
 

 

 

 

  HPSA Extension Pack 

SOSA 

Release V6.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HPSA Extension Pack 

SOSA 

 

2 
 

Legal Notices 

Warranty. 

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited 

to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall 

not be held liable for errors contained herein or direct, indirect, special, incidental or consequential 

damages in connection with the furnishing, performance, or use of this material. 

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from 

your local Sales and Service Office. 

Restricted Rights Legend. 

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in 

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 

252.227-7013. 

Hewlett-Packard Company United States of America 

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-

19(c)(1,2). 

Copyright Notices. 

©Copyright 2001-2013 Hewlett-Packard Development Company, L.P., all rights reserved. 

No part of this document may be copied, reproduced, or translated to another language without the 

prior written consent of Hewlett-Packard Company. The information contained in this material is subject 

to change without notice. 

Trademark Notices. 

Java™ is a trademark of Oracle and/or its affiliates. 

Linux is a U.S. registered trademark of Linus Torvalds 

Microsoft® is a U.S. registered trademark of Microsoft Corporation. 

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc. 

EnterpriseDB® is a registered trademark of EnterpriseDB. 

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB. 

Oracle® is a trademark of Oracle and/or its affiliates. 

UNIX® is a registered trademark of the Open Group. 

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation. 

All other product names are the property of their respective trademark or service mark holders and are 

hereby acknowledged. 

Document id: EP-pd001603 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

3 
 

Table of Contents 

Legal Notices ...................................................................................................................................... 2 

Table of Contents ................................................................................................................................. 3 

In This Guide ....................................................................................................................................... 5 

Audience ............................................................................................................................................ 5 

Install Location Descriptors .................................................................................................................... 6 

1 Introduction ...................................................................................................................................... 9 
1.1 Purpose ..................................................................................................................................... 9 
1.2 Acronyms .................................................................................................................................. 9 

2 Introduction to SOSA ....................................................................................................................... 10 
2.1 Functionality ............................................................................................................................ 10 
2.2 Architecture ............................................................................................................................. 10 

3 Modules......................................................................................................................................... 12 
3.1 Main Module ........................................................................................................................... 12 
3.2 Time Window Module .............................................................................................................. 12 

3.2.1 Starting and Stopping SOSA .............................................................................................. 13 

4 Service Action Executors .................................................................................................................. 14 
4.1 WFM Service Action Executors .................................................................................................. 14 
4.2 SOSA Asynchronous Response Module....................................................................................... 15 
4.3 Developing workflows compatible with Sosa ............................................................................... 16 

4.3.1 Invoking the SOSA Asynchronous Response Module from a workflow ...................................... 16 
4.4 Case-packet variables in workflows related to SOSA .................................................................... 16 
4.5 Developing a Service Action Executor ......................................................................................... 17 

5 Queues .......................................................................................................................................... 20 
5.1 Configuration........................................................................................................................... 20 
5.2 Basic Queue ............................................................................................................................ 21 

5.2.1 Priority Queue ................................................................................................................... 22 
5.2.2 Dynamic Basic Subqueue ................................................................................................... 23 
5.2.3 Dynamic Priority Subqueue ................................................................................................. 24 
5.2.4 Service Action Executor Selector .......................................................................................... 25 
5.2.5 Adaptive Service Action Executor Selector ............................................................................ 25 
5.2.6 Customizing the Service Action Executor Selector .................................................................. 26 

6 Service Catalog .............................................................................................................................. 28 
6.1 Definition ................................................................................................................................ 28 
6.2 JDBC Service Catalog ............................................................................................................... 29 
6.3 Building Service Catalog ........................................................................................................... 29 

6.3.1 Service Orders .................................................................................................................. 30 
6.3.2 Service Actions .................................................................................................................. 30 
6.3.3 Parameters Mapping .......................................................................................................... 31 
6.3.4 Service Parameters ............................................................................................................ 32 
6.3.5 Dynamic Service Orders ..................................................................................................... 33 

6.3.5.1 Request XML Schema ................................................................................................... 33 
6.3.5.2 Request Semantics ....................................................................................................... 33 
6.3.5.3 Service Request Example .............................................................................................. 34 

6.4 Localization ............................................................................................................................. 35 

7 Protocol Adapters ........................................................................................................................... 37 
7.1 Configuration........................................................................................................................... 37 
7.2 Definition ................................................................................................................................ 37 
7.3 RMI and Web Service Protocol Adapters .................................................................................... 37 



HPSA Extension Pack 

SOSA 

 

4 
 

7.3.1 RMI Protocol Adapter ......................................................................................................... 38 
7.3.2 Web Service Protocol Adapter ............................................................................................ 38 

7.3.2.1 Multiple instances of Web Service Protocol Adapter ........................................................ 39 
7.3.3 Next Generation Web Service Protocol Adapter ................................................................... 40 
7.3.4 Implementing the client side ................................................................................................ 40 
7.3.5 Creating a new Protocol Adapter ........................................................................................ 41 

8 Persistence ..................................................................................................................................... 44 
8.1 Hibernate Persistence ................................................................................................................ 44 
8.2 File mixed Hibernate Persistence ................................................................................................ 46 

9 Managers ...................................................................................................................................... 48 
9.1 History Manager ...................................................................................................................... 48 
9.2 Partition history tables ............................................................................................................... 49 
9.3 Create custom columns ............................................................................................................. 49 
9.4 Performance Manager .............................................................................................................. 50 
9.5 Performance Status Manager ..................................................................................................... 51 
9.6 Creating new manager ............................................................................................................. 52 
9.7 TPS (Transaction Per Second) Manager ....................................................................................... 53 

10 Executing Service Orders ............................................................................................................... 55 
10.1 Service State Diagrams ........................................................................................................... 55 

11 Time Window Module ................................................................................................................... 58 

12 Tips and recommendations ............................................................................................................. 59 
12.1 Performance tips .................................................................................................................... 59 

12.1.1 Processors ....................................................................................................................... 59 
12.1.1.1 Service Order Processors ............................................................................................ 59 
12.1.1.2 Service Action Processors ........................................................................................... 60 
12.1.1.3 Common configuration ............................................................................................... 61 

12.2 Logging ................................................................................................................................. 63 
12.3 Get a Service Order or Service Action ...................................................................................... 63 
12.4 Modify a Service Action or Service Order ................................................................................. 63 
12.5 Load entire tree order ............................................................................................................. 64 
12.6 Creating new database connection .......................................................................................... 65 
12.7 Avalanche Control .................................................................................................................. 65 

 

  



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

5 
 

In This Guide 

This guide describes the Sosa product, including its architecture and use. 

Audience 

The audience for this guide is the developers of EP applications and solutions. The EP has a 

combination of some or all of the following capabilities: 

Understands and has a solid working knowledge of: 

– UNIX® commands 

– Windows® system administration 

Understands networking concepts and language 

Is able to program in Java™ and XML 

Understands security issues 

Understands the customer’s problem domain



HPSA Extension Pack 

SOSA 

 

6 
 

Conventions 

The following typographical conventions are used in this guide. 

Font What the Font 

Represents 

Example 

Italic Book or manual titles, 

and man page names 

Refer to the HP Service Activator — Workflows and the 

Workflow Manager and the Javadocs man page for more 

information. 

Provides emphasis You must follow these steps. 

Specifies a variable that 

you must supply when 

entering a command 

Run the command: 

InventoryBuilder <sourceFiles> 

Parameters to a method The assigned_criteria parameter returns an ACSE response. 

Bold New terms The distinguishing attribute of this class... 
Computer Text and items on the 

computer screen 

The system replies: Press Enter 

Command names Use the InventoryBuilder command ... 

Method names The get_all_replies() method does the 

following... 

File and directory 

names 

Edit the file 
$ACTIVATOR_ETC/config/WFM.xml 

Process names Check to see if WFM is running. 

Window/dialog box 

names 

In the Test and Track dialog... 

XML tag references Use the <DBTable> tag to... 
Computer 

Bold 
Text that you must type At the prompt, type: ls -l 

Keycap Keyboard keys Press Return. 

[Button] Buttons on the user 

interface 

Click [Delete]. 

Click the [Apply] button. 

Menu 

Items 

A menu name followed 

by a colon (:) means 

that you select the 

menu, then the item. 

When the item is 

followed by an arrow  (-

>), a cascading menu 

follows 

Select Locate:Objects->by Comment. 

 

Install Location Descriptors 

The following names are used throughout this guide to define install locations. 

Descriptor What the Descriptor Represents 
$ACTIVATOR_OPT The install base location of Service Activator. 

The UNIX location is /opt/OV/ServiceActivator 

The Windows location is 
<drive>:\HP\OpenView\ServiceActivator\ 

$ACTIVATOR_ETC The install location of specific Service Activator configuration files. 

The UNIX location is /etc/opt/OV/ServiceActivator 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

7 
 

The Windows location is 
<drive>:\HP\OpenView\ServiceActivator\etc\ 

$ACTIVATOR_VAR The install location of specific Service Activator logging files. 

The UNIX location is /var/opt/OV/ServiceActivator 

The Windows location is 
<drive>:\HP\OpenView\ServiceActivator\var\ 

$ACTIVATOR_BIN The install location of specific Service Activator binary files. 

The UNIX location is /opt/OV/ServiceActivator/bin 

The Windows location is 
<drive>:\HP\OpenView\ServiceActivator\bin\ 

$JBOSS_HOME HOME The install location for JBoss. 

The UNIX location is /opt/HP/jboss 

The Windows location is 
<drive>:\HP\jboss 

$JBOSS_DEPLOY The install location of the Service Activator J2EE components. 

The UNIX location is 
/opt/HP/jboss/stanalone/deployments 

The Windows location is 
<drive>:\HP\jboss\stanalone\deployments 

$ACTIVATOR_DB_USER The database user name you define. 

Suggestion: ovactivator 
$ACTIVATOR_SSH_USER The Secure Shell user name you define. 

Suggestion: ovactusr 
$SOSA_HOME The install base location of SOSA. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/SOSA 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\SOSA\ 
$SOSA_BIN The install location of specific SOSA binary files. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/SOSA/bin 

The default Windows location is 
<drive>:\HP\OpenView\ServiceActivator\EP\SOSA\bin\ 

$SOSA_CONFIG The install location of specific SOSA configuration files. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/SOSA/conf 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\SOSA\conf\ 
$ECP_HOME The install base location of Equipment Connections Pool. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/ECP 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\ 
$ECP_BIN The install location of specific Equipment Connections Pool binary 

files. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/ECP/bin 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\bin\ 
$ECP_ETC The install location of specific Equipment Connections Pool 

configuration files. 

The default UNIX location is 



HPSA Extension Pack 

SOSA 

 

8 
 

/opt/OV/ServiceActivator/EP/ECP/conf 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\conf\ 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

9 
 

1   Introduction 

1.1   Purpose 

This document is meant as a developers reference guide for the SOSA latest version. It contains all the 

information about this application, its features and how to use them. 

1.2   Acronyms 

SOSA: Service Order Smart Adapter 

WFM: Micro Work Flow Manager 

HPSA: HP Service Activator 

HPSA EP: HPSA Extension Pack 

SO: Service Order 

SA: Service Action 

SAE: Service Action Executor 

PA: Protocol Adapter 



HPSA Extension Pack 

SOSA 

 

10 
 

2   Introduction to SOSA 

2.1   Functionality 

Service Order Smart Adapter (SOSA) is a flexible adapter to manage the influx of Service Orders, which 

are aimed at the transactional activation engine called Service Activator. In this way, SOSA provides 

additional features for the treatment of these requests compared to a traditional system. 

The main features added are: 

 The possibility to receive incoming requests to the system in multiple formats, thanks to the 

capacity of SOSA to implement new Protocol Adapters that can receive requests in any known 

format. 

 The possibility to define a flexible service catalog, which allows decomposing each service into a 

list of provision flows to be launched for each Service Order. 

 Guaranteed transactional of the Service Order. 

 Possibility to define service queues to allow better management when there are problems with the 

system's performance. 

 Modular administration of Service Order persistence and historic records. 

2.2   Architecture 

The figure below shows the major components of the architecture of Sosa. This section only scrapes the 

surface. For more information about the components, go to the user reference manual. 

Protocol Adapters are the components which listen to and handle the queries sent by the external clients 

and they build the Service Order trees that will be inserted into SOSA to be processed. SOSA, on its 

installation, provides two protocol adapters for working with queries via RMI and Web Services. 

When a Service Order is inserted into SOSA, the Service Order Processor and the Service Action 

Processor are the components that handle that service through its execution, changing its status on each 

step and responding to the Protocol Adapter in the end. 

Queues are responsible for storing Service Actions until a consumer takes them out to be executed by a 

Service Activation Executor. Each queue can have several consumers. Two queues are provided by 

default, a basic (FIFO) queue and a priority queue. 

The Service Action Executor executes Service Actions loaded by a queue consumer. Executors can work 

in two ways: synchronous or asynchronous modes. Since most of the Service Actions represent an HPSA 

workflow execution, SOSA provides a concrete Service Action Executor to work with these workflows ‘the 

WFM Service Action Executor’. The communication between the executor and the HPSA is performed via 

RMI. 

The Service Catalog stores the needed information to build the whole service tree associated with a 

Service Order. The Service Catalog implementation provided by SOSA is based on JDBC and stores all 

the elements in an Oracle data base. 

The SOSA Persistence allows keeping a non-volatile register of the services which are being executed, in 

order to prevent the loss of received queries due to system shutdown. SOSA is provided with a 

persistence based on Hibernate, an object/relational tool. 

Also, it is possible to configure a History manager in SOSA. This is the manager that is used to listen to 

the end of Service Orders, which are processed and responded to the client, and then it moves them to 

the History register. Like Persistence, the History is based on Hibernate. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

11 
 

Service Order Smart Adapter (SOSA)

Protocol AdapterRMI Adapter Web Service 

Adapter

Service Order Processor

Service Action Processor

Queues

Queue Consumers

Service Action Executors

…....

External Systems

Activation Systems

SAE 1 SAE n…....

Thread
Thread

Thread

Thread
Thread

Thread

Queue 1 Queue n

Persistence 

manager

Persistence DB

Service catalog

…....

…....

Catalog manager

Tree service
SO

SA

SOSO

SOSO

SA SA SASA

Protocol Adapter Interface

 



HPSA Extension Pack 

SOSA 

 

12 
 

3   Modules 

SOSA is based on modules. This, apart from providing scalability, sets a clear separation among the 

different features provided by this tool. All the modules that are part of SOSA are configured in 

$SOSA_CONFIG/sosa.xml. The next sections describe the currently existing modules and how must they 

be configured. 

3.1   Main Module 

This module is called sosaModule (this name is required and cannot be modified) and it is responsible 

of initializing the different SOSA components (such as managers, protocol adapters, service catalog, and 

the persistence layer) when SOSA is started up. In the same line, it is also responsible for stopping them 

when SOSA is shutting down. 

This module accepts the next parameters: 

 sosa.instance.name: The name of the SOSA instance. It is only required when SOSA is 

configured to work in high availability. 

 sosa.conf.file: Indicates the path of SOSA configuration file. It is an optional parameter 

and if not defined it defaults to $SOSA_CONFIG/sosa_conf.xml. 

 jetty.start: Indicates whether the web service provided with SOSA must be started up or 

not. It accepts the values true to start up the web service and false to skip it. It is an optional 

parameter and if not defined defaults to false. 

 sosa.recover.service.order.threads: The number of threads that will be started up to 

restore the persisted services once SOSA has been started up. These threads will stop working 

when there are no more persisted services to restore. It is an optional parameter and defaults to 

20. 

 sosa.action.saver.enable: Indicates whether SOSA has to save the state of each 

component (Managers, Protocol Adapters, Queues and Service Action Executors) into a XML 

formatted file (see parameter sosa.action.saver.file). It accepts the values true (SOSA 

will write the XML file) and false. It is an optional parameter and defaults to true. 

 sosa.action.saver.file: A XML formatted file where SOSA will write the state its 

Managers, Protocol Adapters, Queues and Service Action Executors. This file is managed by 

SOSA and cannot be modified from outside. It is primarily intended to provide that information 

quickly and easily. This is an optional parameter and if not specified defaults to 

$SOSA_CONFIG/sosa_action_saver.xml. 

 sosa.client.service: The name of the RMI service published by SOSA to manage services 

externally. It is an optional parameter and its default value is SosaClient. 

<Modules> 
  <Module name="sosaModule" className="com.hp.sosa.modules.sosamodule.SosaModule"> 
    <Parameter name="sosa.conf.file" value="conf/sosa_conf.xml" /> 
    <Parameter name="jetty.start" value="false" /> 
  </Module> 
</Modules> 

3.2   Time Window Module 

The Time Window Module offers a way to schedule tasks or actions to be applied to SOSA components. 

Further sections related to the behavior of the Time Window Module will provide a detailed description of 

its features. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

13 
 

This module is called timeWindowModule (this name is mandatory and cannot be modified) and 

requires the next initial parameters to configure the database pool which access the database where the 

scheduling tasks will be stored: 

 db.pool.name: The database pool name. It is a mandatory parameter. 

 db.user: The user name. It is a mandatory parameter. 

 db.password: The user’s password. It must be encrypted, never in clear text. Service Activator 

provides an encrypt utility to generate encrypted passwords. It is a mandatory parameter. 

 db.jdbc.driver: The Java class of the database driver to use. Drivers are different for Oracle, 

EnterpriseDB and PostgreSQL. It is a mandatory parameter. 

 db.url: The database URL. It is a mandatory parameter. 

 db.initialsize: The number of connections to keep open and available since the beginning. 

 db.maxactive: The cap on the total number of active instances from my pool. Use a negative 

value for an infinite number of instances. 

 db.maxidle: The cap on the number of idle instances in the pool. Use a negative value to 

indicate an unlimited number of idle instances. 

 db.minidle: The minimum number of objects allowed in the pool before the evictor thread (if 

active) spawns new objects. 

 

Note: No objects are created when: numActive + numIdle >= maxActive. 

 

 db.maxwait: The maximum amount of time (in millis) an object should be blocked before 

throwing an exception when the pool is exhausted. When less than 0, objects may be blocked 

indefinitely. 

<Modules> 
  <Module name="timeWindowModule"  
          className="com.hp.sosa.modules.timewindowmodule.TimeWindowModule"> 
    <Parameter name="db.pool.name" value="db_time_window_module" /> 
    <Parameter name="db.user" value="myuser" /> 
    <Parameter name="db.password" value="mypassword" /> 
    <Parameter name="db.jdbc.driver" value="oracle.jdbc.driver.OracleDriver" /> 
    <Parameter name="db.url" value="jdbc:oracle:thin:@//myhost:1521/orcl" /> 
    <Parameter name="db.initialsize" value="2" /> 
    <Parameter name="db.maxactive" value="4" /> 
    <Parameter name="db.maxidle" value="4" /> 
    <Parameter name="db.minidle" value="0" /> 
    <Parameter name="db.maxwait" value="2000" /> 
  </Module> 
</Modules> 

3.2.1   Starting and Stopping SOSA 

After installing or updating SOSA through the HPSA Extension Pack Installer, the SOSA module and all its 

provided components (protocol adapters, service catalog, persistence…) are ready to work. 

These are the commands to manage the SOSA instance: 

 To start SOSA: $SOSA_BIN/sosa.sh start 

 To stop SOSA: $SOSA_BIN/sosa.sh stop 

 To restart SOSA: $SOSA_BIN/sosa.sh restart 

 To test SOSA: $SOSA_BIN/sosa.sh test 



HPSA Extension Pack 

SOSA 

 

14 
 

4   Service Action Executors 

Service Action Executors (SAEs) are the elements in charge of executing the Service Actions on the 

selected service activation platform. All implemented SAEs must be able to work in both synchronous and 

asynchronous mode. 

Synchronous mode: the executor sends the Service Action to be executed and waits until processed. Then 

it must return the response to the Service Action Processor. 

Asynchronous mode: the executor sends the Service Action to be executed without waiting until 

processed. The service activation platform must notify SOSA the execution finalization through an RMI 

service. Of course, the SAE must tell the final system the URL of that RMI service. 

Usually, the synchronous mode consumes more resources than asynchronous due to threads remains 

waiting for the execution completion. Therefore, in most cases asynchronous mode is the best choice. 

The way of Service Actions are executed by the SAE depends on the queue where they are processed. 

Synchronous queues will process Service Actions in a synchronous mode and asynchronous queues will 

process in an asynchronous mode. The next chapter in this document explains queues in detail. 

SOSA can initialize as many SAEs as desired. Internally, SOSA has a Service Action Execution Handler 

which manages the different executors running on SOSA. The handler initializes the executors using the 

configuration found on SOSA configuration file at $SOSA_CONFIG/sosa_conf.xml, inside the tag 

<ServiceActionExecutors>. 

Each SAE is represented by the tag <ServiceActionExecutor>, which has the following attributes: 

 name: The name of the Service Action Executor. 

 className: The complete class name where the Service Action Executor is implemented.  

 max_parallelism: The maximum number of concurrent executions that can be handled by the 

Service Action Executor. 

The configuration parameters of each SAE can be included inside the tag <ServiceActionExecutor> 

using the tag <Parameter>, which has a name and a value attributes. Next section shows a 

configuration example of a SAE. 

4.1   WFM Service Action Executors 

In many of SOSA scenarios, Service Actions represents HPSA workflows. The WFM Service Action 

Executor is a SAE implementation provided by SOSA, which is able to manage the workflow execution 

on a HPSA WFM instance. 

The communication between the WFM SAE and the WFM instance is performed via RMI. When WFM 

SAE starts a workflow use the RMI interface of the WFM. If the execution is made in asynchronous mode, 

the WFM will have to notify WFM SAE at the end of execution. Therefore, asynchronous mode requires 

that the WFM knows how to communicate with SAE. Later we will see how to do this. 

To add a WFM SAE to SOSA a new entry in the SOSA configuration file must be added. Below is shown 

a configuration example of a WFM SAE. 

<ServiceActionExecutors> 
  <ServiceActionExecutor 
        className="com.hp.sosa.modules.sosamodule.executors.mwfm.WFMServiceActionExecutor"  
        max_parallelism="0" name="WFM_SA_EXECUTOR"> 
    <Parameter name="host" value="127.0.0.1"/> 
    <Parameter name="port" value="2000"/> 
    <Parameter name="user" value="mysystemuser"/> 
    <Parameter name="password" value="mysystempassword"/> 
    <Parameter name="async_interval" value="10000"/> 
    <Parameter name="launch_retries" value="1"/> 
    <Parameter name="copy_cp_to_output" value="false"/> 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

15 
 

    <Parameter name="timeout" value="90000"/> 
    <Parameter name="timeout_interval" value="30000"/> 
  </ServiceActionExecutor> 
<ServiceActionExecutors> 

The WFM SAE configuration parameters are the following: 

 host: The hostname where the WFM is running. 

 port: The port where the RMI instance of WFM is published. 

 user: A valid user name to log on in the WFM. 

 password: The encrypted password of the given user to log on in the WFM. 

 launch_retries: The number of times the SAE will retry if a Service Action cannot be 

executed for any reason. 

 async_interval: The time to wait (in milliseconds) until the running jobs information is 

retrieved from the WFM. 

 max_time_sync_job: The maximum time in milliseconds that a work flow which has been 

started up in synchronous mode can be working until it is interrupted. 

 max_time_sync_job_interval: The time to wait (in milliseconds) until the information about 

a work flow that has been started up in synchronous mode is retrieved from the WFM. This is 

required in order to check whether the work flow has spent its working time (see 

max_time_sync_job). 

 timeout: The maximum amount of processing time for a Service Action to consider it timed out. 

 timeout_interval: The minimum time in milliseconds between timeout checks 

 copy_cp_to_output: Accepts the values true and false and indicates whether to copy all 

workflow case-packet variables into the output_params map when the execution finishes 

(true) or not (false). 

 add_extra_info: In case the Service Action’s parameter called extra_info has a valid 

value, add that value to the input parameters. The parameter extra_info must be plain text 

containing a list of name/value pairs separated by the characters configured in 

extra_info_attrib_limiter and it will be parsed and transformed into a Java Map. 

E.g. the text 
   variable1=value1|;|variable2=value2 

will be transformed into the map 
   {variable1=value1,variable2=value2} 

 extra_info_value_limiter: The character used to assign a name to its value. Its default 

value is =. 

 extra_info_attrib_limiter: The character used to separate name/value pairs. Its default 

value is |;|. 

4.2   SOSA Asynchronous Response Module 

When the WFM SAE is executing Service Actions in asynchronous mode, the workflow needs a way to 

notify SOSA from HPSA WFM when it is finished. SOSA provides this tool as a HPSA WFM module 

called SOSA Asynchronous Response Module. 

First of all, the module has to be configured in the WFM configuration file $ACTIVATOR_ETC/mwfm.xml 

as follows: 

<Module> 
  <Name>sosa_async_responser</Name> 
  <Class-Name>com.hp.spain.engine.module.sosa.SosaAsyncResponserImpl</Class-Name> 
  <Param name="errors_async_persistence_file" 
         value="C:/hp/OpenView/ServiceActivator/var/tmp/errors_async_responser.dat"/> 
</Module> 



HPSA Extension Pack 

SOSA 

 

16 
 

Where: 

 errors_async_persistence_file: It is a mandatory parameter that indicates the path and 

the name of the persistence file used if the communication with SOSA fails. 

 rmi_port: The port where publish a RMI service. Defaults to 2000. 

The steps of every SOSA Asynchronous Response Module operation are: 

i. First, the module tries to notify SOSA through RMI connection. 

ii. If RMI connection fails, the module stores the response in persistent file to retry the response later. 

4.3   Developing workflows compatible with Sosa 

Once we have seen how SOSA invokes HPSA workflows using the WFM SAE, and how the WFM is able 

to response SOSA via the Asynchronous Response Module, it is time to see how the HPSA workflows 

have to be developed to be compatible with SOSA. 

Two main points have to be taken into account in respect to the workflow compatibility with SOSA. On 

one hand the workflow has to be able to invoke the response module, on the other hand a set of case-

packet variables has to be defined in order to receive and sent parameters from or to SOSA, respectively. 

4.3.1   Invoking the SOSA Asynchronous Response Module from a workflow 

SOSA provides two ways to invoke the response module, a WFM node and a WFM end-handler. 

The recommended way is to configure the SosaEndHandler, because End Handlers are executed even 

if the workflow fails. 

<End-Handler> 
  <Name>SosaEndHandler</Name> 
  <Class-Name>com.hp.ov.activator.mwfm.ep.component.builtin.SosaEndHandler</Class-Name> 
</End-Handler> 

The other and not recommended is using a WFM node EndAsyncJob. This node can be used like any 

other WFM node in a workflow. When the workflow runs this node, it contacts with the module to 

response to SOSA. The node can receive an optional parameter queue to notify the end of an execution 

using the WFM message queue when the RMI service fails. 

</Process-Node> 
  <Process-Node> 
  <Name>EndAsyncJob</Name> 
  <Action> 
    <Class-Name>com.hp.ov.activator.mwfm.ep.component.builtin.EndAsyncJob</Class-Name> 
  </Action> 
</Process-Node> 

4.4   Case-packet variables in workflows related to SOSA 

SOSA uses the following Case Packet variables to interact and work with workflows: 

Name Description 

S_ACTION DO or UNDO. UNDO means the Service Action failed and it is executing 

the rollback workflow. DO means that the Service Action is executing its 

usual operation. 

S_SERVICE_NAME The service name of the SA as defined in the service catalog. 

S_SERVICE_ACTION The service action of the SA as defined in the service catalog. 

S_INPUT The map containing the input parameters. SOSA copies in this map the 

input parameters of the Service Order, so it can be used in the workflow. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

17 
 

S_ROLLBACK The map containing the rollback information. The workflow can put 

needed information for rollback in this map, so it can be used in the 

rollback workflow if necessary. 

S_CONTEXT The map containing the Service Order context. All the workflows 

executed by the Service Actions belonging to the same Service Order 

can access this map to share parameters. 

S_OUTPUT The map containing the output parameters. The workflows can put the 

output parameters in this map. 

S_SOSA_CODE It is the way to notify Sosa if the workflow finished correctly (value 0) or 

not (value different from 0). 

S_SOSA_DESCRIPTION The description of the workflow execution. 

S_CODE User defined code. 

S_DESCRIPTION User defined description. 

S_FORCE_RETRY Whether force a retry of the workflow in case on error. 

4.5   Developing a Service Action Executor 

Sometimes it is needed to develop a new ServiceActionExecutor because SOSA has to start actions 

in a different external system than WFM. To develop a new ServiceActionExecutor is useful to 

follow next steps. 

Let’s suppose that the new class ServiceActionExecutor is named NewExampleServiceActionExecutor. This 

new example class has to extend the class 

com.hp.sosa.modules.sosamodule.executors.ServiceActionExecutor. 

E.g.: 
  public class NewExampleServiceActionExecutor extends ServiceActionExecutor 

After that, the next methods must be implemented: 

 public boolean check(): This method returns true if the SAE has connectivity and is able 

to start orders correctly into the external system. Otherwise the connectivity is down or the 

external system is down and this method will return false. 

 public void finish(): When SOSA is stopping this method will be called and then the 

ServiceActionExecutor can disconnect or un-configure the required variables or environment. 

 public boolean haveToWaitAsynchronousResponse(String ssid): When SOSA 

starts up and detects that a Service Action was working in asynchronous mode on this SAE 

instance, SOSA calls this method to know if it can recover or not the Service Action in processing 

state. It will return true if this it is possible to keep this particular Service Action on processing 

state because it is assured that SOSA will receive the answer of this order. It will return false in 

the rest of the cases. 

 public boolean haveToWaitSynchronousResponse(String ssid): When SOSA 

starts up and detects that a Service Action was working in synchronous mode on this SAE 

instance, SOSA calls this method to know if it can recover or not the Service Action in processing 

state. It will return true if this it is possible to keep this particular Service Action on processing 

state because it is assured that SOSA will receive the answer of this order. It will return false in 

the rest of the cases. 

 public void init(Map initParmeters): This method will be called as part of the 

initialization of SOSA, i.e. when SOSA starts up and before any Service Action is sent to the 

SAE, granting this way that it will be possible to configure the Service Action. The initial 

parameters map contains all the parameters configured in the file 

$SOSA_CONF/sosa_conf.xml file for this SAE. 



HPSA Extension Pack 

SOSA 

 

18 
 

 public void refreshConfiguration(Map initparms): This method will be called by 

SOSA when the configuration needs to be refreshed. If a SAE does not accept reconfiguration 

this method must be left empty. The initial parameters map contains all the parameters configured 

in the file sosa_conf.xml file for this SAE. 

 public void killService(String ssid): If the Service Action has been configured with 

a maximum time to work, this method will be called when the Service Action execution time 

reaches that time, so it is timed out and the SAE has to kill the Service Action in the external 

system if it is possible. 

 public ServiceActionResponse process(String ssid): This method is invoked 

when the Service Action is working in synchronous mode and it is responsible of executing the 

Service Action in the external system and returning the result via SAE. 

 public ServiceActionResponse[] process(String[] ssids): This method is 

responsible of executing Service Action Groups in synchronous mode. Note that this method in 

only required when the Service Action can be handled by Queues which support Groups (see the 

section related to Queues for more information). If the external system doesn’t support execution 

of Service Action Groups then it is recommended to do just the lines below as part of this method: 

if (ssids != null){ 
  ServiceActionResponse[] sars = new ServiceActionResponse[ssids.length]; 
  for (int i=0; i<ssids.length;i++){ 
      sars[i] = process(ssids[i]); 
  } 
  return sars; 
} 

 public void processAsync(String ssid, String rmiUrl): This method will be 

called when the Service Action has to be executed in synchronous mode, this meaning that the 

external system has to connect to SOSA to return the result. Hence, this method is just responsible 

of starting the Service Action in the external system. By default SOSA provides a RMI service for 

this purpose. The parameter called rmiUrl contains the location of the RMI service to which the 

external system has to connect. 

 

Note: The RMI service will be an implementation of the interface 
   com.hp.sosa.modules.sosamodule.executors.ServiceActionExecutorResponser 

And it is responsible of receiving the response from the external system and sending it to the SAE which handles the Service Action 

execution. 

If the external system does not support RMI protocol then the SAE can implement any other supported protocol. The only requirement 

is to call the method returnServiceActionResponse of the SAE instance. E.g.: 

public void returnServiceActionResponse(ServiceActionResponse sar) throws RemoteException { 
   if (sar == null){ 
      log.error("SAEAsyncResponser.returnSAResponse: sar null ", new SosaException()); 
      return; 
   } 
   ServiceActionExecutor sae = 
         ServiceActionExecutorsManager.getServiceActionExecutor( 
               sar.getServiceActionExecutorName()); 
   if (sae != null){ 
      sae.returnServiceActionResponse(sar); 
   } else { 
      log.fatal( 
            "ServiceActionExecutor does not exist for the given ssid", 
            new SosaException()); 
   } 
} 

 

 public void processAsync(String[] ssids, String rmiUrl): This method is 

responsible of executing Service Action Groups in asynchronous mode. Note that this method in 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

19 
 

only required when the Service Action can be handled by Queues which support Groups (see the 

section related to Queues for more information). If the external system doesn’t support execution 

of Service Action Groups then it is recommended to do just the lines below as part of this method: 

if (ssids != null){ 
   for (int i=0; i<ssids.length;i++) 
      processAsync(ssids[i], rmiUrl); 
   } 
} 

 public void returnServiceActionResponse(ServiceActionResponse sar): This 

method is invoked when the external system returns the result of a Service Action which is 

working in asynchronous mode. As part of the internal logic inside this method an invocation to 

processServiceActionResponse has to be made in order to notify SOSA of the result of the 

Service Action. 

if(sar != null) { 
   processServiceActionResponse(sar); 
} else { 
   log.warn("ServiceActionResponse is null"); 
} 

 public void returnServiceActionResponse(ServiceActionResponse[] sars): 

This method returns the responses of the different Service Actions handled by this SAE. The 

recommended implementation can be found below. 

public void returnServiceActionResponse(ServiceActionResponse[] sars) throws 
RemoteException { 
   if (sars != null){ 
      for (int i=0; i < sars.length; i++){ 
         returnServiceActionResponse(sars[i]); 
      } 
   } 
} 



HPSA Extension Pack 

SOSA 

 

20 
 

5   Queues 

SOSA provides a method to control the load distribution among the service activation systems, the 

queues. Queues store Service Actions until a consumer takes them out to be executed by a SAE. Each 

queue can have several consumers. 

Queues are defined in the SOSA configuration file at $SOSA_CONF/sosa_conf.xml, under the tag 

<Queues>. Each queue must have its own tag <Queue> with the attributes: 

 name: The name of the queue. 

 className: Name of the class that implements the queue. 

The rest of the parameters of an implementation of queue are defined as tags <Parameter> with 

attributes name and value. The concrete implementation of the queue must be responsible of reading the 

parameters defined. 

A queue must have one or more Service Action Executors associated, which are the entities which process 

the elements of the queue. The SAEs are associated with the queues using the tag <Sae> inside the 

element <Queue>. There could be more than one SAE defined for the same queue and the load will be 

divided into them according to the following tag <Sae> attributes: 

 name: The name of the Service Action Executor. 

 medium_load: Average percentage of the queue load the SAE has to support. 

Users can build their own queues, which manage the Service Action execution as desired. However, 

SOSA provides a set of implemented queues that are useful most of applications. These are basic FIFO 

queues, priority queues and dynamic sub-queues. 

5.1   Configuration 

The configuration parameters described in this section are general to all the Queues defined in the system 

and hence they will apply to all of them. 

These common configuration parameters must be set in $SOSA_HOME/properties/sosa-

module.properties. 

 queue.class.directory: The directory in the file system where the Java classes 

implementing the Queues will be stored. It is an optional parameter and if not defined defaults to 
$SOSA_HOME/lib/queue. 

 queue.serviceactionexecutor.selector: The Java class containing the business logic to 

select the best Service Action Executor at a given time. It is an optional parameter and if not 

defined default to 

com.hp.sosa.modules.sosamodule.queues.ServiceActionExecutorSelector. 

 queue.lock.subqueue.on.lock.queue: Accepts the values true and false and 

indicates whether the Sub-Queues have to be locked when their Queue is locked (true) or not 

(false). It is an optional parameter and if not defined defaults to false. 

 queue.unlock.subqueue.on.unlock.queue: Accepts the values true and false and 

indicates whether the Sub-Queues have to be unlocked when their Queue is unlocked (true) or 

not (false). It is an optional parameter and if not defined defaults to false. 

 queue.open.subqueue.on.open.queue: Accepts the values true and false and 

indicates whether the Sub-Queues have to be opened when their Queue is opened (true) or not 

(false). It is an optional parameter and if not defined defaults to false. 

 queue.close.subqueue.on.close.queue: Accepts the values true and false and 

indicates whether the Sub-Queues have to be closed when their Queue is closed (true) or not 

(false). It is an optional parameter and if not defined defaults to false. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

21 
 

 queue.group: Accepts the values true and false and indicates whether the Queues have to 

be treated as Group Queues, so if true they will process groups of Service Actions according to 

the parameters queue.group.max.time and queue.group.max.num. It is an optional 

parameter and if not defined defaults to false. This parameter can be also configured for each 

particular Queue. 

 queue.group.max.time: Maximum time in milliseconds that an element of the group can 

wait. Default value is 0, which means there is no maximum time (it will wait indefinitely). This 

parameter can be also configured for each particular Queue. 

 queue.group.max.num: Number of elements that form a group if queue.group.max.time 

has not expired. It is an optional parameter and if not defined defaults to 0, which means that 

there is no limitation on the maximum number. This parameter can be also configured for each 

particular Queue. 

 queue.max.parallelism: Maximum number of Service Actions being processed 

simultaneously. It is an optional parameter and if not defined defaults to 0, which means that the 

maximum parallelism depends on the Service Action Executors. This parameter can be also 

configured for each particular Queue. 

 queue.timeout: Maximum time in milliseconds that a Service Action can be queued. It is an 

optional parameter and if not defined defaults to 0, which means that there is no timeout. This 

parameter can be also configured for each particular Queue. 

 queue.threads: Number of threads consuming from the Queue. It is an optional parameter 

and if not defined defaults to one consumer. This parameter can be also configured for each 

particular Queue. 

 queue.scheduler.interval: Milliseconds between two consecutive reads from queue. It is 

an optional parameter and if not defined defaults to 0. This parameter can be also configured for 

each particular Queue. 

 queue.subqueue.parameter: Name of the parameter where a default name for the Sub-

Queues of every Queue has been configured. This means that the configuration file 

$SOSA_HOME/properties/sosa-module.properties must contain a property which 

name must match the value of this one and which value must be the default name for the Sub-

Queues. It is an optional parameter and if not defined defaults to subqueue_name (note that by 

default there is no property called subqueue_name, so this won’t make effect until that property 

is added). 

 queue.synchronous: Accepts the values true and false and indicates whether the Queue 

is synchronous (true) or not (false). If synchronous then the consumer waits for the Service 

Action to finish before getting another one from the Queue. It is an optional parameter and if not 

defined defaults to false. This parameter can be also configured for each particular Queue. 

 queue.block.on.retry: Accepts the values true and false and indicates whether the 

Queue must be locked until retrying (true) or not (false). It is an optional parameter and if not 

defined defaults to false. This parameter can be also configured for each particular Queue. 

 queue.subqueue.getter.class: The Java class containing the business logic to select the 

best Sub-Queue at a given time. It is an optional parameter and if not defined default to 

com.hp.sosa.modules.sosamodule.queues.SubQueueGetterImpl. 

 queue.subqueue.default: Name of the default Sub-Queue that will be returned by the 

SubQueueGetter if no other is better. 

5.2   Basic Queue 

This is the basic implementation of a queue, which could be enough for users without any special needs 

in the queue behaviour. It is implemented as a FIFO (First In, First Out) queue with a list where the 



HPSA Extension Pack 

SOSA 

 

22 
 

elements are added when they arrive, and its consumer that reads the first element of the list. The 

configuration parameters are: 

 queue.threads: Number of threads consuming from the queue. Default value is one consumer. 

 queue.scheduler.interval: Milliseconds between two consecutive reads from queue. 

Default value is 0. 

 queue.timeout: Maximum time in milliseconds that a Service Action can stay inside the queue. 

Default value is 0, which means there is no timeout. 

 queue.max.parallelism: Maximum number of Service Actions being processed 

simultaneously. Default value is 0, which means the max parallelism depends on the SAEs. 

 queue.block.on.retry: In case the Service Action has failed and will be reinserted, the 

Service Action will be reinserted into the first place and the place on maximum parallelism will 

not be release until the Service Action has been re-queued. By default false. 

 queue.group: If a queue is defined as a group queue, it processes groups of Service Actions 

according to the parameters queue.group.max.time and queue.group.max.num. Default 

value is false. 

 queue.group.max.time: Maximum time in milliseconds that an element of the group can 

wait. Default value is 0, which means there is no maximum time. 

 queue.group.max.num: Number of elements that form a group if queue.group.max.time 

has not expired. Default value is 0, which means there is no maximum number. 

 queue.wait.retry: Milliseconds that the consumer has to wait before retrying to get an 

Executor. 

 queue.synchronous: If it is synchronous, the consumer waits for the service action to finish 

before getting another one from the queue. 

Here is an example configuration of a basic queue with five consumer threads and two WFM SAEs to 

which the load is distributed equally: 

<Queue className="com.hp.sosa.modules.sosamodule.queues.basic.BasicQueue"  
       name="WFM_BASIC_QUEUE"> 
  <Parameter name="queue.threads" value="5"/> 
  <Parameter name="queue.synchronous" value="false"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR1"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR2"/> 
</Queue> 

5.2.1   Priority Queue 

This implementation of a queue uses the priority of a Service Action to decide which one has to be 

processed. When a Service Action is assigned to a priority queue in the catalog, it should also include 

priority=X in the field QUEUE_PARAMETERS. This way, the queue reads this parameter to know the 

priority of that Service Action. 

The algorithm used to consume elements from the queue does not process all the elements of a given 

priority before processing the immediate lower priority. In fact, it is a probabilistic algorithm where the 

higher the priority an element has, the more probable is for it to be consumed. This way, it is possible that 

an element of the lowest priority is consumed before an element with the highest one. 

By default, there are four priorities defined, from zero to three, where three is the highest, but the number 

of priorities can be overwritten in the configuration of the queue with the parameter priorities. Each 

priority defined creates one list where elements of that priority are added. 

The configuration parameters of the priority queues are the following: 

 queue.priorities: Number of priorities which can manage the queue. 

 queue.threads: Number of threads consuming from the queue. Default value is one consumer. 

 queue.scheduler.interval: Milliseconds between two consecutive reads from queue. 

Default value is 0. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

23 
 

 queue.timeout: Maximum time in milliseconds that a Service Action can stay inside the queue. 

Default value is 0, which means there is no timeout. 

 queue.max.parallelism: Maximum number of Service Actions being processed 

simultaneously. Default value is 0, which means the max parallelism depends on the SAEs. 

 queue.block.on.retry: In case the Service Action has failed and will be reinserted, the 

Service Action will be reinserted into the first place and the place on maximum parallelism will 

not be release until the Service Action has been re-queued. By default false. 

 queue.group: If a queue is defined as a group queue, it processes groups of Service Actions 

according to the parameters queue.group.max.time and queue.group.max.num. Default 

value is false. 

 queue.group.max.time: Maximum time in milliseconds that an element of the group can 

wait. Default value is 0, which means there is no maximum time. 

 queue.group.max.num: Number of elements that form a group if queue.group.max.time 

has not expired. Default value is 0, which means there is no maximum number. 

 queue.wait.retry: Milliseconds that the consumer has to wait before retrying to get an 

Executor. 

 queue.synchronous: If it is synchronous, the consumer waits for the service action to finish 

before getting another one from the queue. 

The process of consuming an element from the queue is simple but must be explained: 

i. Decide which priority the consumer is going to use. 

ii. If there are elements of this priority, get one of them. 

iii. If there are not elements of this priority, check if there are elements of other priorities from highest 

to lowest, until one element is found. 

iv. If there are no elements in the queue, wait until one of any priority arrives and get it. 

In case of a grouped queue, the behaviour is quite similar: 

i. Decide which priority the consumer is going to use. 

ii. If there are enough elements of this priority, or if there are not enough but any of them have been 

waiting more than queue.group.max.time, get them. 

iii. If after the previous step we have not sent any element to be processed, check if there are enough 

elements of other priorities from highest to lowest, until one with enough elements is found. 

iv. If no priority has enough elements to process, check from highest to lowest priority if there are 

elements in the list that have been waiting more than queue.group.max.time, and send them 

if any is found. 

v. If no element has been sent yet, wait until another element is added, and check from highest to 

lowest priority if a group is formed or if timeout is finished. 

Here is an example configuration of a priority queue with five consumer threads and two WFM SAEs to 

which the load is distributed equally: 

<Queue className=" com.hp.sosa.modules.sosamodule.queues.priority.PriorityQueue"  
       name="WFM_PRIORITY_QUEUE"> 
  <Parameter name="queue.threads" value="5"/> 
  <Parameter name="queue.synchronous" value="false"/> 
  <Parameter name="queue.priorities" value="4"/> 
  <Parameter name="queue.group.max.num" value="10"/> 
  <Parameter name="queue.group.max.time" value="3000"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR1"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR2"/> 
</Queue> 

5.2.2   Dynamic Basic Subqueue 

This is the basic implementation of a Queue with Sub-Queues. The Queue will get the Sub-Queue name 

and if this Sub-Queue is not defined it’s created dynamically. In each Sub-Queue it’s implemented as a 



HPSA Extension Pack 

SOSA 

 

24 
 

FIFO (First In, First Out) queue with a list where the elements are added when they arrive, and its 

consumer that reads the first element of the list. The consumers will find the next Sub-Queue available with 

elements to execute. There are two level of maximum of parallelism, the global maximum elements to 

execute and the max parallelism for each Sub-Queue. Also, the Sub-Queues are available to lock/unlock 

and open/close. If queue is locked it’s locked for all queues. Then a Sub-Queue is unlocked if the queue 

is unlocked and Sub-Queue unlocked. It is the same to open/close. The group execution is not supported 

in this type of queue. 

To get the Sub-Queue name a class has to be defined. The default class is 
   com.hp.sosa.modules.sosamodule.queues.dynamicsubqueue.SubQueueGetter 

If you want to create another you have to extend this class an overwrite the method 
   public String getSubQueue(String ssid) 

If this class returns an empty Sub-Queue name, the service will add the default Sub-Queue. It is possible to 

define the extended class into the catalog through the field called subqueue assign class. 

The accepted configuration parameters are: 

 queue.threads: Number of threads consuming from the queue. Default value is one consumer. 

 queue.scheduler.interval: Milliseconds between two consecutive reads from the queue. 

Defaults to 0. 

 queue.timeout: Maximum time in milliseconds that a Service Action can stay inside the queue. 

Default value is 0, which means there is no timeout. 

 queue.max.parallelism: Maximum number of Service Actions being processed 

simultaneously. Default value is 0, which means the max parallelism depends on the SAEs. 

 queue.wait.retry: Milliseconds the consumer has to wait before retrying to get a SAE. 

 queue.synchronous: If it is synchronous, the consumer waits for the service action to finish 

before getting another one from the queue. 

 queue.block.on.retry: In case the Service Action has failed and will be reinserted, the 

Service Action will be reinserted into the first place and the place on maximum parallelism will 

not be release until the Service Action has been re-queued. Defaults to false. 

 queue.subqueue.max.parallelism: Default sub-queue maximum parallelism. 

 queue.subqueue.getter.class: The sub-queue getter name class (default class will find 

subqueue.name parameter first in QUEUE_PARAMETERS and then in InputParams). 

 queue.subqueue.max.time.live: The maximum time that a sub-queue not defined can live 

(default value is 0, which implies infinite). 

 queue.subqueue.nameN: Name of the sub-queue N, where N must be an increasing number 

starting with 0. 

 queue.subqueue.max.parallelismN: Maximum parallelism for the sub-queue N, where N 

must be an increasing number starting with 0. 

 queue.subqueue.error.subqueue.notfound: Accepts values true and false and 

indicates whether an error has to be notified when the requested sub-queue is not found (true) 

or not (false). Defaults to false. 

5.2.3   Dynamic Priority Subqueue 

This is the priority implementation of a Queue composed by Sub-Queues. The Queue looks for the 

requested Sub-Queue using the Sub-Queue name and it will dynamically create it if no Sub-Queue 

matches the name. Once the Sub-Queue has been selected, the priority is implemented following the FIFO 

(First In, First Out) policy: elements are appended at the end of the list as they arrive, and the Sub-Queue 

consumer gets one by one the first elements of the list. The consumers will find the next Sub-Queue 

available with elements to execute. There are two levels of maximum of parallelism: the global maximum 

elements to execute and the maximum parallelism allowed for each Sub-Queue. Also, the Sub-Queues are 

available to lock/unlock and open/close. If a Queue is locked then it becomes locked for every Sub-



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

25 
 

Queue. A Sub-Queue is unlocked when both the Queue and Sub-Queue are unlocked. It is the same to 

open/close. The group execution is not supported in this type of queue. 

To get the priority this queue uses the same system as “Priority Queue”. 

To get the Sub-Queue name a class has to be defined. The default class is 
   com.hp.sosa.modules.sosamodule.queues.dynamicsubqueue.SubQueueGetter 

If you want to create another you have to extend this class and overwrite the method 
   public String getSubQueue(String ssid) 

If this class returns an empty Sub-Queue name then the service will use the default Sub-Queue. It is 

possible to define the extended class into the catalog using the field subqueue assign class. 

The accepted configuration parameters are: 

 queue.threads: Number of threads consuming from the queue. Default value is one consumer. 

 queue.scheduler.interval: Milliseconds between two consecutive reads from the queue. 

Defaults to 0. 

 queue.timeout: Maximum time in milliseconds that a Service Action can stay inside the queue. 

Default value is 0, which means there is no timeout. 

 queue.max.parallelism: Maximum number of Service Actions being processed 

simultaneously. Default value is 0, which means the max parallelism depends on the SAEs. 

 queue.wait.retry: Milliseconds the consumer has to wait before retrying to get a SAE. 

 queue.synchronous: If it is synchronous, the consumer waits for the service action to finish 

before getting another one from the queue. 

 queue.block.on.retry: In case the Service Action has failed and will be reinserted, the 

Service Action will be reinserted into the first place and the place on maximum parallelism will 

not be release until the Service Action has been re-queued. Defaults to false. 

 queue.subqueue.max.parallelism: Default sub-queue maximum parallelism. 

 queue.subqueue.getter.class: The Sub-Queue getter name class (default class will find 

subqueue.name parameter first in QUEUE_PARAMETERS and then in InputParams). 

 queue.subqueue.max.time.live: The maximum time that a sub-queue not defined can live 

(default value is 0, which implies infinite). 

 queue.subqueue.nameN: Name of the Sub-Queue N, where N must be an increasing number 

starting with 0. 

 queue.subqueue.max.parallelismN: Maximum parallelism for the Sub-Queue N, where N 

must be an increasing number starting with 0. 

5.2.4   Service Action Executor Selector 

By default all Queues use the class 
   com.hp.sosa.modules.sosamodule.queues.ServiceActionExecutorSelector 

to decide which SAE will be used to execute each Service Action. 

5.2.5   Adaptive Service Action Executor Selector 

SOSA provides another SAE Selector called Adaptive SAE Selector which is implemented by the Java 

class 
com.hp.sosa.modules.sosamodule.queues.AdaptiveServiceActionExecutorSelector 

This SAE Selector, instead of granting an equitable distribution among the different SAEs, forces an 

asymmetric distribution among them based on the current number of running jobs in each SAE and 

granting that the probability of assigning a new job to a SAE is inversely proportional to the number of 

running jobs in each SAE. In other words, the new job will be assigned to the SAE that supports the 

lowest load, but taking in mind the configured rate-load for each SAE as it is made in the default SAE 

Selector as well. 



HPSA Extension Pack 

SOSA 

 

26 
 

The main idea is that this Adaptive SAE Selector will manage the jobs assignation in a consistent way, 

assuming eventual connectivity problems or asymmetric performances in the different SAEs. 

The usage of this SAE Selector requires that the next configuration is set into the file 

$SOSA_HOME/properties/sosa-module.properties: 

 Configure this SAE Selector as the one to be used updating the value of the property called 

queue.serviceactionexecutor.selector: 

queue.serviceactionexecutor.selector = 
   com.hp.sosa.modules.sosamodule.queues.AdaptativeServiceActionExecutorSelector 

 Add a parameter called 

queue.serviceactionexecutor.selector.adaptative.interval and assign to it the 

value 20000 (milliseconds). This parameter defines the minimum interval (in milliseconds) 

required until the internal management of the rate-load on each SAE is updated. This is an 

optional parameter and if not defined its default value will be 0, this meaning that the rate-load 

will only be measured when the Selector is initialized. 

 Additionally another parameter called 

queue.serviceactionexecutor.selector.adaptative.exponentialfit can also 

be defined to intensify the differences obtained among the number of running jobs on each SAE, 

hence causing that the distribution is made in less time. This is an optional parameter and its 

default value is the exponent 2, this meaning that the obtained number of running jobs on each 

SAE will be squared (i.e. multiplied by itself). The higher the value is configured, the quicker the 

job assignation will be balanced. Note that if the value 0 is configured then the number of 

running jobs on each SAE is not taken in mind since the result of any value with the exponent 0 is 

1, so the rate-load on each SAE will always be 1 and the rate-load on every SAE will be 

considered the same. 

5.2.6   Customizing the Service Action Executor Selector 

It is possible to develop a customized SAE Selector and extend the functionality provided by SOSA’s 

default SAE Selector. This might be required due to a particular scenario or to the customer’s 

requirements. To do so, the next steps must be followed: 

i. Edit the file $SOSA_CONFIG/sosa_conf.xml, look for the Queue(s) to which the customized 

SAE Selector will apply and set it through the attribute saeSelectorClassName of the tag 

<Queue>. 

ii. Write the Java class and deploy it below $SOSA_HOME/lib/queue. 

 

Note: The directory where customized Java SAE Selectors must be deployed is configurable so it can be different than 

$SOSA_HOME/lib/queue as it is explained in the section related to Queues Configuration. 

 

Example: 

A new implementation called CustomSAESelector is being defined and applied to the Queue called 

BasicQueue. The first thing required is to define and configure it in the file 

$SOSA_CONFIG/sosa_conf.xml as it is shown below: 

<Queue className="com.hp.sosa.modules.sosamodule.queues.basic.BasicQueue"  
       name="WFM_BASIC_QUEUE" saeSelectorClassName=”mypackage.CustomSAESelector”> 
  <Parameter name="queue.threads" value="5"/> 
  <Parameter name="queue.synchronous" value="false"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR1"/> 
  <Sae medium_load="50" name="WFM_SA_EXECUTOR2"/> 
</Queue> 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

27 
 

The next step is to write the source code of the customized SAE Selector, extending the Java class which 

implements the default SAE Selector 
   public class CustomSAEASelector extends ServiceActionExecutorSelector 

and implement the required methods with the new features: 

 public void init(Sae[] saes, Map parameters): initialize the custom SAE Selector 

and configure it with the initial parameters. 

 public ServiceActionExecutor getServiceActionExecutor(): return the next SAE 

to use. 

 public synchronized void addServiceActionExecutor(Sae sae): add a new SAE 

to this selector. 

 public synchronized void removeServiceActionExecutor(String name): 

remove the given SAE from this selector. 

 public Sae[] getSaes(): gets the existing SAEs. 



HPSA Extension Pack 

SOSA 

 

28 
 

6   Service Catalog 

The SOSA Service Catalog basically consists on the list of services provided by SOSA to the clients. 

6.1   Definition 

When SOSA receives a Service Order to process, it first needs to build it according to its catalog of 

services. The structure of a single Service Order in the catalog is a tree with a root node and any number 

of branches of unlimited depth with more nodes as children. There are two types of nodes in the tree: 

Service Orders and Service Actions. 

A Service Order is a node which can have other Service Orders or Service Actions as children, while a 

Service Action cannot have any children as it is a single executable action. 

The following figure shows an example of a tree service: 

Tree service

SO

SA

SOSO

SOSO

SA SA

SA

SA

SA

 
In this example we can see that this service order is compound of two service orders in the first level of 

depth; one of them is another complex service order, and the other is a single service order with three 

service actions to execute. 

With this structure in the catalog, the developer could design service orders as complex as needed, 

because there is no limit in the number of children a service order can have, and so, no limit in the 

number of service actions that can be executed with a simple service order. 

Another important feature derived from this structure is the flexibility to execute different orders or actions 

in serial or parallel mode. The processing mode is defined in the service order, which means that a 

service order is defined to process its children in serial or parallel mode. But as a service order can have 

another service order as a child, there could be different modes defined on each branch of the tree. For 

example, the root could execute its children in parallel mode, and each one of those could execute their 

children in serial or parallel too, and so on with deeper nodes. Service orders and actions can also be 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

29 
 

marked to be executed offline, meaning that they will immediately return the OK status to their parent 

service order and continue executing in the background. 

6.2   JDBC Service Catalog 

With the basic installation of SOSA, there is a catalog implementation included which stores all the 

elements into an Oracle database, and uses a JDBC driver to connect to it. 

The configuration of the catalog is included in the SOSA configuration file at 

$SOSA_CONF/sosa_conf.xml. To define a catalog implementation there must be three attributes into 

the tag <Catalog>, which are: 

 type: Must be catalog. 

 name: Name of the catalog. 

 className: Class name that implements the catalog. 

The JDBC catalog supports several configuration parameters: 

Name Description 

catalog.db.pool.name* Name of the database pool. 

catalog.db.host* Hostname of the machine where the database is present. 

catalog.db.port* Port to connect. 

catalog.db.instance* Oracle instance which stores the catalog. 

catalog.db.user* Username of the instance used for the catalog. 

catalog.db.password* Password of the username. 

catalog.db.driver.name* Name of the driver used. 

catalog.db.jdbc.driver* JDBC driver used. 

catalog.db.initialsize Initial size of connections pool. 

catalog.db.maxactive Maximum time a connection is active. 

catalog.db.maxidle Maximum time a connection is idle. 

catalog.db.minidle Minimum time for a connection to be marked as idle. 

catalog.db.maxwait Maximum time waiting for a connection. 

Those parameters followed by an asterisk(*) are mandatory, so in case one of them is not present in the 

configuration file an exception is launched in the catalog initialization. 

Here is an example of a JDBC catalog configuration: 
<Catalog className="com.hp.sosa.modules.sosamodule.catalog.jdbc.JDBCTreeCatalog"  

         name="JDBC_Catalog" type="catalog"> 

  <Parameter name="catalog.db.reload.period" value="600000"/> 

  <Parameter name="catalog.db.autoreload" value="true"/> 

  <Parameter name="catalog.db.pool.name" value="db_sosa_catalog"/> 

  <Parameter name="catalog.db.user" value="userpp"/> 

  <Parameter name="catalog.db.password" value="userpp"/> 

  <Parameter name="catalog.db.jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/> 

  <Parameter name="catalog.db.driver.name" value="jdbc:oracle:thin"/> 

  <Parameter name="catalog.db.host" value="127.0.0.1"/> 

  <Parameter name="catalog.db.port" value="1521"/> 

  <Parameter name="catalog.db.instance" value="HPSA"/> 

</Catalog> 

6.3   Building Service Catalog 

The usual process to define a service catalog is composed of three phases: 

 Define the Service Actions. 

 Define the relationships between Service Orders and Service Actions. 

 Define the relationships between Service Orders. 



HPSA Extension Pack 

SOSA 

 

30 
 

When Service Orders and Service Actions are defined several properties have to be set. These properties 

will state the operation of the services. Next sections will show the configuration options in the service 

catalog. 

6.3.1   Service Orders 

The Service Order configuration requires the next mandatory parameters: 

 service_order_name: The name of the Service Order. This is a required parameter and along 

with the service_name and the operation uniquely identifies the Service Order. 

 service_name: The name of the Service. It is a required parameter and along with the 

service_order_name and the operation uniquely identifies the Service Order. 

 operation: The operation name. It is just a name to identify the Service Order, so it doesn’t 

need to reference any existing operation concept. It is a required parameter and along with the 

service_order_name and the service_name uniquely identifies the Service Order. 

 timeout: The time, in milliseconds, before a timeout occurs. 

Additionally, the next optional parameters can be also configured: 

 persistable: Accepts the values true and false and indicates whether the Service Order must 

be persisted (true) or not (false). If a Service Order is marked as persistent, the tree of services 

built from the Service Order will be stored in the persistent database during its execution. 

 processing_mode: Accepts the values serial and parallel and indicates whether the 

children of the Service Order have to be executed in serial or parallel mode. If serial, 

the Service Order children will be executed one by one following the order assigned in the 

catalog; if parallel, all the children will be executed at the same time. 

 state: The state of the service order, which can be enable, disable, reject or simulate. 

 on_error: If there is an error on this Service Order, the action it will execute (ABORT, 

SUSPEND, ROLLBACK or CONTINUE). 

 offline: The service order will return immediately to its parent (or the protocol adapter if it is 

the order root) with an OK code and continue executing as usual afterwards. Actual return code 

and description can be checked in the history or persistence views. 

6.3.2   Service Actions 

The Service Action configuration requires the next mandatory parameters: 

 service_action_name: The name of the Service Action. This is a required parameter and 

along with the service_name and the operation uniquely identifies the Service Action. 

 service_name: The name of the Service. It is a required parameter and along with the 

service_action_name and the operation uniquely identifies the Service Action. 

 operation: The operation name. It is just a name to identify the Service Action, so it doesn’t 

need to reference any existing operation. It is a required parameter and along with the 

service_action_name and the service_name uniquely identifies the Service Action. 

 wf_name: The name of the work flow that will be started up when this Service Action is executed. 

 work_queue: The name of the Queue which will handle the Service Action. 

 timeout: The time, in milliseconds, before a timeout occurs. 

Optionally, the next parameters are also accepted: 

 wf_name_undo: The name of the work flow that will be started up in case of error to undo the 

operations performed by the work flow set in wf_name. 

 extra_info: Eventual extra data for the Service Action Processor. 

 state: The state of the Service Order, which can be one of enable, disable, reject or 

simulate. 

 num_retry: The number of times to retry the operation in case of error. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

31 
 

 retry_interval: The time, in milliseconds, to wait before retrying. 

 user_mapper_class: The name of the Java class used to map parameters among Service 

Actions of the same Service Order. This class must implement the interface 
   com.hp.sosa.modules.sosamodule.elements.UserMapperClass 

provided with SOSA and hence implement the methods 
   public void beforeProcessing(ServiceAction sa) 

   public void afterProcessing(ServiceAction sa) 

This class must be stored below $SOSA_HOME/lib/user. 

 

Note: The directory $SOSA_HOME/lib/user is configurable. See the description of the parameter user.class.directory 

in sosa-module.properties. 

 

 subqueue_parameter: The name of the parameter used to set the name of the Sub-Queue that 

will handle the Service Action. 

 subqueue_assign_class: The Java class used to assign the best Sub-Queue at a given 

moment. This class must be one of the available SubQueueGetter classes available in the 

system. See the section related to Queues for further information. 

 error_codes_retry: A comma separated list of error codes that will force in case of error to 

retry the Service Action. 

 num_retry_list: A comma separated list with the number of times to retry the Service Action 

for each configured error code (see error_codes_retry above). The length of this list must be 

the same as the one in error_codes_retry. 

 end_action_class: The name of the Java class used to map parameters among Service 

Actions of the same Service Order. This class must implement the interface 
   com.hp.sosa.modules.sosamodule.elements.UserEndActionClass 

provided with SOSA and hence implement the methods 
   public boolean doRetry(ServiceAction sa) 

This class must be stored below $SOSA_HOME/lib/user. 

 

Note: The directory $SOSA_HOME/lib/user is configurable. See the description of the parameter user.class.directory 

in sosa-module.properties. 

 
 on_error_wait_operator: Accepts the values true and false and indicates whether a 

manual interaction is required in case of error (true) or not (false). 

 queue_parameters: A comma separated list containing eventual parameters required by the 

Queue. They must be set this way: 
   param1=value1,param2=value2,… 

 use_sa_unique_name: Use the Service Action name instead of the parent Service Order 

name. This option is provided to preserve compatibility with previous versions of SOSA where 

Service Actions had no service_action_name parameter. 

 offline: Accepts the values true and false and indicates whether the Service Order to which 

the Service Action belongs has to return immediately to its parent (or the Protocol Adapter if it is 

the root Service Order) with an OK code and continue executing as usual afterwards. The return 

code and its description can be checked in the history or persistence views. 

6.3.3   Parameters Mapping 

Parameters mapping are associated to a Service Action. It allows making variable copies among different 

or same variable spaces. A variable space is a context where a set of variables may exist. 

SOSA defines the following variable spaces: 



HPSA Extension Pack 

SOSA 

 

32 
 

 Input space: Variable space that contains the input variables of a Service Order. 

 Output space: Variable space that contains the output variables of a Service Order. 

 Context space: Variable space that contains the context variables of a Service Order. 

 Results space: Variable space that contains the result variables of a Service Action execution. 

There are four kinds of parameter mappings: 

 Input Mappings DO: These mappings are executed at the beginning of the Service Action 

execution. 

 Input Mappings UNDO: These mappings are executed at the beginning of the rollback Service 

Action execution. 

 Output Mappings DO: These mappings are executed at the end of the Service Action execution. 

 Output Mappings UNDO: These mappings are executed at the end of the rollback Service Action 

execution. 

Within each kind of mapping, several mappings are ordered, so that they are executed in the established 

order. 

Input and Output mappings can be configured in $SOSA_HOME/properties/sosa-

module.properties: 

 inputmapping.space.input: Defaults to I 

 inputmapping.space.context: Defaults to C 

 inputmapping.space.output: Defaults to O 

 outputmapping.space.input: Defaults to I 

 outputmapping.space.context: Defaults to C 

 outputmapping.space.results: Defaults to R 

 outputmapping.space.output: Defaults to O 

6.3.4   Service Parameters 

A collection of service parameters can be defined in the catalog for a service action. Service parameters 

allow validating the request input parameters for the service action and providing default values for them. 

To preserve backwards compatibility, if no service parameters are specified for a service action or any 

parameter present in the request is not defined as a service parameter for the service action, it will be 

passed to the executor as-is. 

Service parameters are defined by: 

Name Description 

Name Name of the service parameter. 

Type Data type of the service parameter. Allowed types are String, Integer, 

Long, Boolean and Date. 

Format Parameter format for validation purposes. String parameter format is 

defined by a regular expression. Boolean parameters have no format. For 

Integer, Long and Date parameters a maximum and/or minimum value can 

be specified. Optional. 

default value The parameter default value. Optional. 

Mandatory Indicates that the parameter must be defined in the request. 

Overwrite Indicates that the default value takes precedence over the request value. 

Enabled If not enabled, the parameter is omitted during validation and its default 

value won’t overwrite the request value in any case. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

33 
 

6.3.5   Dynamic Service Orders 

Dynamic service orders allow creating service orders at request time by combining catalog service orders 

and actions and providing parameters to them. This special kind of request is sent to the protocol adapter 

in XML format. 

6.3.5.1   Request XML Schema 

The dynamic order request must adhere to the corresponding XML schema. The dynamic order schema 

can be found in $SOSA_CONFIG/xsd/dso.xsd. 

6.3.5.2   Request Semantics 

A dynamic order request consists of the following elements: 

a) Service Request 

This is the root element <serviceRequest>. It must contain a child tag <services> and it may also 

contain an optional <header> element. It doesn’t accept attributes. 

b) Header 

This is an optional child of the <serviceRequest> element. It consists of one or more <param> 

elements with mandatory <name> and <value> children for specifying input parameters common to all 

services in the request. 

c) Services 

This is a mandatory child of the <serviceRequest> element which acts as a container for a service or 

group of services. It will be translated to a dynamic service order at build time. It supports the following 

attributes: 

 mode: possible values are serial or parallel. It specifies how the children services have to 

be executed. Same as the processing_mode parameter of a Catalog Service Order. 

 onerror: possible values are abort, suspend, rollback or continue. It specifies what to 

do when a children service returns an error code. Same as the on_error parameter of a 

Catalog Service Order. 

 persistence: possible values are enable or disable. It specifies if the contained services 

must be persisted, same as the persistable attribute of a Catalog Service Order. All services 

inherit their parent persistence setting at order build time so only the root <services> setting 

will be taken into account. 

 name, type, action: the identifiers for the dynamic service order that will be created. 

 scheduledStartTime: the time at which the service order should start to be processed. 

A <services> element must contain one or more <service> or <services> elements defining the 

children services. 

d) Service 

This is a mandatory child of the <services> element defining a specific service. The following attributes 

are supported: 

 name, type, action: those three mandatory children elements identify a specific catalog 

service order or action to be instantiated. 

 characteristics: similar to the <header> element, it consists of one or more 

<characteristic> elements with their corresponding <name> and <value> children 



HPSA Extension Pack 

SOSA 

 

34 
 

specifying additional input parameters for the parent service. If a certain characteristic name is 

also a header parameter name, the characteristic value takes precedence when creating the 

service input parameters map. This is an optional child element. 

 composite: this is an optional child element that contains a <services> element representing 

the dependencies of the parent service. If it is present the service order resulting from it will be 

executed after the service by creating a dynamic service order with them both in serial mode. 

 scheduledStartTime: the time at which the service should start to be processed. 

 

NOTE: In cases where a dynamic service order would contain a single service order or action (except in the case it is the root of 

the order tree) it will be omitted in order to reduce the number of services in the order tree, so that single service child would 

directly replace the parent unnecessary dynamic order. 

 

6.3.5.3   Service Request Example 

Here is an example of a JDBC catalog configuration: 

<?xml version="1.0" encoding="UTF-8"?> 
<serviceRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xsi:schemaLocation="http://www.hp.com/sosa/dynamicserviceorder dso.xsd" 
    xmlns="http://www.hp.com/sosa/dynamicserviceorder"> 
     
    <header> 
       <param> 
          <name>customerid</name> 
          <value>34892</value> 
       </param> 
       <param> 
          <name>systemrequestorid</name> 
          <value>OrderManagement</value> 
       </param> 
    </header> 
     
    <services mode="serial" type="rollback" persistence="enable"> 
         
       <service scheduledStartTime="2011-11-10T18:23:00.000+01:00"> 
          <name>VOICE</name> 
          <type>MOBILE</type> 
          <action>ACTIVATE</action> 
          <characteristics> 
             <characteristic> 
                <name>imsi</name> 
                <value>1234124312342352133</value> 
             </characteristic> 
             <characteristic> 
                <name>msisdn</name> 
                <value>34979646947</value> 
             </characteristic> 
             <characteristic> 
                <name>rsa</name> 
                <value>42</value> 
             </characteristic> 
          </characteristics> 
          <composite> 
             <services mode="parallel" type="continue"> 
                <service> 
                   <name>VMS</name> 
                   <type>MOBILE</type> 
                   <action>ACTIVATE</action> 
                   <characteristics> 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

35 
 

                      <characteristic> 
                         <name>imsi</name> 
                         <value>1234124312342352133</value> 
                      </characteristic> 
                      <characteristic> 
                         <name>msisdn</name> 
                         <value>34979646947</value> 
                      </characteristic> 
                      <characteristic> 
                         <name>capacity</name> 
                         <value>5Mb</value> 
                      </characteristic> 
                   </characteristics> 
                </service> 
            </services> 
         </composite> 
      </service> 
         
      <service> 
         <name>DATA</name> 
         <type>MOBILE</type> 
         <action>ACTIVATE</action> 
         <characteristics> 
            <characteristic> 
               <name>imsi</name> 
               <value>1234124312342352133</value> 
            </characteristic> 
            <characteristic> 
               <name>msisdn</name> 
               <value>34979646947</value> 
            </characteristic> 
            <characteristic> 
               <name>capacity</name> 
               <value>5Mb</value> 
            </characteristic> 
         </characteristics> 
      </service> 
         
   </services> 
     
</serviceRequest> 

6.4   Localization 

SOSA, and particularly the Service Catalog, can be localized. The available localized texts must be 

configured in 
   $SOSA_HOME/properties/sosa-module.properties 

Prefixes employed in the Service Catalog to reference not persisting elements are: 

 so.tree.id.prefix.nopersistable: The prefix applied to the Catalog Tree when it is not 

persisted. It defaults to tree-nopers. 

 so.job.id.prefix.nopersistable: The prefix applied to the work flows that are not 

persisted. It defaults to job-nopers. 

 so.id.prefix.nopersistable: The prefix applied to Service Orders that are not persisted. 

It defaults to so-nopers. 

 sa.id.prefix.nopersistable: The prefix applied to Service Actions that are not persisted. 

It defaults to sa-nopers. 

The state names in which Service Orders and Service Actions can be found while they are working are: 

 status.created: Defaults to CREATED. 



HPSA Extension Pack 

SOSA 

 

36 
 

 status.built: Defaults to BUILDED. 

 status.scheduled: Defaults to SCHEDULED. 

 status.pause: Defaults to PAUSE. 

 status.processed: Defaults to PROCESSED. 

 status.wait.child: Defaults to WAIT_CHILD. 

 status.returned: Defaults to RETURNED. 

 status.processing: Defaults to PROCESSING. 

 status.enqueued: Defaults to ENQUEUED. 

 status.error: Defaults to ERROR. 

The state names in which Service Orders and Service Actions can be found while they are not working 

are: 

 status.enable: Defaults to enable. 

 status.disable: Defaults to disable. 

 status.reject: Defaults to reject. 

The names of the processing modes are: 

 mode.serial: Defaults to serial. 

 mode.parallel: Defaults to parallel. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

37 
 

7   Protocol Adapters 

In order to receive incoming requests from several clients using different protocols, SOSA define the 

Protocol Adapter concept. 

7.1   Configuration 

The configuration parameters described in this section are general to all the Protocol Adapters defined in 

the system and hence they will apply to all of them. 

These common configuration parameters must be set in $SOSA_HOME/properties/sosa-

module.properties. 

 protocol.adapter.class.directory: The directory in the file system where the Java 

classes implementing the Protocol Adapters will be stored. It is an optional parameter and if not 

defined defaults to $SOSA_HOME/lib/protocoladapter. 

 protocol.adapter.return.wait.retry: Time, in milliseconds, at which the services 

handled by the Protocol Adapter have to be awakened. It is an optional parameter and if not 

defined defaults to 5000 milliseconds (i.e. 5 seconds). 

7.2   Definition 

Protocol Adapters are the components which listen to and handle the queries sent by the external clients 

and build the tree service that will be inserted into SOSA. 

Developers can extend an abstract class called protocoladapter to create custom protocol adapters 

able to manage to the communications between SOSA and the client side. 

To use a protocol adapter, it must be declared in the SOSA configuration file at 

$SOSA_CONF/sosa_conf.xml. Protocol adapters are defined within a <ProtocolAdapter> tag 

inside the <ProtocolAdapters> tag. Each <ProtocolAdapter> tag must contain two attributes: 

 name: Name of the protocol adapter. 

 className: Class name that implements the protocol adapter. 

Although SOSA allows building customized protocol adapters, it also provides two implemented protocol 

adapters to work with RMI and Web Services clients. 

7.3   RMI and Web Service Protocol Adapters 

Both of the protocol adapters, RMI and Web Service, can work in two ways synchronous and 

asynchronous mode. Into the asynchronous mode it can work as pure asynchronous communication or 

pooling mode. 

 Synchronous mode: after receiving a request, the protocol adapter builds and inserts the service 

tree into SOSA, then wait for the response to notify the client. 

 Pure asynchronous mode: in this mode, the protocol adapter does not wait for the response. The 

protocol adapter will return to the client, this means the client should publish the RMI or web 

service interface to get the results. 

 Pooling asynchronous mode: in this mode, the protocol adapter does not wait for the response. It 

provides methods to check if a service order is processed and to get the response. 

From the standpoint of performance the asynchronous mode is usually the best choice. This mode allows 

clients implement pulling methods to handle the request, that are more efficient in managing threads that 

synchronous mode. 



HPSA Extension Pack 

SOSA 

 

38 
 

7.3.1   RMI Protocol Adapter 

This protocol adapter is defined in the SOSA configuration file as follows: 

<ProtocolAdapters> 
  <ProtocolAdapter 
        className="com.hp.sosa.modules.sosamodule.protocoladapters.rmi.RMIProtocolAdapter" 
        name="RMI_PA"> 
    <Parameter name="rmi.service.name" value="RmiPA"/> 
    <Parameter name="pooling.mode" value="false"/> 
    <Parameter name=" rmi.response.url " value="//ip:port/servicename"/> 
  </ProtocolAdapter> 
</ProtocolAdapters> 

The protocol adapter has next configurable parameters: 

Name Description 

rmi.service.name name of the RMI service name with which the protocol 

adapter will be registered via RMI 

rmi.response.url The client rmi url where the protocol adapter will return 

the response. The service should implement 

RMIPAResponseClient class 

pooling.mode If true the answer need to be getted by the client, if false 

the answer will be sent to the response url service. 

SOSA always use the same host and port to register all RMI protocol adapters: 

 Host: Name of the host where SOSA is running. 

 Port: 1119 

7.3.2   Web Service Protocol Adapter 

Below is shown an example configuration of Web Service protocol adapter: 

<ProtocolAdapters> 
  <ProtocolAdapter 
         className="com.hp.sosa.modules.sosamodule.protocoladapters.ws.WSProtocolAdapter" 
         name="WS_PA"> 
    <Parameter name="ws.ip" value="127.0.0.1"/> 
    <Parameter name="ws.port" value="8070"/> 
    <Parameter name="ws.min.threads" value="2"/> 
    <Parameter name="ws.max.threads" value="10"/> 
    <Parameter name="ws.url" value="/axis"/> 
  </ProtocolAdapter> 
</ProtocolAdapters> 

The protocol adapter has the following parameters: 

Name Description 

ws.ip The Web Service IP. 

ws.port The Web Service port. 

ws.min.threads The minimum number of threads serving requests. 

ws.max.threads The maximum number of threads serving request. 

ws.url The Web Service URL. 

ws.webapp.path The Web Service app path (by default a 

./webapps/axis1.4) 

ws.response.url The response url web services. The web service needs 

to implement the attached wsdl 

ws.secured True will make the protocol adapter to listen in https. 

ws.secured.keystore Mandatory it ws.secured=true. Keystore used to store 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

39 
 

the SSL certificate. 

ws.secured.password Mandatory it ws.secured=true. Password of the SSL 

certificate 

ws.secured.keyPassword Mandatory it ws.secured=true. Password of the 

keystore. 

ws.secured.protocol Only valid if ws.secured=true. SSL Protocol. Default 

value is “TLS”. 

ws.secured.algorithm Only valid if ws.secured=true. Algorithm of the 

certificate. Default value is “SunX509”. 

ws.secured.keystoreType Only valid if ws.secured=true. Type of the keystore. 

Default value is “JKS”. 

pooling.mode If true the answer need to be getted by the client, if false 

the answer will be sent to the response url service. 

7.3.2.1   Multiple instances of Web Service Protocol Adapter 

If more than one web services protocol adapter is desired, some extra manual steps are requested in 

order associate each protocol adapter with the web service instance. This can be done by defining new 

services in the provided axis 1.4 or by duplicating the entire web service. 

1. Define all the protocol adapters in the sosa_config.xml file 

2. Creating the new services. This can be done by adding service to the existent axis web 

application or by duplicating the axis. 

a. For adding new service you have to edit 
   $ACTIVATOR_OPT\EP\SOSA\webapps\axis1.4\WEB-INF\server-config.wsdd 

and: 

i. Copy the entire service named WSPAClientService until you have the same 

number of services than WS Protocol Adapters 

ii. Name them with different literals 

iii. Rename the parameter className to a different class 

E.g. 
com.hp.sosa.modules.sosamodule.protocoladapters.ws.WSPAClntSrvSOAPSkln_1 

for each entry. 

b. For duplicating the entire web service you have to copy the entire directory 
   $ACTIVATOR_OPT\EP\SOSA\webapps\axis1.4 

to 
   $ACTIVATOR_OPT\EP\SOSA\webapps\<name> 

This has to be done for every different Protocol Adapter. Also, you have to edit 
   $ACTIVATOR_OPT\EP\SOSA\webapps\<name>\WEB-INF\server-config.wsdd 

and: 

i. Change the references from axis1.4 directory to <name> directory 

ii. In service named WSPAClientService, rename the parameter className to 

a different class 

E.g. 
com.hp.sosa.modules.sosamodule.protocoladapters.ws.WSPAClntSrvSOAPSkln_1 

for each entry. 

Do not forget to set the ws.webapp.path parameter in the Protocol Adapter definition (in the 

file $SOSA_CONFIG/sosa_conf.xml) to the new web application route. 

3. Create all the classes defined previously in the className parameter. In this example this is 

reduced to 
com.hp.sosa.modules.sosamodule.protocoladapters.ws.WSPAClientServiceSOAPSkeleton_1 

They must extend from 
com.hp.sosa.modules.sosamodule.protocoladapters.ws.WSPAClientServiceSOAPSkeleton 



HPSA Extension Pack 

SOSA 

 

40 
 

and, in the constructor, assign the name of the Protocol Adapter associated to, like: 

public WSPAClntSrvSOAPSkln_1() { 
  super(“PROTOCOL_ADAPTER_1”); 
} 

7.3.3   Next Generation Web Service Protocol Adapter 

The Next Generation Web Service (NGWS) protocol adapter is a reimplementation of the Web Service 

protocol adapter using newer technologies such as JAXB and JAX-WS. This leads to a cleaner and more 

compatible web service interface for SOSA. Below is shown an example configuration of the NGWS 

protocol adapter: 

<ProtocolAdapter  
      className="com.hp.sosa.modules.sosamodule.protocoladapters.ngws.NGWSProtocolAdapter"  
      name="NGWS_PA"> 
   <Parameter name="ngws.host" value="127.0.0.1"/> 
   <Parameter name="ngws.port" value="8070"/> 
   <Parameter name="ngws.min.threads" value="2"/> 
   <Parameter name="ngws.max.threads" value="10"/> 
   <Parameter name="ngws.path" value="ngws"/> 
</ProtocolAdapter> 

The protocol adapter has the following parameters: 

Name Description 

ngws.host Server listening hostname. 

ngws.port Server listening port. 

ngws.min.threads The minimum number of threads serving requests. 

ngws.max.threads The maximum number of threads serving request. 

ngws.path The URL context path. 

ngws.webapp The webapp directory location. Optional. 

pooling.mode If true, responses to asynchronous requests must be 

retrieved by the client, otherwise they will be sent to the 

service specified by ngws.response.url. 

ngws.response.url Response URL for asynchronous requests when 

pooling.mode is inactive. 

7.3.4   Implementing the client side 

With both protocol adapters, RMI and Web Services, a basic java client is delivered. These clients 

manage the connections, relieving the customer to its management, and provide methods to send and 

manage requests. 

Both of clients (RMIPAClientService and WSPAClientService) offer commons methods to work 

with service orders: 

 getInstance(): gets an instance of the client. 

 startServiceOrderAsync(type, service, action, inputParams, user): starts a 

service order identified by type, service and action, with the given input parameters and the user 

who send it. 

 startDynamicOrderAsync(request, user): starts a dyanmic order based on the given 

XML formatted request and the user who send it in an asynchronous manner. 

 startDynamicOrderSync(request, user): starts a dyanmic order based on the given 

XML formatted request and the user who send it in a synchronous manner. 

 isServiceOrderReturned(ssid): checks if a service order identified by ssid has finished its 

execution. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

41 
 

 getReturnedServiceOrder(ssid): gets the finished service order identified by ssid. 

In case pooling.mode is false the RMI client should implement a RMI service base on 

RMIPAResponseClient interface class. In case of web service the client must implement next WSDL. 

Using the Protocol Adapter clients, customers can develop theirs owns clients by using these methods. 

7.3.5   Creating a new Protocol Adapter 

Usually is required to create new Protocol Adapter to adapt the external system format or protocol to 

SOSA. For this purpose we create new Protocol Adapter implementations. Let’s suppose the new Protocol 

Adapter is named NewExampleProtocolAdapter. The first step is extend the class 
   com.hp.sosa.modules.sosamodule.protocoladapters.ProtocolAdapter 

Like: 
   public class NewExampleProtocolAdapter extends ProtocolAdapter 

After this step there’re different methods required to implement. 

 public void finish(): when SOSA is stopping this method is called by SOSA. At this point 

it is required to remove the configured Protocol Adapter or finish the connections. 

 public String getErrorMessage(): in case the Protocol Adapter detect some error with 

the external system return an error message. Leave empty if not possible to detect any errors. 

public String getErrorMessage() { 
  return null; 
} 

 public String getGlobalStatus(): return the status of the Protocol Adapter 

public String getGlobalStatus() { 
  if (isRunning()){ 
     return Constants.SOSA_ACTION_RESUME; 
  } else { 
     return Constants.SOSA_ACTION_PAUSE; 
  } 
} 

 public String[] getListenersName(): in some case is necessary to add listeners to the 

Protocol Adapter. For example, if we define a JDBC Protocol Adapter and we can connect to two 

databases it is possible to define two listeners, one for each database. Usually, it is more 

common to define more Protocol Adapter instances to avoid using listeners. This method returns 

the name of the available listeners. Return {} is there aren’t. 

public String[] getListenersName() { 
  String[] listeners = {}; 
  return listeners; 
} 

 public boolean haveToInsertService(String ssid): when SOSA start and detects 

the root Service Order is on BUILDED status means that the protocol adapter made the build of 

the order only request to insert into the core. In the protocol adapter want to insert the order in 

SOSA needs to return true, if not return false. Usually, we return false because probably the 

external system couldn’t receive the id. 

public boolean haveToInsertService(String ssid) { 
  return false; 
} 

 public void init(Map initParameters): the initParameters map contains all the 

parameters configured  into the sosa_conf.xml file for this SAE. This method will be called by 

SOSA when start and before to send any Service Action to the executor to be able to configure it. 



HPSA Extension Pack 

SOSA 

 

42 
 

 public void refreshConfiguration(Map initparms): the initParameters map 

contains all the parameters configured  into the sosa_conf.xml file for this SAE. This method 

will be called by SOSA when the configuration needs to be refreshed. In case is not possible to 

refresh the configuration leave empty this method. 

 public boolean isRunning(): return true if the protocol adapter is running. Return false in 

other case. 

public boolean isRunning() { 
  return running; 
} 

 public boolean isRunningListener(String listenerName): return true if the 

listener is running. Return false in other case. 

public boolean isRunningListener(String name) { 
  for (int i = 0; i < listeners.length; i++) { 
    if (name.equals(listeners[i])) { 
      return listenersRunning[i]; 
    } 
  } 
  return false; 
} 

 public boolean[] isRunningListeners(): return the listener running status 

public boolean[] isRunningListeners() { 
  return listenersRunning; 
} 

 public void startListener(String listenerName): stop the listener. In case there’s 

not listeners leave empty. 

 public void stopListener(String listenerName): star the listener. In case there’s 

not listeners leave empty. 

 public void pause(): pause the protocol adapter. In other hand, in the method that you use 

to insert orders is necessary to check the status of protocol adapter to avoid insert orders when is 

paused. 

public void pause() { 
  running = false; 
} 

 public void resume(): resume the protocol adapter 

public void resume() { 
  running = true; 
} 

 public void returnServiceOrder(String ssid): this is one of the most important 

method of protocol adapter because when SOSA ends an order call this method and this method 

has to return the result to the external system. In case, the external system is down or there’s a 

communication problem to not send the result, a SosaException has to be throw. 

Automatically SOSA will retry after a while when receive this exception. 

public void returnServiceOrder(String ssid) throws SosaException { 
   ServiceOrder so = ServiceElementsManager.getServiceOrderReadOnly(ssid); 
   if (so == null) return; 
   try { 
      //returning the order to the external system 
   } catch (Exception e) { 
      new SosaException(e); 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

43 
 

   } 
} 

 public void shutdown(): When SOSA is stopping this method will be called and then the 

protocol adapter can disconnect or un-configure the required variables or environment 

 Finally, the protocol adapter needs to insert orders into SOSA. There’s no require to implement 

any particular method but the protocol adapter will need to implement some method that the 

external system will call. Let’s suppose this method is called startOrder: 

public String startOrder( 
      String type, 
      String service, 
      String action, 
      Map inputParams, 
      String user) 
throws SosaException 
{ 
  String ssid; 
  if (this.isRunning()) { 
    log.debug("Starting asynchronous service order”); 
    ssid = super.getNewBuildedServiceOrder(type, service, action, inputParams, user); 
    super.insertServiceOrder(ssid); 
    return ssid; 
  } 
  log.info("Start up of asynchronous service order failed -- the PA is not running"); 
  throw new SosaException("Cannot start the service order, the PA is not running"); 
} 

There’s two important points to do into this method: 

 Create the order using the catalog. For this purpose the super class protocol adapter provides a 

lot of method with names like getNewBuildedServicerOrder. 

 Insert into SOSA : it’s mandatory to insert the order when is ready to process calling the method 

insertServiceOrder(ssid). 



HPSA Extension Pack 

SOSA 

 

44 
 

8   Persistence 

SOSA is provided with a method to let users and developers to configure the persistence package that 

allows to Sosa keeping a non-volatile register of Service Orders and Service Actions being managed, in 

order to prevent the loss of received petitions due to falling of the system. And providing the capacity to 

restore these jobs at the point they were when the fall of the system happened. 

The persistence package to use may be configured via the SOSA configuration file, at 

$SOSA_CONF/sosa_conf.xml, by means of the <Persistence> tag, where you can specify the 

main class of the persistence implementation and the configuration parameters it needs. 

Developers of a new persistence method have to extend the SosaPersistence abstract class and 

implement its methods. 

8.1   Hibernate Persistence 

SOSA is provided with a persistence based on Hibernate (an object/relational mapping tool). Hibernate 

is an object/relational mapping tool for Java environments. The term object/relational mapping (ORM) 

refers to the technique of mapping a data representation from an object model to a relational data model 

with a SQL-based schema. 

Hibernate is the layer in the application which connects to the database, so it needs connection 

information. The connections are made through a JDBC connection pool, which it also needs to be 

configured. 

To configure Hibernate SOSA uses the XML configuration file 

$SOSA_CONF/hbm_persistence.cfg.xml. 

 

Note: The name and location of the XML file used to configure Hibernate is also configurable. This can be modified editing the file 

$SOSA_HOME/properties/sosa-module.properties and defining the property 

persistence.hibernate.config.file with the reference to the new file. As it can be supposed, the default value of this 

property is 
   persistence.hibernate.config.file = conf/hbm_persistence.cfg.xml 

 

Below is an example of it: 

<hibernate-configuration> 
  <session-factory> 
    <!-- Database connection settings --> 
    <property name="hibernate.connection.driver_class"> 
      oracle.jdbc.driver.OracleDriver 
    </property> 
    <property name="hibernate.connection.url"> 
      jdbc:oracle:thin:@127.0.0.1:1521:HPSA 
    </property> 
    <property name="hibernate.connection.username">userpp</property> 
    <property name="hibernate.connection.password">userpp</property> 
 
    <!-- C3P0 connection pool --> 
    <property name="hibernate.c3p0.acquire_increment">1</property> 
    <property name="hibernate.c3p0.idle_test_period">60</property> <!-- seconds --> 
    <property name="hibernate.c3p0.max_size">20</property> 
    <property name="hibernate.c3p0.max_statements">0</property> 
    <property name="hibernate.c3p0.min_size">10</property> 
    <property name="hibernate.c3p0.timeout">60</property> <!-- seconds --> 
 
    <!-- SQL dialect --> 
    <property name="dialect">org.hibernate.dialect.Oracle10gDialect</property> 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

45 
 

 
    <!-- Enable Hibernate's automatic session context management --> 
    <property name="current_session_context_class">thread</property> 
    <property name="transaction.factory_class"> 
      org.hibernate.transaction.JDBCTransactionFactory 
    </property> 
 
    <!-- Echo all executed SQL to stdout --> 
    <property name="show_sql">false</property> 
 
    <!-- Disable the second-level cache  --> 
    <property name="hibernate.cache.provider_class"> 
      org.hibernate.cache.NoCacheProvider 
    </property> 
 
    <!-- Possible values are: create(always create a new schema when starts), 
    update(updatetables that are different) or comment next property to do nothing 
    --> 
    <property name="hibernate.hbm2ddl.auto">update</property> 
 
    <mapping resource="hibernate/ServiceOrder.hbm.xml"/> 
    <mapping resource="hibernate/ServiceAction.hbm.xml"/> 
  </session-factory> 
</hibernate-configuration> 

The first four property elements contain the necessary configuration for the JDBC connection. After, it is the 

configuration of the C3P0 connection pooling tool. The dialect property element specifies the particular 

SQL variant Hibernate generates. Hibernate’s automatic session management for persistence contexts is 

configured to use the Hibernate built in SessionFactory and the thread execution to track the current 

session. The hbm2ddl.auto option turns on automatic updating of database schemas. Finally, we add 

the mapping files for persistent classes to the configuration – these are ServiceOrder.hmb.xml and 

ServiceAction.hbm.xml, at $SOSA_CONF/hibernate directory. 

Hibernate needs to know how to load and store objects of the persistent class. This is where the Hibernate 

mapping file comes into play. The mapping file tells Hibernate what table in the database it has to 

access, and what columns in that table it should use. 

SOSA needs to know the configuration of persistence by means of its configuration file at 

$SOSA_CONF/sosa_conf.xml. Below is a configuration example: 

<Persistence 
  className="com.hp.sosa.modules.sosamodule.persistence.hibernate.HibernateSosaPersistence" 
  name="PM" 
  type="persistence"> 
    <Parameter name="persistence.max.cache.size" value="1000"/> 
    <Parameter name="persistence.time.max.in.cache" value="30000"/> 
    <Parameter name="persistence.hibernate.config.file" value="hbm_persistence.cfg.xml"/> 
</Persistence> 

The first two parameters contain the configuration for the cache: 

 persistence.max.cache.size: The maximum number of elements that can be kept in 

cache. This parameter should be high enough to keep a big number of elements in cache but not 

too high to keep an efficient performance, so it depends on the machine where SOSA is installed. 

Values higher than 1500 are not recommended. 

 persistence.time.max.in.cache: And the maximum time (expressed in milliseconds) that 

each element can remain in cache before being removed. 

 persistence.hibernate.config.file: Indicates the Hibernate configuration file that 

should be loaded to initialize Hibernate. 

If this persistence is configured into SOSA then the file 
   $EP_WAR/properties/hbm_persistence.properties 



HPSA Extension Pack 

SOSA 

 

46 
 

needs to contain the next line: 
   persistence.hibernate.config.file = 

      /etc/opt/OV/ServiceActivator/config/sosa/hbm_persistence.cfg.xml 

8.2   File mixed Hibernate Persistence 

SOSA is provided with persistence for high performance solutions. This persistence first saved the order in 

file because is much faster and in case the order spends a lot of time inside of SOSA change the 

persistence to hibernate. It is not possible to search into the administration web this kind of services. 

To configure Hibernate on this persistence SOSA uses the XML configuration file 

   $SOSA_CONF/hbm_mixedpersistence.cfg.xml. 

Below is an example of it: 

<hibernate-configuration> 
  <session-factory> 
    <!-- Database connection settings --> 
    <property name="hibernate.connection.driver_class"> 
      oracle.jdbc.driver.OracleDriver 
    </property> 
    <property name="hibernate.connection.url"> 
      jdbc:oracle:thin:@127.0.0.1:1521:HPSA 
    </property> 
    <property name="hibernate.connection.username">userpp</property> 
    <property name="hibernate.connection.password">userpp</property> 
 
    <!-- C3P0 connection pool --> 
    <property name="hibernate.c3p0.acquire_increment">1</property> 
    <property name="hibernate.c3p0.idle_test_period">60</property> <!-- seconds --> 
    <property name="hibernate.c3p0.max_size">20</property> 
    <property name="hibernate.c3p0.max_statements">0</property> 
    <property name="hibernate.c3p0.min_size">10</property> 
    <property name="hibernate.c3p0.timeout">60</property> <!-- seconds --> 
 
    <!-- SQL dialect --> 
    <property name="dialect">org.hibernate.dialect.Oracle10gDialect</property> 
 
    <!-- Enable Hibernate's automatic session context management --> 
    <property name="current_session_context_class">thread</property> 
    <property name="transaction.factory_class"> 
      org.hibernate.transaction.JDBCTransactionFactory 
    </property> 
 
    <!-- Echo all executed SQL to stdout --> 
    <property name="show_sql">false</property> 
 
    <!-- Disable the second-level cache  --> 
    <property name="hibernate.cache.provider_class"> 
      org.hibernate.cache.NoCacheProvider 
    </property> 
 
    <!-- Possible values are: create(always create a new schema when starts), 
    update(updatetables that are different) or comment next property to do nothing 
    --> 
    <property name="hibernate.hbm2ddl.auto">update</property> 
 
    <mapping resource="hibernate/MixedServiceOrder.hbm.xml"/> 
    <mapping resource="hibernate/MixedServiceAction.hbm.xml"/> 
  </session-factory> 
</hibernate-configuration> 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

47 
 

The first four property elements contain the necessary configuration for the JDBC connection. After, it is the 

configuration of the C3P0 connection pooling tool. The dialect property element specifies the particular 

SQL variant Hibernate generates. Hibernate’s automatic session management for persistence contexts is 

configured to use the Hibernate built in SessionFactory and the thread execution to track the current 

session. The hbm2ddl.auto option turns on automatic updating of database schemas. Finally, we add 

the mapping files for persistent classes to the configuration – these are MixedServiceOrder.hmb.xml 

and MixedServiceAction.hbm.xml, at $SOSA_CONF/hibernate directory. 

Hibernate needs to know how to load and store objects of the persistent class. This is where the Hibernate 

mapping file comes into play. The mapping file tells Hibernate what table in the database it has to 

access, and what columns in that table it should use. 

SOSA needs to know the configuration of persistence by means of its configuration file at 

$SOSA_CONF/sosa_conf.xml. Below is a configuration example: 

<Persistence type="persistence" name="PM" 
className="com.hp.sosa.modules.sosamodule.persistence.mixedfilehibernate.MixedFileHibernate
SosaPersistence"> 
   <Parameter name="persistence.hibernate.config.file"  
              value="conf/hbm_mixedpersistence.cfg.xml"/> 
   <Parameter name="persistence.max.cache.size" value="2000000"/> 
   <Parameter name="persistence.file.cache.size" value="20000000"/> 
   <Parameter name="persistence.mixed.file.hibernate.max.time.file.mode" value="600000"/> 
   <Parameter name="persistence.file.number.harddisk" value="4"/> 
   <Parameter name="persistence.file.base.path0" value="filepersistence"/> 
   <Parameter name="persistence.file.base.path1" value="/diska/persistence"/> 
   <Parameter name="persistence.file.base.path2" value="/diskb/persistence"/> 
   <Parameter name="persistence.file.base.path3" value="/diskc/persistence"/> 
</Persistence> 

The first two parameters contain the configuration for the cache: 

 persistence.max.cache.size: the maximum number of elements that can be kept in cache. 

This parameter should be high enough to keep a big number of elements in cache but not too 

high to keep an efficient performance, so it depends on the machine where SOSA is installed. 

Values higher than 1500 are not recommended. 

 persistence.time.max.in.cache: and the maximum time (expressed in milliseconds) that 

each element can remain in cache before being removed. 

 persistence.mixed.file.hibernate.max.time.file.mode: indicates the maximum 

time that an order can stay saved as file before to change to hibernate. 

 persistence.file.number.harddisk: number of hard disk to be used 

 persistence.file.base.path0: path name of position 0. In case hard disk is configured 

more than one, it’s also possible to configure path1,path2, … 

The following parameter: 

 persistence.hibernate.config.file: indicates the Hibernate configuration file that 

should be loaded to initialize Hibernate. 

If this persistence is configured into SOSA then the file 
   $EP_WAR/properties/hbm_persistence.properties 

needs to contain the next line: 
   persistence.hibernate.config.file =  

      /etc/opt/OV/ServiceActivator/config/sosa/hbm_mixedpersistence.cfg.xml 



HPSA Extension Pack 

SOSA 

 

48 
 

9   Managers 

Managers in SOSA are defined to listen to the status changes of the Service Sosa objects and do a 

particular process when they occur. Developers can extend the abstract class Manager to create their 

own managers and make them listen to the desired status change events. Each created manager needs to 

be defined in the SOSA configuration file with a <Manager> tag inside the <Managers> tag. 

9.1   History Manager 

This is the manager used to listen to the change status event of the SOSA services. Particularly, it listens to 

the status changes to RETURNED of the root Service Orders – a root Service Order is one that has no 

parent –, to pass them and the entire tree service to the History register. It has been developed using the 

Hibernate tool in a database-based register. 

Below is an example of the History Manager configuration: 

<Manager name="HISTORY" 
         
className="com.hp.sosa.modules.sosamodule.managers.history.HibernateHistoryManager"> 
  <Parameter name="history.hibernate.config.file" value="hbm_history.cfg.xml"/> 
  <Parameter name="history.hibernate.force.history" value="false"/> 
  <Parameter name="history.hibernate.force.history.dont.wait" value="true"/> 
  <Parameter name="history.hibernate.max.store.interval" value="3000"/> 
  <Parameter name="history.hibernate.enqueue.wait.interval" value="100"/> 
  <Parameter name="history.hibernate.num.enqueued.so.to.reject" value="200"/> 
  <Parameter name="history.hibernate.num.enqueued.so.to.notify" value="100"/> 
  <Parameter name="persistence.file.number.harddisk" value="4"/> 
  <Parameter name="history.hibernate.file.number.harddisk" value="4"/> 
  <Parameter name="history.hibernate.file.base.path0" value="filehistory"/> 
  <Parameter name="history.hibernate.file.base.path1" value="/diska/history"/> 
  <Parameter name="history.hibernate.file.base.path2" value="/diskb/history"/> 
  <Parameter name="history.hibernate.file.base.path3" value="/diskc/history"/> 
</Manager> 

Inside the Manager tags, it is required to indicate the name of the manager and the class name of its 

implementation, using the name and className attributes. These are the configurable parameters in the 

Hibernate History Manager: 

 history.hibernate.config.file: indicates the Hibernate configuration file for this 

manager’s Hibernate Session Factory. 

 history.hibernate.force.history: when it set to true, Service Order are always passed 

to history, never rejected. If the queue is full, the process waits the 

history.hibernate.max.store.interval time to try to queue the Service Order again. 

 history.hibernate.max.store.interval: it is the maximum time (expressed in 

milliseconds) to wait between checks of the pending queue. 

 history.hibernate.enqueue.wait.interval: this means the amount of time in 

milliseconds to wait to retry to queue a Service Order after force a retry of the queue checker 

thread. 

 history.hibernate.num.enqueued.so.to.reject: when the queue of pending elements 

to pass to History reaches the size indicated by this parameter, the new requests are rejected 

unless the history.hibernate.force.history parameter is set to true, in that case the 

manager forces a new iteration of the thread and waits until the queue is drained. 

 history.hibernate.num.enqueued.so.to.notify: when the queue of pending elements 

to pass to History reaches the size indicated by this parameter, the manager forces a new 

iteration of the thread to drain the queue. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

49 
 

 history.hibernate.file.number.harddisk: number of hard disk to be used 

 history.hibernate.file.base.path0: path name of position 0. In case hard disk is 

configured more than one, it’s also possible to configure path1,path2, … 

 history.hibernate.cleaner.max.time.in.days: every day, SOSA will clean the 

history entries that are older, in days, than this value. A value of 0 means that not deletion will be 

made. The default value is 30. 

 history.hibernate.vendor: database vendor. It can be “Oracle” or “EnterpriseDB”. By 

default is Oracle. 

There are, also, some advanced parameters that are better not to modify unless a very specific need: 

 history.hibernate.number.threads.consumers: Number of threads used to store 

services in the DB. The default value is 8. 

9.2   Partition history tables 

In case the partition table needs to be partitioned the script history_partition_creation.sql has 

to be executed. Note that this operation requires being very careful as all the data in the historical tables 

will be lost. 

After that the parameter <property name="hibernate.hbm2ddl.auto">update</property> has to contain 

the value “update” in hbm_history.cfg.xml file. 

In the history manager configuration next parameters have to be configured: 

 history.hibernate.has.partitions: value true to start partition control system. This 

means, the history manager will manage creation and deletion of partitions 

 history.hibernate.partitions.in.advance: number of partition created in advance. 

Default value 7. 

 history.hibernate.partitions.max.days: number of days that the history will keep 

the history. Default 30. 

 history.hibernate.partition.tablespace1: Table space for the partitions that are 

created on Mondays. It is also possible to configure the rest of the days with the parameters 

tablespace2, tablespace3, etc. 

9.3   Create custom columns 

The tables HISTORY_HBM_SO and HISTORY_HBM_SA can be customized adding new columns base on 

input, output, rollback or context maps. To add a new column the files HistoryServiceAction.hbm.xml or 

HistoryServiceOrder.hbm.xml have to be configured. 

Next line has to be added to create a new column: 
   <property name="parametername" type="string" column="COLUMN_NAME" 

      access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 

In this example, the parameter will be find in all maps in the next order; output, input, rollback and 

context. Also there’s the value is expected to be String and it will be saved as VARCHAR in database. 

In case we want to do a type conversion, always from String to Date, Int, Long or  Boolean next 

configuration has to be defined. 

<property name="boolean__parametername" type="boolean" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="int__parametername" type="int" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="long__parametername" type="long" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="date__parametername" type="timestamp" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 



HPSA Extension Pack 

SOSA 

 

50 
 

The Boolean string value has to be true/false or yes/no. 

The date format has to be yyyy/MM/dd HH:mm:ss, it’s possible to customize this format setting the 

parameter history.hibernate.default.date.format.new.columns in sosa-

module.properties using the SimpleDateFormat format. 

Also, it’s also possible to force use only one Map. In that case, next are the configuration examples: 

<property name="input__parametername" type="string" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="output__parametername" type="string" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="context__parametername" type="string" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 
<property name="rollback__parametername" type="string" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 

Finally, maps and format can be combined, first the map has to be defined and after that the format. For 

example, 

Also, it’s also possible to force use only one Map. In that case, next are the configuration examples: 

<property name="input__boolean__parametername" type="boolean" column="COLUMN_NAME" 
    access="com.hp.sosa.modules.sosamodule.managers.history.HistoryPropertyAccessor"/> 

In order to show one of these parameters in the Solution Container search view filters, a block like the 

following must be added to the SOSA.properties file in 

$JBOSS_HOME/server/diagnostic/deploy/hpovact.sar/activator.war/properties: 

For Service Orders: 

sosa.history.serviceorder.field0.name=FOO 
sosa.history.serviceorder.field0.attr=input__foo 
sosa.history.serviceorder.field0.type=STRING 
sosa.history.serviceorder.field1.name=BAR 
sosa.history.serviceorder.field1.attr=output__bar 
sosa.history.serviceorder.field1.type=INTEGER 

For service actions: 

sosa.history.serviceaction.field0.name=BAZ 
sosa.history.serviceaction.field0.attr=context__baz 
sosa.history.serviceaction.field0.type=BOOLEAN 
sosa.history.serviceaction.field1.name=QUX 
sosa.history.serviceaction.field1.attr=rollback__qux 
sosa.history.serviceaction.field1.type=LONG 

If custom parameters are defined in SOSA.properties, displaying of the default ones can be omitted. 

In order to hide default parameters the following properties can be used: 

sosa.history.serviceorder.showdefaultfields=false 

for service orders and 

sosa.history.serviceaction.showdefaultfields=false 

for service actions. 

9.4   Performance Manager 

The performance manger can be added to monitor the system and control how many change of status has 

been in the interval period. With the relation between time and number of change status we can view in 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

51 
 

which status we spent more time. This module is only for debugging purpose and then it should be 

avoided to use in production environment. 

Below is an example of the Performance Manager configuration: 

<Manager className="com.hp.sosa.modules.sosamodule.managers.performance.PerformanceManager" 
name="PERFORMANCE"> 
  <Parameter name="performance.manager.interval" value="10000"/> 
  <Parameter name="performance.manager.status.timing" value="true"/> 
  <Parameter name="performance.manager.active.sae.timing" value="true"/> 
</Manager> 

There are three configurable parameters in the Performance Manager which can be indicated inside 

<Parameter> tags with the name and value attributes:  

 performance.manager.interval: The time interval (in milliseconds) between performance 

logs. 

 performance.manager.status.timing: It indicates whether to monitor the SOSA services 

status changes. 

 performance.manager.active.sae.timing: It indicates whether to monitor the SOSA 

services persistence operations: select, insert, update and delete. 

Also, it is necessary to configure log4j file properly. The configuration file is at 

   $SOSA_HOME/properties/sosa-core-log4j.properties. 

It is necessary to add next lines: 

### direct messages to file performance.log ### 
log4j.appender.performance=org.apache.log4j.RollingFileAppender 
log4j.appender.performance.File=log/performance.log 
log4j.appender.performance.MaxFileSize=20MB 
log4j.appender.performance.MaxBackupIndex=20 
log4j.appender.performance.layout=org.apache.log4j.PatternLayout 
log4j.appender.performance.layout.ConversionPattern=%d{ABSOLUTE} [%t] %5p %c{1}:%L - %m%n 
log4j.logger.com.hp.sosa.modules.sosamodule.managers.performance.PerformanceManager=INFO, 
performance 

9.5   Performance Status Manager 

The performance status manager saves the last 24 hours performance statistics. It publishes a RMI 

interface to access the last minutes status for: 

 Protocol adapters 

 ServiceActionExecutors 

 Queues 

 ServiceAction 

 ServiceOrder 

Below is an example of the Performance Manager configuration: 

<Manager 
   className="com.hp.sosa.modules.sosamodule.managers.performance.PerformanceStatusManager" 
   name="PERFORMANCE_STATUS"> 
     <Parameter name="performance.manager.interval" value="60000"/> 
     <Parameter name="performance.manager.service.order.only.root" value="false"/> 
</Manager> 

There are three configurable parameters in the Performance Manager which can be indicated inside 

<Parameter> tags with the name and value attributes:  

 performance.manager.interval: The time interval (in milliseconds) between performance 

status file will be save in case SOSA restart to be able to recover it. logs. 



HPSA Extension Pack 

SOSA 

 

52 
 

 performance.manager.service.order.only.root: It indicates if only root ServiceOrder 

will be created statistics. 

9.6   Creating new manager 

To create a new manager the class com.hp.sosa.modules.sosamodule.managers.Manager 

needs to be extended.  The performance manger can be added to monitor the system and control how 

many change of status. 

This is an empty example of new manager implementation. 

import com.hp.sosa.exceptions.SosaException; 
import com.hp.sosa.modules.sosamodule.Constants; 
import com.hp.sosa.modules.sosamodule.elements.ServiceAction; 
import com.hp.sosa.modules.sosamodule.elements.ServiceOrder; 
import com.hp.sosa.modules.sosamodule.managers.Manager; 
 
public class NewExampleManager  extends Manager{ 
 
   private final String[] serviceOrderStatusListened = 
        {Constants.STATUS_CREATED, 
         Constants.STATUS_BUILDED, 
         Constants.STATUS_SCHEDULED, 
         Constants.STATUS_PROCESSED, 
         Constants.STATUS_RETURNED, 
         Constants.STATUS_PAUSE, 
         Constants.STATUS_WAIT_CHILD}; 
   private final String[] serviceActionStatusListened =  
        {Constants.STATUS_CREATED, 
         Constants.STATUS_BUILDED, 
         Constants.STATUS_ERROR, 
         Constants.STATUS_SCHEDULED, 
         Constants.STATUS_PROCESSING, 
         Constants.STATUS_PROCESSED, 
         Constants.STATUS_PAUSE, 
         Constants.STATUS_ENQUEUED}; 
 
   public void changeStatus( 
         ServiceOrder so, 
         String currentStatus, 
         String newStatus) 
            throws SosaException { 
      //make the action implies for this change of status 
   } 
 
   public void changeStatus( 
         ServiceAction sa, 
         String currentStatus, 
         String newStatus) 
            throws SosaException { 
      //make the action implies for this change of status 
   } 
 
   public void finish() {  
   } 
 
   public String[] getServiceActionStatusListened() { 
      return serviceActionStatusListened; 
   } 
 
   public String[] getServiceOrderStatusListened() { 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

53 
 

      return serviceOrderStatusListened; 
   } 
 
   public void init(com.hp.sosa.modules.sosamodule.conf.Manager managerConf) 
   throws SosaException { 
      //init configuration 
   } 
 
   public void refreshConfiguration( 
         com.hp.sosa.modules.sosamodule.conf.Manager managerConf) { 
     //refresh configuration 
   } 
 
} 

 public String[] getServiceActionStatusListened(): it’s very important return only the status this 

manager wants to listen when the ServiceAction change of status. For example, the history 

manager returns empty because there’s no need to make any action for ServiceActions. 

 public String[] getServiceOrderStatusListened(): it’s very important return only the status this 

manager wants to listen when the ServiceOrder change of status. For example, the history 

manager returns only the state RETURNED because only make an action when the ServiceOrder 

change to this status. 

 public void init(com.hp.sosa.modules.sosamodule.conf.Manager managerConf): when SOSA 

stars call this method to initialize the manager. 

 public void refreshConfiguration(com.hp.sosa.modules.sosamodule.conf.Manager managerConf): 

in case it’s possible to refresh the configuration fill this method, if not leave empty. 

 public void finish(): when SOSA stops call this method and the manager can uncofigure or close 

the connections. 

 public void changeStatus(ServiceOrder so, String currentStatus, String newStatus): every time that 

a ServiceOrder change the status to newStatus parameter, SOSA will call this method in case the 

method getServiceOrderStatusListened include this new status. It’s important to know this method 

is inside of a transaction, then all change into so will be saved after this method. 

 public void changeStatus(ServiceAction sa, String currentStatus, String newStatus): every time that 

a ServiceAction change the status to newStatus parameter, SOSA will call this method in case the 

method getServiceActionStatusListened include this new status. It’s important to know this method 

is inside of a transaction, so all changes into SA will be saved after this method. 

9.7   TPS (Transaction Per Second) Manager 

The TPS manager saves the number of transaction per second created and returned. This information is 

saved in the database and into the CSV (Comma Separated Values) formatted file 

$SOSA/tps/year.csv . This manager can save the “root SO” (only one transaction per tree) or the 

number of SO which contains SA (can save more transaction per tree). The first option is recommended 

for solutions that only a tree contains a transaction. In the second case, it is recommended for solutions 

that a tree can contains more than one transaction and a transaction is a SO with SA children. 

In case the solution has more than one SOSA or SOSA is configured in high availability, it is mandatory 

to configure the parameter sosa.instance.name in sosa.xml SosaModule. See next, as example: 

<Modules> 
   <Module name="sosaModule" className="com.hp.sosa.modules.sosamodule.SosaModule"> 
      <Parameter name="sosa.conf.file" value="conf/sosa_conf.xml" /> 
      <Parameter name="jetty.start" value="true" /> 
      <Parameter name="sosa.instance.name" value="sosa1" /> 
   </Module> 
... 



HPSA Extension Pack 

SOSA 

 

54 
 

</Modules> 

If the parameter tps.manager.force.add in the configuration of SOSA module is true this manager 

will be added even if it is not configured in sosa_conf.xml. In addition, the module will use the 

catalog database configuration if it is not provided. 

Below is an example of the TPS configuration: 

<Manager className="com.hp.sosa.modules.sosamodule.managers.tps.TPSManager" name="TPS"> 
  <Parameter name="tps.db.reload.period" value="600000"/> 
  <Parameter name="tps.db.autoreload" value="true"/> 
  <Parameter name="tps.db.user" value="userpp"/> 
  <Parameter name="tps.db.password" value="userpp"/> 
  <Parameter name="tps.db.jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/> 
  <Parameter name="tps.db.driver.name" value="jdbc:oracle:thin"/> 
  <Parameter name="tps.db.host" value="127.0.0.1"/> 
  <Parameter name="tps.db.port" value="1521"/> 
  <Parameter name="tps.db.instance" value="HPSA"/> 
  <Parameter name="tps.method.is.root" value="true"/> 
  <Parameter name="tps.period.minutes" value="1"/> 
  <Parameter name="tps.interval.minutes" value="60"/> 
</Manager> 

The TPS manager supports several configuration parameters: 

Name Description 

tps.period.minutes TPS manager will count the number of transactions per second for 

each period. 

tps.interval.minutes For each interval TPS will save the maximum and average orders 

per second in this interval 

tps.max.years.history Maximum years of data. By default 5 years. Old data will 

remove automatically. 0 means that old data has not to be 

removed. 

tps.method.is.root If true only one transaction per tree will be counted. If false one 

transaction for each SO with SA children will be counted. 

tps.db.pool.name Name of the database connections pool. 

tps.db.host Hostname of the machine where the database is present. 

tps.db.port Port to connect. 

tps.db.instance Oracle instance which stores the tps. 

tps.db.user Username of the instance used for the tps. 

tps.db.password Password of the username. 

tps.db.driver.name Name of the driver used. 

tps.db.jdbc.driver JDBC driver used. 

tps.db.initialsize Initial size of connections pool. 

tps.db.maxactive Maximum time a connection is active. 

tps.db.maxidle Maximum time a connection is idle. 

tps.db.minidle Minimum time for a connection to be marked as idle. 

tps.db.maxwait Maximum time waiting for a connection. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

55 
 

10   Executing Service Orders 

When Service Orders are sent to SOSA to be processed, each service of the tree service goes through 

different states while being executed. 

The execution of Service Orders last from the protocol adapter inserts them into SOSA to SOSA responds 

the protocol adapter. 

10.1   Service State Diagrams 

The state of a Service Order may have the following values: 

Name Description 

CREATED A new Service Order is created in SOSA using the input parameters. 

BUILT The tree service associated with the Service Order is built from service 

catalog. 

SCHEDULED The Service Order is scheduled waiting for being processed. 

WAIT_CHILD The Service Order is waiting for children execution. 

PROCESSED All children of Service Order have been executed. 

PAUSE The Service Order is waiting for user interaction. 

RETURNED The Service Order is processed and the client has been notified. 

Next figure shows the Service Order state diagram: 



HPSA Extension Pack 

SOSA 

 

56 
 

SOP.insertServiceAction

SOP.process

CREATED

BUILT

SOP.getNewServiceAction

SCHEDULED

PAUSE

PROCESSED

WAIT_CHILD

UserAction

UserAction

SOP.process

SOP = Service Order 

Processor

SOP.processEndedChild

SOP.processEndedChild

RETURNED

SOP.endServiceOrder (only root element)

 
The state of a Service Action may have the following values: 

Name Description 

CREATED A new Service Action is created in SOSA using the input parameters. 

BUILT The Service Action is built from service catalog. 

SCHEDULED The Service Action is scheduled waiting for being queued. 

ENQUEUED The Service Action is queued waiting for being executed. 

PROCESSING The Service Action is being processed. 

PROCESSED The Service Action has finished its execution. 

PAUSE The Service Action is waiting for user interaction. 

ERROR An error occurred while executing the Service Action. 

Next figure shows the Service Action state diagram: 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

57 
 

SAP.insertServiceAction

SAP.processServiceActionProcessor.enqueue

CREATED

BUILT

SAP.getNewServiceAction

SCHEDULED

ENQUEUED PAUSE

PROCESSEDPROCESSING

SAE.processServiceActionResponse

ERROR

UserAction

SAE.execute

SAE.processServiceActionResponse

UserAction

UserAction

SAP.process

UserAction

SAE.processServiceActionResponse

SAE = Service Action 

Executor

SAP = Service Action 

Processor

 



HPSA Extension Pack 

SOSA 

 

58 
 

11   Time Window Module 

The Time Window Module provides to SOSA a way to execute actions periodically on several 

components. The actions in SOSA may be applied to Protocol Adapters, Listeners, Queues and Service 

Action Executors. 

For instance a scheduled action could be, everyday lock a queue at 0:00 and unlock it at 8:00. 

Also, the Time Window Module offers the possibility to define exclusion calendars when actions are not 

executed. 

Next table shows the allowed operations that may be scheduled. 

Component Actions 

Protocol Adapter Pause, Resume 

Listener Start, Stop 

Queue Open, Close, Lock, Unlock 

Service Action Executor Lock, Unlock 

All the scheduling plans are defined by a day range (specific date or expression time like “MON-WED, 

FRI”). Given the day range, can be assigned as many events as needed. Each event is composed by one 

or two simple tasks (a start and optionally a stop action). The event parameters are the following (note 

that all parameters are mandatory except those that optional is specified): 

 Type: the SOSA element that will be modified. List of values: Protocol Adapter, Queue, Listener 

and Service Action Executor. 

 Element name: name of the element to interact with. 

 Start event: the action to be executed on the SOSA element (start, lock, stop…). 

 Start time: the time in which the action will be executed (the format is HH:MM:SS, HH:MM or HH) 

on the start event. 

 Stop event (optional): the second action to be executed on the SOSA element. It is not a 

mandatory parameter. 

 Stop time (optional): if stop event is defined, this field represents the time in which the action will 

be executed (the format is HH:MM:SS, HH:MM or HH). 

 Calendar Exclusions (optional): you can define as many exclusion dates as you need and group 

them into a calendar. If you specify a calendar and an event that must be executed in a day that 

belongs to the calendar, the event action will not be executed on that exclusion date. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

59 
 

12   Tips and recommendations 

Here there’re some recommendations or useful information to make some task. 

12.1   Performance tips 

If you are planning to use SOSA in a high load scenario you might need to work a bit in the 

performance. Here are some tips to help improving it: 

a) The most critical task in a performance’s point of view is the persistence. Also it is a very 

important feature that we cannot get rid of it in most of the cases. The best option in 

performance’s point of view is to configure the MixedFileHibernateSosaPersistence. 

Have in mind that, if you have more than one hard disk, you can configure 

persistence.file.number.harddisk parameter to speed up the write to disk process. 

b) Another important feature is the historic manager. As the services are first stored in the hard disk, 

if you have more than one hard disk, you can configure 

persistence.file.number.harddisk parameter to speed up the write to disk process.   

It is very important to remove the old historic entries or, soon or later, the cost of adding new 

entries to the history tables will be too high. The recommended way is to use Partitions (check 

Partition history tables). As the drop of the old partitions will be handle by that SOSA module it is 

wise to turn off the normal history cleaning process by setting 

history.hibernate.cleaner.max.time.in.days parameter to 0. 

c) One typical problem that prevents SOSA to serve more orders is to wait to the workflows to end. 

So when the workflows are time-consuming the best idea is to use the asynchronous approach of 

SOSA. 

12.1.1   Processors 

A Processor is an internal component that handles every service started up in SOSA until it is finished, 

and it is responsible of the service state updates, so this component will be the one which will notice the 

Protocol Adapter when the service is finished. 

The Processor behavior is based on consumers, which are working units that parallelize their tasks 

whenever it is possible. 

Processors are not public entities, but they accept some configuration parameters that may have an 

impact on the system performance. There are Service Order Processors as well as Service Action 

Processors, and both of them can be configured in $SOSA_HOME/properties/sosa-

module.properties. 

12.1.1.1   Service Order Processors 

All the configuration parameters described in this section are optional. 

 service.order.processor.process.scheduler.consumers: The number of consumers 

in charge of processing services that will be ready for each Service Order Scheduler. It defaults 

to 10. 

 service.order.processor.process.scheduler.consumers.reusethread: Accepts 

the values true and false and indicates whether the consumers in charge of processing 

services will be kept alive even when their current task has been finished (true) or if they have to 

be destroyed and re-created every time that a new task needs to be processed (false). It 

defaults to true. 



HPSA Extension Pack 

SOSA 

 

60 
 

 service.order.processor.ended.scheduler.consumers: The number of consumers in 

charge of finished services that will be ready for each Service Order Scheduler. It defaults to 10. 

 service.order.processor.ended.scheduler.consumers.reusethread: Accepts the 

values true and false and indicates whether the consumers in charge of finished services will 

be kept alive even when their current task has been finished (true) or if they have to be 

destroyed and re-created every time that a new task needs to be processed (false). It defaults to 

true. 

 service.order.processor.timeout.scheduler.consumers: The number of consumers 

in charge of timed out services that will be ready for each Service Order Scheduler. It defaults to 

10. 

 service.order.processor.timeout.scheduler.consumers.reusethread: Accepts 

the values true and false and indicates whether the consumers in charge of timed out services 

will be kept alive even when their current task has been finished (true) or if they have to be 

destroyed and re-created every time that a new task needs to be processed (false). It defaults to 

true. 

 service.order.processor.return.pa.scheduler.consumers: The number of 

consumers in charge of noticing the Protocol Adapter when a service is finished that will be ready 

for each Service Order Scheduler. It defaults to 10. 

 service.order.processor.return.pa.scheduler.consumers.reusethread: 

Accepts the values true and false and indicates whether the consumers in charge of noticing 

the Protocol Adapters will be kept alive even when their current task has been finished (true) or 

if they have to be destroyed and re-created every time that a new task needs to be processed 

(false). It defaults to true. 

 service.order.processor.propagate.input.from.parent.to.child: Accepts the 

values true and false and indicates whether the input from the parent service has to be 

available for its children (true), if any, or not (false). It defaults to true. 

 service.order.processor.propagate.input.from.child.to.parent: Accepts the 

values true and false and indicates whether the input from the child service has to be 

available for its parent (true), if any, or not (false). It defaults to false. 

 sosa.code.ok: The code that can be received from the external system to indicate that this 

Service Order has finished successfully. The default value is 0. 

 sosa.code.ok.list: A comma separated list of codes that can be received from the external 

system to indicate that this Service Order has finished successfully. 

12.1.1.2   Service Action Processors 

All the configuration parameters described in this section are optional. 

 service.action.processor.process.scheduler.consumers: The number of 

consumers in charge of processing services that will be ready for each Service Action Scheduler. 

It defaults to 10. 

 service.action.processor.process.scheduler.consumers.reusethread: Accepts 

the values true and false and indicates whether the consumers in charge of processing 

services will be kept alive even when their current task has been finished (true) or if they have to 

be destroyed and re-created every time that a new task needs to be processed (false). It 

defaults to true. 

 service.action.processor.ended.scheduler.consumers: The number of consumers 

in charge of finished services that will be ready for each Service Action Scheduler. It defaults to 

10. 

 service.action.processor.ended.scheduler.consumers.reusethread: Accepts 

the values true and false and indicates whether the consumers in charge of finished services 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

61 
 

will be kept alive even when their current task has been finished (true) or if they have to be 

destroyed and re-created every time that a new task needs to be processed (false). It defaults to 

true. 

 service.action.processor.timeout.scheduler.consumers: The number of 

consumers in charge of timed out services that will be ready for each Service Action Scheduler. It 

defaults to 10. 

 service.action.processor.timeout.scheduler.consumers.reusethread: Accepts 

the values true and false and indicates whether the consumers in charge of timed out services 

will be kept alive even when their current task has been finished (true) or if they have to be 

destroyed and re-created every time that a new task needs to be processed (false). It defaults to 

true. 

 service.action.processor.return.pa.scheduler.consumers: The number of 

consumers in charge of noticing the Protocol Adapter when a service is finished that will be ready 

for each Service Action Scheduler. It defaults to 10. 

 service.action.processor.return.pa.scheduler.consumers.reusethread: 

Accepts the values true and false and indicates whether the consumers in charge of noticing 

the Protocol Adapters will be kept alive even when their current task has been finished (true) or 

if they have to be destroyed and re-created every time that a new task needs to be processed 

(false). It defaults to true. 

 service.action.processor.propagate.input.from.parent.to.child: Accepts the 

values true and false and indicates whether the input from the parent service has to be 

available for its children (true), if any, or not (false). It defaults to true. 

 service.action.processor.propagate.input.from.child.to.parent: Accepts the 

values true and false and indicates whether the input from the child service has to be 

available for its parent (true), if any, or not (false). It defaults to false. 

12.1.1.3   Common configuration 

The parameters described in this section can be configured in $SOSA_HOME/properties/sosa-

module.properties and are common for all kind of Processors. 

 sosa.code.ok: The code that can be received from the external system to indicate that this 

Service Action has finished successfully. The default value is 0. 

 sosa.code.ok.list: A comma separated list of codes that can be received from the external 

system to indicate that this Service Action has finished successfully. 

 sosa.code.reject: The code that can be received from the external system to indicate that 

this Service Action has been rejected. The default value is 100. 

 sosa.description.reject: The description stored in the Service Action when it is rejected. 

 sosa.code.unknown.state: The code that can be received from the external system to 

indicate a state that does not match any of the expected ones. The default value is 110. 

 sosa.description.unknown.state: The description stored in the Service Action when the 

received state is unknown. 

 sosa.code.changestatus: The code stored in the Service Action when it cannot be 

scheduled. It defaults to 130. 

 sosa.description.changestatus: The description stored in the Service Action when it 

cannot be scheduled. 

 sosa.code.enqueue.error: The code stored in the Service Action when it cannot be 

queued. It defaults to 140. 

 sosa.description.enqueue.error: The description stored in the Service Action when it 

cannot be queued. 



HPSA Extension Pack 

SOSA 

 

62 
 

 sosa.code.process.error: The code stored in the Service Action when it cannot be 

processed by SOSA due to an unspecified internal error. It defaults to 150. 

 sosa.description.process.error: The description stored in the Service Action when it 

cannot be processed. 

 sosa.code.notexists.jobid: The code stored in the Service Action when the job identifier 

associated to the internal work flow cannot be found (this can happen if the work flow has 

finished unexpectedly in the external system). It defaults to 151. 

 sosa.description.notexists.jobid: The description stored in the Service Action when 

the job identifier of the internal work flow cannot be found. 

 sosa.code.sa.exec.error: The code stored in the Service Action when the SAE detects a 

runtime error during the Service Action execution. It defaults to 160. 

 sosa.description.sa.exec.error: The description stored in the Service Action when the 

SAE detects a runtime error. 

 sosa.code.sa.exec.error.getsae.conn: The code stored in the Service Action when 

the SAE cannot be found. It defaults to 161. 

 sosa.description.sa.exec.error.getsae.conn: The description stored in the Service 

Action when the SAE cannot be found. 

 sosa.code.sa.exec.error.getsa: The code stored in the Service Action when the Service 

Action cannot be found. It defaults to 162. 

 sosa.description.sa.exec.error.getsa: The description stored in the Service Action 

when the Service Action cannot be found. 

 sosa.code.sa.exec.timeout: The code stored in the Service Action when the SAE finds 

that the Service Action has been timed out. It defaults to 163. 

 sosa.description.sa.exec.timeout: The description stored in the Service Action when 

the SAE finds that the Service Action has been timed out. 

 sosa.code.sa.exec.not.notified: The code stored in the Service Action when no 

notification is obtained about the Service Action result. It defaults to 164. 

 sosa.description.sa.exec.not.notified: The description stored in the Service Action 

when the Service Action result is not obtained. 

 sosa.code.canceled: The code stored in the Service Action when the Service Action has 

been cancelled. It defaults to 190. 

 sosa.description.canceled: The description stored in the Service Action when the 

Service Action has been cancelled. 

 sosa.code.timeout: The code stored in the Service Action when the Service Action 

Processor finds that the Service Action has been timed out. It defaults to 200. 

 sosa.description.timeout: The description stored in the Service Action when the Service 

Action Processor finds that the Service Action has been timed out. 

 sosa.code.restore.error: The code stored in the Service Action when it cannot be 

restored. It defaults to 210. 

 sosa.description.restore.error: The description stored in the Service Action when it 

cannot be restored. 

 sosa.code.queue.closed: The code stored in the Service Action when the Queue has been 

closed during its execution. It defaults to 220. 

 sosa.description.queue.closed: The description stored in the Service Action when its 

Queue gets closed. 

 sosa.code.queue.not.exist: The code stored in the Service Action when its Queue 

cannot be found. It defaults to 230. 

 sosa.description.queue.not.exist: The description stored in the Service Action when 

its Queue cannot be found. 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

63 
 

 sosa.code.subqueue.not.exist: The code stored in the Service Action when its Sub-

Queue cannot be found. It defaults to 240. 

 sosa.description.subqueue.not.exist: The description stored in the Service Action 

when its Sub-Queue cannot be found. 

 sosa.code.aborted: The code stored in the Service Action when it is aborted. It defaults to 

250. 

 sosa.description.aborted: The description stored in the Service Action when it is 

aborted. 

 sosa.code.subqueue.closed: The code stored in the Service Action when its Sub-Queue 

has been closed. It defaults to 260. 

 sosa.description.subqueue.closed: The description stored in the Service Action when 

its Sub-Queue has been closed. 

 sosa.code.cannot.process: The code stored in the Service Action when it cannot be 

processed. It defaults to 270. 

12.2   Logging 

Every time that a new class is created it’s highly recommended to create his log.  

import org.apache.commons.logging.Log; 
import org.apache.commons.logging.LogFactory; 
 
public class NewClass{ 
   private static Log log = LogFactory.getLog(NewClass.class); 
} 

The SOSA logging system is configured in $SOSA_HOME/properties/sosa-4logj.properties. In 

that file it is possible to add more appenders, change the log level, etc. It is allowed to modify this file in 

runtime - new changes will be loaded in a while. 

12.3   Get a Service Order or Service Action 

Usually is required to load a specific Service Order or Service Action. If there’s no need to modify is 

recommended to load on read only. It’s only necessary the id of the object. 

ServiceOrder so = ServiceElementsManager.getServiceOrderReadOnly(ssid); 
ServiceAction sa = ServiceElementsManager.getServiceActionReadOnly(ssid); 

12.4   Modify a Service Action or Service Order 

To modify a Service Action or Service Order a new transaction need to be open and close. For this 

purpose we need to load the object in “write mode” and finally write or undo the object. It’s very 

important always to make the write or undowrite, if not the transaction will keep open. Here is an 

example: 

ServiceOrder so = null; 
try{ 
   so = (ServiceOrder) ServiceElementsManager.getServiceOrderToWrite(ssid); 
   if (so == null) { 
      throw new SosaException("Cannot get service '" + ssid + "'"); 
   } 
   //so modifications  
   ServiceElementsManager.writeServiceOrder(so); 



HPSA Extension Pack 

SOSA 

 

64 
 

   so = null; 
}catch(SosaException e){ 
   log.fatal("cannot insert the service order '" + so +"'",e); 
} 
finally{ 
   if (so != null) { 
      ServiceElementsManager.undoWriteServiceOrder(so); 
   } 
} 

12.5   Load entire tree order 

In some case we need to load the entire tree order to check or to find or check a specific status from an 

object. This is an example of two methods which save the tree into a Map. 

private Map loadSoTree(String ssid) { 
   Map serviceSosas = new HashMap(); 
   if(ServiceElementsManager.isServiceOrder(ssid)) { 
      try { 
         com.hp.sosa.modules.sosamodule.elements.ServiceOrder so = 
               ServiceElementsManager.getServiceOrderReadOnly(ssid); 
         if(so != null) 
            serviceSosas.putAll(loadSoTree(so)); 
         else 
            throw new SosaException("Cannot load Service with SSID '" + ssid + "'."); 
      } catch (SosaException se) { 
         log.error( 
            "Load a Service Order tree form persistence failed. Tree won't be loaded. ", 
            se); 
         serviceSosas.clear(); 
      } 
   } 
   return serviceSosas; 
} 
 
private Map loadSoTree(com.hp.sosa.modules.sosamodule.elements.ServiceOrder so) { 
   Map serviceSosas = new HashMap(); 
   if(so != null) { 
   try { 
      serviceSosas.put(so.getSsid(),so); 
      log.debug("Service Order added to tree: " + so.getSsid()); 
      if(so.getChilds() != null) { 
         Iterator childrenIt = so.getChilds().iterator(); 
         while(childrenIt.hasNext()) { 
            String childSsid = (String)childrenIt.next(); 
            if(ServiceElementsManager.isServiceAction(childSsid)) { 
               com.hp.sosa.modules.sosamodule.elements.ServiceAction sa = 
                  ServiceElementsManager.getServiceActionReadOnly(childSsid); 
               if(sa != null) { 
                  serviceSosas.put(sa.getSsid(),sa); 
                  log.debug("Service Action added to tree: " + sa.getSsid()); 
               } 
            } else if(ServiceElementsManager.isServiceOrder(childSsid)) { 
               serviceSosas.putAll(loadSoTree(childSsid)); 
            } 
         } 
      } 
   } 
   catch (SosaException se) { 
      log.error("Exception trying to load a Service Order tree form persistence.", se); 
      serviceSosas.clear(); 



HPSA Extension Pack 

SOSA Developer Reference 

 

 

 

65 
 

   } 
   return serviceSosas; 
} 

12.6   Creating new database connection 

To create a new database pool is recommended to use the default SOSA utility 

DataBasePoolManager. First it’s required to create the pool and after that there’re two methods to get 

and return the connections. 

Here is an example of creating a new pool. 

DataBasePoolManager.createNewDataBasePool(poolName, user, password, host, port, instance); 
DataBasePoolManager.setJdbcDriver(poolName, jdbcDriver); 
DataBasePoolManager.setDriverName(poolName, driverName); 
DataBasePoolManager.setInitialSize(poolName, initialSize); 
DataBasePoolManager.setMaxActive(poolName, maxActive); 
DataBasePoolManager.setMaxIdle(poolName, maxIdle); 
DataBasePoolManager.setMinIdle(poolName, minIdle); 
DataBasePoolManager.setMaxWait(poolName, maxWait); 
DataBasePoolManager.startDataBasePool(poolName); 

To get and return a connection there’re next two methods: 

con = DataBasePoolManager.getConnection(poolName); 
DataBasePoolManager.releaseConnection(poolName, con); 

It’s important to release the connection once the work is finished. 

12.7   Avalanche Control 

An optional mechanism of avalanches control has been included to avoid massive insertion of orders that 

could make SOSA work inefficiently. This control is configured at file 

$SOSA_HOME/properties/sosa-module.properties, like the following example: 

service.element.manager.max.insert.serviceorder.persistable=80 
service.element.manager.max.insert.serviceorder.nonpersistable=1500 
service.element.manager.max.insert.serviceorder.time=5000 
service.element.manager.max.insert.serviceaction.persistable=80 
service.element.manager.max.insert.serviceaction.nonpersistable=1500 
service.element.manager.max.insert.serviceaction.time=5000 

The meaning of the parameters is as follows: 

 service.element.manager.max.insert.serviceorder.time: The period of time in 

milliseconds before the count of inserts is reset to zero. 

 service.element.manager.max.insert.serviceorder.persistable: The maximum 

number of persistent Service Orders that can be inserted into SOSA every period of time defined 

before. 

 service.element.manager.max.insert.serviceorder.nonpersistable: The 

maximum number of non-persistent Service Orders that can be inserted into SOSA every period 

of time defined before. 

 service.element.manager.max.insert.serviceaction.time: The period of time in 

milliseconds before the count of inserts is reset to zero. 

 service.element.manager.max.insert.serviceaction.persistable: The 

maximum number of persistent Service Actions that can be inserted into SOSA every period of 

time defined before. 



HPSA Extension Pack 

SOSA 

 

66 
 

 service.element.manager.max.insert.serviceaction.nonpersistable: The 

maximum number of non-persistent Service Actions that can be inserted into SOSA every period 

of time defined before. 

When an external system tries to insert a Service and it exceeds the limit configured, SOSA delays its 

response the necessary milliseconds until the next period of control time begins. 


