
1

hp Unified Correlation Analyzer

Unified Correlation Analyzer
for EBC

Problem Detection

Version 3.0

Installation, Administration and Development Guide

Edition: 1.0

For Windows and Linux (RHEL 5.8 & 6.3) Operating Systems

June 2013

© Copyright 2013 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall not
be liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2013 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the UK
and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

3

Contents
Preface .. 6

Chapter 1 UCA-EBC Problem Detection: a quick tour ... 8

1.1 Problem Detection naming disambiguation ... 8
1.2 Licensing ... 8
1.3 What does Problem Detection do? ... 8
1.4 Architecture overview ... 10

Chapter 2 Problem Detection Features .. 11

2.1 Main features .. 11
2.1.1 Problem identification ... 11
2.1.2 Alarms grouping .. 11
2.2 Automatic actions ... 11
2.2.1 Alarm state propagation ... 11
2.2.2 Trouble Ticket creation ... 12
2.2.3 Trouble Ticket propagation ... 12
2.3 Cross domain correlation .. 12
2.4 Enrichment .. 13
2.5 Performance ... 13
2.6 Robustness.. 13
2.7 Ease of use / Simulation ... 14

Chapter 3 Problem Detection Development Kit Installation Guide 15

3.1 Licensing ... 15
3.2 Disk requirements ... 15
3.3 Software prerequisites ... 16
3.3.1 Java .. 16
3.3.2 UCA for EBC Development Kit .. 18
3.4 Installation of the UCA for EBC Problem Detection Development Kit 18
3.4.1 Product installation ... 18
3.4.2 File organization .. 20
3.4.3 Javadoc .. 20
3.4.4 Post-installation setup ... 20
3.5 Uninstallation of the UCA for EBC Problem Detection Development Kit 21
3.6 Code signing .. 22

Chapter 4 Overview of the steps required to create a Problem Detection Value
Pack ... 24

4.1 Analyze the problems to be detected ... 24
4.2 Identify the different types of alarms .. 24
4.3 Configure the Time Window .. 25
4.4 Create a Problem Alarm? .. 25
4.5 Create a Trouble Ticket? ... 26
4.6 Is the default behavior good enough? .. 26

Chapter 5 How to configure Problem Detection ... 27

5.1 Filters .. 27
5.2 Main Policies .. 29

4

5.2.1 Candidate visibility .. 31
5.2.2 Transient Filtering ... 32
5.2.3 Actions ... 32
5.2.4 Trouble Ticket Actions ... 33
5.3 Problem specific policies .. 34
5.3.1 Problem Alarm ... 35
5.3.2 Trouble Ticket .. 35
5.3.3 Tick Flag awareness .. 36
5.3.4 Time window ... 36
5.3.5 Customization (refer to paragraph 6.1.1 first) ... 36
5.4 Value Pack configuration .. 37

Chapter 6 How to customize Problem Detection ... 39

6.1 How to customize behavior .. 39
6.1.1 XML customization .. 39
6.1.2 Java custom ... 40
6.1.3 My ProblemDefault ... 46
6.1.4 MyGeneralBehavior ... 46
6.1.5 Enrichment .. 48
6.2 Default behavior ... 51
6.2.1 Alarm Role Check ... 51
6.2.2 Problem Alarm Creation .. 51
6.2.3 Common Entity Check ... 52
6.2.4 Group update ... 52
6.2.5 NetworkState Update .. 52
6.2.6 OperatorState Update ... 52
6.2.7 ProblemState Update .. 53
6.2.8 Attribute Update .. 53
6.2.9 Periodic Check ... 54
6.2.10 Alarm eligibility update ... 54

Chapter 7 Value Pack creation .. 55

7.1 Eclipse plug-in / new Problem Detection Value Pack ... 55
7.2 Simulation ... 57

Chapter 8 Value Pack creation .. 59

8.1 Dynamic configuration update ... 59
8.2 Logging .. 59
8.3 Monitoring ... 60

Chapter 9 Value Pack deployment .. 61

9.1 Installing a Value Pack .. 61
9.2 Deploying a Value Pack ... 61
9.3 Starting a Value Pack .. 61
9.4 Stopping a Value Pack ... 62
9.5 Undeploying a Value Pack ... 62

Annex A. ... 63

Value Pack example .. 63

A.1. pd-example, content of src/main/java ... 64
A.2. pd-example, content of src/test/java .. 66

5

A.3. pd-example, content of src/main/resources ... 67
A.4. pd-example, content of src/test/resources ... 68

Annex B. ... 71

Advanced customization ... 71

B.1. Problem Detection behavior customization ... 71
B.2. ActionsFactory implementation ... 72
B.3. TroubleTicketActionsFactory implementation ... 72

Tables
Table 1 - Software versions ... 6
Table 2 - Alarm state propagation from Problem Alarm to sub-alarms ... 11
Table 3 - Alarm state propagation from sub-alarms to Problem Alarm ... 12
Table 4 - UCA for EBC Problem Detection product part numbers and features 15
Table 5 ” Disk Requirements for UCA for EBC Problem Detection Development Kit on Windows 16
Table 6 ” Disk Requirements for UCA for EBC Problem Detection Development Kit on Linux 16
Table 7 ” Software Prerequisites for UCA for EBC Problem Detection Development Kit 16
Table 8 - Java Prerequisites for UCA for EBC Problem Detection Development Kit 17
Table 9 - Sub-directories of UCA for EBC Problem Detection Development Kit installation directory . 20
Table 10 - possible roles for an alarm ... 29
Table 11 - actions configuration .. 33
Table 12 - Trouble ticket actions configuration .. 34
Table 13 - Trouble ticket ‚per-problem‛ configuration .. 36
Table 14 - src/main/java : the customization code for the example Value Pack 64
Table 15 - src/test/java : the source code of the tests .. 66
Table 16 - src/main/resources : the configuration files of the example Value Pack 67
Table 17 - src/test/resources : the tests configuration files .. 69

Figures
Figure 1 - Alarms grouping .. 9
Figure 2 ” Problem Detection solution architecture.. 10
Figure 3 - Setting the JAVA_HOME environment variable on Windows systems 17
Figure 4 - Installing the UCA for EBC Problem Detection Development Kit .. 19
Figure 5 - Uninstalling the UCA for EBC Problem Detection Development Kit on Windows 22
Figure 6 - Time window illustration ... 25
Figure 7 - explanation of the candidateVisibilityTimeMode=Max ... 31
Figure 8 - One problem specific customization ... 41
Figure 9 - Consolidation of alarm's qualifiers .. 45
Figure 10 - MyProblemDefault: a customization for a group of problems ... 46
Figure 11 - MyGeneralBehavior name matching ... 47
Figure 12 - How to create a UCA EBC project in Eclipse ... 55
Figure 13 - How to create a UCA EBC Problem Detection Value Pack project in Eclipse 56
Figure 14 - Files to edit to configure MyFirstProblemDetectionValuePack .. 57
Figure 15 - Files to modify to create a JUnit test ... 58
Figure 16 - schema of implementation of the main Problem Detection interfaces 72

6

Preface

The intention of this document is to gather all the information about HP UCA for EBC Problem
Detection.

Product Name: Unified Correlation Analyzer for Event Based Correlation Problem Detection

Product Version: 3.0

Kit Version: V3.0

Intended Audience

 The intended audience of this guide is primarily developers (customers or HP
consultants) wanting to create a Problem Detection Value Pack in UCA for EBC.
This document will also be interesting for anyone wanting to know more about
Problem Detection features.

Prerequisites

 It is highly recommended to have some basic knowledge of UCA for EBC before
reading this document.
The reader is advised to consult Chapter 1 & 2 of ‚HP UCA for Event Based
Correlation ” Reference Guide‛ and “HP UCA for Event Based Correlation ” Value
Pack Development Guide‛

Software Versions

The term UNIX is used as a generic reference to the operating system, unless otherwise specified.

The software versions referred to in this document are as follows:

Product Version Supported Operating systems

UCA for Event Based Correlation
Server Version 3.0

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release 5.8

& 6.3
UCA for Event Based Correlation
Channel Adapter Version 3.0

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release 5.8

& 6.3
UCA for Event Based Correlation
Software Development Kit
Version 3.0

 Windows XP / Vista
 Windows Server 2007
 Windows 7

UCA for Event Based Correlation
Problem Detection Kit Version
3.0

 Windows XP / Vista
 Windows Server 2007
 Windows 7

Table 1 - Software versions

7

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

References

[R1] Unified Correlation Analyzer for Event Based Correlation Reference Guide

[R2] Unified Correlation Analyzer for Event Based Correlation Value Pack Development Guide

[R3] Unified Correlation Analyzer for Event Based Correlation Installation Guide

[R4] Unified Correlation Analyzer for Event Based Correlation User Interface Guide

[R5] Unified Correlation Analyzer – Clustering and HA Guide

Support

Please visit our HP Software Support Online Web site at www.hp.com/go/hpsoftwaresupport for
contact information, and details about HP Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

http://www.hp.com/go/hpsoftwaresupport

8

Chapter 1 UCA-EBC Problem
Detection: a quick tour

Chapter 2 lists the features and capabilities of the Problem Detection framework

Chapter 3 is the Problem Detection Development Kit installation guide

Chapter 4 to Chapter 7 are the Problem Detection value pack development guide

Chapter 8 & Chapter 9 are the Problem Detection administration guide

 Annex A provides a comprehensive Problem Detection Value Pack example

 Annex B deals with advanced customization possibilities of Problem Detection

1.1 Problem Detection naming disambiguation
The name ‚Problem Detection‛ has different meanings in different contexts.

Problem Detection can be a short name for

Problem Detection Development Kit

Problem Detection Framework

Problem Detection Value Pack

Problem Detection Development Kit: the Eclipse environment (including plug-ins) to develop a
Problem Detection Value Pack. The Problem Detection Development Kit is composed of both the UCA
EBC Development Kit and the UCA EBC Development Kit Problem Detection Extension (which contains
templates to create Problem Detection Value Packs using the UCA EBC Eclipse Plug-in).

Problem Detection Value Pack: A UCA EBC Value Pack built on top of the Problem Detection
Framework (using the Problem Detection Development Kit).

Problem Detection Framework: The set of libraries, rules, configuration files, used to develop and
run a Problem Detection Value Pack. This framework is delivered as part of the UCA EBC Dev Kit
Problem Detection Extension and packaged into any Problem Detection Value Pack.

1.2 Licensing
Problem Detection is a licensed product.

1.3 What does Problem Detection do?
When a type of failure (problem) occurs in the network on some resource at some time Tpb (Tpb

denotes time when the problem occurred), equipments in the neighborhood of that resource, usually
generate several alarms in a time window around Tpb.

Problem Detection aims at:

9

 Detecting such a set of symptom alarms, and identifying the problem that those alarms
reveal,

 Generating a Problem Alarm that identifies and summarizes the problem, and is readable by
the operator,

 Grouping symptom alarms (sub-alarms) under the Problem Alarm.

Such a Problem Alarm generally aggregates:

Alarms related to network resources in the neighborhood of the network resource(s) that is the
source of the problem (same Managed Object, entity hierarchy, or network location)

Alarms which occurred within a specific time window around Tpb

The Problem Alarm is the main alarm handled by operators. Additionally, the Problem Alarm
manages the life cycle of the sub-alarms grouped under it, with regards to:

 State policy (acknowledgement, termination),
 Clearance policy
 Severity

Trouble Ticket generation can be automated so that each Problem Alarm (including its sub-alarms) is
handled by just one Trouble Ticket (TT) on the Trouble Ticketing system.

Please see in the figure below a graphical representation of the process of creating a Problem Alarm
and grouping sub-alarms under it using a UCA EBC Problem Detection Value Pack.

Figure 1 - Alarms grouping

The Network Management System (NMS), which initially displays a constellation of alarms, is
instructed by the Problem Detection Value Pack to display only a relevant Problem Alarm, and to
group and hide all correlated sub-alarms beneath it. Note that it is assumed that the NMS has the
capacity to group alarms.

10

1.4 Architecture overview
The diagram below shows a Problem Detection Value Pack deployed on a UCA for EBC Server, with
OSS Open Mediation connected to UCA EBC. Several Network Management Systems are connected to
OSS Open Mediation.

The Problem Detection Value Pack receives its alarms through UCA EBC Alarm Collection flow coming
from one or several of the Network Management Systems connected to OSS Open Mediation.

The Actions (to create Problem Alarms, to group sub-alarms under the Problem Alarm, etc …) use
UCA EBC Action Service and are routed to OSS Open Mediation to be processed by the proper Network
Management System.

Figure 2 – Problem Detection solution architecture

Contrary to other UCA for EBC Value Packs, a Problem Detection Value Pack does not allow its
developer to modify the set of rules.

Alarm
Collector

Dispatcher

JMS

Action web
service client

UCA for EBC

OSS Open Mediation

Network Management
System X

Network Management
System Y

Network Management
System Z

Alarm Collection

Action
Request/Response

Problem Detection Value Pack

Filters Engine PBD Rules

11

Chapter 2 Problem Detection
Features

2.1 Main features

2.1.1 Problem identification
The primary role of a Problem Detection Value Pack is to identify that a failure (problem)
has occurred based on the appearance of a certain set of alarms, and on the presence of
certain conditions;

And then to generate an operator readable Problem Alarm that summarizes the problem.

2.1.2 Alarms grouping
Another base feature of Problem Detection Value Packs is to hide all the sub-alarms in the
NMS (Network Management System) display under the problem alarm. This improves the
operator’s experience: the most significant alarms stand out in the foreground, and less
important alarms are hidden in the background.

2.2 Automatic actions
Besides noticing and reporting the appearance of a failure (problem), besides grouping alarms,
Problem Detection can execute other automatic actions with respect to the lifecycle of alarms, and
with respect to Trouble Tickets.

2.2.1 Alarm state propagation
Problem Detection offers the following default behaviors

Table 2 - Alarm state propagation from Problem Alarm to sub-alarms

When a Problem alarm’s
state has been changed to

Change sub-alarms’ state to

ACKNOWLEDGED ACKNOWLEDGED

NOT_ACKNOWLEDGED NOT_ACKNOWLEDGED

CLEARED sub-alarms’ state left unchanged

CLOSED sub-alarms’ state left unchanged

TERMINATED TERMINATED (If sub-alarm was cleared)

NOT_ACKNOWLEDGED (If sub-alarm was not
cleared)

+ ‚sub-alarms‛ promoted back to ‚alarms‛

12

When Problem alarm is Change sub-alarms’ state to

No longer eligible TERMINATED (If sub-alarm was cleared)

NOT_ACKNOWLEDGED (If sub-alarm was not
cleared)

The eligibility of an alarm to be inserted in Working Memory or to remain in Working Memory
is determined by the alarm eligibility policy.

The Alarm eligibility policy is an expression that evaluates to a Boolean. Below is an
example of an Alarm eligibility policy:

NetworkState=="NOT_CLEARED" && OperatorState!="TERMINATED" &&

ProblemState!="CLOSED"

For more details please refer to the chapter alarmEligibilityPolicy in the UCA for EBC
Reference Guide

Table 3 - Alarm state propagation from sub-alarms to Problem Alarm

When the state of all sub-
alarms has been changed
to

Change the state of the Problem Alarm to

CLEARED CLEARED

No longer eligible CLEARED

2.2.2 Trouble Ticket creation
Problem Detection can be configured to automate the creation of Trouble Tickets.

2.2.3 Trouble Ticket propagation
When a Trouble Ticket is created (automatically or manually) for a Problem Alarm it is
possible to associate all sub-alarms of the Problem Alarm to the Trouble Ticket.

When a Trouble Ticket is manually created for a sub-alarm, it is possible to associate the
Problem Alarm to the Trouble Ticket.

2.3 Cross domain correlation

Problem Detection Value Packs, as all UCA for EBC Value Packs, are able to process alarms coming
from various NMS (Network Management Systems) through the OSS Open Mediation layer.

Without developers having to write any java code, the Problem Detection framework is able to send
actions to TeMIP, and is able to interact with the HP Service Manager Trouble Ticketing system
through TeMIP.

Since UCA-EBC has been designed as an independent platform it is equally capable of receiving
alarms and sending actions to other third party Network Management Systems and Trouble
Ticketing / Incident Management Systems. By implication this applies to the Problem Detection
framework too since it is layered on top of the UCA-EBC framework.

13

Please see section 5.2.3 Actions and section 5.2.4 Trouble Ticket Actions

Of course an open API is available to support:

 Any Network Management System (in addition to TeMIP)
 Any Trouble Ticketing System (in addition to HP Service Manager)

The support of additional Network Management Systems and Trouble Ticketing system will be done
through OSS Open Mediation.

Following is an example of a use case where cross correlation can be useful:

 Consider a situation where all the alarms concerning a GSM network of a telecom company

in country 1 are managed with Network Management System A and the alarms concerning

a fixed network of the same telecom company in country 2 are managed with Network

Management System B

 If the call services from country 1 to country 2 are not working anymore, a well configured

Problem Detection Value Pack will be able to correlate alarms from Network Management

System A with alarms from Network Management System B

2.4 Enrichment

If some of the alarms received from the NMS (Network Management System) do not contain enough
information to be correlated, the Problem Detection framework offers two pre-formatted ways to
get additional data:

- A synchronous way to extract data from an XML file

- An asynchronous way to get data, through the execution of an action (Problem

Detection framework defines standard actions that can be customized)

It is also possible to write Java code doing any imaginable synchronous or asynchronous request
(database access, file access, HTTP request …).

2.5 Performance

Compared to a standard UCA for EBC Value Pack that would have been developed to perform
correlation, a Problem Detection Value Pack is very likely to perform significantly better. The reason
is that the Problem Detection framework uses optimization based on several hash maps, which allow
processing of subsets of relevant alarms rather than blindly feeding the rules engine with whole sets
of alarms.

The performance of Problem Detection Value Packs in terms of processing times are close to being a
linear function of the number of alarms, whereas in the case of regular UCA for EBC Value Packs
(performing the same type of correlation) the processing times are likely to be a quadratic function
of the number of alarms.

2.6 Robustness

One of the greatest advantages of the Problem Detection Framework is its robustness.
All Problem Detection Value Packs use the fixed set of rules provided by the Problem Detection
framework.

14

This fixed set of rules has been extensively tested to ensure that it brings good performance and a
sound behavior (predictable results).

The developer of a Problem Detection Value Pack will neither have to worry about the rules nor the
performance of the Value Pack.

2.7 Ease of use / Simulation

The steps (listed in Chapter 4) required to create a Problem Detection Value Pack are relatively
simple and short.
If you’re satisfied with the default behaviour of Problem Detection Value Packs, the creation of a
Value Pack will not require any java coding or rule writing. It will only require modifying a few XML
files as explained in Chapter 5.

Another advantage of Problem Detection is that it is easy to write and run simple test files,
simulating the injection of alarms to validate that the problems are detected correctly, and that the
behavior of the Value Pack is as expected.

15

Chapter 3 Problem Detection
Development Kit Installation

Guide

This chapter explains how to install the Problem Detection Development Kit. The Problem Detection
Development Kit contains the Eclipse environment (including plug-ins) to develop a Problem
Detection Value Pack. The Problem Detection Development Kit is composed of both the UCA EBC
Development Kit and the UCA EBC Development Kit Problem Detection Extension. Please note that
the installation and deployment of a Problem Detection Value Pack are covered in sections 9.1
‚Installing a Value Pack‛ and 9.2 ‚Deploying a Value Pack‛.

The UCA for EBC Problem Detection Development Kit runs and is supported on Windows and Linux
(RHEL 5.8 & 6.3). It is delivered as follow:

On Windows XP/Vista, Windows 7, Windows Server 2007:

 uca-evp-pd-packaging-3.0-msi.zip

On Linux:

 uca-evp-pd-packaging-3.0-linux.tar

This chapter describes the software prerequisites, the installation steps, and gives a brief content
description of the UCA for EBC Problem Detection Development kit.

3.1 Licensing

The UCA for EBC Problem Detection product is a licensed product.

The following table shows the link between UCA for EBC Problem Detection part numbers and
features:

Product Part
Number

Description Enabled UCA for EBC features

 JJ128FAE UCA for EBC Problem Detection
Value Pack

UCA for EBC Problem Detection
Framework

Table 4 - UCA for EBC Problem Detection product part numbers and features

For any questions related to licensing, please get in touch with the UCA for EBC product
management.

3.2 Disk requirements

Here are the disk requirements for the UCA for EBC Problem Detection Development Kit:

16

On Windows:

Type Disk requirements

 Temporary disk space 4 MB minimum:

2 MB minimum for the uca-evp-pd-packaging-3.0-
msi.zip file

2 MB minimum for the UCA-EBC-DEVPD-V3.0-00F.msi
file (expanded from the uca-evp-pd-packaging-3.0-
msi.zip file)

Permanent disk space 6 MB minimum for UCA for EBC Problem Detection
Development Kit V3.0 installed on the system

Table 5 – Disk Requirements for UCA for EBC Problem Detection Development Kit on Windows

On Linux:

Type Disk requirements

 Temporary disk space 4 MB minimum:

2 MB minimum for the uca-evp-pd-packaging-3.0-
linux.tar file

2 MB minimum for the UCA-EBC-DEVPD-V3.0-
00F.noarch.rpm and install-uca-ebc-pd.sh files
(expanded from the uca-evp-pd-packaging-3.0-
linux.tar file)

Permanent disk space 6 MB minimum for UCA for EBC Development Kit V3.0
installed on the system

Table 6 – Disk Requirements for UCA for EBC Problem Detection Development Kit on Linux

3.3 Software prerequisites
The UCA for EBC Problem Detection Development Kit is installed on top of the UCA for EBC
Development Kit. It brings the ability to create UCA for EBC Problem Detection Value Packs using the
UCA for EBC Development Kit.

Product Version Operating System

UCA for EBC Development
Kit

3.0 Windows or Linux

Java Java 1.6 or Java 1.7 Windows or Linux

Table 7 – Software Prerequisites for UCA for EBC Problem Detection Development Kit

3.3.1 Java

UCA for EBC V3.0 Server, UCA for EBC V3.0 Topology Extension, UCA for EBC V3.0 Development
Toolkit, and UCA for EBC V3.0 Value Packs support both Java 1.6 and Java 1.7. The same applies to
UCA for EBC V3.0 Problem Detection Development Toolkit.

17

Any of the following versions of Java is needed:

Software Version
Java JRE/JDK 6 1.6.0.08 (or later)
Java JRE/JDK 7 1.7.0.00 (or later)

Table 8 - Java Prerequisites for UCA for EBC Problem Detection Development Kit

Notes

Please note that if your Value Packs are compiled with one version of Java, it is
strongly recommended that UCA for EBC Server is also running the same version of
Java to avoid running into compatibility issues between Java 6 and Java 7.

For more information on these compatibility issues, you can go to:

http://www.oracle.com/technetwork/java/javase/compatibility-417013.html

Java JRE (Java Runtime Environment) is enough for using the UCA for EBC
Development Kit. However the Java JDK (Java Development Kit) comes with some
useful debugging tools (jconsole, jvisualvm, etc…) that may help. It is therefore
recommended to install the JDK, instead of just installing the JRE.

The JAVA_HOME environment variable must be set before using UCA for EBC Problem Detection
Development Kit:

On Windows:

In the Control Panel, Open System Properties, open the Advanced tab and click Environment
Variables, then set the JAVA_HOME environment variable according to the location of your JDK:

Figure 3 - Setting the JAVA_HOME environment variable on Windows systems

In case Java is not yet installed on your system, the latest JRE/JDK package for Microsoft Windows
operating systems can be downloaded (for free) from http://java.com/en/download/manual.jsp.

On Linux:

Depending on your shell, and the location of the Java JRE/JDK software, please use one of the
following commands to set the JAVA_HOME environment variable:

Example for csh-like shell:

$ setenv JAVA_HOME /opt/java/jdk1.6.0_20

http://www.oracle.com/technetwork/java/javase/compatibility-417013.html
http://java.com/en/download/manual.jsp

18

Example for sh-like shell:

$ export JAVA_HOME=/opt/java/jdk1.6.0_20

To check if you already have Java installed:

$ rpm –qa | grep jdk

Red Hat Enterprise Linux Server comes with OpenJDK Java VM. You should get an output similar to
the following (here 1.6.0 and 1.7.0 are installed):

java-1.6.0-openjdk-1.6.0.0-1.41.1.10.4.el6.x86_64
java-1.6.0-openjdk-devel-1.6.0.0-1.41.1.10.4.el6.x86_64
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.x86_64
java-1.7.0-openjdk-devel-1.7.0.9-2.3.4.1.el6_3.x86_64

You can also download (for free) the latest Java packages (HotSpot Java VM) from Oracle from
http://java.com/en/download/manual.jsp. If this is installed (usually under /usr/java), you should get
an output similar to the following:

jdk-1.6.0_23-fcs.x86_64

3.3.2 UCA for EBC Development Kit

The UCA for EBC Problem Detection Development Kit is installed on top of the UCA for EBC
Development Kit. So you need to install the UCA for EBC Development Kit prior to installing the UCA
for EBC Problem Detection Development Kit.

 Please refer to the [R3] Unified Correlation Analyzer for Event Based Correlation Installation

Guide for information on how to install the UCA for EBC Development Kit.

3.4 Installation of the UCA for EBC Problem
Detection Development Kit

3.4.1 Product installation

The UCA for EBC Problem Detection Development Kit runs and is supported on Windows and Linux
(RHEL 5.8 & 6.3). It is delivered as follow:

On Windows XP/Vista, Windows 7, Windows Server 2007:

 uca-evp-pd-packaging-3.0-msi.zip

On Linux:

 uca-evp-pd-packaging-3.0-linux.tar

The following paragraphs detail how to install the UCA for EBC Problem Detection Development Kit
on either Windows or Linux systems:

http://java.com/en/download/manual.jsp

19

On Windows:

Install the UCA for EBC Development Kit by executing the UCA-EBC-DEVPD-V3.0-00F.msi file.

Figure 4 - Installing the UCA for EBC Problem Detection Development Kit

By default, the UCA for EBC Problem Detection Development Kit is installed in the C:\UCA-EBC-

DEV directory because it is the default location of the UCA for EBC Development Kit. If you installed
the UCA for EBC Development Kit at an alternate location, please use the same location for installing
the UCA for EBC Problem Detection Development Kit.

On Linux:

 Untar the uca-evp-pd-packaging-3.0-linux.tar archive in a temporary directory:

As root user, untar the archive in a temporary local directory (For example: /tmp):

$ cd /tmp

$ tar -xvf <kit location>/uca-evp-pd-packaging-3.0-linux.tar

 Run the installation script

Depending on whether you wish to install the UCA for EBC Problem Detection Development Kit at
the default location, i.e. /opt/UCA-EBC-DEV, or an alternate location, run either of the

following commands to execute the installation script. In any case, as the UCA for EBC Problem
Detection Development Kit is installed on top of the UCA for EBC Development Kit, the location
you select (either the default location or an alternate location) must be a valid location where the
UCA for EBC Development Kit is installed.

To install UCA for EBC Problem Detection Development Kit at the default location (in the
/opt/UCA-EBC-DEV directory, assuming UCA for EBC Development Kit is installed at the same

location), please execute the following command as root user:

$ install-uca-ebc-pd.sh

To install UCA for EBC Problem Detection Development Kit at an alternate location of your
choosing (assuming UCA for EBC Development Kit is installed at the same location), please
execute the following command as root user:

$ install-uca-ebc-pd.sh –r <Alternate root directory>

20

3.4.2 File organization

The UCA for EBC Problem Detection Development Kit is installed in the root directory specified at
installation (by default C:\UCA-EBC-DEV on Windows systems or /opt/UCA-EBC-DEV on

Linux systems).

The following table describes the different subdirectories contained in the delivery:

Table 9 - Sub-directories of UCA for EBC Problem Detection Development Kit installation
directory

3.4.3 Javadoc

The jar file of the UCA for EBC Problem Detection Javadoc is available in the directory where you
installed the UCA for EBC Problem Detection Development Kit, by default the C:\UCA-EBC-DEV on
Windows systems or the /opt/UCA-EBC-DEV directory on Linux systems irectory, under the

apidoc directory.

When your UCA for EBC Problem Detection project is created thanks to the UCA for EBC Eclipse IDE
project builder plug-in, the Javadoc will be automatically associated to the UCA for EBC Problem
Detection Framework libraries.

 Please refer to [R2] Unified Correlation Analyzer for Event Based Correlation Value Pack

Development Guide for full details on how to install the UCA for EBC Eclipse IDE plug-in.

3.4.4 Post-installation setup

MSL update: This post-installation step is optional. It only applies if, and only if, the target for your
Problem Detection Value Packs is TeMIP:

For the UCA for EBC Problem Detection Value Packs to function, new user-defined TeMIP Alarm
Object attributes need to be added to the TeMIP Dictionary on the system(s) hosting your TeMIP
director(s):

“ PB (Latin1String: id=10100): This attribute defines the category of the
alarm: ProblemAlarm (parent), SubAlarm (child), ProblemSubAlarm
(parent and child), Candidate (not yet a child), Alarm (no more a child or a
parent)
“ Grouping Keys (Latin1String: id=10101): This attribute is used by TPD
to support real-time parent<->children navigation in the TeMIP Client.

Directory Description

apidoc Contains the javadoc for the UCA for EBC
Problem Detection Development Kit

bin Contains the uninstallation script for the
UCA for EBC Problem Detection
Development Kit (on Linux systems
only): uninstall-uca-ebc-pd

eclipseplugin Contains templates used by the UCA for
EBC Eclipse IDE plug-in for creating new
UCA for EBC Problem Detection Value
Packs

pd-example Contains the sample pd-example UCA
for EBC Problem Detection value pack.

21

“ Number of Cleared Alarms (Unsigned32: id=10102)
“ Number of Total Alarms (Unsigned32: id=10103)
“ Number of Acknowledged Alarms (Unsigned32: id=10005)
“ Number of Outstanding Alarms (Unsigned32: id=10006)

Those attributes are available on

Linux
TFR (TeMIP framework) V61L Maintenance Release

HP-UX
PHSS_ 43236 E-Patch on HP-UX IA platform (TFR V6.1)

Solaris
TEMIPTFRSOL_00349 E-Patch on SUN Solaris platform

These user-defined fields are easily added through the dedicated tool (on the machine where the
TeMIP server runs)
temip_ah_user_defined_attr (located in /usr/opt/temip/bin) and the project TPD is
configured by running the following command:

temip_ah_user_defined_attr -project TPD

Confirm that the attributes listed above are correctly added in the Dictionary running the following
command:

temip_ah_user_defined_attr

Output should be showing

------------------------- User Defined Attributes ------------------------------

[##] Pres. Name = MSL ID : Data Type - Symbol Settable
[1] PB = 10100 : Latin1String ->
AO_PB
[2] Grouping Keys = 10101 : Latin1String ->
AO_GROUPING_KEYS
[3] Number of Cleared Alarms = 10102 : Unsigned32 ->
AO_NUMBER_OF_CLEARED_ALARMS
[4] Number of Total Alarms = 10103 : Unsigned32 ->
AO_NUMBER_OF_TOTAL_ALARMS
[5] Number of Acknowledged Alarms = 10005: Unsigned32->
AO_NUMBER_OF_ACKNOWLEDGED_ALARMS [6] Number of Outstanding Alarms =
10006: Unsigned32 -> AO_NUMBER_OF_OUTSTANDING_ALARMS

You can alternatively check the dictionary
mcc_dap_browser&

Then
operation_context->alarm_object->partition->user_defined

3.5 Uninstallation of the UCA for EBC Problem
Detection Development Kit

In order to uninstall the UCA for EBC Problem Detection Development Kit, please follow the
instructions below:

22

On Windows:

1. Go to the Control Panel

2. Select ‚Program and Features‛

3. Right-click on ‚HP UCA EBC Problem Detection UCA-EBC-DEVPD-V3.0-00F‛

4. Select ‚Uninstall”

5. Click ‚Yes” to confirm the uninstallation as shown in the screen capture below:

Figure 5 - Uninstalling the UCA for EBC Problem Detection Development Kit on Windows

On Linux:

Go to the bin/ subfolder of the root directory of UCA for EBC Development Toolkit (by default

/opt/UCA-EBC-DEV/bin) and execute the uninstallation script:

$ cd ${UCA_EBD_DEV_HOME}/bin/

$ uninstall-uca-ebc-pd

You should get an output similar to the following text:

Here is the list of installed UCA-EBC Problem Detection
packages:

 [0] UCA-EBC-DEVPD-V3.0-00F.noarch

Enter the index number of UCA-EBC Problem Detection version to
un-install ('Enter' to Cancel):

By entering ‘0’ (as in the example above), UCA for EBC Development Toolkit version V3.0-00F will be
removed.

3.6 Code signing

The below mentioned procedure* allows you to assess the integrity of the delivered Product before
installing it, by verifying the signature of the software packages.

1) Install the GnuPG tool

23

 Get the gpg software for Windows from The GnuPG website You will easily find it in the

Binaries subsection

 Verify the downloaded SW via its SHA1 checksum if it is a first installation or via its

associated signature if a previous version were already installed.

 Install the downloaded Software the usual way.

 Start a cmd.exe to have a windows shell

2) Download hpPublicKey

a) Open command prompt

b) Browse to the bin directory in the GnuPG installed folder

c) Get the hpPublicKey from following location:

https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPLinux
CodeSigning

d) Follow the instruction found at web page

e) Save it as hpPublicKey.pub

3) Import gpg-hpPublicKey.pub

type
gpg --import <location of HPSignClient installed directory>\gpg-
hpPublicKey.pub

4) Verify the signed binary

type
gpg --verify <Problem Detection.sig > <Problem Detection .zip >*.

The output should be as shown similar to one given bellow.

gpg: Signature made Wed Nov 17 12:32:46 2010 IST using DSA key ID 2689B887
gpg: Good signature from "Hewlett-Packard Company (HP Codesigning Service)"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: FB41 0E68 CEDF 95D0 6681 1E95 527B C53A 2689 B887

NOTE: message “Good signature from “Hewlett-Packard Company (HP Codesigning Service)” ‚indicates
the code sign verification is successful.

*HP strongly recommends using signature verification on its products, but there is no obligation.
Customers will have the choice of running this verification or not as per their IT Policies.

http://www.gnupg.org/
http://www.gnupg.org/download/index.en.html#auto-ref-2
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPLinuxCodeSigning
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPLinuxCodeSigning

24

Chapter 4 Overview of the steps
required to create a Problem

Detection Value Pack

The objective of this chapter is to list and briefly explain the steps required to create a meaningful
Problem Detection Value Pack. For readability reasons, in this entire chapter it is assumed that both
the reader and the writer are developers of a Problem Detection Value Pack and will be referred to as
‚We‛.

4.1 Analyze the problems to be detected

Before creating a Problem Detection Value Pack, it is essential to identify all the problems that could
arise from an operations perspective, and the corresponding alarms that will be generated in the
context of each problem.

To use a medical analogy:

- Alarms are the symptoms

- Problem is the disease, and the

- Problem Detection Value Pack is the physician. Based on the symptoms observed (the

alarms received), she will diagnose the disease (identify the problem).

Creating a Problem Detection Value Pack first implies listing all the potential problems (and their
associated alarms) that we want to identify.
To summarize, we need to:

- list all potential alarms that the NMS (Network Management System) may receive

- list the problems that might occur in the network and that the user of a NMS is likely be

interested in

- for each problem, identify which alarms are associated with the problem (please note that

an alarm can be associated with several problems)

4.2 Identify the different types of alarms

Among all the alarms associated with a problem, we need to separate out the ‚trigger‛ alarms from
the ‚sub-alarms‛. Continuing with the medical analogy made above, we want to separate the
primary symptoms (trigger alarms) from the secondary symptoms (sub-alarms). Trigger alarms are
called as such because they define the kind of Problem we are facing and they will trigger the
creation of a Problem Alarm.

At runtime, by default, a Problem Detection Value Pack considers that an instance of a problem has
occurred if the following criteria are met:

- one trigger alarm of the problem has been received

- at least one sub-alarm of the problem has been received

25

This default behavior can be customized (see Chapter 6)

Once the ‚trigger‛ alarms and ‚sub-‚alarms have been identified,
Once we have the list of interesting problems (resulting from above step 4.1), the list of
interesting alarms, the association between alarms and problems,
we are ready to configure the filters of our Problem Detection Value Pack.

Filters give logical criteria to distinguish different alarms. They allow distinguishing which alarm
belongs to which problem, and with which potential role (trigger alarm, sub-alarm …)
Filters are configured in a XML file.
See detailed explanation in section 5.1 Filters. See also Annex A.

4.3 Configure the Time Window

Consider Tpb to be the time at which the problem occurred. Note that for Problem Detection it is the
time of the first trigger alarm.
 We have to configure a time window around Tpb where

 all alarms outside this time window will not be associated with the problem.

 all alarms inside this time window are potential candidate to be associated with the problem

Note that time windows can be infinite.

The following diagram illustrates the time window, defined by timeWindowBeforeTrigger and
timeWindowAfterTrigger.
timeWindowBeforeTrigger and timeWindowAfterTrigger are properties set in a
configuration file. Refer to 5.3

Figure 6 - Time window illustration

Alarms in grey are ignored because they are outside of the time window of the problem.
Alarms in black are not ignored because they are inside the time window of the problem. They will be
evaluated by the Problem Detection Value Pack. Some of them will meet the conditions to become
sub-alarm of the problem, while some others will not.

4.4 Create a Problem Alarm?

For each problem, we have to decide whether, at runtime, upon occurrence of the problem, the
Problem Detection Value Pack will create a Problem Alarm or re-use (promote) the trigger alarm (or
one of the trigger alarms) as a Problem Alarm.
This is done in the filters XML configuration file. See detailed explanation in section 5.1

26

If we have decided that a fresh problem alarm has to be created, we need to configure an action to
effectively create this problem alarm in the Network Monitoring System (NMS).

We also need to configure when the Problem Alarm will be created. Problem alarm can be created as
soon as the problem is detected or after a given amount of time. See Chapter 5.3

4.5 Create a Trouble Ticket?

For each problem, we have to decide whether, at runtime, upon occurrence of the problem, the
Problem Detection Value Pack will raise a trouble ticket. See Chapter 5.3 Problem specific policies

4.6 Is the default behavior good enough?

Problem Detection proposes a default behavior which allows you to create a Value Pack without
having to go through heavier configuration phases than the ones described in sections 4.1 to 4.5

Yet, the Problem Detection Framework is extremely open, and allows us to customize almost any
behavior we would like to change.

By default, the Problem Detection Framework sets the severity of the Problem Alarm to be the
severity of the sub-alarm (among all sub-alarms of the problem) having the highest severity. We
may want to change that rule. The Problem Detection Framework allows you do just that.

Default behaviors and ways to customize them are detailed in Chapter 6.

One of the default behaviors that frequently need to be modified is the way the problem entity is
calculated.

The problem entity represents information related to the network resource that is common to all
alarms of the problem. By default the problem entity is set to the originatingManagedEntity of the
trigger alarm, but it could be some location information (‚Paris_south _MKF2‛) contained in the
AdditionalText

27

Chapter 5 How to configure
Problem Detection

This chapter describes in detail the steps required to configure a Problem Detection Value Pack. By
applying the information presented in this chapter, a developer should be able to create a Problem
Detection Value Pack that performs the main steps involved in problem detection: detecting failures
(problems), creating Problem Alarms, grouping sub-alarms and managing the life cycle of alarms
and trouble tickets.

5.1 Filters

Defining the filters is the primary and most important step when creating a Problem Detection Value
Pack. Defining filters is not only about specifying which alarms are relevant to the Value Pack. It is
also about specifying which alarm is associated to which problem, and what is the role of each alarm:
Problem Alarm, trigger alarm, sub-alarm.

Since a Problem Detection Value Pack is a UCA for EBC Value Pack, defining filters for Problem
Detection Value Packs is done the same way as for any other UCA EBC Value Pack.

The definition of filters is done in a file named ‚ProblemDetection_filters.xml‛ located under
src/main/resources/valuepack/pd/

The filter file of a Problem Detection Value Pack can include several ‚top filter‛ sections, one for each
problem to detect. The example below shows the ‚top filter‛ section of a
‚ProblemDetection_filters.xml‛ file for one problem named ‚Problem_BitError‛.

To see an example of a filter file that contains several ‚top filter‛ sections in order to detect several
problems, please consult the filter file of the Value Pack example in Annex A.

28

<topFilter name="Problem_BitError">
 <anyCondition>

 <allCondition tag="TeMIP TT">
 <allCondition>

<stringFilterStatement>
<fieldName>originatingManagedEntity</fieldName>

 <operator>matches</operator>
 <fieldValue>motorola_omcr_system .* managedelement .*

bssfunction .* btssitemgr .*</fieldValue>
 </stringFilterStatement>

 <stringFilterStatement tag="Trigger ">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>

<fieldValue>[14] Bit error OOS threshold exceeded</fieldValue>
 </stringFilterStatement>
 <stringFilterStatement tag="Trigger ">

<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[6] Remote Alarm OOS Threshold Exceeded</fieldValue>

 </stringFilterStatement>
 <stringFilterStatement tag="SubAlarm">

 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>[10] Link Disconnected</fieldValue>

 </stringFilterStatement>
<stringFilterStatement tag="SubAlarm">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>[0] Last RSL Link Failure</fieldValue>

 </stringFilterStatement>
 </anyCondition>

 </allCondition>

 <allCondition tag="TeMIP TT">
 <stringFilterStatement>

 <fieldName>userText</fieldName>
 <operator>matches</operator>
 <fieldValue>.*<action>UCA EBC .*</fieldValue>

 </stringFilterStatement>
<stringFilterStatement tag="ProblemAlarm">
 <fieldName>additionalText</fieldName>
 <operator>contains</operator>
 <fieldValue>site down (BitError)</fieldValue>

 </stringFilterStatement>
 </allCondition>

 </anyCondition>
</topFilter>

 The tag <topFilter name="Problem_BitError"> signifies the beginning of the filters definition for the
‚Problem_BitError‛ problem

The tags
 <anyCondition>
 <block A/>
 <block B/>
 …
</anyCondition>
mean that conditions from block A or conditions from block B must be met, or both.

The tags
<allCondition>
 <block A/>
 <block B/>
 …
</allCondition>
mean that conditions from block A and conditions from block B must be met.

29

The tags <anyCondition> and <allCondition> are recursive. A recursive tag is a tag that can
be included in itself several times as shown below:
<allCondition>
 <allCondition>
 <allCondition>

The tag
 <allCondition tag="TeMIP TT">
means that all alarms passing all the conditions included in this tag will be associated to one given
Trouble Ticket System, TeMIP TT in this case.
The possible values for the tag name are given in the <troubleTicketActions> section of file
ProblemXmlConfig.xml.
Please see section 5.2 ‚Main Policies‛ for more information on the ProblemXmlConfig.xml file.

The tags
 <stringFilterStatement tag="Trigger">

<fieldName>additionalText</fieldName>
<operator>contains</operator>
<fieldValue>[6] Remote Alarm OOS Threshold Exceeded</fieldValue>

 </stringFilterStatement>
mean that alarms having the additionalText field containing the text: ‚[6] Remote Alarm
OOS Threshold Exceeded‛ will be considered trigger alarms for the ‚Problem_BitError‛ problem.

When The role of the
alarm is

And the definition of this role is

tag=“Trigger” Trigger alarm Alarm which is an important symptom of a
problem, and which triggers the creation of
a problem alarm

tag=“SubAlarm” Sub-alarm Alarm which is a symptom of a problem and
is grouped under a Problem alarm

tag=“ProblemAlarm” Problem alarm Alarm that summarizes the problem, and is
readable by the operator

tag="SubAlarm,Proble
mAlarm"

SubProblemalarm Alarm which is Problem alarm of a problem,
and sub-alarm of another problem

Table 10 - possible roles for an alarm

If we want a trigger alarm to be used as a Problem Alarm (instead of creating a fresh one), the tag of
the trigger alarm has to be as follows: tag="Trigger, ProblemAlarm".

5.2 Main Policies

Main Policies are configuration settings which are common to all problems defined in a Problem
Detection Value Pack. These main configuration settings are defined inside the <mainPolicy> XML
tag.

Main Policies are configured in a file named ‚ProblemXmlConfig.xml‛ located under
src/main/resources/valuepack/conf/.
Please note that the XML schema of this file is available in the same directory.

30

Below is an extract of a ProblemXmlConfig.xml file, which shows the contents of the
<mainPolicy> XML tag:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProblemPolicies xmlns="http://config.pd.vp.expert.uca.hp.com/">
 <mainPolicy>

 <candidateVisibility>
 <candidateVisibilityTimeMode>Max</candidateVisibilityTimeMode>
 <candidateVisibilityTimeValue>30000</candidateVisibilityTimeValue>
 <markCandidate>false</markCandidate>
 </candidateVisibility>

 <transientFiltering>
 <transientFilteringEnabled>false</transientFilteringEnabled>
 <transientFilteringDelay>5000</transientFilteringDelay>
 </transientFiltering>

<actions>
 <defaultActionScriptReference>Exec_localhost</defaultActionScriptReference>

 <action name="TeMIP EMS">

 <actionReference>TeMIP_AO_Directives_localhost</actionReference>

 <actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPActionsFactory</actionClass>
 <attributeUsedForKeyDuringRecognition>userText</attributeUsedForKeyDuringRecognition>

 <attributeUsedForKeyPbAlarmCreation>User_Text</attributeUsedForKeyPbAlarmCreation>

 </action>

 </actions>

<troubleTicketActions>

 <troubleTicketAction name="TeMIP TT">

<actionReference>TeMIP_TT_Directives_localhost</actionReference>
<actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPTroubleTicketActionsFactory</actionClass>
<strings>
 <string key="TT_SERVER entity"><value>TT_SERVER .SM</value></string>
 <string key="CreateTemplateFile">

<value>createTroubleTicketByValueRequest.xml</value></string>
 <string key="AssociateTemplateFile">

<value>associateTroubleTicketByValueRequest.xml</value></string>
 <string key="CloseTemplateFile">

<value>closeTroubleTicketByValueRequest.xml</value></string>
 <string key="DissociateTemplateFile">

<value>dissociateTroubleTicketByValueRequest.xml</value></string>
 <string key="User"><value>temip</value></string>
 <string key="Input"><value>input</value></string>
 <string key="Type"><value>SYNCHRONOUS</value></string>
 </strings>

 </troubleTicketAction>
 </troubleTicketActions>

</troubleTicketActions>

 </mainPolicy>
…

31

5.2.1 Candidate visibility

Before a problem is detected, an alarm belonging to a set of potential alarms characterizing a
problem can be considered as a ‚candidate alarm‛ for this problem. Once the problem is detected
(i.e. when the problem alarm is received), the ‚candidate alarm‛ becomes a sub-alarm of the
problem. A trigger alarm can also be considered a ‚candidate alarm‛ for the problem, until the
problem is detected.

The markCandidate parameter indicates whether an alarm should be marked as a ‚candidate

alarm‛ in the Network Management System viewer (provided the NMS viewer has this capacity).

The candidateVisibilityTimeValue parameter indicates how long an alarm should be shown

as a ‚candidate alarm‛ in the Network Management System viewer. This parameter is read-only if
candidateVisibilityTimeMode is set to ‚Value‛. The value is expressed in milliseconds.

The candidateVisibilityTimeMode parameter is subtle.

It can take three values: ‚Max‛ (default value), ‚Min‛, or ‚Value‛

‚Max‛ means that the alarm will remain a candidate alarm as long as there is a chance that this alarm

may be associated with a problem instance. In the diagram below, the alarm (upper left arrow) can
belong to three types of problems. So it will remain as a candidate alarm for as long as there is a
possibility that this alarm become part of one of the problems (problem A or problem B or problem
C). To be part of a problem instance, an alarm must be included in a time window (see 4.3) around the
time of appearance of a trigger alarm for that problem. In diagram below if none of the trigger
alarms for problem A, B and C came, then it is useless for the alarm to remain candidate longer than
the max value of timeWindowBeforeTrigger of problems A, B and C. If a trigger alarm comes

after, then the alarm will necessarily be out of its time window.

Figure 7 - explanation of the candidateVisibilityTimeMode=Max

candidateVisibilityTimeMode=Value means that the alarm will remain as a candidate alarm
no longer than the value specified by candidateVisibilityTimeValue (expressed in

milliseconds)

32

candidateVisibilityTimeMode=Min means that as soon as there is at least one potential

problem instance an alarm cannot be part of, this alarm will not be marked as a candidate alarm any
longer.

5.2.2 Transient Filtering

 <transientFiltering>
 <transientFilteringEnabled>false</transientFilteringEnabled>
 <transientFilteringDelay>5000</transientFilteringDelay>
 </transientFiltering>

The concept of transient filtering derives from the observation that sometimes, some alarms
disappear by themselves after some time; so in such situation it can be useful for a Problem
Detection Value Pack to wait a little and see which alarms still exist.

When enabled with transientFilteringEnabled=true, the Transient Filtering feature makes
the Problem Detection Value Pack, upon reception of any alarm, wait during a period
(transientFilteringDelay) before actually processing the alarm. Maybe the alarm will have
disappeared.

transientFilteringEnabled=true|false

transientFilteringDelay=<waiting period in milliseconds>

5.2.3 Actions

<actions>
 <defaultActionScriptReference>Exec_localhost</defaultActionScriptReference>

 <action name="TeMIP EMS">

<actionReference>TeMIP_AO_Directives_localhost</actionReference>
<actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPActionsFactory</actionClass>

 <attributeUsedForKeyDuringRecognition>userText</attributeUsedForKeyDuringRecogn
ition>

<attributeUsedForKeyPbAlarmCreation>User_Text</attributeUsedForKeyPbAlarmCreati
on>

 </action>

</actions>

The Problem Detection Framework comes with the support of TeMIP Alarm directives.
If your NMS is TeMIP, then you can simply copy/paste the above example.
If your NMS is not TeMIP, an open API to define Actions Factory can be used; please refer to B.2
ActionsFactory implementation for explanation.

name type value

defaultActionScriptReference property Unique reference that will be used in the
rule to define the routing information of an
Action

action property Container for attributes defining the
actions for a set of alarms

33

name type value

name attribute ‚sourceIdentifier‛ field of alarms is
matched to this name to know which
actionsFactory to use for a given alarm

actionReference attribute Unique reference that will be used to get
the routing information of an action. This
actionReference has to be defined in the
Action Registry. The Action Registry is a
configuration file used to define routing
information for all actions processed by
the rules.

actionClass attribute
The class implementing the
SupportedAction interface which
describes the methods needed to support
any Action on alarms.
Methods such as createProblemAlarm,
terminateAlarm, clearAlarm, …

attributeUsedForKeyDuringReco
gnition

attribute
The Custom Field Name of the Alarm that
will contain the information to identify that
a ProblemAlarm is generated by the
Problem Detection Framework.

attributeUsedForKeyPbAlarmCre
ation

attribute The custom Field of the problem alarm
that will contain information about the
problem

Table 11 - actions configuration

5.2.4 Trouble Ticket Actions

<troubleTicketActions>
 <troubleTicketAction name="TeMIP TT">
 <actionReference>TeMIP_TT_Directives_localhost</actionReference>
 <actionClass>com.hp.uca.expert.vp.pd.actions.TeMIPTroubleTicketActionsFactory</actionClass>
 <strings>

 <string key="TT_SERVER entity"><value>TT_SERVER .SM</value></string>
 <string key="CreateTemplateFile">

<value>createTroubleTicketByValueRequest.xml</value></string>
 <string key="AssociateTemplateFile">

<value>associateTroubleTicketByValueRequest.xml</value></string>
 <string key="CloseTemplateFile">

<value>closeTroubleTicketByValueRequest.xml</value></string>
 <string key="DissociateTemplateFile">

<value>dissociateTroubleTicketByValueRequest.xml</value></string>
 <string key="User"><value>temip</value></string>
 <string key="Input"><value>input</value></string>
 <string key="Type"><value>SYNCHRONOUS</value></string>

 </strings>
 </troubleTicketAction>
</troubleTicketActions>

The Problem Detection Framework supports the HP Service Manager through TeMIP.
If your Trouble Ticket system is HP Service Manager, then you can simply copy/paste the above
example.
If your Trouble Ticket system is not HP Service Manager, an open API to define Trouble Ticket Actions
Factory can be used. Please refer to B.3 TroubleTicketActionsFactory implementation for
explanation.

34

name type value

troubleTicketAction property Container for attributes defining the
trouble ticket actions for a set of alarms

name attribute Alarms corresponding (in the filters file) to
a tag matching this name will use the
trouble ticket system defined in the
actionReference below

actionReference attribute Unique reference that will be to define the
routing information of a trouble ticket
action

actionClass attribute The class implementing the
SupportedTroubleTicketActions
interface which describes the methods
needed to support any Action on alarms.
Methods such as
createTroubleTicket,
closeTroubleTicket...

strings attribute Container for a set of <string> key / value
<string> specifying parameters for the
interaction with the trouble ticketing
system

Table 12 - Trouble ticket actions configuration

To know which Trouble Ticket System to use for an alarm the value of the tag is matched to
the name of the troubleTicketAction.
Example:

tag="TeMIP TT"

<troubleTicketAction name= "TeMIP TT" >

For detailed explanation see Annex B.

5.3 Problem specific policies
Problem Policies are configuration settings which are specific to each problem defined in a
Problem Detection Value Pack.
These problem specific configuration settings are defined inside the <problemPolicy name="…">
XML tag.
These configuration settings are different from the main configuration settings explained in the
previous chapter: 5.2 ‚Main Policies‛ which apply to all problems defined in a Problem Detection
Value Pack.

Problem Policies are configured in the same file where Main Policies are configured. This file is
named ‚ProblemXmlConfig.xml‛ and it is located in the
src/main/resources/valuepack/conf/ folder.

Please note that the XML schema of this file named ‚ProblemXmlConfig.xsd‛ is available in the

same directory.

Below is an example of such problem specific configuration settings, for a problem name
‚Problem_Power‛:

35

For a complete example showing several <problemPolicy> tags, please consult the
‚ProblemXmlConfig.xml‛ folder of the Value Pack pd-example in Annex A.
 It is located in the src/main/resources/valuepack/conf/ folder.

5.3.1 Problem Alarm

In some cases, it may be useful to delay the creation of Problem Alarms.
Setting the value: 2000 to the delayForProblemAlarmCreation property applies a delay of
2000 ms (2 seconds) before creating Problem Alarms.

It may also be useful to delay the clearance of the Problem Alarm.
Setting the value: 0 (ms) to the delayForProblemAlarmClearance property does not delay the
clearance of Problem Alarms after all conditions are met for clearing problem Alarms.

5.3.2 Trouble Ticket

It is possible for Problem Detection Value Packs to automatically create a trouble ticket for a
Problem Alarm. The following configuration parameters are available that control the creation of
trouble tickets for Problem Alarms:

<problemPolicy name="Problem_Power">

<problemAlarm>

<delayForProblemAlarmCreation>2000</delayForProblemAlarmCreation>
<delayForProblemAlarmClearance>0</delayForProblemAlarmClearance>

</problemAlarm>

<troubleTicket>

<automaticTroubleTicketCreation>false</automaticTroubleTicketCreation>
<propagateTroubleTicketToSubAlarms>true</propagateTroubleTicketToSubAlarms>
<propagateTroubleTicketToProblemAlarm>false</propagateTroubleTicketToProblemAlarm>
<delayForTroubleTicketCreation>1000</delayForTroubleTicketCreation>

</troubleTicket>

<groupTickFlagAware>false</groupTickFlagAware>

<timeWindow>

<timeWindowMode>None</timeWindowMode>
<timeWindowBeforeTrigger>0</timeWindowBeforeTrigger>
<timeWindowAfterTrigger>0</timeWindowAfterTrigger>

</timeWindow>

</problemPolicy>

36

name type value

automaticTroubleTicke
tCreation

attribute False does not automate the creation of a
trouble ticket once a Problem Alarm is created
True automates the creation of a trouble ticket
once a Problem Alarm is created

propagateTroubleTicke
tToSubAlarms

attribute True all sub-alarms (of the problem alarm), are
associated to the trouble ticket linked with the
Problem Alarm
False subalarms are not associated to the
trouble ticket linked with the Problem Alarm

propagateTroubleTicke
tToProblemAlarm

attribute False if one sub-alarm has a trouble ticket, the
Problem Alarm will not be linked to this trouble
ticket
True if one sub-alarm has a trouble ticket, the
Problem Alarm will be linked to this trouble ticket

delayForTroubleTicket
Creation

attribute Delay, expressed in milliseconds (after the
creation of a Problem Alarm) before the associated
trouble ticket is created

Table 13 - Trouble ticket “per-problem” configuration

5.3.3 Tick Flag awareness

The groupTickFlagAware parameter, when set to true, indicates that at regular tick intervals, the

Problem Detection Value Pack, if customized for that, will execute some user code. The way to
customize a Problem Detection Value Pack is explained in Chapter 6.

5.3.4 Time window

Please see chapter 4.3 ‚Configure the Time Window‛ for more information on problem specific time
windows.

TimeWindowMode = None no time window, this is the equivalent of an infinite time window. All

alarms regardless of their timestamp can be associated with a problem.

 TimeWindowMode = Trigger a time window around the (first) trigger alarm of a problem is

in place. Only alarms with timestamps inside this time window can be associated with a problem.

5.3.5 Customization (refer to paragraph 6.1.1 first)

<problemPolicy name="XmlGeneric_Synch">

[...]

<strings>
<string key="ProblemAlarmAdditionalText">

<value><![CDATA[site down (XmlGeneric Synch)]]></value>
</string>

</strings>

As explained in paragraph 6.1.1, it is possible to put assign basic customization directives for a
specific problem (XmlGeneric_Synch in above extract).

37

5.4 Value Pack configuration
The file named ‚ValuePackConfiguration.xml‛ located in the
src/main/resources/valuepack/conf/ folder does not need to be modified except the
highlighted part below, which concerns mediation flows. Detailed instructions are available in
chapter ‘Value Pack definition file’ of the UCA for EBC Reference Guide

Extract of ValuePackConfiguration.xml

 <mediationFlows name="temipFlow" actionReference="TeMIP_FlowManagement"
flowNameKey="flowName">
 <!-- Comment out the flowCreation and flowDeletion sections to use static
flows
 instead of dynamic flows -->
 <flowCreation>
 <actionParameter>
 <key>operation</key>
 <value>CreateFlow</value>
 </actionParameter>
 <actionParameter>
 <key>flowType</key>
 <value>dynamic</value>
 </actionParameter>
 <actionParameter>
 <key>operationContext</key>
 <value>uca_network</value>
 </actionParameter>
 <actionParameter>
 <key>operationContext</key>
 <value>uca_pbalarm</value>
 </actionParameter>
 </flowCreation>

The file named ‚context.xml‛ located in the src/main/resources/valuepack/conf/
folder does not need to be modified, unless you want to customize the enrichment example
(enrichment bean highlighted) or if you want to customize some behavior as explained in 6.1.4
For more information on context.xml, please refer to chapter ‘Value Pack definition’ in the UCA for
EBC Reference Guide

context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
 xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/jms
 http://www.springframework.org/schema/jms/spring-jms.xsd
 http://activemq.apache.org/schema/core
 http://activemq.apache.org/schema/core/activemq-core.xsd">

 <context:annotation-config />

 <bean id="enrichment" class="com.acme.enrichment.EnrichmentProperties">
 <property name="configurationFileName" value="Enrichment.xml" />
 <property name="jmxManager" ref="jmxManager" />
 </bean>

38

 <bean id="problemsFactory" class="com.hp.uca.expert.vp.pd.core.ProblemsFactory">
 <property name="problemPackageName" value="com.hp.uca.expert.vp.pd.problem."
/>
 <property name="problemClassNamePrefix" value="Problem_" />
 <property name="problemClassName" value="ProblemDefault" />
 <property name="generalBehaviorClassName" value="MyGeneralBehaviorExample" />

 <property name="xmlProblemClassName" value="XmlProblem" />
 <property name="xmlGenericDefaultPrefix" value="XmlGeneric_" />
 <property name="problemContextPackage" value="com.hp.uca.expert.vp.pd.core."
/>
 </bean>

</beans>

39

Chapter 6 How to customize
Problem Detection

Once configured (see Chapter 5), a Problem Detection Value Pack functions with a standard behavior.

This default behavior is rich in the sense that, in many cases, it does not have to be altered or
extended.

However for the uses cases where modification or extension is required, Problem Detection offers
the flexibility to change the default behavior.

The ways to customize the default behavior are described in section 6.1. The default behavior is
presented in section 6.2.

6.1 How to customize behavior

The way to customize the behavior of a Problem Detection Value Pack is to override some java
methods specially defined for this purpose, or to write some customization XML code.
The list of java methods that can be overridden is presented in section 6.2 Default Behavior. The way
to override those java methods is presented in section 6.1.2. The way to modify the Problem
Detection Value Pack default behavior by writing XML code is presented in section 6.1.1 below

6.1.1 XML customization
One aspect of the default behavior of Problem Detection Value Packs is to use the
“originatingManagedEntity‛ of the trigger alarm as ‚Problem Entity‛. Since one important
objective of creating a Problem Alarm is to show clear and concise information to the
operator, it may be useful to redefine the way Problem Detection computes the ‚Problem
Entity‛ of a problem. This can be done without writing any Java code as shown below. This
can also be done by writing Java code (see next section).

Below is an extract of “ProblemXmlConfig.xml” file located in the

src/main/resources/valuepack/conf/ folder.

It shows an example of two methods: the computeProblemEntity() and
calculateProblemAlarmAdditionalText() methods, being overwritten:

<problemPolicy name="XmlGeneric_Synch">

 <strings>
 <string key="computeProblemEntity"><value><![CDATA[
 if (alarm.getOriginatingManagedEntity()
 .matches(
 "motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

 varStr1=alarm.getCustomFieldValue("userText");

 if (varStr1 != null) {
 varStr1 = varStr1.replaceAll(" ", "");
 varStr1 = varStr1.replaceAll(":", " bts ");
 varResult = "bsc " +varStr1;
 }
 }
 if (varResult==null) {

40

 varResult = alarm.getOriginatingManagedEntity();
 }
]]></value></string>

<string key="calculateProblemAlarmAdditionalText">
<value><![CDATA[site down (Synch_XML) - Generic XML]]></value></string>

 </strings>

</problemPolicy>

Also available are the three following methods. Note that all other methods listed in 6.2 are only
overridable by writing Java code.

<string key="isMatchingTriggerAlarmCriteria">
 <value><![CDATA[true]]></value>
</string>

<string key="isMatchingProblemAlarmCriteria">
 <value><![CDATA[true]]></value>
</string>

<string key="isMatchingSubAlarmCriteria">
 <value><![CDATA[true]]></value>
</string>

In paragraph 5.1Filters, Table 10 - possible roles for an alarm, we saw that the role of an alarm is
determined by the tag associated to it in the Filters xml file. However if some of the three methods
above are overridden, then what happens?
For instance, does the tag=‛SubAlarm‛ takes precedence over the criteria defined in the
isMatchingSubAlarmCriteria(alarm) method ?

The answer is that for an alarm a to be considered a sub-alarm by the Problem Detection Value Pack,
it needs to be tagged as subalarm in the Filters xml file, AND, the method
isMatchingSubAlarmCriteria(a) must return true.

6.1.2 Java custom
The main way to customize the default behavior of Problem Detection Value Packs is to
override some of the Java methods listed in section 6.2. There are three levels of
customization:
Per problem (this section)
For a set or for all problems (section 6.1.3 ‚My ProblemDefault‛)
For non-problem specific matters (section 6.1.4 ‚MyGeneralBehavior‛)

The methods that can be overridden to customize the ‚problem specific‛ behavior of a
Problem Detection Value Pack are all listed in the ProblemInterface java interface.
The methods that can be overridden to customize the ‚non-problem specific‛ behavior of a
Problem Detection Value Pack are all listed in the GeneralBehaviorInterface java interface.

41

Figure 8 - One problem specific customization

Problemdefault.java is the class implementing the methods of the ProblemInterface. It
defines the default behavior of Problem Detection Value Packs.

The way to override a method of the ProblemInterface is to create a class of customization
per problem, which extends ProblemDefault.

Below is the ‚Problem_Skeleton.java‛ class created by the Eclipse plug-in. It is
located under src/main/java/[com.hp.uca.expert.vp.pd.problem]

/**
 * This Problem is empty and ready to define methods to customize this
problem
 */
package com.hp.uca.expert.vp.pd.problem;

import org.apache.log4j.Logger;
import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

public final class Problem_Skeleton extends ProblemDefault implements
 ProblemInterface {

 public Problem_Skeleton() {
 super();
 setLog(Logger.getLogger(Problem_Skeleton.class));
 }

}

Note that the name of the class, in the above example Problem_Skeleton, must be changed
to the name of the problem for which we want to customize the behavior.

The following equation must be true

Name of the customization class for problem X = name of problem X as defined in
filters file.

For example, if the extract of ProblemDetection_filters.xml is like this:

<topFilter name="Problem_LOS">

42

Then the extract of Problem_LOS.java must look like this:

public final class Problem_LOS extends ProblemDefault implements
 ProblemInterface {

Below is the same file renamed as MyFirstProblem.java, which overrides both the
computeProblemEntity() and calculateProblemAlarmAdditionalText()
methods.

/**
 * This is my first Problem.
 * It customizes two methods:
 * - computeProblemEntity()
 * - calculateProblemAlarmAdditionalText()
 */
package com.hp.uca.expert.vp.pd.problem;

import org.apache.log4j.Logger;

import com.hp.uca.expert.vp.pd.core.ProblemDefault;
import com.hp.uca.expert.vp.pd.interfaces.ProblemInterface;

/**
 * @author Me
 *
 */
public final class MyFirstProblem extends ProblemDefault implements
 ProblemInterface {

 public MyFirstProblem () {
 super();
 setLog(Logger.getLogger(MyFirstProblem.class));
 }

}

 @Override
 public List<String> computeProblemEntity(Alarm a) {

 if (getLog().isTraceEnabled()) {
 LogHelper.enter(getLog(), "computeProblemEntity()",
 a.getIdentifier());
 }

 String problemEntity = null;
 List<String> problemEntities = new ArrayList<String>();

 if (a.getOriginatingManagedEntity()
 .matches(
 "motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr
.*")) {

43

 SupportedActions supportedActions =
chooseSupportedActions(a, this);

 String userText = a.getCustomFieldValue(supportedActions

 .getAttributeUsedForKeyDuringRecognition());

 if (userText != null) {
 userText = userText.replaceAll(" ", "");
 String[] table = userText.split(":");
 if (table.length >= 2) {
 problemEntity = String.format("bsc %s bts %s",
table[0],
 table[1]);

 problemEntities.add(problemEntity);
 }
 }
 }

 if (getLog().isTraceEnabled()) {
 LogHelper.exit(getLog(), "computeProblemEntity()",
 problemEntities.toString());
 }
 return problemEntities;
 }

 @Override
 public String calculateProblemAlarmAdditionalText(Group group) {
 return "site down (BitError)";

}

Which overridable methods will be called
depending on the lifecycle of the alarm
and depending on the problem

The Problem Detection framework will automatically invoke the methods
whatToDoWhenXXX(…) listed in section 6.2, at precise times of the lifecycle of every
alarm.

For instance, when an alarm ‘alm1’ is cleared, the Problem Detection framework will
invoke the method whatToDoWhenXXXAlarmIsCleared(alm1…)

If ‘alm1’ belongs to only one problem ‚Problem A‛, then the Problem Detection
framework will invoke the method whatToDoWhenXXXAlarmIsCleared(alm1 …) present in
the customization class of ‚Problem A‛ . If the method
whatToDoWhenXXXAlarmIsCleared() has not been overridden for ‚Problem A‛, the the
default method is invoked.

44

But if ‘alm1’ also belongs to ‚Problem B‛, the Problem Detection framework will also
invoke the method whatToDoWhenXXXAlarmIsCleared(alm1 …), if present in the
customization class of ‚Problem B‛, or the default method otherwise.

Depending of the position of the alarm in its lifecycle at a given time, the Problem
Detection framework will decide exactly which exact method(s) whatToDoWhenXXX(..) to
invoke.

In the above example, suppose ‘alm1’ belongs to ‚Problem A‛ and ‚Problem B‛, and that
‘alm1’ at the moment it gets cleared, is
- ‘subalarm’ for ‚Problem A‛
- ‘orphan alarm’ for ‚Problem B‛.

Then the methods

o whatToDoWhenSubAlarmIsCleared(alm1) will be called for ‚Problem A‛

o whatToDoWhenOrphanAlarmIsCleared(alm1) will be called for ‚Problem B‛

An orphan alarm for a given problem, is an alarm that does not belong to any group of the
given problem.

A Candidate alarm for a given problem, is an alarm that belongs to a group of the given
problem, but the problem alarm of this group has not yet come.

A Sub alarm for a given problem, is an alarm that belongs to a group of the given problem,
and the problem alarm of this group has come.

The Figure 9 below shows a graphical representation of the methods that will be invoked

based on the lifecycle of the alarm.

In Figure 9, there are 3 alarms, ‘a1’, ‘a2’ and ‘a3’

‘a1’ belongs to ‚Problem A‛ and ‚Problem B‛

‘a2’ is a trigger alarm and belongs to ‚Problem A‛ only

‘a3’ is a problem alarm and belongs to ‚Problem A‛ only

Each alarm at a given time of its life, has a qualifier for each of the problem it belongs to. It
also has a consolidated view of its role across problems.

For example there is a time where ‘a1’ is ‘SubAlarm for ‚Problem A‛ and is ‘Orphan’ for
‚Problem B‛. At this time the consolidated role of ‘a1’ across all problems will be
‘SubAlarm’. This consolidated role will be placed in the ‚Pb‛ field of the alarm

45

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.28

a3 Qualifier for
Problem A

ProblemAlarm

methods to
invoke

whatToDoWhenProblemAlarmXXX()

a2 Qualifier for
Problem A

Trigger Trigger

methods to
invoke

whatToDoWhenSubAlarmXXX () whatToDoWhenSubAlarmXXXX ()

a1 Qualifier for
Problem A

Unnknown Candidate SubAlarm

methods to
invoke

whatToDoWhenOrphanAlarmXXXX() whatToDoWhenSubAlarmXXX () whatToDoWhenSubAlarmXXXX ()

Context of Problem A

alarm having a potential
role for Problem A

a1

trigger alarm
for Problem A

a2

problem alarm
for Problem A

a3

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.29

a1 Qualifier for
Problem B

Unknown Unknown Unknown

methods to
invoke

whatToDoWhenOrphanAlarm
XXX()

whatToDoWhenOrphanAlarm
XXX()

whatToDoWhenOrphanAlarm
XXX()

Context of Problem B

alarm having a potential
role for Problem B

a1

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.30

a3 Pb = PbAlarm

a2 Pb = Candidate SubAlarm

a1 Pb = Candidate Candidate SubAlarm

alarm having a potential
role for Problem s A & B

a1

trigger alarm
for Problem A

a2

problem alarm
for Problem A

a3

Consolidated Navigation field « Pb »

Figure 9 - Consolidation of alarm's qualifiers

46

6.1.3 My ProblemDefault

The benefit of extending ProblemDefault class is to modify the default behavior for all
problems or for a set of problems.

Figure 10 - MyProblemDefault: a customization for a group of problems

In the diagram above MyProblemDefault.java implements some or all of the methods of
ProblemInterface. Each problem customization class that extends MyProblemDefault.java
will benefit from the implementation of those methods. In the diagram, by default,
ProblemA1, ProblemA2 (hidden behind ProblemA1) and ProblemA3 (hidden behind
ProblemA1) will use the methods implemented in MyProblemDefault.java. ProblemB will use
the methods implemented in ProblemDefault.java, unless these methods are overridden in
ProblemB.java

For a comprehensive diagram showing the advanced possibilities and subtleties of using
extensions of Problemdefault.java, refer to Annex B.1.

6.1.4 MyGeneralBehavior

The methods that can be overridden to customize the “non-problem specific” behavior of a
Problem Detection Value Pack are all listed in the GeneralBehaviorInterface Java interface.

A ‚non-problem-specific‛ behavior is a behavior that is not related to any problem in particular.

For example, the behavior, in other words the things that are done, when a Problem Detection Value
Pack is initialized is a ‚non-problem-specific‛ behavior.

The way to customize a ‚non-problem-specific‛ behavior is to

47

Create a MyGeneralBehavior.java (name can be different) Java class in the following directory:
src/main/java/[com.hp.uca.expert.vp.pd.core].

Ensure that the value of the property problemClassName in the file context.xml in
src/main/resources/valuepack/conf/ folder matches MyGeneralBehavior , as shown in

Figure 11 - MyGeneralBehavior name matching

Override the methods of the GeneralBehaviorInterface for which the behavior has to be customized.

Figure 11 - MyGeneralBehavior name matching

Below is an example of a MyGeneralBehavior.java class that overrides one method of the
interface GeneralBehaviorInterface: whatToDoWhenNewAlarmIsJustInserted()

public class MyGeneralBehavior extends ProblemDefault implements
 GeneralBehaviorInterface {

 /**
 *
 */
 public MyGeneralBehavior() {
 super();
 setLog(Logger.getLogger(MyGeneralBehavior.class));
 }

 /*
 * @see
 *
com.hp.uca.expert.vp.pd.core.ProblemDefault#whatToDoWhenNewAlarmIsJustInserted
 * (com.hp.uca.expert.alarm.Alarm)
 */

48

 @Override
 public void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm) {

 if (getLog().isDebugEnabled()) {

 getLog().debug(
 "whatToDoWhenNewAlarmIsJustInserted(): new alarm inserted : "
 + alarm.getIdentifier());
 }

 Flag flag = new Flag("JustInserted: "+alarm.getIdentifier(),
 "Flag checking
whatToDoWhenNewAlarmIsJustInserted()", true);
 getScenario().getSession().insert(flag);

}

6.1.5 Enrichment

There are three ways to enrich alarms in Problem Detection

Through UCA-EBC lifecycle, synchronous enrichment is possible. Refer to UCA for EBC
Reference Guide.

A “One time” and “independent of all problems” synchronous enrichment is possible by
overriding the method whatToDoWhenNewAlarmIsJustInserted() Independent of all
problems means that the enrichment applies to all alarms managed by the value pack
regardless of the problem(s) they correspond to.

A “per problem” enrichment is possible by overriding the method
isInformationNeededAvailable() in the problem’s customization class

This enrichment can be synchronous, if the method isInformationNeededAvailable() is
overridden with synchronous code.

This enrichment can be asynchronous, if the method isInformationNeededAvailable() is
overridden with asynchronous code.

The enrichment is called “synchronous” when the Problem Detection value pack waits for
the enrichment of the alarm to be completed before to proceed with the alarm processing.

The enrichment is called “asynchronous” when the Problem Detection value pack does not
wait for the enrichment of the alarm to be completed. The execution continues and the
value pack is notified later through a callback that the enrichment has been completed

Example of II Onetime enrichment “independent of all problems”

The example below shows the method whatToDoWhenNewAlarmIsJustInserted () being
overridden. The method adds a new custom field in all incoming alarms.

public class MyGeneralBehavior extends
 GeneralBehaviorDefault implements GeneralBehaviorInterface {

 @Override

49

 public void whatToDoWhenNewAlarmIsJustInserted(Alarm alarm)
 throws Exception {

 SupportedActions supportedActions = PD_Service_Action
 .retrieveSupportedActions(getScenario(), alarm);

 if (alarm.getCustomFieldValue(“userText”) == null) {

 CustomField cf = new CustomField();
 cf.setName(“userText”);
 cf.setValue("myotherproblemidentifier site#sophia");

 alarm.getCustomFields().getCustomField().add(cf);
 }
 }
}

Example of III.a Synchronous enrichment per problem

The example below shows the method isInformationNeededAvailable() being overridden.
The method checks if enough information is present in the alarm. In particular it checks if the
content of the field originatingManagedEntity is having the right structure. If not, the
method decides to enrich the alarm by reading an XML file.

@Override
public boolean isInformationNeededAvailable(Alarm alarm) throws Exception {

 boolean informationAvailable = false;
 String site = null;

 if (!(alarm.getOriginatingManagedEntity().matches(
 "motorola_omcr_system .* managedelement .* bssfunction .* btssitemgr .*")) {

 EnrichmentProperties enrichmentProperties = (EnrichmentProperties)
PD_Service_Util
 .retrieveBeanFromContextXml(getScenario(),
 ENRICHMENT_BEAN_NAME);
 if (enrichmentProperties != null) {
 synchronized (enrichmentProperties
 .getHashManagedObjectToSite()) {
 site = enrichmentProperties

 .getHashManagedObjectToSite().get(

 alarm.getOriginatingManagedEntity());
 }
 }

 }
 }

 if (site != null) {
 informationAvailable = true;
 alarm.getVar().put(SITE_KEYWORD, site);
 } else {
 getLog().warn(String.format("Unable to retrieve enrichment for alarm
[%s]",
 alarm.getIdentifier()));
 }

 return informationAvailable;
}

50

The example above is extracted from Problem_Power.java. This file is available in the UCA-
EBC Development Kit Problem Detection Extension in the com.hp.uca.expert.vp.pd.problem
package.

Example of III.b Asynchronous enrichment per problem

The example below shows the method isInformationNeededAvailable() being overridden.
The method controls if enough information is available, by checking whether field “grid” is
present in the alarm. If not, the method decides to enrich the alarm by launching an
asynchronous action.

public boolean isInformationNeededAvailable(Alarm alarm) throws Exception {

 boolean retValue = true;

 String gridField = alarm.getCustomFieldValue("grid");
 if (gridField == null) {
 retValue = false;

 try {
 SupportedActions supportedActions = PD_Service_Action
 .retrieveSupportedActions(alarm, this);

 Action action = new
Action(supportedActions.getActionReference());

 /*
 * Really fill the command for a real Action
 */

 action.addCommand("<To be customized with the real command to execute
to find the information>", "<To be customized with the entity on which to run the command>");

 getScenario().addAction(action);

 action.setCallback(buildenrichmentCallback(getScenario(),
 alarm, action, getLog()));

 action.executeAsync(null);

 getScenario().getSession().update(action);

}
}

}

Example of code for an enrichment callback
public static Callback buildenrichmentCallback(Scenario scenario,
 Alarm alarm, Action action, Logger log)
 throws NoSuchMethodException {

 Class<?> partypes[] = new Class[NB_CALLBACK_ARGUMENTS];
 partypes[ARGUMENT_1] = Scenario.class;
 partypes[ARGUMENT_2] = Alarm.class;
 partypes[ARGUMENT_3] = Action.class;
 partypes[ARGUMENT_4] = Logger.class;

 Object arglist[] = new Object[NB_CALLBACK_ARGUMENTS];
 arglist[ARGUMENT_1] = scenario;
 arglist[ARGUMENT_2] = alarm;
 arglist[ARGUMENT_3] = action;
 arglist[ARGUMENT_4] = log;

 Method method = Problem_Synch_MissingInfoAlarm.class.getMethod(

51

 "enrichmentCallback", partypes);

 Callback callback = new Callback(method, null, arglist);

 return callback;
}

public static void enrichmentCallback(Scenario scenario, Alarm alarm,
 Action action, Logger log) {

// To be customized : BEGIN

if (action.isTestOnly()) {
 if (log.isInfoEnabled()) {

 log.info("Enrichment Action Response received, updating Alarm with
result of the Action");

 }

 alarm.setCustomFieldValue("grid", "disabled");
 }

// To be customized : END

PD_Service_Enrichment.setAlarmIsNoMoreMissingInformation(alarm,

 Problem_Synch_MissingInfoAlarm.class.getSimpleName());

 PD_Service_Enrichment.requestAlarmComputation(scenario, alarm);

 }

6.2 Default behavior

As seen in previous paragraph 6.1How to customize behavior, the Problem Detection Framework is a
set of Java libraries, with some Java classes that can be extended and methods overridden in order
to change the default behavior of Problem Detection Value Packs.

Each of the following methods has a default behavior, which can be customized by overriding the
method.
The default behavior of all these methods is available by consulting the javadoc. The implementation
code of these methods is available in the example value pack delivered as part of the Problem
Detection Dev Kit (See A.4 pd-example, content of src/test/resources) The code of each of these
methods is executed for every problem for which that method has not been overridden

6.2.1 Alarm Role Check

isMatchingCandidateAlarmCriteria(Alarm)

isMatchingProblemAlarmCriteria(Alarm, Group)

isMatchingSubAlarmCriteria(Alarm, Group)

isMatchingTriggerAlarmCriteria(Alarm)

6.2.2 Problem Alarm Creation

Method used to check if ProblemAlarm should be created

52

isAllCriteriaForProblemAlarmCreation(Group)

Methods used during ProblemAlarm Creation

calculateReferenceAlarm(Group)

calculateProblemAlarmManagedEntity(Group)

calculateProblemAlarmAlarmType(Group)

calculateProblemAlarmProbableCause(Group)

calculateProblemAlarmAdditionalText(Group)

calculateProblemAlarmOperatorNote(Group)

calculateProblemAlarmUserText(Group, Action)

calculateProblemAlarmEventTime(Group)

calculateProblemAlarmOtherAttribute(Action)

6.2.3 Common Entity Check

Methods used to calculate Information for optimizations

compareProblemEntity(Alarm, Group)

computeProblemEntity(Alarm)

computeProblemKey(ProblemContext, Alarm)

isInformationNeededAvailable(Alarm)

6.2.4 Group update

Methods used to manage the group lifecycle, and its associated alarms

whatToDoWhenProblemAlarmIsAttachedToGroup(Group)

whatToDoWhenSubAlarmIsAttachedToGroup(Alarm, Group)

whatToDoPeriodicallyForAGroup(Group)

6.2.5 NetworkState Update

Methods used to manage the ProblemAlarm lifecycle, and its consequence

calculateIfProblemAlarmhasToBeCleared(Group)

whatToDoWhenProblemAlarmIsCleared(Group)

Methods used to manage the Sub Alarm lifecycle, and its consequence
whatToDoWhenSubAlarmIsCleared(Alarm, Group)

Methods used to manage the Orphan Alarm lifecycle, and its consequence
whatToDoWhenOrphanAlarmIsCleared(Alarm)

6.2.6 OperatorState Update

Methods used to manage the ProblemAlarm lifecycle, and its consequence

53

whatToDoWhenProblemAlarmIsAcknowledged(Group)

whatToDoWhenProblemAlarmIsUnacknowledged(Group)

whatToDoWhenProblemAlarmIsTerminated(Group)

Methods used to manage the SubAlarm lifecycle, and its consequence

whatToDoWhenSubAlarmIsAcknowledged(Alarm, Group)

whatToDoWhenSubAlarmIsUnacknowledged(Alarm, Group)

whatToDoWhenSubAlarmIsTerminated(Alarm, Group)

Methods used to manage the Orphan Alarm lifecycle, and its consequence

whatToDoWhenOrphanAlarmIsAcknowledged(Alarm)

whatToDoWhenOrphanAlarmIsUnacknowledged(Alarm)

whatToDoWhenOrphanAlarmIsTerminated(Alarm)

6.2.7 ProblemState Update

Methods used to manage the Trouble Ticket lifecycle when related to a Problem Alarm , and its
consequence

whatToDoWhenProblemAlarmIsHandled(Group)

whatToDoWhenProblemAlarmIsReleased(Group)

whatToDoWhenProblemAlarmIsClosed(Group)

isAllCriteriaForTroubleTicketCreation(Group)

Methods used to manage the Trouble Ticket lifecycle when related to a SubAlarm, and its
consequence

whatToDoWhenSubAlarmIsHandled(Alarm, Group)

whatToDoWhenSubAlarmIsReleased(Alarm, Group)

whatToDoWhenSubAlarmIsClosed(Alarm, Group)

Methods used to manage the Trouble Ticket lifecycle when related to an Orphan Alarm, and its
consequence

whatToDoWhenOrphanAlarmIsHandled(Alarm)

whatToDoWhenOrphanAlarmIsReleased(Alarm)

whatToDoWhenOrphanAlarmIsClosed(Alarm)

6.2.8 Attribute Update

Method used to manage the ProblemAlarm Severity Update, and its consequence

whatToDoWhenProblemAlarmSeverityHasChanged(Group)

calculateProblemAlarmSeverity(Group)

54

Method used to manage the SubAlarm Severity Update, and its consequence

whatToDoWhenSubAlarmSeverityHasChanged(Alarm, Group)

Method used to manage the Orphan Alarm Severity Update, and its consequence.
whatToDoWhenOrphanAlarmSeverityHasChanged(Alarm)

Methods used to manage attribute update
whatToDoWhenProblemAlarmAttributeHasChanged(Group, AttributeChange)

whatToDoWhenSubAlarmAttributeHasChanged(Alarm, Group, AttributeChange)

whatToDoWhenOrphanAlarmAttributeHasChanged(Alarm, AttributeChange)

6.2.9 Periodic Check

whatToDoPeriodically()

 whatToDoPeriodicallyForAnAlarm(Alarm)

6.2.10 Alarm eligibility update

whatToDoWhenProblemAlarmIsNoMoreEligible(Group)

whatToDoWhenSubAlarmIsNoMoreEligible(Alarm, Group)

whatToDoWhenOrphanAlarmIsNoMoreEligible(Alarm)

55

Chapter 7 Value Pack creation

This chapter prepares you to quickly build a Problem Detection Value Pack.
The pre-requisite is the installation of the UCA for EBC Problem Detection Development Kit which is
comprised of

- UCA for EBC Development Kit (see UCA for EBC Value Pack Development Guide)
- UCA for EBC Development Kit Problem Detection Extension

7.1 Eclipse plug-in / new Problem Detection Value
Pack

Figure 12 - How to create a UCA EBC project in Eclipse

Step 1: Once the Problem Detection Development Kit is installed, in Eclipse, click on the ‚New UCA
EBC Project‛ button.

56

Figure 13 - How to create a UCA EBC Problem Detection Value Pack project in Eclipse

Step 2: Choose a name for the project and a name for the Problem Detection Value Pack. Problem
Detection Valuepack tick box must be ticked.

57

Figure 14 - Files to edit to configure MyFirstProblemDetectionValuePack

Step 3: Mandatory steps. Rename and edit ‚Problem_Skeleton.java‛. Edit the filters file. Configure
the Main Policies and the Problem Specific Policies.

In src/test/resources com.hp.uca.expert.vp.pd.core ProblemDefault.java is
available as a reference (not for modification) for the default code of the overridable methods.

7.2 Simulation

It is possible and even quite easy to check the correctness of a Problem Detection Value Pack before
actually building and deploying it.

Developing a Problem Detection Value Pack does not involve writing correlation rules. In any case, it
is highly recommended to unit test your code prior to kit generation and deployment.

For detailed explanation on how to unit test your Value Pack, please see Chapter 3.10 of HP Unified
Correlation Analyzer for Event Based Correlation Value Pack Development Guide

The screen shot below points to a test skeleton named MyProblemTest.java.

The file to rename as <problem

name>.java and where to override

some methods . (see 6.1.2)

The filters file. (See 5.1)

The context file. To be modified if

a new GeneralBehavior

implementation is needed (see 6.1.4)

The place to configure Main Policies

and Problem Specific Policies (see

5.2 and 5.3)

58

Figure 15 - Files to modify to create a JUnit test

Note that log4j.xml visible in ‚Figure 15 - Files to modify to create a JUnit test‛ is the place where to
configure the level of logging for the JUnit tests such as MyProblemTest.java

59

Chapter 8 Value Pack creation

This chapter prepares you to quickly build a Problem Detection Value Pack.
The pre-requisite is the installation of the UCA for EBC Problem Detection Development Kit which is
comprised of

- UCA for EBC Development Kit (see UCA for EBC Value Pack Development Guide)
- UCA for EBC Development Kit Problem Detection Extension

8.1 Dynamic configuration update
It is possible to reload the filters and the configuration of a Problem Detection Value Pack by
reloading a Problem Detection Value Pack scenario using the UCA for EBC GUI.

 Please refer to the [R4] Unified Correlation Analyzer for Event Based Correlation User Interface

Guide for information on how to reload a UCA for EBC scenario using the UCA for EBC GUI.

8.2 Logging

Like for any UCA for EBC Value Pack, the logging configuration for a Problem Detection Value
Pack has to be done in the file /opt/UCA-EBC/conf/uca-ebc-log4j.xml on the UCA for
EBC server.

The list of specific Problem Detection loggers is given below:

Logger Description

com.hp.uca.expert.vp.pd.config.Pr
oblemProperties

Controls the extraction of values from the XML
configuration files

com.hp.uca.expert.vp.pd.core.Xml
Problem

Controls the parsing of the XML of the XmlProblem
customization

com.hp.uca.expert.vp.pd.core.Pro
blemDefault

Controls the execution of the default
implementation of Problem Detection behavior

com.hp.uca.expert.vp.pd.core.PD_
AlarmRecognition

Controls the decoding and setting of the roles of
alarms

com.hp.uca.expert.vp.pd.core.PD_
Lifecycle

Controls the states propagation methods

com.hp.uca.expert.vp.pd.core.PD_
TroubleTicket

Controls the emission of Trouble Ticket requests

com.hp.uca.expert.vp.pd.core.PD_
Navigation

Controls the requests for updates on alarms

com.hp.uca.expert.vp.pd.core.PD_
Process

Controls the execution of operations of Problem
Detection at a high level,(attaching a subalarm to a
group, creating a Trouble Ticket, …)

com.hp.uca.expert.vp.pd.core.Pro
blemDetection

Controls the execution of operations of Problem
Detection at the highest level: the methods
invoked directly from the rules

com.hp.uca.expert.vp.pd.problem
Controls the customization of classes

60

Logger Description

com.hp.uca.expert.vp.pd.services.
PD_Service_Lifecycle

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.
PD_Service_ProblemAlarm

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.
PD_Service_Util

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.
PD_Service_Navigation

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.
PD_Service_Action

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.services.
PD_Service_TroubleTicket

Controls Problem Detection Internals

com.hp.uca.expert.vp.pd.actions.T
eMIPActionsFactory

Controls the actions that will be sent to TeMIP

com.hp.uca.expert.vp.pd.actions.T
eMIPActionsFactoryCallbacks

Controls the constructions of callbacks that will be
invoked by the UCA EBC framework (triggered by
TeMIP responses)

com.hp.uca.expert.vp.pd.actions.T
eMIPTroubleTicketActionsFactory

Controls the actions that will be sent to the
Trouble Ticket System through TeMIP

com.hp.uca.expert.vp.pd.actions.T
eMIPTroubleTicketActionsFactory
Callbacks

Controls the constructions of Trouble Ticket
callbacks that will be invoked by the UCA EBC
framework

In addition to these Problem Detection loggers, it can be very useful to log with the
following UCA-EBC logger
logger name="com.hp.uca.expert.filter" with level
DEBUG to trace why an alarm does not pass
TRACE to trace why an alarm passes

8.3 Monitoring

Please refer to the Unified Correlation Analyzer for Event Based Correlation ” User Interface Guide
and to the Unified Correlation Analyzer for Event Based Correlation ” Reference Guide for more
information on monitoring.

61

Chapter 9 Value Pack deployment

As a Problem Detection Value Pack is installed, deployed, started like any UCA for EBC Value Pack,
this Chapter is very similar to chapter 3.5 of the UCA for EBC Reference Guide

9.1 Installing a Value Pack
Like any UCA-EBC Value Pack, a Problem Detection Value pack is a packaged as a zip file generated
using the UCA for EBC Development toolkit.

To install a Problem Detection Value Pack, you need to copy the zip file to the
${UCA_EBC_HOME}/valuepacks directory. No other action is needed to install a value pack.

UCA for EBC server will automatically detect the newly installed Value pack. This value pack will then
be visible from the UCA for EBC GUI Dashboard UCA for EBC > Application > Monitoring.

Please refer to the Unified Correlation Analyzer for Event Based Correlation ” User Interface Guide
for all GUI Administration features.

9.2 Deploying a Value Pack
Deploying a value pack can be done either from the command-line or the GUI of UCA for EBC:

From the command line, please execute the following commands (you need to be logged as the ‚uca‛
administration user):

$ cd ${UCA_EBC_HOME}/utilities/bin
$ uca-ebc-admin --deploy -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the value pack to deploy
(example: llef-example 1.0)

From the Web GUI.

By clicking on the ‚deploy‛ button from the Value pack Monitoring view.

9.3 Starting a Value Pack
Starting a value pack can be done either from the command-line or the GUI of UCA for EBC:

From the command line, please execute the following commands (you need to be logged as the ‚uca‛
administration user):

$ cd ${UCA_EBC_HOME}/utilities/bin
$ uca-ebc-admin --start -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the Value Pack to start
(example: llef-example 1.0)

62

From the Web GUI

By clicking on the ‚start‛ button from the Value pack Monitoring view.

Starting a Value Pack will also create all the mediation flows defined for this Value Pack in the
mediation flows section of the ValuePackConfiguration.xml file.

9.4 Stopping a Value Pack
Stopping a Value Pack can be done either from the command-line or the GUI of UCA for EBC:

From the command line, please execute the following commands (you need to be logged as the ‚uca‛
administration user)

$ cd ${UCA_EBC_HOME}/utilities/bin
$ uca-ebc-admin --stop -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the Value Pack to stop
(example: llef-example 1.0)

From the Web GUI

By clicking on the ‚stop‛ button from the Value pack Monitoring view

Stopping a Value Pack will also delete the mediation flow(s) associated with this Value Pack.

9.5 Undeploying a Value Pack

Un-deploying a Value Pack can be done either from the command-line or the GUI of UCA for EBC:

From the command line, please execute the following commands (you need to be logged as the ‚uca‛
administration user)

$ cd ${UCA_EBC_HOME}/utilities/bin
$ uca-ebc-admin --undeploy -vpn valuepackName -vpv valuepackVersion

Where valuepackName and valuepackVersion are the name and version of the Value Pack to un-
deploy (example: llef-example 1.0)

From the Web GUI

By clicking on the ‚undeploy‛ button from the Value Pack Monitoring view.

Undeploying a Value Pack performs the following actions:

 It removes the Value Pack from the ${UCA_EBC_HOME}/deploy directory

It makes an archive ZIP file of the Value Pack and stores it in the ${UCA_EBC_HOME}/archive

directory

63

Annex A.

Value Pack example

As part of the Problem Detection Development Kit, an example Value Pack project, named pd-
example, is available.

If deployed, the pd-example Value Pack will be able to recognize four problems:

Problem_BitError

Problem_Synch

Problem_Power

XmlGeneric_Synch

The filters for those four problems are present.

 There is customization Java code for Problem_BitError, Problem_Synch, and Problem_Power.

There is customization XML for XmlGeneric_Synch.

There are examples of alarm enrichment, action factory and trouble ticket action factory definition.

There are examples of tests file that can be run with JUnit. Those tests simulate the deployed
behavior of the pd-example Value Pack without having to actually deploy it. Alarms are injected in
the Value Pack as though they came from the network.

64

A.1. pd-example, content of src/main/java

Table 14 - src/main/java : the customization code for the example Value Pack

com.acme.enrichment
This package contains classes used to read an XML file called Enrichment.xml present in
src/main/resources/valuepack/conf.
Enrichment.xml contains information to enrich alarms. It is a kind of table where if you know the
managedObject of an alarm, then you can find the associated site.

Extract of Enrichment.xml
<managedObjectToSite>

 <managedObject>motorola_omcr_system […] 5 btssitemgr 0 msi 18 mms
0</managedObject>
 <site>bsc khorfakkan_bsc24 bts bridippm_6185</site>

</managedObjectToSite>

The file MissingInfoAlarmPowerTest.java present in src/test/java/ft/enrichment is
the test file sending alarms belonging to problem ‘Problem_Power’ and that need to be enriched
with site information

EnrichmentProperties.java is the class that contains method to read the
Enrichment.xml file.

EnrichmentPropertiesMXBean.java is the interface implemented by
EnrichmentProperties.java

EnrichmentXml.java and ManagedObjectToSite.java are data structure to store the

enrichment information.

65

com.hp.uca.expert.vp.pd.core
ActionsFactoryGeneralBehavior.java contains an example of method
whatToDoWhenAlarmIsJustInserted() being overridden to do enrichment

MyGeneralBehavior.java & MyGeneralBehaviorExample.java also contain examples of methods of the
GeneralBehaviorInterface being overridden. See 6.1.4

MyProblemDefault.java illustrates methods of the ProblemInterface being overridden for a

subset of problems. See 6.1.3

com.hp.uca.expert.vp.pd.problem

Problems’ customizations
In src/main/java, problems’ customization classes are available in package
com.hp.uca.expert.vp.pd.problem.

pd-example has four main problems. Out of these four problems, have been customized by
writing Java code: Problem_BitError, Problem_Synch, Problem_Power, and one has been
customized by writing XML (in
src/main/resources/valuepack/conf/ProblemXmlConfig.xml): XmlGeneric_Synch

File overrides

Problem_BitError.java calculateProblemAlarmAdditionalText

computeProblemEntity

isAllCriteriaForProblemAlarmCreation

Problem_Sync.java

Same as Problem_BitError +

calculateProblemAlarmEventTime

Problem_Power.java

Same as Problem_BitError +

calculateProblemAlarmSeverity

isInformationNeededAvailable

isMatchingProblemAlarmCriteria

Problem_BitError_MyProblemDefault.j
ava

Same as Problem_BitError +

calculateProblemAlarmSeverity

Problem_ActionsFactory.java Same as Problem_BitError +

isMatchingSubAlarmCriteria

isMatchingTriggerAlarmCriteria

66

A.2. pd-example, content of src/test/java

This directory contains the source code of JUnit tests used to simulate the behavior of the pd-
example value pack. It also contains Actions Factory customization examples.

Table 15 - src/test/java : the source code of the tests

ft.actionsfactory

A Problem Detection Value Pack receives alarms from a Network Management System (NMS), does
some processing, and has to ask the NMS to execute some actions. The list of actions that are
supported is present in the SupportedActions java interface. The SupportedActions interface defines
methods such as createProblemAlarm(), terminateAlarm(), clearAlarm(), …

The ActionsFactory.java class is a nutshell implementation of the SupportedActions interface.

Problem Detection provides TeMIPActionsFactory.java, a real implementation of SupportedActions
for the case the NMS is TeMIP.
For cases where the NMS is not TeMIP, it is required to write an implementation of the
SupportedActions interface on the model of the MyActionsFactory.java.

MyActionsFactoryCallback.java contains the callbacks methods that the NMS must call after

executing some of the actions.

A Problem Detection Value Pack may also need to create and manage trouble tickets. The possible
interactions between the Problem Detection Value Pack and a trouble ticketing system are listed in
the SupportedTroubleTicketActions.java interface. The SupportedTroubleTicketActions interface
defines methods such as createTroubleTicket(), closeTroubleTicket(), …

The TroubleTicketActionsFactory.java class is a nutshell implementation of the
SupportedTroubleTicketActions interface.

Problem Detection provides TeMIPTroubleTicketActionsFactory.java, a real implementation of
SupportedTroubleTicketActions for the case the trouble ticketing system is HP Service Manager
(accessed through TeMIP)

67

For cases where the trouble ticketing system is not HP Service Manager, it is required to write an
implementation of the SupportedTroubleTicketActions interface on the model of the
MyTroubleTicketActionsFactory.java

MyTroubleTicketActionsFactoryCallback.java contains the callbacks methods that the

trouble ticketing system must call after executing some of the requests.

ActionsFactoryTest.java is a test file that simulates the sending of some alarms and then

checks that the necessary actions have been emitted.

ft.all

PDFramework_sequencedTest.java is a test file. It sends alarms corresponding to the four

problems Problem_BitError, Problem_Synch, Problem_Power and XmlGeneric_Synch. It checks that
problems are detected, that Problem Alarms are created, that sub-alarms are tagged, that number
of groups created is correct and that number of actions executed is correct.

ft.enrichment

MissingInfoAlarmPowerTest.java is a test file. It sends alarms that need to be enriched. It

checks that the enrichment was successful.

A.3. pd-example, content of src/main/resources

Table 16 - src/main/resources : the configuration files of the example Value Pack

Filters
Available in src/main/resources/valuepack/pd/ProblemDetection_filters.xml
There are the topFilters corresponding to the four problems:

Problem_Synch
Problem_Power
Problem_BitError
XmlGeneric_Synch

<topFilter name="XmlGeneric_Synch">
<topFilter name="Problem_Synch">
<topFilter name="Problem_Power">
<topFilter name="Problem_BitError">

68

Rules
Hidden under src/main/resources/valuepack/pd/ProblemDetection_Rules.pkg

Configuration
Files located in src/main/resources/valuepack/conf
context.xml This file can be used to declare that the Problem Detection Value Pack pd-
example relies on a customization of the GeneralBehavior
Enrichment.xml This file contains data to enrich alarms belonging to Problem_Power
ProblemXmlConfig.xml This file contains the main policies, for example which Actions
Factory to use; and the problem specific policies, for example the time window of each problem.
ProblemXmlConfig.xsd The XML schema of ProblemXmlConfig.xml
ValuePackConfiguration.xml This file is used to define the configuration of the Value
Pack and its Scenarios, the scenario policies, and the mediation flows

A.4. pd-example, content of src/test/resources

69

Table 17 - src/test/resources : the tests configuration files

com.hp.uca.expert.vp.pd.core

ProblemDefault implementation
Located under src/test/resources/com/hp/uca/expert/vp/pd/core/

ft.actionsfactory
Each JUnit test can run with a specific configuration for the Value Pack. For example the JUnit test
file named ActionsFactoryTest.java, will use ActionsFactoryTest-context.xml (name must be
<test file name>-context.xml) as context file.
This context file points at ProblemXmlConfig_ActionsFactory.xml, which is the policies
configuration file, and at ValuePackConfiguration_ActionsFactory.xml, which is the main
Value Pack configuration file which in turns points to
ProblemDetection_filters_ActionsFactory.xml, which is the filters file
Alarms.xml is the file describing the simulated alarms that will be sent by the test
ActionsFactoryTest.java.

ft.all

This package contains all the alarms files used by JUnit test file PDFramework_sequencedTest.java.
The JUnit test file PDFramework_sequencedTest.java sends alarms from each alarms file one by one,
in sequence.

It would be possible to send all alarms simultaneously by using the file Alarms_all_problems.xml

Alarms_BitError_T1.xml alarms belonging to Problem_BitError and
grouped in a group different from the group where alarms coming from
Alarms_BitError_T2.xml will be gathered
Alarms_BitError_T2.xml alarms belonging to Problem_BitError and
grouped in a group different from the group where alarms coming from
Alarms_BitError_T1.xml will be gathered

Alarms_Power_T1.xml alarms belonging to Problem_Power and grouped in
a group different from the groups where alarms coming from Alarms_ Power
T2.xml and Alarms Power _T3.xml will be gathered
Alarms_Power_T2.xml alarms belonging to Problem_ Power and grouped
in a group different from the groups where alarms coming from Alarms_ Power
T1.xml and Alarms Power _T3.xml will be gathered Alarms_Power_T3.xml
 alarms belonging to Problem_ Power and grouped in a group different from
the groups where alarms coming from Alarms_ Power _T1.xml and Alarms_
Power _T2.xml will be gathered

Alarms_Synch_T1.xml alarms belonging to Problem_Synch and grouped in
a group different from the group where alarms coming from
Alarms_Synch_T2.xml will be gathered
Alarms_Synch_T2.xml alarms belonging to Problem_Synch and grouped in
a group different from the group where alarms coming from
Alarms_Synch_T1.xml will be gathered

Alarms_XmlGeneric_Synch_T1.xml alarms belonging to problem
XmlGeneric_Synch

70

PDFramework_sequencedTest-context.xml the context file of
PDFramework_sequencedTest.java test file

ft.enrichment

Alarms_power_only.xml the alarms file containing alarms sent by
MissingInfoAlarmPowerTest.java

MissingInfoAlarmPowerTest-context.xml the context file of
MissingInfoAlarmPowerTest.java test file.

Like any UCA for EBC Value Pack, the pd-example Value Pack, if deployed, can send action requests
to be executed by the mediation layer associated with UCA for EBC Server, namely: OSS Open
Mediation V6.0.
The actions are executed by a Channel Adapter (specific to a target application) on the mediation
layer. Action replies are then returned to the pd-example Value Pack.
UCA for EBC Value Pack scenarios use web services to communicate with the Action Service web
service of a Channel Adapter, typically the UCA for EBC Channel Adapter.

For these actions to be properly routed to the mediation layer and then to the
correct Channel Adapter and target application, the file ActionRegistry.xml
must be configured correctly.

For details on how to configure the ActionRegistry.xml please refer to the UCA for EBC
Administration, Configuration and Troubleshooting Guide, and in particular to the ‘uca-
ebc.properties file configuration’ chapter.

ActionRegistry.xsd is the XML schema for ActionRegistry.xml.

log4j.xml contains the different log levels that can be configured for the entire
set of JUnit tests of the pd-example Value Pack.

uca-ebc.properties contains the different properties that can be configured for UCA -EBC Server. This
file generally does not need to be modified. Please refer to the UCA for EBC Administration,
Configuration and Troubleshooting Guide, and in particular to the ‘ActionRegistry.xml file
configuration’ chapter

71

Annex B.

Advanced customization

B.1. Problem Detection behavior customization

As seen in chapter 6.1.3 it is possible to modify the default behavior of Problem Detection Value
Packs.
The behavior can be modified

- per problem
- per family of problems
- for all problems
- for non problem specific matters

Per problem

Modifying the behavior of Problem Detection for one given problem, is done through overriding some
of the methods of the ProblemInterface in the problem’s customization class.

Per family of problems

Modifying the default behavior of Problem Detection for a set of problems, is done in two steps:

1st step -- creation of a MyFamilyOfProblems (this name is given as an example) customization class
that implements some overriden methods of the ProblemInterface.

2nd step ” for each problem in the family, creation of the problem’s customization class that extends
the MyFamilyOfProblems customization class.

For all problems

Modifying the default behavior of Problem Detection for all problems is identical as doing it for a
family of problems. The only difference is that all problems’ customization class must extend one
‚MyAllProblemsDefault‛ (this name is given as an example) class

For non problem specific matters

Problem Detection framework offers the possibility to modify some behaviors not linked to any
problem, through the creation of a customization class like MyGeneralBehavior (name is given as an
example), and overriding methods of the GeneralBehaviorInterface interface such as
whatToDoWhenProblemDetectionIsInitialized(),
whatToDoWhenNewAlarmIsJustInserted()

It is also required to modify the context.xml file in the
src/main/resources/valuepack/conf/ folder to tell Problem Detection that the customized
implementation of the methods of the GeneralBehaviorInterface have to be found in and only in
MyGeneralBehavior class. It is therefore pointless to override any GeneralBehaviorInterface method
anywhere else other than in the class specified in the context.xml file.

GeneralBehaviorInterface defines methods such as
‚whatToDoWhenProblemDetectionIsInitialized()” that are not specific to any problem, and

72

are not invoked by the Problem Detection framework on a problem object. It is therefore useless to
provide an implementation of those methods in the class of customization of the problems.

The figure below shows an example of

- a ‚per problem‛ customization => Problem1.java
- a ‚per family of problems‛ customization => MyFamilyOfProblems.java for Problem2 &

Problem3
- a ‚non problem specific‛ customization => MyGeneralBehavior.java

Figure 16 - schema of implementation of the main Problem Detection interfaces

B.2. ActionsFactory implementation
Will be available in a future version

B.3. TroubleTicketActionsFactory implementation
Will be available in a future version

