hp Unified Correlation Analyzer

W

Unified Correlation Analyzer
for
Event Based Correlation
Version 3.0

Administration, Configuration and Troubleshooting
Guide

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.8 & 6.3) Operating Systems

June 2013

© Copyright 2013 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is trademark of Oracle and/or its affiliates.

Microsoft®, Windows® and Windows NT® are U.S. registered trademarks of
Microsoft Corporation.

Oracle?® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/0pen®is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Contents

[] - o Y J

L6111 =T RN - |

[T T LT o 1 P

011 F= 1.1 -] R | |

UCA for EBC AdMiNIiStration.....cceceeceieecneeerereceececsecereeseseesescssessssesescesessssesesseses 10

2.1

2.1.1
2.1.2
2.1.3
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3

Starting and stopping UCA fOr EBCeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseesee e seeneesnenes 10
Starting UCA FOr EBC.....ueoeeeeeeeeeeeeeeceeeeectreteeteeeeeteeseee s eeseesessseesseeseeesnensnensnes 10
StOPPING UCA FOr EBC ...ttt te e ne s e s aesee e e e e e e nean 10
Displaying the status 0f UCAfOr EBCccueeeeeeeeeeeeeeereeeeeeceeeeeeeesseeeseesaeeneeens 11

(0003914 F=T 3T BT V= Yo T 12
UC-EDCNVENEOIY ..ttt er e e e e e e saeesssseessee s seesnnennns 12
(¥ Ttz B=] o T {3 = o o] TR 13
(0T =1 o Yo=Y [413 T TR 15
UCQ-EDC-INSEANCE ..ttt e s ssee s e e s e s e s eesnesnens 20
(U= R=] o T 1= o (U o SRR 21

UCA for EBCUSEr INTEITACE.......eeeeeeeeeeeceeee ettt s e s e s e e s e e eneas 24

L6111 -] ..

UCA for EBC Configurationccccccceeeeeieenceeceecceeceenceecenccneceeccesscescscscsscssscsscnces 23

3.1

3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.25
3.3

3.3.1
3.3.2
34

3.4.1
3.4.2
3.4.3

Multiple instances configurationocceeeeeeecceecceeccerceee e e 25
L@(0T 31T (0] = 14T 8 (=TT 26
uca-ebc.properties file CONfiGUIAtionoceeeveeieeieceeeeeeeeeeeeeeeeeeee et 26
ActionRegistry.xml file configurationeccceeeeeeeecieeeceeeceeceeeceer e 30
uca-ebc-logdj.xml file configurationceceeeeeecieeceeceeeeecee e 34
Additional configuration files..........ceeveeieeeecieeeeeeeeeeece e 36
How to revert back to the default configuration filescceeeeeveeceeeceeceeeeeens 36
High-Availability (HA) configurationc.coeeeeveeereeeeeereeeeeereceeeeseeesreseesessesesessenes 36
Simple cluster configuration USING NFSoooiieeieeeeeeceeeeeeceee e 36
Neo4j database High-Availability (HA) configuration for Topology Extension37
BACKUP @NA FESEOMEeeeeeeeeeieeeeeecteeeeeeeete e ee e e e e eseeesaeesesseeessesessesessesessenessesessesnsees 38
Standalon@ UCA FOr EBC ... ettt ee e seesee e e e s nean 38
CluStEred UCA FOr EBCcoveeeeieeeereeeeceeseeseseseseeeestessessesaesssssnesesaessessessnssssssanes 39
UCA for EBC with external topology SErVer.........ueecceeeeeeeeeeeeeceeeeeeeeeeeeeaeeeans 39

01T 711 = Y ¥ |

UCA for EBC MoNItoring.......cccccceeeeciennecceneecenecccencecencssesssssenssssesssssesssssesssssens 41

4.1

4.1.1
4.1.2
4.1.3
4.1.4

Monitoring the alarm flow in real-timeceoeeeieeeeceeeeeeeeeeeee e 41
{00 1L =Tat o) gl =T R 42
(D1 0Tl =T g = 1Y =T SRR 43
LV (UL o= Lol 1 == R 43
SCENAMO/ENGINE LAYEN ...ttt ettt ae et sa st saene 43

[0 1= 7 T Y 1

UCA for EBC TroubleShootingcccccieeeineeienncieeenenecneccenncnscsesssnsssesscsscsseees 45

5.1

5.1.1
5.1.2
5.1.3

Troubleshooting tOOLSccocveeeeeieieeeteee ettt sttt et s 45
LOG FIlS ettt te e eseeeae e e e e s e e se e s e e s e e aeeaeessense e sae s eeneennanns 45
UCA for EBC Graphical User INterface......cecceeeeeeeeceeeeeeeeeeee e eeeeee e scnesnens 45
G T LYo 47

01T 1.1 - Y i

UCA for EBC Advanced Troubleshootingcccccceeeeeeecenncneceneceeceeccnecececessesccneee 15

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2

6.2.1
6.2.2
6.2.3
6.3

6.3.1
6.3.2
6.4

UCA for EBC LOGQGING MEChANISIMcueeeeeeieeeeeneeeneeeeeeeeeeeeeeeeeseeeseeseesseessesssenseensnns 75
Standard application l0ggiNgcccceceeeeeeueriesirrirtreeteeee ettt 75
Configuring Scenario logGingccveeveeeeeeeeceeeeeeeeeeeeeeeree e seeeeeeseeeseeessesaeennenns 76
Scenario rule exXecution logging......c.ceeeeeeeererienrerneereenenenrereeee st eseessesesseseeeens 77
Activating the Collector raw loggingcccecceververernerreeneenenrertneeseeseessesee e eeeeene 83
Configuring the log for Working Memory Agenda and Event Listeners................ 83

Managing the Drools @NGINE(S)ccceeeeeirueeeeereeieseeetereseeeseeeseseseeesesssesesassesessanes 84
Dumping the Working MEmOTYcceeeeieeeeeeeeeeeeeeceee e e eeeecae e e e e e eaeeesseeseaneenns 84
Clearing the Working MEmOKYcceeeeeeeeceeeeeeete e e ee e ee e e e e e e san e e seessanenns 85
ReloAdiNG thE TULES ...ttt sr e s 87

Managing the Mediation [aYer ... e s 89
Managing the mediation flOWS.........ccoceeerinininnireee s 89
MaNAGiNG @CLIONSeeeuieeeieeieeeeeeetee ettt ete st e st e et e st eseessaessaesseeesesenessesnassnanns 92

UCA for EBC Performance analySiscceeeeveeeeereeerererereeeeeeeeeseeeseessesseeseesssesseensnes 93

61 -1 1] (-] RO - |

Frequent problems and solutions........cccceceeeeieeieeieeceeceececcecceccecceccesceceececceccees 95

7.1

7.1.1
7.1.2
7.2

7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.3.3

Problems executing uca-ebc-admin.........cccccveeeeeieeeeceeereeeee e e e e eneas 95
Cannot connect to UCA for EBC JMX €CONNECEONccoeeeeeeceeeeeeeeeeeceeee e e eeene 95
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-admin.log........ 95

Problems executing UCa-ebC-iNJECLON......cceeveeieeieeeeeeeeeeee et 96
Cannot create CoNNECLIONcoceiieeieeeirceeeeeecceeeree et ee e e s sne e se e s saeeane 96
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-injector.log......97

Problems starting UCA fOr EBCooueeeeeeeeeeeeeeeeeeeteeeeeeeeeeese et eeeeseeeseeeseessennees 97
AlreadyBoUNAEXCEPLION.......ceeeeeeeeeeeeeceeeeeeeeee et e et e e e e e eaeeeeae e s e e s ss e s seesesnennns 97
ClassNotFoundException: javax.management.remote.rmi.RMIServerimpl_Stub98
FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log.................... 99

01T T o | 1)

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
one scenario
Figure 21
perspective icon
Figure 22

Figure 23
Figure 24
panel
Figure 25
Audit panel
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
level
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44

Figures

ACtioNREGISTIY. XIMLEILE.....eeeeeeeeeeeceeeeeeee ettt e s e s e e e saeeneesneeneenns 30
UCA for EBC— Monitoring the Alarm FLOW........cceeeeeeeeieeeeeeeeeeceeteeeee e eseenns 42
Troubleshooting/Log panel at Application leVelccoeeveeeeeereceeeeereeereeeeenenee. 46
Troubleshooting/Statistics panel at Application Levelcoceeeeveeeecerceeeceeeenenen. 47
Java JMX Console: Connecting to UCA for EBC SEIVErcueeeeeeeeereeereeereeeeeeceeeeeeneens 48
Java JMX Console: UCA for EBC MBEANS........ccceeeeeeeceeeeerereeceeeeeeseeeesesesesessessesseeas 49
Java JMX Console: UCA for EBC Action Man@gerccceeeeveeeeeeeeeenienerserseeesesneenennes 50
Java JMX Console: UCA fOr EBC COLLECLON.....ueuvuiieeereeereeereeeeteeeeereeeeeeseeeseeeeeeeeneens 54
Java JMX Console: UCA for EBC DiSPAtCher.......ccveeeeeeeeeereeeereeeeeeeeeeeeseeeseeeeeeeeseens 55
Java JMX Console: UCA for EBC Propertiescuceeeeeeeeeeeeeeeseeeceeeceeeceeeeseseseeesseeeneens 57
Java JMX Console: UCA fOr EBC SEIVEN......uuueeeeeeeeeneeeereeerereeseeeseeeseeesseeseesseesseessesseens 59
Java JMX Console: UCA for EBC Value Pack Managerccoeeeeeerveeeeeeeceeereeereeennens 60
Java JMX Console: a UCA for EBCVaAlue PacK.......eeeeeeeeeeeeeeeeeeeceeeee e eese e e eeeeneens 63
Java JMX Console: UCA for EBC Value Pack - Class Loader.........cceeeeveeeeeceerceeeeennenn. 64
Java JMX Console: UCA for EBC Value Pack — Mediation FlOwsc.ccoeeeeeeeeneennen. 66
Java JMX Console: UCA for EBC Value Pack —Value PacKccccceeeceeevercerceerceeeeenee 68
Java JMX Console: UCA for EBC Value Pack - Scenarios.........cceeeeveeeveeceeceeceesceeeneens 70
Java JMX Console: UCA for EBC Value Pack —Scenario.........cceeeeeeeeeeeeceeceeeeeeeeeennens 71
Configuring scenario specific logging in the uca-ebc-logdj.xmlfile.........cccueeuueenenee. 77

Java JMX Console: Enabling/Disabling scenario specific rule execution logging for
gglecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss Drools
;Slecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE menus
_Z,gowing the JBoss Drools Audit view in Eclipse IDE.........ccoveeeieeceeeceeeeeeeeeeeeeeens 80
Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools Audit
Eglipse IDE: Using the “Open log” icon to open a Drools engine log file in the Drools
80

Eclipse IDE: Viewing scenario rule eXecution l0gs.........ceecveeeeeeeceeeceeereeereeereeeeeceeenns 81
Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE 81
Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE..............ccueuu.. 82
Sample view of the Drools Working Memory panel in Eclipse IDEcccueeeveennnee 82
Sample view of the Drools Agenda panelin Eclipse IDE..........cueoveeveeerereeereeevecneenns 82
Configuring the log for Working Memory Agenda and Event Listeners 83
Java JMX Console: Dumping the working memory of a Scenario.........cccecoeveveeuenen. 85
UCA for EBC User Interface: Dumping the working memory of a scenario................ 85
Java JMX Console: Clearing the working memory of a Scenariocccceeeveeceveenneen.. 86
UCA for EBC User Interface: Clearing the working memory of a scenario.................. 86
Java JMX Console: Reloading the rules of @ SCENArI0.......cceeeeeveerveceeeeeceeceeeeeeaeens 87
Java JMX Console: Reloading the rules of all Scenarios of a Value Pack 88
UCA for EBC User Interface: Reloading the rules of a Scenarioccccceveeeeeeeerenennes 88

Java JMX Console: Performing operations on mediation flows at the Value Pack
89
UCA for EBC User Interface: Resynchronizing the mediation flows of a Value Pack.90

Java JMX Console: Performing operations on a single mediation flow..................... 91
UCA for EBC User Interface: Performing operations on a single mediation flow......92
Java JMX Console: Dumping Failed Actions for a Scenario........cccceeeveeeceeeceeeceeencnnene 93
Java JMX Console: Monitoring performance of UCA for EBC Server..........cceceuveeunee.. 94

Table 1 - Software versions
uca-ebc-injector tool options

Properties for uca-ebc-injector in uca-ebc.properties file
uca-ebc-admin tool main options

uca-ebc-admin tool sub-options

Properties for uca-ebc-admin in uca-ebc.properties file
Main options for the uca-ebc-instance tool

Options for backing up UCA for EBC instances using the uca-ebc-instance tool 22
Options for restoring UCA for EBC instances using the uca-ebc-instance tool 23
Options for listing the available UCA for EBC instance backups using the uca-ebc-

Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
instance tool
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44

24

Tables

15
15
18
20
20
21

Host and Port # properties in the uca-ebc.properties file
Web GUI properties in the uca-ebc.properties file

Collector properties in the uca-ebc.properties file

Action Manager properties in the uca-ebc.properties file
Rule Engine logger properties in the uca-ebc.properties file

Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:
Java JMX Console:

UCA for EBC Action Manager — Action Queue attributes
UCA for EBC Action Manager — Action Queue operations

UCA for EBC Action Manager — Action Statistics attributes
UCA for EBC Action Manager — Action Statistics operations
UCA for EBC Action Manager — Action Threads attributes
UCA for EBC Action Manager — Action Threads operations

UCA for EBC Collector attributes

UCA for EBC Collector operations

UCA for EBC Dispatcher attributes

UCA for EBC Dispatcher operations

UCA for EBC Properties attributes

UCA for EBC Server operations

UCA for EBC Value Pack Manager attributes

UCA for EBC Value Pack Manager operations

UCA for EBC Value Pack - Class Loader attributes
UCA for EBC Value Pack - Class Loader operations
UCA for EBC Value Pack — Mediation Flows attributes
UCA for EBC Value Pack — Mediation Flows operations
UCA for EBC Value Pack — Value Pack attributes

UCA for EBC Value Pack — Value Pack operations
UCA for EBC Value Pack — Scenario attributes

UCA for EBC Value Pack — Scenario operations

uca-ebc-admin: Cannot connect to UCA for EBC JMX connector
uca-ebc-admin: FileNotFoundException

uca-ebc-injector: Cannot create connection

uca-ebc-injector: FileNotFoundException

uca-ebc: AlreadyBoundException

uca-ebc: ClassNotFoundException

uca-ebc: FileNotFoundException

27
28
28
29
29
51
52
52
53
53
53
54
54
56
57
59
59
60
63
65
65
67
67
69
70
74
74
95
96
96
97
97
98
99

Preface

This guide provides an overview of Unified Correlated Analyzer for Event Based
Correlation product and describes how to administer, configure, monitor and
troubleshoot the UCA for EBC product.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also
referred to in this document as UCA for EBC)

Product Version: 3.0

Intended Audience
Here are some recommendations based on possible reader profiles:
e Solution Developers

e Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation HP-UX 11.31 for Itanium

Server Version 3.0 Red Hat Enterprise Linux Server release 5.8 &
6.3

UCA for Event Based Correlation HP-UX 11.31 for Itanium

Channel Adapter Version 3.0 Red Hat Enterprise Linux Server release 5.8 &
6.3

UCA for Event Based Correlation Windows XP / Vista

Software Development Kit Windows Server 2007

Version 3.0 Windows 7

UCA for Event Based Correlation Windows XP / Vista

Problem Detection Kit Version Windows Server 2007

3.0 Windows 7

Table 1 - Software versions

Typographical Conventions
Courier Font:

e Source code and examples of file contents
¢ Commands that you enter on the screen

e Pathnames

e Keyboard key names

Italic Text:

e Filenames, programs and parameters.
e The names of other documents referenced in this manual.
Bold Text:

e Tointroduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] HP UCA for Event Based Correlation Reference Guide

[R2] HP UCA for Event Based Correlation Value Pack Development Guide
[R3] HP UCA for Event Based Correlation User Interface Guide

[R4] HP UCA for Event Based Correlation Installation Guide

[R5] HP UCA for Event Based Correlation Topology Extension Guide

Support

Please visit our HP Software Support Online Web site at
www.hp.com/qo/hpsoftwaresupport for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:
e Downloadable documentation.
e Troubleshooting information.
e Patches and updates.
e Problem reporting.
e Training information.

e Support program information.

http://www.hp.com/go/hpsoftwaresupport

Chapter 1

Introduction

This guide describes how to administer, configure, monitor and troubleshoot the
UCA for EBC product.

Throughout this document, we use the s {uca EBC HOME} environment variable to
reference the root directory (“static” part) of UCA for EBC. The default value for the
${UCA EBC HOME} environment variable is /opt/UCA-EBC. The

${UCA EBC_ HOME} environment variable thus references the /opt/Uca-EBC
directory unless UCA for EBC “static” part has been installed in an alternate
directory.

We also use $ {UCA EBC_DATA} environment variable to reference the data
directory (“variable” part) of UCA for EBC. The default value for the

${UCA_EBC DATA} environment variable is /var/opt/UCA-EBC. The

${UCA_EBC DATA} environment variable thus references the /var/opt/UCA-EBC
directory unless UCA for EBC “variable” part has been installed in an alternate
directory.

Since UCA-EBC V2.0, the s {uca_EBC_ DATA} directory may contain multiple
instances of UCA-EBC. In this document, we will use the value

${uca EBC INSTANCE} forreferringto

${UCA EBC DATA}/instances/<instance-name> directory.

At installation, a single <instance-name> is configured: default.

%~ For more information on how to install the UCA for EBC product, please refer
to: [R4] HP UCA for Event Based Correlation Installation Guide.

" For more information on the UCA for EBC product, please refer to: [R1] HP UCA
for Event Based Correlation Reference Guide.

Chapter 2

UCA for EBC Administration

2.1 Starting and stopping UCA for EBC

2.1.1 Starting UCA for EBC

To start UCA for EBC, please run the following commands as uca user:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc start

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: Starting UCA for Event Based Correlation version 3.0

Traces are logged inthe $ {UCA_EBC_INSTANCE}/logs/uca-ebc.log file.

To start UCA for EBC in verbose mode (traces logged to the console), please run the
following commands as uca user (note the use of the —v option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -v start

Since UCA-EBC V2.0, it is possible to launch multiple instances on a same machine.
Each instance is managed by the uca-ebc-instance command line tool (refer
to chapter 2.2.4). If not specified, the default instance is launched.

To start UCA for EBC for a specific instance (specified by <instance-name> in
the example below), please run the following commands as uca user (note the use
of the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> start

2.1.2 Stopping UCA for EBC

In order to stop UCA for EBC, please run the following commands as uca user:

10

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc stop

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: Shutting down UCA for Event Based Correlation version 3.0
*** INFO: UCA for Event Based Correlation version 3.0 has been
successfully stopped

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the default instance is stopped.

To stop UCA for EBC for a specific instance (specified by <instance-name> in the
example below), please run the following commands as uca user (note the use of
the —i option):

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> stop

2.1.3 Displaying the status of UCA for EBC

In order to show the status of UCA for EBC, please run the following commands as
uca user:

On both HP-UX, and Linux:

$ cd ${UCA7EBC7HOME}/bin
$ uca-ebc show

Here’s a sample output from this command:

Using UCA for EBC Home directory specified by the UCA_EBC_HOME
environment variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA
environment variable: /var/opt/UCA-EBC

*** INFO: UCA for Event Based Correlation version 3.0 is running

The status of UCA for EBC can either be “Running” or “Stopped”.

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the status of the default instance is returned.

To get the status of UCA for EBC for a specific instance (specified by <instance-
name> in the example below), please run the following commands as uca user
(note the use of the —i option):

On both HP-UX, and Linux:

$ cd S$S{UCA EBC HOME}/bin
$ uca-ebc -i <instance-name> show

11

2.2 Command-line tools

Some command-Lline tools are provided in the ${UCA_EBC_HOME}/bin folder that
may prove to be of some help to users of UCA for EBC:

uca-ebc-inventory: this command-line tool lists the UCA for EBC packages
installed on the system.

uca-ebc-injector: this command-line tool provides the capability to inject
alarms described in XML files directly into the UCA for EBC input queue
without going through the mediation layer (0SS Open Mediation V6.2),
thus bypassing both 0SS Open Mediation V6.2 and UCA for EBC Channel
Adapter

uca-ebc-admin: this command-line tool provides a lot of options to
configure, administer, and monitor UCA for EBC, but also UCA for EBC value
packs and scenarios. Most of the features of this tool are also available
using the UCA for EBC User Interface.

uca-ebc-instance: this command line tool manages the different
instances of UCA for EBC. It provides options to list current instances, add
a new instance, delete or rename an existing instance and set the default
instance name.

uca-ebc-backup: this command line tool provides facilities for backup and
restore of the instances of UCA for EBC.

For more information on the UCA for EBC User Interface, please refer to: [R3] HP
UCA for Event Based Correlation User Interface Guide

2.2.1 uca-ebc-inventory

This command-line tool lists the packages (including patches) installed on the
system for the following products:

o UCA for EBC Server

e UCA for EBC Channel Adapter for 0SS Open Mediation
e UCA for EBC Development Kit

e (0SS Open Mediation

To execute the uca-ebc-inventory tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-inventory

Here’s an example of the output of the execution of uca-ebc-inventory:

12

UCA For Event Based Correlation
Components Inventory
on <hostname> system

Installed UCA-EBC components:

UCA-EBCCA V3.0 HP UCA EBC Channel Adapter Version
3.0 Level 00 Rev F
UCA-EBCSERVER V3.0 HP UCA EBC Server Version 3.0

Level 00 Rev F

Installed Mediation components:

ngossopenmediation X600-04 NOM openmediation Version X600
Level 04 Rev

---------------- END of UCA INVENTORY ----------c-oooamm-

The uca-ebc-inventory tool has no execution options and no associated
configuration file.

2.2.2 uca-ebc-injector

This command-line tool provides the capability to easily send events (Alarm
creation, Alarm Attribute Value Change, Alarm State Change, Alarm Deletion, etc...)
to UCA for EBC by pushing XML files containing these events to the JMS input queue
(implemented as a JMS Topic) of UCA for EBC.

The alarms are directly injected into UCA for EBC without going through the
mediation layer (0SS Open Mediation V6.2), thus bypassing both 0SS Open
Mediation V6.2 and UCA for EBC Channel Adapter.

This command-line tool can be very helpful for testing UCA for EBC Value Packs in
real conditions without having to set up the mediation layer (0SS Open Mediation
V6.2 and UCA for EBC Channel Adapter).

The following sections describe how to execute and how to configure the uca-ebc-
injector tool.

To execute the uca-ebc-injector tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector <options>

<options> is a list of valid options for the uca-ebc-injector tool

The uca-ebc-injector command-Lline tool can be used either in random mode, where
random alarms are generated automatically based on a template and sent to UCA
for EBC, or in file mode, where alarms are provided to the uca-ebc-injector tool as
an XML file that is then sent to UCA for EBC.

The uca-ebc-injector tool is by default in file mode unless the -r or --random option
is used, in which case the uca-ebc-injector tool is in random mode.

To use the uca-ebc-injector tool in file mode, please use the following commands:

13

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector -file /tmp/Alarms.xml

The above command will send 1 burst of alarms to UCA for EBC. The alarms in this
burst will be exactly the same as the alarms in the file specified by the -file or --
filename option.

To use the uca-ebc-injector tool in random mode, please use the -r or --random
option. Below is an example of the uca-ebc-injector tool being used in random
mode:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-injector --random -file /tmp/Alarms.xml --number 10 -
-delay 5000

The above command will send 10 bursts of random alarms to UCA for EBC. The
delay between each burst will be 5 seconds. Each burst of alarms will send one
alarm unless the --buffer-size option is specified. The alarms sent in the burst will
be the same as the alarms in the template file except for the ID of the alarms
(sequential IDs will be used instead) and the severity of the alarm (the severity will
be chosen at random).

Since UCA for EBC 3.0, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-injector tool applies to the default instance.

This tool has the following options available:

-i <instance-name> Default value: default

This option sets the instance of UCA for EBC to use.
Instance <instance-name> must exist. If used, this
option must be set as first option.

--buffer-size <Slize> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarms per alarm
burst.

--delay <Delay> Default value: 0

This option specifies the delay (in milliseconds)
between 2 alarms files (in file mode) or 2 alarm bursts
(in random mode).

-f, -file <Filename> No default value

This option sets the uca-ebc-injector tool in file or
random modes. It specifies one alarm file to use as
input for the uca-ebc-injector tool.

The file specified by <filename> must be a valid XML
file complying with the Alarm XSD file located at the
following location: ${UCA_EBC_HOME}/schemas/uca-
expert-alarm.xsd

14

--number <Number> Default value: 1

This option is used in random mode (-r, or --random
option) to specify the number of alarm bursts to be
sent

-r, --random This option sets the uca-ebc-injector tool in random
mode.

This option can be used in conjunction with the -file
option to send random alarms (sequential IDs,
random severity) based on the alarms provided with
the -file option

Table 2 uca-ebc-injector tool options

The uca-ebc-injector tool has some configuration properties defined in the
${UCA_EBC_ INSTANCE}/conf/uca-ebc.propertiesfile, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

java.naming.factory.init Default value:
ial org.apache.activemag.jndi.ActiveMQInitialContextFactor
y

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

java.naming.provider.url Default value:
tep\://${uca.ebc.serverhostI\:${uca.ebc.jms.broker.port

}

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

topic.uca-ebc-alarms Default value : com.hp.uca.ebc.alarms

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table 3 Properties for uca-ebc-injector in uca-ebc.properties file

2.2.3 uca-ebc-admin

This command-line tool provides a lot of options to configure, administer, and
monitor UCA for EBC Server, but also UCA for EBC value packs and scenarios. Most
of the features of this tool are also available using the UCA for EBC User Interface.

The following sections describe how to execute and how to configure the uca-ebc-
admin tool.

To execute the uca-ebc-admin tool, please use the following commands:

On both HP-UX, and Linux:

| $ cd ${UCA EBC HOME}/bin

15

$ uca-ebc-admin <options>

<options> is a list of valid options for the uca-ebc-admin tool (both main options

and sub-options)

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same
machine. If not specified, the uca-ebc-admin tool applies to the default instance.

The following table lists the main options of the uca-ebc-admin tool (sub-options
can be used alongside these main options, the list of which is described further):

-h, --help

-i <instance-name>

-1, --list

-lg, --log4j

-p, --perf

-w, --workingMemory

-c, --clean

-r, --reload

-rc, --reloadConf

This option displays the uca-ebc-admin tool usage
message

This option sets the instance of UCA for EBC to
administer. Instance <instance-name> must exist. If
used, this option must be set as first option.

This option lists all running scenarios of all Value
Packs

This option reloads the UCA for EBC log4j
configuration file

This option displays performance measurements.

This option dumps the working memory of one or
more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ see Notes: (') (A (3)

This option cleans the working memory (retracts all
facts) of one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ see Notes: (') (A (3)

This option reloads the rule engine of one or more
scenarios or reloads a specific rules file.

By default this option reloads the rule engine of all
scenarios of all value packs except if sub-options
are used.

&~ See Notes: (1) () () (4)

This option reloads the configuration files. The files
to be reloaded can be chosen between the:

- whole set of files of all actives value packs

- whole set of files of a single active value pack

- whole set of files concerning a single scenario

- a single file within a scenario when used in
conjunction with the —conf sub-option.

&~ See Notes: (1) () @) (%)

16

-dep, --deploy

-undep, --undeploy

-start, --start

-stop, --stop

-d, --disable

-rl, --ruleLogging

This option deploys a value pack stored in the
${UCA_EBC_INSTANCE}/valuepacks directory into
the ${UCA_EBC_INSTANCE}/deploy directory.

This option applies to the selected value pack.
5~ See Note: ()

Once deployed, the value pack can be started by
executing the uca-ebc-admin tool with the -start, --
start option (if UCA for EBC is already running) or by
starting UCA for EBC (if UCA for EBC is stopped).

This option undeploys a value pack from the
${UCA_EBC_INSTANCE}/deploy directory and creates
an archive of it in the ${UCA_EBC_INSTANCE}/archive
directory.

This option applies to the selected value pack.
5~ See Note: ()

Once the value pack has been undeployed, the value
pack archive file can be manually moved back to the
${UCA_EBC_INSTANCE}/valuepacks so that it can be
deployed again.

This option starts a value pack.

This option applies to the selected value pack.
¥ See Note: (%)

This option stops a value pack.

This option applies to the selected value pack.
¥ See Note: (%)

This option disables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e or scenario logging (if -sl,--
scenarioLogging option is also selected).

This option enables:

e either rule engine logging (if -rl,--
ruleLogging option is also selected)

e or scenario logging (if -sl,--
scenarioLogging option is also selected).

Used in conjunction with either the —d, --disable or —
e, --enable options, this option enables or disables
rule engine logging for one or more scenarios.

By default it applies to all scenarios of all value
packs except if sub-options are used.

&~ see Notes: (') () (3)

17

Table 4 uca-ebc-admin tool main options

Here’s the list of notes that applies to the above “uca-ebc-admin tool main options’
table:

Notes

(") If no sub-option is selected, then the option applies to all value packs or all their
scenarios

(®) If -vpn <value pack name> and —vpv <value pack version> sub-options are
selected, then the option applies to the specified value pack or all its scenarios

(®) If -vpn <value pack name>, -vpv <value pack version>, and -scenario <scenario
name> sub-options are selected, then the option applies to the specified scenario

(%) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -rule <rules file identifier> sub-options are selected, then the option
applies to the specified rules file.

(°) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario
name>, and -conf <configuration file identifier> sub-options are selected, then the
option applies to the specified configuration file.

The following table lists the sub-options that can be used in conjunction with the
main options of the uca-ebc-admin tool:

-vpn <value pack name> Used in conjunction with the -vpv sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c,--clean

e -r,--reload

e -dep, --deploy

e -undep, --undeploy

e -start, --start

e -stop, --stop

e -rl,--ruleLogging

e -sl,--scenarioLogging

-vpv <value pack version> Used in conjunction with the -vpn sub-option,
this sub-option selects the value pack specified
by <value pack name> and <value pack version>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c,--clean

e -r,--reload

18

-scenario <scenario name>

-rule <rules file identifier>

-conf <configuration file
identifier>

e -dep, --deploy

e -undep, --undeploy

e -start, --start

e -stop, --stop

e -rl,--ruleLogging

e -s|,--scenarioLogging

Used in conjunction with the -vpn, and -vpv sub-
options, this sub-option selects the scenario
specified by <value pack name>, <value pack
version>, and <scenario name>.

This sub-option can be used alongside the
following options:

e -w, --workingMemory
e -c,--clean

e -r,--reload

e -rl,--ruleLogging

e -s|,--scenarioLogging

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<rules file identifier>.

This sub-option can be used alongside the
following options:

e -r,--reload

The rules file identifier is the name that is
associated with arules file for a specific scenario
(see ValuePackConfiguration .xml file).

Used in conjunction with the -vpn, -vpv, and -
scenario sub-options, this sub-option selects
the rules file specified by <value pack name>,
<value pack version>, <scenario name>, and
<configuration file identifier>.

This sub-option can only be used alongside the
following options:

e -rc, --reloadConf
The configuration file identifier is either:

e One of the keywords :

o filter

o mapper
o specific
o template

e the filename of a specific configuration

19

file
e the name of the template

If the keyword “specific” is used, all specific
configuration files are selected.

Table 5 uca-ebc-admin tool sub-options

The uca-ebc-admin tool has some configuration properties defined in the
${UCA_EBC_ INSTANCE}/conf/uca-ebc.propertiesfile, but these
properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Property name Explanation

uca.ebc.jmx.url Default value :
service\:jmx\:rmi\://${uca.ebc.serverhost}/jndi/rmi\://$
{uca.ebc.serverhost}\:${uca.ebc.jmx.rmi.port}/uca-ebc

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF
THIS PROPERTY.

Table6 Properties for uca-ebc-admin in uca-ebc.properties file

2.2.4 uca-ebc-instance

The uca-ebc-instance command-line tool provides options to create, delete, list or
configure instances of UCA for EBC Server. This tool is not supported on Windows
platforms.

Instances are created inthe $ {UCA_EBC DATA}/instances directory. At
installation, a single instance is created. It is named “default”.

To execute the uca-ebc-instance tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-instance <options>

<options> is a list of valid options for the uca-ebc-instance tool

The following table lists the main options of the uca-ebc-instance tool:

-h This option displays the uca-ebc-instance tool
usage message

-l This option lists all available instances.

-a <instance-name> This option creates a new instance named

<instance-name>
&~ See Notes: (") (3)

20

-d <instance-name> This option deletes an existing instance named
<instance-name>.

-r <old-name> <new- This option renames an existing instance named
name> <old-name> to <new-name>. Note that <new-
name> should not already exist.

-s <instance-name> This option sets the default instance to use to be:
<instance-name>.

&~ See Note: (3)

Table 7 Main options for the uca-ebc-instance tool

Notes

(') When creating a new instance, the root folder for the new instance is created.
This folder is referred toas $ { UCA EBC INSTANCE} in this document.

(°) When creating a new instance, please make sure that there is no port conflict
with other applications running on your server.

(3) When no “-i” option is provided with the uca-ebc, uca-ebc-admin, uca-ebc-
injector, or the uca-ebc-backup tool, the default instance is used.

& please refer to chapter 3.1 “Multiple instances configuration” below for more
information on how to configure multiple instances of UCA for EBC.

2.2.5 uca-ebc-backup

This command-line tool provides the ability to backup and restore UCA for EBC
Server instances. This tool is not supported on Windows platforms.

To execute the uca-ebc-backup tool, please use the following commands:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup <command> <options>

<command> isoneof [-b | -backup | -r | -restore | -1 | -list]

<options> is a list of valid options for the command

2.2.5.1 Backing up

When the -b | -backup option is given to the uca-ebc-backup tool, a backup of the
data directory for a specific instance is performed (excluding the logs and work
subdirectories). In order to do so, the uca-ebc-backup tool compresses the instance
directory hierarchy and stores the resulting file into a directory of the users’ choice.

If the UCA for EBC Topology Extension is installed along with UCA for EBC Server and
the neodj Server is configured as embedded, the neo4j subdirectory is also backed
up. The backup of the neodj subdirectory is done using the neo4j Enterprise backup
utility, which performs a full backup without acquiring any locks, thus allowing for
continued operations on the neo4j instance.

Please make sure that UCA for EBC server is up and running when neodj is
embedded before proceeding with a backup. (+ See Note below)

21

To back up a UCA for EBC instance, please execute the following command:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -b|-backup <options>

The following table lists the op
for EBC instances:

-i <instance-name>

-f|-from <directory>

-t|-to <directory>

-nl-name <name>

Table 8 Options forb
instance tool

tions of the uca-ebc-backup tool for backing up UCA

This option displays the uca-ebc-backup tool usage
message

This option specifies the instance of UCA for EBC to
backup. If it is not specified, the default instance is
used.

This option specifies the UCA for EBC data directory.
If it is not specified, the ${UCA_EBC_DATA} directory
is used.

This option specifies the directory where to store
the backup file. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

This option specifies the name of the file to use as
the backup file. If it is not specified, the name of the
file is generated automatically using the following
pattern: %instance-%date-%time.

acking up UCA for EBC instances using the uca-ebc-

Note

When UCA for EBC is not runnin

g during the backup procedure, it is not a problem: a

warning is displayed but the neodj database is backed up properly.

Important: if your neodj database is located outside of the ${UCA_EBC_INSTANCE}
directory (for example if you set the value of the uca.ebc.topology.location
property to /my-absolute-path in the ${UCA_EBC_INSTANCE}/conf/uca-
ebc.properties file), the backup tool will keep a copy in a subdirectory of the

${UCA_EBC_INSTANCE} directo

ry

2.2.5.2 Restoring

When the —r | -restore option is given to the uca-ebc-backup tool, a specific
instance of UCA for EBC is restored from a compressed file previously created by

the uca-ebc-backup tool.

Restoring a backup file is only supported when UCA for EBC server is not running.

When UCA for EBC server is run
behavior.

ning, restoring a backup will result in unexpected

Restoring a backup of a UCA for EBC instance results in the current configuration of
neo4j being replaced by the backup. (=~ See Note (') below)

22

To restore a UCA for EBC instance from a backup file, please use the following
command:

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -r|-restore —name filename <options>

The following table lists the options of the uca-ebc-backup tool for restoring UCA
for EBC instance backup files:

-h This option displays the uca-ebc-backup tool usage
message
-n|-name <name> This option is mandatory and specifies the fully

qualified name of the backup file to restore.

-tl-to <directory> This option specifies the UCA for EBC data directory
where to restore the backup file. If it is not
specified, ${UCA_EBC_DATA} is used.

&~ See Note below

Table 9 Options for restoring UCA for EBC instances using the uca-ebc-
instance tool

Note

™M The restore mechanism does restore the neo4J DB in the
${UCA_EBC_INSTANCE}/neod4j directory which is the default location of the
neo4j DB.
If you have the location of neo4j DB outside of ${UCA_EBC_INSTANCE} (for
example if you specified uca.ebc.topology.location=/my-absolute-path in the
uca-ebc.properties file), you will have to manually copy the contents of the
neodj subdirectory to the /my-absolute-path directory.

@) Be careful! The backup file contains the instance name. If an instance with the
same name exists when an instance is restored, the existing instance will be
overwritten.

However, please note that the current logs and work directories are not
removed.

2.2.5.3 Listing the available backups

When the -1 | -list option is given to the uca-ebc-backup tool, all compressed
backup files are listed.

It is helpful to run this command before restoring a backup to know what backup
files are available. It may also be helpful if you need to do some cleanup of the
backup files.

The list is sorted by creation time. It is up to the end-user to clean the backup
directory when backup files become irrelevant and should be removed.

To list all available UCA for EBC instance backup files, please use the following
command:

23

On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-backup -1l|-list <options>

The following table lists the options of the uca-ebc-backup tool for listing available
backup files:

-h This option displays the uca-ebc-backup tool usage
message
-fl-from <directory> This option specifies the directory where the backup

files are stored. If it is not specified, the
${UCA_EBC_DATA}/backup directory is used.

Table 10 Options for listing the available UCA for EBC instance backups
using the uca-ebc-instance tool

2.3 UCA for EBC User Interface

In addition to the command-line tools, the web-based user interface of UCA for EBC
also provides administration, monitoring and troubleshooting capabilities for the
UCA for EBC product.

Note

%~ For more information on how to configure UCA for EBC at the value pack or

scenario level please refer to: [R3] HP UCA for Event Based Correlation User
Interface Guide[R2] HP UCA for Event Based Correlation Value Pack Development
Guide

24

Chapter 3

UCA for EBC Configuration

UCA for EBC can be configured using properties located in configuration files.

The following chapters describe all the properties that can be set to configure UCA
for EBC at the application level using configuration files (usually located in the
${UCA EBC INSTANCE}/conf/ folder). Additional configuration can be
performed at the value pack and scenario level.

Note

%~ For more information on how to configure UCA for EBC at the value pack or

scenario level please refer to: [R2] HP UCA for Event Based Correlation Value Pack
Development Guide

3.1 Multiple instances configuration

Since UCA-EBC V2.0, it is possible to configure multiple instances on a same server.
There is a command line tool for managing those instances: uca-ebc-instance.
Please refer to Chapter 2.2.4 “uca-ebc-instance” for more information on how to
use this tool.

When creating a new instance of UCA for EBC, the port numbers specified in the

${UCA EBC INSTANCE}/conf/uca-ebc.properties fileare
automatically tuned so that they do not interfere with ports of existing instances of
UCA for EBC. They are adjusted based on default port numbers delivered in the
${UCA EBC HOME}/defaults/conf/uca-ebc.properties file.

For example, such ports may have following values (the port numbers in the
example below correspond to a 3™ instance of UCA for EBC):

uca.ebc.jms.broker.port=61866
uca.ebc.jmx.rmi.port=1300
uca.gui.port=9088

However, you have to make sure that the above ports do not conflict with ports
used by other applications on your server.

If you have added other ports in your properties (for example for topology
extension), please make sure to tune these ports accordingly.

uca.ebc.topology.webPort=7675

In the same way, the port numbers inthe ${UCA EBC INSTANCE}/conf/uca-
ebc-log47j.xml file are automatically tuned.

The Port property for the CHAINSAW appender specified in the
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml fileshould be
different for each instance of UCA for EBC:

25

| <param name="Port" value="4745"/>

3.2 Configuration files

3.2.1 uca-ebc.properties file configuration

The s{UCA EBC INSTANCE}/conf/uca-ebc.properties file contains the
different properties that can be set for an instance of UCA for EBC Server.

The following tables list the different properties that can be set:

Property name Explanation

uca.ebc.serverhost Default value : localhost

This property defines the local host name as used by the
JMX (administration) and JMS (alarm Broker) connection
bindings.

The value ‘localhost’ is usually enough, but it can be
changed to enter the host fully qualified DNS name or an
IP address (especially if the server has several IP
interfaces), depending on whether UCA for EBC Server
should bind to one specific DNS Name/IP Address or all
DNS Names/IP Addresses configured on the server.

uca.ebc.jms.broker.po Default value: 61666

b The port used by the JMS Broker.
The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.ebc.jmx.rmi.port Default value : 1100
The port used by RMI for JMX connections.

The value of this property can be set to an alternate port
number in case of port number conflict with another
application on your system.

uca.gui.port Default value : 8888

The local port number used by the embedded UCA for
EBC User Interface web server. The value of this property
can be set to an alternate port number in case of port
number conflict with another application on your
system.

The URL for connecting to the UCA for EBC User interface
is the following:

Ihttp://<hostname or IP address>:<port #>[uca_expert_ui.html

<hostname or IP address> is the actual hostname (full
DNS name) or the IP address of the UCA for EBC Server
system.

<port #> is the port number for UCA for EBC User
Interface set by the uca.gui.port property (By default:
8888 for the default instance of UCA for EBC).

26

Table 11 Host and Port # properties in the uca-ebc.properties file

If you change the uca.ebc.serverhost, or uca.ebc.jms.broker.port properties, the
UCA for EBC Channel Adapter configuration must be changed accordingly. The uca-
ebc-ca.properties file of the UCA for EBC Channel Adapter must be checked and
changed if required:

UCA EBC Server to connect to
uca.ebc.jms.broker.host=1ocalhost
uca.ebc.jms.broker.port=61666

The default location for the uca-ebc-ca.properties file of the UCA for EBC Channel
Adapter is the following:

/var/<0SS Open Mediation root
directory>/containers/instance-0/ips/uca-ebc-ca-
3.0/etc/uca-ebc-ca.properties

Where:

e <0SS Open Mediation root directory> stands forthe 0SS Open
Mediation installation root directory, which, by default, translates to the
/opt/openmediation-V62 directory

e instance-0isthe 0SS Open Mediation container instance folder name.
Depending on you configuration, the container number could be different than
0. If this is the case, please adjust the name of the container instance folder
accordingly

" For full details on how to change this file, please refer to: [R4] HP UCA for Event
Based Correlation Installation Guide.

27

Property name 3 ETEL]

uca.gui.webapp Default value: webapp/uca-expert-ui.war

The location of the Web application ARchive file of the
UCA for EBC User Interface.

Table 12 Web GUI properties in the uca-ebc.properties file

Property name Explanation

collector.logger.enabled Default value: false

When set to true, collector logging is enabled. All
alarms collected by UCA for EBC, i.e. alarms sent by
0SS Open Mediation to UCA for EBC and alarms
injected into UCA for EBC using the uca-ebc-injector
tool, will be logged to a file at the following location:
S{UCA EBC INSTANCE}/logs/uca-ebc-
collector.log

collector.measurementr Default value: false

R When set to true, event rate measurement is enabled

for the UCA for EBC collector component. The
collection statistics data are available either through
JMX (using the standard Java jconsole or jvisualvm
tool for example), the uca-ebc-admin tool, or the UCA
for EBC User Interface.

collector.messages.valid Default value: true

gl When set to true, validation of all events (Alarms)

coming into UCA for EBC is enabled. Validation errors
are reported in the statistics of the Collector both at
the Java JMX Console and UCA for EBC User Interface.

Validation errors can occur when Alarms that do not
conform to the UCA for EBC Alarm XML schema are
received by UCA for EBC.

&~ For more information on the UCA for EBC Alarm
XML schema, please refer to: [R1] HP UCA for Event
Based Correlation Reference Guide.

Table 13 Collector properties in the uca-ebc.properties file

Property name 3 ETEL

action.threads Default value: 20

This property defines the size of the thread pool size
(in number of threads) of the UCA for EBC Action
Manager component. These threads are in charge of
processing asynchronous actions. This property can
be tuned up/down in case you need more/less
threads to process a large/small number of
asynchronous actions in parallel.

Table 14 Action Manager properties in the uca-ebc.properties file

engine.logger.enabled Default value: false

When set to true, scenario-specific Drools engine
logging is enabled. This setting affects all scenarios
of all value packs.

Scenario-specific engine log files are named
logEngine <scenario name>.logandare
locatedinthe S{UCA EBC INSTANCE}/logs
directory. Scenario-specific engine log files contain
standard Drools engine log entries specific to a
scenario.

These log files can be easily displayed in Eclipse IDE
using the Audit view, provided you have installed
the Drools Eclipse plugin. This view is show by
default if you switch to the Drools perspective.

engine.logger.interval Default value: 1000

This property represents the interval (in
milliseconds) at which engine log entries are written
to the scenario-specific engine log.

Table 15 Rule Engine logger properties in the uca-ebc.properties file

The uca-ebc. properties file also contains topology related properties. These
properties, prefixed either uca.ebc.topology or neodj, are related to the UCA for
EBC Topology Extension product. These properties are described in the UCA for EBC
Topology Extension guide.

%~ For more information on how to set these properties to configure the UCA for

EBC Topology Extension product, please refer to: [R5] HP UCA for Event Based
Correlation Topology Extension Guide.

Finally, there’s also a property named uca.ebc.version in the uca-
ebc.properties file that stores the version of the UCA for EBC Server product:
3.0. This property is for INTERNAL USE ONLY and should not be updated.

29

Note

UCA for EBC Server must be restarted in order for any change to the uca-
ebc.properties file to be taken into account.

For non-stop update of some of the properties, you can use the uca-ebc-admin
tool, or the JMX interface (with jconsole or jvisualvm).

&~ please see section 2.2.3 “uca-ebc-admin” for more information on the list of
properties that can be updated using the uca-ebc-admin command-line tool.

&~ please see section 5.1.3 “JMX Console” for more information on the list of
properties that can be updated at the Java JMX Console.

3.2.2 ActionRegistry.xml file configuration

UCA for EBC value pack scenarios have the ability to send action requests to be
executed by the mediation layer associated with UCA for EBC Server: 0SS Open
Mediation V6.2.

The actions are executed by a Channel Adapter (specific to a target application) on
the mediation layer. Action replies are then returned to the scenario that sent the
action requests.

UCA for EBC value pack scenarios use web services to communicate with the Action
Service web service of a Channel Adapter, typically the UCA for EBC Channel
Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file

${UCA EBC INSTANCE}/conf/ActionRegistry.xml mustbe configured
correctly.

<ActionRegistryXML xmlns="http://registry.action.mediation.uca.hp.com/">

<MediationValuePack M e="temip" MvpVersion="1.1"
url="http://localhost:26700/uca/mediation/action/ActionService ?WSDL"
brokerURL="failover://tcp://localho=st:10000">

<Action actionReference="TeMIP AC Directives_localhast">
<ServiceNameraoDirective</ServiceName>
<NmsNamerlocalTeMIP</NmsHName>

</Rhction>

<Action actionReference="TeMIP TT Directives localhost">
<ServiceName>ttDirective</ServiceName>
<NmsNamerlocalTeMIP</NmsHName>

I N
ok Wk P O W m -] W e W R

</Rhction>
16 <Action actionReference="TeMIF FlowManagement">
17 <ServiceName>subscriptionManagement</Servicelame:>
18 <NmsHamerlocalTeMIP< /HmsHame>
1s </Rhction>
20 </MediationValuePack>
21
22
23
24
25
28 <Action actionReference="Exec localhost">
27 <ServiceName>commandsExecution</ServiceName>
28 <NmsName>localhost</NmsName>
23 </Rhction>
30 </MediationValuePack>
31

32 </BctionRegisctryXML>

Figure 1 ActionRegistry.xml file

The default configuration for this file can be retrieved from the
${UCA EBC HOME}/defaults/conf folderin case you want to revert back to
the default configuration.

The ActionRegistry.xml fileis an UCA for EBC application level configuration
file. It is shared by all UCA for EBC value packs running on UCA for EBC Server.

The ActionRegistry.xml file defines “mediation value packs”, and “action
references” for these mediation value packs. The following sections will describe in
detail how to configure the ActionRegistry.xml file in terms of “mediation
value packs”, and “action references”

Note

UCA for EBC Server must be restarted in order for any change to the
ActionRegistry.xml file to be taken into account, unless you use the Java
JMX Console to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file.

F~ please see 5.1.3.1 “Monitoring UCA for EBC internal components” to learn how

to refresh the UCA for EBC Action Manager with the contents of the
ActionRegistry.xml file using the Java JMX Console.

3.2.2.1 Defining Mediation Value packs

Each “mediation value pack” defined in the ActionRegistry.xml file describes
the properties of a gateway to access the Action Service web service on a UCA for
EBC Channel Adapter deployed on 0SS Open Mediation V6.2.

This gateway will be able to process action requests on the mediation layer by
forwarding the action requests to the proper Channel Adapter on 0SS Open
Mediation V6.2 for processing.

Each “mediation value pack” defined inthe ActionRegistry.xml file has the
following properties:

o MvpName: You can give any value to this property (the value is not bound to
anything). However, it is recommended to use the name of the Channel
Adapter that will be targeted by the action requests. For example:

o “temip” (as in TeMIP Channel Adapter) or
o “exec” (asin Exec Channel Adapter)

¢ MvpVersion: You can give any value to this property (the value is not bound
to anything). However, it is recommended to use the version of the
Channel Adapter that will be targeted by the action requests. For example:

o 1.0o0r
o 2.1or
o etc...

o brokerURL: This property contains the correct URI for connecting to the JMS
Broker of the 0SS Open Mediation V6.2 container instance that contains a
UCA for EBC Channel Adapter. By default the port number of the JMS
Broker of 0SS Open Mediation V6.2 container 0 is 10000. To verify what
port number is used for your 0SS Open Mediation V6.2 container instance,
please check the value of the activemq.port property in the
/var/opt/openmediation-V60/containers/instance-
<instance number>/conf/servicemix.propertiesfile.

31

JMS Broker URIs have the following pattern:

tep://<hostname or IPaddress>:<port#> or

|failover:lltcp:ll <hostname or IPaddress>:< port#>| for the failover
URI

where:

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the 0SS Open Mediation V6.2 system.

<port #> is the port number of the JMS Broker of the 0SS Open Mediation
V6.2 container instance that contains a UCA for EBC Channel Adapter. The
default port # is 10000 for container instance 0.

The brokerURL property is used to connect to the Alarms JMS topic of the
UCA for EBC Channel Adapter when using the standard UCA for EBC
OpenMediationAlarmForwarder Java class for forwarding alarms to 0SS
Open Mediation V6.2.

%~ For more information on how to forward alarms, please refer to: [R2] HP UCA
for Event Based Correlation Value Pack Development Guide

o url: This property contains the correct URL for connecting to the Action
Service web service on a UCA for EBC Channel Adapter. For example, if the
UCA for EBC Channel Adapter is on localhost and uses the default port
number for its Action Service web service:

ohttp://localhost:26700/uca/mediation/action/ActionService?WSDL

An incorrect value for the url property will result in action requests not
being able to be processed on the mediation layer. Please verify this url
using a web browser before using it in the ActionRegistry.xml file.

Note

Action Service web service URLs have the following pattern:

http://<hostname off
IPaddress>:<port#>/uca/mediation/action/ActionService?WSDL|

<hostname or IP address> is the actual hostname (full DNS name) or the IP
address of the UCA for EBC CA system.

<port #> is the port number for UCA for EBC CA Action Service, 26700 by
default. This port number is set in the <0SS Open Mediation variable root
directory>/containers/instance-<container instance number>/ips/uca-ebc-
ca-<UCA for EBC CA version>/etc/action-service.xml file (see the value of
the locationURI property of the cxfbc:consumer XML entity).

<0SS Open Mediation variable root directory> usually translates to
/var/opt/openmediation-V60.

Two mediation value packs are defined by default in the ActionRegistry.xml file:

e A “temip” services mediation value pack, providing a gateway to a TeMIP
Channel Adapter for executing TeMIP Alarm Object directives, TeMIP

http://localhost:26700/uca/mediation/action/ActionService?WSDL

Trouble Ticket directives, and alarm collection flow
creation/deletion/resynchronization

e An “exec” services mediation value pack, providing a gateway to an Exec
Channel Adapter for executing command-line interface
executables/commands

Each mediation value pack can contain one or more action references. Action
references are explained in the next section.

3.2.2.2 Defining Action References

Action references define references to be used in the Drools rules files associated
to scenarios of UCA for EBC value pack for executing synchronous/asynchronous
action on products (TeMIP for example) connected to 0SS Open Mediation V6.2 via
their own Channel Adapter.

Below is an example of how action references can be used in rules files (we assume
in this example that an action reference called “TeMIP_AO_Directives_impot” has
been defined in the ActionRegistry.xml file)

Basically you need to write the following code in your rules file:

Action action = new Action("TeMIP AO Directives impot");

The action reference called “TeMIP_AOQ_Directives_impot” is used when
creating an Action Java Object in the rules files.

Once an Action object is created, you can specify the parameters that will
define what action to perform, in the following example a TeMIP Alarm
Object directive:

action.addCommand ("directiveName", "ACKNOWLEDGE") ;
action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous
actions are possible:

Either:

action.executeSync(); //synchronous execution

Or:

action.executeAsync(AODirectiveKey.ENTITY_NAME);
//asynchronous execution

33

Each “action reference” defined in the ActionRegistry.xml file has the following
properties:

o actionReference: this is the name of the action reference to use in the
Drools rules files associated with scenarios of UCA for EBC value pack

An incorrect value for the actionReference property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the actionReference property is in line with the action
reference used in the Drools rules files of the scenarios of your UCA for EBC
value pack(s).

¢ serviceName: this is a valid name of service (type of action) implemented by
the target Channel Adapter (TeMIP CA, Exec CA, etc...). This service name is
determined by the target Channel Adapter and the services it provides. For
example:

o The TeMIP Channel Adapter provides the following services:

= TeMIP_AO_Directive, for executing Alarm Object (AO)
directives

= TeMIP_TT_Directive, for executing Trouble Ticket (TT)
directives

= subscriptionManagement, for executing alarm collection
flow creation/deletion/resynchronization

o The Exec Channel Adapter provides the following services:

= Exec, for executing command-line interface
executables/commands

An incorrect value for the serviceName property will result in action
requests not being able to be processed on the mediation layer. Please
verify that value of the serviceName property is valid for the target Channel
Adapter by reviewing the target Channel Adapter documentation.

o NmsName: hostname or IP address of the system targeted by the target
Channel Adapter. This property is used for information only. It is not bound
to anything.

3.2.3 uca-ebc-logdj.xml file configuration

The ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml fileis the Log4)
configuration file for the whole UCA for EBC application. It is a standard Apache
Log4J configuration file.(")

This file contains three main sections where the following items are defined:

o Appenders: appenders mainly define where the log messages are sent, and
the pattern used for logging the messages. There are three main
appenders defined.

o CONSOLE: for logging to the console

o FILE: for logging to the ${UCA EBC INSTANCE}/logs/uca-
ebc. logfile

o DB: for logging to a database. This log database is used for
displaying the logs on the UCA for EBC User Interface

In addition to the three main appenders, a sample CHAINSAW appender is
also provided for integration with the Apache Chainsaw GUI-based log
viewer. (3)

¢ Loggers: loggers are defined by Java package names. Each logger defines its
own log level and appender references. The loggers are grouped into
several sections (the different sections are identified by comments in the
file):

o Detailed Traces for Value Pack Scenarios
o Detailed Traces for UCA Main Components
o Detailed Traces for UCA Scenarios

o Detailed Traces for UCA Components

o Detailed Traces for UCA ClassLoader

o Third Party Products Internals

¢ Root: the root section defines the default log level and the default appender
references to use for logging

You can make your own changes to the ${UCA EBC INSTANCE}/conf/uca-
ebc-log47j.xml file, for example:

¢ Modifying existing appenders or creating new ones

¢ Modifying existing loggers: changing the log level or the appender
references

« Adding new loggers, for 3" party products for example
o Adding new loggers for your own scenarios

¢ Modifying the default log level and appender references in the root section
of the file

Once you have made changes to the $ {UCA EBC INSTANCE}/conf/uca-
ebc-1og47j.xml file, you either need to restart UCA for EBC Server or reload the
Log4) configuration at the command-line using the uca-ebc-admin tool, the Java
console or the UCA for EBC User Interface.

There are several levels of logging provided by UCA for EBC: standard application
logging, and scenario specific rule logging. (%)

Log files (both standard application log file, and scenario specific log files) are
storedinthe ${UCA EBC INSTANCE}/logs directory or at the UCA for EBC
User Interface.

Notes

(") ¥~ Please see http://logging.apache.org/log4j/1.2/ to learn more about Apache
Log4) configuration files.

(® ¥~ Please see http://logging.apache.org/chainsaw/index.html to learn more
about Apache Chainsaw.

() ¥~ Please see section 6.1 “UCA for EBC Logging Mechanism” to learn about the
different levels of logging provided by UCA for EBC (standard application logging,
and scenario specific rule logging) and to learn how to enable/disable and configure
these logs.

35

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/chainsaw/index.html

3.2.4 Additional configuration files

Some configuration files are present in addition to the

${UCA EBC _INSTANCE}/conf/uca-ebc.properties,
${UCA EBC INSTANCE}/conf/ActionRegistry.xml,and
${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml files.

3.2.4.1 UCA EBC Spring Framework configuration files

UCA for EBC is integrated with Spring Framework. The main components of UCA for
EBC are defined using Spring Framework. Three configuration files located in the
${UCA EBC HOME}/conf directory are present by default:

e application-context.xml
e main-context.xml

These files are for INTERNAL USE ONLY and should not be modified.

3.2.5 How to revert back to the default configuration files

Areference copy of each of the configuration files present in the
${UCA EBC INSTANCE}/conf folder canbe foundinthe
${UCA EBC HOME}/defaults/conf folder.

In case you want to revert back the default configuration of any of the configuration
files presentinthe ${UCA EBC INSTANCE}/conf folder, you just need to copy
the reference copy of the configuration file from the

${UCA EBC HOME}/defaults/conf folder to the

${UCA EBC INSTANCE}/conf folder.

Note

UCA for EBC Server must be restarted in order for any change to the configuration
filesinthe ${UCA EBC INSTANCE}/conf folderto be takeninto account.

3.3 High-Availability (HA) configuration

3.3.1 Simple cluster configuration using NFS

The simplest cluster configuration is a set of (minimum 2) members UCA for EBC
servers accessing the same Storage Area Network providing access to a single data
storage.

To setup such a cluster configuration, the following steps are required:

1. Install UCA for EBC using the -d option to specify the same “data” directory. &
See Note (")

For example, given that /shared/UCA-EBCis the NFS mount point for the UCA
for EBC data directory, you need to execute the following command on all servers:

[root] # install-uca-ebc.sh -d /shared/UCA-EBC

On first installation of UCA for EBC (on server1), the subdirectories under
/shared/UCA-EBC are automatically created. On subsequent installations (on
server2 and +), the subdirectories are not recreated because they already exist.
Using this method, you can install an extra server even if UCA for EBC is running on
another server.

2. Start UCA for EBC on the first server. = See Note (?)

36

[uca@serverl] # uca-ebc start

SAN

/shared/UCA-EBC

(004

Serverl Server2

3. Whenserver1 is to be stopped for some reason, then server2 is able to recover
the work, once started.

[uca@server2] # uca-ebc start

Notes

(") It is mandatory that the “uca” user account used to run UCA for EBC has the same
uid / gid on all the servers sharing a same data directory. If this is not the case, UCA
for EBC will not be able to recover from one server to the other due to file
ownership issues. It is therefore recommended to use a NIS user account across
servers.

(®) Log and work files are stored in a shared NFS data storage. It is not supported to
have more than 1 UCA for EBC server instance running on the same data storage
due to possible file synchronization issues.

3.3.2 Neodj database High-Availability (HA) configuration for
Topology Extension

The simplest configuration of neodj is to have the database server embedded in
UCA for EBC server. As such, it can run only on a single machine, accessible through
a single port. When configured as embedded, the database is stored under the
${UCA EBC INSTANCE}/neo4j directory.

When a simple cluster configuration is used along with an embedded neo4j
topology, the High-Availability (HA) mechanism is implemented by the shared
location of the ${UCA EBC INSTANCE} directory which includes the neo4j
database. When a member of the cluster starts, it inherits the neo4j database state,
i.e. the topology state, from the last cluster member that stopped.

This solution does not use the HA mechanism of neo4j. (== see Note (") below).

To deploy the UCA for EBC database, i.e. the neodj database, in a multiple machine
setup, you have to tune the uca.ebc.topology property in the
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfile, as follows:

37

uca.ebc.topology=external

This property is set by default to “embedded” but it needs to be changed to
“external” for HA configuration. (= see Note (") below)

Neo4j HA can be set up to accommodate differing requirements for load, fault
tolerance and available hardware. The typical setup when running multiple Neo4;j
instances in HA mode is: (= see Note (%) below)

= a HTTP REST load-balancer, namely HA proxy
= asingle Neo4j master
= 0 or more Neodj slaves

= amechanism for master election, namely a Coordinator cluster (<~ see Note
(®) below)

To configure UCA for EBC to use a Neo4j HA cluster, you need to setup the
uca.ebc.topology.serverhost and uca.ebc.topology.webPort properties in the
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfiletobeequalto
the Neo4J HA proxy configuration. For example:

uca.ebc.topology.serverhost=server3.local.domain
uca.ebc.topology.webPort=7474

Then, you have to configure the Neo4j cluster to run in HA mode. Please refer to the
Neodj high-availability setup tutorial for more information. (= see Note (*) below)

Notes

(1) The “embedded” value for the uca.ebc.topology property in the
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfile does not
currently support the neo4j HA mode.

(2) Suggested reading: http://docs.neo4j.org/chunked/stable/ha.html. Please note
that only neodj-enterprise edition supports HA features.

(3) The Coordinator function is based on Apache Zookeeper service:
http://hadoop.apache.org/zookeeper/

(4) The Neodj high-availability setup tutorial is available at the following URL:
http://docs.neodj.org/chunked/stable/ha-setup-tutorial.html

3.4 Backup and restore

3.4.1 Standalone UCA for EBC

A standalone UCA for EBC server is a server running on a single machine. If the UCA
for EBC Topology Extension is installed and configured, the neo4j server is running
embedded within UCA for EBC Server. (= see Note below)

On both HP-UX and Linux:

To perform a backup/restore, please use the uca-ebc-backup command line tool
(Please refer to Chapter 2.2.5 “uca-ebc-backup” for command usage).

On Windows:

38

http://docs.neo4j.org/chunked/stable/ha.html
http://hadoop.apache.org/zookeeper/
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

To perform a backup/restore, as no command line tool is provided, please use the
following procedure:

For backups:
1. ¢d $UCA EBC DATA%

2. zip all directories (except logs and work) into a backup .zip file, and storeitina
safe place

For restores: (Please make sure that UCA for EBC is not running)
1. ¢d $UCA EBC DATA%
2. remove all directories (except logs and work)

3. unzip the backup .zip file that was created during the backup

Note

neodj embedded server online backup feature must be activated.

This is done by setting the neodj.config.online_backup_enabled property to true
inthe ${UCA EBC INSTANCE}/conf/uca-ebc.properties configuration
file.

3.4.2 Clustered UCA for EBC

A clustered UCA for EBC server is a set of multiple servers running on separate
machines but using the same data directory under NFS. This is described in Chapter
3.3.1 Simple cluster configuration using NFS”.

As data is stored on a unique place, it is only necessary to perform the backup once
for the cluster, on any machine. To perform a backup/restore, please use the
procedure explained above (in Chapter 3.4.1 “Standalone UCA for EBC”) which is
applicable in a clustered context as well.

3.4.3 UCA for EBC with external topology server

A UCA for EBC server using an external neo4j topology server has to be backed up
(or restored) in two steps.

3.4.3.1 First step: backup/restore of UCA for EBC

To backup/restore UCA for EBC, use the procedure explained in Chapter 3.4.1
“Standalone UCA for EBC” above. This procedure will back up everything that is
stored in the UCA for EBC instance directory, except the neodj database, which is
external.

3.4.3.2 Second step: backup/restore of neodj database

When neodj server is configured to be external to UCA for EBC, it is necessary to
backup/restore this external machine separately. Please be aware that the neo4j
backup utility is only available when using the Enterprise Edition of Neo4j (= see
Note (') below).

Please follow the steps described below to perform a backup/restore of the neodj
database.

For backups:

39

¢ Do a full backup using the neodj-backup command line tool on a safe new
directory (= see Note (') below)

For restores:

e Restore the backup by replacing the current database (usually stored in
${NEO4J HOME}/data/graph.db) by the contents of the directory
generated during the backup.

Notes

(1) The neodj-enterprise edition supports online backup only if the neodj server has
been launched with the online_backup_enabled property set to true.
Suggested reading: http://docs.neo4j.org/chunked/stable/operations-

backup.html.
(2) Note that if neo4j has been configured in High-Availability (HA) mode, you'll

have to specify the -cluster option as specified at the following URL:
http://docs.neodj.org/chunked/stable/backup-ha.html

40

http://docs.neo4j.org/chunked/stable/operations-backup.html
http://docs.neo4j.org/chunked/stable/operations-backup.html
http://docs.neo4j.org/chunked/stable/backup-ha.html

Chapter 4

UCA for EBC Monitoring

4.1 Monitoring the alarm flow in real-time

The purpose of monitoring the alarm flow is to offer any integrator and/or rules
designer (at development time) or any user (in production) the capability to better
understand what happens in the UCA for EBC engine (in particular in each rule
engine/working memory of a scenario).

A UCA for EBC solution can be complex including several values packs, each of them
containing several scenarios. At each level, filtering at the scenario level indicates
the scope of interest of the scenario, in terms of what type of events the scenario
will process.

Monitoring the alarm flow is key to a better understanding of what goes on inside
UCA for EBC in terms of processing of the alarm flow in real-time, when a complete
UCA for EBC solution, with possibly several value packs and scenarios, is deployed.

Monitoring the alarm flow involves taking measurements of the alarm flow at
several key processing points in the UCA for EBC solution:

e At the UCA for EBC Collector layer, i.e. alarm collection layer (this component
is the entry point for alarms/events into UCA for EBC)

e At the UCA for EBC Dispatcher layer, i.e. alarm dispatcher layer (this
component processes alarms/events sent by the UCA for EBC Collector and
dispatches them to value packs and scenarios)

e At the Value Pack layer
e At the Scenario layer, i.e. the Drools engine layer

The following figure explains the “points-of-control” where measurements of the
alarm flow are performed:

41

Y Alarm filtering, compression, and life cycle

D Alarm queue
- Thread -
. Value ack 1
@0 © g’ Alarms/Events internal architecture P

= Scenario A
rule engine

Scenano z
rule engine

Collector

Incoming
Alarms/Event;

/
>

Validation of incoming Dispatching of

Alarms/Events Alarms/Events = "
= Scenario A

u rule engine

= Scenario B
i rule engine

i Scenario Z
rule engine

Collector layer Dispatcher layer Value pack layer Scenario / Rule engine layer

Figure 2 UCA for EBC — Monitoring the Alarm Flow

Monitoring of the alarm flow is performed at the Collector layer, Dispatcher layer,
Value Pack layer and Scenario / Rule engine layer is shown in the above figure.

These measurements of the alarm flow are presented as statistics, and counters,
and can be displayed both at the Java JMX Console and at the UCA for EBC User
Interface (in the Troubleshooting / Statistics panel).

The following sections describe, for each layer of the UCA for EBC product, the
different ‘points-of-control’ where statistics about the alarm flow are available.
These statistics can help developers and integrators better understand how
scenarios consume the input Event/Alarm stream. Monitoring these statistics can
provide insight into the internal processing of a scenario in real time that can help
troubleshooting issues or possibly lead to improvements in terms of performance.

Note

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]
HP UCA for Event Based Correlation User Interface Guide

" please see section 5.1.3 “JMX Console” for more information on the statistics,
and counters displayed at the Java JMX Console.

4.1.1 Collector layer

The Collector component is responsible for receiving and validating incoming
Events/Alarms from the mediation layer (0SS Open Mediation V6.2) and forwarding
them to the next layer (the Dispatcher layer). The following indicators can help
monitoring the alarm flow at the Collector layer in real-time:

¢ How many objects (alarms) were received since startup
e The last time an object (alarm) was received

¢ How many errors occurred during alarm validation

42

e The last time an error occurred during alarm validation

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (in the Troubleshooting / Statistics panel).

" For more information on the UCA for EBC User Interface, please refer to: [R3]
HP UCA for Event Based Correlation User Interface Guide

4.1.2 Dispatcher layer

The Dispatcher is responsible for storing incoming events (Alarms), analyzing and
dispatching these events to the running value packs and scenarios. The following
indicators can help monitoring the alarm flow at the Dispatcher layer in real-time:

e Current number of objects (alarms) dispatched
¢ Last time an object (alarm) has been dispatched
e Rate of alarms reception

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.3 Value Pack layer

Additional statistics regarding the alarm flow are available at the Value Pack layer:
¢ How many objects (alarms) were received since startup (per alarm type)
e Last time an object (alarm) was received
e Alarminput rate

e Percentage of events received by the Value Pack compared to the total of
events received by the UCA for EBC Dispatcher

Note

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

4.1.4 Scenario/Engine layer

Additional statistics regarding the alarm flow are available at the Scenario (Drools
engine) layer:

e Number of facts* inserted into Working Memory since startup
e Current number of facts* in real-time

e Last time an object (alarm) was injected, retracted, modified in Working
Memory

e Number of facts* retracted from the Working Memory since start-up
e Number of facts* modified in Working Memory since start-up

e Rate of alarms reception

43

e Percentage of events inserted into Working Memory compared to the total
of events received by the Scenario (this indicator measures what
percentage of incoming events are filtered out by the scenario)

* Facts are Drools Working Memory objects. Once any Java object is inserted into
Drools Working Memory, it becomes a “Fact”.

Notes

These statistics can be displayed both at the Java JMX Console and at the UCA for
EBC User Interface (5.1.2 - UCA for EBC Graphical User Interface).

44

Chapter 5

UCA for EBC Troubleshooting

5.1 Troubleshooting tools

Below is the list of tools that you can use to troubleshoot UCA for EBC.

5.1.1 Logfiles

Log files can be of great help when troubleshooting issues with UCA for EBC. UCA
for EBC log files are located inthe S {UCA EBC INSTANCE}/logs directory.

You can view the log files directly on the file system using any text file editor or you
could also use the UCA for EBC User Interface to view the logs. This latter method
for viewing the logs has the advantage of providing easy navigation and filtering
capabilities. The UCA for EBC application log can also be cleaned to focus on new log
messages only.

Configuration of the logs is driven by the content of the
${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file ("). Several types
of logs are available, both at application level and at scenario level ().

Note

(") & Please refer to section 3.2.3 “uca-ebc-log4j.xml file configuration” to learn
more about the configuration of the $ {UCA EBC_INSTANCE}/conf/uca-
ebc-log4j . xml file.

(®) ¥~ Please see section 6.1 “UCA for EBC Logging Mechanism* to learn about the
different levels of logging provided by UCA for EBC, how to enable/disable and how
to configure these logs.

Recommendation: logging has an impact on performance. To avoid issues, please
do not use too much logging on a production environment.

5.1.2 UCA for EBC Graphical User Interface
The UCA for EBC User Interface provides troubleshooting tools.

At each level, be it application level, value pack level or scenario level, a
troubleshooting panel is provided that contains information that will help to
troubleshoot issues with the UCA for EBC application, a specific value pack or a
scenario.

45

The following screenshot shows Troubleshooting/Log panel at application level:

ons T @ e ;.— — - - LL:’ 5] ﬁ
<[&[4[x][He intranet search £ -
7 Favorites % 8] Wel
(& UCA Expert - UCA Expert/Application/Troublesho... f v B v =1 d v Pagev Safetyv Toolsv @~ [

v & UCAExpert Monitoring Troubleshooting Tools.

£ Appication
3 Actions

action-0.11-SNAPSHC|
alarms-flow-monitorin
life-cycle-0.11-SNAP|
llef-example-0.10

flef-example-0.11-51 imestamp priorty cstegory velusps thresd messsge

% pd-0.11-SNAPSHOT 42357 20111008 17:09:49.712 INFO com.hp.uca.ex. TVPFI g ValuePack of 11 ple-0.10

42358 20111006 17:09:49.728 INFO com.hp.uca.ex. msin Seares Pack : C:\UCA-EBC\deploy\action-0.11-SNAPSHOT. .
‘skeleton-project-0.10-|

42369 20111006 17:09:60.289 INFO com.hp.uca.ex. TVPFRL of 111

42361 20111006 17:09:50.352 INFO com.hp.uca.ex TVPFI

x
skeleton-project-0.11-| 42380 2011-10-08 17:09:50.305 INFO com.hp.uca.ex. T-VPFi.. Refreshis ok of =kel proj.
X configuravion of acvien-0.11-SNABSHOT
x

42362 20111006 17:09:50.414 INFO com.hp.uca.ex TVPFI ation of pd-0.11-SHAPSHOT

42363 20111006 17:09:50.461 INFO com.hp.uca.ex. main

42364 20111006 17:09:50.461 INFO com.hp.uca.ex main

B E Consoe

€ Local intranet | Protected Mode: Off fa v HO5% v

Figure 3 Troubleshooting/Log panel at Application level

Each troubleshooting panel at each level (application, value pack, and scenario)
contains two sub-panels:

= A “Statistics” subpanel that contains key performance indicators that help
understanding the behavior of UCA for EBC, a value pack or a scenario

= A“Logs” subpanel that displays the full UCA for EBC application logs, the
Value Pack logs or a scenario specific logs depending on the level.

The following screenshot shows Troubleshooting/Statistics panel at application

level:
{6 UCA Expert - UCA Expert/Application/Troubleshooting - Windows Intermet Explorer = e . o |
O = (2] riptocathost »[x |2 P~
& Favorites 53 & i 5tes v) Google Traduction
£ UCA Bxpert - UCA Expert/Application/Ts] - Bage~ Sefety~ Toolsv @~ &l &

UCA Expert
O Application
action-0 11-SNAPSHOT
alarms-fow-moritoring-0.1
fe-cycle-0, 11-SNAPSHOT|
llef-example-0.10
llef-example-0.11-SNAPSH
pd-0.11-SNAPSHOT

skeleton-project 0. 10-SNA|

skeleton-project-0.11-SNA]

& Local intranet | Protected Mode: Off a v R10% -

Figure 4

Troubleshooting/Statistics panel at Application Level

Note

%~ For more information on how to connect to the UCA for EBC User Interface or to

learn about the troubleshooting tools available in the UCA for EBC User Interface,

please refer to: [R3] HP UCA for Event Based Correlation User Interface Guide

5.1.3 JMX Console

To start the Java JMX Console, either locally on the system hosting the UCA for EBC
Server or remotely from another system (in which case you will need to adjust the
JMX URL accordingly), please execute the following commands:

On both HP-UX, and Linux:

$ SJAVA HOME/bin/jconsole

Select the “Remote Process” radio button and type the following URL in the input

text field:

service:jmx:rmi://<hostname or IP address>/jndi/rmi://<hostname or IP

laddress>:<port #>/uca-ebc|

<hostname or IP address> is the actual hostname (full DNS name) or the IP address
of the UCA for EBC Server system. The default value is localhost.

<port #> is the port number for UCA for EBC Server RMI port, 1100 by default for the

default instance. Please check the value of the “uca.ebc.jmx.rmi.port” property in

a7

the ${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfileifyou're
unsure what RMI port number your UCA for EBC Server is using.

4| Java Monitoring & Management Console = | B ||
Connection Window Help
|2/ JConsole: New Connection X7
«
. =2
New Connection v
() Local Process:
MName PID
com.hp.uca.commen.launch.Ucalauncher com.hp.uca.exp... 7330
sun. tools.jconsole. JConsole 7186
4075
@ Remote Process:
service:jmx:rmi:fflocalhostfindi/frmi:/flocalhost: 1100[ucaebc|
Usage: <hostname>:<port> OR service:jmx: <protocol>: <sap>
Username: Password:
. .
Figure 5 Java JMX Console: Connecting to UCA for EBC Server

Then click on the “Connect” button.

Once you're connected to the Java JMX console for UCA for EBC, you can go to the
MBeans tab to get access to the managed Java beans that have been defined
specifically for administering UCA for EBC.

All managed beans for UCA for EBC are located under the uca_ebc folder, as seenin
the following screenshot:

|£| Connection Window Help o &

Overwewl Memoryl Threadsl C\asseslVM Summary‘ MEEBNSl =

Action

IMImplementation
com.sun.management
connector

java.lang

java.util.logging
javax.management.remote.rmi

urE.aEache.aL‘tl\/emq

[=- .. ActionManager
@ ActionQueue
@ ActionStats
@ ActionThreads

@ Collector
[+ Attributes
Operations

[=-@@ Dispatcher
(il Attributes
Operations

[=-6@ Properties_uca_ebc
i Attributes

=@ Server
Operations

=@ ValuePackManager
[-Attributes
Operations

= pd-example-3.0-SP2
@ ClassLoader
MediationFlows
[Scenarios
=@ com.hp.uca.expert.vp.pd.ProblemDetection
i [-Attributes
i Operations
=+ ValuePack

FE-Attributes
[#-Operations

I+ B-E BEaa

Figure 6 Java JMX Console: UCA for EBC MBeans

Under the uca_ebc folder, there are several folders providing
information/statistics*/monitoring/administration features on:

e Internal UCA for EBC components:
o Action Manager
o Collector
o Dispatcher
o Properties
o Server
o Value Pack Manager
e UCA for EBC value packs: there is one folder per running pack
The following sections will provide more detail on these folders.
Note

* The statistics available in the Java Console are also available at the UCA for EBC
User Interface. Some additional features are available in the Java Console, for
example to reset the statistics counters or to get information about internal UCA
for EBC components that are not yet available at the UCA for EBC User Interface.

5.1.3.1 Monitoring UCA for EBC internal components

Monitoring UCA for EBC Action Manager

The UCA for EBC Action Manager is an internal UCA for EBC component that provides
the capability to process asynchronous actions requested in the Drools rules files of
an UCA for EBC Value Pack scenario. Asynchronous actions are created when the
following code is present in a Drools rules file of a scenario:

Action action = new Action("TeMIP AO Directives localhost");
action.addCommand ("directiveName", "ACKNOWLEDGE") ;

49

action.addCommand ("entityName", a.getIdentifier());
action.addCommand ("UserId", "UCA EBC");
action.executeAsync (AODirectiveKey.ENTITY NAME) ;

These asynchronous actions are handled by the UCA for EBC Action Manager
internal component and are processed by the proper Channel Adapter on the
mediation layer (0SS Open Mediation V6.2).

In the Java Console, the Action Manager folder contains the following sub-folders:

¢ Action Queue: this queue contains the list of asynchronous actions that are
currently being processed

o Action Statistics: Information about the performance rate of the Action
Manager

o Action Threads: Information about the Action Manager thread pool

The following screenshot shows the UCA for EBC Action Manager component at the
Java JMX Console:

|£| Connection Window Help o &

x

Dverwe'wl Memoryl Threadsl C\asseslVM Summaryl MEEE"‘Sl ==
(- 1 Action Attribute values

IMImplementation
com.sun.management Hame Value
et CurrentSize

java.lang atel astHighWaterMark -05- 6:29:46.102 +H
Java.util.logging ateLastPublish -05-16 17:45:32.071 +
javax.management.remote.rmi ateLastSubscribe -05-16 17:45:32.070 +
+- 1 org.apache.activemq atelastZeroed -05-16 17:45:32.070 +
(=) uca_ebc HighWaterMark
& 2 ActionManager HighWaterMarkStillincreasing alse
@ ActionQueue axSize o
Attributes umberZeroedSinceLastHighVaterMark 88
Operations SizeHistory wva.lang.String[3]
@ ActionStats TotalObjects 105
@ ActionThreads TotalObjectsSinceLastHighWaterMark |96

@ Collector

@ Dispatcher

@ Properties_uca_ebc
Server

ValuePackManager

. pd-example-3.0-SP2

Figure7 Java JMX Console: UCA for EBC Action Manager

The following sections will provide more detail on the sub-components of the UCA
for EBC Action Manager available at the Java JMX console.

Notes

" For more information on asynchronous actions please refer to: [R2] HP UCA for
Event Based Correlation Value Pack Development Guide

Action Queue

The Action Queue can be monitored at the Java JMX console using both attributes
and operations.

50

The following table lists the attributes of the Action Queue that are shown on the

Java JMX console:

Attribute name

CurrentSize

DatelLastHighWaterMark

DateLastPublish

DatelLastSubscribe

DatelastZeroed

HighWaterMark

HighWaterMarkStilllncrea

MaxSize

NumberZeroedSinceLastHi

ghWaterMark

SizeHistory

TotalObjects

TotalObjectsSinceLastHig
hWaterMark

Settable Explanation

No The current size of the Action Queue (in
number of asynchronous actions in the
queue)

No Date and time of the last high water mark

for the Action Queue

No Date and time of the last time an
asynchronous action was added to the
queue

No Date and time of the last time an

asynchronous action was removed from
the queue to be processed by a thread

No Date and time of the last time the Action
Queue was empty

No Value of the last high water mark for the
Action Queue (in number of asynchronous
actions in the queue)

No Whether the high water mark for the Action
Queue is still increasing or not

No Maximum size of the ActionQueue (in
number of asynchronous actions in the
queue)

No The number of times the Action Queue size

was 0 since the last high water mark

No A history of the size of the ActionQueue (in
number of asynchronous actions in the
queue)

No Total number of asynchronous actions that
have been added to the Action Queue since
start-up

No Total number of asynchronous actions that
have been added to the Action Queue since
last high water mark

Table 16 Java JMX Console: UCA for EBC Action Manager - Action Queue
attributes

The following table lists the operations that can be executed on the Action Queue
using the Java JMX console:

Operation name

resetQueueHistory()

Explanation

Resets all Action Queue counters (attributes)

51

Table 17 Java JMX Console: UCA for EBC Action Manager — Action Queue
operations

Action Statistics

Action Statistics can be monitored at the Java JMX console using both attributes
and operations.

The following table lists the attributes of the Action Statistics that are shown on the
Java JMX console:

Attribute name Settable Explanation

ConsolidatedRate No The consolidated (average) performance rate
of the Action Manager (in number of
asynchronous actions processed per second)

HighestRate No The highest performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LastRate No The last performance rate of the Action
Manager (in number of asynchronous actions
processed per second)

LongestBurstRate No The performance rate of the longest burst of

the Action Manager (in number of
asynchronous actions processed per second)

Table 18 Java JMX Console: UCA for EBC Action Manager — Action
Statistics attributes

The following table lists the operations that can be executed on the Action
Statistics using the Java JMX console:

Operation name Explanation

resetRates() Resets all Action Statistics rates (i.e. attributes)

52

Table 19 Java JMX Console: UCA for EBC Action Manager - Action
Statistics operations

Action Threads

Action Threads can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of the Action Threads that are shown on the
Java JMX console:

Attribute name Settable Explanation

FailedActions No The total number of failed asynchronous
actions of the Action Manager

NbActiveThread No The current number of active threads in the
thread pool of the Action Manager

NbPoolThread No The total number of threads in the thread
pool of the Action Manager

Table 20 Java JMX Console: UCA for EBC Action Manager - Action Threads
attributes

The following table lists the operations that can be executed on the Action Threads
using the Java JMX console:

Operation name Explanation
resetCounters() Resets all Action Threads counters (i.e. attributes)
Table 21 Java JMX Console: UCA for EBC Action Manager - Action Threads

operations

Monitoring UCA for EBC Collector

The UCA for EBC Collector is an internal UCA for EBC component that collects all
events (Alarms, etc...) coming into UCA for EBC either from the mediation layer (0SS
Open Mediation V6.2) or from the uca-ebc-injector tool.

Monitoring the UCA for EBC Collector component is akin to measuring the input rate
of UCA for EBC.

Allincoming events are first validated to weed out invalid/unrecognized types of
events. Validation errors will result in the events being rejected by the Collector.

The following screenshot shows the UCA for EBC Collector component at the Java
JMX Console:

53

|2/ Connection Window Help l:l E“Il
Overview | Memory | Threads | Classes | M Summary| MBeans| l»
Action Attribute values
IMImplementation
com.sun.management Name Value
. connector atel. ror 2013-05-16 16:27:56.986 +0200
. java.lang atel 2013-05-16 17:45:32.039 +0200
. java.util.logging MessageValidationErrorshumber o
. javax.management.remote.rmi eceivedevents 102
. org.apache.activemq
[. uca_ebc

. ActionManager

@@ collector

]

| [-Operations

@ Dispatcher

[Properties_uca_ebc

@ Server

@ valuePackManager

. pd-example-3.0-5P2

Figure 8 Java JMX Console: UCA for EBC Collector

The UCA for EBC Collector can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Collector that are shown
on the Java JMX console:

Attribute name Settable Explanation

DateLastMessageValidatio NO Date and time of the last event in error

nError (due to validation error) received by the
Collector

DateLastReceivedEvent No Date and time of the last event (Alarms,

etc...) received by the Collector

MessageValidationErrorsN ~ NO Number of events in error (due to
umber validation error) received by the Collector
ReceivedEvents No Number of events (Alarms, etc...) received
by the Collector
Table 22 Java JMX Console: UCA for EBC Collector attributes

The following table lists the operations that can be executed on the UCA for EBC
Collector using the Java JMX console:

Operation name Explanation

resetCounters() Resets all Collector counters (i.e. attributes)

Table 23 Java JMX Console: UCA for EBC Collector operations

Note

%~ For more information on the uca-ebc-injector tool please refer to the following
section: 2.2.2 “uca-ebc-injector”.

Monitoring UCA for EBC Dispatcher

The UCA for EBC Dispatcher is an internal UCA for EBC component that receives
events (Alarms, etc...) coming from the UCA for EBC Collector and forwards those
events to any eligible scenario (a property of the scenario states whether a scenario
is eligible to receiving incoming events or not) of any value pack currently running

on UCA for EBC.
The following screenshot shows the UCA for EBC Dispatcher component at the Java
JMX Console:
£ Connection Window Help - & X
Dverviewl Memoryl Threadsl C\asseslVM Summaryl Mgeans ‘ b
. Action Attribute values
[+ |, IMImplementation
. com.sun.management Name Value
[1 connector DispatcherRate 1.39! 17
[| java.lang LogEvents false
| J.ava.utl\.lnggmg Queue_CurrentSize o
[| javax.management.remote.rmi Queue_DatelastChangeEvent 2013-05-16 17:43:19.499 +0200
. org.apache.activemg Queue_DateLastDeletionEvent 2013-05-16 16:
Bl uca_ebe Queue_DateLastHighwaterMark 2013-05-16 16:
ActionManager Queue_DateLastPublish 2013-05-16 17:
@ Collector Queue_DatelastSubscribe 2013-05-16 17:
=@ Dispatcher Queue_DatelastZeroed 2013-05-16 17:45:32.039 +0200
A Queue_HighWaterMark (1]
Operations Queue_HighWaterMarkStilllncreasing |false
@ Properties_uca_ebc Queue_NumberZeroedSinceLastHigh... |96
@ Server Queue_SizeHistory java.lang.String[2]
@ ValuePackManager Queue_TotalChangesEvents o
J pd-example-3.0-5P2 Queue_TotalDeletionEvents o
Queue_TotalObjects 102
Queue_TotalObjectsSinceLastHighwat... 95
. .
Figure 9 Java JMX Console: UCA for EBC Dispatcher

The UCA for EBC Dispatcher can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Dispatcher that are shown
on the Java JMX console:

Attribute name Settable Explanation

DispatcherRate No The event rate of the dispatcher (in number
of events per second)

LogEvents Yes A flag indicating whether the Dispatcher
should log the list of events that it
processes or not.

THIS ATTRIBUTE IS OBSOLETE. DO NOT USE
IT.

Queue_CurrentSize No The current size of the Dispatcher queue (in
number of events)

55

Attribute name

Queue_DateLastChangeEv
ent

Queue_DateLastDeletionE
vent

Queue_DateLastHighWate
rMark

Queue_DatelLastPublish

Queue_DatelLastSubscrib

Queue_DatelastZeroed

Queue_HighWaterMark

Queue_HighWaterMarksStil
lincreasing

Queue_NumberZeroedSinc
eLastHighWaterMark

Queue_SizeHistory

Queue_TotalChangesEvent
s

Queue_TotalDeletionEven
ts

Queue_TotalObjects

Queue_TotalObjectsSincel
astHighWaterMark

Table 24

Settable Explanation

No The date and time of the last “change
event” that was added to the Dispatcher
queue

No The date and time of the last “deletion
event” that was added to the Dispatcher
queue

No The date and time of the last high water
mark of the Dispatcher queue

No Date and time of the last time an event was
added to the queue
No Date and time of the last time an event was

removed from the queue to be processed

No The date and time of the last time the
Dispatcher queue was empty

No The value of the high water mark of the
Dispatcher queue (in number of events)

No Whether the high water mark of the
Dispatcher queue is still increasing or not

No The number of times that the Dispatcher
queue was empty since the last high water
mark

No The history of the Dispatcher queue size

No The total number of “change events” that

have been added to the Dispatcher Queue
since start-up

No The total number of “deletion events” that
have been added to the Dispatcher Queue
since start-up

No The total number of “objects” that have
been added to the Dispatcher Queue since
start-up

No The total number of “objects” that have

been added to the Dispatcher Queue since
the last high water mark

Java JMX Console: UCA for EBC Dispatcher attributes

The following table lists the operations that can be executed on the UCA for EBC
Dispatcher using the Java JMX console:

Operation name

Explanation

56

Operation name Explanation

resetCounters() Resets all Dispatcher counters (i.e. attributes), except the
LogEvents attribute.

Table 25 Java JMX Console: UCA for EBC Dispatcher operations

Monitoring UCA for EBC Properties

The UCA for EBC Properties folder at the Java JMX Console shows the file system
location of each sub-folder of the UCA for EBC application.

The following screenshot shows the UCA for EBC Properties component at the Java
JMX Console:

£l Connection Window Help

- & x
overview | Memory | Threads | Classes| vM Summary| MBeans =g
| Action Attribute values
| IMImplementation
com.sun.management Name Value
connector AlarmsDirectory opt/UCA-EBC/alarms
| java.lang ApidocDirectory opt/UCA-EBC/apidoc
J java.util.logging ArchiveDirectory var/opt/UCA-EBC/instances/default/archive
javax.management.remote.rmi BinDirectory [fopt/UCA-EBC/bin
org.apache.activemq Configur: DefaultDirectory /opt/UCA-EBC)
B+ uca_ebc ConfigurationDirectory ivar/opt/UCA-EBC/instances/ default/conf
(- [ActionManager ataDirectory var/opt/UCA-EBC/instances/default/
@ Collector faultsDirectory |fopt/UCA-EBC/defauits
@ Dispatcher eployDirectory ivar/opt/UCA-EBC/instances/default/deploy
(6 Praperties_uca_ebc ExternallibDirectory var/opt/UCA-EBCinstances/default/externallib
m tedDirectory 'opt/UCA-EBC/gettingStarted
@ Server ibDirectory |fopt/UCA-EBC/Iib
@ ValuePackManager icensesDirectory 'opt/UCA-EBC/licenses
. pd-example-3.0-SP2 og#jConfigurationFileUrl file:/var/opt/UCA-EBC/instances/default/conf/uca-ebc-lo...
ogDefaultDirectory opt/UCA-EBC;
ogbirectory |fvar/opt/UCA-EBC/instances/default/logs
ootDirectory opt/UCA-EBC/
SchemasDirectory opt/UCA-EBC/schemas
serDEDirectory var/opt/UCA-EBC/instances/defauit/users
valuePacksDefaultDirectory //opt/UCA-EBC/defaults/valuepacks
ValuePacksDirectory var/opt/UCA-EBC/instances/default/valuepacks
|Webappbirectory |fopt/UCA-EBC/webapp

Figure 10 Java JMX Console: UCA for EBC Properties

There are no operations that can be executed at the Java JMX Console on the UCA
for EBC Properties.

The following table lists the attributes of the UCA for EBC Properties that are shown
on the Java JMX console:

Attribute name Settable Explanation

AlarmsDirectory No Default Value: ${UCA_EBC_HOME}/alarms
ApidocDirectory No Default Value: ${UCA_EBC_HOME}/apidoc

ArchiveDirectory No Default Value:
${UCA_EBC_INSTANCE}/archive

BinDirectory No Default Value: ${UCA_EBC_HOME}/bin

ConfigurationDefaultDirec NO Default Value:
tory ${UCA_EBC_HOME}/defaults/conf

57

ConfigurationDirectory

DataDirectory

DefaultsDirectory

DeployDirectory

ExternalLibDirectory

GettingStartedDirectory

LibDirectory

LicensesDirectory

Log4jConfigurationFileUrl

LogDefaultDirectory

LogDirectory

RootDirectory

SchemasDirectory

ValuePacksDefaultDirector

y

ValuePacksDirectory

WebappDirectory

Yes

Yes

Default Value:
${UCA_EBC_INSTANCE}/conf

Default Value: ${UCA_EBC_INSTANCE}

Default Value:
${UCA_EBC_HOME}/defaults

Default Value:
${UCA_EBC_INSTANCE}/deploy

Default Value:
${UCA_EBC_INSTANCE}/externallib

Default Value:
${UCA_EBC_HOME}/gettingStarted

Default Value: ${UCA_EBC_HOME}/lib

Default Value: ${UCA_EBC_HOME}/licenses

Default Value:
file:${UCA_EBC_VAR}/conf/uca-ebc-
log4j.xml

Default Value:
${UCA_EBC_HOME}/defaults/logs

Default Value: ${UCA_EBC_INSTANCE}/logs

Default Value: ${UCA_EBC_HOME}

Default Value:
${UCA_EBC_HOME}/schemas

Default Value:
${UCA_EBC_HOME]}/defaults/valuepacks

Default Value:
${UCA_EBC_INSTANCE}/valuepacks

Default Value: ${UCA_EBC_HOME}/webapp

58

Table 26 Java JMX Console: UCA for EBC Properties attributes

Monitoring UCA for EBC Server

The following screenshot shows the UCA for EBC Server component at the Java JMX

Console:
|2/ Connection Window Help = & X
Overview | Memory | Threads | Classes | vM Summary| MBeans =l=
‘Action Operation invocation
IMImplementation
com.sun.management okt 0
connector
- |, java.lang
java.util.logging
Jjavax.management.remote.rmi
[+ 1 org.apache.activemg
= uca_ebc
ActionManager sl
5 Sooon I

@ Dispatcher
@ Properties_uca_ebc
@ Server

-
B

reloadLog4jConfigurationFile
~reloadLogdjConfigurationFile

serverstop vod
[serverstop_|
serverStop serverstop | (po true)

serverShow
@ valuePackManager
pd-example-3.0-SP2

wid vesip] ()

java.lang.String O

Figure 11 Java JMX Console: UCA for EBC Server

The UCA for EBC Server can be monitored at the Java JMX console using operations.

The following table lists the operations that can be executed on the UCA for EBC
Server using the Java JMX console:

Operation name Explanation

reloadLog4jConfigurationFile() Reloads the log4J configuration file.

reloadLogdjConfigurationFile(Strin Reloads the log4J configuration file, using the
q) log4J configuration file located at the path passed
as parameter

serverStop(boolean) Stops UCA for EBC Server. The parameter is a
boolean flag that indicates whether to restart
(true) UCA for EBC Server once it has stopped or
not (false).

serverStop() Stops UCA for EBC Server.

serverShow() Displays the status of UCA for EBC Server, whether
it's running or not.

Table 27 Java JMX Console: UCA for EBC Server operations

Monitoring UCA for EBC Value Pack Manager

The UCA for EBC Value Pack Manager is an internal UCA for EBC component. It
manages all the Value Packs of the UCA for EBC application.

59

The following screenshot shows the UCA for EBC Value Pack Manager component at

the Java JMX Console:

|£| Connection Window Help

VVVVV | Memory | Threads | classes | vm si

mmmmm y| MBeans <i=

Action
IMImplementation
. com.sun.management
connector
java.lang
java.util.logging
| javax.management.remote.rmi
org.apache.activemg
uca_ebc
ActionManager
@ Collector
+-@ Dispatcher

nEBEEEEES o

Iz operations

pd-example-3.0-SP2

Operation invocation

java.lang.String [gisplay | ()

java.lang.String (po String)

java.lang.String (po String L pL String)
java.lang.String (w0 String i String)
java.lang.String (P String bt string)

java.lang.String

(po String ,pl String .p2 String

ang.String (p0 String . pl String . p2 string
java.lang.String (po String ,pl string . p2 string
java.lang.String (po String . pl String . p2 String . P:
faballan SRy (po String . p1 string . p2 string

«| [| »

Figure 12

The UCA for EBC Value
using both attributes a

Java JMX Console: UCA for EBC Value Pack Manager

Pack Manager can be monitored at the Java JMX console
nd operations.

The following table lists the attributes of the UCA for EBC Value Pack Manager that

are shown on the Java

JMX console:

Attribute name Settable Explanation

ActiveValuePacks No The list of active value pack currently
running on UCA for EBC

AllvaluePacks No The list of all value pack currently
running/degraded/stopped/not deployed
on UCA for EBC

DeploymentHistory No The complete history of deployments of
value packs on UCA for EBC

Table 28 Java JMX Console: UCA for EBC Value Pack Manager attributes
The following table lists the operations that can be executed on the UCA for EBC

Value Pack Manager us

Operation name

display()

startValuePack(String)

ing the Java JMX console:

Explanation

Lists all Value Packs and scenarios currently
running on UCA for EBC

Starts a Value Pack identified by the path of the
Value Pack in the ${UCA_EBC_INSTANCE}/deploy
folder passed as parameter.

For example: “deploy/< Value Pack Name>-<Value
Pack Version>"

Parameter 1: path of the Value Pack

60

Operation name Explanation

startValuePack(String, String) Starts a Value Pack identified by its name and
version passed as parameters.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

undeployValuePack(String, Undeploys a Value Pack identified by its name and
String) version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

stopValuePack(String, String) Stops a Value Pack identified by its name and
version passed as parameters

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version

dumpScenarioSession(String, Dumps the Drools Working Memory of a scenario of
String, String) avalue pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is dumped.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is dumped.

reloadScenarioSession(String, Reloads a specific rule file of a scenario of a value
String, String, String) pack identified by the value pack name, version, the
scenario name, and the rule file name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Rule File Name

If Parameter 4 is omitted, then all rules files of the
scenario of the Value Pack specified in parameters
1, 2, and 3 are reloaded.

If parameter 3 and 4 are omitted, then all rules files
of all the scenarios of the Value Pack specified in
parameters 1, and 2 are reloaded.

If parameter 1, 2, 3 and 4 are omitted, then all rules
files of all the scenarios of all the value packs are
reloaded.

61

Operation name Explanation

retractScenarioSession(String, Clears the Drools Working Memory of a scenario of a
String, String) value pack identified by the value pack name,
version, and the scenario name

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working
Memory of all the scenarios of the Value Pack
specified in parameters 1, and 2 is cleared.

If parameter 1, 2, and 3 are omitted, then the Drools
Working Memory of all the scenarios of all the value
packs is cleared.

setEngineLogging(String, String, Enables/Disables scenario specific Drools engine
String, Boolean) logging for a Value Pack scenario specified by the
Value Pack name, version, and scenario name. The
4" parameter is a boolean value: true for enabling,
false for disabling scenario specific Drools engine
logging.
Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name

Parameter 4: A Flag indicating whether to
enable/disable engine logging (true/false)

If parameter 3 is omitted, then the engine logging of
all the scenarios of the Value Pack specified in
parameters 1, and 2 is enabled or disabled
depending on the value of parameter 4.

If parameter 1, 2, and 3 are omitted, then the
engine logging of all the scenarios of all the value
packs is enabled or disabled depending on the value
of parameter 4.

reloadConfigurationFile(String, Reloads a configuration file for a Value Pack

String, String, String) scenario specified by the Value Pack name, version,
and scenario name. The 4™ parameter is the name
of the configuration file to reload.

Parameter 1: Value Pack Name
Parameter 2: Value Pack Version
Parameter 3: Scenario Name
Parameter 4: Configuration file name

If parameter 4 is omitted, all configuration files of
the scenario are reloaded.

If parameters 3 and 4 are omitted, all configuration
files of all scenarios of the value pack are reloaded.

If parameters 1, 2, 3 and 4 are omitted, all
configuration files of all scenarios of all value packs
are reloaded.

62

Table 29 Java JMX Console: UCA for EBC Value Pack Manager operations

5.1.3.2 Monitoring UCA for EBC value packs

Class Loader

Each UCA for EBC Value Pack running has its own sub-folder at the Java JMX
Console, under the “uca_ebc” top folder. Each Value Pack sub-folder is named after
the Value Pack name and version.

In the Java Console, each Value Pack folder contains the following sub-folders:

¢ (lass Loader: this sub-folder contains information about the class loader
specific to the Value Pack

¢ Value Pack: this sub-folder contains information on the value pack itself

e Scenarios: this sub-folder contains information on each of the scenarios of
the value pack (the contents of this sub-folder is explained in the next
section: 5.1.3.3 “Monitoring UCA for EBC scenarios”)

The following screenshot shows a sample UCA for EBC Value Pack sub-folder at the
Java JMX Console:

|£| Connection Window Help - El x
overview | Memory | Threads | Classes | vM Summary| MBeans ==
Action Attribute values
IMImplementation
com.sun.management Name Value
connector Actions_Failed »
java.lang Compression_AVC_Compressed
java.util.logging Compression_AVC_EfficiencyPercentage
Javax.management.remote.rmi Compression_AVC_Received 4
org.apache.activemq Compression_SC_Compressed
[=F 1 uca_ebc Compression_SC_EfficiencyPercentage
ActionManager Compression_SC_Received
@ Collector Filter_DateL 013-05-16 16:28:00.965 +0200
Dispatcher Filter_Numbert up 101
Froperties_uca_ebc Filter_NumberQ up 0
Server FloviPercentage 100.0%
(=@ ValuePackManager ogRules [false
=) pd-example-3.0-5P2 Queue_CurrentSize
[+® ClassLoader Queue_DateLastHighWaterMark 7: 055 +
[[MediationFlows Queue_DatelLastPublish 7: 049 +
(=) Scenarios Queue_DatelastSubscribe 7: 050 + L
(=8 com.hp.uca.expert.vp.pd.FroblemDetectic | |Queue_DateLastZeroed 7:45:32.050 + =
A Queue_HighWaterMark
[+-Operations Queue_HighWaterMarkStillIncreasing Ise
(@ ValueFack Queue_NumberZeroedSinceLastHig! Mark 0
Queue_SizeHistory java.lang String[3]
Queue_TotalObjects 101
Queue_Totalo ighWaterMark 19
Status Running
St cenario is running
StatusHistory va.lang.String[2]
urrentumberOfFacts
atelast act 13-05-16 17:45:32.070 0200
atelastRemovedFact 13-05-16 17:45:34.818 0200
ateLastUpdatedFact 13-05-17 16:49:00.176 0200
nsertUpdateRetractRate 63.97058823529414 L
MaxtumberOfFactsSinceStartup 4
izationFlag ftrue
1_MediationSynchronizationHistory [java.lang.String[26] -
: i)

Figure 13 Java JMX Console: a UCA for EBC Value Pack

The following sections will provide more detail on the Class Loader, Value Pack, and
Scenarios sub-folders of any UCA for EBC Value Pack at the Java JMX console.

The UCA for EBC Value Pack Class Loader represents the class loader for a specific
UCA for EBC Value Pack.

The following screenshot shows a UCA for EBC Value Pack Class Loader component
at the Java JMX Console:

63

[2) Connection Window Help —

Memory | Threads | Classes| v summar, y| MBeans -
n

Attribute values

ement Name value
istClasses [117]1
stErrorClasses wa.lang.String[0]

£ [01
ent.remote.rmi Fi q wa.lang [676]
istlarFiles 51

wa.lang g[13]

g
alErrorClasses
alLoadedClasses 17
alloadedPackages 3

A

nEEEEEE

DEGeEEeE S
GRS rTROR!

Refresh

Figure 14 Java JMX Console: UCA for EBC Value Pack - Class Loader

Any UCA for EBC Value Pack Class Loader can be monitored at the Java JMX console
using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Class Loader
that are shown on the Java JMX console:

Attribute name Settable Explanation

ListClasses No The list of Java Classes loaded by the Value
Pack Class Loader

ListErrorClasses No The list of Java Classes that could not be
loaded by the Value Pack Class Loader

ListErrorResources No The list of Java Resources that could not be
loaded by the Value Pack Class Loader

ListFullPackages No The full list of Java Packages loaded by the
Value Pack Class Loader

ListJarFiles No The list of JAR files loaded by the Value
Pack Class Loader

ListValuePackPackages No The list of Value Pack Java Packages loaded
by the Value Pack Class Loader

TotalErrorClasses No The total number of Java Classes that could
not be loaded by the Value Pack Class
Loader

TotalLoadedClasses No The total number of Java Classes loaded by

the Value Pack Class Loader

TotalLoadedPackages No The total number of Java Packages loaded
by the Value Pack Class Loader

Table 30 Java JMX Console: UCA for EBC Value Pack - Class Loader

attributes

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Class Loader using the Java JMX console:

Operation name

dumpResources()

dumpClasses()

dumpFullClass(String)

getClassinfo(String)

getClassinfoAllHierarchy(String)

getResourcelnfo(String)

getResourcelnfoAllHierarchy(Stri
ng)

Explanation

Dumps the list of all the Resources loaded by the
Value Pack Class Loader

Dumps the list of all the Java Classes loaded by the
Value Pack Class Loader

Dumps a Java Class loaded by the Value Pack Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Java Class loaded by the
Value Pack Class Loader. The Java Class is
identified by the name of the class passed as a
parameter.

Parameter 1: Full Class Name

Returns information on a Java Class loaded by the
Value Pack Class Loader or by the Main Class
Loader. The Java Class is identified by the name of
the class passed as a parameter.

Parameter 1: Full Class Name

Returns information on a Resource loaded by the
Value Pack Class Loader. The Resource is identified
by the name passed as a parameter.

Parameter 1: Resource Name

Returns information on a Resource loaded by the
Value Pack Class Loader or Main Class Loader. The
Resource is identified by the name passed as a
parameter.

Parameter 1: Resource Name

Table 31 Java JMX Console: UCA for EBC Value Pack - Class Loader

Mediation Flows

operations

The UCA for EBC Value Pack Mediation Flows represent the mediation flows for a
specific UCA for EBC Value Pack.

The following screenshot shows a UCA for EBC Value Pack Mediation Flows
component at the Java JMX Console:

65

|2/ Connection Window Help

Overview | Memory | Threads | Classes [vM Summary| MBeans af=
Action Attribute values
IMImplementation
EE 1) com.sun.management Hame Value
connector TeMP.
jova.lang 0
. java.util.legging Active
javax. management.remote.rmi va.lang.String[3]
& || org.apache.activemg FloviType ynamic
11 uca_ebc ame Flow1
ActionManager yner Synchronizing
@ Collector yncr Y wva.lang.String[1]
@ Dispatcher
@ Properties_uca_ebc
@ Server
@ ValuePackManager
=1 pd-example-3.0-5P2
® Classloader
£l |, MediationFlows
@ Flowl
[-Operations
@ Flow2
@ Flow3
[). Scenarios
@ ValuePack
i : L — Mediation Fl
Figure 15 Java JMX Console: UCA for EBC Value Pack — Mediation Flows

Any UCA for EBC Value Pack Mediation Flow can be monitored at the Java JMX
console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Mediation
Flows that are shown on the Java JMX console:

Attribute name Settable
ActionReference No
FailedActions No
FlowStatus No
FlowStatusHistory No
FlowType No
Name No
SynchronizationStatus No

SynchronizationStatusHist NO

ory

Explanation

The Action Reference (from the
ActionRegistry.xml configuration file)
associated with the Mediation Flow

The number of Failed actions associated
with the Mediation Flow (Each action is
either a CreateFlow, DeleteFlow,
ResynchronizeFlow, or a StatusFlow action)

The status of the Mediation Flow

A history of the status of the Mediation Flow

over time

Either dynamic or static

The name of the Mediation Flow

Either synchronized or synchronizing

A history of the synchronization status of
the Mediation Flow over time

66

Value Pack

Table 32

Java JMX Console: UCA for EBC Value Pack — Mediation Flows

attributes

The following table lists the operations that can be executed on the UCA for EBC
Value Pack Mediation Flows using the Java JMX console:

Operation name

start()

stop()

status()
resynchronize()

displayMediationFlowXML()

displayLastActionStatus()

displayLastCreateFlowActionSta
tus()

displayLastDeleteFlowActionSta
tus()

displayLastStatusFlowActionSta
tus()

displayLastResynchFlowActionSt
atus()

Table 33

Explanation

Start the Mediation Flow

Stop the Mediation Flow

Displays the status of the Mediation Flow
Resynchronizes the Mediation Flow

Displays the XML definition of the Mediation Flow
(extracted from the ValuePackConfiguration.xml
file)

Displays the output of the last action performed on
the Mediation Flow (either a CreateFlow,
DeleteFlow, ResynchronizeFlow, or a StatusFlow
action)

Displays the output of the last CreateFlow action
performed on the Mediation Flow

Displays the output of the last DeleteFlow action
performed on the Mediation Flow

Displays the output of the last StatusFlow action
performed on the Mediation Flow

Displays the output of the last ResynchronizeFlow
action performed on the Mediation Flow

Java JMX Console: UCA for EBC Value Pack — Mediation Flows

operations

The Value Pack sub-folder of a UCA for EBC Value Pack presents the attributes and
operations for a specific UCA for EBC Value Pack.

The following screenshot shows a Value Pack sub-folder of a UCA for EBC Value

Pack at the Java JMX Console:

67

|£| Connection Window Help I:IE“ZI
al=

Overview | Memory | Threads | Classes | vM Summary| MBeans

1| Action Attribute values

|\ IMImplementation

|, com.sun.management Name Value

1. connector atel 2013-05-16 17:45:32.040 +0200

| java.lang FlowPercentage 100.0%

|| java.utiLlogging FlowStatus lActive

|| javax.management.remate.rmi tup 102

|| org.apache.activemq ScenarioStatus Runnin:

S ucs_ebe =
| ActionManager Scenarioshame com.hp.uca.expert.vp.pd. ProblemDetection
Collector =
Dispatcher Status Running
Properties_uca_ebc st |AIl Scenarios are running.

Server
ValuePackManager 2013-05-16 17:45:11.928 +0200 | Rumning |
. pd-example-3.0-SP2
ClassLoader 2013-05-16 17:44:25.280 +0200 | Degraded |=
|| MediationFlows
|| Scenarios
(=49 ValuePack
A
- Operations 2013-05-16 17:30:36.224 +0200 | Degraded

StatusHistory 2013-03-16 17:31:58.207 +0200 | Running |

2013-05-16 16:29:29.5%4 +0200 | Running -

l 1 »

Synehr Synchronized

Figure 16 Java JMX Console: UCA for EBC Value Pack — Value Pack

Any UCA for EBC Value Pack can be monitored at the Java JMX console using both
attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack that are
shown on the Java JMX console:

Attribute name Settable Explanation

DateLastReceivedEvent No The date and time of the last event received
by the Value Pack

FlowPercentage No Percentage of events received by the Value
Pack compared to the total of events
received by the UCA for EBC Dispatcher

FlowStatus No The status of the Mediation Flow for the
Value Pack, either:

e Unknown
e Disabled
e Inactive
e Failover
e Failed

e Active

e Starting
e Stopping

ReceivedEventsSinceStart NO The number of events received by the Value
up Pack since start-up

ScenarioStatus No The status of the Scenarios for the Value
Pack, either:
e Starting
e Running
e Degraded
e Failed
e Stopped
e Unknown
ScenariosName No The list of scenario names associated with
the Value Pack
Status No The status of the Value Pack, either:
e Starting
e Running
e Degraded
e Failed
e Stopping
e Stopped
e NotDeployed
e Unknown
StatusExplanation No A detailed explanation of the status of the
Value Pack
StatusHistory No The full history of the Value Pack statuses,
since it was first started
SynchronizationStatus No The synchronization status of the Value
Pack, either:
e Synchronizing
e Synchronized
Table 34 Java JMX Console: UCA for EBC Value Pack — Value Pack

attributes

The following table lists the operations that can be executed on the UCA for EBC
Value Pack using the Java JMX console:

Operation name

resetStatistics()

retractAllScenarios()

dumpSessionOfAllScenarios()

Explanation

Resets the statistics for the Value Pack

Clears the Drools Working Memory of all the
scenarios of the Value Pack

Dumps the Drools Working Memory of all the
scenarios of the Value Pack

69

reloadAllScenarios() Reloads all rules files of all the scenarios of the

Value Pack

createAllMediationFlows() Creates all the mediation flows associated with the
Value Pack

deleteAllMediationFlows() Deletes all the mediation flows associated with the
Value Pack

resynchAllMediationFlows() Resynchronizes all the mediation flows associated
with the Value Pack

statusAllMediationFlows() Retrieves the status of all the mediation flows
associated with the Value Pack

Table 35 Java JMX Console: UCA for EBC Value Pack - Value Pack

operations

Scenarios

All the scenarios of a value pack are listed under the Scenarios sub-folder of the
value pack folder, like in the screenshot below:

x

|#| Connection Window Help _ =

Overview | Memory | Threads | Classes | VM Summary| MBeans s
Action
JMImplementation

. com.sun.management

. connector
java.lang
jave.

logging
javax.management.remote.rmi
org.apache.activemg

uca_ebc

T B B G B

i 1 ActionManager
[Collector
[+ Dispatcher
/@ Properties_uca_ebc
@ Server
@ ValuePackManager
E1) pd-example-3.0-5P2
5@ ClassLoader
[MediationFlows
SRS cenarios|
=@ com.hp.uca.expert.vp.pd.FroblemDetectic
+} Attributes
] Operations
HH@ ValuePack

5
5

« 1 »

Figure 17 Java JMX Console: UCA for EBC Value Pack - Scenarios

Each scenario sub-folder is named after the scenario. The following section
describes the contents of each scenario sub-folder at the Java JMX Console.

5.1.3.3 Monitoring UCA for EBC scenarios

Each scenario of a running UCA for EBC Value Pack has its own sub-folder at the
Java JMX Console, under the “uca_ebc/<value pack name>-<value pack
version>/Scenarios” folder. Each Scenario sub-folder is named after the Scenario.

The following screenshot shows a Scenario sub-folder of a UCA for EBC Value Pack
at the Java JMX Console:

70

L% Connection Window Help - 8 X
Ovenview | Memory | Threads| Classes| vM Summary| Meeans &=

Action
IMImplementation
com.sun.management
connector

java.lang

java.util logging
Javax.management.remote.rmi
org.apache activemq

uca_ebc

ActionManager

@ Collector

@ Dispatcher

EHEEHEEEE

@

@ Properties_uca_ebc

@ Server

@ ValuePackManager

pd-example-3.0-5P2

@ ClassLoader
MediationFlowss

[mEeageaRattanteny
- 2-1-]

D

Scenarios

A
Operations
@ ValuePack

=@ com.hp.uca.expert.vp.pd. ProblemDetectiq

< [

Attribute values

Name
/Actions_Failed

Value

Compression_AVC_Compressed

Compression_AYC_EfficiencyPercentage

Compression_AVC_Received 4

Compression

C_Compressed

Compression

C_EfficiencyPercentage

Compression

C_Received

[Fiter_DateL astRe

013-05-16 16:28:00.965 +0200
Filter_NumberOf tup

Filter_NumberOf tup

FlowPercentage 00.0%

ogRules lse

‘Queue_CurrentSize

Queue_DateLastHighWaterMark -05-16 17:40:36.055 +
Queue_DatelastPublish -05-16 17:45:32.049 +
Queue_Date -05-16 17:45:32.050 +
Queue_Date ed -05-16 17:45:32.050 +
Queue_High' rk

Queue | riStilllncreasing alse

Queue_Num|

astHighWaterMark

izeHistory

Queue va.lang.String[3]
Queue_Totalobject 01
[Queue_TotalObjectsSincelastHighWaterMark 9

unning

cenario is running

va.lang.String[2]

usistory
urr

OfFacts 1

atel

013-05-16 17:45:32.070 +0200

act
ateLastRemovedFact

2013-05-16 17:45:34.818 +0200

atel

2013-05-17 17:16:54.471 +0200

nsertl etractRate

363.97058823529414
24

tup
nizationFlag

ftrue

I_MediationSynchronizationHistory

umberoff:

java.lang.String[26]
15

p

umberOfRemov:

umberofL

tup 143
tup 92813

b

Figure 18

Java JMX Console: UCA for EBC Value Pack - Scenario

Any Scenario of a UCA for EBC Value Pack can be monitored at the Java JMX console

using both attributes and operations.

The following table lists the attributes of any Scenario of a UCA for EBC Value Pack
that are shown on the Java JMX console:

Settable

Attribute name

Actions_Failed

Compression_AVC_Compre
ssed

Compression_AVC_Efficien
cyPercentage

Compression_AVC_Receive
d

Compression_SC_Compres
sed

Compression_SC_Efficienc
yPercentage

Compression_SC_Received

Filter_DateLastRejectedEv
ent

Explanation

The number of failed actions for the scenario

The number of AVC (Attribute Value Change)
events compressed by the Compression
thread

The efficiency percentage of the
Compression Thread regarding AVC
(Attribute Value Change) events

The number of AVC (Attribute Value Change)
events received

The number of SC (State Change) events
compressed by the Compression thread

The efficiency percentage of the
Compression Thread regarding SC (State
Change) events

The number of SC (State Change) events
received

The Date and Time of the last event that was
rejected by the scenario filter

71

Filter_NumberOfPassedEv
entsSinceStartup

Filter_NumberOfRejectedE

ventsSinceStartup

FlowPercentage

LogRules

Queue_CurrentSize

Queue_DateLastHighWate

rMark

Queue_DateLastPublish

Queue_DateLastSubscribe

Queue_DatelastZeroed

Queue_HighWaterMark

Queue_HighWaterMarksStil

lincreasing

Queue_NumberZeroedSinc
eLastHighWaterMark

Queue_SizeHistory

Queue_TotalObjects

Queue_TotalObjectsSincel
astHighWaterMark

Yes

The number of events that passed the
scenario filters since start-up

The number of events rejected by the
scenario filters since start-up

Percentage of events inserted into Working
Memory compared to the total of events
received by the Scenario

Flag (true/false) indicating whether scenario
specific Drools engine logging is
enabled/disable for the scenario

The current size (in number of events) of the
scenario events queue

The date and time of the last high water
mark of the Scenario events queue

Date and time of the last time an event was
added to the Scenario events queue

Date and time of the last time an event was
removed from the Scenario events queue to
be processed

The date and time of the last time the
Scenario events queue was empty

The value of the high water mark of the
Scenario events queue (in number of events)

Whether the high water mark of the Scenario
events queue is still increasing or not

The number of times that the Scenario
events queue was empty since the last high
water mark

The history of the Scenario events queue size

The total number of “objects” that have been
added to the Scenario events queue since
start-up

The total number of “objects” that have
been added to the Scenario events queue
since the last high water mark

72

Status

StatusExplanation

StatusHistory

WM_CurrentNumberOfFact

WM_DateLastInjectedFact

WM_DateLastRemovedFac
t

WM_DateLastUpdatedFact

WM_InsertUpdateRetractR
ate

WM_MaxNumberOfFactsSi
nceStartup

WM_MediationSynchroniz
ationFlag

WM_MediationSynchroniz
ationHistory

WM_NumberOfFactsSinceS
tartup

The status of the Scenario, either:

e Starting
e Running
e Degraded
e Failed

e Stopped

e Unknown

An explanation for the status of the Scenario

The full history of the Scenario statuses,
since it was first started

The current number of facts in the Drools
Working Memory of the Scenario

Date and time of the last fact inserted into
the Drools Working Memory of the Scenario

Date and time of the last fact removed from
the Drools Working Memory of the Scenario

Date and time of the last fact updated in the
Drools Working Memory of the Scenario

The rate of operations (insert/update/retract
fact) on the Drools Working Memory of the
Scenario in operations per second

The maximum number of facts in the Drools
Working Memory of the Scenario since start-

up

The value of the Mediation Synchronization
Flag:

e True (i.e. the mediation flow is
synchronized)

e False (i.e. the mediation flow is
currently undergoing a
synchronization)

The history of the synchronization status of
the mediation flow

The number of facts that have been inserted
into the Drools Working Memory of the
Scenario since start-up

73

Attribute name Settable Explanation

WM_NumberOfRemovedFa NO The number of facts that have been removed

ctsSinceStartup from the Drools Working Memory of the
Scenario since start-up

WM_NumberOfUpdatedFac NoO The number of facts that have been updated

tsSinceStartup in the Drools Working Memory of the
Scenario since start-up

Table 36 Java JMX Console: UCA for EBC Value Pack - Scenario attributes

The following table lists the operations that can be executed on any Scenario of a
UCA for EBC Value Pack using the Java JMX console:

Operation name Explanation
resetCounters() Resets the statistics for the Scenario
reloadRulesFile(String) Reload a specific Rules File of the Scenario

Parameter 1: The name of the Rules File

retractAll() Clears the Drools Working Memory of the
Scenario

resetStatus() Resets the status of the Scenario

dumpFailedActions() Dump all failed actions for the Scenario

retractFailedActions() Retracts all failed actions from the Drools
Working Memory of the Scenario

clearCompressionStats() Resets the statistics regarding Compression

reloadScenario() Reloads all rules files of the Scenario

dumpSession() Dumps the Drools Working Memory of the
Scenario

Table 37 Java JMX Console: UCA for EBC Value Pack - Scenario operations

74

Chapter 6

UCA for EBC Advanced
Troubleshooting

6.1 UCAfor EBC Logging Mechanism

The UCA for EBC logging feature is based on the log4j technology.

The main application logging mechanism is driven by the setting of the
${UCA_EBC_ INSTANCE}/conf/uca-ebc-log4j.xml log4jconfiguration
file.

Some other (specific) logging levels can be activated by setting some properties in
the ${UCA EBC INSTANCE}/conf/uca-ebc.properties file. These
additional logging levels are:

e Scenario rule execution log:

That allows logging scenarios rules execution in a dedicated file in order to
help debugging.

e (ollector log:
That allows logging all alarms collected in a specific file.

The generated log files are located in the $ {UCA EBC_ INSTANCE}/logs
directory.

Note

Changes to the $ {UCA EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Changes to the $ {UCA EBC_INSTANCE}/conf/uca-ebc-log4j.xml file
require either a reload of the Log4J configuration (through the uca-ebc-admin
command-line tool, or the UCA for EBC User Interface) or a restart of UCA for EBC
Server in order for the changes to be taken into account.

6.1.1 Standard application logging

Application logging is controlled by the $ {UCA EBC INSTANCE}/conf/uca-
ebc-log4j.xml logdj configuration file.

The CONSOLE, FILE, and DB appenders are used for controlling application logging
to the console, standard application log file or UCA for EBC User Interface. The
standard application log file is the following (by default):

${UCA EBC INSTANCE}/logs/uca-ebc.log.

The $ {UCA EBC_INSTANCE}/conf/uca-ebc-log4j.xml canbe modified
to control:

e what kind of events get logged

75

¢ whatis the trace level for each event type (event type are defined by Java
package names)

e where the events are logged (what appenders are used)

The provided ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xml file
predefines a set of application classes for which the logging can be activated or not.

6.1.2 Configuring Scenario logging

In order to be able to configure how log messages coming from the Scenario rule
files (drl files) are processed (what trace level and appenders are used), a specific
logger must be added to the ${UCA EBC INSTANCE}/conf/uca-ebc-
log4j.xml configuration file.

This logger is defined as follows:

<logger name="<scenario name>" additivity="false">
<level value="INFO" />
<appender-ref ref="CONSOLE" />
<appender-ref ref="DB" />

</logger>

Where <scenario name> is the name of the scenario for which you want to configure
the logging. The <scenario name> has to be identical to the <scenario name>
definedinthe valuePackConfiguration.xml file of your Value Pack.

The definition of your scenario specific logger can be added to the “Detailed Traces
for Value Pack Scenarios” section of the ${UCA EBC INSTANCE}/conf/uca-
ebc-1og47 . xmnl file. This section is identified by comments in the file.

The following screenshot shows an example of how to configure specific logging in
the uca-ebc-log4j.xml file:

83 your value pack scenarios.

ario" attribute

86

87

88

89

a0

51 <appender-ref ref="DB" /

92 </logger>

a3 -

54

S5 <logger :ar.’.e="rr.y5cehario" additivity="false">
=1 <lewvel wvalue="INFO" />

97 <appender-ref ref="CONSCLE" />

98 <appender—-ref ref="DB" />

a9 </logger>

100

101 «!——

102 additivity="falss">
103

104 vappendsr-ref ref="CONSOLE" />

appe

anc e A —mm E mmE— BT S

76

Figure 19 Configuring scenario specific logging in the uca-ebc-log4j.xml
file

Note

&~ please refer to section 3.2.3 “uca-ebc-logdj.xml file configuration” to learn
more about the configuration of the $ { UCA EBC INSTANCE}/conf/uca-
ebc-1log4j.xml file

6.1.3 Scenario rule execution logging

Rule execution can be logged per scenario in a dedicated log file. Logging can be
enabled/disabled at application start-up by setting the engine.logger.enabled
property to true/false in the $ {UCA EBC INSTANCE}/conf/uca-
ebc.propertiesfile.

This property controls scenario specific rule execution logging for all scenarios.

Properties like engine.logger.interval (which controls the interval in milliseconds at
which rule execution information is written to the log file) can also be set. These
properties affect all scenario specific rule execution log files.

Note

&~ please refer to section 3.2.1 "uca-ebc.properties file configuration”, especially
Table 15 “Rule Engine logger properties in the uca-ebc.properties file”, for more
information on how to configure the $ {UCA EBC_INSTANCE}/conf/uca-
ebc.properties file.

Changes to the $ {UCA EBC_INSTANCE}/conf/uca-ebc.properties file
require a restart of UCA for EBC Server in order for the changes to be taken into
account.

Scenario-specific rule execution log files are named LogEngine <scenario
name>. log and are located inthe $ {UCA EBC_INSTANCE}/logs directory.
Scenario-specific engine log files contain standard Drools engine log entries
specific to a scenario.

At runtime, it is also possible to enable/disable scenario specific rule execution
logging for just one scenario by using either the uca-ebc-admin command-line tool
or the Java console.

Below is a screenshot showing how to enable/disable scenario specific rule
execution logging for just one scenario by using the Java console:

77

| Java Monitoring & Management Console - pid: 6456 com.hp.uca.common.launch.Ucalauncher com.hp.uca.expert engine.Bootstrap

[£] Connection Window Help _IElx
Overview | Memory | Threads | Classes | VM Summary | MBeans &=
IMImplementation Attribute values
com.sun.management
R Name value
javalang Actions_Failed o
java.utilogging Filter_DateLastRejectedEvent 2012-01-0% 17:04:58.852 +0100
(=] Uca_expert Filter_Numberof up [}
ActionManager FlowPercentage No Event received
(18 Callector LogRules e
(@ Dispatcher LogScenario fakse
[#(@ MainClassLoader Queue_CurrentSize o
: . My-Correlation-project-1.0 Queue_Datel astHighWaterMark 12012-01-09 17:04:58.851 +0100
(@ Properties_uca_expert Queue _PatelastPublish 2012-01-09 17:04:58.851 +0100
(18 ValuePackManager Queue DateLastSubscribe 2012-01-0% 17:04:58.851 +0100
B lefexample-0. 12 Queue_DatelastZeroed 2012-01-09 17:04:58.851 +0100
@ Classloader Queue_FighWaterMark °
=5 Scenarios Queue_HighWaterMarkStillincreasing true
@ com.hp.uca.expert.p.lif, G Queve eLastHight 0
: Queue SizeHistory [java.lang.String[0]
Queve _TotalObjects 0
@ comhp.uca.expert.vp.lef.inactivity. Inactivity || |Queus_TotalObjectsSincel astiighWaterMark °
@ com.hp.uca.expert.vp.llef.statistical. Statistical Status Running
@@ com.hp.uca.expert.vp.lief. imewait. TimeWait i
8 com.hp.uca. expert.vp. lef.updown. UpDowr StatusHistory iava.lang.String[2]
@ ValuePack WM_CurrentNumberOfFacts 4
VWM _DatelastinjectedFact 2012-01-09 17:04:58.852 +0100
\WM_Datel t 12012-01-09 17:04:58.852 +0100
WM_DatelastipdatedFact 2012-01-09 17:04:58.852 +0100
WM _InsertL 0.0
WM_MaxNumberOfFactsSinceStartup 0
VWM _MediationSynchronizationFiag rue
WM_MediationSynchronizationHistory /java.lang.String[0]
WM_NumberOfFactsSinceStartup 0
WM_NumberOfRemovedFactsSincsStartup o
WM_NumberOfpdatedFactsSinceStartup o

Figure 20 Java JMX Console: Enabling/Disabling scenario specific rule
execution logging for one scenario

Scenario specific rule execution log files are compatible with the JBoss Rule Audit
feature in Eclipse IDE.

The JBoss Rule Audit panel comes with the JBoss Drools Eclipse plugin. You can
view this panel by selecting the JBoss Drools perspective in Eclipse IDE as shown
below. The JBoss Rule Audit panel should be part of the JBoss Drools perspective
unless it has been removed.

8 Drools - Eclipse
File Edit Navigate Search Project Run Window Help
[= @~ @ U~ $-0-Q~- HE~ &5V~ % - Py oY 11 (O Drools | ¥ Debug &’ Java
B3 Outline ¥
An outline is not available
Click to activate the
Drools perspective

YL

D

JBoss Rule Audit
panel

/

L. Problems | T Properties () Audit 21| Jo Junit| & Cansole | 3= Call Hierarchy. G
« = Object inserted (S): id=1, 1=2009-09-16T12:00:00.000 +02:00, e=BOX B, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 05=NOT_ACKNOWLEDGED, ps=NOT_HANDLED, ins=t)
= Activation created: Rule Any Nt id=1, t=2009-08-16T12004 +02:00, e=BOX BL, type=COMMUNICATIONS ALARM, s=MINOR, ns=NOT_CLEARED, 0s=NOT_ACK
< # Ad Ru\e Any Not Ac) larm 2009-08-16T12:00:00.000+02:00, £=B0X B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 05=NOT_ACKN
009-09-16T12:00:00.000+02:00, e=BOX B1. type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 05= ACKNOWLEDGED, ps=NOT_HANDLED, ins=true
09-0-16T12:00:00.000+02:00, £=BOX B1, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 0s=TERMINATED, ps=HANDLED, ins=true, avc=false, |
« Activation created: Rule Any TO_BE_RETRACTED Alarm a=id=1, 1=2009-03-16T1200:00.000+ 0200, e=BOX B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 0s=TERMINA
= Activation created: Rule Any Terminated Alarm a=id=1, t=2009-09-16T12:00:00.000+02:00, e=BOX B1, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, os=TERMINATED, ps
+ # Activation executed: Rule Any Terminated Alarm a=id=1, 1=2009-09-16T1200:00,000+02:00, e=BOX 81, type=COMMUNICATIONS_ALARM, 5=MINOR, ns=NOT_CLEARED, 0s=TERMINATED, ps=
= Object inserted (6} id=TEST_END val=true desc=this is the end of the test
“ ® Activation executed: Rule Any TO_BE_RETRACTED Alarm a=id=1, 1=2009-03-16T1200:00.000+02:00, e=80X B1, type=COMMUNICATIONS_ALARM, s=MINOR, ns=NOT_CLEARED, 0s=TERMINAT
= Object inserted (7): id=garbageGo val = rue desc=Ga for garbage collection rule

Figure 21 Selecting the JBoss Drools perspective in Eclipse IDE by clicking
on the JBoss Drools perspective icon

78

Alternatively, you can switch to the JBoss Drools perspective by going to the

“Window” -> “Open Perspective” Eclipse IDE top menu, and selecting the “Drools”

perspective, as shown below.

[.] Drools - Eclipse

- - E—

-

=
=

Figure 22

Q-
f# Package Expl 2 % Navigator| g T

File Edit MNavigate Search Project Run Window] Help

& 9~ ¥

MNew Window
New Editor

Open Perspective
Show View

Customize Perspective...
Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

Mavigation

Preferences

,,
[‘j Open Perspective

(S) |

<> CollabNet
EaCVSs Repository Exploring
(3 Database Debug
(i Database Development
%Debug
|% Drools
11 Guvnor Repositary Exploring
&'lava
#Java Browsing
72 Java EE (default)
e’ Java Type Hierarchy
&7 JavaScript
CjBPM

n

Lo]

Cancel

Selecting the JBoss Drools perspective in Eclipse IDE by using
the Eclipse IDE menus

If the Drools Audit panel is not shown, you can select it by going to the “Window” ->
“Show View” Eclipse IDE top menu, and selecting the “Audit” view from the Drools

group.

i8] Drools - Edlipse - - —— - b
File Edit Navigate Search Project Run [Window] Help
4~ @~ & Q- B New Window & - - - =4 -
New Edit
% Package Expl 2 “._% Navigator| 2 T < or
% Open Perspective 4
Show View r[9 Audit
. . 2% Call Hierarchy
Cust Perspective.. =
A Bl Console Alt+Shift+Q, C
SRR A B, Declaration Alt+Shift+Q, D
Reset Perspective.. @ Javadoc Alt+Shift+Q,)
Close Perspective Ju JUnit
Close All Perspectives % Navigator
W femfer .| 85 Outline Alt+Shift+Q, O
[Package Explorer Alt+Shift+Q, P
Preferences [ZX Problems Alt+Shift+Q, X
=3 Progress
£ Properties
) Rules
¥ Tasks
Te Type Hierarchy Alt+Shift+Q, T
Other.. Alt+Shift+Q, Q

79

:.] Show View S]] bg

type filter text

= Data Management -
= Debug
4 = Drools
) Agenda
9 Audit
) Global Data
@ Process Instance
) Process Instances
) Rules
©) Working Memory
= Google
= Ginnar

[

[OK l I Cancel J

Figure 23 Showing the JBoss Drools Audit view in Eclipse IDE

To display the contents of a scenario specific rule execution log file using Eclipse
IDE, you need to load the file inside the Audit panel.

You can open a logEngine_<scenario name>.log file in the Audit panel by using drap
and drop of the file into the Audit panel as shown in the screenshot below.

[Zi Problems | Properties|) Audit 2 _Ju JUnit| Bl Console| 23 Call Hierarchy B =0

ogtngine_skeleton.log

Figure 24 Eclipse IDE: Using drag and drop to open a Drools engine log file
in the Drools Audit panel

Alternatively you can open a Drools engine log file in the Drools Audit panel by
clicking on the “Open log” icon of the Drools Audit panel as show below:

[l Problems | = Properties [1) Audit £3 . Ju JUnit| B Console| 3* Call Hierarchy =8
Figure 25 Eclipse IDE: Using the “Open log” icon to open a Drools engine

log file in the Drools Audit panel

The following screenshot shows an example of how contents of a scenario specific
rule execution log file is displayed in the Audit panel of the Drools perspective in
Eclipse IDE:

80

— -_— - -
= Drools - Eclipse Platform o
File Edit Navigate Search Project Run Window Help
wifi7 Qr B0~ BHFEGE- B~ L i 0eror [0 Drock) B SN
t Problems | = Properties @ Audit £2 ﬁIUnEf B Console | ;9@ R =a
8
43 8 Object inserted (1): <Alarm xmins="http://hp.com/uca/expert/xT33Alarm"> <sourceldenti identifier~12301</identifier ass>BOX: "
= Activation created: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/xT33Alarm"> < sourceldentit identifier>12301</identifier» < originatingManaged |
wla Object inserted (2): <Alarm xmins="http://hp.com/uca/expert/xT33Alam": <sourc identifier>12302+« fidentifiers lass= BOX/
& Activation cancelled: Rule Store not cleared Alarm a= <Alarm xmins="http://hp.com/uca/expert/x733Alarm" > <sourc Jsourcs dentifier>12301 </identif g
4 ® Objectinserted (3): <Alarm xmins="http://hp.com/s D larm"><sourcs identifier>12303</identifier> lass= BOX: EE I
= Activation created: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/xT33Alamm"> < sourceldentit identifier>12303</identifier» < originatingManaged
4 ® Qbjectinserted (4): <Alarm xmins="http://hp.com/uca/expert/xT33Alam"> <sourc identifier-12304+<//identifier> lass>BOK</
= Activation created: Rule Store clearance 2= <Alarm xmins="http://hp. o oure Jsoure dentifier12304< identfi Clg
Activation exccuted: Rule Store clearance a=<Alarm xmins="http://hp.com/uca/s < identifer>12304< /identifier> < originatingManagedEntityClass
4 ® Objectinserted (5): <Alarm xmins="http://hp.com/s D larm"><sourcs i identifier>12303¢/identifier> lass= BOX:
= Activation created: Rule Store not cleared Alarm a=<Alarm xmlns="http://hp.com/uca/expert/xT33Alamm"> <sourceldentit identifier>12305</identifier> < originatingManaged
4 ® Objectinserted (6): <Alarm xmins="http://hp.com/uca/expert/xT33Alarm"> <sourceldenti identifier-12306< /identifier> lass>BOK:
< Activation cancelled: Rule Store not cleared Alam a=<Alarm xmins= P larm"> <sourc i Jsourceldentit dentifier>12305< fidentifi
4 ¥ Activation executed: Rule Store not cleared Alarm a=+<Alarm xmlns: rt/x733Alam’" & identifier=12303«/identifiers
4 n Object ingerted (7): <Alarm xmins="http://hp.com/uca/s < identifier>12307< fidentifiers lass> BOX<,
= Activation created: Rule Store not cleared Alarm a=<Alarm xmin: f/hp.com/uca/expert/xT33Alarm"> < identifier=12307+/identifier> < originatinghlanag
Activation executed: Rule Store not cleared Alarm a=<Alarm xmins="http://hp.com/uca/expert/xT33Alrm"s <sourceldentitier»src< /sourceldentitiers <identifiers12307</identifiers
, . '
s 20
=
Figure 26 Eclipse IDE: Viewing scenario rule execution logs

Scenario specific rule execution log files contain Drools rule activation information
in addition to the insertion/update/deletion of objects in Drools working memory.

Besides the Audit panel, the Drools perspective in Eclipse IDE also provides the
Agenda and Working Memory panels which give information on the planned rule
execution schedule (Agenda panel) and the list of all the objects in the Working
Memory (Working Memory panel) of a Drools Engine.

You can select the Agenda or Working Memory panels by either switching to the
Drools perspective or going to the “Window” -> “Show View” Eclipse IDE top menu,
and selecting the “Agenda” or “Working Memory” view from the Drools group, as
shown below.

.- - -

E.] Droals - Eclipse

File Edit Mavigate Search Project Run |Window | Help
g O~ & 9~ B New Window § - - - f= -
New Edit:
[# Package Expl “_% Navigator| s | e sder
: Open Perspective 4
& Show View »| 9 Agenda
O Audit
Customize P tive..
Sus o;mze etrspe; ve = Call Hierarchy
S B Console Alt+Shift+Q, C
Reset Perspective... E Declaration Alt+Shift+Q, D
Close Perspective @ Javadoc Alt+Shift+Q,]
Close All Perspectives Ju JUnit
Navigation L4 :: aadarcy
o= Outline Alt+5hift+Q, O
Preferences [# Package Explorer Alt+Shift+Q, P
[0 Problems Alt+Shift+Q, X
=3 Progress
= Properties
) Rules
“ Tasks
s Type Hierarchy Alt=Shift+Q, T
9 Working Memory
Other... Alt+5Shift+Q, Q
Figure 27 Showing the JBoss Drools Agenda or Working Memory view in
Eclipse IDE

The Drools Agenda and Working Memory views are useful in debug mode in Eclipse,
for example, when running the JUnit tests of a Value Pack in debug mode in Eclipse.
You put breakpoints in either the rules or java code of a Value Pack (by double-
clicking left of the line number of a line of rules or java code) then execute the JUnit
tests of a Value Pack in debug mode by right-clicking on the JUnit test file and
selecting the “Debug As” -> “Drools JUnit Test” context menu item, as shown below

81

getProducer() . sendAlarms (ALARM_FILE) ;

waitingForTheEndTe Open Declaration 3 [*SECOND);
Open Type Hierarchy 4
Open Call Hierarchy Ctri+Alt+H jisess
Show in Breadcrumb Altashittsg |
. Quick Outline Ctri+0
closeRulelogFiles(Quick Type Hierarchy Ctri+T
Open With >
Show In Atvshittew> |
checkTestResult(ee cop uaified Name h;
LogHelper.exit(log Faste CutsV
¥ Quick Fix Ctri+1
} Source AltsShift+5 > =
Refactor AltsShiftsT» ‘ i
2. Problems| T Properties (@ Audit(Q, Loc@! History 2 LCau Hierarchy B
References »
Declarations »

5 Add to Snippets.

Run As
Debug As * ¥ 1Debug on Server Alt+Shift+D,R |
Profile As » O 2 Drools JUnit Test
Validate Ju 3 JUnit Test Alt+Shift+D, T
Teom » @ 4Web Application
Compare With , | @ 5Web Application (running on an external server)
Replace With » Debug Configurations...
Google »
Preferences.
Llnsen 29:8
Figure 28 Running a JUnit Test of a Value Pack in debug mode in Eclipse

The execution will pause once the first breakpoint is encountered. Once the
execution is paused you can inspect the contents of the Drools Working Memory by
looking at the Working Memory panel, as shown below:

B Console | ¥ Tasks |3 Call Hierarchy [i) Working Memory &2 - 4 Agenda

a [0]= SynchronizationFlag (1d=5849)
a [1]= Alarm (id=5850)

- & [2]=TickFlag (id=5851)
a [3]= GarbageCollectionFlag (id=5852)
a [4]= AsyncActionFlag (id=5853)

Figure 29 Sample view of the Drools Working Memory panel in Eclipse IDE

The Drools Working Memory panel gives information on the list of all the objects in
Working Memory: Alarms, Flags, custom objects, ...

You can also inspect the Drools Agenda by looking at the Agenda panel, as show
below:

Agenda View - X Working Memary View | Global Data View <k el

= & MAIM[focus]= AgendaGroupImpl (id=1123)
SR W (] = Agendaltem (jd=1196)

+ & ruleMame= "Sample rule”
+ & message= Tearestuser 1™

Figure 30 Sample view of the Drools Agenda panel in Eclipse IDE

The Drools Agenda panel gives information on the planned rule execution schedule.

Note

The Drools perspective in Eclipse IDE is provided by Drools plug-in for Eclipse.

For more information on how to install the Drools plug-in for Eclipse IDE please
refer to: [R2] HP UCA for Event Based Correlation Value Pack Development Guide

6.1.4 Activating the Collector raw logging

The Collector raw logging feature is the possibility to log in a file the exact alarm
list that is received by the collector.

This Logging can be enabled/disabled at application start-up by setting the
collector.logger.enabled property to true or false in the
${UCA EBC INSTANCE}/conf/uca-ebc.propertiesfile.

By setting this property to ‘true’ all collected alarms will be dumped in the
${UCA_EBC_ INSTANCE}/logs/uca-ebc-collector.log file beforeany
other treatment. Alarms are dumped in an XML format.

6.1.5 Configuring the log for Working Memory Agenda and Event
Listeners

Inthe ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xmlLog4)
configuration file for UCA for EBC, you can configure the log level and appender
references for two classes that monitor Drools Engine Agenda and Drools Working
Memory for all the scenarios of all the Value Packs running on UCA for EBC.

You can configure the log for these two classes by updating the following section in
the ${UCA EBC INSTANCE}/conf/uca-ebc-log4j.xmlLog4)
configuration file:

zuw COPPTHUTLTITL LTI LMoL

269 <appender-ref ref="FILE" />

270 <appender-ref ref="DB" />

271 </logger:

272§ <logger name="com.hp.uca.expert.engine.ruleses=zion.WMAgendaEventListener”

273 addi ="false">

274 <level - ue="DEBUG" />

275 <appender-ref ref="CONSOLE"™ />

276 <appender-ref ref="FILE" />

277 <appender-ref r=f="DB" />

278 </logger®>

278

280 <logger name="com.hp.uca.expert.engine.rulesession.WMEventListener"”
281 ad ="false">

282 <level value="DEBUG" />

283 <appender-ref ref="CCNSOLE" />
284 <appender-ref ref="FILE" />
285 <appender-ref ref="DB" />

2886 </logger>

287

288 1. hp.uca.expert.lifecycle.LifeCyclefhnaly=sis™

288 "false">
280 ="DEBUG" />
281 Fanman Aoav—waf +=F=N/MEISATENT [~
Figure 31 Configuring the log for Working Memory Agenda and Event

Listeners

Setting the log level to DEBUG for the WMAgendaEventListener will add log
messages to the log(s) every time the Agenda of the Drools Engine of a Scenario is
updated, i.e. when:

e Rule activations are created
e Rule activations are canceled

e Before rules are fired

83

e After rules are fired

Setting the log level to DEBUG for the WMEventListener will add log messages to
the log(s) every time the Working Memory of the Drools Engine of a Scenario is
updated, i.e. when:

e Objects are inserted into Working Memory
e Objects are updated in Working Memory

o Objects are retracted from Working Memory

Note

Enabling these logs can be complementary to using the scenario specific Drools
engine logs that are described in section: 6.1.2 “Configuring Scenario logging”

6.2 Managing the Drools engine(s)

Each scenario has its own Drools rule engine for processing the Drools rules defined
in the rules files of the scenario. The following operations can be performed on the
working memory of a scenario, without having to restart either UCA for EBC or any

Value Pack:
e Dumping the Working Memory
o (learing the Working Memory
e Reloading the Rules

6.2.1 Dumping the Working Memory

Dumping the Working Memory of a scenario dumps the complete list of object
(Facts) currently in the working memory of a Scenario to the log(s).

Dumping the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>[operations” folder.

The following screenshot shows how to dump the working memory at the scenario
level:

|£| Connection Window Help

Overview | Memory | Threads | Classes| vM Summary| MBeans
Action Operation invocation
JMImplementation
com.sun.management void 0
connectol
java.lang
java.utillogging
Javax.management.remote.rmi boolean T string)

. ‘org.apache.activemq
uga_ebe

ActionManager

Ce

DHHEEEseEs

ollector
@ Dispatcher void ¢
@ Properties_uca_ebc
@ Server
@ valuePackManager 4
= 1) pd-example-3.0-5P2 &L (9]
(@ ClassLoader
[+ 1 MediationFlows
(1. Scenarios

void [gumpFailedactions | ()

[=@ com.hp.uca.expert.vp.pd.Probl
Attributes
pe
@ valuePack

void | retractFailedactions | ()

boolean | reloadscenario | ()

0

84

Figure 32 Java JMX Console: Dumping the working memory of a Scenario

Dumping the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following
screenshot:

™ Firefox * | ——— — . — - e (S|

pd-example-2.0.572 > Vsl Pack > Uontoring

I Moniloring Configuraion Troubleshooting |

Stop | Resynchronize

Actons

Dump WM || Clear WM | |Reload | |Reset Status ‘

Status Status Explanation Actons
rwwt @ Aawe Stop |Resynchronize
e @ Ao Stop| |Resynchronze

Fiow3 Q@ Ao Stop | |Resynchronze

/™[] 04:18:45 Notification: ValuePack pd-example-3.0-SP2 : Running

Figure 33 UCA for EBC User Interface: Dumping the working memory of a
scenario

Note

&~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for Event Based Correlation User Interface Guides~ For more information

on how to dump the working memory of a scenario using the Java JMX Console,
please see the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

6.2.2 Clearing the Working Memory

Clearing the Working Memory of a scenario can be necessary at times when you
want to start fresh with your scenario. This operation may or may not be followed
by a resynchronization of the mediation flow of the Value Pack that the scenario
belongs to, in case you need you scenario to receive the current list of events
(Alarms) from the mediation layer or not.

Cleaning the Working Memory of a scenario can be performed using the Java JMX
Console at the Scenario level by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/<value pack name>-<value pack
version>/scenarios/<scenario name>/operations” folder.

The following screenshot shows how to clear the working memory at the scenario
level:

85

£ Connection Window Help

Overview | Memory | Threads | Classes | v Summary| MBeans =0
Action Operation invocation
IMImplementation
com.sun.managemert void 0
connector
jova.lang

java.util.logging

Javax.management.remote.rmi boolean [~ ioadruiestie | (po sn]

org.apache.activemq

uca_ebe
ActionManager
@ Collector o

@ Dispatcher [retractall | ()
@ Properties_uca_ebc

[THEe B B B

void [resetStatus | ()

@ ClassLoader
MediationFlows
=}

Scenarios
E void | dumpFailedActions | ()

void [retractFailedActions | ()
void | clearcompressionStats | ()

g

0
0

»

Figure 34 Java JMX Console: Clearing the working memory of a Scenario

< [

Cleaning the Working Memory of a scenario can also be performed at the UCA for
EBC User Interface in the Scenario / Monitoring panel, as shown in the following

screenshot:
[P e | S — . = ey — - — = [T

Logout [{Hep -|S0I

pd-example-3.0-5P2 > Value Pack > Wonitoring

~ & Monitoring Configuration Troupleshooting
~ Value Pack : pd-example-3.0-SP2
~ N @ 41 scenarios are running Stop | [Resynchronze
Vol
Scenarios List
Scenario Status Status Explanation Actions
com.hp.uca expert.vp.pd ProblemDetection @ scenanio s unning Dump WM || Clear WM | 'Reload | |Reset Status
"
Mediation Flows List
Medation Flows Status Status Explanation Actions
- @ o Stop | [Resynchronize
Flowz2 [Stop | |Resynchronize
— @ o Stop | [Resynchronize

[™)1 04:18:45 Notification: ValuePack pd-example-3.0-SP2 - Running

Figure 35 UCA for EBC User Interface: Clearing the working memory of a
scenario

Note

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for Event Based Correlation User Interface Guides” For more information

on how to clear the working memory of a scenario using the Java JMX Console,
please see the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

86

6.2.3 Reloading the rules

Each scenario of a Value Pack contains a list of Drools rules files or Drools template
rules files (template rules file are similar to standard rules file but use an extra
parameters file).

Each and all of the rules files (and template rules files) can be modified at runtime
and reloaded without restarting UCA for EBC or any individual Value Pack so that
the new rules files get used right away in the Drools engine of the scenario.

The process for reloading the rules files is the following:

e Update the rules files, template rules files, and template parameters files as
you wish in the deployment directory of the Value Pack:
${UCA EBC _INSTANCE}/deploy/<value pack name>-<value
pack version>

e Reload the rules of a scenario using either the uca-ebc-admin command-line
tool (with the -r or --reload option), the Java JMX Console or UCA for EBC
User Interface

Reloading the rules of a scenario can be performed using the Java JMX Console at
the Scenario level by going to the “MBeans” tab of the Java Console and navigating
to the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>/operations” folder.

The following screenshot shows how to reload rules files at the scenario level:

(%] Connection Window Help - & x

Overview | Memary | Threads | Classes | v Summary| MBeans =
‘Action Operation invocation
IMImplementation
com.sun.management void 0

connector
javalang
java.utillogging

Javax. management. remote.rmi boolean [~ oioadRulestiie | (po String)
org.apache.activemq

uca_ebc

T -

ActionManager
o vod [retractall |
@ Dispatcher iimtiiiey) ()
@ Praperties_uca_ebc
@@ Server

@ ValuePackManager q

pd-example-3.0-5P2 G)
@ ClassLoader
F- | MediationFlows
& . Scenarios
5@ com.hp.uca.expert.vp.pd.Frobl void [dumpFailedActions | ()
H HH-Attributes

Efoperations]

F-@ ValuePack

T} R

void [retractFailedActions | ()
void [dearcompressionstats | ()
0

06 Compaesim]

“ [»

Figure 36 Java JMX Console: Reloading the rules of a Scenario

The same operation can be performed for all the rules files of all scenarios of one
Value Pack, as shown in the following screenshot:

87

[£] Connection Window Help > il x

overview | Memory | Threads | classes | v summary| MBeans =
- | Action Operation invocation

IMImplementation

com.sun.management void | resetstatistics | ()

connector

java.lang
java.utillogging
javax.management.remote.rmi .
[| org.apache.activemq ok retractAllScenarios | ()
(= uca_ebc
ActionManager
@ Collector
2 ﬂﬁi‘;i‘,if‘j; e void [gumpSessionofAllScenarios | ()

@ Server

@ ValuePackManager

pd-example-3.0-SP2

@ ClassLoader void 0
MediationFlows

Scenarios

O &5 EEE
11+

HEE

o
@
<
5
g
&
&
&
E

-Attributes

e pasng s [cmsamsssaeios | O

ptr 15 [s)

rs s [comaibtasosions |

rs v [g

Figure 37 Java JMX Console: Reloading the rules of all Scenarios of a
Value Pack

Reloading the rules of a scenario can also be performed at the UCA for EBC User
Interface in the Scenario / Monitoring panel, as shown in the following screenshot:

T — o —— . o g R .+ Wl e, e i B

{1 UCA for EBC - pd-example-3.0-... | +

Logout ||{Hep | SN

ﬁﬁ. UCA for Event Based Correlation

pd-example-3.0-SF2 > Value Pack > Wonitoring

A #& | Monitoring Configuration Troubleshaoting
2~ Value Pack : pd-example-3.0-SP2

~ R 1@ 41 Scenarios are running Stop | [Resynchronize
o

Scenarios List
Scenarie Status Siatus Explanation Actions.

comhp.uca.expertvp.pd. ProblemDetection @ scenari s unning Dump WM | |Clear WM || Reload || Reset Status

Mediation Flows List

Wediaton Fiows Status Status Expianation Actons
Flowt © v Stop| |Resynchionize
Flow2 © v Stop | |Resynchionize
Flowa © v Stop | |Resynchionize

™ [04:18:45 Notification: ValuePack pd-example-3.0-SP2 - Running

Figure 38 UCA for EBC User Interface: Reloading the rules of a Scenario
Note

" For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for Event Based Correlation User Interface Guides” For more information
on how to reload the rules of a scenario using the Java JMX Console, please see the
section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

88

¥~ For more information on how to reload the rules of a scenario using the uca-
ebc-admin command-line tool, please see the section: 2.2.3 “uca-ebc-admin”

6.3 Managing the mediation layer

6.3.1 Managing the mediation flows

Each Value Pack can have one or more mediation flows associated with it. Each
mediation flow represents a flow of events (Alarms) coming from the mediation
layer and going into the Value Pack and its scenarios.

Mediation flows are defined at the Value Pack level. All Scenarios of a Value Pack
share the same mediation flows.

6.3.1.1 Managing the mediation flows at the value pack level

The following operations can be performed on the mediation flows of a Value Pack
at the Value Pack level, without having to restart neither UCA for EBC nor the Value
Pack (each operation affects all the mediation flows of the Value Pack at once):

e (reate all the mediation flows (available only in Java Console)
e Delete all the mediation flows (available only in Java Console)

e Resynchronize all the mediation flows (available in both Java Console and UCA
for EBC GUI)

e Check the status of all the mediation flows (available only in Java Console)

The following screenshot shows how to perform these operation on the mediation
flows at the value pack level using the Java console:

|2/ Connection Window Help = & x
Overview | Memory | Threads | Classes | vM Summary| MBeans <=
Action Operation invocation
[#- . IMImplementation
com.sun. management void 0
connector
java.lang
java.util.logging
[#- . javax.management.remote.rmi .
org.apache.activemq v 0
(= uca_ebc
ActionManager
@ Collector
ohs void [dumpsessionofalscenarios |
 Fropertios uco_cbe dumpsession0faliScenarios | ()
@ Server
@ ValuePackManager
=+ | pd-example-3.0-SP2
@ ClassLoader void 0
MediationFlows
Scenarios
(@ ValuePack
[+ Attributes
Eifooercion:| velong g | restlmsdanonions | ()
o5 [st |
o517 it
o517 [t |
. " . . as
Figure 39 Java JMX Console: Performing operations on mediation flows at

the Value Pack level

Resynchronizing the mediation flows is the only operation that can be performed at
the value pack level on the mediation flows of a value pack using the UCA for EBC
User Interface as shown in the following screenshot:

89

== - - e e [

Logout | Hep ~| S0

pd-example-3.0-SP2 > Value Pack > Hontoring

S Monitoring Configuration Troubleshoating

Value Pack : pd-example-3.0-5P2

@ 41 scenarios are running Stop | Resynchranize

Status. | Situs Explanation Actons |

xpert.vp.pd.ProblemDetection] Scenario is running Dump WM | |Clear WM | |Reload | |Reset Status

Mediation Flows List

Mediation Flows

s Status Explanation Actions
Flow Active.
Flow2 Active

Active.

00600y

Flow3

B 5[] 03:19:54 Notification: ValuePack pd-exampie-3.0-SP2 - Running

Figure 40 UCA for EBC User Interface: Resynchronizing the mediation
flows of a Value Pack

Resynchronizing the mediation flows of a Value Pack can be necessary at times
when you want to start fresh with your Value Pack and all its scenarios.

Mediation flows at defined at the Value Pack level in the
ValuePackConfiguration.xml file of the Value Pack. Each Value Pack has its
own mediation flows. As a consequence, resynchronizing the mediation flows of a
Value Pack only affects the one Value Pack. All other Value Packs remain
unaffected by the resynchronization.

When the mediation flows of a Value Pack are resynchronized, all the scenarios will

receive the current list of events (Alarms) coming from the mediation layer. Usually,
aresynchronization of the mediation flows is preceded by an operation to clear the

Working Memory of all the scenarios of the Value Pack, so that:

e events (Alarms) are not duplicated in Working Memory, especially for
scenarios that are in STREAM mode

¢ all scenarios can start fresh with both the complete current list of event
from the mediation layer and an empty Working Memory

Note

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for Event Based Correlation User Interface Guide®~ For more information

on how to resynchronize the mediation flow for a value pack, please see the
section: 5.1.3.2 “Monitoring UCA for EBC value packs”

6.3.1.2 Managing individual mediation flows

The following operations can be performed on individual mediation flows, without
having to restart neither UCA for EBC nor the Value Pack (each operation only
affects one mediation flow):

e Start a mediation flow (available in both Java Console and UCA for EBC GUI)
e Stop a mediation flow (available in both Java Console and UCA for EBC GUI)

o Check the status of a mediation flow (available only in Java Console)

90

e Resynchronize a mediation flow (available in both Java Console and UCA for EBC
GuUl

¢ Display the configuration of the mediation flow (as XML text) (available only in
Java Console)

o Display the status/output of the last action (either CreateFlow, DeleteFlow,
StatusFlow or ResynchronizeFlow) performed on the mediation flow
(available only in Java Console)

o Display the status/output of the last CreateFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last DeleteFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last StatusFlow action performed on the
mediation flow (available only in Java Console)

o Display the status/output of the last ResynchronizeFlow action performed
on the mediation flow (available only in Java Console)

The following screenshot shows how to perform these operation on individual
mediation flows using the Java console:

%] Connection Window Help o & X
Overview | Memory | Threads | Classes | VM Summary | MBeans
hreads | Cl M8 ==

- L Action Operation invocation
tH- L0 JMImplementation 7
tH- . com.sun.management java.lang.String [ctart | ()
F- | connector
B java.lang
B | java.util.logging —_—
F 1. javax.management.remote.rmi Java.lang.String [gtap | ()
B | org.apache.activemq
F- . uca_ebc

#- . ActionManager Er—

ava.lang.Strin

[+ Collector L 8 g giziioe) ()

+-#@ Dispatcher

+-6@ Properties_uca_ebc

@ Server java.lang.String i

@ ValuePackManager Lesinchonizeg| ()

pd-example-3.0-5P2
@ ClassLoader

= MediationFlows java.lang.String displayMediationFlowxML | ()
=16 Flowl
. [Attributes
[:=dope
(@ Flow2 java.lang.String [isplayl astActionStatus | ()
FH- @@ Flow3

B Scenarios
f-@ ValuePack

java.lang.String [gisplayLastCreateFlowActionStatus | ()

java.lang.String | displayLastoeleteFlowActionstatus | ()

ng.String [gisplayL lowActionStatus | ()

java.lang.String | displaylastResynchFlowActionstatus | ()

Figure 41 Java JMX Console: Performing operations on a single mediation
flow

Itis possible to start, stop, resynchronize, as well as view the status of individual
mediation flows using the UCA for EBC User Interface as shown in the following
screenshot:

91

pd-example-2.0-SP2 > Value Pack > Wontoring

~ A Monitoring Gonfiguration Troubleshooting

AL Value Pack: pd-example30.572

o @ e arm fow s ot acive (sse traces fordetais Stop | Resynchronze

VB

Status Status Explanation Actions

xpert.vp. pd.ProblemDetection @ soena Dump WM | |Clear WM | [Reload | |Reset Status

Weciation Flows List
HWedaton Fows Satvs Status Explanaton Acions
Fout @ rues start
© o S [I

ows @ Ao Stop | [Resynchronze i

™[] 04:15:45 Notification: ValuePack pd-example-3.0-SP2 : Degraded

Figure 42 UCA for EBC User Interface: Performing operations on a single
mediation flow

6.3.2 Managing actions

Actions are executed by the mediation layer. Each action is associated with the
scenario that started the action.

6.3.2.1 Dumping Failed Actions

As actions are executed by the mediation layer, dumping the list of failed actions
for a Scenario can be of great help while investigating issues regarding the
mediation layer at the Scenario level.

The list of failed actions can be dumped in the log files (depending on your Log4)
configuration). The log files can be viewed directly on the file system in the

${UCA EBC_ INSTANCE}/logs directory using any text editor. The log files can
also be viewed at the UCA for EBC User Interface in the Troubleshooting/Logs panel.

Dumping failed actions can only be performed using the Java JMX Console at the
Scenario level by going to the “MBeans” tab of the Java Console and navigating to
the “uca_ebc/<value pack name>-<value pack version>/scenarios/<scenario
name>/operations” folder.

The following screenshot shows how to dump failed actions at the scenario level:

|2 Connection Window Help = & *

overview | Memory | Threads | Classes | vm summary| MBEH"Sl ==

Action QOperation invocation
IMImplementation
Ccimngeme v 0
. connector
. java.lang
java.util.logging

javax.management.remote.rmi boolean [~ ioaruiese | (po String)
org.apache.activemq

-\, uca_ebc
- . ActionManager

0
Properties_uca_ebc
Server
ValuePackManager -
d-example-3.0-SP2 0]
ClassLoader
MediationFlows
Scenarios

(=3 com.hp.uca.expert.vp.pd.Probl wvoid [dympFailedactions | ()

ibutes

void | rotractrailedActions | ()

woid [dlaarcompressionstats | ()

0

0

Figure 43 Java JMX Console: Dumping Failed Actions for a Scenario
Note

%~ For more information on how to dump failed actions for a scenario, please see
the section: 5.1.3.3 “Monitoring UCA for EBC scenarios”

6.4 UCA for EBC Performance analysis

Through the Java JMX interface, UCA for EBC provides event rate measurements
that help when analyzing the performance of a UCA for EBC solution.

This “Dispatcher Rate” measure is the average event rate of UCA for EBC (in events
per second) since start-up.

This measure is available by going to the “MBeans” tab of the Java Console and
navigating to the “uca_ebc/Dispatcher/attributes” folder:

|£/ Connection Window Help

o & x
‘ Dverwewl Memnryl Threadsl C\asseslVM Summarﬂ MEEEH5| bl
. Action Aftribute values
JMImplementation
com.sun.management Name Value
connector DispatcherRate 10.2769206424558905
. Java.lang LogEvents false
Java.util.logging Queue_CurrentSize o
javax.management.remote.rmi Queue_DateLastChangeEvent 2013-05-21 14:47:11.187 +0200
org.apache.activemg Queue_DateLastDeletionEvent 2013-05-21 14:24:07.896 +0200
[+ 1. uca_ebe Queue_DatelastHighWaterMark 2013-05-21 14:24:52.216 +0200
(- | ActionManager Queue_DatelastPublish 2013-05-21 16:18:24.619 +0200
@ Collector Queue_DatelastSubscribe 2013-05-21 16:18:24.620 +0200
4@ Dispatcher Queue_DatelastZeroad 2013-05-21 16:18:24.620 +0200
ﬂﬁm Queue_HighWaterMark (1]
Operations Queue_HighWaterMarkStillIncreasing [false
[-@ Properties_uca_ebc Queue_NumberZeroedSincelastHighWaterMark |17
@ Server Queue_SizeHistory java.lang.String[2]
ValuePackManager Queue_TotalChangesEvents
- 1 pd-example-3.0-5P2 Queue_TotalDeletionEvents
|Queue_TotalObjects 23
Queue_TotalObjectsSincelastHighwaterMark |18

93

Figure 44 Java JMX Console: Monitoring performance of UCA for EBC
Server

This measure and other measurement rates are available both at the Java JMX
Console and also at the UCA for EBC User Interface in the Troubleshooting /
Statistics panel.

Note

" For more information on the Java JMX Console, please see the section: 5.1.3
“JMX Console”

%~ For more information on the UCA for EBC User Interface, please refer to: [R3]

HP UCA for Event Based Correlation User Interface Guide® Please see the next

section 4.1 “Monitoring the alarm flow in real-time” for more information on how to
monitor the alarm flow of UCA for EBC.

94

Chapter 7

Frequent problems and solutions

Below is a list of known issues/ problems that you may encounter, along with a
description of how to solve or work around the issue/problem.

7.1 Problems executing uca-ebc-admin

7.1.1 Cannot connect to UCA for EBC JMX connector

If you get an error stating “Cannot connect to UCA Expert JMX connector” while
executing the uca-ebc-admin command-line tool, then you may want to perform
the following verifications:

Verification Suggested solution/work-
around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it
is stopped

Table 38 uca-ebc-admin: Cannot connect to UCA for EBC JMX connector

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-admin.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-admin.log” while executing the uca-ebc-admin command-line tool,
then you may want to perform the following verifications:

Verification Suggested solution/work-

around

95

Verify that the user trying to execute uca- Use another user account or

ebc-admin has permission to write in the change the permissions on

${UCA_EBC_INSTANCE]} directory the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 39 uca-ebc-admin: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc-admin <options>

7.2 Problems executing uca-ebc-injector

7.2.1 Cannot create connection

If you get an error stating “Cannot create connection on UCA Expert JMS queue”
while executing the uca-ebc-injector command-line tool, then you may want to
perform the following verifications:

Verification Suggested solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is
stopped
Table 40 uca-ebc-injector: Cannot create connection

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME!}/bin
$ uca-ebc-injector <options>

96

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-
ebc-injector.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc-injector.log” while executing the uca-ebc-injector command-line
tool, then you may want to perform the following verifications:

Verification Suggested solution/work-
around

Verify that the user trying to execute uca- Use another user account or

ebc-injector has permission to write in the change the permissions on

${UCA_EBC_INSTANCE]} directory the ${UCA_EBC_INSTANCE}
directory if this is not the
case

Table 41 uca-ebc-injector: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME!}/bin
$ uca-ebc-injector <options>

7.3 Problems starting UCA for EBC

7.3.1 AlreadyBoundException

If you get an error stating “java.rmi.AlreadyBoundException: uca-ebc” while
starting UCA for EBC, then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number Update the UCA for EBC RMI port
conflict between UCA for EBC RMI number in the
port number and the port numbers ${UCA_EBC_INSTANCE}/conf/uca-

used by another process on the ebc.properties file to avoid the port
system number conflict if needed
Table 42 uca-ebc: AlreadyBoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

97

7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMiServerimpl_Stub

If you get an error stating “java.lang.ClassNotFoundException:
javax.management.remote.rmi.RMIServerimpl_Stub” while starting UCA for EBC,
then you may want to perform the following verifications:

Verification Suggested solution/work-around

Verify that there’s no port number Update the UCA for EBC RMI port
conflict between UCA for EBC RMI number in the
port number and the port numbers ${UCA_EBC_INSTANCE}/conf/uca-

used by another process on the ebc.properties file to avoid the port
system number conflict if needed
Table 43 uca-ebc: ClassNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

98

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-

ebc.log

If you get an error stating “FileNotFoundException: ${UCA_EBC_INSTANCE}
/logs/uca-ebc.log” while starting UCA for EBC, then you may want to perform the
following verifications:

Verification Suggested solution/work-around

Verify that the user trying to start ~ Start UCA for EBC under the uca

UCA for EBC has permission to account if this is not the case
write in the

${UCA_EBC_INSTANCE]} directory

Table 44 uca-ebc: FileNotFoundException

Below is an example of a command execution displaying this error:
On both HP-UX, and Linux:

$ cd ${UCA EBC HOME}/bin
$ uca-ebc <options>

99

Glossary

UCA: Unified Correlation Analyzer

EBC: Event Based Correlation

CA: Channel Adapter for 0SS Open Mediation V6.2
JMS: Java Messaging Service

JMX: Java Management Extension, used to access or process action on the UCA for
EBC product

JNDI: Java Naming and Directory Interface

Inference engine: Process that uses a Rete algorithm
DRL: Drools Rule file

XML: eXtensible Markup Language

XSD: Schema of an XML file, describing its structure

X733: Standard describing the structure of an Alarm used in telecommunication
environment

EVP: UCA for EBC Value Pack

100

