
HP Operations Orchestration
For Windows and Linux

Software Version: 10.00

Extension Developers Guide

Document Release Date: June 2013

Software Release Date: June 2013

Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2013 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

This product includes an interface of the 'zlib' general purpose compression library, which is
Copyright © 1995-2002 Jean-loupGailly andMark Adler.

AMD and the AMD Arrow symbol are trademarks of AdvancedMicro Devices, Inc.

Google™ andGoogleMaps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and
other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft®, Windows®, Windows NT®, Windows® XP, andWindows Vista® are U.S. registered
trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of TheOpenGroup.

HP Operations Orchestration (10.00) Page 2 of 24

Extension Developers Guide

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

HP Operations Orchestration (10.00) Page 3 of 24

Extension Developers Guide

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Operations Orchestration (10.00) Page 4 of 24

Extension Developers Guide

Contents
Extension Developers Guide 1

Contents 5

Developing Extensions for HP OO 7

Creating an @Action 8

Developing Plugins 8

Developing Extensions 11

"HelloWorld!" example 11

Passing Arguments to@Actions 11

Return Values 12

Adding@Action Annotations 12

Annotations 12

@Action Data Definition Example 15

Testing Extensions 15

Testing Extensions as Part of the Project Build 15

Testing Extensions Independently from the Command Line 15

.NET Extensions 17

Legacy Actions 21

HP Operations Orchestration (10.00) Page 5 of 24

Disclaimer for PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print
multiple topics from the help information or read the online help in PDF format.

Note: Some topics do not convert properly to PDF, causing format problems. Some elements
of online help are completely removed from the PDF version. Those problem topics can be
successfully printed from within the online help.

HP Operations Orchestration (10.00) Page 6 of 24

Extension Developers Guide

Developing Extensions for HP OO
This document provides Java and .NET developers with guidelines for developing extensions for
extending HP Operations Orchestration.

Note: Knowledge of Java or .NET is required.

You can extend HP Operations Orchestration programmatically. This means that third parties can
add functionalities to HP Operations Orchestration and introduce them as content in the flow
execution engine.

Introducing new content requires building an extension and deploying it to HP OOCentral. You can
write extensions in Java or .NET. This guide provides information on how to build extensions.

In HP Operations Orchestration 10.00, extensions are named plugins (in previous versions
extensions were called IActions). A plugin is a piece of Java code running within the run engine.
This piece of code can define its own isolated classpath. Classpath isolation ensures that different
plugins can use conflicting dependencies. For example, plugin A can use dependency X version 1.0
and plugin B can use the same X dependency, but in version 2.0. You are now able to use both
plugins in the same flow regardless of the conflicting classpath issue.

A plugin contains one or more actions and references to all required dependencies. An@Action is a
method in a class. See the Developing Extensions chapter for additional information.

Although all the plugins are written in Java, HP Operation Orchestration also supports .NET
actions. The actions written in .NET are referenced by a wrapping Java plugin. See the .NET
Extensions chapter for additional information.

Note: In HP OO 10.00 there are annotated actions (@Action). The IAction interface from HP
OO 9.00 is now deprecated. Users writing new content should refrain from implementing the
IAction interface and instead write@Action's.

HP Operations Orchestration (10.00)Page 7 of 24

Extension Developers Guide
Developing Extensions for HP OO

Creating an @Action
The recommended way to build@Actions are as aMaven plugin.

You should use ApacheMaven 3.0.3. or later to build your plugins. For details on how to build your
plugins without usingMaven, see "Without usingMaven" on page 1.

Developing Plugins
This section describes how to develop plugins. A user can create a sample plugin usingmaven
archetype, and use that this as a template for creating plugins.

Install Maven
Maven installed on a computer with the bin directory in the computers path. This enables you to run
mvn from anywhere in the file system.

Create a Local Maven Repository

l Expand sdk-dotnet-<version>.zip and sdk-java-<version>.zip to:

Windows: %HOMEPATH%\.m2\repository.

Linux: $HOME/.m2/repository.

Note:

These files are located in on the ISO in theSDK folder.

l Following is an example of a directory structure, if the files were correctly extracted:

HP Operations Orchestration (10.00) Page 8 of 24

Extension Developers Guide
Creating an@Action

Register the Plugin Archetype

l Open the command prompt and enter the following command:

mvn archetype:crawl: This updates themaven archetype catalog under
$HOME/.m2/repository.

Create a Sample Project

1. Go to the path where you want to create a sample plugin project and enter the following
command:

mvn archetype:generate -DarchetypeCatalog=file://$HOME/.m2/repository (for
Windows use%HOMEPATH%).

This initiates the project creation. First a list of archetypes found in the catalog appear, there
should be only 1. Press 1 and thenEnter.

2. While this is being created, enter the following:

n groupId: The group id for the resultingmaven project, acmeGroup is used in the example
above.

n artifactId: The artifact id for the resultingmaven project, acmeArtifact is used in the
example above.

n version: The version for the resultingmaven project, 1.0 is used in the example above.

n package: The package for the files in the project. The default for this option is the same as
the groupId.

3. After entering these values, when prompted press Enter:

HP Operations Orchestration (10.00)Page 9 of 24

Extension Developers Guide
Creating an@Action

4. The build will finish and a project is created.

Opening the Project
This created a new java project with amaven-basedmodel. This project can be built, and the plugin-
pack results can be imported into Studio. This project is located in the folder where the user initiated
the mvn archetype:generate command under a folder that has the same name as the
artifactId the user provided.

There are twomodules inside the project:

l plugin-example module: Is an example for an OO plugin. It contains a single class with a
single@Action inside. The result of building this module is a jar which is amaven plugin so it
can be run independently from OO.

l plugin-pack-example module: Is an example for a plugin pack that packs one or more plugins
inside. It is dependent on our plugin-examplemodule, and it also uses a different plugin during its
build to fetch all its dependencies so it will be able to run inside OO.

The product received by building this module is a jar that can be imported into Studio. After the
import new operations can be created from the@Actions it contains.

HP Operations Orchestration (10.00) Page 10 of 24

Extension Developers Guide
Creating an@Action

Developing Extensions
As an extension is amethod in a class, it can be any method in any class. This method is also
referred to as an@Action.

An@Action is invoked during flow execution, when an operation using that @Action is executed.

"Hello World!" example
Tomark amethod as @Action, annotate it with @com.hp.oo.sdk.content.annotations.Action.
The following is a simple "HelloWorld!" @Action example:

public class MyActions {
@Action
public void sayHello() {

System.out.println("Hello World!");
}

}

By default, the created@Action is named after themethod that defines it. In the "HelloWorld!"
example, the@Action name is sayHello. The@Action name is used in the operation definition.
The operation is themean to expose an@Action to Studio and to flow authors. Each operation
points to a specific groupId, artifactId, version and@Action name (GAV+@Action name).

You can customize the@Action name and provide a name that is different from themethod name.
You can do this using the @Action annotation value parameter. The following code defines the
same "HelloWorld!" @Action, but names it my-hello-action:

public class MyActions {
@Action(“my-hello-action”)
public void sayHello() {

System.out.println("Hello World!");
}

}

Passing Arguments to @Actions
An@Action is exposed to the flow context and can request parameters from it. The flow context
holds the state of the flow. For example, consider the following@Action, which adds two numbers
and prints the result to the console:

@Action
public void sum(int x, int y){

System.out.println(x+y);
}

Parameters are taken from the context by name. The summethod requests two integer parameters
x and y from the context. When invoking the@Action, HP Operations Orchestration assigns the
value of x and y from the context to themethod arguments having the same name.

Just like with @Action, it is possible to customize parameter names and request that HP
Operations Orchestration resolves the value while using a custom name. In the following example,

HP Operations Orchestration (10.00)Page 11 of 24

Extension Developers Guide
Developing Extensions

the summethod requests that the context op1 parameter is assigned to the x argument and op2 to
the y argument:

@Action
public void sum(@Param("op1") int x, @Param("op2") int y){

System.out.println(x+y);
}

Return Values
An@Action, like any Javamethod, can also return a single value. The returned value is considered
the return result of the@Action and is used as return result in the operation. It is also possible
for an@Action to returnmultiple results to the operation. This is done by returning a Map<String,
String>, where the Map key is the name of the result, and the associated value is the result value.
Returning a Map<String, String> is a way for an@Action to pass multiple outputs to the
operation at runtime.

Adding @Action Annotations
@Action annotations are used tso generate new operations in the Studio. When generating an
@Action based operation, the new operation’s initial attributes (description, inputs, outputs,
responses) are taken from the@Action annotations definitions.

Note: It is important that you use@Action annotations, otherwise operations created these
@Action's are harder to use.

Annotations
Addingmetadatameans adding or setting the relevant annotations and their attributes. The
following table describes the @Action, @Output, @Response and @Param annotations:

Action
Attributes:

l value (optional): the name of the@Action

l description (optional)

l Output[] (optional): array of Outputs (see below)

l Response[] (optional): array of Responses (see below)

Comments:

You have two options for setting the name of the@Action:

HP Operations Orchestration (10.00) Page 12 of 24

Extension Developers Guide
Developing Extensions

1. The value attribute:

@Action("aflPing")
public void ping(…)

or

@Action(value="aflPing")
public void ping(…)

2. Themethod name:

@Action
public void ping(…)

The names are checked in the above order. The first one checked is the value attribute. If it doesn’t
exist, themethod name is selected.

Param
Attributes:

l value: the name of the input

l required (optional): by default is false

l encrypted (optional): by default is false

l description (optional)

Comments:

This is important not only for the@Action data, but also for execution.

Inputs give an operation or flow the data needed to act upon. Each input is mapped to a variable.
You can create an input for a flow, operation, or step.

In Studio, inputs can be:

l Set to a specific value.

l Obtained from information gathered by another step.

l Entered by the person running the flow, at the start of the flow.

See theHP OO 10 Studio Authoring Guide for more information and the"Passing Arguments to
@Actions" on page 11 for details on the execution functionality.

Output
Attributes:

HP Operations Orchestration (10.00)Page 13 of 24

Extension Developers Guide
Developing Extensions

l value: the name of the output

l description (optional)

Comments:

In order for the operation in studio to havemultiple outputs, the@Action itself has to declare them.
Assigning values tomultiple outputs can be achieved by creating an@Action whose return value is
a Map<String, String>.

The output is the data produced by an operation or flow.For example, success code, output string,
error string, or failuremessage.

In Studio, the different kinds of operation outputs include:

l Raw result: the entire returned data (return code, data output, and error string).

l The primary and other outputs, which are portions of the raw result.

See theHP OO 10 Studio Authoring Guide for more information.

Response
Attributes:

l text: the text displayed by each response transition

l field: the field to evaluate

l value: the expected value in the field

l description: (optional)

l isDefault: Indicates whether this is the default response. The default value is false. Only one
response in a@Action can have this set to true.

l mathType : The type of matcher to activate against the value. For example if we defined (field =
fieldName, value = 0, matchType = COMPARE_GREATER) this means that this response will be
chosen if the field fieldNamewill have a value greater than 0.

l responseType: The type of the response (Success, Failure, Diagnosed, No_Action or Resolve_
By_Name).

l isOnFail: Indicates whether this is the On-Fail response. The default value is false. Only one
response in a@Action can have this set to true.

l ruleDefined: Indicates whether or not this response has a rule defined. Responses that have
no rules defined can be used as the default response. There should be only one response
without a rule defined in a single@Action.

Comments:

HP Operations Orchestration (10.00) Page 14 of 24

Extension Developers Guide
Developing Extensions

A response is the possible outcome of an operation or flow. The response contains a single rule:
fieldmatches value.

See theHP OO 10 Studio Authoring Guide for more information.

@Action Data Definition Example
@Action(value = "aflPing",

description = "perform a dummy ping",
outputs = {@Output(value = RETURN_RESULT, description ="returnResult description"),

@Output(RETURN_CODE),
@Output("packetsSent"),
@Output("packetsReceived"),
@Output("percentagePacketsLost"),
@Output("transmissionTimeMin"),
@Output("transmissionTimeMax"),
@Output("transmissionTimeAvg")},

responses = {@Response(text = "success", field = RETURN_CODE, value = PASSED),
@Response(text = "failure", field = RETURN_CODE, value = FAILED)})

public Map<String, String> doPing(
@Param(value = "targetHost",

required = true,
encrypted = false,
description = "the host to ping") String targetHost,

@Param("packetCount") String packetCount,
@Param("packetSize") String packetSize) {
…

}

Testing Extensions

Testing Extensions as Part of the Project Build
As an@Action is a simple Javamethod, it is possible to test it using standard Java test tools such
as JUnit, leveraging the normal lifecycle phases of aMaven project.

As the@Action itself is a regular method, it does not require invoking any HP Operations
Orchestration components. The invocation can be a direct Javamethod invocation in the test case.

Testing Extensions Independently from the Command
Line

Once packaged into a plugin, you can invoke extensions from the command line for test purposes.
The following is an@Action example:

public class TestActions {
@Action
public int sum(@Param("op1") int x, @Param("op2") int y){

return x+y;
}

}

HP Operations Orchestration (10.00)Page 15 of 24

Extension Developers Guide
Developing Extensions

Suppose the TestActions class is in a plugin with the following groupId, artifactId and
version (GAV): com.mycompany:my-actions:1.0

You can invoke the sum@Action from the command line as follows:

mvn com.mycompany:my-actions:1.0:execute -Daction=sum -Dop1=1 -Dop2=3 -X

The result of this command is a long trace. The -X option is required to see logmessages. Towards
the end of the trace you can see:

[DEBUG] Configuring mojo 'com.mycompany:my-actions:1.0::execute' with basic configurator -->
[DEBUG] (f) actionName = sum
[DEBUG] (f) session = org.apache.maven.execution.MavenSession@21cfa61c
[DEBUG] -- end configuration --
[DEBUG] Action result: action result = 4

HP Operations Orchestration (10.00) Page 16 of 24

Extension Developers Guide
Developing Extensions

.NET Extensions
In order to create content using .NET actions, you need to:

1. Create a DLL file containing the implementation of the desired@Actions, just like in version
9.x. The@Action class should implement an IAction interface.

2. Deploy the created DLL, including referenced libraries, to the local Maven repository, using mvn
install:install-file. For more information on installing artifacts that were not built by
Maven, see http://maven.apache.org/plugins/maven-install-plugin/usage.html

3. Generate an HP OOMaven plugin, wrapping the .NET action. To do this, you need to:
a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Under <dependencies>, add a list containing all the required DLLs. Define all DLL artifacts
using <type>dll</type>.

c. Run the mvn install command from the folder containing the pom.xml file. This is
considering that theMaven bin folder is contained in the system path.

The result is theMaven plugin, placed in the target folder and installed to the local Maven
repository. The target folder location is relative to the current folder.

The content of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/mav

en-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>[my plugin groupId]</groupId>
<artifactId>[my plugin artifactId]</artifactId>
<version>[my plugin version]</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo</groupId>
<artifactId>oo-dotnet-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>

<dependency>
<groupId>com.hp.oo</groupId>
<artifactId>oo-dotnet-legacy-plugin</artifactId>
<version>${oo-dotnet.version}</version>

HP Operations Orchestration (10.00)Page 17 of 24

Extension Developers Guide
.NET Extensions

http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/pom.html

<type>dll</type>
</dependency>

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>IAction</artifactId>
<version>9.0</version>
<type>dll</type>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>[groupId-1]</groupId>
<artifactId>[artifactId-1]</artifactId>
<version>[version-1]</version>
<type>dll</type>

</dependency>

<dependency>
<groupId>[groupId-2]</groupId>
<artifactId>[artifactId-2]</artifactId>
<version>[version-2]</version>
<type>dll</type>

</dependency>

...

<dependency>
<groupId>[groupId-n]</groupId>
<artifactId>[artifactId-n]</artifactId>
<version>[version-n]</version>
<type>dll</type>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-dotnet-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

In the following example:

HP Operations Orchestration (10.00) Page 18 of 24

Extension Developers Guide
.NET Extensions

l The POM file is named example.pom.xml.

l Themy-dotnet-actions.dll contains the desired@Actions.

l The generatedMaven plugin is com.example:my-dotnet-plugin:1.0.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.

0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.example</groupId>
<artifactId>my-dotnet-plugin</artifactId>
<version>1.0</version>
<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>2.190</oo-sdk.version>
<oo-dotnet.version>1.30</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->

<dependency>
<groupId>com.hp.oo</groupId>
<artifactId>oo-dotnet-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<dependency>

<groupId>com.hp.oo</groupId>
<artifactId>oo-dotnet-legacy-plugin</artifactId>
<version>${oo-dotnet.version}</version>
<type>dll</type>

</dependency>
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>IAction</artifactId>
<version>9.0</version>
<type>dll</type>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>com.example</groupId>
<artifactId>my-dotnet-actions</artifactId>
<version>1.0</version>
<type>dll</type>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>

HP Operations Orchestration (10.00)Page 19 of 24

Extension Developers Guide
.NET Extensions

<executions>
<execution>

<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-dotnet-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

HP Operations Orchestration (10.00) Page 20 of 24

Extension Developers Guide
.NET Extensions

Legacy Actions
In order to create content using legacy actions, you need to:

1. Verify that you have a JAR containing the implementation of the desired actions, just like in
version 9.x. The action class should implement an IAction interface.

2. Deploy the JAR, including referenced libraries, to the local Maven repository, using mvn
install:install-file. For more information on installing artifacts that were not built by
Maven, see http://maven.apache.org/plugins/maven-install-plugin/usage.html

3. Generate an HP OOMaven plugin, wrapping the legacy actions library. To do this, you need to:
a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Under <dependencies>, add a list containing all the required JARs.

c. Run the mvn install command from the folder containing the pom.xml file. This is
considering that theMaven bin folder is contained in the system path.

The result is theMaven plugin, placed in the target folder and installed to the local Maven
repository. The target folder location is relative to the current folder.

The content of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/mave

n-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>[my plugin groupId]</groupId>
<artifactId>[my plugin artifactId]</artifactId>
<version>[my plugin version]</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HP OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HP OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo</groupId>
<artifactId>oo-legacy-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>[groupId-1]</groupId>
<artifactId>[artifactId-1]</artifactId>

HP Operations Orchestration (10.00)Page 21 of 24

Extension Developers Guide
Legacy Actions

http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/pom.html

<version>[version-1]</version>
</dependency>

<dependency>
<groupId>[groupId-2]</groupId>
<artifactId>[artifactId-2]</artifactId>
<version>[version-2]</version>

</dependency>

...

<dependency>
<groupId>[groupId-n]</groupId>
<artifactId>[artifactId-n]</artifactId>
<version>[version-n]</version>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-legacy-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

In the following example:

l The POM file is named example.pom.xml.

l Themy-legacy-actions.jar contains the desired actions.

l The generatedMaven plugin is com.example:my-legacy-actions:1.0.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/mav

en-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupId>
<artifactId>my-legacy-actions-plugin</artifactId>
<version>1.0</version>

<packaging>maven-plugin</packaging>

HP Operations Orchestration (10.00) Page 22 of 24

Extension Developers Guide
Legacy Actions

<properties>
<oo-sdk.version>2.190</oo-sdk.version>
<oo-dotnet.version>1.30</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo</groupId>
<artifactId>oo-legacy-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>com.example</groupId>
<artifactId>my-legacy-actions</artifactId>
<version>1.0</version>

</dependency>

</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-legacy-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

HP Operations Orchestration (10.00)Page 23 of 24

Extension Developers Guide
Legacy Actions

	Extension Developers Guide
	Contents
	Developing Extensions for HP OO
	Creating an @Action
	Developing Plugins

	Developing Extensions
	Hello World! example
	Passing Arguments to @Actions
	Return Values
	Adding @Action Annotations
	Annotations
	@Action Data Definition Example

	Testing Extensions
	Testing Extensions as Part of the Project Build
	Testing Extensions Independently from the Command Line

	.NET Extensions
	Legacy Actions

