
HP Diagnostics
For the Windows operating system

Software Version: 9.23

.NET Agent Guide

Document Release Date: May 2014

Software Release Date: May 2014

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notice
© Copyright 2005 - 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Java is a registered trademark of Oracle and/or its affiliates.

Oracle® is a registered trademark of Oracle and/or its affiliates.

Acknowledgements
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see theOpen Source and Third-Party Software License Agreements document in the
Documentation directory on the product installationmedia.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go to: http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to: http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for details.

Support
Visit the HP Software Support Online web site at: http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage
your business. As a valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Diagnostics (9.23) Page 2 of 240

HP Software Solutions Now accesses the HPSW Solution and Integration Portal Web site. This site enables you to explore HP Product Solutions tomeet your
business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this Web site is
http://h20230.www2.hp.com/sc/solutions/index.jsp

.NET Agent Guide

HP Diagnostics (9.23) Page 3 of 240

Contents

Contents 4

Welcome to This Guide 9

How This Guide Is Organized 9

Diagnostics Documentation 10

Part 1: Introduction 12

Chapter 1: Diagnostics .NET Agent Overview 13

About the Diagnostics .NET Agent 13

Introducing Diagnostics Profiler for .NET 13

Features and Benefits of the Diagnostics .NET Profiler 14

Part 2: Installation and Configuration of the Diagnostics .NET Agent 15

Chapter 2: Preparing to Install the Diagnostics .NET Agent 16

Requirements for the Diagnostics .NET Agent Host 16

Requirements for the Diagnostics .NET Profiler UI 17

Planning the Installation 17

Chapter 3: Installing .NET Agents 19

Overview of the .NET Agent Installation 20

Accessing the .NET Agent Installer 21

Installing the .NET Agent 22

Post Install Tasks 39

Verifying the .NET Agent Installation 39

About Configuration of the .NET Agent for Diagnostics 40

About Configuration of the .NET Agent for TransactionVision 40

Discovery and Standard Instrumentation 42

Probe Aggregator Service 45

Monitoring NET Applications Deployed in Azure Cloud 46

Monitoring Applications on SharePoint with the .NET Agent 46

Determining the Version of the .NET Agent 48

Enabling and Disabling the Diagnostics Agent for .NET 49

Enabling and Disabling Standard Instrumentation for Applications 49

.NET Agent Guide

HP Diagnostics (9.23) Page 4 of 240

Troubleshooting .NETWeb Applications Not Discovered 51

Manually Adding an AppDomain Not Discovered 52

Other .NET Agent Troubleshooting Tips 55

Uninstalling the .NET Agent 56

Chapter 4: Upgrading the Diagnostics .NET Agent 57

Upgrade .NET Agents 57

Part 3: Advanced .NET Agent Configuration and Instrumentation 58

Chapter 5: Custom Instrumentation for .NET Applications 59

About Instrumentation and Capture Points Files 59

Locating the .NET Capture Points Files 60

Coding Points in the Capture Points File 60

Instrumentation Examples 65

Understanding the Overhead of Custom Instrumentation 82

Default Layers for Typical .NET Applications 83

Chapter 6: Understanding the .NET Agent Configuration File 85

Understanding .NET Agent Configuration File 85

.NET Agent Configuration Elements 86

<ali> element 86

<appdomain> element 87

<bufferpool> element 90

<captureexceptions> element 91

<clientmonitoring> element 92

<consumeridrules> element 93

<cputime> element 94

<credentials> element 95

<demomode> element 96

<depth> element 97

<diagnosticsserver> element 98

<exceptiontype> element 100

<exclude> element (when parent is captureexceptions) 101

<exclude> element (when parent is lwmd) 102

.NET Agent Guide

HP Diagnostics (9.23) Page 5 of 240

<excludeassembly> element 103

<filter> element 104

<filter> element 105

<gentvhttpeventforwcf> element 106

<htmlinstrumentation> element 107

<httpcaptureparams> element 108

<httpclient> element 110

<httpheaderrule> element 110

<httpheaderrules> element 112

<id> element 113

<include> element (when parent is captureexceptions) 115

<include> element (when parent is lwmd) 116

<instrumentation> element 117

<iprule> element 118

<iprules> element 119

<latency> element 120

<logging> element (when parent is appdomain, probeconfig, or process) 124

<lwmd> element 126

<mediator> element 127

<metrics> element 129

<metric> element 130

<modes> element 132

<param> element 135

<points> element 136

<probeconfig> element 137

<process> element 138

<profiler> element 140

<rum> element 142

<sample> element 144

<server> element 145

<soapcapture> element 146

.NET Agent Guide

HP Diagnostics (9.23) Page 6 of 240

<soappayload> element 147

<soaprequestforsoapfault> element 148

<soaprule> element 149

<soaprules> element 150

<sqlparsing> element 151

<stacktracesampling> element 152

<symbols> element 154

<timeskew> element 155

<topology> element 156

<transport> element 157

<trim> element 159

<tv> element 160

<uriautocollapsing> element 162

<urireplacepattern> element 164

<url> element 165

<vmware> element 166

<webserver> element 167

<ws> element 168

<xvm> element 169

Chapter 7: Advanced .NET Agent Configuration 170

Time Synchronization for .NET Agents Running on VMware 170

Customizing the Instrumentation for ASP.NET Applications 171

Discovering the Classes andMethods in an Application 175

ControllingWhich HP Software Products the Agent canWork With 177

Configuring Support for MSMQBasedCommunication 179

Configuring Latency Trimming and Throttling 179

Configuring Depth Trimming 182

Configuring URI Truncation andMapping 183

Capturing HTTP Server Requests Based onQuery Parameters 184

Configuring the .NET Agent for Lightweight Memory Diagnostics 186

Limiting Exception Stack Trace Data 188

.NET Agent Guide

HP Diagnostics (9.23) Page 7 of 240

Configuring Thread Stack Trace Sampling 190

Disabling Logging 192

Overriding the Default Probe Host Machine Name 192

Listing the Probes Running on a Host 193

Authentication and Authorization for .NET Profilers 194

Configuring Consumer IDs 195

Configuring SOAP Fault Data 199

Collecting Additional ProbeMetrics or Modifying ProbeMetrics 199

Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture 202

About the .NET SystemMetrics Agent 202

SystemMetrics Captured by Default 202

Configuring .NET SystemMetrics Capture 203

Adding SystemMetrics Using theWindows PerformanceMonitor 206

Default Entries in the .NET Agent metrics.config File 208

Keywords in themetrics.config File 208

Part 4: Using the Profiler for .NET 211

Chapter 9: Diagnostics Profiler for .NET 212

About the .NET Diagnostics Profiler 212

How the .NET Agent Provides Data for the .NET Profiler 213

.NET Diagnostics Profiler UI Navigation and Display Controls 214

.NET Diagnostics Profiler Inactivity Timeout 215

How to Access the .NET Diagnostics Profiler 215

How to Enable and Disable the .NET Diagnostics Profiler 216

Server Requests Tab Description 217

SQL Tab Description 220

Methods Tab Description 223

Call Tree Tab Description 225

Exceptions Tab Description 228

Collections Tab Description 231

Threads Window Description 234

We appreciate your feedback! 240

.NET Agent Guide

HP Diagnostics (9.23) Page 8 of 240

Welcome to This Guide
Welcome to the HP Diagnostics .NET Agent Guide. This guide describes how to install, configure
and use the Diagnostics .NET Agent and the Diagnostics Profiler for .NET.

The Diagnostics .NET Agent captures events such as method invocations, collection sites, and the
beginning and end of business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner,
Business Availability Center, and Performance Center and is an integrated part of HP Software's
application lifecycle solution which includes load testing, productionmonitoring, and trouble
diagnosis.

The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent. The
Diagnostics Profiler for .NET provides a way for .NET development teams tomonitor the
performance and diagnose issues with applications in the development environment. HP Software
makes this tool available at no cost, through an easy-to-install trial software download.

How This Guide Is Organized
This guide contains the following parts:

l "Introduction" on page 12

Provides a high level overview of the features, components, architecture, and outputs of the
Diagnostics .NET Agent and Diagnostics Profiler for .NET.

l "Installation and Configuration of the Diagnostics .NET Agent" on page 15

Describes how to install and configure the Diagnostics Agent.

l "Advanced .NET Agent Configuration and Instrumentation " on page 58

Describes advanced configuration of the .NET Agent.

l "Using the Profiler for .NET" on page 211

Describes the UI of the Diagnostics .NET Profiler, and how to use it.

HP Diagnostics (9.23) Page 9 of 240

Diagnostics Documentation
HP Diagnostics includes the following documentation:

Diagnostics User’s Guide and Online Help. Explains how to choose and interpret the
Diagnostics views in the Diagnostics Enterprise UI to analyze your monitored applications. To
access the online help for Diagnostics, chooseHelp > Help in the Diagnostics Enterprise UI. If
Diagnostics is integrated with another HP Software product the online help is also available through
that product's Helpmenu. The User’s Guide is a PDF version of the online help and their content is
identical. The User's Guide is available from the Diagnostics online help Home page, from the
Windows Start menu (Start > Programs > HP Diagnostics Server > User Guide), or from the
Diagnostics Server installation directory.

Diagnostics Server Installation and Administration Guide. Explains how to plan a Diagnostics
deployment, and how to install andmaintain a Diagnostics Server. This guide is in PDF format only.
TheGuide is available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

The following Agent guides contain content that supports agent installation, setup and
configuration.

l Diagnostics Java Agent Guide. Describes how to install, configure, and use the Diagnostics
Java Agent and the Diagnostics Profiler for Java. This guide is in PDF format only. TheGuide is
available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

l Diagnostics .NET Agent Guide. Describes how to install, configure, and use the Diagnostics
.NET Agent and Diagnostics Profiler for .NET. This guide is in PDF format only. TheGuide is
available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

l Diagnostics Python Agent Guide. Describes how to install, configure, and use the
Diagnostics Python Agent. This guide is in PDF format only. TheGuide is available from the
Profiler UI help or as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

Diagnostics Collector Guide. Explains how to install and configure a Diagnostics Collector. This
guide is in PDF format only. TheGuide is available as a download from the HP Software Product
Manuals site at http://h20230.www2.hp.com/selfsolve/manuals.

Diagnostics System Requirements and Support Matrixes Guide. Describes the system
requirements for the various Diagnostics components. This guide is in PDF format only. TheGuide
is available as a download from the HP Software Product Manuals site at
http://h20230.www2.hp.com/selfsolve/manuals.

Release Notes. Provides last-minute new information and known issues about each version of
Diagnostics. The file is located in the Diagnostics installation disk root directory or as a download
from the HP Software Product Manuals site at http://h20230.www2.hp.com/selfsolve/manuals.

.NET Agent Guide
Diagnostics Documentation

HP Diagnostics (9.23) Page 10 of 240

http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals

Diagnostics Data Model and Query API. Describes the Diagnostics datamodel and the query
API you can use to access the data. The guide is available from the Diagnostics online help Home
page.

Diagnostics Frequently Asked Questions (FAQ). Gives answers to frequently asked questions.
The FAQ is available from the Diagnostics online help Home page.

.NET Agent Guide
Diagnostics Documentation

HP Diagnostics (9.23) Page 11 of 240

Part 1: Introduction

HP Diagnostics (9.23) Page 12 of 240

Chapter 1: Diagnostics .NET Agent Overview
This chapter introduces the Diagnostics .NET Agent and the Diagnostics Profiler for .NET by
providing a high level overview of features and components.

This chapter includes:

l "About the Diagnostics .NET Agent" below

l "Introducing Diagnostics Profiler for .NET " below

l "Features and Benefits of the Diagnostics .NET Profiler" on the next page

About the Diagnostics .NET Agent
The Diagnostics .NET Agent is installed on themachine that hosts the application that you want to
monitor. Agent installation and setup automatically discovers and provides standard
instrumentation for the .NET AppDomains you choose tomonitor.

The agent captures events such as method invocations, collection sites, and the beginning and end
of business and server transactions.

The .NET Agent works with many of HP Software’s Diagnostics products such as LoadRunner,
Performance Center and BSM.

Introducing Diagnostics Profiler for .NET
The Diagnostics Profiler for .NET is installed as part of the Diagnostics .NET Agent.

The Diagnostics Profiler for .NET provides a way for .NET development teams tomonitor the
performance and diagnose issues with applications in the development environment. HP Software
makes this tool available at no cost, through an easy-to-install download.

The Diagnostics Profiler for .NET provides a strong foundation for collaborative diagnostics
because it has been built using the sameDiagnostics probe technology that is used in HP
Software's load testing and productionmonitoring products. When you use the Diagnostics .NET
Profiler in the development environment to profile applications and solve problems, you get a
glimpse of the features that are included in the Diagnostics Lifecycle Solution that enable you to
solve the toughest performance problems throughout the application’s lifecycle.

Because Diagnostics Profiler for .NET uses the same agent that other HP Software Diagnostics
products use, it is an integrated part of HP Software's application lifecycle solution which includes
load testing, productionmonitoring, and trouble diagnosis.

HP Diagnostics (9.23) Page 13 of 240

Features and Benefits of the Diagnostics .NET Profiler
The following table describes some of the features and benefits of the Diagnostics .NET Agent and
the Diagnostics Profiler for .NET:

Feature Description Benefit

Server Request Breakdown Identify where time is spent in an application

Layer Breakdown Identify the slowest layer

Slowest Server Requests Identify slowest server request or application entry points

Top 3 Slowest Instances Identify outliers to help diagnose intermittent problems

VM HeapUsage Identify memory problems and garbage collection issues

CollectionMemory Leak
Diagnostics

Identify the fastest growing and largest size collections
including the caller method that allocated the collection

Heap Breakdown including Class
and Size Information

Identify leaking objects, object growth trends, object
instance counts, and the byte size for objects

SQLDiagnostics

(Slowest SQL)

Identify the slowest SQL query and report query
information

Exception Diagnostics Identify exception counts which often go undetected

Snapshot Capture all the data displayed on all the tabs into a single
XML report that can be stored or transported for later
viewing and analysis.

.NET Agent Guide
Chapter 1: Diagnostics .NET Agent Overview

HP Diagnostics (9.23) Page 14 of 240

Part 2: Installation and Configuration of the
Diagnostics .NET Agent

HP Diagnostics (9.23) Page 15 of 240

Chapter 2: Preparing to Install the Diagnostics
.NET Agent

This chapter provides you with the information and instructions that will help you to plan and prepare
for the installation and configuration of the Diagnostics .NET Agent.

If you are installing the agent for use in HP Performance Anywhere environment please refer to the
HP Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for
installation instructions. This document is provided in HP Performance Anywhere UI for download
with the agent software.

This chapter includes:

l "Requirements for the Diagnostics .NET Agent Host" below

l "Requirements for the Diagnostics .NET Profiler UI" on the next page

l "Planning the Installation" on the next page

Requirements for the Diagnostics .NET Agent Host
For details of the Diagnostics .NET Agent host requirements, see "Requirements for the
Diagnostics .NET Agent Host" in the Diagnostics System Requirements and Support Matrixes
Guide located on the HP Software Support Online Product Manuals site. Access requires an HP
Passport login (register for an HP Passport).

HP Diagnostics (9.23) Page 16 of 240

http://support.openview.hp.com/selfsolve/document/KM00751367/binary/Diagnostics9.23_System_Requirements.pdf
http://h20229.www2.hp.com/passport-registration.html

Requirements for the Diagnostics .NET Profiler UI
For details of the Diagnostics .NET Profiler UI requirements, see "Requirements for the
Diagnostics .NET Profiler UI" in the Diagnostics System Requirements and Support Matrixes
Guide located on the HP Software Support Online Product Manuals site. Access requires an HP
Passport login (register for an HP Passport).

Planning the Installation
The .NET Agent is installed on the samemachine as the .NET application under test. The following
table is provided to help you gather the information that you will need during the installation of the
.NET Agent.

Diagnostics Server Information

Information Required Where to find it Value

Mode for installing the agent Choose according to product
license.

l Profiler only (no connection to
server)

l Used only with
LoadRunner/Performance
Center (AD license)

l Enterprisemode (AM license)
for use with one of the
following or both:

l Diagnostics

l TransactionVision

Diagnostics Server Name Fully qualified host name or
IP address of the host of the
Diagnostics Server.

System Health Monitor. (See
"Using System Views for
Administrators" in the HP
Diagnostics Server
Installation and
Administration Guide.)

This is not required for using
the .NET Diagnostics Profiler
in a standalonemode.

If there is only one Diagnostics
Server in the deployment where
the agent will run, this is the
Diagnostics Server in
Commander mode.

In a distributed environment with
a commander server and
mediator servers, this is the
Diagnostics Server in Mediator
mode that is to receive the
events from the agent.

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

HP Diagnostics (9.23) Page 17 of 240

http://support.openview.hp.com/selfsolve/document/KM00751367/binary/Diagnostics9.23_System_Requirements.pdf
http://h20229.www2.hp.com/passport-registration.html

Information Required Where to find it Value

Diagnostics Server Port System Health Monitor.

This is not required for using
the.NET Diagnostics Profiler
in a standalonemode.

Default value: 2612

Agent and Port Information

Information Required Where to find it Value

agent group This is user defined at the time
that the agent is installed.

The agent group name you
enter is used as the probe
group name

Probe groups are logical
groupings of probes that report
to the sameDiagnostics
Server.

Default value:

Default

WebPort Min System Administrator.

The lowest port number in a
range of ports on the agent
system that can be assigned
to the probe.

Default value: 35000

WebPort Max System Administrator.

The highest port number in a
range of ports on the agent
system that can be assigned
to the probe.

Default value: 35100

.NET Agent Guide
Chapter 2: Preparing to Install the Diagnostics .NET Agent

HP Diagnostics (9.23) Page 18 of 240

Chapter 3: Installing .NET Agents
This section describes how to install a .NET Agent and gives you information about the setup and
configuration of the .NET Agent.

If you are installing the agent for use in HP Performance Anywhere environment please refer to the
HP Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_QuickStart.pdf) for
installation instructions. This document is provided in HP Performance Anywhere UI for download
with the agent software.

This chapter includes:

l "Overview of the .NET Agent Installation" on the next page

l "Accessing the .NET Agent Installer" on page 21

l "Installing the .NET Agent" on page 22

l "Post Install Tasks" on page 39

l "Verifying the .NET Agent Installation" on page 39

l "About Configuration of the .NET Agent for Diagnostics" on page 40

l "About Configuration of the .NET Agent for TransactionVision" on page 40

l "Discovery and Standard Instrumentation" on page 42

l "Probe Aggregator Service" on page 45

l "Monitoring NET Applications Deployed in Azure Cloud" on page 46

l "Monitoring Applications on SharePoint with the .NET Agent" on page 46

l "Determining the Version of the .NET Agent" on page 48

l "Enabling and Disabling the Diagnostics Agent for .NET" on page 49

l "Enabling and Disabling Standard Instrumentation for Applications" on page 49

l "Troubleshooting .NETWeb Applications Not Discovered" on page 51

l "Manually Adding an AppDomain Not Discovered" on page 52

l "Other .NET Agent Troubleshooting Tips" on page 55

l "Uninstalling the .NET Agent" on page 56

HP Diagnostics (9.23) Page 19 of 240

Overview of the .NET Agent Installation
The .NET Agent software is installed on themachine hosting the application you want to monitor.
With the .NET Agent you instrument the application domains for monitoring.

See "Preparing to Install the Diagnostics .NET Agent" on page 16 for .NET Agent requirements.

The .NET Agent (version 9.x) requires .NET Framework 2.0 or later. The .NET Framework must be
installed on themachine before you run the .NET Agent installation.

Note: If you need to support .NET Framework 1.1, you will need to use an earlier version of the
.NET Agent (8.x).

WCF Requirements and Limitations:Monitoring .NETWindows Communication Foundation
(WCF) services requires .NET Framework 3.0 SP1 or greater. WCF bindings using the following
transports are supported:

l HTTP

l TCP

If your application uses a transport that is not supported, the .NET probe only creates a generic
server request for eachWCFmethod. It will not be aWeb Service and there will be no cross VM
correlation.

The HP Diagnostics/TransactionVision .NET Agent installer installs a .NET Agent to collect data
for either Diagnostics or TransactionVision or both.

The .NET Agent installer automatically detects the ASP.NET applications on the system where the
agent is installed. See "Discovery and Standard Instrumentation" on page 42

The installer configures the agent to capture basic workload and events for each of the ASP.NET
applications detected. The agent configuration is controlled using the probe_config.xml file. See
"Automatic Instrumentation and Configuration for Discovered ASP.NET Applications" on page 43.

The .NET agent uses points files to provide standard instrumentation to enable you to start
monitoring applications. The points files control the workload the agent captures for the application.
See "Custom Instrumentation for .NET Applications" on page 59. See "Enabling and Disabling
Standard Instrumentation for Applications" on page 49.

The following points files are installed and enabled to provide instrumentation for monitoring
ASP.NET applications:

l ASP.NET.points

l ADO.points

l WCF.points

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 20 of 240

The following points files can be used for instrumenting applications that use other Microsoft
technologies:

l Remoting.points (for .NET remoting environments)

l msmq.points (for MSMQ environments)

l LWMD.points (for analysis of memory used by collections in applications)

Separate instrumentation points files are created for each IIS installed ASP.NET application
domain detected and named <AppDomain>.points files). The probe_config.xml file contains an
<appdomain> element for each of the detected ASP.NET applications. And each <appdomain>
element contains an instrumentation points file reference. The .NET Agent uses this runtime
instrumentation to capturemethod latency information from specified applications.

Note: If there is a pre-existing installation of the .NET Agent on the host machine see
"Upgrade .NET Agents" on page 57 for important instructions on how to upgrade the agent
systems.

See "Accessing the .NET Agent Installer" below to begin.

Accessing the .NET Agent Installer
You can launch the .NET Agent installer a number of different ways. You can install the .NET Agent
from the Diagnostics installation disk or the BSM installation disk or from the Downloads page in
BSM. You can install the software from the SSOPortal. And if you want to install a trial version of
the HP Diagnostics Profiler for .NET you can launch the installer from the HP SoftwareWeb site
download center.

Note: If you are installing the agent for use in HP Performance Anywhere environment please
refer to theHP Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_
QuickStart.pdf) for installation instructions. This document is provided in HP Performance
Anywhere UI for download with the agent software.

To access the Installer from a Diagnostics installation location:

l From the Diagnostics Installation DVD (Autorun.exe) the installationmenu page is displayed.
From themenu, select Diagnostics Agent for .NET 32-bit to launch the install for the 32-bit
Windows version of the .NET agent. And select Diagnostics Agent for .NET 64-bit to launch the
install for the 64-bit version of the .NET agent.

l You could run the appropriate installer directly by locating the executable file
HPDiagTV.NETAgt_<release number>_win32.msi (32-bit) orHPDiagTV.NETAgt_<release
number>_win64.msi (64-bit) in the location you install from and copying the file to the new
installation location and then double-clicking it to run the installer.

Continue with "Installing the .NET Agent" on the next page.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 21 of 240

To download the installer from the HP Software Download Center:

1. Access the SSO portal at http://support.openview.hp.com/selfsolve using your HP Passport
login.

2. Locate the Diagnostics (or TransactionVision) downloads and choose the appropriate link for
downloading the Diagnostics .NET Agent software. Note that you could also use the download
center in order to get the Diagnostics .NET profiler trial/evaluation software.

3. Continue with "Installing the .NET Agent" below.

Follow the download instructions on the web site.

To download the Installer from BSM’s Diagnostics downloads page:

1. InBSM, either select Admin > Diagnostics from themainmenu and click theDownloads
tab. Or select Admin > Platform from themainmenu and click theSetup and Maintenance
tab.

2. On the Downloads page, click the appropriate link to download the .NET Agent installer for
either 32-bit Windows or 64-bit Windows.

Note: The .NET Agent installers are available in BSM if put into the required directory for BSM
to access. You can enable this during the installation of the Diagnostic Server, or you can copy
the .NET agent installers manually from the Diagnostics installation disk to the required
location.

Continue with "Installing the .NET Agent" below.

To launch the installer for HP Diagnostics Profiler for .NET trial software from the HP
Software Trial Software Download Web site:

1. Go to the HP SoftwareWeb site’s Download Center.

2. In theQuick Search section, in theProducts list, click Diagnostics and click Search.

3. Under Trial Software, select the appropriate link.

4. Follow the download instructions on the web site.

Continue with "Installing the .NET Agent" below.

Installing the .NET Agent
This section provides detailed instructions for a first time installation of the .NET Agent. If there is a
pre-existing installation of the .NET Agent on the host machine see "Upgrading the Diagnostics
.NET Agent" on page 57 for important instructions on how to upgrade the agent systems.

Note: If you are installing the agent for use in HP Performance Anywhere environment please

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 22 of 240

refer to theHP Diagnostics .NET Agent Quick Start Guide (Diagnostics_Dotnet_Agent_
QuickStart.pdf) for installation instructions. This document is provided in HP Performance
Anywhere UI for download with the agent software.

The .NET Agent installation process includes the following steps (select "Step 1. End user license
agreement" below to begin):

"Step 1. End user license agreement" below

"Step 2. Specify install location" below

"Step 3. Select installation options" on the next page

"Step 4. Specify RUM Integration Settings" on page 25

"Step 5. Select agent features to install" on page 27

"Step 6. Agent name and group" on page 27

"Step 7. Diagnostics server information" on page 29

"Step 8. Port and connection information" on page 31

"Step 9. Pre-install summary" on page 36

"Step 10. Additional Setup for Agents Working in an HP SaaS Environment" on page 36

"Step 11. Post Install Information" on page 38

"Step 12. Restart IIS" on page 38

Step 1. End user license agreement

Accept the end user license agreement.

Read the agreement and select I accept the terms of the License Agreement.

Click Next to proceed and continue to the next step.

Step 2. Specify install location

Provide the location where you want the Agent installed.

By default, the Agent is installed inC:\MercuryDiagnostics\.NET Probe. This location becomes
the <probe_install_dir>.

Accept the default directory or select a different location either by typing in a different path, or by
clickingBrowse to navigate to the installation directory.

Click Next to proceed and continue to the next step.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 23 of 240

Step 3. Select installation options

Indicate if the .NET Agent is to be installed as a standalone Profiler without any connection to a
server (for example if you are installing the Diagnostics .NET Profiler trial software), or if you are
installing the agent to work for LoadRunner/Performance Center or to work with a Diagnostics
and/or TransactionVision Server and/or RUM Client Monitor.

Make the selection that is appropriate for the environment where you will be using the agent.

Diagnostics Profiler Mode. Select this option to install the agent as a Diagnostics .NET Profiler
without any connection to a Diagnostics server. This is typically selected when installing the
Diagnostics .NET Profiler trial software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode option, the value of the probe_config.xml <modes>
element is set to promode at the time you install the .NET Agent (see "<modes> element" on page
132).

Diagnostics Mode for LoadRunner/Performance Center (AD License). Select this option to
install the agent for use with a Diagnostics Server in a load testing (or pre-production) environment
where probes are used only in LoadRunner or Performance Center runs.

The advantage of running a probe in AD mode is that probes in AD mode are only counted against
your HP Diagnostics AD license capacity when in a LoadRunner or Performance Center run. For
example if you have 20 probes installed in LoadRunner/Performance Center AD mode but only 5 in
a run, then only 5 are counted against your AD license capacity.

In ADmode the agent will ONLY capture data during a LoadRunner or Performance Center run and
the results will be stored in a specific Diagnostics database for that run, for example, Default

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 24 of 240

Client:21. When the agent is in AD mode it will not use resources or send any data to the server
unless the probe is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the probe_config.xml<modes> element is set to
admode at the time you install the .NET Agent (see "<modes> element" on page 132).

See the chapter "Licensing HP Diagnostics" in the HP Diagnostics Server Installation and
Administration Guide for more information.

Diagnostics Mode with SaaS-hosted mediator on HP premise (AM License). Select this
option to install the agent to work in a SaaS environment where the .NET agent will connect to an
HP SaaS server on-premise at HP. An HP SaaS administrator will provide you with information on
connecting the .NET agent to an HP SaaS hosted Diagnostics mediator server.

Application Management/Enterprise Mode (AM License). Select this option to install the agent
for use with a Diagnostics Server and/or a TransactionVision Server in an enterprise (or production)
environment and/or RUMClient Monitor.

Then indicate which of the following the agent will be configured for:

l A Diagnostics Server (installed locally)

l A TransactionVision server

See theHP TransactionVision Deployment Guide in the BSM documentation library for details
on setup options specific to TransactionVision.

l RUMClient Monitor

Enables the integration between Diagnostics and Real User Monitor (RUM).

With this option, the value of the probe_config.xml<modes> element is set to enterprisemode if
you select the Diagnostics Server and tvmode if you select the TransactionVision server at the
time you install the .NET Agent (see "<modes> element" on page 132).

For those agents with Enterprisemode set, the agent will be counted against your HP Diagnostics
AM license capacity.

Click Next to proceed and continue to the next step.

Step 4. Specify RUM Integration Settings

This step is skipped if the RUMClient Monitor check box is not selected in "Step 3. Select
installation options" on the previous page.

Enter the configuration information for the RUMClient Monitor JavaScript snippet.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 25 of 240

l RUM Client Monitor JavaScript file URL. Enter the full URL path to the source file containing
the RUMClient Monitor JavaScript. The default file name is clientmon.js.

Note: Copy the RUM JavaScript (clientmon.js) from the RUM installation package. Save it
on the .NET IIS Application Server in the root directory of the web application which is being
monitored.

l RUM Client Monitor Probe HTTP URL. Enter the URL of the RUM Browser Probe to which
themonitored client data is sent. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

l RUM Client Monitor Probe HTTPS URL. Enter the URL of the RUM Browser Probe to which
themonitored client data is sent, if using https. The format for the URL is:
<protocol>://<host>:<port>/hpclientmon/data

Click Next to proceed and continue to the next step.

Note: For details on the RUM-Diagnostics integration, including how to configure these
settings manually, refer to the RUM - Diagnostics Integration Guide located on the HP
Software Support Online Product Manuals site. Access requires an HP Passport login (register
for an HP Passport).

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 26 of 240

http://h20229.www2.hp.com/passport-registration.html

Step 5. Select agent features to install

Select the .NET Agent features you want to install.

Metrics Agent. It is recommended that you install theMetrics Agent which is checked by default.
But if you do NOT want to capture systemmetrics on the host machine you can uncheck the
Metrics Agent box. See "About the .NET SystemMetrics Agent" on page 202 for more
information.

Probe Aggregator. Optionally you can select to install the Probe Aggregator Service.

If you are installing the agent to work in an HP SaaS environment the Probe Aggregator box will be
checked for you since this option is required for SaaS and cannot be changed.

This Probe Aggregator service aggregates .NET Agent data to 5 second intervals before sending
the performance data to the Diagnostics mediator server. This can improve scalability by reducing
network communications with the server but the aggregator will also increase probe system
overhead.See "Probe Aggregator Service" on page 45 for more information on the performance
tradeoffs to installing the Probe Aggregator.

Disk Cost. To check the amount of available disk space on the drives of the host, click theDisk
Cost button. Use this functionality to make sure that there is enough room for the Agent installation.

Click Next to proceed and continue to the next step.

Step 6. Agent name and group

Skip this step if the agent won’t be reporting to a Diagnostics Server.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 27 of 240

Enter the Agent Name and Agent Group Name.

Agent Name. The name that identifies the agent within HP Diagnostics. If you leave this field
blank, the .NET Agent will auto-generate an agent name based on the application domain name of
themonitored application. The agent name is assigned as the probe entity name.

Note: It is recommended that you leaveAgent Name blank and allow the agent to auto-
generate the agent name. Read the following information carefully if you decide to enter your
own agent name.

Note that Diagnostics does not support localization of agent names.

Considerations when entering an agent name:

l Valid characters that can appear in the agent name are: letters, digits, dashes, underscores, and
periods.

l Assign an agent name that will help you recognize the application that is beingmonitored, and
the type of instrumentation.

For example, the agent name for the .NET Agent installed tomonitor the application named
PetWorld can be:

PetWorld_Dotnet_Agent

l When you specify an agent name, all of the agents on the host are forced to use the same agent
name.

The default agent name auto-generated by the agent when the agent name field is left blank is
equivalent to specifying $(APPDOMAIN).NET.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 28 of 240

To override the default name, use the following substitutionmacros to enhance the name at run
time:

n $(MACHINENAME):Machine’s host name

n $(APPDOMAIN): Application’s domain name

n $(PID): Application’s process ID

n $(WEBSITENAME): The IIS Web site under which the application is hosted.

n $(COMMANDLINE:n)Where n is the command line parameter number.

For example:

<id probeid=”ILTEST_$(COMMANDLINE:3)_rest” probegroup=”Default”/>

with a command line of iltest “heart and lung” -abc server results in a probeid of
ILTEST_server_rest.

Note that n=0 indicates the executable/command name.

Note: For applications that are not hosted in IIS the agent namewill be reverted to the default,
that is, $(APPDOMAIN).NET. An example of this would be console applications.

For newly installed IIS applications youmay need to runRescan ASP.NET Applications
from the HP Diagnostics .NET Agent program group in theWindows Start menu.

Agent Group Name:Enter a name for an existing group or for a new group to be created. The
default value for the agent group name is Default. The agent group name is case-sensitive. In
Diagnostics this name is used as the probe group name.

Probe groups are logical groupings of probes that report to the sameDiagnostics Server. The
performancemetrics for a probe group are tracked, and can be displayed onmany of the
Diagnostics views.

For example, you could assign all of the probes for a particular enterprise application to a single
probe group so that you canmonitor both the performance at the group level and the performance
based on individual probe entities.

Profiler Admin Password. Enter the admin user password used to connect to the .NET
Diagnostics Profiler. If left blank, the default password (admin) is set.

Click Next to proceed and continue to the next step.

Step 7. Diagnostics server information

Skip this step if the agent won’t be reporting to a Diagnostics Server or if you are installing the agent
to work in an HP SaaS environment. Your HP SaaS administrator will provide details for configuring
communication between the agent and the SaaS-hosted Diagnostics Server.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 29 of 240

Provide the information needed to enable the .NET Agent to communicate with the Diagnostics
Server in Mediator mode.

If you selected to install the Probe Aggregator Service, you will see the Probe Aggregator Data Port
instead of the Diagnostics Server Data Port and Probe Aggregator Metric Port instead of
Diagnostics Server Metric Port.

l In theDiagnostics Server (Name or IP address) box, type the host name or IP address of the
host for the Diagnostics Server in Mediator mode.

Specify the fully qualified host name, not just the simple host name. In amixedOS environment,
where UNIX is one of the systems, this is essential for proper network routing.

l In theDiagnostics Server Data Port box, type the port number where the Diagnostics Server
is listening for Agent communication. The default port number is 2612. If you changed the port
since the Diagnostics Server was installed, specify that port number here instead of using the
default.

If you selected to install the Probe Aggregator Service, you will see theProbe Aggregator Data
Port box instead of for the Diagnostics Server data port. Type in the port number where the
Diagnostics mediator server is listening for the Agent communication when probe aggregation is
installed. The default port number is 2626. If you changed the port since the Diagnostics Server
was installed, specify that port number instead of using the default.

l In theDiagnostics Server Metric Port box, type the port number where the Diagnostics Server
is listening for communications from the SystemMetrics Agent. The default port number is
2006. If you changed the port since the Diagnostics Server was installed, specify that port
number here instead of the default.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 30 of 240

If you selected to install the Probe Aggregator Service, you will see theProbe Aggregator
Metric Port box instead of for the Diagnostics Server metric port. Type in the port number where
the Diagnostics mediator server is listening for the Agent communication when probe
aggregation is installed. The default port number is 45000. If you changed the port since the
Diagnostics Server was installed, specify that port number instead of using the default.

l To perform a connectivity check tomake sure that the Diagnostics Server is running and
accessible from the installation host, click Test.

The connectivity check lets you know right away if youmade an error in the information you
provided about the Diagnostics Server in Mediator mode, or if there is a connection problem
between the Diagnostics Server’s host and the Agent’s host. If the connection to the
Diagnostics Server in Mediator mode host cannot be resolved, an error message is displayed.

Click Next to proceed and continue to the next step.

Step 8. Port and connection information

Youwill see different port and connection configuration dialogs depending on what install options
you selected. Select from the following and proceed with the configuration:

l Port connection information for Diagnostics Servers

l Port and connection information for TransactionVision Server

l Profiler mode with no connection to a Diagnostics or TransactionVision Server

If you are installing the Agent to work with a Diagnostics Server, you will see the following dialog
box.

Provide theWeb port range for the .NET Agent to use.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 31 of 240

l Minimum Web Port. Type the lowest port number, in a range of ports on the Agent host, you
want to assign to the Agent.

l Maximum Web Port. Type the highest port number, in a range of ports on the Agent host, you
want to assign to the Agent.

The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of theWeb Port Range are defined by theMinimum Web Port and
MaximumWeb Port fields. TheWeb Port Range contains the ports the Agent can use.

When an Agent is started, it attempts to find an unused port from within this range, starting from the
lowest port number in the range and working its way up to the highest. Ports within the range could
already be in use if another Agent or application previously claimed them.

Theminimum size for the port range is equal to themaximum number of Agents that will be
concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

l If the Agents are working with ASP.NET applications, double the number of ports to account for
ASP.NET’s AppDomain recycling.

l If you have a firewall between the Agent and a component that will be communicating with the
Agent, open the firewall for the ports within the range. Adjust the range to be just big enough.

Click Next to proceed and continue to the next step. If you also selected the option to have the
agent work in a TransactionVision Environment see the following section for additional
configuration.

If you are installing the Agent to work in a TransactionVision environment, you will see the following
dialog box.

If you selected to install the agent to work with a TransactionVision Server you will see additional
screens in the installation. See the TransactionVision Deployment Guide for information on using
the agent in a TransactionVision environment.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 32 of 240

The Configure the .NET Agent for TransactionVision dialog box appears.

Choose theMessagingMiddleware Provider. Options are: WebSphereMQ and SonicMQ.

SonicMQ is included with the .NET Agent. If you specify this option, the Sonic MQ .NET client
(Sonic.Client.dll - Progress SonicMQ .NET Client, version 7.6.0.112) is installed as part of the
Agent installation.

A third-party WebSphereMQ installation can be used instead. In this case, youmust install theMQ
series .NET client (amqmdnet.dll - WebSphereMQClasses for .NET, version 1.0.0.3) on the host
beingmonitored.

By default, SonicMQ is selected.

l For SonicMQ, enter the following:

Broker. Host name on which the Sonic broker is running. Typically this will be the Analyzer
hostname.

Port. The port on which the broker communicates. By default, 21111.

Configuration Queue. Name of the configuration queue. By default,
TVISION.CONFIGURATION.QUEUE.

User. User id if required by SonicMQ installation for connection. By default, no username is
required.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 33 of 240

Password. Password if required by SonicMQ installation for connection. This is in the
obfuscated form created by using thePassGen utility. By default, no password is required. For
more information about PassGen, see "Command-Line Utilities" in Using Transaction
Management.

l ForWebSphereMQ, enter the following:

Host. The host on which theWebSphereMQ queuemanager resides.

Port. Port number forWebSphereMQ queuemanager.

Configuration Queue. Name of the configuration queue.

User. User id if required by WebSphere installation for connection.

Password. Password if required by theWebSphereMQ installation for connection. This is in the
obfuscated form created by using the PassGen utility. For more information about PassGen,
see "Command-Line Utilities" in Using TransactionManagement.

Websphere MQ channel. Channel name forWebSphereMQ queuemanager.

Websphere MQ Q Manager. CCSID forWebSphere.

Click Next to proceed and continue to the next step.

If you are installing the Agent in Profiler mode, you will see the following dialog box:

Provide theWeb port range for the .NET Agent to use.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 34 of 240

Minimum Web Port. Type the lowest port number, in a range of ports on the Agent host, you want
to assign to the Agent.

Maximum Web Port. Type the highest port number, in a range of ports on the Agent host, you
want to assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of theWeb Port Range are defined by theMinimum Web Port and
MaximumWeb Port fields. TheWeb Port Range contains the ports that the Agent can use.

When an Agent is started, it attempts to find an unused port from within this range; starting from the
lowest port number in the range and working its way up to the highest. Ports within the range could
already be in use if another Agent or application previously claimed them.

Theminimum size for the port range is equal to themaximum number of Agents that will be
concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

l If the Agents are working with ASP.NET applications, it is recommended that you double the
number of ports to account for ASP.NET’sAppDomain recycling.

l If you have a firewall between the Agent and a component that will be communicating with the
Agent, youmust open the firewall for the ports within the range. For this reason youmight want
to adjust the range to be just big enough.

Click Next to proceed and continue to the next step.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 35 of 240

Step 9. Pre-install summary

The pre-installation summary screen opens. Click Back to make any changes. Click Install to start
the .NET Agent installation.

Note:When installing the agent for use as a Profiler only, there is no test for Metric Port
connectivity.

If you are installing the agent to work in an HP SaaS environment continue to Step 10 otherwise
skip the next step and continue to Step 11.

Step 10. Additional Setup for Agents Working in an HP SaaS Environment

If you are installing the agent to work in an HP SaaS environment then the SaaS Setupmodule
starts automatically or you can run the SaaS Setupmodule anytime by selectingStart > All
Programs > HP Diagnostics .NET Probe > SaaS Setup.

In the SaaS Setupmodule the following dialog is displayed. If you are not setting up the agent for an
HP SaaS environment then you will not see this dialog.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 36 of 240

l Diagnostics Server Connectivity. In an HP SaaS environment the Diagnostics Server is
setup by HP on a system on-premise at HP. The default port for a SaaS environment is 443. An
HP SaaS administrator will provide you with the information on the Diagnostics Server host

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 37 of 240

name and port to use.

l If a proxy server is used to communicate with the Diagnostics Mediator Server select Use
Proxy Server to connect to Diagnostics Server check box and enter the appropriate options.
In an HP SaaS environment if your company requires a proxy to communicate to outside servers
then you would select this option.

n Proxy Server Name. Host name of the proxy server.

n Proxy Server Port. Port of the proxy server.

n Proxy Server Username (optional). The user used to authenticate the proxy server.

n Proxy Server Password (optional). The password used to authenticate the proxy server.

Proxy Server Options:

l Probe Aggregator Admin password. The password is automatically set to the same
password as the .NET Profiler Admin password (entered in step 5), so for an initial agent setup
for SaaS you will not see this field. If you want to subsequently change the Probe Aggregator
Admin password, you can run the SaaS Setupmodule again and this field will be displayed.

Continue on to the next step to finish the installation.

Step 11. Post Install Information

On the final installation screen, you can select the Show theWindows Installer Log checkbox to
view the log file and check for errors.

Click Finish to exit the installer.

For information on post installation tasks see "Post Install Tasks" on the next page.

When you are ready youmust restart IIS, see the next step.

Step 12. Restart IIS

Restart IIS or theWeb publishing service to pick up the new agent configuration.

l To restart IIS from the command line or from theStart > Runmenu, type iisreset and press
Enter.

l To restart theWeb publishing service, use the Service Control Manager onWindows
(%windir%\system32\services.msc).

For Diagnostics these commands restart theWeb publishing service but do not immediately start
the.NET Agent. The next time that aWeb page in the application is requested, the agent is started,
the applications are instrumented, and the agent registers with the Diagnostics Server.

For TransactionVision these commands restart theWeb publishing service but does not
immediately start the .NET Agent. The next time that aWeb page in the application is requested,
the agent is started, the applications are instrumented, and the agent reads the Configuration
QueueMessages from the Analyzer.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 38 of 240

Note: ASP.NET automatically restarts applications under various circumstances, including
when it detects that applications are redeployed, or when applications exceed the configured
resource thresholds.

When ASP.NET restarts an application that is beingmonitored by a .NET Agent, the agent is
deactivated and a new agent is started. While this is occurring, there can be a period of overlap
where there aremultiple agents simultaneously registered with the Diagnostics Server in
Commander mode and connected to the Diagnostics Server in Mediator mode. This condition
could cause LoadRunner / Performance Center and BSM to report errors during the application
restart sequence.

Continue with the next section to learnmore about post installation tasks.

For information on verifying the installation see "Verifying the .NET Agent Installation" below.

Post Install Tasks
See the following topics for information about additional configuration for the .NET Agent:

l For information on how the .NET Agent automatically discovers applications and configures
standard instrumentation to allow monitoring see "Discovery and Standard Instrumentation" on
page 42.

l For information on configuring the .NET Agent for Diagnostics and for links tomore advanced
topics see "About Configuration of the .NET Agent for Diagnostics" on the next page.

l For information on configuring the .NET Agent for TransactionVision and to see the types of
events TransactionVision can trace with the .NET Agent see "About Configuration of the .NET
Agent for TransactionVision" on the next page.

l "Enabling and Disabling Standard Instrumentation for Applications" on page 49 for more
information.

l For information on configuration for environments with proxies see the HP Diagnostics
Installation and Configuration Guide chapter on Configuring Diagnostics Servers and Agents for
HTTP Proxy, or firewalls see the HP Diagnostics Installation and Configuration Guide chapter
on Configuring Diagnostics toWork in a Firewall Environment, and for enabling HTTPS see the
HP Diagnostics Installation and Configuration Guide chapter on Enabling HTTPS Between
Components.

Verifying the .NET Agent Installation
On the final installation screen you can select theShow the Windows Installer Log checkbox to
view the log file and check for errors.

Log files are created in <probe_install_dir>/log. A log file is created for each discovered
AppDomain.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 39 of 240

The .NET probe does not register with the Diagnostics Server until the probe is started. The probe
is started and registered with the Server when the instrumented application is run. For ASP.NET
applications this happens the first time a page is requested for the instrumented application.

Once a .NET probe is started you can launch the Diagnostics Enterprise UI to verify that the probe
is working. Access the System Health view to see details about each .NET probe and the
machines that host them. See "How to Access the Diagnostics UI" in the Diagnostics Help system
or the HP Diagnostics User’s Guide.

About Configuration of the .NET Agent for Diagnostics
You can customize the .NET Agent configuration and add custom instrumentation to suit your
environment and the performance issues you would like to diagnose.

The installer configures your ASP.NET applications and the .NET Agent to work together to capture
the basic workload of the applications. It is possible that one or more of your ASP.NET applications
was deployed in amanner that prevents the installer from detecting it. Or, youmight want to
enhance the standard instrumentation to capture the performancemetrics for the custom classes in
the application.

In Diagnostics, you can do additional configuration using the probe_config.xml file. For details on
this file see "Understanding the .NET Agent Configuration File " on page 85 For instructions on
advanced .NET Agent configuration, see "Advanced .NET Agent Configuration" on page 170

Also in Diagnostics, you can create custom instrumentation points to handle unique situations in
your application environment. For general information on custom instrumentation see "Custom
Instrumentation for .NET Applications" on page 59

About Configuration of the .NET Agent for
TransactionVision

When used with TransactionVision the .NET Agent captures events from .NET applications and
sends the events to the TransactionVision Analyzer. See theBSMDocumentation Library for more
information about TransactionVision.

.NET Agent Configuration for TransactionVision

The default configuration of the .NET Agent allows you to begin tracing certain .NET events in a
monitored application. You can customize the .NET Agent configuration to control what .NET
events are traced and sent to the TransactionVision Analyzer.

To override the default configuration, access the <agent_install_dir>/etc/ probe_config.xml file.
See "Understanding the .NET Agent Configuration File " on page 85 for details on the elements you
can configure for both Diagnostics and TransactionVision.

The <modes> element in the probe_config.xml file is set at installation for both Diagnostics and
TransactionVision (see "<modes> element" on page 132).

When you select to install the .NET Agent to work in a TransactionVision environment the
<modes> element in the probe_config.xml file is set to tv. When this is the only mode selected
the agent will work in a TV only mode where the Profiler and the Diagnostics probe is disabled and

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 40 of 240

only TV events are generated. When you select to install the .NET Agent to work in other modes
such as with Diagnostics then both TV events and Diagnostics data collection will be enabled.

In order to specify TransactionVision specific and TransactionVision transport specific
configuration the following elements in the probe_config.xml file are used exclusively for
TransactionVision:

l <tv> element (see "<tv> element" on page 160 for details)

l <timeskew> element (see "<timeskew> element" on page 155 for details)

l <transport> element (see "<transport> element" on page 157 for details)

l <gentvhttpeventforwcf> element (see "<httpheaderrule> element" on page 110 for details)

If the .NET Agent is using SonicMQ transport to communicate with the TransactionVision
Analyzer, SSL can be enabled. See theBSMHardening Guide for details.

Types of Events TransactionVision Can Trace with the .NET Agent

When used with TransactionVision the .NET Agent traces the following types of .NET events:

1. Web Services

a. ASP.NET (*.asmx) - Client and Server

To generate events, use theASP.NET.points file.

b. WCF (*.svc) - Client and Server

To generate events, use thewcf.points file.

c. REST style services - Server

To generate events, use thewcf.points file and set up the instrumentation of the
application as described in "ConfigureWCF REST Services for Monitoring" on page 71.

2. Database calls executed using ADO.NET

To generate events, use theADO.points file.

3. .NET Remoting - Client and Server

To generate .NET remoting events, use theRemoting.points file and setup the application for
instrumentation as described in "How to Configure Instrumentation for .NET Remoting" on
page 76.

4. MSMQ - Send and Receive (asynchronous)

To generate events, use theMsmq.points file.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 41 of 240

5. HTTP

a. Client outbound - includes calls to REST services

To generate events, use theASP.NET.points file.

b. ASP.NET inbound/server (POST, GET, PUT) (*.aspx)

To generate events for HTTP, useASP.NET.points file.

6. User defined events

Use the detail argument tv:user_event (see "Optional Point Entries" on page 62)

To turn off event generation remove the relevant points file from scope.

Enabling Correlation of .NET Events

The following .NET correlation rules are available by default in the BSM TransactionManagement
user interface and can be enabled from the Event Customization Rules page. For details about
correlation rules, see "Custom Correlation" in the BSM Application Administration Guide.

l .NETMSMQRule

l .NETRemotingRule

l .NETRule

l .NETWCFRule

SSL Configuration for TransactionVision .NET Agents

For TransctionVision if the .NET Agent is using SonicMQ for themessagingmiddleware, SSL can
be enabled. See “Configur the .NET Agent to Use SSL” in theHP TransactionVision Deployment
Guide for details. And see theBSMHardening Guide.

Discovery and Standard Instrumentation
The .NET Agent installer automatically discovers the ASP.NET applications youmight want to
instrument. After you install the .NET Agent, you can request that the agent rescan your IIS
configuration to catch any additions or changes.

Discovering ASP.NET Applications During Installation

The .NET Agent installer detects ASP.NET applications on themachine when the agent is
installed. The .NET Agent installer discovers applications by inspecting the IIS configuration and
looking for virtual directory entries that might refer to ASP.NET applications.

In some instances, the ASP.NET applications are installed in amanner that prevents them from
being detected. An example is when an ASP.NET application is installed as aWeb directory
instead of a virtual directory.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 42 of 240

Discovering ASP.NET Applications After Installation

You can request a rescan of the IIS configuration if youmodified an existing ASP.NET application
deployment or installed new ASP.NET applications.

To request that the agent rescan the IIS configuration and update the probe_config.xml file, select
Start > HP Diagnostics .NET Probe > Rescan ASP.NET Applications.

Automatic Instrumentation and Configuration for Discovered ASP.NET Applications

The .NET Agent installer configures the agent to capture basic ASP.NET/ADO/WCF workload for
each of the ASP.NET applications detected. The agent performs the following configuration steps:

l Creates an application-specific capture points file template.

The capture points file defines the instrumentation that controls the workload that the agent
captures for each application. You canmodify the instrumentation in the capture points file to
provide instructions that allow the agent to capture performance data for application-specific
custommethods. See "About Instrumentation and Capture Points Files" on page 59.

l Creates an <appdomain> tag in the probe_config.xml file, which is located in the <probe_
install_dir>/etc directory. The attributes of the <appdomain> tag direct the behavior of the
.NET Agent (points and enabled attributes). See "Understanding the .NET Agent Configuration
File " on page 85 for details.

Note: Diagnostics enables the instrumentation for all discovered applications by setting the
enablealldomains attribute in the process tag to "true", which overrides the appdomain tag’s
enabled attribute. For information on enabling and disabling instrumentation for applications
see "Disabling Logging" on page 192.

Population of BSM's RTSM

Diagnostics populates CIs andmodel relationships in the BSMRun-time ServiceModel (RTSM) for
application infrastructure elements and business transactions.

For CI population the .NET Agent installer automatically discovers the IIS configurationmetadata
for ASP.NET applications that are deployed under IIS versions 6.x or greater. The discovered IIS
configurationmetadata is written to the iis_discovery_data.xml file which is located in the
<probe_install_dir>\etc directory. After you have installed the .NET Agent, you can request that
the agent re-scan your IIS configuration to update for any additions or changes.

l Runtime Population CIs for IIS Deployed ASP.NET Applications

At runtime the .NET Agent queries the iis_discovery_data.xml file for IIS configuration
metadata associated with the instrumented AppDomain. If the associatedmetadata is found,
the agent forwards the data to its Diagnostic Server which populates the BSMRun-time Service
Model CIs for .NET Application. See integration with the BSMRun-time ServiceModel model
for .NET Applications.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 43 of 240

l Discovery of IIS Metadata of IIS Deployed ASP.NET Applications During Installation

The .NET Agent installer discovers IIS deployed ASP.NET applications on themachine when
the agent is installed. The .NET Agent installer discovers applications by querying theWMI
(WMEB) Provider for the IIS configurationmetadata. The pertinent metadata is written to the
iis_discovery_data.xml file.

l Discovery of IIS Metadata of IIS Deployed ASP.NET Applications After Installation

Youmust request a re-scan of the IIS configurationmetadata when you havemodified an
existing ASP.NET application deployment or installed new ASP.NET applications. To request
that the agent re-scan the IIS configuration and write a new iis_discovery_data.xml file, run
Start > HP Diagnostics .NET Probe > Rescan ASP.NET Applications shortcut. Note that
the new iis_discovery_data.xml file is not intended for editing by the user; any such user edits
will be overwritten by executing this shortcut.

l Privilege Requirements for Discovery of IIS Deployed ASP.NET Applications

The user must have Administrator privileges on themachine that the .NET Agent is installed on,
otherwise theWMI queries will fail and the iis_discovery_data.xml file will not be created.

l Debugging the Discovery of IIS Deployed ASP.NET Applications

If the iis_discovery_data.xml file is not created or there is any reason to suspect that some of
its metadatamay be inaccurate, you can enable the creation of a detailed debug file to examine
the results of theWMI queries. To enable the creation of a detailed debug file. change last
parameter of the Target Property for theStart > HP Diagnostics .NET Probe > Rescan
ASP.NET Applications shortcut from "false" to "true". When the Rescan ASP.NET
Applications shortcut is executed, an <probe_install_dir>/log/AutoDetect.log is created.
Note that you should have Administrator privileges when executing this shortcut. You can send
theAutoDetect.log to HP Support for analysis.

For information about setting up the integration with BSM, see the BSM-Diagnostics Integration
Guide.

Non ASP.NET Applications

The .NET Agent installation automatically discovers your ASP.NET applications, creates settings
for the applications in the probe_config.xml, and creates template points file for them. For each
non-ASP.NET application—for example, NT Service, console application, UI client—youmust
create the appropriate settings in the probe_config.xml settings to configure the .NET Agent to
monitor your applications as well as create points files indicating which points in your application
you want to monitor.

The following is an example of a probe_config.xml setting for an application called
SimpleConsoleHost.exe:

<process name="SimpleConsoleHost">
<points file="SimpleConsoleHost.points"/>

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 44 of 240

<logging level=" "/>
</process>

The following is an example of points file setting for an application called SimpleConsoleHost.exe:

[SimpleConsoleHost]
class = MyNamespace.SimpleConsoleHost
method = !.*
ignoreMethod = Main
layer = SimpleConsoleHost

See "Custom Instrumentation for .NET Applications" on page 59 for more details.

Probe Aggregator Service
The Probe Aggregator Service can optionally be installed as part of the .NET Agent installation. It
runs as aWindows Service, HP Probe Aggregator.

The Probe Aggregator Service aggregates probe data to 5 second intervals before sending the
performance data to the Diagnostics mediator server. This is useful when the volume of data
collected based on instrumentation of multiple applications is high and networking traffic would be
too great if not aggregated.

The basic .NET Agent installation, without the Probe Aggregator Service, results in performance
data being sent to the Diagnostics mediator server as method starts and stops occur.

There are performance trade-offs to using the Probe Aggregator Service. So youmust assess the
requirements in your environment. For example, consider using the probe aggregator when you

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 45 of 240

have two or more .NET probe instances running on the same system. Actual network overhead is
dependent on the applications beingmonitored, so you need to determine if the potential savings in
network bandwidth andmediator load offsets the increasedmemory usage on the application
system.

When you install the .NET Agent with the Probe Aggregator Service, this service runs
automatically and waits for connections from the .NET probes. Standard configuration of the probe
aggregator is done during the .NET Agent installation. The <probe_install_
dir>\ProbeAggregator\etc\probeaggregator.properties file is used to set configuration
parameters for the Probe Aggregator (for example, setting the SQL trending threshold).

If you decide, post installation, to install the Probe Aggregator Service you can run the .NET Agent
installation again, selecting theChange button. Then select the check box for installing theProbe
Aggregator Service.

Uninstalling the .NET Agent also removes the Probe Aggregator Service.

See "Enabling and Disabling the Diagnostics Agent for .NET" on page 49 for how to disable and
enable the Probe Aggregator Service.

Monitoring NET Applications Deployed in Azure Cloud
Microsoft provides Windows Azure SDK for developers to create and deploy Azure applications to
theMicrosoft Windows Azure Cloud Infrastructure. The Diagnostics .NET Agent leverages the
Azure SDK to provide seamless deployment of the .NET Agent into the Azure Infrastructure. Once
deployed the .NET Agent monitors applications running in the Azure Cloud, collecting performance
data and reporting to an HP Diagnostics Server for analysis and problem detection. See the
AzurePackReadMe.pdf in the .NET Agent AzurePack zip file for details on installing and
configuring the .NET Agent for monitoring applications in theWindows Azure Cloud.

Monitoring Applications on SharePoint with the
.NET Agent

SharePoint is a web application that runs on ASP.NET and therefore the .NET Agent monitors it
like any other ASP.NET-based web application. For instance, the .NET agent collects metrics that
allow you to see:

l Web services. All calls toWeb services that are serviced in themonitored SharePoint
environment, or any Web services that are called from within the SharePoint environment, are
captured.

l Server Requests. All incoming HTTP server requests to the SharePoint Server are captured.

l SQL statements. All outgoing database calls made in the SharePoint applications are captured.

You can perform additional configurations to further support monitoring of SharePoint by the
.NET Agent as described below.

Note that SharePoints sites with virtual directories of the same name (AppDomain name) are
distinguished by the full IIS path in the AppDomain\Probe Name and can be configured separately
in the probe_config.xml file.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 46 of 240

l Monitor SharePoint Web Parts with custom instrumentation by discovering points using the
Reflector.

See "Discovering the Classes andMethods in an Application" on page 175.

l Monitor the SharePoint SQL Server with a Diagnostics Collector. SharePoint Servers typically
use one or more instances of SQL Server databases to store configuration and data. Install and
configure a Collector to monitor each instance of these databases.

See the HP Diagnostics Collector Guide.

l Monitor SharePoint performance counters at the host level. By default, the NET systemmetrics
agent collects some Perfmon counters that are expected to be useful for SharePoint monitoring.
You can add additional Perfmon counters.

See "Adding SystemMetrics Using theWindows PerformanceMonitor" on page 206

l Monitor SharePoint performance counters at the probe level. Configure AppDomain-specific
metrics using the using the <metrics> and <metric> elements in the <probe_install_
dir>\etc\probe_config.xm. file.

See ".NET Agent Configuration Elements" on page 86.

l Distinguish different SharePoint team sites with similar URLs by specifying key arguments in
the <httpcaptureparams> element.

See ".NET Agent Configuration Elements" on page 86.

l Consolidate "layout" server requests in SharePoint by specifying the
<urireplacepattern> element. For example, this pattern specifies everything that is fetching
layouts gets into one server request:

<symbols>
<urireplacepattern enabled="true">

<pattern value="s#(?i)(^.*)(_layouts).*$#Layouts#" />
</urireplacepattern>

</symbols

This configuration is especially useful with newer versions of SharePoint, such as 2010 and
2013, where the default instrumentation results in numerous server requests.

For another example, this pattern consolidates all pages of the same name by stripping out the
path.

<symbols>

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 47 of 240

<urireplacepattern enabled="true">
<pattern value="s#(?i)(^.*)(?<word1>/.*\.(aspx|asmx|ashx)$)

#${word1}" />
</urireplacepattern>

</symbols>

This configuration changes two URIs such as these:

/div/20rpo/r3-r8_ops/4.101_afa/4.101.001_
listmap/blog/Lists/Links/AllItems.aspx

/About/Directorates/PublishingImages/Forms/AllItems.aspx

To this:

/AllItems.aspx

l Adjust or configure automatic URI collapsing as needed for your monitoring requirements by
using the <uriautocollapsing> element. By default, this feature is enabled.

See ".NET Agent Configuration Elements" on page 86.

l Use the $(MACHINENAME), $(COMMANDLINE:2), and $(WEBSITENAME)macros for probe
naming.

SharePoint web sites often have names that include numbers andGUIDs. Assignmore
meaningful names to the probes by usingmacros for the probe name. See "Considerations when
entering an agent name:" on page 28.

Collected performance data from SharePoint servers is displayed in theMicrosoft SharePoint
Server view group of the Diagnostics Enterprise UI. For details on the user interface, see the HP
Diagnostics User’s Guide.

Determining the Version of the .NET Agent
When you request support, it is useful to know the version of the Diagnostics components you
installed.

To determine the version of the .NET Agent:

l Right-click the file <Agent_install_dir>\bin\HP.Profiler.dll and select Properties from the
menu. In the Properties dialog, select the Version tab to display the component version
information.

or

l Use the System Health view in the Diagnostics UI.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 48 of 240

Enabling and Disabling the Diagnostics Agent for .NET
The .NET Agent is enabled when it is installed. After you restart yourWeb server and a URL in the
application is accessed, the .NET Agent begins to gather performance information.

You can disable the .NET Agent so that it does not start and does not gather performancemetrics.

To disable a .NET Agent:

Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET Probe.

To enable a .NET Agent that was disabled:

Select Start > All Programs > HP Diagnostics .NET Probe > Enable HP .NET Probe.

Note: Disabling the .NET Agent only disables the probemetrics collector and the active
probes. It does not disable the systemmetrics collector. The process of enabling or disabling
systemmetrics collection is controlled through the standardWindows services manager. The
effect of enabling or disabling probes only happens the next time the probed application
restarts. It has no affect on currently running applications.

Once the Probe Aggregator Service is installed and running, you can disable and enable it from the
Start Menu. Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET
Probe or Enable HP .NET Probe. Selecting Disable HP .NET Probe, in addition to disabling the
.NET probes will mark the Probe Aggregator Service as disabled, but not stop the service (in case
there are running probes remaining). Selecting Enable HP .NET Probe, in addition to enabling the
.NET probes will change the Probe Aggregator Service back to type automatic and start it if
needed.

Enabling and Disabling Standard Instrumentation for
Applications

When the .NET Agent is first installed, the standard ASP.NET/ADO instrumentation for all
discovered applications is enabled, but no application specific instrumentation is enabled. You
control which applications have their instrumentation enabled or disabled using the attributes of the
enablealldoamins attribute in the <process> element and attributes in the <appdomain> element in
the probe_config.xml file for the .NET Agent.

Disabling instrumentation for an application allows you to avoid the processing overhead and
distracting information in the Diagnostics views for applications that are not relevant to the
environment whose performance you want to monitor.

Enabling instrumentation for all application allows the .NET Agent to monitor the performance of all
detected applications so that you can see the performancemetrics for all of the applications in the
views of the Diagnostics and Profiler user interfaces.

These are the rules for the enablealldomains attribute of the <process> element:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 49 of 240

l enablealldomains = false : If there are no domains in the list of <appdomain> No domains should
be enabled.

l enablealldomains = false : If there are domains in the list of <appdomain> Domains should be
enabled if the "enable" attribute is set to true or not defined in the enable attribute of the
<appdomain>.

l enablealldomains = true : If there are domains in the list of <appdomain> Only Domains in the
list should be enabled disregarding their "enable" attribute.

l enablealldomains = true : If there are no domains in the list of <appdomain> All domains should
be enabled.

l enablealldomains attribute is not defined: same as if enablealldomains = true.

To enable or disable the instrumentation for an application:

1. Set the enablealldomains attribute in the <process> element to false. This allows the
attributes of each <appdomain> tag to control the state of the instrumentation for each
application. If there are no <appdomain> entries, no applications are enabled.

2. Set the enabled attribute in the <appdomain> element to true for each application where you
want to enable the instrumentation.

3. Set the enabled attribute in the <appdomain> element to false for each application that is to
have its instrumentation disabled.

The following example shows instrumentation enabled for one application and disabled for another.

<process name="ASP.NET" enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/myApplication" website=”Default Web Site” enabled=

"true">
<points file="DefaultWebsite-myApplication.points" />

</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site” enabl

ed="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

To enable the instrumentation for ALL applications:

Set the enablealldomains attribute in the <process> element to true. This overrides the settings
of the attributes in each <appdomain> element so that the instrumentation can be enabled without
having to set numerous attributes.

The following example shows instrumentation enabled for all applications:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 50 of 240

<process name="ASP.NET" enablealldomains="true">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/myApplication" website=”Default Web Site” enabled=

"false">
<points file="DefaultWebsite-myApplication.points"/>

</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site” enabl

ed="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

Troubleshooting .NET Web Applications Not Discovered
In aMicrosoft Windows 2003 server and IIS 6 environment, if your web site has a virtual directory
under a web folder .NET Agent may fail to discover the virtual directory. This is because of an issue
with theMicrosoft WMI provider used by Diagnostics to walk down the web site tree. TheWMI
provider does not properly recognize the web folder as an IIS web directory and so Diagnostics
can’t discover the virtual directory under the folder. See the example described below.

The example shows web folderWebFolderTest under the web site abc. Under this web folder there
is a virtual directory WebChain.

Because of an issue with theWMI provider, the listing inWMI for this web site would not show the
WebFolderTest/WebChain virtual directory. The .NET Agent uses the listing from theWMI provider
to discover web applications. So in situations like this, the .NET Agent may not be able to discover
virtual directories under a web folder.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 51 of 240

Microsoft recommends modifying themetabase directly or using a simple script like the following to
set the folder style using ADSI:

Set objRoot = GetObject("IIS://localhost/W3SVC/1/Root/WebFolderTest")
objRoot.KeyType = "IIsWebDirectory"
objRoot.SetInfo()

Instead of using a script you canmanually configure the web folder as an application in IIS. Once
this is done it can be reverted to a non-application but the property would now be set and
Diagnostics would be able to discover the web application.

Another option is to manually add the excluded APPDOMAIN in the ASP.NET AppDomain list in
the probe_config.xml file.

Manually Adding an AppDomain Not Discovered
If an AppDomain that you expected to be discovered by the .NET Agent was not discovered,
rescan the IIS configuration. If the application was added after the .NET Agent was installed it may
not have been discovered. See "Discovering ASP.NET Applications After Installation" on page 43
for details on rescanning.

If the AppDomain still does not appear, you canmanually add the AppDomain. Choose the option
below that suits your application.

l "Add all AppDomains Without Any Filtering" below

l "Add all AppDomains that Match a Specific Name in the Entire IIS configuration" on the next
page

l "Add a Specific AppDomain in the IIS Configuration" on page 54

After youmodify the configuration as described below, restart IIS or theWeb publishing service to
pick up the new agent configuration. See "Step 12. Restart IIS" on page 38.

Add all AppDomains Without Any Filtering
In the <agent_install_dir>/etc/ probe_config.xml file, locate the ASP.NET section and remove
any existing <appdomain> elements. Then add the following section:

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

</process>

All AppDomains are enabled.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 52 of 240

Add all AppDomains that Match a Specific Name in the
Entire IIS configuration

Assume that you havemultiple AppDomains of the same name, but in different web sites, to be
included. For example the "CallChain" AppDomain below:

Add the entry shown in bold to the <agent_install_dir>/etc/ probe_config.xml file :

<process enablealldomains="false" name="ASP.NET">
<logging level="" />

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 53 of 240

<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />
<appdomain enabled="true" name="CallChain">
<points file="CallChain.points" />

</appdomain>
</process>

All AppDomains of the same name are added, regardless of the web site in which they appear.

Add a Specific AppDomain in the IIS Configuration
Assume that you havemultiple AppDomains of the same name as described in the previous
example. To specify a particular AppDomain, specify the fully-qualified domain name as described
below. For example, add the following to the <agent_install_dir>/etc/ probe_config.xml file to
reference the CallChain AppDomain inWebSite2:

<process enablealldomains="false" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />
<appdomain enabled="true" name="2/ROOT/CallChain" website="WebSite2">
<points file="WebSite2-CallChain.points" />

</appdomain>

To get the fully-qualified AppDomain name, perform the following steps.

1. In the <probe_install_dir>\log directory, locate the log file name that has the name of the virtual
directory:

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 54 of 240

2. In the log file, locate an entry similar to the following:

2013.01.02.21.10.19.105 [0006] INFO AppDomain Capture disabled f
or appdomain(2/ROOT/CallChain) user(NT AUTHORITY\NETWORK SERVICE).

The highlighted name above is what should be used for the name value in the probe_
config.xml file.

Other .NET Agent Troubleshooting Tips
If you have problems getting the agent started properly here are some things to check:

l Make sure you restarted the web server and that a URL in the application was accessed, this
triggers the agent to begin collecting data.

l Check if a probe_config.xml file was created and is formatted correctly (that is, nomissing tag
closers, etc.). This can be done by opening the file in a web browser.

l Look for any message in theWindows Event Log named “HP Diagnostics”. This log is used

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 55 of 240

exclusively by the .NET Agent. There should be amessage for each attempt to instrument an
application.

l After installing the .NET agent, Microsoft SharePoint 2013may not function correctly. To fix this
you can apply the following workaround:

a. Open the SharePoint web.config file for editing. By default this file is located in
C:\inetpub\wwwroot\wss\VirtualDirectories\80.

b. Change the legacyCasModel setting from true to false, as follows:

<trust level="Full" originUrl="" legacyCasModel="false" />

c. Restart IIS by using either IIS Manager or the IISReset command-line utility.

You can track the issue related to this workaround at
http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-
would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-
net-3-5-sp-1.aspx.

Uninstalling the .NET Agent
To uninstall the .NET Agent:

1. Stop all Web applications that are using SOAP.

2. From theWindows Control Panel, select Add/Remove Programs and then select HP
Diagnostics/TransactionVision Agent for .NET to uninstall.

3. Restart theWeb applications.

To remove the Probe Aggregator Service you can uninstall the .NET Agent which will also
remove the Probe Aggregator Service. Or you can run the .NET Agent installation again,
selecting theChange button and then de-select the check box for installing theProbe
Aggregator Service.

.NET Agent Guide
Chapter 3: Installing .NET Agents

HP Diagnostics (9.23) Page 56 of 240

http://blogs.msdn.com/b/jaskis/archive/2010/01/05/intermittently-getting-loading-this-assembly-would-produce-a-different-grant-set-from-other-instances-exception-from-hresult-0x80131401-after-net-3-5-sp-1.aspx

Chapter 4: Upgrading the Diagnostics .NET Agent
This chapter presents the information you need to upgrade the Diagnostics .NET Agent.

This chapter includes:

l "Upgrade .NET Agents" below

Upgrade .NET Agents
Consider the following when planning the Diagnostics Agent upgrade:

l Youmust upgrade the Diagnostics Server before upgrading the .NET Agents that are connected
to it because Diagnostics Servers are not forward-compatible.

To upgrade a .NET Agent:

1. Install the new Diagnostics Agent for .NET (select Upgrade).

The upgrade will take effect when the probed applications are restarted.

To force the upgrade to take effect:

a. Shut down all applications that are beingmonitored by the current .NET Probe.

b. Restart IIS.

c. Restart the applications that were beingmonitored by the old probe.

See "Installing .NET Agents " on page 19 for additional information you need for installing a
.NET Agent.

2. You can verify that the upgraded Diagnostics Agent is running by checking the version in the
System Health view in the Diagnostics UI. The version should be the latest version if the
upgrade was successful. To access the System Health view youmust open the Diagnostics
UI as theMercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the Views pane
you can select the System Views view group.

HP Diagnostics (9.23) Page 57 of 240

Part 3: Advanced .NET Agent Configuration
and Instrumentation

HP Diagnostics (9.23) Page 58 of 240

Chapter 5: Custom Instrumentation for .NET
Applications

This section explains how to control the instrumentation that HP Diagnostics applies to the classes
andmethods of applications to enable the .NET Agent to gather the performancemetrics.

This chapter includes:

l "About Instrumentation and Capture Points Files" below

l "Locating the .NET Capture Points Files" on the next page

l "Coding Points in the Capture Points File" on the next page

l "Instrumentation Examples" on page 65

l "Understanding the Overhead of Custom Instrumentation" on page 82

l "Default Layers for Typical .NET Applications" on page 83

About Instrumentation and Capture Points Files
Instrumentation refers to bytecode that the probe inserts into the class files of the application as
they are loaded by the CLR. Instrumentation enables a probe tomeasure execution time, count
invocations, and catch exceptions; and to correlate method calls and threads. The instrumentation
points for each probe are specified in the capture points file.

The capture points file enables you to control the scope of the instrumentation so that Diagnostics
can give you all the information you need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The instrumentation definitions
contained in the capture points file are called points that tell the probe whichmethods to instrument,
how they should be instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so that they apply to more
than onemethod, class or namespace specification. For more information about using regular
expressions, see "Using Regular Expressions" in the HP Diagnostics User’s Guide.

You can customize the points in the capture point file to includemethods, classes, and
namespaces for areas of the application that do not fall within the default points.

TheMicrosoft specification for .NET does not include a unified or recommended interface that
business logic should implement except in the case of instrumentation for web andWCFmethods.
This means that the .NET probe will almost always require custom points in the capture points file
to enable it to gather meaningful metrics for the performance of the business logic classes and
methods in .NET applications.

The points in the capture points file are grouped into layers. Layers organize the performance
metrics into meaningful tiers of information that can be compared as part of a triage process and
control the collection behavior of the instrumentation.

HP Diagnostics (9.23) Page 59 of 240

The points in the capture points files are grouped into default layers. You can customize the default
layers and create new layers (see "Default Layers for Typical .NET Applications" on page 83).

Locating the .NET Capture Points Files
When you install the .NET Agent, predefined default capture points files are installed.

Default capture points files for ASP.NET applications are located at <probe_install_dir>\etc\ and
includeAsp.Net.points, Ado.points andWCF.points as well as other points files shown in the
table below.

In addition, the .NET Agent installer automatically creates a separate capture points file for each IIS
deployed ASP.NET Application Domain it detects. Youmust modify the automatically detected
and created points file to enable custom instrumentation points for the Application Domain. These
capture points files are located in the <probe_install_dir>\etc\<ApplicationDomain>.points file.
These points files and the default points files are read by the .NET Agent.

At installation, only theAsp.Net.points, Ado.points andWCF.points default points files are
enabled. The following default .NET points files are installed in the <probe_install_dir>/etc
directory but not enabled:

Default Point File (initially
disabled)

Instrumentation Target

Asp.Net.IExecutionStep.points IIS5, IIS6 and IIS7. This file makes the IIS points obsolete.

IIS.points IIS5 and IIS6

Lwmd.points Lightweight Memory Diagnostics

Msmq.points Microsoft MessageQueuing (MSMQ instrumentation)

Remoting.points .NET Remoting

WebServices.points ASP.NETWeb Services

You can enable the points files by adding a reference to them in the <points> element in the scope
of the AppDomain in the probe_config.xml file. See "Understanding the .NET Agent Configuration
File " on page 85 for details on each element in the probe_config.xml file.

For information on .NET probe instrumentation specific to TransactionVision, see theHP
TransactionVision Deployment Guide.

Coding Points in the Capture Points File
The following arguments can be used to define a point in the points files:

[Point-Name] =<unique name for the point>
;---
class = <class/package name/s to capture>
method = <method name/s to capture>

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 60 of 240

signature = <signature/s of method/s>
ignoreClass = <classes to ignore>
ignoreMethod= <method prototypes to ignore>
ignoreTree= <class hierarchy to ignore>
deep_mode= <soft or hard mode>
scope = <comma separated list of methods>
ignoreScope= <comma separated list of methods>
detail = <list of specifiers>
keyword = <keyword>
layer = <layer name>
layerType = <layer type>

Caution: Do not modify any of the default points files because, in an installation upgrade,
modifications are lost. Store your application-specific instrumentation points in a custom
capture points file.

All arguments that can be specified as a regular expression list have an effectivemaximum limit of
260 characters, which if exceeded results in a truncated value. The arguments are described in the
following sections.

Mandatory Point Arguments
Every point, except for the points for LWMD, HttpCorrelation, WSCorrelation andWCF, must
contain the following arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be instrumented. The
name should include the full namespace name using periods between
the namespace and class levels. Any valid regular expression can be
used.

method Specifies the name of themethod to be instrumented. To be
successful, themethod namemust match amethod defined in the
class or interface specified by the class argument. Any valid regular
expression can be used.

layer Specifies a layer, sublayer, or tier under which the data from this
point is grouped. Layers are a part of the instrumentation collection
control.

Layers in a point can be specified with nested layers or sublayers by
separating the layer names with a / (slash). The layer specified
following the slash is a sublayer of the layer specified before the
slash. A sublayer can have its own sublayers by coding another
slash and layer name following a sublayer name.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 61 of 240

The following is an example of a custom point that contains themandatory arguments:

[MyCustomEntry_1]
; comments here….
class = myNameSpace.myClass.MyFoo
method = myMethod
layer = myCustomStuff

Note: Regular expressions can be used for most of the arguments in a point. They must be
prefaced with an exclamation point. For more information about using regular expressions, see
"Using Regular Expressions" in the HP Diagnostics User’s Guide.

Optional Point Entries
Point definitions can contain one or more of the following arguments:

Argument Description

keyword Indicates special instrumentation. The keyword argument can be
used to enable specific features; for example, theWCF keyword
turns on theWCF feature. The keyword argument can also relate
point definitions to special functionality; an example of this is the
RemotingServer keyword and the Remoting.points file.

l HttpCorrelation. Turns on correlation of client/server method
calls via HTTP

l WsCorrelation. Turns on web service correlation logic on the
client side and turns on correlation of raw HTTP client request
calls across both the .NET and Java technologies.

l WCF. Turns on theWCF feature.

l REST. Turns on theWCF REST service instrumentation.

l lwmd. Turns on lwmd instrumentation.

l Remoting. Turns on .NET Remoting framework instrumentation.

l RemotingServer. Associates points in a .NET Remoting server
to special .NET Remoting logic for these points. See "How to
Configure Instrumentation for .NET Remoting" on page 76.

ignoreClass Specifies a comma-separated list of classes to ignore. Any class
matching one of the classes specified with ignoreClass is not
instrumented.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 62 of 240

Argument Description

ignoreMethod Specifies a comma-separated list of methods to ignore. Any method
matching one of themethods specified with ignoreMethod is not
instrumented.

ignoreTree Ignores instrumenting any method that is implemented on a class
that inherits from the specified class. Thus, an entire class hierarchy
tree of methods would be ignored.

deep_mode Specifies how subclasses are handled. This argument accepts three
values:

l none - A value of none is similar to not specifying a deep_mode
argument. It has no effect on how subclasses are handled.

l soft - A value of soft requests that, for every class or interface
matching the class, method, and signature entries, any
subclasses or subinterfaces that also implement thematching
method and signature should also be instrumented.

l hard - A value of hard requests that, for every class or interface
matching the class, method, and signature entries, any
subclasses or subinterfaces at any depth should have all their
methods instrumented. Hardmode is typically used for points for
interfaces. Caution:Hard"mode can lead to extensive
instrumentation and very high probe overhead.

scope Constrains the context in which instrumentation is performed. If
specified, the inserted bytecode is caller side. Any valid regular
expression can be used for the value of this argument. Scope values
are expressed as a comma-separated list of method names.

ignoreScope Excludes certain methods from those included in the scope specified
by the scope argument. Any valid regular expressionmay be used for
the value of this argument. ignoreScope values are expressed as a
comma-separated list of method names.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 63 of 240

Argument Description

detail Provides more specific capture instructions.

For the following the string that is returned is displayed in the
method's Argument field in the details pane of the Call Profile view. It
is a comma-separated list of the following:

l args:n – Captures all supported types of arguments for the
method(s) that match. A value of ‘n’ captures all arguments. Or
you can enter a value for n from 1 through 256.

l args:0 – Calls the ToString() on the current class instance or
callee object. This is invalid for static methods.

l *args:1 –Marks (*) the argument as a key argument for the server
requests if themethod is a top-level request.

The detail argument also takes the following value:

l tv:user_event - Generates a TransactionVision event for the
methods that match. As part of the TransactionVision event the
parameters to themethod are collected as the Request Payload
and the return value is collected as the Response Payload. The
values displayed are the ToString() values returned by the
parameters or the return value objects. Note that all parameters
and return values may not be collected.

Provides extensive support for transaction tracing by enabling
TransactionVision event generation from practically any given
method in any .NET application. You specify themethod on which
you want a TransactionVision event generated. It is highly
recommended that event generation is specified for onemethod at
a time to avoid toomany events and performance degradation in
TransactionVision. Avoid using wild card specifications (but they
are supported for convenience).

layerType Specifies special handling for some instrumentedmethods and
accepts these values:

l trended_method – Identifies methods to be displayed in the
TrendedMethods view.

l sql – Identifies methods used to capture SQL for the SQL views.
These are set by HP Diagnostics and should not bemodified.

signature Specifies the signature (return and parameter types); for example,
System.String(System.int32, System.String). Any valid regular
expression can be used.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 64 of 240

Instrumentation Examples
The following examples illustrate how you can customize the instrumentation of an application by
creating andmodifying the points in the capture points file.

This section includes:

l "Custom layer and sublayer" below

l "Wildcardmethod" below

l "Ignore SpecifiedMethods" on the next page

l "CaptureMethods for the TrendedMethods View" on the next page

l "Capture Only a Specific Method In a Class" on the next page

l "Capture a Specific Method That Returns a String" on page 67

l "Caller Side Instrumentation" on page 67

l "Argument Capture" on page 68

l "ConfigureWCF REST Services for Monitoring" on page 71

l "Deep_mode Examples" on page 72

l "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications" on page 73

l "How to Configure Instrumentation for .NET Remoting" on page 76

Custom layer and sublayer
The following point creates a custom sublayer called BAR within the layer called FOO for the
methodmyMethod inmyCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR

Wildcard method
The following point captures all methods in theMyCompany.MyFoo class:

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 65 of 240

layer = FOO/BAR

Ignore Specified Methods
The following point captures all methods in theMyCompany.MyFoo class except for themethods
setHomeInterface and getHomeInterface:

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo
method = !.*
ignoreMethod = setHomeInterface,getHomeInterface
layer = FOO/BAR

The following point captures all methods in theMyCompany namespace except for those contained
in theMyCompany.logging class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
ignoreClass = MyCompany.logging
layer = FOO/BAR

Capture Methods for the Trended Methods View
The following point captures the required data to populate the TrendedMethods View for the
myMethodmethod:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR
layertype = trended_method

Capture Only a Specific Method In a Class
The following point captures all non-static constructor methods for theMyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = .ctor
layer = FOO/BAR

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 66 of 240

The following point captures all static constructor methods for theMyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = .cctor
layer = FOO/BAR

The following point captures the setFoomethod in theMyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
layer = FOO/BAR

The following point captures all methods in theMyCompany.MyFoo class whose name includes
“set”:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !.*set.*
layer = FOO/BAR

The following point captures all methods in theMyCompany namespace:

[myCompany_All_Methods]
class = !myCompany\..*
method = !.*
layer = FOO/BAR

Capture a Specific Method That Returns a String
The following point captures the getFoomethod that returns a System.String in the
MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo
method = getFoo
signature = !System.String\(.*
layer = FOO/BAR

Caller Side Instrumentation
By default, all the instrumentation in Diagnostics is Callee side instrumentation where the bytecode
is placed within themethod call. Caller side instrumentation refers to the process of placing

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 67 of 240

bytecode for measurement around the call to themethod to be instrumented, instead of within the
method.

Caller side instrumentation allows for finer control of instrumentation placement, but can increase
the application initialization time because each class specified in the scopemust be checked for
references to the class/method specified in the points.

The scope and ignoreScope arguments are used to specify what caller should be instrumented. The
following two examples refer to Caller side instrumentation.

The following point captures all methods in theMyCompany namespace that are called from the
MyCompany.logging class.

[myCompany_All_Methods_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
layer = FOO/BAR

The ignoreScope argument is used to exclude certain classes andmethods from those included in
the scope specified in scope argument. The following point captures all methods in the
MyCompany namespace that are called from theMyCompany.logging class except for those called
from themyMethodmethod.

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
ignoreScope = MyCompany.logging.myMethod
layer = FOO/BAR

Argument Capture
The arguments to be captured are specified in the detail key of a points file section.

The following example calls the ToString() method of the n-th argument. The string that is returned
is displayed in themethod’s Argument field in the Call Profile view: detail=args:1,...args:4,
*args:3

There are several special values to note:

l args:n – Captures all supported types of arguments for themethod(s) that match. A value of ‘n’
captures all arguments. Or you can enter a value for n from 1 through 256.

l args:0 – Calls the ToString() method on the current class instance or callee object.

l Adding a * to the args element (*args:1) marks a key argument.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 68 of 240

To see the arguments for eachmethod call, do not specify a key argument. This is a way to get
more detailed information on the captured instance tree and could help answer questions about why
this instance is aMAX tree or what values were passed in when there was an exception.

To group server requests for amethod by arguments, specify a key argument. The key arguments,
aggregate server requests with distinct values. Arguments that have a large number of distinct
values are not good candidates for key arguments because this will lead to unique server requests
for every distinct value.

Note: Even if you have not specified argument capture, arguments are captured when a
method in the call tree throws an exception. These arguments are displayed in the Call Profile
view, in the Stack Trace section of the Exceptions detail pages. See the Call Profile View
online help for more details.

The following argument capture example relates to the code shown below:

[ILTest]
class = !ILTest_NameSpace.ILTest_Class
method = methodWithParams
detail = args:0, *args:3, args:5, args:7
layer = myFunctionLayer

Here is the relevant code example:

class ILTest_Class
{
public bool methodWithParams
(string param1, int param2, string QnameParam3, long param4, object param5,
int
param6, double param7)
{
... some implementation
}
}
In this example the defined detail will capture ILTest_Class.ToString(args:0)
param1, QnameParam3, param5 and
param7.

The value of QnameParam3will be part of the identity of the server request if the top level method is
methodWithParams.

When an argument to be captured is marked as a key argument (with an asterisk *) and themethod
is a top-level method, the argument value becomes part of the Server Request identity.

For example, if Shipping Type is a parameter of amethod processing different shipments and you
specify the Shipping Type argument as a key argument, you will be able to see aggregated views
for each different shipment (apples and oranges) being processed by themethod.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 69 of 240

When you specify a key argument, the Call Profile view shows key arguments in the Arguments
field in the Details pane. You will also see the arguments displayed under Method Arguments in the
Details pane.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 70 of 240

When arguments to be captured are NOTmarked as key arguments (with no asterisk *), they are
displayed in the Call Profile view under Method Arguments only.

Configure WCF REST Services for Monitoring
For a .NET ProbeWCF REST services aremonitored by default based on the keyword=REST
value enabled out-of-the-box in theWCF.points file. These REST services will bemonitored as
web services and their performance data displayed in the Diagnostics UI SOA Services views.

You can further configure REST services as described in the sections below.

REST Service Configuration

InWCF REST style services sometimes the operations are encoded as url parameters. For
example:

HTTP Method: PUT Url: http://localhost:81/RestNOSvc/AccountsRESTService/{ID
}?op={OPERATION} op can be "deposit" or "withdrawal"

To be able to distinguish operations in these types of services you can specify the operation
parameters of the REST servicemethod as a key argument to allow it to be displayed as a
separate operation. See "Argument Capture" on page 68 for a general description of argument
capture.

For example, for themethod

[WebInvoke(UriTemplate = "{id}?op={operation}", Method = "PUT")]
public TransactionResult Update(string id, string operation, long Amount)

The operation is the key argument and can be specified in the points file as:

[WebSite2-RestNOSvc]
class = !HP.Test.WcfRestService.*
method = Update
detail = *args:2
layer = WebSite2-RestNOSvc

The SOA Services Operations view example below shows the results of this configuration with
separate operations shown in the table.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 71 of 240

REST Client Configuration

The REST service client is the same as an HTTP client call and cannot be distinguished. So for
monitoring .NET applications that are REST service clients, the configuration option <httpclient
showurl=”false”/> should be set in the probe_config.xml file to avoid a large number of outbound
calls and possible symbol table explosion. The number of calls is due to unique urls accessed by
the client, often with ids encoded in the urls.

For example:

/RestNOSvc/AccountsRESTService/8FFD2F34-E334-4E1E-A940-50FCCCACE1D1

where the Guid represents different account ids.

Deep_mode Examples
The following interface definition is used for both soft and hard deep_mode examples:

public interface Interface1 {

public void callerMethod();

}

The following class is used for both soft and hard deep_mode examples:

public class Class1 implements Interface1 {
public void callerMethod(){
calleeMethod();
calleeMethod2();

}

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 72 of 240

public void calleeMethod(){
Console.WriteLine("hello world");
//more code lines here…

}

public void calleeMethod2(){
Console.WriteLine("hello world 2");

}
}

The following point captures the callerMethod in the Class1 class:

[Training-1]
class = Interface1
method = !.*
deep_mode = soft
layer = Training

The following point captures all methods in Class 1; that is, callerMethod, calleeMethod1, and
calleeMethod2:

[Training-1]
class = Interface1
method = !.*
deep_mode = hard
layer = Training

How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications

This section explains how to configure both the probe_config.xml file and custom points files that
enable instrumentation for Non-ASP.NET orWindows applications. Instrumentation forWindows
Services, console applications, Windows Forms applications, andWPF applications are
consideredWindows applications and are referred to as such.

Windows Application Design

The critical point to consider when contemplating how to configure aWindows application you want
to monitor is that the .NET probe is designed tomonitor long running processes. Therefore, if your
Windows application is designed to run for a few seconds and then exit, you will probably not be
able to see any data for that run. When theWindows application exits quickly, the AppDomain is
shut down and the probe is shut down before it can establish andmaintain communication with a
Diagnostics Server or the Diagnostics .NET Profiler.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 73 of 240

The following simpleWindows application illustrates a number of crucial concepts to be considered
when configuring the instrumentation for aWindows application.

namespace Hello_dotNet_nameSpace
{

class someclass
{

static void Main(string[] args)
{
// do something
// read form commandline then exit
clReader myClReader = new clReader();
String cl;
cl = myClReader.readCl();
}

}
// Command Line Reader
public class clReader
{

public String clread;
public String readCl()
{

System.Console.WriteLine("Continue?");
clread = Console.ReadLine();
return clread;

}
}

}

The Hello_dotNet.exeWindows application has Main() that calls amethod, waits for the user to
enter something on the command line, and then exits. Until the application exits, the probe is
active.

Creating the Hello_dotNet.points File

In the <probe_install_dir>\bin folder there is aReflector.exe command line utility you can run
against the Hello_dotNet.exeWindows application to obtain a suggested points file. See
"Discovering the Classes andMethods in an Application" on page 175 for more information on the
reflector utility.

When both the Reflector.exe and the Hello_dotNet.exe application are in the same folder, you
would the following command:

Reflector.exe Hello_dotNet.exe

The output is sent to stdout. Among other information you will see the following suggested Hello_
dotNet.points:

--

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 74 of 240

Sample .points by Namespace
--
[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
layer = Hello_dotNet_nameSpace

The suggested points can be used as is, except when theWindows application has amethod like
Main(); that is, a method that, if instrumented, does not return an exit until the application exits. In
this case, themethod spans the lifetime of the application so nothing would be reported until the
application exits. Since the probe will be unloaded when the application exits, you will probably not
get any data from the instrumentation point.

To fix this situation, construct a points file so that theMain() method, or any method like it, is not
instrumented. The following Hello_dotNet.points file shows how to do this. It assumes that Main()
is implemented in someclass.

Hello_dotNet.points:

[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
ignoreClass = Hello_dotNet_nameSpace.someclass
layer = Hello_dotNet_nameSpace

[ignore]
class = Hello_dotNet_nameSpace.someclass
ignoreMethod = Main
layer = Hello_dotNet_nameSpace

The crucial aspect of this type of points file is shown in bold. The [ignore] section instruments other
methods in Hello_dotNet_nameSpace.someclass if there are any while ignoring theMain() method.

Configuring the Windows Application for Instrumentation

To configure the .NET probe to instrument the Hello_dotNet.exeWindows application, add the
following XML to the probe_config.xml file. You can add it to the bottom of the file just above the
</probeconfig> entry.

<process name="Hello_dotNet">
<points file="Hello_dotNet.points" />
<instrumentation>

<logging level="" />
</instrumentation>
<logging level="" />

</process>

Note: Youmust place yourHello_dotNet.points file in the <probe_install_dir>\etc folder
before youmake the above changes to the probe_config.xml file.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 75 of 240

The only required child element is the points file. The instrumentation, logging, andmodes are
optional. The following instrumentation setting can be useful when diagnosing whichmethods are or
are not being instrumented:

<instrumentation>
<logging level="points ilasm" />

</instrumentation>

How to Configure Instrumentation for .NET Remoting
You can configure the .NET probe to add custom instrumentation that supports the instrumentation
of .NET Remoting Client and Server applications. Supported configurations are:

l Both HTTP and TCP bindings

l Both Binary and SOAP Formatting

Configuration

By default, the .NET probe is not enabled to instrument Remoting applications. Youmust add
custom instrumentation points for both the Client and Server applications.

Two instrumentation keywords are related to Remoting:

Remoting. The Remoting keyword enables instrumentation for various points in the Remoting
Framework.

RemotingServer. The RemotingServer keyword identifies the class that implements the Remoting
Methods and isolates the instrumentation of themethods on that class from unintended
instrumentation of other similar methods.

Client Example

The following very simpleWindows application example illustrates a number of crucial concepts
themust be considered when configuring the instrumentation for a Remoting Client Application.

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

class SimpleConsoleClient
{

[STAThread]
static void Main(string[] args)
{

const string msg1 = "How are you?";
String filename = AppDomain.CurrentDomain.SetupInformation.Configurati

onFile;
RemotingConfiguration.Configure(filename, false);
MyRemotableObject remoteObject = new MyRemotableObject();
doit(remoteObject, myMsg);

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 76 of 240

Console.WriteLine();
Console.WriteLine("(Press any key to exit)");
Console.ReadKey();

}
public static void doit(MyRemotableObject obj, String message)
{

Console.WriteLine(obj.GetEnlightenment(message));
}

}

As described in "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications"
on page 73, you can use the Reflector utility to help determine how to configure the Remoting Client
points file.

To configure the probe to instrument the SimpleConsoleClient RemotingWindows application, add
the following XML to the probe_config.xml file:

<process name="SimpleConsoleClient">
<points file="Remoting.points" />
<points file="SimpleConsoleClient.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level="" />

</process>

Youmust add the <points file="Remoting.points" /> entry.

If you are in the directory that holds the SimpleConsoleClient.exe and the Reflector.exe is in the
PATH, you can execute the Reflector on the command line to view an implementation
decomposition of the SimpleConsoleClient.exe and suggested point file settings:

Reflector SimpleConsoleClient.exe

The output of this commandwill contain the following:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient (8
Methods)
Equals System.Boolean(System.Object)
Finalize System.Void()

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 77 of 240

GetHashCode System.Int32()
GetType System.Type()
doit (method signature information unavailable))
Main System.Void(System.String[])
MemberwiseClone System.Object()
ToString System.String()

The suggested SimpleConsoleClient.points are:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

These settings, however, would not create instrumentation that would produce any data. The
reason, as discussed in "How to Configure and Set Up Points for Non-ASP.NET orWindows
Applications" on page 73, is that youmust ignoremethods likeMain(). If you factor in the need to
ignoreMain(), you would be left with the following possible points file settings:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
ignoreMethod = Main
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Although these settings might be useful and would produce data, you shouldmake themmore
precise. This is primarily due to probe performance. Themoremethods that are instrumented, the
greater will be the probe's performance hit on the instrumented application. For example, if you can
remove the wildcards "!.*" from the settings, the scope of your settings become explicit.

Notice from the Reflector output that there is actually only a single implemented class:

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

You can remove the wildcards from the class setting as follows:

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

Notice also, that the Reflector output does not contain amethod setting. The default meaning of no
method setting is that all methods are instrumented. Sincemost the followingmethods are only
present because they are inherited from System.Object, it is unlikely that you really want to
instrument thesemethods: Equals, Finalize, GetHashCode, GetType, MemberwiseClone,
ToString. However, it is likely that you would want to instrument the doitmethod because it
wraps the Remoting client call.

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 78 of 240

The following settings are recommended for the SimpleConsoleClient.points file:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
method = doit
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Server Example

The followingWindows application example illustrates a number of crucial concepts themust be
considered when configuring the instrumentation for a Remoting Server Application:

C# code snippets are shown for both the Remotable Object, which is shared between the Remoting
Client and Server, and the SimpleConsoleServer.exe Remoting Server Application.

Here is the C# code snippet for the Remotable Object:

HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

public class MyRemotableObject : MarshalByRefObject
{

const string response = "I'm just fine!";

public MyRemotableObject()
{
}
public String GetEnlightenment(string message)
{

return response;
}

}
}

Here is the C# code snippet for the SimpleConsoleServer.exe:

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

class SimpleConsoleServer
{

[STAThread]
static void Main(string[] args)
{

String filename = AppDomain.CurrentDomain.SetupInformation.Configurati
onFile;

RemotingConfiguration.Configure(filename, false);

Console.WriteLine("Server is running... press any key to exit");
Console.ReadKey();

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 79 of 240

}
}

}

To configure the probe to instrument the SimpleConsoleServer RemotingWIndows application, add
the following XML to the probe_config.xml file:

<process name="SimpleConsoleServer">
<points file="SimpleConsoleServer.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level="" />

</process>

You are not required to add the <points file="Remoting.points" /> entry.

Point files for the Remoting Server can have one or more sections. The first section relates to the
Remotable Object and is a required section. A second section that relates to the Remoting Server
instrumentation can be added. Other optional sections can also be added to instrument other
methods that can be called by either the Remotingmethods or the Remoting Server. Wewill
construct the Remotable Object section first.

The Remotable Object will reside in some assembly. Wewill assume it is in the
RemotableObjects.dll.

When you run the Reflector against the RemotableObjects.dll, you see output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject (17
Methods)
__RaceSetServerIdentity System.Runtime.Remoting.ServerIden…)
__ResetServerIdentity System.Void()
CanCastToXmlType System.Boolean(System.String,System…)
CreateObjRef System.Runtime.Remoting.ObjRef(Syste…)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetComIUnknown System.IntPtr(System.Boolean)
GetEnlightenment System.String(System.String)
GetHashCode System.Int32()

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 80 of 240

GetLifetimeService System.Object()
GetType System.Type()
InitializeLifetimeService System.Object()
InvokeMember System.Object(System.String,System…)
IsInstanceOfType System.Boolean(System.Type)
MemberwiseClone System.MarshalByRefObject(System…)
MemberwiseClone System.Object()
ToString System.String()

As with the Remoting Client example, you cannot just use the suggested point settings. Youmust
be certain that you identified the class that implements the Remotable Object. You do this by
observing that the Remotable Object is required to inherit from System.MarshalByRefObject and
thereforemust have the followingmethods on it: CreateObjRef, GetLifetimeService,
InitializeLifetimeService, MemberwiseClone. From the Reflector output above, you can see
that the HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject class is an
obvious candidate for the class that implements the Remotable Object.

The Remotable Object sectionmust include the keyword = RemotingServer entry. This entry
indicates that the probe's Instrumenter should perform special processing for the point settings in
this section. This special processing accomplishes two things. It instruments all methods on a
class that inherits from System.MarshalByRefObject. Therefore, you need not specify which
Remotingmethods to instrument. All Remotingmethods will be instrumented. This is also why
there is no need for amethod entry in this section. Second, this keyword isolates the
instrumentation of methods that are implemented on a class that inherits from
System.MarshalByRefObject to the specified class. This is important because there aremany
System classes and user classes that also inherit from System.MarshalByRefObject and you do
not want to unintentionally instrument them.

Based on these observations, here is the recommended Remotable Object section:

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

Now you can construct the optional Remoting Server section. You only need to create this section
if you want to monitor the Server logic that is invoked independent of the Remotingmethods.

When you run the Reflector against the SimpleConsoleServer.exe, you will see output that
includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 81 of 240

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer (7
Methods)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetHashCode System.Int32()
GetType System.Type()
Main System.Void(System.String[])
MemberwiseClone System.Object()
ToString System.String()

As explained in "How to Configure and Set Up Points for Non-ASP.NET orWindows Applications"
on page 73, you cannot just use the suggested points settings. Youmust ignore theMain() method.

Based on these observations, the following settings are the recommended settings for the
SimpleConsoleServer.points file:

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

[RemotingServer]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer
ignoreMethod = Main
layer = RemotingServer

Finally, you can add other optional sections to instrument other methods that can be called by either
the Remotingmethods or the Remoting Server.

Understanding the Overhead of Custom
Instrumentation

When creating custom instrumentation, beware of over-instrumenting the application because that
can introduce excessive latency into the probed application. The custom instrumentation does not
have the same impact on themethod latency or the CPU overhead because the overhead of
instrumentation is nearly fixed for every method because the amount of bytecode is almost always
the same. The physical percentages of the CPU and latency overhead will vary in direct proportion
to the length of time themethod takes to execute.

For example, if a method takes 100ms and instrumentationmakes it execute in 101ms, overhead is
1%. If a method takes 10ms and instrumentation changes its response to 11ms, overhead is 10%.
If this method is not called very often, its overall latency effect on the application is minimal.
However, the overall latency effect of an instrumentedmethod that is calledmore frequently could

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 82 of 240

have an impact on the latency of the application’s response even though its overhead percentage is
much smaller.

Unlike a traditional profiler that can profile every method called, HP Diagnostics uses bytecode
instrumentation. This allows the default instrumentation to be selective so as tominimize the
overhead caused by instrumentation to an average of 3-5%. Methods with higher latency overhead
introduced by instrumentation are only instrumented when they are called infrequently in relation to
other components in the application and when the instrumentation provides specific information
needed for triage activities.

You should also consider Diagnostics data overhead when you are customizing the instrumentation
for an application. Themoremethods you instrument, themore data the probemust serialize and
pass over the network to the Diagnostics Server. You can tune the probe’s default configuration so
that it can adjust the volume of Diagnostics data to avoid any unnecessary effect on the
performance of the system beingmonitored. Improper probe tuning can cause CPU, Memory, and
Network overhead on the physical machine where your probe resides. For more information about
managing Latency, CPU, Memory and Network overhead, see "Advanced .NET Agent
Configuration" on page 170

Default Layers for Typical .NET Applications
HP Diagnostics groups the performancemetrics for classes andmethods into layers and sublayers
according to the instructions provided in the points file. The default layers were defined so that the
performancemetrics for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify the areas of the system
that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for typical .NET
applications.

.NET Layers

Layer sublayers Parent Layer

Web Tier IIS

IIS ExecutionSteps

Database ADO

ADO Execute

Connection

Fill

Update

Cache

Database

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 83 of 240

Layer sublayers Parent Layer

Messaging Sender

Receiver

Web Services Soap

Http

WCF

LWMD

HTTP Client

Outbound Calls

.NET Agent Guide
Chapter 5: Custom Instrumentation for .NET Applications

HP Diagnostics (9.23) Page 84 of 240

Chapter 6: Understanding the .NET Agent
Configuration File

You control the configuration of the .NET Agent by modifying the elements and attributes in the
.NET Agent configuration file: <probe_install_dir>/etc/probe_config.xml.

This chapter includes:

"Understanding .NET Agent Configuration File" below

".NET Agent Configuration Elements" on the next page

Understanding .NET Agent Configuration File
The topics in this section describe the elements and attributes that make up the .NET Agent
configuration file <probe_install_dir>/etc/probe_config.xml.

Each element is defined by describing its purpose, attributes, and parent and children elements. For
information on additional .NET Agent configuration elements specific to TransactionVision see the
HP TransactionVision Deployment Guide.

HP Diagnostics (9.23) Page 85 of 240

.NET Agent Configuration Elements

<ali> element
Purpose

Enables ALI integration.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enable or disable the ALI integration. If
enabled, build information (build number, build
data and server) for a selected probe can be
viewed in the Diagnostics Commander and in
an HP Performance Anywhere environment.

Elements

Number of Occurrences zero or more

Parent Elements probeconfig

Child Elements none

Example

<ali enabled="false" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 86 of 240

<appdomain> element
Purpose

Builds an AppDomain inclusion list for processes that host multiple application domains. If no
appdomain elements are defined for a process then all application domains for that process will be
included.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Determines if the AppDomain should be
instrumented. Is overridden by
enableallappdomains attribute of a process
element.

Note:When an AppDomain is enabled or
disabled, youmust restart the process for the
change to take effect. For details on restarting
IIS, see "Step 12. Restart IIS" on page 38. (To
restart an application that is neither IIS hosted,
nor running as aWindows Service, stop and
start the application by whatever method is
relevant for the application.)

name string none Name of the .NET AppDomain. (IIS path
qualified, see the example below.)

website string none The name of theWebsite for those
AppDomains that areWebsites (information
only)

Elements

Number of Occurrences zero or more

Parent Elements process

Child Elements bufferpool, credentials, diagnosticsserver, mediator, id,
ipaddress, logging, lwmd, modes, points, profiler, sample,
trim, webserver, symbols, filter, topology

Example

<appdomain enabled="true" name="1/ROOT/MSPetShop"/>
Where 1/ROOT is the Website ID and MsPetShop is the Virtual DirName

<appdomain enabled="false" name="1/ROOT" website="Default Web Site">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 87 of 240

<points file="Default Web Site.points"/>
<id probeid="Default Web Site" />

</appdomain>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 88 of 240

<authentication> element
Purpose

List of authenticated user names and passwords.

Attributes

Attributes Valid Values Default Description

username string admin User name account.

password string admin Passwords must be generated
using the passgen utility in the
<probe_install_dir>\bin
directory.

Elements

Number of Occurrences zero tomany

Parent Elements profiler

Child Elements none

Example

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 89 of 240

<bufferpool> element
Purpose

Configures the bufferpool behavior.

Attributes

Attributes Valid Values Default Description

size number 65536 Size of each buffer.

buffers number 512 Number of buffers in pool.

sleep number 1000 Number of milliseconds
between flush checks.

expires number 1000 Number of milliseconds before
buffer expires.

Changes to these attribute settings are not applied dynamically; you need to restart the application
or the probe to pick up the changes.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<bufferpool size="65536" buffers="512" sleep="1000" expires="1000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 90 of 240

<captureexceptions> element
Purpose

Enables and controls the stack trace capture for exceptions.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables exception capture.

max_per_request number 4 Maximum exceptions captured
for one server request.

max_stack_size number 0 (meaning no
maximum)

Maximum size of the call
stack for a captured exception.

Changes to these attribute setting are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements include, exclude

Example

<captureexceptions enabled="true" max_per_request="4">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 91 of 240

<clientmonitoring> element
Purpose

This is the root element for configuring client monitoring for the .NET Agent.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables/disables client
monitoring

samplemethod percent
count
period

percent Specifies whichmethod to
use for sampling

samplerate for percent rate must
be 0-100
for count rate must
be >1
for period rate must
be one of standard
Diagnostics time
strings (3m for 3
minutes, 4s for 4
seconds, and so
forth)

50 Specifies the rate for
sampling

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements htmlinstrumentation, server, filter

Example

<clientmonitoring enabled="false" samplemethod="percent" samplerate="50" >

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 92 of 240

<consumeridrules> element
Purpose

This is the root element for configuring consumer ID rules.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables consumer ID rule
evaluation.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements httpheaderules, iprules, soaprules

Example

<consumeridrules enabled="false">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 93 of 240

<cputime> element
Purpose

Controls the cputime setting property.

Attributes

Attributes Valid Values Default Description

mode none,
serverrequest,
method

serverrequest

Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements none

Example

<cputime mode="serverrequest"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 94 of 240

<credentials> element
Purpose

Supplies credentials that are used to validate for communication with the Diagnostics Server.

Attributes

Attributes Valid Values Default Description

username string none User name to validate with the
Diagnostics Server.

password string none Password to validate with the
Diagnostics Server.

authenticate true, false true Enables and disables
authentication.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<credentials username="test" password="diag" authenticate="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 95 of 240

<demomode> element
Purpose

This configures demomode. Demomodemakes it easier to show capability and value of the .NET
agent because it requires less custom points to be defined. With demomode turned on, all outbound
calls will be shown irrespective of any other instrumentation.

Once the calls leading to the outbound calls of interest are identified then demomode should be
turned off and "custom" instrumentation added to ensure that call stacks leading to the outbound
calls are apparent.

It is recommended to TURN THIS OFF under production environments.

Demomode is used primarily to find outbound calls (webserver, http, remoteing, msmq) when the
methodmaking them is not instrumented. It is meant as a way to quickly find how applications may
be connected without having to instrument application specific methods . This may be too noisy in
production situations but is useful when you there is a lack of upstream instrumentation and you
don’t knowwhere the outbound call is beingmade from. It can be used for all kinds of applications
including ASP.NET.

Attributes

Attributes Valid Values Default Description

enabled true, false false Enables or disables demo
mode.

Elements

Number of Occurrences Zero or one.

Parent Elements probeconfig

Child Elements none

Example

<demomode enabled="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 96 of 240

<depth> element
Purpose

Configures depth trimming.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables depth trimming.

depth number 25 Sets the depth for depth
trimming.

Elements

Number of Occurrences 1

Parent Elements trim

Child Elements none

Example

<trim>
<depth enabled="true" depth="25"/>

</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 97 of 240

<diagnosticsserver> element
Purpose

Contains connection and settings information related to the Diagnostics Server which are used for
enterprisemode.

Attributes

Attributes Valid Values Default Description

url Registrar URL.
http://<host>:
<port>

none URL to connect to registrar.

delay number 2 Number of seconds to wait
before registering.

keepalive number 15 Number of seconds between
keepalives.

proxy URL of proxy none Registrar connection proxy.

proxyuser user id for proxy none Proxy user account.

proxypassword password for
proxy

none Proxy user account’s
password.

registered_hostname string none Name of host to register as
(external name for firewall
traversing).

register_byip true, false false Register using ipaddress
instead of hostname.

timeskewcheckinterval number 60 Number of seconds to wait
for getting the time skew
from the Diagnostics server.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

This is a general example showing the setting for the <diagnosticsserver> element. The question
marks (?) indicate that appropriate values need to be substituted.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 98 of 240

<diagnosticsserver url="http://localhost:2006/commander" delay="2" keepalive
="15" proxy="?" proxyuser="?" proxypassword="?" registerhostname="?" registe
r_byip="false"/>

For the steps involved in using the registered_hostname attribute to override the default probe host
machine name see "Overriding the Default Probe Host Machine Name" on page 192.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 99 of 240

<exceptiontype> element
Purpose

Define an exception type.

Attributes

Attributes Valid Values Default Description

name string None Class name of an exception.

Elements

Number of Occurrences Zero tomany

Parent Elements include, exclude

Child Elements None

Example

<exceptiontype name="System.DivideByZeroException"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 100 of 240

<exclude> element (when parent is captureexceptions)
Purpose

Define a list of exceptions to exclude.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Example

<exclude>
<exceptiontype name="System.DivideByZeroException"/>

</exclude>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 101 of 240

<exclude> element (when parent is lwmd)
Purpose

Define which collection classes to exclude from the Collections by Growth and Collections by Size
tables in the .NET Profiler's Collections tab and the Diagnostics user interface’s Collections view.

The specified collection classes may include classes that implement ICollection. Note that this
setting does not affect the instrumentation of LWMD points; it only affects the presentation of the
LWMD data and the amount of LWMD data that is sent to the Diagnostics Server.

Attributes

None

Elements

Number of Occurrences Zero tomany

Parent Elements lwmd

Child Elements None

Example

<lwmd enabled="true" sample="15s" autobaseline="1h" growth="10" size="10">
<exclude>System.Collections.ArrayList</exclude>
<exclude>System.Data.DataView</exclude>

</lwmd>

Note that System.Data.DataView implements System.Collections.ICollection.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 102 of 240

<excludeassembly> element
Purpose

Excludes the instrumentation of an assembly. An assembly is an .exe or .dll file. Provides the
ability to exclude sensitive assemblies from instrumentation (for example, when a product was
used to obfuscate and encrypt code in sensitive assemblies and exceptions would be thrown if
instrumented).

Add <excludeassembly name=<AssemblyNameToExclude> as a child to a process element.

Attributes

Attributes Valid Values Default Description

name string none Name of assembly to exclude
(without the file extension).

Elements

Number of Occurrences zero tomany

Parent Elements process

Child Elements none

Example

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

<excludeassembly name="Acme.Encryption" />

<appdomain enabled="false" name="TestWebService">
<points file=" TestWebService .points" />

</appdomain>
</process>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 103 of 240

<filter> element
Purpose

Filters out certain metrics that would skew the results or not be representative of the processing
beingmonitored.

Attributes

Attributes Valid Values Default Description

firstserverrequest true, false false Enables/disables skipping the
collection of metrics for the
first time a particular server
requests (URL) gets run after
application startup.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<filter firstserverrequest="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 104 of 240

<filter> element
Purpose

Enables the inclusion or exclusion of web pages from client monitoring.

Attributes

Attributes Valid Values Default Description

type include
exclude

exclude Specifies whether to include or
exclude web pages from client
monitoring

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements url

Example

<filter type="include">
<url name=".*\.aspx" />

</filter>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 105 of 240

<gentvhttpeventforwcf> element
Purpose

Setting this option enables generation of a TransactionVision event for aWCF service with any
binding that uses IIS (http based) hosting. SomeWCF services may use a custom or private
binding that is not supported as a true web service and in these types of cases TransactionVision
web service events would not be generated unless you enable this option.

Attributes

Attributes Valid Values Default Description

enabled true, false false Enables/disables the generation of
an http event for aWCF service
with any binding that uses IIS (http
based) hosting. If enabled, provides
TransactionVision web service
events.

Elements

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain

Child Elements none

Example

<gentvhttpeventforwcf enabled="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 106 of 240

<htmlinstrumentation> element
Purpose

Enables configuring an alternate instrumentation file to be used for client monitoring. The file must
be located in the /etc directory.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes

Attributes Valid Values Default Description

File HPRUMCMInst.hpcm null The name of the file containing
alternate (RUM) client
monitoring instrumentation. The
file must be located in the etc
folder.

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements none

Example

<htmlinstrumentation file="HPDefaultInst.hpcm" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 107 of 240

<httpcaptureparams> element
Purpose

Specifies how to configure and capture selected query parameters of HTTP Requests by .NET web
applications.

Attributes

Attributes Valid Values Default Description

enabled true, false false Enables/disables HTTP
parameter capture.

capturequerystring true, false false Enables/disables the query
string capture. The query
string is captured as a Server
Request instance property.

This attribute works
independently of the enabled
attribute which is used to
control the parameter capture
list.

param name "Genre" for
example

none Specifies which query
parameter by name should be
captured as part of the Server
Request Name.

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Number of Occurrences Zero to one.

Parent Elements probeconfig, process

Child Elements param

Example

For the HTTP URL
http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punkwith this
configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 108 of 240

You see the following server requests:

/MVC3/MusicStore/Store/Browse?Genre=Alternative
/MVC3/MusicStore/Store/Browse?Genre=Blues
/MVC3/MusicStore/Store/Browse?Genre=Classical
/MVC3/MusicStore/Store/Browse?Genre=Disco
/MVC3/MusicStore/Store/Browse?Genre=Latin
/MVC3/MusicStore/Store/Browse?Genre=Metal
/MVC3/MusicStore/Store/Browse?Genre=Pop
/MVC3/MusicStore/Store/Browse?Genre=Reggae
/MVC3/MusicStore/Store/Browse?Genre=Rock

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 109 of 240

<httpclient> element
Purpose

This configures whether the URLwill be included as part of an HTTP outbound call’s identity. The
default is true and should be kept so unless there aremany distinct URLs for the outbound HTTP
calls. This could potentially overwhelm the performance of the Diagnostics Server because of the
number outbound calls created (one for each distinct URL). Youmay also want to turn it off if you do
not care about the URL of the HTTP outbound call. The identity of the HTTP outbound call will then
be the Server and port number to which the request is beingmade to.

Attributes

Attributes Valid Values Default Description

showurl true, false true Enables/disables the inclusion of
the URL as part of the identity of an
outbound call made by a client
using HTTP.

Setting to false can be used to
protect against symbol table
explosion on the server/agent side
if there are toomany distinct http
client calls.

The value should be set to false for
REST service client applications

Elements

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain

Child Elements none

Example

<httpclient showurl="true"/>

<httpheaderrule> element
Purpose

Defines a consumer ID rule for HTTP headers.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 110 of 240

Attributes

Attributes Valid Values Default Description

id string None ID of the rule.

rule string None A regular expression that is
used tomatch against the
URL that the HTTP request is
being sent to by the consumer.

consumeridfield string None Name of the header to use as
the consumer ID.

Elements

Number of Occurrences Zero tomany

Parent Elements httpheaderrules

Child Elements None

Example

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*" consumeridfield="Cal
ler"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 111 of 240

<httpheaderrules> element
Purpose

This element contains all of the <httpheaderrule> elements.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements consmeridrule

Child Elements httpheaderule

Example

<httpheaderrules>
</httpheaderrules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 112 of 240

<id> element
Purpose

Provides probe id and probe group id.

Attributes

Attribute Valid Values Default Description

probeid String containing:

Letters, digits,
underscore, dash, period
and internally defined $()
variable values:

$(APPDOMAIN),

$(MACHINENAME),

$(WEBSITENAME),

$(PID)

$(APPDOMAIN).NET The name of the probe
as recognized by
LoadRunner /
Performance Center
and System Health.

probegroup string Default Defines the grouping
recognized by the
Diagnostics Server
for reporting of
systemmetrics and
probemetrics.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process, appdomain

Child Elements none

Example

Default setting example.

<id probeid="$(APPDOMAIN).NET" probegroup="Default"/>

Example

Example for a probe running in a LoadRunner 8.1 environment reporting to "myDiagServer" with the
probe’s name comprised of valid characters, the name of theWeb site the application is deployed
under, plus the name of themachine the application is deployed on.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 113 of 240

<id probeid="LR_81_$(WEBSITENAME)_$(MACHINENAME).NET" probegroup="LR_81_myDi
agServer"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 114 of 240

<include> element (when parent is captureexceptions)
Purpose

Define a list of exceptions to include.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Example

<include>
<exceptiontype name="System.DivideByZeroException"/>

</include>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 115 of 240

<include> element (when parent is lwmd)
Purpose

Define which collections to include to the exclusion of others.

Attributes

None

Elements

Number of Occurrences Zero tomany

Parent Elements lwmd

Child Elements None

Example

<include>System.Collections.Hashtable</include>
<include>System.Collections.ArrayList</include>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 116 of 240

<instrumentation> element
Purpose

Contains logging configuration for instrumenter.

Attributes

None.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig, process

Child Elements logging

Example

<instrumentation>
<logging level="property lwmd" />

</instrumentation>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 117 of 240

<iprule> element
Purpose

Defines a consumer ID rule for IP addresses.

Attributes

Attributes Valid Values Default Description

id string None Enables consumer ID rule
evaluation.

rule string None Define an IP address, or a range of
addresses, to be assigned to a
consumer ID.

consumerid string None The consumer ID to use if there is
amatch on the rule.

Elements

Number of Occurrences zero tomany

Parent Elements iprules

Child Elements none

Example

<iprule id="IpTest1" rule="43.*.1-20.*" consumerid="HP"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 118 of 240

<iprules> element
Purpose

This element contains all of the <iprule> elements.

Attributes

None

Elements

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements iprule

Example

<iprules>
</iprules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 119 of 240

<latency> element
Purpose

Configures latency trimming.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables latency trimming.

throttle true
false

true Enables latency trimming throttling.

min number 2 Minimum latency threshold.

max number 100 Maximum latency threshold.

increment number 2 Threshold increment.

increment
threshold

number 75 The percentage of the buffer usage
before the throttling should be
incremented.

decrement
threshold

number 50 The percentage of the buffer usage
before the throttling should be
decremented.

Elements

Number of Occurrences 1

Parent Elements trim

Child Elements none

Example

<trim>
<latency enabled="true" throttle="true" min="2" max="100" increment="2" in

crementthreshold="75" decrementthreshold="50"/>
</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 120 of 240

<logdirmgr> element
Purpose

Contains the configuration for the log directory manager. The logdirmgrmonitors the log directory to
ensure that it does not grow unbounded. The logdirmgr scans the logs periodically as indicated by
the scaninterval. If the size has exceeded the size indicated by maxdirsize the logdirmgr deletes
the oldest files until the size no longer is greater than themaxdirsize.

Important: The account under which the .NET process is running (for IIS the AppPool Account)
has to be provided delete privileges on the log folder. This is not available by default on the
NETWORK SRERVICE account or the App Pool Identity Account (which is the default Application
Pool Account).

Attributes

Attributes Valid Values Default Description

enabled true
false

true

maxdirsize number 1024 Largest size in MB to which the
log directory can grow.

Must be at least 1(MB).

scaninterval number 30 How often in minutes that the
manager scans the logs to
check for growth and size.

Must be at least 10 (minutes).

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

<logdirmgr enabled="true" maxdirsize="1" scaninterval="10"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 121 of 240

<logging> element (when parent is instrumentation)
Purpose

Sets the logging level for the .NET Agent instrumentation processing.

Attributes

Attributes Valid Values Default Description

level off
assert
break
severe
warning
info

debug
points
eh
sig
chi
cil
classmap
ilasm
symbols
deepmode
load
all
checksum
property

remoting

lwmd

http

""

which is equivalent
to "info"

Level of logging.

threadids true
false

true Should thread IDs be included
in the log.

Valid values below "info" should typically not be used. These are diagnostic settings that can
produce extremely large log files.

Elements

Number of Occurrences zero tomany

Parent Elements instrumentation

Child Elements none

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 122 of 240

Example

<instrumentation>
<logging level="warning" />

</instrumentation>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 123 of 240

<logging> element (when parent is appdomain,
probeconfig, or process)

Purpose

Sets the logging level for the .NET Agent processing for monitoring and reporting application
performance.

Attributes

Attributes Valid Values Default Description

level off
severe
warning
info

debug
events
property
webserver
http
symbols
probemetrics
registrar
threadpool
authentication
bufferpool
rum
bacforsoa
vmware
exceptions|

tvdebug

""

which is equivalent
to "info"

max number 10 Themaximum size of a probe
log file. After the log reaches
this size nomore logging will
occur.

Valid values below "info" should typically not be used. These are Diagnostic settings that can
produce extremely large log files.

Elements

Number of Occurrences

Parent Elements appdomain, probeconfig, process

Child Elements none

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 124 of 240

Example

<logging max="10" level="INFO"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 125 of 240

<lwmd> element
Purpose

Configures the Light-Weight Memory Diagnostics (LWMD) feature.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables sampling for lwmd
capturing.

sample string 1m Sample interval
(h-hour/m-minute/
s-second).

autobaseline string 1h Auto baseline interval.

manualbase
line

string none Manual baseline time.

growth number 15 Number of collections to growth
track.

size number 15 Number of collections to size
track.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements exclude, include

Example

<lwmd enabled="false" sample="1m" autobaseline="1h" manualbaseline= "?" grow
th="15" size="15"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 126 of 240

<mediator> element
Purpose

Specifies the diagnostics server that is in theMediator mode to which events are to be sent when in
the enterprisemode.

Attributes

Attributes Valid Values Default Description

host host name none Name of mediator.

port number 2612 Mediator port.

ssl true/false false When the Diagnostics Server
URL starts with http the
default is false. When the
Diagnostics URL starts with
https the default is true.

metrichost string The host to whichmetric data is
sent.

metricport number 2006 The port to which the probe
sends the probemetrics such
as heap usage and availability.

block true/false false Block until mediator connection
established.

ipaddress local ipaddress to use when
connecting to the eventserver.

localportstart number 4000 Beginning of port range to use
for tcp event channel
connection to the Diagnostics
Server in Mediator mode. Used
only when ipaddress is
specified.

localportend number 5000 End of port range to use for tcp
event channel connection to the
Diagnostics Server in Mediator
mode. Used only when
ipaddress is specified.

Elements

Number of Occurrences 1 per parent

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 127 of 240

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<mediator host="localhost" port="2612" ssl="false" metricport="2006" block="
false" ipaddress="16.255.18.99" localportstart="4000" localportend="5000"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 128 of 240

<metrics> element
Purpose

This element contains all of the <metric> elements.

Attributes

None

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, process

Child Elements metric

Example

<metrics>
<metric name="% Time in GC" group="Memory" units="percent" category=".NET

CLR Memory" counter="% Time in GC"/>
</metrics>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 129 of 240

<metric> element
Purpose

Specifies additional probemetrics that you want the Diagnostics .NET to collect from perfmon. See
"Collecting Additional ProbeMetrics or Modifying ProbeMetrics" on page 199 for additional
information.

Attributes

Attributes Valid Values Default Description

name string Name of themetric as you would
like to see it in the Diagnostics
UI.

group string Group (Category) of themetric
as you would like to see it in the
Diagnostics UI.

units microseconds,
milliseconds,
seconds, minutes,
hours, days, bytes,
kilobytes, megabytes,
gigabytes, count,
percent, fraction_
percent, load, status

Units of measure for the perfmon
metric.

category string The performance counter
category as specified in
perfmon.

counter string The performance counter as
specified in perfmon

Note: The instance of the counter is automatically assigned as the process instance for the
counter or application domain instance for ASP.NET application counters. Counters that do not
have process or application domain instances are not collected; you should define system
metrics instead.

Elements

Number of Occurrences 1 or more per parent

Parent Elements metrics

Child Elements none

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 130 of 240

Example

<metrics>
<metric name="% Time in GC" group="Memory" units="percent" category=".NET

CLR Memory" counter="% Time in GC"/>
</metrics>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 131 of 240

<modes> element
Purpose

Specifies which product mode(s) the .NET Agent should run in. See "ControllingWhich HP
Software Products the Agent canWork With" on page 177 for more information about using the
different modes.

The <modes> element is also used in determining usage against the HP Diagnostics license
capacity.

See the chapter "Licensing HP Diagnostics" in the HP Diagnostics Server Installation and
Administration Guide for more information.

The value of the <modes> element is initially set at the time you install the agent.

The .NET agent can set in different modes to do the following:

l Monitor applications from development through pre-production testing and into production.

l Used with other HP Software products.

l Used as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software
products.

Attributes

Attributes Valid Values Default Description

enterprise true
false

Depends onmode chosen in
installation.

true if pro is false

false if pro is true

Sets agent to run in enterprise
mode (probe is working with
Diagnostics Server).

Enterprisemode is like a
combination of ad, am and pro
mode. It will capture data for
LoadRunner runs as well as
data outside of LoadRunner
runs.

Enterprisemode is the default
for .NET Agents (if you don’t
specify AD or AMmode). In
Enterprisemode the agents are
counted against the AM
license capacity.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 132 of 240

Attributes Valid Values Default Description

ent true
false

Depends onmode chosen in
installation.

true if pro is false

false if pro is true

This is a short form of the
enterprise attribute.

ad true
false

false admode supersedes all other
modes. If admode and any
other modes are set, then
mode will be set to ad.

In admode the .NET Agent will
only capture runs from
LoadRunner and put the results
in a specific database for that
run (for example, Default21).

Agents in AD modewill only be
counted against AD license
capacity when the probe is
running in a LoadRunner or
Performance Center test run.
When not in a test run the
agent does not count against
license capacity.

For example if 20 probes are
installed in
LoadRunner/Performance
Center AD mode but only 5 are
in a run, then only 5 are
counted against AD license
capacity.

am true
false

false ammode supersedes all other
modes except for ad. In am
mode the .NET agent will
ignore runs. If LoadRunner is
executing an application then
you will see the data in the
normal Diagnostics database.

Agents in AMmodewill always
be counted against the AM
license capacity.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 133 of 240

Attributes Valid Values Default Description

pro true
false

Depends onmode chosen in
installation.

true if enterprise is false

false if enterprise is true

Sets the agent to run in Profiler
mode.

This mode sends data to the
profiler. This mode can be
combined with other modes.
Agents in promode are not
counted against license
capacity.

tv true
false

false Enables the capture of
TransactionVision events. See
"About Configuration of the
.NET Agent for
TransactionVision" on page 40
for details on setting transport
and other TV options. This
mode will send events to
TransactionVision. This mode
can be combined with other
modes and in tv mode agents
are not counted against
Diagnostics’s license capacity

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Example

<modes enterprise="false" ad="false" am="false" pro="true"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 134 of 240

<param> element
Purpose

Specifies a query parameter to capture in an HTTP request.

Attributes

Attributes Valid Values Default Description

name string none Name of the .NET process
that these setting apply to.

None.

Number of Occurrences Zero tomany.

Parent Elements httpcaptureparams

Child Elements none

Example

For the HTTP URL
http://MachineName/MVC3/MusicStore/Store/Browse?Genre=Rock&Artist=Punkwith this
configuration in the probe_config.xml file:

<httpcaptureparams enabled="true" capturequerystring="true" >
<param name="Genre"/>
<param name="accounttype"/>

</httpcaptureparams>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 135 of 240

<points> element
Purpose

Specifies the capture points file to use for instrumentation.

Attributes

Attributes Valid Values Default Description

file string none Name of instrumentation
capture points file.

Elements

Number of Occurrences zero or more

Parent Elements appdomain, process

Child Elements none

Example

<points file="ASP.NET.points"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 136 of 240

<probeconfig> element
Purpose

Provides single containing root element for the .NET Agent configuration.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements None

Child Elements appdomain, bufferpool, captureexceptions, consumeridrules,
credentials, diagnosticsserver, eventserverhost, id,
instrumentation, ipaddress, logging, lwmd, mediator, modes,
points, process, profiler, rum, sample, soappayload, trim,
webserver, topology, vmware, xvm

Example

<probeconfig>
</probeconfig>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 137 of 240

<process> element
Purpose

Provides an inclusion filter list of which processes will bemonitored.

If no process elements are defined then no processes will bemonitored.

Attributes

Attributes Valid Values Default Description

enablealldomains true
false

true When set to true the enable
attribute on all AppDomains
that are part of the process is
overriden so that all will be
enabled.

name string none Name of the .NET process
that these setting apply to.

These are the rules for the enablealldomains attribute of the <process> element:

l enablealldomains = false : If there are no domains in the list of <appdomain> then no
AppDomains should be enabled.

l enablealldomains = false : If there are domains in the list of <appdomain> then AppDomains
should be enabled if the "enable" attribute is set to true or not defined in the enable attribute of
the <appdomain>.

l enablealldomains = true : If there are domains in the list of <appdomain> then only AppDomains
in the list should be enabled disregarding their "enable" attribute.

l enablealldomains = true : If there are no domains in the list of <appdomain> then all
AppDomains should be enabled.

l enablealldomains attribute is not defined: same as if enablealldomains = true.

Elements

Number of Occurrences zero or more

Parent Elements probeconfig

Child Elements appdomain, bufferpool, credentials, diagnosticsserver,
mediator, id, instrumentation, ipaddress, logging, lwmd,
modes, points, profiler, sample, trim, webserver, filter,
symbols, topology

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 138 of 240

Example

<process enablealldomains="true" name="ASP.NET">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 139 of 240

<profiler> element
Purpose

Contains settings for the Profiler feature.

Attributes

Attributes Valid Values Default Description

authenticate true, false none Enables/Disables
authentication of incoming
Profiler connection requests.

Changes to this attribute
setting are applied
dynamically; you do not need
to restart the application or the
probe.

register true, false false Tells the probe to register even
if it is in Profiler only mode.

samples number 60 Tells the Profiler how many
samples to keep for
lwmd/heap trending.

best number 1 The number of fastest
instance trees to keeps.

worst number 3 The number of slowest
instance trees to keep.

inactivitytimeout string 10m The length of time that the
Profiler continues to run after
the user has stopped
interacting with the Profiler.

disableremoteaccess true, false false Disables remote access to the
Profiler, thus not exposing the
User/Password, and still be
able to telnet/RemoteDeskTop
into themachine and run the
Profiler locally.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements authentication

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 140 of 240

Example

<profiler authenticate="true" register="false" samples="60" best="1" worst="
3" inactivitytimeout="10m">

<authentication username="admin" password="admin"/>
</profiler>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 141 of 240

<rum> element
Purpose

Controls the settings for Real User Monitoring.

Attributes

Attributes Valid Values Default Description

enable true
false

true Enables or disables the RUM Integration
feature.

responseheader string X-HP-CAM-
COLOR

The name of the http header whose value
contains the Diagnostics to RUM
integration information.

encryptedkey string The encrypted key must be generated
using the passgen utility in the <probe_
install_dir>\bin directory.

Elements

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Example

<rum enabled="true" responseheader="X-HP-CAM-COLOR" encryptedkey="OBF:3pe941
vx43903wre40303xxz3q6r42ob43n93wre3io03xjs40h940pc3wir3q233jur3zir3yi03zir3v
c03wre3xpi3r8o3olr44na3zor3v6m3vc03zir44u03ohb3rdi3xjs3wx03v6m3zor3yc63zor3j
qz3q6r3wd740vi40b53xpi3ike3wx043gp42ur3q233y3r3zwy3wx0432i42293p9p"/>

To create the encrypted key, use the PassGen utility as follows:

cd <installdir>/bin
PassGen /system encryptionKey

Where encryptionKey is a string of alpha-numeric characters with amaximum length of 128
characters. The encryptedkey is shown on stdout.

passgen example:

PassGen /system TheLazyFoxJumpedHigh

Returns:

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 142 of 240

OBF:3q6r3xxz3y3r3xjs3wx03yc63n0r3lbr3vc03wd745893wre44u0413j3kn93zwy40vi432i
44fr3m453m894493439040pc40303kjd419r44na3wx0451h3wir3v6m3lfr3mwj3yi03wre3xpi
3xxz3y3r3q23

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 143 of 240

<sample> element
Purpose

Sets the sampling type and rate.

Attributes

Attributes Valid Values Default Description

method percent, count,
period

percent Sets the samplingmethod:

for percent rate must be 0-100

for count rate must be >1

for period ratemust be one of standard
Diagnostics time strings (3m for 3
minutes, 4s for 4 seconds, and so
forth)

rate number 0 Sets the sampling rate for percent
type.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process, ws

Child Elements none

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>
Sampling is a random percentage rate.

<xvm>< ws ><sample method="count" rate="50"/></ ws ></xvm>
Sampling is once every rate count.

<xvm>< ws ><sample method="period" rate="60000"/></ ws ></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 144 of 240

<server> element
Purpose

Configures the scripts and URLs to load for client monitoring instrumentation.

Note: If an htmlinstrumentation file is set, server element settings are ignored.

Attributes

Attributes Valid Values Default Description

scriptsurl Example:
http://Mediatorhost/ClientMo
n/boomerang-min.js

http://Mediatorhost:port/boom
erang-min.js

Defines the script
and the URL to
load for
instrumentation

beaconurl Example:
http://Mediatorhost/ClientMo
nitoring/B

http://Mediatorhost:port/Clien
tMonitoring/B

Defines the script
and the URL to
load for
instrumentation

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements clientmonitoring

Child Elements none

Example

<server scriptsurl="boomerang-min.js" beaconurl="ClientMonitoring/B" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 145 of 240

<soapcapture> element
Purpose

Configures whether SOAP requests and responses are captured.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables or disables the
capture of SOAP requests and
responses. If this is disabled it
will affect the following:

SOAP request capture for
SOAP faults

SOAP requests and
responses capture for TV
mode

ConsumerID assigned via the
SOAP rules.

maxsize number 0 This is an optional attribute
that specifies themaximum
size in characters of the SOAP
request or response captured.

0 indicates unlimited.

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<soapcapture enabled="true" maxsize="0" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 146 of 240

<soappayload> element
Purpose

This element is deprecated and replaced by <soaprequestforsoapfault>.

Configures the SOAP payload capture on SOAP faults feature which provides the SOAP payload
associated with a SOAP fault. Here the SOAP payload is defined as the entire SOAP envelope.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables or disables the SOAP
Payload capture feature.

maxsize number 5000 This is an optional attribute
that specifies themaximum
size in characters of any
payload capture. If not present
the Default value is used. If
present and an error is made in
the setting, the Default value
is used.

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<soappayload enabled="true" maxsize="5000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 147 of 240

<soaprequestforsoapfault> element
Purpose

Configures SOAP request capture (including payloads) on SOAP Faults. Payloads can contain
sensitive information such as credit card numbers so this element is disabled by default.

NOTE: If the <soapcapture> element is disabled it will override the <soaprequestforsoapfault>
setting. Please refer to the documentation for the <soapcapture> element.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables or disables the SOAP
request capture on SOAP fault
feature. Disabled by default.

maxsize number 5000 This is an optional attribute
that specifies themaximum
size in characters of SOAP
request capture. If not present
the Default value is used. If
present and an error is made in
the setting, the Default value
is used.

Elements

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Example

<soaprequestforsoapfault enabled="true" maxsize="5000" />

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 148 of 240

<soaprule> element
Purpose

Defines a consumer ID rule for SOAP headers.

Attributes

Attributes Valid Values Default Description

id string None ID of the rule.

rule string None A regular expression that is
used tomatch against the web
service name being called by
the consumer.

consumeridfield string None The element in the SOAP
header to get the value for to
use as the consumer ID.

Elements

Number of Occurrences zero tomany

Parent Elements soaprules

Child Elements none

Example

<soaprule id="SOAP1" rule="TestService2" consumeridfield="Caller"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 149 of 240

<soaprules> element
Purpose

This element contains all of the <soaprule> elements.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements soaprules

Example

<soaprules>
</soaprules>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 150 of 240

<sqlparsing> element
Purpose

This element is used to indicate in what mode SQL queries should be parsed. If there are a large
number of SQL queries using literals it can overwhelm the server symbol table so the default is set
to mode 3 to avoid this problem.

Attributes

Attributes Valid Values Default Description

mode 1, 2, 3, 4 3 boolean property to turn asynchronous
stack trace sampling on or off

keywordsfile string None Optionally allows you to specify a file
containing keywords you want the
agent to find in the SQL statement and
highlight in upppercase when stored or
displayed by Diagnostics. This helps
ensure similar queries are recognized
as the same query irrespective of case.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements

Example

<sqlparsing mode="4" keywordsfile="C:\myfolder\mykeyword.txt"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 151 of 240

<stacktracesampling> element
Purpose

Enables/disables and configures asynchronous thread stack trace sampling.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables or disables asynchronous
stack trace sampling feature.

tardymethodlatency number greater
than 20

150 Minimum time (in millisecs) that an
instrumentedmethodmust run without
hitting any instrumentation points
before stack trace sampling is
attempted for this method. The
purpose of this property is to control
the overhead of sampling by limiting
the stack trace collection to themost
critical cases.

rate number greater
than 20

100 The time (in millisecs) that must
elapse before the next consecutive
sampling attempt is made.

Small values cause frequent sampling,
thus providing rich data, but at the cost
of increased overhead. Large values
causemany methods tomiss most of
the samples, thus required you to hunt
for additional details in multiple saved
instances, whichmay not be there.

The overhead caused by frequent
sampling affects primarily the latency
of server requests. The overall CPU
usage by the probemay go up as well,
but this effect is not as profound as the
latency increase. For machines with
many CPUs, the process CPU
consumptionmay actually go down
(and it is not a good thing).

outboundcalls true
false

false Turn asynchronous stack trace
sampling on or off for outbound calls/

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 152 of 240

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements

Example

<stacktracesampling enabled="true" tardymethodlatency="150" rate="100" outb
oundcalls="false"/>

This statement enables stack trace sampling with the shown configuration.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 153 of 240

<symbols> element
Purpose

Limits the number of unique URIs and SQL strings that can be captured to control the amount of
memory consumed.

Attributes

Attributes Valid Values Default Description

maxuri number 1000 Sets the top limit for number of
unique URIs that can be
captured.

maxuriname string Maximum number
of unique URIs
exceeded

maxsql number 1000 Sets the top limit for number of
unique URIs that can be
captured.

maxsqlname string Maximum number
of unique SQLs
exceeded

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements urireplacepattern

Example

<symbols maxuri="1000" maxuriname="Maximum number of unique URIs exceeded" m
axsql="1000" maxsqlname="Maximum number of unique SQLs exceeded"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 154 of 240

<timeskew> element
Purpose

Used in configuring HP TransactionVision. Calculates the time difference between the time server
and the host on which the .NET Agent is running. The frequency of checking with the time server
can be configured.

Attributes

Attributes Valid
Values

Default Description

historysize number 24 (Read on startup) number of time skew
samples to store and compare for best
sample.

checkinterval number 300,000ms. (Dynamic) The time inmilliseconds to wait
before checking the time server for the
skew time calculation.

latencythreshold number 100ms. (Dynamic) Themaximum time in
milliseconds a reply from a time server can
take for a valid time skew value.

retrythreshold number 8 (Dynamic) Number of times to try when
request to time server fails.

Elements

Number of Occurrences 1 (one)

Parent Elements tv

Child Elements none

Example

<timeskew historysize="24" checkinterval="300000" latencythreshold="100" ret
rythreshold="8"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 155 of 240

<topology> element
Purpose

Controls whether topology information will be collected and sent to the Diagnostics server.

Attributes

Attributes Valid Values Default Description

enable true
false

true Enables gathering topology
information and passing it to the
Diagnostics Server.

Elements

Number of Occurrences 1

Parent Elements <probeconfig>, <process>, or <appdomain>

Child Elements none

Example

<topology enable="true">

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 156 of 240

<transport> element
Purpose

Configure the events channel used by TransactionVision.

Attributes

Attributes Valid Values Default Description

type mqseries
sonicmq

sonicmq The event transport provider being
used by the Agent.

connectionString See below. The connection information for the
event transport provider.

conectionString Syntax when type=sonicmq

broker = <broker>; port = <port>; user = <user>; password =<password>; confi
gurationQueue = <configurationQueue>

Where: Is:

broker Host name on which the Sonic broker is running. Typically this
will be the Analyzer hostname.

port The port on which the broker communicates. By default, 21111.

user User id if required by SonicMQ installation for connection. By
default, no username is required.

password Password if required by SonicMQ installation for connection.
This is in the obfuscated form created by using the PassGen
utility. By default, no password is required. For more information
about PassGen, see "Administration Utilities" in theBSM
Application Administration User Guide.

configurationQueue Name of the queue which has the configurationmessages for the
.NET TransactionVision Agent.

conectionString Syntax when type=mqseries

host= <host>; queuemanager=<queuemanager>; port= <port>; channel=,channel>
configurationQueue = <configurationQueue>

Where: Is:

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 157 of 240

host Host on which the TransactionVision configuration queue is
hosted.

queuemanager Name of the queuemanager.

port MQSeries port on which the QueueManager communicates.

channel MQSeries channel which will be used to communicate.

configurationQueue Name of the queue which has the configurationmessages for the
.NET TransactionVision Agent.

Elements

Number of Occurrences 1 (one)

Parent Elements tv

Child Elements None

Example

For SonicMQ:

<transport type="sonicmq" connectionstring="broker=brokerHost;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

ForMQSeries:

<transport type="mqseries" connectionstring="host=mqHost;
queuemanager=; port=1414; channel=TRADING.CHL;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 158 of 240

<trim> element
Purpose

Configures the trimming feature to reduce data volume transferred between the probe and the
Diagnostics Server.

The Profiler user interface ignores all configured trim settings, for example, depth trimming and
latency trimming, as the Profiler does not require that any data be sent to the Diagnostics Server.

Attributes

None.

Elements

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements depth, latency

Example

<trim>
</trim>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 159 of 240

<tv> element
Purpose

Configure the .NET Agent for use with TransactionVision.

Attributes

Attributes Valid
Values

Default Description

eventthreads number 3 (Read on startup) The number of
threads spawned by the Agent to
send events to the Analyzer.

eventthreadsleep number 100 (Dynamic) The time in
milliseconds the event thread
sleeps after sending amessage
(event package).

eventmemorythreshold number 25,000,000 (Dynamic) Thememory consumed
by the internal buffer (Q) after
which the Agent will try and send
themessage on the application
thread.

configthreadsleep number 10,000 (Dynamic) The time in
milliseconds the event thread
sleeps after browsing the
configuration queue.

Elements

Number of Occurrences 1 (one)

Parent Elements ProbeConfig

Child Elements transport, timeskew

Example

<tv eventthreads="3" eventthreadsleep="80"
eventmemorythreshold="25000000" configthreadsleep="10000" >

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"
retrythreshold="8"/>
<transport type="sonicmq"
connectionstring="broker=myhost.mydomain.com;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 160 of 240

</tv>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 161 of 240

<uriautocollapsing> element
Purpose

Configures automatic URI collapsing–the detection and trimming of server requests to avoid
flooding the server symbol table with a large number of unique server requests.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables automatic URI collapsing.

limits numbers separated by
"/"

120/60/25/10 Themaximum number of path
segments allowed for each segment
position, provided all of the
preceding path segments are equal.

The last specified value extends for
all unspecified segments, that is,
specifications 80/90/20 and
80/90/20/20/20 are equivalent.

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements probeconfig, symbols

Child Elements none

Example

<symbols>
<uriautocollapsing enabled="true" limits="120/60/25/10"/>

</symbols>

Once the limit for the fourth path segment is exceeded, URIs of that form are collapsed. For
instance, assume the application receives the following URIs:

/a/b/c/01
/a/b/c/02
...
/a/b/c/11

Because the limit for the fourth path segment is exceeded, all future incoming URIs of that form will
be replaced by /a/b/c/*.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 162 of 240

The following screen shots show before and after automatic URI collapsing. The third segment of
the URI path exceeds the specified limit so it is collapsed.

After:

For server request URIs that have beenmodified by the automatic URI collapsing feature, each
associated call profile retains the original, uncollapsed, URI. You can view this value in the Original
URI field in the Details pane of the Call Profile view.

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 163 of 240

<urireplacepattern> element
Purpose

Used to reduce the number of unique server requests by replacingmany server requests with one
simplified server request URI that aggregates them. Uses regular expression patternmatching.
See "Configuring URI Truncation andMapping" on page 183.

Attributes

Attributes Valid Values Default Description

enabled true
false

false Enables uri pattern replacement.

pattern value s/string/string/ If enabled
there are
two default
patterns
defined for
you.

The syntax for the pattern value is
s/search_pattern/replace_pattern/.

If / is used in the pattern then the
character # should be used instead of /
as the separator.

Patterns are applied to all server
requests and are applied in the order
they are specified in probe_config.xml.

Elements

Number of Occurrences 1

Parent Elements probeconfig, symbols

Child Elements none

Example

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">
<pattern value="s/TestService1/CommonService/"/>

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>

</symbols>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 164 of 240

<url> element
Purpose

Enables configuring which web pages are included or excluded from client monitoring.

Attributes

Attributes Valid Values Default Description

name /CallChain.* include
every page

Specifies which web pages to include
or exclude from client monitoring,

Note:Regular expressions can be
used.

Changes to these attribute settings are applied dynamically; you do not need to restart the
application or the probe.

Elements

Number of Occurrences 1

Parent Elements filter

Child Elements none

Example

<filter type="include">
<url name=".*\.aspx" />

</filter>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 165 of 240

<vmware> element
Purpose

Controls the ability to adjust timestamps to bemore accurate when running in a VMware
environment.

Attributes

Attributes Valid Values Default Description

attempt-time
stampadjustments

true
false

false Enables time stamp adjustments in
VMware environments.

useworkaround true
false

false If you encounter negative latency
issues when running the .NET Agent
on a VMware guest with the
attempttimestampadjustments
attribute set to true you should set this
attribute to true. When this attribute is
set to true the .NET Agent will use an
alternative call to get the VMware host
timestamps to workaround the
negative latency issue.

disableperfcounters true
false

false Set this option to true if the .NET
Agent causes IIS worker process to
crash in a VMWare environment.This
is a workaround for aMicrosoft-
VMWare environment problem related
to accessing perfmon counters in
certain VMWare environments.

Elements

Number of Occurrences 1

Parent Elements probeconfig

Child Elements none

Example

<vmware attempttimestampadjustments="false"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 166 of 240

<webserver> element
Purpose

Specifies the local Web server properties for communication with the probe.

Attributes

Attributes Valid Values Default Description

start number 35000 Starting port for webserver.

end number 35100 Ending port for webserver.

ipaddress IP address Local ip address to run
webserver on.

Example

<webserver start="35000" end="35100" ipaddress="16.255.18.99"/>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 167 of 240

<ws> element
Purpose

Controls Web services correlation sampling.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements <xvm>

Child Elements <sample>

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 168 of 240

<xvm> element
Purpose

Controls the cross VM settings.

Attributes

None.

Elements

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements <ws>

Example

<xvm></xvm>

.NET Agent Guide
Chapter 6: Understanding the .NET Agent Configuration File

HP Diagnostics (9.23) Page 169 of 240

Chapter 7: Advanced .NET Agent Configuration
Instructions are provided for advanced configuration of the .NET Agent. Advanced configuration is
intended for experienced users with in-depth knowledge of this product. Use caution when
modifying any of the Diagnostics components’ properties.

This chapter includes:

l "Time Synchronization for .NET Agents Running on VMware" below

l "Customizing the Instrumentation for ASP.NET Applications" on the next page

l "Discovering the Classes andMethods in an Application" on page 175

l "ControllingWhich HP Software Products the Agent canWork With" on page 177

l "Configuring Support for MSMQBasedCommunication" on page 179

l "Configuring Latency Trimming and Throttling" on page 179

l "Configuring Depth Trimming" on page 182

l "Configuring URI Truncation andMapping" on page 183

l "Configuring the .NET Agent for Lightweight Memory Diagnostics" on page 186

l "Limiting Exception Stack Trace Data" on page 188

l "Configuring Thread Stack Trace Sampling" on page 190

l "Disabling Logging" on page 192

l "Overriding the Default Probe Host Machine Name" on page 192

l "Listing the Probes Running on a Host" on page 193

l "Authentication and Authorization for .NET Profilers" on page 194

l "Configuring Consumer IDs" on page 195

l "Configuring SOAP Fault Data" on page 199

l "Collecting Additional ProbeMetrics or Modifying ProbeMetrics" on page 199

Time Synchronization for .NET Agents Running on
VMware

.NET Agents running in VMware hosts have additional time synchronization requirements. For
agents running in a VMware guest, timemust be synchronized between the VMware guest and the

HP Diagnostics (9.23) Page 170 of 240

underlying VMware host. If time is not synchronized properly, the Diagnostics UI could display
inaccuratemetrics or nometrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in the VMware whitepaper
on timekeeping (http://www.vmware.com/pdf/vmware_timekeeping.pdf) in the section
"Synchronizing Hosts and Virtual Machines with Real Time." In summary, VMware Tools must be
installed in each VMware guest operating system that hosts a Diagnostics probe and the time
synchronization option in VMWare Tools should be turned on. Note that this option in VMware
Tools will only work if the guest operating system time is initially set earlier than that of the VMware
host. For instructions on how to install VMware Tools, see the "Basic System Administration"
document for VMware ESX Server. In addition, if any non-VMware time synchronization software
(such as Network Time Protocol) is used, it should be run in the VMware ESX server service
console.

Customizing the Instrumentation for ASP.NET
Applications

When the .NET Agent is installed, theASP.NET.points file is created with the standard
instrumentation that the agent applies to all ASP.NET processing on themonitored server.

Youmust create application-specific instrumentation points to capture performancemetrics for the
business logic that has been implemented through application-specific classes andmethods. The
application-specific instrumentation points must be stored in a custom capture points file that can
be associated with the application using the attributes in the <probe_install_dir>/etc/probe_
config.xml file. If the application was auto-detected during the installation or during a rescan of IIS,
a custom capture points file was automatically created for the application at the same time.

Note: If you do not know the classes andmethods in an application that you want to monitor,
you can use the Reflector tool that was installed with the .NET Agent to analyze the .dll files in
the application and discover the classes andmethods. See "Discovering the Classes and
Methods in an Application" on page 175 for instructions on using Reflector.

To let the .NET Agent know that you want the instrumentation points in a custom capture points file
to apply to an application, youmust update the points attribute of the appdomain element in the
probe_config.xml file.

To associate a custom capture points file with an application:

1. Create a capture points file with the instrumentation for the application specific classes. To
create a capture points file, copy an existing capture points file in the <probe_install_dir>/etc
directory.

Note: If the application was auto-detected during the installation or during a rescan of IIS,
a capture points file already exists for the application with some or all of the points file
entries commented out.

2. Customize the capture points file by adding instrumentation points so that the agent captures

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 171 of 240

http://www.vmware.com/pdf/vmware_timekeeping.pdf

custom business logic for the applications.

The following example illustrates how tomodify the capture points file so that the agent
captures IBuySpy custom code:

[IBuySpy Callee]
class = !IBuySpy.*
method = !.*
signature =
scope =
ignoreScope =
layer = Custom.IBuySpy

Formore information about instrumentation, see "Custom Instrumentation for .NET
Applications" on page 59

3. Update the configuration of the .NET Agent probe in probe_config.xml to ensure that the
modified capture points file is properly referenced.

Within the ASP.NET <process> tag add an <appdomain> tag for the application. Include the
<points> tag with the file attribute and the enabled attribute. See "Virtual Directories
(AppDomains) Under Different IIS Paths with the SameNames" on the next page for more
examples.

<appdomain name="1/ROOT/your_app_name" website="Default Web Site"
enabled="true">

<points file="DefaultWebsite-your_app.capture points"/>
</appdomain>

The example below illustrates this step. A custom capture points file has been created for the
MSPetsShop application. The file has been namedMSPetShop.points. The <appdomain>
tag for the application, and the capture points file were added to the ASP.NET <process> tag
in the probe_config.xml file. Note that the IIS path is included in the appdomain tag.

<?xml version="1.0" encoding="utf-8"?>

<probeconfig>
<id probeid="" probegroup="Umatilla"/>

<credentials username="" password=""/>
<profiler authenticate=""><authentication username="" password=""/></pr

ofiler>

<diagnosticsserver url="http://issaquah:2006"/>
<mediator host="issaquah" port="2612"/>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 172 of 240

<webserver start="35000" end="35100"/>
<modes am="true"/>

<instrumentation><logging level="" threadids="no"/></instrumentation>

<lwmd enabled="true" sample="1m" autobaseline="1h" growth="10" size="1
0"/>

<process name="ASP.NET", enablealldomains="false">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/MSPetShop" website="Default Web Site" enabled

="true">
<points file="DefaultWebsite-MSPetShop.points"/>

</appdomain>
</process>

</probeconfig>

4. Restart IIS as instructed in "Discovery and Standard Instrumentation" on page 42.

Virtual Directories (AppDomains) Under Different IIS
Paths with the Same Names

You can distinguish two or more appdomains on the same IIS server which have the same name.
Consider the configuration below where there are 3 virtual directories (AppDomains) with the name
CallChain.

In the probe_config.xml file you can distinguish the AppDomains by including the IIS configuration
path.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 173 of 240

The configuration for the 3 CallChain applications in the example above would be as follows:

<appdomain enabled="false" name="1/ROOT/CallChain/CallChain" website="Default
Web Site">

<points file="Default Web Site-CallChain-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="1/ROOT/CallChain" website="Default Web Sit
e">

<points file="Default Web Site-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="2/ROOT/CallChain" website="WebSite2">

<points file="WebSite2-CallChain.points" />
</appdomain>

The resultant probes are distinguished using the IIS path and are displayed in the Enterprise UI as:
1ROOTCallChain.NET, 1ROOTCallChainCallChain.NET, 2ROOTCallChain.NET

Backward Compatibility with Pre-9.01 Releases
For the sake of backward compatibility, the 9.01 or later version of the agent will be able to read and
process versions of the probe configuration earlier than 9.01 for ASP.NET AppDomains. The
’earlier’ format is shown in the example below:

<appdomain name="CallChain">
<points file="CallChain.points" />

</appdomain>

If you use the earlier format, then the behavior of the agent will revert to the previous version’s
behavior.

l All AppDomains with name "CallChain" (in this example) will be enabled or disabled
simultaneously.

l All CallChain probe instances will be consolidated on the server into one probe.

l Trend lines for probes and server requests should continue from previous versions.

It is recommended that you do NOT use the earlier format of configuration where backward
compatibility (such as trend lines) is not required.

For an appdomain configured using the earlier format, if the new behavior is desired, the "old" format
entry should be deleted from the probe_config.xml file. Then runRescan ASP.NET Applications
from the start menu on the probe system. This will result in the addition of AppDomain entries with
the new format, allowing you to distinguish different probes on the same IIS server with the same
name.

The upgrade install will retain the earlier version of the appdomain configuration andmodify probe_
config.xml to add the new format configuration for any unlisted AppDomains.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 174 of 240

Discovering the Classes and Methods in an Application
Tomonitor the performance of an application that you are not familiar with, use the Reflector
automatic discovery tool that is installed with the .NET Agent to find the classes andmethods in
the application that you want to add to the instrumentation used by a probe. The Reflector
executable is located at <probe_install_dir>\bin\reflector.exe.

To discover classes and methods using Reflector:

1. Locate the installation directory for the application that you want to monitor.

2. Locate the folder in the application installation directory where the .dll files are stored.

3. Open a command prompt and change the directory to the folder where the .dll files for the
application are stored.

4. Run the Reflector against all of the .dll files and .exe files in the current directory by executing
the following the command at the command prompt:

<probe_install_dir>\bin\Reflector.exe

You can limit the Reflector to certain .dll and .exe files by adding additional parameters to the
command. The following example shows another way to enter the command in the previous
example:

<probe_install_dir>\bin\Reflector.exe *.dll *.exe

This command explicitly tells the Reflector to check all of the .dll and .exe files in the target
directory.

To limit the Reflector to specific files, you could enter the following:

<probe_install_dir>\bin\Reflector.exeWorkHorse.dll Utility.dll

This command explicitly tells the Reflector to check only the two .dll files specified.

The following example shows the commands youmight execute if you have an application
called PetShop that has .dll files located in a bin folder:

C:\>cd "c:\Program Files\Microsoft\PetShop\Web\bin"

C:\Program Files\Microsoft\PetShop\Web\bin>
C:\MercuryDiagnostics\".NET Probe"\bin\Reflector.exe

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 175 of 240

5. The Reflector displays a report of the assemblies, namespaces, classes, andmethods found
in the .dll files that you specified.

Note: You can redirect the output from the Reflector to a file, as shown in the following
example:

<probe_install_dir>\bin\Reflector.exe sys*.dll > <report_name>.txt

The output from Reflector is redirected to the file that you specify.

Use the information in the report to customize the instrumentation for the application, as described
in "Customizing the Instrumentation for ASP.NET Applications" on page 171.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 176 of 240

Controlling Which HP Software Products the Agent can
Work With

The .NET Agent can be set in different modes for the following:

l Monitoring applications from development through pre-production testing and into production.

l Usewith other HP Software products.

l Use as a standalone Diagnostics Java Profiler not reporting to a server or to other HP Software
products.

Themode the .NET Agent works in is determined by the <modes> element set in the <probe_
install_dir>/etc/probe_config.xml file.

The <modes> element is also used in determining usage against the license capacity (see
"License Information Based on Currently Connected Probes" in the HP Diagnostics Server
Installation and Administration Guide). For Diagnostics there are two types of LTUs (License to
use):

l AM -When using of the product in an enterprisemode, typically in a production environment.

l AD -When using the product in a pre-production load testing environment with probes in
LoadRunner or Performance Center runs.

The value of the <modes> element is initailly set at the time you install the .NET agent. See
"Installing .NET Agents " on page 19

To change the value of the <modes> element you can edit the probe_config.xml file. Or you can re-
run the .NET Agent installer and use the Change option to set themode to Diagnostics Profiler
Mode (PRO), ApplicationManagement/EnterpriseMode for Diagnostics (Enterprise) and/or
TransactionVision (TV) or Diagnostics Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for .NET in enterprisemode or integrated
with other HP Software products, contact HP Software Customer Support to purchase HP
Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software products, youmust
perform additional configuration steps. See BSM-Diagnostics Integration Guide and the
LoadRunner/Peformance Center-Diagnostics Integration Guide.

The sections that follow provide instructions for configuring each product mode of the <modes>
element (see also "<modes> element" on page 132).

PRO Mode - Diagnostics Profiler for .NET

When PROmode is set, the agent gathers performancemetrics and presents them in the
standalone Diagnostics Profiler for .NET user interface which is made available through a URL on
the agent host.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 177 of 240

In this mode the profiler is always collecting data even when the profiler UI is not in use. This mode
can be combined with other modes.

PROmode is not used in determining usage against license capacity.

Enterprise Mode

When configured in Enterprisemode, the agent works with HP Software products such as BSM,
LoadRunner, Performance Center, and as the full Diagnostics enterprise product. It will capture
data for LoadRunner/Performance Center runs in a separate database as well as capture data
outside of LoadRunner/Performance Center runs.

Both AD and AMmodes will override this mode.

In Enterprisemode data will also be sent to the Diagnostics .NET Profiler. If the PROmode is set
along with Enterprisemode then the .NET Agent will collect data continuously for the profiler even if
the profiler UI is not in use. If PROmode is not set then the agent will not start collecting data until
the profiler UI is started.

Enterprisemode is the default for .NET Agents (if you don’t specify AD or AMmode). In Enterprise
mode the agents are counted against the AM license capacity.

AM Mode

In AMmode the .NET agent will capture all instrumentation data. You can set AMmode to protect an
agent in a production BSM deployment from accidently being included in a LoadRunner or
Performance Center run. In AMmode, the agent is not listed as an available agent in LoadRunner or
Performance Center.

Agents in AMmodewill always be counted against the AM license capacity.

AMmode supersedes all other modes except for AD.

AD Mode

In AD mode the .NET agent will only capture data during runs from LoadRunner/Performance
Center and the results will be stored in a specific Diagnostics database for that run, for example,
Default Client:21.

When the agent is in this mode it will not use resources or send any data to the server unless the
probe is part of a LoadRunner/Performance Center run.

AD mode supersedes all other modes. So for example, if AD mode and any other modes are set
then themode will be set to AD.

See the BSM-Diagnostics Integration Guide and the LoadRunner/Peformance Center-Diagnostics
Integration Guide for more information.

Use this mode to prevent an agent in a QA environment from using additional resources and
continually report data to the Diagnostics console dataset when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD modewill only be counted
against AD license capacity when the probe is running in a LoadRunner or Performance Center test
run. For example if you have 20 agents installed in LoadRunner/Performanace Center AD mode but
only 5 are in a run, then only 5 are counted against AD license capacity.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 178 of 240

TV mode

This mode will send events to Transaction Vision. This mode can be combined with other modes.
TV mode is not used in determing usage against HP Diagnostics license capacity.

Note about AD Mode and Enterprise Mode

The .NET agent gets notified of LoadRunner/Performance Center runs by the Diagnostic Mediator.

If LoadRunner/Performance Center starts testing an instrumented application that is not running, for
example, a web application getting hit the first time, then when the application starts executing the
Diagnostics agent will not be notified of the run. This is because the agent will not have had enough
time to get initialized and start listening to themediator for this notification.

To work around this problem, the .NET agent needs to be "primed"(initialized) by a call to the web
application before a LoadRunner/Performance Center run is started. This initializes the web
application's process (worker process) and the probe so that it is ready to accept run information
from themediator.

Configuring Support for MSMQ BasedCommunication
To configure the .NET Agent to support MSMQ based communication, include themsmq.points
file in the scope of the appdomain as shown in the example excerpt from a <probe_install_
dir>/etc/probe_config file:

<process name="SimplestQueuingSender">
<points file="msmq.points"/>
<modes enterprise="true"/>
</process>

Configuring Latency Trimming and Throttling
When the .NET Agent determines that it is running out of resources because the Diagnostics
Server is not keeping up with the amount of data that the probes are capturing, the agent can
automatically reduce the number of methods the probe captures using a process called latency
trimming. By default, latency trimming is enabled so that the probe’s work load can be adjusted as
necessary.

When latency trimming is enabled, the .NET Agent trims the number of methods captured by a
probe by ignoringmethods with a total latency below a certain minimum latency threshold. The idea
behind trimming is that it is better to miss capturingmethods with lower latency that are less likely
to be of interest than to allow the probe to bog down or stop running. Trimming allows the probe to
continue to run so that it can capture themore interestingmethods with higher latencies.

Note: Because of threading and buffering, partial information about amethod that was trimmed
can be transmitted to the Diagnostics Server. When the Diagnostics Server detects that it
received only partial information for amethod, it issues a warningmessage. You should ignore
these warningmessages unless you expected that the information for all methods was to be
captured.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 179 of 240

Note:

l Latency trimming and throttling are ignored by the Profiler user interface.

l The Diagnostics Server can be configured to apply additional trimming of the probe’s data
which will affect the granularity of the data shown by the Diagnostics user interface.

Disabling Latency Trimming

By default, trimming is enabled for the .NET Agent. To disable trimming youmust change the
configuration.

To disable Latency Trimming:

Add the latency tag to the <probe_install_dir>/etc/probe_config.xml configuration file, as shown
in the following example:

<trim>
<latency enabled="false" />

</trim>

The attribute of the latency element that turns on latency trimming is enabled. Latency trimming is
enabled when enabled is set to true. When enabled attribute is set to false, latency trimming is
disabled. The default value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET
Agent Configuration File " on page 85

Enabling Latency Trimming

By default, trimming is enabled for the .NET Agent. If you subsequently disabled trimming, you
must change the configuration to enable it oncemore.

To enable Latency Trimming:

Change the value of the enabled attribute of the latency element in the <probe_install_
dir>/etc/probe_config.xml configuration file, as shown in the following example:

<trim>
<latency enabled="true" />

</trim>

The attribute of the latency element that turns on latency trimming is enabled. Latency trimming is
enabled when enabled is set to true. When enabled attribute is set to false, latency trimming is
disabled. The default value for this attribute is true.

For a description of attributes and elements of the latency element, see "Understanding the .NET
Agent Configuration File " on page 85

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 180 of 240

Setting Latency Trimming Thresholds

By default, the latency trimming thresholds are set so that thosemethods with a latency less than 2
ms are trimmed, and thosemethods with a latency greater than 100ms are never trimmed.

You can set theminimum trimming threshold by adjusting the value of themin attribute. You can
set themaximum trimming threshold by adjusting the value of themax attribute. These attributes
are specified in the latency element in the <probe_install_dir>/etc/probe_config.xml
configuration file.

<trim>
<latency enabled="true" min="50" max="100" />

</trim>

The attributes of the latency element that control the trimming thresholds are:

l min

Sets theminimum latency threshold. When latency trimming is enabled, methods with a latency
less than or equal to the value of this attribute are trimmed. If you do not specify a value for this
attribute, the default value of 2 ms is used.

The lower the value of themin attribute the greater the chance that the performance of the
application will be adversely impacted. A lower valuemeans that fewermethods are trimmed
becausemore low-latency methods are captured.

If the information for all methods must be captured, disable latency trimming by setting latency
enabled equal to false.

l max

Sets themaximum latency threshold. When latency trimming is enabled, methods with a
latency greater than or equal to the value of this attribute are never to be trimmed. The default
value for this attribute, if you do not specify a value, is 100ms.

For a description of the attributes and elements of the latency element, see "Understanding the
.NET Agent Configuration File " on page 85

Configuring Latency Trimming Throttling

Latency trimming is throttled by default. When throttling is enabled, the amount of trimming that is
done is automatically adjusted based on the percentage of the probe resources that are being used
up by the Diagnostics Server processing backlog.

Without throttling, themethods that fall below theminimummethod latency threshold are always
trimmed.

If the percentage resources used by the probe increases above a set throttling increment threshold,
the effective trimming threshold is incremented so that methods with higher latency are trimmed. If
the percentage of probe resources used increases above the threshold again, the effective trimming
threshold is incremented oncemore so that methods with even higher latency are trimmed. If the
percentage of probe resources used drops below the throttling decrement threshold, the effective

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 181 of 240

trimming threshold is decremented so that themethods with lower latencies are captured once
more.

The effective trimming threshold cannot be incremented above themaximummethod latency
threshold, and it cannot be decremented below theminimummethod latency threshold.

Below is an example of the latency element in the probe_config.xml configuration file that
includes the throttling attributes:

<trim>
<latency enabled="true" min="50" max="100"
throttle="true" incrementthreshold="75"
decrementthreshold="50" increment="2"/>

</trim>

The attributes of the latency element that control throttling are:

l throttle

Throttling is enabled when this attribute is set to true. When this attribute is set to false
throttling is disabled. The default value for this attribute is true.

l increment

Sets the amount that the effective trimming threshold is incremented when the percentage of
probe resources used exceeds the incrementthreshold. Sets the amount that the effective
trimming threshold is decremented when the decrementthreshold is crossed. The default value
for this attribute is 2ms.

l incrementthreshold

When the percentage of probe resource usage rises to the value of this attribute or higher,
throttling is triggered so that the effective trimming threshold is incremented. The default value
for this attribute is 75 percent.

l decrementthreshold

When the percentage of probe resource usage falls to the value of this attribute or lower,
throttling is triggered so that the effective trimming threshold is decremented. The default value
for this attribute is 50 percent.

For a description of the attributes and elements of the latency element, see "Understanding the
.NET Agent Configuration File " on page 85.

Configuring Depth Trimming
The .NET Agent can automatically reduce the number of methods that it captures using a process
called depth trimming. When the Diagnostics Server is not keeping up with the amount of data that
the probe is capturing, the probe can use depth trimming to help prevent it from running out of
resources. By default, depth trimming is enabled.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 182 of 240

Note: Depth trimming is ignored by the Profiler user interface.

When depth trimming is enabled, the .NET Agent trims the number of methods captured by ignoring
methods that are called at a stack depth that is greater than themaximum stack depth threshold.
Those that are called at a stack depth less than or equal to the stack depth threshold are captured.
The idea behind trimming is that it is better to miss capturingmethods further down in the call stack,
that are less likely to be of interest, so that the probe is able to continue to run and is able to capture
themore interestingmethods that occur higher in the call stack.

For example, if the stack depth threshold is 3, and the followingmethod calls aremade:

/login.do calls a() calls b() calls c()

where only the /login.do, a, and bmethods are captured, andmethod c is trimmed.

Below is an example of the depth element in the probe_config.xml configuration file that includes
the trimming attributes:

<trim>
<depth enabled="true" depth="10" />

</trim>

The attributes of the depth element that control trimming are:

l enabled

Depth trimming is enabled when this attribute is set to true. When this attribute is set to false
depth trimming is disabled. The default value for this attribute is true.

l depth

Sets the threshold that are used for depth trimming. Methods that are called at or below the value
of this attribute are trimmedwhen depth trimming has been enabled. The default value for this
attribute is 25.

Setting depth to a lower value can significantly reduce the overhead of capture. For a
description of the attributes and elements of the depth element, see "Understanding the .NET
Agent Configuration File " on page 85.

Configuring URI Truncation and Mapping
Any HTTP/S server request URI can be transformed before being reported by the probe. This
transformation is based on regular expressionmatching and replacement controlled by the
urireplacepattern element in the probe_config.xml configuration file. It is turned off by default.

This can be useful when you are seeing toomany server requests and you want to replacemany
server request URIs with one simplified server request URI that aggregates them.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 183 of 240

Caution: Overuse of this feature will impact performance.

An example is shown below:

<symbols maxuri="" maxsql="">
<urireplacepattern enabled="true">

<pattern value="s/TestService1/CommonService/"/>

<pattern value="s/TestService2/CommonService/"/>
</urireplacepattern>

</symbols>

The syntax used for the pattern value is s/search_pattern/replace_pattern/.

The search_pattern and replace_pattern should be enclosed in /. If / is used in the pattern then the
character # should be used instead of / as the separator.

The patterns are applied to all server requests and are applied to the uri in the order they are
specified in the probe_config.xml file.

If urireplacepattern is enabled, then two default patterns are configured by default.

The first of these default patterns is used to trim server requests that contain a ; or /!. All content
after these tokens is removed from the server request.

The pattern used is : s#(;|/?\\!).*$##"

The second of these default patterns replaces loading of images, pdfs and docs with a fixed token
("/Static Content").

The pattern used is:

s#(?<word1>^.*)(/.*\\.js|css|jpg|gif|png|pdf|html|doc|docx)#${word1}/Static Content#

Both of these patterns can be customized.

Capturing HTTP Server Requests Based on Query
Parameters

AnHTTP/S server request can be named based on its query parameters. This allows the probe to
report more granular metrics for a particular server request.

By default, query parameters are ignored whenmonitoring a particular server request. To specify
that a server request be created based on a particular query parameter, use the httpcaptureparams
element in the probe_config.xml configuration file. Multiple parameters can be specified.

An example is shown below:

<httpcaptureparams enabled="true">
<param name="Genre"/>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 184 of 240

<param name="accounttype"/>
</httpcaptureparams>

A server request is created for each server request that includes the Genre parameter and
accounttype parameters:

The httppcaptureparams element can also be used to capture the original URI of the server
request. To capture the unmodified server request, set the capturequerystring argument to true:

<httpcaptureparams enabled="false" capturequerystring="true">
<param name="Genre"/>

</httpcaptureparams>

The captured query string is displayed in the call profile (SR instance) as shown below:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 185 of 240

Configuring the .NET Agent for Lightweight Memory
Diagnostics

The Lightweight Memory Diagnostics (LWMD) feature refers to the ability to capture and analyze
usage data that relates to Collections. Specifically Collections refer to any class that implements
either theSystem.Collections.ICollection orSystem.Collections.Generic.ICollection
interfaces. Examples of such Collections are ArrayList, HashTable, DataView etc. Themost
common from of .NETmemory leaks occur in Collections that are not properly maintained.

When the .NET Agent is installed, the default configuration for the .NET Agent probe is to have
LWMD turned off. To enable the LWMD feature youmust perform twomodifications to the probe_
config.xml file:

l Youmust enable the <lwmd> element (see "<lwmd> element" on page 126).

l Youmust add one or more references to the Lwmd.points file as described in the instructions
below.

Note: Enabling the probe to capture collections metrics could incur additional overhead on the
host for an application.

To enable the capture of collection metrics for a process or for an AppDomain:

Add a points tag for the Lwmd.points file to either the process tag or to one or more
<appdomain> tags in the probe_config.xml configuration file.

When you install the .NET Agent, the Lwmd.points file is installed in the <probe_install_dir>/etc/
directory along with theASP.NET.points andADO.points files. The Lwmd.points file contains
the instrumentation instructions needed to enable the capture of collectionmetrics.

To enable LWMD instrumentation for all enabled AppDomains that run under a process, you add the
points tag to the process tag in the probe_config.xml configuration file. For example, to enable
LWMD instrumentation for all enabled ASP.NET AppDomains:

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="Lwmd.points"/>
<appdomain name="1/ROOT/your_app_name" website="Default Web Site enabled="

true">
<points file="DefaultWebsite-your_app.capture points" />

</appdomain>
</process>

To enable LWMD instrumentation for a specific enabled AppDomain that runs under a process, you
add the points tag to an appdomain tag in the probe_config.xml configuration file. You can add the
points tag to one or more of the <appdomain> tags. For example, to enable LWMD instrumentation
for the "your_app_name" AppDomain running in the ASP.NET process:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 186 of 240

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/your_app_name" website="Default Web Site" enabled=

"true">
<points file="DefaultWebsite-your_app.capture points" />
<points file="Lwmd.points"/>

</appdomain>
</process>

To disable LWMD:

To disable the LWMD feature youmust perform twomodifications to the probe_config.xml file:

l Disable the <lwmd> element (see "<lwmd> element" on page 126).

l Delete the points tags for the Lwmd.points file from all process tags and from the appropriate
<appdomain> tags.

Without the LWMD points tags in the configuration file, the probe cannot locate the LWMD
instrumentation instructions contained in the Lwmd.points file and so the probe will not
instrument for Collection usage.

To control LWMD Instrumentation:

When the .NET Agent is installed, the default configuration for the Lwmd.points file contain
instructions to instrument Collection usage in a wide range of assemblies, AppDomains,
namespaces and classes. You canmodify the your application's points file to narrow the scope of
the Collections that you want to inspect. LWMD Instrumentation is implemented as Caller side
Instrumentation, refer to "Caller Side Instrumentation" on page 67 for a description of how this
instrumentation works.

Note: Narrowing the scope of LWMD instrumentation is a recommended best practice.

To narrow the scope of the Collections that you want to inspect perform the following steps:

1. Delete the points tags for the Lwmd.points file from the process tags and from the appropriate
<appdomain> tags. This will remove the LWMD settings that specify a wide instrumentation
scope.

2. Add an LWMD section to the points file for your process or AppDomain. As an example, to do
this copy and paste the following into your_app.points file:

[LWMD]
keyWord = lwmd
scope =
ignoreScope =

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 187 of 240

3. Set the scope and ignoreScope Arguments in the LWMD section to narrow the scope of the
Collections that you want to inspect. Example:

[LWMD]
keyWord = lwmd
scope = !my_namespace\..*
ignoreScope = !my_namespace.my_class1\..*

The example above instruments all the Collections that are constructed from themy_
namespace namespace except for any Collections that are constructed from any method in the
my_namespace.my_class1 class.

For LWMD Instrumentation there is an internal default value for ignoreScope that is
unpublished and is always included with any value you enter. The default value includes
namespaces and classes relating to the .NET Infrastructure that if instrumented would
adversely affect the application, for example, !System.*, !Microsoft.*, and so on.

Limiting Exception Stack Trace Data
The agent collects exception data for exception throwing server requests and presents the
information in the Diagnostics UI. The collected exception data can optionally include a stack trace.

Collecting stack trace data for all exceptions is usually undesirable however, because exception
stack traces that are not of interest overload the display as well as the data collection and transfer
operations. You can therefore limit the exception types for which stack trace data is collected. For
example, filtering application server-based errors such as
System.Security.Authentication.AuthenticationException would allow the stack traces to be
used for more application-specific errors.

The stack trace data that is collected is controlled in three ways: limiting specific exception types,
limiting the number of exceptions for which stack trace data is collected and limiting the size of the
stack trace data.

Note: You can disable all stack trace collection by setting captureexceptions
enabled="false" in the probe_config.xml file. By default, stack trace collection is enabled.

This section includes:

l "Limit Specific Exception Types" on the next page

l "Limit the Number of Exceptions per Server Request" on the next page

l "Limit the Size of the Stack Trace" on the next page

l "Example" on page 190

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 188 of 240

Limit Specific Exception Types
The exceptions for which stack trace data is collected is limited by setting the exclude and include
properties in the probe_config.xml file as shown in the following example:

<exclude>
<exceptiontype name="System.ArithmeticException"/>

</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

Subtypes of any exception type specified to be excluded or included are also excluded or included,
respectively, unless they are explicitly specified otherwise on the include or exclude list.

The following diagram shows which exception types are included and excluded based on the
preceding example:

Changes to the probe-config.xml file take effect immediately; it is not necessary to restart the
application.

Limit the Number of Exceptions per Server Request
By default, the .NET Agent probes collect stack trace data on only the first 4 exceptions
encountered during a server request. If your application has more exceptions for which you want to
view stack trace information, you can increase the value of themax_per_request property in the
probe_config.xml file. As with all collectedmetrics, increased amounts of collected data place a
higher load on the Diagnostics Server.

Limit the Size of the Stack Trace
By default, the captured stack trace data can be of any size. You can limit the size of the stack
trace string to improve the readability of the Exceptions tab. Set the value of themax_stack_size
property to themaximum stack trace string in the probe_config.xml file. As with all collected data,
increased amounts of collected data place a higher load on the Diagnostics Server. By default, this
property is set to 0 (zero) whichmeans that the stack trace size is not limited.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 189 of 240

Example
The following settings enable exception stack traces with amaximum stack trace string size of
2048.

<captureexceptions enabled="true" max_per_request="4" max_stack_size="2048">
<exclude>

<exceptiontype name="System.ArithmeticException"/>
</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

</captureexceptions>

Configuring Thread Stack Trace Sampling
When asynchronous thread sampling is enabled, you can see, in the Call Profile view, which
methods were executed during long running fragments even if no instrumentedmethods were hit
during this time. See the HP Diagnostics User’s Guide chapter on Call Profiles for a screen shot
showing the additional nodes added based on thread sampling.

The <stacktracesampling> element in probe_config.xml enables and configures thread stack trace
sampling. For more information about this element, see "<stacktracesampling> element" on page
152.

Example Thread Sampling Configurations

Use Case 1: You see a particular method that intermittently takes an exceptionally long time to
complete. Since themethod average execution time is relatively short, you do not want to add
additional instrumentation to themethods callable from themethod, because this would increase
the overhead.

1. You enable stack trace sampling and configure the longmethod latency threshold to a value
larger than the average execution time of themethod, but shorter than the observed long
running times.

2. The stack traces are collected only for methods running at least as long as the specified
threshold value, thus incurring no overhead for most cases.

3. You examine the Call Profile for the long running instances of the Server Request and sees
additional nodes revealed by stack trace sampling.

Example:

In production environment, a particular method has average latency about 170milliseconds, but
from time to time it takes 1.4 second for this method to complete. Most of themethods visible in
Call Profiles for any fragment execute in about 550milliseconds or less.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 190 of 240

Since themethod in questionmakes multiple calls to its callees, you do not want to instrument
them. Instead,you enable sampling to find out what is the cause of long execution times. To
minimize the overhead, you set tardymethodlatency value to 600milliseconds. This ensures that
most of themethods will not get sampled at all, because they are likely to complete before this time
elapses. However, any method running longer than this value, including our trouble-makingmethod,
will get sampled, once themethod runs for 600milliseconds (or longer) without making any calls to
any of the instrumentedmethods.

You also set the value of stacktracesampling-rate to 100milliseconds. Theoretically, this should
give up to 8 samples for eachmethod invocation that lasts 1.4 seconds ((1400 - 600) / 100).

Use Case 2:You see insufficient Call Profile info for all or some of the Server Requests, but are
reluctant to add additional instrumentation because of the performance concerns or because of the
need to restart the application.

1. You enable stack trace sampling, resets the longmethod latency to zero, and configures the
sampling rate to balance the overhead and the amount of additional data.

2. The stack traces are collected for all methods

3. You examine the Call Profiles and see additional nodes revealed by stack trace sampling

Example: You prepare a custom application for deployment and sees that the default
instrumentation provided with the Diagnostics probe does not work very well, becausemany Call
Profiles contain very few methods which do not give any insight about the application specific
behavior. You are reluctant to add additional instrumentation for all classes andmethods belonging
to her custom application, because of the performance andmemory consumption concerns.

Assuming that a typical fragment that does not have sufficiently detailed call tree information runs
in about 2 seconds, you select stacktracesampling-rate to be 200ms. This can give up to 10 stack
traces per typical fragment. However, you do not want all the stack traces to be reported, because
some of themethods visible in the stack traces can be very fast, and they do not substantially
contribute to the fragment overall latency. After viewing the Call Profiles with the additional method
nodes obtained from sampling, youmake an informed decision about adding additional
instrumentation points to the probe configuration in deployment.

Troubleshooting Thread Sampling Configurations

Why do I not see any new nodes in my Call Profile after I enabled stack trace sampling?

See if any of the following applies to your case:

Check if the last method visible in the Call Profile is an outbound call. Outbound calls do not get
sampled by default.

l Try to reduce tardymethodlatency. It is possible that the last method visible in Call Profile
makes calls that get trimmed, but they prohibit the sampling to kick in because there's never an
inactive period of tardymethodlatency for the caller.

l Try to reduce stacktracesampling - rate. Perhaps your methods simply miss the opportunities to
get sampled.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 191 of 240

l Verify that the latency of the last visible method in Call Profile is not caused by running garbage
collector. No .NET code runs during garbage collection, and this includes the stack trace
sampling code.

What is the minimum value of stacktracesampling.rate I can use?

You can use any positive value, but please keep inmind that each platform will simply refuse to
samplemore frequently that it possibly can. The three factors playing a role here are: theminimum
granularity of sleep() available, the timer resolution, and the time it actually takes to collect one set
of samples. It is recommended to be higher than 20ms.

What is the maximum value of stacktracesampling-tardymethodlatency I can use?

There is no limit. The usefulness of a high setting depends entirely on the latency of the server
requests for the application. To get any results, you should plan for at least a few samples for each
fragment you are concerned with, and even that may require tuning other sampling parameters as
well.

Disabling Logging
You can disable application logging by changing the logging level tag of the ASP.NET process
section of the probe_config.xml file, as shown in the following example:

<process name="ASP.NET">
<logging level="off"/>

</process>

You can disable instrumentation logging by changing the logging level tag of the instrumentation
section, as shown in the following example:

<instrumentation>
<logging level="off" />

</instrumentation>

Overriding the Default Probe Host Machine Name
The registered_hostname property enables you to override the default host machine name that a
probe uses to register itself with the Diagnostics Server in Commander mode. In situations where a
firewall or NAT is in place or where your probe host machine has been configured as amulti-homed
device, it might not be possible for the Diagnostics Server in Commander mode to communicate
with the probe unless you override the default host machine name.

To override the default host machine name for a probe there is a three step process.

1. First, set the registered_hostname attribute, located in the .NET Agent <diagnosticsserver>
element of the probe_config.xml file, to an alternatemachine name or IP address that

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 192 of 240

allows the Diagnostics Server in Commander mode to communicate with the Probe.

For example:

<diagnosticsserver url="http://localhost:2006/commander" registered_hostn
ame=" my_host_name "/>

2. Second, register the alternatemachine name or IP address of the host with the .NETMetrics
Agent. To do this, make ametrics.agent.registered_hostname entry in themetrics.config
file. You can add the entry just under themetrics.systemgroup entry.

For example:

metrics.systemgroup = Default
metrics.agent.registered_hostname = my_host_name

3. Finally, youmust restart both the .NET Agent and the .NETMetrics Agent for this change to
take effect.

Note:

l Setting the registered_hostname attribute because of a NAT or firewall is only an issue for
a test environment where you are using LoadRunner, Performance Center, or Diagnostics
Standalone.

l You need to set the registered_hostname attribute to deal properly with the use of the IIS
Host Header technology.

l However, if you should set the registered_hostname in a production environment where you
are using BSM or Diagnostics Standalone, the name that you specify is shown as the host
name in System Health.

Listing the Probes Running on a Host
Whenmore than one probe is running on a single host, you cannot know which port each probe is
using since the port that is assigned is based on the one that is available at the time the application
(and probe) is started. As the applications are started and stopped, the port that is assigned to the
probe for a given application is likely to change.

You can determine which probes are running on a host and the ports that they are using by
accessing the following URL:

http://<probe_host>:<port>

For the port value, enter the port number 35000 or 35001. It does not matter which one you enter.

The list of probes and ports is displayed as shown in the following example:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 193 of 240

Authentication and Authorization for .NET Profilers
You canmanage the authentication and authorization of users of the Profiler in the <probe_install_
dir>/etc/probe_config.xml file.

Note: If the .NET Agent is configured to work with a Diagnostics Server, the probe (Profiler)
authorization and authentication settings aremanaged from the Diagnostics Server in
Commander mode to which this probe is connected. For more information, see "User
Authentication and Authorization" in the HP Diagnostics Server Installation and Administration
Guide.

When you access the probe from the Diagnostics Server, the default username is admin and
the default password is admin.

If the .NET Agent is installed as a profiler only, by default, users are not required to enter a
username and password to access the profiler.

However, you can configure the profiler to require user authentication. If you configure the profiler to
require user authentication, you can define the password required for accessing the profiler.

To configure the profiler to require user authentication:

Go to the <probe_install_dir>/etc/probe_config.xml file and set the value of profiler
authenticate to true.

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>>

If you do not set a username and password, the default username is admin and the default
password is admin.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 194 of 240

To create new usernames and passwords for users of the .NET Diagnostics Profiler:

1. Generate a new username and password using thePassGen.exe utility located in the <probe_
install_dir>/bin directory. Enter the user name and password for encryption. The encrypted
password generated for the user is FIPS-2 compliant.

2. In the probe_install_dir>/etc/probe_config.xml file, after the <profiler
authenticate="true"> line, enter the username and password for each new user, in the
following format:

<profiler authenticate="true">
<authentication username="" password=""/>

</profiler>

n For authentication username, enter the username that you chose when running the
PassGen utility.

n for password, enter the encoded string that was returned by thePassGen.exe utility.

Caution: If you defined new usernames and passwords to access the profiler, you can no
longer use the default username and password (admin, admin). Rather, youmust use one
of the new usernames that you defined.

Configuring Consumer IDs
Web servicemetrics can be grouped by particular consumers of theWeb service. Themetrics are
then aggregated for that consumer and displayed as such in the Services by Consumer ID and
Operations by Consumer ID views.

Aggregating the data by consumer ID is useful if you want to determine who is using a particular
service and how frequently they are using it. Consumer IDs are also useful for BSM. BSM users
can look at the performance of the same application based on consumers to compare their
performance characteristics.

Configuring Consumer IDs is optional. By default, the Consumer ID of aWeb service being
monitored is reported as the IP address of the consumer of theWeb service.

There are three ways of defining the consumer ID:

l a value that appears in the SOAP request

l a value that appears in an HTTP header

l to a specific IP address or a range of IP addresses

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 195 of 240

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:

1. For each .NET probe for which you want metrics grouped by consumer, update the probe_
config.xml file as described in "Consumer ID Rules Syntax and Examples for .NET Agent"
below.

2. If you are configuringmore than 5 consumer types, update themax.tracked.ids.per.probe
setting in the server.properties file.

About Consumer ID Rules
The assignment of consumer IDs is controlled by consumer ID rules in the probe_config.xml file.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header rules, and IP rules.
The rules are applied in an order nomatter which order the rules are defined. The SOAP header
rules are applied first, the HTTP headers rules are applied next, and lastly the IP rules are applied.

All rule types do not need to be used. There could be SOAP rules, no HTTP rules, and IP rules. If
there is nomatch on any of these rules, the original IP address is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP
header, envelope or body. The rule specifies a regular expression that is used tomatch against the
web service name being called by the consumer. See "Using Regular Expressions" in the HP
Diagnostics Server Installation and Administration Guidefor information on using regular
expressions.

If there is amatch with the web service name, the agent/probe attempts to find the element defined
in consumeridfield in the appropriate SOAP location defined by the SOAP rule. If the element is not
found, this rule is skipped and the agent/probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of
HTTP headers in a HTTP request.

The IP rules allow for the consumer ID to be obtained from themapping of IP addresses to a
consumer ID. The rule is used to define an IP address, or a range of addresses, to be assigned to a
consumer ID.

Consumer ID Rules Syntax and Examples for .NET Agent
The rules syntax and examples are specific to how the consumer ID is being defined.

SOAP Rules

The SOAP rules allow for the consumer ID to be obtained from an XML element in the SOAP
header, envelope or body.

An example of configuring consumer ID based on a value in the SOAP header is shown below:

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 196 of 240

<consumeridrules enabled="true">
<soaprules>

<soaprule id="SOAP1" rule="TestService" location="soap-header" consumeri
dfield="Caller"/>

</soaprules>
</consumeridrules>

id= attribute can be any name you would like to use to identify the rule; this attribute is not used by
the .NET probe.

rule= attributemust be defined for a soaprule. The rule is a regular expression that is used tomatch
against the web service name being called by the consumer or you can use the exact Web service
name.

location= can be set to "soap-header", "soap-envelope", "soap-body". If you do not specify a
location, it defaults to use "soap-header." If you configure a location for any soap rule, youmust
configure a location for all soap rules, or a severe error will occur and the consumer ID based on
SOAP logic will be disabled.

consumeridfield= attributemust be defined for a soaprule. The element in the SOAP header,
envelope or body whose value you want to use as the consumer ID.

If there is amatch with the pattern specified in the rule= attribute, the .NET agent attempts to find a
text element for the element defined in the consumeridfield. The element in the consumeridfield can
be a qualified name—that is, composed of a namespace name and the local part—or an unqualified
name, which does not have an associated namespace. If the element is not found in the specified
location, this rule is skipped and the probe goes on to the next rule that is defined.

For example, the following rule matches on aWeb service named TestService and uses the Caller
element’s value as the consumer ID:

<soaprule id="SOAP1" rule="TestService" location="soap-header" consumeridfield="
Caller"/>

As long as the callers of the TestServiceWeb service have a value defined for Caller, themetrics
will be grouped by the different values for Caller. Here is an excerpt from the soap header that would
map to a consumer ID of "Customer2" for this caller of the TestService:

SoapTest1;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envel
ope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<env:Header>

<Caller>Customer2</Caller> <-- The consumer id returned is"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 197 of 240

<intVal xsi:type="xsd:int">100</intVal>
</m:sell>

</env:Body>
</env:Envelope>

Enable SOAP Capture

SOAP envelopes can be very large so the <soapcapture> element is provided to enable you to
control the overhead, mainly memory overhead, of capturing SOAP requests and responses.

<soapcapture enabled="true">

The <soapcapture> element controls whether SOAP requests and responses are captured. If it is
disabled, SOAP requests and responses will not be captured. This means there will not be SOAP
requests or responses included in TransactionVision events, nor will there be any SOAP requests
available with SOAP faults, and you cannot configure consumer ID based on SOAP header,
envelope, or body.

The <soapcapture> setting overrides the settings in <soaprequestforsoapfault> which controls
SOAP payload capture on SOAP faults. See "Configuring SOAP Fault Data" on the next page.

HTTP Header Rules

The HTTP header rules allow for the consumer ID to be obtained from a header in the collection of
HTTP headers in a HTTP request. A rule and consumeridfield attributemust both be defined for a
HTTP rule element, and an id attribute can also be defined for the user to identify individual rules.

The rule is a regular expression that is used tomatch against the URL that the HTTP request is
being sent to by the consumer. If there is amatch, the .NET probe attempts to find an HTTP header
for the header name defined in the consumeridfield. If the header name is not found in the collection
of HTTP headers, this rule is skipped and the probe goes on to the next rule that is defined.

Example httpheader rules:

<consumeridrules enabled="true">
<httpheaderrules>
<httpheaderrule id="httpHeader 1" rule="/Webservice/.* consumeridfield="C

aller"/>
</httpheaderrules>

</consumeridrules>

IP Address Rules

The IP rules allow for the consumer ID to be obtained from themapping of IP addresses to a
consumer ID. A rule and consumerid attributemust both be defined for an IP rule element, and an id
attribute can also be defined for the user to identify individual rules.

The rule is used to define an IP address, or a range of addresses, to be assigned to a consumer ID.
This rule can be defined as a single IP address; for example, 19.225.17.125. The rule can also
define a range; for example, 19.255.17.125,19.255.17.255.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 198 of 240

An asterisk can also be used in an octet of an IP address tomatch against anything in that octet; for
example, 19.255.17.*. A range can be defined in an octet to match a range of values in that octet;
for example, 19.255.17.20-255. Combinations of these can also be used; for example, 19.*.17.20-
255, 20.*.10-55.*. If there is amatch, the .NET probe sets the consumer ID to the consumer ID
defined in the rule.

Examples:

<consumeridrules enabled="true">
<iprules>

<iprule id="IpTest1" rule="18.*.1-20.*" consumerid="Client1"/>
<iprule id="IpTest2" rule="17.*.*.*" consumerid="Client2"/>
<iprule id="IpTest3" rule="19.255.17.125,19.255.17.255" consumerid="Clie

nt3"/>
</iprules>

</consumeridrules>

Configuring SOAP Fault Data
If a SOAP fault is detected, the SOAP payload can be included with the SOAP fault data. SOAP
payload is only captured when there is a SOAP fault.

In the Diagnostics UI, you can view the payload information as part of the SOAP fault instance tree
(call profile).

Because payloads can contain sensitive information such as credit card numbers, payload capture
on SOAP faults is disabled by default. To enable payload capture on SOAP faults set
<soaprequestforsoapfault enabled="true"/> in the probe_config.xml file on the .NET probe
system.

You can also define the limit for the payload size using themaxsize attribute in the
<soaprequestforsoapfault> element. For example, the following entry increases the SOAP
payload length to 10000 from its default of 5000:

<soaprequestforsoapfault enabled="true" maxsize="10000"/>

The <soapcapture> element overrides the <soaprequestforsoapfault> element. So that if
<soapcapture> is disabled, <soaprequestforsoapfault> is disabled even if
<soaprequestforsoapfault> is set to true. Also whatever <soapcapture> maxsize value is set,
overrides the <soaprequestforsoapfault> maxsize. So that is <soapcapture> maxsize is set to
5000 and <soaprequestforsoapfault> maxsize is set to 10000, the payload size will bemaximum of
5000.

Collecting Additional Probe Metrics or Modifying Probe
Metrics

You can configure the .NET agent to collect additional probemetrics based on perfmon counters
using the <metrics> and <metric> elements in the <probe_install_dir>\etc\probe_config.xml

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 199 of 240

file. See "<metric> element" on page 130 and "<metric> element" on page 130 for details.

You can alsomodify probemetrics using the <metric> element. But note the following special
cases:

l If you want to move ametric from onemetric category to another, youmust change themetric’s
group attribute as well as themetric name attribute. This is because the existingmetric name is
already registered to its old group on the Diagnostics mediator and this association cannot be
changed.

l If you want to redefine an existing probemetric it is better to create a completely new metric
entry rather than assigning a different perfmon counter to themetric. This ensures that you avoid
aggregating disparate data.

Performance Counter Security
The .NET Agent uses Performance Counters to collect probemetrics. This requires the application
process that is beingmonitored by the .NET Agent to have access rights to performance counters.
Each process runs as a user account therefore this user account must have access rights to
performance counters. The simplest way to do this is to add the user account that the process runs
as to thePerformance Monitor Users group.

However Microsoft has introduced the concept of a virtual accounts inWindows Vista SP2,
Windows Server 2008 SP2, Windows 7 andWindows Server 2008 R2 (see
http://technet.microsoft.com/en-us/library/dd548356(WS.10).aspx for details). These operating
systems have used the virtual accounts concept in IIS and by default, application pools in IIS run
as ApplicationPoolIdentity. Because this user account is virtual, it requires special steps to add
the user account to the PerformanceMonitors Users group.

In Windows 2008 R2 and Windows 7 do the following:

1. Open theServer Manager tool, there aremany ways to do this but one is through
Administrative Tools.

2. In the left hand pane find Local Users and Groups under Configuration.

3. Click the + to expand it.

4. Double-click Groups.

5. Double-click thePerformance Monitor Users group.

6. Click theAdd… button.

7. Click the Locations… button.

8. Select the local computer.

9. Click theOK button.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 200 of 240

10. Make sure that object types includes Built-in security principals.

11. Enter IIS APPPOOL\<name of the application pool>, (example IIS APPPOOL\My
WebService App Pool, whereMy WebService App Pool is the name of the application pool), in
the text box.

12. Click theOK button.

In Windows 2008 SP2 and Windows Vista SP2 do the following:

1. Open a Command Prompt window.

2. Type net localgroup "Performance Monitor Users" "IIS APPPOOL\<name of
application pool> /ADD (where <name of the application pool> is the application pool name).

3. The command completed successfullywill be displayed if this is successful.

.NET Agent Guide
Chapter 7: Advanced .NET Agent Configuration

HP Diagnostics (9.23) Page 201 of 240

Chapter 8: .NET System Metrics Agent - Systems
Metrics Capture

Information is provided about systemmetrics capture and how to configure the systemmetrics
collector installed with the .NET Agent.

This chapter includes:

l "About the .NET SystemMetrics Agent" below

l "SystemMetrics Captured by Default" below

l "Configuring .NET SystemMetrics Capture" on the next page

l "Adding SystemMetrics Using theWindows PerformanceMonitor" on page 206

l "Default Entries in the .NET Agent metrics.config File" on page 208

l "Keywords in themetrics.config File" on page 208

About the .NET System Metrics Agent
A systemmetrics collector is installed with the .NET Agent and run as aWindows Service (HP
Diagnostics Metrics Agent). The .NET systemmetrics agent gathers system level metrics, such
as CPU usage andmemory usage, from the agent’s host. It is configurable so you can control
whichmetrics are collected as well as aspects of how themetrics are collected and published.

Only one instance of the .NET systemmetrics agent is run on a given host, nomatter how many
instances of the probe were started on the host.

Note: To configure additional probemetric capture with the .NET Agent (other than system
metrics capture described here) see "Collecting Additional ProbeMetrics or Modifying Probe
Metrics" on page 199.

System Metrics Captured by Default
The following are the systemmetrics that the .NET systemmetrics agent collects by default for all
supported platforms (excluding z/OS):

l CPU

l MemoryUsage

l VirtualMemoryUsage

l ContextSwitchesPerSec

HP Diagnostics (9.23) Page 202 of 240

l DiskBytesPerSec

l DiskIOPerSec

l NetworkBytesPerSec

l NetworkIOPerSec

l PageInsPerSec

l PageOutsPerSec

In addition to the default systemmetrics listed above, the following systemmetrics are also
captured by default on .NET Agent systems. (The layout of these entries is described in
"Understanding the system/ Metrics Collector Entries" on the next page).

l .NET CLR Memory\# Total committed Bytes_Global_

l ASP.NET\Application Restarts

l ASP.NET\Requests Queued

l ASP.NET\Request Wait Time

l ASP.NET\Requests Rejected

l ASP.NET Applications\Requests/sec

l ASP.NET Applications\Requests Executing

You can control which of the default systemmetrics the .NET systemmetrics agent gathers and
you can capture custom systemmetrics with the .NET systemmetrics agent.

Configuring .NET System Metrics Capture
The configuration file for the .NET systemmetrics agent is the <probe_install_
dir>/etc/metrics.config file. Changes to themetrics.config file are processed dynamically by the
.NET Agent.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 203 of 240

There is a differentmetrics.config file included with the Java Agent. See the HP Diagnostics Java
Agent Guide.

Understanding the system/ Metrics Collector Entries
Metrics collector entries in themetrics.config file instruct the .NET systemmetrics agent to gather
specific metrics. Entries that begin with system/ are processed as Windows PerformanceMonitor
Counters.

These systemmetrics collector entries use the following layout:

system/<Counter_name>\<Performance_object>\<Instance>\<Remote_machine> = <me
tric_id>|<metric_units>|<category_id>

All fields are required except for the optional <Instance> and <Remote_machine> fields.

Where:

l Counter_name indicates theWindows PerformanceMonitor counter. See "Adding System
Metrics Using theWindows PerformanceMonitor" on page 206 for details on how to identify the
counter, performance object and instance in theWindows PerformanceMonitor UI.

l Performance_object indicates theWindows PerformanceMonitor performance object
associated with the Counter_name.

l Instance indicates theWindows PerformanceMonitor instance of a counter. Youmay use a
wildcard (*) to indicate that all instances are desired. If you wish to specify a specific
enumeration of all instances, you precede the enumeration index number with the hash sign (#1).
The enumeration index numbermust be a positive number.

l Remote_machine is only required if theWindows PerformanceMonitor Counter is running on a
machine that is different (remote) from themachine that the .NET systemmetrics agent is
running on. Theminimum requirement for this configuration to work is that the Network Service

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 204 of 240

User on themachine that the .NET systemmetrics agent is running onmust have permissions
to read theWindows PerformanceMonitor Counters from the remotemachine.

l <metric_id> indicates the name that represents themetric in the Diagnostics UI. Themetric_id
must be unique in themetrics.config file. If the value of themetric_id is the same as one of the
default metrics, Diagnostics replaces themetric_id in the entry with a standard name to be used
to reference themetric in the UI. If the value of themetric_id is not the same as one of the
default metrics, themetric_id is used as the name of themetric in the UI exactly as shown in the
entry.

l <metric_units> indicates the units of measure in which themetric is reported. This is a required
parameter and it must contain one of the following units of measure:
n microseconds, milliseconds, seconds, minutes, hours, days

n bytes, kilobytes, megabytes, gigabytes

n percent, fraction_percent

n count

n load

l <category_id> groups a set of metrics together under the same heading in the Details pane of
the Diagnostics UI. This parameter has no impact on the data displayed in the Diagnostics
views.

Example without an <Instance>:

system/ASP.NET\Requests Queued = Requests Queued|count|ASP

Example with an <Instance>:

system/Processor\% Processor Time_Total = CPU|percent|System

Example with an integer <Instance>:

system/Processor\% Processor Time\#1 = CPU 1|percent|System

Example without an <Instance> and running on a <Remote_Machine):

system/ASP.NET\Requests Queued\\IISAQUAH = Requests Queued(IISAQUAH)|count|A
SP

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 205 of 240

Adding System Metrics Using the Windows
Performance Monitor

To add a systemmetric counter to themetrics.config file youmust first find its definition using the
Windows PerformanceMonitor (Perfmon). The following example uses version 5.x of Perfmon.
Version 6.x is similar but the UI is a little different.

To add counters in Perfmon:

1. Start theWindows PerformanceMonitor. For example select Start > Control Panel >
Administrative Tools > Performance.

2. The Perfmon Performance dialog box is displayed showing the SystemMonitor graph with a
table of the current counters beneath the graph. Right-click the SystemMonitor graph and
select Add Counters... from the pop-upmenu.

The Add Counters dialog box is displayed:

3. Select theSelect counters from computer entry andmake sure the host computer is select
in from the drop down list.

4. In the Performance object list, select the object that the counter belongs to.

5. ChooseSelect counters from list and select an instance from the list of instances.

6. Click theAdd button to add the counter. The following instructions tell you how to create an
entry for a counter using the system/ metrics entry described in "Understanding the system/
Metrics Collector Entries" on page 204.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 206 of 240

To collect metrics for a Perfmon counter:

1. Open the <probe_install_dir>/etc/metrics.config file on the .NET agent system.

2. Create the system/metrics entry for the counter using the layout described in "Understanding
the system/ Metrics Collector Entries" on page 204.

You can add this entry anywhere in the file, however best practice is to add it to the bottom of
existing collection of these type of entries. In the example shown in the screen shot above:

n The selected host computer is ROS59524ART

n The selected Performance object is Processor

n The selected Counter is % Processor Time

n The selected Instance is _Total

So if the host computer is local, the entry in themetrics.config file for the PerformanceMonitor
counter would be:

system/Processor\% Processor Time_Total = CPU|percent|System

And if the host computer is remote, the entry in themetrics.config file for the Performance
Monitor counter would be:

system/Processor\% Processor Time_Total\ROS59524ART = CPU(ROS59524ART)|p
ercent|System

Performance Counter Security

The .NETmetrics agent uses Performance Counters to collect systemmetrics. Themetrics agent
runs as a Network Service and this account needs to be added to thePerformance Monitor Users
group.

Troubleshooting Added System Metrics Counters

If you specify a new counter that appears to not be functioning, you can use theWindows Event
Viewer to look at the Diagnostics logs for the .NET systemmetrics agent source for errors and
warnings.

For example:

A Could not locate Performance Counter with specified category namewarning entry
typically indicates that youmay havemis-typed the name of the counter. This can happen, for
example, if you read a counter name from the PerfMon Performance pane that has embedded
blanks. The default font used by PerfMon is not amonospaced font and as suchmakes it difficult to
see embedded blanks in the name of the counters, categories and instances. You can change the
font to amonospaced font type and thenmore clearly see the exact format of counter names.

For example:

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 207 of 240

An Instance does not exist in the specified Categorywarning entry typically indicates that the
instance you have chosen is not active at this time. We do not recommend that you use transient
instances. Permanent instances like __Total__ are appropriate.

Default Entries in the .NET Agent metrics.config File
Upon installation, the <probe_install_dir>/etc/metrics.config file has three entries:

l A grouping of default system/ entries for PerfMon counters

l Ametrics.server.uri entry that specifies how the .NET systemmetrics agent publishes its data

l A defaultmetrics.systemgroup entry

Other additional entries can be added after these default entries.

Keywords in the metrics.config File
The keywords that can be used in entries in the <probe_install_dir>/etc/metrics.config file are as
follows:

l credentials.password

l credentials.username

l default.sampling.rate

l metrics.server.uri

l metrics.systemgroup

l metrics.agent.publish.interval

l metrics.agent.registered_hostname

l proxy.password

l proxy.user

l proxy.uri

l system/

The use of the system/ keyword is described in "Configuring .NET SystemMetrics Capture" on
page 203.

The use of each of the other keywords is described in the following section.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 208 of 240

credentials.password This settingmust match the setting for the password attribute
of the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 95 for more details.

credentials.username This settingmust match the setting for the username attribute
of the <credentials> element in the probe_config.xml file. See
"<credentials> element" on page 95 for more details.

default.sampling.rate This setting defines the rate at which the .NET system
metrics agent samples the configured systemmetric
counters. The default rate is every 5 seconds. Values are
expressed as a number of Seconds, Minutes, Hours or Days,
for example, nS, nM, nH or nD. The following example sets
the rate to every 10 seconds:

default.sampling.rate = 10s

metrics.server.uri This setting is automatically generated at install time. It
defines the URI that the .NET systemmetrics agent uses to
publish the systemmetric counters to the Diagnostic
Mediator Server.

The following example is for a Diagnostic Mediator Server
running on themy_diag_server machine, and using a
metricport of 2006 to publish themetrics:

metrics.server.uri =
http://<my_diag_server>:2006/metricdata/?sleep=fal
se

Any changes to the probe_config.xml settings for either the
metrichost attribute or themetricport attribute of the
<mediator> element must also be reflected at the same time
in themetrics.server.uri setting.

The ?sleep setting controls whether the Diagnostic Mediator
Server that receives the publishedmetrics will respond
immediately or delay its response to the .NET systemmetrics
agent. A setting of ?sleep=false responds immediately, a
setting of ?sleep=true delays its responds by a default of 5
seconds.

The following example is for a Probe Aggregator-enabled
.NET system, using the default metricport of 45000 to publish
themetrics:

metrics.server.uri =
http://127.0.0.1:45000/metricdata/

metrics.systemgroup This setting is automatically generated at install time. Do not
change this setting.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 209 of 240

metrics.agent.publish.interval This setting defines the interval between publishes of the
current values of the SystemMetric Counters by the .NET
systemmetrics agent to the Diagnostic Mediator Server. The
default interval is 5 seconds. Set values can be expressed as
a number of Seconds or Minutes, for example, nS or nM. The
following example sets the publish interval to 10 seconds:

metrics.agent.publish.interval = 10S

metrics.agent.registered_
hostname

Refer to the "Overriding the Default Probe Host Machine
Name" on page 192 for a description of when and how to use
this setting.

proxy.password This settingmust match the setting for the proxypassword
attribute of the < diagnosticsserver> element in the probe_
config.xml file. See "<diagnosticsserver> element" on page
98 for more details. Also refer to “Configuring Diagnostics
Servers and Agents for HTTP Proxy” in the HP Diagnostics
Server Installation and Administration Guide.

proxy.user This settingmust match the setting for the proxyuser attribute
of the < diagnosticsserver> element in the probe_config.xml
file. See "<diagnosticsserver> element" on page 98 for more
details. Also refer to “Configuring Diagnostics Servers and
Agents for HTTP Proxy” in the HP Diagnostics Server
Installation and Administration Guide.

proxy.uri This settingmust match the setting for the proxy attribute of
the < diagnosticsserver> element in the probe_config.xml file.
See "<diagnosticsserver> element" on page 98 for more
details. Also refer to “Configuring Diagnostics Servers and
Agents for HTTP Proxy” in the HP Diagnostics Server
Installation and Administration Guide.

.NET Agent Guide
Chapter 8: .NET SystemMetrics Agent - Systems Metrics Capture

HP Diagnostics (9.23) Page 210 of 240

Part 4: Using the Profiler for .NET

HP Diagnostics (9.23) Page 211 of 240

Chapter 9: Diagnostics Profiler for .NET
This chapter describes how to use the .NET Diagnostics Profiler:

l " About the .NET Diagnostics Profiler" below

l "How the .NET Agent Provides Data for the .NET Profiler" on the next page

l ".NET Diagnostics Profiler UI Navigation and Display Controls" on page 214

l " .NET Diagnostics Profiler Inactivity Timeout" on page 215

l " How to Access the .NET Diagnostics Profiler" on page 215

l "How to Enable and Disable the .NET Diagnostics Profiler" on page 216

.NET Diagnostics Profiler UI Description:

l "Server Requests Tab Description" on page 217

l "SQL Tab Description" on page 220

l "Methods Tab Description" on page 223

l "Call Tree Tab Description" on page 225

l "Exceptions Tab Description" on page 228

l "Collections Tab Description" on page 231

.NET Threads Window UI Description:

l "Threads Window Description" on page 234

About the .NET Diagnostics Profiler
The Diagnostics Profiler for .NET is installed with the .NET Agent. The Profiler runs in a separate
UI and provides near real-time data, enabling you to pinpoint application performance bottlenecks.

Note: The.NET Diagnostics Profiler operates in an unlicensedmode with load restrictions until
the probe is able to connect to a Diagnostics Server that has been properly licensed. In
unlicensedmode, the .NET Profiler is limited to capturing data from 5 concurrent threads.

If you installed the unlicensed trial software agent from the HP SoftwareWeb site and you
want to use it with a Diagnostics Server, contact HP Software Support to purchase HP
Diagnostics.

HP Diagnostics (9.23) Page 212 of 240

If you are using Diagnostics with HP LoadRunner or HP Performance Center you will be prompted
to enter the Diagnostics User Name and Password when selecting the .NET Profiler from the
Diagnostics UI.

You can use the different tabs in the .NET Profiler to analyzemethod latency for the selected
application. And you can analyzememory problems for the selected application using thememory
diagnostics metrics displayed in the .NET Profiler.

Some of the information presented in the .NET Profiler is also available in the Diagnostics
enterprise UI.

How the .NET Agent Provides Data for the .NET Profiler
This section describes the way in which the .NET Agent monitor your application and how this data
is displayed in the .NET Diagnostics Profiler.

Monitoring Method Latency and Call Stacks
The .NET Agent runs probes tomonitor your application and keep track of themetrics for all of the
instrumentedmethods that your application calls. As probes aremonitoring, they capture the call
stack for the three slowest instances and the single fastest instance of each server request.

When a new server request instance is encountered that is slower than one of the currently
captured instances for the server request, it replaces one of the previously captured instances. In
the samemanner the captured call stack for the fastest instance is replaced when an instance that
is even faster is encountered.

The .NET Diagnostics Profiler displays metrics for all of the instrumentedmethods. The .NET
Profiler ignores all configured trim settings, for example, latency trimming, depth trimming or
throttling. For details about trim configuration refer to the "Advanced .NET Agent Configuration and
Instrumentation " on page 58. You can drill down to the instances of themethods that were included
in one of the four server request call stacks that were captured when you accessed the .NET
Diagnostics Profiler user interface.

While you are analyzing the information displayed on the various tabs of the .NET Diagnostics
Profiler, you are working with themethods and call stacks captured from the time that the .NET
Profiler was started/reset to the time that the user interface was started/refreshed. In themeantime
the probe continues tomonitor your application, capturemethodmetrics, and capture call stacks.
These changes are not sent automatically to the user interface, youmust request them via the
Refresh Now button. This is so the underlying data will not change unexpectedly while you are
investigating something of interest.

Monitoring Application Memory
The .NET Diagnostics Profiler allows you tomonitor your application's memory usage using
Lightweight Memory Diagnostics. Lightweight Memory Diagnostics allows you tomonitor the
collections that your application has created, and to identify the largest collections and the fastest
growing collections. For more information about Lightweight Memory Diagnostics, see "Collections
Tab Description" on page 231.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 213 of 240

.NET Diagnostics Profiler UI Navigation and Display
Controls

This section describes the following features and controls that are common to all of the .NET
Profiler tabs: Refresh now, Reset, Snapshot andHelp:

Refresh Metrics
Click Refresh Now to refresh the information displayed on the tabs with the latest metrics and call
stacks.

After you refresh themetrics, the .NET Diagnostics Profiler continues tomonitor and collect
metrics using the same baseline for the calculations of instance counts, average latency, and
slowest latency. It also continues to use the captured call stacks as a basis of comparison for
finding new call stacks to capture.

Reset Metrics
You can force the .NET Diagnostics Profiler to use new baselines for the calculation of instance
counts, average latency, and slowest latency, and to force-drop all captured call stacks, by clicking
Reset.

After you reset themetrics, the .NET Diagnostics Profiler begins collecting data with new baselines
and starts processing the instance trees as though the profiler had just been started.

Note: Youmay want to click Reset once your system has warmed up so that you can do your
performance analysis usingmetrics that aremore representative of the processing that takes
place when your application is running in steady state.

Take a Snapshot
You can capture a snapshot of the data from your profiler session into an .xml formatted file, by
clicking theSnapshot button.

The resulting snapshot can be used, for example, as a report that is distributed to your colleagues or
as a point of reference when you are about to make changes to your applications. The snapshot
includes the profiler tabs so that you can review and analyze the data in the snapshot in the same
way that you would view it in the Profiler.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 214 of 240

The Profiler displays a dialog box that indicates the path to where the .xml file is stored. When you
open the snapshot, the saved profiler data is displayed in your browser.

Access Help
When you click Help, on the top right hand corner of the screen, you access the on-line helpmanual
for the .NET Diagnostics Profiler.

.NET Diagnostics Profiler Inactivity Timeout
By default, the .NET Diagnostics Profiler is not started until you display the Profiler UI. When you
close the Profiler UI, the profiler continues to run for a period of time specified by the
inactivitytimeout attribute in <probe_install_dir>/etc/probe_config.xml. If you reopen the
Profiler UI before the profiler times out, the profiler displays the data for the time period since the
profiler was started. If you reopen the Profiler UI after the timeout has occurred, the profiler is
restarted and only the data for the new profiler session is displayed. As long as the Profiler UI is
open, the profiler session remains active. The count down for the inactivity timeout begins when
you close the Profiler UI.

How to Access the .NET Diagnostics Profiler
Once you have installed the .NET Agent, configured a probe to collect performancemetrics and
started the application that is beingmonitored, you can access the .NET Diagnostics Profiler from
your browser and view diagnostics data. You can also access the .NET Diagnostics Profiler by
drilling down from the views of the Diagnostics Enterprise user interface.

Remote access to the .NET Profiler can be disabled with the profiler element in the probe_
config.xml file.

To open the .NET Diagnostics Profiler directly (standalone):

1. In your browser, go to the .NET Diagnostics Profiler URL: http://<probe_host> :< probeport>
/profiler

The probes are assigned to the first available port beginning at 35000.

2. Type your username and password.

Depending on your authentication settings, youmay be prompted to enter a username and
password. The default username is admin. The default password is admin.

For more information about authentication, usernames and passwords when you have the full
Diagnostics product, refer to the HP Diagnostics Server Installation and Administration Guide
section on Authentication and Authorization.

To drill down to the Diagnostics .NET Profiler from the main Diagnostics UI:

1. From any view in the Diagnostics UI that shows probe entities, right-click the probe in the table
and select View Profiler for <probe name> from themenu.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 215 of 240

If you are using Diagnostics with HP LoadRunner or HP Performance Center you will be
prompted to enter the Diagnostics User Name and Password when selecting the .NET Profiler
from the Diagnostics UI.

2. If the Profiler fails to open, ensure that you have set a default browser within your operating
system.

How to Enable and Disable the .NET Diagnostics
Profiler

This task describes how to disable and re-enable the .NET Profiler to start.

When the .NET Agent is installed and probes configured to work with a Diagnostics Server, the
probe data collection starts automatically when aWeb page in themonitored application is
accessed.

By default the .NET Diagnostics Profiler isn't started until you access the Profiler UI. Youmay
configure the agent so that the .NET Profiler is started at the same time that the probe data
collection is started or so the .NET Profiler cannot be started.

To configure the probe to automatically start the profiler:

Youmay want to start the .NET Profiler at the same time that the probe is started if you are trying to
understand the performance of your application when it is first invoked.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to true.

<modes enterprise="true" pro="true"/>

To configure the probe to prevent the Profiler from starting:

Youmay want to prevent someone from starting the .NET Profiler for a probe that is monitoring an
application where you do not want to incur the additional overhead from the .NET Profiler.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to false

<modes enterprise="true" pro="false"/>

To configure the probe to start the Profiler when you access the UI:

By default, the probe starts the Profiler when you bring up the Profiler UI. If you have altered the
setting for the probe, youmay want to reset the behavior of the probe to the default behavior.

Set the pro attribute in <probe_install_dir>/etc/probe_config.xml to auto:

<modes enterprise="true" pro="auto"/>

Note: If you do not include the pro attribute, the probe defaults to the behavior when pro is set
to auto.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 216 of 240

Server Requests Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls made by your application. The
Server Requests tab displays information about the server request methods. The server request
methods are listed in a table that shows the number of times that eachmethod was executed, along
with the average latency and the slowest execution time for all of the calls to themethod. You can
expand each server request listed in the table, to reveal the latency for the three slowest instances
of the server request along with the single fastest instance.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and
the single fastest instance of each server request. The .NET Diagnostics Profiler lets you drill
into the captured call trees from the Server Requests tab.

UI example

To access In the .NET Diagnostics Profiler, select the Server Requests tab.

Relevant tasks " How to Access the .NET Diagnostics Profiler" on page 215

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 217 of 240

The following user interface elements are included:

UI Element Description

Server
Request
Method
Table

TheMethod table lists the server requests that have been called. You can sort the
table by clicking the column headers.

The following columns are included in the table:

Method. The server request methods that were called.

If a server request method was calledmore than once, themethod name is
preceded by a plus sign (+) or aminus sign (-) to indicate that the instance
specific latency information is available for the server request.

Calls. The number of times that the server request method was invoked.

Average. The average latency for all of the calls to the server request method. The
average latency is shown inmicroseconds.

Slowest. The response time of the instance with the longest latency. The slowest
response time is shown inmicroseconds.

If a server request method was calledmore than once, themethod name is
preceded by a plus sign (+) or aminus sign (-). When you click the plus sign, the
entry is expanded to reveal the three slowest instances of themethod along with
the single fastest method. Click theminus sign to the collapse instances shown.

If a server request method was called only once, the entry itself represents the
single instance of themethod call. The value in the Slowest column is the
instance's latency.

You can view the call tree for a server request instance by clicking on any row that
contains a server request instance (a row that does not have a plus sign (+) or a
minus (-) sign before themethod name or that only contains a latency value is a
server request instance).

The Profiler switches to the Call Tree tab and displays the call tree for the selected
server request instance. Themethod call for the selected server request is
highlighted in blue in the call tree.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 218 of 240

UI Element Description

Layer
Breakdown
Graph

The Layer Breakdown graph shows the amount of processing time that was spent
in each layer while executing a selected instance of amethod call. It is a graphical
representation of the information shown in the Layer Breakdown table.

You can view the Layer Breakdown for a server request instance by hovering the
mouse pointer on any row in theMethod table that contains a server request
instance (a row that does not have a plus sign (+) or aminus (-) sign before the
method name, or that only has a latency value, is a server request instance).

The Profiler shows the layer breakdown for the indicated instance in both the Layer
BreakdownGraph and Layer Breakdown Table.

The graph is divided so that each layer is depicted as an area on the graph that is
proportional to the percentage of processing that was performed in the layer. Each
layer is displayed in a different color, as shown in the Legend column in the Layer
Breakdown table.

Layer
Breakdown
Legend

The Legend shows the amount of processing time that was spent in each layer
while executing a selected instance of amethod call. The table can be sorted by
clicking the column headers.

The following columns are included in the table:

Legend. The color that is used in the Layer Breakdown graph to depict the
processing that took place in the layer.

Layer Name. The name of the layer where the processing for the server request
took place.

%. The percentage of processing time that was spent in each layer, for a selected
server request.

Time. The latency measured for the processing that took place in the layer, for a
selected server request. The time is shown inmicroseconds.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 219 of 240

SQL Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes.
The SQL tab displays the SQLmethods only. The SQLmethods are listed in theMethod table
which shows the number of times that eachmethod was executed, along with the average latency
and the slowest execution time for all of the calls to themethod. TheMethod table also shows the
actual SQL statement when it was included in the SQLmethod call.

Each SQLmethod listed in the table can be expanded to reveal the latency for each instance of the
method that was included in a captured call tree.

UI example

To access In the .NET Diagnostics Profiler, select the SQL tab.

Important
information

The .NET Diagnostics Profiler captures call trees for the three slowest instances
and the single fastest instance of each server request. You can drill down to the
captured call trees from the SQL tab.

Relevant
tasks

" How to Access the .NET Diagnostics Profiler" on page 215

See also Formore information on the Call Tree tab, see "Call Tree Tab Description" on
page 225.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 220 of 240

The following user interface elements are included:

UI Element Description

Table This table lists the SQLmethods that have been called, and displays latency
information for instances of the SQLmethod calls that were included in the
captured call trees. The table can be sorted by clicking the column headers.

The following columns are included in the table:

Method. The SQLmethods that were called. If an SQLmethod has two or more
instances in the captured call trees, themethod name is preceded by a plus sign
(+) or aminus sign (-) to indicate additional instance specific latency information
can be viewed for the SQL call.

Calls. The number of times that the SQLmethod was invoked. This count
includes all instances, whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to the SQLmethod. The average
latency is shown inmicroseconds.

Slowest. The response time for the instance with the longest latency. The slowest
response time is shown inmicroseconds.

SQL. The first part of the SQL statement that was executed by the SQLmethod
call.

You can display a tooltip containing the entire SQL statement by holding the
mouse pointer over a row in the SQL column.

The latencies for instances of SQLmethods can be displayed if they are included
in one of the captured call trees.

If two or more instances of an SQLmethod are included in the captured call trees,
that method's name is preceded by a plus sign (+) or aminus sign (-) in the
Method table. The entry can be expanded to reveal the latency for each of the
captured instances for the selectedmethod. Click theminus sign to collapse the
visible instances.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 221 of 240

UI Element Description

Table
(continued)

if only one instance of an SQLmethod was included in the captured call trees, the
method name in the SQLMethod table is not preceded by a plus sign or minus sign
and the table entry itself represents the single instance of themethod call, and the
value in the Slowest column is the instance's latency.

If no instances of a SQLmethod were included in the captured call trees, the
method is not preceded by a plus sign or minus sign, and when you click the
method, you get amessage indicating that although this method was called there
is no data captured for it.

You can view the call tree for an SQLmethod instance listed in the SQLMethod
table by clicking on any row that contains an instance of an SQLmethod call. (A
row that does not have a plus sign (+) or aminus (-) sign before themethod name,
or that only contains a latency value, is an SQL instance.)

When you select a row with an SQLmethod instance, the Call Tree tab opens, and
displays the call tree for the selected SQLmethod instance. Themethod call for
the selected SQLmethod is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 225.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 222 of 240

Methods Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes.
TheMethods tab is used to list all of themethods. Themethods are listed in theMethod table,
which shows the number of times eachmethod was executed, along with the average latency and
the slowest execution time for all of the calls to themethod. Themethods listed in theMethods tab
include the server requests methods listed in the Server Requests tab, the SQLmethods listed in
the SQL tab, and themethods that generated exceptions shown in the Exceptions tab.

Eachmethod listed in the table can be expanded to reveal the latency for each instance of the
method that was included in one of the captured call trees. The .NET Diagnostics Profiler captures
call trees for the three slowest instances and the single fastest instance of each server request.
The .NET Diagnostics Profiler lets you drill down to the captured call trees from theMethods tab.

UI example

To access In the .NET Diagnostics Profiler, select theMethods tab.

Relevant tasks " How to Access the .NET Diagnostics Profiler" on page 215

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 223 of 240

The following user interface elements are included:

UI Element Description

Table This table lists themethods that have been called, and displays latency
information for instances of themethod calls that are included in the captured call
trees. This table can be sorted by clicking the column headers.

The following columns are included in the table:

Method. The name of themethods that were called. If a method has two or more
instances included in the captured call trees, themethod name is preceded by a
plus sign (+) to indicate additional instance specific latency information can be
viewed for themethod call.

Calls. The number of times that themethod was invoked. This count includes all
instances, whether or not they are included in the captured call trees.

Average. The average latency for all of the calls to themethod. The average
latency is shown inmicroseconds.

Slowest. The response time for the instance with the longest latency. The slowest
response time is shown inmicroseconds.

You can view the latency for instances of methods if they are included in one of
the captured call trees.

If two or more instances of amethod are included in the captured call trees, the
method name in theMethod table is preceded by a plus sign (+) or aminus sign
(-). The plus sign indicates that you can expand the entry to reveal the latency for
each of the captured instances for the selectedmethod. Click theminus sign to
collapse the visible instances.

If no instances of amethod were included in the captured call trees, themethod is
not preceded by a plus sign or minus sign, and when you click themethod, you get
amessage indicating that although this method was called there is no data
captured for it.

Table
(continued)

You can view the call tree for amethod instance listed in theMethod table by
clicking on any row that contains an instance of amethod call. (A row that does
not have a plus sign (+) or aminus (-) sign before themethod name, or that only
contains a latency value, is amethod instance.)

When you click a row with amethod instance, the Call Tree tab opens and
displays the call tree for the selectedmethod instance. Themethod call for the
selectedmethod is highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on the next
page.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 224 of 240

Call Tree Tab Description
The .NET Diagnostics Profiler captures call trees for the three slowest instances and the single
fastest instance of each server request. The captured server request call trees are displayed on the
Call Tree tab, in the Call Breakdown graph and in the Call Tree table.

As you analyze themethods presented on the Server Requests, SQL, Exceptions, andMethods
tabs, you navigate to the Call Tree tab to understand the context of the processing associated with
particular instances of themethod's execution. The call tree allows you to see the calling and the
calleemethods for themethod of interest as well as the contribution of thosemethods to the
measured latency.

UI
example

To
access

In the .NET Diagnostics Profiler, select the Call Tree tab.

You can also access a Call Tree by clicking one of themethod instances listed on the
Server Requests, SQL, Exceptions, andMethods tabs.

Relevant
tasks

" How to Access the .NET Diagnostics Profiler" on page 215

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 225 of 240

The following user interface elements are included:

UI Element Description

The Call
Breakdown
Graph

The Call Breakdown graph shows the processing time that was spent at each
level of the call tree hierarchy.

Each level in the graph represents the processing at the corresponding level in the
call stack. The length of the bar is proportional to the length of time spent in
performing themethods at that level of the call stack. The positions where a bar
starts and stops indicates the relative time, in relationship to the other levels, that
the processing for the level began and ended. A gap in a bar, where the bar ends
and then resumes again, indicates that the processing returned to a higher level in
the hierarchy before once again proceeding at the lower level.

There are two ways that youmay identify themethod associated with a particular
location on the Call Breakdown graph as youmouse over the bars in the graph.

As you slide the pointer along a bar in the graph, a tooltip is displayed with the
name of themethod associated with each segment of the graph bar.

As you slide the pointer along a bar in the graph, the Call Tree table scrolls so that
themethod associated with the selected location in the graph is displayed in the
table. The row that contains the selectedmethod is highlighted in gold.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 226 of 240

UI Element Description

Call Tree
Table

The Call Tree table lists method calls that are part of a captured server request call
tree in a hierarchical structure.

Eachmethod in the call tree is depicted on a separate line containing two parts:
themethod name and the latency.

The latency for eachmethod is shown in brackets following themethod name.
There are two numbers in the brackets separated by a slash: the exclusive latency
and the total latency.

Exclusive Latency is the amount of latency that is attributable to just the
processing in the selectedmethod.

Total Latency is the amount of latency that is attributable to the selectedmethod
and all of its calleemethods.

In the following example the exclusive latency is 156:

- PetShop.Web.Controls.NavBar.PageLoad [156/225 uSec]

To see a captured call tree on the Call Tree tab youmust select amethod instance
from one of the other .NET Diagnostics Profiler tabs. The Call Tree tab opens with
the call tree that contains the selected instance visible and the selectedmethod
instance highlighted in blue.

Themethod of interest will remain highlighted until a different method is selected
on one of the other tabs.

Youmay identify themethod associated with a particular location on the Call
Breakdown graph by mousing over the bars in the graph. As you slide the pointer
along a bar in the graph, the Call Tree table scrolls so that themethod associated
with the selected location in the graph is displayed in the table. The row that
contains the selectedmethod is highlighted in gold.

The path through the call tree that has the longest latency is called the critical
path. Methods in the Call Tree table that are on the critical path are written using a
red font.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 227 of 240

Exceptions Tab Description
The .NET Diagnostics Profiler keeps track of all of themethod calls that your applicationmakes.
The Exceptions tab is used to list only themethods that generated exceptions. The callingmethods
that generated exceptions are listed in a table that shows the number of times that eachmethod
threw an exception. This information allows you to quickly determine if your application is throwing
exceptions, and exactly what those exceptions are.

If the exception was included in one of the captured call trees, the exception class will also be listed
in the table along with the latency for each instance of an exception.

Note: The .NET Diagnostics Profiler captures call trees for the three slowest instances and
the single fastest instance of each server request. You can drill down to the captured call trees
from the Exceptions tab.

UI example

To access In the .NET Diagnostics Profiler, select the Exceptions tab.

Important
information

Exceptions are only captured by the probe if the exception causes the termination
of amethod. If the instrumentedmethod handles the exception, no exception
information is gathered by the probe.

Relevant
tasks

" How to Access the .NET Diagnostics Profiler" on page 215

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 228 of 240

The following user interface elements are included:

UI
Element Description

Table This table lists themethods calls that generated exceptions and allows you to view
latency information for instances of the exceptions that were included in the captured
call trees. The rows in this table can be sorted by clicking the column headers.

The table includes the following columns:

Method. The name of themethods generated exceptions. If a method generated two
or more exceptions and they were included in the captured call trees, themethod
name is preceded by a plus sign (+) or aminus sign (-) to indicate that additional
instance-specific latency information can be viewed for the exception.

Exceptions. The number of times that themethod generated an exception. This
count includes all instances of all classes of exceptions, whether or not they are
included in the captured call trees.

The latency for instances of exceptions are available to be displayed if they are
included in one of the captured call trees.

If an instance of an exception for a particular method call was included in one of the
captured call trees, themethod name in the Exceptions table is preceded by a plus
sign (+) or aminus sign (-). The plus sign indicates that when you click the row in
the table, the entry expands to reveal additional rows with the exception class for
each of the captured instances of the exception. Theminus sign indicates that when
you click the row in the table, the entry contracts so that the exception class row is
hidden.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 229 of 240

UI
Element Description

Table If two or more instances of an exception class were included in the captured call
trees, the exception class name in the Exceptions table is preceded by a plus sign (+)
or aminus sign (-). The plus sign indicates that when you click the row in the table,
the entry expands to reveal the latency for each of the captured instances for the
selected exception class. Theminus sign indicates that when you click the row in the
table, the entry contracts so that the latency for the captured exception class is
hidden.

If only one instance of an exception class was included in the captured call trees, the
exception class in the Exceptions table is not preceded a plus sign or minus sign. In
this case, the table entry itself represents the single instance of the exception class
and the value in the latency for the exception can be determined from the Call Trees
tab.

You can view the call tree for an exception listed in the Exceptions table by clicking
on any row that contains an instance of an exceptions class. (A row that does not
have a plus sign (+) or aminus (-) sign before the exception class or that only contains
a latency value is an exception class instance.)

When you click a row with an exception class instance, the profiler switches to the
Call Tree tab and displays the call tree for the selected exception instance. The
method call that generated the exception for the selected exception class is
highlighted in blue in the call tree.

For information on the Call Tree tab, see "Call Tree Tab Description" on page 225.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 230 of 240

Collections Tab Description
The .NET Diagnostics Profiler canmonitor your applications' memory usage using Lightweight
Memory Diagnostics (LWMD). LWMD monitors thememory used by your applications by tracking
the collections. Themetrics from LWMD are displayed on the Collections tab. Thememory metrics
are shown in a graph of heap usage, and in tables that list the collections that are growing the
fastest and that have become the largest. The Collections tab displays these problems, enabling
identification of memory issues.

UI example

To access In the .NET Diagnostics Profiler, select the Collections tab.

Relevant tasks " How to Access the .NET Diagnostics Profiler" on page 215

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 231 of 240

The following user interface elements are included:

UI Element Description

Heap
Usage
Graph

The Heap Usage graph shows thememory that was committed and used at
periodic sample intervals. (The default sample interval is 1minute.) For each
sample interval, a bar is displayed on the graph.

l The height of the bar indicates the total amount of heap that was committed
when the sample was taken.

l The red portion of the bar indicates the amount of the heap that was committed
and used when the sample was taken.

l The green portion of the bar indicates the amount of the heap that was
committed, but not used, when the sample was taken.

Hold themouse pointer over a sample's bar on the graph to display a tooltip
showing the size of the heap that was used, followed by the size of the heap that
was committed for the selected sample.

By default, the LWMD process establishes a new baseline for measuring the
growth of collections every hour. You can force a new baseline by clicking the
Force Baseline link at the upper-right corner of the Heap Usage graph.

When the .NET Diagnostics Profiler establishes a new baseline, a green line is
inserted between the last sample of the previous baseline and the first sample of
the next baseline tomark the point where the baseline was set.

The calculation for the growth of collections that is used to determine which
collections are included in the Collections by Growth table, is based on the
number of collections added since the last baseline.

Samples
and
Collections
Details
Pane

Displays additional information about the sample selected in the Heap Usage
graph, and about the collection selected from the collection tables.

It contains the following information:

Sampled. The date and time when the selected Heap Usage sample was taken.

Baselined. The date and time of the last baseline prior to the sample being taken.

Contains. The type of object contained in the selected collection. This
information is displayed when youmouse over the Collections by Growth or
Collections by Size tables.

Allocated In. Themethod that allocated the selected collection. This information
is displayed when youmouse over the Collections by Growth or Collections by
Size tables.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 232 of 240

UI Element Description

Collections
by Growth
Table

The Collections by Growth table lists the top ten collections in relation to the
growth in the number of objects contained in the collection since the last baseline.
The top-ten list of collections changes from sample to sample as the growth rates
for each collection fluctuate. When a new baseline is established, the growth rate
is calculated in relation to the new baseline, so the list of collections can change
significantly.

The table contains the following information:

Growth. The number of objects that were added to the collection since the last
baseline.

Class. The class name for the collection.

To see details for the collection, hold themouse pointer over the row in the table
for the collection. The row is highlighted in pink and the details are displayed in the
Samples and Collections Details pane.

Collections
by Size
Table

The Collections by Size table lists the top ten collections relative to the size of the
collection for the selected Heap Usage sample. The size of a collection is based
upon the total number of objects in the collection.

The table contains the following information:

Size. The total number of objects in the collection at the end of the sample period.

Class. The class name for the collection.

To see details for the collection, hold themouse pointer over the row in the table
for the collection. The row is highlighted in pink and the details are displayed in the
Samples and Collections Details pane.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 233 of 240

Threads Window Description
The Threads window displays thread performancemetrics for the threads that are running in a
.NET probed application and provides a way for you to capture stack traces for the running threads.
There is also a thread state analyzer that displays approximate thread state distribution percentage
for each thread.

This page can be useful for helping to diagnose the following situations:

l Incorrect thread pooling or attempting to do toomuch in a single thread.

l Performance problems caused by deadlocks or concurrency-related issues.

l Problems that go deep into the interactions with the OS kernel where you need to see the CPU
time broken into user and kernel times.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 234 of 240

The following is an example of the .NET Threads display.

To
access

Select a .NET probe from the the .NET Probes or Probes view, then click View
Threads in New Window from the Common Tasks area.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 235 of 240

The following user interface elements are included:

UI
Element Description

Controls Used to control how often the threadmetrics are updated, maximum stack trace
depth for each thread, and what kind of data is displayed for the thread processing in
your application.

When the Threads tab is updated, the information displayed on the tab is refreshed
with the latest threadmetrics. You control how often the Profiler updates the thread
metrics on the Threads tab.

Update button. Select the Update button and the Profiler refreshes the information
in the graph and the thread table and captures stack traces.

Automatically, Every (Thread Metric Update Frequency). Check this box to turn
automatic updates on. Select the update interval from the spinner. The Profiler
immediately begins refreshing the threadmetrics displayed in this tab based on the
update interval specified.

Whenever the Profiler updates the Threads tab display, stack traces are captured for
each of the threads listed in the thread table. You can control how many stack traces
for each thread are displayed in the stack trace history.

History Length. Select the number of samples to keep and display.

Stack Trace Depth. Select themaximum stack trace depth collected for each
sample for each thread.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 236 of 240

UI
Element Description

Chart
Tab

Charts themetric for the selected threads. Youmay chart themetrics for one or more
of the threads listed in the threads table and you can select themetric that is to be
charted for each thread.

Select a thread in the thread table to have it's metric graphed in the chart.
Diagnostics removes themetrics for any previously charted threads from the graph
and charts themetric for the selected thread. The graph legend is updated to indicate
the color with which the selected thread's metrics were charted.

To chart additional threads in the graph along with any that you have already charted,
select additional threads in the thread table.

To select each additional thread one at a time, select each row in the thread table
usingCtrl-Click. To select a range of threads, select the row in the thread table
usingShift-Click. Diagnostics charts themetrics for the selected thread along with
themetrics for all of the threads in the thread table that are between the selected
threads and the newly selected thread. The graph legend is updated to indicate the
colors with which the selected threads metrics were charted.

To remove themetrics from the chart for selected threads, useCtrl-Click to select
the row in the thread table that contains the thread whosemetrics you'd like to
remove from the chart.

Chart difference in. To select ametric to be charted for each thread, select the
metric from the drop downmenu. Diagnostics updates the graph to chart the
indicatedmetric for each of the threads selected in the thread table.

Thread
Table

The table shown below the chart lists themetrics for each thread.

The following columns are displayed:

Thread Name. The name of the captured thread.

Thread State. The state of the thread at the last threadmetric update interval.

Kernel Time (ms). The portion of the CPU time during which the thread was
executing in kernel mode.

User Time (ms). The portion of the CPU time during which the thread was executing
in user mode.

The following data comes from the JVM: Lock Name, Lock Owner Name, Lock
Owner Id.

The table can also include columns forWaited Time andBlocked Timemetrics if
you enable them. To enable thesemetrics, set the
threads.contention.monitoring.enabled property to true in the <probe_install_
dir>/etc/probe.properties file. This settingmay cause instability for some older
JVMs.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 237 of 240

UI
Element Description

Stack
Traces
Tab

Stack traces for the threads selected in the threads table are displayed when you
have indicated that you want thread stack traces captured.

The Stack Traces tab display is divided into two areas:

Captured Stack Traces. List contains a list of the times when stack trace captures
occurred.

Stack Trace Details. Displays the stack traces that you indicated based on your
selections from the stack trace capture list, the scope selection drop down, and the
thread table.

TheStack Trace Details for drop down allows you to control which thread's stack
traces the Profiler displays in the Stack Trace details area.

When you select All Threads, the stack traces for all threads are displayed in the
stack trace details area. The selections made in the threads table do not impact the
stack traces that are displayed in the stack trace details area whenAll Threads is
selected.

When you select Selected Threads, the stack traces displayed in the stack trace
details area are limited to those for the threads that you select in the threads table in
the Chart tab.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 238 of 240

UI
Element Description

State
Analyzer

The State Analyzer displays approximate thread state distribution percentage for
each thread, over the specified time period. Each thread is represented by a single
row.

The left panel provides the thread name. The center panel provides the thread state
data. The total height of the colored bar represents 100%. If a thread has been in
more than one state during the observation period, multiple colors are used to display
the corresponding states, proportional to the time spent in those states. For
automatic updates, the observation period is the same as the configured refresh
period.

The right panel displays the current method name, with line number, if available. If
the stack traces collected for the thread over the observation period are all the same,
themethod name is displayed using a bold font. If different stack traces were
observed, the displayedmethod is the topmost commonmethod for the collected
stack traces, and its display uses a regular font. If no such commonmethod could be
found, nothing is displayed.

The following thread states are presented by the Thread State Analyzer:

Deadlocked. The thread participates in a deadlock cycle.

Blocked. The thread is delayed (suspended) when trying to enter a Javamonitor.
This can happen when the thread tries to invoke a synchronizedmethod, enter a
synchronized block, or re-enter the Javamonitor after being awaken from the waiting
state, while another thread has not left the Javamonitor yet.

Running. The thread is actively consuming CPU time.

I/O. The thread is performing an I/O operation. It does not use any CPU time. The
notion of I/O covers not only the traditional operations on files or sockets, but also
covers any multimedia or graphics operations. In general, the thread is waiting for an
external (out-of-process) event.

Sleeping. The thread is delayed after invoking the Thread.sleep() method.

Waiting. The thread is delayed, usually having executed Object.wait(). However,
threads can get into this state by other means. In general, the thread is waiting for an
internal (in-process) event.

Starving. The thread is runnable, it is not suspended by any I/O, wait(), or sleep()
operation, but is not running. This can be caused by insufficient number of CPUs
available, Garbage Collection pauses, excessive paging, or by a virtual machine
guest OS experiencing a shortage of resources.

Unknown. The Diagnostics Agent was unable to determine the state of the thread.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 239 of 240

We appreciate your feedback!
If you have comments about this document, you can contact the documentation team by email. If
an email client is configured on this system, click the link above and an email window opens with
the following information in the subject line:

Feedback on .NET Agent Guide (Diagnostics 9.23)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client,
and send your feedback to SW-doc@hp.com.

.NET Agent Guide
Chapter 9: Diagnostics Profiler for .NET

HP Diagnostics (9.23) Page 240 of 240

mailto:SW-doc@hp.com?subject=Feedback on .NET Agent Guide (Diagnostics 9.23)

	Contents
	Welcome to This Guide
	How This Guide Is Organized
	Diagnostics Documentation

	Part 1: Introduction
	Chapter 1: Diagnostics .NET Agent Overview
	About the Diagnostics .NET Agent
	Introducing Diagnostics Profiler for .NET
	Features and Benefits of the Diagnostics .NET Profiler

	Part 2: Installation and Configuration of the Diagnostics .NET Agent
	Chapter 2: Preparing to Install the Diagnostics .NET Agent
	Requirements for the Diagnostics .NET Agent Host
	Requirements for the Diagnostics .NET Profiler UI
	Planning the Installation

	Chapter 3: Installing .NET Agents
	Overview of the .NET Agent Installation
	Accessing the .NET Agent Installer
	Installing the .NET Agent
	Post Install Tasks
	Verifying the .NET Agent Installation
	About Configuration of the .NET Agent for Diagnostics
	About Configuration of the .NET Agent for TransactionVision
	Discovery and Standard Instrumentation
	Probe Aggregator Service
	Monitoring NET Applications Deployed in Azure Cloud
	Monitoring Applications on SharePoint with the .NET Agent
	Determining the Version of the .NET Agent
	Enabling and Disabling the Diagnostics Agent for .NET
	Enabling and Disabling Standard Instrumentation for Applications
	Troubleshooting .NET Web Applications Not Discovered
	Manually Adding an AppDomain Not Discovered
	Other .NET Agent Troubleshooting Tips
	Uninstalling the .NET Agent

	Chapter 4: Upgrading the Diagnostics .NET Agent
	Upgrade .NET Agents

	Part 3: Advanced .NET Agent Configuration and Instrumentation
	Chapter 5: Custom Instrumentation for .NET Applications
	About Instrumentation and Capture Points Files
	Locating the .NET Capture Points Files
	Coding Points in the Capture Points File
	Instrumentation Examples
	Understanding the Overhead of Custom Instrumentation
	Default Layers for Typical .NET Applications

	Chapter 6: Understanding the .NET Agent Configuration File
	Understanding .NET Agent Configuration File
	.NET Agent Configuration Elements
	<ali> element
	<appdomain> element
	<bufferpool> element
	<captureexceptions> element
	<clientmonitoring> element
	<consumeridrules> element
	<cputime> element
	<credentials> element
	<demomode> element
	<depth> element
	<diagnosticsserver> element
	<exceptiontype> element
	<exclude> element (when parent is captureexceptions)
	<exclude> element (when parent is lwmd)
	<excludeassembly> element
	<filter> element
	<filter> element
	<gentvhttpeventforwcf> element
	<htmlinstrumentation> element
	<httpcaptureparams> element
	<httpclient> element
	<httpheaderrule> element
	<httpheaderrules> element
	<id> element
	<include> element (when parent is captureexceptions)
	<include> element (when parent is lwmd)
	<instrumentation> element
	<iprule> element
	<iprules> element
	<latency> element
	<logging> element (when parent is appdomain, probeconfig, or process)
	<lwmd> element
	<mediator> element
	<metrics> element
	<metric> element
	<modes> element
	<param> element
	<points> element
	<probeconfig> element
	<process> element
	<profiler> element
	<rum> element
	<sample> element
	<server> element
	<soapcapture> element
	<soappayload> element
	<soaprequestforsoapfault> element
	<soaprule> element
	<soaprules> element
	<sqlparsing> element
	<stacktracesampling> element
	<symbols> element
	<timeskew> element
	<topology> element
	<transport> element
	<trim> element
	<tv> element
	<uriautocollapsing> element
	<urireplacepattern> element
	<url> element
	<vmware> element
	<webserver> element
	<ws> element
	<xvm> element

	Chapter 7: Advanced .NET Agent Configuration
	Time Synchronization for .NET Agents Running on VMware
	Customizing the Instrumentation for ASP.NET Applications
	Discovering the Classes and Methods in an Application
	Controlling Which HP Software Products the Agent can Work With
	Configuring Support for MSMQ BasedCommunication
	Configuring Latency Trimming and Throttling
	Configuring Depth Trimming
	Configuring URI Truncation and Mapping
	Capturing HTTP Server Requests Based on Query Parameters
	Configuring the .NET Agent for Lightweight Memory Diagnostics
	Limiting Exception Stack Trace Data
	Configuring Thread Stack Trace Sampling
	Disabling Logging
	Overriding the Default Probe Host Machine Name
	Listing the Probes Running on a Host
	Authentication and Authorization for .NET Profilers
	Configuring Consumer IDs
	Configuring SOAP Fault Data
	Collecting Additional Probe Metrics or Modifying Probe Metrics

	Chapter 8: .NET System Metrics Agent - Systems Metrics Capture
	About the .NET System Metrics Agent
	System Metrics Captured by Default
	Configuring .NET System Metrics Capture
	Adding System Metrics Using the Windows Performance Monitor
	Default Entries in the .NET Agent metrics.config File
	Keywords in the metrics.config File

	Part 4: Using the Profiler for .NET
	Chapter 9: Diagnostics Profiler for .NET
	About the .NET Diagnostics Profiler
	How the .NET Agent Provides Data for the .NET Profiler
	.NET Diagnostics Profiler UI Navigation and Display Controls
	.NET Diagnostics Profiler Inactivity Timeout
	How to Access the .NET Diagnostics Profiler
	How to Enable and Disable the .NET Diagnostics Profiler
	Server Requests Tab Description
	SQL Tab Description
	Methods Tab Description
	Call Tree Tab Description
	Exceptions Tab Description
	Collections Tab Description
	Threads Window Description

	We appreciate your feedback!

