
HP Diagnostics
For the Windows and Linux operating systems

Software Version: 9.23

Python Agent Guide

Document Release Date: March 2014

Software Release Date: March 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 2005 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Java is a registered trademark of Oracle and/or its affiliates.

Oracle® is a registered trademark of Oracle and/or its affiliates.

Acknowledgements
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see theOpen Source and Third-Party Software License Agreements document in the
Documentation directory on the product installationmedia.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage
your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Diagnostics (9.23) Page 2 of 42

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your
business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

Python Agent Guide

HP Diagnostics (9.23) Page 3 of 42

Contents

Contents 4

Welcome to This Guide 6

Diagnostics Documentation 6

Chapter 1: Introduction 8

Diagnostics Python Agent Overview 8

Chapter 2: Installing Python Agents 9

Requirements for the Diagnostics Python Agent Host 9

Overview of the Python Agent Installation 9

Installing the Python Agent 9

The probe_setup.py Script 10

Directory Structure 11

Removing the Python Agent 12

Chapter 3: Instrumenting a Python Application 13

Using the hpdiag_instrument.py Wrapper Script 13

Instrument theMain Script of theMonitored Application 15

Decorate the Functions and Classes of theMonitored Application 16

In Code Creation of Capture Points 17

Instrumenting a Single Script 19

Chapter 4: Configuring the Python Agent 21

Namespace [Mediator] 21

Namespace [Logging] 22

Namespace [Probe] 22

Namespace [SystemMetricsCollector] 24

Namespace [SystemMetrics] 24

URI Truncation andMapping 24

URI Path Segment Trimming 26

Chapter 5: The Points File 27

Description of the Parameters in the Points File 27

Including Points Files 29

Python Agent Guide
Contents

HP Diagnostics (9.23) Page 4 of 42

Chapter 6: Description of Custom Code 30

The Purpose of Custom Code 30

Custom Functions 31

Returning HTTP Request Status Codes 33

Cross VM Server Requests 34

Argument Extraction 36

Chapter 7: Available Out-of-the-box Configurations 37

OpenStack Instrumentation 37

Django andWSGI Instrumentation 40

Chapter 8: Troubleshooting 41

We appreciate your feedback! 42

Python Agent Guide
Contents

HP Diagnostics (9.23) Page 5 of 42

Welcome to This Guide
Welcome to the HP Diagnostics Python Agent Guide. This guide describes how to install, configure
and use the Diagnostics Python Agent .

The HP Diagnostics application comes with the following documentation:

l Diagnostics User’s Guide andOnline Help

l Diagnostics Installation and Configuration Guide

l Diagnostics FAQ document

l Diagnostics DataModel andQuery API Guide

l Diagnostics Release Notes

l Diagnostics Java Agent Guide

l Diagnostics .NET Agent Guide

l Diagnostics Python Agent Guide

Diagnostics Documentation
HP Diagnostics includes the following documentation:

Diagnostics User’s Guide and Online Help. Explains how to choose and interpret the
Diagnostics views in the Diagnostics Enterprise UI to analyze your monitored applications. To
access the online help for Diagnostics, chooseHelp > Help in the Diagnostics Enterprise UI. If
Diagnostics is integrated with another HP Software product the online help is also available through
that product's Helpmenu. The User’s Guide is a PDF version of the online help and their content is
identical. The User's Guide is available from the Diagnostics online help Home page, from the
Windows Start menu (Start > Programs > HP Diagnostics Server > User Guide), or from the
Diagnostics Server installation directory.

Diagnostics Server Installation and Administration Guide. Explains how to plan a Diagnostics
deployment, and how to install andmaintain a Diagnostics Server. This guide is in PDF format only.
TheGuide is available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

The following Agent guides contain content that supports agent installation, setup and
configuration.

l Diagnostics Java Agent Guide. Describes how to install, configure, and use the Diagnostics
Java Agent and the Diagnostics Profiler for Java. This guide is in PDF format only. TheGuide is
available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

HP Diagnostics (9.23) Page 6 of 42

http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals

l Diagnostics .NET Agent Guide. Describes how to install, configure, and use the Diagnostics
.NET Agent and Diagnostics Profiler for .NET. This guide is in PDF format only. TheGuide is
available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

l Diagnostics Python Agent Guide. Describes how to install, configure, and use the
Diagnostics Python Agent. This guide is in PDF format only. TheGuide is available from the
Profiler UI help or as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

Diagnostics Collector Guide. Explains how to install and configure a Diagnostics Collector. This
guide is in PDF format only. TheGuide is available as a download from the HP Software Product
Manuals site at http://h20230.www2.hp.com/selfsolve/manuals.

Diagnostics System Requirements Guide. Describes the system requirements for the various
Diagnostics components. This guide is in PDF format only. TheGuide is available as a download
from the HP Software Product Manuals site at http://h20230.www2.hp.com/selfsolve/manuals.

Release Notes. Provides last-minute new information and known issues about each version of
Diagnostics. The file is located in the Diagnostics installation disk root directory or as a download
from the HP Software Product Manuals site at http://h20230.www2.hp.com/selfsolve/manuals.

Diagnostics Data Model and Query API. Describes the Diagnostics datamodel and the query
API you can use to access the data. The guide is available from the Diagnostics online help Home
page.

Diagnostics Frequently Asked Questions (FAQ). Gives answers to frequently asked questions.
The FAQ is available from the Diagnostics online help Home page.

Python Agent Guide
Welcome to This Guide

HP Diagnostics (9.23) Page 7 of 42

http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals

Chapter 1: Introduction
This chapter provides an overview of the Python agent.

Diagnostics Python Agent Overview
The HP Diagnostics Python Agent install package includes the software necessary to capture
events such as method invocations, server requests, and systemmetrics from Python
applications. The Python Agent packagemust be installed on the systems to bemonitored that are
running Python applications. Each instrumented application results in a unique probe entity which
can be independently configured for data collection.

HP Diagnostics (9.23) Page 8 of 42

Chapter 2: Installing Python Agents
This chapter describes how to install a Python Agent and gives you information about the setup and
configuration of the Python Agent.

This chapter contains the following sections:

l "Requirements for the Diagnostics Python Agent Host" below

l "Overview of the Python Agent Installation" below

l "Installing the Python Agent" below

l "The probe_setup.py Script" on the next page

l "Directory Structure" on page 11

l "Removing the Python Agent" on page 12

Requirements for the Diagnostics Python Agent
Host

For details of the system requirements for the Diagnostics Python Agent Host, see "Requirements
for the Diagnostics Python Agent Host" in the Diagnostics System Requirements Guide located on
the HP Software Support Online Product Manuals site. Access requires an HP Passport login
(register for an HP Passport).

Overview of the Python Agent Installation
The Python Agent must be installed on all systems running Python application that you wish to
monitor. Installation involves simply unzipping the install package and running the setup.py script
on each system. After this is completed, it is then necessary to define the points that you wish to
monitor within your applications. If you wish tomonitor OpenStack or Django, configuration files
and scripts have been supplied that will allow youmonitor these applications.

Installing the Python Agent
The Diagnostics Python Agent is distributed for all platforms in a single zip file named
HPDiagPythonAgt_<release number>.zip.

Perform the following steps to install the Python Agent:

1. Unzip theHPDiagPythonAgt_<version>.zip file to a new directory on the target host. Avoid
spaces in the directory name.

This directory is referred to as <agent_install_directory> throughout this guide.

HP Diagnostics (9.23) Page 9 of 42

http://support.openview.hp.com/selfsolve/document/KM00751367/binary/Diagnostics9.23_System_Requirements.pdf
http://h20229.www2.hp.com/passport-registration.html

2. Change directory to <agent_install_directory>.

3. Execute the "probe_setup.py" script using the Python interpreter that is used for themonitored
application:

n For Linux

/<path to python>/python probe_setup.py

n ForWindows

<path to python>\python.exe probe_setup.py

where <path_to_python> is the path to your Python executable such as /usr/bin/python on
Linux orC:\Python26\python.exe onWindows.

The probe_setup.py Script
The script probe_setup.py is used to install, upgrade or remove the HP Diagnostics Python Agent.

Usage:

probe_setup.py [-h|--help] [-u|--update] [-r|--remove] [-d|--dont_ask]

Options:

Option Description

-h, --help Show this helpmessage and exit.

-u, --update Update or upgrade the Python Probe.

-r, --remove Remove the Python Probe.

-d, --dont_ask Install or remove the Python Probe without asking.

The probe_setup.py script accomplishes the following steps during the installation:

1. Install the hpdiag modules in the site-packages or dist-packages directory of the Python
installation (see "Directory Structure" on the next page for details on where files are installed).

2. Install the hpdiag scripts in the Python bin (Linux) orScripts (Windows) directory.

3. Install the PythonProbe configuration files to the hpdiag/etc directory.

4. Install the systemmetrics binary to the hpdiag/bin directory.

5. Create the PythonProbe log directory /var/log/hpdiag (Linux) or

Python Agent Guide
Chapter 2: Installing Python Agents

HP Diagnostics (9.23) Page 10 of 42

%PROGRAMDATA%\Hewlett-Packard\hpdiag\log (Windows).

6. Store a list of installed files in hpdiag/backups/installed_files.

Directory Structure
The Python Agent uses the following directory structure.

Python Modules

The hpdiag Pythonmodules are stored in the Python site-packages or dist-packages directory as
follows:

l On Linux: /path/to/lib/python[python_version]/site-packages/hpdiag

l OnWindows: \path\to\lib\python[python_version]\site-packages\hpdiag

Scripts

l On Linux, the hpdiag Python scripts are copied into the bin directory, where the Python
executable also resides.

l OnWindows the scripts are installed into theScripts directory under the Python installation
directory.

hpdiag Directory

The HP Diagnostics Python Agent requires a dedicated directory for its configuration and binary
files. The location of this directory differs based on the platform and in the case of Windows, is
based on theWindows version as well.

l On Linux: /opt/hpdiag

l OnWindows:%PROGRAMDATA%\Hewlett-Packard\hpdiag

Binaries

The binaries are stored in: <hpdiag_dir>/bin

Configuration Files

The configuration files are stored in: <hpdiag_dir>/etc

Log Files

The HP Diagnostics Python Agent creates the following directories for the Python Agent to place
its log files:

l On Linux: /var/log/hpdiag

l OnWindows:%PROGRAMDATA%\Hewlett-Packard\hpdiag\log

Python Agent Guide
Chapter 2: Installing Python Agents

HP Diagnostics (9.23) Page 11 of 42

Removing the Python Agent
During the installation of the HP Diagnostics Python Agent, the installation script was copied into
the hpdiag directory with the name probe_deinstall.py. Executing this script will remove the
Python Agent.

Pleasemake sure that no application is instrumented and that no probe is running when the probe
will be removed. If a probe is still running onWindows, then the rename of the hpdiag directory will
fail and an error is returned.On a Linux system we cannot detect if a probe is still running during
uninstall. This may lead to unpredictable results.

On Linux:

/path/to/python /opt/hpdiag/probe_deinstall.py

OnWindows:

cd %PROGRAMDATA%\Hewlett-Packard

\path\to\python hpdiag\probe_deinstall.py

Please note that onWindows it is necessary to call this script from outside of the hpdiag directory,
because the hpdiag directory will be renamed during the de-installation. This rename fails when the
console is opened in the hpdiag directory.

The deinstallation script will perform the following steps:

1. Remove the probe Python files from the Python site-packages directory.

2. Remove the .egg-info file.

3. Rename the hpdiag directory to hpdiag.<date>-<time>.

Python Agent Guide
Chapter 2: Installing Python Agents

HP Diagnostics (9.23) Page 12 of 42

Chapter 3: Instrumenting a Python
Application

There aremultiple ways to instrument a Python application, and each is explained below.

l "Using the hpdiag_instrument.py Wrapper Script" below

l "Instrument theMain Script of theMonitored Application" on page 15

l "Decorate the Functions and Classes of theMonitored Application" on page 16

l "In Code Creation of Capture Points" on page 17

l "Instrumenting a Single Script" on page 19

Using the hpdiag_instrument.py Wrapper Script
The HP Diagnostics Python Agent provides a script to instrument and start an application: hpdiag_
instrument.py.

No source code change is required in the Python application using this approach. If themain script
of themonitored Python application is called "app_main.py", for example, then the instrumented
application is run by the following command:

hpdiag_instrument.py --config app_main.conf --point app_main.point app_
main.py

The script hpdiag_instrument.py initializes the Python probe and reads the capture points from
the given point file. Afterwards, it starts themain script of the application via Python's execfile
function. When themonitored application exits, this script closes all resources of the running probe.

Themodules used by the python application are instrumented at runtime when they are imported.
The probe uses the custom import hook sys.meta_path as described in the PEP 302 of the Python
language. This might conflict with applications that also use this import hook. See "Decorate the
Functions and Classes of theMonitored Application" on page 16 for an alternative.

Usage:

hpdiag_instrument.py [--config_dir <config dir>] [--bin_dir <bin_dir>] \

[--config <config_file>] --point <point_file> \

[--single] <target_script> [<target_script_args>]

HP Diagnostics (9.23) Page 13 of 42

Options:

Option Description

-h, --help Show this helpmessage and exit.

-d CONFIGDIR, --config_
dir=CONFIGDIR

Configuration directory of the Python Agent.

-b BINDIR, --bin_dir=BINDIR Binary directory of the Python Agent.

-c FILE, --config=FILE Python probe configuration file [default = probe.conf

-p FILE, --point=FILE Configuration of methods tomeasure.

-s, --single Instrument the target_script as well as any modules it
loads.

By default, only modules referenced in the target_script
are instrumented.

Parameters:

The parameters --config_dir, --bin_dir and --config are optional and are only needed when it
is desired to use different settings than the defaults.

Option Default Environment
Variable

Description

-d, --config_dir /opt/hpdiag/etc;
%PROGRAMDATA%\Hewlett-
Packard\hpdiag\etc

$PYPROBE_
CONFIG_DIR

Directory
containing the
configuration files.

-b, --bin_dir /opt/hpdiag/bin;
%PROGRAMDATA%\Hewlett-
Packard\hpdiag\bin

$PYPROBE_BIN_
DIR

Directory
containing the
binary files like
'systemmetrics'

-c, --config probe.conf N/A File containing the
probe configuration.

Note: The specification of the directories as parameter for hpdiag_instrument.py has a
higher priority than the environment variable settings. The environment variable settings have a
higher priority than the defaults.

Several examples for starting your application are shown below:

Example 1:

hpdiag_instrument.py --point webapp.point webapp.py

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 14 of 42

Example 2:

hpdiag_instrument.py --config my_probe.conf --point webapp.point webapp.py

Example 3:

hpdiag_instrument.py -d /path/to/my/config/data \

-p other_weapp.point \

webapp.py

OnWindows, the path_to_python\python.exemust be added in front of hpdiag_instrument.py.

Instrument the Main Script of the Monitored
Application

It is also possible to initialize and shutdown the Python probe directly from themain script of the
Python application (similar to what hpdiag_instrument.py does). The code below shows this
approach:

try:
from hpdiag import pyprobe

except ImportError:
class PyProbeDummy(object):

@staticmethod
def init(*args, **kws):

print "Warning: Cannot initialize HP Diagnostics Python Agent. Failed
to import 'hpdiag.pyprobe' in file '%s'" % __file__

@staticmethod
def shutdown():

print "Warning: Cannot shutdown HP Diagnostics Python Agent. Failed to
import 'hpdiag.pyprobe' in file '%s'" % __file__

pyprobe = PyProbeDummy

pyprobe.init(config_file = "app_probe.conf", point_file = "app.point")

try:
def main():
call the application entry point here

if __name__ == '__main__':
main()

finally:
pyprobe.shutdown()

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 15 of 42

There are only a couple of lines to be added into themain script:

1. The statement to import themodule "hpdiag.pyprobe"

2. The initialize function "pyprobe.init()" at the beginning

3. The shutdown function at the end

4. The try-finally block around the original code. This is optional, but highly recommended.

Note: InWSGI scripts, only the first two lines are needed. Adding the shutdown function at the
end will cause the probe to not function properly. See below for more details.

The initialize function takes up to four parameters:

l config_file: The configuration file for the probe.

l point_file: The point file containing the capture points for the instrumented Python application.

l config_dir: The directory where the configuration files (probe configuration and point file) are
located, if different from the default location.

l bin_dir: The directory where the executables (systemmetrics, ...) are located, if different from
the default location.

Note: Please be sure to always specify the parameter for the pyprobe.init() function using
keywords like "point_file = app.point". This allows the parameters to be listed in any order, and
also allows for parameters to remain unset so that they will get the default values.

All APIs of the python probe are in themodule hpdiag.pyprobe. Only the functions and classes
defined in this module should be used to instrument themonitored application! Functions and
classes in all other modules of the Python probemay change without notice at any time!

Decorate the Functions and Classes of the
Monitored Application

It is also possible to create the capture points in the Python source at run-time by using the
following decorator functions from themodule hpdiag.pyprobe: func_point, method_point, and
class_point. They are used as decorators directly in the Python source above the instrumented
function, method, or class. The supported arguments for these decorators are exactly the same
arguments as those for the capture points in the point file. For example:

from hpdiag import pyprobe

@pyprobe.class_point(method = "^fib$|rfib ", layer = "fiboLayer")
class Fibo(object):

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 16 of 42

the implementation of the Fibo class

This decorator creates one capture point for the class Fibo. Themethod’s argument specifies that
themethod fib and themethod rfib should be instrumented. Please note that Python regular
expressions are used here. The regular expression ^fib$ means that only themethod fib is
instrumented whereas the regular expression rfib means that any method that has a sub-string rfib
in its namewill be instrumented (for example, also rfib_seq).

The argument layer defines the layer for all instrumentedmethods of this class. The other
mandatory arguments class andmodule are automatically determined by the decorator.

It is also possible to decorate a single function or method using the func_point andmethod_point
decorator. For example:

class Fibo(object):
@pyprobe.method_point(clazz = "Fibo", layer = "fiboLayer", args = "0")
def fib_seq2(self, n):

the implementation of the method

Even though the decorator is executed in the context of themethod, it is necessary to specify the
name of the class because the class is not yet defined (and so cannot be automatically determined)
at the time the decorator is executed.

Note: Please also note that the argument name is clazz because class is a Python key word
which cannot be used.

If the instrumented function or method already has other decorators (for example, it is a
@staticmethod or@classmethod), then the decorator that creates the capture point for the probe
must be written directly above the function or method (if not it might cause problems). For example:

@_DecoMemoize
@pyprobe.func_point(layer = "fiboLayer", args = 0)
def mfib(n):

the implementation of the function

Please note that all three decorator functions are executed at import time of themodule and create
just the capture point. The automatic instrumentation of themodule via the above described import
hook is performed after themodule was loaded. Thus, the decorated functions, methods, and
classes are treated like any capture point read from the point file.

In Code Creation of Capture Points
If you do not want to add the decorators in all the source files of themonitored application (or if the
sources are not available at all), it is also possible to create all the capture points in one place within
your application.

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 17 of 42

from hpdiag import pyprobe
pyprobe.init(config_file = "probe.conf", point_file = "app.point")
pl = pyprobe.PointList()
pl.create_method_point("func_name", "module_name", <point arguments>)
pl.create_method_point("method_name", "module_name", "class_name", <point ar
guments>)
pl.create_class_point(<class instance>, <point arguments>)
pl.create_point(<point arguments>)

The point arguments are the same as the options of a point in the point file, for example,
layer="Database", detail="is_sql_statement".

Once all points are created, it is possible to trigger the instrumentation by calling:

pyprobe.instrument(pl)

call the actual application entry point

pyprobe.shutdown()

Passing the point list to the instrument function ensures that only the newly created points are
instrumented. Capture points that were read from the point file (passed as second parameter to the
init function) are, by default, automatically instrumented at import time of themodule (using the
custom import hook describe above).

Please note that the point file that is passed to the init function is optional! If not specified, only the
capture points created by the decorator functions are used by default, that is, if the automatic
instrumentation at import time is enabled.

It is possible to disable the automatic instrumentation at import time. Use the following argument in
the probe section of the probe config file to do this:

[Probe]

auto_instrument = True

If this argument is set to False (the default is True), themodules imported by themonitored
application are not automatically instrumented. Instead, it is possible to trigger the instrumentation
any time at runtime by calling:

pyprobe.instrument()

Because no point list is passed as parameter to the function, it will use all capture points that were
created so far at runtime and/or read by the init function from the point file to instrument the currently
loadedmodules.

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 18 of 42

Instrumenting a Single Script
A single script is characterized by the fact that it is not imported by another script. Thus it is more
difficult to instrument such a script. If a script can be instrumented or not depends on the availability
of classes andmethods inside the script.

Prerequisites

The hpdiag_instrument.py tool allows the execution of instrumented single scripts by loading it as a
module and calling its main() method. This means that the existence of amain() function in the
script is a prerequisite. Simple Python scripts often have nomain() method, but look like this:

if __name__ == '__main__':

instance = MyClass()
:
xyz = helper_function()

In most cases this can be easily changed to:

if __name__ == '__main__':
instance = MyClass()
:
xyz = helper_function()
In most cases this can be easily changed to:
def main():
instance = MyClass()
:
xyz = helper_function()
if __name__ == '__main__':
main()

This allows access to themain() method by the hpdiag_instrument.py tool, and thus to instrument
this single script.

Point Definitions

The script is imported with its file name as module name, so that its name is referenced in the point
file as module name to define the instrumentation points. For example when the script name is
myScript.py then this is imported as 'myScript' andmight be referenced in the point file as follows:

[myScript_1]
module = myScript
class = MyClass
method = class_method
layer = myscript

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 19 of 42

Note: Because single scripts are imported as module, the file namemust not contain any dots
('.'). For examplemyScript-0.2.py does not work because dots are not allowed inmodule
names. Correct is myScript.py or my_script.py.

Calling hpdiag_instrument.py

The hpdiag_instrument.py tool has the parameter '-s | --single' to indicate that the called Python
script is a single script:

hpdiag_instrument.py --config myScript.conf --point myScript.point \

--single /path/to/myScript.py --script_par1 ...

Python Agent Guide
Chapter 3: Instrumenting a Python Application

HP Diagnostics (9.23) Page 20 of 42

Chapter 4: Configuring the Python Agent
The file <hpdiag_dir>/etc/probe.conf drives the basic agent behavior. The probe.conf file has
section/namespaces. Configuration parameters are defined within these namespaces.

The following sections give detailed descriptions of the configuration parameters in the probe.conf
file. Also included are two sections that give details on some specific URI replace pattern
configurations in the probe.conf file.

l "Namespace [Mediator]" below

l "Namespace [Logging]" on the next page

l "Namespace [Probe]" on the next page

l "Namespace [SystemMetricsCollector]" on page 24

l "Namespace [SystemMetrics]" on page 24

l "URI Truncation andMapping" on page 24

l "URI Path Segment Trimming" on page 26

Namespace [Mediator]
hostname: The Diagnostics mediator host name.

port: The Diagnostics mediator port number.

channeltype: One of synchronous, threaded, or multiprocess. This value configures how events
are sent to themediator. Python has a very peculiar threading behavior, so testingmay be
necessary to determine the optimal settings for your application.

l synchronous: The events are sent as part of the business application thread. This might slow
down the business application.

l threaded: The events are sent in a separate thread, but in the same process as the business
application. This is the default.

l multiprocess: The events are sent in a separate process.

reconnect_timeout: The timeout in seconds before the next reconnect, in case the connection to
themediator has been lost. Server requests that complete while themediator connection is
unavailable are dropped silently.

keep_alive_interval: Interval in seconds at which the probe will send keep alivemessages to the
registrar on themediator.

HP Diagnostics (9.23) Page 21 of 42

Namespace [Logging]
class: Specify the logging (handler) type. There are two types supported:

l TimedRotatingFileHandler: It supports rotation of disk log files at certain timed intervals.

l RotatingFileHandler: It supports rotation of disk log files based on file size limits.

file: The absolute path to the log file.

level: The default logging level: CRITICAL, ERROR, WARNING, INFO or DEBUG.

level_exceptions: Specify exceptions to the default logging level of the Python probe. These
exceptions are specified as Python dictionary with a Python pattern as key and the logging level as
value (in the form of a string). The probe iterates through all keys (patterns) of the dictionary and will
use the first one that matches. The order is not defined, however.

The example below sets the DEBUG level to all loggers in modules that start with hpdiag.location.
Likewise, it sets the INFO level to all loggers in modules that start with hpdiag.importhook:

level_exceptions = {r'hpdiag\.location.*' : 'DEBUG', r'hpdiag\.importhook.*'
: 'INFO'}

backup_count: If nonzero, at most backup_count files will be kept. If more would be created when
roll-over occurs, the oldest one is deleted.

max_file_size: For RotatingFileHandler: Themaximum size of the log file in MB.

when: For TimedRotatingFileHandler: Rotating happens based on the product of when and interval.
Possible values are:

'S' Seconds, 'M' Minutes, 'H' Hours, 'D' Days, 'W#' Week day (# = 0 - 6 with 0 = Monday), or
'midnight' Roll over at midnight.

interval: For TimedRotatingFileHandler: The roll-over interval. Example: If when is set to '1#' (=
Tuesday) and interval is set to '2', then the log file will be rolled over every second Tuesday.

utc: Use times in UTC (default is local time).

Namespace [Probe]
probe_id: The name of the probe instance. Add%0 to the probe_id to get a unique probe name if
several instances of the same probe are running on the same system.

registered_hostname: The hostname to be used if DNS/IP lookups don't work reliably.

probe_group: ProbeGroup name (used in the samemanner as in the Java and .NET probes).

system_group: System Group name (used in the samemanner as in the Java and .NET probes).

auto_instrument: Enable/disable automatic instrumentation at import time (default: True).

Python Agent Guide
Chapter 4: Configuring the Python Agent

HP Diagnostics (9.23) Page 22 of 42

instrument_loaded_modules: Instrument modules that have been loaded before pyprobe.init() is
called (default: False).

instrument_pyprobe_threads: Instrument points found in the probe threads, e.g. monitor the
probe itself (default: False).

error_on_duplicate_location: An exception is thrownwhenever the same location is instrumented
multiple times (default: False).

sql_parsing_mode: Parsingmode of SQL queries.

1 = just methods, no SQL queries

2 = main categories for SQL queries (select/update/insert/delete/...)

3 = ameasurement per whole SQL query aggregating similar statements into a single
measurements

4 = ameasurement per whole SQL query aggregating only identical statements

Agent side trimming:

maximum_stack_depth: Don't capture any data about methods called at a depth greater than this.
For example, if maximum_stack_depth is 3, and "/login.do" calls a() calls b() calls c(), only login.do,
a, and b will be captured. Setting a low maximum_stack_depth can somewhat reduce the overhead
of capture. Setting this to a very high value disables depth trimming. This is dangerous if potentially
recursivemethods are instrumented as it can lead to nearly infinite call-trees. This will consume a
lot of memory. Setting this value above 100 is strongly discouraged. The default is 25.

minimum_method_latency: Latency trimming - never capture any data about regular methods
that execute faster than this number of milliseconds. Depending upon your platform & whether hi-
res time stamps are being used, it may not be useful to specify this value in increments of less than
10ms. It defaults to 51milliseconds.

minimum_fragment_latency: If an entire server request takes less than this number of
milliseconds, it will not be captured, unless a threshold has been set on that server request. The
default value is 51ms.

maximum_method_calls: Tree size trimming - never capturemore than this number of methods
per instance tree. This is regardless of latency and depth trimming. It defaults to 1000. Note that
this applies to all methods, including outbound calls.

minimum_sql_latency: If an SQL statement takes less than this amount of time, it will not be
trended, until it does exceed this time. It defaults to 1000milliseconds (one second).

httpserver_port: Port to use for python probe http server.

http_client_show_url: Enables/disables the inclusion of the URL as part of the identity of an
outbound call. The value should be set to false for REST service client applications.

uri_replace_pattern: A comma-separated list of pattern replacement operations to attempt on each
URI (see "URI Truncation andMapping" on the next page).

uri_pathsegments:Number of URI path segments to allow (see "URI Path Segment Trimming" on
page 26).

Python Agent Guide
Chapter 4: Configuring the Python Agent

HP Diagnostics (9.23) Page 23 of 42

username: User name used to authenticate themediator with the probe http server. If it is empty, a
default user namewill be used.

password: Password used to authenticate themediator with the probe http server. Use the utility
hpdiag_encodepassword.py to encode your password before adding it there. If it is empty, a
default password will be used.

Namespace [SystemMetricsCollector]
enabled: True or False, decides whether the systemmetrics collector is active.

sampling_rate: How fast should ametric be locally sampled. Uses time string values, like 5s.

metrics_group: What group should systemmetrics be associated with? This valuemay be the
same as an existing probe group, or completely independent.

udp_port: Port to use for systemmetrics UDP control port. Do NOTmodify this unless there is a
conflict with another application. All Diagnostics agents on a systemMUST be configured to use
the same port.

mediator_port: Port on themediator used to deliver metrics to.

udp_retry_interval: How often should themetrics collector try to open the UDP port in case it is in
use by another program. Uses time string values, like 10min.

username: User name used to authenticate the systemmetrics collector with themediator.

password: Password used to authenticate the systemmetrics collector with themediator. Use the
utility hpdiag_encodepassword.py to encode your password before entering it here.

Namespace [SystemMetrics]
This namespace contains the systemmetrics to collect.

These systemmetrics collector entries use the same layout as the ones for the Java Agent (see
HP Diagnostics Java Agent Guide chapter on "Java Agent - SystemMetrics Capture") with the
exception that the collector name is not available in the Python agent.

URI Truncation and Mapping
It is possible to truncate or change the URI of a request using Python regular expressions. This is
specified in the probe.conf file in the option uri_replace_pattern. This is a comma-separated list
of pattern replacement operations to attempt on each URI. This is useful to replacemany server
request URIs with one simplified server request URI that aggregates them. The truncation or
mapping of URIs is done using the 's/pattern/replace/' syntax, which is the only supported syntax
for the URI replacement patterns.

How and Where are the Patterns Used

This functionality is applied after before:code custom functions, args:name or args:n were applied.
The output of before:code or args:x is used as input for the URI replacement patterns.

Python Agent Guide
Chapter 4: Configuring the Python Agent

HP Diagnostics (9.23) Page 24 of 42

If more than one pattern is specified, all patterns will be applied. The patterns are applied in order.
The output of a previous matched pattern will be used as input for the next pattern. The resulting
string is used in the Diagnostics GUI for the request name.

Characteristics

Because s/pattern/replace is not Python syntax, it is necessary to use '#' instead of '/' in the
configuration file

s/pattern/replace/

must be written as

s#pattern#replace#

s/pattern/replace/ is used to be comparable with the syntax in Perl or on the Unix shell. It is also
possible to omit the s and write #pattern#replace#.

Examples

Truncate before a string, match the string and any characters that follow it and leave replace empty.
In this example $ matches end-of-line.

uri_replace_pattern = s#string.*$##

Truncate after a string. Match the string in a grouping and use \group-number to put the string into
the replacement.

uri_replace_pattern = s#(string).*$#\1#

Use a comma separated list to perform multiple operations. The operations will all be performed in
order. This would change every foo to bar and then change every bar back to foo.

uri_replace_pattern = s#foo#bar#,s#bar#foo#

Truncate before any semicolon.

uri_replace_pattern = s#;.*$##

Truncate before any /! or !. This uses ? to say that the slash is optional.

uri_replace_pattern = s#/?\!.*$##

Truncate before any ';' or '/!' or '!'.

uri_replace_pattern = s#(;|/?\!).*$##

Python Agent Guide
Chapter 4: Configuring the Python Agent

HP Diagnostics (9.23) Page 25 of 42

Map /django/portal/ and /django/myportal/ to Django Portal.

uri_replace_pattern = s#^/django/(my)?portal/#Django Portal#

Other examples:

uri_replace_pattern = s#(;|/?\!).*$##,s#.*\.
(js|css|jpg|gif|png|pdf|html|jar|class)$#Static Content#

uri_replace_pattern = s#.*/([a-zA-Z0-9_]*)\.py#\1#

URI Path Segment Trimming
The URI path can be trimmed by the definition of uri_pathsegments in the probe.conf file. uri_
pathsegments is set to the number of URI path segments to allow - everything after this point will
be trimmed. For example, with a setting of 2, URLs like /foo/bar/1, /foo/bar/2 will be trimmed to
/foo/bar. A value of -1 or 0 will disable the path trimming.

Python Agent Guide
Chapter 4: Configuring the Python Agent

HP Diagnostics (9.23) Page 26 of 42

Chapter 5: The Points File
The points file specifies which Python classes, methods and functions aremonitored.

This chapter contains the following sections:

l "Description of the Parameters in the Points File" below

l "Including Points Files" on page 29

Description of the Parameters in the Points File
The points file specifies which Python classes, methods and functions aremonitored.

The syntax of the points file is the same as for the Java probe. Therefore see the Java probe
documentation for details.

The following arguments are supported:

Argument Description Mandatory

module A Python regular expression yes

class A Python regular expression no

method A Python regular expression yes

layer The name of the layer yes

layer_type One of the following 4 values:

l method (the default)

l trended_method

l portlet

l sql

no

HP Diagnostics (9.23) Page 27 of 42

Argument Description Mandatory

detail Specifies more specific capture instructions. It is a comma-
separated list of the following:

l before:code:<name>: execute the custom code with
filename <name> before the instrumented
method/function

l after:code:<name>: execute the custom code with
filename <name> after the instrumentedmethod/function

l args:name: uses the string representation of the instance
on which the instrumentedmethod was called as call
argument

l args:n: uses the string representation of the argument on
index 'n' as call argument in the GUI (seemore details
below)

l is_sql_statement: marks methods/functions that execute
SQL statements

l inbound: marks amethod/function as inbound call that is
used to track cross-VM transactions

l outbound: marks amethod/function as outbound call that
is used to track cross-VM transactions

l method_trim: indicates that every invocation of the
method instrumented by this point should be “trimmed”,
that is, not reported. However, side-effects of the
corresponding code-snippets, if any, take place normally.

l method_no_trim: indicates that no latency-based trimming
should take place when amethod instrumented by this
point is executed.

l no_layer_recurse: prohibits recording of any methods
called from themethod instrumented by this point, unless
the callee belongs to a different layer.

no

For example:

[httplibHTTPConnectionOutbound]
module = httplib
class = HTTPConnection
method = request
layer = Sending

Python Agent Guide
Chapter 5: The Points File

HP Diagnostics (9.23) Page 28 of 42

detail = outbound,before:code:httpconnection_outbound

To distinguish amethod of a class from a function within amodule, the Python agent introduces the
additional argument “module” and considers the class argument as optional. Thus, a point describes
either a set of module functions or a set of class methods. If both functions as well as class
methods within the samemodule should be captured, it is necessary to specify two different points.

Including Points Files
The point file referenced during the instrumentation can include other point files. This is done by
using the special point IncludePoints. The file references have to be relative to the location of the
main point file.

For example:

[IncludePoints]
1 = ../../etc/httprequest.point
2 = httpserver.point
3 = others/database.point

Python Agent Guide
Chapter 5: The Points File

HP Diagnostics (9.23) Page 29 of 42

Chapter 6: Description of Custom Code
Custom code are Python functions that can be executed before or after themonitoredmethod or
function is executed. These functions are stored in files in the Python agent custom_code directory.
The custom code functions used are defined in the points file and are specified separately for each
monitored function. The custom code functions are referenced by file name.

The following sections gives details about custom code.

l "The Purpose of Custom Code" below

l "Custom Functions" on the next page

l "Returning HTTP Request Status Codes" on page 33

l "Cross VM Server Requests" on page 34

l "Argument Extraction" on page 36

The Purpose of Custom Code
Custom code can be used in the Python Probe to extract data from the arguments passed into an
instrumented function or method. If this data is returned by the custom code, it will be displayed as
an argument of themethod in the Diagnostics GUI (in the call profile). With custom code, it is even
possible to modify the arguments of an instrumented function or method. Custom code is also used
to track calls betweenmultiple probe installations (cross VM calls).

Custom code can be called two times: before the instrumentedmethod is called (before:code) and
after it was called (after:code).

before:code

The before:code is used to extract data from the argument list of the instrumentedmethod. If this
extracted data (for example, a URI) is returned by the custom function, it will be displayed in the
Diagnostics GUI as call argument.

The custom code functions are also used to intercept information that is needed for correct display
in the Diagnostics UI. The custom code function can return a string (used as the argument of the
call, as explained above), a dictionary, or a tuple of both. In the dictionary, the following entries are
used by the probe to report data to the server:

Key Meaning

uri URI of an incoming http service request.

inbound_coloring Coloring token of an inbound call used to track cross-VM
transactions.

remote_ip Caller IP address of an inbound call.

diag_arg The diag argument required for both incoming and outgoing
calls.

HP Diagnostics (9.23) Page 30 of 42

Server requests are reported as inbound to the Diagnostics server if a coloring token has been
reported by any method in the call stack.

If any method reported an URI, the server request type is reported as 'HTTP'; otherwise it will show
up as "Pseudo"

Check the files in etc/custom_code for syntax and usage examples of custom code, especially the
way the coloring tokens are injected and retrieved from the calls.

after:code

The after:code can be used to do any processing that might be useful after the instrumented
method was called.

Custom Functions
All custom code needs to be written as a function with the name custom_fct_before(...) or custom_
fct_after(...). The custom function that is used for before:code takes the following argument list:
custom_fct_before(instance, location, args, kws)

l instance: the class instance on which the instrumentedmethod is called. It is None for
instrumentedmodule functions.

l location: the python probe location object that identifies the instrumented function/method.

l args: the tuple of positional arguments passed to the instrumented function/method.

l kws: the dictionary of keyword arguments passed to the instrumented function/method.

It can return the following values:

l method argument: the argument string for the instrumentedmethod as displayed by the
Diagnostics GUI in the call profile.

l a dictionary: a dictionary of key value pairs. This dictionary is passed to the before:after
function after the instrumentedmethod got called. There are two special keys in this dictionary,
however. If custom_fct_before adds the keys "method_args" and/or "method_kws" to this
dictionary, it is assumed that they represent themodified argument list of the instrumented
function/method being called. The value for key "method_args" must be of type 'tuple' and the
value of key "method_kws" must be of type 'dict'. If the instrumentedmethod is an outbound
call, then this dictionary has to contain the key "diag_arg". If it is an inbound call, it has to
contain the keys "diag_arg", "inbound_coloring" and "remote_ip".

l a tuple: both values described above wrapped into a tuple.

l None: the custom code functionmay also return None.

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 31 of 42

The custom function for after:code takes the following parameters: custom_fct_after(instance,
location, method_return_value, code_dict).

l instance: the class instance on which the instrumentedmethod is called. It is None for
instrumentedmodule functions.

l location: the python probe location object that identifies the instrumented function/method.

l return value: the return value of the instrumented function or method.

l a dictionary: the dictionary that was returned by the before:code function.

Example for before:code in the file custom_code/cust_example_before.py:

Used by [DiagShop]

from urlparse import urlparse

def custom_fct_before(instance, location, args, kws):

ret_val = None
purl = urlparse(str(args[0]))
if len(purl.scheme) == 0:

ret_val = ''
else:
ret_val = purl.path

return ret_val

The file name cust_example_before is used as reference of the custom code to be used in the point
file. The function name is always custom_fct_before(instance, location, args, kws). This code
would be referenced in the point file via the following:

detail = before:code:cust_example_before

Example for after:code in the file custom_code/cust_example_after.py:

def custom_fct_after(instance, location, method_return_value, code_dict):

print "CustomAfter: Custom code executed - does not return anything."

It is possible to define a custom_fct_before(...) function and a custom_fct_after(...) function in the
same file and reference it using the same name. Which function is be used is defined in the detail
section in the point file.

Note: The Python Probe imports the custom code files as Pythonmodules. This means that all
limitations regarding the file names for Pythonmodules also apply to the custom code files. For
example the characters (<space>) or ('-') are not allowed in file names

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 32 of 42

Using Sub-directories

Because the custom code files are handled as Pythonmodules by the Python Probe, it is also
possible to categorize custom code files in sub-directories (modules). If this is desired, each sub-
directory needs to have a Python special file in it - this is the file _init_.py. This file can be empty,
but must be there to be able to import custom code from a sub-directory. Example:

pyapp_code
|- get_http_request.py
|- get_request_2.py
|- pyapp_controller
| |- __init__.py
| |- get_details.py
| |- do_something.py
|- pyapp_scheduler
| |- __init__.py
| |- get_request_from_queue.py
| |- get_service_request.py

With these files in place, the files of this structure can be referenced in the point file for example via

detail = before:code:get_http_request

from the custom code base directory or for the pyapp controller from the pyapp_controller sub-
directory:

detail = before:code:pyapp_controller.get_details

Note: A _init_.py file is not needed in the custom code base directory, because the files in this
directory are not regarded as Pythonmodules.

Returning HTTP Request Status Codes
For each HTTP request the HTTP server returns a status code. The custom code can be used to
report this status code to the HP Diagnostics server. To do this, the location object, passed to the
before and after functions, implements themethod add_request_attribute. It takes the attribute
name and the attribute value as parameters. At themoment, only the following four attributes are
supported by the HP Diagnostics server:

l WS_consumer_id

l HTTP_status_code

l HTTP_status_desc

l tcp_server_port

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 33 of 42

The following example shows how to extract the HTTP status code of requests to django
applications and have it sent to the HP Diagnostics server:

def custom_fct_after(instance, location, method_return_value, custom_code_di
ct):

from django.core.handlers import wsgi

try:
status_text = wsgi.STATUS_CODE_TEXT[method_return_value.status_code]

except KeyError:
status_text = 'UNKNOWN STATUS CODE'

if method_return_value.status_code >= 500 and method_return_value.status_c
ode <=699:

location.add_request_attribute("HTTP_status_code", str(method_return_val
ue.status_code))

location.add_request_attribute("HTTP_status_desc", status_text)

return None

Cross VM Server Requests
Outbound Calls

To enable HP Diagnostics to connect calls made from one instrumented application to another, a
unique identifier (coloring) needs to be added to the data sent to the called application. This can be
done with custom code.

The following example is used to instrument the request method of the python
httplib.HTTPConnectionOutbound class. It shows how to get the coloring from the probe using the
location.get_outbound_coloring call which takes the called target as parameter. The next step is to
add it to the data which will get sent to the called application. location.create_diag_envelope will
either add it to the data to be sent (passed as second parameters) or will return an encoded version
of the coloring if no data is passed. In the latter case, you have to add the coloring to the request
yourself. The data to be sent has to be a str for the enveloping to work! This example adds it as an
additional HTTP header called X-Mercury-Diag-HTTP-Color.

Then a string called diag_arg needs to get constructed whichmust be passed back to the Python
probe via a dictionary (using the dictionary key "diag_arg"). In case the arguments of the
instrumentedmethods aremodified within the custom code, they also have to be passed back to
the probe via the returned dictionary (using the keys "method_args" for the positional arguments
and "method_kws" for the keyword arguments).

File httpconnection_outbound.py:

Used by [httplibHTTPConnectionOutbound]

import httplib

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 34 of 42

def custom_fct_before(instance, location, args, kws):

if isinstance(instance, httplib.HTTPSConnection):
url = "https://%s:%s/%s"

elif isinstance(instance, httplib.HTTPConnection):
url = "http://%s:%s/%s"

else:
url = "request://%s:%s/%s"

outbound_coloring = location.get_outbound_coloring(url % (instance.host, ins
tance.port, args[1]))
outbound_coloring = location.create_diag_envelope(outbound_coloring, "")

if (args[3]):
args[3]['X-Mercury-Diag-HTTP-Color'] = outbound_coloring

else:
args[3] = {'X-Mercury-Diag-HTTP-Color' : outbound_coloring}

param_dict = {'name': '{0}:{1}'.format(instance.host, instance.port), 'targe
t': '{0}:{1}'.format(instance.host, instance.port)}
diag_arg = location.create_diag_arg('http', param_dict)
result = {}
result['diag_arg'] = diag_arg

result['method_kws'] = kws
result['method_args'] = args

return result

Inbound Calls

In inbound calls, the custom code is used to remove the coloring from the request received and
pass it to the python probe.

The following example is used to instrument theWSGI handler of the Django framework. It
removes the coloring from the request, passed as the X-Mercury-Diag-HTTP-Color parameter using
the location.get_coloring_from_diag_envelopemethod. The coloring is then returned to the python
probe. In addition to the coloring, a diag_arg string and the IP address of the calling application and
the called URI needs to get returned.

File basehttprequesthandler_inbound.py:

Used by [BaseHTTPServerBaseHTTPRequestHandlerInbound]

import BaseHTTPServer, socket

def custom_fct_before(instance, location, args, kws):

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 35 of 42

result = {}
path = None

if 'X-Mercury-Diag-HTTP-Color' in instance.headers:
inbound_coloring = location.get_coloring_from_diag_envelope(instance.hea

ders['X-Mercury-Diag-HTTP-Color'])
del (instance.headers['X-Mercury-Diag-HTTP-Color'])
result['inbound_coloring'] = inbound_coloring

if isinstance(instance, BaseHTTPServer.BaseHTTPRequestHandler):
host, port = instance.client_address[:2]

param_dict = {'name': instance.path, 'target': instance.headers['host']}
diag_arg = location.create_diag_arg('http', param_dict)

path = instance.path
result['diag_arg'] = diag_arg
result['remote_ip'] = host
result['uri'] = path

return (path, result)

Argument Extraction
args:name

args:name uses the string representation of the instance on which the instrumentedmethod was
called as call argument. For class or static methods or amodule function, it returns the doc string of
the instrumented function. If no doc string exists, it returns themodule name.

args:n

args:n uses the string representation of the argument on index 'n' as call argument in the GUI. 'n'
can be in the range 0 - 254.

args:name and args:n can be used together with an after:code custom function, but not together
with a before:code custom function. If a before:code function is referenced and args is used, it is
undefined as to which one will be used.

Python Agent Guide
Chapter 6: Description of Custom Code

HP Diagnostics (9.23) Page 36 of 42

Chapter 7: Available Out-of-the-box
Configurations

The Python Agent comes with a number of out-of-the-box configurations as ready-to-use
configuration or as starting point for own configurations. Currently available is instrumentation for:

l "OpenStack Instrumentation" below

l "Django andWSGI Instrumentation" on page 40

OpenStack Instrumentation
The Python Agent provides configuration for the instrumentation of the OpenStack cloud computing
platform (Diablo and Essex Release).

For OpenStack, the following is provided in addition to the standard python agent:

l Points files for every component of OpenStack

l Setup scripts and configuration files for OpenStack

Point Files

For every component of OpenStack one or more ready-made point files can be installed and used.

l common.point

l dashboard.point

l glance.point

l keystone.point

l nova-api.point

l nova-general-controller.point

l nova-queue-send.point

l nova-scheduler.point

l setup-openstack.conf

l setup-openstack.txt

l swift-common.point

l swift-account-server.point

HP Diagnostics (9.23) Page 37 of 42

l swift-container-server.point

l swift-object-server.point

l swift-proxy-server.point

Setup of the OpenStack Instrumentation

The startup scripts of the OpenStack components that need to be instrumentedmust be changed in
order to start the instrumentation together with a particular configuration. This can be done using a
setup script hpdiag_setup_openstack.py.

hpdiag_setup_openstack.py -i|--install <os_version> | \

-u|--uninstall <os_version> \

[-m|--mediator <hostname_fqdn>] [-h|--help]

Install OpenStack instrumentation:

-i --install <os_verson> Install the OpenStack instrumentation

-u --uninstall <os_version> Remove theOpenStack instrumentation

-m --mediator <mediator> Hostname of the Diagnostics Server

-h --help Display this message

OpenStack versions:

essex OpenStack 2012.1

diablo OpenStack 2011.3

The setup script uses the information about which component will be instrumented and where to
find its start script that is provided in the setup_openstack.conf file.

The setup_openstack.conf file has the following syntax:

<probe id>:<absolute path to the start script>:<pyprobe.init call>

For example:

nova-compute:/usr/bin/nova-compute:pyprobe.init(config_dir="/opt/hpdiag/etc/
openstack", \
bin_dir="/opt/hpdiag/bin", config_file = "nova-compute.conf", \
point_file = "nova-general-controller.point")

In addition to setting up the instrumentation in the OpenStack start up scripts, the script hpdiag_
setup_openstack.py creates a configuration file for each component of OpenStack. It uses the
default configuration file probe.conf in /opt/hpdiag/etc as master and creates a copy for each
component. Each configuration file contains the hostname of the Diagnostics server (mediator) and

Python Agent Guide
Chapter 7: Available Out-of-the-box Configurations

HP Diagnostics (9.23) Page 38 of 42

the probe ID which will be displayed in Diagnostics' user interface. The hostname and the probe ID
are added to the component's configuration file automatically. The name of the configuration file is
<probe_id>.conf.

The instrumentation steps are:

1. Stop all OpenStack processes

For

Diablo go into /opt/hpdiag/etc/openstack-diablo

Essex go into /opt/hpdiag/etc/openstack-essex

2. Call hpdiag_setup_openstack.py to instrument the OpenStack components Swift, Nova,
Glance, Keystone, and the dashboard. The script creates various *.conf files for the various
Python probes that monitor OpenStack.

> hpdiag_setup_openstack.py -m <diagnostics_server_name> -i essex|diablo

When -m is omitted, then the hostnamewill be taken from the file
/opt/hpdiag/etc/probe.conf. Youmay edit this file to set the HP Diagnostics server name for
the OpenStack instrumentation.

3. Restart the OpenStack services.

For all Swift servers only one Python source file is modified:
/usr/share/pyshared/swift/common/wsgi.py. It is the central entry point for most Swift
processes. The inserted pyprobe.init function call looks as follows:

pyprobe.init(config_dir = "/opt/hpdiag/etc/openstack-essex",
config_file = "swift-" + log_name + ".conf",
point_file = "swift-" + log_name + ".point")

As you can see, the name of the *.conf and *.point files is built based on the log_name variable.
It must be "proxy-server", "account-server", "container-server", or "object-server" to match the
generated files from hpdiag_setup_openstack.py. To ensure this, check the swift config files
in /etc/swift. For example, the default log_name for the Swift proxy server in the Essex release
is "swift-proxy". This does not match the generated *.conf files. Thus, edit the file
/etc/swift/proxy-server.conf and change the value for log_name in the section [app:proxy-
server] to "proxy-server". Alternatively, you can also rename the generated Swift *.conf and
*.point files if you do not want to change the files in /etc/swift.

The original OpenStack scripts are preserved in /opt/hpdiag/backup. The instrumentation can
be removed with the command hpdiag_setup_openstack.py \-u essex\|diablo.

Python Agent Guide
Chapter 7: Available Out-of-the-box Configurations

HP Diagnostics (9.23) Page 39 of 42

Django and WSGI Instrumentation
The Python Agent provides configuration for the instrumentation of the Django andWSGI. The
provided point files can be used for that. The Django point file is:

django.point

This instruments a point in theWSGI handler, that provides the request information:

[DjangoWSGIHandlerInbound]
module = django.core.handlers.wsgi
class = WSGIHandler
method = __call__
layer = WSGIHandler
detail = inbound,before:code:django_wsgi_call_inbound

Setup of the Django Instrumentation

The DjangoWSGI script needs to be changed to instrument a Django application. The Python
Probe initialization needs to be done in that script.

Example Script:

import os, sys

---- Start of PyProbe section
Calculate the path based on the location of the WSGI script.
sys.path.append(os.path.dirname(__file__))
sys.path.append('<path_to_the_app>')

Instrument the application
from hpdiag import pyprobe
pyprobe.init(config_dir = '/opt/hpdiag/etc/mysite',

bin_dir = '/opt/hpdiag/bin',
config_file="probe.conf",
point_file="mysite.point")

---- End of PyProbe section

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Note: It is recommended to put the original start-up code into a try: / except: / finally: block
where the finally: executes pyprobe.shutdown(). This is not recommended forWSGI scripts
because theWSGI scripts are executed and terminated for every request. Calling
pyprobe.shutdown()would launch a new probe every time, which strongly reduces the
correlation and presentation quality in the HP Diagnostics UI.

Python Agent Guide
Chapter 7: Available Out-of-the-box Configurations

HP Diagnostics (9.23) Page 40 of 42

Chapter 8: Troubleshooting
l Reconnect/Reinitialize Event Channel After Server Reboot

In case the Diagnostics server has been rebooted or shut down for some reason the python
probe gets disconnected from the server. In this case everytime the probe wants to send data to
the server it tries to reconnect first. In order to avoid that reconnection attempts occur too often,
the probe only tries to reconnect to the server after a timeout. By default this timeout is set to 5
seconds. The value can bemodified in the configuration file. See "Configuring the Python Agent"
on page 21 for more information about this value. While the probe is disconnected from the
server all collected data will be deleted. After the server is running the probe gets reconnected
automatically and continues to send collected data. Themaximum time needed for a
reconnection after the server is up and running again, is the reconnection timeout mentioned
above.

l Rotating log files are known to result in errors on Windows.

The workaround is to set file size or the rotation interval in the probe.conf file to large values to
ensure that rotation never happens.

HP Diagnostics (9.23) Page 41 of 42

We appreciate your feedback!
If you have comments about this document, you can contact the documentation team by email. If
an email client is configured on this system, click the link above and an email window opens with
the following information in the subject line:

Feedback on Python Agent Guide (Diagnostics 9.23)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client,
and send your feedback to SW-doc@hp.com.

Python Agent Guide
We appreciate your feedback!

HP Diagnostics (9.23) Page 42 of 42

mailto:SW-doc@hp.com?subject=Feedback on Python Agent Guide (Diagnostics 9.23)

	Contents
	Welcome to This Guide
	Diagnostics Documentation

	Chapter 1: Introduction
	Diagnostics Python Agent Overview

	Chapter 2: Installing Python Agents
	Requirements for the Diagnostics Python Agent Host
	Overview of the Python Agent Installation
	Installing the Python Agent
	The probe_setup.py Script
	Directory Structure
	Removing the Python Agent

	Chapter 3: Instrumenting a Python Application
	Using the hpdiag_instrument.py Wrapper Script
	Instrument the Main Script of the Monitored Application
	Decorate the Functions and Classes of the Monitored Application
	In Code Creation of Capture Points
	Instrumenting a Single Script

	Chapter 4: Configuring the Python Agent
	Namespace [Mediator]
	Namespace [Logging]
	Namespace [Probe]
	Namespace [SystemMetricsCollector]
	Namespace [SystemMetrics]
	URI Truncation and Mapping
	URI Path Segment Trimming

	Chapter 5: The Points File
	Description of the Parameters in the Points File
	Including Points Files

	Chapter 6: Description of Custom Code
	The Purpose of Custom Code
	Custom Functions
	Returning HTTP Request Status Codes
	Cross VM Server Requests
	Argument Extraction

	Chapter 7: Available Out-of-the-box Configurations
	OpenStack Instrumentation
	Django and WSGI Instrumentation

	Chapter 8: Troubleshooting
	We appreciate your feedback!

