
Radia Client Automation Enterprise Messaging
Server
For the Windows® operating system

Software Version: 9.00

Reference Guide

Document Release Date: April 2013

Software Release Date: June 2013

Legal Notices
Warranty

The only warranties for products and services are set forth in the express license or service
agreements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Persistent Systems shall not be liable for technical or editorial
errors or omissions contained herein. The information contained herein is subject to change without
notice.

Restricted Rights Legend
Confidential computer software. Valid license from Persistent Systems or its licensors required for
possession, use or copying. No part of this manual may be reproduced in any form or by any means
(including electronic storage and retrieval or translation into a foreign language) without prior
agreement and written consent from Persistent Systems.

Copyright Notice
© Copyright 2013 Persistent Systems, its licensors, and Hewlett-Packard Development Company,
LP.

Trademark Notices
Microsoft®, Windows®, Windows® XP, andWindows Vista® are U.S. registered trademarks of
Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of TheOpenGroup.

Acknowledgements
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

This product includes software written by Daniel Stenberg (daniel@haxx.se).

This product includes OVAL languagemaintained by TheMITRE Corporation (oval@mitre.org).

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 2 of 46

Reference Guide

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://support.persistentsys.com/

This site requires that you register for a Persistent Passport and sign in. Register online at the
above address.

For more details, contact your Persistent sales representative.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 3 of 46

Reference Guide

Support
Persistent Software support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by being able to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Submit enhancement requests online

l Download software patches

l Look up Persistent support contacts

l Enter into discussions with other software customers

l Research and register for software training

To access the Self-solve knowledge base, visit the Persistent Support home page.

Note: Most of the support areas require that you register as a Persistent Support user and sign
in. Many also require an active support contract. More information about support access levels
can be found on the Persistent Support site.

To register for a Persistent Support ID, go to: Persistent Support Registration.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 4 of 46

Reference Guide

http://support.persistentsys.com/
http://support.persistentsys.com/
http://support.persistentsys.com/
http://support.persistentsys.com/
http://support.persistentsys.com/
http://support.persistentsys.com/
http://support.persistentsys.com/

Contents
Reference Guide 1

Contents 5

Introduction 7

About theMessaging Server 7

Features and Benefits 7

Messaging Server Processing on the Configuration Server 8

About the Data Delivery Agents 10

About Routing Inventory Data 11

About the SQLDatabase Tables and Scripts for Inventory 11

Creating SQL Tables for the Inventory Database 11

About Using Store and Forward 11

About this Guide 12

Abbreviations and Variables 13

Summary 13

Configuring and Tuning the Messaging Server 15

Understanding the Configuration Server Modules that Support theMessaging Server 15

Getting Agent Information to theMessaging Server 15

About the PatchMethod for Collection 16

About the ZTASKEND REXX method 16

ZTASKEND calls to QMSG 16

Processing Phase-Dependent Objects 17

Processing CORE Objects by Phase 17

Adding Items to a Critical Object List 19

Processing Always Objects 19

Adding Custom Objects to the BuildAlways Object List 19

QMSGMethod Syntax 20

How Priority Establishes Messaging Server Processing Order 21

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 5 of 46

Configuring theMessaging Server 22

Editing the Configuration Files for theMessaging Server and Data Delivery Agents 22

About the Sections in the RMS.CFG File 31

Additional Sections in the RMS.CFG File 31

About the Sections in the CORE.DDA.CFG File 32

ODBC Settings for CORE, INVENTORY andWBEMObjects 33

About the Sections in the PATCH.DDA.CFG File 34

ODBC Settings for PATCH Objects 35

Additional Tuning Topics 35

Configuring the Poll Interval and Post Quantity 35

Configuring for Retry Attempts 36

Configuring for Failover 36

Configuring the Log Level, Log Size and Number 37

Changing the Logging Level 37

Changing the Size and Number of Log Files 37

Configuring theMessaging Server to Discard or Drain Messages 38

Example: DiscardingMessages for the Portal 38

Example: Draining aMessageQueue 38

Configuring theMessaging Server to Route Portal Messages 38

About the Portal Data Queue (rmpq) in CORE.DDA.CFG 38

Restoring Routing for Portal Messages 39

EnhancingMessaging Server Performance 40

Disabling Processing of Messages in a Queue 41

Modifying the Priority in whichMessages are Processed 42

ConfiguringMessaging Server to Report DifferencedObjects 42

We appreciate your feedback! 45

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 6 of 46

Reference Guide
Contents

Chapter 1

Introduction
About the Messaging Server

The Radia Client AutomationMessaging Server (Messaging Server) is a robust messaging service
that provides ameans to forward data from one piece of the RCA infrastructure to another. It can be
used as a point to aggregate different types of data as well as to segregate data accumulated from
various RCA servers by type. Its job is to monitor predefined data queues and dynamically route
data objects to one or more external destinations. TheMessaging Server provides retry, rerouting,
and failover capabilities to ensure all data is transferred efficiently and reliably.

On the RCA Configuration Server (Configuration Server), theMessaging Server operates hand-in-
hand with the executable, QMSG, to handle the transfer of data reported from RCA agents to the
appropriate ODBC reporting database or external RCA Server.

Features and Benefits
TheMessaging Server provides an efficient and flexible messaging system that can be used by
HPCA infrastructuremodules. For example, it can:

l Route a single message tomultiple destinations.

l Automatically retry amessage delivery.

l Re-routemessages to a new host after an unsuccessful delivery attempt (failover capability).

l Route data from oneMessaging Server to another one (store and forward capability).

l Maintain multiple data queues on Store and ForwardMessaging Servers.

TheMessaging Server provides the following benefits:

l Multiple, specialized queues that enable separate workers to operate on each queue, and
therefore allows for parallel processing of object messages.

l Additional workers can be configured to drain a queuemore quickly.

l Independent data delivery agents allow for modular upgrades.

l Eliminates bottlenecks on the Configuration Server.

l Reliability of processing Inventory and Patch data is maintained, due to:
n Built-in retry capability.

n Ability to reroutemessages remaining in a queue to a failover location.

n Retry, holding, and re-routing features eliminate potential loss of data caused by network
failures.

l Improvedmemory control related to creating the Inventory Manager SQL tables and loading the
SQL commands upon startup. As a result, these SQL tasks are always performed upon

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 7 of 46

Reference Guide
Chapter 1: Introduction

Messaging Server and Data Delivery Agent startup, and support for the previous
STARTUPLOAD parameter has been removed.

l Improved queue control and throttling capability for posting RCA Portal data.

l New support for customizedmessage routing tomultiple DSNs using ODBC.

Messaging Server Processing on the
Configuration Server

TheMessaging Server acts as a delivery service between the Configuration Server and external
ODBC databases or HPCA services. It is a separate component from the Configuration Server.

When a customer has multiple Configuration Servers, each one will have a co-locatedMessaging
Server and the ability to route object data to the appropriate target location.

The figure "Messaging Server ProcessingLegend" on next page provides an overview of Messaging
Server Processing.

The RCA agent connects to the Configuration Server to resolve its desired state. At the end of each
agent connection, the agent passes objects back to the Configuration Server. Different agent
objects are passed according to each specific phase of the agent connect process.

TheMessaging Server refers to CORE objects as the standard RCA agent objects that are
exchanged between the agent and the Configuration Server. Examples of CORE objects are
ZMASTER, PREFACE, and SESSION. Other types of objects that can be exchanged aremulti-
heapWBEM reporting objects, FILEPOST objects created by an inventory agent audit process
(called INVENTORY objects) and the DEERROR, BUSTATUS, DESTATUS, and PASTATUS
agent objects collected for RCA PatchManager processing.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 8 of 46

Reference Guide
Chapter 1: Introduction

Messaging Server Processing

Legend

a - ZTASKEND is called

b - QMSG.EXE assembles object data

c - Messaging Server Data Delivery Agents poll the queues and transfer data

ZTASKEND is Called
On the Configuration Server, the ZTASKEND rexx method is called at the end of the agent connect
process. ZTASKEND creates the commands to invoke the QMSG executable. The commands to
QMSG contain parameters that define the appropriate objects to send as well as the designated
queues in which to place the objects. ZTASKEND is responsible for naming all objects forwarded to
QMSG—with the exception of objects needed for Patch reporting. For Patch objects, fivemethods
in the PRIMARY.SYSTEM.ZMETHOD class of the Configuration Server Database call QMSG for
the PATCH objects.

QMSG.EXE Assemble Object Data
QMSG assembles object data into XML files and creates header files with the appropriate metadata
“address” needed to deliver themessage by theMessaging Server. When the twomessage files
(XML andmeta data files) are created, QMSG places these files in one or more predefined data
queues on the Configuration Server.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 9 of 46

Reference Guide
Chapter 1: Introduction

Note: QMSG places objects in separate queues, based on the parameters specified in
ZTASKEND and in the five PATCH_* methods (DEERROR, BUSTATUS, DESTATUS, and
PASTATUS). TheMessaging Server is configured to use individual Data Delivery Agents
(DDAs) to process messages from these queues. The table "Data Queues and Data Delivery
Agents" lists the Data Delivery Agents that operate on each data queue location.

Messaging Server Data Delivery Agents poll the queues and transfer data
TheMessaging Server DDA’s poll themessage queues and automatically pick up and transfer data
files to the appropriate external locations using the routing type and locations defined in the specific
data delivery agent's configuration file.

Data Queue Data Delivery Agent

..\Data\MessagingServer\core core.dda

..\Data\MessagingServer\patch patch.dda

..\Data\MessagingServer\usage usage.dda

Data Queues and Data Delivery Agents

TheMessaging Server runs on all Windows platforms supported by the Configuration Server.

About the Data Delivery Agents
The Data Delivery Agents are function-specific modules created to transfer certain types of
message data. There are Data Deliver Agents available for CORE, PATCH, and USAGE message
data.

l The CORE message data refer to agent objects typically exchanged during a standard agent
connect process. The CORE message data also includes the FILEPOST objects created during
the agent audit process and theWBEM reporting object data. Examples of CORE typemessage
objects include ZMASTER, SESSION, and ZCONFIG. CORE objects support reports for
Vulnerability Management, Windows CE Thin Clients and ApplicationManagement Profiles,
among others.

l The PATCH message data is comprised of DESTATUS, BUSTATUS, DEERROR and PASTATUS
agent object data.

The Data Delivery Agents (DDAs) have the ability to post messages using ODBC into a SQL
database that can be used for reporting. For processing efficiency, each DDA works independently
on its own queue.

TheMessaging Server loads these independent data delivery agents, whose configurations define
how and where themessages for CORE, INVENTORY, WBEM, and PATCH data objects will be
delivered.

Note: The CORE data delivery agent is configured to post CORE object data to an Inventory
Manager database, as well as CORE object data to a Portal directory.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 10 of 46

Reference Guide
Chapter 1: Introduction

The data delivery agent modules are located in the \MessagingServer\modules folder. The
modules are loaded using “dda.module load” statements in theMessaging Server configuration file
(rms.cfg).

Each data delivery agent is configured from its own configuration file (*.dda.cfg). These
configuration files are located in the \MessagingServer\etc folder.

About Routing Inventory Data
This Messaging Server supports direct ODBC posting of Inventory Manager data to a back-end
SQL Inventory Database. The CORE.DDA has the ability to route CORE, INVENTORY and
WBEM datamessages to a back-end SQL database using ODBC. It is recommended to use this
routing option for best performance.

About the SQL Database Tables and Scripts for
Inventory

The CORE Data Delivery Agent posts themessage data into the SQL table, for which the default
definitions and associated SQL queries are found in the followingMessaging Server directories:

/etc/<module name>/hp

Customized scripts can be placed in the directories:

/etc/<module name>/

The script necessary tomap the CORE object data to the related SQL table column is
taskend.tcl. The script necessary tomap the INVENTORY object data (FILEPOST object) is
called filepost.tcl. Both of these scripts are found in the /etc/<module name>/lib
directory of theMessaging Server.

All inventory and the application deployment related tables have a foreign key constraint with the
table DeviceConfig. This foreign key constraint ensures that when a device is deleted, all the
records corresponding to that device are deleted from all the other tables.

Creating SQL Tables for the Inventory Database
The SQL tasks to create the tables for the Inventory Database and load the SQL commands into
memory are performed when theMessaging Server service and the Data Delivery Agents are
initially started.

Note: All SQL tasks are performed at service startup and any STARTUPLOAD value found in
a configuration file is ignored.

About Using Store and Forward
TheMessaging Server includes store and forward capabilities that allow you to forwardmessages
to another Messaging Server using HTTP or HTTPS. In addition, if theMessaging Server is not
located close the SQL database, it is a good practice to forward themessages to one that is located
as close to the SQL database as possible.

TheMessaging Server supports forwarding and receivingmessages usingmultiple queues.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 11 of 46

Reference Guide
Chapter 1: Introduction

The following figure Store and ForwardMessaging Server illustrates a typical configuration that
forwards messages to another Messaging Server, prior to posting data to the Inventory database
using ODBC.

Store and Forward Messaging Server

1. TheMessaging Server on the Configuration Server is configured to have the CORE data
delivery agent forward the data to another Messaging Server using HTTP or HTTPS. This
configurationmakes use of the coreforward, inventoryforward, andwbemforward sections that
are provided in the data delivery agent configuration files.

2. The Store and ForwardMessaging Server is located close to the Inventory Manager SQL
database. It receives the CORE, INVENTORY, andWBEM objects.

3. The attending CORE data delivery agent on the receivingMessaging Server posts the data
objects to the Inventory Manager database using ODBC.

About this Guide
In addition to this chapter, this book contains the following information:

l Configuring and Tuning the Messaging Server
This chapter describes how the Configuration Server ZTASKEND REXX and theQMSG
executable work hand-in-hand with theMessaging Server. It also discusses how to configure
theMessaging Server configuration file, which loads the Data Delivery Agents. In addition, this
chapter also describes how to configure the DDA modules to route CORE, INVENTORY,
WBEM, and PATCH message data to the Inventory, Portal, and PatchManager databases or
directories. Additional tuning options are included.

l Additional Messaging Server Configuring Options
This chapter describes alternate configurations, including how to install and configure for Store
and Forward, and other customized configurations.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 12 of 46

Reference Guide
Chapter 1: Introduction

Abbreviations and Variables

Abbreviation Definition

RCA Radia Client Automation

Core and
Satellite

RCA Enterprise environment consisting of one Core server and one or more
Satellite servers.

CSDB Configuration Server Database

Abbreviations Used in this Guide

Variable Description Default Values

InstallDir Location where the RCA server
is installed

For a 32-bit OS: C:\Program
Files\Hewlett-Packard\HPCA

For a 64-bit OS: C:\Program
Files(x86)\Hewlett-Packard\HPCA

SystemDrive Drive label for the drive where
the RCA server is installed

C:

Variables Used in this Guide

Summary
l TheMessaging Server routes the object data collected from Client Automation Agents and

placed into queues into the appropriate Client Automation server or SQL database. Messages
can also be forwarded to another Messaging Server.

l Messages processed include agent objects collected for core, inventory, wbem and patch data.

l Configuration settings in the rms.cfg file allow you to load the Data Delivery Agents needed to
process the queues on that server. There are separate Data Delivery Agents for core, inventory
(filepost), wbem and patch data objects.

l Configuration settings in the *.dda.cfg files for the specific data delivery agents specify how
and where to route the data processed by that data delivery agent.

l Additional tuning options address load balancing when processing high-volumes of data as well
as large-sized objects.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 13 of 46

Reference Guide
Chapter 1: Introduction

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 14 of 46

Chapter 2

Configuring and Tuning the Messaging
Server

Note: To configure the Usage Data Delivery Agent, see theRadia Client Automation
Enterprise Application UsageManager ReferenceGuide.

Understanding the Configuration Server
Modules that Support the Messaging Server

This topic explains how themethods on the Configuration Server work hand-in-hand with the
Messaging Server to collect, queue, and then deliver data to the appropriate external location.

Getting Agent Information to the Messaging Server
Agent objects exchanged with or created on the Configuration Server during an agent connect
session are formatted into messages for theMessaging Server via the Configuration Server binary
executable QMSG. TheQMSG executable is part of the HPCA release. This executable is invoked
during agent taskend processing by the rexx method ZTASKEND or a connection to the Patch
Manager methods. The calls to QMSG can include parameters specifying what queue to place the
messages in, the priority in which themessage is to be processed, the objects that are to be
included in themessages, and the “destination address” or routing identifier for the file.

TheQMSG executable formats the object data into an XML file. Each XML file can bemade up of
multiple objects, such as when processing the CORE objects (for example, ZMASTER, SESSION
and ZCONFIG) or it can be a single multi-heap object such as a wbem or filepost object. Each call
to QMSGwill produce two files, the XML file created from the object data and a file which contains
themetadata. Metadata are attributes describing the XML file, how big it is, when it was created
and the routing identifier. The actual file names are created with a timestamp format. This enables
theMessaging Server to process the oldest messages first. TheMessaging Server always
processes in a “First In First Out” mode when themessages have the same processing priority.

When queue designations are specified when invoking QMSG, messages are placed in a directory
with the specified queue name. When no queue identifier is used, messages are placed in a
directory named default. Each data delivery agent uses its own unique queue for its particular
messages. This segregation of messages according to type allows for the simultaneous processing
of all queues and leads tomore efficient operation.

In Summary:

l For agent information needed by the PatchManager, QMSG is executed as a result of the
SYSTEM.ZMETHOD.PATCH* instances: PATCH_DEERROR, PATCH_BUSTATUS, PATCH_
DESTATUS, and PATCH_PASTATUS.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 15 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

For more information on creating themethod connection needed for Patchmessage processing,
see theRadia Client Automation Enterprise PatchManagement ReferenceGuide.

l For information needed by the Inventory Manager, Portal, and ApplicationManagement Profiles,
the Configuration Server REXX method, ZTASKEND, is used to trigger the call to QMSG. The
format of the QMSG call is included in the discussion of ZTASKEND which follows.

About the Patch Method for Collection
Fivemethods call the QMSG executable with the parameters in the ZMTHPRMS attribute of the
method. The default value of this attribute looks like this:

ZMTHPRMS -to PATCH5 –queue patch <<object-name>>

The –to PATCH5 parameter specifies that themessages will be placed in a queue called
../data/patch relative to the location of where QMSG is executed. This is the default location
specified in the install of the patch.dda.

The <<object-name>> parameters (DEERROR, BUSTATUS, DESTATUS, and PASTATUS) specify
the objects that will be included in themessage files created by QMSG.

About the ZTASKEND REXX method
The ZTASKEND REXX method on the Configuration Server is called at the end of each agent
connect, while objects associated with the present session are still available in storage on the
Configuration Server. ZTASKEND invokes QMGS when agent data needs to be collected for another
service, such as Inventory Manager, ApplicationManagement Profiles, or the Portal. QMSG
collects the data and places themessages in specified queues for pickup and processing by the
Messaging Server and its data delivery agents.

Note: Different object types (core, inventory and wbem objects) are placed in separate queues
whenever the Data Delivery Agents have been installed for those data objects.

An important job of ZTASKEND is to ensure unique agent data is collected at the appropriate agent
connect phase. For efficiency, ZTASKEND also groups identical messages, having the exact
same object content, to minimize the number of calls made to QMSG.

This topic explains:

l How ZTASKEND determines when to call QMSG for the various agent connect phases and
which objects are collected.

l The basic syntax of calls to QMSG.

l How theQMSG -to parameter establishes one or more destinations for message processing.

l How theQMSG -priority parameter establishes Messaging Server processing order.

ZTASKEND calls to QMSG
This topic reflects the ZTASKEND method.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 16 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Processing Phase-Dependent Objects
Each time an RCA agent connects to the Configuration Server, the agent declares its connection
intent or phase. An important role of the ZTASKEND REXX code is to minimize the collection of
duplicate information. With that goal in mind, the ZTASKEND method invokes QMSG depending on
the agent connection phase and the objects present. ZTASKEND restricts message posting to five
specific connection phases. The phases of interest are:

l BOOTSTRAP (Client Operations Profiles or COP)

l AGENT SELF MAINTENANCE

l CATALOG RESOLUTION

l SERVICE RESOLUTION

l AGENT REPORTING

Processing CORE Objects by Phase

There are "critical objects" collected for each of the core targets for Inventory Manager (RIM) and
Portal (RMP). The potential critical objects are:

For RIM: APPEVENT MSIEVENT SYNOPSIS RNPEVENT

For RMP: SYNOPSIS IDENTITY

In addition to the above critical objects, the table "Critical Objects collected by phase" identifies
critical objects collected for each phase.

Phase Critical Objects

BOOTSTRAP (COP) SESSION PREFACE ZSTATUS SMINFO

AGENT
SELFMAINTENANCE

SESSION PREFACE ZSTATUS SMINFO

CATALOG RESOLUTION SESSION PREFACE ZSTATUS ZCONFIG ZMASTER SMINFO

SERVICE RESOLUTION SESSION PREFACE ZSTATUS SMINFO

AGENT_REPORTING SESSION PREFACE ZSTATUS SAPSTATS ZRSTATE
SMINFO

Critical Objects collected by phase

With this in mind, ZTASKEND uses the following logic:

1. Whenever a critical object is presented, the critical object and the additional objects are
processed by QMSG and deposited into queues for processing by Messaging Server (RMS).

2. If a critical object is not present, then the code invokes QMSGwhen an agent connects during
the phases CATALOG_RESO and AGENT_REPORTING.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 17 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

3. If a critical object is not found, then code does not invokeQMSG for the following agent
phases: BOOTSTRAP (COP), SERVICE RESOLUTION and AGENT_SELF
MAINTAINANCE.

4. Finally, ZTASKEND does not invokeQMSG to obtain error message objects (ZERRORM &
ZERROR).

The table "ZTASKEND calls to QMSG for CORE Data for RIM and RMP" summarizes the Agent
Connect phases and the objects collected during the ZTASKEND calls to QMSG, for CORE data
going to Inventory Manager or the Portal.

Agent Connect Phase
QMSG call if not critical
object?

QMSG call if critical
object

Bootstrap - COP Resolution:
for Client Operations Profile.

No Collects these objects for
CORE.RIM and
CORE.RMP destinations:

APPEVENT |MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION
PREFACE
ZSTATUS
SMINFO

Agent Maintenance: No Collects these objects for
CORE.RIM and
CORE.RMP destinations:

APPEVENT |MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION
PREFACE
ZSTATUS
SMINFO

Catalog Resolution:
Agent connects to the
Configuration Server to obtain
service resolution list.

Always. Collects these
objects for CORE.RIM and
CORE.RMP destinations:
SESSION
PREFACE
ZCONFIG
ZMASTER
ZSTATUS
SMINFO

See previous column, but
also collects APPEVENT|
MSIEVENT |
SYNOPSIS | RNPEVENT.

Single Service Resolution:
For each service to be resolved,
agent makes another connection
to the Configuration Server.

No Collects the following
objects for CORE.RIM and
CORE.RMP destinations:

APPEVENT |MSIEVENT |
SYNOPSIS | RNPEVENT
SESSION

ZTASKEND calls to QMSG for CORE Data for RIM and RMP

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 18 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Agent Connect Phase
QMSG call if not critical
object?

QMSG call if critical
object

PREFACE
ZSTATUS
SMINFO

Agent Reporting:
At the end of service resolution.
Agent data is reported back to the
Configuration Server.

Always. Collects these
objects for CORE.RIM
destination:
SESSION
PREFACE
ZSTATUS
SAPSTATS
ZRSTATE
SMINFO

See previous column, but
also collects APPEVENT |
MSIEVENT |
SYNOPSIS | RNPEVENT

Adding Items to a Critical Object List

The ZTASKEND rexx code can be configured to add object names to the critical and additional
object lists. The rexx variables CriticalRIMObjects and CriticalRMPObjects contain
the object names for each of these targets. The rexx function call to BuildObjectList is used
to build the object list for each phase.

Call BuildObjectList
:
:
:
:

CriticalRIMObjects = "APPEVENT MSIEVENT SYNOPSIS RNPEVENT"
CriticalRMPObjects = "SYNOPSIS"

The ZTASKEND rexx code contains additional information on how to alter these items.

Processing Always Objects
There is a section of the ZTASKEND rexx code to define objects that will always be processed,
independent of the phase being processed. The larger Inventory Manager objects, FILEPOST,
WBEMAUDT and CLISTATS are processed this way. If these objects exist, then they are sent to
the specified target. In addition to the larger Inventory Manager objects, the job objects: JOBSTAT,
JOBPARM, and JOBTASK are also processed this way.

Adding Custom Objects to the BuildAlways Object List

This part of the rexx code can also be configured to add "custom" objects that are always delivered
to the specified target. The rexx function BuildAlways is used to configure the target, queue and
objects to process. The rexx code contains additional information on how to alter these items.

Call BuildAlways "inventory", InventoryQueue, "FILEPOST"

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 19 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

QMSG Method Syntax
TheQMSG command/method is used to post Configuration Server objects for Inventory Manager,
Portal and ApplicationManagement Profiles. QMSG reads the specified object and converts it to
XML and then writes it to the specified queue.

The syntax of the QMSGmethod is given below:

qmsg -to <destination(s)> -queue <queue> -priority <priority> object1
object2 ... objectn

-to <destination(s)>
must be explicitly coded with one or more destinations, or targets. Messages going tomultiple
destinations have comma-separated entries. For example:

-to CORE.RIM,CORE.RMP

TheMessaging Server destination values used by the delivered QMSG include:

-to CORE.ODBC

-to CORE.RMP

-to INVENTORY.ODBC

-to WBEM.ODBC

Eachmessage destination requires an equivalent ROUTE defined for it in themsg::register router
section of the appropriate Data Delivery Agent's *.dda.cfg file. The table "QMSGDestinations
and DDA Configuration Locations" gives the destination values of QMSG and the configuration file
and section used to define its ROUTE.

QMSG –to destination
Configuration File in
MessagingServer\etc folder Required ROUTE section

-to CORE.ODBC core.dda.cfg msg::register corerouter

-to CORE.RMP core.dda.cfg msg::register corerouter

-to INVENTORY.ODBC core.dda.cfg msg::register inventoryrouter

-toWBEM.ODBC core.dda.cfg msg::register wbemrouter

QMSG Destinations and DDA Configuration Locations

-queue <queue>
The queue is a directory relative to where QMSG.EXE exists. QMSG is located in the \bin directory
of the Configuration Server. For example, if QMSG resides at
C:\Program Files\Hewlett-
Packard\HPCA\ConfigurationServer\bin\qmsg.exe

Then the queues would reside at:

C:\Program Files\Hewlett-Packard\HPCA\ConfigurationServer\data\blue

C:\Program Files\Hewlett-
Packard\HPCA\ConfigurationServer\data\default

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 20 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

C:\Program Files\Hewlett-Packard\HPCA\ConfigurationServer\data\green

C:\Program Files\Hewlett-Packard\HPCA\ConfigurationServer\data\red

The parent directory of all queues is "data". For illustrative purposes, this example shows the
existence of the (fictitious) blue, green and red queues. Note that the queue named "default" is the
default queue.

Note: Queue locations are defined near the top of ZTASKEND. For Patch routing, the queue
location is named in the parameters passed to QMSG from the five
SYSTEM.ZMETHOD.PATCH_* instances. The instances are namedDEERROR,
BUSTATUS, DESTATUS, and PASTATUS. For example:
Method = qmsg
Parameter = -to PATCH5 –queue patch <<object>>
Tomodify the parameters to pass, edit the value of the ZMTHPRMS attribute in the PATCH_*
instance.

-priority
The priority is available to establishMessaging Server processing priority. If omitted, a default
priority of 10 is given to themessage. Valid values are 00 (highest priority) to 99 (lowest priority).
For more information onMessaging Server processing priority, see the topic "How Priority
Establishes Messaging Server Processing Order" below.

object1 [objectn]
The rest of the command line includes the names of the objects to queue, object1 object2...
objectn. The objects are processed in the order specified; thus, depending on the destination, there
might be a dependent order.

How Priority Establishes Messaging Server Processing
Order

When ZTASKEND calls QMSG, the optional –priority parameter in the call assigns a processing
priority to themessage. Priority values can range from 00 to 99, with 00 reserved for critical
processing and 99 being the lowest priority.

For messages waiting to be processed in the same queue, theMessaging Server processes all
messages assigned to a higher priority (such as 10) before processing any messages assigned to a
lower priority (such as 20). Within a given priority, messages are processed using first in, first out
(FIFO) order.

Note: Themessage priority remains the same for the life of themessage. For example, if a
message is forwarded from oneMessaging Server to another, themessage priority remains the
same.

l Priority 10 is the default if a priority is not specified.

l Previously, ZTASKEND called QMSGwith parameters to assign a lower priority of 20 to the
larger objects collected for Inventory Manager Reports: these include file audits, wbem reporting
data, and agent statistics (CLISTATS).

l This is no longer necessary because of the segregation of queues by object type.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 21 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

If theMessaging Server is not able to process themessages as fast as they are delivered from
QMSG, the lower priority messages will accumulate at the bottom of a queue location, even though
newermessages with higher priorities are still being processed.

Configuring the Messaging Server
Use these topics to reconfigure or tune theMessaging Server after installation, or reconfigure or
tune the data delivery agents for core or patch data.

Editing the Configuration Files for the Messaging
Server and Data Delivery Agents

TheMessaging Server and Data Delivery Agents standard installation allows configuration of
several of the configuration parameters contained in the respective configuration files. You will need
to edit the configuration file with a text editor to achieve amore customized environment.

All of the configuration files for theMessaging Server and Data Delivery Agents are found in the
\etc directory of where theMessaging Server was installed.

All the configuration files for theMessaging Server and the associated Data Delivery Agents have
similar configuration sections. Understanding these sections and the syntax used to configure them
will aid in customizing your environment.

The structure for the RMS configuration file sections is given below:

msg::register <unique identifier> {
TYPE <RMS registered TYPE>
<Configurable Variable for the registered TYPE> <Value for that

Variable>
<Configurable Variable for the registered TYPE> <Value for that

Variable>
}

Each configuration section starts with the command msg::register. This signals the start of a
configuration parameter for theMessaging Server and its modules.

A unique identifier follows themsg::register command. Within an instance of theMessaging Server,
which includes the configuration files for theMessaging Server and all of the DDA modules, this
unique identifier label can only be used once. The unique identifier is followed by a curly brace "{".
The configuration section for this TYPE must be ended by a closing curly brace for the entire
configuration to work.

All configuration file sections have a TYPE identifier, which indicate the kind of work to be done by
this section. These are the current acceptable TYPE designations:

l QUEUE

l ROUTER

l HTTP

l HTTPS

l HTTPD

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 22 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

l FILTER

l SQLBALANCER (only configurable in core.dda.cfg)

The table "Glossary of Section TYPEs and Configurable Parameters" describes the different
section TYPES and their configurable parameters. The sections are listed in the general order in
which they appear in the configuration files.

Section TYPE Configurable Parameters

QUEUE
Defines the directory where
messages are placed for processing.

DIR
The directory name of the queue.

USE
Specify the name of the unique identifier that will signify
how to dispatch themessage. Usually this is a ROUTER
type.

POLL
By default, theMessaging Server is configured to poll the
queue location every 10 seconds and post up to 100
objects at a time. To change the poll interval, modify the
POLL parameter.

COUNT
Maximum number of objects to post at a time (during the
polling interval defined by POLL). Default is 100 objects.

ATTEMPTS
Maximum number of attempts to retry a failedmessage
delivery before discarding themessage. Default is 200
attempts. (By default, theMessaging Server and Data
Delivery Agents are configured to retry any failed posts
every hour, andmake up to 200 attempts.)

DELAY
Number of seconds to wait between attempts to retry a
failedmessage delivery. Default is 3600 seconds, or one
hour.

Note: To calculate themaximum time that a
message could stay in the queue before being
discarded, take the DELAY time andmultiply it by
the ATTEMPTS value. Using the default settings,
this is a DELAY of 3600 seconds x 200 ATTEMPTS,
or approximately eight days.

ROUTER
Defines where themessages are
going to sent.

ROUTE
Delimit each Route by curly braces

TO
This is the address of themessage. It is contained in the

Glossary of Section TYPEs and Configurable Parameters

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 23 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

meta data file of eachmessage when themessage is
created.

USE
Specify the unique name of aMessaging Server TYPE
that will be used to dispatch themessage, such as HTTP
or HTTPS. (In a DDA file, the USE entries may also be
COREODBC, WBEMODBC and PATCHDDAODBC).

HTTP
This is a way to post themessage to
another server location using http
protocol. The target server can be
another Messaging Server where the
message can be re-queued or it can
be another part of the infrastructure,
such as the Portal.

ADDRESS
Delimit each address using curly braces. Multiple URL
destinations can be specified within each HTTP TYPE
as long as each has its own ADDRESS label and a
different priority.

PRI
Denotes the priority in which to sent messages to the
companion URL. The default priority is 10. The priority
setting only matters if multiple ADDRESS entries are
configured. If multiple ADDRESS entries are configured
the lowest priority is tried first and if that fails the next
priority URL is tried. This allows failover capability if
there are network problems.

URL
Specifies the URL to use to send themessage.

HTTPS

This is a way to post themessage
using a secure socket. The HTTPS
parameters are configured the same
as the HTTP parameters--with the
exception of the URL specification.
The URL uses the https://
convention.

ADDRESS
Same as TYPE of HTTP.

PRI
Same as TYPE of HTTP.

URL
Specifies the URL using the https:// convention.

For detailed information, see theRadia Client Automation
Enterprise SSL Implementation Guide.

HTTPD
Defines the parameters the
Messaging Server will use to receive
incomingmessages.

PORT
Defines the Port used to “listen” for messages. Only one
port specification can be used for a givenMessaging
Server.

URLHANDLER
Delimit with curly braces. If the incomingmessages are
to be deposited into different queues, depending upon the
URL, the URLHANDLER must be used to delimit the
USE and URL parameters.

USE
Specify the name of the QUEUE type that will receive

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 24 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

the incomingmessages.

URL
Specify the URL prefix that that will be accepted by the
Messaging Server. Whenmessages are received with
the designated URL they are deposited in the associated
queue. TheQUEUE typemust be defined when
messages are received. All URL’s specifiedmust start
with /proc/.

FILTER
A means to route PATCH data into
multiple SQL tables.

USE
Specify the name of the unique identifier that will signify
how to dispatch themessage.

TO
This is the address of themessage. It is contained in the
meta data file of eachmessage when themessage is
created.

FILTER
Used for PATCH object processing into multiple tables

COREODBC
Used to post CORE messages into a
SQL database.

DSN
Data Source Name

USER
User ID for the DSN

PASS
Password for the DSN

DSN_ATTEMPTS
Number of attempts to connect to the DSN. Default is 1.

DSN_DELAY
Delay in seconds between attempts to connect to the
DSN. Default is 5 seconds.

DSN_PING
Delay in seconds between pinging the database
connection to verify the DSN is available. Default is 300
seconds.

STARTUPLOAD
No longer supported; any existing value is ignored.

Note: The SQL tasks to create the tables and load
the scripts for the Inventory Database are always
performed uponMessaging Server and Data
Delivery Agent startup.

PATCHDDAODBC DSN

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 25 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

Used to post PATCH data
messages into a SQL or Oracle
database.

Only configurable in
patch.dda.cfg

Data Source Name

USER
User ID for the DSN

PASS
Password for the DSN

DBTYPE

Database type of MSSQL (for Microsoft SQLDatabase)
or ORACLE (for an Oracle Database).

SQL

The SQL database connection that
handles all operational and inventory
related data flows.

DSN
Data Source Name

SERVER

The name of the SQL server

USER

User ID for the DSN

PASS

Password for the DSN

AUTOCOMMIT

The transactionmanagement mode for the SQL server
that decides whether to commit or roll back the data.

DSN_DELAY

Delay in seconds between attempts to connect to the
DSN. Default is 5 seconds.

DSN_PING

Delay in seconds between pinging the database
connection to verify the DSN is available. Default is 300
seconds.

TRUNCATE

Truncates the data if it exceeds the column size. If
disabled, theMessaging Server throws an error
message.

DISABLE_TABLE_UPDATES

TheMessaging Server disables the provision to update
the specified tables in the database. You can specify the
tables for which you want to disable the updates. For
example, to disable the tables HDeviceConfig and

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 26 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

HAppEvent from being updated, add the following entry
in the *.cfg file:

DISABLE_TABLE_UPDATES {HDeviceConfig
HAppEvent}

ENABLE-CORE

Flag to enable the routing of CORE data objects placed in
the queue locations for the core objects.

ENABLE-INVENTORY

Flag to enable routing of INVENTORY data objects
placed in the queue locations for filepost (file audit
inventory).

ENABLE-WBEM

Flag to enable routing of WBEM data objects placed in
\data\wbem queue location.

ENABLE-VM

AUTOCREATE

A switch to enable the creation of a new SQL file and
table in the Inventory ODBC database when a new object
class is received. Default is 0.

0 – Does not create a SQL file or table entry for a new
object class.

1 – Creates a new SQL file and table entry for a new
object class.

AUTOLOAD

Enables autoload of schemas

SQLPATH

The path where the schemas are stored.

MAPPATH

The path where themappings (*.tcl files) are stored.

WBEM-PKEYS

Enables creation of WBEM tables on demand with
primary keys instead of unique indexes.

ARCHIVE

Enables archiving of messages. If enabled, the
messages aremoved to the Archive location.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 27 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

REJECTS

Moves themessages to the REJECTS handler. The
messages that fail to get processed, after maximum
number of attempts have been tried to deliver this
message, aremoved to the REJECTS handler.

Maximum number of attempts to retry a failedmessage

VALIDATE_NLS_PARAMS

National Language Support (NLS) connection settings
that can be set for Oracle.

SQLBALANCER

Routes all messages for a given
device to a single sub-queue based
on the host name, with a single
worker process processing the data
in the queue.

QUEUE_DIR

The directory where the queue is stored. For example,
<InstallDir>//Data/MessagingServer/core.

QUEUE_POLL
By default, theMessaging Server is configured to poll the
queue location every 1 second and post up to 100 objects
at a time. To change the poll interval, modify the POLL
parameter.

QUEUE_COUNT
Maximum number of objects to post at a time (during the
polling interval defined by POLL). Default is 5000 objects.

QUEUE_DELAY

Number of seconds to wait between attempts to retry a
failedmessage delivery. Default is 3600 seconds.

QUEUE_ATTEMPTS

Maximum number of attempts to retry a failedmessage
delivery before discarding themessage. Default is 200
attempts. (By default, theMessaging Server and Data
Delivery Agents are configured to retry any failed posts
every hour, andmake up to 200 attempts.)

QUEUE_REJECTS

Moves themessages to the REJECTS handler. The
messages that fail to get processed aremoved to the
REJECTS handler.

SQL_DSN

Data Source Name

SQL_SERVER

SQL_USER

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 28 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Section TYPE Configurable Parameters

User ID for the DSN

SQL_PASS

Password for the DSN

SQL_AUTOCOMMIT

The transactionmanagement mode for the SQL server
that decides whether to commit or roll back the data.

SQL_DSN_DELAY

Delay in seconds between attempts to connect to the
DSN. Default is 5 seconds.

SQL_DSN_PING

Delay in seconds between pinging the database
connection to verify the DSN is available. Default is 300
seconds.

SQL_ENABLE-CORE

Flag to enable the routing of CORE data objects placed in
the queue locations for the core objects.

SQL_ENABLE-WBEM

Flag to enable routing of WBEM data objects placed in
\data\wbem queue location.

SQL_ENABLE-INVENTORY

Flag to enable routing of INVENTORY data objects
placed in the queue locations for filepost (file audit
inventory).

SQL_ENABLE-VM

SQL_AUTOCREATE

A switch to enable the creation of a new SQL file and
table in the Inventory ODBC database when a new object
class is received. Default is 0.

0 – Does not create a SQL file or table entry for a new
object class.

1 – Creates a new SQL file and table entry for a new
object class.

SQL_AUTOLOAD

Enables autoload of schemas

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 29 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

You can adjust default values and routing options by editing the *.cfg files, located in the \etc
directory of where theMessaging Server was installed.

The baseMessaging Server configuration file (rms.cfg) loads the individual Data Directory Agent
(DDA)modules for posting the following object types: core, inventory, wbem, and patch. Each
DDA has it own configuration file (*.dda.cfg) that defines where and how the objects are routed.

See the following topics for more information on how to configure or modify each configuration file.

l "About the Sections in the RMS.CFG File" on next page

l " About the Sections in the CORE.DDA.CFG File" on page 32

l " About the Sections in the PATCH.DDA.CFG File" on page 34

l " Additional Tuning Topics" on page 35

Note: To configure the USAGE.DDA.CFG file, see Configuring Aggregation inRadia Client
Automation Enterprise Application UsageManager ReferenceGuide.

To edit a Messaging Server or Data Delivery Agent *.cfg file:

1. Stop theMessaging Server before editing the rms.cfg file.

2. Edit the appropriate *.cfg file using any text editor. By default, the *.cfg files are located at:
<InstallDir>\MessagingServer\etc.

3. Modify the sections using the information given in the following topics.

Note: All path entries in the configuration files must be specified using forward slashes.

4. Save your changes and restart theMessaging Server.

To encrypt a password entry for a database DSN in a configuration file:

1. The PASS value in all the .cfg files where specification of DSN parameters is necessary has
to be encrypted. When the value is entered during the install process, the installation program
takes care of encryption using AES, by default. If you need tomodify the password, you can
use the nvdkit utility to create an encrypted password using the AES or DES encryption
method, and specify this encrypted value within the appropriate section of the configuration
file. Enclose the encrypted value in quotationmarks.

2. Open a command prompt and go to the directory where theMessaging Server is installed.

3. Enter the following command: nvdkit

4. At the% prompt, type the following command for AES encryption (the installation default):
nvdkit encrypt <password_value> aes

Alternatively, type the following command for DES encryption:
nvdkit encrypt <password_value>

The utility will return an encrypted password value.

5. Cut and paste this encrypted password value into the configuration file as the PASS
value. Enclose the value in quotationmarks.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 30 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

About the Sections in the RMS.CFG File
TheMessaging Server Configuration file, rms.cfg, has the followingmain sections after the
header. The configuration file loads separatemodules for data delivery agents (DDAs), whose job is
to post the objects to the configured locations.

There are separate data delivery agents for core data (Inventory Manager and Portal objects) and
patch data (for PatchManager)

Optional entries in the rms.cfg file can include SSL support, a “msg:register httpd” section
if this Messaging Server is receiving forwardedmessages from another Messaging Server, and a
“msg:register default” section if this Messaging Server is postingmessages from a single
queue location of \data\default.

Additional Sections in the RMS.CFG File
l Required packages

Do not remove the following lines at the top of the rms.cfg file
package require nvd.msg

package require nvd.httpd

l SSL Configuration Parameters
If theMessaging Server is SSL enabled, this Overrides Config { } section in the rms.cfg is
used to define the necessary certificates and parameters for SSL support. It also includes the
command module load tls, which loads the code necessary to support SSL. For more
information, see theRadia Client Automation Enterprise SSL Implementation Guide.

l log::init
Logging configuration.These settings apply to all Messaging Server logging. For details on
changing the logging configurations, see "Configuring the Log Level, Log Size and Number" on
page 37. The log files are located in the Logs directory of where theMessaging Server was
installed.
n loglevel 3

Default logging level for entries written to the log files. Default is 3. Normally, this is not
changed.

n loglines 200000
The default number of lines contained in a log before the log is rolled over.

n loglimit 7
The default number of rolled logs to keep.

l Load Data Delivery Agents for posting objects
Include the following lines at the end of rms.cfg to load the data delivery agents needed to post
each type of object.
n dda.module load core

Posts CORE message data to a SQL or Oracle database and, optionally, CORE message
data to the Portal directory. See " About the Sections in the CORE.DDA.CFG File" on next
page for more information on how to configure the posting of core objects.

n dda.module load patch
Post PATCH message data to a SQL or Oracle database. See " About the Sections in the

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 31 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

PATCH.DDA.CFG File" on page 34 for information on how to configure the posting of patch
objects.

l (Optional) msg::register default,msg::register router, andmsg::register <rim|rmp|other>
These sections, if they exist, define how theMessaging Server handles themessages placed
by QMSG in an existing /data/default location (or /data/default queue).

l (Optional) Configure the maximum log size and number of logs
Note that these options apply for eachWorker assigned to process the \data\default
queue. For more information, see "Configuring the Log Level, Log Size and Number" on page 37.

l (Optional) Configure the frequency to check the Satellite server health
You can configure the frequency when the Satellite server health is checked and the data is sent
to the Core server. The default frequency is set to 21600 seconds (six hours). You can set the
HEARTBEAT attribute in the Overrides Config section in rms.cfg on the Satellite server. You
can set theminimum value as 1 second and themaximum value as 86400 seconds.

Snippet to set the frequency to 12 hours:

Set HEARTBEAT frequency to 12 hours
Overrides Config {
HEARTBEAT 43200
}

About the Sections in the CORE.DDA.CFG File
The core.dda.cfg file defines where and how to route objects placed in queue locations for core
objects. As mentioned previously, the core objects are objects created on the agent, available
during the agent connect process and used in reports. Examples of core objects are ZMASTER,
ZCONFIG, and SESSION.

l To activate the core.ddamodule, the command dda.module load coremust be included
at the end of the rms.cfg file.

l For aMessaging Server co-located with a Configuration Server, the queue locations are folders
where the QMSG executable places messages:
Queue folder for coremessages: <InstallDir>\data\core

l For aMessaging Server receivingmessages forwarded from another Messaging Server
core.ddamodule, URLs define the locations on which to listen for messages:
URL for coremessages: http://localhost:3461/proc/core

Several configurations are possible.

l Core object data can be routed using ODBC directly to the back-end SQL database. This option
is best used when the database is close to the current location.

l Core data can be forwarded to another Messaging Server. This option is used to place the
objects as close as possible to the SQL database, before ODBC posting, in order to avoid slow
network response.

l Coremessages for the Portal can be routed using HTTP to a Portal Zone, or discarded using the
built-in /dev/null location.

The core.dda.cfg file has the followingmain sections:

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 32 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

l msg::register core
This is the SQLBALANCER type for the core.dda configuration. Routes all messages for a
given device to a single sub-queue based on the host name, with a single worker process
processing the data in the queue.
The parameters are summarized below:

n DIR defines the full path of the /data/core location. This is set at installation time.

n USE defines where the routing information for each TO label is located.

n POLL and COUNT establish the polling interval and post quantity for theMessaging Server,
which determines how often and how many messages are posted at a time. To adjust this,
see the topic "Configuring the Poll Interval and Post Quantity" on page 35.

n Retry Attempts (DELAY and ATTEMPTS), after maximum retry attempts, amessage is
automatically discarded

l msg::register core.odbc
This is the SQL type. Routes messages to sub-queues based on the hostname. Defines a DSN,
User, and Password to post core data directly to anODBC database. For details on the entries,
see the topic " ODBC Settings for CORE, INVENTORY andWBEMObjects" below.

l (Optional) Configure the maximum log size and number of logs
Note that these options apply for eachWorker assigned to process the specific queue. For more
details, see "Configuring the Log Level, Log Size and Number" on page 37.

ODBC Settings for CORE, INVENTORY and WBEM
Objects

The following settings are configured in themsg::register core.odbc section of core.dda.cfg:

DSN Specify the Data Source Name (DSN) for the Inventory ODBC database.
Enclose the entry in quotes.

USER Specify the user name for the Inventory ODBC database identified in the
DSN parameter.

PASS Specify the password for the user of the Inventory ODBC database. When
modifying a password entry, obtain an encrypted entry using the procedure
"To encrypt a password entry for a database DSN in a configuration file: " on
page 30. Both AES (the installation default) and DES password encryption
methods are supported.

DSN_
ATTEMPTS

Number of attempts to connect to the Inventory Manager database DSN.
Default is 1.

DSN_DELAY Delay in seconds between attempts to connect to the Inventory Manager
database DSN. Default is 5 seconds.

DSN_PING Delay in seconds between pings to the database connection to verify the
DSN is available. Default is 300 seconds.

AUTOCREATE A switch to enable the creation of a new SQL file and table in the Inventory
ODBC database when a new object class is received. Default is 0.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 33 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

0 – Does not create a SQL file or table entry for a new object class.

1 – Creates a new SQL file and table entry for a new object class.

STARTUPLOAD No longer supported; any coded value is ignored.

Note: The SQL tasks to create the tables and load the scripts for the
Inventory Database are always performed uponMessaging Server and
Data Delivery Agent startup.

SQLPATH The path where the schemas are stored.

MAPPATH The path where themappings (*.tcl files) are stored.

WBEM-PKEYS If true, enables creation of WBEM tables on demand with primary keys
instead of unique indexes.

ARCHIVE Enables archiving of messages. If enabled, themessages aremoved to the
Archive location.

REJECTS Moves themessages to the REJECTS handler. Themessages that fail to
get processed, after maximum number of attempts have been tried to deliver
this message, aremoved to the REJECTS handler.

VALIDATE_
NLS_PARAMS

TheNLS connection setting that can be set for Oracle.

About the Sections in the PATCH.DDA.CFG
File

The patch.dda.cfg file defines where and how to route the objects placed in the
\data\patch queue location. Most of the configuration is done automatically during the
installation of theMessaging Server.

The patch.dda.cfg file has the followingmain sections after the header and required lines:

DO NOT REMOVE FOLLOWING LINE
package require nvd.msg.patchodbc
package require nvd.msg

l msg::register patchq
This is the QUEUE type for the patch.dda.cfg. Defines how theMessaging Server handles
themessages placed by QMSG in the /data/patch location (or /data/patch queue).
The parameters are summarized below:

n TYPE of QUEUE defines aMessaging Server location and polling values for picking up
messages.

n DIR defines the full path of the /data/patchmessage location. This is set at installation
time.

n USE defines where the routing information for the TOPATCH objects are located.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 34 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

n POLL and COUNT establish the polling interval and post quantity for theMessaging Server,
which determines how often and how many messages are posted at a time. To adjust this,
see the topic "Configuring the Poll Interval and Post Quantity" below.

n Retry Attempts (DELAY and ATTEMPTS), after maximum retry attempts, amessage is
automatically discarded

l msg::register patchrouter
This is the ROUTER type for the patch.dda.cfg. Configures routing assignments for each –
To patch type of message. At least one route is specified for each –To type:
-To PATCH

-To PATCH5

l msg::register patchddasummarize
Translates any ZOBJSTAT patch reporting objects from pre-5.0 agents into the PATCH
reporting objects used in Version 5.0 or higher patch reporting. Not configurable.

l msg::register patchddaodbc
Defines a DSN, User, Password and DBTYPE to post patch data directly to anODBC
database. For details on the entries, see "ODBC Settings for PATCH Objects" below.

Note: This sectionmay be pre-configured during the install.

l (Optional) Configure the maximum log size and number of logs.
Note that these options apply for eachWorker assigned to process the specific queue. For more
information, see "Configuring the Log Level, Log Size and Number" on page 37.

ODBC Settings for PATCH Objects
The following settings are configured in themsg::register patchddaodbc section of
patch.dda.cfg:

DSN Specify the Data Source Name (DSN) for the PatchManager ODBC database.
Enclose the entry in quotes.

USER Specify the user name for the PatchManager ODBC database identified in the DSN
parameter. Enclose the entry in quotes. Default value is {sa}.

PASS Specify the password for the user of the PatchManager ODBC database. Enclose
the entry in quotes.

DBTYPE Specify SMSSQL for aMicrosoft SQL Server, or ORACLE for an Oracle SQL
Database. Enclose the entry in quotes. Default is MSSQL.

Additional Tuning Topics
Configuring the Poll Interval and Post Quantity

By default, theMessaging Server is configured to poll the queue location every 10 seconds and
post up to 100 objects at a time. To change the poll interval, modify the POLL parameter in the
appropriate configuration file andmsg::register section with a TYPE of QUEUE.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 35 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

To change themaximum number of objects to be posted at a time, modify the COUNT parameter in
the same section.

If the objects being posted are very large, it is recommended to increase the POLL interval to give
sufficient time to complete the posting.

Configuring for Retry Attempts
TheMessaging Server and the Data Delivery Agents are configured to retry any message that fails
to post. By default, theMessaging Server will retry posting themessage every hour, andmake up
to 200 attempts. These values are defined by the DELAY and ATTEMPTS entries in the sections of
the configuration files that have a TYPE of QUEUE. See the table "Configuration File and Section
Used toModify Queue Processing" for a list of msg::register sections used tomodify QUEUE
processing.

Note: After the last attempt, themessage is automatically discarded from the queue without
being posted.

To calculate themaximum time that amessage could stay in the /data/default queue, take the
DELAY time andmultiply it by the ATTEMPTS value. Using the default settings, this is a DELAY of
3600 seconds x 200 ATTEMPTS, or approximately eight days.

You can adjust the DELAY and ATTEMPTS values in configuration files to establish a different
maximum time that amessage could stay in the /data/default queue. Specify the DELAY in
seconds.

Configuring for Failover
You can configure theMessaging Server with one or more servers defined for failover support when
defining HTTP types. When defining failover servers, each one is assigned a PRI value. If the
Messaging Server fails to connect with the first server (that is, the server with the lowest PRI value)
it will try the next server on the list (or, the next higher PRI value).

Note: This PRI value is separate from the –priority value assigned by QMSG for processing
priority. The PRI value and theQMSG -priority value are not related.

To set failover in a *.dda.cfg file:

Failover support is added by inserting additional ADDRESS entries to the appropriate section of an
HTTP type in a DDA cfg file.

The URL entries will be tried in order of PRI (priority) starting with the lowest PRI value.

The code sample below shows samplemodifications to themsg:register rim section of
core.dda.cfg for failover. The code in boldwas added to define a failover server for Inventory
Manager processing.

msg::register rim {
TYPE HTTP
ADDRESS {

PRI 10
URL http://rim1:3466/proc/rim/default

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 36 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

}
ADDRESS {

PRI 20
URL http://rim2:3466/proc/rim/default

}
}

Configuring the Log Level, Log Size and Number
The log files for theMessaging Server (rms.log) reside in the Logs folder of the
MessagingServer directory,
<InstallDir>\ConfigurationServer\MessagingServer\logs.

Changing the Logging Level
The log::init section at the beginning of the configuration file establishes the logging level for all
Messaging Server logging. The default logging level is 3. Valid levels are 0 (no logging) to 10
(maximum logging level). Normally, the log level is not changed unless requested by a customer
support person for troubleshooting purposes. The following lines show the log level increased to 4:

log::init {
-loglevel 4

}

Changing the Size and Number of Log Files
TheMessaging Server writes entries to a set of log files for eachWORKER. There is generally one
WORKER attending each queue location. Queue locations include:

\data\core
\data\inventory
\data\patch
\data\wbem

or

\data\default

By default, theMessaging Server creates and retains seven log files per worker, each file having a
maximum of 5000 lines. The log files are located in theMessaging Server \logs directory.

The following line in the rms.cfg file establishes the default logging:

-loglines 200000

To control the size and number of logs created for each worker, add or modify the following entries
below the log::init section of the rms.cfg file:

-loglines maximum_lines
-loglimit maximum number of logs

wheremaximum_lines is themaximum number of lines for a given log file. After themaximum is
reached, another log file is created, until themaximum number of logs specified in the log.configure

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 37 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

–size entry is reached. After themaximum number of logs is reached, the oldest log files are
deleted.

The next code sample illustrates an RMS.CFG file containing entries to limit each log file to 1000
lines, and allow up to 10 log files to be retained.

log::init {
-loglevel 3
-loglines 1000
-loglimit 10

}

Configuring the Messaging Server to Discard or
Drain Messages

The location of /dev/null is built into theMessaging Server for discardingmessages. When the
USE parameter is set to /dev/null in any of the ROUTER type sections of theMessaging
Server or Data Delivery Agent configuration files, themessages being processed will be
successfully discarded without an error.

Example: Discarding Messages for the Portal
For example, to discard all RMP messages placed in the \data\core queue (thesemessages
have a TO label of CORE.RMP), specify the following ROUTE in the msg::register
corerouter section of core.dda.cfg:

msg::register corerouter {
TYPE ROUTER

. . .
ROUTE {

TO CORE.RMP
USE /dev/null

}

Example: Draining a Message Queue
As another example, to quickly drain an entire queue, temporarily replace USE router in the
msg::register section for the queue with USE /dev/null. See the table "Configuration File and
Section Used toModify Queue Processing" for a list of the configuration files and sections that
control each queue type. After draining the queue, reset it back to USE router.

Configuring the Messaging Server to Route Portal
Messages

About the Portal Data Queue (rmpq) in CORE.DDA.CFG
The default core.dda.cfg configuration re-queues CORE messages that are to be posted to the
Portal directory into its own queue, named rmpq. This allows for separate throttling of the CORE

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 38 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

messages being posted via HTTP to the Portal directory, as opposed to the CORE messages
being posted using ODBC to another database.

The following code shows the sections from core.dda.cfg used for this purpose.

Requeue and process just RMP data to throttle the data flow
msg::register rmpq {

TYPE QUEUE

DIR ../ConfigurationServer/data/rmp
USE rmpqrouter

POLL 10
COUNT 30
DELAY 3600
ATTEMPTS 200
}

msg::register rmpqrouter {
TYPE ROUTER

ROUTE {
TO CORE.RMP
USE rmpqhttp
}
}

msg::register rmpqhttp {
TYPE HTTP

ADDRESS {
PRI 10
URL http://localhost:3471/proc/xml/obj
}
}

Restoring Routing for Portal Messages
If you initially installed theMessaging Server to discard Portal messages, use the steps below to
begin routing Portal data to a Portal Server and Port.

Tomodify core.dda.cfg for posting Portal data:

1. Use a text editor to edit the core.dda.cfg file, located in the etc folder of theMessaging
Server directory.

2. Look for the section starting with msg:register corerouter, and then find the entry for
the ROUTE defining CORE.RMPmessages. The Portal data that is being discarded will show
the following entry with a USE value set to /dev/null:
ROUTE {

TO CORE.RMP
USE /dev/null

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 39 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

3. Change the USE value from /dev/null to rmpq, as shown below:
TO CORE.RMP

USE rmpq

4. Next, locate the msg::register rmpqhttp section near the end of the core.dda.cfg
file, and find the default URL entry, shown below:
msg::register rmpqhttp {

TYPE HTTP

ADDRESS {
PRI 10
URL http://localhost:3466/proc/xml/obj

5. Edit the URL value of localhost:3466 to indicate the host and port of your Portal server.
For example, a Portal with a hostname of PORTALSVR on port 3471 is defined with the
following URL entry:
URL http://PORTALSVR:3471/proc/xml/obj

Host names can be specified using an IP address or a DNS name.

6. Save your changes and restart theMessaging Server.

Enhancing Messaging Server Performance
If theMessaging Server posts large amount of objects to the ODBC and the Portal, the Portal
throughput for Messaging Server object degrades. To improveMessaging Server performance for
posting objects to the Portal, apply the following configurations in the rmp.cfg file. Themodified
configuration decouples theMessaging Server object posting to the Portal fromMessaging Server's
main ODBC path. TheMessaging Server stores the Portal outbound objects to the disk. The Portal
then invokes a separate thread dedicated for processing thesemessages at its own pace.

TheMessaging Server posts themessages into the Portal queue; the Portal then initiates a thread
that reads from this folder and updates the destination (Database, OpenLDAP, or Configuration
Server database).

These configuration should be applied only to the coreMessaging Server.

To improve theMessaging Server performance for posting objects to the Portal, complete the
following steps:

1. Stop the HPCA Portal service.

2. Add the following parameters in the <InstallDir>/ManagementPortal/etc/rmp.cfg
file in the rmp::init { } block:
ENABLE_RMSQUEUE 1
RMSQUEUE_PATH
RMSQUEUE_REJECTS_PATH
where,
RMSQUEUE_PATH is the path to theMessaging Server folder where the Portal objects are
stored.
RMSQUEUE_REJECTS_PATH is the path to the rejects folder
For example:
ENABLE_RMSQUEUE 1

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 40 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

RMSQUEUE_PATH {<InstallDir>/Data/MessagingServer/rmp}
RMSQUEUE_REJECTS_PATH {<InstallDir>/Data/MessagingServer/rejects}

3. Add the following line of code in the
<InstallDir>/HPCA/ManagementPortal/etc/HPCA-RMP.rc file in the Overrides
Config { } block:
RMS_STORE_SUBSCRIBERS 0

4. Restart the HPCA Portal Service.

5. Ensure that ATTEMPTS is set to the desired value in the
<InstallDir>/HPCA/ManagementPortal/etc/rms.cfg in the msg::register
rmp { } block.

Disabling Processing of Messages in a Queue
The objects in a disabled queue are not polled or posted. Youmay want to disable processing during
peak agent connect periods if resources are in contention, or if you know a target server is down.

You can re-enable the processing at night or during slower periods to allow theMessaging Server to
transfer themessages.

To disable queue processing usingWORKERS -1 (minus 1) value:

To disable a queue from being polled and its contents posted, set aWORKERS value of -1 (minus
one) at the end of the appropriate msg::register section for that queue.

Queue

Configuration File in
MessagingServer\etc
folder msg::register section

\data\core core.dda.cfg msg::register coreq

\data\inventory core.dda.cfg msg::register
inventoryq

\data\patch patch.dda.cfg msg::register patchq

\data\wbem core.dda.cfg msg::register wbemq

\data\default (in earlier
Versions)

rms.cfg msg::register default

Configuration File and Section Used to Modify Queue Processing

To add aWORKERS value to createmultiple processes (WORKERS):

1. Use a text editor to open the appropriate *.cfg file for theMessaging Server or Data Delivery
Agent processing the queue to be disabled. The table "Configuration File and Section Used to
Modify Queue Processing" identifies the configuration file to use for each queue type.

2. Locate the 'msg::register' section named in the table "Configuration File and Section Used to
Modify Queue Processing"; it will be defined with { TYPE QUEUE }.

3. Add or modify a line forWORKERS with a value of -1 (minus 1) to the end of the section. A
sample entry for disabling a wbem queue is shown below with aWORKERS value of -1.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 41 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

msg::register wbemq {
TYPE QUEUE

DIR C:/Progra~/Hewlet~/CM/ConfigurationServer/data/wbemq
USE router

POLL 10
COUNT 100
DELAY 3600
ATTEMPTS 200
WORKERS -1
}

4. Save your changes and exit the editor.

To enable a disabled queue:

To enable a previously disabled queue, change theWORKERS value in themsg::register section
of appropriate configuration file from –1 to 1. The number of WORKERS indicates the number of
independent and lightweight processes to be started for this queue. It is recommended to use 1 as
the default configuration value for aMessaging Server that is processingmultiple queues with Data
Delivery Agents.

Modifying the Priority in which Messages are
Processed

Note:With the adoption of specific queues for each object type, the priority feature is no longer
applicable. However, the code for processingmessages in increasing priority order has not
been disabled.

Tomodify the priority in whichmessages are processed, see the earlier topic "How Priority
Establishes Messaging Server Processing Order" on page 21.

Configuring Messaging Server to Report
Differenced Objects

RCA Messaging Server provides an efficient and flexible messaging system to route the data
objects. It monitors pre-defined data queues and dynamically routes data objects to one or more
external destinations. RCA agent does not check whether the data objects have changed since last
scan to send the difference in the data objects to theMessaging Server. Instead, RCA agent sends
complete data to theMessaging Server. Sometimes theMessaging Server queue grows too large,
which impacts performance and causes delay in reporting. With the Reporting Differencer feature
enabled, RCA agent sends only the differenced data objects to theMessaging Server.

RCA agent invokes the RepObjDiff.exe based on the settings configured in the REPTDIFF
class in the CLIENT domain. RepObjDiff.exe creates a SQLite database on themanaged
device that contains all the data objects. The data objects in the OUTBOX folder are replaced with
the differenced data objects containing fewermessages instead of complete data. TheMessaging

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 42 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Server is configured to handle the 'Differenced' Reporting Objects. The PATCH.DDA file processes
the differenced object data as well as full object data to generate the reports.

Complete the following steps to configure theMessaging Server to report difference data objects:

1. Click Start > Programs > Radia Client Automation Administrator > Radia Client
Automation Administrator CSDB Editor. The logon dialog box opens.

2. Type your User ID and Password. By default, the user name is ADMIN and the password is
secret.

3. Click OK. The RCA Admin CSDB Editor window opens.

4. Navigate to the PRIMARY.CLIENT.REPTDIFF.

5. Set the following parameters:
a. Set FLUSHDB to Y to recreate the reporting reference information.

b. Set FULLREFR to Y to refresh the complete data and sends it to Messaging Server.

c. Set REPTDIFF to Y to enable the Reporting Differencer.

d. Set REPTOBJS to one or more data objects for differencing, such as DESTATUS.edm,
BUSTATUS.edm, and PASTATUS.edm. RCA agent invokes the RepObjDiff.exe only if
one of these objects are available in the OUTBOX folder and the Reporting Differencer is
enabled.

For more information on REPTDIFF class, seeRadia Client Automation Enterprise Configuration
Server Database ReferenceGuide.

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 43 of 46

Reference Guide
Chapter 2: Configuring and Tuning theMessaging Server

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 44 of 46

We appreciate your feedback!
If an email client is configured on this system, by default an email window opens when you click
here.

If no email client is available, copy the information below to a new message in a webmail client,
and then send this message to radiadocfeedback@persistent.co.in.

Product name and version:Radia Client Automation EnterpriseMessaging Server, 9.00

Document title:ReferenceGuide

Feedback:

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 45 of 46

Reference Guide
Weappreciate your feedback!

mailto:radiadocfeedback@persistent.co.in?subject=Feedback on the Radia Client Automation (9.00) documentation

Radia Client Automation Enterprise
Messaging Server (9.00)

Page 46 of 46

Reference Guide
Weappreciate your feedback!

	Reference Guide
	Contents
	Introduction
	About the Messaging Server
	Features and Benefits
	Messaging Server Processing on the Configuration Server
	About the Data Delivery Agents
	About Routing Inventory Data

	About the SQL Database Tables and Scripts for Inventory
	Creating SQL Tables for the Inventory Database
	About Using Store and Forward

	About this Guide
	Abbreviations and Variables
	Summary

	Configuring and Tuning the Messaging Server
	Understanding the Configuration Server Modules that Support the Messaging Server
	Getting Agent Information to the Messaging Server
	About the Patch Method for Collection
	About the ZTASKEND REXX method
	ZTASKEND calls to QMSG
	Processing Phase-Dependent Objects
	Processing CORE Objects by Phase
	Adding Items to a Critical Object List

	Processing Always Objects
	Adding Custom Objects to the BuildAlways Object List

	QMSG Method Syntax
	How Priority Establishes Messaging Server Processing Order

	Configuring the Messaging Server
	Editing the Configuration Files for the Messaging Server and Data Delivery Ag...

	About the Sections in the RMS.CFG File
	Additional Sections in the RMS.CFG File

	About the Sections in the CORE.DDA.CFG File
	ODBC Settings for CORE, INVENTORY and WBEM Objects

	About the Sections in the PATCH.DDA.CFG File
	ODBC Settings for PATCH Objects

	Additional Tuning Topics
	Configuring the Poll Interval and Post Quantity
	Configuring for Retry Attempts
	Configuring for Failover
	Configuring the Log Level, Log Size and Number
	Changing the Logging Level
	Changing the Size and Number of Log Files

	Configuring the Messaging Server to Discard or Drain Messages
	Example: Discarding Messages for the Portal
	Example: Draining a Message Queue

	Configuring the Messaging Server to Route Portal Messages
	About the Portal Data Queue (rmpq) in CORE.DDA.CFG
	Restoring Routing for Portal Messages
	Enhancing Messaging Server Performance

	Disabling Processing of Messages in a Queue
	Modifying the Priority in which Messages are Processed
	Configuring Messaging Server to Report Differenced Objects

	We appreciate your feedback!

