
 

 

 

 

 HPSA Extension Pack 

Equipment Connection Pool 

Release V6.1 

 

 

 

 

 

 



HPSA Extension Pack 

Equipment Connection Pool 

 

2 

 

Legal Notices 

Warranty. 

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, 

the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not 

be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages 

in connection with the furnishing, performance, or use of this material. 

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from 

your local Sales and Service Office. 

Restricted Rights Legend. 

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in 

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-

7013. 

Hewlett-Packard Company United States of America 

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-

19(c)(1,2). 

Copyright Notices. 

©Copyright 2001-2013 Hewlett-Packard Development Company, L.P., all rights reserved. 

No part of this document may be copied, reproduced, or translated to another language without the prior 

written consent of Hewlett-Packard Company. The information contained in this material is subject to 

change without notice. 

Trademark Notices. 

Java™ is a trademark of Oracle and/or its affiliates. 

Linux is a U.S. registered trademark of Linus Torvalds 

Microsoft® is a U.S. registered trademark of Microsoft Corporation. 

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc. 

EnterpriseDB® is a registered trademark of EnterpriseDB. 

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB. 

Oracle® is a trademark of Oracle and/or its affiliates. 

UNIX® is a registered trademark of the Open Group. 

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation. 

All other product names are the property of their respective trademark or service mark holders and are 

hereby acknowledged. 

Document id: EP-pd001802 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

3 

 

Table of Contents 

Legal Notices ....................................................................................................................................................................2 

Table of Contents .............................................................................................................................................................3 

Audience ...........................................................................................................................................................................7 

Install Location Descriptors ..............................................................................................................................................9 

1. Introduction ............................................................................................................................................................11 
1.1. Purpose ..........................................................................................................................................................11 
1.2. General Description .....................................................................................................................................11 
1.3. ECP Module Entities and Concepts ............................................................................................................12 

1.3.1. Target System .........................................................................................................................................12 
1.3.2. Operation ...............................................................................................................................................12 
1.3.3. Commands Template/Operation Template ........................................................................................12 
1.3.4. Operation Execution .............................................................................................................................13 
1.3.5. Resource .................................................................................................................................................13 
1.3.6. Pool .........................................................................................................................................................13 
1.3.7. SubPool ...................................................................................................................................................13 
1.3.8. Equipment Driver ...................................................................................................................................13 
1.3.9. Protocol Driver .......................................................................................................................................14 
1.3.10. ECP Instance ..........................................................................................................................................14 

1.4. General Architecture ....................................................................................................................................14 
1.4.1. ECP Client ..............................................................................................................................................14 
1.4.2. ECP Service ............................................................................................................................................15 

2. Functionality and Architecture..............................................................................................................................17 
2.1. Connection and Pool Management ............................................................................................................17 

2.1.1. Connection Reuse ..................................................................................................................................17 
2.1.2. High Availability ....................................................................................................................................17 
2.1.3. Target System Independence ...............................................................................................................18 
2.1.4. Protocol Independence .........................................................................................................................18 
2.1.5. Load Balance .........................................................................................................................................19 

2.2. Pool and Connection types ..........................................................................................................................19 
2.2.1. Static vs Temporary Pools .....................................................................................................................19 
2.2.2. Direct Connections (Not Pooled Connections) ...................................................................................19 
2.2.3. Dynamic Pools .......................................................................................................................................19 

2.3. Commands Template....................................................................................................................................20 
2.4. Operation Execution ....................................................................................................................................20 
2.5. Real-time Monitoring ....................................................................................................................................22 

3. First Steps ...............................................................................................................................................................23 
3.1. Equipment Driver Development ...................................................................................................................23 

3.1.1. Equipment Driver Development Introduction .......................................................................................23 
3.1.2. Equipment Driver Generic ....................................................................................................................25 
3.1.3. Equipment Driver Deployment ..............................................................................................................26 
3.1.4. Available Equipment Drivers ................................................................................................................26 



HPSA Extension Pack 

Equipment Connection Pool 

 

4 

 

3.1.5. Generic Template Equipment Driver ....................................................................................................27 
3.2. ECP Service Process .....................................................................................................................................30 

3.2.1. Starting ECP Service ..............................................................................................................................30 
3.2.2. Stopping ECP Service ...........................................................................................................................30 
3.2.3. Restarting ECP Service ..........................................................................................................................30 
3.2.4. Checking ECP Service ...........................................................................................................................30 

3.3. Use Examples ................................................................................................................................................31 
3.3.1. Creating and Using an Static Pool ......................................................................................................32 
3.3.2. Creating and Using a Dynamic Pool ...................................................................................................35 
3.3.3. Using Direct Connections .....................................................................................................................36 

3.4. Monitoring ECP through JMS ......................................................................................................................37 
3.4.1. Including Additional Data in Activation JMS Messages: ..................................................................37 
3.4.2. JMS Client Dependencies .....................................................................................................................38 
3.4.3. JMS Client Examples .............................................................................................................................39 
3.4.4. ECP Messages Types ............................................................................................................................43 

3.5. Retrieving connection information through an external data getter ........................................................44 

4. Configuration .........................................................................................................................................................45 
4.1. Common Configuration Sources .................................................................................................................45 

4.1.1. ProtocolDrivers.lst File ...........................................................................................................................45 
4.1.2. Protocol Drivers Configuration .............................................................................................................45 
4.1.3. HPSA_ECPMESSAGESPATTERNS .......................................................................................................46 
4.1.4. HPSA_ECPCOMMANDSPATTERNS ...................................................................................................46 
4.1.5. HPSA_ECPMESSAGESCOMMANDS .................................................................................................47 

4.2. ECP Lib Configuration Sources ...................................................................................................................47 
4.2.1. ECP Lib Command Line Parameters .....................................................................................................47 

4.3. ECP RMI Service Configuration Sources ....................................................................................................47 
4.3.1. ECP RMI Service Command Line Parameters .....................................................................................47 
4.3.2. ecp-cluster.properties ............................................................................................................................50 
4.3.3. HPSA_EQUIPMENTCONNPOOL DB Table .......................................................................................51 
4.3.4. SubPool Instance Specific Parameters Configuration. .......................................................................52 

5. Commands Template Reference ..........................................................................................................................55 
5.1. Commands Template Commands ...............................................................................................................55 

5.1.1. Block declaration Statements................................................................................................................55 
5.1.2. Executable Statements ...........................................................................................................................55 
5.1.3. Command Statements ...........................................................................................................................56 

5.2. Commands Reference ..................................................................................................................................56 
5.2.1. Commands List .......................................................................................................................................56 
5.2.2. Commands Syntax ................................................................................................................................59 

6. Configuration Quick Reference ...........................................................................................................................63 
6.1. DBManager Configuration ..........................................................................................................................63 
6.2. Configurator Configuration .........................................................................................................................63 
6.3. ECP RMI Service ...........................................................................................................................................64 
6.4. PoolManager Configuration ........................................................................................................................64 
6.5. Pool Configuration .......................................................................................................................................64 

6.5.1. Pool Common Parameters Configuration ............................................................................................64 
6.5.2. Pool Instance Specific Parameters Configuration ...............................................................................65 

6.6. SubPool Configuration .................................................................................................................................67 
6.6.1. SubPool Instance Specific Parameters Configuration ........................................................................67 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

5 

 

6.7. EquipmenDriver Configuration ....................................................................................................................70 
6.7.1. EquipmentDriver Initialization Parameters Configuration..................................................................71 
6.7.2. ConnectionResource Configuration .....................................................................................................71 

6.8. Protocol Drivers Manager Configuration ...................................................................................................71 
6.9. ProtocolDriver Configuration .......................................................................................................................71 
6.10. CLICommands Configuration ......................................................................................................................71 
6.11. Template Parser Configuration ....................................................................................................................72 
6.12. JMS Monitoring Configuration ....................................................................................................................72 

 

  



HPSA Extension Pack 

Equipment Connection Pool 

 

6 

 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

7 

 

In This Guide 

This guide will explain the configuration, installation, needed development, and functionality provided by 

the ECP. 

Audience 

The audience for this guide is the Solutions Integrator (SI). The SI has a combination of some or all of the 

following capabilities: 

Understands and has a solid working knowledge of: 

UNIX® commands 

Windows® system administration 

Understands networking concepts and language 

Is able to program in Java™ and XML 

Understands security issues 

Understands the customer’s problem domain



HPSA Extension Pack 

Equipment Connection Pool 

 

8 

 

Conventions 

The following typographical conventions are used in this guide. 

Font What the Font 

Represents 

Example 

Italic Book or manual titles, 

and man page names 

Refer to the HP Service Activator — Workflows and the 

Workflow Manager and the Javadocs man page for more 

information. 

Provides emphasis You must follow these steps. 

Specifies a variable 

that you must supply 

when entering a 

command 

Run the command: 

java -classpath <classpath> 

Parameters to a method The assigned_criteria parameter returns an ACSE response. 

Bold New terms The distinguishing attribute of this class... 

Computer Text and items on the 

computer screen 

The system replies: Press Enter 

Command names Use the java command ... 

Method names The get_all_replies() method does the 

following... 

File and directory 

names 

Edit the file 

$ACTIVATOR_ETC/config/mwfm.xml 

Process names Check to see if mwfm is running. 

Properties files keys 

names 

Set the property LOG_DIR to establish the log files path. 

Window/dialog box 

names 

In the Test and Track dialog... 

XML tag references Use the <DBTable> tag to... 

Computer 

Bold 
Text that you must type At the prompt, type: ls -l 

Keycap Keyboard keys Press Return. 

[Button] Buttons on the user 

interface 

Click [Delete]. 

Click the [Apply] button. 

Menu Items A menu name followed 

by a colon (:) means 

that you select the 

menu, then the item. 

When the item is 

followed by an arrow  

(->), a cascading menu 

follows 

Select Locate:Objects->by Comment. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

9 

 

 

Install Location Descriptors 

The following names are used throughout this guide to define install locations. 

Descriptor What the Descriptor Represents 

$ACTIVATOR_OPT The base install location of Service Activator. 

The UNIX location is /opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\ 

$ACTIVATOR_ETC The install location of specific Service Activator configuration files. 

The UNIX location is /etc/opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\etc\ 

$ACTIVATOR_VAR The install location of specific Service Activator logging files. 

The UNIX location is /var/opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\var\ 

$ACTIVATOR_BIN The install location of specific Service Activator binary files. 

The UNIX location is /opt/OV/ServiceActivator/bin 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\bin\ 

$JBOSS_HOME HOME The install location for JBoss. 

The UNIX location is /opt/HP/jboss 

The Windows location is 

<drive>:\HP\jboss 

$JBOSS_DEPLOY The install location of the Service Activator J2EE components. 

The UNIX location is 

/opt/HP/jboss/standalone/deployments 

The Windows location is 

<drive>:\HP\jboss\stanalone\deployments 

$ACTIVATOR_DB_USER The database user name you define. 

Suggestion: ovactivator 

$ACTIVATOR_SSH_USER The Secure Shell user name you define. 

Suggestion: ovactusr 

$SOSA_HOME The base install location of SOSA. 

The UNIX location is /opt/OV/Sosa 

The Windows location is 

<drive>:\HP\OpenView\Sosa\ 



HPSA Extension Pack 

Equipment Connection Pool 

 

10 

 

$SOSA_BIN The install location of specific SOSA binary files. 

The UNIX location is /opt/OV/ServiceActivator/EP/SOSA/bin 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\SOSA\bin\ 

$SOSA_ETC The install location of specific SOSA configuration files. 

The UNIX location is 
/opt/OV/ServiceActivator/EP/SOSA/conf 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\SOSA\conf\ 

$ECP_HOME The base install location of Equipment Connections Pool. 

The UNIX location is /opt/OV/ServiceActivator/EP/ECP 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\ 

$ECP_BIN The install location of specific Equipment Connections Pool binary files. 

The UNIX location is /opt/OV/ServiceActivator/EP/ECP/bin 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\bin\ 

$ECP_ETC The install location of specific Equipment Connections Pool 

configuration files. 

The UNIX location is /opt/OV/ServiceActivator/EP/ECP/conf 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\conf\ 

$ECP_LIB The install location of specific Equipment Connections Pool jar files. 

The UNIX location is /opt/OV/ServiceActivator/EP/ECP/lib 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\lib\ 

$ECP_LOG The install location of specific Equipment Connections Pool log files. 

The default UNIX location is 
/opt/OV/ServiceActivator/EP/ECP/log 

The default Windows location is 

<drive>:\HP\OpenView\ServiceActivator\EP\ECP\log\ 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

11 

 

1. Introduction 

1.1. Purpose 

This document is a manual for all ECP Module users. It gives a general view of the ECP Module concepts, 

functionality, architecture, and use, with special focus in configuration and its effects. 

1.2. General Description 

The function of the ECP Module, as part of the EP, is automating user interactive textual sessions, via 

TCP/IP connections to networked devices, such as routers, switches, proxies, etc... 

The ECP Module receives a textual representation of the session, which states the commands to issue, their 

output and their meanings, and the control flow logic (such as the conditions under which a command 

must be issued or how many times must be issued). 

The ECP Module is the module in EP which in the last instance directly connects to the EP managed 

devices, centralizing the EP management connections. This situation inside the EP framework is ideal to 

perform task such as load balancing, high availability and resources use optimization when referring to 

management connections. Toward this objective, the ECP Module implements a series of connections 

Pools, which provide the aforementioned functionalities, grouped in a Pool Manager. 

The ECP Module is divided in two elements, the ECP Client and the ECP Service (an RMI service). The ECP 

Service receives the representations of the sessions and actually executes them, and contains the Pool 

Manager. The ECP Client acts mainly as a proxy, easing access to the ECP Service. It also allows the user 

to totally bypass the ECP RMI Service if needed, being the process transparent to the user. Bypassing the 

ECP Service is known as “Direct Connection” as opposed to “Pooled Connections” when using the ECP 

RMI Service. The use of either method is transparent to the user. 

Such division allows easier scalability of the EP, while maintaining the ECP Module objectives of load 

balancing, high availability and resources use optimization. 



HPSA Extension Pack 

Equipment Connection Pool 

 

12 

 

 

1.3. ECP Module Entities and Concepts 

1.3.1. Target System 

In the context of the ECP, a “Target System” is the collection of resources accessible through a single 

direct TCP/IP Connection. Usually, a “Target System” will be a single router, switch or other similar 

device. However, more complex scenarios are possible if other devices are accessed from the connection 

end-point. 

1.3.2. Operation 

By “Operation” we refer to the collection of commands and logic needed to perform a certain process on 

the Target System. The purpose of the process may be a data inquiry, a configuration change or any 

other action needed on a Target System. An “Operation” should be atomic, that is, it should completely 

occur, or have no effects on the Target System. As a consequence, “Operations” should include the 

commands and logic needed to rollback the changes on the Target System if any. However, this policy is 

not enforced. Its use is left to the user’s discretion. 

1.3.3. Commands Template/Operation Template 

A “Command Template” is a string which complies with a certain syntax through which an Operation is 

expressed, for the ECP Module to interpret and process it, usually with the purpose of automating a 

human interactive session on the Target System. The “Command Template” states the commands needed 

to perform the process (and usually to roll it back too), with specific information on every command, such 

as possible command outputs and their meaning (error, success) and the control flow which determines 

their execution order, among other things. 

ECP User JVM ECP Service JVM 

ECP Client 

 

Textual 

representation of 

the session 

Target System 

commands 

ECP RMI Service 

 Parsed 

Representation of 

the session 
ECP  

Pool Manager 

commands 

Pooled Connection 

Direct Connection 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

13 

 

1.3.4. Operation Execution 

An “Operation Execution” is the process through which Command Template is processed, resulting in 

commands inputted into the Target System. 

1.3.5. Resource 

In the context of the ECP, “Resource” is synonym of connection instance. 

1.3.6. Pool 

In the context of the ECP, a “Pool” is a set of established and authenticated connections (resources) to a 

single Target System that are kept ready to use. Each connection instance belongs to a single “Pool”. 

Connection instances life time is managed by the “Pool”. Pools are identified by name. 

1.3.7. SubPool 

A “SubPool” is a subset of the connections belonging to a Pool which are established with the Target 

System through the same interface, what generally implies though the same IP and Port (and user). The 

existence of the “SubPool” is only needed in the context of the ECP Configuration and Administration. In 

other contexts its use is transparent to the user. Each SubPool belongs to a single Pool. Every connection 

belongs to a single SubPool. 

1.3.8. Equipment Driver 

An “Equipment Driver” is a class whose instance encapsulates a single TCP/IP connection as a Pool 

Resource and is in charge of establishing, authenticating, verifying, and closing the underlying 

connection, when required by the Pool and as needed by the Target System. As some of this processes 

(especially authenticating, verifying and closing the connection) are dependent on the Target System type, 

usually a different “Equipment Driver” is needed for each Target System type, hence its name. It allows 

the developer and designer to easily add functionality to the ECP on per connection, per equipment, per 

equipment connection or even on connection event basis. Equipment Drivers must be provided by the ECP 

User. 

The “Equipment Driver” is also in charge of executing every individual Commands Template command, 

that is: composing the Target System command, sending it to the Target System, reading the Target system 

answer, and interpreting it. Nevertheless, this functionality is provided by the ECP through inheritance. 

For some tasks (such as establishing and closing the connection, or sending and reading data from it), the 

Equipment Driver will usually rely on a Protocol Driver to perform them as very often those task are not 

dependant on the Target System type, but on the network protocol to communicate with it. Entrusting this 

task on the Protocol Driver allows the programmer to reuse network protocol dependant functionality. 

Typically, a different Equipment Driver is needed for each model of switch or router. 

In the context of the ECP, the terms “connection”, “Resource”, and “Equipment driver”, are 

interchangeable. 



HPSA Extension Pack 

Equipment Connection Pool 

 

14 

 

1.3.9. Protocol Driver 

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge 

of performing the most basic operations at low level, that is: establishing and closing the connection, 

sending and reading data from it, and encoding and decoding those data as needed by the Target 

System interface. Generally speaking, a Protocol Driver provides partial or total independence from the 

Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to 

reuse network protocol dependant functionality and the same Equipment Driver with different 

communication protocols. 

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols. 

1.3.10. ECP Instance 

Since EP version 5.1-10, ECP has clustering support, meaning that there may be several ECP servers 

running at the same time in different machines with a shared database. Each one of those ECP servers is 

an ECP instance. Each ECP instance must be configured with a unique name to identify itself in the cluster. 

1.4. General Architecture 

On the highest level the ECP Module can be divided in two entities: the ECP Client and the ECP Service. 

1.4.1. ECP Client 

The ECP Client always is the entry point for the ECP user to the ECP Module, regardless of connection 

method or configuration. 

The ECP Client is basically an ECP Service, without a Pool Manager. As such, it is able to execute 

Operations by itself and without the need of an ECP Service, opening and closing a new connection to 

the Target System for every Operation execution (Direct Connection), or delegating the execution of the 

Operation on the ECP Service (Pooled Connection). However, when using Direct Connections it can’t 

profit on the aforementioned advantages of the RMI Service (load balancing, high availability and 

resources use optimization).  

The ECP Client is constituted by two entities: The ECP Template Parser 

(com.hp.spain.connection.TemplateParser) and the ECP Operation Engine 

(com.hp.spain.connection.CLICommands).  

The ECP Template Parser receives a Command Template (and some configuration) as input, returning an 

accordingly constructed ECP Operation Engine as a result. 

The ECP Operation Engine receives connection configuration (and additional Operation commands if 

needed) as input, and when executed returns the session stdin and stdout or an exception if the Operation 

failed. 

Depending on how the Template Parser and Operation Engine were configured, the real Operation 

execution will take place either locally (that is, in the client’s Java Virtual Machine instance) or remotely 

(that is, in a different Java Virtual Machine instance) 

The figure below represents a Direct Connection Operation execution. See the next section for an 

explanation of Pooled Connections. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

15 

 

 

1.4.2. ECP Service 

The ECP Service is basically an ECP Client which retrieves the connections to the Target System from a 

Pool Manager, instead of creating them. 

If the ECP Client Operation Engine is configured to use Pooled Connections, on execution, instead of 

creating a connection, it will serialize the Parsed Command Template (contained by itself), and send it via 

RMI to the ECP Service. 

On reaching the ECP RMI Service, The ser ialized Parsed Command Template will be used to instantiate 

an equivalent of the client’s ECP Operation Engine. A connection from the Pool Manager will be assigned 

to this Operation Engine, which it will use to execute the Operation. The Operation will be executed as if 

from the client, but with a connection obtained from the Pool Manager instead. A different Operation 

Engine will be instantiated for each Operation, and multiple Operations may be executed concurrently. 

The stdin and stdout or the failure of the Operation will be sent back to the caller Operation Engine (that 

is, the client’s one). 

User JVM 

ECP Client 

 Command 

Template 
ECP 

Template 

Parser 

ECP 

Operation 

Engine 
Target System 

commands 



HPSA Extension Pack 

Equipment Connection Pool 

 

16 

 

 

ECP Service JVM User JVM 

ECP Client 

 

Command 

Template 

ECP 

Template 

Parser 

ECP 

Operation 

Engine 

Target System 

commands 

ECP RMI Service 

 

ECP 

Operation 

Engine Parsed 

Command 

Template 

ECP 

Connection

Pool 

Manager 

connection 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

17 

 

2. Functionality and Architecture 

2.1. Connection and Pool Management 

A single instance of the Pool Manager exists in the ECP Service. The Pool Manager contains a single Pool 

for each Target System (in a typical configuration).  

Each Pool contains all the connections to a Target System, and is responsible of their life time and 

management.  Additionally, it is responsible for: 

a) Connections reuse. The connections are kept alive, opened and authenticated, reusing the 

connections while possible. 

b) Identifying redundant interfaces on the Target System, and their connections, providing high 

availability. 

c) Queuing and prioritizing the Operation Engines’ requests for connection to the Target System, 

providing load balance. 

d) Target System independence. 

e) Protocol independence. 

2.1.1. Connection Reuse 

Opening and maintaining a connection for each user is costly and wastes resources. On the contrary, 

pooling the connections enhances the performance of executing commands on a Target System. After a 

connection is created, it is placed in the Pool and reused over again while possible so that another 

connection does not have to be established and authenticated. The Pool creates (initialize) and 

destroys (finalize) new connections as needed, not exceeding the configured limits and politics. 

Connections are verified for consistency before being assigned to a client (verify). Additionally pooling 

the connections allows abstracting the client of the details of the connections management. Pooling the 

connections achieves reliable connections reuse. 

2.1.2. High Availability 

Every Pool may have one or more SubPools. Each SubPool represents a connection factory and container. 

Every SubPool comply the following rules: 

a) Each SubPool “owns” a different Target System interface. This means that all ECP connections to 

that Target System through that interface should be created and contained by the same SubPool 

instance. 

b) Connections from different SubPools should be equivalent, that is, executing an Operation 

through one or another SubPool should have the same effects on the Target System (provided the 

same initial Target System State).  

Complying with this rules, allows the ECP to temporarily ignore a SubPool (interface) if it fails and 

becomes unusable (and another SubPool exists in the Pool), using the other SubPools (interfaces) instead. 

SubPooling the connections achieves high availability. 



HPSA Extension Pack 

Equipment Connection Pool 

 

18 

 

Since EP version 5.1-10, ECP has clustering support, taking high availability to the next level by allowing 

a given pool to be configured to run in several instances of the cluster. The administrator can designate 

an ordered list of ECP instances that should run the pool, as well as the number of instances of the pool 

that should exist at the same time, so the cluster functionality provides high availability and load balance 

features at the same time. 

2.1.3. Target System Independence 

The ECP needs to be able to connect, login, verify and disconnect the connections to the Target Systems 

as part of the Pooled connections management. As these processes are Target System specific, the ECP is 

unable to do so by itself. As a consequence, the ECP User must provide an Equipment Driver which 

performs those operations on behalf of the ECP. The Equipment Driver will wrap a connection, abstracting 

the ECP from the real tasks needed for those operations. Roughly speaking, the Equipment Driver scope is 

at a “per command” level. 

2.1.4. Protocol Independence 

Although Equipment Drivers perform Target System specific tasks, the underlying network protocol is 

usually standardized, and is not Target System dependant. For example, is very common for Target 

Systems to use SSH or Telnet protocols. To ease Equipment Driver development and allow protocol 

interchangeability, a Protocol Layer abstraction layer is implemented, called “Protocol Driver”. That layer 

will be responsible for establishing and closing the connection, sending and reading data from it, and 

encoding and decoding those data as needed by the Target System interface.  

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols. 

 

ECP RMI Service 

Interface 

1.N 

... 

ECP Connection Pool Manager 

 

Pool 1 

… SubPool 1.1 

… 

Equipment 

Driver1.1.1 

Protocol DriverX 

Equipment 

Driver1.1.M 

Protocol DriverY 

SubPool 1.N 

… 

Equipment 

Driver1.N.1 

Protocol DriverZ 

Equipment 

Driver1.N.S 

Protocol DriverV 

Pool L 
… 

... … 

… 

… 

 

Target System 1 

Interface  

1.1 

Target 

System L 

... 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

19 

 

2.1.5. Load Balance 

Every Pool, has a configurable number of “Request Queues”, where clients in need of a connection are 

kept waiting for their turn to acquire a connection. Queues can be prioritized, allowing critical 

Operations to remain as short as possible waiting for an available connection, and avoiding clients from 

becoming starved because of a high not critical Operations load. The priority of each request is 

established programmatically. 

The frequency at which requests are dispatched and the number of available connections on each 

SubPool can be configured, allowing management of the load over the Target System and the ECP host. 

Request queuing and Pool size achieve load balance. 

As stated in 2.1.2, new cluster functionality added to ECP in EP version 5.1-10 takes load balance suppor 

to a higher degree by allowing the distribution of pools across several ECP instances. 

2.2. Pool and Connection types 

Two types of Connection Pools are available, depending on how the pools are created. 

2.2.1. Static vs Temporary Pools 

ECP Module provides two different types of Pools: Static and Temporary. 

Functionally, Temporary Pools are exactly the same as Static Pools, the only difference being that 

Temporary Pools will expire if unused for a configured amount of time, while static Pools will never expire. 

Temporary Pools are useful when a Target System is going to be used for a short period of time and 

remain unused for long periods. Temporary Pools allow saving host resources in such situation. 

When Pools are used, the Operation Execution is delegated on the ECP Service. See ECP Service. 

2.2.2. Direct Connections (Not Pooled Connections) 

When using Direct Connections, a connection is created for each executed Operation, being the 

connection private to the ECP Operation Engine instance used to issue the Operation. The Connection 

exists in the context of the ECP Operation Engine instance JVM. The Operation is executed in the JVM of 

the client. No ECP RMI Service is needed for this kind of Operation, although the Equipment Driver and 

Protocol Driver and their libraries will be needed. See ECP Client. 

2.2.3. Dynamic Pools 

The ECP Module allows the user to programmatically create Pools. Programmatically created Pools are 

referred “Dynamic Pools”. Dynamic Pools are usually temporary, although they can be static. As a 

consequence, “Dynamic Pools” aren’t created independently, but as part of the Operation Executions 

which uses them. This is due to the fact that a client can’t know whether the Dynamic Temporary Pool will 

still exist when the Operation Execution call is processed by the RMI ECP Service. For these reason, 

Operation Executions which use Dynamic Pools always carry the Dynamic Pool definition. On arrival to 

the ECP Service, the Dynamic Pool will be created if it does not exist. If it exists, the running Dynamic Pool 

instance will be used. 



HPSA Extension Pack 

Equipment Connection Pool 

 

20 

 

Since EP version 5.1-10, it is possible to store named dynamic pool configurations, so it is not necessary 

to provide all the required parameters for a dynamic pool at creation time. Dynamic pool configurations 

are currently supported only through the ECPCall node and require a new Micro-Workflow Manager 

module to be configured. 

2.3. Commands Template 

As “Commands Template” we understand a specially crafted String where, using a syntax specified by 

the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established. 

A Velocity Engine version 1.4 is provided with ECP, to ease the implementation of dynamic Commands 

Templates for the user. Through the method TemplateParser#composeTemplate(), a Velocity 

Commands Template can be easily merged with the data. See http://velocity.apache.org/ for more 

details. See Commands Template Reference. 

What follows is an example of a possible Commands Template: 

[TEMPLATE:Do] 

 

[TEMPLATE:Section 0] 

 

show eth0 connections 

 [TEMPLATE:EndStrPattern "admin#"]  

 [TEMPLATE:Pattern "detination IP: (.*)"] 

 [TEMPLATE:Array "destinationIPs"] 

 

show eth1 connections 

 [TEMPLATE:EndStrPattern "admin#"]  

 [TEMPLATE:Pattern "detination IP: (.*)"] 

 [TEMPLATE:Array "destinationIPs"] 

 

 

[TEMPLATE:ForEach "var" In " destinationIPs"] 

  ping  %var% -n 1 

   [TEMPLATE:EndStrPattern "admin#"]  

[TEMPLATE:EndFor] 

 

[TEMPLATE:Undo] 

[TEMPLATE:Section 0] 

The previous template executes queries connections through eth0, storing the destination IP in the array 

variable destinationIPs. The same process is repeated on eth1. After that, a ping is executed to all 

the obtained IPs. All commands are over when the prompt admin# is encountered. As the Template does 

not modify the Target System state, no Undo commands are needed. 

2.4. Operation Execution 

Operation Execution is the process through which the commands needed for the Operation to be done or 

undone are issued, appropriately handling the errors and rolling back the partial configuration change or 

committing the configuration changes. 

The client will provide a “Commands Template”, a specially crafted String where, using a syntax 

specified by the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established. 

The Commands Template may contain conditional or looped execution of commands. Commands output 

http://velocity.apache.org/


HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

21 

 

may be stored in variables and later used in conditions and commands. For a more detailed explanation 

see 2.3 Commands Template. 

Each command in an Operation belongs to one of the following groups: 

a) Do: The commands collection to perform the configuration change. 

b) Undo: The commands collection to cancel the configuration change. 

c) Error: A set of commands to execute whenever a command output is identified as an unsuccessful 

command execution message. 

d) Commit: The commands to: 

a. Make the configuration modifications effective/visible. 

b. Save the configuration to a persistent media. 

e) Rollback: The commands to: 

a. Restore the previous configuration from a persistent media. 

b. Make the previous configuration effective/visible. 

This is the recommended use for these groups, although other uses may be possible, always taking in to 

account the Do/Undo/Commit/Rollback logic. That logic is dependant on the call used to execute the 

Operation. Four methods are available: “Execute”, “ExecuteActivation”, “Revert” and “InverseActivation”. 

See the following diagrams for more detail: 

 

“Execute” and “Revert” activity diagrams. 



HPSA Extension Pack 

Equipment Connection Pool 

 

22 

 

 

“ExecuteActivation” and “InverseActivation” activity diagrams.  

2.5. Real-time Monitoring 

From EP version 2.3 onwards the ECP is able to provide real time information of its execution through 

JMS. Currently, ECP includes Active MQ 4.1.1 which fully implements JMS 1.1.  If JMS monitoring is 

enabled, ECP may start its own embedded JMS service (by default) or connect to a remote one. Active 

MQ includes many features, like persistent, transactional and XA messaging; message groups, virtual 

destinations, wildcards and composite destinations; pluggable transport protocols as TCP, SSL, UDP, in-

VM (embedded); clustering; bridging to other JMS providers; JMX administration, etc…  



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

23 

 

3. First Steps 

3.1. Equipment Driver Development 

3.1.1. Equipment Driver Development Introduction 

As previously said (see Equipment Driver) an “Equipment Driver” is a class which encapsulates a single 

connection as an ECP Resource (a pooled connection). As such, an Equipment Driver must implement the 

functionality expected by the ECP, that is: 

a) The capability of executing commands. 

b) The ability of behaving as an ECP Connection.  

The main part of that functionality is already implemented and inherited from the driver parent classes 

EquipmentDriver and ConnectionResource, simplifying the driver development. 

The capability of executing commands is fully provided by the EquipmentDriver class, very rarely 

requiring additional implementation or overriding in the driver. 

The ability of behaving as an ECP Connection is partially provided by the ConnectionResource class, 

and as a consequence, additional implementation and overriding will be needed in the driver. 

In addition, an instance of another class, the ProtocolDriver, will provide protocol independence, 

allowing the use of the same Equipment Driver with varying communications protocols (telnet, SSH, etc…) 

to the destination equipment. 

While developing the driver, the programmer must be careful not to choose libraries versions which differ 

of the versions present in $ECP_LIB (if Pooled Connections are used) and/or the versions present in the 

$ACTIVATOR_THIRD_PARTY/lib (if Direct Connections are used). The Equipment Driver classes and its 

dependencies may have to be deployed in one or both of those paths and the driver classes will be 

loaded using the same ClassLoader as the rest of libraries there. See Equipment Driver Deployment for 

further details. 

See Available Equipment Drivers for a list of some Equipment Drivers already implemented. Notice that 

that list includes only the precise versions of the Target Systems against which a certain driver has been or 

is being used in a production environment. These drivers might be compatible as is with some other 

Target Systems or versions, or might be easily adapted to them. 

3.1.1.1. Equipment Driver Classes 

Every Equipment Driver must inherit from com.hp.spain.connection.ConnectionResource. The 

following diagram shows the typical class diagram of an Equipment Driver example 

(HPUXConnectionResource). 



HPSA Extension Pack 

Equipment Connection Pool 

 

24 

 

 

i. com.hp.spain.connection.ProtocolDriver Class 

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge 

of performing the most basic operations at low level, that is: establishing and closing the connection, 

sending and reading data from it, and encoding and decoding those data as needed by the Target 

System interface. Generally speaking, a Protocol Driver provides partial or total independence from the 

Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to 

reuse network protocol dependant functionality and the same Equipment Driver with different 

communication protocols. 

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols. 

See com.hp.spain.connection.ProtocolDriver Class for further information. 

ii. com.hp.spain.connection.EquipmentCommand Class 

This class encapsulates the information needed to execute a command on the Target System, that is, to 

construct the string to be sent, send it and read its output, interpret it, and extract information from it. 

iii. com.hp.spain.connection.EquipmentDriver Class 

This class contains the functionality needed to execute a command on the Target System represented as 

an EquipmentCommand, that is, construct the string to be sent, send it, and process its output. It also 

contains some basic connection operations, such as establishing a connection, closing a connection, and 

authenticating. 

iv. com.hp.spain.connection.Resource Class 

This interface represents a basic pooled object. Defines the operations needed to manage an object 

belonging to a pool. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

25 

 

v. com.hp.spain.connection.ConnectionResource Class 

This class implements an EquipmentDriver as a pooled object. It implements the functionality defined by 

Resource using the operations provided by EquipmentDriver, that is, executing commands and 

basic connection operations. 

3.1.1.2. Equipment Driver inside the ECP 

The following diagram shows an example Equipment Driver (HPUXConnectionResource) and its 

relation with the ECP. 

 

3.1.2. Equipment Driver Generic 

This driver is a usefull class to avoid the implementation of the different driver’s states. Then when the 

developer has to make a new driver just focus on the equipments requirements.  

The driver has to extend the class com.hp.spain.connection.EquipmentDriverGeneric and overwrite next 

methods. Some of them are optional. 

 void verifyLoggedIn(): optional. Makes the verification when the driver status is loggedin 

 void verifyConnected(): optional. Makes the verification when the driver status is connected 

 void verifyConfigMode(): optional. Makes the verification when the driver status is configMode 



HPSA Extension Pack 

Equipment Connection Pool 

 

26 

 

 void verifyUnknownMode(): optional. Makes the verification when the driver status is unknown 

 void enterConfigMode(): optional. Execute the commands required to config the connection 

 void exitConfigMode(): optional. Execute the commands required to unconfig the connection 

 void logout(): optional. Executes the commands to logout the connection 

 void initalizeSpecificParameters(String specificParameters): optional. 

 void waitForLoginUserPrompt(): usually required for protocol without authentication support. 

Synchronize the login prompt. 

 void waitForLoginPwdPrompt(): usually required for protocol without authentication support. 

Synchronize the login password. 

 void waitForInitialCommandPrompt(): usually required. Synchronize the initial prompt. 

3.1.3. Equipment Driver Deployment 

The Equipment Driver may have to be deployed in two different paths, depending on the type of 

connection used. 

For Pooled Connections, the Equipment Driver jar and its dependencies must be placed inside the 

$ECP_LIB directory, and the ECP Service restarted. The ECP Service should be restarted whenever that 

directory contents are modified for the ECP to incorporate the changes. For the Equipment Driver to be 

instantiated a Static or Dynamic Pool which uses that Equipment Driver must be created and depending 

on the ECP configuration, even a Commands Template executed against it. 

For Direct Connections, the Equipment Driver jar and its dependencies must be placed inside the 

$ACTIVATOR_THIRD_PARTY/lib directory. The Micro Workflow Manager and the Resource Manager 

must be restarted for the changes to take effect. The Micro Workflow Manager and the Resource 

Manager should be restarted whenever that directory contents are modified. A Commands Template must 

be executed for the Equipment Driver to be instantiated. 

3.1.4. Available Equipment Drivers 

The following Equipment Drivers have been already developed and are available: 

Equipment Driver 

Tested On Use Case 

Manufacturer Model Sw/Fw 

Version 

Type Context Operations Protocol 

cisco-ovsa-plugin Cisco 

Catalyst 2960 Series 

Switch. Unknown Models 
? 

Ethernet Switch Level 2 Network 
VLAN Configuration, 

ACL’s, DHCP 
Telnet 

Catalyst 4503 Switch ? 

oxe-ovsa-plugin Alcatel-Lucent OmniPCX Enterprise 
7.1 

Communications Server 
VoIP Telephone 

Exchange 

Channel 

Administration 
Telnet 

8.1 

juniper-ovsa-driver Juniper Networks M40e ? Router 

Provider Router 

IP/MPLS 

Network Access 

Router 

Configuration 

Configuration 

diagnosis 

SSH 

teldat-ovsa-driver Teldat Atlas 250 ? Router Client Router 
Configuration 

diagnosis 
Telnet 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

27 

 

cisco-ovsa-driver Cisco 

2801 Integrated Services 

Router 
? 

Router Client Router 
Configuration 

diagnosis 
Telnet 

2621XM Multiservice 

Router 
? 

catalyst-ovsa-driver Cisco 

Catalyst 3560-24TS ? 

Ethernet Switch Client Router 
Configuration 

diagnosis 
Telnet 

Catalyst 3560-48TS ? 

Catalyst 3550-24-EMI ? 

Catalyst 3550-12G ? 

riverstone-ovsa-driver Riverstone 
RS1100 ? 

Router Client Router 
Configuration 

diagnosis 
Telnet 

RS 3100 ? 

Notice that this list includes only the precise versions of the Target Systems against which a certain driver 

has been or is being used in a production environment. These drivers might be compatible as is with 

some other Target Systems or versions, or might be easily adapted to them. 

3.1.5. Generic Template Equipment Driver 

This driver is able to connect to any type of equipments using some variables or templates. The most 

important fearture of this driver is the capability to connect any equipment and not require any java 

development. 

This equipment driver is configured using the class com.hp.spain.connection.TemplateDriver. We can 

configure this driver adding into the DriverSpecificParameters the extra variables on properties format or 

referring to the Common Configuration. 

The next templates can be configured into the database or into a file, finding first in database. 

 LOGIN_TEMPLATE: template to make the login (note: this template has sense in protocol driver 

that doesn’tmakes the authentication)  

 LOGOUT_TEMPLATE: the logout template, typically the exit command 

 ENTER_CONFIG_MODE_TEMPLATE: the template to configure all the sessions attributes required. 

 EXIT_CONFIG_MODE_TEMPLATE -> the template to unconfigure  

 VERIFY_TEMPLATE: template to verify if the connection is ok.  

These templates will receive the parameters configured into the DriverSpecificParameters and the next 

parameters configured into the subpool: 

 USER: user name 

 PASSWORD: user password 

 PASSWORD_ENABLE: password enable 

 HOST: ip host value 

Also, the next variables can be defined to make easier the templates: 

 LOGIN_USER_PROMPT: synchronize the driver with the login prompt. 

 LOGIN_PWD_PROMPT: synchronize the driver with the password prompt. 

 INITIAL_PROMPT: synchronize the driver with the inital prompt. 



HPSA Extension Pack 

Equipment Connection Pool 

 

28 

 

Also, this driver has the capability to add error patterns, failure patterns, non error patterns and error 

message to all the commands that are executed into a command template. In case, it’s required to add 

these patterns to the connections templates (LOGIN_TEMPLATE, ENTER_CONFIG_MODE_TEMPLATE, …) 

the variable ADD_PATTERNS_CONNECTION_TEMPLATES has to be setted to true. 

The only requirement to set these patterns is define variables with next prefix: 

 ENDSTRING_PATTERN 

 ERROR_PATTERN 

 FAILURE_PATTERN 

 NONERROR_PATTERN 

 ERROR_MESSAGE: in this case only can be defined one and the variable is required to have this 

name. 

3.1.5.1. Connection 

 

When the driver starts the connection the first step is to check if the LOGIN_USER_PROMPT is configured.  

In that case, synchronize this prompt. After that, the LOGIN_TEMPLATE is executed if it’s configured. If not 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

29 

 

and the protocol driver doesn’t support authentication, send the user, synchronize the password prompt 

(LOGIN_PWD_PROMPT) and send the password. 

In this moment, the driver is authenticated and in case the INITIAL_PROMPT is configured the driver 

synchronizes the initial prompt. 

Usually, when the protocol supports the authentication (for example, ssh) it’s only necessary to configure 

the INITIAL_PROMPT and not the LOGIN_TEMPLATE and neither LOGIN_USER_PROMPT. 

After synchronize the INITIAL_PROMPT the driver execute the ENTER_CONFIG_MODE_TEMPLATE and 

finally executes the VERIFY_TEMPLATE.  

In this moment, the driver is connected and ready to be used. 

3.1.5.2. Disconnect 

 

First, the driver execute the template EXIT_CONFIG_MODE_TEMPLATE and after that the 

LOGOUT_TEMPLATE. 

3.1.5.3. Examples of DriverSpecificParamters 

Telnet easiest configuration: 

LOGOUT_TEMPLATE=logout.vm 

LOGIN_USER_PROMPT=.*login\: 

LOGIN_PWD_PROMPT=.*password\: 

INITIAL_PROMPT=C\:.*\> 

Ssh easiest configuration: 

INITIAL_PROMPT=# 

Telnet using login template and patterns: 

LOGOUT_TEMPLATE=logout.vm 

LOGIN_USER_PROMPT=.*login\: 

LOGIN_TEMPLATE=login.vm 

VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify.vm 

ENDSTRING_PATTERN= C\:.*\> 

ERROR_PATTERN_1=ERROR [0-9]+ .* 



HPSA Extension Pack 

Equipment Connection Pool 

 

30 

 

ERROR_PATTERN_2=[0-9][0-9] ERROR .* 

FAILURE_PATTERN_1=FAILURE [0-9]+ .* 

FAILURE_PATTERN2=[0-9][0-9] FAILURE .* 

ERROR_MESSAGE=error message 

NONERROR_PATTERN_1=Warning .* 

Ssh using enter mode config template and patterns: 

LOGOUT_TEMPLATE=logout_ssh.vm 

LOGIN_TEMPLATE=login.vm 

ENTER_CONFIG_MODE_TEMPLATE=enterConfigMode.vm 

EXIT_CONFIG_MODE_TEMPLATE=exitConfigMode.vm 

VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify_ssh.vm 

INITIAL_PROMPT=\\[forge\\]\\$ 

ENDSTRING_PATTERN=\\[forge\]\\$ 

ERROR_PATTERN_1=ERROR [0-9]+ .* 

ERROR_PATTERN_2=[0-9][0-9] ERROR .* 

FAILURE_PATTERN_1=FAILURE [0-9]+ .* 

FAILURE_PATTERN2=[0-9][0-9] FAILURE .* 

ERROR_MESSAGE=error message 

NONERROR_PATTERN_1=Warning .* 

3.2. ECP Service Process 

3.2.1. Starting ECP Service 

To start the ECP Service, use the following: 

Windows: 

$ECP_BIN\StartServer.bat 

On Unix: 

$ECP_BIN\StartServer.sh 

3.2.2. Stopping ECP Service 

To stop the ECP Service, use the following: 

Windows: 

$ECP_BIN\StopServer.bat 

On Unix 

$ECP_BIN\StopServer.sh 

3.2.3. Restarting ECP Service 

Just stop and start the ECP Service.  

3.2.4. Checking ECP Service 

To check the ECP Service, use the following: 

Windows: 

$ECP_BIN\showStatus.bat 

On Unix: 

$ECP_BIN\showStatus.sh 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

31 

 

3.3. Use Examples 

What follows is a series of examples of ECP Clients. In those examples, the following class, simulating a 

client configuration, is used. You will probably have some other particular way of obtaining the 

configuration. Notice that, depending on the connection type, not all of the configuration parameters are 

needed: 

package com.hp.spain.connection.pool.examples; 

 

public class ExamplesConfiguration { 

 

 //Commands Template 

 private static String Template = 

  "[TEMPLATE:Do]\n" + 

  "[TEMPLATE:Section 0]\n" + 

  "help\n" + 

  " [TEMPLATE:EndStrPattern \"nina.*\"]\n" + 

  " [TEMPLATE:Error \"%CLI-E-NOFACINST, no facility instance allowed\"]\n" + 

  "[TEMPLATE:Undo]\n" + 

  "[TEMPLATE:Section 0]\n"; 

  

 //Target system data 

 private static String Hostname="172.16.2.111"; 

 private static int Port=23; 

 private static String Login="admin"; 

 private static String Password="pass4hpsa"; 

 private static String PasswordEnable="pass4hpsa"; 

  

 //Drivers data 

 private static String Protocol="telnet"; 

 private static String ConnectionResourceClassName = 

       "com.hp.spain.connection.RiverstoneRSConnectionResource"; 

 private static String AdditionalData="Other needed values"; 

  

 //Pool data 

 private static String PoolName="examplePool"; 

 private static int MaxCon=3; 

 private static int MinCon=1; 

 private static boolean InitOnCreate=true; 

 private static int OverMinimunConnTimeout=30000; 

 private static int ReservedConnTimeout=60000; 

 private static int PoolTimeout=600000; 

  

 //ECP Instance data 

 private static String ECPHost="127.0.0.1"; 

 private static String ECPPort="1200"; 

 private static int QueueID=1; 

  

 public static String getAdditionalData() { 

  return AdditionalData; 

 } 

 public static String getConnectionResourceClassName() { 

  return ConnectionResourceClassName; 

 } 

 public static String getECPHost() { 

  return ECPHost; 

 } 

 public static String getECPPort() { 

  return ECPPort; 

 } 

 public static String getHostname() { 

  return Hostname; 

 } 

 public static boolean isInitOnCreate() { 

  return InitOnCreate; 

 } 

 public static String getLogin() { 



HPSA Extension Pack 

Equipment Connection Pool 

 

32 

 

  return Login; 

 } 

 public static int getMaxCon() { 

  return MaxCon; 

 } 

 public static int getMinCon() { 

  return MinCon; 

 } 

 public static int getOverMinimunConnTimeout() { 

  return OverMinimunConnTimeout; 

 } 

 public static String getPassword() { 

  return Password; 

 } 

 public static String getPasswordEnable() { 

  return PasswordEnable; 

 } 

 public static String getPoolName() { 

  return PoolName; 

 } 

 public static int getPoolTimeout() { 

  return PoolTimeout; 

 } 

 public static int getPort() { 

  return Port; 

 } 

 public static String getProtocol() { 

  return Protocol; 

 } 

 public static int getReservedConnTimeout() { 

  return ReservedConnTimeout; 

 } 

 public static String getTemplate() { 

  return Template; 

 } 

 public static int getQeueID() { 

  return QueueID; 

 } 

} 

3.3.1. Creating and Using an Static Pool 

In the source examples a Pool called “examplePool” will be used. What follows is a quick guide to create 

a Pool. Refer to the document “OVSA EP for Service Providers - ECP Administration GUI - User Reference” 

for details on how to administer Pools and SubPools using the ECP GUI. 

First, create the Pool (menu “Administrator->Pool->New”) 

 

Fill in the formulary that will appear.  

 Name: “examplePool”. The Pool ID will be used from code to reference to the pool. 

 Log File: “examplePool.log”. Name of the file were the Pool activity will be logged. 

 Log Level: info 

 Maximum Pool Life Time from…: 10000 

 Weights: 1,2,3,4,5 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

33 

 

 

Save the Pool (menu “Pool->Save”) 

 

After creating the Pool, create a SubPool (menu “Administrator->SubPool->New”) 

 

Fill in the formulary that will appear. 

 Pool Name: “examplePool”. The Pool to which this SubPool belongs. 

 Min. Sessions: 10 

 Max Sessions: 100 

 Init Sessions: 1 

 Temporary Sessions life Time=1000000 

 Max. Sessions use time= 100000000 

The rest of the values are dependent on the Target System. These values are given as an example 

 Equipment Connection Resource Class: Class of the Equipment driver. For example: 

“com.hp.spain.connection.RiverstoneRSConnectionResource” 

 IP: Target System IP. For example: 172.16.2.111 

 Protocol: Protocol Driver to use. For example: telnet 

 Port: Port to connect through to the Target System. For example: 23 

 User: User Name to log into the Target System. For example: admin 

 Password: Password to log into the Target System. 



HPSA Extension Pack 

Equipment Connection Pool 

 

34 

 

 

Save the SubPool (menu “SubPool->Save”) 

 

What follows is an example of static Pool use: 

package com.hp.spain.connection.pool.examples; 

 

import java.util.HashMap; 

 

import com.hp.spain.connection.CLICommands; 

import com.hp.spain.connection.CLIExecutionException; 

import com.hp.spain.connection.TemplateParser; 

import com.hp.spain.connection.TemplateParserException; 

 

public class StaticPoolConnExample { 

  

 public static void main (String[] args) 

  throws CLIExecutionException, TemplateParserException { 

    HashMap oRet=null; //the Operation execution result 

    TemplateParser parser; //the ECP Template Parser instance 

    CLICommands cliCommands; //the ECP Operation Engine instance 

 

    //ECP Template Parser instantiation and configuration  

    parser=new TemplateParser(); 

   

    //ECP Operation Engine instantiation and configuration 

    cliCommands = parser.parseTemplate(ExamplesConfiguration.getTemplate()); 

   

    //ECP instance 

    cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost()); 

    cliCommands.setRMIPort(ExamplesConfiguration.getECPPort()); 

   

    //Operation execution 

    oRet=cliCommands.execute( 

          ExamplesConfiguration.getPoolName(), 

          ExamplesConfiguration.getQeueID()); 

    //Other possible executions would have been: 

    //oRet=cliCommands.executeActivation( 

    //    ExamplesConfiguration.getPoolName(), 

    //    ExamplesConfiguration.getQeueID()); 

    //oRet=cliCommands.revert( 

    //    ExamplesConfiguration.getPoolName(), 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

35 

 

    //    ExamplesConfiguration.getQeueID()); 

    //oRet=cliCommands.inverseActivation( 

    //    ExamplesConfiguration.getPoolName(), 

    //    ExamplesConfiguration.getQeueID()); 

 

    //Execution Output 

    System.out.println("RESULT HASHMAP:"); 

    System.out.println(oRet); 

    System.out.println("COMMANDS SENT:"); 

    System.out.println(cliCommands.getCommandsSent()); 

    System.out.println("STDOUT:"); 

    System.out.println(cliCommands.getStdOut()); 

 } 

} 

To execute the example, run the following command, where <classpath> should contain all the 

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The 

java version must be 1.4.2. 

java -classpath <classpath> com.hp.spain.connection.pool.examples.StaticPoolConnExample 

3.3.2. Creating and Using a Dynamic Pool 

It is possible to create a Pool programmatically, indicating its properties as part of an Operation 

Execution. Programmatically created pools are called “Dynamic Pools” and are usually temporary. See 

Dynamic Pools for a more detailed explanation. 

package com.hp.spain.connection.pool.examples; 

 

import java.util.HashMap; 

 

import com.hp.spain.connection.CLICommands; 

import com.hp.spain.connection.CLIExecutionException; 

import com.hp.spain.connection.TemplateParser; 

import com.hp.spain.connection.TemplateParserException; 

import com.hp.spain.connection.pool.DynamicEcpProperties; 

 

public class DynPoolConnExample { 

 

 public static void main (String[] args) 

  throws CLIExecutionException, TemplateParserException { 

    HashMap oRet=null; //the Operation execution result 

    TemplateParser parser; //the ECP Template Parser instance 

    CLICommands cliCommands; //the ECP Operation Engine instance 

    DynamicEcpProperties oDynProps; 

 

    //ECP Template Parser instantiation and configuration  

    parser=new TemplateParser(); 

    //Target System Data 

    parser.setHostname(ExamplesConfiguration.getHostname()); 

    parser.setPort(ExamplesConfiguration.getPort()); 

    parser.setLogin(ExamplesConfiguration.getLogin()); 

    parser.setPassword(ExamplesConfiguration.getPassword()); 

    parser.setPasswordEnable(ExamplesConfiguration.getPasswordEnable()); 

   

    //ECP Operation Engine instantiation and configuration 

    cliCommands = parser.parseTemplate(ExamplesConfiguration.getTemplate()); 

    //Equipment and Protocol Drivers 

    cliCommands.setProtocol(ExamplesConfiguration.getProtocol()); 

    cliCommands.setConnectionResourceClassName( 

         ExamplesConfiguration.getConnectionResourceClassName()); 

    //Pooling Data 

    //Pool name is ptional. By default dynamic pool names are autogenerated. 

 

    cliCommands.setDynamicPoolName(ExamplesConfiguration.getPoolName()); 

    oDynProps= cliCommands.getDynamicEcpProperties(); 



HPSA Extension Pack 

Equipment Connection Pool 

 

36 

 

    oDynProps.setPoolConfiguration( 

         //maximum number of connections to be contained in the pool 

         ExamplesConfiguration.getMaxCon(), 

         //minimum number of connections to be contained in the pool 

         ExamplesConfiguration.getMinCon(), 

         //initialize on instantiation, instead of on firs use 

         ExamplesConfiguration.isInitOnCreate(), 

         //Not used timeout of connections over the minimum (ms) 

         ExamplesConfiguration.getOverMinimunConnTimeout(), 

         //maximum time a connection may be in use by an Operation (ms) 

         ExamplesConfiguration.getReservedConnTimeout(), 

         //Not used timeout for the pool 

         ExamplesConfiguration.getPoolTimeout() 

    ); 

    //ECP instance 

    cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost()); 

    cliCommands.setRMIPort(ExamplesConfiguration.getECPPort()); 

   

    //Equipment Driver additional initialization parameters 

    oDynProps.setSpecificParameters(ExamplesConfiguration.getAdditionalData()); 

   

    //Operation execution 

    oRet=cliCommands.execute(oDynProps, ExamplesConfiguration.getQeueID());  

  

    //Other possible executions would have been: 

    //oRet=cliCommands.executeActivation(oDynProps, ExamplesConfiguration.getQeueID()); 

    //oRet=cliCommands.revert(oDynProps, ExamplesConfiguration.getQeueID()); 

    //oRet=cliCommands.inverseActivation(oDynProps, ExamplesConfiguration.getQeueID()); 

 

    //Execution Output 

    System.out.println("RESULT HASHMAP:"); 

    System.out.println(oRet); 

    System.out.println("COMMANDS SENT:"); 

    System.out.println(cliCommands.getCommandsSent()); 

    System.out.println("STDOUT:"); 

    System.out.println(cliCommands.getStdOut()); 

  } 

} 

To execute the example, run the following command, where <classpath> should contain all the 

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The 

java version must be 1.4.2. 

java -classpath <classpath> com.hp.spain.connection.pool.examples.DynPoolConnExample 

 

3.3.3. Using Direct Connections 

It is possible to bypass the ECP Service when executing a Commands Template. See Direct Connections 

(Not Pooled Connections) for a detailed explanation. 

package com.hp.spain.connection.pool.examples; 

 

import java.util.HashMap; 

 

import com.hp.spain.connection.CLICommands; 

import com.hp.spain.connection.CLIExecutionException; 

import com.hp.spain.connection.ConnectionResource; 

import com.hp.spain.connection.TemplateParser; 

import com.hp.spain.connection.TemplateParserException; 

 

public class DirectConnExample { 

 

 public static void main (String[] args) 

  throws CLIExecutionException, TemplateParserException { 

  HashMap oRet=null; //the Operation execution result 

  TemplateParser parser; //the ECP Template Parser instance 

  CLICommands cliCommands; //the ECP Operation Engine instance 

 

  //ECP Template Parser instantiation and configuration  

  parser=new TemplateParser(); 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

37 

 

  //Target System Data 

  parser.setHostname(ExamplesConfiguration.getHostname()); 

  parser.setPort(ExamplesConfiguration.getPort()); 

  parser.setLogin(ExamplesConfiguration.getLogin()); 

  parser.setPassword(ExamplesConfiguration.getPassword()); 

  parser.setPasswordEnable(ExamplesConfiguration.getPasswordEnable()); 

   

  //ECP Operation Engine instantiation and configuration 

  cliCommands = parser.parseTemplate(ExamplesConfiguration.getTemplate()); 

  //Equipment and Protocol Drivers 

  cliCommands.setProtocol(ExamplesConfiguration.getProtocol()); 

  cliCommands.setConnectionResourceClassName( 

            ExamplesConfiguration.getConnectionResourceClassName()); 

   

  //Equipment Driver additional initialization parameters 

  HashMap oAddParams= new HashMap(); 

  oAddParams.put( 

            ConnectionResource.DefaultParameterNames.specificParameters, 

            ExamplesConfiguration.getAdditionalData()); 

  cliCommands.setEquipmentDriverAdditionalParameters(oAddParams); 

   

  //Operation execution 

  oRet=cliCommands.execute();    

  //Other possible executions would have been: 

  //oRet=cliCommands.executeActivation(); 

  //oRet=cliCommands.revert(); 

  //oRet=cliCommands.inverseActivation(); 

 

  //Execution Output 

  System.out.println("RESULT HASHMAP:"); 

  System.out.println(oRet); 

  System.out.println("COMMANDS SENT:"); 

  System.out.println(cliCommands.getCommandsSent()); 

  System.out.println("STDOUT:"); 

  System.out.println(cliCommands.getStdOut()); 

 } 

} 

To execute the example, run the following command, where <classpath> should contain all the 

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled plus 

the path where the Equipment Driver libraries are located. The java version must be 1.4.2. 

java -classpath <classpath> -Dactivator.dir.config=$ECP_ETC 

com.hp.spain.connection.pool.examples.DirectConnExample 

3.4. Monitoring ECP through JMS 

ECP can be monitored through JMS. JMS is a specification which defines a messaging API. Two version 

of the specification have been produced so far: 1.1 and the now obsolete 1.0.2b. 

Depending on your system, you might have to use JMS version 1.0.2b or 1.1. For example, JBoss-4.x 

supports the JMS1.1 version of the specification, while JBoss-3.2.x supports JMS1.0.2b. From 3.2.8, 

JBoss also supports JMS1.1. If your system does not impose a JMS version, version 1.1 is recommended. 

JMS 1.1 is backwards-compatible that is, a JMS 1.0.2b client will work with a JMS 1.1 provider and a 

JMS 1.1 provider will work as a JMS 1.0.2b provider. 

3.4.1. Including Additional Data in Activation JMS Messages: 

JMS Activation monitoring messages won’t be sent unless the client issuing the activation establishes some 

data to be included in the messages. When receiving the JMS messages through a JMS client, the data 

established by the ECP client will be received. This provides a way for the ECP client to communicate with 



HPSA Extension Pack 

Equipment Connection Pool 

 

38 

 

the JMS Client. The JMS Client will typically use this information to filter the messages it will receive (see 

JMS Documentation for additional information on this issue). 

The following example shows how to establish the data to be sent in the messages. 

package com.hp.spain.connection.pool.examples; 

 

import java.util.HashMap; 

import java.util.Map; 

 

import com.hp.spain.connection.CLICommands; 

import com.hp.spain.connection.CLIExecutionException; 

import com.hp.spain.connection.TemplateParser; 

import com.hp.spain.connection.TemplateParserException; 

import com.hp.spain.connection.configuration.ECPSendingMessageConfiguration; 

 

public class JMSMessagesActivationExample { 

  

 public static void main (String[] args) throws CLIExecutionException, TemplateParserException 

{ 

  HashMap oRet=null; //the Operation execution result 

  TemplateParser parser; //the ECP Template Parser instance 

  CLICommands cliCommands; //the ECP Operation Engine instance 

 

  //ECP Template Parser instantiation and configuration  

  parser=new TemplateParser(); 

   

  //ECP Operation Engine instantiation and configuration 

  cliCommands = parser.parseTemplate(ExamplesConfiguration.getTemplate()); 

    

  //ECP instance 

  cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost()); 

  cliCommands.setRMIPort(ExamplesConfiguration.getECPPort()); 

   

  //Set the content to include in the JMS Monitoring messages 

  Map messagesConfiguration=new HashMap(); //The messages configuration 

        //establish the messages configuration 

  cliCommands.setMsgsSpecifier(messagesConfiguration); 

  Map messagesAdditionalContents=new HashMap(); //The messages additional data 

        //Include the additional message contents in the messages configuration. 

  messagesConfiguration.put( 

            ECPSendingMessageConfiguration.MSGSPEC_PROPID_JMSPROPERTIES, 

            messagesAdditionalContents);  

   

  //Add the messages additional data 

  messagesAdditionalContents.put("par1", new Integer(1)); 

  messagesAdditionalContents.put("par2", "val2"); 

   

  //Operation execution 

  oRet=cliCommands.execute( 

            ExamplesConfiguration.getPoolName(), 

            ExamplesConfiguration.getQeueID());    

   

  //Execution Output 

  System.out.println("RESULT HASHMAP:"); 

  System.out.println(oRet); 

  System.out.println("COMMANDS SENT:"); 

  System.out.println(cliCommands.getCommandsSent()); 

  System.out.println("STDOUT:"); 

  System.out.println(cliCommands.getStdOut()); 

 } 

} 

3.4.2. JMS Client Dependencies 

3.4.2.1. Integrating with another JMS provider 

If your system does impose a JMS version (usually because it provides a JMS implementation), you will 

have to include the following library: 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

39 

 

activemq-core-4.1.1.jar 

The previous jar has a runtime dependency with the following jars. You may also have to include them if 

your system does not. 

backport-util-concurrent-2.1.jar 

commons-logging-1.1.jar 

geronimo-j2ee-management_1.0_spec-1.0.jar 

Those libraries provide the Active MQ 4.1.1 implementation of JMS, but do not include a JMS definition. 

As the JMS API version is imposed by your system, you should include one of your system libraries to 

provide the API definition. Check your system documentation to know which library to include. JBoss 

provides the following jars: 

jboss-j2ee.jar 

jbossall-client.jar  

Both jars include the JMS API definition. Use whichever you find more convenient, but not both. 

3.4.2.2. No other JMS provider 

If your system does not impose a JMS version (it does not include at least a runtime JMS API definition), 

you may use the JMS API version provided by Active MQ 4.1.1. You will have to include the following 

library 

apache-activemq-4.1.1.jar 

3.4.3. JMS Client Examples 

What follows is a series of examples of JMS clients which work as ECP Monitors. In those examples, the 

following class, simulating a configuration, is used. You will probably have some other particular way of 

obtaining the configuration. 

package com.hp.spain.connection.pool.examples; 

 

import java.util.Hashtable; 

 

import javax.jms.Session; 

import javax.naming.Context; 

 

public class JMSClientConfiguration { 

 

 private static final Hashtable contextEnvironment; 

 

 private static final boolean administeredConnectionFactory; 

 private static final String connectionFactoryJNDIName; 

 private static final String connectionFactoryURL; 

 

 private static final boolean transactedSession; 

 private static final int acknowledgeMode; 

 

 private static final String destinationJNDIName; 

 

 private static final String consumerMessagesFilter; 

 private static final boolean receiveLocalMessages; 

 

 private static final long messageReceptionTimeOut; 

 

 static { 

  contextEnvironment = new Hashtable(); 

  contextEnvironment.put( 

            Context.INITIAL_CONTEXT_FACTORY, 

            "org.apache.activemq.jndi.ActiveMQInitialContextFactory"); 

  contextEnvironment.put(Context.PROVIDER_URL, "tcp://pallanthas.des.hp.es:4001"); 

 



HPSA Extension Pack 

Equipment Connection Pool 

 

40 

 

  administeredConnectionFactory = true; 

  connectionFactoryJNDIName = "TopicConnectionFactory"; 

  connectionFactoryURL = "tcp://pallanthas.des.hp.es:4001"; 

 

  transactedSession=false; 

  acknowledgeMode = Session.AUTO_ACKNOWLEDGE; 

   

  destinationJNDIName = "dynamicTopics/ECP.MainTopic"; 

 

  consumerMessagesFilter = null; 

  receiveLocalMessages = true; 

 

  messageReceptionTimeOut = 10000; 

 } 

 

 public static String getConsumerMessagesFilter() { 

  return consumerMessagesFilter; 

 } 

 

 public static boolean isReceiveLocalMessages() { 

  return receiveLocalMessages; 

 } 

 

 public static boolean isAdministeredConnectionFactory() { 

  return administeredConnectionFactory; 

 } 

 

 public static String getConnectionFactoryJNDIName() { 

  return connectionFactoryJNDIName; 

 } 

 

 public static String getConnectionFactoryURL() { 

  return connectionFactoryURL; 

 } 

 

 public static Hashtable getContextEnvironment() { 

  return contextEnvironment; 

 } 

 

 public static int getAcknowledgeMode() { 

  return acknowledgeMode; 

 } 

 

 public static boolean isTransactedSession() { 

  return transactedSession; 

 } 

 

 public static String getDestinationJNDIName() { 

  return destinationJNDIName; 

 } 

 

 public static long getMessageReceptionTimeOut() { 

  return messageReceptionTimeOut; 

 } 

}; 

3.4.3.1. JMS 1.0.2b Client Example 

package com.hp.spain.connection.pool.examples; 

 

import javax.jms.MapMessage; 

import javax.jms.Topic; 

import javax.jms.TopicConnection; 

import javax.jms.TopicConnectionFactory; 

import javax.jms.TopicSession; 

import javax.jms.TopicSubscriber; 

import javax.naming.InitialContext; 

 

public class JMS102bClient { 

 public static void main(String[] args) throws Exception{ 

    InitialContext context; 

    TopicConnectionFactory connectionFactory; 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

41 

 

    TopicConnection connection; 

    TopicSession session; 

    Topic destination; 

    TopicSubscriber messageConsumer; 

    MapMessage message; 

   

    //naming context for administered objects 

    context = new InitialContext(JMSClientConfiguration.getContextEnvironment()); 

   

    //the connection factory is obtained 

    connectionFactory = (TopicConnectionFactory) context.lookup( 

            JMSClientConfiguration.getConnectionFactoryJNDIName()); 

   

    //the connection is created 

    connection = connectionFactory.createTopicConnection(); 

    //the session is craeted 

    session = connection.createTopicSession( 

            JMSClientConfiguration.isTransactedSession(), 

            JMSClientConfiguration.getAcknowledgeMode()); 

 

    //the destination is obtained 

    destination = (Topic) context.lookup(JMSClientConfiguration.getDestinationJNDIName()); 

   

    //the message receiver is created 

    messageConsumer = session.createSubscriber( 

            destination, 

            JMSClientConfiguration.getConsumerMessagesFilter(),ç 

            JMSClientConfiguration.isReceiveLocalMessages()); 

 

    //start to receive messages 

    connection.start(); 

   

    //wait for a message 

    System.out.println("Waiting for message."); 

    Message message = null; 

    message = (MapMessage)messageConsumer.receive( 

            JMSClientConfiguration.getMessageReceptionTimeOut()); 

    if (message!=null){    

      //Process the message 

      System.out.println("Received message: " + message.toString()); 

    

      //Acknowledge the message. 

      //Acknowledging a consumed message acknowledges all messages that the session has 

      //consumed. 

      //This call can be omitted for both transacted sessions and sessions specified to use 

      //implicit acknowledgement modes. However, extra care must be taken when omitting message 

      //acknowledgement as messages that have been received but not acknowledged may be 

      //redelivered. 

      //Additionally, when client acknowledgment mode is used, a client may build up a large 

      //number of unacknowledged messages while attempting to process them. 

      //This call can be made before processing the message, if message losses are tolerated. 

      message.acknowledge(); 

   } 

   else { 

      System.out.println("No message was received."); 

   } 

   

    //clean up 

    messageConsumer.close(); 

    connection.stop(); 

    session.close(); 

    connection.close(); 

 

    System.out.println("FINISHED."); 

 } 

}  



HPSA Extension Pack 

Equipment Connection Pool 

 

42 

 

3.4.3.2. JMS 1.1 Client Example 

package com.hp.spain.connection.pool.examples; 

 

import javax.jms.Connection; 

import javax.jms.ConnectionFactory; 

import javax.jms.Destination; 

import javax.jms.MapMessage; 

import javax.jms.MessageConsumer; 

import javax.jms.Session; 

import javax.naming.InitialContext; 

 

public class JMS11Client { 

 public static void main(String[] args) throws Exception{ 

  InitialContext context; 

  ConnectionFactory connectionFactory; 

  Connection connection; 

  Session session; 

  Destination destination; 

  MessageConsumer messageConsumer; 

  MapMessage message; 

   

  //naming context for administered objects 

  context = new InitialContext(JMSClientConfiguration.getContextEnvironment()); 

   

  //the connection factory is obtained 

  connectionFactory = (ConnectionFactory) context.lookup( 

           JMSClientConfiguration.getConnectionFactoryJNDIName()); 

   

  //the connection is created 

  connection = connectionFactory.createConnection(); 

  //the session is craeted 

  session = connection.createSession( 

           JMSClientConfiguration.isTransactedSession(), 

           JMSClientConfiguration.getAcknowledgeMode()); 

 

  //the destination is obtained 

  destination = (Destination) context.lookup( 

           JMSClientConfiguration.getDestinationJNDIName()); 

   

  //the message receiver is created 

  messageConsumer = session.createConsumer( 

           destination, 

           JMSClientConfiguration.getConsumerMessagesFilter(), 

           JMSClientConfiguration.isReceiveLocalMessages()); 

 

  //start to receive messages 

  connection.start(); 

   

  //wait for a message 

  System.out.println("Waiting for message."); 

  message= null; 

  message= (MapMessage)messageConsumer.receive( 

           JMSClientConfiguration.getMessageReceptionTimeOut()); 

  if (message!=null){    

   //process the message 

   System.out.println("Received message: " + message.toString()); 

    

   //Acknowledge the message. 

   //Acknowledging a consumed message acknowledges all messages that the session 

               //has consumed. 

   //This call can be omitted for both transacted sessions and sessions specified  

               //to use implicit acknowledgement modes. However, extra care must be taken when 

               //omitting message acknowledgement as messages that have been received but not 

               //acknowledged may be redelivered. 

   //Additionally, when client acknowledgment mode is used, a client may build up a 

               //large number of unacknowledged messages while attempting to process them. 

               //This call can be made before processing the message, if message losses are 

               //tolerated. 

   message.acknowledge(); 

  } 

  else { 

   System.out.println("No message was received."); 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

43 

 

  } 

   

  //clean up 

  messageConsumer.close(); 

  connection.stop(); 

  session.close(); 

  connection.close(); 

 

  System.out.println("FINISHED."); 

 } 

}  

3.4.3.3. Processing Additional Data Included In Activation JMS Messages 

When processing a JMS message, the additional data included by the client who issued the activation 

can be extracted by the JMS Client. The additional data is contained as named values inside the 

MapMessage. Extracting the data is a simple process: 

message.getString("par"); 

3.4.4. ECP Messages Types 

To ease client implementation, JMS provides the means to filter the messages that a 

MessageConsumer/TopicSubscriber will receive. See the JMS documentation for further details. 

ECP Messages will always be instances of MapMessage.  

All messages will contain a Header Property, with the name  

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name 

and whose value will identify the type of message.  The information available in a message will vary, 

depending on the type of message. 

3.4.4.1. DataSent Message 

If the message header property of name 

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name 

 has the value 

com.hp.spain.connection.monitor.messages.DataSentMessage.EventIDField.Values.DataSent 

 the message is a DataSent Message. Than type of message will be sent every time the protocol driver is 

instructed to send data to the equipment. 

The message header property of name  

com.hp.spain.connection.monitor.messages.DataSentMessage.EventDataField.Name 

will contain the data sent. 

3.4.4.2. DataReceived Message 

If the message header property of name 

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name 

has the value 

com.hp.spain.connection.monitor.messages.DataReceivedMessage.EventID.Values.DataReceived 



HPSA Extension Pack 

Equipment Connection Pool 

 

44 

 

the message is a DataSent Message. Than type of message will be sent every time the protocol driver is 

instructed to receive data from the equipment. 

The message header property of name  

com.hp.spain.connection.monitor.messages.DataReceivedMessage.EventDataField.Name 

will contain the data received. 

3.5. Retrieving connection information through an external data getter 

Since EP version 5.1-10, new parameters ExternalDataGetterClassName and ElementName have 

been added to subpools to allow defining an external data getter that will be used to retrieve connection 

information such as the equipment ip, port, protocol, etc.The value for the 

ExternalDataGetterClassName parameter should be the fully qualified name of a class 

implementing the com.hp.spain.connection.ExternalDataGetter interface: 

public interface ExternalDataGetter 

{ 

  public void setDBManager(DBManager dbManager); 

  public ExternalData getExternalData(String elementName); 

} 

The getExternalData method is invoked by the subpool when creating a new connection resource 

and should return a new com.hp.spain.connection.ExternalData instance with the connection 

information for the given network element name. The implementer class can use the provided DBManager 

(setDBManager will be invoked before getExternalData with a proper one) to retrieve this 

connection information from the database, or otherwise guess it from anywhere else. 

ExternalData contains the following fields: 

public class ExternalData 

{ 

  private String host; 

  private String password; 

  private String passwordEnable; 

  private Integer port; 

  private String protocol; 

  private String user; 

  private String userEnable; 

 

[…] 

} 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

45 

 

4. Configuration 

Some of the configuration parameters will affect multiple ECP entities. As a consequence, it is 

recommended to check the indicated cross references to avoid collateral effects when modifying a 

parameter. 

4.1. Common Configuration Sources 

4.1.1. ProtocolDrivers.lst File 

This file will configure the ProtocolDrivers to register and use (see Protocol Drivers Manager 

Configuration). The ProtocolDrivers.lst file should be located in the path <ecp_home>\conf by 

default, being <ecp_home> the ECP installation directory (see ECP RMI Service Command Line 

Parameters). The default location may be overwritten through the system property 

activator.dir.config (see ECP RMI Service Command Line Parameters). The file specifies the 

protocol driver classes, containing a single string with the following syntax: 

<protocol_driver_list>:=<protcol_driver>{<sep><protcol_driver>} 

<sep>:=,|:|; 

where <protocol_driver> is the fully qualified name of the protocol driver class. It must implement 

com.hp.spain.connection.ProtocolDriver. 

4.1.2. Protocol Drivers Configuration 

Specific protocol driver configuration files can be found in the $ECP_HOME/properties directory. For 

example, the TcpDriver.properties file contains properties related to the operation of the TCP 

equipment driver. 

4.1.2.1. TcpDriver Configuration 

The following properties may be defined in TcpDriver.properties to customize TcpDriver 

behavior: 

bind_target0..N: A destination specification. Connections to matching IPs or hostnames will be 

bound to the address specified by the corresponding bind_address parameter. The following target 

definition formats are supported: 

 An IP address. Example: 1.2.3.4 

 A hostname. Example: hp.com 

 CIDR notation. Example: 198.51.100.0/24 

 Dot-decimal notation. Example: 198.51.100.0/255.255.255.0 

bind_address0..N: The local IP address outgoing sockets should be bound to when connecting to 

destinations matching the corresponding bind target. 

Example usage of the bind_address and bind_target properties: 

bind_target0=198.51.100.0/24 

bind_address0=198.51.100.2 



HPSA Extension Pack 

Equipment Connection Pool 

 

46 

 

 

bind_target1=hp.com 

bind_address1=10.0.0.2 

 

bind_target2=10.0.1.100 

bind_address2=10.0.0.3 

4.1.2.2. TelnetDriver Configuration 

The following properties may be defined in TelnetDriver.properties to customize TelnetDriver 

behavior: 

bind_target0..N: A destination specification. Connections to matching IPs or hostnames will be 

bound to the address specified by the corresponding bind_address parameter. See 4.1.2.2 for additional 

information. 

bind_address0..N: The local IP address outgoing sockets should be bound to when connecting to 

destinations matching the corresponding bind target. See 4.1.2.2 for additional information. 

4.1.3. HPSA_ECPMESSAGESPATTERNS 

IDMESSAGE: Message Identifier. Mandatory. The sequence HPSA_ECPMESSAGESPATTERNS_SEQ 

should be used to establish the values of this field. 

CONNECTIONRESOURCECLASSNAME: Canonical name of the equipment driver class to which the pattern 

applies. null if the pattern should be applied to all the drivers (and the protocol indicated by 

PROTOCOL). 

PROTOCOL: Identifier of the protocol to which the pattern applies. null if the pattern should be applied 

to all the protocols (and the driver indicated by CONNECTIONRESOURCECLASSNAME). 

TYPE: Reserved. Always null. In a future this field might be use to further restrict the scope of the 

pattern, i.e.: failures, errors... 

RESPONSEPATTERN: Regular expression to be used to identify the message to return and to generate that 

message, as defined in Java 1.4 java.util.regex.Pattern. If the command response matches the 

pattern, the message generated will contain the command response with all the matches replaced with the 

replacement established in responseReplacement. Mandatory. 

RESPONSEREPLACEMENT: Replacement value as defined in Java 1.4 

java.util.regex.Matcher#appendReplacement(StringBuffer, String) which will be 

used to replace all the matches of responsePattern (if any) in the generated message. Mandatory. 

4.1.4. HPSA_ECPCOMMANDSPATTERNS 

IDCOMMAND: Command Identifier. Mandatory. The sequence HPSA_ECPCOMMANDSPATTERNS_SEQ 

should be used to stablish the values of this field. 

TYPE: Reserverd. Always null. In a future this field might be use to further restrict the scope of the 

pattern, i.e.: failures, errors... 

COMMANDPATTERN: Regular expression to be used to identify the message to return and to generate that 

message, as defined in Java 1.4 java.util.regex.Pattern. If the associated command response is 

matched, the command will be matched with this pattern and all the matches (if any) will be replaced by 

the replacement established in commandReplacement. Mandatory. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

47 

 

COMMANDREPLACEMENT: Replacement value as defined in Java 1.4 

java.util.regex.Matcher#appendReplacement(StringBuffer, String) which will be 

used to replace all the matches of commandPattern (if any) in the generated message. Mandatory. 

4.1.5. HPSA_ECPMESSAGESCOMMANDS 

IDMESSAGE: Message Identifier. Mandatory. 

IDCOMMAND: Command Identifier. Mandatory. 

4.2. ECP Lib Configuration Sources 

4.2.1. ECP Lib Command Line Parameters 

ECP Lib uses the following JVM command line parameters: 

-Dactivator.dir.config=<ecp_prot_drivers_dir> 

<ecp_prot_drivers_dir>: Directory where the ProtocolDrivers.lst file can be found. This 

parameter is mandatory only if direct connections are used. In other case, it is not used. 

4.3. ECP RMI Service Configuration Sources 

4.3.1. ECP RMI Service Command Line Parameters 

The command line of the ECP RMI Server JVM has the following syntax: 

<java_exe> -server -Djava.rmi.server.codebase=file:<ecp_home>\rmi_pub  

-Djava.rmi.server.logCalls=false -Djava.rmi.server.hostname=<ecp_rmi_server_ip>  

-Djava.security.policy=<ecp_home>\conf\RmiEcpService.policy -

Dactivator.dir.config=<ecp_prot_drivers_dir> -classpath <ecp_libs> 

com.hp.spain.connection.pool.server.RmiEcpService <ecp_rmi_registry_server_host> 

<ecp_rmi_registry_server_port> <ecp_home> 

<java_exe>: path to the JVM executable file. Of course, it is mandatory. 

<ecp_home>: ECP installation directory. This parameter is mandatory. It will be used to establish the 

ecp.properties and RmiEcpService.policy files location and the ProtocolDrivers.lst file 

default location. See ecp.properties File and ProtocolDrivers.lst File. 

<ecp_rmi_server_ip>: IP of the localhost, used by the locally created stubs to access the RMI server. 

Used by the JVM. This parameter is mandatory. 

<ecp_rmi_registry_server_host>: Host name of the host where the RMI registry is located and 

where the ECP RMI service object should be bound. Normally it should refer to the localhost. This 

parameter is mandatory. 

<ecp_rmi_registry_server_port>: Port number where the RMI registry accepts calls and where 

the ECP RMI service object should be bound. This parameter is mandatory. 

<ecp_libs>: all the .jar and .zip files in the directory <ecp_home>\lib. This parameter is mandatory. 

<ecp_prot_drivers_dir>: Directory where the ProtocolDrivers.lst file can be found. This 

parameter is optional (see ProtocolDrivers.lst File). 



HPSA Extension Pack 

Equipment Connection Pool 

 

48 

 

Note: when operating in cluster mode, parameters ecp_rmi_server_ip and ecp_rmi_registry_server_host 

should be configured so the ECP instance is reachable from other cluster members, so using 127.0.0.1 or 

localhost is not an option.ecp.properties File 

The ecp.properties file should be located in the path <ecp_home>\conf, being <ecp_home> the 

ECP installation directory (See ECP RMI Service Command Line Parameters). The ecp.properties files 

may contain the following properties. 

LOG_DIR: Logs directory. Most of the log data will be stored there. Its default value is 

“C:\hp\OpenView\ServiceActivator\var\log” in windows and 

“/var/opt/OV/ServiceActivator/log/” in HP-UX. It must end with the path separator 

character.This directory should exist and the user which executes the ECP RMI Service JVM must have 

writing permission over it. It will establish the Pool LogFilePath (see Pool Instance Specific Logging 

Parameters Configuration), ProtocolDriver SpyFile (see ProtocolDriver Configuration) and Configurator 

Appender (see Configurator Configuration). 

LOG_MAX_FILE_SIZE: Will configure the RollingFileAppenders (when used) maximum file size (in 

bytes) before being rolled over to backup files. Its default value is 5242880 bytes (5MB). See Pool 

Logging Common Parameters Configuration and Configurator Configuration. 

LOG_MAX_NUM_FILES: Will configure the RollingFileAppenders (when used) maximum backup 

index (how many backup files are kept). Its default value is 10. See Pool Logging Common Parameters 

Configuration and Configurator Configuration. 

LOG_DATE_PATTERN: Will establish the type of Appenders used by the pools and configure the pools 

DailyRollingFileAppenders (when used) rolling date pattern. Its default value is null. It must be 

null or a valid SimpleDateFormat pattern (see 

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html). See Pool Logging Common 

Parameters Configuration. 

LOG_PATTERN: Will configure the messages pattern for the pools and the Configurator. Its default 

value is null. See Pool Logging Common Parameters Configuration and Configurator Configuration. 

RELOAD_MAX_TIME: Will configure the subpools expiration timeout. Its default value is 0. (see 

PoolManager Configuration and ECP RMI Service) 

MAX_REQUESTS_TO_GET_VERIFIED_RESOURCE: Will configure the maximum number of request to 

obtain a positively verified resource. Its default value is 1. Must be >=1. See Pool Common Parameters 

Configuration. 

DEFAULT_QUEUE_ID: Will configure the default queue to add the resource requests to, if it is not 

specified or the specified queue is not found. Its default value is 1. See Pool Common Parameters 

Configuration. 

MAX_POOLS: Will configure the maximum number of pools that can coexist simultaneously. Its default 

value is 0. See PoolManager Configuration. 

DISPATCHER_MAX_RATE: Will configure the maximum number of connections assigned to the whole set 

of clients by second. Its default value is 10. See Pool Common Parameters Configuration. 

RES_MGR_MAX_RATE: Will configure the maximum number of times per second that the expired 

resources will be finalized, the expired temporary resources deleted and the inactive resources 

reinitialized. Its default value is 1. See Pool Common Parameters Configuration. 

REQ_MGR_MAX_RATE: Will configure the maximum number of times per second that the process of 

elimination and cancellation of expired resources requests will be executed. Its default value is 0.1. See 

Pool Common Parameters Configuration. 

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html


HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

49 

 

POOL_MGR_MAX_RATE: Will configure the number of times per second that the process of unloading 

dynamic expired pools will be executed. Its default value is 0.1. See PoolManager Configuration. 

DYNAMIC_POOL_NOT_USED_MAX_TIME_LIFE: Will configure the default dynamic pools 

NotUsedMaxTimeLife. Its default value is 0. See Pool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_REQUEST_TIME_OUT: Will configure the dynamic pools RequestTimeout. Its default 

value is 0. See Pool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_NUM_QUEUES: Will configure the dynamic pools NumQueues. Its default value is 0. See 

Pool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_WEIGHT_QUEUES: Will configure the dynamic pools WeightQueues. Its default value 

is null. See Pool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_LOG_LEVEL: Will configure the dynamic pools LogLevel. Its default value is 0. See 

Pool Instance Specific Logging Parameters Configuration. 

DYNAMIC_POOL_INIT_SESSIONS: Will configure the dynamic SubPools default Initsessions. 

Must be an integer value. If it equals 0, then, false. In other case, true. Its default value is 0. See 

SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_MAX_SESSIONS: Will configure the dynamic SubPools default MaxSessions. Its 

default value is 0. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_MIN_SESSIONS: Will configure the dynamic SubPools default MinSessions. Its 

default value is 0. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_RESOURCE_TIME_OUT: Will configure the dynamic SubPools default 

ResourceTimeout. Its default value is 0. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

DYNAMIC_POOL_TEMPORARY_RESOURCES_TIME_OUT: Will configure the dynamic SubPools default 

TemporaryResourcesTimeout. Its default value is 0. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

DB_DRIVER: Fully qualified class name of a java.sql.Driver to load and register in the JDBC 

DriverManager. Its default value is null. See DBManager Configuration 

DB_USER: The DataBase user on whose behalf the connection is being made. Its default value is null. 

See DBManager Configuration 

DB_PASSWORD: The DataBase user password. Its default value is null. See DBManager Configuration 

DB_URL: A JDBC DataBase URL with the form: jdbc:<subprotocol>:<subname>. Its default value is 

null. See DBManager Configuration 

DB_POOL: Flag to indicate whether DB Connection pooling should be used. 



HPSA Extension Pack 

Equipment Connection Pool 

 

50 

 

DB_POOL_BORROW_TIMEOUT: Timeout (in milliseconds) to wait when requesting a pool connection. If the 

timeout is exceeded the pool is considered exhausted and the operation fails. The value 0 indicates an 

infinite timeout. It defaults to 5 minutes. 

DB_POOL_SIZE: If database connection pooling is being used, the maximun size of the pool. 

DB_POOL_MANAGE_ABANDONED: If database connection pooling is being used, whether the pool should 

automatically invalidate (close) connections not returned to the pool within a timeout. 

DB_POOL_ABANDONED_TIMEOUT: If Abandoned Connections Management is being used, the timeout 

(in seconds) which each connection must expire before being considered abandoned. 

CLUSTERED: Wether ECP operates in cluster mode (1) or not (0). 

INSTANCE_NAME: The name of this particular instance in the cluster. If CLUSTERED is not defined or its 

value is 0, this property is ignored. Only alphanumeric characters, _ and - are allowed in instance names. 

ECP.Msgs.Enable: Whether de ECP should perform JMS monitoring or not. If this option is disabled, 

no JMS monitoring messages will be sent, and the JMS configuration parameters will be ignored. Its 

default value is “false”. 

JMSBrokerReference.broker.uri: URI of the JMS service where ECP JMS monitoring messages will 

be sent. Ignored if “ECP.Msgs.Enable=false”. By default it will start an embedded JMS broker. Its 

default value is 

“vm\:(broker\:(tcp\://localhost\:4001)?brokerName\=EmbeddedBroker&useJmx\=true&persistent\=fal

se&populateJMSXUserID\=false&useShutdownHook\=false&deleteAllMessagesOnStartup\=false&enable

Statistics\=false)?marshal\=false”. 

java.naming.factory.initial: The Initial context factory for JMS Administered objects. Ignored if 

“ECP.Msgs.Enable=false”. Its default value is 

“org.apache.activemq.jndi.ActiveMQInitialContextFactory”. 

JMSMessageBroker.dest.type: The type of the JMS destination where the ECP JMS Monitoring 

messages will be sent. Use “temp” to indicate a temporary Destination and “administered” to indicate an 

administered one. Ignored if “ECP.Msgs.Enable=false”. Its default value is “administered”. 

JMSMessageBroker.dest.name: The JMS destination where the ECP JMS Monitoring messages will 

be sent. If the destination type in “JMSMessageBroker.dest.type” is temporary, any value will 

suffice; if the destination type in “JMSMessageBroker.dest.type” is administered, this property must 

contain the name under which the Destination is registered. Ignored if “ECP.Msgs.Enable=false”. Its 

default value is “ECP.MainTopic”. 

4.3.2. ecp-cluster.properties 

A separate ecp-cluster.properties file may be placed in $ECP_HOME/conf to fine-tune 

some aspects of cluster operation (when CLUSTERED=1 in ecp.properties). 

The following properties are supported: 

heartbeat.interval: Time in ms between heartbeat updates. Default is 30000. 

heartbeat.threshold: Time in ms after which an ECP instance that has not updated its 

heartbeat record must be considered to be dead. Default is 50000. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

51 

 

heartbeat.max.errors: Number of consecutive failures to update heartbeat after which the ECP 

instance shuts itself down. Default is 2. 

monitor.interval: Time in ms between cluster monitor iterations to check for new/deleted 

pools, new/dead ECP instances, configuration changes, etc. Default is 30000. 

monitor.grace.period: Amount of time in ms before an ECP instance begins taking over pools 

from dead cluster members that have preference over it for those pools. Default is 120000. 

loader.consumers: Number of parallel pool loader threads. Default is 5. 

loader.lock.max.time: Time in ms an ECP instance has to unload a pool that is being taken back 

before force-finishing active connections. Default is 600000. 

4.3.3. HPSA_EQUIPMENTCONNPOOL DB Table 

NAME: Will configure the static pool Name. See Pool Instance Specific Parameters Configuration. 

NOTUSEDMAXTIMELIFE: Will configure the static pool NotUsedMaxTimeLife. See Pool Instance 

Specific Parameters Configuration. 

REQUESTTIMEOUT: Will configure the static pool RequestTimeout. See Pool Instance Specific 

Parameters Configuration. 

NUMQUEUES: Will configure the static pool NumQueues. See Pool Instance Specific Parameters 

Configuration. 

WEIGHTQUEUES: Will configure the static pool WeightQueues. See Pool Instance Specific Parameters 

Configuration. 

CLUSTERED: Will configure the static pool Clustered. See Pool Instance Specific Parameters 

Configuration. 

INSTANCE_NAMES: Will configure the static pool InstanceNames. See Pool Instance Specific 

Parameters Configuration. 

NUM_INSTANCES: Will configure the static pool NumInstances. See Pool Instance Specific Parameters 

Configuration. 

LOGFILE: Will configure the static pool LogFilePath. See Pool Instance Specific Logging Parameters 

Configuration 

LOGLEVEL: Will configure the static pool LogLevel. See Pool Instance Specific Logging Parameters 

Configuration.HPSA_EQUIPMENTCONNSUBPOOL DB Table 

INITSESSIONS: Will configure the static subpool Initsessions. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

MAXSESSIONS: Will configure the static subpool MaxSessions. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

MINSESSIONS: Will configure the static subpool MinSessions. See SubPool Configuration 



HPSA Extension Pack 

Equipment Connection Pool 

 

52 

 

SubPool Instance Specific Parameters Configuration. 

RESOURCETIMEOUT: Will configure the static subpool ResourceTimeout. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

TEMPORARYRESOURCESTIMEOUT: Will configure the static subpool TemporaryResourcesTimeout. 

See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

NAMEPOOL: The register in the table HPSA_EQUIPMENTCONNPOOL associated with this one. 

IDSUBPOOL: Will configure the static subpool Id. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

CONNECTIONRESOURCECLASSNAME: Will configure the static subpool 

ConnectionResourceClassName. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

IP: Will configure the static subpool EquipmentDrivers initialization parameter IP. See EquipmentDriver 

Initialization Parameters Configuration. 

PORT: Will configure the static subpool EquipmentDrivers initialization parameter Port. See 

EquipmentDriver Initialization Parameters Configuration. 

PROTOCOL: Will configure the static subpool EquipmentDrivers initialization parameter Protocol. See 

EquipmentDriver Initialization Parameters Configuration. 

USERNAME: Will configure the static subpool EquipmentDrivers initialization parameter Username. See 

EquipmentDriver Initialization Parameters Configuration. 

PASSWORD: Will configure the static subpool EquipmentDrivers initialization parameter Password. See 

EquipmentDriver Initialization Parameters Configuration. 

USERENABLE: Will configure the static subpool EquipmentDrivers initialization parameter Userenable. 

See EquipmentDriver Initialization Parameters Configuration. 

PASSWORDENABLE: Will configure the static subpool EquipmentDrivers initialization parameter 

Passwordenable. See EquipmentDriver Initialization Parameters Configuration. 

ELEMENTNAME: Will configure the static subpool element name, used by ExternalDataGetter 

implementations to retrieve the equipment connection information. 

EXTERNALDATAGETTERCLASSNAME: Will configure the static subpool 

ExternalDataGetterClassName. See SubPool Configuration 

4.3.4. SubPool Instance Specific Parameters Configuration. 

4.3.4.1. DynamicECPProperties Class 

This class stores the configuration of a dynamic Pool and a SubPool. A dynamic Pool will always 

contain a single SubPool. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

53 

 

4.3.4.2. DynamicECPProperties Properties 

vi. DynamicECPProperties Pool Properties 

PoolName: Will configure the dynamic pool Name (see Pool Instance Specific Parameters Configuration) 

and LogFilePath (Pool Instance Specific Logging Parameters Configuration). 

Clustered: Will configure the dynamic pool Name (see Pool Instance Specific Parameters 

Configuration). 

InstanceNames: Will configure the dynamic pool InstanceNames (see Pool Instance Specific 

Parameters Configuration). 

NumInstances: Will configure the dynamic pool NumInstances (see Pool Instance Specific Parameters 

Configuration). 

vii. DynamicECPProperties SubPool Properties 

ConnectionResourceClassName: Will configure the dynamic subpool 

ConnectionResourceClassName. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

IP: Will configure the dynamic subpool EquipmentDrivers initialization parameter Ip. See 

EquipmentDriver Initialization Parameters Configuration. 

Port: Will configure the dynamic subpool EquipmentDrivers initialization parameter Port. See 

EquipmentDriver Initialization Parameters Configuration. 

Protocol: Will configure the dynamic subpool EquipmentDrivers initialization parameter Protocol. 

See EquipmentDriver Initialization Parameters Configuration. 

User: Will configure the dynamic subpool EquipmentDrivers initialization parameter Username. See 

EquipmentDriver Initialization Parameters Configuration. 

Password: Will configure the dynamic subpool EquipmentDrivers initialization parameter Password. 

See EquipmentDriver Initialization Parameters Configuration. 

UserEnable: Will configure the dynamic subpool EquipmentDrivers initialization parameter 

Userenable. See EquipmentDriver Initialization Parameters Configuration. 

PasswordEnable: Will configure the dynamic subpool EquipmentDrivers initialization parameter 

Passwordenable. See EquipmentDriver Initialization Parameters Configuration. 

ElementName: Will configure the dynamic subpool EquipmentDrivers initialization parameter 

Elementname. See EquipmentDriver Initialization Parameters Configuration. 

ExternalDataGetterClassName: Will configure the dynamic subpool EquipmentDrivers initialization 

parameter Externaldatagetterclassname. See EquipmentDriver Initialization Parameters 

Configuration. 



HPSA Extension Pack 

Equipment Connection Pool 

 

54 

 

4.3.4.3. DynamicECPProperties Advanced Properties 

viii. DynamicECPProperties Advanced Pool Properties 

NotUsedMaxTimeLife: Will configure the pool NotUsedMaxTimeLife. See Pool Instance Specific 

Parameters Configuration. 

ix. DynamicECPProperties Advanced SubPool Properties 

InitSessions: Will configure the subpool Initsessions. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

MaxSessions: Will configure the subpool MaxSessions. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

MinSessions: Will configure the subpool MinSessions. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

ResourceTimeOut: Will configure the subpool ResourceTimeout. See SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 

TemporaryResourcesTimeOut: Will configure the subpool TemporaryResourcesTimeout. See 

SubPool Configuration 

SubPool Instance Specific Parameters Configuration. 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

55 

 

5. Commands Template Reference 

5.1. Commands Template Commands 

5.1.1. Block declaration Statements 

Block Declaration Statements are those which indicate the beginning or ending of a Block. The following 

are Block Declaration Statements 

[TEMPLATE:Config] 

[TEMPLATE:Do] 

[TEMPLATE:ErrorSection] 

[TEMPLATE:Undo] 

[TEMPLATE:Commit] 

[TEMPLATE:Rollback] 

[TEMPLATE:Section *] 

Block Declaration Statements may include other Block Declaration Statements (depending on the 

containing statement) or Executable Statements 

5.1.2. Executable Statements 

Executable Statements are those which do not intervene in the Declaration of a Block but are included by 

them and define commands to be executed. They must always appear inside a Block. 

5.1.2.1. If-Else Statement 

Declares two different Executable blocks to execute depending on the value of a condition. The “Else” 

part is optional. It is defined like this: 

[TEMPLATE:If “<condition>”] 

 <Executable Statement Block> 

[TEMPLATE:Else] 

 <Executable Statement Block> 

[TEMPLATE:EndIf] 

Where <condition> is any valid ECP condition and <Executable Statement Block> is a set of 

Executable Statements. Nested If-Else or ForEach Statements are allowed. For example: 

[TEMPLATE:If "failed=="true""] 

 help  

  [TEMPLATE:EndStrPattern "admin#"] 

 exit 

  [TEMPLATE:EndStrPattern "admin#"] 

[TEMPLATE:EndIf] 

Or with an else clause: 

[TEMPLATE:If "failed=="true""] 

 help  

  [TEMPLATE:EndStrPattern "admin#"] 

[TEMPLATE:Else] 

 telnet 127.0.0.1 1234 

  [TEMPLATE:EndStrPattern "admin#"] 

[TEMPLATE:EndIf] 



HPSA Extension Pack 

Equipment Connection Pool 

 

56 

 

5.1.2.2. ForEach Statement 

It declares an executable block to be executed once for every element of an Array Variable. It is defined 

like this: 

[TEMPLATE:ForEach "<variableID>" In "<arrayVariableID>"] 

 <Executable Statement Block> 

[TEMPLATE:EndFor] 

Where <variableID> is any valid ECP variable identifier, <arrayVariableID> is any valid ECP 

array variable identifier and <Executable Statement Block> is a set of Executable Statements. 

On each loop, the variable <variableID> will contain a different value in <arrayVariableID> and 

its values will be in the same order as in <arrayVariableID>. Nested If-Else or ForEach Statements are 

allowed. For example:  

[TEMPLATE:ForEach "var" In " destinationIPs"] 

 ping  %var% -n 1 

  [TEMPLATE:EndStrPattern "admin#"]  

[TEMPLATE:EndFor] 

5.1.3. Command Statements 

Command Statements are those which define how a command must be issued and its output processed. 

The following are Command Statements 

[TEMPLATE:ErrorMessage “*”] 

[TEMPLATE:NonError “*”] 

[TEMPLATE:NonErrorPattern “*”] 

[TEMPLATE:Error “*”] 

[TEMPLATE:Failure “*”] 

[TEMPLATE:EndStr “*”] 

[TEMPLATE:EndStrPattern “*”] 

[TEMPLATE:Secret] 

[TEMPLATE:Echo] 

[TEMPLATE:EndParamString “*”] 

[TEMPLATE:EndCommandString “*”] 

[TEMPLATE:Question “*” Response “*”] 

[TEMPLATE:Filename “*” Options “*”] 

[TEMPLATE:Filename “*”] 

[TEMPLATE:Pattern “*”] 

[TEMPLATE:Condition “*”] 

[TEMPLATE:ExecuteUntil “*”] 

[TEMPLATE:IgnoreDefaultEndStr] 

[TEMPLATE:CommandDelay “*”] 

[TEMPLATE:ReadAttemps “*”] 

[TEMPLATE:Variable “*”] 

[TEMPLATE:Array “*”] 

[TEMPLATE:ExecuteUntilDelay “*”] 

[TEMPLATE:ExecuteUntilAttempts “*”] 

5.2. Commands Reference 

5.2.1. Commands List 

Token Explanation 

!<comment> A coment line. Lines starting with ! will be ignored. 

[TEMPLATE:DefaultDelay “*”] Wait that number of milliseconds before issueing every command by default 

[TEMPLATE:DefaultReadAttemps “*”] Fail if that number of socket read operations return nothing on every command by default  



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

57 

 

[TEMPLATE:DefaultEndParamString “*”] String to append to the question responses on every command by default  

[TEMPLATE:DefaultEndCommandString “*”] String to append to every command by default  

  

[TEMPLATE:DefaultError “*”] Pattern to interpret as the command returning an error on every command by default  

[TEMPLATE:DefaultNonError “*”] Pattern to ignore on error search on every command by default (not on failure search) 

[TEMPLATE:DefaultNonErrorPattern “*”] Regural Expresion Pattern to ignore on error search on every command by default  (not on failure search) 

[TEMPLATE:DefaultEndStr “*”] Pattern to interpret as the end of the command execution on every command by default  

[TEMPLATE:DefaultEndStrPattern “*”] 
Regular Expression Pattern to interpret as the end of the command execution on every command by 

default 

[TEMPLATE:DefaultEndStrAttemps] Fail if in none of that number of socket read operations the end string is not found 

  

[TEMPLATE:DefaultEcho] Target System will echo, treat it as ifs never arrived on every command by default 

[TEMPLATE:DefaultNoEcho] Target System will not echo, treat it as ifs never arrived on every command by default 

  

[TEMPLATE:DefaultConfigNull] 
Removes any previous configuration added in runtime and forces the usage of the configuration defined 

in the template. 

[TEMPLATE:DefaultErrorSectionNull] 
Removes any previous error section data added in runtime and forces the usage of the error section 

defined in the template. 

[TEMPLATE:DefaultCommitNull] 
Removes any previous commit data added in runtime and forces the usage of the commit section defined 

in the template. 

[TEMPLATE:DefaultRollbackNull] 
Removes any previous rollback data added in runtime and forces the usage of the rollback section 

defined in the template. 

[TEMPLATE:DefaultExitNull] 
Removes any previous exit data added in runtime and forces the usage of the exit section defined in the 

template. 

[TEMPLATE:DefaultErrorNull] 
Removes any previous error data added in runtime and forces the usage of the error section defined in 

the template. 

[TEMPLATE:DefaultNonErrorNull] 
Removes any previous non-error data added in runtime and forces the usage of the non-error section 

defined in the template. 

[TEMPLATE:DefaultNonErrorPatternNull] 
Removes any previous non-error pattern data added in runtime and forces the usage of the non-error 

pattern section defined in the template. 

[TEMPLATE:DefaultEndStrNull] 
Removes any previous end strign data added in runtime and forces the usage of the end string section 

defined in the template. 

[TEMPLATE:DefaultEndStrPatternNull] 
Removes any previous end string pattern data added in runtime and forces the usage of the end string 

pattern section defined in the template. 

  

[TEMPLATE:Config] Declares the begining of a Config Block 

[TEMPLATE:Do] Declares the begining of a Do Block 

[TEMPLATE:ErrorSection] Declares the begining of an Error Block 



HPSA Extension Pack 

Equipment Connection Pool 

 

58 

 

[TEMPLATE:Undo] Declares the begining of an Undo Block 

[TEMPLATE:Commit] Declares the begining of an Commit Block 

[TEMPLATE:Rollback] Declares the begining of an Rollback Block 

[TEMPLATE:Commit FinalCommit] Declares the beginning of a Final Commit Block 

[TEMPLATE:Rollback FinalRollback] Declares the beginning of a Final Rollback Block 

[TEMPLATE:Exit FinalExit] Declares the beginning of a Final Exit Block 

[TEMPLATE:ErrorSection FinalCommand] Declares the beginning of a Final Error Section Block 

  

[TEMPLATE:Section *] Declares the begining of an Section Block 

  

<comand>  

[TEMPLATE:AssignVariable “*”] Assigns a constant value to a variable 

[TEMPLATE:If "*"] Declares an Executable block to execute if the condition is true 

[TEMPLATE:Else] Declares an Executable block to execute if the corresponding if condition is false 

[TEMPLATE:EndIf] Declares de end of an if or else executable block 

[TEMPLATE:ForEach "*" In "*"] Declares an Executable block to be executed once for every element of an Array Variable 

[TEMPLATE:EndFor] Declares de end of a forEach executable block 

  

[TEMPLATE:NotUndoLastSection] Indicates that the last section must not be undone 

[TEMPLATE:ErrorMessage “*”] An error message to be sent to the ECP client if an error is encountered 

[TEMPLATE:NonError “*”] Pattern to ignore on error search (not on failure search) 

[TEMPLATE:NonErrorPattern “*”] Regural Expresion Pattern to ignore on error search (not on failure search) 

[TEMPLATE:Error “*”] Pattern to interpret as the command returning an error (and wait for command response end string) 

[TEMPLATE:Failure “*”] 
Pattern to interpret as the command returning a failure (and do not wait for command response end 

string) 

[TEMPLATE:EndStr “*”] Pattern to interpret as the end of the command execution 

[TEMPLATE:EndStrPattern “*”] Regular Expression Pattern to interpret as the end of the command execution 

[TEMPLATE:IgnoreDefaultEndStr] Indicates that the default end string must be ignored 

[TEMPLATE:Secret] Do not trace the issued command (useful for passwords) 

[TEMPLATE:Echo] Target System will echo, treat it as ifs never arrived 

[TEMPLATE:FullOutputVariablePatterns] 
Look for the variables in the full response obtained to the command execution i.e. including eventual 

command echo and/or the prompt. 

[TEMPLATE:EndParamString “*”] String to append to the question responses 

[TEMPLATE:DefaultEndParamString \"*\"] Default string to append to the question responses 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

59 

 

[TEMPLATE:EndCommandString “*”] String to append to the command 

[TEMPLATE:Question “*” Response “*”] The command is interactive. If the Pattern is found, send that response 

[TEMPLATE:Pattern “*”] 
Store every ocurrence of the group in the regular expresion in a position of the array variables which 

follow 

[TEMPLATE:Condition “*”] Only issue the command if the condition is satisfied 

[TEMPLATE:ExecuteUntil “*”] Execute the command until the condition is satisfied 

[TEMPLATE:CommandDelay “*”] Wait that number of milliseconds before issueing the command 

[TEMPLATE:ReadAttemps “*”] Fail if that number of socket read operations return nothing. 

[TEMPLATE:ErrorPattern "*"] Regular Expresion Pattern to interpret as the command returning an error 

[TEMPLATE:FailurePattern "*"] Regular Expresion Pattern to interpret as the command returning a failure 

[TEMPLATE:Variable “*”] Variable where to store the ocurrence of the Pattern 

[TEMPLATE:Array “*”] Array variable where to store the occurences 

[TEMPLATE:ExecuteUntil “*”] Wait for issueing the command on every iteration 

[TEMPLATE:ExecuteUntilDelay “*”] Wait that number of milliseconds before issueing the command on every iteration 

[TEMPLATE:ExecuteUntilAttempts “*”] If that number of iterations is exceeded, ignore condition and exit loop 

[TEMPLATE:Filename  “*”] Save the ouput to the file 

[TEMPLATE:Filename  “*” Option “*”] 
Save the ouput to the file. Options can be bigouput to true/false , tail and grep. The format to define 

options are bigouput=false;tail=100;grep=100 

5.2.2. Commands Syntax 

Token Unique 
in 
Context 

Precedes to 

Token (and) 

Follows to 

Token (or) 

Nested to Token Mutually exclusive 

with Token 

!<comment>      

      

[TEMPLATE:DefaultDelay “*”] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultReadAttemps “*”]  [TEMPLATE:Config]    

[TEMPLATE:DefaultEndParamString “*”] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultEndCommandString “*”] Yes [TEMPLATE:Config]    

      

[TEMPLATE:DefaultError “*”]  [TEMPLATE:Config]   [TEMPLATE:DefaultErrorNull]  

[TEMPLATE:DefaultNonError “*”]  [TEMPLATE:Config]   [TEMPLATE:DefaultNonErrorNull] 



HPSA Extension Pack 

Equipment Connection Pool 

 

60 

 

[TEMPLATE:DefaultNonErrorPattern “*”]  [TEMPLATE:Config]   [TEMPLATE:DefaultNonErrorPatternNull] 

[TEMPLATE:DefaultEndStr “*”]  [TEMPLATE:Config]   [TEMPLATE:DefaultEndStrNull] 

[TEMPLATE:DefaultEndStrPattern “*”]  [TEMPLATE:Config]   [TEMPLATE:DefaultEndStrPatternNull] 

[TEMPLATE:DefaultEndStrAttemps]  [TEMPLATE:Config]    

      

[TEMPLATE:DefaultConfigNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultErrorSectionNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultCommitNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultRollbackNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultExitNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultErrorNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultNonErrorNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultNonErrorPatternNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultEndStrNull] Yes [TEMPLATE:Config]    

[TEMPLATE:DefaultEndStrPatternNull] Yes [TEMPLATE:Config]    

      

[TEMPLATE:DefaultEcho]  [TEMPLATE:Config]    

[TEMPLATE:DefaultNoEcho]  [TEMPLATE:Config]    

      

[TEMPLATE:Config] Yes [TEMPLATE:Do] 
[TEMPLATE:ErrorSection] 
[TEMPLATE:ErrorSection 
FinalCommand] 
[TEMPLATE:Undo] 
[TEMPLATE:Commit] 
[TEMPLATE:Commit 
FinalCommit] 
[TEMPLATE:Rollback] 
[TEMPLATE:Rollback 
FinalRollback] 
[TEMPLATE:Exit] 
[TEMPLATE:Exit 
FinalExit] 

  [TEMPLATE:Config FinalConfig] 

[TEMPLATE:Do] Yes     

[TEMPLATE:ErrorSection] Yes  [TEMPLATE:Do]  [TEMPLATE:ErrorSection FinalCommand] 

[TEMPLATE:Undo] Yes  [TEMPLATE:Do] 
[TEMPLATE:ErrorSection] 

  



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

61 

 

[TEMPLATE:Commit]   [TEMPLATE:Undo]   

[TEMPLATE:Rollback]   [TEMPLATE:Undo] 
[TEMPLATE:Commit] 
[TEMPLATE:Commit 
FinalCommit] 

  

[TEMPLATE:Commit FinalCommit]  [TEMPLATE:Undo]    

      

[TEMPLATE:Section *]    [TEMPLATE:Do] 
[TEMPLATE:Undo] 

 

      

<comando>    [TEMPLATE:Config] 
[TEMPLATE:Config FinalConfig] 
[TEMPLATE:ErrorSection] 
[TEMPLATE:ErrorSection 
FinalCommand] 
[TEMPLATE:Commit] 
[TEMPLATE:Commit FinalCommit] 
[TEMPLATE:Rollback] 
[TEMPLATE:Rollback FinalRollback] 
[TEMPLATE:Exit] 
[TEMPLATE:Exit FinalExit] 
[TEMPLATE:Do]/[TEMPLATE:Section *] 
[TEMPLATE:Undo]/[TEMPLATE:Section 
*] 

 

[TEMPLATE:AssignVariable “*”]    idem <comando>  

[TEMPLATE:If "*"]    idem <comando>  

[TEMPLATE:Else]    idem <comando>  

[TEMPLATE:EndIf]    idem <comando>  

[TEMPLATE:ForEach "*" In "*"]    idem <comando>  

[TEMPLATE:EndFor]    idem <comando>  

      

[TEMPLATE:NotUndoLastSection]  [TEMPLATE:Config]    

[TEMPLATE:ErrorMessage “*”]    <comando>  

[TEMPLATE:NonError “*”]    <comando>  

[TEMPLATE:NonErrorPattern “*”]    <comando>  

[TEMPLATE:Error “*”]    <comando>  

[TEMPLATE:Failure “*”]    <comando>  



HPSA Extension Pack 

Equipment Connection Pool 

 

62 

 

[TEMPLATE:EndStr “*”]    <comando>  

[TEMPLATE:EndStrPattern “*”]    <comando>  

[TEMPLATE:Secret]    <comando>  

[TEMPLATE:Echo]    <comando>  

[TEMPLATE:EndParamString “*”]    <comando>  

[TEMPLATE:EndCommandString “*”]    <comando>  

[TEMPLATE:Question “*” Response “*”]    <comando>  

[TEMPLATE:Pattern “*”]    <comando>  

[TEMPLATE:Condition “*”]    <comando>  

[TEMPLATE:ExecuteUntil “*”]    <comando>  

[TEMPLATE:CommandDelay “*”]    <comando>  

[TEMPLATE:ReadAttemps “*”]    <comando>  

[TEMPLATE:ErrorPattern \"*\"]    <comando>  

[TEMPLATE:FailurePattern \"*\"]    <comando>  

      

[TEMPLATE:Variable “*”]    [TEMPLATE:Pattern “*”]  

[TEMPLATE:Array “*”]    [TEMPLATE:Pattern “*”]  

      

[TEMPLATE:ExecuteUntil “*”]    [TEMPLATE:ExecuteUntil “*”]  

[TEMPLATE:ExecuteUntilDelay “*”]    [TEMPLATE:ExecuteUntil “*”]  

[TEMPLATE:ExecuteUntilAttempts “*”]    [TEMPLATE:ExecuteUntil “*”]  

 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

63 

 

6. Configuration Quick Reference 

6.1. DBManager Configuration 

Driver: A java.sql.Driver to load (through a Class.forName()) for it to be registered in the JDBC 

DriverManager. The class must exist and be in the classpath. Established from the ecp.properties 

DB_DRIVER property (see ecp.properties File). 

User: The DataBase user on whose behalf the connection is being made. Established from the 

ecp.properties DB_USER property (see ecp.properties File). 

Password: The DataBase user password. Established from the ecp.properties DB_PASSWORD property 

(see ecp.properties File). 

URL: A JDBC URL String in the form “jdbc:<subprotocol>:<subname>”. Established from the 

ecp.properties DB_URL property (see ecp.properties File). 

In case a database pools used, the next properties can de defined in ecp.properties: 

DB_POOL: Flag to indicate whether DB Connection pooling should be used. 

DB_POOL_BORROW_TIMEOUT: Timeout (in milliseconds) to wait when requesting a pool connection. If the 

timeout is exceeded the pool is considered exhausted and the operation fails. The value 0 indicates an 

infinite timeout. It defaults to 5 minutes. 

DB_POOL_SIZE: If database connection pooling is being used, the maximun size of the pool. 

DB_POOL_MANAGE_ABANDONED: If database connection pooling is being used, whether the pool should 

automatically invalidate (close) connections not returned to the pool within a timeout. 

DB_POOL_ABANDONED_TIMEOUT: If Abandoned Connections Management is being used, the timeout 

(in seconds) which each connection must expire before being considered abandoned. 

6.2. Configurator Configuration 

The following parameters of the Configurator may be established: 

Appender: The Configurator Appender properties (except for the file name which is fixed) may be 

configured from the ecp.properties LOG_DIR, LOG_MAX_FILE_SIZE and LOG_MAX_NUM_FILES 

properties (see ecp.properties File). 

The Configurator will use a RollingFileAppender as Appender. Its maximum file size and 

maximum number of files will be the values specified by LOG_MAX_FILE_SIZE and 

LOG_MAX_NUM_FILES respectively. The Configurator log file will be located at LOG_DIR + 

“Configurator.log”. See ecp.properties File.  

Pattern: Established from the ecp.properties LOG_PATTERN property (see ecp.properties File). It 

will configure the log messages format pattern of the Configurator. Its valid values may be: 

null 

ISO8601 

A valid PatternLayout‘s pattern. 



HPSA Extension Pack 

Equipment Connection Pool 

 

64 

 

If the pattern is null or “ISO8601” a TTCCLayout will be used as the Appender Layout. In other 

case, a PatternLayout with specified value will be used. See 
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html 

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html 

6.3. ECP RMI Service 

reloadSubPool: On a reloadSubPool call, the timeout given to the whole set of the BUSY resources 

of the subpool before forcing their finalization can be configured through the ecp.properties file 

RELOAD_MAX_TIME property. If its value is ==0, the process will wait until the resources are not BUSY. 

See ecp.properties File. 

lockSubPool: On a lockSubPool call, the timeout given to the whole set of the BUSY resources of the 

subpool before forcing their finalization can be configured through the ecp.properties file 

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File. 

lockPool: On a lockPool call, the timeout given to the whole set of the BUSY resources of each 

subpool before forcing their finalization can be configured through the ecp.properties file 

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File. 

unloadPool: On a unloadPool call, the timeout given to the whole set of the BUSY resources of each 

subpool before forcing their finalization can be configured through the ecp.properties file 

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File. 

6.4. PoolManager Configuration 

Pool Expiration: When a (not BUSY) pool expires and is unloaded, the timeout in milliseconds given 

to each subpool for its BUSY resources before forcing their finalization can be configured through the 

ecp.properties file RELOAD_MAX_TIME property. If its value is 0, no timeout will be given. See 

ecp.properties File. 

MaxPools: The maximum number of pools that can coexist simultaneously can be configured through the 

ecp.properties file MAX_POOLS property. If its value is 0, no limit will be established. See 

ecp.properties File. 

PoolCleanUp: The number of times per second that the process of unloading dynamic expired pools will 

be executed can be configured through the ecp.properties file POOL_MGR_MAX_RATE property. 

Must be !=0. See ecp.properties File. 

6.5. Pool Configuration 

6.5.1. Pool Common Parameters Configuration 

The following parameters are shared by all the pools: 

getResourceRetries: The number of request to obtain a positively verified resource can be 

configured through the ecp.properties file MAX_REQUESTS_TO_GET_VERIFIED_RESOURCE 

property. See ecp.properties File. 

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html


HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

65 

 

getResourceDefaultQeueId: The default queue to add the resource request to, if it is not specified or 

the specified queue is not found can be configured through the ecp.properties file 

DEFAULT_QUEUE_ID property. See ecp.properties File. 

DispatcherMaxRate: The maximum number of connections assigned to the whole set of clients by 

second can be configured through the ecp.properties file DISPATCHER_MAX_RATE property. Must 

be !=0. See ecp.properties File. 

ResourcesCleanUp: The maximum number of times per second that the expired resources will be 

finalized, the expired temporary resources deleted and the inactive resources reinitialized can be 

configured through the ecp.properties file RES_MGR_MAX_RATE property. Must be !=0. See 

ecp.properties File. 

RequestsCleanUp: The maximum number of times per second that the process of elimination and 

cancellation of expired resources requests will be executed can be configured through the 

ecp.properties file REQ_MGR_MAX_RATE property. Must be !=0. See ecp.properties File. 

6.5.1.1. Pool Logging Common Parameters Configuration 

Appender: Each pool will have its own Appender, but the Appenders properties and types are 

common, except for the file path (LogFile) which is specific for each pool, see Pool Instance Specific 

Logging Parameters Configuration.The pools Appenders types and properties may be configured from 

the ecp.properties LOG_MAX_FILE_SIZE, LOG_MAX_NUM_FILES and LOG_DATE_PATTERN properties 

(see ecp.properties File). 

If LOG_DATE_PATTERN is null, then a RollingFileAppender will be used. In other case, a 

DailyRollingFileAppender will be used. If a DailyRollingFileAppender is used, its rolling 

date pattern will be the value specified by LOG_DATE_PATTERN. If a RollingFileAppender is used, 

its maximum file size and maximum number of files will be the values specified by LOG_MAX_FILE_SIZE 

and LOG_MAX_NUM_FILES respectively. See ecp.properties File. Notice that each SubPool will use the 

logger of the pool it belongs to, to log its messages (see SubPool Instance Specific Logging Parameters 

Configuration) 

Pattern: Established from the ecp.properties LOG_PATTERN property (see ecp.properties File). Will 

configure the pools log messages format pattern. Its valid values may be: 

null 

ISO8601 

A valid PatternLayout‘s pattern. 

If the pattern is null or “ISO8601” a TTCCLayout will be used as the Appender Layout. In other 

case, a PatternLayout with specified value will be used. See 
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html 

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html 

Notice that each SubPool will use the logger of the pool it belongs to, to log its messages (see SubPool 

Instance Specific Logging Parameters Configuration) 

6.5.2. Pool Instance Specific Parameters Configuration 

Name: Establishes the name that will identify the pool. If the pool is dynamic, and a name has been set 

(see DynamicECPProperties Pool Properties) the value of this parameter will be  

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html


HPSA Extension Pack 

Equipment Connection Pool 

 

66 

 

PoolName  + "-" + user + "-" + ip + "-" + port 

If a name has not been set, the value of this parameter will be  

"DYNAMIC" + "-" + user + "-" + ip + "-" + port 

If the pool is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNPOOL 

NAME DB field (see HPSA_EQUIPMENTCONNPOOL DB Table). 

NotUsedMaxTimeLife: Establishes the maximum time that a pool may remain unused. Once that time 

has expired, it will be removed. The timer is reset on each Operation (execute, executeActivation, 

inverseActivation, revert). If the pool is dynamic, and the advanced dynamic properties are set (see 

DynamicECPProperties Advanced Properties) the value of this parameter will be specified by the 

DynamicECPProperties NotUsedMaxTimeLife attribute (see DynamicECPProperties Advanced Pool 

Properties). If the advanced dynamic properties are not set, the value of this parameter will be specified 

by the the ecp.properties DYNAMIC_POOL_NOT_USED_MAX_TIME_LIFE property (see ecp.properties 

File). If the pool is static, the value of this parameter will be specified by the 

HPSA_EQUIPMENTCONNPOOL NOTUSEDMAXTIMELIFE DB field (see HPSA_EQUIPMENTCONNPOOL 

DB Table). 

RequestTimeout: Maximum time to wait when obtaining a connection on a client request. 

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties 

DYNAMIC_POOL_REQUEST_TIME_OUT property (see ecp.properties File). If the pool is static, the value 

of this parameter will be specified by the HPSA_EQUIPMENTCONNPOOL REQUESTTIMEOUT DB field (see 

HPSA_EQUIPMENTCONNPOOL DB Table). 

NumQueues: Number of request queues to add to the pool. Its value must be coherent with the value 

specified in WeightQueues. 

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties 

DYNAMIC_POOL_NUM_QUEUES property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL NUMQUEUES DB field (see 

HPSA_EQUIPMENTCONNPOOL DB Table). 

WeightQueues: Priority of each request queue. The number of request queues specified in NumQueues 

will be created with the specified corresponding weights and order, and with the ids from 1 to 

NumQueues. It must not be null, and must have the format: 

<weight_queues>:=<queue_weight>{<sep><queue_weight>} 

<sep>:=, 

Where <queue_weight> is a number specifying the weight of the queue. The higher the weight, the 

higher the priority of the queue. 

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties 

DYNAMIC_POOL_WEIGHT_QUEUES property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL WEIGHTQUEUES DB field (see 

HPSA_EQUIPMENTCONNPOOL DB Table). 

6.5.2.1. Pool Instance Specific Logging Parameters Configuration 

LogLevel: The pool logger level. Should be an integer value. If the log message level value is greater or 

equal than the log level, the message will be written. The numerical values of the log4j log levels are: 

FATAL = 50000 

ERROR = 40000 

WARN = 30000 

INFO = 20000 

DEBUG = 10000 

ALL = Integer.MIN_VALUE 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

67 

 

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties 

DYNAMIC_POOL_LOG_LEVEL property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL LOGLEVEL DB field (see 

HPSA_EQUIPMENTCONNPOOL DB Table). 

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool 

Instance Specific Logging Parameters Configuration) 

LogFilePath: Determines the file where the pool instance log will be written. The file will be created in 

the directory specified by the ecp.properties LOG_DIR property. 

If the pool is dynamic, the LogFilePath will be 

LOG_DIR + Pool.Name +  “.log” 

If the pool is static, the LogFilePath will be specified by the HPSA_EQUIPMENTCONNPOOL LOGFILE 

field (see HPSA_EQUIPMENTCONNPOOL DB Table). 

LOG_DIR + LOGFILE 

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool 

Instance Specific Logging Parameters Configuration) 

6.5.2.2. Pool Instance Specific Clustering Parameters Configuration 

Clustered: Wether the pool should be clustered. When ECP operates in cluster mode only clustered 

pools are loaded. Likewise, when ECP operates in non-cluster/legacy mode, only non-clustered pools are 

loaded. When Clustered is enabled, parameters InstanceNames and NumInstances are 

mandatory. 

InstanceNames: Ordered comma-separated list of the names of the ECP instances that should load the 

pool. This parameter is mandatory for clustered pools. 

NumInstances: The number of ECP instances that should simultaneously load the pool. The pool will be 

loaded in the N first instances of the InstanceNames list. 

6.6. SubPool Configuration 

6.6.1. SubPool Instance Specific Parameters Configuration 

Initsessions: Determines whether the resources should be initialized as soon as created (or reused) or 

the SubPool should wait until the resource is requested by the client. 

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties 

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties 

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced 

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties 

DYNAMIC_POOL_INIT_SESSIONS property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL INITSESSIONS DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

MaxSessions: Maximum number of resources that the SubPool will contain. Resources will be allocated 

as needed, but existent resources will be reused if possible. 



HPSA Extension Pack 

Equipment Connection Pool 

 

68 

 

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties 

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties 

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced 

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties 

DYNAMIC_POOL_MAX_SESSIONS property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL MAXSESSIONS DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

MinSessions: Minimum number of resources to keep instantiated in the SubPool. The SubPool will 

always contain at least that quantity of resources. 

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties 

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties 

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced 

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties 

DYNAMIC_POOL_MIN_SESSIONS property (see ecp.properties File). If the pool is static, the value of this 

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL MINSESSIONS DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

ResourceTimeout: Maximum time that a resource is allowed to remain BUSY (in use by a client). Once 

the timeout has expired the resource remains BUSY, the resource will be finalized (and eventually 

reinitialized and reassigned to other client). 

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties 

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties 

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced dynamic 

properties are not set, the value of this parameter will be specified by the the ecp.properties 

DYNAMIC_POOL_RESOURCE_TIME_OUT property (see ecp.properties File). If the pool is static, the value 

of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL RESOURCETIMEOUT DB 

field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

TemporaryResourcesTimeout: Maximum time that a temporary connection can remain unused after 

it is created, in milliseconds. If the timeout is set to 0, it will never expire. Once the timeout has expired 

the temporary connection will be finalized and destroyed. Temporary connections are the additional 

connections to MinSessions. Expired temporary connections are not reused. Instead, they are finalized 

and destroyed after their expiration. They may be reused though, if the connection is not expired and the 

SubPool is reloaded or the connection closed (via RMI) and the pool contains less than MinSessions 

resources. Notice that Temporary connections are also affected by ResourceTimeout. 

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties 

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties 

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced 

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties 

DYNAMIC_POOL_TEMPORARY_RESOURCES_TIME_OUT property (see ecp.properties File). If the pool is 

static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL 

TEMPORARYRESOURCESTIMEOUT DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

Id: Identifier of the subpool. 

If the subpool is dynamic, then the subpool identifier will be 0 (actually, the JVM initialization value of an 

integer, as the value is not initialized by the ECP). If the subpool is static, the value of this parameter will 

be specified by the HPSA_EQUIPMENTCONNSUBPOOL IDSUBPOOL DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

69 

 

ConnectionResourceClassName: Fully qualified class name of the EquipmentDriver to be used for 

this subpool connections. Must extend ConnectionResource and be in the system codebase (classpath). 

If the subpool is dynamic, the value of this parameter will be specified by the DynamicECPProperties 

ConnectionResourceClassName attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL CONNECTIONRESOURCECLASSNAME DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

6.6.1.1. SubPool Instance Specific Logging Parameters Configuration 

Logger: Each SubPool will use the logger of the pool it belongs to to log its messages (see Pool Logging 

Common Parameters Configuration and Pool Instance Specific Logging Parameters Configuration).  

Notice that each ConnectionResource will use the logger of the SubPool it belongs to to log its messages 

(see ConnectionResource Configuration) 

6.6.1.2. EquipmentDriver Initialization Parameters Configuration 

Ip: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.host. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties IP attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL IP DB field (see HPSA_EQUIPMENTCONNSUBPOOL 

DB Table). 

Port: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.port. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties Port attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL PORT DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

Protocol: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.protocol. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties Protocol attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL PROTOCOL DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). The value identifies a ProtocolDriver. A ProtocolDriver 

registered in the Protocol Driver manager under that name must exist. See Protocol Drivers Manager 

Configuration 

Username: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.user. If the SubPool to which the EquipmentDriver 

belongs is dynamic, the value of this parameter will be specified by the DynamicECPProperties User 

attribute (see  



HPSA Extension Pack 

Equipment Connection Pool 

 

70 

 

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL USERNAME DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

Password: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.password. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties Password attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL PASSWORD DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

Userenable: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.userEnable. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties UserEnable attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL PASSWORDENABLE DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

Passwordenable: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.passwordEnable. If the SubPool to which the 

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the 

DynamicECPProperties PasswordEnable attribute (see  

DynamicECPProperties SubPool Properties). If the subpool is static, the value of this parameter will be 

specified by the HPSA_EQUIPMENTCONNSUBPOOL PASSWORDENABLE DB field (see 

HPSA_EQUIPMENTCONNSUBPOOL DB Table). 

ExternalDataGetterClassName: Fully qualified class name of the external data getter 

implementation to be used for this subpool connections, which must extend ExternalDataGetter and 

be available in the classpath. This is an optional parameter, and in case it is present, an instance of the 

specified implementation will be created to retrieve connection information for the subpool based on the 

network element name. This avoids the need to explicitly configure subpool connection parameters such 

as the target equipment host, password, port, protocol, etc. 

ElementName: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key 

ConnectionResource.DefaultParameterNames.elementName. Network element name. This 

optional parameter is used in conjunction with the previous one to identify the name of the network 

element a subpool should connect to. 

6.7. EquipmenDriver Configuration 

Logger: This logger is set by the ConnectionResource (see ConnectionResource Configuration) and  it 

will determine the PrintWriter and the initial LogLevel. EquipmentDriver won’t use it for logging 

(except to log some error messages). Instead, it will use PrintWriter. 

PrintWriter: Will be determined by the Logger. If the Logger has a WritableFileAppender, it 

will be used as PrinterWriter. In other case, System.out will be used. 

LogLevel: Will determine the level of the messages to PrintWriter to print. Initially, LogLevel will 

be the LogLevel of Logger but the client can change it when requesting a connection. In fact, 



HPSA Extension Pack 

Equipment Connection Pool 

 

 

 

71 

 

CLICommands will set the EquipmentDriver LogLevel to its own LogLevel when executing an Operation 

(see CLICommands Configuration). 

if LogLevel equals org.apache.log4j.Level.INFO the EquipmentDriver will write on this 

PrintWriter the data read and written through the ProtocolDriver. 

If LogLevel equals org.apache.log4j.Level.DEBUG, only the data read during 

configureTerminal will be logged but accumulating it, that is, if five consecutive read operations are 

needed to find a searched string, the five reading operations, each one including the previous read data, 

will be logged. 

If an error is found, the read data will always be written. 

6.7.1. EquipmentDriver Initialization Parameters Configuration 

See EquipmentDriver Initialization Parameters Configuration 

6.7.2. ConnectionResource Configuration 

Logger: Each ConnectionResource will use the logger of the SubPool it belongs to, to log its messages 

(see SubPool Instance Specific Logging Parameters Configuration). It will also determine the Logger of the 

EquipmentDriver (see EquipmenDriver Configuration). 

6.8. Protocol Drivers Manager Configuration 

The Protocol Drivers Manager can be configured through the ProtocolDrivers.lst file. See 

ProtocolDrivers.lst File. 

Additionally, the Protocol Drivers Manager will use the current log4j LoggerRepository to look for the 

logger with the name “DriverManager”. A ConsoleAppender to stdout will be added to this logger, 

and used to log the Protocol Driver registering process. 

6.9. ProtocolDriver Configuration 

SpyFile: The directory where the spy files will be generated may be configured from the 

ecp.properties file LOG_DIR property. The spy file will be 

LOG_DIR + "spy" + ${pool.name} + "_" + ${subpool.name} + "_" + ${resource.id} + ".log" 

See ecp.properties File. 

6.10. CLICommands Configuration 

Logger: Default AbstractLoggeable Logger (ConsoleAppender to System.out): 

LogLevel: On CLICommands construction, the Logger log level will be established to 

org.apache.log4j.Level.INFO if bInfo==true, or to org.apache.log4j.Level.WARN if 

bInfo==false. Later, this logger level will be used to determine the EquipmentDriver LogLevel, setting 

it to the same log level (see EquipmenDriver Configuration). 



HPSA Extension Pack 

Equipment Connection Pool 

 

72 

 

ECPRMIServiceRegistryHostName: Hostname of the registry service where the ECP RMI Service 

object has been bound. This parameter may be configured via setRMIHostName. 

ECPRMIServiceRegistryPort: Port of the registry service where the ECP RMI Service object has 

been bound. This parameter may be configured via setRMIPort 

ECPRMIServiceReferenceName: Name to which the ECP RMI Service reference has been bound. This 

parameter may be configured via setRMIServiceName 

6.11. Template Parser Configuration 

TemplateParser logs to System.out but when constructing the TemplateParser, the generated 

CLICommands LogLevel can be set. The bInfo parameter will be passed to the CLICommands. See 

CLICommands Configuration. 

6.12. JMS Monitoring Configuration 

Enabling: To enable JMS Monitoring, the ecp.properties field ECP.Msgs.Enable must be set to 

true.  No Monitoring message will be sent if this property is set to other value. See 0 ecp.properties File, 

property “ECP.Msgs.Enable” for further details. 

Administered Objects Naming Context: All the properties included in ecp.properties will be set 

as environment of the InitialContext instance used to look for administered objects. By default, the 

ecp.properties will use the Active MQ Initial Context Factory, setting the property 

“java.naming.factory.initial= 

org.apache.activemq.jndi.ActiveMQInitialContextFactory”. Check Active MQ 

documentation and javax.naming.InitialContext for the possible values. It is possible for example to create 

administered Destinations by tweaking these properties. See 0 ecp.properties File, property 

“java.naming.factory.initial” for further details. 

JMS Broker Connection/Start: It is possible to determine the JMS Broker that the ECP will connect 

to, indicating its URI in the the ecp.properties field JMSBrokerReference.broker.uri. This URI 

will be used for to instantiate an ActiveMQConnectionFactory, to create connections to the broker. Active 

MQ supports a wide variety of URIs, including embedded brokers, broker configuration through URI, 

multiple transport protocols etc. Check Active MQ documentation for details. By default the JMS Broker 

URI is 

“vm\:(broker\:(tcp\://localhost\:4001)?brokerName\=EmbeddedBroker&useJmx\=tr
ue&persistent\=false&populateJMSXUserID\=false&useShutdownHook\=false&delete

AllMessagesOnStartup\=false&enableStatistics\=false)?marshal\=false”. “vm” URIs 

will start an embedded broker. See 0 ecp.properties File, property 

“JMSBrokerReference.broker.uri” for further details. 

JMS ECP Messages Destination: It is possible to determine the destination type and name where ECP 

monitoring messages will be sent. See 0 ecp.properties File, properties 

“JMSMessageBroker.dest.type” and “JMSMessageBroker.dest.name” for further details. 


