
 

 

 

 

 HPSA Extension Pack 

EP - Developer's Reference 

Release V6.1 

 

 

 

 

 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

2 
 

Legal Notices 

Warranty. 

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, 

the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not 

be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages 

in connection with the furnishing, performance, or use of this material. 

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from 

your local Sales and Service Office. 

Restricted Rights Legend. 

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in 

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-

7013. 

Hewlett-Packard Company United States of America 

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-

19(c)(1,2). 

Copyright Notices. 

©Copyright 2001-2013 Hewlett-Packard Development Company, L.P., all rights reserved. 

No part of this document may be copied, reproduced, or translated to another language without the prior 

written consent of Hewlett-Packard Company. The information contained in this material is subject to 

change without notice. 

Trademark Notices. 

Java™ is a trademark of Oracle and/or its affiliates. 

Linux is a U.S. registered trademark of Linus Torvalds 

Microsoft® is a U.S. registered trademark of Microsoft Corporation. 

Red Hat® Enterprise Linux® is a registered trademark of Red Hat, Inc. 

EnterpriseDB® is a registered trademark of EnterpriseDB. 

Postgres Plus® Advanced Server is a registered trademark of EnterpriseDB. 

Oracle® is a trademark of Oracle and/or its affiliates. 

UNIX® is a registered trademark of the Open Group. 

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation. 

All other product names are the property of their respective trademark or service mark holders and are 

hereby acknowledged. 

Document id: EP-pd001302 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

3 
 

Table of Contents 

1 Introduction .................................................................................................................................... 14 
1.1 Purpose ................................................................................................................................... 14 
1.2 Document Scope ...................................................................................................................... 14 
1.3 Definitions ............................................................................................................................... 14 

1.3.1 Acronims .......................................................................................................................... 14 

2 General Description ........................................................................................................................ 15 
2.1 Common Interface .................................................................................................................... 15 
2.2 Application design ................................................................................................................... 15 

2.2.1 The application view .......................................................................................................... 16 
2.2.2 The data model ................................................................................................................. 16 
2.2.3 Application logic ............................................................................................................... 16 

2.3 Development tools .................................................................................................................... 16 
2.4 User management .................................................................................................................... 16 
2.5 Integration with HPSA ............................................................................................................... 17 
2.6 Applications included in the SC ................................................................................................. 17 

3 Solution Container .......................................................................................................................... 18 
3.1 Single entrance point ................................................................................................................ 18 
3.2 SC structure ............................................................................................................................. 18 
3.3 The views menu........................................................................................................................ 19 
3.4 The views ................................................................................................................................ 19 
3.5 The status menu ........................................................................................................................ 20 
3.6 The status space ....................................................................................................................... 20 

4 Application development ................................................................................................................. 22 
4.1 Application model definition ...................................................................................................... 22 
4.2 Application definition................................................................................................................ 23 
4.3 Main menus definition............................................................................................................... 23 
4.4 Actions of the main menus ......................................................................................................... 25 
4.5 View Definition ........................................................................................................................ 26 
4.6 Status menu definition ............................................................................................................... 27 
4.7 Application status definition ....................................................................................................... 28 
4.8 Application status management .................................................................................................. 29 
4.9 Status menu actions .................................................................................................................. 31 
4.10 Action result ........................................................................................................................... 32 

5 User structure .................................................................................................................................. 35 
5.1 Users ...................................................................................................................................... 35 
5.2 User teams .............................................................................................................................. 35 
5.3 Super user ............................................................................................................................... 35 
5.4 System user ............................................................................................................................. 35 

6 User creation .................................................................................................................................. 36 

7 Permissions structure ........................................................................................................................ 37 

8 Assigning permissions ..................................................................................................................... 38 

9 Action Audit ................................................................................................................................... 40 

10 Integration with HPSA .................................................................................................................... 41 
10.1 Workflow Launcher ................................................................................................................ 41 

10.1.1 What is the WFLT? .......................................................................................................... 41 
10.1.2 What is SOSA? ............................................................................................................... 41 
10.1.3 Starting up a workflow ..................................................................................................... 41 

10.1.3.1 Case packet values specification ................................................................................. 42 
10.1.3.2 Backwards compatibility ............................................................................................. 43 



HPSA Extension Pack 

EP - Developer's Reference 

 

4 
 

10.1.4 Tracking workflows .......................................................................................................... 44 
10.1.4.1 ECP Command tracking.............................................................................................. 45 
10.1.4.2 Interacting with workflows .......................................................................................... 46 
10.1.4.3 Tracking error ........................................................................................................... 47 
10.1.4.4 Ending messages ....................................................................................................... 47 

11 Concurrent Workflows Module ....................................................................................................... 49 
11.1 Scenarios .............................................................................................................................. 49 

11.1.1 Cleaning process ............................................................................................................. 51 
11.2 Module Configuration ............................................................................................................. 51 
11.3 Nodes .................................................................................................................................. 52 

11.3.1 StartJobConcurrent ........................................................................................................... 53 
11.3.2 SyncConcurrent ............................................................................................................... 54 
11.3.3 WaitJobConcurrent .......................................................................................................... 55 

12 Workflow Transaction Module ........................................................................................................ 56 
12.1 Functionality .......................................................................................................................... 56 

12.1.1 Lock functionality ............................................................................................................. 57 
12.1.1.1 Object locking........................................................................................................... 57 
12.1.1.2 Object locking without queuing ................................................................................... 57 
12.1.1.3 Assigning an existing lock identifier ............................................................................. 58 
12.1.1.4 Object unlocking ....................................................................................................... 58 

12.1.2 Inventory ........................................................................................................................ 59 
12.1.2.1 Inserting Inventory beans ............................................................................................ 59 
12.1.2.2 Updating Inventory bean ............................................................................................ 59 
12.1.2.3 Resource reservation .................................................................................................. 60 
12.1.2.4 Delayed inventory operations ...................................................................................... 60 
12.1.2.5 Working with historical .............................................................................................. 61 

12.2 Configuration......................................................................................................................... 61 
12.3 Nodes .................................................................................................................................. 62 

12.3.1 AssignLockId ................................................................................................................... 62 
12.3.2 DelayedDelete ................................................................................................................. 62 
12.3.3 DelayedReleaseResource .................................................................................................. 63 
12.3.4 DelayedUpdate ............................................................................................................... 63 
12.3.5 InsertInventory ................................................................................................................. 63 
12.3.6 LockInventory .................................................................................................................. 64 
12.3.7 LockInventoryWithoutEnqueue ........................................................................................... 65 
12.3.8 MoveToHistory ................................................................................................................ 65 
12.3.9 RecoverFromHistory ......................................................................................................... 65 
12.3.10 ReserveResource ............................................................................................................ 66 
12.3.11 UnlockInventory ............................................................................................................. 66 
12.3.12 UpdateInventory ............................................................................................................ 66 
12.3.13 WFTransactionBegin ...................................................................................................... 67 

12.4 Handlers ............................................................................................................................... 67 
12.4.1 End handler .................................................................................................................... 68 

13 Audit Action Module ..................................................................................................................... 71 
13.1 Module Configuration ............................................................................................................. 71 
13.2 Nodes .................................................................................................................................. 71 

13.2.1 AuditAction ..................................................................................................................... 71 

14 TMN Inventory .............................................................................................................................. 73 
14.1 TMN Inventory Entities ............................................................................................................ 73 

14.1.1 Colour ............................................................................................................................ 73 
14.1.2 ElementTypes .................................................................................................................. 73 
14.1.3 EquipmentFunction ........................................................................................................... 73 
14.1.4 EquipmentOS .................................................................................................................. 73 
14.1.5 EquipmentStatus .............................................................................................................. 73 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

5 
 

14.1.6 PathStatus ....................................................................................................................... 73 
14.1.7 Provinces ........................................................................................................................ 73 
14.1.8 Location.......................................................................................................................... 74 
14.1.9 Manufacturers ................................................................................................................. 74 
14.1.10 Network ....................................................................................................................... 74 
14.1.11 ElementModels .............................................................................................................. 74 
14.1.12 EquipmentFunctionModel ................................................................................................ 74 
14.1.13 EquipmentOSModel ....................................................................................................... 74 
14.1.14 NetworkElement ............................................................................................................ 74 
14.1.15 ElementComponent ........................................................................................................ 74 
14.1.16 Path ............................................................................................................................. 75 
14.1.17 PathComponent ............................................................................................................. 75 
14.1.18 PathNE ......................................................................................................................... 75 
14.1.19 TerminationPointID ......................................................................................................... 75 
14.1.20 TMNConnection ............................................................................................................ 75 
14.1.21 PathConnection ............................................................................................................. 75 

14.2 TMN Inventory Structure .......................................................................................................... 75 
14.2.1 Network Entities Diagram ................................................................................................. 76 
14.2.2 Path Diagram .................................................................................................................. 77 
14.2.3 Full Diagram ................................................................................................................... 78 

15 SNMP Tool .................................................................................................................................. 79 
15.1 SNMP and MIB background .................................................................................................... 79 

15.1.1 Snmp version .................................................................................................................. 79 
15.1.2 TMN Inventory ................................................................................................................ 79 

15.2 SNMP nodes ......................................................................................................................... 80 
15.2.1 General Introduction ........................................................................................................ 80 
15.2.2 Node Class..................................................................................................................... 80 
15.2.3 Functionality .................................................................................................................... 80 
15.2.4 Parameter Formats ........................................................................................................... 80 
15.2.5 String Bulk Parameters ...................................................................................................... 80 

15.2.5.1 SnmpProperty Bulk Parameters .................................................................................... 81 
15.2.6 SNMP Versions ............................................................................................................... 81 

15.2.6.1 SNMPv1 and SNMPv2c ............................................................................................. 81 
15.2.6.2 SNMPv3 ................................................................................................................... 81 

15.2.7 Get Action ...................................................................................................................... 82 
15.2.7.1 Get Action Parameters ............................................................................................... 82 
15.2.7.2 Get Action Functionality ............................................................................................. 83 
15.2.7.3 Indexed Properties ..................................................................................................... 83 

15.2.8 Update Action ................................................................................................................. 84 
15.2.8.1 Update Action Parameters .......................................................................................... 84 
15.2.8.2 Update Action Functionality ........................................................................................ 85 

15.2.9 Reset Action .................................................................................................................... 85 
15.2.9.1 Reset Action Parameters ............................................................................................. 85 
15.2.9.2 Reset Action Functionality ........................................................................................... 86 

15.2.10 Set Action ..................................................................................................................... 86 
15.2.10.1 Set Action Parameters .............................................................................................. 87 
15.2.10.2 Set Action Functionality ............................................................................................ 87 

15.3 Helper Nodes ........................................................................................................................ 88 
15.3.1 Favourites Node .............................................................................................................. 88 

15.3.1.1 General Introduction .................................................................................................. 88 
15.3.1.2 Node Class............................................................................................................... 88 
15.3.1.3 Functionality .............................................................................................................. 88 
15.3.1.4 Parameters ................................................................................................................ 88 
15.3.1.5 Output ...................................................................................................................... 89 

15.4 Nodes Examples .................................................................................................................... 89 
15.4.1 Get of scalar properties in favorite ..................................................................................... 89 



HPSA Extension Pack 

EP - Developer's Reference 

 

6 
 

15.4.2 Get of Indexed properties in favorite with SNMPv3 ............................................................. 90 
15.5 SNMP Generic Plug-in ............................................................................................................ 92 

15.5.1 General Introduction ........................................................................................................ 92 
15.5.2 Locking Arguments ........................................................................................................... 92 
15.5.3 Class Name .................................................................................................................... 92 
15.5.4 Pre-provisioning tasks ....................................................................................................... 92 
15.5.5 Single Value Atomic Tasks ................................................................................................ 92 

15.5.5.1 task_SNMPGetUnsec ................................................................................................. 92 
15.5.5.2 task_SNMPGetUnsecIndexed ...................................................................................... 93 
15.5.5.3 task_SNMPGet .......................................................................................................... 93 
15.5.5.4 task_SNMPGetIndexed ............................................................................................... 94 
15.5.5.5 task_SNMPSetUnsec .................................................................................................. 94 
15.5.5.6 task_SNMPSetUnsecIndexed ....................................................................................... 95 
15.5.5.7 task_SNMPSet ........................................................................................................... 95 
15.5.5.8 task_SNMPSetIndexed ............................................................................................... 96 

15.5.6 Multiple Value Atomic Tasks.............................................................................................. 97 
15.5.6.1 task_SNMPMultipleGetUnsec ...................................................................................... 97 
15.5.6.2 task_SNMPMultipleGetUnsecIndexed ........................................................................... 97 
15.5.6.3 task_SNMPMultipleGet ............................................................................................... 98 
15.5.6.4 task_SNMPMultipleGetIndexed ................................................................................... 99 
15.5.6.5 task_SNMPMultipleSetUnsec ....................................................................................... 99 
15.5.6.6 task_SNMPMultipleSetUnsecIndexed .......................................................................... 100 
15.5.6.7 task_SNMPMultipleSet ............................................................................................. 100 
15.5.6.8 task_SNMPMultipleSetIndexed .................................................................................. 101 

15.5.7 Files ............................................................................................................................. 102 
15.5.7.1 MultipleSNMPVars.dtd ............................................................................................. 102 
15.5.7.2 MultipleSNMPValues.dtd .......................................................................................... 102 

16 Configuration Management ......................................................................................................... 104 
16.1 Configuring the memory types ............................................................................................... 104 

16.1.1 HPSA_MemoryType ....................................................................................................... 104 
16.1.2 HPSA_ModelMemTypeRel .............................................................................................. 104 

16.2 Parameter management ........................................................................................................ 104 
16.2.1 Configuring parameters .................................................................................................. 104 

16.3 Recovering parameters ......................................................................................................... 106 
16.4 Coding a new backup driver ................................................................................................. 106 

16.4.1 Implementing the interfaces ............................................................................................. 107 
16.4.2 Tasks in BackupDriver .................................................................................................... 107 

16.4.2.1 Registering the driver ............................................................................................... 107 
16.4.2.2 Validating the incoming petition ................................................................................ 107 
16.4.2.3 Instantiating the BackupConnection ............................................................................ 108 
16.4.2.4 Finishing implementing BackupDriver ......................................................................... 108 

16.4.3 Tasks in BackupConnection ............................................................................................. 108 
16.4.3.1 Implementing the connection to the equipment............................................................. 108 

16.5 Using an existent backup driver ............................................................................................. 113 
16.6 BackupURL getter methods ..................................................................................................... 113 
16.7 AccessProperties getter methods ............................................................................................. 113 

17 Xmaps ....................................................................................................................................... 114 
17.1 API structure......................................................................................................................... 114 
17.2 Application development ....................................................................................................... 114 

17.2.1 Nodes definition ............................................................................................................ 115 
17.2.2 Ports Definition .............................................................................................................. 116 
17.2.3 Connections definition .................................................................................................... 116 
17.2.4 Creating a Diagram ....................................................................................................... 117 
17.2.5 Adding a Text ............................................................................................................... 118 
17.2.6 Adding a Image ............................................................................................................ 118 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

7 
 

17.2.7 Sorting the diagram ....................................................................................................... 118 
17.2.8 The resulting diagram..................................................................................................... 118 
17.2.9 Operations ................................................................................................................... 119 
17.2.10 On Select Operations................................................................................................... 121 

17.3 Sorting Algorithms ................................................................................................................ 121 
17.4 Solution Container Integration ................................................................................................ 121 

18 ECP Console .............................................................................................................................. 123 
18.1 Functionality ........................................................................................................................ 123 

18.1.1 Command scripts ........................................................................................................... 123 
18.1.2 Opening an ECP Console ............................................................................................... 123 
18.1.3 Connecting to the remote equipment ................................................................................ 124 

19 Configuration ............................................................................................................................. 126 
19.1 DB module .......................................................................................................................... 126 
19.2 Authentication module .......................................................................................................... 126 
19.3 MWFM Multiple ................................................................................................................... 127 
19.4 Session management ............................................................................................................ 127 
19.5 Struts .................................................................................................................................. 128 
19.6 Login .................................................................................................................................. 129 
19.7 Multiple JBoss instances ........................................................................................................ 131 
19.8 Flow interaction ................................................................................................................... 131 
19.9 Taglibs ................................................................................................................................ 134 

19.9.1 Taglibs belonging to Struts .............................................................................................. 134 
19.9.2 Belonging to the SC ....................................................................................................... 135 

19.9.2.1 Button taglib ............................................................................................................ 135 
19.9.2.2 Table taglib ............................................................................................................ 135 
19.9.2.3 Block taglib ............................................................................................................. 135 
19.9.2.4 Combotext taglib ..................................................................................................... 135 
19.9.2.5 Display tag ............................................................................................................. 136 

19.10 Session timeout .................................................................................................................. 136 
19.11 Welcome page .................................................................................................................. 136 
19.12 Datasources ....................................................................................................................... 136 
19.13 Permissions ........................................................................................................................ 137 

19.13.1 Users and Teams ......................................................................................................... 137 
19.13.2 Roles and Teams ......................................................................................................... 137 
19.13.3 Roles and users ........................................................................................................... 137 
19.13.4 Roles and applications ................................................................................................. 138 
19.13.5 Roles and menus ......................................................................................................... 138 
19.13.6 Roles and inventory views ............................................................................................. 138 
19.13.7 Roles and inventory view operations .............................................................................. 138 

19.14 GUI .................................................................................................................................. 138 
19.14.1 Changing view and status ............................................................................................ 138 

19.15 Access to the Inventory UI: cross launch ................................................................................ 139 
19.16 Workflow Launcher ............................................................................................................ 139 

19.16.1 SOSA Remote Interface ................................................................................................ 139 
19.16.2 Not interactive step names ............................................................................................ 139 
19.16.3 ECP Command tracking configuration ............................................................................ 139 
19.16.4 CCWF for the WFLT..................................................................................................... 140 

19.17 ECP Console ...................................................................................................................... 141 
19.17.1 Permissions ................................................................................................................. 141 
19.17.2 Command filters .......................................................................................................... 141 
19.17.3 Scripts ........................................................................................................................ 141 

20 Start-up ...................................................................................................................................... 142 

21 API Reference ............................................................................................................................. 143 
21.1 General information request views ......................................................................................... 143 



HPSA Extension Pack 

EP - Developer's Reference 

 

8 
 

21.2 Information request views: Block Taglib ................................................................................... 145 
21.3 Buttons: Button taglib ............................................................................................................ 147 
21.4 Information Presentation Views ............................................................................................... 148 
21.5 Table Taglib ........................................................................................................................ 162 

21.5.1 TableTag ...................................................................................................................... 162 
21.5.2 Header Tag .................................................................................................................. 163 
21.5.3 Row Tag ....................................................................................................................... 163 
21.5.4 Separator Tag ............................................................................................................... 164 
21.5.5 Cell Tag ....................................................................................................................... 164 
21.5.6 Examples ...................................................................................................................... 164 

21.6 Combotext ........................................................................................................................... 165 
21.6.1 Combotext tag .............................................................................................................. 166 
21.6.2 Option tag .................................................................................................................... 166 
21.6.3 Example ....................................................................................................................... 166 

21.7 Displaytag ........................................................................................................................... 167 
21.7.1 Table Tag ..................................................................................................................... 167 
21.7.2 Column tag ................................................................................................................... 168 
21.7.3 Examples ...................................................................................................................... 168 

21.8 FutureAlert ........................................................................................................................... 169 
21.9 FutureConfirm ...................................................................................................................... 171 
21.10 SC’s Context and Application Context .................................................................................. 174 

21.10.1 Context class ............................................................................................................... 175 
21.10.2 AbstractContext class ................................................................................................... 175 
21.10.3 ApplicationContext interface ......................................................................................... 175 
21.10.4 AbstractApplicationContext class ................................................................................... 175 

21.11 Properties files.................................................................................................................... 176 
21.12 Action Audit ...................................................................................................................... 176 
21.13 WFLT ................................................................................................................................ 176 

21.13.1 WFLTAction.do ............................................................................................................ 176 
21.13.1.1 General parameters ............................................................................................... 177 
21.13.1.2 Concurrent Workflows ........................................................................................... 177 
21.13.1.3 Database tracking ................................................................................................. 177 
21.13.1.4 ECP Command tracking.......................................................................................... 177 
21.13.1.5 SOSA .................................................................................................................. 177 
21.13.1.6 Miscellaneous parameters ...................................................................................... 178 
21.13.1.7 User parameters .................................................................................................... 178 

Glossary ......................................................................................................................................... 180 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

9 
 

Support 

Support for the HP Service Activator Extended Pack product is available on the following mailing list: 

hpsa-support@hp.com 

mailto:hpsa-support@hp.com


HPSA Extension Pack 

EP - Developer's Reference 

 

10 
 

In This Guide 

This guide explains how to use the Solution Container for developers. 

Audience 

The audience for this guide is the Solutions Integrator (SI). The SI has a combination of some or all of the 

following capabilities: 

Understands and has a solid working knowledge of: 

– UNIX® commands 

– Windows® system administration 

Understands networking concepts and language 

Is able to program in Java™ and XML 

Understands security issues 

Understands the customer’s problem domain 

 

References 

 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

11 
 

Conventions 

The following typographical conventions are used in this guide. 

Font What the Font 

Represents 

Example 

Italic Book or manual titles, 

and man page names 

Refer to the HP Service Activator — Workflows and the 

Workflow Manager and the Javadocs man page for more 

information. 

Provides emphasis You must follow these steps. 

Specifies a variable 

that you must supply 

when entering a 

command 

Run the command: 

InventoryBuilder <sourceFiles> 

Parameters to a method The assigned_criteria parameter returns an ACSE response. 

Bold New terms The distinguishing attribute of this class... 

Computer Text and items on the 

computer screen 

The system replies: Press Enter 

Command names Use the InventoryBuilder command ... 

Method names The get_all_replies() method does the 

following... 

File and directory 

names 

Edit the file 

$ACTIVATOR_ETC/config/mwfm.xml 

Process names Check to see if mwfm is running. 

Window/dialog box 

names 

In the Test and Track dialog... 

XML tag references Use the <DBTable> tag to... 

Computer 

Bold 
Text that you must type At the prompt, type: ls -l 

Keycap Keyboard keys Press Return. 

[Button] Buttons on the user 

interface 

Click [Delete]. 

Click the [Apply] button. 

Menu Items A menu name followed 

by a colon (:) means 

that you select the 

menu, then the item. 

When the item is 

followed by an arrow  

(->), a cascading menu 

follows 

Select Locate:Objects->by Comment. 



HPSA Extension Pack 

EP - Developer's Reference 

 

12 
 

 

Install Location Descriptors 

The following names are used throughout this guide to define install locations. 

Descriptor What the Descriptor Represents 

$ACTIVATOR_OPT The install base location of Service Activator. 

The UNIX location is /opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\ 

$ACTIVATOR_ETC The install location of specific Service Activator configuration files. 

The UNIX location is /etc/opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\etc\ 

$ACTIVATOR_VAR The install location of specific Service Activator logging files. 

The UNIX location is /var/opt/OV/ServiceActivator 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\var\ 

$ACTIVATOR_BIN The install location of specific Service Activator binary files. 

The UNIX location is /opt/OV/ServiceActivator/bin 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\bin\ 

$ACTIVATOR_THIRD_PARTY The location for new Java components such as workflow nodes and 

modules. Third-party libraries can also be placed in this directory. 

The UNIX location is /opt/OV/ServiceActivator/3rd-party 

The Windows location is 

<drive>:\HP\OpenView\ServiceActivator\3rd-party\ 

Customized inventory files are stored in the following locations: 

UNIX: $ACTIVATOR_THIRD_PARTY/inventory 

Windows: $ACTIVATOR_THIRD_PARTY\inventory 

$JBOSS_HOME HOME The install location for JBoss. 

The UNIX location is /opt/HP/jboss 

The Windows location is 

<drive>:\HP\jboss 

$JBOSS_DEPLOY The install location of the Service Activator J2EE components. 

The UNIX location is 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

13 
 

/opt/HP/jboss/server/default/deploy 

The Windows location is 

<drive>:\HP\jboss\server\default\deploy 

$ACTIVATOR_DB_USER The database user name you define. 

Suggestion: ovactivator 

$ACTIVATOR_SSH_USER The Secure Shell user name you define. 

Suggestion: ovactusr 

$SOSA_HOME The install base location of SOSA. 

The default UNIX location is /opt/OV/Sosa 

The default Windows location is 

<drive>:\HP\OpenView\Sosa\ 

$SOSA_BIN The install location of specific SOSA binary files. 

The default UNIX location is /opt/OV/Sosa/bin 

The default Windows location is 

<drive>:\HP\OpenView\Sosa\bin\ 

$SOSA_ETC The install location of specific SOSA configuration files. 

The default UNIX location is /opt/OV/Sosa/config 

The default Windows location is 

<drive>:\HP\OpenView\Sosa\config\ 

$ECP_HOME The install base location of Equipment Connections Pool. 

The default UNIX location is /opt/OV/ECP 

The default Windows location is 

<drive>:\HP\OpenView\ECP\ 

$ECP_BIN The install location of specific Equipment Connections Pool binary files. 

The default UNIX location is /opt/OV/ECP/bin 

The default Windows location is 

<drive>:\HP\OpenView\ECP\bin\ 

$ECP_ETC The install location of specific Equipment Connections Pool 

configuration files. 

The default UNIX location is /opt/OV/ECP/conf 

The default Windows location is 

<drive>:\HP\OpenView\ECP\conf\ 



HPSA Extension Pack 

EP - Developer's Reference 

 

14 
 

1   Introduction 

1.1   Purpose 

This document is a manual for developers of applications and solutions designed for the Solution 

Container. Its purpose is to provide a wide explanation of the different features and characteristics 

involved in the development. 

1.2   Document Scope 

This document is focused on the different tools provided by the Solution Container and the designing 

criteria for new applications. 

1.3   Definitions 

1.3.1   Acronims 

MWFM: Micro Work Flow Manager 

HPSA: HP Service Activator 

EP: Extension Pack 

SC: Solution Container 

WFLT: Work Flow Launcher and Tracker 

CCWF: Concurrent Workflows Module 

ECP: Equipment Connection Pool 

SOSA: Service Order Smart Adapter 

LM: Lock Manager 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

15 
 

2   General Description 

Solution Container, from now on SC, is an application framework for the development and deployment of 

user applications. Integrated into the HPSA, it provides mechanisms to integrate the applications into the 

activation system. 

SC objectives are: 

 To establish a common interface for all the user applications. 

 To establish a main design which provides a clear separation between logical and presentation 

layers. 

 To provide APIs and designing regulations for a lively and effective development of the user 

applications. 

 To personalize the applications for each user accessing the tool. 

2.1   Common Interface 

This tool provides a common visual interface in which developers can deploy new user applications. 

 

SC provides several APIs for developing and a designing guide which makes it easy developing and 

deploying new user applications. Integrated in the SC, all the applications possess the same look and feel 

based on configured menus. 

2.2   Application design 

Apart from a common interface, the user applications developed for the SC share the same designing 

criteria.  

These applications are object-oriented. They manage every piece of data as an object and call it a 

“component”. As objects, each of these components has properties and methods than are consulted and 

invoked in the application logic. 

All the applications are based on the Struts framework, what allows setting a clear separation between 

logical and presentation layers. The following points provide a brief description of each of these layers in 

which a user application is divided. 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

16 
 

2.2.1   The application view 

The application view is the way a client can interact with the application's data. It defines what 

component, what properties of these components and what operations associated to these components 

will be accessible by every client. To simplify the process, the SC provides mechanisms for generating 

views from a single component information and defining operations associated to it. 

As every application is integrated in the SC they share the same look and feel. The presentation layer is 

developed from this starting criterion using the different Tools provided by the SC. 

2.2.2   The data model 

The data model of an application consists in the definition of which components will be managed by the 

application. These components are mapped as Java Beans and usually are stored in a database.  

2.2.3   Application logic 

The application logic is implemented through Struts actions, which are invoked inside an application by 

selecting the different menu options available. SC set no criteria on the development of the application 

functionality, what allows opened application developments of very different natures. 

2.3   Development tools 

As it has been said before, SC provides several tools for developing and deploying user applications on 

an easy way. 

These tools contain: 

 A design guide for the application development. 

 A maven library for the application structure definition. 

 Controlling JSP files for the automatic views and status loading. 

 JavaScript APIs for the automatic view generation. 

 Generic Struts actions and forms for the searching performance and results presentation. 

 Generic components for the integration with HPSA which makes easier the authentication process 

and the activation workflows launching and tracking. 

 A visual tool for the user management. 

2.4   User management 

The SC implements its own user management, which allows setting permissions for accessing the different 

available applications. 

There is a single entrance point to the SC from which, based on the user’s account, the accessible 

applications and menus are loaded. 

The users and menus structure will be explained in detail later.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

17 
 

2.5   Integration with HPSA 

SC provides several mechanisms for the integration with HPSA, establishing an easy manner to access the 

HPSA and invoking activation tasks over the system. 

There are also predefined applications integrated with HPSA that can be deployed into the SC, offering 

this way a high amount of Solutions based on this tool. 

Further information about specific functionality related to HPSA can be found in further sections dedicated 

to the integration with HPSA. 

2.6   Applications included in the SC 

SC provides the next included user applications:  

 The user management tool. 

 The SOSA management tool. 

 The SNMP management tool. 

 The ECP management tool. 

 A tool for Equipment configuration management. 

 Access to the HPSA’s Inventory window, which provides configurable database tree 

representations. 



HPSA Extension Pack 

EP - Developer's Reference 

 

18 
 

3   Solution Container 

As it was explained in the previous point, every user application is deployed into the SC. 

In this section there will be reviewed the main concepts involved in the SC development. 

3.1   Single entrance point 

There is only a single entrance point to access the SC where the user must enter a valid username and 

password and, in base of his account, there will be loaded the menus which of his available applications. 

The URL to access the SC is: 

http://localhost:8080/ep/jsp/future-gui/hpac.jsp 

where localhost may be substituted by the server’s IP. 

The figure below shows the web page which is always shown to log on the SC. 

 

3.2   SC structure 

The SC has a well defined visual structure which divides the screen in several modules, each of them with 

a specific functionality. 

http://localhost:8080/ep/jsp/future-gui/hpac.jsp


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

19 
 

 

The following sections describe the main characteristics of these modules. 

3.3   The views menu 

It provides accesses to the different user applications. It is loaded the first time the user enters the SC (just 

before the log on) and remains without changes while the user session lasts. Each user application 

includes one or more menus in the views menu bar.  

 

As it can be seen in the example above, the user may access to the administration GUI (menus Search 

and Administrator) and the Inventory application (menu Inventory). The other menus (File and Help) 

belong to the SC. 

3.4   The views 

Once an application has been selected in the view menu this view frame can contain: 

 

 Component information: it is the one shown in the previous figure. It presents the available data 

of the selected component. SC provides APIs and design guides for the quick development of this 

kind of views. 

 

 Component search: it presents a form through which a component can be located. The form 

submitted becomes a query to get a list of components. Once the component has been selected 

the SC loads its information view. The SC provides the needed functionality to automate this task.  



HPSA Extension Pack 

EP - Developer's Reference 

 

20 
 

The data load in this frame will be referred from now on this document as “actual view”. 

3.5   The status menu 

The status menu is associated to the actual view and contains the operations that can be executed over 

the selected component which data is being showed. 

They are showed just below the view space and remains there while the user is working on the same 

component. 

 

3.6   The status space 

This space is placed below the status menu. Each time a task performed over a selected component is 

started up the result will be shown here. 

In this space there will be launched the operations over a component and the user interaction can be 

carried on. 

 

Each time the user interacts with a component the status is being modified. Checking this status the SC 

enables or disables the available component menus. 

Imagine for instance an application performed for text file edition. The Save file option will only be 

enabled when the text file has been modified. Modifying the file means a change in the status, which 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

21 
 

results in the enabling of the menu Save file. This principle is the same followed by the SC, which allows 

to define status that enable or disable certain menu options. SC provides the needed functionality for 

defining and managing the status changes. 



HPSA Extension Pack 

EP - Developer's Reference 

 

22 
 

4   Application development 

The sections below will explain how to create a user application and deploy it into the SC. 

The example that will be used employs the MenuData tool provided with EP. This tool allows the 

management of every database components of a given application, such as menus, roles, views, status 

and permissions through an XML-formatted file. The schema for the document is found in 

$ACTIVATOR_ETC/config/menudata.xsd. With this document it is possible to use the MenuData 

script, located in $ACTIVATOR_BIN, to record the solution from the XML file into Service Activator’s static 

repository. Later in this document a more detailed explanation of this plugin can be found. 

Along the example it will be created an easy application (Hello World!!!) which will guide the developer 

through the application implementation and will show the main performance of an application. The 

implementation process consists in defining a component, called HelloWorldComponent, with an 

associated operation that will present a welcome message. The next sections will explain the needed 

steps for a user application definition using this example. 

NOTE: Along this example different APIs provided by the SC will be used. The objective of this chapter is 

not to describe in detail those APIs but to introduce the developers in their use. In latest sections they will 

be explained in detail.  

4.1   Application model definition 

For the Hello World!!! application the model will consist in an easy component, called 

HelloWorldComponent, which must be in charge of showing a welcome message on the screen. As it 

was explained on a previous section, the model definition is based in Java Beans. 

public class HelloWorldComponent 

{ 

 private String helloMessage; 

  private String author; 

  private String date; 

 

 public HelloWorldComponent(String helloMessage) { 

  setHelloMessage(helloMessage); 

 } 

  

 public String getAuthor() { 

    return author; 

  } 

  public void setAuthor(String author) { 

    this.author = author; 

  } 

  public String getDate() { 

    return date; 

  } 

  public void setDate(String date) { 

    this.date = date; 

  } 

  public String getHelloMessage() { 

    return helloMessage; 

  } 

  public void setHelloMessage(String helloMessage) { 

    this.helloMessage = helloMessage; 

  } 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

23 
 

} 

4.2   Application definition 

The developer may define a new application through the MenuData tool, provided with the installation. 

Thus: 

<Solution> 

 

  <Applications> 

    <Application> 

      <Name>HelloWorldApplication</Name> 

      <Description>Hello World Application</Description> 

      <Enabled>true</Enabled> 

      <To-Roles> 

        <To-Role>futuregui</To-Role> 

      </To-Roles> 

    </Application> 

  </Applications> 

 

</Solution> 

4.3   Main menus definition 

Once the application has been defined, the first step consists on defining the main menus that will be 

present in the view menu bar. As it was said before, each application should include one or more menus 

in this view menu bar. 

In the SC every menu has to be associated to a view. All the menus which must appear in the view menu 

bar have to be associated to the root view, which is only used to set the menus of this bar. 

<Solution> 

 

  << Application HelloWorldApplication definition >> 

 

  <Menus> 

    <Menu> 

      <Name>HelloWorld</Name> 

      <Description>Hello World</Description> 

      <To-Application>HelloWorldApplication</To-Application> 

      <Key>menu.principal</Key> 

      <Bundle>com/hp/spain/futuregui/HelloWorldApplicationResources</Bundle> 

      <To-Views> 

        <To-View position="100">root</To-View> 

      </To-Views> 

      <To-Roles> 

        <To-Role>futuregui</To-Role> 

      </To-Roles> 

    </Menu> 

  </Menus> 

 

</Solution> 

This code includes a menu for our application in the views bar. As all the messages in the application are 

localized so when defining the menu a properties file and a key to name the menu are required. 



HPSA Extension Pack 

EP - Developer's Reference 

 

24 
 

The position of the menu in the views bar is set with the 'position' attribute. The order is calculated from 

left to right. 

Next an example of another menu depending of the “HelloWorld” created in the last example: 

<Solution> 

 

  << Application HelloWorldApplication definition >> 

 

  <Menus> 

    << Menu HelloWorld definition >> 

    <Menu> 

      <Name>OpenHelloComponent</Name> 

      <Description>Open Hello Component</Description> 

      <To-Application>HelloWorldApplication</To-Application> 

      <Key>menu.open</Key> 

      <Bundle>com/hp/spain/futuregui/HelloWorldApplicationResources</Bundle> 

      <Parent>HelloWorld</Parent> 

      <Action>OpenHelloComponentAction.do</Action> 

      <Location>default</Location> 

      <To-Views> 

        <To-View position="100">root</To-View> 

      </To-Views> 

      <To-Roles> 

        <To-Role>futuregui</To-Role> 

      </To-Roles> 

    </Menu> 

  </Menus> 

 

</Solution> 

Don't forget to add the key in the properties file ‘HelloWorldApplicationResources’: 

menu.principal = Helloworld 

menu.open = Open HelloWorld Component 

As can be seen, the definition is the same has the one seen before, but with a new tag called “parent” 

that sets the father menu.  

At this point, the application includes a new menu in the main bar: 

 

In this example, when clicking in the menu an action is desired to be executed. As has been seen, the 

functionality of the views menu is to load views. This view has to be loaded by a Struts action that is 

defined with the “action” attribute.  

In the example, OpenHelloComponentAction.do, will be the action that will return our 

“HeloWorldComponent” and show it in the views frame.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

25 
 

4.4   Actions of the main menus 

This section will focus on the component location and presentation actions. The actions associated to the 

root view must satisfy these two requirements: 

 Provide the necessary functionality for creating or locating a component. 

 Open a component view. 

For the Hello World!!! example, the code for the OpenHelloComponentAction must be: 

public class OpenHelloWorldComponentAction 

extends Action 

implements HelloWorldConstants 

{ 

 

 public ActionForward execute( ActionMapping mapping,  

                               ActionForm form, 

                               HttpServletRequest request, 

                               HttpServletResponse response) 

 throws IOException, ServletException { 

    String target; 

    HelloWorldComponent helloWorldComponent; 

   

  try { 

      helloWorldComponent = new HelloWorldComponent("Hello World!!!"); 

      helloWorldComponent.setAuthor("Javier"); 

      helloWorldComponent.setDate(new Date().toString()); 

      if (Context.getInstance().containsKey(MYCOMPONENT)) { 

        Context.getInstance().remove(MYCOMPONENT); 

      } 

      Context.getInstance().add(MYCOMPONENT, helloWorldComponent); 

      FGLogger.logInfo("HelloWorldComponent loaded"); 

      target = SUCCESS; 

  } 

  catch(Exception e) { 

   e.printStackTrace(); 

      target = FAILURE; 

  } 

    return mapping.findForward(target); 

 } 

} 

This is the code used to create the component. It creates an instance of it and stores it into the application 

context. 

Then, it is necessary to call a view where the component information can be displayed. This is done in the 

struts-config.xml file where the Struts actions are mapped and their possible exits are set: 

<action 

      path="/OpenHelloComponentAction" 

      type="com.hp.spain.OpenHelloComponentAction" cope="request"> 

   <forward 

      name="success" 

      path="/jsp/future-gui/index.jsp?viewName=HelloComponentView& 

            fjsp=/jsp/helloworld/initial.jsp "/> 

   <forward 

      name="failure" 

      path="/jsp/future-gui/index.jsp?fjsp=/jsp/error.jsp"/> 

</action> 



HPSA Extension Pack 

EP - Developer's Reference 

 

26 
 

One of the utilities provided by the SC consists in several controlling JSP files used to manage the loaded 

views and their different menus. 

The index.jsp file is the one employed to load the views and get their associated menus. As it can be seen 

in the code above, it is the JSP file called as the result for the action. 

The index.jsp file receives two possible parameters: 

 viewName: contains the view name which is going to be loaded in the view frame, if any. See 

the next section to learn about the view creation. 

 fjsp: contains the URL of the JSP file which is going to be initially loaded in the status space just 

before the view has been loaded. 

Either the view or the JSP status file are issues that will be explained in retail in further sections. 

4.5   View Definition 

The code below shows how to include a view into the SC. 

<Solution> 

 

  << Application HelloWorldApplication definition >> 

 

  <Views> 

    <View> 

      <Name>HelloComponentView</Name> 

      <Description>Hello Component View</Description> 

      <Url>/jsp/future-gui/hello-world/HelloComponentView.jsp</Url> 

    </View> 

  </Views> 

 

  << Menus definition >> 

 

</Solution> 

The main attribute called “jsp” is the view JSP file target . As it was explained in a previous chapter, SC 

provides specific APIs for view development which consist in JavaScript objects that compose on an easy 

way any presentation view JSP file. Anyway, SC allows to include any kind of JSP file to show 

information. The only requirement is that the JSP file must be loaded into the view space and, thus, there is 

a limitation on the available space. 

<%@ taglib uri = "/tags/struts-bean" prefix="bean" %> 

 

<%@ page import = 

   "com.hp.spain.example.helloworld.HelloWorldComponent" %> 

<%@ page import = 

   "com.hp.spain.example.helloworld.struts.HelloWorldConstants" %> 

<%@ page import = "com.hp.spain.hputils.framework.Context" %> 

 

<% 

HelloWorldComponent myComponent = 

 (HelloWorldComponent)Context.getInstance().get(HelloWorldConstants.MYCOMPON

ENT); 

%> 

 

<script> 

 

var mmi = new MainMenuInfo(); 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

27 
 

mmi.addTitle( 

   "<bean:message bundle="HelloWorldAR" key="helloworld.title" />", 

   null); 

mmi.addAttribute( 

   "<bean:message bundle="HelloWorldAR" key="helloworld.author" />", 

   <%= myComponent.getAuthor() %>, 

   0, 

   0, 

   null); 

mmi.addAttribute( 

   "<bean:message bundle="HelloWorldAR" key="helloworld.date" />", 

   <%= myComponent.getDate() %>, 

   0, 

   1, 

   null); 

 

new MenuInfoWriter(mmi, null, null).write(); 

 

</script> 

Don't forget to add the key in the properties file: 

menu.principal = Helloworld 

menu.open = Open HelloWorld Component 

helloworld.title = HelloWorld component 

helloworld.author = Author 

helloworld.date = Date 

Once this step has been completed, the application will be able to display the view, when selecting the 

‘Open Hello Component’ menu: 

 

4.6   Status menu definition 

The status menus are associated to the actual view and are displayed just below the view JSP file. They 

represent the possible operations that can be performed over the selected component which information is 

being showed in the view. The next code explains how must they be defined: 

<Solution> 

 

  << Application HelloWorldApplication definition >> 

 

  << View HelloComponentView definition >> 

 

  <Menus> 

    << Menu HelloWorld definition >> 

    << Menu OpenHelloComponent definition >> 

    <Menu> 

      <Name>HelloComponentActions</Name> 

      <Description>Hello Component Actions</Description> 



HPSA Extension Pack 

EP - Developer's Reference 

 

28 
 

      <To-Application>HelloWorldApplication</To-Application> 

      <Key>menu.actions</Key> 

      <Bundle>com/hp/spain/futuregui/HelloWorldApplicationResources</Bundle> 

      <To-Views> 

        <To-View position="100">HelloComponentView</To-View> 

      </To-Views> 

      <To-States> 

        <To-State>default</To-State> 

      </To-States> 

      <To-Roles> 

        <To-Role>futuregui</To-Role> 

      </To-Roles> 

    </Menu> 

    <Menu> 

      <Name>SayHello</Name> 

      <Description>Say Hello</Description> 

      <To-Application>HelloWorldApplication</To-Application> 

      <Key>menu.sayHello</Key> 

      <Bundle>com/hp/spain/futuregui/HelloWorldApplicationResources</Bundle> 

      <Parent>HelloComponentActions</Parent> 

      <Action>SayHelloAction.do</Action> 

      <Location>default</Location> 

      <To-Views> 

        <To-View position="100">HelloComponentView</To-View> 

      </To-Views> 

      <To-States> 

        <To-State>default</To-State> 

      </To-States> 

      <To-Roles> 

        <To-Role>futuregui</To-Role> 

      </To-Roles> 

    </Menu> 

  </Menus> 

 

</Solution> 

Every internationalized text must be placed in a properties file which has to be contained into the 

application JAR file, assuring this way that it will be accessible in the classpath when the SC is running. 

At this point the content of this properties file should be something like this: 

menu.principal = Helloworld 

menu.open = Open HelloWorld Component 

menu.actions = Actions 

menu.sayHello = Say Hello 

 

helloworld.title = HelloWorld component 

helloworld.author = Author 

helloworld.date = Date 

As it can be seen, the status menu definition is very similar to the view menu one, but instead of 

associating them to the root view it has to be done to the actual view. 

4.7   Application status definition 

Each application can remain in a determined status in base of the operation which is being currently 

performed. This status sets at each moment which status menus have to be enabled.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

29 
 

In the Hello World!!! example there must be defined a single status, called default, that will enable every 

application status menu. The code needed for this can be seen below. 

<Solution> 

 

  << Application HelloWorldApplication definition >> 

 

  << View HelloComponentView definition >> 

 

  <States> 

    <State> 

      <Name>default</Name> 

      <Description>Default state</Description> 

      <To-Application>HelloWorldApplication</To-Application> 

    </State> 

  </States> 

 

  << Menus definition >> 

  << Note that the last two menus were associated to the state default >> 

   

</Solution> 

Since the two status menus have been associated to the application status, changing to this status will 

cause the enabling of both of them. 

In the next section the necessary steps to load a given status will be explained. 

4.8   Application status management 

Defining a status does not mean it will be loaded just when the view is also loaded. It is the status JSP files 

responsibility to set the proper status and manage them. For that, the developers may employ a JavaScript 

API which allows to dynamically set the status inside a JSP file in an easy manner. 

For instance, take the code of the initial status JSP file associated to the example view. The invocation of 

such JSP file was: 

/jsp/future-gui/index.jsp?view=HelloComponentView&fjsp=/jsp/initial.jsp 

As it can be seen, when the view is opened, far away than the view name, it was necessary to define the 

initial JSP file that had to be loaded into the status space.  

JSP files loaded into the status space must follow the next criteria: 

 Set the application status, if any. If this is not done, the application will remain in the last status 

defined before. Otherwise, if there was no status defined before the status menus displayed 

inside the status menu bar will appear disabled. 

 They are in charge of displaying the information to the user, even presenting an action result or 

requesting data in a given form. 

 They must pay attention to the events generated when a status menu is clicked. 

Lets explain each of these points through the initial JSP file of the example application, initial.jsp. 

<% 

String useRandomColor = 

   (String) session.getAttribute( 

      com.hp.ov.activator.mwfm.futuregui.servlet.Constants.USE_RANDOM_COLOR 

   ); 

String mainColor = 



HPSA Extension Pack 

EP - Developer's Reference 

 

30 
 

   (String) session.getAttribute( 

      com.hp.ov.activator.mwfm.futuregui.servlet.Constants.APP_MAIN_COLOR 

   ); 

%> 

 

<script> 

function changeStatus(clickedMenuName, clickedMenuAction) { 

 window.location.href = clickedMenuAction; 

} 

</script> 

 

<html> 

 

<head> 

 <link 

  rel="stylesheet" 

  href="/activator/css/future-gui/estilos<%= 

(useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) ? mainColor : 

""%>.css"> 

 <link 

  rel="stylesheet"  

  href="/activator/css/future-gui/subestilos<%= 

(useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) ? mainColor : 

""%>.css"> 

</head> 

 

<body  

<% 

if (useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) { 

%> 

 background="/activator/images/future-gui/fondo.gif" 

<% 

} 

%> 

 onload="window.parent.loadParticularMenu();window.parent.loadStatusParticul

arMenu('HelloWorldDefaultStatus');"> 

 

</body> 

 

</html> 

The selected code shows how to invoke the JavaScript API for the status Management. The most important 

items are: 

 [window.parent.loadParticularMenu()] This JavaScript function displays the status 

menus. When a view is showed, the SC loads its associated status menus, but they will not be 

displayed if it is not requested using this function. 

 [window.parent.loadStatusParticularMenu('HelloWorldDefaultStatus')] This 

JavaScript function sets the application status, and so, enables the menus associated to that 

status. As it was seen before, the default status will enable all the view menus. Even this function 

or the previous one must be invoked when the status JSP file has been loaded (onLoad event). 

 The own developer’s code. In this case, an empty page is shown with a background image 

(fondo.gif). 

 [function changeStatus(clickedMenuName, clickedMenuAction)] This JavaScript 

function is called every time a status menu (with an associated action) is clicked, and must be 

implemented in each status JSP file. It receives the name of the clicked status menu and the URL of 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

31 
 

the associated action. By default, the action associated to the status menu is not invoked 

automatically when the menu is clicked; it is the developers responsibility to perform that 

invocation along the JavaScript code of the changeStatus function. This allows, for example, to 

insert different tasks before the action is executed, such as errors management or appending 

arguments to the action. In the example the status menu action is invoked without any previous 

task. 

At this point, the application should be like the one in the image below: 

 

4.9   Status menu actions 

This section will focus on developing actions associated to a component, which are invoked as it has 

been explained previously. These actions must satisfy the next requirements: 

 Contain the needed functionality for executing the component task. 

The next code belongs to the SayHelloAction, defined in a section before. 

public class SayHelloAction 

extends Action 

implements HelloWorldConstants 

{ 

   

  public ActionForward execute( ActionMapping mapping,  

                                ActionForm form, 

                                HttpServletRequest request, 

                                HttpServletResponse response) 

  throws IOException, ServletException { 

    String target; 

    HelloWorldComponent helloWorldComponent; 

     

    try { 

      helloWorldComponent = 

        (HelloWorldComponent) Context.getInstance().get(MYCOMPONENT); 

      request.setAttribute( 

        MYCOMPONENTMESSAGE, 

        helloWorldComponent.getHelloMessage()); 

      target = SUCCESS; 

    } 

    catch(Exception e) { 

      e.printStackTrace(); 

      target = FAILURE; 

    } 



HPSA Extension Pack 

EP - Developer's Reference 

 

32 
 

    return mapping.findForward(target); 

  } 

} 

This action gets the component from the Application Context and calls the getMessage() method to obtain 

the Hello World!!! text. Then, this String is stored as an attribute into the request. The struts-config.xml file 

contains the mapping to the JSP file where the results must be displayed. 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

 

<!DOCTYPE struts-config PUBLIC 

          "-//Apache Software Foundation//DTD Struts Configuration 1.2//EN" 

          "http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd"> 

 

<struts-config> 

 

 <action-mappings> 

     <action path="/OpenHelloWorldComponentAction"     

  type="com.hp.spain.example.helloworld.struts.action. 

    OpenHelloWorldComponentAction" 

      scope="request"> 

   <forward 

      name="success" 

      path="/jsp/future-gui/index.jsp?viewName=HelloComponentView  

     &amp;fjsp=/jsp/helloworld/initial.jsp"/> 

       

    

   <forward 

    name="failure" 

    path="/jsp/future-gui/index.jsp? 

     fjsp=/jsp/helloworld/componentError.jsp"/> 

  </action> 

   

  <action path="/SayHelloAction" 

    type="com.hp.spain.example.helloworld.struts.action. 

     SayHelloAction" 

    scope="request"> 

   <forward 

    name="success" 

    path="/jsp/helloworld/showHelloMessage.jsp"/> 

   <forward 

    name="failure" 

    path="/jsp/helloworld/execError.jsp"/> 

  </action> 

  

 </action-mappings> 

 

 <message-resources 

  parameter="com.hp.spain.example.helloworld.struts. 

      HelloWorldApplicationResources" 

    key="HelloWorldAR"/> 

 

</struts-config>> 

4.10   Action result 

The result of any action is displayed in a JSP file loaded into te status space. These JSP files, far away 

than displaying the result, must implement the status Management defined in a previous chapter. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

33 
 

In the example, the ShowHelloMessage.jsp will display the Hello World!!! text. This JSP’s code should be: 

<%@ taglib uri = "/tags/struts-bean" prefix="bean" %> 

 

<%@ page import = 

"com.hp.spain.example.helloworld.struts.HelloWorldConstants" %> 

 

<% 

String useRandomColor = 

   (String) session.getAttribute( 

      com.hp.ov.activator.mwfm.futuregui.servlet.Constants.USE_RANDOM_COLOR 

   ); 

String mainColor = 

   (String) session.getAttribute( 

      com.hp.ov.activator.mwfm.futuregui.servlet.Constants.APP_MAIN_COLOR 

   ); 

%> 

 

<script> 

function changeStatus(clickedMenuName, clickedMenuAction) { 

 window.location.href = clickedMenuAction; 

} 

</script> 

 

<html> 

 

<head> 

 <link 

  rel="stylesheet" 

  href="/activator/css/future-gui/estilos<%= 

(useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) ? mainColor : 

""%>.css"> 

 <link 

  rel="stylesheet"  

  href="/activator/css/future-gui/subestilos<%= 

(useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) ? mainColor : 

""%>.css"> 

</head> 

 

<body  

<% 

if (useRandomColor.equals(com.hp.spain.futuregui.Constants.TRUE)) { 

%> 

 background="/activator/images/future-gui/fondo.gif" 

<% 

} 

%> 

 onload="window.parent.loadParticularMenu();window.parent.loadStatusParticul

arMenu('HelloWorldDefaultStatus');"> 

 

<script> 

var fa = new FutureAlert( 

 "<bean:message bundle="HelloWorldAR" key="helloworld.salutation.title" />", 

 "<%= helloMessage %>"); 

 fa.setBounds(500, 100); 

 fa.setButtonText("<bean:message bundle="HelloWorldAR" key="button.accept"  

    />"); 

 fa.show(); 

</script> 



HPSA Extension Pack 

EP - Developer's Reference 

 

34 
 

 

</body> 

 

</html> 

 

At this point the content of this properties file should be something like this: 

menu.principal = Helloworld 

menu.open = Open HelloWorld Component 

menu.actions = Actions 

menu.sayHello = Say Hello 

 

helloworld.title = HelloWorld component 

helloworld.author = Author 

helloworld.date = Date 

 

helloworld.salutation.title = Salutation 

button.accept = Accept 

 

Once all these steps have been completed, the user application would show the hello message, after 

selecting  the ‘Say Hello’ menu: 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

35 
 

5   User structure 

The SC provides its own user Management. The sections below describe each user structure component. 

Further information about user management can be found in the document HPSA Extension Pack – 

Solution Container – User reference. 

User structure: 

Team User

1 0..*

Super user

 

5.1   Users 

They define the ones allowed to access the SC. This kind of users would have restricted access to the 

different applications inside the SC. 

5.2   User teams 

A team sets a group of users with the same (or similar, at least) rights. There is an administrator user (and 

only one) for each team, and he will be the only one (apart from super users) allowed to manage that 

team. Administrators can create, update or remove users belonging to their group, and manage the 

permissions over them. 

The Teams usage is optional and it is only available if the DatabaseAvancedAuthModule is configured as 

the authentication module. For further information see the HPSA documentation. 

5.3   Super user 

Super users have full administration privileges over any user, group, application or any other element of 

the SC. 

5.4   System user 

The system user is unique for the whole system. He can’t be deleted or updated. Apart from this, the 

system user is treated as a super user. 



HPSA Extension Pack 

EP - Developer's Reference 

 

36 
 

6   User creation 

The code below shows the contents of the XML file which should be employed by the UMMData tool (see 

HP Service Activator’s documentation) to create a user and a team: 

<UMM> 

 

  <TeamInfo> 

    <Name>TestTeam</Name> 

    <Description>Team for testing purposes</Description> 

  </TeamInfo> 

 

  <User> 

    <Name>TestUser</Name> 

    <Password>pass4ut1</Password> 

    <RealName>Testing user</RealName> 

    <Description>User for testing purposes</Description> 

    <CompanyName>HP</CompanyName> 

    <Team>TestTeam</Team> 

  </User> 

 

</UMM> 

Once the user is defined, it is necessary to set his permissions to access the different applications. The 

next sections describe the permissions structure of the SC and some helpful examples. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

37 
 

7   Permissions structure 

Permissions are established through roles. The roles define profiles for accessing the SC and set the 

applications and their menus accessible for the user. Roles are assigned to teams and, for each team, 

there can be associated one or more users who belong to that role. This means that a user can only be 

associated to roles which have been assigned to his team before. 

Permissions structure: 

Team User

1 0..*

Role

0..*

1..* 0..*

0..*

Application

0..*

0..*

Menu

1 1..*

0..*

0..*

 

The relationships between roles and applications determine the applications accessible for those roles. 

There is also another relationship between roles and menus which determines the menus of an accessible 

application will be displayed after the user logs on into the SC. That allows not only to assign 

applications to users but to offer to the user different functionality inside each application. 



HPSA Extension Pack 

EP - Developer's Reference 

 

38 
 

8   Assigning permissions 

Let’s get over the example again to show how to create a role with which the user can access the Hello 

World!!! application. 

The code below shows the contents of the XML file which should be employed by the UMMData tool (see 

HP Service Activator’s documentation) to create a role: 

<UMM> 

 

  <Role> 

    <Name>TestRole</Name> 

    <Description>Role for testing purposes</Description> 

  </Role> 

 

  <TeamRoleAssignment> 

    <TeamName>TestTeam</TeamName> 

    <RoleName>TestRole</RoleName> 

  </TeamRoleAssignment> 

 

  <UserRoleAssignment> 

    <UserName>TestUser</UserName> 

    <RoleName>TestRole</RoleName> 

  </UserRoleAssignment> 

 

</UMM> 

Applications and menus are associated to roles in their own definition. See the section related to 

Application defelopment for more information. 

At this point, the recently crated user will be able to access the Hello World!!! application. 

 

The container loads the applications that user has access to. In this case, the ‘Hello World Application’: 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

39 
 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

40 
 

9   Action Audit 

SC provides a RMI service with methods for auditing actions. This URL is stored in the SC’s Context (see 

the section related to the Context for further information). The key needed to obtain the URL from the 

Context is a constant defined in the com.hp.spain.futuregui.login.LoginConstants interface. 

Audited actions can be managed by super users using the administration GUI provided with the EP. 

The next example shows how to audit an action in a java class: 

import java.rmi.Naming; 

import com.hp.spain.futuregui.login.LoginConstants; 

import com.hp.spain.futuregui.users.rmi.def.SPIUserManagementRMIDef; 

import com.hp.spain.hputils.framework.Context; 

 

 

SPIUserManagementRMIDef userManager = null; 

try { 

   userManager = 

      (SPIUserManagementRMIDef) Naming.lookup( 

         (String) Context.getInstance(). 

                  get(LoginConstants.SPI_USER_MANAGER_RMI_URL))); 

   userManaget.auditAction(…); 

} catch (Exception e) { 

   Throw new Exception (); 

} 

 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

41 
 

10   Integration with HPSA 

10.1   Workflow Launcher 

The EP provides mechanisms to manage the available workflows, which can be started up using a given 

API and tracked using a given GUI. It is also possible to interact with those workflows that need some 

extra information while they are running. 

This document will explain the way to start up, track and interact with the workflows as it has to be done 

in the EP. 

Workflows can be started up through SOSA, so this document will explain the way to make it. See the 

SOSA documentation for more information about SOSA. 

Tracking of children workflows can be also done. There are two different ways for making this: using the 

database or using the CCWF. Both are supported by the WFLT and will be explained in further sections. 

10.1.1   What is the WFLT? 

The WFLT is a tool provided with the EP to make easy and possible the start up of workflows on any 

specified MWFM and track them. 

The workflow’s launching and tracking is performed using Struts actions which will execute the different 

tasks required in the process. 

10.1.2   What is SOSA? 

Service Order Smart Adapter (SOSA) is a flexible adapter to manage the influx of Service Orders, which 

are aimed at the transactional activation engine called Service Activator. In this way, SOSA provides 

additional features for the treatment of these requests compared to a traditional system. 

10.1.3   Starting up a workflow 

A workflow can be launched either from the Application Environment or from the Inventory. The launching 

is executed calling Struts action WFLTAction.do. This is the action used to start a workflow or to start 

tracking a workflow which has been already started up. This action has to be invoked with the necessary 

parameters or attributes which will be discussed later, but it is important to say that every parameter 

explained in this document can be retrieved either as a request parameter or an attribute, and this makes 

possible the invocation of the WFLTAction.do either from a JSP file or from another Struts action. If the 

workflow start up with SOSA is intended, it will be expressed in the parameters used with the action. 

The parameters/attributes accepted by WFLTAction.do to start up a workflow are: 

 __wfname: name of the workflow to be started up. This parameter is mandatory for starting up a 

workflow, but it is not used when the WFLT is only invoked for tracking an already started up 

workflow. 

 __wfmwfmname: name of the MWFM engine where the given workflow must be started up. The 

names of the different MWFM engines are configured in the auth.properties file (see the 

Configuration section for more information). If no MWFM engine name is specified, the default 

name specified in the auth.properties file will be taken. 

Ex: 



HPSA Extension Pack 

EP - Developer's Reference 

 

42 
 

This example shows how to launch a workflow from the inventory defining an operation. The following 

example shows its appearance. 

<Operation> 

 <Name Bundle="com/hp/spain/wflaunchertest/ApplicationResources"> 

  launch.wf 

 </Name> 

 <Image>newtool.gif</Image> 

 <Object>WfLauncherTest</Object> 

 <OperationType>Lanzamiento</OperationType> 

 <Action> 

  <Page>/activator/WFLTAction.do</Page> 

      <Param> 

       <Name>__wfname</Name> 

       <Value>WfLauncherTest.Name</Value> 

      </Param> 

   <Param> 

    <Name>__wfmwfmname</Name> 

    <Value>constant:localmwfm</Value> 

   </Param> 

   <Param> 

    <Name>__wfsosacheck</Name> 

    <Value>constant:true</Value> 

  </Param> 

 </Action> 

</Operation> 

 

 
After starting up a workflow, WFLTAction.do will be followed by the tracking process. 

10.1.3.1   Case packet values specification 

Initial values for the workflow’s case packet can be specified when invoking the WFLTAction.do and a 

HashMap will be automatically composed with them and sent to the workflow to start it up properly. It is 

possible to specify each case packet entry and value or to specify a HashMap already filled with the 

needed values. 

The parameters/attributes accepted by the WFLTAction.do for the case packet composition are: 

 __wfCP: a HashMap already filled that will be sent as the initial case packet for the workflow 

start up. If there are also specified some other parameters/attributes for the case packet, this 

HashMap will be extended with the new retrieved entries. Note that this __wfCP attribute can 

never be received as a request parameter, because it is not possible to receive a Java object that 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

43 
 

way. It must be specified as a request attribute, and this means that in this case the invocation of 

the WFLTAction.do has to be made from a previous Struts action, never from a JSP file. 

 wfvar__<<key_name>>: indicates a new entry for the initial case packet. In the HashMap will be 

inserted a new key <<key_name>> associated to the specified value of this parameter/attribute. 

Note that if this is received as a request parameter, it will be inserted into the case packet as a 

String. If it is received as a request attribute, it will be inserted as it is received and any king of 

Object can be inserted. 

Ex.: 

From a JSP file, a workflow called InsertEquipment is started up indicating two values for the case packet: 

one called name, another called model and a third one called version. 

 

WFLTAction.do?__wfname=InsertEquipment&wfvar__name=EQ0&wfvar__model=HP&wfvar

__version=2.4 

 

This will generate a HashMap with three entries: 

- name: EQ0 

- model: HP 

- version: 2.4 

10.1.3.2   Backwards compatibility 

There is a Struts action called DeprecatedWFLTAction.do which provides some extra functionality that is 

actually deprecated and should be never more used, but is still supported here to maintain the backwards 

compatibility. This action is followed by the WFLTAction.do, so the same parameters explained for it are 

accepted by this one. 

This action is used to compose in an automatic way either HashMaps or Arrays of Strings which must be 

inserted into the case packet. 

The HashMap composition is made getting from the request parameters (and only parameters, never 

attributes) those starting by wfvar__hashmapX, where X is a number beginning from 0. This way, every 

request parameter name starting by wfvar__hashmap0 will be inserted in a HashMap, those starting by 

wfvar__hashmap1 in another one, and so on. 

Ex.: 

The next invocation generates two HashMaps, one with the entries location and country, and the other 

with the entries name, model and version: 

 

DeprecatedWFLTAction.do?__wfname=InsertEquipment&wfvar__hashmap0name=EQ0&wfv

ar__hashmap0model=HP&wfvar__hashmap0version=2.4&wfvar__hashmap1location=Madr

id&wfvar__ hashmap1country=Spain 

 

The Array of Strings composition is very similar, but the parameter names now must begin with 

wfvar__arrayiteratorX, where X is a number beginning from 0. 

Ex. 

The next invocation generates an Array of Strings composed by “Madrid” and “Spain”: 

 

DeprecatedWFLTAction.do?__wfname=InsertEquipment&wfvar__arrayiterator0=Madri

d&wfvar__arrayiterator1=Spain 

 

Since the previous versions of the WFLT used some initial JSP files from where all this process started, 

those JSP files have been maintained, but they should never more be used because actually the 

WFLTAction.do is considered the single entry point for the WFLT tool. 



HPSA Extension Pack 

EP - Developer's Reference 

 

44 
 

There are two JSP files which automatically redirect the user to the WFLTAction.do, and they are called 

startWorkflow.jsp and inventoryStartWorkflow.jsp. 

There is another JSP file, called hashmapStartWorkflow.jsp, which automatically redirects the user to the 

DeprecatedWFLTAction.do. 

10.1.4   Tracking workflows 

Once a workflow has been started up and its job id has been obtained, it can be tracked. The 

appearance of the workflow tracking can be seen in the figure below. 

 

 
It is also possible to track children workflows started up by the parent one, and there is no limitation on 

the depth of children workflows that starts up another grandchildren workflows. 

There are two ways to make the tracking of children workflows: using the database or the CCWF. 

a. Tracking through database 

When using the database, the job id of the workflow that has to be tracked is stored in a given database 

table. It is the responsibility of the workflows to change the job id stored in that table. That means that 

when a workflow is started up, its job id is stored in database, and if that workflow starts up a child 

workflow, this child workflow must replace the job id stored in database with its own job id, and just 

before it is finished it must restore the original job id of the parent workflow. This way, the workflow 

tracking will always track the workflow whose job id is stored in the database each time it is requested. 

There are three parameters/attributes that must be specified when calling the WFLTAction.do to perform 

this kind of tracking: 

 __wfDatasource: the name of the data source to be used. This data source must have been 

defined previously and the user must have access to it. 

 __wfServiceName: the name of the database table. 

 __wfServicePk: the primary key of the entry where the job id has to be stored. 

b. Tracking through the CCWF 

When using the CCWF a flag is specified as a parameter/attribute. This means that the children 

workflows are started up using the nodes provided by the CCWF. See the section about the CCWF for 

further information. 

Tracking workflows with the CCWF  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

45 
 

__wfConcurrentCheck: it is “true” when the CCWF has to be employed to track the children workflows. 

The default value if not specified is “false”. 

10.1.4.1   ECP Command tracking 

Using the WFLT is possible to track the commands sent and received by the Equipments Connection Pool 

(ECP). When a workflow launches an activation through the ECP the executed commands can be shown 

in the screen. By default only the last 20 commands will appear in the screen, but this number is 

configurable in the wflt.properties file. 

In order to activate the ECP command tracking is necessary to include an identifier for that specific 

activation in the request under the key __wf_command_id. This id must be unique and will be used to filter 

the received messages and show only the ones related to a specific activation. At the same time, this 

identifier must be provided to the ECP under the same key (See the document “ECP Developers 

reference”, section “3.4 Monitoring ECP commands through JMS” for further details). If no id is provided 

the jobId value will be taken by default. 

It is also necessary to include the parameter __wf_command_audit_active with value “true” in order to 

activate the command tracking. 

This example shows how to launch a workflow from the inventory with the command tracking feature 

activated defining an operation. The following example shows its appearance. 

<Operation> 

 <Name 

Bundle="com/hp/spain/wflaunchertest/ApplicationResources">launch.wf</Name> 

  <Image>newtool.gif</Image> 

  <Object>WfLauncherTest</Object> 

  <OperationType>Lanzamiento</OperationType> 

  <Action> 

    <Page>/activator/WFLTAction.do</Page> 

          <Param> 

              <Name>__wfname</Name> 

              <Value>WfLauncherTest.Name</Value> 

           </Param> 

     <Param> 

             <Name>__wfmwfmname</Name> 

             <Value>constant:localmwfm</Value> 

          </Param> 

          <Param> 

             <Name>__wfConcurrentCheck</Name> 

             <Value>constant:true</Value> 

          </Param> 

    <Param> 

             <Name>__wf_command_audit_active</Name> 

             <Value>constant:true</Value> 

          </Param> 

    <Param> 

             <Name>__wf_command_id</Name> 

             <Value>constant:garemo</Value> 

          </Param> 

  </Action> 

</Operation> 



HPSA Extension Pack 

EP - Developer's Reference 

 

46 
 

 

 

 

10.1.4.2   Interacting with workflows 

There are two reasons to assume that a workflow is waiting for user interaction: the workflow must be in 

the “waiting” status (see the HPSA documentation for further information about the workflow status) and 

the step name. There are many reasons why a workflow can be set in a “waiting” status, so that cannot 

be the only reason to assume that the workflow is trying to interact with the user. 

As it is explained in the Configuration section, in the wflt.properties file there can be specified several 

step names that will not be considered as interactive nodes, so those step names starting with any of these 

configured names will never be considered as interactive nodes. 

The typical interactive nodes used for user interaction are the AskFor nodes. If a workflow has one AskFor 

node and its name is does not start with any of the configured step names it will show one screen like the 

one below. 

When an interactive node is found, a JSP file is generated and placed below the customJSP directory. 

The custom JSP file will only be generated once, so if a previous custom JSP file already exists that will be 

used. This way, a custom JSP file can be changed and new functionality can be added to it. 

The figure below shows an example of a custom JSP. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

47 
 

 

10.1.4.3   Tracking error 

If a workflow execution fails, the WFLT will warn the user with a message like the one below. 

 

10.1.4.4   Ending messages 

The WFLT assumes that a workflow has finished when there cannot be found any workflow in the 

specified MWFM engine with the given job id. 

When a workflow execution ends, every message belonging to the workflow and its children is displayed. 

Messages are typically thrown using the PutMessage node. 



HPSA Extension Pack 

EP - Developer's Reference 

 

48 
 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

49 
 

11   Concurrent Workflows Module 

The CCWF (Concurrent Workflows Module) was designed with the aim of making possible for the user to 

launch concurrent workflows, capable of being executed concurrently in the MWFM. This can be 

achieved by using a new set of nodes in the execution of a common workflow. 

Thanks to the CCWF it will no longer be necessary to define a large workflow to perform a task, the user 

can develop a few smaller jobs, each of them performing a small portion of the original task and working 

concurrently. Thus, it is possible to start up several children workflows (which can start up some other 

grandchildren workflows, and so on) and remain working concurrently until the children workflows 

become synchronized with their parent. 

Synchronization among workflows allows sending data through the case packet, so children workflows 

are able to send information to their parent once they synchronize and the parent may have a different 

behavior depending on the information obtained from its children. 

The tool provides three main features: 

 To start up a new concurrent job. 

 To synchronize with its father (awaking him if it is waiting). 

 To wait for its children to finish. 

11.1   Scenarios 

The figure below shows the whole process for starting up a child workflow and waiting until it is 

synchronized in a single CCWF. There, a parent workflow is started up by the user and then the next 

steps are followed: 

 

1. The parent workflow reaches a StartJobConcurrent node. This node invokes the CCWF module to 

start the specified child workflow in the same MWFM engine of the parent. 



HPSA Extension Pack 

EP - Developer's Reference 

 

50 
 

2. The CCWF invokes the MWFM and starts up the child workflow. Once this workflow is started 

up, the parent workflow continues its execution, leaving the StartJobConcurrent node. 

3. The parent workflow reaches the WaitJobConcurrent node. It will remain waiting here while the 

child workflow does not synchronize. This step may be reached after the step 4 (the child 

workflow may reach the SyncConcurrent node before the parent workflow reaches the 

WaitJobConcurrent node or it could be the other way around), but the whole process is not 

affected. 

4. The child workflow reaches the SyncConcurrent node. This node invokes the CCWF for 

synchronization with its parent node. 

5. The CCWF tries to synchronize with the parent workflow. Since the parent workflow is waiting for 

its children and this is the only children it has, it is awakened and its execution continues. 

The figure below shows the same process described above, but this time two different CCWF modules are 

involved, that is, the child workflow is started up in a different MWFM engine. 

 

1. The parent workflow reaches a StartJobConcurrent node. This node invokes the CCWF module to 

start the specified child workflow in a different MWFM engine than the parent’s. 

2. The CCWF notices that the child workflow has to be started up in another MWFM engine, so it 

invokes the remote CCWF to start up there the child workflow. 

3. The remote CCWF invokes the MWFM where it is running and starts up the child workflow. Once 

this workflow is started up, the parent workflow continues its execution, leaving the 

StartJobConcurrent node. 

4. The parent workflow reaches the WaitJobConcurrent node. It will remain waiting here while the 

child workflow does not synchronize. This step may be reached after the step 5 (the child 

workflow may reach the SyncConcurrent node before the parent workflow reaches the 

WaitJobConcurrent node or it could be the other way around), but the whole process is not 

affected. 

5. The child workflow reaches the SyncConcurrent node. This node invokes the CCWF for 

synchronization with its parent node. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

51 
 

6. Since the parent node is not running in this MWFM, the remote CCWF notices this and invokes 

the local CCWF for synchronization. 

7. The local CCWF tries to synchronize with the parent workflow. Since the parent workflow is 

waiting for its children and this is the only children it has, it is awakened and its execution 

continues. 

11.1.1   Cleaning process 

The cleaning process is started up when the configured interval gets finished. Each CCWF must take care 

of the jobs started up through it and is in charge of clean the database when they are finished. 

The cleaning process algorithm is based on the next steps: 

1. Get all the top workflows (those who has no parent workflow defined) which are running in the 

current MWFM. This means that each CCWF takes care of their top workflows. 

2. Check if each top job is still running. This is made in three substeps: a) check if the workflow is 

already set as finished in database; b) check if the workflow is still running in the MWFM; and c) 

look for it in the Scheduler Module. If a) is true b) is not reached, and if b) is true c) is not 

reached either. If the job is finished, it is set as finished in database and its end date is filled with 

the current date. Note that the end date will not be probably the real end date of the workflow. 

3. If the top workflow has been finished all its children are obtained, not taking care now of the 

children hierarchy. This is made in a single query to database. 

4. Each child is checked as it was described in the step 2. If any child is still running the process is 

stopped for this hierarchy because the deletion and/or copy to historical must be done for the 

whole structure, beginning from the top workflow and ending with the last child. Children 

workflows are checked even if they are running on a different MWFM than the current one, 

opposite of what is made with the top workflows. 

5. If the whole hierarchy from the top workflow to the last child is finished they are stored in a 

Vector to remove and copy to historical later on, depending on the configuration. 

6. When all the hierarchies have been checked they are optionally removed and/or copied to 

historical. The removal is made comparing the end date of each top workflow with the current 

one, and those which difference is greater or equal to the configured value will be removed (the 

cascade deletion in database will remove also the children workflows). 

11.2   Module Configuration 

The CCWF is a module for the MWFM and must be configured in the mwfm.xml file. There can only be 

one CCWF module per MFWM. The name must be ConcurrentWorkflowsModule. 

It is very important to notice that the CCWF may need several database connections at the same time, so 

the database module configured for it must be able to manage at least 10 connections to avoid undesired 

waiting times. 

It is also very important to assure that if there are more than one CCWF configured in different engines, 

all of them must use the same database, so the db parameter, as it is going to be explained next, has to 

be pointing to the same database in the same IP. 

There are some parameters that may be configured for this module: 

Parameter Mandatory Description 

remote_url Yes URL where the RMI service will be published.  

mwfm_name Yes Name of the MWFM where the module is running. 



HPSA Extension Pack 

EP - Developer's Reference 

 

52 
 

This name must be the same as the one configured in 

the auth.properties file of the Service Container. It will 

be used to know where has been started up each 

workflow and thus, it will be possible for the WFLT to 

track any workflow on any MWFM configured in the 

auth.properties file 

Db Yes Name of the database module is going to be used by 

the CCWF. It must be configured in the same 

mwfm.xml file. It is very important to assure that the 

number of connections managed by this database 

module is at least 10, because the CCWF will 

manage multiple connections at the same time 

cleaning_interval Yes Interval, in milliseconds, between cleaning checks. The 

default value is one minute. A value of 0 will indicate 

that no cleaning process will be performed anytime 

move_to_historical No Boolean value which indicates if the finished jobs must 

be moved to the historical table. Note that the 

historical table will never be cleaned up, so it is the 

responsibility of the customer application to assure 

that the historical jobs table does not reach a heavy 

size. The default value is true 

days_for_deletion No Number of days a finished workflow will remain in the 

running jobs table until it is removed. The default 

value is 3 days 

check_finished_jobs_on_startup No Boolean value which indicates if the jobs set as 

finished in the database must be also checked or not 

on start up. Thus, if any persisted job removed 

previously has been restored while the MWFM 

remained stopped, it will be checked again. The 

default value for this parameter is false. 

The example below shows how to configure the CCWF with a 60 minutes cleaning interval and deleting 

the jobs from active running workflows as soon as they are copied to the historical (note that the module 

must be called ConcurrentWorkflowsModule: 

<Module> 

  <Name>ConcurrentWorkflowsModule</Name> 

  <Class-Name> 

    com.hp.spain.engine.module.concurrentworkflows.RemoteAsynchronousWorkflowLockImpl 

  </Class-Name> 

  <Param name="mwfm_name"         value="primary_mwfm"/> 

  <Param name="remote_url"        value="//localhost:2000/concurrent_workflows"/> 

  <Param name="db"                value="db"/> 

  <Param name="cleaning_interval" value="3600000"/> 

  <Param name="days_for_deletion" value="0"/> 

</Module> 

11.3   Nodes 

The CCWF provides three nodes which can be used to start up children workflows, wait for them until 

they finished, and synchronize children workflows with their parent workflow. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

53 
 

11.3.1   StartJobConcurrent 

This node starts up a child workflow in a specified MWFM engine. By default, if no remote_ip parameter 

is specified, the child workflow will be started up in the current MWFM. 

Since there is no limitation on the number of children workflows a parent workflow can start concurrently, 

the CCWF provides an optional mechanism for setting a limitation on this using the max_wf_number 

parameter. This means that a parent workflow that has to start up, for instance, 100 children workflows 

and has a max_wf_number limitation of 10 will remain starting up its children assuring that there are 

never more than 10 running children at the same time, and once that 10 children workflows has been 

started up it will be kept waiting until one of them becomes finished and another child may be started up. 

Once the child workflow has been started up, its job id may be optionally stored in a Vector defined in 

the parent workflow case packet under the key object_child_id. Thus, in case of the father job suffering an 

error the WFTransactionHandler will be able to kill all his children. See the information about the 

Workflow Transaction Module for further information. 

The parameters accepted by this node are: 

Parameter Mandatory Description 

Job_name Yes Name of the child workflow to be started up. The 

value specified is treated as a constant if you don’t 

specify variable: prefix 

max_wf_number No Maximum number of children workflows the parent 

workflow can start up concurrently. If it is not 

specified, there is no limitation on this 

variable+i No Numbered parameter, starting from 0, with the case 

packet variable names whose values must be taken 

and sent to the child workflow. 

case_packet_var+i No Numbered parameter, starting from 0, with the new 

name of the variable “i" in the case packet of the 

child workflow. If the name is the same in the parent 

workflow and the child one, this parameter is not 

needed. 

remote_ip No IP or the whole RMI URL of the CCWF where the child 

workflow has to be started up. If it is not specified, the 

child workflow will be started up in the MWFM where 

the parent workflow is running (most common 

behavior). Only should be used when we want to start 

the child workflow in a remote MWFM 

local_ip No IP or RMI URL of the current CCWF. Should be used 

when we want to start the child workflow in a remote 

MWFM, because the child workflow will need this 

value to synchronize with the parent workflow. It is the 

responsibility of the child workflow to store this value 

in its case packet and use it later for synchronization 

object_child_id No Object variable used to store the children JOB IDs, to 

allow WFTransactionHandler be able to kill them if 

the parent workflow end with an error. 

The following example starts up a child workflow in the current MWFM, sending the variables totalString, 

indexChild and totalChild changing the destination of totalChild in the child workflow to totalWF. 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

54 
 

<Process-Node> 

  <Name>Start up child workflow</Name> 

  <Description>Start up a child workflow</Description> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.concurrentworkflows.StartJobConcurrent 

    </Class-Name> 

    <Param name="job_name"         value="ConcurrentChildWF"/> 

    <Param name="variable0"        value="totalString"/> 

    <Param name="variable1"        value="indexChild"/> 

    <Param name="variable2"        value="totalChild"/> 

    <Param name=”case_packet_var2” value=”totalWF”/> 

  </Action> 

</Process-Node> 

11.3.2   SyncConcurrent 

This node makes the synchronization between children workflows and their parents. When the child job 

reaches this node it will synchronize with its parent, sending the specified case packet variables to it. If 

the parent workflow is waiting for its children to finish and all the children workflows has ended, the job 

will be removed from the jobs queue. 

Note that the synchronization is made in the parent’s CCWF. This is really important if children workflows 

are being started up in a different MWFM engine than the parent’s, because in that case the remote_ip 

and local_ip becomes mandatory. See the API Reference section for this node for more information. 

The following parameters can be configured for this node: 

Parameter Mandatory Description 

variable+i No Numbered parameter, starting from 0, with the case 

packet variable names whose values must be 

expected from the child workflow. There is no 

limitation on the number of variables defined here 

destination+i No Numbered parameter, starting from 0, with the new 

name of the variable “i" in the case packet of the 

parent workflow. If the name is the same in the parent 

workflow and the child one, this parameter is not 

needed. 

remote_ip No IP or the whole RMI URL of the CCWF where the 

parent workflow is running. If it is not specified, the 

parent workflow is searched in the MWFM where the 

workflow is running (most common behavior). Only 

should be used when the parent workflow is running 

in a remote MWFM. 

local_ip No IP or RMI URL of the current CCWF. Only should be 

used when the parent workflow is running in a remote 

MWFM. 

The example below shows how to synchronize with the parent workflow in the current MWFM. As it can 

be seen, neither the remote_ip nor the local_ip parameters have been specified. 

<Process-Node> 

  <Name>Synchronizes with parent job</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.concurrentworkflows.SyncConcurrent 

    </Class-Name> 

    <Param name="variable0" value="return_code"/> 

    <Param name="variable1" value="error_description"/> 

  </Action> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

55 
 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

11.3.3   WaitJobConcurrent 

This node waits until the children workflows finish their execution and receive the variables sent by the 

children workflows. When the parent job reaches this node it will wait for its children to terminate, and 

once this happens it will continue its execution. 

The following parameters can be configured for this node: 

Parameter Mandatory Description 

Queue Yes Name of the queue where the workflow will remain 

waiting until all its children become finished. The 

value specified is treated as a constant if you don’t 

specify variable: prefix 

variable+i No Numbered parameter, starting from 0, with the case 

packet variable names whose values must be 

expected from the child workflow. There is no 

limitation on the number of variables defined here 

The following example waits until in the queue stored in the case packet variable concurrentQueue, the 

children workflows finish and update the case packet variables return_code and error_description with the 

values provided by the children workflows. 

<Process-Node> 

  <Name>Waiting for child jobs</Name> 

  <Description>Waiting until child jobs are all synchronized</Description> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.concurrentworkflows.WaitJobConcurrent 

    </Class-Name> 

    <Param name="queue"     value="variable:concurrentQueue"/> 

    <Param name="variable0" value="return_code"/> 

    <Param name="variable1" value="error_description"/> 

  </Action> 

</Process-Node> 



HPSA Extension Pack 

EP - Developer's Reference 

 

56 
 

12   Workflow Transaction Module 

This module contains the classes needed for the composition of database transactions from a workflow, 

the insertion of operations among them and the undoing of them if it becomes necessary.  

A workflow, or a workflow tree, may contain different transactions conforming a group of transactions. 

Each of the different workflow nodes or of their children workflows may insert their operations in one of 

them, which is defined in each node’s configuration, and all of them will be processed by the End 

Handler of the workflow that has created the transaction. 

To use this module in a workflow the following case packet variables must be defined in the workflow: 

Case packet variable Type Description 

WF_TRANSACTIONS_GROUP_ID Integer This case packet variable will be filled with information 

when a transaction is initialize using the 

WFTransactionBegin node and must be sent to all the 

workflows involved in the transaction 

return_code String Variable used by the WFTransactionErrorHandler to store 

the unexpected error code 

error_description String Variable used by the WFTransactionErrorHandler to store 

the exception message caused the workflow to finish 

Cancel Boolean Indicate to the WFTransactionHandler whether the 

workflow has been cancelled by user through the GUI or 

the MWFM API. This variable must be initialize to true and 

should be changed in the last node of the workflow to true 

Finish Boolean Indicate to the WFTransactionHandler whether the 

workflow has finished correctly and if it has to undo the 

tasks performed by the workflow. This variable must be 

initialize to false and should be changed to true if the 

workflow has been executed correctly. 

 

<Case-Packet> 

  <Variable name="Finish" type="Boolean"/> 

  <Variable name="Cancel" type="Boolean"/> 

  <Variable name="WF_TRANSACTIONS_GROUP_ID" type="Integer"/>  

  <Variable name="return_code" type="String"/> 

  <Variable name="error_description" type="String"/> 

</Case-Packet> 

 

<Initial-Case-Packet> 

  <Variable-Value name="Finish" value="false"/> 

  <Variable-Value name="Cancel" value="true"/> 

</Initial-Case-Packet> 

12.1   Functionality 

This module provides two handlers and several nodes to ensure the transactional behavior in the workflow 

execution, when we work with the inventory, the lock manager, the concurrent workflows and SOSA. 

The first task to do in the workflows is initialize the transaction and assign a name to it, to later give it to 

the different nodes to store the information. To initialize the transaction we should call the node 

WFTransactionBegin given a case packet variable to store the name of the transaction created that should 

be used later when we want to work with this transaction (in nodes and in the end handler). The following 

is an example of it: 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

57 
 

<Process-Node> 

  <Name>Start new transaction</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.WFTransactionBegin 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

NOTE: The case packet variable has to be empty before call the node and will be filled with the identifier 

Once we have defined the transaction, we can start working with it in our workflow. In the following 

chapters, all the operations the transaction module allowed will be explained in detail and in chapter 4.3 

you can access to a detailed description of all the nodes. 

12.1.1   Lock functionality 

The Workflow Transaction Module allow working with object locking, assuring the locks will be free-up 

when the workflow finalize. To do that, the Workflow Transaction Module works in conjunction with the 

Lock Manager Module. In the following chapters the different locking processes related to the Workflow 

Transaction Module are explained. For detailed information about LockManager see the “Lock Manager – 

Developer reference”. 

12.1.1.1   Object locking 

With this operation a workflow can ask a lock for a specified object (through the LockManager module). 

If the resource is currently locked, the workflow will be queued until the resource be released and could 

get the lock. Afterwards, it appends the proper rollback operations in the specified transaction to be able 

to unlock the resource if the workflow does not end properly. 

The following example, lock the bean com.hp.example.Bean with the primary key stored in the case 

packet variable BeanId, storing the lock identifier in the case packet variable lock_id and saving the 

information of the lock in the given transaction: 

<Process-Node> 

  <Name>Lock bean</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.LockInventory 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean0" value="com.hp.example.Bean"/> 

    <Param name="primary_key0" value="BeanId"/> 

    <Param name="job_id" value="JOB_ID"/> 

   <Param name="lock_id" value="lock_id"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

NOTE: Notice that the bean doesn’t has to exist in the inventory to be locked and, if it exists in the 

inventory someone accessing directly to the inventory (using the inventory GUI or the standard HPSA 

nodes to work with the inventory) can modify or inclusive delete the resource when it is locked by 

workflow, because the LockManager is a semaphore system (see the “LockManager – Developer 

Reference” for more details) 

12.1.1.2   Object locking without queuing 

With this operation, a workflow can do the same than previous one, with the difference that if the 

resource is currently locked, the node will fail without been queued, setting a value different from 0 in the 

RET_VALUE variable and, depending on the parameter soft, throwing an exception. 



HPSA Extension Pack 

EP - Developer's Reference 

 

58 
 

The following example, will work like the example in the previous chapter, but will update the RET_VALUE 

with a 0 if it is done properly. If it fails because the resource is currently locked it will throw an exception 

stopping the execution of the workflow: 

<Process-Node> 

  <Name>Lock bean without queuing</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.LockInventoryWithoutEnqueue 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean0" value="com.hp.example.Bean"/> 

    <Param name="primary_key0" value="BeanId"/> 

    <Param name="job_id" value="JOB_ID"/> 

   <Param name="lock_id" value="lock_id"/> 

    <Param name="soft" value="false"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

12.1.1.3   Assigning an existing lock identifier 

With this operation, a workflow can receive an existing lock identifier and establish itself as the owner of 

the lock, appending it to a given transaction. This operation is useful when the lock is gained for an 

external system and then a workflow has to continue working with the resource without releasing it in the 

transfer (to avoid someone could gain the lock in-between this process). 

The following example, assign the lock identified stores in the case packet variable previousLockId, to the 

current workflow, appending it to the given transaction and storing the lock identifier in lockId: 

<Process-Node> 

  <Name>Assign Lock Identifier</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.AssignLockId 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="job_id" value="JOB_ID"/> 

    <Param name="lock_id" value="lockId"/> 

    <Param name="value" value="previousLockId"/> 

    <Param name="soft" value="true"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

NOTE: Notice that the information previously stored in the case packet variable lockId will be substituted 

with the new lock identifier. 

12.1.1.4   Object unlocking 

This operation allows unlocking a resource previously locked free-up it to other workflows can work with it 

and removing the operations previously appended to the transaction. When this operation is perform, the 

previous delayed operations associated to this lock will be done (see the “Delayed Delete” and “Delayed 

Update” operations for more information). 

In the following example, the given lock is released, the lock operation is removed from the given 

transaction and the delayed operations done using this lock will be performed: 

<Process-Node> 

  <Name>Unlock</Name> 

    <Action> 

      <Class-Name> 

        com.hp.spain.node.wftransaction.UnlockInventory 

      </Class-Name> 

      <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

      <Param name="lock_id" value="lock_id"/>         



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

59 
 

    </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

12.1.2   Inventory 

The Workflow Transaction Module allows working with inventory objects, assuring the transactional if the 

workflow fails and do certain tasks when it end up properly. To do that, the Workflow Transaction 

Module works record information about the transaction done by some workflow nodes (that are part of 

the module). In the following chapters the different inventory processes related to the Workflow 

Transaction Module are explained. 

12.1.2.1   Inserting Inventory beans 

With this operation we can insert beans in the inventory, appending afterwards the proper rollback 

operations for the given transaction. At the same time we insert the bean, we can lock it (if we specify it in 

the node). 

In the following example, a bean is inserted in the inventory with the values specify in the attribute/value 

pairs parameters, storing the information in the given transaction to assure the rollback is something fails 

during the workflow execution and retrieve the complete bean to the case packet variable specified: 

<Process-Node> 

  <Name>Insert bean</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.InsertInventory 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="db" value="db"/> 

    <Param name="bean" value="com.hp.example.Bean"/> 

    <Param name="attribute0" value="constant:Name"/> 

    <Param name="value0" value="beanName"/> 

    <Param name="attribute1" value="constant:Status"/> 

    <Param name="value1" value="constant:NEW"/> 

    <Param name="bean_object" value="beanObject"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

12.1.2.2   Updating Inventory bean 

With this operation we can update beans in the inventory, appending afterwards the proper rollback 

operations for the given transaction. Before updating the bean information, LockManager is asked to 

know if this workflow has the lock over the bean is trying to update. 

In the following example, a bean is updated in the inventory with the values specify in the attribute/value 

pairs parameters, storing the information in the given transaction to assure the rollback is something fails 

during the workflow execution. 

<Process-Node> 

  <Name>Update bean</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.UpdateInventory 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean" value="com.hp.example.Bean"/> 

    <Param name="primary_key" value="beanPrimaryKey"/> 

    <Param name="attribute0" value=”constant:BeanName”/> 

    <Param name="value0" value=”constant:Example”/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 



HPSA Extension Pack 

EP - Developer's Reference 

 

60 
 

</Process-Node> 

12.1.2.3   Resource reservation 

This node reserves the given resources of a given pool, appending afterwards the proper rollback 

operations for the transaction. 

For example: 

<Process-Node> 

  <Name>Reserve a resource</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.ReserveResource 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean" value="com.hp.example.Bean"/> 

    <Param name="pool" value="myPool"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

12.1.2.4   Delayed inventory operations 

These operations allow doing tasks when the workflow finishes successfully avoiding the problems that 

may appear if some element is deleted or released and after that the workflow executions fails. The 

delayed operations available are delete, release and update. 

The following examples mark a bean instance to be deleted, then release a resource previously reserved 

and updates a bean. These three tasks will be done at the end of the workflow if it finishes properly: 

<Process-Node> 

  <Name>Remove bean</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.DelayedDelete 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME"  value="transactionNameVar"/> 

    <Param name="bean"    value="com.hp.example.Bean"/> 

    <Param name="primary_key"   value="beanPrimaryKey"/> 

  </Action> 

  <Next-Node>Release resource</Next-Node> 

</Process-Node> 

 

<Process-Node> 

  <Name>Release resource</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.DelayedReleaseResource 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME"  value="transactionNameVar"/> 

    <Param name="bean"    value="com.hp.example.ResBean"/> 

    <Param name="primary_key"   value="beanPrimaryKey"/> 

  </Action> 

  <Next-Node>Update bean</Next-Node> 

</Process-Node> 

 

<Process-Node> 

  <Name>Update bean</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.DelayedUpdate 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean" value="com.hp.example.Bean"/> 

    <Param name="primary_key" value="beanPrimaryKey"/> 

    <Param name="attribute0" value="constant:BeanName"/> 

    <Param name="value0" value="constant:Example"/> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

61 
 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

12.1.2.5   Working with historical 

With these operations, in a workflow we can move and recover bean from historic, appending 

afterwards the proper rollback operations for the transaction if the workflows fails. 

In the following example, the given object bean is moved to the historic and the information is stored in 

the transaction: 

<Process-Node> 

  <Name>Move bean to historical</Name> 

  <Action> 

    <Class-Name> 

      com.hp.spain.node.wftransaction.MoveToHistory 

    </Class-Name> 

    <Param name="WF_TRANSACTION_NAME" value="transactionNameVar"/> 

    <Param name="bean" value="beanObject"/> 

  </Action> 

  <Next-Node>DoNextTask</Next-Node> 

</Process-Node> 

NOTE: Notice that the bean must be defined with historic in order to move or recover from history. If not 

an exception will be thrown when execute this node. 

12.2   Configuration 

The WT is a HPSA module and must be defined in the mwfm.xml file. It accepts the following parameters: 

Parameter Mandatory Description 

save_workflows No Boolean parameter which indicates if the running 

workflow definition file should be saved for the 

running jobs. Thus, in case of shutdown, those jobs 

will be restored in the MWFM using the original and 

not the one currently available in the MWFM. Default 

value is false 

default_persistence No Boolean parameter which indicates whether the 

running jobs must be persisted or not. Default value is 

false 

persistence_dir_path Yes If the default_persistence parameter is true, this 

parameter indicates the path where the persisted 

workflows will be saved. It is mandatory that the 

directory set in this parameter contains a text file 

called wftransaction.sequence and its contents must be 

the number 1, just a single character. 

workflow_without_persistence+i No Numbered parameter with the different names of 

those workflows which are not going to be persisted. 

debug No Boolean parameter which indicates if the debug traces 

must be written or not. The default value is false 

 

For example: 

<Module> 

  <Name>transaction_manager</Name> 



HPSA Extension Pack 

EP - Developer's Reference 

 

62 
 

  <Class-Name> 

    com.hp.spain.engine.module.wftransaction.WFTransactionManagerModule 

  </Class-Name> 

  <Param name="save_workflows" value="true"/> 

  <Param name="default_persistence" value="true"/> 

  <Param name="persistence_dir_path" value="/tmp/wftransactions"/> 

  <Param name="workflow_without_persistence0" value="MY_FIRST_JOB"/> 

</Module> 

12.3   Nodes 

12.3.1   AssignLockId 

com.hp.spain.node.wftransaction.AssignLockId 

This node assigns the current workflow as the owner of a given lock, appending it to a open transaction. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

job_id 
Yes 

Workflow identifier. Always use JOB_ID case packet 

variable to avoid errors 

lock_id Yes Variable where the lock will be stored 

value Yes Value of the lock identifier 

soft 
No 

Boolean value which indicates whether exceptions 

should be thrown 

 

12.3.2   DelayedDelete 

com.hp.spain.node.wftransaction.DelayedDelete 

This node marks some instance bean to be delete at the end of the workflow if it ends properly. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is 

db. 

bean Yes Bean name 

primary_key No Primary key 

deletemethod No Name of the find method to remove the bean 

deletevariable + i No Variables needed for the find method to remove the 

bean. Only mandatory if the deletemethod parameter 

is specified. 

lock_id No Lock identifier (if the bean has been locked) 

error_message No Variable where the error message will be returned, if 

any. If not specified, it will be stored in 

error_description 

soft No Boolean value which indicates whether exceptions 

should be thrown 

 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

63 
 

12.3.3   DelayedReleaseResource 

com.hp.spain.node.wftransaction.DelayerReleaseResource 

This node marks some instance bean to be release at the end of the workflow if it ends properly. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is 

db. 

bean Yes Bean name 

primary_key+i No Primary keys 

error_message No Variable where the error message will be returned, if 

any. If not specified, it will be stored in 

error_description 

soft No Boolean value which indicates whether exceptions 

should be thrown 

12.3.4   DelayedUpdate 

com.hp.spain.node.wftransaction.DelayedUpdate 

This node marks retrieve the updates to be done to an instance bean at the end of the workflow if it ends 

properly. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is 

db. 

bean Yes Bean name 

primary_key No Primary key 

find_method No Name of the bean’s  find method 

find_variable+i No Variables for the find method. Orly mandatory if the 

find_method parameter is defined 

field+i Yes Field names to update 

variable+i Yes New values for the specified field names 

lock_id No Lock identifier 

soft No Boolean value which indicates whether exceptions 

should be thrown 

 

12.3.5   InsertInventory 

com.hp.spain.node.wftransaction.InsertInventory 

The node creates instances in the inventory, appending afterwards the proper rollback operations for the 

transaction. The accepted parameters for this node are: 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No MWFM database module name configured in 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

64 
 

mwfm.xml. If no one is given, “db” module is used. 

bean 
Yes 

Name of the JavaBean class that is 

used for storing the data 

attribute+i 

Yes 

Name of a key in the JavaBean that is created. The 

parameter must be repeated for all attributes in the 

JavaBean being initially assigned. 

value+i 

Yes 

Used in conjunction with the attribute attributes to 

specify the value of the individual attributes in the 

JavaBean 

attributeExt+i 

No 

Name of an extended attribute to ne inserted. The 

parameter must be repeated for all extended attributes 

in the JavaBean being initially assigned. 

valueExt+i 

No 

Used in conjunction with the attributeExt attributes to 

specify the value of the individual extended attributes 

in the JavaBean 

field+i 
No 

Name of the field to be queried after invoke the store 

method 

variable+i 

No 

Used in conjunction with the field attributes to specify 

the case packet variable where the value of the 

queried field will be saved 

bean_object 
No 

Name of the variable where the created JavaBean 

instance is returned 

lock_id 

No 

Name of the case packet variable where the lock 

identifier the insert will be store. If this parameter is 

specified, the bean is locked after the insertion 

soft 
No 

Boolean value which indicates whether exceptions 

should be thrown. Default value is false 

error_message 

No 

Variable where the error message will be returned, if 

any. If not specified, it will be stored in 

error_description 

 

12.3.6   LockInventory 

com.hp.spain.node.wftransaction.LockInventory 

The node locks an inventory resource queuing if the resource is locked for other process, appending the 

information to the transaction and assigning a lock identifier. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

bean+i Yes Bean class 

primary_key+i No Primary keys of the beans to lock 

array No Array of bean to lock 

string_array No Boolean value which indicates if the array si 

composed of Strings (true) or objects (false). 

lock_id No Variable to store the lock identifier. By default, lock_id 

error_message No Variable where the error message will be returned, if 

any. If not specified, it will be stored in 

error_description 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

65 
 

12.3.7   LockInventoryWithoutEnqueue 

com.hp.spain.node.wftransaction.LockInventoryWithoutEnqueue 

The node locks an inventory resource appending the information to the transaction and assigning a lock 

identifier. If the resource is locked for another process returns an error. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

bean+i Yes Bean’s class 

primary_key+i No Primary keys 

array No Array with the beans to lock 

lock_id No Variable to store the lock identifier. By default, lock_id 

soft No Boolean value which indicates whether exceptions 

should be thrown 

12.3.8   MoveToHistory 

com.hp.spain.node.wftransaction.MoveToHistory 

This node moves some inventory bean to the history tables and removing it from the original one. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is db 

bean+i No Object to move 

array_bean+i No Array with the objects to move 

primary_key+i No Identifier of the object to move 

bean_class+i No Class of the object. Only mandatory when the 

primary_key is specified 

lock_id No Lock identifier 

soft No Boolean value which indicates whether exceptions 

should be thrown 

12.3.9   RecoverFromHistory 

com.hp.spain.node.wftransaction.RecoverFromHistory 

This node recovers the bean information from the history and stores it in the original table. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is db 

bean+i No Object to recover 

array_bean+i No Array with the objects to recover 

primary_key+i No Identifier of the object to recover 

bean_class+i No Class of the object. Only mandatory when the 

primary_key is specified 

lock_id No Lock identifier 

soft No Boolean value which indicates whether exceptions 

should be thrown 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

66 
 

12.3.10   ReserveResource 

com.hp.spain.node.wftransaction.ReserveResource 

The node is used to reserve resources from the inventory. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

db No Name of the database module. The default value is db 

bean Yes Class name 

pool No Resources pool 

pool_name No Name of the resources pool 

primary_key No Identifier of the resource to lock 

variable Yes Variable to store the pk of the locked resource 

field+i No Field name to query 

field_var+i No Variable to store the value of the field 

12.3.11   UnlockInventory 

com.hp.spain.node.wftransaction.UnlockInventory 

The node is used to unlock a previously locked bean from the inventory. 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

lock_id No Lock identifier 

12.3.12   UpdateInventory 

com.hp.spain.node.wftransaction.UpdateInventory 

The node updates instances in the inventory, appending afterwards the proper rollback operations for the 

transaction. The accepted parameters for this node are: 

Parameter Mandatory Description 

WF_TRANSACTION_NAME Yes Case packet variable with the transaction name to use 

Db 
No 

MWFM database module name configured in 

mwfm.xml. If no one is given, “db” module is used. 

Bean 
Yes 

Name of the JavaBean class that is 

used for storing the data 

primary_key Yes Primary key of the bean to update 

attribute+i 

Yes 

Name of a key in the JavaBean that is update. The 

parameter must be repeated for all attributes in the 

JavaBean being updated. 

value+i 

Yes 

Used in conjunction with the attribute attributes to 

specify the value of the individual attributes in the 

JavaBean 

attributeExt+i 

No 

Name of an extended attribute to be updated. The 

parameter must be repeated for all extended attributes 

in the JavaBean being updated. 

valueExt+i No Used in conjunction with the attributeExt attributes to 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME
http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

67 
 

specify the value of the individual extended attributes 

in the JavaBean 

lock_id 
No 

Name of the case packet variable with the lock 

identifier 

bean_object No Variable to store the updated object 

error_message No Variable where the error message will be returned, if 

any. If not specified, it will be stored in 

error_description 

12.3.13   WFTransactionBegin 

com.hp.spain.node.wftransaction.WFTransactionBegin 

Begin a new workflow transaction to store operations done in a workflow or a tree-workflows with the 

nodes related with the Workflow Transaction Module.  

Parameter Mandatory Description 

WF_TRANSACTION_NAME 
Yes 

Case packet variable where the transaction name 

created will be stored 

12.4   Handlers 

The handler is the responsible to assure the transactional of the task performed by the workflow. To do it, 

we have to specify for each transaction created what are the operations to be performed. The different 

options are the following: 

 rollback_beans: if the workflow finishes with failure, it indicates whether it has to be performed a 

rollback of any insertion or update made in database. 

 unlock_beans: indicates whether the locked beans have to be unlocked once the workflow is 

finished. 

 release_resources: when the workflow finished with failure, it indicates whether the resources 

which have been reserved during the transaction must be released. 

 delete_delayed: when the workflow finishes without failure, it indicates whether the delayed 

beans have to be removed. 

 update_delayed: when the workflow finishes without failure, it indicates whether the delayed 

beans have to be updated. 

 release_delayed: when the workflow finishes without failure, it indicates whether the delayed 

beans have to be released. 

 rollback_moved_beans: the workflow finished with failure, it indicates whether it has to be 

performed a rollback of those beans moved to historical. 

 rollback_recovered_beans: the workflow finished with failure, it indicates whether it has to be 

performed a rollback of those beans recovered from the historical. 

 remove_history_beans: when the workflow finishes without failure, it indicates whether i those 

beans moved to historical have to be removed. 

The way to do it is defining Case Packet variables to control the operations that will be taken in the 

handler and assigning them the values true or false, respectively. 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

68 
 

It is very important that only these variables that are going to be used are defined. Thus, if a workflow 

must not undo the database modifications there must neither be defined nor used in the End handler the 

variable rollback_beans. 

These is an example on how to define the handler and the case packet variables 

<End-Handler> 

   <Class-Name>com.hp.spain.node.wftransaction.WFTransactionHandler</Class-Name> 

 

   <Param name="WF_TRANSACTION_NAME0"      value="wf_trans_lock"/> 

   <Param name="rollback_beans0"           value="rollback_beans"/> 

   <Param name="release_resources0"        value="release_resources"/> 

   <Param name="delete_delayed0"           value="delete_delayed"/> 

   <Param name="update_delayed0"           value="update_delayed"/> 

   <Param name="release_delayed0"          value="release_delayed"/> 

   <Param name="rollback_moved_beans0"     value="rollback_moved_beans"/> 

   <Param name="rollback_recovered_beans0" value="rollback_recovered_beans"/> 

   <Param name="remove_history_beans0"     value="remove_history_beans"/> 

   <Param name="concurrent_sync"           value="constant:true"/> 

   <Param name="async_handler"             value="constant:false"/> 

</End-Handler> 

 

<Case-Packet> 

   <Variable name="rollback_beans"   type="Boolean"/> 

   <Variable name="unlock_beans"  type="Boolean"/>  

   <Variable name="release_resources"  type="Boolean"/>   

   <Variable name="delete_delayed"  type="Boolean"/>   

   <Variable name="update_delayed"  type="Boolean"/>  

   <Variable name="release_delayed"   type="Boolean"/>  

   <Variable name="rollback_moved_beans" type="Boolean"/>  

   <Variable name="rollback_recovered_beans" type="Boolean"/> 

   <Variable name="remove_history_beans" type="Boolean"/>   

</Case-Packet> 

12.4.1   End handler 

This handler is invoked every time the workflow gets finished, regardless of whether it finishes with failure 

or not. 

The actions taken for each of the transactions depend on the following parameters and the value of the 

Finish and Cancel case packet variables: 

Parameter Mandatory Description 

WF_TRANSACTION_NAME+i No Name of each workflow transaction to be processed 

rollback_beans+i No 

Boolean value which indicates if the rollback of the 

inserted or updated beans has to be performed. This 

parameter is taking into consideration if the case 

packet variable Finish is false and the case packet 

variable Cancel is true  

rollback_moved_beans+i No 

Boolean value which indicates if the rollback of the 

beans moved to historical has to be performed. This 

parameter is taking into consideration if the case 

packet variable Finish is false and the case packet 

variable Cancel is true 

rollback_recovered_beans+i No 

Boolean value which indicates if the rollback of the 

beans restored from the historical has to be 

performed. This parameter is taking into consideration 

if the case packet variable Finish is false and the case 

packet variable Cancel is true 

remove_history_beans+i No Boolean value which indicates if the beans that has 

http://puedoreiniciar/OvsaWiki/index.php?title=WF_TRANSACTION_NAME


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

69 
 

been moved to historical must be removed. This 

parameter is taking into consideration if the case 

packet variable Finish is true and the case packet 

variable Cancel is false 

unlock_beans+i No 
Boolean value which indicates if the locked beans has 

to be unlocked. 

release_resources+i No 

Boolean value which indicates if the reserved 

resources must be released. This parameter is taking 

into consideration if the case packet variable Finish is 

false and the case packet variable Cancel is true 

delete_delayed+i No 

Boolean value which indicates if the delayed beans 

(See DelayedDelete node) must be removed. . This 

parameter is taking into consideration if the case 

packet variable Finish is true and the case packet 

variable Cancel is false 

update_delayed+i No 

Boolean value which indicates if the delayed beans 

must be updated. This parameter is taking into 

consideration if the case packet variable Finish is true 

and the case packet variable Cancel is false 

release_delayed+i No 

Boolean value which indicates if the delayed reserved 

beans must be released. This parameter is taking into 

consideration if the case packet variable Finish is true 

and the case packet variable Cancel is false 

force_rollback+i No 

Boolean value which indicates if the rollback tasks 

must be performed even though the workflow finishes 

correctly, ignoring the parameter finish. 

NOTE: The following parameters of the WFTransactionHandler are related to the CCWF, and only have 

sense if the workflow is a child workflow started using the StartJobConcurrent node explaining previously 

in this document. This handler adds the variables return_code and error_description to the ones 

configured with standard values (OK and ERROR depending of the values the case packet variables 

Cancel and Finish had) when do the synchronization. 

Parameter Mandatory Description 

concurrent_sync No Boolean value which indicates if this workflow has to 

synchronize with its parent workflow using the CCWF. 

It is done if parameter finish is true and cancel is false 

concurrent_sync_finish No Boolean value which indicates if this workflow has to 

synchronize with its parent workflow using the CCWF. 

It is done if parameter finish is true and cancel is false 

variable+i No Variable to send to the parent workflow when 

synchronizing 

destination+i No Destination variable of the parent workflow where the 

value of each synchronized variable has to be stored 

remote_ip No Remote Ip (needed when synchronization must be 

done remotely) 

local_ip No Local Ip (needed when synchronization must be done 

remotely) 

There is another parameter to control if the workflow must answer to SOSA (for complete information 

about SOSA synchronization read SOSA3 documentation): 



HPSA Extension Pack 

EP - Developer's Reference 

 

70 
 

Parameter Mandatory Description 

async_handler No Boolean value which indicates if this workflow has to 

answer SOSA, because is has been executed by it in 

an asynchronous way. 

following parameters of the WFTransactionHandler are related to the CCWF, and only have sense if the 

workflow is a child workflow started using the StartJobConcurrent node explaining previously in this 

document. This handler adds the variables return_code and error_description to the ones configured with 

standard values (OK and ERROR depending of the values the case packet variables Cancel and Finish 

had) when do the synchronization. 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

71 
 

13   Audit Action Module 

The HPSA Extension Pack includes a new audit system through which the different modules and 

applications can store information about the activities performed in the System. By default, all the core 

actions will leave an entry in the audit system. The audit system of the EP tries to give the user a service-

oriented view of the activities performed in the system, complementing the audit system of the HPSA. 

13.1   Module Configuration 

The audit module must be configured in the mwfm.xml file.  

This module attends the requests from the workflows to access the audit system. The audit system is 

integrated in the User Management System. If the connectivity with the UMM module is lost, the module 

stores the requests in a queue until the connectivity is recovered. 

There are some parameters that may be configured for this module: 

Parameter Mandatory Description 

audit_error_persistence_file Yes Name of the file where the unattended request will be 

stored. If the file doesn`t exists, it will be created. 

max_audit_error_number Yes Max number of entries in the file. 

retry_timeout Yes Time in milliseconds to retry to connect to the UMM 

module, if the connectivity is lost. 

spi_user_management_url Yes RMI URL where the SC publishes the remote method 

for user management. The value for this parameter 

must be the same as the one specified for the 

parameter with the same name for the Login Servlet 

set in the web.xml file. See the SC documentation for 

more information. 

The example below shows how to configure the audit module: 

<Module> 

  <Name>AuditActionModule</Name> 

  <Class-Name> 

    com.hp.ov.activator.mwfm.ep.engine.module.AuditActionModuleImpl 

  </Class-Name> 

  <Param name="audit_error_persistence_file" 

         value="C:/hp/OpenView/ServiceActivator/var//tmp/error_audit_actions.dat"/> 

  <Param name="max_audit_error_number" value="1000"/> 

  <Param name="retry_timeout" value="5000"/> 

  <Param name="spi_user_manager_rmi_url" value="//localhost:2001/userrmi"/> 

</Module> 

13.2   Nodes 

The audit module provides one node which can be used to introduce a new entry in the audit system. 

13.2.1   AuditAction 

The parameters accepted by this node are: 

Parameter Mandatory Description 

messageType Yes Type of the audit message (INFO or ERROR). 



HPSA Extension Pack 

EP - Developer's Reference 

 

72 
 

userName Yes Name of the user who performed the action. 

sourceComponent Yes Name of the affected component. 

actionPerformed Yes Name of the action performed. 

detail No Description containing the action details. 

processId No Name of the process this action belongs to. It can be 

used to group different actions associated to a certain 

process. 

The following example shows how to invoke the audit node. 

<Process-Node> 

  <Name>Audit example</Name> 

  <Description> Audit example</Description> 

  <Action> 

    <Class-Name> 

      com.hp.ov.activator.mwfm.ep.component.builtin.AuditAction 

    </Class-Name> 

    <Param name="messageType"     value="constant:INFO"/> 

    <Param name="userName"        value="constant:jlopez"/> 

    <Param name="sourceComponent" value="constant:VPN"/> 

    <Param name="actionPerformed" value="constant:configure"/> 

    <Param name="detail"          value=”vpnDetails”/> 

   <Param name="processId"       value=”vpnProcessId”/> 

  </Action> 

</Process-Node> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

73 
 

14   TMN Inventory 

The TMN Inventory is a library that can be used to organize and manage the complete set of networks 

and equipments of an organization. It is an Inventory Builder created project, that is, a set of XML entities 

describing the relationships and attributes of the elements involved in the network. These entities are 

transformed with the IB tool into database tables, and java classes that provide tools to use these entities. 

The TMN Inventory comprises many entities, which can be network based: Network, Path, 

TerminationPoint…; or equipment based: NetworkElement, EquipmentComponent, EquipmentFunction, 

Manufacturer… Each one will be described in detail in the following chapters. 

14.1   TMN Inventory Entities 

The TMN Inventory is basically a description of a network and its elements and relationships; therefore, 

we will describe each element in turn, and explain the relations.  

14.1.1   Colour 

This is one of the simpler entities; it provides an RGB value and its identification for further use. 

14.1.2   ElementTypes 

It provides a list of possible types of element that can appear in the network. An example element type 

could be a Router. 

14.1.3   EquipmentFunction 

It presents a list of possible functions that a piece of equipment may have. An example could be a 

WIMAX converter. 

14.1.4   EquipmentOS 

This entity contains all the possible Operating Systems that can be installed in the inventory’s system. An 

example Operating System could be ‘1.0.2.0 ciscoVersionFile1.0.2.0’ 

14.1.5   EquipmentStatus 

It represents the status of a piece of equipment. The table contains all possible status that a piece of 

equipment may have. A possible status could be ‘Active’. 

14.1.6   PathStatus 

It provides the list of all possible status a Path may have. A Path status could be AVAILABLE. 

14.1.7   Provinces 

This is a list of provinces of regions to locate the networks situation in a map. 



HPSA Extension Pack 

EP - Developer's Reference 

 

74 
 

14.1.8   Location 

These are locations that belong to a particular province. For example a city: Madrid. 

14.1.9   Manufacturers 

These are the names of the manufacturers of the equipment. For example: HP. 

14.1.10   Network 

This table represents a Network. A Network can belong to another network. It also contains X Y 

parameters so that it can be located in a map. An example Network could be: ‘Jonquera’, which belongs 

to its parent network: ‘Telefónica’. 

14.1.11   ElementModels 

These are the different element models available. Each ElementModel is of a particular ElementType and 

built by a Manufacturer. For example: RS3000, a model built by Riverstone. 

14.1.12   EquipmentFunctionModel 

This entity provides a relation between EquipmentFunctions and ElementModels.  

14.1.13   EquipmentOSModel 

This entity provides a relation between EquipmentOS and ElementModels 

14.1.14   NetworkElement 

This is perhaps the most important entity in the Inventory. It tries to describe an element inside a Network. 

This entity has a Name, Description and IP and has relations to the following entities: 

- Status, to show the Status of the Element. 

- Network to show the Network the Element belongs to. 

- Parent Network of this Network. 

- Manufacturer, the Manufacturer who built it. 

- ElementType, to show the type of this Network Element. 

- X and Y axes, to give the position inside a map. 

- ElementModel, the element model of this Network Element. 

- ElementFunction, the function this element provides. 

- Localizaciones, to show the Location where this element resides. 

- Internal Function, to show the function of this element inside the network. 

- OSVersion, the version of the Operating System. 

An example could be a Router inside a network. 

14.1.15   ElementComponent 

This entity is given a name and status, and provides relations with the NetworkElement it belongs to and, 

if there are any, to the parent’s ElementComponent. Examples of element components could be: ‘chassis’, 

‘rack’ or network card.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

75 
 

14.1.16   Path 

A Path is a representation of the path between two NetworkElements. It contains links to the origin and 

destination Network Elements and to the PathStatus. A path is a virtual connection. 

14.1.17   PathComponent 

This entity is a component belonging to a Path, it therefore contains a relation with the Path, an index of 

the order within the Path whether the jump is loose or strict, and a relation with the Colour table. A path is 

made up of components, such as a switch or a router. 

14.1.18   PathNE 

This is a path to a Network Element.  

14.1.19   TerminationPointID 

This is an endpoint of an ElementComponent or NetworkElement. It has a name and links to the Network 

and Element Component it belongs to. It also has a description of its use, and a relation with its parent 

TerminationPointID. An example could be a Port. 

14.1.20   TMNConnection 

This entity describes a physical connection. It provides relations between the network of origin and the 

destination network, of the NetworkElement of origin and also destination, and finally the 

TrminationPointIDs of origin and destination. It is also related to a Path, has X-Y coordinates. An example 

is a real physical connection. 

14.1.21   PathConnection 

It provides a relation to a TMNConnection; and therefore ties a virtual connection to the physical 

connection that supports it. 

14.2   TMN Inventory Structure 

The structure will be shown with a subset of the classes, leaving the location and path entities out of the 

diagram, to better illustrate the Network entities. 



HPSA Extension Pack 

EP - Developer's Reference 

 

76 
 

14.2.1   Network Entities Diagram 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

77 
 

14.2.2   Path Diagram 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

78 
 

14.2.3   Full Diagram 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

79 
 

15   SNMP Tool 

SnmpTool(*) is an application that manages Snmp requests to Network Elements. It consists of a web 

interface which is used to manage the MIB files and turns them into easily accessible and useful properties 

(allowing the user to create sets of favourites), and HPSA nodes and plugins to manage the network 

elements via SNMP. 

* This application uses the library Westhawk’s SNMP stack.  

15.1   SNMP and MIB background 

SNMP (Simple Network Management Protocol) is a protocol built for network management technology. 

SNMP defines a universal way that management information can be easily defined for any object and 

then exchanged between that object and a device designed to facilitate network management. Each 

device that participates in network management using SNMP runs a piece of software, generically called 

an SNMP entity.  

 

The SNMP entity is responsible for implementing all of the various functions of the SNMP protocol. It 

comprises of two main parts, the SNMP Agent, which is a software program that implements the protocol, 

and sends and receives requests   

 

Secondly, the SNMP Management Information Base (MIB) which defines the types of information stored 

about the node that can be collected and used to control the managed node. Information exchanged 

using SNMP takes the form of objects from the MIB. The MIB is written using SMI. Each managed device 

contains a set of variables that are used to manage it. These variables represent information about the 

operation of the device. The MIB is the full set of these variables that describe the management 

characteristics of a particular type of device. 

15.1.1   Snmp version 

There are several different SNMP versions that have appeared as the standard has evolved. The first two 

are basically similar, the difference being mostly in the use of resources, v2 being much more efficient. 

SNMP version 3 addresses the problem of security. The previous versions sent the requests in clear text, 

and having as only protection against unauthorized usage a community name, shared between all clients, 

that has to match the request, and gives read or read-write permissions to the client.  

Version 3 is built with security issues in mind. It provides support for authentication and privacy, using any 

number of encryption standards. This Tool is programmed to use authentication if needed, which can be 

used with SHA1 or MD5 encryption algorithms and can also use privacy. 

Bear in mind that the target of the request has to be configured with the proper values to the requests, and 

read/write permissions have to be allocated to the users. 

15.1.2   TMN Inventory 

The SnmpTool uses the TmnInventory project extensively. The TmnInventory provides all the information 

about a Network, and describes all the elements involved inside a Network. The SnmpTool expects the 

TmnInventory to be installed and needs to have access to its Database and its classes to access these 

entities. The database itself needs to be properly set up with network elements, models and manufacturers 

in order to send snmp requests to the network elements. For further information about the TmnInventory 

please read the document ‘OVSA SPI for Service Providers – TmnInventory – User Reference’. 



HPSA Extension Pack 

EP - Developer's Reference 

 

80 
 

15.2   SNMP nodes 

15.2.1   General Introduction 

The SNMPTool Package includes a node which provides access to the RemoteSnmpTool, allowing 

inclusion of SNMP operations as part of a workflow. 

The operations implemented by the node do not provide access to the full RemoteSnmpTool. Only the 

SnmpRequest methods are accessible. On the other hand, bulk properties operations are provided. 

Some of the node operations rely on the files generated through MIB compilation processes. Additionally, 

helper nodes are provided to extract information from the favourites files which can be then used as input 

to the SNMP Node. 

15.2.2   Node Class 

com.hp.spain.node.GenericSnmpRequester 

15.2.3   Functionality 

The Node provides four main operations: 

a) Reading SNMP properties values 

b) Setting a specific set of properties values 

c) Comparing two specific sets of properties values and setting the new or modified ones 

d) Setting properties values to their reset values 

15.2.4   Parameter Formats 

The Node allows performing bulk operations, reading or setting multiple variables in a single process 

node. To allow those operations the following formats are used: 

15.2.5   String Bulk Parameters 

Parameters of this type contain SNMP properties as a HashMap with the following structure: 

 Keys: Must always be a Vector, whose first position will contain the SNMP property name (as a 

String) and second position the OID (as a String), that is, entry at index zero contains the 

SNMP Object label and entry at index 1 contains the SNMP Object OID, both as String. Can't 

be null, and must have 2 elements which must be populated.  

 Values: Values structure may vary, depending on whether the SNMP Objects are indexed or not.  

o If the SNMP properties are scalar, values must be String.  

o If the SNMP properties are tabular, values must be a HashMap instance where:  

 Keys: must be the tabular property value Index as a String. 

 Values: must be the value corresponding to that Index as a String. 

The node parameter index will determine whether the String Bulk Parameters will be treated as Scalar or 

Tabular SNMP Properties. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

81 
 

15.2.5.1   SnmpProperty Bulk Parameters 

Parameters of this type contain SNMP properties as a HashMap with the following structure: 

 Keys: Must always be a Vector, whose first position will contain the SNMP property name (as a 

String) and second position the OID (as a String), that is, entry at index zero contains the SNMP 

Object label and entry at index 1 contains the SNMP Object OID, both as String. Can't be null, 

and must have 2 elements which must be populated.  

 Values: Values structure may vary, depending on whether the SNMP Objects are indexed or not.  

o If the SNMP properties are scalar, values must be SnmpProperty instance.  

o If the SNMP properties are indexed, values must be a HashMap instance where:  

 Keys: must be the tabular property value Index as a String. 

 Values: must be the value corresponding to that Index as a SnmpProperty 

instance. 

The node parameter index will determine whether the SnmpProperty Bulk Parameters will be treated as 

Scalar or Tabular SNMP Properties. 

15.2.6   SNMP Versions 

As the RemoteSnmpTool, the SNMP Node is able to handle SNMPv1, SNMPv2c and SNMPv3 PDUs. 

To indicate the version of the PDU to send, the version parameter may be included. Depending on the 

version value different additional parameters must be included. 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

Version no yes 1 n/a n/a no 

 version: Version of the PDU to send (may be 1, 2 or 3). If this parameter value is 3, the SNMPv3 

authentication/privacy parameters must be used. In other case, the read and write community 

must be used. 

15.2.6.1   SNMPv1 and SNMPv2c 

All Node Actions must include an additional set of parameters if SNMPv1 or SNMPv2c PDUs are desired. 

These parameters will be ignored if the version parameter value is not 1 or 2. 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

read_community Yes yes n/a String n/a yes if version<3 

write_community Yes yes n/a String n/a yes if version<3 

 read_community: Community name on behalf of which the GET or GET-NEXT PDU is sent. 

 write_community: Community name on behalf of which the SET PDU is sent. 

15.2.6.2   SNMPv3 

The Node allows performing authenticated and encrypted requests, as described by the SNMP v3 

specification. All Node Actions may include an additional set of parameters if SNMPv3 PDU is desired. 

These parameters will be ignored if the version parameter value is not 3. 



HPSA Extension Pack 

EP - Developer's Reference 

 

82 
 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

Username yes yes n/a String n/a yes if version==3 

use_authentication yes yes false String n/a no 

Password no yes n/a String n/a yes if 

use_authentication

==true 

Authprotocol yes yes false String n/a no 

use_privacy yes yes n/a String n/a no  

priv_passwd yes yes n/a String n/a yes if 

use_privacy==true 

 username: the user name on behalf of which the Node will operate. 

 use_authentication: Whether the authentication facilities of the SNMPv3 should be used. Its value 

will be interpreted as described in java.lang.Boolean.valueOf(Sting). 

 password: The password for authentication. 

 authprotocol: Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value 

for SHA1. 

 use_privacy: Whether the privacy facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). 

 priv_passwd: The privacy password. 

15.2.7   Get Action 

This operation will send a GET or GET-NEXT PDU for a specified set of properties. The node parameters 

must specify a MIB compilation file and a filter to determine the properties in the file to process. The 

following table describes the node parameters. 

15.2.7.1   Get Action Parameters 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

action yes yes n/a String n/a yes 

snmp_tool no yes n/a n/a n/a yes 

hostname yes yes n/a String n/a yes 

snmpPropertiesFile yes no no String n/a yes 

branch yes yes no String n/a no 

property yes yes no String n/a no 

array_properties yes no no Object String [] no 

index yes yes false Boolean n/a no 

index_value yes yes no String n/a no 

vector_index no yes no Object Vector of String no 

snmpProperties yes no no Object SnmpProperty 

Bulk Parameter 

n/a 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

83 
 

Input Parameters: 

 action: Always “GET”. 

 snmp_tool: The name under which the SNMP Tool Module to use is registered. 

 hostname: SNMP Agent IP/hostname to send the PDU to. 

 snmpPropertiesFile: The path to the compiled MIB file whose properties will be read. 

 branch: Name of the branch of properties in the compiled MIB file to read. 

 property: Name of the property in the in the compiled MIB file to read. 

 array_properties: List of properties in the compiled MIB file to read. 

 index: Whether the properties in the compiled MIB file should be treated as indexed or not. 

 index_value: Index of the value to read. 

 vector_index: List of Index values to read for each property. 

Output Parameters 

 snmpProperties: Context variable where the read variables will be returned as a SnmpProperty 

Bulk Parameter. 

15.2.7.2   Get Action Functionality 

The Get Action Node operation will perform one or more GET o GET-NEXT PDU to the SNMP Agent in 

the host specified by hostname using read_community as community. The version of the PDU will be 

determined by the version parameter. 

15.2.7.3   Indexed Properties 

The index parameter will determine whether the properties should be treated as indexed properties or not. 

c. Properties and Values Affected 

The Node will filter which of the properties present in the snmpPropertiesFile will be requested to the 

SNMP Agent, depending on the parameters branch, property, array_properties and index: 

 If the parameter array_properties is not present. 

o If property is present 

 If it is a scalar property, that property will be requested. 

 If it is an indexed property, that property and all its sibling properties will be 

requested. 

o If property is not present but branch is, all the properties pertaining to that MIB branch 

will be requested. 

o If neither branch neither property is present, all the properties in the compiled MIB file 

will be requested. 

 If the parameter array_properties is present, all the properties in the array will be requested, 

including their siblings if the properties are indexed.  



HPSA Extension Pack 

EP - Developer's Reference 

 

84 
 

d. GET-NEXT PDU 

If the properties are indexed, but the parameter vector_index is not received, an SNMP Tool getVars will 

be performed for each property.  

e. GET PDU 

If the properties are indexed, and the parameter vector_index is received, an SNMP Tool get will be 

performed for each index it contains for all the properties.  

If the properties are not indexed, but the parameter index_value is received, an SNMP Tool get will be 

performed for that index value for all the properties.  

If the properties are not indexed, and the parameter vector_index is not received, an SNMP Tool get will 

be performed for all the properties. 

f. Output 

As a result, a SnmpProperty Bulk Parameter will be returned through the snmpProperties context attribute, 

containing the SNMP Agent answers. 

If no error is encountered, 0 will be the Node execution return value. 

If any error is encountered -1 will be the Node execution return value. A String describing the error will 

be returned in error_description context attribute. 

15.2.8   Update Action 

This operation will send a SET PDU for a specified set of properties. The node parameters must specify the 

properties and values to set. The following table describes the node parameters. 

15.2.8.1   Update Action Parameters 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

action yes yes n/a String n/a yes 

snmp_tool no yes n/a n/a n/a yes 

hostname yes yes n/a String n/a yes 

read_community yes yes n/a String n/a yes 

write_community yes yes n/a String n/a yes 

snmpProperties yes no no Object String Bulk 

Parameter 

no 

index yes yes false Boolean n/a no 

Input Parameters: 

 action: Always “UPDATE”. 

 snmp_tool: The name under which the SNMP Tool Module to use is registered. 

 hostname: SNMP Agent IP/hostname to send the PDU to. 

 read_community: Community name on behalf of which the GET or GET-NEXT PDU is sent. 

 write_community: Community name on behalf of which the SET PDU is sent. 

 snmpProperties: String Bulk Parameter containing the properties and their values to set. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

85 
 

 index: Whether the properties in snmpProperties parameter should be treated as indexed or not. 

15.2.8.2   Update Action Functionality 

The Update Action Node operation will perform one or more SET PDU to the SNMP Agent in the host 

specified by hostname using write_community as community. The version of the PDU will be determined 

by the version parameter. 

a. Indexed Properties 

The index parameter will determine whether the properties should be treated as indexed properties or not. 

b. Properties and Values Affected 

All the properties present in the String Bulk Parameter in the snmpProperties value with a neither null nor 

empty value will be affected by the set. 

c. SET PDU 

If the properties are indexed an SNMP Tool set will be performed for each index value for each property. 

If the properties are not indexed an SNMP Tool set will be performed for each value of each property. 

d. Output 

If no error is encountered, 0 will be the Node execution return value. If some error is encountered while 

setting a property, a String containing the property names of the failed properties will be returned in the 

update_snmp_error context attribute. If the properties are not indexed will have de format: 

\t\t\Property1Name\n 

… 

\t\t\Property2Name 

If the properties are not indexed will have de format: 

\t\t\Property1Name\n 

… 

\t\t\Property2Name 

If any other error is encountered -1 will be the Node execution return value. A String describing the error 

will be returned in error_description context attribute. Additionally, if any property set has failed, the 

update_snmp_error context attribute will be set, as described before. 

15.2.9   Reset Action 

This operation will send a SET PDU for the properties specified in a compiled MIB file which specify a 

reset_value. The following table describes the node parameters. 

15.2.9.1   Reset Action Parameters 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet Type Java Type Mandatory 

action yes yes n/a String n/a yes 

snmp_tool no yes n/a n/a n/a yes 

hostname yes yes n/a String n/a yes 

read_community yes yes n/a String n/a yes 

write_community yes yes n/a String n/a yes 



HPSA Extension Pack 

EP - Developer's Reference 

 

86 
 

snmpPropertiesFile yes no no String n/a yes 

index yes yes false Boolean n/a no 

index_value yes yes no String n/a if index is 

true 

 

Input Parameters: 

 action: Always “RESET”. 

 snmp_tool: The name under which the SNMP Tool Module to use is registered. 

 hostname: SNMP Agent IP/hostname to send the PDU to. 

 read_community: Community name on behalf of which the GET or GET-NEXT PDU is sent. 

 write_community: Community name on behalf of which the SET PDU is sent. 

 snmpPropertiesFile: The path to the compiled MIB file whose properties will be set. 

 index: Whether the properties in the compiled MIB file should be treated as indexed or not. 

 index_value: Index of the value to reset. 

15.2.9.2   Reset Action Functionality 

The Update Action Node operation will perform one or more SET PDU to the SNMP Agent in the host 

specified by hostname using write_community as community. The version of the PDU will be determined 

by the version parameter. 

a. Indexed Properties 

The index parameter will determine whether the properties should be treated as indexed properties or not. 

b. Properties and Values Affected 

All the properties which include a reset_value in the compiled MIB file. Additionally, if the properties are 

indexed and index_value is specified, only that value of the indexed properties will be reset. 

c. SET PDU 

If the properties are indexed an SNMP Tool set will be performed for the index value indicated by 

index_value. If the properties are not indexed an SNMP Tool set will be performed for each value of each 

property. 

d. Output 

If no error is encountered, 0 will be the Node execution return value. 

If any error is encountered -1 will be the Node execution return value. A String describing the error will 

be returned in error_description context attribute. 

15.2.10   Set Action 

This operation will send a SET PDU for the properties which differ between two sets of properties values. 

The following table describes the node parameters. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

87 
 

15.2.10.1   Set Action Parameters 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet 

Type 

Java Type Mandatory 

action yes yes n/a String n/a yes 

snmp_tool no yes n/a n/a n/a yes 

hostname yes yes n/a String n/a yes 

read_community yes yes n/a String n/a yes 

write_community yes yes n/a String n/a yes 

snmpProperties yes no no Object SnmpProperty 

Bulk Parameter 

yes 

snmpProperties_old yes no no Object SnmpProperty 

Bulk Parameter 

yes 

index yes yes false Boolean n/a no 

index_value yes yes no String n/a no 

Input Parameters: 

 action: Always “SET”. 

 snmp_tool: The name under which the SNMP Tool Module to use is registered. 

 hostname: SNMP Agent IP/hostname to send the PDU to. 

 read_community: Community name on behalf of which the GET or GET-NEXT PDU is sent. 

 write_community: Community name on behalf of which the SET PDU is sent. 

 snmpProperties: String Bulk Parameter containing the properties and their values to set. 

 snmpProperties_old: String Bulk Parameter containing the properties and their values to set. 

 index: Whether the properties in the compiled snmpProperties and snmpProperties_old should be 

treated as indexed or not. 

 index_value: Index of the value to reset. 

15.2.10.2   Set Action Functionality 

The Update Action Node operation will perform one or more SET PDU to the SNMP Agent in the host 

specified by hostname using write_community as community. The version of the PDU will be determined 

by the version parameter. 

a. Indexed Properties 

The index parameter will determine whether the properties should be treated as indexed properties or not. 

b. Properties and Values Affected 

The property values affected will be those considered different between snmpProperties and 

snmpProperties_old. 

A scalar value will be considered new if its hashmap key can be found in snmpProperties but not in 

snmpProperties_old.  



HPSA Extension Pack 

EP - Developer's Reference 

 

88 
 

A scalar value will be considered modified if its corresponding SnmpProperty values in snmpProperties 

and snmpProperties_old differ.  

A tabular value will be considered new if its hashmap key can be found in snmpProperties but not in 

snmpProperties_old, or if its indexed value key can be found in snmpProperties but not in the 

corresponding snmpProperties_old element. 

A tabular value will be considered modified if its corresponding SnmpProperty values in snmpProperties 

and snmpProperties_old differ.  

c. SET PDU 

The properties and values result of the comparing process will be set or created with their new values. 

d. Output 

If no error is encountered, 0 will be the Node execution return value. 

If any error is encountered -1 will be the Node execution return value. A String describing the error will 

be returned in error_description context attribute. 

15.3   Helper Nodes 

15.3.1   Favourites Node 

15.3.1.1   General Introduction 

The Favorites Node eases the use of the SNMP Node, allowing the use of user favorites instead of 

complex field lists. 

15.3.1.2   Node Class 

com.hp.spain.node.GetSnmpAttributesFromFavorites 

15.3.1.3   Functionality 

Will extract all the properties names included in a favorite and return them as an array which can be then 

used as array_properties parameter for the SNMP Node Get Action. 

15.3.1.4   Parameters 

Parameter Variable 

Reference 

Constant Default 

Value 

Case Packet 

Type 

Java Type Mandatory 

favoriteFile yes yes n/a String n/a yes 

user yes yes n/a String n/a yes 

favorite yes yes n/a String n/a yes 

array_properties no yes n/a Object String [] n/a 

Input Parameters: 

 favoriteFile: The path of the MIB favorites file to be read. 

 user: The name of the user whose favorite will be read. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

89 
 

 favorite: he name of the user favorite to read. 

Output Parameters: 

 array_properties: The context attribute name where the array containing the properties names in 

the favorite will be stored. 

15.3.1.5   Output 

As a result, all the property names contained in the favorite specified by favoriteFile, user and favorite will 

be returned as an String [] in the context attribute named array_properties. 

If an error is encountered, the node return value will be -2, and the context attribute error_description will 

be set to the error description. 

If any error is encountered -1 will be the Node execution return value. A String describing the error will 

be returned in error_description context attribute. 

15.4   Nodes Examples 

15.4.1   Get of scalar properties in favorite 

<Workflow Init-On-Startup="false"> 

  <Name>WFLT_SNMPGetFavorite</Name> 

  <Description> 

    Obtains the values of the set of SNMP Objects defined in a favorite 

 </Description> 

  <Start-Node>LoadFavouriteSNMPObjectsLabels</Start-Node> 

  <Nodes> 

    <Process-Node> 

      <Name>LoadFavouriteSNMPObjectsLabels</Name> 

      <Description> 

        Load the Labels of the SNMP Objects defined in a favorite into an array 

      </Description> 

      <Action> 

        <Class-Name> 

          com.hp.spain.node.GetSnmpAttributesFromFavorites 

        </Class-Name> 

        <Param name="favoriteFile" 

               value="constant:<<ACTIVATOR_ETC>>/config/snmp/RFC1213-MIB_favorites.xml"/> 

        <Param name="user" value="constant:admin"/> 

        <Param name="favorite" value="constant:InterfacesData"/> 

      </Action> 

      <Next-Node>SNMPRequest</Next-Node> 

    </Process-Node> 

    <Process-Node> 

      <Name>SNMPRequest</Name> 

      <Description>Performs an snmp request</Description> 

      <Action> 

        <Class-Name>com.hp.spain.node.GenericSnmpRequester</Class-Name> 

        <Param name="snmp_tool" value="snmp_tool"/> 

        <Param name="hostname" value="constant:127.0.0.1"/> 

        <Param name="action" value="constant:GET"/> 

        <Param name="read_community" value="constant:public"/> 

        <Param name="write_community" value="constant:public"/> 

        <Param name="snmpProperties" value="output"/> 

        <!-- Populated by LoadFavouriteSNMPObjectsLabels --> 

        <Param name="array_properties" value="array_properties"/>  

        <Param name="snmpPropertiesFile value="snmpPropertiesFile"/> 

      </Action> 

    </Process-Node> 

 </Nodes> 

  <Error-Handler> 

    <Class-Name>com.hp.spain.node.wftransaction.WFTransactionErrorHandler</Class-Name> 

  </Error-Handler> 

  <End-Handler> 



HPSA Extension Pack 

EP - Developer's Reference 

 

90 
 

    <Class-Name>com.hp.spain.node.wftransaction.WFTransactionHandler</Class-Name> 

    <Param name="finish" value="Finish"/> 

    <Param name="cancel" value="Cancel"/> 

    <Param name="async_handler" value="constant:true"/> 

  </End-Handler>  

  <Case-Packet> 

    <!-- GetSnmpAttributesFromFavorites--> 

    <Variable name="error_description"   type="String"/> 

    <Variable name="array_properties"    type="Object"/> 

    <!-- GenericSnmpRequester --> 

    <Variable name="update_snmp_error"   type="String"/> 

    <Variable name="error_description"   type="String"/> 

    <Variable name="output"              type="Object"/> 

    <Variable name="hostname"            type="String"/> 

    <Variable name="action"              type="String"/> 

    <Variable name="read_community"      type="String"/> 

    <Variable name="write_community"     type="String"/> 

    <Variable name="snmpProperties"      type="Object"/> 

    <Variable name="array_properties"    type="Object"/> 

    <Variable name="snmpPropertiesFile"  type="String"/> 

    <Variable name="username"            type="String"/> 

    <Variable name="password"            type="String"/> 

    <Variable name="authprotocol"        type="String"/> 

    <Variable name="priv_passwd"         type="String"/> 

    <Variable name="context_engine_id"   type="String"/> 

    <Variable name="context_name"        type="String"/> 

    <Variable name="use_privacy"         type="String"/> 

    <Variable name="use_authentication"  type="String"/> 

    <!-- WFTransactionHandler --> 

    <Variable name="Finish"              type="Boolean"/> 

    <Variable name="Cancel"              type="Boolean"/> 

  </Case-Packet> 

  <Initial-Case-Packet> 

    <Variable-Value name="snmpPropertiesFile" 

                    value="<<ACTIVATOR_ETC>>/config/snmp/RFC1213-MIB_props.xml"/> 

  </Initial-Case-Packet> 

</Workflow> 

15.4.2   Get of Indexed properties in favorite with SNMPv3 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<!DOCTYPE Workflow SYSTEM "workflow.dtd"> 

<Workflow Init-On-Startup="false"> 

 <Name>WFLT_SNMPGetFavouriteTabular</Name> 

 <Description> 

    Obtains the values of the set of SNMP Objects defined in a favorite 

 </Description> 

 <Start-Node>CreateIndexesNode</Start-Node> 

 <Nodes> 

    <Process-Node> 

      <Name>CreateIndexesNode</Name> 

      <Description>Creates the indexes vector</Description> 

      <Action> 

        <Class-Name>com.hp.spain.node.CreateNewArray</Class-Name> 

        <Param name="variable0"   value="snmpindexes"/> 

      </Action> 

      <Next-Node>AddIndexesNode</Next-Node> 

    </Process-Node> 

    <Process-Node> 

      <Name>AddIndexesNode</Name> 

      <Description>Adds indexes to the vector</Description> 

      <Action> 

      <Class-Name>com.hp.spain.node.AddToArrayMultiple</Class-Name> 

      <Param name="array0"    value="snmpindexes"/> 

      <Param name="element0"   value="constant:1"/> 

      <Param name="array1"    value="snmpindexes"/> 

      <Param name="element1"   value="constant:2"/> 

      <Param name="array2"  value="snmpindexes"/> 

      <Param name="element2"   value="constant:3"/> 

    </Action> 

    <Next-Node>LoadFavouriteSNMPObjectsLabels</Next-Node> 

    </Process-Node> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

91 
 

    <Process-Node> 

      <Name>LoadFavouriteSNMPObjectsLabels</Name> 

      <Description> 

        Load the Labels of the SNMP Objects defined in a favorite into an array 

      </Description> 

      <Action> 

        <Class-Name>com.hp.spain.node.GetSnmpAttributesFromFavorites</Class-Name> 

        <Param name="favoriteFile" 

               value="constant:<<ACTIVATOR_ETC>>/config/snmp/RFC1213-MIB_favorites.xml"/> 

        <Param name="user"              value="constant:admin"/> 

        <Param name="favorite"          value="constant:Tabular"/> 

      </Action> 

      <Next-Node>SNMPRequest</Next-Node> 

    </Process-Node> 

    <Process-Node> 

      <Name>SNMPRequest</Name> 

      <Description>Performs an snmp request</Description> 

      <Action> 

        <Class-Name>com.hp.spain.node.GenericSnmpRequester</Class-Name> 

        <Param name="snmp_tool"     value="snmp_tool"/> 

        <Param name="hostname"  value="constant:16.38.0.136"/> 

        <Param name="action"  value="constant:GET"/> 

        <!-- "array_properties" is populated by LoadFavouriteSNMPObjectsLabels --> 

        <Param name="array_properties" value="array_properties"/> 

        <Param name="snmpPropertiesFile" value="snmpPropertiesFile"/> 

        <!-- Obtain multiple indexed values for all SNMP Objects --> 

        <Param name="index"   value="constant:true"/> 

        <!-- "vector_index" is populated by CreateIndexesNode, AddIndexesNode  --> 

        <Param name="vector_index"  value="snmpindexes"/>  

        <!-- SNMPv3 Auth and Priv --> 

        <Param name="version"     value="3"/> 

        <Param name="username"     value="username"/> 

        <Param name="use_authentication" value="use_authentication"/> 

        <Param name="password"     value="password"/> 

        <Param name="authprotocol"    value="authprotocol"/> 

        <Param name="use_privacy"    value="use_privacy"/> 

        <Param name="priv_passwd"    value="priv_passwd"/> 

        <!-- OUTPUT --> 

        <Param name="snmpProperties"    value="output"/> 

      </Action> 

    </Process-Node> 

  </Nodes> 

  <Error-Handler> 

    <Class-Name>com.hp.spain.node.wftransaction.WFTransactionErrorHandler</Class-Name> 

 </Error-Handler> 

 <End-Handler> 

    <Class-Name>com.hp.spain.node.wftransaction.WFTransactionHandler</Class-Name> 

    <Param name="finish" value="Finish"/> 

    <Param name="cancel" value="Cancel"/> 

    <Param name="async_handler" value="constant:true"/> 

  </End-Handler>  

  <Case-Packet> 

    <!-- CreateIndexesNode --> 

    <Variable name="snmpindexes" type="Object"/> 

    <!-- GetSnmpAttributesFromFavorites --> 

    <Variable name="error_description" type="String"/> 

    <Variable name="array_properties" type="Object"/> 

    <!-- GenericSnmpRequester --> 

    <Variable name="hostname" type="String"/> 

    <Variable name="action" type="String"/> 

    <Variable name="read_community" type="String"/> 

    <Variable name="write_community" type="String"/> 

    <Variable name="array_properties" type="Object"/> 

    <Variable name="snmpPropertiesFile" type="String"/> 

    <Variable name="username" type="String"/> 

    <Variable name="use_authentication" type="String"/> 

    <Variable name="password" type="String"/> 

    <Variable name="authprotocol" type="String"/> 

    <Variable name="use_privacy" type="String"/> 

    <Variable name="priv_passwd" type="String"/> 

    <Variable name="update_snmp_error" type="String"/> 

    <Variable name="error_description" type="String"/> 

     <Variable name="output" type="Object"/> 



HPSA Extension Pack 

EP - Developer's Reference 

 

92 
 

     <!-- WFTransactionHandler --> 

     <Variable name="Finish" type="Boolean"/> 

     <Variable name="Cancel" type="Boolean"/> 

  </Case-Packet> 

  <Initial-Case-Packet> 

    <Variable-Value name="snmpPropertiesFile" 

                    value="<<ACTIVATOR_ETC>>/config/snmp/RFC1213-MIB_props.xml"/> 

    <Variable-Value name="username" value="usr"/> 

    <Variable-Value name="use_authentication" value="true"/> 

    <Variable-Value name="password" value="pwdauth"/> 

    <Variable-Value name="authprotocol" value="MD5"/> 

    <Variable-Value name="use_privacy" value="true"/> 

    <Variable-Value name="priv_passwd" value="pwdpriv"/> 

 </Initial-Case-Packet> 

</Workflow> 

15.5   SNMP Generic Plug-in 

15.5.1   General Introduction 

The SNMP Plug-in allows atomic execution of the SNMP Set and Get requests. It also allows to perform 

bulk Set and Get request atomically, that is, operating atomically over a whole group SNMP variables. 

Additionally, tabular SNMP variables may be treated as indexed values. 

The SNMP Plug-in allows SNMP version 1, version 2c and version 3 operations. 

The plugin (SNMPPlugin.par) can be found under the ‘OpenView/ServiceActivator/SPI’  directory, and it 

needs to be deployed before it can be used. 

15.5.2   Locking Arguments 

Parameter: the machine destination of the SNMP request. 

15.5.3   Class Name 

com.hp.spain.plugin.snmp.SNMPPlugin 

15.5.4   Pre-provisioning tasks 

The SNMP Plug-in relies on RemoteSnmpTool Workflow Module to operate. The RemoteSnmpTool Module 

must be configured prior to use the SNMP Plug-in. 

15.5.5   Single Value Atomic Tasks 

15.5.5.1   task_SNMPGetUnsec 

This task reads an SNMP Scalar Variable value performing an SNMP v1 or SNMP v2c GET request. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Variable OID to read 

Version “1” for an SNMP v1 request or “2” for an SNMP v2c request. 

sCommunity Community name on behalf of which the GET PDU is sent 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

93 
 

The value of the requested SNMP Object variable will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET”. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.5.2   task_SNMPGetUnsecIndexed 

This task reads an SNMP Tabular Variable value performing an SNMP v1 or SNMP v2c GET request 

which can be treated as an indexed value. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Tabular Variable OID to read. The actual SNMP Value read will be: 

sObjectOID + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to read. The actual SNMP Value read will be: 

sObjectOID + “.” + sIndex 

version “1” for an SNMP v1 request or “2” for an SNMP v2c request. 

sCommunity Community name on behalf of which the GET PDU is sent 

The value of the requested SNMP Object variable will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET”. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.5.3   task_SNMPGet 

This task reads an SNMP Scalar Variable value performing an SNMP v3 GET request. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Variable OID to read 

sUserName the user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 



HPSA Extension Pack 

EP - Developer's Reference 

 

94 
 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

The value of the requested SNMP Object variable will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET”. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.5.4   task_SNMPGetIndexed 

This task reads an SNMP Tabular Variable value performing an SNMP v3 GET request which can be 

treated as an indexed value. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Tabular Variable OID to read. The actual SNMP Value read will be: 

sObjectOID + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to read. The actual SNMP Value read will be: 

sObjectOID + “.” + sIndex 

sUserName the user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

The value of the requested SNMP Object variable will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET”. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.5.5   task_SNMPSetUnsec 

This task sets an SNMP Scalar Variable value performing an SNMP v1 or SNMP v2c SET request. The 

current value of the variable to set will be read and stored as part of the persistent Transaction State 

before it is modified. If a Transaction must be rolled back, the stored previous value will be set again, 

restoring the SNMP variable previous state. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

95 
 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Variable value OID to set 

sValue The value to set the SNMP Variable to. 

version “1” for an SNMP v1 request or “2” for an SNMP v2c request. 

sCommunity Community name on behalf of which the SET PDU is sent 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variable value the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.5.6   task_SNMPSetUnsecIndexed 

This task sets an SNMP Tabular Variable value performing an SNMP v1 or SNMP v2c SET request which 

can be treated as an indexed value. The current value of the variable to set will be read and stored as 

part of the persistent Transaction State before it is modified. If a Transaction must be rolled back, the 

stored previous value will be set again, restoring the SNMP variable previous state. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Tabular Variable OID to set. The actual SNMP Value set will be: 

sObjectOID + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to set. The actual SNMP Value set will be: 

sObjectOID + “.” + sIndex 

sValue The value to set the SNMP Variable to. 

version “1” for an SNMP v1 request or “2” for an SNMP v2c request. 

sCommunity Community name on behalf of which the SET PDU is sent 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variable value the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.5.7   task_SNMPSet 

This task sets an SNMP Scalar Variable value performing an SNMP v3 SET request. The current value of 

the variable to set will be read and stored as part of the persistent Transaction State before it is modified. 

If a Transaction must be rolled back, the stored previous value will be set again, restoring the SNMP 

variable previous state. 

Parameters: 



HPSA Extension Pack 

EP - Developer's Reference 

 

96 
 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Variable value OID to set 

sValue The value to set the SNMP Variable to. 

sUserName The user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variable value the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.5.8   task_SNMPSetIndexed 

This task sets an SNMP Tabular Variable value performing an SNMP v3 SET request which can be treated 

as an indexed value. The current value of the variable to set will be read and stored as part of the 

persistent Transaction State before it is modified. If a Transaction must be rolled back, the stored previous 

value will be set again, restoring the SNMP variable previous state. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname to send the PDU to. 

sObjectOid The SNMP Tabular Variable OID to set. The actual SNMP Value set will be: 

sObjectOID + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to set. The actual SNMP Value set will be: 

sObjectOID + “.” + sIndex 

sValue The value to set the SNMP Variable to. 

sUserName the user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

97 
 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variable value the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.6   Multiple Value Atomic Tasks 

15.5.6.1   task_SNMPMultipleGetUnsec 

This task reads multiple SNMP Scalar Variables values performing SNMP v1 or SNMP v2c GET requests. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Variables to read in the format specified by the file 

MultipleSNMPVars.dtd. See 15.5.7.1   MultipleSNMPVars.dtd 

Version “1” for SNMP v1 requests or “2” for SNMP v2c requests. 

sCommunity Community name on behalf of which the GET PDUs are sent 

The values of the requested SNMP Object variables will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET” as an XML String in the format specified by the file 

MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.6.2   task_SNMPMultipleGetUnsecIndexed 

This task reads multiple SNMP Tabular Variables values performing SNMP v1 or SNMP v2c GET requests 

which can be treated as an indexed value. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Tabular Variables to read in the format specified by the 

file MultipleSNMPVars.dtd. See 15.5.7.1   MultipleSNMPVars.dtd. The actual SNMP Values 



HPSA Extension Pack 

EP - Developer's Reference 

 

98 
 

read will be: 

<OID present in XML> + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to read. The actual SNMP Value read will be: 

<OID present in XML> + “.” + sIndex 

Version “1” for SNMP v1 requests or “2” for SNMP v2c requests. 

sCommunity Community name on behalf of which the GET PDUs are sent 

The values of the requested SNMP Object variables will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET” as an XML String in the format specified by the file 

MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.6.3   task_SNMPMultipleGet 

This task reads multiple SNMP Scalar Variables values performing SNMP v3 GET requests. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Variables to read in the format specified by the file 

MultipleSNMPVars.dtd. See 15.5.7.1   MultipleSNMPVars.dtd 

sUserName The user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

The values of the requested SNMP Object variables will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET” as an XML String in the format specified by the file 

MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

99 
 

15.5.6.4   task_SNMPMultipleGetIndexed 

This task reads multiple SNMP Tabular Variables values performing SNMP v3 GET requests which can be 

treated as an indexed value. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Tabular Variables to read in the format specified by the 

file MultipleSNMPVars.dtd. See 15.5.7.1   MultipleSNMPVars.dtd. The actual SNMP Values 

read will be: 

<OID present in XML> + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to read. The actual SNMP Value read will be: 

<OID present in XML> + “.” + sIndex 

sUserName The user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

The values of the requested SNMP Object variables will be returned through the Plug-in Context Data 

Uploader associated to the key “SNMP_RET” as an XML String in the format specified by the file 

MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, the ExecutionDescriptor returned has majorCode = ERROR and minorCode = 

CONSISTENT. 

15.5.6.5   task_SNMPMultipleSetUnsec 

This task sets multiple SNMP Scalar Variables values performing SNMP v1 or SNMP v2c SET requests. 

Each individual current value of the variables to set will be read and stored as part of the persistent 

Transaction State before each variable is modified. If a Transaction must be rolled back or the task fails, 

the stored previous values will be set again, restoring the SNMP variables previous states. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Variables and values to set in the format specified by the 



HPSA Extension Pack 

EP - Developer's Reference 

 

100 
 

file MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd. 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variables values the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.6.6   task_SNMPMultipleSetUnsecIndexed 

This task sets an SNMP Tabular Variable value performing an SNMP v1 or SNMP v2c SET request which 

can be treated as an indexed value. Each individual current value of the variables to set will be read and 

stored as part of the persistent Transaction State before each variable is modified. If a Transaction must 

be rolled back or the task fails, the stored previous values will be set again, restoring the SNMP variables 

previous states. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Tabular Variables and values to set in the format specified 

by the file MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd. The actual 

SNMP Values set will be: 

<OID present in XML> + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to set. The actual SNMP Value set will be: 

<OID present in XML> + “.” + sIndex 

version “1” for SNMP v1 requests or “2” for SNMP v2c requests. 

sCommunity Community name on behalf of which the SET PDUs are sent 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variables values the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.6.7   task_SNMPMultipleSet 

This task sets an SNMP Scalar Variable value performing an SNMP v3 SET request. Each individual 

current value of the variables to set will be read and stored as part of the persistent Transaction State 

before each variable is modified. If a Transaction must be rolled back or the task fails, the stored previous 

values will be set again, restoring the SNMP variables previous states. 

Parameters 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Variables and values to set in the format specified by the 

file MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd. 

sUserName The user name on behalf of which the Node will operate. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

101 
 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variables values the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.6.8   task_SNMPMultipleSetIndexed 

This task sets an SNMP Tabular Variable value performing an SNMP v3 SET request which can be treated 

as an indexed value. Each individual current value of the variables to set will be read and stored as part 

of the persistent Transaction State before each variable is modified. If a Transaction must be rolled back 

or the task fails, the stored previous values will be set again, restoring the SNMP variables previous 

states. 

Parameters: 

Parameter Description 

sMachine SNMP Agent IP/hostname destination of the requests. 

sObjectsXML An XML String containing the SNMP Tabular Variables and values to set in the format specified 

by the file MultipleSNMPValues.dtd. See 15.5.7.2   MultipleSNMPValues.dtd. The actual 

SNMP Values set will be: 

<OID present in XML> + “.” + sIndex 

sIndex The OID of the SNMP Tabular Variable Value to set. The actual SNMP Value set will be: 

<OID present in XML> + “.” + sIndex 

sUserName The user name on behalf of which the Node will operate. 

useAuthentication Whether the authentication facilities of the SNMPv3 should be used. Its value will be 

interpreted as described in java.lang.Boolean.valueOf(Sting). If “false”, sPasswd and 

sAuthProtocol must be empty Strings (“”). 

sPasswd The password for authentication. If authentication facilities are not used, must be empty String 

(“”). 

sAuthProtocol Protocol to be used for authentication. “MD5” for MD5 protocol. Any other value for SHA1. If 

authentication facilities are not used, must be empty String (“”). 

usePrivacy Whether the privacy facilities of the SNMPv3 should be used. Its value will be interpreted as 



HPSA Extension Pack 

EP - Developer's Reference 

 

102 
 

described in java.lang.Boolean.valueOf(Sting). If “false”, sUserPrivacyPasswd must be an 

empty String (“”). 

sUserPrivacyPasswd The privacy password. If privacy facilities are not used, must be empty String (“”). 

sContextEngineID The Context Engine ID. Can be empty String (“”). 

sContextName The Context Name. Can be empty String (“”). 

This task does not return any Context data. 

If the atomic task is successful, the ExecutionDescriptor returned has majorCode = OK and minorCode = 

NONE. Otherwise, if the Do/Undo operation does not change the current SNMP Variables values the 

ExecutionDescriptor returned has majorCode = ERROR and minorCode = CONSISTENT. If the Do/Undo 

operation result can’t be determined, ExecutionDescriptor returned has majorCode = ERROR and 

minorCode = INCONSISTENT. 

15.5.7   Files 

15.5.7.1   MultipleSNMPVars.dtd 

This file contains the specification for an XML file containing a set of SNMP Object Variables OID. 

<!-- 

  ========================================================================== 

  SNMP Variables for HP OV Service Activator SNMP Plug-in 

  ========================================================================== 

  Copyright (c) 2001-2004 Hewlett-Packard Company. All Rights Reserved 

  ========================================================================== 

--> 

 

<!-- 

  ** Mandatory root tag 

--> 

<!ELEMENT SNMPObjects (SNMPObjectInstance*)> 

 

<!-- 

  ** SNMP Object Instance descriptor element 

--> 

<!ELEMENT SNMPObjectInstance   (OID)> 

 

<!-- 

  ** OID of the corresponding SNMP Object Instance element 

--> 

<!ELEMENT OID (#PCDATA)> 

15.5.7.2   MultipleSNMPValues.dtd 

This file contains the specification for an XML file containing a set of SNMP Object Variables OID and 

their values. 

<!-- 

  ========================================================================== 

  SNMP Variables for HP OV Service Activator SNMP Plug-in 

  ========================================================================== 

  Copyright (c) 2001-2004 Hewlett-Packard Company. All Rights Reserved 

  ========================================================================== 

--> 

 

<!-- 

  ** Mandatory root tag 

--> 

<!ELEMENT SNMPObjects (SNMPObjectInstance*)> 

 

<!-- 

  ** SNMP Object Instance descriptor element 

--> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

103 
 

<!ELEMENT SNMPObjectInstance   (OID,Value)> 

 

<!-- 

  ** OID of the corresponding SNMP Object Instance element 

--> 

<!ELEMENT OID (#PCDATA)> 

 

<!-- 

  ** Value of the corresponding SNMP Object Instance element 

--> 

<!ELEMENT Value (#CDATA)> 



HPSA Extension Pack 

EP - Developer's Reference 

 

104 
 

16   Configuration Management 

This chapter explains how to implement a backup driver for the Configuration Management solution. A 

backup driver is an application that knows how to connect to certain type of equipments and make a 

backup of their configuration. 

16.1   Configuring the memory types 

The equipment backups are literally a copy of the status of the memory of the equipment. The problem is 

that there are equipments that have more than one type of memory. To solve this two database tables are 

created: 

HPSA_MemoryType: Stores the different type of memories. 

HPSA_ModelMemTypeRel: Relates them to given equipment. 

16.1.1   HPSA_MemoryType 

The fields of this table are: 

 MEMORYID: Unique id identifying the memory. 

 MEMORYNAME: Name of the memory. 

 FILENAME: It is not mandatory and can be use by the developer to get the root of the name of the 

file to transfer with the equipment. 

16.1.2   HPSA_ModelMemTypeRel 

The fields of this table are: 

 MODELID: Same Id of the MODELID field of the HPSA_ElementModel of the equipment. 

 MEMORYID: Same Id of the MEMORYID field of the HPSA_MemoryType of the memory. 

This way the Configuration Management will know which memories can be backup for every equipment 

model. 

16.2   Parameter management 

For a successful connection for a backup usually several parameters are required e.g. login, password or 

something more complex like a template with the parameters that will be executed in the equipment for 

the backup creation. 

16.2.1   Configuring parameters 

The parameters are defined in a file called deviceRegister.xml that is located in the directory 

<<ACTIVATOR_ETC>>/config/confMng 

A deviceRegister.dtd file for syntax validation is located in the same directory. 

A device is defined by the next parameters: 

Bean: the Java bean implementing the device. 

Manufacturer: the device’s manufacturer. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

105 
 

Type: the device’s type. 

Parameters: eventual parameters needed for the access to the equipment. The value of each parameter is 

retrieved invoking to the method set as its value and which must be implemented in the Java bean. 

Properties: eventual properties needed for the access to the equipment. The value of each property is the 

literal text typed as the value. 

Even though these parameters aren’t mandatory, there are four of them which are treated in a special 

way if defined: login, password, logintacacs, passwordtacacs and enablePassword. 

An example of this file is: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<!DOCTYPE Devices SYSTEM "deviceRegister.dtd"> 

<Devices> 

  

  <Device> 

    <Bean>com.hp.spain.inventory.tutorial.Equipment</Bean> 

    <manufacturer>Riverstone</manufacturer> 

    <type>Switch</type> 

    <Params> 

      <Param name="login"          value="getUsername"/> 

      <Param name="password"       value="getPassword"/> 

      <Param name="logintacacs"    value="getLogintacacs"/> 

      <Param name="passwordtacacs" value="getPasswordtacacs"/> 

      <Param name="enablePassword" value="getPasswordenable"/> 

      <Param name="ROUTER_NAME"    value="getName"/> 

    </Params> 

    <Properties> 

      <Property name="TEMPLATE"           

value="RIVERSTONE_SAVE_CONFIG.vm"/> 

      <Property name="SEND_TEMPLATE"      

value="RIVERSTONE_MANUAL_LOAD_CONFIG.vm"/> 

      <Property name="HPIA_HOSTNAME"      value="localhost"/> 

      <Property name="TEMPLATE_PATH"      

value="<<ACTIVATOR_ETC>>/template_files"/> 

      <Property name="TEMP_PATH"          value="/tmp"/> 

      <Property name="ARGUMENT_SEPARATOR" value=";"/> 

      <Property name="VALUE_SEPARATOR"    value=":"/> 

      <Property name="ARRAY_CHARACTER"    value="[]"/> 

    </Properties> 

  </Device> 

  

</Devices> 

Any new device must insert between <Device> tags. Inside we can find the next tags: 

Bean: Contains a Class extending NetworkElement or NetworkElement itself. It will be used to recover 

information from DB. In our example Equipment class is used because some parameters like logintacacs 

are not present in the NetworkElement class. It will be fetched form DB calling the findByPrimaryKey 

method with the associated NetworkElement primary key as parameter. 

manufacturer: Name of the manufacturer of the device. Will be used to validate if the device correspond 

to the desired equipment. 

type: Type of device. Will be used to validate if the device correspond to the desired equipment. 

model: Model of device. Will be used to validate if the device correspond to the desired equipment. 

Params: Container of each param. 



HPSA Extension Pack 

EP - Developer's Reference 

 

106 
 

Param: Configuration values extracted from DB. Once the Bean class is instantiated (fetched from DB), the 

getter method found in “value” will be executed and associated to the “name” literal and recovered with 

the DeviceInformation object described below. 

Properties: Container of each Property. 

Property: Literal configuration values. The value set in “value” will be recovered associated to the “name” 

literal and recovered with the DeviceInformation object described below. 

16.3   Recovering parameters 

The parameters configured in the deviceRegister.xml are stored in an object called DeviceInformation. 

This object will be available as a parameter of the interface methods.  

The methods that return information of the xml file are: 

 getName: Returns the NetworkElement ID of the equipment. 

Syntax: 

  public String getName() 

 getBackupURL: Returns the class com.hp.spain.backup.BackupURL from which it is possible to 

extract the entire connection URL or every of its parts alone. See the appendix for more info about 

this object. 

Syntax: 

  public BackupURL getBackupURL() 

 getMemoryTypes: The result is a com.hp.spain.inventory.MemoryType array bean with all the 

memory types that are associated (in DB) with the model of the selected equipment. 

Syntax: 

  public MemoryType[] getMemoryTypes() 

 getAccessProperties: Class that provided the values referenced by the deviceRegister.xml 

parameters (defined in a <Param> tag), but only if these parameters are one of the following: 

login, password, logintacacs, passwordtacacs or enablePassword. 

The returned class is com.hp.spain.backup.AccessProperties and it is just a bean with getter 

methods to access the parameters commented above. It can be consulted in the Appendix. 

Syntax: 

  public AccessProperties getAccessProperties() 

 getExtAccessProperties: Class that provides the values in the deviceRegister.xml properties 

(defined in a <Property> tag) and the values referenced by the parameter (defined in a <Param> 

tag) that are different from the ones of the AccessProperties (login, password, logintacacs, 

passwordtacacs or enablePassword). 

Syntax: 

  public ExtAccessProperties getExtAccessProperties() 

16.4   Coding a new backup driver 

The next step is to create the java application that will be the core of the backup and deploy it in the 

WFM classpath. If you already have an implementation of a backup for the desired equipment just jump 

this step. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

107 
 

As an example from now to the end we are going to suppose that we are implementing a driver for a 

Riverstone equipment. 

16.4.1   Implementing the interfaces 

Only the implementation of two interfaces is needed in order to create the backup driver. These are 

com.hp.spain.backup.BackupDriver and com.hp.spain.backup.BackupConnection.  

In our example two new classes are created to implement them: 

 BackupDriver implementation 

public class RiverStoneBackupDriver implements com.hp.spain.backup.BackupDriver { 

 

} 

 BackupConnection implementation 

public class RiverstoneRSBackupConnection implements com.hp.spain.backup.BackupConnection, 

RiverstoneRSConstants { 

 

} 

RiverstoneRSConstants is a support class with useful constant only valid for our example. 

The tasks to perform in each interface are: 

 BackupDriver 

o Registering the driver 

o Validating the incoming petition 

o Instantiating the BackupConnection 

 BackupConnection 

o Implementing the connection to the equipment 

16.4.2   Tasks in BackupDriver 

16.4.2.1   Registering the driver 

The driver needs to self register in the configuration management application in order to be functional. 

This is mandatory and it is done in a static block in the BackupDriver implementation. 

static { 

   BackupManager.registerBackupDriver(new RiverStoneBackupDriver()); 

} 

16.4.2.2   Validating the incoming petition 

The next task of the driver is to check the petition and decide if accept it or not. This can be done 

implementing the acceptsURL() method in the BackupDriver. 

Syntax: 

public boolean acceptsURL(BackupURL bURL); 

As you can see it accepts a BackupURL object as parameter. This object will inform us about the target 

equipment. It can be consulted in later sections. 

Example: 

public boolean acceptsURL(BackupURL backupurl) { 

   boolean flag = false; 

   try { 



HPSA Extension Pack 

EP - Developer's Reference 

 

108 
 

      if ((backupurl.getManufacturer().toLowerCase().equals(MANUFACTURER.toLowerCase())) && 

            ((backupurl.getType().toLowerCase().equals(EQUIPMENT.toLowerCase())) || 

             (backupurl.getType().toLowerCase().equals(EDC.toLowerCase())))) 

      { 

         flag = true; 

      } 

   } catch (Exception e) { 

      e.printStackTrace(); 

   } 

   return flag; 

} 

16.4.2.3   Instantiating the BackupConnection 

The BackupDriver class is instantiated in its static block but not the BackupConnection. This class is 

instantiated by the BackupDriver in the method getConnection(). 

Syntax: 

public BackupConnection getConnection(DeviceInformation deviceInformation) 

throws BackupException; 

The unique parameter is the class com.hp.spain.backup.DeviceInformation and it provides the parameters 

that the device will need for the connection as seen before. 

Example: 

public BackupConnection getConnection(DeviceInformation deviceinformation) 

throws BackupException { 

   RiverstoneRSBackupConnection riverstonersbackupconnection = 

         new RiverstoneRSBackupConnection( 

               deviceinformation, equipmentDriverClassName, protocol, port); 

   riverstonersbackupconnection.open(); 

   return riverstonersbackupconnection; 

} 

The variables equipmentDriverClassName, protocol and port have been populated in the constructor. 

16.4.2.4   Finishing implementing BackupDriver 

A getManufacturer() method still remains to implement. It must return the name of the manufacturer. 

Example: 

public String getManufacturer() { 

   return “Riverstone”; 

} 

16.4.3   Tasks in BackupConnection 

16.4.3.1   Implementing the connection to the equipment 

e. Open a connection 

For opening a connection the open() method must be implemented: 

Syntax: 

public void open() throws BackupException 

Example: 

private boolean open = true; // The connection with a RiverStone is always open 

public void open() throws BackupException { 

 this.open = true; 

} 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

109 
 

f. Close a connection 

For closing a connection the close() method must be implemented: 

Syntax: 

public void close() 

Example: 

public void close() { 

 this.open = false; 

} 

g. Check if the connection is open 

For this the isOpen connection must be implemented: 

Syntax: 

public boolean isOpen() 

Example: 

public boolean isOpen() { 

   return open; 

} 

h. Perform the backup 

There are two methods that must be implemented to perform the backup: 

Syntax: 

public EquipmentConfiguration performBackup(MemoryType memType) 

throws BackupException 

and 

public EquipmentConfiguration performBackup(MemoryType memType, String protocol) 

throws BackupException 

Returns: 

Both of them return an instance of com.hp.spain.inventory.EquipmentConfigurationExt object. No matter if 

that the interface asks for a EquipmentConfiguration object, a EquipmentConfigurationExt must be return 

or the BACKUP WILL NOT BE SAVED. The implementer must use the next constructor:  

public EquipmentConfigurationExt(  

   String NetworkElementID,  

   java.util.Date Timestamp,  

   String Version, 

   String ConfigurationId,  

   java.util.Date LastAccessTime,  

   String RetrievalName, 

   String MemoryType,  

   String CreatedBy,  

   String ModifiedBy, 

   byte[] Data)  

In this method the backup driver must retrieve the configuration from the equipment and create the object 

with this information. The difference between the two methods is that the first is for the default protocol 

and the in the other the user can specify the protocol. 

Example: 

public EquipmentConfiguration performBackup(MemoryType memType) 

throws BackupException { 

   return performBackup(memType, DEFAULT_PROTOCOL); 

} 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

110 
 

public EquipmentConfiguration performBackup(MemoryType memType, String sBackupProtocol) 

throws BackupException { 

   EquipmentConfiguration ec = new EquipmentConfiguration();   

   if(SCP_PROTOCOL.equals(sBackupProtocol)){ 

      ec = performSCPBackup(memType); 

   } else if(TFTP_PROTOCOL.equals(sBackupProtocol)){ 

      ec = performTFTPBackup(memType); 

   } 

   return ec; 

} 

 

private EquipmentConfiguration performSCPBackup(MemoryType memType) throws BackupException { 

   String configuration = null; 

   EquipmentConfiguration ec = null; 

   FileInputStream fileInputStream = null; 

   String separador = "@@"; 

   ExtAccessProperties eap = deviceInfo.getExtAccessProperties(); 

   String sHostname = deviceInfo.getBackupURL().getHost(); 

   String sLogin = deviceInfo.getAccessProperties().getLogin(); 

   String sPassword = deviceInfo.getAccessProperties().getPassword(); 

   // Instantiating an SCP client.  

   scpClient = new AdvancedSCPClient(sHostname, sLogin, sPassword); 

   try { 

      scpClient.connect(); 

      File backupFile = null; 

      String fileName= memType.getFilename(); 

      backupFile = this.scpClient.getFile(fileName); 

      configuration = this.readFileInputStream(backupFile); 

      String equipmentName = deviceInfo.getExtAccessProperties().getProperty("ROUTER_NAME"); 

      Date timestamp = new java.util.Date(); 

      String version = "1.0"; 

      String configurationId = deviceInfo.getBackupURL().getIdentifier(); 

      Date lastAccessTime = timestamp; 

      String retrievalName = 

         deviceInfo.getExtAccessProperties().getProperty("RETRIEVAL_METHOD"); 

      String memoryType = memType.getMemoryname(); 

      String createdBy = sLogin; 

      String modifiedBy = ""; 

      // The object MUST be EquipmentConfigurationExt 

      ec = new EquipmentConfigurationExt( 

            deviceInfo.getName(), 

            timestamp, 

            version, 

            configurationId, 

            lastAccessTime, 

            retrievalName, 

            memoryType, 

            createdBy, 

            modifiedBy, 

            configuration.getBytes()); 

      String sBaseDir = deviceInfo.getExtAccessProperties().getProperty(BASE_DIR);             

      String sDirPath = ""; 

      if ((equipmentName != null) && (sBaseDir != null)) { 

         sDirPath = sBaseDir + equipmentName;             

         File fFoo = new File(sDirPath);      

         if (!fFoo.exists()) 

            fFoo.mkdirs(); 

      } 

      // Creating file name 

      Calendar cToday = Calendar.getInstance(); 

      String sAbsolutePath = equipmentName + separador; 

      sAbsolutePath += retrievalName + separador; 

      sAbsolutePath += createdBy + separador; 

      sAbsolutePath += memoryType + "_"; 

      sAbsolutePath += cToday.get(Calendar.DAY_OF_MONTH) + "-"; 

      sAbsolutePath += (cToday.get(Calendar.MONTH)+1) + "-"; 

      sAbsolutePath += cToday.get(Calendar.YEAR) + "_"; 

      sAbsolutePath += System.currentTimeMillis(); 

      File fFile = new File(sDirPath + "/" + sAbsolutePath);         

      backupFile.renameTo(fFile); 

   } catch(AdvancedSCPException scpe) { 

      String msg = "Error getting file '" + "" + "' from scp server. " + scpe.getMessage(); 

      scpe.printStackTrace(); 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

111 
 

      throw new BackupException(msg);    

   } 

   return ec; 

} 

i. Upload a backup to the equipment 

There two methods that must be implemented to upload a backup: 

Syntax: 

public void sendConfiguration( 

      EquipmentConfiguration sConfiguration, 

      MemoryType memType) 

throws BackupException 

and 

public void sendConfiguration( 

      EquipmentConfiguration sConfiguration, 

      MemoryType memType, 

      String protocol) 

throws BackupException 

These methods have to upload the configuration file to the equipment. No matter that in the interface the 

parameters are EquipmentConfiguration, a com.hp.spain.inventory.EquipmentConfigurationExt object are 

passed, so the implementer can cast to this object and call getData() to access to the configuration data. 

Example: 

public void sendConfiguration( 

      EquipmentConfiguration sConfiguration, 

      MemoryType memType) throws BackupException { 

   sendConfiguration(sConfiguration, memType, DEFAULT_PROTOCOL); 

} 

     

public void sendConfiguration( 

      EquipmentConfiguration sConfiguration, 

      MemoryType memType, 

      String sBackupProtocol) 

throws BackupException { 

   if(SCP_PROTOCOL.equals(sBackupProtocol)){ 

      sendSCPConfiguration(sConfiguration, memType); 

   } else if(TFTP_PROTOCOL.equals(sBackupProtocol)) { 

      sendTFTPConfiguration(sConfiguration, memType); 

   } 

} 

 

private void sendSCPConfiguration( 

      EquipmentConfiguration sConfiguration, 

      MemoryType memType) 

throws BackupException {         

   FileOutputStream fos=null; 

   File fileToSend = null; 

   try { 

      // Remember that the object is an EquipmentConfigurationExt!!!! 

      byte[] totalbytes=((EquipmentConfigurationExt)sConfiguration).getData(); 

      String filename = null; 

      Calendar cal=Calendar.getInstance(); 

      String curDate = String.valueOf(cal.get(Calendar.YEAR)) + 

                       String.valueOf(cal.get(Calendar.MONTH)) + 

                       String.valueOf(cal.get(Calendar.DATE)); 

      filename="hpsa_"+memType.getFilename()+".tmp"; 

      fileToSend = new File(BACKUP_DIRECTORY + filename); 

      fos = new FileOutputStream(fileToSend); 

      fos.write(totalbytes); 

      fos.close(); 

      fos = null; 

      String filepathdestino = EQUIPMENT_CONFIGURATION_ROOT_PATH + filename;                  

      ExtAccessProperties eap = deviceInfo.getExtAccessProperties(); 

      String sHostname = deviceInfo.getBackupURL().getHost(); 

      String sLogin = deviceInfo.getAccessProperties().getLogin(); 



HPSA Extension Pack 

EP - Developer's Reference 

 

112 
 

      String sPassword = deviceInfo.getAccessProperties().getPassword(); 

      try{ 

         this.scpClient = new AdvancedSCPClient(sHostName, sLogin, sPassword); 

         this.scpClient.connect();                            

         this.scpClient.putFile(fileToSend,sFilePathDestino); 

      } catch(AdvancedSCPException e) { 

         String msg = "Error putting file on scp server '" + "" + "'. " + e.getMessage(); 

         e.printStackTrace(); 

         throw new BackupException(msg); 

      } 

   } catch(IOException e) { 

      String msg = "Error putting file on scp server '" + ""+ "'. " + e.getMessage(); 

      e.printStackTrace();         

      throw new BackupException(msg); 

   } finally {                           

      fileToSend.delete(); 

   } 

} 

j. Finishing implementing BackupConnection 

Helper methods that must be implemented are: 

 getDeviceInformation: The DeviceInformation object that the driver must have retained in the 

creation time. 

Syntax: 

  public DeviceInformation getDeviceInformation(MemoryType memType) 

  Example: 

  public DeviceInformation getDeviceInformation() { 

     return this.deviceInfo; 

  } 

 toString: String with the connection session information for logging purposes. 

  Syntax: 

  public String toString() 

  Example: 

  public String toString() { 

     AccessProperties aProperties = deviceInfo.getAccessProperties(); 

     BackupURL bURL = deviceInfo.getBackupURL(); 

     ExtAccessProperties eap = deviceInfo.getExtAccessProperties(); 

     StringBuffer sb = new StringBuffer(""); 

     sb.append("- RiverStone Backup Connection -"); 

     sb.append("\n login: " + aProperties.getLogin()); 

     sb.append("\n password: " + aProperties.getPassword()); 

     sb.append("\n enablePassword: " + aProperties.getEnablePassword()); 

     sb.append("\n Type: " + bURL.getType()); 

     sb.append("\n Model: " + bURL.getModel()); 

     sb.append("\n identifier: " + bURL.getIdentifier()); 

     sb.append("\n host: " + bURL.getHost()); 

     sb.append("\n port: " + bURL.getPort()); 

     Enumeration e = eap.getPropertyNames(); 

     while (e.hasMoreElements()) { 

        String sKey = (String) e.nextElement(); 

        sb.append("\n " + sKey + ": " + eap.getProperty(sKey)); 

     } 

     sb.append("\n open: " + open); 

     return sb.toString(); 

  } 

Some methods are still not implement but must be implemented as are defined in the interface implement 

them with no code). There are: 

 getConfiguration 

 isAudit 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

113 
 

 sendFile 

Example: 

public EquipmentConfiguration getConfiguration(MemoryType memType) { 

   return null; 

} 

 

public boolean isAudit() { 

   return true; 

} 

 

public void sendFile(String Filepath) throws BackupException{} 

 

public void sendFile(byte[] Config) throws BackupException{} 

16.5   Using an existent backup driver 

Using an existent backup driver is analog to create a new one, the only difference is that the code step is 

not needed (a third party provides the jar and must be deployed in the MWFM classpath). The user must 

ask to the third party in order to fill the correct parameters and properties. 

16.6   BackupURL getter methods 

BackupURL is an object used to map a equipment, the getter methods informs about the type of equipment 

and are: 

 public String getManufacturer() {...} – Returns the equipment manufacturer. 

 public String getType() {...} – Returns the equipment type. 

 public String getModel(){...} – Returns the equipment model. 

Other methods are provided to recover extra information: 

 public String getIdentifier(){...} – Returns the configuration identifier associated to this backup 

petition. 

 public String getHost(){...} – Returns the equipment host to connect to. 

 public int getPort(){...} – Returns the equipment port to connect to. 

16.7   AccessProperties getter methods 

 public String getLogin() {...} – Returns de login parameter 

 public String getLoginTacacs(){...} – Returns the logintacacs parameter 

 public String getPassword() {...} – Returns the password parameter 

 public String getPasswordTacacs() {...} – Returns paswordtacacs parameter 

 public String getEnablePassword() {...} – Returns the enablepasword parameter 



HPSA Extension Pack 

EP - Developer's Reference 

 

114 
 

17   Xmaps 

XMaps is a java API (Application Programming Interface) designed to provide an easy way of working 

with diagrams. A diagram can represent a network, a workflow or any process involving several steps or 

layers. Using XMaps these diagrams can be created, modified and stored and can be shown graphically 

on screen, allowing users to interact with its components, move them to another position, change its 

attributes or invoke the operations assigned to them. 

XMaps generates the JavaScript code representing the specified diagram and offers methods to sort the 

diagram’s components using a specific algorithm or one designed by the users themselves. Then, this 

code can be shown in a JSP provided with the API. 

17.1   API structure 

The main component of the XMaps API is the diagram. A diagram is a set of different components which 

are somehow related. Therefore, using diagrams we can represent a network, a workflow or any process 

involving several steps or layers. 

There are several kinds of components: 

 Node: The main elements in a Diagram are the nodes. The nodes can represent a computer or a 

router in a network, or some action inside a process. Each node can be connected to other nodes 

using Ports. A node can have any number of ports. 

 Port: The Ports are the components used to store the Connections between nodes. A port always 

belongs to a node. Each port can contain a connection to another port (which belongs to another 

node). A node can contain as many ports as needed. 

 Connection: The connections are components used to link a pair of ports. Each connection is 

associated to two ports belonging to different nodes. 

 Text: The user can attach text to a specific position to clarify some aspects of the diagram. These 

texts are not interactive. The user cannot select them nor move them. 

 Image: Images can be shown, in a similar way as the texts, to add non interactive information to 

a diagram. 

The Diagram, Nodes, Ports and Connection can have some specific graphical attributes (a node can have 

an image, the connections can have different colors and the user can locate the ports in a specific section 

of a node) and operations (the actions which will be invoked by the user using this component). 

17.2   Application development 

In order to describe how to develop an application using XMaps we are going to define a simple 

diagram step by step. 

Our diagram will have the next five nodes, each one of them representing a computer in a WAN. Some 

of these computers are connected to each other. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

115 
 

1 2 3

4 5

 

After that, to make the diagram clearer, we will add a text in the upper left corner describing what this 

diagram is representing. The computer number 3 is connected to the WAN from the outside using the 

Internet, so we can add the picture of a cloud surrounding it to represent that this node is not physically 

connected to this WAN. 

17.2.1   Nodes definition 

The first step in the design of our diagram is the creation of the nodes involved in it. Each component has 

an id, that should be unique, and several attributes depending of its kind. The node’s graphical attributes 

are: 

 Name. 

 Background Color 

 Width 

 Height 

 Image Path 

 Border color 

 Text Position 

 Type 

 Ports Location 

 Text Background color. 

These parameters will be discussed in detail later in this document. At this point we are going to create a 

simple node with a name and an image. 

 NodeView c1 = new NodeView("c1"); 

 NodeView c2 = new NodeView("c2"); 

 NodeView c3 = new NodeView("c3"); 

 NodeView c4 = new NodeView("c4"); 

 NodeView c5 = new NodeView("c5"); 

 c1.setName("Computer 1"); 

 c2.setName("Computer 2"); 

 c3.setName("Computer 3"); 

 c4.setName("Computer 4"); 

 c5.setName("Computer 5"); 

 c1.setImagePath("./computer.jpg"); 

 c2.setImagePath("./computer.jpg"); 

 c3.setImagePath("./computer.jpg"); 

 c4.setImagePath("./computer.jpg"); 

 c5.setImagePath("./computer.jpg"); 



HPSA Extension Pack 

EP - Developer's Reference 

 

116 
 

17.2.2   Ports Definition 

As we said before, a port is a component contained by a node. The ports are used to link nodes using 

connections. Each port belongs to a single node and is connected to a single port using only one 

connection. There is no limit to the number of ports contained by a node. 

The ports have their own attributes: 

 Color. 

 Type. 

The type represents the shape of the node. The ports can be square-shaped, round-shaped or hidden (they 

will not be shown in the screen). More detail will be added later. 

For our example we need to create a port for nodes from 1 to 4 and two ports for the node number 5 (it 

has two incoming connections). The next code will define our ports: 

 PortView p1 = new PortView(c1, "p1"); 

 PortView p2 = new PortView(c2, "p2"); 

 PortView p3 = new PortView(c3, "p3"); 

 PortView p4 = new PortView(c4, "p4"); 

 PortView p5 = new PortView(c5, "p5"); 

 PortView p6 = new PortView(c5, "p6"); 

 n1.addPort(p1); 

 n2.addPort(p2); 

 n3.addPort(p3); 

 n4.addPort(p4); 

 n5.addPort(p5); 

 n5.addPort(p6); 

At this point we don’t care about its shape or color. By default the color will be yellow and the shape 

round. 

17.2.3   Connections definition 

Now we need to link the nodes which have a connection between them. As we explained before, each 

connection will tie two ports, each one of them belonging to only one node. The connections have some 

attributes too: 

 Color 

 Weight 

 Image Path 

 Origin Node Id 

 Destination Node Id 

 Corner side 

 Arrow on origin (show an arrow in the origin side of the connection) 

 Arrow on destination (show an arrow in the destination side of the connection) 

In our example we will use the default values for all the parameters. 

We need to create three connections, one linking the node 3 with the node 4 and two of them connecting 

the nodes 1 and 2 with the node 5. We are going to create standard connections now and we will 

associate them to their ports later. 

 ConnectionView con1_5 = new ConnectionView("con1_5"); 

 ConnectionView con2_5 = new ConnectionView("con2_5"); 

 ConnectionView con3_4 = new ConnectionView("con3_4"); 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

117 
 

17.2.4   Creating a Diagram 

As exposed before, the Diagram is the main component of Xmaps. It will contain all the components 

which define our WAN or our process, including images and texts. The Diagram, as the previous 

components, has some attributes which can be modified by the user: 

 Name 

 Border Type 

 Lettering Color 

 Lettering Text 

 Background Color 

 Origin X 

 Origin Y 

 Clip X 

 Clip Y 

 Width 

 Height 

 Drag Enabled 

 Scale Map Active 

 Zoom Active 

 Right button enabled 

 Back Url (The Url which will be invoked when the back button is pressed) 

In our example we will use the default values for all of them. 

The diagrams can be divided in layers but this is not mandatory. It will affect the way the nodes are going 

to be shown. If the diagram is organized in layers, all the nodes will be situated forming rows, one for 

each layer. The first row will be the layer number 0. Only the nodes can be associated to layers. 

The API offers an algorithm to sort the diagram’s nodes depending of their layer. If the diagram is not 

organized in layers the algorithm will try to assign one to each node. As a result of this process, the 

number of crossings between connections will be reduced and the representation of the diagram will be 

clearer. The use of the sorting algorithm will be detailed later. 

In order to continue with our example, we need to add the components defined before to a new diagram. 

We need to add the nodes specifying its layer and associate the connections with their corresponding 

ports inside the diagram. 

 Diagram diagram = new Diagram(); 

 diagram.addNodeView(c1, 0); 

 diagram.addNodeView(c2, 0); 

 diagram.addNodeView(c3, 0); 

 diagram.addNodeView(c4, 1); 

 diagram.addNodeView(c5, 1); 

 diagram.addConnectionByPort(con1_5, p1, p5); 

 diagram.addConnectionByPort(con2_5, p2, p6); 

 diagram.addConnectionByPort(con3_4, p3, p4); 



HPSA Extension Pack 

EP - Developer's Reference 

 

118 
 

17.2.5   Adding a Text 

The diagram can contain as many texts as needed. The texts can’t be associated to layers and it’s 

mandatory to associate them to a specific location in the screen. When adding a text to a diagram we 

have to specify a pair of coordinates x and y. 

The texts only have an attribute which contains the string which will be shown in the screen. 

In our example, we are going to add a text explaining the purpose of the diagram. This text will be 

situated in the upper left side of the screen. 

 Text t = new Text("t", "This is example shows how XMaps works"); 

 diagram.addText(t, 5, 5); 

17.2.6   Adding a Image 

In the same way a diagram can contain texts, it can also contain images. The images can’t be associated 

to layers. 

This component only has an attribute, the path to the image which will be shown on screen. Also, when 

we add the image to the diagram, a position (a pair of coordinates x and y) must be specified. 

As we said before, we are going to add an image to our example diagram to represent that one of our 

computers is connected to our WAN through the Internet. To represent that, we are going to use the 

picture of a cloud. 

 Image i = new Image("/cloud.jpg", "i"); 

 diagram.addImage(i, 10, 10); 

17.2.7   Sorting the diagram 

At this point all our components are included in the diagram, but the API offers some methods to clarify its 

structure.  By examining the diagram that shows the location of the nodes, and which was shown at the 

beginning of this section, we can see that all connections between the nodes cross each other. We can 

use the sorting algorithm (Sugiyama algorithm) provided by the API to sort the nodes and eliminate the 

crossings. 

Sugiyama sortS = new Sugiyama(); 

diagram.sortGraph(sortS, true); 

17.2.8   The resulting diagram 

This is the complete code to generate our diagram: 

 NodeView c1 = new NodeView("c1"); 

 NodeView c2 = new NodeView("c2"); 

 NodeView c3 = new NodeView("c3"); 

 NodeView c4 = new NodeView("c4"); 

 NodeView c5 = new NodeView("c5"); 

 c1.setName("Computer 1"); 

 c2.setName("Computer 2"); 

 c3.setName("Computer 3"); 

 c4.setName("Computer 4"); 

 c5.setName("Computer 5"); 

 c1.setImagePath("./computer.jpg"); 

 c2.setImagePath("./computer.jpg"); 

 c3.setImagePath("./computer.jpg"); 

 c4.setImagePath("./computer.jpg"); 

 c5.setImagePath("./computer.jpg"); 

  

 PortView p1 = new PortView(c1, "p1"); 

 PortView p2 = new PortView(c2, "p2"); 

 PortView p3 = new PortView(c3, "p3"); 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

119 
 

 PortView p4 = new PortView(c4, "p4"); 

 PortView p5 = new PortView(c5, "p5"); 

 PortView p6 = new PortView(c5, "p6"); 

 c1.addPort(p1); 

 c2.addPort(p2); 

 c3.addPort(p3); 

 c4.addPort(p4); 

 c5.addPort(p5); 

 c5.addPort(p6); 

 

 Diagram diagram = new Diagram(); 

 diagram.addNodeView(c1, 0); 

 diagram.addNodeView(c2, 0); 

 diagram.addNodeView(c3, 0); 

 diagram.addNodeView(c4, 1); 

 diagram.addNodeView(c5, 1);  

 

 ConnectionView con1_5 = new ConnectionView("con1_5"); 

 ConnectionView con2_5 = new ConnectionView("con2_5"); 

 ConnectionView con3_4 = new ConnectionView("con3_4"); 

 

 diagram.addConnectionByPort(con1_5, p1, p5, true); 

 diagram.addConnectionByPort(con2_5, p2, p6, true); 

 diagram.addConnectionByPort(con3_4, p3, p4, true); 

 

 Text t = new Text("t", "This example shows how XMaps works"); 

 diagram.addText(t, 5, 5); 

 

 Image i = new Image("/cloud.jpg", "i"); 

 diagram.addImage(i, 10, 10); 

 

 Sugiyama sortS = new Sugiyama(); 

 diagram.sortGraph(sortS, true); 

This is the diagram represented using the XMaps API: 

 

17.2.9   Operations 

Some diagram’s components and the diagram itself can contain operations. The operations are actions 

that can be executed by the user. These operations are calls to URLs or Struts actions and can be used to 

fetch some information about the component from the database, to open another JSP containing another 

diagram or to execute any useful action designed by the developers of the application using XMaps. 



HPSA Extension Pack 

EP - Developer's Reference 

 

120 
 

When the user right clicks on a component a window will appear showing all the operations defined for 

that component. 

The components which can contain operations are the Nodes, the Connections, the Ports and the 

Diagrams. 

There are several possible targets for an operation: 

 OPERATION_TARGET_BELOW 

 OPERATION_TARGET_HIDDEN: The operation will not be shown 

 OPERATION_TARGET_POPUP: The operation will be shown in a pop up window 

 OPERATION_TARGET_INNERPOPUP: The operation will be shown in an iframe 

 OPERATION_TARGET_SELF 

 OPERATION_TARGET_BALLON: The operation will be shown in a “balloon” close to the element  

Ex. 

c5.addOperation("testOperation", "/images/operation.gif", "/Action.do", 

DiagramConstants.OPERATION_TARGET_HIDDEN, true, false, null, null);  

The fields of this method are: 

 Text: The text to show associated to the operation 

 Image Path: The path to the image associated to the operation 

 Action: The action to execute in this operation. 

 Target: The target of the operation: DiagramConstants.OPERATION_TARGET_BELOW, 

..._HIDDEN, ..._POPUP, ..._INNERPOPUP, ..._SELF or ..._BALLOON 

 Default operation: True if the operation should be executed by double clicking in the component. 

 Activate on startup: True if the operation should be executed on startup 

 Width:  The horizontal coordinate associated to the balloon associated to the operation (only for 

DiagramConstants.OPERATION_TARGET_BALLOON) 

 Height:  The vertical coordinate associated to the balloon associated to the operation (only for 

DiagramConstants.OPERATION_TARGET_BALLOON) 

There are several default operations in some of the previous components. The components Diagram, 

Node, Connection and Port have the next default operation: 

 See attributes: all the components which can contain operations and have any attribute filled in 

will have this operation. The values of all the attributes entered will be shown when the user 

executes this action. 

The component Connection has the next default operations: 

 Set Corner: If the diagram’s attribute Drag Enabled is set to true, this action will be available for 

all the connections. It allows the user to change the connection’s shape, creating a corner to the 

right, to the left or making the connection to go straight. 

The Diagrams have the next default operations: 

 Lettering: If the diagram has its attribute Lettering filled this operation will be enabled, allowing 

the user to activate or deactivate the diagram’s lettering. 

 Scale Map: If the scale map is active this operation will be enabled, allowing the user to make 

the map visible or invisible. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

121 
 

 Undo: If drag enable is set to true this operation will be active, allowing the user to undo all the 

changes realized over the map. 

 Save: If drag enable is set to true this operation will be active, allowing the user to save all the 

changes realized over the map. 

17.2.10   On Select Operations 

There is also a specific kind of operations that can be triggered by the action of selecting the associated 

element. These operations will work in the same way as any other operation: 

C5.addOperationOnSelect( 

    "showData()", 

    DiagramConstants.OPERATION_TARGET_BALLOON, 

    new Integer(10), 

    new Integer(10)); 

The parameters associated to this method are: 

 Action: The action to execute in this operation. 

 Target: The target of the operation: DiagramConstants.OPERATION_TARGET_BELOW, 

..._HIDDEN, ..._POPUP, ..._INNERPOPUP, ..._SELF or ..._BALLOON 

 Width:  The horizontal coordinate associated to the balloon associated to the operation (only for 

DiagramConstants.OPERATION_TARGET_BALLOON) 

 Height:  The vertical coordinate associated to the balloon associated to the operation (only for 

DiagramConstants.OPERATION_TARGET_BALLOON) 

17.3   Sorting Algorithms 

When a new diagram is created, all its nodes will be located in the position (0,0) unless another location 

were specified while adding the nodes to the diagram. If the user doesn’t want to assign coordinates to 

all the nodes in the diagram, he can use the sorting algorithm to assign the node’s coordinates 

automatically. This algorithm will try to reduce the crossings between the connections as much as possible 

in order to obtain a clear diagram. 

The algorithm works on layered diagrams (diagrams whose nodes are organized in layers). If the 

diagram which the user wants to sort is not layered he can try to organize it in layers automatically: 

 s = new Sugiyama(); 

 diagram.generateLayers(); 

 diagram.sortGraph(s, true); 

The sorting algorithm used in this API was originally developed by Kozo Sugiyama, and therefore his 

method is called Sugiyama Algorithm. In order to use it is necessary to instantiate the class and use it as a 

parameter of the function sortDiagram(). More details about it will be provided later. 

The developers of applications using the XMaps API can develop their own sorting algorithms to suit their 

needs by extending the interface GraphDrawer. 

17.4   Solution Container Integration 

Along with the API, Xmaps provides a struts action through which the developer can display the 

generated diagram. This action is “/DrawDiagramAction.do” and it is integrated in the solution container 

during the installation process. 



HPSA Extension Pack 

EP - Developer's Reference 

 

122 
 

This action invokes an internal JSP, responsible for generating the javascript code needed to represent the 

diagram. 

The action receives a single parameter in the request: 

Parameter Mandatory Description 

DIAGRAM Yes 
Object of class 

com.hp.spain.xmaps.Diagram 

The following example shows how to invoke it: 

First, we write an action in charge of generating the diagram and invoke the generic Xmaps action: 

import com.hp.spain.xmaps.diagram.Diagram; 

import com.hp.spain.xmaps.diagram.DiagramConstants; 

 

public class DrawExampleAction extends Action { 

  

  public ActionForward execute( 

      ActionMapping mapping, 

      ActionForm form, 

      HttpServletRequest request, 

      HttpServletResponse response) 

  throws IOException, ServletException { 

    String target = FAILURE; 

    Diagram myDiagram; 

    DiagramManager dm; 

    try { 

      myDiagram = new Diagram(); 

      ... // code to define the diagram 

      dm = new DiagramManager(); 

      dm.addDiagram(myDiagram, false); 

      request.getSession().setAttribute(DiagramConstants.DIAGRAM_MANAGER, dm); 

      target = SUCCESS; 

    } 

    catch(Exception e) { 

      e.printStackTrace(); 

      target = FAILURE; 

    }  

    return (mapping.findForward(target)); 

 } 

 

} 

Second, we add the new entry in the struts-config file: 

<action path="/DrawExampleAction" 

        type="com.hp.example.struts.action.DrawExampleAction" 

        name="SimpleForm"> 

  <forward name="success" path="/DrawDiagramAction.do"/> 

  <forward name="failure" path="/jsp/example/error.jsp"/> 

</action> 

The new diagram will be displayed every time the action is invoked.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

123 
 

18   ECP Console 

The ECP Console is a web application that allows establishing connections with remote equipments 

through the ECP, using several available protocols such as telnet or SSH, for example. 

The ECP Console application is prepared to analyze execution permissions on any typed command for 

every user and thus, the operations that can be performed on remote equipments are strictly controlled. 

The ECP Console application allows the use of command scripts for each user and remote equipment. 

There is also a administration GUI which allows the users to define hosts, command filters and scripts and 

store them in the database. The access to this GUI is associated with the roles “futuregui” and “ECP”, any 

user accessing the GUI must have both roles. 

18.1   Functionality 

18.1.1   Command scripts 

Command scripts are predefined command sequences which are executed using a different ECP template 

than typed commands do.  They permit a high degree of complexity, allowing the users to define loops 

and create variables. Thanks to them it’s possible to save complex structures and execute them with a 

single click. 

The command scripts are stored in the database and accessible only for the desired users. 

Check the document “SPI for Service Providers – ECP Console - User reference.pdf”, section 3.2 for further 

information about command scripts. 

18.1.2   Opening an ECP Console 

In order to open a console the ECP configuration must be properly set at the ecp.properties file. There are 

three properties that must be set: 

 ecpmanager.service.host: the ECP name or IP.  

 ecpmanager.service.port: the ECP port number. 

 ecpmanager.service.name: the ECP RMI service name. 

The ECP Console must be opened through the provided OpenConsoleECP struts action. In order to obtain 

the available scripts for a given user from database and the remote host to which the commands will be 

send it is necessary to provide the action with the next parameters: 

 hostManufacturer: the remote host manufacturer. 

 hostModel: the remote host model. 

 hostVersion: the remote host version. 

This parameters constitute the necessary data to define a host (Check the document “SPI for Service 

Providers – ECP Console - User reference.pdf”, section 3.1 for further information about hosts). 

Depending on the connection class that will be established later in the remote host there are different 

parameters that must be specified. See the section below for further information.  



HPSA Extension Pack 

EP - Developer's Reference 

 

124 
 

18.1.3   Connecting to the remote equipment 

The ECP provides two ways to obtain connections to a remote host: through a static pool or through a 

dynamic one. In this way, several parameters must be specified at the ECP Console opening action for the 

successful connection setup. 

Needed parameters for a static pool connection: 

 poolName: the ECP static pool name used to get an available connection. 

 queueId: the ECP queue to be used. This parameter is optional and its default value if not 

specified is 1. 

For example: 

http://localhost:8089/activator/OpenConsoleECP.do?hostmanufacturer=alcatel&h

ostModel=riverstone&hostVersion=1&hostname=16.38.0.136&poolName=testingpool 

Needed parameters for a dynamic pool connection: 

 hostname: the remote host name or IP. 

 port: the remote host port. 

 login: the remote host login username. 

 password: the remote host password. 

 passwordEnable: the remote host password used to change the session mode once the remote 

host has been connected. 

 protocol: the remote host connection protocol, typically telnet or SSH. 

 connectionResourceClassName: the java class which implements the driver used for the remote 

host connection. 

 poolName: the dynamic pool name. This is an optional parameter because dynamic pool names 

can be automatically generated by the ECP. 

 maxCon: the maximum number of connections to be contained by the dynamic pool. It is an 

optional parameter. 

 minCon: the minimum number of connections to be contained by the dynamic pool. It is an 

optional parameter. 

 initOnCreate: boolean value which indicates if the connection must be initialized on instantiation 

instead of on the first time it is used. It is an optional parameter. 

 overMinimumConnTimeout: the timout (in milliseconds) for the not used temporary connections 

over the minimum before they are closed. It is an optional parameter. 

 reservedConnTimeout: the time (in milliseconds) that a connection may be in use by a single 

operation. It is an optional parameter. 

 poolTimeout: the timeout (in milliseconds) for a not used dynamic pool before it is closed. It is an 

optional parameter. 

 additionalData: some additional data, if needed. It is an optional parameter. 

 queueId: the ECP queue to be used. This parameter is optional and its default value if not 

specified is 1. 

For example: 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

125 
 

http://localhost:8089/activator/OpenConsoleECP.do?hostmanufacturer=alcatel&h

ostModel=riverstone&hostVersion=1&hostname=16.38.0.136&port=23&login=guest&p

assword=gpwd&passwordEnable=egpwd&protocol=telnet&connectionResourceClassNam

e=com.hp.spain.connection.RiverstoneRSConnectionResource 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

126 
 

19   Configuration 

Alter installing the SC it is compulsory to check that the configuration is correct in order for all the projects 

that make up the SC work properly. 

There are three configuration files that we must draw special attention: web.xml, where the servlets, 

taglibs and ejbs are defined among other things; mwfm.xml, where the MWFM is configured with all its 

modules, among them the user authentication module (see this module documentation for more 

information); and the datasources, which are configured in the standalone.xml file, a JBoss configuration 

file. 

19.1   DB module 

In the mwfm.xml we can define as many access modules to different databases as are needed, but one of 

them must be necessarily called just db, which is the one the MWFM will use. 

Through this module we configure the connection pool parameters to the database the MWFM and the 

rest of defined modules are going to interact with. 

A DB module configuration must point to one of the different datasources configured in JBoss: 

<Module> 

   <Name> 

     db 

   </Name> 

   <Class-Name> 

     com.hp.ov.activator.mwfm.engine.module.OracleDatabaseModule 

   </Class-Name> 

   <Param 

     name="datasource_name" 

     value="mwfm-default-ds.xml"/> 

</Module> 

19.2   Authentication module 

In the Authentication module we indicate the login system for the users, which can depend on the 

operating system or any other factor. 

HPSA provides three different authentication systems validating the user against a specific operating 

system: 

 HPUXAdvancedAuthModule 

 SolarisAdvancedAuthModule 

 WindowsAdvancedAuthModule 

These authentication systems validate the user against the corresponding operating system and guarantee 

that the user exists and belongs to a role with access permissions to HP Service Activator, but none of 

them consults the permissions in the User Administration Module. To do this there is another authentication 

system: 

 DatabaseAdvancedAuthModule 

This validates the user against a database and guarantees that its username and password are valid. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

127 
 

In principle we can use the one we feel is more convenient, but only the last one applies the 

authentication against the User Administration Module. 

For more information about the Authentication module please see the HPSA documentation. 

19.3   MWFM Multiple 

The SC can manage different MWFM, each of them residing in a machine with an IP and with its 

corresponding configuration file auth.properties. 

In order to configure the available MWFMs in the system, you have to edit the auth.properties file. There, 

the next parameters should be filled: 

 mwfm_rmi_authX: [X takes consecutive values starting from 0 onwards]: these parameters, 

numbered consecutively, indicate the RMI services of the different Master MWFM. (Ej. 

//localhost:2000/auth). This parameter has the same meaning here as the mwfm_rmi_auth 

parameter has in the Authentication Module configuration (see the section above). 

 mwfm_nameX [X takes consecutive values starting from 0 onwards]: these parameters, numbered 

consecutively, indicate the names of the different MWFM which can be accessed from the HP 

Service Activator. Each parameter specified here must have its corresponding URL, which is 

indicated in the parameter mwfm_urlX similarly numbered. It is necessary that at least the first 

MWFM is defined, so the parameter mwfm_name0 must always be indicated. 

 mwfm_urlX [X takes consecutive values starting from 0 onwards]: these parameters, numbered 

consecutively, indicate the URL in which each MWFM Publisher its methods using RMI. As in 

previous parameter, we need at least one mwfm_nameX parameter with the same numbering and 

so we necessarily have to define a mwfm_url0. 

 default_mwfm: indicates which of the MWFM specified we will use as default. This parameter is 

not compulsory and if is not specified the value taken as default is the one that is defined by 

mwfm_name0 and mwfm_url0. 

19.4   Session management 

SC provides a new feature that allows to manage the sessions of the logged on users. This is done 

declaring inside the <web-app> tags of the web.xml file, just before the servlet’s declaration, the next 

Listener: 

<listener> 

   <listener-class> 

      com.hp.spain.futuregui.session.SessionManagerImpl 

   </listener-class> 

</listener> 

This feature is optional and will only be performed if this listener is defined. The class which implements 

the listener features belongs to the SC. 

It is also possible to determine the number of users with the same username who can be logged on the SC 

at the same time. This value is established through an attribute of the HPSA_TEAM table called 

userspersession, so it will affect to every users of the team. 

A value of 1 indicates that only one user can be logged on the SC with the same username, so the last 

logged on user will cause the log off of the first one. A value greater than 1 will have a similar effect, but 

will allow the specified number of users to be logged on. A value of 0 will set no limitation on the number 

of users with the same username logged on the SC. 



HPSA Extension Pack 

EP - Developer's Reference 

 

128 
 

Use the User Administration GUI to set the value of this attribute. 

19.5   Struts 

Nowadays there exist loads of Technologies which implement the Model-View-Controller paradigm and 

Struts is one of them. The SC bases its functionality on Struts, so its configuration is important. 

Struts provides a separation between the presentation and business layers, as is specified in the MVC 

model, so that the JSP must take care of the first, and the actions and forms (extensible Java classes which 

Struts uses) take care of the second. Struts allows, among other things, to establish validation systems and 

access to automatic actions, and is constituted by a servlet called ActionServlet which listens to all 

requests directing the flow of execution towards the corresponding action. All actions are mapped in 

configuration files whose usual name is struts-config.xml. 

The SC provides an extension to Strut’s basic servlet that searches automatically for all the configuration 

files where the different applications specify the actions and forms which constitute them, in such a way 

that all configuration files that are stored in WEB-INF/struts-config are mapped without any need to 

specify each of them in the web.xml, as happens with Strut’s ActionServlet. In order to make this extension 

of the Action Servlet available it’s necessary to indicate it between the <servlet-class>…<servlet-class> 

tags of the servlet definition. 

The name of the Struts servlet is, by common use, action. 

Also, it’s necessary to indicate a series of initial parameters which determine the servlet configuration. 

Currently the following are necessary, although there are other which can be specified (see the Struts 

documentation for more information): 

 locale: indicates whether we have to take into account the user’s operating system regional 

configuration for the internationalization of the texts. In the SC case this parameter must have 

value true as it is one of the main characteristics of the new interface. 

 umm_remote_url: indicates the URL in which the user administration module Publisher its methods 

using RMI. Specifying it is mandatory in order for the RequestProcessor can consult the execution 

permissions of the different actions. 

 check_permissions: indicates if we are going to user the RequestProcessor before executing any 

action. Currently this feature is in development, so it must be given value false. 

According to this, Strut’s extended servlet’s configuration in the web.xml is as follows: 

<servlet> 

   <servlet-name> 

      action 

   </servlet-name> 

   <servlet-class> 

      com.hp.ov.activator.mwfm.futuregui.servlet.AdvancedActionServlet 

   </servlet-class> 

   <init-param> 

      <param-name> 

         locale 

      </param-name> 

      <param-value> 

         true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

129 
 

         umm_remote_url 

      </param-name> 

      <param-value> 

         //localhost:2000/usrmngr 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         check_permissions 

      </param-name> 

      <param-value> 

         false 

      </param-value> 

   </init-param> 

   <load-on-start-up> 

      1 

   </load-on-start-up> 

</servlet> 

Alter this, in the area of the web.xml dedicated to the mapping of the servlets, we must copy the 

following: 

<servlet-mapping> 

   <servlet-name> 

      action 

   </servlet-name> 

   <url-pattern> 

      *.do 

   </url-pattern> 

</servlet-mapping> 

This allows us to refer to Strut’s actions with the .do extensions, in the same way that for the JSP we use 

the extension .jsp, for example. 

19.6   Login 

The user login system is carried out through a servlet called Login Servlet which gets its name from the 

user and his password, and communicates with the authentication module to authenticate him. Once the 

access is granted, it is obtained at any given moment the applications, menus, inventory views, and the 

operations on the views the user has access to, and other information. 

When the authentication module tells the Login Servlet that the user is valid, the next information is 

obtained: 

 Menu structure from the application environment the user has access to. This structure is kept in 

the session. 

 Inventory views and operations the user has access to. This structure is also stored in the session. 

 Datasources the user can access. Each of these datasources is stored in the session using its 

names as key. 

 Also stored in the session is the username under the key “user”. 

 Apart from the previous, the session also keeps the different MWFM in a HashMap under the key 

“mwfms”. Each wmfm uses as key its name (see the auth.properties file). Under the key 

“mwfm_session” is stored the default MWFM. In order to maintain backward compatibility, we 

also keep each MWFM in session individually, using its name as key. 



HPSA Extension Pack 

EP - Developer's Reference 

 

130 
 

To configure the Login Servlet we must indicate the name with which it will be mapped (it will necessarily 

be called login), the Java class that will implement the servlet (com.hp.spain.futuregui.login.LoginServlet) 

and the following parameters: 

 init_url: indicates the URL to which we will redirect the user when the login process ends 

successfully. In the case of the SC, the URL by default is the one for the application environment 

(/activator/jsp/future-gui/index.jsp?frst=true). It is a mandatory parameter and cannot be null or 

empty. 

 superuser_init_url: it ahs the same meaning as init_url, but in this case it only applies to suer and 

system users. If not specified, it takes the same value assigned to init_url. 

 future_gui_login_failure: indicates the URL to which we will redirect the user when the login 

process fails. In the SC case this URL points to a JSP error page (/activator/jsp/future-

gui/loginError.jsp). It is a mandatory parameter and cannot be null or empty. 

 future_gui_change_password: indicates the URL to which we will redirect the user when his 

password has been expired. 

 use_random_color: this parameter indicates whether or not we must use the eight colour palette of 

the interface. It is not mandatory and its default value is true, that is, the eight colour palette.  

 maxReturnedValues: indicates the maximum number of results that a search can show. It is not 

mandatory and its default value is 2000 results. 

 spi_user_manager_rmi_url: the RMI URL which provides methods to create users remotely. It is an 

optional parameter. Its default value if not specified is //localhost:2000/userrmi. This parameter 

becomes mandatory when there are more than one diagnostic JBoss instances running. When the 

specified URL is set to localhost or the equipment IP, the RMI will be started up by the Login 

Servlet allocated here. Since there can only be defined a single user management RMI, in this 

case any other Login Servlet allocated in any other IP should be configured to use the RMI 

configured here. The RMI service at this location provides also methods for action audit. 

As is explained on top, the Login Servlet should be configured as is shown below: 

<servlet> 

   <servlet-name> 

      login 

   </servlet-name> 

   <servlet-class> 

      com.hp.spain.futuregui.login.LoginServlet 

   </servlet-class> 

   <init-param> 

      <param-name> 

         init_url 

      </param-name> 

      <param-value> 

         /activator/jsp/future-gui/index.jsp?frst=true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         future_gui_login_failure 

      </param-name> 

      <param-value> 

         /activator/jsp/future-gui/loginError.jsp 

      </param-value> 

   </init-param> 

   <init-param> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

131 
 

      <param-name> 

         future_gui_change_password 

      </param-name> 

      <param-value> 

         /activator/SetNewUserPasswordActionFG.do 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         use_random_color 

      </param-name> 

      <param-value> 

         true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         spi_user_manager_rmi_url 

      </param-name> 

      <param-value> 

         //localhost:2000/userrmi 

      </param-value> 

   </init-param> 

</servlet> 

Once the servlet has been defined, in the section of the web.xml dedicated to the mapping of servlets we 

must copy the following: 

<servlet-mapping> 

   <servlet-name> 

      login 

   </servlet-name> 

   <url-pattern> 

      /login 

   </url-pattern> 

</servlet-mapping> 

This mapping allows us to refer to the Login Servlet from JBoss’s root directory (/activator) using the name 

login. 

From this moment on the servlet invocations will be similar to: 

http://localhost:8080/ep/login?username=xxx&password=yyy 

19.7   Multiple JBoss instances 

It is possible to start up different JBoss instances and establish different configurations for satisfying the 

client solutions. When there are more than one diagnostic JBoss instance running it is necessary to specify 

which one of them is going to provide the RMI used for the user management. Only one of the available 

JBoss instances can start it up. 

Check the description of the spi_user_manager_rmi_url parameter specified in the web.xml file for the 

Login Servlet definition. 

19.8   Flow interaction 

The servlet which permit the interaction with the user during the flow execution is used extensively and it is 

a good idea to explain its configuration, in the same way we did for the Future Tree. 

http://localhost:8080/ep/login?username=xxx&password=yyy


HPSA Extension Pack 

EP - Developer's Reference 

 

132 
 

To perform the user interaction with a running workflow the flow of execution is paused and waits for new 

orders, and the interact servlet is invoked, whose mission is to generate a JSP where all the fields the user 

must fill in are shown.  

To configure this servlet it is necessary to know the role of the following parameters: 

 customizeAskForNodeJSP: indicates whether the interaction JSP should be generated or not. 

 webRoot: indicates the directory where the interaction JSP generated by the servlet must be 

located.  

 fileSavedInfo:  it’s only useful when customizeAskForNodeJSP is true. Indicates whether the JSP 

must be stored for later use. 

 mandatory: text with which the mandatory parameters will be indicated. It is not mandatory and 

if no value is given the mandaroty parameters will appear in red. It generally has an asterisk (*) 

as value.   

 showAllInformation: indicates whether all the information relating to the flow and the node must 

be shown in the JSP. 

 submit: text that should appear in the Submit buttons. Currently this text is not used has it has 

become deprecated by Struts’ internationalization. 

 clear: text that should appear in the Delete buttons. Currently this text is not used has it has 

become deprecated by Struts’ internationalization. 

 cancel: text that should appear in the Cancel buttons. Currently this text is not used has it has 

become deprecated by Struts’ internationalization. 

 allowCancel: indicates whether the JSP should show the operation cancel option. If the value is 

false, the button will not be shown. 

The servlet’s configuration is as follows: 

<servlet> 

   <servlet-name> 

      interact 

   </servlet-name> 

   <servlet-class> 

      com.hp.spain.wflt.interact.PageGenerator 

   </servlet-class> 

   <init-param> 

      <param-name> 

         customizeAskForNodeJSP 

      </param-name> 

      <param-value> 

         true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         webRoot 

      </param-name> 

      <param-value> 

         C:/hp/jboss/server/diagnostic/deploy/hpovact.sar/activator.war 

      </param-value> 

   </init-param> 

   <init-param> 

       <param-name> 

         fileSavedInfo 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

133 
 

      </param-name> 

       <param-value> 

         true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         mandatory 

      </param-name> 

      <param-value> 

         * 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         showAllInformation 

      </param-name> 

      <param-value> 

         false 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         submit 

      </param-name> 

      <param-value> 

         Enviar 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         clear 

      </param-name> 

      <param-value> 

         Cancelar 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         allowCancel 

      </param-name> 

      <param-value> 

         true 

      </param-value> 

   </init-param> 

   <init-param> 

      <param-name> 

         cancel 

      </param-name> 

      <param-value> 

         flujo_cancelado 

      </param-value> 

   </init-param> 

</servlet> 

Apart from the definition it is necessary to include the mapping of both servlets in the web.xml. 

<servlet-mapping> 

   <servlet-name> 

      interact 



HPSA Extension Pack 

EP - Developer's Reference 

 

134 
 

   </servlet-name> 

   <url-pattern> 

      /interact 

   </url-pattern> 

</servlet-mapping> 

19.9   Taglibs 

A taglib allows the generation of code in a web page using user defined tags. It is formed by a TLD (Tag 

Library Descriptor) where the XML definition of the tags and its attributes is established, and a Java 

implementation for each tag, so the result is HTML code generated automatically in an easy way. 

19.9.1   Taglibs belonging to Struts 

The version 1.2.9 of Struts which is currently used in the SC provides various taglibs with several 

functionalities. For more detailed information about each of them refer to Strut’s documentation. 

The TLDs of these taglib are deployed in the WEB-INF and its definition inside the web.xml is as follows: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/struts-bean</taglib-uri> 

    <taglib-location>/WEB-INF/struts-bean.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/struts-html</taglib-uri> 

    <taglib-location>/WEB-INF/struts-html.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/struts-logic</taglib-uri> 

    <taglib-location>/WEB-INF/struts-logic.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/struts-nested</taglib-uri> 

    <taglib-location>/WEB-INF/struts-nested.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/struts-tiles</taglib-uri> 

    <taglib-location>/WEB-INF/struts-tiles.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/table-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/table-taglib.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/block-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/block-taglib.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/button-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/button-taglib.tld</taglib-location> 

  </taglib> 

  <taglib> 

    <taglib-uri>/tags/struts-displaytag</taglib-uri> 

    <taglib-location>/WEB-INF/displaytag.tld</taglib-location> 

  </taglib> 

</jsp-config> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

135 
 

19.9.2   Belonging to the SC 

The SC provides some taglibs that generate HTML code following the interface’s own style. All the TLDs in 

this section can be found inside the ovsa41-utilities project and are deployed in the WEB-INF. 

19.9.2.1   Button taglib 

This taglib allows the generation of buttons following the style of the SC and shows the internal text 

internationalized. 

The TLD is called button-taglib.tld and the necessary configuration is: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/button-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/button-taglib.tld</taglib-location> 

  </taglib> 

</jsp-config> 

19.9.2.2   Table taglib 

This taglib allows the generation of tables following the style of the SC. 

The TLD is called table-taglib.tld and the necessary configuration is: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/table-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/table-taglib.tld</taglib-location> 

  </taglib> 

</jsp-config> 

19.9.2.3   Block taglib 

This taglib allows the generation of information request views for the application environment. 

The TLD is called block-taglib.tld and the configuration needed is: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/block-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/block-taglib.tld</taglib-location> 

  </taglib> 

</jsp-config> 

19.9.2.4   Combotext taglib 

This taglib is a combination between a text field and a combo box. With it, any text may be typed into 

the text field, but there are some suggested options by default, as it happens with a combo box, which 

are displayed as they match the already typed text. 

The TLD is called combotext-taglib.tld and the configuration needed is: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/combotext-taglib</taglib-uri> 

    <taglib-location>/WEB-INF/combotext-taglib.tld</taglib-location> 

  </taglib> 



HPSA Extension Pack 

EP - Developer's Reference 

 

136 
 

</jsp-config> 

19.9.2.5   Display tag 

This taglib is property of Jakarta, it has not been developed by HP. It allows the generation of tables with 

more features than the table taglib, as it allows the possibility of paginating the results and to order them 

by columns either in ascending or in descending order. Also it provides functionality to retrieve the results 

in different formats, such as PDF, CSV or XLS. 

The TLD is called displaytag.tld and the configuration in the web.xml is: 

<jsp-config> 

  <taglib> 

    <taglib-uri>/tags/struts-displaytag</taglib-uri> 

    <taglib-location>/WEB-INF/displaytag.tld</taglib-location> 

  </taglib> 

</jsp-config> 

19.10   Session timeout 

The session timeout is defined in the web.xml and is the maximun amount of inactivity measured in 

minutes: 

<session-config> 

   <session-timeout> 

      100 

   </session-timeout> 

</session-config> 

19.11   Welcome page 

The welcome page is configured in the web.xml. The system by default will search in all public 

directories, so that if a user types in a URL which doesn’t match any specific page JBoss will try to find a 

page that matches the value entered here. 

Here you can specify as many welcome pages as are needed. 

<welcome-file-list> 

   <welcome-file> 

      login.html 

   </welcome-file> 

   <welcome-file> 

      index.html 

   </welcome-file> 

</welcome-file-list> 

19.12    Datasources 

A datasource is a connection pool to the database. JBoss provides an easy way to define them in an XML 

file called standalone.xml. 

By default the datasources are not kept in the user’s session, they will only be accessible through the 

servlet context. This is due to the fact that the datasources are tied to the access permissions specified in 

the User Administration Module, where the mapping between datasources and applications are defined. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

137 
 

The user’s session only stores the datasources that belong to applications that the user has been given 

permission to access (refer to the section on Roles and Applications from the Permissions chapter). Please 

refer to the documentation of the User Administration Module for more information. 

It is also possible to define datasource alias in the file alias.xml that can be found below the directory 

<<ep.war>>/WEB-INF. This file allows the user to define an alias for a pre-existent datasource. This alias 

can be used in the same way as any other datasource defined in the system.  Only the users with 

permissions to the original datasource can access to its alias. 

The xml file has the next structure: 

<alias-definition> 

 <alias>  

  <datasource-name>DatasourceOne</datasource-name> 

  <datasource-alias>DatasourceTwo</datasource-alias> 

 </alias> 

 <alias>  

  <datasource-name>DatasourceThree</datasource-name> 

  <datasource-alias>DatasourceFour</datasource-alias> 

 </alias> 

</alias-definition> 

19.13    Permissions 

The permissions are specified in the User Administration Module and are established for each role the 

user belongs to. 

The permissions granted to a user are verified only once: the moment when the user logs on. Therefore, if 

there is a change in the user’s permissions while he is logged on, the user must log in again in order for 

the changes to take effect. 

19.13.1   Users and Teams 

Teams (i.e. Groups) are used to define groups of users with the same (or at least very similar) privileges. 

A group may have from zero to n users, and may be associated to one role (futuregui) or more. Each user 

must be assigned to a group, and there can’t be any user associated to roles which are not associated to 

that group. If this situation happens, the user won’t be able to log on the SC. 

Teams may have administrators. There is no limitation on the number of administrators a team can have. 

Administrators are allowed to create, update and remove users of their own group. They can manage 

their permissions to access roles, but they are not allowed to create, update or remove roles. This feature 

is only allowed for super users. 

19.13.2   Roles and Teams 

The relationships between roles and teams determine the roles which will be accessible for the users of the 

different teams. A user will have permission to access one or more of the roles belonging to his team, but 

at least it is necessary for him to have access to the futuregui role. 

19.13.3   Roles and users 

These are the first permissions that must be established. A user can be associated to any number of roles 

and vice versa. From this moment on, the rest of the permissions are established through the roles, and 

never through the user. 



HPSA Extension Pack 

EP - Developer's Reference 

 

138 
 

Since a user must belong to a team (and only to one team), it is not allowed to establish access to roles 

which are not associated to the user’s team. If this situation is given, the user will not be able to log on the 

SC. 

19.13.4   Roles and applications 

The permissions between roles and applications determine the applications (and all the elements 

belonging to the applications, such as menus and datasources) to which the roles will have access. 

From these permissions are determined the datasources that the user will keep in the session after logging 

in: those datasources that are associated to the applications the user has access to.   

19.13.5   Roles and menus 

The permissions between roles and application menus are established in two ways. One is this, making 

the relationship directly between the roles and the menus, but as the menus belong to the applications it is 

also necessary establish the permissions to access the application that corresponds to the menu, as was 

explained in the previous section.  

These permissions only affect the application environment, which is where the application menus are 

used, but they are irrelevant to the inventory. 

19.13.6   Roles and inventory views 

The inventory views the user has access to, are defined here. Thus, a normal user will opening the 

inventory window will only have access to those views associated to one (or more) of his roles. 

19.13.7   Roles and inventory view operations 

The permissions between roles and the operation types belonging to each inventory view are set here. 

Thus, only those operations of those operation types associated to one (or more) of the user roles will be 

accessible for each user. 

19.14   GUI 

There are some features of the Inventory’s interface which can be configured. 

19.14.1   Changing view and status 

The index.jsp file can receive two optional parameters, which are typically specified along the different 

mappings in the application struts-config.xml file: 

 viewName: indicates the name of the new view which is going to be loaded. If this menu has any 

menu attached, they will be preloaded, too. The JSP file associated to this view, if any, is 

obtained from database. 

 fjsp: indicates the URL of the initial status JSP file which has to be loaded in the status space, if 

any. If no fjsp parameter is specified, a default JSP file is loaded, called blank.jsp, and provided 

with the SC. This default JSP file has no representation. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

139 
 

19.15   Access to the Inventory UI: cross launch 

The Inventory window is opened in a new navigator’s window from the SC’s applications environment by 

clicking the Inventory  Open menu. This option will not be available for a user if that user is not 

associated to the role inventory. Contact your system administrator to get these rights. 

The Inventory UI accessed is the HPSA’s using cross launch, so parameters regarding this cross launch 

must be configured in the crosslaunch.properties file: 

 hpsa.ip: the IP where HPSA is running. Note that HPSA must be started up to access the 

Inventory. 

 hpsa.port: the port where HPSA is running, typically 8080. 

19.16   Workflow Launcher 

The next sections explain every needed configuration for the WFLT. This configuration is set using the 

wflt.properties file, which in a Windows environment is placed below the 

“hp\jboss\server\diagnostic\deploy\hpovact.sar\activator.war\properties” directory. 

19.16.1   SOSA Remote Interface 

If any workflow has to be started up with SOSA the next parameters are needed in the wflt.properties in 

order to be able to invoke the SOSA remote interface: 

 wfltmanager.service.host: The computer’s IP where SOSA is running.  

 wfltmanager.service.port: The port which is being used by SOSA. 

 wfltmanager.service.name: The RMI service used by SOSA. 

Here we can see an example of this configuration where SOSA is running locally: 

wfltmanager.service.host = 127.0.0.1 

wfltmanager.service.port = 1119 

wfltmanager.service.name = RmiWFLTService 

19.16.2   Not interactive step names 

In the wflt.properties file there can be specified the different step names which shall never be considered 

as interactive nodes, so any node which name starts by any of this configured names will never be an 

interactive node. 

These parameters must be numbered starting from 0: 

wflt.not.interaction.step0 = Activate 

wflt.not.interaction.step1 = Fix 

wflt.not.interaction.step2 = Test 

wflt.not.interaction.step3 = Lock 

wflt.not.interaction.step4 = Invoke 

wflt.not.interaction.step5 = Wait 

19.16.3   ECP Command tracking configuration 

Some parameters are necessary to track the ECP commands. They must be specified in the wflt.properties 

file: 



HPSA Extension Pack 

EP - Developer's Reference 

 

140 
 

 wflt.provider.url: The URL where the ECP JMS Server has been launched 

 wflt.max.commands: The maximum number of commands which will be stored in each launched 

activation. 

 wflt.ecp.jms.connection.factory: The JMS Connection factory, this parameter it’s not mandatory. 

By default it will be “TopicConnectionFactory”. This parameter must be the same as the one 

configured in the ECP. 

 wflt.ecp.jms.destination.id = The JMS Destination Id, this parameter it’s not mandatory. By default 

it will be “/dynamicTopics/ECP.MainTopic”. This parameter must be the same as the one 

configured in the ECP. 

Here we can see an example of the values assigned to these parameters: 

wflt.provider.url = tcp://16.38.0.136:4001 

wflt.max.commands = 20 

 

As it happens in the previous section with the not interactive step names, those node names in which the 

ECP command tracking has to be performed must be specified using the properties file. For that, there are 

some numbered parameters starting from 0 (as it can be seen in the example below) where the beginning 

of the node names which must be considered as command tracking nodes are specified: 

wflt.activation.step0 = ECP 

wflt.activation.step1 = Command 

wflt.activation.step2 = Activate 

19.16.4   CCWF for the WFLT 

Each CCWF must be noticed by the WFLT to be able to track workflows on the different modules. Thus, 

for each defined CCWF, there must be a properties file with the name of that CCWF where it’s RMI URL 

will be specified using the next parameters: 

- concurrentworkflow.service.host: the IP of the MWFM host. 

- concurrentworkflow.service.port: the MWFM port. 

- concurrentworkflow.service.name: the name of the CCWF remote service. 

Note that these three parameters must be the same as the ones specified in the remote_url parameter of 

the CCWF. 

For example, in the example of the previous section the name of the CCWF is localmwfm. That means 

that there must be a localmwfm.properties file in the properties directory of the JBoss with these contents: 

concurrentworkflow.service.host = localhost 

concurrentworkflow.service.port = 2000 

concurrentworkflow.service.name = concurrent_workflows 

 

If no properties file is found for a given MWFM name, then the default URL will be used to invoke the 

CCWF: 

//localhost:2000/concurrent_workflows 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

141 
 

19.17   ECP Console 

19.17.1   Permissions 

There are two kinds of permissions that must be managed in order to use the ECP Console: the command 

filters, which allow executing the different typed commands, and the command scripts, explained in 

previous sections. 

The SC provides an administration GUI to manage these permissions. Check the sections about the ECP 

Console in the document “HPSA Extension Pack – Solution Container - User Reference” for further 

information. 

19.17.2   Command filters 

A command filter is a regular expression which matches every typed command. Only those commands 

that match a regular expression will be accepted. The other ones will become forbidden and an error 

message will be displayed for the user. 

Command filters are associated to users. Any typed command is matched with every user’s command 

filter and, if it matches one of them then it is accepted and executed. 

Check the sections about the ECP Console in the document “HPSA Extension Pack – Solution Container - 

User Reference” for further information. 

19.17.3   Scripts 

The accessible command scripts must be associated to the user and the host. Other way they will never be 

displayed in the ECP Console. 

Check the sections about the ECP Console in the document “HPSA Extension Pack – Solution Container - 

User Reference” for further information. 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

142 
 

20   Start-up 

The SC is started up along with HPSA, so once HPSA has started up properly the Solution Container will 

be available as well as HPSA. 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

143 
 

21   API Reference 

21.1   General information request views 

This kind of views allows the user to compose his searches, selecting some available attributes and 

operations and specifying the wanted value. 

There are some JavaScript objects developed for the SC which provides an easy way to generate these 

views. The JavaScript file where this objects are coded is imported in the index.jsp file, so there is no 

need to import again the JavaScript file in the JSP of the view. 

There are four objects involved in this view: DateFormat, Operation, Field and Search. 

The API of these objects is: 

k. DateFormat object 

This static object sets the date format which will be used if the calendar is needed. There are four possible 

formats: 

 DDMMYYYY (default) 

 DDMMMYYYY 

 MMDDYYYY 

 MMMDDYYYY 

It is also possible to show the hour or not. The hour can be shown in "12" or "24" (default) format. 

Methods: 

 showTime(boolean): indicates if the time must be shown with date field attributes. By default, time 

is not included. 

 setFormat(format): indicates which of the four possible formats will be used. Possible values for 

the parameter are DateFormat.DDMMYYY, DateFormat.DDMMMYYYY, DateFormat.MMDDYYYY 

and DateFormat.MMMDDYYYY. 

 setHourFormat(hourFormat): sets the hour format that will be used with all date field attributes. 

Possible values are DateFormat.HOURS_24 (default) and DateFormat.HOURS_12. 

l. Operation object 

This object gathers possible values associated to different types of attributes. It is used to simplify the 

specification of the operators for a given attribute. If an attribute has no operations explicitly attached, the 

Operation object provides a role of default operations for it,  using the attribute’s type to gather them. 

Defined operations are: 

 Operation.LESS_THAN = "<"; 

 Operation.LESS_EQUAL_THAN = "<="; 

 Operation.GREATER_THAN = ">"; 

 Operation.GREATER_EQUAL_THAN = ">="; 

 Operation.EQUAL = "="; 

 Operation.NOT_EQUAL = "!="; 



HPSA Extension Pack 

EP - Developer's Reference 

 

144 
 

 Operation.LIKE = "LIKE"; 

 Operation.P_LIKE = "%LIKE"; 

 Operation.LIKE_P = "LIKE%"; 

 Operation.P_LIKE_P = "%LIKE%"; 

But an attribute can have any other operation even though it is not defined here. Note that for the view an 

operation is only a String, it has any sense to it because this javascript code uses this operations to show 

them to the user, not just to perform the operation. 

m. Field object 

The Field object wraps each possible attribute the Search can manage. 

To define each Field, the next parameters are needed: 

 name: the text that will be shown 

 

 attName: the name of the attribute expected by the action which is going to perform the Search. 

 type: the type of the attribute. The possible values for this parameter are: 

- Field.SELECT: values for this Field are selected from a combo. 

- Field.STRING: value for this Field is a text. 

- Field.BOOLEAN: value for this Field is a boolean. 

- Field.NUMBER: value for this Field is a number. 

- Field.DATE: value for this Field is a date. If this is the case, the JSP must import 

the datetimekeeper.js file. 

- Field.IP: value for this Field is an IP. 

The public methods for this object are: 

 addOperation(type): Adds an operation to this Field. Operations are automatically added to a 

Field according to it's type when no operation is attached explicitly. For instance, if a Field 

belongs to the Field.BOOLEAN type and no operation is attached to it using neither the 

addOperation(op) nor the addOperations(aOps) methods, the Field.BOOLEAN type's operations 

are attached automatically. The parameter op is the operation to add. Any String is valid 

because it is not checked. 

 setValidationType (type): Adds a possible value for this Field. This method is only allowed for 

Fields belonging to the Field.SELECT type. Otherwise, an error is shown. The parameter value is 

the possible value for this Field. 

 addValue(value): Sets the validation type of this Field. This is used to validate the format entered 

for the values of a Field. For instance, it allows to validate a String as a Number, or checks if a 

number entered by the user is really a number. The parameter vType the validation type for this 

Field. The possible values for this parameter are the same as the types of a Field. 

Search object 

The Search object stores and shows the view. 

The next parameters are needed to define a Search object: 

 title: the title of the Search. 

 action: the action that will be invoked to perform the Search. 

The public methods for this object are: 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

145 
 

 setAddButtonText(text): Sets the Add button's text. This allows to internationalize texts. The 

parameter text is the text of the Add button. 

 setSearchButtonText(text): Sets the Search button's text. This allows to internationalize texts. The 

parameter text is the text of the Search button. 

 setFieldsText(text): Sets the text for the Fields combo. This allows to internationalize texts. The 

parameter text is the text for the Fields combo. 

 setOperatorsText(text): Sets the text for the Operations combo. This allows to internationalize 

texts. The parameter text is the text for the Operations combo. 

 setValuesText(text): Sets the text for the Values input. This allows to internationalize texts. The 

parameter text is the text for the Values input. 

 addField(field): Adds a possible Field to the Search. The parameter field is the Field to be added. 

Example 

The next code generates a view like the one in the figure below. 

var a = new Search("Bean search", "/activator/mySearch.do"); 

var f = new Field("NAME", "name", Field.STRING); 

f.addOperation(Operation.EQUAL); 

f.addOperation(Operation.LIKE); 

a.addField(f); 

f = new Field("LOCATION", "location", Field.SELECT); 

f.addOperation("%"); 

f.addOperation("BETWEEN"); 

f.addValue("UNO"); 

f.addValue("DOS"); 

a.addField(f); 

f = new Field("PUBLIC", "public", Field.BOOLEAN); 

f.addOperation(Operation.LESS_EQUAL_THAN); 

f.addOperation(Operation.LESS_THAN); 

a.addField(f); 

f = new Field("DATE", "date", Field.DATE); 

a.addField(f); 

f = new Field("IP", "ip", Field.IP); 

a.addField(f); 

a.write(); 

DateFormat.setFormat(DateFormat.MMDDYYYY); 

DateFormat.showTime(true); 

DateFormat.setHourFormat(DateFormat.HOURS_12); 

 

21.2   Information request views: Block Taglib  

These kinds of views, typical of element searches, consist of a form with several fields where the user must 

enter the information to interact with the system. 

To avoid the need for the programmers to be concerned about following the style and appearance of the 

SC the Block taglib has been developed, which allows the creation of centred search fields, in columns of 



HPSA Extension Pack 

EP - Developer's Reference 

 

146 
 

one or two fields, and with a maximum of 5 fields (more than 5 can also be shown, but the user’s screen 

only has 1024 pixel width resolution some of the columns will be lost).  

The Block Taglib is made out of the following tags: 

Space Tag 

This tag indicates the beginning and end of the block space. It does not have any values; its usefulness is 

limited to marking the border of the taglib. Every use of the Block taglib must begin and end with this tag.  

<block:space> 

   ... 

</block:space> 

It accepts the following attributes: 

 align: indicates the default alignment of the text. It can take the values left (default value) center 

and right. 

 title: indicates the title of this view. The title is showed on an upper bar over the blocks of the 

view. 

 key: indicates the key of the internationalization file where the title is found. This attribute has no 

sense if the bundle attribute is not specified. 

 bundle: indicates the name of the internationalization file where the title is found. This attribute 

has no sense if the key attribute is not specified. 

Wall Tag 

The blocks must be placed in columns or walls, of one or two blocks. This tag also has no values; it is 

used to delimit the roles, but is necessary both when the role has one block or two. 

<block:wall> 

   ... 

</block:wall> 

It can have the following attributes: 

 width: it shows the width of the column. If no value is assigned a default one is taken, but it’s 

important to take into account that it must match the corresponding width attribute from the Block 

tag. 

Block Tag 

This is the tag that establishes the block itself. If must always appear inside a wall tag.  

It can have the following attributes:  

 title: the block title. It is the text that is shown just above the search field. 

 key: it indicates the entry of a property file that contains the internationalized title for this block. If 

this attribute is present, then the bundle tag must also have a value. 

 bundle: it indicates the package where the property file from which the key value is obtained. 

Therefore the key attribute must have a value.  

 verticalAlign: the vertical position of the block. It can take three possible values: top, center or 

bottom. It is only useful when there is only one block inside the column. If there are two blocks this 

attribute is irrelevant. 

 width: indicates the block width. If it is not indicated a default value is assigned, but if it does 

have a value then it’s important that it corresponds to the similar attribute from the wall tag. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

147 
 

Example 

The following example generates a view with two columns, two blocks in the first column and one in the 

second: 

 

<block:space> 

   <block:wall> 

      <block:block title="Nombre"> 

         <input type=text value=""> 

      </block:block> 

      <block:block title="Tipo de equipo"> 

         <select style="width:145"> 

            <option value="1">Riverstone</option> 

            <option value="2">Alcatel</option> 

            <option value="3">Otro</option> 

         <select> 

      </block:block> 

   </block:wall> 

   <block:wall> 

      <block:block title="Localización" verticalAlign="center"> 

         <select style="width:145"> 

            <option value="1">Madrid</option> 

            <option value="2">Valencia</option> 

            <option value="3">Chimbamba</option> 

         <select> 

      </block:block> 

   </block:wall> 

</block:space> 

21.3   Buttons: Button taglib 

The application environment follows the idea that you can only use buttons in the views, but never in the 

status. To do any operation from a status JSP we have the status menu. 

To generate buttons that blend with the SC interface the Button Taglib has been developed composed of 

just one tag: 

Button tag 

It is the only tag of the taglib. It generates a button that matches the look & feel of the SC. It accepts the 

following attributes: 

 value: the text that must be shown with the button. It automatically receives the » prefix (unless the 

string value that is given with this attribute already has the symbol). If no specific text is given for 

the button then the default value is the double bigger-than symbol. 

 key: It indicates the entry for a property file that contains the internationalized text for this button. 

When this value is defined it is mandatory to also have a value for the bundle attribute. 

 bundle: indicates whereabouts of the package where the property file from which the value set 

for key is obtained. Therefore, it’s necessary to indicate a value for the key attribute. 



HPSA Extension Pack 

EP - Developer's Reference 

 

148 
 

 onclick: string with the invocation that must be produced when this event is detected on the 

button. If this attribute contains quote symbols (“) (not apostrophes, these aren’t a problem) are 

substituted by apostrophes.  

 width: the button width. If none is indicated, then the button’s size is resized depending on the 

text. 

 noRaquo: boolean that indicates whether the prefix » must appear in front of the button’s text. The 

default value is false, which indicates that this value must be shown.  

 type: string that indicates the button type. It can take the values: “button”, “submit” and “reset”. 

The appearance of both is similar, but the first creates a traditional button (<input type=button>) 

and the second a submit button for the associated form (<input type=submit>). If no value is given 

for this attribute, then the default value is “button”. 

Examples  

Basic button with no text 

Generates a button similar to that in figure 13.  

 

The code necessary to generate this button is:  

<btn:button onclick="alert('Hello, world!!!');"/> 

 Button with text  

Generates a button similar to that in figure 14.  

 

The code necessary to generate this button is:  

<btn:button value="Say Hello" width="100" onclick="alert('Hello, 

world!!!');"/> 

Button with internationalized text  

We can generate a button such as the one in Figure 2 that shows the text in the language associated with 

the user.  

Let’s suppose that in the struts-config.xml file of the application we are developing we have mapped the 

property file with the name ApplicationResourcesEJ. The button’s internationalization would be:  

<btn:button key="button.salutation" bundle="ApplicationResourcesEJ" 

width="100" onclick="alert(Hello, world!!!');"/> 

21.4   Information Presentation Views 

The information presentation views regularly show a great amount of data that due to the confinement of 

the space should be condensed as much as possible.  

To aid with the development of these kind of views, whose design complication is quite high, an API exists 

(menuInfo.js) based on JavaScript objects that are in charge of showing the data correctly. This file is part 

of the index.jsp page and because all the views correspond to JSPs that are embedded inside index.jsp 

the access to the API objects contained in menuInfo.js is direct from the view JSP.  

An Information Presentation View looks similar to figure 15. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

149 
 

 

As can be seen, this representation of the information is divided in three big main blocks:  

 The main information is the one that will grab the user’s attention initially and is shown at the 

beginning when the view is loaded.  

 The secondary information can be composed of at most of two elements, and refer first of all to 

the information associated with the main information. By default the first of these is always shown 

first, but you can see one or the other by clicking on the column titles (in the image Titulo1 and 

Titulo2) of the main information. The secondary information does not have to be present 

necessarily, and when none is specified the main information is extended automatically to occupy 

the whole width of the screen.  

 The extended information contains information that does not fit in any of the other or that for 

whatever reason is better shown in this way. It can be associated to only one attribute and not to 

a main or secondary element. This information is hidden when the view loads and in order to 

show it it is necessary to click the button for showing/hiding this particular extended information.  

The figure 16 shows the view elements that interact with the user:  

 

where:  

 A: Main element title.  

 B: Column titles, that show one or the other secondary information  

 C: Title for the secondary element that is being shown  

 D: Title for the extended element that is being shown.  

 E: Buttons for the showing/hiding of the extended information.  

 F: Truncated text, which can be seen completely by putting the cursor over it.  

 G: Button for the hiding of the extended information that is being shown.  

 H: Attributes, composed of name/value pairs. 

The API for the Information Presentation View is composed of four JavaScript objects: 

 MainMenuInfo: generates the main element. 

 SecondaryMenuInfo: generates the secondary elements. 

 ExtMenuInfo: generates the extended information. 

 MenuInfoWriter: is in charge of showing everything on screen. 



HPSA Extension Pack 

EP - Developer's Reference 

 

150 
 

MainMenuInfo object 

The MainMenuInfo object constitutes the core of the information presentation views. It is the only object, 

apart from MenuInfoWriter, that must appear necessarily. The SecondaryMenuInfo and ExtMenuInfo 

instances, however, can exist or not depending no the needs of the data to be shown.  

This object provides a matrix representation of the name-value pairs that form the view information. Once 

all the matrix cells have been filled in the data will be shown on the web page as a table.  

A simple example of use of the MainMenuInfo object is shown below. In it the object constructor is 

invoked, a title is assigned and several name-value attributes are established.  

// Constructor 

var mmi = new MainMenuInfo(); 

// Título 

mmi.addTitle("My object title", null); 

// Atributos 

mmi.addAttribute("First name att", "First value", 0, 0, null); 

mmi.addAttribute("Another name", "Another value", 2, 0, null); 

... 

mmi.addAttribute("Last name att", "Last value, allocated at the right side", 

6, 1, null); 

Constructors  

 MainMenuInfo()  

Methods  

 public void addTitle(String title, ExtMenuInfo extensibleObj) – Sets the main title for the object.  

     Parameters:  

- title - the object’s title.  

- extensibleObj - the ExtMenuInfo object associated. If null, this object won’t 

have any extended information associated with it. If it is not null then a 

button appears to the right of the object’s title which will allow hiding or 

showing the associated extended information.  

 public void addColumnTitle(String title, String/int columnNumber) – Sets the titles for the fourth or 

sixth columns of the object. The presence of these titles allows showing one of the two possible 

secondary information available (see SecondaryMenuInfo).  

     Parameters:  

- title – the title for the fourth or sixth columns of this object. If null, the default 

title shown is "Column title not found".  

- columnNumber – the number of the column the title corresponds to. It cannot 

be null. In fact, it can only acquire two possible values: 4 or 6, as only these 

two columns can have titles.  

 public void addAttribute(String title, String value, String/int nameX, String/int nameY, 

ExtMenuInfo extensibleObj) – Adds a name-value pair to the object. The name of the attribute is 

set in the matrix cell corresponding to the position indicated by the parameters (nameX, nameY), 

while the value is situated in the cell (nameX + 1, nameY). Each name-value pair occupies two 

consecutive cells.  

If the parameter (title parameter) or the value (value parameter) where null they would be 

replaced for the text "Name not found" or "Value not found", but the process does not stop, it 

simply shows a warning message to inform the programmer of the situation.  

http://puedoreiniciar/OvsaWiki/index.php?title=SecondaryMenuInfo


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

151 
 

If the coordinates nameX or nameY where null then the process stops, any future invocation to 

any other method of the object is ignored and a message is shown to warn about the problem.  

The same thing happens if the coordinates exceed the limits allowed. The coordinate established 

by nameX can take values from 0 to 7, both included, and nameY between 0 and 5, both 

included. This means that the matrix representations of this object have at most 8 columns and 6 

rows.  

As each name-value pair occupies two cells, the nameX coordinate must necessarily be an even 

number, starting the count with 0. For example, the coordinates (0,0), (0,1) or (2,4) are valid, 

but the coordinate (1,2) is not valid. If this is not followed, a future invocation of this method 

might result in an overwriting of the name or value established here. If the following JavaScript 

piece of code is examined:  

myMainMenuInfoObj.addAttribute("nameAtt0", "valueAtt0", 0, 0, null); 

myMainMenuInfoObj.addAttribute("nameAtt1", "valueAtt1", 1, 0, null); 

the result would be incorrect, as the valueAtt0 value of the first line has been located in the (1,0) 

coordinate, the same coordinate that the second line sets with the name nameAtt1. The correct 

way to do it is:  

myMainMenuInfoObj.addAttribute("nameAtt0", "valueAtt0", 0, 0, null); 

myMainMenuInfoObj.addAttribute("nameAtt1", "valueAtt1", 2, 0, null); 

The matrix that is filled with name-value pairs is similar to:  

 
Parameters:  

- name - the attribute name.  

- value - the value associated with the name of the attribute.  

- nameX - the row where the name must be situated.  

- nameY - the column where the name must be situated.  

- extensibleObj – the object with the extended information associated with 

this attribute. If the attribute does not have extended information it will be 

null. If not, to the right of the button a button will appear to the right of the 

attribute name that will allow the hiding/showing of the extended 

information.  

 public void addScrollableCell(String title, int initRow, int initColumn, int width, int height, String 

fromTextareaId) – Shows a multiple line field (a non editable textarea) situated in the cells whose 

coordinates are given by initRow and initColumn and whose width and height are, respectively, 

width y height. Any name-value pair specified in the cells that this element overshadows will be 

hidden by it.  

This element is used when the type of information to be shown consists of a very long text and 

that might include any mix of characters such as colons or line feed.  

To avoid having to escape the potentially problematic characters as the ones cited before, a final 

parameter has been included in this method that corresponds to the identifier of the hidden 

textarea where the information we want to show here should have been stored previously.  



HPSA Extension Pack 

EP - Developer's Reference 

 

152 
 

Let’s put an example. We need to show an attribute "Observations" that contains the following:  

This text 

"contains" dangerous characters 

and line feeds. 

What we will do is to write this in a textarea hidden from our view. Like this:  

<textarea id="myObservations" 

style="visibility:hidden"> This text 

"contains" dangerous characters 

and line feeds. 

</textarea> 

This, obviously, must be outside any <script>...</script> tags. 

Later, when we specify our MainMenuInfo object and we invoke the addScrollableCell method, 

we pass as fromTextareaId parameter the value "myObservations". Like this: 

mmi.addScrollableCell("Observations", ..., 

"myObservations"); 

Parameters: 

- title - the multi-line attribute title. This string is shown over the multi-line text. If 

the textbox is situated in row number 0 the title is not shown. 

- initRow - the first row where the multi-line attribute will be shown. 

- initColumn - the first column where we want to show the multi-line attribute. 

- width - the number of columns (width) of the multi-line attribute. 

- initRow – the number of rows (height) of the multi-line attribute. 

- fromTextareaId – the hidden textarea identifier from with the text of this multi-

line attribute will be copied. 

SecondaryMenuInfo object 

This object makes reference to the secondary information that can be shown optionally in the right panel 

of the information representation view. Due to the fact that it is optional, when no object of this type is 

specified for the view in the main information contained in MainMenuInfo it expands to occupy the whole 

view’s width.  

The secondary information is shown vertically, like a one column table.  

As can be seen from the MainMenuInfo specification it is possible to establish two different instances of this 

object with completely separate secondary information. At each moment only one of them will be visible. 

The MenuInfoWriter object establishes which of them will be visible when the page loads and which will 

remain hidden at the beginning at the start.  

A basic example of secondary information specification is:  

<script> 

// Constructor 

var smi = new SecondaryMenuInfo(); 

// Title 

smi.addTitle("Networks"); 

// Atributos 

smi.addAttribute("Network 1", null, 0, null, null); 

smi.addAttribute("Network 2", null, 1, null, null); 

smi.addAttribute("Network 3", null, 2, null, null); 

... 

smi.addAttribute("Network N", null, N, null, null); 

</script> 

Constructors  

 SecondaryMenuInfo() 

http://puedoreiniciar/OvsaWiki/index.php?title=MainMenuInfo
http://puedoreiniciar/OvsaWiki/index.php?title=MainMenuInfo
http://puedoreiniciar/OvsaWiki/index.php?title=MenuInfoWriter


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

153 
 

Methods  

 public void addTitle(String title) – Sets the main title of the secondary information.  

Parameters:  

- title – the secondary information title.  

 

 public void addAttibute(String name, ExtMenuInfo extensibleObj, int position, String action, String 

target) - Adds an element to the secondary information.  

Parameters:  

- name - the name of the element.  

- extensibleObj - the object with the extended information associated with this 

element, if any is given. When none is specified the value for this parameter 

is null. The existence of extended information associated to an element 

results in the presence of a button to show/hide this information.  

- position – the element’s position inside the element column that constitutes 

the extended information. It can be null, in which case the element is added 

to the end of the existing ones.  

- action – indicates the URL or JavaScript function that must be invoked when 

the user clicks on the element. It can be null, in which case clicking on the 

element will have no effect.  

- target – indicates the physical place where the URL must be shown when 

clicking on the element. It can be null, in which case the default value is 

"_self", that is, the same page we are in, which would be result in a change 

of view. The possible values for this attribute are:  

- "_self": the URL will appear in the same window 

we are in, which will result in a change of view.  

- "_blank": the URL will appear in a popup 

window.  

- "fjsp": the URL will appear in the space reserved 

for status. "fjsp" is the iframe name dedicated for 

this use. This results in a status change.  

- "_js": the URL corresponds to a JavaScript function 

that will be invoked when the user clicks on the 

element. 

ExtMenuInfo object 

This object allows the representation of extended information of other objects or of other object’s 

elements.  

It is not shown from the start, but is spread below the main information when it is needed.  

The way to represent the information is through a matrix, in the same way as happened with the main 

information (see MainMenuInfo), and is also composed of name-value pairs.  

A simple example for this object is:  

var emi = new ExtMenuInfo(); 

emi.addTitle("System components "); 

emi.addAttribute("Port 1", "Gigabyte", 0, 0); 

emi.addAttribute("Port 2", "Gigabyte", 0, 1); 

emi.addAttribute("Network card", "Ethernet", 0, 2); 

Constructors 

http://puedoreiniciar/OvsaWiki/index.php?title=ExtMenuInfo
http://puedoreiniciar/OvsaWiki/index.php?title=MainMenuInfo


HPSA Extension Pack 

EP - Developer's Reference 

 

154 
 

 ExtMenuInfo() 

Methods 

 public void addTitle(String title) – Sets the main title for the secondary information. 

Parameters: 

- title - the title for the secondary information. 

 public void addAttribute(String name, String value, int nameX, int nameY) - Adds a new name-

value pair to this extended information which will be put on the cell whose coordinates are 

(nameX, nameY). 

Parameters: 

- name - the name of the attribute. If null, the default value is "Name not 

found".  

- value - the attribute’s value. If null, the default value is "Value not found".  

- nameX – the X coordinate where the name of the attribute will be set. As the 

value will be set in the next cell to the right, the X coordinate implicit for the 

value will be nameX + 1. It cannot be null. The possible values go from 0 to 

7 both included.  

- nameY – the Y coordinate is the attribute’s name. As the value will be shown 

in the next cell, the Y coordinate is implicit for the attribute’s value and will 

have the same value nameY. It cannot be null, the possible values go from 0 

to 3, both included.  

 public void addScrollableCell(String title, int initRow, int initColumn, int width, int height, String 

fromTextareaId) - Shows a multi-line field (a non editable textarea) situated in the cell whose 

coordinates are given by initRow and initColumn and whose width and height are width and 

height. Any name-value specified that this element will overshadow will remain hidden.  

This element is used when the information type we need to show can have a very long text that 

can include any kind of characters, such as line feed or double quotes.  

With the goal to escape the potentially problematic characters such as the ones mentioned 

before, this method includes a parameter that corresponds to the hidden textarea where the text 

to be shown here will have been previously set.  

Lets show an example. We need to show the "Observations" attribute that contains the following:  

This text 

Contains "dangerous" characters 

and line feeds.  

What we will do is write this in a textarea hidden from our view. Like this:  

<textarea id="myObservations" 

style="visibility:hidden"> This text 

Contains "dangerous" characters 

and line feeds. 

</textarea> 

This, obviously, must appear outside any <script>...</script> tags.  

Later, when we are specifying our ExtMenuInfo object and we invoke the addScrollableCell 

method, such as the fromTextareaId parameter we will send "myObservations". Like this:  

emi.addScrollableCell("Observations", ..., 

"myObservations"); 

Parameters: 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

155 
 

- title - the multi-line attribute title. This string is shown over the multi-line text. If 

the textbox is situated in row number 0 the title is not shown. 

- initRow - the first row where the multi-line attribute will be shown. 

- initColumn - the first column where we want to show the multi-line attribute. 

- width - the number of columns (width) of the multi-line attribute. 

- initRow – the number of rows (height) of the multi-line attribute. 

- fromTextareaId – the hidden textarea identifier from with the text of this multi-

line attribute will be copied.  

MenuInfoWriter object 

This object doesn’t have its own visual representation; it is in charge of showing the different objects 

defined.  

It only has one write method that takes care of invoking in the right way the different similar names that 

form the View Representation.  

Supposing a MainMenuInfo object has been defined, stored in mmi, and two SecondaryMenuInfo objects, 

stored in smi and dmi respectively, the way to use this method is:  

new MenuInfoWriter(mmi, smi, dmi).write(); 

Constructors  

 MenuInfoWriter(MainMenuInfo mainMenuInfo, SecondaryMenuInfo secObj1, 

SecondaryMenuInfo secObj2)  

Parameters:  

- mainMenuInfo – the MainMenuInfo object’s view representation information.  

- secObj1 - the SecondaryMenuInfo object’s view representation information 

that must be shown initially.  

- secObj2 - the SecondaryMenuInfo object’s view representation information 

that must be hidden initially.  

Methods  

 public void write() – Shows the view’s representation on screen. 

Examples 

Only with main information 

For this example we are going to create a view’s information representation made up of only main 

information.  

Let’s suppose that we simply have to show a user’s data: username, description, real name, company, 

whether he is a restricted user or not and his preferred language.  

Let’s remember we are developing a view’s JSP and therefore, that it must not constitute a whole web 

page, as it will be embedded inside the <body>...</body> tags of index.jsp. If we include these tags 

inside the view’s JSP the final result will be an error, so it is important to assume that we are developing 

the body or the index.jsp already. 

Let’s remember also that index.jsp already includes in its header the invocation for the JavaScript file 

(menuInfo.js) that contains the necessary objects to generate the information representation views, so we 

don’t need to include them again in our view’s JPS. 

Therefore, the only thing we must do in this case is to invoke the main information element’s constructor 

(MainMenuInfo), and to establish a title for the information we want to show and to add the necessary 

attributes in the preferred positions.  

http://puedoreiniciar/OvsaWiki/index.php?title=MainMenuInfo
http://puedoreiniciar/OvsaWiki/index.php?title=SecondaryMenuInfo
http://puedoreiniciar/OvsaWiki/index.php?title=MainMenuInfo


HPSA Extension Pack 

EP - Developer's Reference 

 

156 
 

<script> 

// Constructor invocation 

var mmi = new MainMenuInfo(); 

// Setting the title 

mmi.addTitle("User data", null); 

// We add the attributes starting from the leftmost 

mmi.addAttribute("Nombre", "operador", 0, 0, null); 

mmi.addAttribute("Nombre real", "John Smith", 0, 1, null); 

mmi.addAttribute("Compañía", "HP", 0, 2, null); 

mmi.addAttribute("Descripción", "Operador de sistemas", 0, 3, null); 

mmi.addAttribute("Restringido", "No", 0, 4, null); 

// We put the language in the first cell of the second column 

mmi.addAttribute("Lenguaje", "Castellano", 2, 0, null); 

// We invoke the object that composes and writes or view. 

new MenuInfoWriter(mmi, null, null).write(); 

</script> 

With this code, the final result is shown below.  

 
Main information with the extended view 

In this case we are going to complicate the view’s representation a little by establishing two possible 

pieces of extended information. 

In the previous example we were showing user’s information: username, real name, etc., but now we also 

want to show the information that doesn’t have to appear all the time but which can be consulted when 

needed, so we use extended information. Therefore, we can establish as extended information the user’s 

measurements, his height, size and weight. 

But we also want to be able to consult the extended information about the company he works for, so for 

this attribute we will associate more extended information where we will be able to consult the antiquity, 

achievements and things like this. 

The first thing we have to do is to define both pieces of extended information. For this we make use of the 

ExtMenuInfo object. 

<script> 

// We define the extended information with the user’s measurements 

// We invoke the constructor 

var emi0 = new ExtMenuInfo(); 

// We establish the title for this extended information 

emi0.addTitle("User’s measurements"); 

// We establish the height and weight in the first cells of the first // 

column 

 

emi0.addAttribute("Height", "185 cm", 0, 0); 

emi0.addAttribute("Weight", "80 kg", 0, 1); 

// We define the extended information with all the company data 

// Invoke the constructor 

var emi1 = new ExtMenuInfo(); 

// Set the title for this extended information 

emi1.addTitle("Company data"); 

// We set the information we need for the company 

emi1.addAttribute("From", "1902", 0, 0); 

emi1.addAttribute("Country", "EEUU", 2, 0); 

http://puedoreiniciar/OvsaWiki/index.php?title=ExtMenuInfo


HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

157 
 

emi1.addAttribute("State", "California", 2, 1); 

emi1.addAttribute("Profession", "Informática", 2, 2); 

emi1.addAttribute("Activation", "Madrid", 4, 0); 

emi1.addAttribute("City", "Las Rozas", 4, 1); 

emi1.addAttribute("Address ", " Vicente Aleixandre", 4, 2); 

emi1.addAttribute("Department", "Telco", 4, 3); 

</script> 

Now we will define the main information in a similar way we did for the first example, but associating the 

extended information we just defined. 

<script> 

// Constructor invocation 

var mmi = new MainMenuInfo(); 

// We establish the title and we associate the extended user  

// information 

mmi.addTitle("User data", emi0); 

// We add the attributes starting with the leftmost column 

mmi.addAttribute("Username", "operador", 0, 0, null); 

mmi.addAttribute("Real name", " John Smith ", 0, 1, null); 

// We associate to this attribute the extended information 

mmi.addAttribute("Company", "HP", 0, 2, emi1); 

mmi.addAttribute("Description", "Operador de sistemas", 0, 3, null); 

mmi.addAttribute("Restricted", "No", 0, 4, null); 

// We set the language in the first cell of the second column 

mmi.addAttribute("Language", "Castellano", 2, 0, null); 

// We invoke the object that composes and shows our view. 

new MenuInfoWriter(mmi, null, null).write(); 

</script> 

With the previous code we create a View with the initial appearance as that of the figure below. 

 
If the user clicks on the arrow situated to the right of the title the user’s extended attributes are shown, as 

can be seen below. 

 
And if we finally click on the arrow situated to the right of the "Company" attribute the extended data 

about the user’s company is shown. 

Initial information and secondary information 

We are going to complicate a little the example that we are in charge with now, and apart from seeing 

the user’s data, we are going to show as extended information the roles he belongs to.  

As the definition order of the main and secondary information is unimportant, we can define any of them 

first.  

The first thing we are going to do is to define the secondary information making use of the 

SecondaryMenuInfo object. Let’s suppose the user belongs to three roles: Operator, Administrator and 

http://puedoreiniciar/OvsaWiki/index.php?title=SecondaryMenuInfo


HPSA Extension Pack 

EP - Developer's Reference 

 

158 
 

Demo. Also, when we click over the Administrator and Operator roles we want to access the URL 

getRoleData.do, whose result will be shown in the page we are in, that is, we would jump to a completely 

different view, and when the user clicks on the Demo role, we want to invoke the JavaScript function 

called jumpToStatus() which will show us the user singing his companies hymn to his heart’s content.  

We first define the jumpToStatus() function: 

<script> 

function jumpToStatus() { 

   // Code necessary to view the user singing the hymn... 

   ... 

} 

</script> 

Later we define the secondary information:  

<script> 

// Constructor invocation 

var smi = new SecondaryMenuInfo(); 

// We establish the title for the secondary information 

smi.addTitle("Associated Roles "); 

// Setting the roles the user belongs to 

smi.addAttribute("Operator", null, 0, "getRoleData.do", "_self"); 

smi.addAttribute("Administrator", null, 1, "getRoleData.do", "_self"); 

smi.addAttribute("Demo", null, 2, "jumpToStatus()", "_js"); 

</script> 

Now we define the main information exactly the same as we did in the first or second examples, 

depending on whether we want the extended information to appear or no.  

When we invoke the MenuInfoWriter Object we will have to indicate the presence of both the main and 

the secondary information.  

<script> 

// Constructor invoked 

var mmi = new MainMenuInfo(); 

// Title establishedEstablecemos el título 

mmi.addTitle("User’s Data", null); 

// We add the attributes starting from the leftmost column 

mmi.addAttribute("Name", "operador", 0, 0, null); 

mmi.addAttribute("Real name", "John Smith", 0, 1, null); 

mmi.addAttribute("Company", "HP", 0, 2, null); 

mmi.addAttribute("Description", "Operador de sistemas", 0, 3, null); 

mmi.addAttribute("Restricted", "No", 0, 4, null); 

// We set the language in the first cell of the second column 

mmi.addAttribute("Language", "Castellano", 2, 0, null); 

// We invoke the object that composes and shows the view. 

new MenuInfoWriter(mmi, smi, null).write(); 

</script> 

This code’s result is shown below. 

 
Main and secondary information with extended 

We are going to complicate things further and now we are going to let the roles that are part of the 

secondary information to have extended information.  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

159 
 

The first thing to do in this case is to define de extended information of the Operator, Administrator and 

Demo roles.  

<script> 

// We define the extended information for the Operator role 

// Constructor invocation 

var emi0 = new ExtMenuInfo(); 

// Set the title for this secondary info 

emi0.addTitle("Operator Role "); 

// Set the data for the Operator Role 

emi0.addAttribute("Users", "2", 0, 0); 

emi0.addAttribute("Performances", "5", 0, 1); 

// We define the extended info for the Administration role 

// Constructor invocation 

var emi1 = new ExtMenuInfo(); 

// We set the title for this extended info 

emi1.addTitle("Administrator Role"); 

// We set the data for the Administrator role 

emi1.addAttribute("Users", "1", 0, 0); 

emi1.addAttribute("Performances", "21", 0, 1); 

// We set the extended information for the Demo role 

// Constructor invocation 

var emi2 = new ExtMenuInfo(); 

// We set the title for this extended information 

emi2.addTitle("Demo role "); 

// We set the information we need to know about this role 

emi2.addAttribute("Users", "1", 0, 0); 

emi2.addAttribute("Performances", "5", 2, 0); 

</script> 

Once defined we proceed like in the example number 3, but taking into account that now the roles 

possess extended information and we need to indicate it the code.  

We first define the jumpToStatus() function:  

<script> 

function jumpToStatus() { 

   // Code necessary to view the user singing the hymn... 

   ... 

} 

</script> 

Then we define the secondary information, associating the extended information for each role:  

<script> 

// Constructor invocation 

var smi = new SecondaryMenuInfo(); 

// Set the title for the secondary information 

smi.addTitle("Associated roles"); 

// Set the roles the user belongs to 

smi.addAttribute("Operator", emi0, 0, "getRoleData.do", "_self"); 

smi.addAttribute("Administrator", emi1, 1, "getRoleData.do", "_self"); 

smi.addAttribute("Demo", emi2, 2, "jumpToStatus()", "_js"); 

</script> 

Now we define the main information exactly the same as we did in the first or second examples, 

depending on whether we want the extended information to appear or no.  

When we invoke the MenuInfoWriter Object we will have to indicate the presence of both the main and 

the secondary information.  

<script> 



HPSA Extension Pack 

EP - Developer's Reference 

 

160 
 

// Construction invoked 

var mmi = new MainMenuInfo(); 

// Setting the title 

mmi.addTitle("Datos de usuario", null); 

// We add the attributes starting with the leftmost column 

mmi.addAttribute("Nombre", "operador", 0, 0, null); 

mmi.addAttribute("Nombre real", "John Smith", 0, 1, null); 

mmi.addAttribute("Compañía", "HP", 0, 2, null); 

mmi.addAttribute("Descripción", "Operador de sistemas", 0, 3, null); 

mmi.addAttribute("Restringido", "No", 0, 4, null); 

// We put the language on the first cell of the second column 

mmi.addAttribute("Lenguaje", "Castellano", 2, 0, null); 

// We invoke the object that forms and composes our view. 

new MenuInfoWriter(mmi, smi, null).write(); 

</script> 

This code’s result is shown in the figure below, where you can see that the entries for the secondary 

information possess a button to spread the extended information associated to them. 

 
Main information and two secondary info 

This example is an extension of the third example, very similar to it but with the existence of two 

secondary info instead of one.  

The major difference in this case, is that apart from having to define the two secondary information, we 

have to establish column titles in the main information depending on the current secondary information 

selected. The usual in this case is that column 4 (and 5) show main information related to the associated 

secondary and that columns 6 (and 7) do the same for their info.  

The secondary information of the roles will be identical to the one we have already seen.  

First we define jumpToStatus():  

<script> 

function jumpToStatus() { 

   // Necessary code for the user singing the hymn... 

   ... 

} 

</script> 

Then secondary info is defined:  

<script> 

// Constructor invocation 

var smi = new SecondaryMenuInfo(); 

// Title is set for the secondary info 

smi.addTitle("Associated roles"); 

// Roles the user belong to 

smi.addAttribute("Operator", null, 0, "getRoleData.do", "_self"); 

smi.addAttribute("Administrator", null, 1, "getRoleData.do", "_self"); 

smi.addAttribute("Demo", null, 2, "jumpToStatus()", "_js"); 

</script> 

Now we proceed to define the secondary information. Let’s say in this case we want to show the names 

of the applications the user has access to.  

<script> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

161 
 

// Constructor invocation 

var smi1 = new SecondaryMenuInfo(); 

// Set the title for the secondary info 

smi1.addTitle("Aplications"); 

// We set the application the user has access to 

smi1.addAttribute("GdC", null, 0, null, null); 

smi1.addAttribute("Diagnostic", null, 1, null, null); 

</script> 

Now we define the main information exactly the same as we did for the first and second examples, 

depending on whether we want to show the secondary information.  

When the object MenuInfoWriter is invoked we will have to indicate the presence of both the main and 

secondary info.  

<script> 

// Constructor invocation 

var mmi = new MainMenuInfo(); 

// We set the title and we associate the user’s extended info 

mmi.addTitle("User’s data", null); 

// We set the title for the fourth column 

mmi.addColumnTitle("Roles", 4); 

// We set the title for the sixth column 

mmi.addColumnTitle("Applications", 6); 

// We add the attributes starting from the leftmost 

 

mmi.addAttribute("Username", "Arlaukas", 0, 0, null); 

mmi.addAttribute("Real name ", "David Phine", 0, 1, null); 

// For the company attribute we associate the extended information 

mmi.addAttribute("Company", "RMFC", 0, 2, null); 

mmi.addAttribute("Description", "Company Description ", 0, 3, null); 

mmi.addAttribute("Restricted", "No", 0, 4, null); 

// We set the language in the first cell of the second column 

mmi.addAttribute("Language", "Catalan", 2, 0, null); 

// We invoke the object that forms and shows the view, but this time we 

indicate the presence of the secondary information. 

new MenuInfoWriter(mmi, smi0, smi1).write(); 

</script> 

The initial result for this code is shown below.  

 
If we now click on the "Applications" title the secondary information will be shown, the one about the 

applications. 



HPSA Extension Pack 

EP - Developer's Reference 

 

162 
 

 

21.5   Table Taglib 

This taglib, designed specially for the SC, allows the generation of simple tables, that don’t require 

ordering by columns or result pagination. 

In order to use this taglib it is necessary to have defined it before in the web.xml (see section 4.8.3.2 for 

more information). 

The taglibs are used assigning them a prefix such that the JSP’s interpreter can recognize them each time 

they are found. In the case of the Table Taglib the prefix is "table", so each time the JSP’s interpreter finds 

"<table:...>" it will know it must interpret it according to the taglib’s definition. To know what it must do it 

is mandatory to indicate the following line at the beginning of the JSP that is going to use the taglib:  

<%@ taglib uri="/WEB-INF/table-taglib.tld" prefix="table" %> 

Also, the tables that are generated with the Table Taglib use the SC’s style, so it is also necessary to 

include the "subestilosX.css" stylesheet inside the JSP (please note that the X must be substituted for the 

random colour of the SC).  

The SC’s tables possess a certain format that can have small changes, but whose final appearance is 

always the same. This makes all tables used in the SC to be declared initially in a way similar to this:  

<table border="0" cellSpacing="2" cellPadding="2" width="90%"> 

As this heading is the same every single time, the best idea is to use a taglib that generates it 

automatically by just changing the previous line for:  

<table:table> 

The Table Taglib is very simple and is made up of only five tags: table, header, row, cell and separator. 

Let’s see each of them together with all the possible attributes they can have and also see a few 

examples, which will become useful. 

21.5.1   TableTag 

This generates the initial code for a table. It possesses some attributes that can modify to a certain degree 

the basic table format of the SC. They are:  

 width: determines the table width. Its default value is "90%". It can acquire all the values of the 

traditional HTML tables, allowing both percentages and pixel or point measurements. You must 

take into account that the tables can be deformed and if the cell width is bigger than this then the 

table will expand as much as necessary.  

 height: indicates the table’s height. Its default value is null and usually has no sense, because the 

HTML tables resize depending on the space occupied by the cells. If a value X is assigned and 

the content for the table needs more space then the table will expand as much as necessary even 

if it had been predefined to height X. 

 border: indicates the number of pixels that the table border occupies. Its default value is 0 and is 

also the only value allowed for SC’s tables, because in this environment the tables have no 

border. However, to debug the JSPs the border attribute has been allowed, so that it is possible to 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

163 
 

check whether everything is being shown as it should, but its important to make sure the final JSP 

has border size 0. 

 id: the table’s identifier. By default, a table never has an id assigned so its value is "null". 

 rowsMayBeSelected: tells whether the different rows of a table can be selected or not. Its default 

value is "true" and it can take the values "true" or "false". The "true" true value indicates that the 

rows can be selected. In this case the automatic ilumination effect of the row the mouse is over is 

created together with the tables. Also the row remains illuminated unless another is clicked on. If 

the value for this attribute is "true" all the rows must have a unique id associated to each one. 

 headerAsBody: indicates whether the header must have the same number of columns as the rest 

of rows in the table. The default value is "true" and the possible values are "true" and "false". 

The true value indicates that the number of rows must indeed be the same. 

21.5.2   Header Tag 

This tag is used to declare the table header. This header can be global for the whole table or it can be 

local a column, so every table’s column can have a different header. In the first case the number of 

header cells doesn’t have to be the same as the number or rows in the table, whilst in the second it must 

necessarily be the same (see the headerAsBody attribute of the "table" tag). 

This tag is devoid of attributes. 

21.5.3   Row Tag 

This tag is used to declare the begging of the new row in the table.  

It possesses the following attributes: 

 width: indicates the table width. The default value is "null", because logic indicates that a row 

has the same length as the table. This attribute is hardly useful. 

 height: indicates the vertical length of the row. The default value is "null", as this value is usually 

resized automatically to the space needed for the table content. 

 id: it is the row’s identifier. It is necessary when the table’s rows can be selected (see the attribute 

rowsMayBeSelected for the "table" tag), as it’s the only way to distinguish during execution a 

row from another. Obviously, each row’s identifier must be unique for the whole JSP. 

 onclick: this is the action which must be invoked when an onclick event is detected on the row. 

Let’s suppose that when a row is clicked on whose identifier is "myRow" we want to invoke a 

JavaScript function called "myFunction”, which we have previously coded. What we will do then 

to declare this row is: 

 <table:row id="myRow" onclick="myFunction()"> 

Or also, supposing that when we click on the row we want to jump immediately to a certain URL, 

be it a JSP, a Struts Action or any other. Then the previous declaration must be: 

 <table:row id="myRow" onclick="window.location.href='URL'"> 

 selected: indicates whether the row must be selected from the moment the JSP is loaded for the 

first time. The default value is "false", which means that the row isn’t selected. It can have the 

values "true" or "false". 



HPSA Extension Pack 

EP - Developer's Reference 

 

164 
 

21.5.4   Separator Tag 

This tag introduces a row in the middle of the table that can give a new meaning to the table’s rows 

below. The appearance of a separating row is the same one as the header’s header. The effect is the 

same as if we had several consecutive tables, but the difference is that in this way everything forms part of 

the same table and we make sure that all the columns have the same width. It is a question of symmetry. 

This tag has no attributes. 

21.5.5   Cell Tag 

This tag creates a new cell inside the table’s header, inside a row or inside a separator. 

The attributes this tag can have are: 

 width: shows the cell’s width. Its default value is "null", as the horizontal length for the table is 

usually set automatically by the browser depending on the table’s needs. 

 height: indicates the cell’s vertical length. Its default value is "null". 

 id: the cell’s identifier. The cells have no default identifier, so its value is "null". 

 align: indicates the alignment for the text inside the cell. The default value is "left". 

 colspan: indicates the number of consecutive cells starting from this one that must be combined 

into one cell. 

 nobg: indicates whether or not the background colour for this cell should be transparent. The 

default value is "false", in which case the cell possesses the traditional colour for the SC’s cells. It 

can take the values "true" o "false". This attribute is hardly ever used. 

 onclick: assigns an onclick event to the cell. This event doesn’t usually have any meaning in cells 

that aren’t part of the header, although it can also be used for them. Usually this event is used for 

the table header’s cells that can be ordered by columns using struts’ pagination feature. 

21.5.6   Examples 

Simple table with general use title  

The example that follows generates a table of 500 pixel width and un-selectable rows. Also, the table will 

have a general use title; it won’t specify the meaning of every column. 

<table:table width="500" headerAsBody="false" 

rowsMayBeSelected="false"> 

   <table:header> 

     <table:cell>General use title</table:cell> 

   </table:header> 

   <table:row> 

     <table:cell>a0</table:cell> 

     <table:cell>a1</table:cell> 

     <table:cell>a2</table:cell> 

   </table:row> 

   <table:row> 

     <table:cell>b0</table:cell> 

     <table:cell>b1</table:cell> 

     <table:cell>b2</table:cell> 

   </table:row> 

   <table:row> 

     <table:cell>c0</table:cell> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

165 
 

     <table:cell>c1</table:cell> 

     <table:cell>c2</table:cell> 

   </table:row> 

   <table:row> 

     <table:cell>d0</table:cell> 

     <table:cell>d1</table:cell> 

     <table:cell>d2</table:cell> 

   </table:row> 

 </table:table> 

Table with selectable rows 

This second example generates a table which will occupy 100% of the available width for the web page 

and where a title is set for each column. Also, the rows can be selected and when a row is selected it will 

remain marked with blue colour and the JavaScript myFunction function will be invoked, which will 

receive as parameter the rows identifier. 

<script> 

function myFunction(clickedRow) { 

   alert(clickedRow); 

} 

</script> 

  

<table:table width="100%" headerAsBody="true"  

rowsMayBeSelected="true"> 

   <table:header> 

     <table:cell>título0</table:cell> 

     <table:cell>título1</table:cell> 

     <table:cell>título2</table:cell> 

   </table:header> 

   <table:row id="row0" onclick=" myFunction(this.id)"> 

     <table:cell>a0</table:cell> 

     <table:cell>a1</table:cell> 

     <table:cell>a2</table:cell> 

   </table:row> 

   <table:row id="row1" onclick=" myFunction(this.id)"> 

     <table:cell>b0</table:cell> 

     <table:cell>b1</table:cell> 

     <table:cell>b2</table:cell> 

   </table:row> 

   <table:row id="row2" onclick=" myFunction(this.id)"> 

     <table:cell>c0</table:cell> 

     <table:cell>c1</table:cell> 

     <table:cell>c2</table:cell> 

   </table:row> 

   <table:row id="row3" onclick=" myFunction(this.id)"> 

     <table:cell>d0</table:cell> 

     <table:cell>d1</table:cell> 

     <table:cell>d2</table:cell> 

   </table:row> 

 </table:table> 

21.6   Combotext 

This taglib is a combination between a text field and a combo box. With it, any text may be typed into 

the text field, but there are some suggested options by default, as it happens with a combo box, which 

are displayed as they match the already typed text. 



HPSA Extension Pack 

EP - Developer's Reference 

 

166 
 

As with any taglib, all JSP’s that use it must include the following header: 

<%@ taglib uri = "/WEB-INF/combotext-taglib.tld " prefix = "cmbtxt" %> 

This makes possible to use the combotext tags with the prefix cmbtxt. 

This taglib is composed by the two tags explained in the sections below. 

21.6.1   Combotext tag 

Generates a combotext object. 

The attributes accepted by this tag are: 

 name: the object’s name. It is a mandatory parameter. It must be a unique name inside 

the web page. The meaning of this attribute is the same as the name attribute of a 

common text field. 

 id: the object’s id, if any. 

 value: the initial value for this field, if any. By default, the combotext is left empty if no 

initial value is specified. 

 width: the object’s width, in pixels. The default value is 140 pixels. 

 position: the object’s position. It may take only two values: relative and absolute, as it 

happens with any HTML element. 

 top: the object’s top position, in pixels. The default value is 0. 

 left: the object’s left position, in pixels. The default value is 0. 

 maxheight: the maximum value for the options height, that is, the height of the displayed 

options shown anytime a character is typed into the combotext. The default value is 200 

pixels. 

 onchange: The javascript function to be invoked when the combotext’s value is modified. 

Examples: 

onchange = "myFunction()"; 

onchange = "myfunction('myFinalString')"; 

onchange = "myfunction(myVar)"; -- In this case the variable myVar must 

exist. 

21.6.2   Option tag 

This tag adds an option to the combotext. Options will be displayed below the text field of this combotext 

anytime a character is typed, and there will only be displayed those matching with the entered text. 

The attributes accepted by this tag are: 

 value: the value and text of this option. It will be the text displayed if it matches the typed text. It is 

a mandatory parameter. 

21.6.3   Example 

The next example will create a combotext with five options. 

<cmbtxt:combotext name="element"> 

  <cmbtxt:option value="users"/> 

  <cmbtxt:option value="roles"/> 

  <cmbtxt:option value="applications"/> 

  <cmbtxt:option value="treeviews"/> 

  <cmbtxt:option value="branches"/> 

</cmbtxt:combotext> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

167 
 

21.7   Displaytag 

This taglib generates more elaborate tables than the ones generated with the Table Taglib. It’s used for 

tables where there is the need to paginate the results and to order them in columns. It can also be used to 

export the data to other formats, such as PDF, Excel, CSV or XML. 

As with any taglib, all JSP’s that use it must include the following header: 

<%@ taglib uri = "http://displaytag.sf.net" prefix = "display" %> 

It is an Open Source taglib property of Sourceforge, so it has not been tailor made for the SC. However, 

it allows us to use decorator classes, whose role is to provide the table the proper look for the SC, and for 

this the following decorators have been developed: 

 FutureGUITableDecorator: selects a row each time and invokes a JavaScript function when the 

user clicks on it. 

 MultiSelectTableDecorator: can select several rows at the same time. 

 InventoryBuilderTableDecorator: is the decorator used in the JSPs generated by the 

InventoryBuilder. It should not be used for the development of applications. 

The JSP used in this taglib, and the associated actions, are the only authorized to break one of the stricter 

rules of the SC, which is the one that forbids inserting objects in the user’s session. This taglib’s 

functioning requires the presence in the session of a collection of bean objects (it accepts several formats, 

such as Array, Collection, Iterator and other) from which the table’s information is obtained. To avoid the 

clutting up of the user’s session with these kinds of collections it has been decided to impose the following 

rule: the array or object collection must be stored in the session under the name tmp. This way in any 

session there will only be one object collection at any moment. 

It will be understood that in order to get to this type of JSP a previous Struts action will have stored in the 

user’s session the object collection under the key tmp with all the beans that the displaytag must display. 

Also, in a String array called colnames (names or titles for the columns in the table) will be indicated the 

names for the different bean attributes that we want to show, which means that the displaytag will invoke 

the getters for each attribute to obtain the value that will be inserted in each cell. 

As this taglib’s information can be consulted online (http://displaytag.sourceforge.net/11/), in this 

section we are going to focus on the more useful functionality for the application environment JSPs. The 

most important tags are therefore table and column. 

21.7.1   Table Tag 

This is the main taglib’s tag, which can take the following attributes: 

 id: can assign an identifier to the table. 

 style: can set a style for the table. As the style must be the same as the one for the SC, this 

attribute can have value modifiers such as the table’s width. 

 name: indicates the place and name (separated with a dot. Like this: place.name) with which to 

find the bean collection. The place can be sessionScope, requestScope (or by default), 

pageScope and applicationScope. As the bean collection must be stored in the session, the value 

must be sessionScope. The name has to be tmp. The result will be sessionScope.tmp. 

 pagesize: indicates the number of results that will be shown for each page. 

 export: indicates whether the options for exporting the results to Excel, PDF, XML or CSV should 

be shown below the table. It can take the values “true” or “false”. 



HPSA Extension Pack 

EP - Developer's Reference 

 

168 
 

 sort: indicates whether the table can be ordered by columns. It can take the values “true" or 

“false”. 

 requestURI: indicates whether the URL that should be loaded every time a new page is called, the 

table is ordered by one of the columns or if an exporting option is selected. Usually the value is 

set to return to the same JSP we are in, but this doesn’t have to necessarily be so. 

 decorator: indicates the class to be used to give the table the correct look for the SC. 

21.7.2   Column tag 

It is necessary to indicate a tag of this kind for every table’s column, that is, for each bean attribute we 

want to show. 

The possible attributes are: 

 property: indicates the bean attribute’s name whose getter must be invoked to get the cell’s value. 

 sortable: indicates whether the table can be ordered depending on the values for this row. 

 titleKey: sets the column’s title, that is, the text that must be shown in the column’s header. To 

internationalize it we can use the following syntax: internationalization file name followed by a 

dot and the key that contains the internationalized text. For example: 

ApplicationResourcesUMMA.username. 

 headerClass: indicates the name of the style sheet class that must be assigned to this header’s 

cell. This class is called tableTitle. 

 class: indicates the name for the stylesheet class that must be applied to this column’s cell. This 

class is called tableCell. 

21.7.3   Examples 

In the next example (let’s say the JSP that this code belongs to is called ejemplo.jsp and its path is 

precisely the one set in the attribute requestURI attribute) we assume the presence in the user’s session of a 

collection of beans stored under the key tmp. For each bean three attributes will appear: id, name and 

description. 

<display:table 

      id="userlist" 

      style="width:98%" 

      name="sessionScope.tmp" 

      pagesize="20" 

      export="true" 

      sort="list" 

      requestURI="/jsp/ej/ejemplo.jsp" 

      decorator="com.hp.spain.hputils.taglib.displaytag.decorator. 

FutureGUITableDecorator"> 

    <display:column 

      property="id" 

      sortable="true" 

       titleKey="ApplicationResourcesUMMA:user.id" 

      headerClass="tableTitle" 

      class="tableCell"/> 

   <display:column 

      property="name" 

      sortable="true" 

       titleKey="ApplicationResourcesUMMA:user.name" 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

169 
 

      headerClass="tableTitle" 

      class="tableCell"/> 

   <display:column 

      property="description" 

      sortable="true" 

       titleKey="ApplicationResourcesUMMA:user.description" 

      headerClass="tableTitle" 

      class="tableCell"/> 

</display:table> 

21.8   FutureAlert 

To invoke the FutureAlert from a JSP it is necessary to import the JavaScript document where the object is 

kept. This is done inserting it between the <head> ... </head> tags of the JSP the following code:  

<script src="/activator/JavaScript/hputils/alerts.js"></script> 

After this, the next thing we have to do is to invoke the FutureAlert’s constructor. We can create initially 

an empty instance and establish later the title and the warning message or we can indicate them in the 

constructor.  

The following example generates an empty instance:  

<script> 

   var fa = new FutureAlert(); 

</script> 

That we can use to set the title and the message like in this example:  

<script> 

   fa.setTitle("Warning message"); 

   fa.setMessage("Hello, world!!!"); 

</script> 

This other example creates an instance where the constructor is called specifying the title and the 

message:  

<script> 

 var fa = new FutureAlert("Warning for users ", "Hello, world!!!"); 

</script> 

which generates an equivalent FutureAlert to the previous.  

Let’s not forget that both the title and the message can be changed at any moment by invoking as many 

times as is needed the setTitle() and setMessage() methods.  

To show the FutureAlert on screen we have to invoke the show() method. Like this:  

<script> 

   fa.show(); 

</script> 

The easiest and shortest way to set and show a FutureAlert with the default values is as follows:  

<script> 

   new FutureAlert("Warning for users", "Hello, world!!!").show(); 

</script> 

The result for any of the previous examples is the same, as is shown below.  



HPSA Extension Pack 

EP - Developer's Reference 

 

170 
 

 

As can be observed, the FutureAlert possesses several default characteristics, and some of them can be 

configured.  

It will automatically be shown centred in the browser’s window. This property cannot be configured  

The default width is of 300 pixels and the height is of 150 pixels. These dimensions can be changed at 

any moment by invoking the method setBounds().  

<script> 

   fa.setBounds(500, 200); 

</script> 

FutureAlert is a blocking application, which means that while visible it will be impossible to click or to 

interact over any other element of the page. This characteristic can be changed by calling the 

setBlockingAlert() method.  

<script> 

   fa.setBlockingAlert(true);  // FutureAlert blocks 

</script> 

<script> 

   fa.setBlockingAlert(false); // FutureAlert does not block 

</script> 

The text that appears in the FutureAlert button is by default "Aceptar". To establish a different text the 

method setButtonText() must be called.  

<script> 

   fa.setButtonText("OK"); 

</script> 

Once visible, the FutureAlert will only disappear when the user clicks on the button. However, there is a 

hide() method to hide the FutureAlert from the code if it becomes necessary at any moment.  

<script> 

   fa.hide(); 

</script> 

The FutureAlert‘s alert versatility is superior to the JavaScript alert. Also, if in a page it is necessary to 

show several different FutureAlerts you don’t have to create an instance for each of them, the same one 

can be used, changing the title and message as seems fit. For example, let’s suppose we have shown a 

FutureAlert like the one shown below:  

<script> 

   var fa = new FutureAlert("Message for users", "Hello, world!!!"); 

   fa.show(); 

</script> 

The user sees it and clicks on the "Accept" button, hiding the FutureAlert. (It is very important to take into 

account that the user must have already hidden the FutureAlert before changing the title or the message. If 

not, we take the risk of the user not having seen the initial FutureAlert.) Everything carries on as normal 

until the time comes to show another FutureAlert to the user. As we already had the first, instead of 

creating a new one we do this:  

<script> 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

171 
 

   fa.setTitle("Second Warning"); 

   fa.setMessage("Second Message!!!"); 

   fa.show(); 

</script> 

In general, the FutureAlert’s API is as follows:  

Constructors:  

 FutureAlert(): creates an instance with no title or message.  

 FutureAlert(String title, String message): creates an instance with a title and a message depending 

on the similar named parameters.  

Methods:  

 setTitle(String title): sets a new title for the FutureAlert.  

 setMessage(String message): establishes a new message for the FutureAlert.  

 setBounds(int width, int height): sets a width of "width" pixels and a height of "height" pixels.  

 setBlockingAlert(boolean isBlocking): tells whether the FutureAlert will block the underlying page 

or not.  

 setButtonText(String buttonText): sets a new text to be shown inside the button that hides the 

FutureAlert.  

 setButtonFunction(String jsFunction): indicates that when the FutureAlert’s button is clicked on the 

JavaScript function jsFunction should be called. This is a way of using the FutureAlert to block 

code execution, as the jsFunction won’t be executed until the user clicks on the button.  

 takeUp(int numPixels): shows the FutureAlert higher up (if numPixels is a positive number) or 

further below (if negative). The vertical distance the FutureAlert moves depends on the numPixels 

value.  

 show(): shows the FutureAlert in the centre of the browser.  

 hide(): hides the FutureAlert.  

21.9   FutureConfirm 

To invoke the FutureConfirm from a jsp it is necessary to import the JavaScript document where the object 

is kept. This is done by inserting between the <head> ... </head> tags the following code:  

<script src="/activator/JavaScript/hputils/alerts.js"></script> 

After this, the next step is to call FutureConfirm’s constructor. We can create an empty instance initially 

and set later the title and warning message or we can indicate them in the constructor call.  

The next example generates an empty instance:  

<script> 

   var fc = new FutureConfirm(); 

</script> 

in which we can set the title and message in the following way:  

<script> 

   fc.setTitle("User confirmation required "); 

   fc.setMessage("Do you want to say Hello, World?"); 

</script> 



HPSA Extension Pack 

EP - Developer's Reference 

 

172 
 

This other example creates an instance in which the title and message are specified in the constructor 

itself:  

<script> 

   var fc = new FutureConfirm("User confirmation required ", "Do you want to 

say Hello, World?"); 

</script> 

which generates a similar FutureConfirm to the previous one.  

We have to note that both the message and the title can be changed at any given moment by calling as 

many times as needed the setTitle() and setMessage() methods.  

It is also necessary to indicate the JavaScript functions that will be called when the user clicks on one of 

the buttons of the FutureConfirm. If not, the only effect will be to hide the FutureConfirm. These methods 

can be set in the constructor itself:  

<script> 

   var fc = new FutureConfirm("User confirmation required ", "Do you want to 

say Hello, World?", "sayHello(true)", "sayHello(false)"); 

</script> 

or the function can also be set by using the mehods setAcceptButtonFunction() and 

setCancelButtonFunction():  

<script> 

   fc.setAcceptButtonFunction("sayHello(true)"); 

   fc.setCancelButtonFunction("sayHello(false)"); 

</script> 

It looks obvious, but different functions can be called for each case:  

<script> 

   fc.setAcceptButtonFunction("sayHello()"); 

   fc.setCancelButtonFunction("sayGoodbye()"); 

</script> 

and strings can also be set as parameters for the functions called:  

<script> 

   fc.setAcceptButtonFunction("say(\"Hello!!\")"); 

   fc.setCancelButtonFunction("say(\"Goodbye!!\")"); 

</script> 

In order to show the FutureConfirm on screen we call the method called show(). Like this:  

<script> 

   fc.show(); 

</script> 

The shortest way to set and show a FutureConfirm with default parameters is like this:  

<script> 

   new FutureConfirm("User confirmation required", "Do you want to say 

Hello, World?").show(); 

</script> 

The result of any of the previous examples is the same, as is shown below  



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

173 
 

 
As can be seen, the FutureConfirm possesses certain properties by default, some of them being 

configurable.  

By default it will always be shown centred in the browser’s window. This property is not configurable.  

The default width is of 300 pixels and the height is of 150 pixels. These dimensions can be changed at 

any given moment by calling the setBounds() method.  

<script> 

   fc.setBounds(500, 200); 

</script> 

The FutureConfirm is blocking, which means that while visible it will be impossible to click or interact with 

the underlying window. This characteristic can be changed by calling the method called 

setBlockingConfirm().  

<script> 

   fc.setBlockingConfirm(true);  // The FutureConfirm is blocking 

</script> 

<script> 

   fc.setBlockingConfirm(false); // The FutureConfirm is not blocking 

</script> 

The text that appears inside the FutureConfirm’s buttons is by default "Aceptar" and "Cancelar". To set a 

different text it is necessary to invoke the methods setAcceptButtonText() and setCancelButtonText().  

<script> 

   fc.setAcceptButtonText("Yes"); 

   fc.setCancelButtonText("No"); 

</script> 

Once it appears, the FutureConfirm will only disappear when the user clicks on the button. However, 

there exists a method called hide() that can hide the FutureConfirm from the code if it becomes necessary.  

<script> 

   fc.hide(); 

</script> 

The FutureConfirm’s versatility is superior to JavaScript’s confirm. Also, if in a page it is necessary to show 

several different FutureConfirms we don’t have to create a new one for each, we can use the same one 

and change the title and message depending as we see fit.  

For example, let’s suppose we have shown a FutureConfirm like the one below:  

<script> 

   var fc = new FutureConfirm("User confirmation required ", "Do you want to 

say Hello, World?"); 

   fc.setAcceptButtonFunction("sayHello()"); 

   fc.setCancelButtonFunction("sayGoodbye()"); 

   fc.show(); 

</script> 

The user sees it and clicks on the "Aceptar" button, hiding the FutureConfirm. (It is important to note that 

the user must have hidden the FutureConfirm before changing the title or message. If not, we take the risk 

that the user doesn’t notice the initial FutureConfirm.) Everything carries on as normal until the time comes 



HPSA Extension Pack 

EP - Developer's Reference 

 

174 
 

to show the user the second FutureConfirm. As we already had the first, instead of creating a new one we 

do the following:  

<script> 

   fc.setTitle("Second confirm"); 

   fc.setMessage("Second confirm message"); 

   fc.setAcceptButtonFunction("say(\"Hello!!\")"); 

   fc.setCancelButtonFunction("say(\"Goodbye!!\")"); 

   fc.show(); 

</script> 

In general, the FutureConfirm’s API is as follows:  

Constructors:  

 FutureConfirm(): creates an instance with no title and no message.  

 FutureConfirm(String title, String message): creates an instance with title and message depending 

on the similar named parameters.  

 FutureConfirm(String title, String message, String acceptFunctionName, String 

cancelFunctionName): creates an instance with title and message, and the JavaScript functions 

"acceptFunctionName" and "cancelFunctionName" will be called when the user clicks on the 

respective buttons.  

Methods:  

 setTitle(String title): sets the new title for the FutureConfirm.  

 setMessage(String message): sets the new message for the FutureConfirm.  

 setBounds(int width, int height): sets the width and height in pixels.  

 setBlockingConfirm(boolean isBlocking): indicates whether or not the FutureConfirm will block the 

underlying page.  

 setAcceptButtonText(String buttonText): sets the new text that will be shown inside the first button 

to hide FutureConfirm.  

 setCancelButtonText(String buttonText): new text that will be shown inside the second button to 

hide FutureConfirm.  

 setAcceptButtonFunction(String fnc): indicates that the JavaScript function called "fnc" should be 

called when FutureConfirm’s first button is clicked on.  

 setCancelButtonFunction(String fnc): indicates that the JavaScript function called "fnc" should be 

called when FutureConfirm’s second button is clicked on.  

 takeUp(int numPixels): makes the FutureConfirm appear higher up (if numPixels is a positive 

number) or further down (if negative). The vertical distance that the FutureConfirm will move 

coinsides with the value for numPixels.  

 show(): makes the FutureConfirm appear centred on the browser.  

 hide(): hides the FutureConfirm. 

21.10   SC’s Context and Application Context 

The SC provides a static singleton class called Context where any application can store key-value pairs 

and Application Context instances. The figure below shows the UML representation of the classes 

involved. 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

175 
 

 

21.10.1   Context class 

This is a static singleton class, what means that it can be never instantiated by any other class but itself. 

The only one existing instance is pointed by the INSTANCE static constant, and can be obtained to 

operate over it using the getInstance() method. 

This class implements the abstract class AbstractContext. 

21.10.2   AbstractContext class 

This abstract class manages the key-value pairs and the ApplicationContext instances. Provides methods 

to get, add, remove and update any key-value pair or any ApplicationContext. 

21.10.3   ApplicationContext interface 

This interface defines a getName() method used to identify the ApplicationContext instance. 

21.10.4   AbstractApplicationContext class 

This abstract class implements the ApplicationContext interface and defines an abstract method called 

getName as it is specified in the interface. It also extends the abstract class AbstractContext to inherit the 

methods defined there. 

Any application which needs an Application Context has to define a new class which must extend this 

one. Once the Application Context is instantiated, it can be stored into the Context using the 

addApplicationContext() method. 



HPSA Extension Pack 

EP - Developer's Reference 

 

176 
 

21.11   Properties files 

Some applications running under SC may need to be configured before the HPSA is started up. This can 

be done using properties files that must be located at this directory: 

C:\hp\jboss\server\diagnostic\deploy\hpovact.sar\activator.war\properties 

Along the stating up process all these properties files under the specified directory are read and stored 

into the SC’s Context object as a key-value pair, where the key is a String with the name of the properties 

file (without the .properties extension) and the value is a java.util.Properties object representing the 

contents of the file. 

This way, any application can get any configured parameter looking for the java.util.Properties object at 

the SC’s Context and getting the parameter from it. 

For instance, let’s suppose that an application deploys a xxx.properties file into the specified directory. 

The contents of this file are: 

equipment.ip = 11.22.33.44 

equipment.port = 8080 

When the SC starts up, a new entry is added to the Context under the key xxx. 

Afterwards, any Struts’ action of the application can get the two parameters configured into the file easily. 

The next code shows how: 

java.util.Properties p = 

   (java.util.Properties) Context.getInstance().get(“xxx”); 

String ip = p.get(“equipment.ip”); 

String port = p.get(“equipment.port”); 

See the API of the Context class for further information. 

21.12   Action Audit 

The URL of the RMI service with the methods for action audition is stored in the SC’s Context (see section 

14.1 for further information). The key needed to obtain the URL from the Context is a constant defined in 

the com.hp.spain.futuregui.login.LoginConstants interface. 

There is an example about this in the section 9 dedicated to Action Audit. 

The parameters of the auditAction method provided with the RMI service are: 

 messageType: indicates what kind of message is being audited (error, warning, info, etc.) 

 username: the name of the user who generates the log. 

 workId: the identifier of the task which audited this action. 

 sourceComponent: the component where this actions was being performed. 

 actionPerformed: the name of the action that was being performed. 

 description: a brief description of the audit message. 

21.13   WFLT 

21.13.1   WFLTAction.do 

This is the action which should be invoked to launch and track a workflow.  The way the workflow will be 

launched and how it will be tracked can be specified through some configuration parameters which are 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

177 
 

described in this section. The information necessary for the launching of a workflow will be searched in 

the request attributes and in the parameters. There is only one restriction, it is that all this elements must be 

Strings, or adaptable to Strings. All the elements will be searched in lower case too. 

21.13.1.1   General parameters 

These are the fundamental parameters used to launch a workflow: 

 __wfname: Workflow name. Is a mandatory parameter. If it’s not present an error will be thrown. 

 __wfmwfmname: The name of the Mwfm in which the workflow will be launched or in which the 

workflow will be searched. If it’s not present the default Mwfm will be used. 

It’s also possible to track a workflow that has been already launched. In order to use this functionality we 

need to specify a new parameter:  

 __wfJobId: The id of the workflow which we are going to track. 

21.13.1.2   Concurrent Workflows 

To enable the tracking of workflows with children using the Concurrent Workflow Module the next 

parameter has to be used. 

 __wfConcurrentCheck: Has a boolean value. This parameter is not mandatory. If its value is true 

the workflows will be tracked by the Concurrent Workflows application. 

21.13.1.3   Database tracking 

It’s also possible to track workflows with children using the database. To use this functionality is necessary 

to use the next three parameters: 

 __wfServiceName: It is the workflow’s service name. Its value should be the bean package 

referencing the database table (Ex: com.hp.spain.inventory.Service).  

 __wfServicePk: It is the workflow’s service primary key. That’s the primary key which will be 

associated with the workflow in the database.  

 __wfDatasource: It is the data source name to access the database where we will store the 

workflow jobId. 

21.13.1.4   ECP Command tracking 

The activations launched by workflows can also be tracked. When this option is enabled the commands 

sent to the ECP will be shown in the screen. Some parameters are necessary to access to this functionality: 

 __wf_command_audit_active: This parameter will enable the ECP command tracking if its value is 

“true”. It’s not mandatory and by default this option is not enabled. 

 __wf_command_id. This id must be unique and will be used to filter the received messages and 

show only the ones related to a specific activation. At the same time, this identifier must be 

provided to the ECP under the same key. If no id is provided the jobId value will be taken by 

default. 

21.13.1.5   SOSA 

The workflow launcher tracker can launch SOSA 3 service orders and track them. In order to use the 

SOSA integration some parameters are needed. 



HPSA Extension Pack 

EP - Developer's Reference 

 

178 
 

 __wfsosatype: It corresponds to the field “service_order_name” from the table 

“catalog_service_order”. 

 __wfsosaservice: It corresponds to the field “service_name” from the table 

“catalog_service_order”. 

  __wfsosaaction: It corresponds to the field “service_operation” from the table 

“catalog_service_order”. 

 __wfsosacheck: This parameter must be true to indicate that SOSA is being used. 

There are also specific SOSA parameters that are needed in the workflow’s case packet. More details 

about them and about how to launch workflows in SOSA can be found in the document “OVSA SPI for 

Service Providers - SOSA - Developer Reference.doc”. 

21.13.1.6   Miscellaneous parameters 

 next_url: It’s the URL which will be invoked when the workflow finish its execution. The URL can 

be absolute (http://...) or relative to the base activator path (Ex. /activator/jsp/future-

gui/blanck.jsp).  

21.13.1.7   User parameters 

The user parameters are the attributes and parameters retrieved from the request that start with the prefix 

“wfvar__”. The next parameter: 

wfvar__equipmentname=NT300 

 

In the workflow’s case packet it will be translated into this: 

Name: equipmentname 

Value: NT300 

It is possible to make groups of attributes or parameters using String arrays. Example: if we need to 

launch a workflow that waits for a String array with three values whose name is “equipmentnames” we 

will need to use the next four parameters: 

wfvar__arrayiterator0=wfvar__equipmentnames 

wfvar__equipmentnames5=NT300 

wfvar__equipmentnames22=NT400 

wfvar__equipmentnames17=NT6000 

 

The first one is the group’s name while the others, formed using the name of the array followed by any 

group of numbers or chars, will contain the names which will constitute the array.  

This will make the next line in the workflow’s initial case packet: 

Name: equipmentnames 

Value: {NT300, NT400, NT6000} 

 

If the workflow needs more arrays it will need to repeat the process adding to the first parameter’s integer 

value (wfvar__arrayiterator0, wfvar__arrayiterator1, wfvar__arrayiterator2…). The enumeration must be 

consecutive.  

 

Example: 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

 

 

179 
 

This example is going to launch a workflow from the inventory, called EQUIPMENT_CONFIGURATION, 

which will receive three String arrays: the first one containing the equipments’ names, the next one 

containing their IPs and the third containing their operating systems. Also, it will need the user name to 

access them. We’ll assume that the user name is the same for the three of them. 

/activator/WFLTAction.do? 

__wfname=EQUIPMENT_CONFIGURATION& 

__wfDatasource=confDS& 

__wfservicename=confservice& 

__wfservicepk=25& 

__wfmwfmname=localmwfm& 

wfvar__username=admin& 

wfvar__arrayiterator0=equipmentnames& 

wfvar__equipmentnamesA=NT300& 

wfvar__equipmentnamesB5=NT400& 

wfvar__equipmentnames20=NT6000& 

wfvar__equipmentnamesAB=NT50& 

wfvar__arrayiterator1=equipmentips& 

wfvar__equipmentipsA=10.10.10.1& 

wfvar__equipmentipsB=10.10.20.2& 

wfvar__equipmentipsC=10.10.30.3& 

wfvar__equipmentipsD=10.10.40.4& 

wfvar__arrayiterator2=equipmentsos& 

wfvar__equipmentsosA=HPUX& 

wfvar__equipmentsosB5=HPUX& 

wfvar__equipmentsos20=Windows& 

wfvar__equipmentsosAB=Solaris 

 

 



HPSA Extension Pack 

EP - Developer's Reference 

 

180 
 

Glossary 

Datasource: a factory for connections to the physical data source. 

EJB (Enterprise JavaBeans): a server-side component that encapsulates the business logic of an 

application. The EJB specification intends to provide a standard way to implement the back-end 'business' 

code typically found in enterprise applications. 

JSP (Java Server Page): a technology which provides a simplified, fast way to create dynamic web 

content. JSP technology enables rapid development of web-based applications that are server- and 

platform-independent. 

MWFM (Micro Workflow Manager): the workflows engine provided with the HPSA. 

MWFM Módule: a class which extends those provided by the MWFM to perform a certain functionality 

for the HPSA. Every module is started up by the MWFM and runs in the same Java virtual machine. 

Servlet: a technology which provides web developers with a simple, consistent mechanism for extending 

the functionality of a web server and for accessing existing business systems. A servlet can almost be 

thought of as an applet that runs on the server side--without a face. 

Taglib: a librarie which allows you to create custom actions and encapsulate functionality. Custom tags 

can clearly separate the presentation layer from the business logic. They are easy to maintain reusable 

components that have acces 


