenizer strToken = new StringTokenizer (str, "=");
  hash.put (strToken.nextToken(), strToken.nextToken());
}
System.out.println ("RESPONSE: " + wfm.sendCasePacket (args[2], Long.valueOf 

                          (args[3]).longValue(), hash));
  }
}

Chapter 9 471



Writing Workflow Manager Clients
Examples
Chapter 9472



E Configuring Service Activator to Use 
Secure Socket Layer (SSL) Protocol

This appendix contains instructions for configuring Service Activator to use Secure 
Socket Layer (SSL) protocol for HTTPS or for sending and receiving secure messages 
between the Workflow Manager and a Customer Relationship Management (CRM) 
system.
Appendix E 69



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Using SSL with Service Activator: An Overview
Using SSL with Service Activator: An Overview
You can use SSL with two Service Activator components. The first is the Operator UI, 
which you can configure to use HTTPS. The second is the Workflow Manager, which you 
can configure to use SSL to send (and receive) secure messages to (and from) a CRM. The 
configuration processes for both of these components are similar.

Preparing to Use SSL

Implementing a security solution such as SSL is, by nature, a complex process that 
involves numerous design decisions and trade-offs. This appendix does not attempt to 
provide a comprehensive discussion of SSL or to offer advice about how best to 
implement an SSL solution with Service Activator in your environment. It, instead, 
offers one approach that you can use to configure Service Activator to use SSL. 

Before proceeding, you should be knowledgeable about SSL—in particular, using SSL 
with Java—in order to determine the appropriate SSL solution to use with Service 
Activator for your environment. The following references can assist you in 
understanding and implementing an SSL solution:

• The Oracle JSSE web site at http://java.sun.com/products/jsse

• The Oracle keytool reference at 
http://docs.oracle.com/javase/t/doces/technotes/tools/solaris/keytool
.html

• The OpenSSL web site at http://www.openssl.org

Getting Organized

Before using SSL with Service Activator, you will need to design a mechanism for using 
and storing keys and certificates. To do this, you will need to answer the following 
questions:

• What will you name your keystore?

• Where will your keystore be located?

• What will your keystore password be?

• How and where will you store trusted certificates?

• Will you use client-side authentication?

• Which Service Activator configuration files will you need to update?

Configuring Service Activator to Use SSL

To configure either the Operator UI or the Workflow Manager to use SSL, you will need 
to complete the following steps:

1. Configure Java Secure Socket Extension (JSSE).

2. Create a certificate keystore.

3. Obtain and import a signed certificate into the keystore.
Appendix E70



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Using SSL with Service Activator: An Overview
4. Modify the appropriate configuration files to reflect the keystore name and 
password.

5. Restart Service Activator to ensure that all changes are effective.

Each of these steps will be described in detail for both the Operator UI and the Workflow 
Manager. For additional information about using SSL with the JBoss/Tomcat bundle, 
please see JBoss Administration and Development, Second Edition. This document is 
available for purchase at the www.jboss.org web site.

Understanding the Required Software

JSSE is a reference implementation of SSL for Java. It implements the SSL and 
Transport Layer Security (TLS) protocols. The JAR files for JSSE are supplied by the 
Java run-time environment (JRE). This package also includes data encryption and 
server authentication functionality. 

Configuring JSSE

In the file named $JAVA_HOME/jre/lib/security/java.security, add the following 
entry if it does not already exist:

security.provider.#=com.sun.net.ssl.internal.ssl.Provider

Replace the “#” with the appropriate value based on the number of configured providers. 
It is essential that this value be not only unique, but also sequential starting with the 
value “1.” If you do not comply with this requirement, you will not be able to configure 
SSL correctly.

Preparing to Load the Certificate Keystore

Tomcat currently only utilizes the Java standard Java Keystore (JKS) format. The 
resulting “keystore” is a repository for objects such as keys and certificates.   The 
keystore is built using the command line Java keytool utility. This utility is available as 
part of the standard Java JDK Version 6 install. It is located in the $JAVA_HOME/bin 
directory.

For additional information about the keytool utility, refer to documentation located at 
the following URL:  
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Before you prepare your keystore, consider the following items:

• Where to store the keystore file (or files)

• What name and password to give your keystore

• Whether to use client-side authentication

Component 
Using SSL

Configuration Files That Require Modification
To Use SSL

Operator UI $JBOSS_HOME/standalone/configuration/standalone.xml

Workflow 
Manager

$ACTIVATOR_ETC/config/mwfm.xml
Appendix E 71

http://java.sun.com/products/jsse
http://java.sun.com/products/jsse


Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Using SSL with Service Activator: An Overview
NOTE The server always authenticates with the client. However, client-to-server (client-side) 
authentication is optional. Determine whether client-side authentication is required in 
your environment

Managing Keys and Certificates

You can use the keytool utility to create, store, and manage the keys and certificates 
you will need to use SSL with Service Activator. There are four basic steps you will need 
to carry out when preparing to use SSL with either the Operator UI or the Workflow 
Manager:

1. Generate a new key entry. A key entry consists of a public key certificate and a 
private key. Key entries are stored in the keystore. When a new key entry is 
generated, it is added to the keystore. If the keystore does not yet exist, it is created.

2. Generate a certificate request. This request is formatted to be submitted to a 
Certificate Authority (CA), such as VeriSign or Thawte.

3. Send the certificate request file to a Certificate Authority (CA), such as VeriSign or 
Thawte, for signing.

4. Import the signed certificate into your keystore.

The following section provides a generic example of how to complete these steps using 
the keytool utility. Specific instructions for Service Activator are provided beginning on 
page 74. 

NOTE Be sure to read the generic example carefully, as it contains important details about 
using keytool that you need to understand before you generate the keys and certificates 
necessary for SSL to work with Service Activator.

Using the keytool Utility

1. Create a new key entry in the keystore named my.keystore with the password 
mypass using the following command:

keytool -genkey -keyalg RSA -alias <yourAliasName> -storepass \ 
mypass -keystore my.keystore

The -alias option specifies a shortened, keystore-specific name for an entity that 
has a key or certificate in the keystore. The -keyalg option specifies the algorithm 
that will be used to generate the key entry; use RSA with SSL.

You will be prompted to fill in additional information including your name, 
organizational unit, organization, city or locality, state or province, and country. This 
information is used to create the distinguished name (DN) for your certificate. You 
will then be prompted for a key password. You can specify a password that is unique 
to your new key entry, or you can use the keystore password as your key password.

NOTE Only Step 1 is required to minimally configure a key and its associated certificate. 
Step 1 produces a self-signed certificate, which is less secure than a certificate signed 
by a CA. Steps 2 through 4 will replace the self-signed certificate with a certificate 
signed by a CA. In production environments, you are strongly encouraged to use 
certificates signed by a CA. 
Appendix E72



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Using SSL with Service Activator: An Overview
2. Generate a certificate request. In this case, the certificate request will be stored in 
the file named my.csr. You may specify any file name.

keytool -certreq -alias <yourAliasName> -file my.csr -keystore \
my.keystore

You will be prompted for both the keystore password and the key password. Once 
you supply these passwords, you should receive the following message:

Certification request stored in file
Submit this to your CA

3. Send the certificate request file (in this case, my.csr) to a Certificate Authority (CA), 
such as VeriSign or Thawte, for signing. Some CAs allow you to paste the contents of 
this file into an HTML form.

4. The CA will e-mail you a signed certificate. Save the certificate in a file. Import this 
file (in this case, mysigned.cer) into your keystore:

keytool -import -alias <yourAliasName> -file mysigned.cer -keystore \
my.keystore -trustcacerts

This import operation replaces the self-signed certificate associated with the alias 
<yourAliasName> with the signed certificate.

NOTE If you use a nonstandard CA, you will need to import a CA root certificate as a 
trusted root certificate prior to importing your own certificates into the keystore. The 
Java SDK ships with the file cacerts, which contains the most common CA root 
certificates. The -trustcacerts option allows keytool to use those CA certificates. 
To import a CA certificate into the keystore, use the following command, where 
ca.crt is the file containing the root certificate for your CA:

keytool -import -alias ca -file ca.crt -keystore my.keystore 
Appendix E 73



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Configuring SSL for HTTPS (Operator UI)
Configuring SSL for HTTPS (Operator UI)
There are three basic steps required to configure the Service Activator Operator UI to 
use SSL for HTTPS:

1.  Load the server keystore.

2. Modify the JBoss standalone.xml file.

3. Start Service Activator.

Each of these steps will be described in detail in this section.

Step 1: Loading the Server Keystore (Operator UI)

This step includes creating the keystore, obtaining a signed certificate, and importing 
the signed certificate into the keystore. 

a. Create a key entry in the keystore file named activatorSSL.keystore in the JBoss 
server configuration directory, $JBOSS_HOME/server/default/conf:

$JAVA_HOME\bin\keytool -genkey -alias uialias -keyalg RSA \ 
-keystore $JBOSS_HOME\server\default\conf\activatorSSL.keystore

The suggested alias, keystore name, and keystore location shown here are not 
mandatory. You may use any alias, name, and location you like. The keystore 
location and password, however, must match those values stored in the JBoss 
standalone.xml configuration file. See “Step 2: Modifying the JBoss Configuration 
Files” on page 74 for additional information.

b. Generate a certificate request, and store it in a file (in this case, UIcert.csr):

keytool -certreq -alias uialias -file UIcert.csr -keystore \
$JBOSS_HOME\server\default\conf\activatorSSL.keystore

c. Submit your certificate request to a Certificate Authority, such as VeriSign or 
Thawte.

d. Upon receiving your signed certificate, save it in a file (in this case UIsigned.cer), 
and import it into your keystore:

keytool -import -alias uialias -file UIsigned.cer -keystore \
$JBOSS_HOME\server\default\conf\activatorSSL.keystore -trustcacerts

Remember to use the same passwords in the -import operation that you used when 
you generated the key entry.

CAUTION Be sure to check a certificate very carefully before importing it as a trusted 
certificate.

Step 2: Modifying the JBoss Configuration Files 

Once you have configured JSSE and loaded your certificates, you must configure JBoss 
to take advantage of the SSL functionality. To do this, modify the JBoss standalone.xml 
file to add an HTTPS connector. This file is located in the following directory: 

$JBOSS_HOME/standalone/configuration
Appendix E74



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Configuring SSL for HTTPS (Operator UI)
Add the following HTTPS Connector to the subsystem urn:jboss:domain:web:1.0:

<subsystem xmlns="urn:jboss:domain:web:1.0" 
default-virtual-server="default-host">

  <connector name="http" protocol="HTTP/1.1" socket-binding="http" 
scheme="http"/>

  <connector name="https" protocol="HTTP/1.1" socket-binding="https" 
scheme="https" secure="true">

    <ssl name="keyalias" password="verySecret" 
certificate-key-file="/opt/HP/jboss/my.keystore" protocol="ANY" 
verify-client="false"/>

  </connector>

  <virtual-server name="default-host" enable-welcome-root="true">

  <alias name="localhost"/>

  <alias name="example.com"/>

  </virtual-server>

</subsystem>

Set certificate-key-file to the location and name you selected for your keystore, and 
set password to match your keystore password. If you want to use client-side 
authentication, set verify-client to “true.”

Configuring the JBoss Operator UI Port

In the JBoss standalone.xml file, the port attribute is defined. By default, the port 
attribute for HTTPS is 8443. This attribute is the TCP/IP port number on which JBoss 
will listen for secure connections. You can change this to any port number you wish (such 
as the default port for HTTPS communications, which is 443). 

Step 3: Starting Service Activator

You will need to restart Service Activator to have your configuration changes take effect. 
To do this, follow the instructions in “Starting and Stopping Service Activator” on 
page 42 of the HP OpenView Service Activator—Installation Guide.
Appendix E 75



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Configuring SSL for Secure Message Transmission (Workflow Manager)
Configuring SSL for Secure Message Transmission 
(Workflow Manager)
There are three basic steps required to configure the Service Activator Workflow 
Manager to send and receive secure messages using SSL:

1. Load the server keystore.

2. Modify the Workflow Manager configuration file.

3. Restart the Workflow Manager.

Each of these steps will be described in detail in this section.

Step 1: Loading the Server Keystore (Workflow Manager)

This step includes creating the keystore, obtaining a signed certificate, and importing 
the signed certificate into the keystore. 

a. Create a key entry in the keystore file named mwfmSSL.keystore in the 
$ACTIVATOR_ETC\config directory:

$JAVA_HOME\bin\keytool -genkey -alias mwfmalias -keyalg RSA \ 
-keystore $ACTIVATOR_ETC\config\mwfmSSL.keystore

The suggested alias, keystore name, and keystore location shown here are not 
mandatory. You may use any alias, name, and location you like. 

b. Generate a certificate request, and store it in a file (in this case, mwfmcert.csr):

keytool -certreq -alias mwfmalias -file mfwmcert.csr -keystore \
$ACTIVATOR_ETC\config\mwfmSSL.keystore

c. Submit your certificate request to a Certificate Authority, such as VeriSign or 
Thawte.

d. Upon receiving your signed certificate, save it in a file (in this case, 
mwfmsigned.cer), and import it into your keystore:

keytool -import -alias mwfmalias -file mfwmsigned.cer \
-keystore $ACTIVATOR_ETC\config\mwfmSSL.keystore -trustcacerts

Step 2: Modifying the Workflow Manager Configuration File

Change the values of the keystore and keystore_password parameters in the 
SocketListenerModule and SocketSenderModule specifications in the mwfm.xml file to 
match the keystore name and password, respectively, that you select. Also change the 
value of the clientauth parameter for the SocketListenerModule to reflect the type of 
authentication you will use. See Chapter 5, “Configuring the Workflow Manager,” on 
page 343 of HP OpenView Service Activator—Workflows and the Micro-Workflow 
Manager for additional information about editing this file.
Appendix E76



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Configuring SSL for Secure Message Transmission (Workflow Manager)
Step 3: Restarting the HP Service Activator

You will need to stop and restart the Workflow Manager to have your configuration 
changes take effect. To do this, follow the instructions in the HP OpenView Service 
Activator—Installation Guide.
Appendix E 77



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Troubleshooting
Troubleshooting
Many things can go wrong when working with JSSE and certificates.  Here is a list of 
common problems and their solutions:

java.security.NoSuchAlgorithmException: Algorithm SunX509 not available
or
java.security.NoSuchAlgorithmException: Algorithm TLS not available

This common error indicates that you did not specify your security algorithm providers 
properly. If you configured the algorithms by modifying the java.security file, check to 
be sure that you modified the correct file and that you are executing the correct 
java.exe.  Run Java with the -version flag to check the version number of the Java 
SDK you are currently using. 

If the version of your SDK is correct, check the java.security file carefully to be sure 
that your security.provider.# line is not being overridden by another 
security.provider.# line later in the file. Next, be sure that the order of 
security.provider.# lines is sequential from 1 to #. The security manager will not 
recognize any provider settings if there is a gap in the number sequence.

javax.net.ssl.SSLException: untrusted server cert chain
or
javax.net.ssl.SSLException: Received fatal alert: certificate_unknown

These exceptions will be thrown if a server or client is unable to validate the credentials 
provided by the other party. For instance, if a certificate is not signed by any other 
certificates known (and trusted) by the trust manager, the certificate will be rejected. If 
you are having this problem with two parties that should be trusting each other, verify 
that each certificate has been imported into the keystore of the other and that the 
certificate authority used to sign each certificate has been distributed properly.

java.io.IOException: Keystore was tampered with, or password was incorrect

This error typically indicates that the password provided to retrieve the certificates from 
the local keystore is incorrect, but it could also mean that something is wrong with the 
keystore file itself. The file might be corrupted, or the file permissions might be too 
restrictive.

javax.net.ssl.SSLException: No available certificate corresponds to the SSL cipher 
suites which are enabled.

This exception is typically thrown when a connection is being initialized. It means that a 
socket or server socket object does not have any certificates, or not the right kind of 
certificates, to use when starting communication or listening on the port. To solve this, 
make sure that the keystore file is being loaded correctly, that it is the keystore you 
intended to use, and that the context is initialized with the right set of key and trust 
managers.
Appendix E78



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Troubleshooting
Client Hangs While Connecting

The client may hang if it is trying to use a cleartext socket, but the server is using TLS. 
Since the server is expecting a stream containing protocol negotiation data, it will wait 
on the open socket until it hears what it is listening for. Eventually the client will time 
out. 

Finding Additional Information

If you experience a problem with your SSL implementation that is not addressed by one 
of the solutions discussed in this section, examine the following log files for further 
information:

Component Log Files To Examine

Operator UI or JBoss boot.log
server.log.*

Workflow Manager mwfm_active.log.xml
Appendix E 79



Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
Troubleshooting
Appendix E80



B mwfmtool

In this appendix, you can find all the necessary information about mwfmtool. The 
chapter contains the complete list of the commands together with the parameters they 
accept. 
Appendix B 485



mwfmtool
mwfmtool
mwfmtool
mwfmtool is used to issue commands and receive results from Service Activator. Using 
the tool, you can achieve exactly the same results as working in the Operator UI, i.e. you 
can control the Workflow Manager in exactly the same way as you would do in the 
Operator UI of Service Activator. 

mwfmtool would normally be used by system administrators for testing purposes, or 
other administrative tasks. You can also use mwfmtool for integration with other 
applications, e.g. to start workflows in Service Activator from other external 
applications.

mwfmtool is a command line tool. It does not have any graphical user interface. There 
are no particular tasks for which you must specially use mwfmtool. It is your personal 
preferences that determine how (via mwfmtool or Operator UI) you communicate with 
Service Activator. Note, however, that mwfmtool allows you to run scripts, which 
automates your routine tasks but requires some scripting or programming experience. 
Please see Example B-2 on page 497.

NOTE The tool is called mwfmtool.bat in Windows. UNIX users must run mwfmtool.

Start mwfmtool 

These are the steps to start mwfmtool.

1. Start your command line interface.

2. Change directory to $ACTIVATOR_BIN

3. Enter mwfmtool and press Return.

4. The help line appears, which details the command syntax. 

<cmd> [-host<hostname>][-port<port>] 
[-user<user>[/<password>][-quiet]<...cmd args...>

You can find more information about the command syntax in Table B-2 on page 489.

If you want to see the list of the commands available in mwfmtool, enter mwfmtool a. In 
this case, “a” is a simple character selected at random. It provokes an error (“a” is not a 
valid command in mwfmtool), to which mwfmtool responds by displaying the complete 
list of the valid commands.

You can also get help on using individual commands. For example, to see what 
parameters the KillJob command takes, enter mwfmtool KillJob and enter Return. 
Normally, the command takes several parameters. In this case, you do not provide any of 
them. This provokes an error, to which mwfmtool responds by displaying help. The result 
of entering KillJob without parameters looks like so: 

error: missing expected parameter
usage: KillJob [-user<username>[/password]] 
[-host<hostname>][-port<port>][-quiet] <jobID>

NOTE mwfmtool processes a single command at a time. When you enter commands, remember 
to begin your command line with mwfmtool followed by the command name.
Appendix B486



mwfmtool
mwfmtool
Using mwfmtool from a Remote Computer

If you use mwfmtool on the computer where Service Activator is installed, then you can 
skip this section. 

You can, however, use mwfmtool without installing Service Activator. In this case, you 
would use mwfmtool to connect to a remote computer, on which Service Activator is 
installed, and issue commands to that computer. 

To be able to do this, you will need to copy the four files listed in Table B-1 on page 487 to 
your computer without Service Activator. The column “Location” in Table B-1 contains 
the locations where the files can be found in a typical installation of Service Activator. 
For further instructions, see “Move mwfmtool to a Computer Running UNIX” on 
page 487 or “Move mwfmtool to a Computer Running Microsoft Windows” on page 488.

Move mwfmtool to a Computer Running UNIX 

This section has the instructions on how you can move mwfmtool to a computer running 
UNIX. In these instructions, the computer which has Service Activator installed is 
referred to as Computer A; the computer to which mwfmtool is moved is referred to as 
Computer B.

1. Install a supported Java version on Computer B and set the environment variable 
JAVA_HOME.

2. Create the following directories in Computer B

- /opt/mwfmtool/bin
- /opt/mwfmtool/etc/config
- /opt/mwfmtool/etc/nls
- /opt/mwfmtool/lib

3. Locate the files listed in Figure B-1 in Computer A.

4. Copy the files mwfm.jar and activator_utils.jar to the directory 
/opt/mwfmtool/lib

5. Copy the mwfmtoolusage.txt to the directory /opt/mwfmtool/etc/config

6. Copy the mwfmRB_en.properties to the directory /opt/mwfmtool/etc/nls

7. Create a script called mwfmtool in the directory /opt/mwfmtool/bin. The content of 
the script must be the following

#!/bin/bash

ACTIVATOR_ETC=/opt/mwfmtool/etc

Table B-1 mwfmtool Files

File Location

mwfmtoolusage.txt $ACTIVATOR_ETC/config

mwfmRB_en.properties $ACTIVATOR_ETC/nls

activator_utils.jar $ACTIVATOR_OPT/lib

mwfm.jar $ACTIVATOR_OPT/lib
Appendix B 487



mwfmtool
mwfmtool
CLASSPATH=/opt/mwfmtool/lib/mwfm.jar

CLASSPATH=$CLASSPATH:/opt/mwfmtool/lib/activator_utils.jar

CLASSPATH=$CLASSPATH:$ACTIVATOR_ETC/nls

$JAVA_HOME/bin/java -classpath $CLASSPATH \

-DMWFMTOOL_ETC=$ACTIVATOR_ETC \

com.hp.ov.activator.mwfm.client.mwfmtool “$@“

8. To start mwfmtool, follow the instructions in “Start mwfmtool” on page 486. 

Move mwfmtool to a Computer Running Microsoft Windows

Below are the instructions on moving mwfmtool to a computer running Microsoft 
Windows. In these instructions, the computer which has Service Activator installed is 
referred to as Computer A; the computer to which mwfmtool is moved is referred to as 
Computer B.

1. Install a supported Java version on Computer B and set the environment variable 
JAVA_HOME.

2. Create the following directories in Computer B

- C:\HP\OPenView\mwfmtool\bin
- C:\HP\OPenView\mwfmtool\etc\config
- C:\HP\OPenView\mwfmtool\etc\nls
- C:\HP\OPenView\mwfmtool\lib

3. Locate the files listed in Figure B-1 in Computer A.

4. Copy the files mwfm.jar and activator_utils.jar to the directory 
C:\HP\OPenView\mwfmtool\lib

5. Copy the mwfmtoolusage.txt to the directory 
C:\HP\OPenView\mwfmtool\etc\config

6. Copy the file mwfmRB_en.properties to the directory 
C:\HP\OPenView\mwfmtool\etc\nls

7. Create a script called mwfmtool.bat in the directory 
C:\HP\OPenView\mwfmtool\bin. The file content must be as follows.

@echo off

set ACTIVATOR_ETC=C:\HP\OpenView\mwfmtool\etc

set CLASSPATH=%ACTIVATOR_ETC%\nls

set CLASSPATH=%CLASSPATH%;C:\HP\OpenView\mwfmtool\lib\mwfm.jar

set CLASSPATH=%CLASSPATH%;C:\HP\OpenView\mwfmtool\lib\activator_utils.jar

%JAVA_HOME%\bin\java -classpath %CLASSPATH% \

-DMWFMTOOL_ETC=%ACTIVATOR_ETC% com.hp.ov.activator.mwfm.client.mwfmtool %*

8. To start mwfmtool, follow the instructions in “Start mwfmtool” on page 486. 
Appendix B488



mwfmtool
mwfmtool
mwfmtool Commands 

Here you can find the information about the structure of the commands in mwfmtool as 
well as the complete list of these commands. 

mwfmtool is not case sensitive. You can enter command names in upper or lower case. 
Some commands have abbreviations, which you can use instead of the full name of a 
command. Some of the commands may also have several abbreviations. 

Commands have arguments, which control how commands are executed and what 
output they return. If a command has several arguments, then those arguments are 
separated by spaces only. No other punctuation marks between arguments are used. 

Some of the command arguments are optional, i.e. you do not have to supply them. In 
this document, optional arguments are enclosed in brackets, e.g. [-host<hostname>]. 
The obligatory values are enclosed in less than (<) and greater than (>) symbols, e.g. 
<hostname> in [-hostname<hostname>] indicates that you must always provide a host 
name when using the -hostname argument. Remember though, these symbols ([ ] < >) 
are used for the purposes of this document only. They are not used when entering 
commands, e.g. a valid command is mwfmtool GetJobStatus 123. 

Finally, the pipe character (|) separating two arguments or values indicates that you 
must use one of those two arguments or values when entering a command.

Table B-2 Command Structure

Parameter Description

<cmd> Command name. See Table B-3 on page 490, 
which contains the command names.

[-host<hostname>] Host name. By default, mwfmtool assumes 
that you try to log on to the local host. If you 
want to connect to another computer, provide 
the host name here, e.g. -host *.*.*.*

[-port<port>] Port name. If left out, mwfmtool assumes the 
default port of the Workflow Manager. In 
typical installations, it is 2000. If your Service 
Activator is set up otherwise, provide here the 
port number used by the Workflow Manager, 
e.g. -port 2001

[-user<username>[/<password>]] The user name and the password you use to 
log on to Service Activator when user name 
and password authentication is enabled, e.g. 
-user aaa/*** In this example, “aaa” is the 
user name while the asterisks represent the 
password.

[-quiet] This parameter allows you to control the 
output returned by the commands. It accepts 
either -verbose or -quiet as its values. Use 
-verbose if you want your commands to 
generate detailed information about their 
results. Use -quiet to turn off all output.
Appendix B 489



mwfmtool
mwfmtool
<...cmd args...> The mandatory value the command takes. For 
example, when you use command 
DeleteMessage, you must provide the 
message ID and the name of the queue in 
which the message is. You can find the 
commands with their arguments in Table B-3 
on page 490.

Table B-2 Command Structure (Continued)

Parameter Description

Table B-3 Command List

Command Abbreviation Description

canKillJob 
<jobID>

not available Check whether the user has the 
correct role to kill the job

ChangeJobRoles 
<jobID>
<defaultRole>
[<traceRole>]
[<killRole>]

not available Changes roles of a running job.

ChangeRequestRole 
<messageId> 
<queue> 
<role>

changereqrole Changes the role of a current 
request. The role is changed to 
the one you supply in the 
<role> argument.

DeleteAllMessages
[-queue <queue>]
[-priorto <date> | <seconds>]

delallmessages
delallmsgs
delallmsg

Deletes all messages in a given 
queue or all queues. The 
-priorto argument indicates 
that messages posted earlier 
than a given time must be 
deleted. You can specify a date 
or a number of seconds prior to 
now. CAREFUL: If you enter 
the command without any 
arguments, all messages are 
deleted immediately! mwfmtool 
does not additionally warn that 
you are about to delete 
messages.

DeleteMessage 
<messageID> 
<queue>

delmsg Deletes a message from a 
queue. You must provide the 
message ID and the queue 
name.

GetAllClusterNodes not available Get the host names of all the 
cluster nodes

GetCasePacketForJob <jobID> not available Get all the case packets for the 
given job
Appendix B490



mwfmtool
mwfmtool
GetCounters not available Get current running job count, 
scheduled job count, total jobs 
waiting for activation and total 
jobs waiting for user input (all 
cluster nodes inclusive)

GetCurrentJobCount not available Get the current count of 
running jobs (all cluster nodes 
inclusive)

GetFullThreadsDump not available Get a full thread dump from a 
cluster node.

GetHistoricalSystemData not available Get the historical system data 
of one of the cluster nodes: 
memory (heap and non heap), 
worker threads, activation 
threads, activation queue, total 
jobs, user sesions and database 
pools.

GetJobStatistics
<jobID>

not available Get the statistics about all the 
jobs running in all the cluster 
nodes

GetJobStatus 
<jobID>

not available Gets the status of a job.

GetJobDefaultRole 
<jobID>

not available Gets the default role for a given 
job.

GetJobTraceRole 
<jobID>

not available Gets the trace role for a given 
job.

GetJobKillRole 
<jobID>

not available Gets the kill role for a given job.

GetJobRequestRole 
<jobID> 
<queue>

not available Gets the role of a request 
waiting on a queue.

GetMaster not available Get the cluster node which is 
acting as a master for the given 
module name. The module 
name will have to match the 
modules defined in mwfm.xml

GetLogFileHostInfo -i <unique-ID> not available Get the name of the log file 
name / hostname in which the 
log entry with <unique-ID> is 
present

GetNextProcessId not available Get the next job Id from the 
database

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B 491



mwfmtool
mwfmtool
GetQueueCount <queue name> 
<ignore role>

not available Get the number of jobs in a 
given queue across all cluster 
nodes (except Running Jobs 
and Scheduled Jobs). If role has 
to be ignored, set ignore role to 
be true. If role is needed, set it 
to false.

GetRunningJobCount <local cluster 
node / all cluster nodes

not available  Get the number of running jobs 
for the given user (across all 
cluster nodes). True for local 
cluster node; false for all cluster 
nodes

GetScheduledJobCount not available Get the number of scheduled 
jobs (across all cluster nodes)

GetStatusForAllClusterNodes getstatus Get the ONLINE, LOCKED 
and SUSPENDED state of all 
the cluster nodes

GetSystemData not available Get the current system data of 
one of the cluster nodes: 
memory (heap and non heap), 
worker threads, activation 
threads, activation queue, total 
jobs, user sesions and database 
pools.

GetValidRoles not available Gets the list of valid roles 
according to the Authentication 
module.

GetVersion not available Get the version of the Service 
Activator application

GetWorkflowInfo <workflow name> not available Get the information about a 
given workflow.

KillJob 
<jobID>

not available Kills a given job.

ForceKillJob
<jobId>

not available Forces a job to stop even if it is 
blocked. Use this command 
ONLY if KillJob fails to stop 
the job.

ChangePriority -jobId <jobId> 
-priority <priority>

not available Changes the priority of a given 
job

ListMessageQueues listmsgqueues Shows the list of all message 
queues.

ListRequestQueues not available Shows the list of all request 
queues.

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B492



mwfmtool
mwfmtool
LoadWorkflows not available Loads all the workflows in all 
the cluster nodes

Lock <host name> not available Lock the given host name.

LockAllNodes not available Locks all the nodes in the 
cluster

ReloadConfiguration not available Will reload configuration for 
both mwfm and resmgr in all 
the cluster nodes

ResumeAllNodes not available Will initiate a state change 
from suspend to resume of all 
the nodes in the cluster

ResumeNode <host name> not available Will initiate a state change 
from suspend to resume in the 
given host

SuspendAllNodes not available Will initiate a state change 
from resume to suspend of all 
the nodes in the cluster

SuspendNode <host name> not available Will initiate a state change 
from resume to suspend in the 
given host

UnlockAllNodes not available Unlocks all the nodes in the 
cluster

UnlockNode <host name> not available Unlock the given host name.

SendCasePacket
<jobID> 
<queue>

not available Passes values to a job waiting 
in a given request queue. This 
command has a dialog for 
entering the variables. You can 
enter and pass multiple 
variables. See Example B-1 on 
page 497 for more details.

ShowDatabaseMessages 
[-mrssageId 
<mesageId>][-identifier 
<identifier>] [-jobId <jobId>] 
[-hostName <hostName>] 
[-moduleName <moduleName>]

showdbmsgs Shows the entire row 
information in the 
database_message table for 
given input parameters like 
identifier, jobId, hostName, 
moduleName. Identifier is  
provided by the solution and is 
used to map the database 
record to the specific request if 
no parameter is specified for 
this command, this API will 
fail!

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B 493



mwfmtool
mwfmtool
DeleteDatabaseMessages 
[-messageId <messageId>] 
[-identifier <identifier>] [-jobId 
<jobId>] [-hostName <hostName] 
[-moduleName <moduleName>] 

deletedbmsgs Deletes entries in the 
database_message table for 
given input parameters like 
identifier, jobId, hostName, 
moduleName, messageId. 
Identifier is provided by the 
solution and is used to map the 
database record to the specific 
request if no parameter is 
specified, this API will fail!

GetAllNodesTimeStatus -status 
<overall | report | complete>

overall : will give overall time 
sync status (All the nodes are in 
sync if the system time of all 
the cluster nodes are same (or) 
Time mismatch between the 
nodes if there is a time 
difference between the node
report : will give time sync 
status report of all node. The 
report will have each node 
name and its time sync status

ShowJobDescriptor 
-job<jobID> 
-queue<name> 
[casePacketVars<var1><var2>...
<varN>]

not available Shows the job descriptor for a 
given job in a queue. In 
addition to the general output, 
you can request the value of a 
certain set of case-packet 
variables.

ShowMessages 
[-verbose][-queue<queue>]

showmsg
showmsgs

Shows all messages posted in a 
given queue or all queues.

ShowRequests
[-verbose]
[-queue<queue>]
[casePacketVars<var1><var2>
...<varN>]

not available Shows all requests waiting in a 
given queue (or all queues). In 
addition to the general output, 
you can request the value of a 
certain set of case-packet 
variables.

ShowRunningJobs[-verbose]
[-job<jobID>]
[-casePacketVars<var1><var2>
...<varN>]

showjobs Shows details about the state of 
a given job. In addition to the 
general output, you can request 
the value of a certain set of 
case-packet variables.

QueryMessages [-serviceId 
<serviceId>] [-orderId <orderId>] 
[-type <type>] [-state <state>] 
[-maxRecords <max records>]

showmsg
showmsgs

Shows the messages which 
match the query parameters

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B494



mwfmtool
mwfmtool
QueryRequestQueueJobs -queue 
<queueName> [-serviceId 
<serviceId>] [-orderId <orderId>] 
[-type <type>] [-state <state>] 
[-maxRecords <max records>]

showjobs Shows the jobs in a queue 
which match the query 
parameters

QueryRunningJobs [-serviceId 
<serviceId>] [-orderId <orderId>] 
[-type <type>] [-state <state>] 
[-maxRecords <maxRecords>]

showjobs Shows the running jobs which 
match the query parameters

QueryScheduledJobs [-serviceId 
<serviceId>] [-orderId <orderId>] 
[-type <type>] [-state <state>] [ 
-maxRecords <maxRecords>]

not available Shows the scheduled jobs which 
match the query parameters

ShowWorkflows
[-verbose]
[-reload]

showwf Shows all workflows defined in 
the system. The user can start 
any of them. The -reload 
argument tells the system to 
reload the workflows.

StartJob
[-wait]
[-noinput | 
-messageFile<file>]
[-repeat]
<workflowName>

not available Starts a workflow. The -wait 
argument tells the command to 
wait until the job completes. 
The -noinput argument tells 
the command not to prompt for 
initial case-packet values. The 
-messageFile argument sets 
the message_file case-packet 
variable to a given file. If 
-noinput is NOT set, then the 
user is prompted for a list of the 
initial arguments. The -repeat 
argument indicates to the 
command that the job must be 
repeated N times. This 
argument is primarily used for 
testing purposes.

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B 495



mwfmtool
mwfmtool
ScheduleJob 
-time<timestamp>
[repeatingPeriod<period>
-repeatingPeriodUnit <unit>
-repeatingEnd<end>
-repeatingType <type>]
[-description<description>]
[-groupID<groupID>]
[-status<status>]
[[-start_missed_scheduled_inst
ances <true|false>]
[-noinput | 
-messageFile<file>]
<workflowName>

not available Schedules a workflow. The 
-time argument tells the 
command at which time to 
schedule a job. 
-repeatingPeriod is a period 
of time in milliseconds after 
which the job must be started 
again. -repeatingEnd is the 
timestamp in milliseconds at 
which repeating ends.
-repeatingType indicates 
whether the Scheduled Time 
calculated for reoccurring jobs 
on restarts is relative or 
absolute. Allowed types: 
1-relative, 2-absolute
-groupID is used to add several 
jobs to a group. -description 
is a short description of a job. 
-status marks the current 
status of a job. 
-start_missed_scheduled_
instances option Controls 
whether missed scheduled 
instance must be started on 
restart Allowed values: true, 
false. -noinput tell the 
command not to prompt for the 
initial case-packet values. 
-messageFile sets the 
message_file case-packet 
variable to the given file.

GetScheduledJob 
<jobID>

not available Returns all attribute of a 
scheduled job.

DeleteScheduleJob <jobID> not available Deletes a scheduled job.

ModifyScheduleJob
[-startTime<time>]
[-repeatingPeriod<period>]
[-repeatingEnd<end>]
[-description<description>]
[-groupId<groupID>]
[-status<status>]

not available Modifies a scheduled workflow. 
The -startTime argument tells 
the command at which time to 
schedule a job. 
-repeatingPeriod is a period 
of time in milliseconds after 
which the job must be started 
again. -repeatingEnd is the 
timestamp in milliseconds at 
which repeating ends. 
-groupID is used to add several 
jobs to a group. -description 
is a short description of a job. 
-status marks the current 
status of a job.

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B496



mwfmtool
mwfmtool
Below you can find an example of how a command is used.

Example B-1 SendCasePacket

In this example, you start the SendCasePacket command and enter a number of 
variables, which you then pass to a job. 

As it has been mentioned, the command requires the job ID and the name of the queue, 
on which the job can be found. In this example, the job ID is 111149345, the queue name 
is “queue1”. It is assumed that the job waits for three variables called variable1, 
variable2, variable3, which have values 1, 2 and 3 respectively. Note that you must 
know the exact variable names. mwfmtool does not check correctness of the variables 
and their values as they are entered. 

Remember to end variable input with an empty line, i.e. once you have entered the last 
variable, press Return to get another empty line for variable input then press Return 
again to send the variables. The command dialog looks similar to this:

C:\HP\OPenView\ServiceActivator\bin>mwfmtool SendCasePacket 111149345 queue1

Enter values for case-packet variables to be initialized.
Expected input is of the form <variable>=<value>.

Use an empty line to finish input.

variable: variable1=1
variable: variable2=2
variable: variable3=3
variable:

Sending 3 parameters to job 111149345

Example B-2 Running a Script

Assume that many jobs are waiting for interaction in the “ScriptQueue” queue. They all 
wait for the input parameter Request. This example shows how you can set a value for 
all the jobs by using mwfmtool.

MakePrimarySite <site name> not available Makes the specified site as the 
primary site when Service 
Activator clusters are run in a 
disaster recovery setup. 

SearchLog -q <search-query> -s 
<max-results> [-r]

not available Search log index and write 
result to STDOUT.  
<search-query> is the query to 
use for searching (supports 
Apache Lucene syntax). 
<max-results> is the maximum 
number of search results to 
display. If the 'r' option is 
specified the search results are 
listed in reverse order (newest 
entry first)

Table B-3 Command List (Continued)

Command Abbreviation Description
Appendix B 497



mwfmtool
mwfmtool
@echo off
call mwfmtool ShowRequests -queue “ScriptQueue” -cpv JOB_ID > temp.txt
FOR /F “tokens=2“ %%a IN (temp.txt) DO call :stopp %%a
del temp.txt cvp.txt

goto :done

:stop
@echo Request=stop > cvp.txt
call mwfmtool SendCasePacket %1 “ScriptQueue“ < cvp.txt > NULL
echo hob %1 stopped
goto : done

:done
Appendix B498



C Creating Additional Data Source

If an extra data store has to be added then a new element must be added to the 
$JBOSS_HOME/standalone/configuration/standalone.xml. 
Appendix C 499



Creating Additional Data Source
In this file find all the predefied datasources delivered with HPSA can be found. They 
can be found in the Datasources sub-system. Search e.g. for the jndi-name attribute with 
the name java:/hpsa/jdbc/mwfmDB. Then make a copy of this element and modify the 
jndi-name, pool-name, and security-domain. The jndi-name must start with 
java:/hpsa/jdbc to be possible to use as a new inventory datasource.

Apart from adding the datasource element to the standalone.xml file a new 
security-domain element must be added in the sub-system security-domains. Take a copy 
of one of the predefined HPSA security elements and modify the name to reflect what 
was configured in the new datasource element. The finally the username and password 
parameters must be modified.

Use the $ACTIVATOR_BIN/generateEncrypted[.bat] utility to create an encrypted 
password.

#./generateEncrypted.sh –password ovsapassword

# Encoded password: 340eafbedf6d293cc3bc376bef610c0a

Now the new datasource can be used to specify an additional database module in the 
$ACTIVATOR_ETC/config/mwfm.xml.

                  <Module>
                 <Name>newdbmodule</Name>
                 <Class-Name>com.hp.ov.activator.mwfm.engine.module.JNDIDatabaseModule
                 </Class-Name>
                 <Param name="datasource_jndi_name"   value="my-jndi-name"/>
                 </Module>
Appendix C500



Index
A
activation

description, 349
adding values together in a workflow, 98
AlarmModule Methods, 464
AskFor, workflow node, 101
Assign, workflow node, 106, 110, 131, 213
assigning database results to a 

case-packet variable, 142
assigning values to case-packet variables, 

106, 213
Audit, 26

audit module, 357
automatically generated, 26
collecting records, 62
node, 107
node parameters, 107
records, 26

authentication
description, 349
HP-UX module, 368, 389, 430

authentication and authorization
writing your own modules, 459

authentication methods, 459
authorization

HP-UX module, 368, 389, 430

C
case-packet variables

assigning values, 106, 213
database values, assigning, 142
description, 33
mapping fields from an XML message, 

321
passing to a running program, 145
reading text files into, 266
setting based on templates, 315
storing in a database table, 207
types of, 33

characters, substituting, 272
collecting statistics, 397
ComposeMessage, workflow node, 107, 111
ConfirmResourceReservation, workflow 

node, 115, 118
contacting the activation engine from a 

workflow, 94
conventions

typographical, 13
creating a micro-workflow manager client, 

469

D
database access, description, 350
Default role, 27
delete instance parameters from the 

repository, 134
DeleteServiceInstance, workflow node, 99, 

120, 134
deleting a file, 269, 271
DoNothing, workflow node, 116, 137

E
e-mail messaging, 393, 395
ending a workflow, 198
enhancing existing functionality, 452
Equal, rule node, 141
ExecSQLQuery, workflow node, 142
ExecSQLStatement, workflow node, 144
ExecuteExternal, workflow node, 145, 147
external communication

configuring, 414
opening a socket, 414

external interfaces
listener module, 415, 418
sending a message, 418

F
file, removing, 269, 271

G
GreaterThan, workflow node, 171
GreaterThanOrEqual, workflow node, 

172, 173, 176

H
handlers, 31

library of, 331
ReleaseResourceHandler, 337
SyncHandler, 339

HpuxAuthModule, 361, 363, 364, 367, 368, 
384, 389, 422, 430

I
incoming messages

opening a socket, 414
incrementing values in workflows, 98
interacting with micro-workflow manager, 

469

K
Kill role, description, 27
KillJob, workflow node, 198

L
LessThan, workflow node, 199
LessThanOrEqual, workflow node, 200, 

201
library of micro-workflow manager 

modules, 354
linking the micro-workflow manager with 

activation, 355
logging

XMLLogModule, 406, 407, 412, 420, 434

M
mapping XML message fields to 

case-packet variables, 321
MatchDBQuery, workflow node, 203, 205
MatchDBStore, workflow node, 207
messages
 501



5

composing with case-packet variables, 
111

request and message, 395
sending, 283
sending to OVO, 405

micro-workflow manager
creating a client, 469
interacting with, 469
modules, description, 20
writing your own modules, 452

micro-workflow manager modules
activation, 349
authentication, 349
database access, 350
library, 354
transaction state, 349
writing your own, 452

modules
activation, description, 349
authentication, description, 349
database access, 350
DatabaseModule, 379
HpuxAuthModule, 361, 363, 364, 367, 

368, 384, 389, 422, 430
micro-workflow manager, library, 354
Monitor, 397
OVOMessageModule, 405
queue hook, writing your own, 462
sender, writing your own, 463
transaction state, 349
XMLLogModule, 406, 407, 412, 420, 434

Monitor, 397
MoveFile, workflow node, 212
moving or renaming a file, 212
Multiply, workflow node, 214

N
nodes, workflow, 18
Not, workflow node, 215, 217, 218, 219, 

220, 221, 237, 238, 239
notification by e-mail, 395

O
opening a socket for incoming messages, 

414
OpenView Operations

message module, 405
Operator UI

showing statistics, 370
viewing statistics, 397

OVOMessageModule, 405

P
parameters for micro-workflow manager, 

20
pausing a workflow, 286
preventing more than one workflow 

instance, 25
process nodes, 28

writing custom, 440

PutMessage, workflow node, 241

Q
querying inventory from a workflow, 245
querying the database, 142
QueryInventory, workflow node, 245
QueryServiceInstance, workflow nodes, 

251
QueueHook Methods, 462

R
ReadFile, workflow node, 266
reading text files into a case-packet, 266
relational database module, 379
ReleaseResource, workflow node, 268
ReleaseResourceHandler, workflow node, 

337
releasing poolable resources, 268
releasing resources, 115, 118, 337
RemoveFile, workflow node, 269, 271
removing resources from the 

RESERVATIONS variable, 115, 118
renaming or moving a file, 212
Replace, workflow node, 272
reservable resources

releasing, 268, 337
reserving, 273

ReserveResource, workflow node, 273
reserving resources, 273
restricting workflows to one instance at a 

time, 25
retrieving values of service-instance 

parameters, 251
roles

description, 27
rule nodes

, 28
Equal, 141
GreaterThan, 171
GreaterThanOrEqual, 172, 173, 176
LessThan, 199
LessThanOrEqual, 200, 201
Not, 215, 217, 218, 219, 220, 221, 237, 238, 

239
writing custom, 444, 446

running a SQL statement against a 
database, 144

S
SendAlarm, workflow node, 281
sender module

writing your own, 463
SenderModule Methods, 463
sending a message to a workflow module, 

281
sending e-mail notification, 395
sending messages, 418
sending messages to OVO, 405
sending messages using SenderModule, 

283
SendMessage, workflow node, 283
02



service-instance
retrieving values of, 251

service-instance parameters
updating, 306

service-instance repository
deleting instance parameters, 134
setting new values, 310
updating, 310

setting case-packet variables based on 
templates, 315

setting new values for technical 
parameters, 310

showing statistics in the Operator UI, 370
Sleep, workflow node, 286
specifying a wait period for user 

interaction, 101
SQL query, 142
SQL statement, running, 144
SSL communication, 415, 418
Start role, 27
starting workflows automatically, 25
StartJob, workflow node, 287
startup attributes for workflows, 25
statistics

collecting, 397
viewing in the Operator UI, 397

storing case-packet contents in a database 
table, 207

substituting characters, 272
SyncHandler, workflow node, 339
synchronizing child and parent workflows, 

339

T
TCP communication, 415, 418
text files, reading into a case-packet, 266
Trace role

description, 27
transaction state, description, 349

U
UpdateInProgress, workflow node, 306
UpdateServiceInstance, workflow node, 

310
updating service-instance parameter 

values, 306
user interaction, pausing the workflow, 

101

V
values

retrieving, 251
values, multiplying in a workflow, 214
VariableMapper, workflow node, 315

W
workflow

modules, sending messages to, 281
workflow nodes, 18, 28

writing custom, 451
workflows

a programming analogy, 22
Add node, 98
AskFor node, 101
contacting the activation engine, 94
ending, 198
handler library, 331
multiplying values, 214
nodes, 28
nodes, description, 18
pausing, 286
preventing more than one instance, 25
querying inventory, 245
restricting instances, 25
starting automatically, 25
startup attributes, 25

WriteCasePacket, workflow node, 318
writing

custom process nodes, 440
custom rule nodes, 444, 446
custom workflow nodes, 451
micro-workflow manager modules, 452
sender module, 463

X
XMLMapper, workflow node, 321, 326
503



504


	Workflows and the Workflow Manager
	1 Understanding Workflows and Workflow Manager
	What Is A Workflow?
	Workflow Nodes

	Understanding the Workflow Manager
	Workflow Manager Modules

	Programming Analogy

	2 Creating and Deploying Workflows
	Understanding Workflows
	General Structure of Workflow
	Startup Attributes 
	Workflow Persistence Attribute
	Audit and Statistics Attributes
	Setting Roles
	Workflow Nodes
	Process Nodes
	Rule Nodes
	Switch Nodes

	Handlers
	Conventions for Node and Handler Parameters
	Case-Packet Variables
	Initial Case-Packet Values
	Workflow Contract
	Default Case-Packet Variables
	References to Complex Data Types in Workflow Node Parameters
	Queues
	Queue Names
	Queues and Roles


	Advanced Workflow Techniques
	Spawning Child Workflows
	Using Timeouts
	Using Prioritization in Workflows
	Prioritizing Workflow Node Processing
	See Also

	Uploading Data from a Task Activation

	Deploying Workflows
	Clustering Considerations

	3 Using the Workflow Designer
	Navigating the Workflow Designer
	Understanding Workflow Designer Features

	Using the Main Menu
	Using the Main Utilities Toolbox
	Using the Visual Properties Toolbox
	Using the Context Sensitive Menu
	Using the Workflow Views
	Copying and Pasting Workflow Nodes
	Deleting Nodes
	Using the Node Tree
	Using the Overview Pane
	Using the Node Properties View
	Lock / Unlock Function
	Using the Edit Node Properties Dialog
	Using the Action Parameters Tab

	Command Line Options
	Using Keyboard Shortcuts

	4 Workflow Node and Handler Library
	Process Nodes, Rule Nodes, and Switch Nodes
	Default Workflow Node Persistence Setting
	Activate
	Add
	AppendToTaskList
	AskFor
	Assign
	Audit
	ChangeRoles
	ComposeMessage
	ConcatenateTaskLists
	ConfirmResourceReservation
	CreateBean
	CreateInventory
	CreateTaskList
	CreateUCMDBCIsAndRelations
	DateConverter
	Decrypt
	DeleteCache
	DeleteInventory
	DeleteScheduledJob
	DeleteServiceInstance
	DeleteUCMDBCIsAndRelations
	DoNothing
	Encrypt
	ExecuteMacro
	Equal
	ExecSQLQuery
	ExecSQLStatement
	ExecuteExternal
	ForEach
	GenericUIDialog
	GetBaseFileName
	GetBeansNNMNode
	GetBusinessHoursAfterDuration
	GetCalendarTimezone
	GetNextIncludedTime
	GetTimeRangesOfBusinessDay
	GetOperatingSystem
	GreaterThan
	GreaterThanOrEqual
	HTTPGet
	HTTPRequest
	InsertIntoTasklist
	InvokeInventoryMethod
	InvokeMethod
	IsModuleConfigured
	IsTimeIncluded
	IsTrue
	Java
	JavaRule
	JavaSwitch
	KillJob
	LessThan
	LessThanOrEqual
	Log
	MapData
	MatchDBQuery
	MatchDBStore
	MethodRule
	ModifyScheduledJob
	MoveFile
	MultiAssign
	Multiply
	NAAddConfigurationPolicy
	NAAddDevice
	NAAddDeviceGroup
	NAAddDeviceToGroup
	NAAddRuleToPolicy
	NABuildConditionList
	NABuildRuleList
	NADeleteDeviceGroup
	NADeletePolicy
	NAGetSnapshot
	NAListConfigId
	NAListDevice
	NAModifyConditionsOnRule
	NARemoveDeviceFromGroup
	NARemoveRuleFromPolicy
	NARunAdvancedScript
	NARunCommandScript
	NARunScript
	NAShowConfig
	NAShowDiagnostic
	NAShowTask
	Not
	PAYG
	PatternMatch
	PPU
	PutMessage
	QueryInventory
	QueryScheduledJob
	QueryServiceInstance
	QueryServiceInstanceAll
	QueryUCMDBCIsAndRelations
	RandomInteger
	ReadData
	ReadDataFromDatabase
	ReadFile
	RediscoverHostsNNMNode
	ReleaseResource
	RemoveData
	RemoveFile
	Replace
	ReserveResource
	RetrieveSequence
	ScheduleCurrentJob
	ScheduleJob
	SendAlarm
	SendMessage
	SendSNMPTrap
	Sleep
	StartJob
	StartJobAndWait
	Switch
	Sync
	ThrowError
	ThrowException
	ThrowRuntimeException
	TransformXML
	UpdateBean
	UpdateCustomAttributesNNMNode
	UpdateInProgress
	UpdateInventory
	UpdateServiceInstance
	UpdateUCMDBCIsAndRelations
	VariableMapper
	WasPreviousNodeOK
	WriteCasePacket
	WriteDataToDatabase
	XMLMapper
	XML Namespaces

	XMLParser

	Handlers
	ComposeMessageHandler
	MultiAssignHandler
	DoNothingHandler
	PutMessageHandler
	ReleaseResourceHandler
	SendMessageHandler
	SyncHandler
	VariableMapperHandler


	5 Configuring the Workflow Manager
	Setting the Workflow Manager Parameters
	Understanding Workflow Manager Modules
	Required and Typical Workflow Manager Modules
	Logging
	Work Manager
	Transactional State
	Activation
	Authentication
	Database Access
	Parent-Child Synchronization
	Receiving Messages
	Sending Messages
	Keep Alive
	Distribution



	6 Workflow Manager Module Library
	Using the Workflow Manager Module Library
	ActivationModule 
	AuditModule
	BusinessCalendarModule
	CacheModule
	CasePacketDistModule
	CheckTimeModule
	DatabaseAdvancedAuthModule
	DBTransactionModule
	HPUXAdvancedAuthModule
	HTTPRenderer
	HTTPSenderModule
	JMSListenerModule
	JMSSenderModule
	JNDIDatabaseModule
	KeepAliveModule
	LDAPAuthModule
	LinuxAdvancedAuthModule
	LoadFactorDistModule
	LogSearchModule
	MailHook
	Monitor
	NARequestModule
	NNMRequestModule
	OVOMessageModule
	QueueDistModule
	RoundRobinDistModule
	SchedulerModule
	SelfMonitoringModule
	SNMPSenderModule
	SocketListenerModule
	SocketSenderModule
	SolutionXMLLogModule
	SyncModule
	UCMDBRequest Module
	UsageMonitoringModule
	WindowsAdvancedAuthModule
	WorkManagerModule 
	XMLLogModule

	7 Writing Custom Workflow Nodes
	Understanding Workflow Nodes
	Accessing Workflow Manager Capabilities: WFContext & WFManager 
	Example Source Code for Nodes
	Writing Custom Process Nodes
	init() Method
	nodeEntered() Method 
	nodeExited() Method

	Writing Custom Rule Nodes
	init() Method
	eval() Method

	Writing Custom Switch Nodes
	init() Method
	evalKey() Method

	Writing Error and End Handlers

	Deploying Workflow Nodes and Handlers
	Using Custom Nodes and Handlers in Designer
	Component Descriptor Vocabulary



	8 Writing New Workflow Modules
	Writing New Workflow Manager Modules
	Example Source Code for Modules
	Implementation of Modules
	init Method
	shutdown Method
	isActive
	removeJob Method
	suspend Method
	resume Method
	locked Method
	unlocked Method
	nodeDown Method
	nodeUp Method
	nodeLocked Method
	nodeUnlocked Method
	nodeSuspended Method
	nodeResumed Method
	takeover Method
	refresh Method
	discard Method

	Master-Slave 
	Writing New Authenticator Module
	Writing New Queue Hook
	Writing New Sender Module
	Writing New Message Module

	Deploying Workflow Manager Modules

	9 Writing Workflow Manager Clients
	Writing Workflow Manager External Interface Clients
	Creating a Workflow Manager Client
	Examples

	E Configuring Service Activator to Use Secure Socket Layer (SSL) Protocol
	Using SSL with Service Activator: An Overview
	Preparing to Use SSL
	Getting Organized
	Configuring Service Activator to Use SSL
	Understanding the Required Software
	Configuring JSSE
	Preparing to Load the Certificate Keystore
	Managing Keys and Certificates
	Using the keytool Utility


	Configuring SSL for HTTPS (Operator UI)
	Step 1: Loading the Server Keystore (Operator UI)
	Step 2: Modifying the JBoss Configuration Files 
	Configuring the JBoss Operator UI Port

	Step 3: Starting Service Activator

	Configuring SSL for Secure Message Transmission (Workflow Manager)
	Step 1: Loading the Server Keystore (Workflow Manager)
	Step 2: Modifying the Workflow Manager Configuration File
	Step 3: Restarting the HP Service Activator

	Troubleshooting
	Finding Additional Information


	B mwfmtool
	mwfmtool

	C Creating Additional Data Source
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


