

HP Vertica Analytics Platform 6.1.x

SQL Reference Manual
Doc Revision 3

Copyright© 2006-2013 Hewlett-Packard

Date of Publication: Monday, October 28, 2013

-ii-

Contents

Syntax Conventions 15

SQL Overview 16

System Limits 17

SQL Language Elements 19

Keywords and Reserved Words ..19
Keywords ...19
Reserved Words ..21

Identifiers ..22
Literals...24

Number-type Literals ...24
String Literals ..26
Date/Time Literals ..35

Operators...41
Binary Operators ...41
Boolean Operators ..44
Comparison Operators ...44
Data Type Coercion Operators (CAST)..45
Date/Time Operators ..46
Mathematical Operators ...47
NULL Operators ...48
String Concatenation Operators ...49

Expressions ...50
Aggregate Expressions...51
CASE Expressions..52
Column References ..54
Comments ..55
Date/Time Expressions ..55
NULL Value ..57
Numeric Expressions..58

Predicates ..58
BETW EEN-pred icate...58
Boolean-predicate ...60
column-value-predicate ...60
IN-predicate ...61
INTERPOLATE..61
join-pred icate ...64
LIKE-predicate ..66
NULL-predicate ..69

-iii-

 Contents

SQL Data Types 71

Binary Data Types...72
Boolean Data Type ..76
Character Data Types..76
Date/Time Data Types ..78

DATE..80
DATETIME ...81
INTERVAL ...81
SMALLDATETIME ..95
TIME...95
TIMESTAMP ..97

Numeric Data Types .. 103
DOUBLE PRECISION (FLOAT) .. 105
INTEGER.. 107
NUMERIC .. 107

Data Type Coercion ... 112
Data Type Coercion Chart .. 115

SQL Functions 117

Aggregate Functions .. 118
AVG [Aggregate] .. 118
BIT_AND.. 119
BIT_OR ... 120
BIT_XOR .. 122
CORR... 123
COUNT [Aggregate]... 123
COVAR_POP... 127
COVAR_SAMP... 127
MAX [Aggregate].. 128
MIN [Aggregate] ... 129
REGR_AVGX .. 130
REGR_AVGY.. 130
REGR_COUNT ... 131
REGR_INTERCEPT... 131
REGR_R2 ... 132
REGR_SLOPE ... 132
REGR_SXX.. 133
REGR_SXY.. 133
REGR_SYY.. 134
STDDEV [Aggregate]... 134
STDDEV_POP [Aggregate] .. 135
STDDEV_SAMP [Aggregate] .. 136
SUM [Aggregate] .. 137
SUM_FLOAT [Aggregate] .. 138
VAR_POP [Aggregate] .. 139
VAR_SAMP [Aggregate] .. 139
VARIANCE [Aggregate] ... 140

Analytic Functions ... 141
window_partit ion_clause.. 143

-iv-

SQL Reference Manual

window_order_clause ... 144
window_frame_clause .. 145
named_windows... 148
AVG [Analytic].. 150
CONDITIONAL_CHANGE_EVENT [Analytic] ... 151
CONDITIONAL_TRUE_EVENT [Analytic] .. 152
COUNT [Analytic] .. 153
CUME_DIST [Analytic] .. 155
DENSE_RANK [Analytic] .. 156
EXPONENTIAL_MOVING_AVERAGE [Analytic] .. 158
FIRST_VALUE [Analytic] .. 160
LAG [Analytic] .. 163
LAST_VALUE [Analytic] ... 166
LEAD [Analytic] ... 168
MAX [Analytic] ... 171
MEDIAN [Analytic] ... 172
MIN [Analytic]... 174
NTILE [Analytic] .. 175
PERCENT_RANK [Analytic]... 176
PERCENTILE_CONT [Analytic] .. 178
PERCENTILE_DISC [Analytic] .. 180
RANK [Analytic]... 182
ROW_NUMBER [Analytic].. 184
STDDEV [Analytic].. 186
STDDEV_POP [Analytic] ... 187
STDDEV_SAMP [Analytic] ... 188
SUM [Analytic].. 189
VAR_POP [Analytic].. 191
VAR_SAMP [Analytic].. 192
VARIANCE [Analytic] .. 193

Date/Time Functions.. 194
ADD_MONTHS .. 195
AGE_IN_MONTHS.. 197
AGE_IN_YEARS.. 198
CLOCK_TIMESTAMP.. 199
CURRENT_DATE .. 200
CURRENT_TIME... 200
CURRENT_TIMESTAMP .. 201
DATE_PART ... 202
DATE... 206
DATE_TRUNC.. 207
DATEDIFF ... 209
DAY ... 214
DAYOFMONTH ... 215
DAYOFW EEK... 215
DAYOFW EEK_ISO ... 216
DAYOFYEAR ... 217
DAYS... 218
EXTRACT .. 218
GETDATE .. 222
GETUTCDATE ... 223
HOUR .. 223
ISFINITE... 224
JULIAN_DAY ... 225

-v-

 Contents

LAST_DAY.. 225
LOCALTIME ... 226
LOCALTIMESTAMP .. 226
MICROSECOND .. 227
MIDNIGHT_SECONDS.. 228
MINUTE ... 228
MONTH .. 229
MONTHS_BETW EEN .. 230
NEW_TIME ... 232
NEXT_DAY ... 234
NOW [Date/Time] ... 235
OVERLAPS.. 235
QUARTER.. 236
ROUND [Date/Time].. 237
SECOND ... 238
STATEMENT_TIMESTAMP .. 239
SYSDATE... 239
TIME_SLICE ... 240
TIMEOFDAY .. 244
TIMESTAMPADD ... 245
TIMESTAMPDIFF ... 247
TIMESTAMP_ROUND ... 248
TIMESTAMP_TRUNC.. 249
TRANSACTION_TIMESTAMP ... 251
TRUNC [Date/Time]... 251
WEEK.. 252
WEEK_ISO .. 253
YEAR... 254
YEAR_ISO ... 255

Formatting Functions ... 256
TO_BITSTRING ... 256
TO_CHAR .. 257
TO_DATE... 259
TO_HEX ... 260
TO_TIMESTAMP... 261
TO_TIMESTAMP_TZ ... 263
TO_NUMBER ... 264
Template Patterns for Date/Time Formatting ... 265
Template Patterns for Numeric Formatting... 268

Geospatial Package SQL Functions .. 269
Geospatial SQL Functions ... 270
BB_WITHIN .. 271
BEARING ... 272
CHORD_TO_ARC.. 273
DWITHIN ... 274
ECEF_CHORD .. 275
ECEF_x ... 276
ECEF_y ... 276
ECEF_z.. 277
ISLEFT .. 278
KM2MILES .. 279
LAT_WITHIN.. 279
LL_WITHIN... 280

-vi-

SQL Reference Manual

LLD_WITHIN.. 281
LON_WITHIN ... 282
MILES2KM .. 283
RADIUS_LON... 283
RADIUS_M .. 284
RADIUS_N... 284
RADIUS_R ... 285
RADIUS_Ra ... 286
RADIUS_Rc ... 286
RADIUS_Rv ... 287
RADIUS_SI .. 288
RAYCROSSING ... 288
WGS84_a .. 289
WGS84_b .. 290
WGS84_e2 .. 290
WGS84_f... 291
WGS84_if ... 291
WGS84_r1 .. 291

IP Conversion Functions ... 292
INET_ATON .. 292
INET_NTOA .. 293
V6_ATON... 294
V6_NTOA ... 295
V6_SUBNETA... 296
V6_SUBNETN... 297
V6_TYPE .. 298

Mathematical Functions .. 300
ABS .. 300
ACOS... 300
ASIN .. 301
ATAN .. 301
ATAN2 .. 302
CBRT ... 302
CEILING (CEIL) ... 303
COS .. 303
COT.. 304
DEGREES... 304
DISTANCE... 305
DISTANCEV ... 306
EXP .. 307
FLOOR .. 307
HASH... 308
LN... 309
LOG.. 310
MOD .. 310
MODULARHASH .. 311
PI... 312
POW ER (or POW) .. 313
RADIANS ... 313
RANDOM ... 314
RANDOMINT ... 315
ROUND ... 315
SIGN .. 317
SIN.. 317

-vii-

 Contents

SQRT ... 318
TAN.. 318
TRUNC.. 319
WIDTH_BUCKET .. 319

NULL-handling Functions.. 321
COALESCE.. 321
IFNULL ... 322
ISNULL ... 323
NULLIF ... 325
NULLIFZERO ... 326
NVL.. 327
NVL2 ... 328
ZEROIFNULL ... 330

Pattern Matching Functions .. 331
EVENT_NAME... 331
MATCH_ID.. 332
PATTERN_ID.. 334

Regular Expression Functions.. 335
ISUTF8 .. 335
REGEXP_COUNT .. 336
REGEXP_INSTR .. 338
REGEXP_LIKE ... 341
REGEXP_REPLACE ... 345
REGEXP_SUBSTR .. 348

Sequence Functions.. 351
NEXTVAL.. 351
CURRVAL ... 353
LAST_INSERT_ID ... 355

String Functions.. 357
ASCII ... 357
BIT_LENGTH ... 358
BITCOUNT .. 359
BITSTRING_TO_BINARY .. 360
BTRIM... 360
CHARACTER_LENGTH.. 361
CHR.. 362
CONCAT .. 363
DECODE... 363
GREATEST .. 365
GREATESTB ... 366
HEX_TO_BINARY .. 367
HEX_TO_INTEGER .. 368
INET_ATON .. 369
INET_NTOA .. 370
INITCAP ... 371
INITCAPB .. 372
INSERT ... 372
INSTR.. 373
INSTRB ... 376
ISUTF8 .. 377
LEAST ... 377
LEASTB .. 379
LEFT .. 380

-viii-

SQL Reference Manual

LENGTH ... 381
LOW ER ... 382
LOW ERB .. 382
LPAD ... 383
LTRIM ... 384
MD5 ... 385
OCTET_LENGTH .. 385
OVERLAY ... 386
OVERLAYB .. 387
POSITION .. 388
POSITIONB ... 390
QUOTE_IDENT .. 391
QUOTE_LITERAL ... 392
REPEAT .. 392
REPLACE ... 393
RIGHT ... 394
RPAD... 395
RTRIM... 396
SPACE... 396
SPLIT_PART ... 397
SPLIT_PARTB .. 398
STRPOS .. 399
STRPOSB ... 400
SUBSTR .. 400
SUBSTRB ... 402
SUBSTRING .. 403
TO_BITSTRING ... 404
TO_HEX ... 405
TRANSLATE... 406
TRIM.. 406
UPPER... 407
UPPERB .. 408
V6_ATON... 409
V6_NTOA ... 410
V6_SUBNETA... 411
V6_SUBNETN... 412
V6_TYPE .. 413

System Information Functions ... 414
CURRENT_DATABASE .. 415
CURRENT_SCHEMA ... 415
CURRENT_USER .. 416
DBNAME (function)... 417
HAS_TABLE_PRIVILEGE .. 417
SESSION_USER ... 419
USER ... 419
USERNAME .. 420
VERSION ... 420

Timeseries Functions ... 421
TS_FIRST_VALUE .. 421
TS_LAST_VALUE ... 422

URI Encode/Decode Functions.. 424
URI_PERCENT_DECODE... 424
URI_PERCENT_ENCODE... 425

-ix-

 Contents

HP Vert ica Meta-functions ... 425
Alphabetical List of HP Vert ica Meta-functions .. 426
Catalog Management Functions .. 539
Cluster Scaling Functions... 545
Constraint Management Functions ... 550
Data Collector Functions .. 560
Database Management Functions ... 566
Epoch Management Functions .. 574
License Management Functions .. 581
Partit ion Management Functions .. 588
Profiling Functions .. 600
Projection Management Functions ... 602
Purge Functions.. 611
Session Management Functions .. 615
Statistic Management Functions ... 626
Storage Management Functions .. 636
Tuple Mover Functions... 648
Workload Management Functions .. 649

SQL Statements 656

ALTER FUNCTION ... 656
ALTER LIBRARY .. 658
ALTER PROJECTION RENAME ... 659
ALTER NETWORK INTERFACE .. 660
ALTER PROFILE .. 660
ALTER PROFILE RENAME .. 662
ALTER RESOURCE POOL .. 663
ALTER ROLE RENAME .. 667
ALTER SCHEMA ... 668
ALTER SEQUENCE... 669
ALTER SUBNET... 671
ALTER TABLE.. 672

table-constraint ... 678
ALTER USER... 679
ALTER VIEW .. 681
BEGIN.. 682
COMMENT ON Statements .. 684

COMMENT ON COLUMN .. 684
COMMENT ON CONSTRAINT ... 685
COMMENT ON FUNCTION... 686
COMMENT ON LIBRARY.. 688
COMMENT ON NODE ... 689
COMMENT ON PROJECTION... 690
COMMENT ON SCHEMA ... 691
COMMENT ON SEQUENCE .. 692
COMMENT ON TABLE ... 693
COMMENT ON TRANSFORM FUNCTION... 694
COMMENT ON VIEW .. 695

-x-

SQL Reference Manual

COMMIT ... 697
CONNECT .. 697
COPY ... 699

Parameters ... 700
COPY Option Summary ... 706
Notes .. 707
Examples ... 708
See Also... 709

COPY LOCAL.. 709
COPY FROM VERTICA ... 711
CREATE EXTERNAL TABLE AS COPY .. 714
CREATE FUNCTION Statements .. 716

CREATE AGGREGATE FUNCTION.. 716
CREATE ANALYTIC FUNCTION .. 719
CREATE FILTER ... 720
CREATE FUNCTION (SQL Functions)... 722
CREATE FUNCTION (UDF)... 725
CREATE PARSER ... 729
CREATE SOURCE... 731
CREATE TRANSFORM FUNCTION ... 734

CREATE LIBRARY ... 735
CREATE NETWORK INTERFACE ... 737
CREATE PROCEDURE .. 737
CREATE PROFILE ... 739
CREATE PROJECTION .. 742

encoding-type ... 747
hash-segmentation-clause... 750
range-segmentation-clause ... 751

CREATE RESOURCE POOL ... 753
Built-in Pools .. 757
Built-in Pool Configuration.. 759

CREATE ROLE ... 764
CREATE SCHEMA .. 764
CREATE SEQUENCE.. 765
CREATE SUBNET.. 770
CREATE TABLE... 770

column-defin ition (table) .. 779
column-name-list (table)... 780
column-constraint .. 783
table-constraint ... 787
hash-segmentation-clause (table) .. 788
range-segmentation-clause (table) .. 790

CREATE TEMPORARY TABLE .. 791
column-defin ition (temp table) .. 795
column-name-list (temp table)... 797
hash-segmentation-clause (temp table) .. 799
range-segmentation-clause (temp table) .. 800

CREATE USER.. 801
CREATE VIEW ... 804
DELETE... 807
DISCONNECT ... 809
DROP AGGREGATE FUNCTION.. 809
DROP FUNCTION .. 811

DROP SOURCE .. 812

-xi-

 Contents

DROP FILTER... 813
DROP PARSER ... 814

DROP LIBRARY ... 815
DROP NETWORK INTERFACE... 816
DROP PROCEDURE .. 816
DROP PROFILE .. 817
DROP PROJECTION.. 818
DROP RESOURCE POOL .. 819
DROP ROLE... 820
DROP SCHEMA .. 821
DROP SEQUENCE ... 822
DROP SUBNET ... 823
DROP TABLE .. 823
DROP TRANSFORM FUNCTION.. 825
DROP USER ... 826
DROP VIEW ... 827
END .. 827
EXPLAIN .. 828
EXPORT TO VERTICA... 829
GRANT Statements ... 832

GRANT (Database) ... 832
GRANT (Procedure) ... 833
GRANT (Resource Pool) ... 834
GRANT (Role) ... 835
GRANT (Schema) ... 837
GRANT (Sequence) .. 838
GRANT (Storage Location)... 839
GRANT (Table) ... 842
GRANT (User Defined Extension)... 843
GRANT (View).. 845

INSERT.. 846
MERGE.. 849
PROFILE ... 852
RELEASE SAVEPOINT .. 854
REVOKE Statements... 855

REVOKE (Database) .. 855
REVOKE (Procedure)... 856
REVOKE (Resource Pool)... 857
REVOKE (Role) .. 858
REVOKE (Schema) .. 859
REVOKE (Sequence).. 860
REVOKE (Storage Location) .. 861
REVOKE (Table) .. 863
REVOKE (User Defined Extension) .. 864
REVOKE (View) ... 866

ROLLBACK ... 867
SAVEPOINT... 868
ROLLBACK TO SAVEPOINT... 869
SELECT ... 870

EXCEPT Clause... 872
FROM Clause ... 876
GROUP BY Clause ... 878
HAVING Clause .. 880

-xii-

SQL Reference Manual

INTERSECT Clause ... 880
INTO Clause ... 884
LIMIT Clause ... 886
MATCH Clause ... 887
MINUS Clause ... 890
OFFSET Clause ... 891
ORDER BY Clause ... 893
TIMESERIES Clause.. 894
UNION Clause ... 896
WHERE Clause.. 901
WINDOW Clause .. 902
WITH Clause .. 902

SET DATESTYLE... 903
SET ESCAPE_STRING_WARNING.. 905
SET INTERVALSTYLE .. 906
SET LOCALE... 907
SET ROLE... 910
SET SEARCH_PATH ... 912
SET SESSION AUTOCOMMIT... 913
SET SESSION CHARACTERISTICS... 914
SET SESSION MEMORYCAP... 915
SET SESSION RESOURCE_POOL .. 916
SET SESSION RUNTIMECAP .. 917
SET SESSION TEMPSPACECAP... 918
SET STANDARD_CONFORMING_STRINGS ... 920
SET TIME ZONE .. 921

Time Zone Names for Setting TIME ZONE... 922
SHOW .. 923
START TRANSACTION... 926
TRUNCATE TABLE .. 927
UPDATE.. 929

HP Vertica System Tables 933

V_CATALOG Schema ... 933
ALL_TABLES ... 933
COLUMNS ... 935
COMMENTS ... 937
CONSTRAINT_COLUMNS... 938
DATABASES .. 939
DUAL .. 939
ELASTIC_CLUSTER .. 940
EPOCHS.. 942
FOREIGN_KEYS.. 942
GRANTS ... 944
LICENSE_AUDITS .. 947
NODES .. 948
ODBC_COLUMNS .. 949
PASSWORDS .. 950
PRIMARY_KEYS... 951
PROFILE_PARAMETERS ... 952
PROFILES .. 952
PROJECTION_CHECKPOINT_EPOCHS .. 953

-xiii-

 Contents

PROJECTION_COLUMNS .. 955
PROJECTION_DELETE_CONCERNS ... 961
PROJECTIONS.. 961
RESOURCE_POOL_DEFAULTS... 964
RESOURCE_POOLS ... 965
ROLES... 967
SCHEMATA .. 968
SEQUENCES ... 969
STORAGE_LOCATIONS... 972
SYSTEM_COLUMNS ... 975
SYSTEM_TABLES .. 976
TABLE_CONSTRAINTS ... 977
TABLES .. 978
TYPES ... 980
USER_AUDITS... 982
USER_FUNCTIONS .. 982
USER_PROCEDURES .. 984
USERS... 985
VIEW_COLUMNS ... 987
VIEWS... 988

V_MONITOR Schema .. 989
ACTIVE_EVENTS ... 990
COLUMN_STORAGE... 992
CONFIGURATION_CHANGES ... 995
CONFIGURATION_PARAMETERS .. 996
CPU_USAGE ... 997
CRITICAL_HOSTS .. 998
CRITICAL_NODES ... 998
CURRENT_SESSION.. 999
DATA_COLLECTOR .. 1002
DATABASE_BACKUPS .. 1006
DATABASE_CONNECTIONS ... 1008
DATABASE_SNAPSHOTS ... 1008
DELETE_VECTORS ... 1010
DEPLOY_STATUS .. 1010
DESIGN_STATUS ... 1012
DISK_RESOURCE_REJECTIONS .. 1013
DISK_STORAGE.. 1014
ERROR_MESSAGES .. 1018
EVENT_CONFIGURATIONS ... 1020
EXECUTION_ENGINE_PROFILES.. 1021
HOST_RESOURCES ... 1028
IO_USAGE ... 1030
LOAD_STREAMS.. 1031
LOCK_USAGE.. 1033
LOCKS .. 1037
LOGIN_FAILURES ... 1041
MEMORY_USAGE.. 1042
MONITORING_EVENTS... 1043
NETWORK_INTERFACES ... 1045
NETWORK_USAGE ... 1046
NODE_RESOURCES .. 1047
NODE_STATES.. 1048

-xiv-

SQL Reference Manual

PARTITION_REORGANIZE_ERRORS ... 1049
PARTITION_STATUS .. 1050
PARTITIONS... 1051
PROCESS_SIGNALS .. 1052
PROJECTION_RECOVERIES .. 1053
PROJECTION_REFRESHES ... 1056
PROJECTION_STORAGE ... 1059
PROJECTION_USAGE ... 1062
QUERY_EVENTS .. 1063
QUERY_METRICS .. 1068
QUERY_PLAN_PROFILES... 1069
QUERY_PROFILES... 1071
QUERY_REQUESTS... 1073
REBALANCE_PROJECTION_STATUS .. 1076
REBALANCE_TABLE_STATUS .. 1078
RECOVERY_STATUS.. 1079
RESOURCE_ACQUISITIONS .. 1081
RESOURCE_POOL_STATUS... 1083
RESOURCE_QUEUES.. 1086
RESOURCE_REJECTION_DETAILS... 1087
RESOURCE_REJECTIONS ... 1089
RESOURCE_USAGE .. 1091
SESSION_PROFILES .. 1093
SESSIONS .. 1095
STORAGE_CONTAINERS.. 1098
STORAGE_POLICIES .. 1101
STORAGE_TIERS.. 1102
STORAGE_USAGE ... 1104
STRATA ... 1105
STRATA_STRUCTURES... 1108
SYSTEM ... 1111
SYSTEM_RESOURCE_USAGE... 1112
SYSTEM_SERVICES .. 1114
SYSTEM_SESSIONS .. 1116
TRANSACTIONS... 1118
TUNING_RECOMMENDATIONS .. 1120
TUPLE_MOVER_OPERATIONS... 1122
UDX_FENCED_PROCESSES... 1124
USER_LIBRARIES .. 1125
USER_LIBRARY_MANIFEST ... 1126
USER_SESSIONS... 1126
WOS_CONTAINER_STORAGE .. 1129

Appendix: Compatibility with Other RDBMS 1132

Data Type Mappings Between Vertica and Oracle .. 1132

Copyright Notice 1135

-15-

 15

Syntax Conventions

The following are the syntax conventions used in the HP Vertica documentation.

Syntax Convention Description

Text without brackets/braces Indicates content you type, as shown.

< Text inside angle brackets > Represents a placeholder for which you must supply a value. The
variable is usually shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type

the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

be provided. You do not type the braces: QUOTES ON

Backslash \ Represents a continuation character used to indicate text that is too

long to fit on a single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,
option[,...] means that you can enter multiple,

comma-separated options.

Showing ellipses in code examples might also mean that part of the

text has been omitted for readability, such as in multi-row result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Represent items that must be replaced with appropriate identifiers or
expressions and are usually shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |

DESC]

Choose one or neither. You do not type the square brackets.

-16-

SQL Overview

An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

Note: In HP Vertica, use a semicolon to end a statement or to combine multiple statements on

one line.

HP Vertica Support for ANSI SQL Standards

HP Vertica SQL supports a subset of ANSI SQL-99.

See BNF Grammar for SQL-99 (http://savage.net.au/SQL/sql-99.bnf.html)

Support for Historical Queries

Unlike most databases, the DELETE (page 807) command in HP Vertica does not delete data; it
marks records as deleted. The UPDATE (page 929) command performs an INSERT and a
DELETE. This behavior is necessary for historical queries. See Historical (Snapshot) Queries in
the Programmer's Guide.

Joins

HP Vertica supports typical data warehousing query joins. For details, see Joins in the
Programmer's Guide.

HP Vertica also provides the INTERPOLATE (page 61) predicate, which allows for a special type
of join. The event series join is an HP Vertica SQL extension that lets you analyze two event series
when their measurement intervals don‘t align precisely—such as when timestamps don't match.
These joins provide a natural and efficient way to query misaligned event data directly, rather than
having to normalize the series to the same measurement interval. See Event Series Joins in the
Programmer's Guide for details.

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions within a
specific user session. You set them through the SET SESSION CHARACTERISTICS (page 914)
command. Specifically, they determine what data a transaction can access when other
transactions are running concurrently. See Transactions in the Concepts Guide.

http://savage.net.au/SQL/sql-99.bnf.html

-17-

System Limits

This section describes the system limits on the size and number of objects in an HP Vertica
database. In most cases, computer memory and disk drive are the limiting factors.

I tem Limit

Number of nodes Maximum 128 (without HP Vertica assistance).

Database size Approximates the number of files times the file size on a

platform, depending on the maximum disk configuration.

Table size 2 6̂4 rows per node, or 2^63 bytes per column,
whichever is smaller.

Row size 32 MB. The row size is approximately the sum of its
maximum column sizes, where, for example, a
VARCHAR(80) has a maximum size of 80 bytes.

Key size Limited only by row size

Number of tables/projections per
database

Limited by physical RAM, as the catalog must fit in
memory.

Number of concurrent connections per
node

Default of 50, limited by physical RAM (or threads per
process), typically 1024.

Number of concurrent connections per

cluster

Limited by physical RAM of a single node (or threads per

process), typically 1024.

Number of columns per table 1600.

Number of rows per load 2 6̂3.

Number of partitions 1024.

While HP Vertica supports a maximum of 1024
partitions, few, if any, organizations will need to

approach that maximum. Fewer partitions are likely to
meet your business needs, while also ensuring
maximum performance. Many customers, for example,

partition their data by month, bringing their partition
count to 12. HP Vertica recommends you keep the
number of partitions between 10 and 20 to achieve

excellent performance.

Length for a fixed-length column 65000 bytes.

Length for a variable-length column 65000 bytes.

Length of basic names 128 bytes. Basic names include table names, column
names, etc.

Query length No limit.

Depth of nesting subqueries Unlimited in FROM, WHERE, or HAVING clause.

-18-

SQL Reference Manual

-19-

SQL Language Elements

This chapter presents detailed descriptions of the language elements and conventions of HP
Vertica SQL.

Keywords and Reserved Words
Keywords are words that have a specific meaning in the SQL language. Although SQL is not
case-sensitive with respect to keywords, they are generally shown in uppercase letters throughout
this documentation for readability purposes.

Some SQL keywords are also reserved words that cannot be used in an identifier unless enclosed
in double quote (") characters. Some unreserved keywords can be used in statements by
preceding them with AS. For example, SOURCE is a keyword, but is not reserved, and you can
use it as follows:

VMART=> select my_node AS SOURCE from nodes;

Keywords
Keyword are words that are specially handled by the grammar. Every SQL statement contains one
or more keywords.

Begins with Keyword

A ABORT, ABSOLUTE, ACCESS, ACCESRANK, ACCOUNT, ACTION, ADD,

ADMIN, AFTER, AGGREGATE, ALL, ALSO, ALTER, ANALYSE, ANALYZE, AND,
ANY, ARRAY, AS, ASC, ASSERTION, ASSIGNMENT, AT, AUTHORIZATION,
AUTO, AUTO_INCREMENT, AVAILABLE

B BACKWARD, BEFORE, BEGIN, BETWEEN, BIGINT, BINARY, BIT,

BLOCK_DICT, BLOCKDICT_COMP, BOOLEAN, BOTH, BY, BYTEA, BZIP

C CACHE, CALLED, CASCADE, CASE, CAST, CATALOGPATH, CHAIN, CHAR,
CHAR_LENGTH, CHARACTER, CHARACTER_LENGTH, CHARACTERISTICS,
CHARACTERS, CHECK, CHECKPOINT, CLASS, CLOSE, CLUSTER, COLLATE,

COLUMN, COLUMNS_COUNT, COMMENT, COMMIT, COMMITTED,
COMMONDELTA_COMP, CONNECT, CONSTRAINT, CONSTRAINTS, COPY,
CORRELATION, CREATE, CREATEDB, CREATEUSER, CROSS, CSV,
CURRENT, CURRENT_DATABASE, CURRENT_DATE, CURRENT_SCHEMA,

CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER, CURSOR,
CYCLE

D DATA, DATABASE, DATAPATH, DATE, DATEDIFF, DATETIME, DAY,
DEALLOCATE, DEC, DECIMAL, DECLARE, DECODE, DEFAULT, DEFAULTS,

DEFERRABLE, DEFERRED, DEFINE, DEFINER, DELETE, DELIMITER,
DELIMITERS, DELTARANGE_COMP, DELTARANGE_COMP_SP, DELTAVAL,
DESC, DETERMINES, DIRECT, DIRECTCOLS, DIRECTGROUPED,

DIRECTPROJ, DISABLE, DISCONNECT, DISTINCT, DISTVA LINDEX, DO,
DOMAIN, DOUBLE, DROP, DURABLE

-20-

SQL Reference Manual

E EACH, ELSE, ENABLE, ENABLED, ENCLOSED, ENCODED, ENCODING,
ENCRYPTED, END, ENFORCELENGTH, EPHEMERAL, EPOCH, ERROR,

ESCAPE, EVENT, EVENTS, EXCEPT, EXCEPTIONS, EXCLUDE, EXCLUDING,
EXCLUSIVE, EXECUTE, EXISTS, EXPIRE, EXPLAIN, EXPORT, EXTERNAL,
EXTRACT

F FAILED_LOGIN_ATTEMPTS, FALSE, FETCH, FILLER, FIRST, FLOAT,

FOLLOWING, FOR, FORCE, FOREIGN, FORMAT, FORWARD, FREEZE, FROM,
FULL, FUNCTION

G GCDDELTA, GLOBAL, GRANT, GROUP, GROUPED, GZIP

H HANDLER, HASH, HAVING, HOLD, HOSTNAME, HOUR, HOURS

I IDENTIFIED, IDENTITY, IF, IGNORE, ILIKE, ILIKEB, IMMEDIATE, IMMUTABLE,
IMPLICIT, IN, INCLUDING, INCREMENT, INDEX, INHERITS, INITIALLY, INNER,

INOUT, INPUT, INSENSITIVE, INSERT, INSTEAD, INT, INTEGER,
INTERPOLATE, INTERSECT, INTERVAL, INTERVALYM, INTO, INVOKER, IS,
ISNULL, ISOLATION

J JOIN

K KEY, KSAFE

L LANCOMPILER, LANGUAGE, LARGE, LAST, LATEST, LEADING, LEFT, LESS,

LEVEL, LIBRARY, LIKE, LIKEB, LIMIT, LISTEN, LOAD, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCATION, LOCK

M MANAGED, MATCH, MAXCONCURRENCY, MAXMEMORYSIZE, MAXVALUE,
MEMORYCAP, MEMORYSIZE, MERGE, MERGEOUT, MICROSECONDS,

MILLISECONDS, MINUTE, MINUTES, MINVALUE, MODE, MONEY, MONTH,
MOVE, MOVEOUT

N NAME, NATIONAL, NATIVE, NATURAL, NCHAR, NEW, NEXT, NO,
NOCREATEDB, NOCREATEUSER, NODE, NODES, NONE, NOT, NOTHING,
NOTIFY, NOTNULL, NOWAIT, NULL, NULLCOLS, NULLS, NULLSEQUAL,

NULLIF, NUMBER, NUMERIC

O OBJECT, OCTETS, OF, OFF, OFFSET, OIDS, OLD, ON, ONLY, OPERATOR,
OPTION, OR, ORDER, OTHERS, OUT, OUTER, OVER, OVERLAPS, OVERLAY,
OWNER

P PARTIAL, PARTITION, PASSWORD, PASSWORD_GRACE_TIME,

PASSWORD_LIFE_TIME, PASSWORD_LOCK_TIME,
PASSWORD_MAX_LENGTH, PASSWORD_MIN_DIGITS,
PASSWORD_MIN_LENGTH, PASSWORD_MIN_LETTERS,

PASSWORD_MIN_LOWERCASE_LETTERS, PASSWORD_MIN_SYMBOLS,
PASSWORD_MIN_UPPERCASE_LETTERS,PASSWORD_REUSE_MAX,
PASSWORD_REUSE_TIME, PATTERN, PERCENT, PERMANENT, PINNED,

PLACING, PLANNEDCONCURRENCY, POOL, POSITION, PRECEDING,
PRECISION, PREPARE, PRESERVE, PREVIOUS, PRIMARY, PRIOR,
PRIORITY, PRIVILEGES, PROCEDURAL, PROCEDURE, PROFILE,

PROJECTION

Q QUEUETIMEOUT, QUOTE

-21-

 SQL Language Elements

R RANGE, RAW, READ, REAL, RECHECK, RECORD, RECOVER, REFERENCES,
REFRESH, REINDEX, REJECTED, REJECTMAX, RELATIVE, RELEASE,

RENAME, REPEATABLE, REPLACE, RESET, RESOURCE, RESTART,
RESTRICT, RESULTS, RETURN, RETURNREJECTED, REVOKE, RIGHT, RLE,
ROLE, ROLES, ROLLBACK, ROW, ROWS, RULE, RUNTIMECAP

S SAMPLE, SAVEPOINT, SCHEMA, SCROLL, SECOND, SECONDS, SECURITY,

SEGMENTED, SELECT, SEQUENCE, SERIALIZABLE, SESSION,
SESSION_USER, SET, SETOF, SHARE, SHOW, SIMILAR, SIMPLE,
SINGLEINITIATOR, SITE, SITES, SKIP, SMALLDATETIME, SMALLINT, SOME,

SOURCE, SPLIT, STABLE, START, STATEMENT, STATISTICS, STDERR,
STDIN, STDOUT, STORAGE, STREAM, STRICT, SUBSTRING, SYSDATE,
SYSID, SYSTEM

T TABLE, TABLESPACE, TEMP, TEMPLATE, TEMPORARY, TEMPSPACECAP,

TERMINATOR, THAN, THEN, TIES, TIME, TIMESERIES, TIMESTAMP,
TIMESTAMPADD, TIMESTAMPDIFF, TIMESTAMPTZ, TIMETZ, TIMEZONE,
TINYINT, TO, TOAST, TRAILING, TRANSACTION, TRANSFORM, TREAT,

TRICKLE, TRIGGER, TRIM, TRUE, TRUNCATE, TRUSTED, TUNING, TYPE

U UNBOUNDED, UNCOMMITTED, UNCOMPRESSED, UNENCRYPTED, UNION,
UNIQUE, UNKNOWN, UNLIMITED, UNLISTEN, UNLOCK, UNSEGMENTED,
UNTIL, UPDATE, USAGE, USER, USING

V VACUUM, VALIDATOR, VALINDEX, VALUE, VALUES, VARBINARY, VARCHAR,

VARCHAR2, VARYING, VERBOSE, VERTICA, VIEW, VOLATILE

W WAIT, WHEN, WHERE, WINDOW, WITH, WITHIN, WITHOUT, WORK, WRITE

Y YEAR

Z ZONE

Reserved Words
Many SQL keywords are also reserved words, but a reserved word is not necessarily a keyword.
For example, a reserved word might be reserved for other/future use. In HP Vertica, reserved
words can be used anywhere identifiers can be used, as long as you double-quote them.

Begins with Reserved Word

A ALL, ANALYSE, ANALYZE, AND, ANY, ARRAY, AS, ASC

B BINARY, BOTH

C CASE, CAST, CHECK, COLUMN, CONSTRAINT, CORRELA TION, CREATE,
CURRENT_DATABASE, CURRENT_DATE, CURRENT_SCHEMA,

CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_USER

D DEFAULT, DEFERRABLE, DESC, DISTINCT, DO

E ELSE, ENCODED, END, EXCEPT

F FALSE, FOR, FOREIGN, FROM

-22-

SQL Reference Manual

G GRANT, GROUP, GROUPED

H HAVING

I IN, INITIALLY, INTERSECT, INTERVAL, INTERVALYM, INTO

J JOIN

K KSAFE

L LEADING, LIMIT, LOCALTIME, LOCALTIMESTAMP

M MATCH

N NEW, NOT, NULL, NULLSEQUAL

O OFF, OFFSET, OLD, ON, ONLY, OR, ORDER

P PINNED, PLACING, PRIMARY, PROJECTION

R REFERENCES

S SCHEMA, SEGMENTED, SELECT, SESSION_USER, SOME, SYSDATE

T TABLE, THEN, TIMESERIES, TO, TRAILING, TRUE

U UNBOUNDED, UNION, UNIQUE, UNSEGMENTED, USER, USING

W WHEN, WHERE, WINDOW, WITH, WITHIN

Identifiers

Identifiers (names) of objects such as schema, table, projection, column names, and so on, can be
up to 128 bytes in length.

Unquoted Identifiers

Unquoted SQL identifiers must begin with one of the following:

 Letters such as A-Z or a-z, including letters with diacritical marks and non-Latin letters)

 Underscore (_)

Subsequent characters in an identifier can be:

 Letters

 Digits(0-9)

 Dollar sign ($). Dollar sign is not allowed in identifiers according to the SQL standard and could
cause application portability problems.

 Underscore (_)

-23-

 SQL Language Elements

Quoted Identifiers

Identifiers enclosed in double quote (") characters can contain any character. If you want to

include a double quote, you need a pair of them; for example """". You can use names that

would otherwise be invalid, such as names that include only numeric characters ("123") or

contain space characters, punctuation marks, keywords, and so on; for example, CREATE
SEQUENCE "my sequence!";

Double quotes are required for non-alphanumerics and SQL keywords such as "1time", "Next
week" and "Select".

Note: Identifiers are not case-sensitive. Thus, identifiers "ABC", "ABc", and "aBc" are
synonymous, as are ABC, ABc, and aBc.

Non-ASCII characters

HP Vertica accepts non-ASCII UTF-8 Unicode characters for table names, column names, and
other identifiers (page 22), extending the cases in which upper/lower case distinctions are
ignored (case-folded) to all alphabets, including Latin, Cyrillic, and Greek.

Identifiers are stored as created

SQL identifiers, such as table and column names, are no longer converted to lowercase. They are
stored as created, and references to them are resolved using case-insensitive compares. It is not
necessary to double quote mixed-case identifiers. For example, The following statement creates
table ALLCAPS.

=> CREATE TABLE ALLCAPS(c1 varchar(30));

=> INSERT INTO ALLCAPS values('upper case');

The following statements are variations of the same query and all return identical results:

=> SELECT * FROM ALLCAPS;

=> SELECT * FROM allcaps;

=> SELECT * FROM "allcaps";

All three commands return the same result:

 c1

 upper case

(1 row)

Note that the system returns an error if you try to create table AllCaps:

=> CREATE TABLE allcaps(c1 varchar(30));

 ROLLBACK: table "AllCaps" already exists

See QUOTE_IDENT (page 391) for additional information.

Case-sensitive System Tables

The V_CATALOG.TABLES (page 978).TABLE_SCHEMA and TABLE_NAME columns are case
sensitive when used with an equality (=) predicate in queries. For example, given the following
sample schema, if you execute a query using the = predicate, HP Vertica returns 0 rows:

=> CREATE SCHEMA SS;

-24-

SQL Reference Manual

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

 table_schema | table_name

--------------+------------

(0 rows)

TIP: Use the case-insensitive ILIKE predicate to return the expected results.

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Literals
Literals are numbers or strings used in SQL as constants. Literals are included in the select-list,
along with expressions and built-in functions and can also be constants.

HP Vertica provides support for number-type literals (integers and numerics), string literals,
VARBINARY string literals, and date/time literals. The various string literal formats are discussed
in this section.

Number-type Literals

There are three types of numbers in HP Vertica: Integers, numerics, and floats.

 Integers (page 107) are whole numbers less than 2 6̂3 and must be digits.

 Numerics (page 107) are whole numbers larger than 2 6̂3 or that include a decimal point with
a precision and a scale. Numerics can contain exponents. Numbers that begin with 0x are
hexadecimal numerics.

Numeric-type values can also be generated using casts from character strings. This is a more
general syntax. See the Examples section below, as well as Data Type Coercion Operators
(CAST) (page 45).

Syntax
digits

digits.[digits] | [digits].digits

digits e[+-]digits | [digits].digits e[+-]digits | digits.[digits] e[+-]digits

Parameters

digits Represents one or more numeric characters (0 through 9).

-25-

 SQL Language Elements

e Represents an exponent marker.

Notes

 At least one digit must follow the exponent marker (e), if e is present.

 There cannot be any spaces or other characters embedded in the constant.

 Leading plus (+) or minus (-) signs are not considered part of the constant; they are unary
operators applied to the constant.

 In most cases a numeric-type constant is automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a
specific data type by casting it as described in Data Type Coercion Operators (CAST) (page
45).

 Floating point literals are not supported. If you specifically need to specify a float, you can cast
as described in Data Type Coercion Operators (CAST) (page 45).

 HP Vertica follows the IEEE specification for floating point, including NaN (not a number) and
Infinity (Inf).

 A NaN is not greater than and at the same time not less than anything, even itself. In other
words, comparisons always return false whenever a NaN is involved. See Numeric
Expressions (page 58) for examples.

 Dividing INTEGERS (x / y) yields a NUMERIC result. You can use the // operator to truncate
the result to a whole number.

Examples

The following are examples of number-type literals:

42

3.5

4.

.001

5e2

1.925e-3

Scientific notation:

=> SELECT NUMERIC '1e10';

 ?column?

 10000000000

(1 row)

BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

 1024

(1 row)

=> SELECT FLOAT 'Infinity';

?column?

-26-

SQL Reference Manual

 Infinity

(1 row)

The following examples illustrated using the / and // operators to divide integers:

VMart=> SELECT 40/25;

 ?column?

 1.600000000000000000

(1 row)

VMart=> SELECT 40//25;

 ?column?

 1

(1 row)

See Also

Data Type Coercion (page 112)

String Literals

String literals are string values surrounded by single or double quotes. Double-quoted strings are
subject to the backslash, but single-quoted strings do not require a backslash, except for \' and \\.

You can embed single quotes and backslashes into single-quoted strings.

To include other backslash (escape) sequences, such as \t (tab), you must use the double-quoted
form.

Single quoted strings require a preceding space between them and the preceding word because
single quotes are allowed in identifiers.

See Also

STANDARD_CONFORMING_STRINGS (page 920)

ESCAPE_STRING_WARNING (page 905)

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

Character String Literals

Character string literals are a sequence of characters from a predefined character set and are
enclosed by single quotes. If the single quote is part of the sequence, it must be doubled as "''".

-27-

 SQL Language Elements

Syntax
'characters'

Parameters

characters Arbitrary sequence of characters bounded by single quotes
(')

Single Quotes in a String

The SQL standard way of writing a single-quote character within a string literal is to write two
adjacent single quotes. for example:

=> SELECT 'Chester''s gorilla';

 ?column?

 Chester's gorilla

(1 row)

Standard Conforming Strings and Escape Characters

HP Vertica uses standard conforming strings as specified in the SQL standard, which means that
backslashes are treated as string literals, not escape characters.

Note: Earlier versions of HP Vertica did not use standard conforming strings, and backslashes

were always considered escape sequences. To revert to this older behavior, set the

StandardConformingStrings parameter to '0', as described in Configuration Parameters
in the Administrator's Guide.

Examples
=> SELECT 'This is a string';

 ?column?

 This is a string

(1 row)

=> SELECT 'This \is a string';

 WARNING: nonstandard use of escape in a string literal at character 8

 HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.

 ?column?

 This is a string

(1 row)

vmartdb=> SELECT E'This \is a string';

 ?column?

 This is a string

=> SELECT E'This is a \n new line';

 ?column?

-28-

SQL Reference Manual

 This is a

 new line

(1 row)

=> SELECT 'String''s characters';

 ?column?

 String's characters

(1 row)

See Also

STANDARD_CONFORMING_STRINGS (page 920) and ESCAPE_STRING_WARNING (page
905) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

Dollar-quoted String Literals

Dollar-quoted string literals are rarely used but are provided here for your convenience.

The standard syntax for specifying string literals can be difficult to understand. To allow more
readable queries in such situations, HP Vertica SQL provides "dollar quoting." Dollar quoting is not
part of the SQL standard, but it is often a more convenient way to write complicated string literals
than the standard-compliant single quote syntax.

Syntax
$$characters$$

Parameters

characters Arbitrary sequence of characters bounded by paired dollar
signs ($$)

Dollar-quoted string content is treated as a literal. Single quote, backslash, and dollar sign
characters have no special meaning within a dollar-quoted string.

Notes

A dollar-quoted string that follows a keyword or identifier must be separated from the preceding
word by whitespace; otherwise the dollar quoting delimiter would be taken as part of the preceding
identifier.

Examples

=> SELECT $$Fred's\n car$$;

 ?column?

 Fred's\n car

(1 row)

-29-

 SQL Language Elements

=> SELECT 'SELECT 'fact';';

ERROR: syntax error at or near "';'" at character 21

LINE 1: SELECT 'SELECT 'fact';';

=> SELECT 'SELECT $$fact';$$;

 ?column?

 SELECT $$fact

(1 row)

=> SELECT 'SELECT ''fact'';';

 ?column?

 SELECT 'fact';

(1 row)

Unicode String Literals

Syntax
U&'characters' [UESCAPE '<Unicode escape character>']

Parameters

characters Arbitrary sequence of UTF-8 characters bounded by single
quotes (')

Unicode escape

character
A single character from the source language character set other
than a hexit, plus sign (+), quote ('), double quote (''), or white

space

Using standard conforming strings

With StandardConformingStrings enabled, HP Vertica supports SQL standard Unicode character
string literals (the character set is UTF-8 only).

Before you enter a Unicode character string literal, enable standard conforming strings in one of
the following ways.

 To enable for all sessions, update the StandardConformingStrings configuration parameter.
See Configuration Parameters in the Administrator's Guide.

 To treats backslashes as escape characters for the current session, use the SET
STANDARD_CONFORMING_STRINGS (page 920) statement.

See also Extended String Literals (page 31).

Examples

To enter a Unicode character in hexadecimal, such as the Russian phrase for "thank you, use the
following syntax:

-30-

SQL Reference Manual

=> SET STANDARD_CONFORMING_STRINGS TO ON;

=> SELECT U&'\0441\043F\0430\0441\0438\0431\043E' as 'thank you';

 thank you

 спасибо

(1 row)

To enter in hexadecimal the German word 'mude' (where u is really u-umlaut):

=> SELECT U&'m\00fcde';

?column?

müde

(1 row)

=> SELECT 'ü';

?column?

ü

(1 row)

To enter into hexadecimal the LINEAR B IDEOGRAM B240 WHEELED CHARIOT:

=> SELECT E'\xF0\x90\x83\x8C';

 ?column?

(wheeled chariot character)

(1 row)

Note: Not all fonts support this character.

See Also

STANDARD_CONFORMING_STRINGS (page 920) and ESCAPE_STRING_WARNING (page
905) in the SQL Reference Manual

Internationalization Parameters and Implement Locales for International Data Sets in the
Administrator's Guide

VARBINARY String Literals

VARBINARY string literals allow you to specify hexadecimal or binary digits in a string literal.

Syntax
X'<hexadecimal digits>'

B'<binary digits>'

Parameters

X Specifies hexadecimal digits. The <hexadecimal digits> string

must be enclosed in single quotes (').

-31-

 SQL Language Elements

B Specifies binary digits. The <binary digits> string must be

enclosed in single quotes (').

Examples

=> SELECT X'abcd';

 ?column?

 \253\315

(1 row)

=> SELECT B'101100';

 ?column?

 ,

(1 row)

Extended String Literals

Syntax
E'characters'

Parameters

characters Arbitrary sequence of characters bounded by single
quotes (')

You can use C-style backslash sequence in extended string literals, which are an extension to the
SQL standard. You specify an extended string literal by writing the letter E as a prefix (before the
opening single quote); for example:

E'extended character string\n'

Within an extended string, the backslash character (\) starts a C-style backslash sequence, in
which the combination of backslash and following character or numbers represent a special byte
value, as shown in the following list. Any other character following a backslash is taken literally; for
example, to include a backslash character, write two backslashes (\\).

 \\ is a backslash

 \b is a backspace

 \f is a form feed

 \n is a newline

 \r is a carriage return

 \t is a tab

 \x##,where ## is a 1 or 2-digit hexadecimal number; for example \x07 is a tab

-32-

SQL Reference Manual

 \###, where ### is a 1, 2, or 3-digit octal number representing a byte with the corresponding
code.

When an extended string literal is concatenated across lines, write only E before the first opening

quote:

=> SELECT E'first part o'

-> 'f a long line';

 ?column?

 first part of a long line

(1 row)

Two adjacent single quotes are used as one single quote:

=> SELECT 'Aren''t string literals fun?';

 ?column?

 Aren't string literals fun?

(1 row)

Standard Conforming Strings and Escape Characters

When interpreting commands, such as those entered in vsql or in queries passed via JDBC or
ODBC, HP Vertica uses standard conforming strings as specified in the SQL standard. In standard
conforming strings, backslashes are treated as string literals (ordinary characters), not escape
characters.

Note: Text read in from files or streams (such as the data inserted using the COPY (page 699)
statement) are not treated as literal strings. The COPY command defines its own escape
characters for the data it reads. See the COPY (page 699) statement documentation for details.

In HP Vertica databases prior to 4.0, the standard conforming strings was not on by default, and
backslashes were considered escape sequences. After 4.0, escape sequences, including

Windows path names, did not work as they had previously. For example, the TAB character '\t'
is two characters: '\' and 't'.

E'...' is the Extended character string literal (page 31) format, so to treat backslashes as
escape characters, use E'\t'.

The following options are available, but HP recommends that you migrate your application to use
standard conforming strings at your earliest convenience, after warnings have been addressed.

 To revert to pre 4.0 behavior, set the StandardConformingStrings parameter to '0', as
described in Configuration Parameters in the Administrator's Guide.

 To enable standard conforming strings permanently, set the StandardConformingStrings
parameter to '1', as described in the procedure in the section, "Identifying Strings that are not
Standard Conforming," below.

 To enable standard conforming strings per session, use SET
STANDARD_CONFORMING_STRING TO ON (page 920), which treats backslashes as
escape characters for the current session only.

The two sections that follow help you identify issues between HP Vertica 3.5 and 4.0.

-33-

 SQL Language Elements

Identifying Strings that are not Standard Conforming

The following procedure can be used to identify non-standard conforming strings in your
application so that you can convert them into standard conforming strings:

1 Be sure the StandardConformingStrings parameter is off, as described in Internationalization
Parameters in the Administrator's Guide.

=> SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'0');

Note: HP recommends that you migrate your application to use Standard Conforming Strings

at your earliest convenience.

2 Turn on the EscapeStringWarning parameter. (ON is the default in HP Vertica Version 4.0 and
later.)

=> SELECT SET_CONFIG_PARAMETER ('EscapeStringWarning','1');

HP Vertica now returns a warning each time it encounters an escape string within a string
literal. For example, HP Vertica interprets the \n in the following example as a new line:

=> SELECT 'a\nb';

 WARNING: nonstandard use of escape in a string literal at character

8

 HINT: Use the escape string syntax for escapes, e.g., E'\r\n'.

 ?column?

 a

b

(1 row)

When StandardConformingStrings is ON, the string is interpreted as four characters: a \ n b.

Modify each string that HP Vertica flags by extending it as in the following example:

E'a\nb'

Or if the string has quoted single quotes, double them; for example, 'one'' double'.

3 Turn on the StandardConformingStrings parameter for all sessions:

SELECT SET_CONFIG_PARAMETER ('StandardConformingStrings' ,'1');

Doubled Single Quotes

This section discusses vsql inputs that are not passed on to the server.

HP Vertica recognizes two consecutive single quotes within a string literal as one single quote

character. For example, the following inputs, 'You''re here!' ignored the second
consecutive quote and returns the following:

=> SELECT 'You''re here!';

 ?column?

 You're here!

(1 row)

This is the SQL standard representation and is preferred over the form, 'You\'re here!',

because backslashes are not parsed as before. You need to escape the backslash:

=> SELECT (E'You\'re here!');

 ?column?

-34-

SQL Reference Manual

 You're here!

(1 row)

This behavior change introduces a potential incompatibility in the use of the vsql \set command,
which automatically concatenates its arguments. For example, the following works in both HP
Vertica 3.5 and 4.0:

\set file '\'' `pwd` '/file.txt' '\''

\echo :file

vsql takes the four arguments and outputs the following:

'/home/vertica/file.txt'

In HP Vertica 3.5 the above \set file command could be written all with the arguments run

together, but in 4.0 the adjacent single quotes are now parsed differently:

\set file '\''`pwd`'/file.txt''\''

\echo :file

'/home/vertica/file.txt''

Note the extra single quote at the end. This is due to the pair of adjacent single quotes together
with the backslash-quoted single quote.

The extra quote can be resolved either as in the first example above, or by combining the literals
as follows:

\set file '\''`pwd`'/file.txt'''

\echo :file

'/home/vertica/file.txt'

In either case the backslash-quoted single quotes should be changed to doubled single quotes as
follows:

\set file '''' `pwd` '/file.txt'''

Additional Examples

=> SELECT 'This \is a string';

 ?column?

 This \is a string

(1 row)

=> SELECT E'This \is a string';

 ?column?

 This is a string

=> SELECT E'This is a \n new line';

 ?column?

 This is a

 new line

(1 row)

-35-

 SQL Language Elements

=> SELECT 'String''s characters';

 ?column?

 String's characters

(1 row)

Date/Time Literals

Date or time literal input must be enclosed in single quotes. Input is accepted in almost any
reasonable format, including ISO 8601, SQL-compatible, traditional POSTGRES, and others.

HP Vertica is more flexible in handling date/time input than the SQL standard requires.The exact
parsing rules of date/time input and for the recognized text fields including months, days of the
week, and time zones are described in Date/Time Expressions (page 55).

Time Zone Values

HP Vertica attempts to be compatible with the SQL standard definitions for time zones. However,
the SQL standard has an odd mix of date and time types and capabilities. Obvious problems are:

 Although the DATE (page 80) type does not have an associated time zone, the TIME (page 95)
type can. Time zones in the real world have little meaning unless associated with a date as
well as a time, since the offset can vary through the year with daylight-saving time boundaries.

 HP Vertica assumes your local time zone for any data type containing only date or time.

 The default time zone is specified as a constant numeric offset from UTC. It is therefore not
possible to adapt to daylight-saving time when doing date/time arithmetic across DST
boundaries.

To address these difficulties, HP recommends using Date/Time types that contain both date and
time when you use time zones. HP recommends that you do not use the type TIME WITH TIME

ZONE, even though it is supported it for legacy applications and for compliance with the SQL

standard.

Time zones and time-zone conventions are influenced by political decisions, not just earth
geometry. Time zones around the world became somewhat standardized during the 1900's, but
continue to be prone to arbitrary changes, particularly with respect to daylight-savings rules.

HP Vertica currently supports daylight-savings rules over the time period 1902 through 2038,
corresponding to the full range of conventional UNIX system time. Times outside that range are
taken to be in "standard time" for the selected time zone, no matter what part of the year in which
they occur.

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-36-

SQL Reference Manual

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Day of the Week Names

The following tokens are recognized as names of days of the week:

Day Abbreviations

SUNDAY SUN

MONDAY MON

TUESDAY TUE, TUES

WEDNESDAY WED, WEDS

THURSDAY THU, THUR, THURS

FRIDAY FRI

SATURDAY SAT

Month Names

The following tokens are recognized as names of months:

Month Abbreviations

JANUARY JAN

FEBRUARY FEB

MARCH MAR

APRIL APR

MAY MAY

JUNE JUN

JULY JUL

AUGUST AUG

SEPTEMBER SEP, SEPT

OCTOBER OCT

-37-

 SQL Language Elements

NOVEMBER NOV

DECEMBER DEC

Interval Values

An interval value represents the duration between two points in time.

Syntax
[@] quantity unit [quantity unit...] [AGO]

Parameters

@ (at sign) is optional and ignored

quantity Is an integer numeric constant (page 24)

unit

Is one of the following units or abbreviations or plurals of the
following units:

MILLISECOND

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

YEAR

DECADE

CENTURY

MILLENNIUM

AGO [Optional] specifies a negative interval value (an interval going back
in time). 'AGO' is a synonym for '-'.

The amounts of different units are implicitly added up with appropriate sign accounting.

Notes

 Quantities of days, hours, minutes, and seconds can be specified without explicit unit
markings. For example:

'1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'

 The boundaries of an interval constant are:

 '9223372036854775807 usec' to '9223372036854775807 usec ago'

 296533 years 3 mons 21 days 04:00:54.775807 to -296533 years -3 mons -21 days
-04:00:54.775807

 The range of an interval constant is +/- 263 - 1 (plus or minus two to the sixty-third minus one)
microseconds.

 In HP Vertica, the interval fields are additive and accept large floating-point numbers.

Examples
SELECT INTERVAL '1 12:59:10';

 ?column?

 1 12:59:10

(1 row)

SELECT INTERVAL '9223372036854775807 usec';

-38-

SQL Reference Manual

 ?column?

 106751991 04:00:54.775807

(1 row)

SELECT INTERVAL '-9223372036854775807 usec';

 ?column?

 -106751991 04:00:54.775807

(1 row)

SELECT INTERVAL '-1 day 48.5 hours';

 ?column?

 -3 00:30

(1 row)

SELECT TIMESTAMP 'Apr 1, 07' - TIMESTAMP 'Mar 1, 07';

 ?column?

 31

(1 row)

SELECT TIMESTAMP 'Mar 1, 07' - TIMESTAMP 'Feb 1, 07';

 ?column?

 28

(1 row)

SELECT TIMESTAMP 'Feb 1, 07' + INTERVAL '29 days';

 ?column?

 03/02/2007 00:00:00

(1 row)

SELECT TIMESTAMP WITHOUT TIME ZONE '1999-10-01 00:00:01' + INTERVAL '1 month

- 1 second'

AS "Oct 31";

 Oct 31

 1999-10-31 00:00:00

(1 row)

interval-literal

The following table lists the units allowed for the required interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly

ago Indicates negative time offset

c, cent, century Century

centuries Centuries

d, day Day

days Days

-39-

 SQL Language Elements

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending on context.
See Notes below this table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

q, qtr, quarter Quarter

qtrs, quarters Quarters

s, sec, second Second

seconds, secs Seconds

us, usec Microsecond

microseconds, useconds, usecs Microseconds

w, week Week

weeks Weeks

y, year, yr Year

years, yrs Years

Processing the input unit 'm'

The input unit 'm' can represent either 'months' or 'minutes,' depending on the context. For
instance, the following command creates a one-column table with an interval value:

=> CREATE TABLE int_test(i INTERVAL YEAR TO MONTH);

In the first INSERT statement, the values are inserted as 1 year, six months:

-40-

SQL Reference Manual

=> INSERT INTO int_test VALUES('1 year 6 months');

The second INSERT statement results in an error from specifying minutes for a YEAR TO MONTH

interval. At runtime, the result will be a NULL:

=> INSERT INTO int_test VALUES('1 year 6 minutes');

ERROR: invalid input syntax for type interval year to month: "1 year 6 minutes"

In the third INSERT statement, the 'm' is processed as months (not minutes), because DAY TO
SECOND is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months

The table now contains two identical values, with no minutes:

=> SELECT * FROM int_test;

 i

 1 year 6 months

 1 year 6 months

(2 rows)

In the following command, the 'm' counts as minutes, because the DAY TO SECOND

interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL '1y6m' DAY TO SECOND;

 ?column?

 365 days 6 mins

(1 row)

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than
SECOND, are integers with a default precision of 2 when they are not the first field.

You cannot combine day/time and year/month qualifiers. For example, the following intervals are
not allowed:

 DAY TO YEAR

 HOUR TO MONTH

Interval Type Units Valid interval-literal entries

Day/time intervals DAY Unconstrained.

 DAY TO HOUR An interval that represents a span of days and hours.

 DAY TO MINUTE An interval that represents a span of days and
minutes.

 DAY TO SECOND (Default) interval that represents a span of days,

hours, minutes, seconds, and fractions of a second if

-41-

 SQL Language Elements

subtype unspecified.

 HOUR Hours within days.

 HOUR TO MINUTE An interval that represents a span of hours and
minutes.

 HOUR TO SECOND An interval that represents a span of hours and
seconds.

 MINUTE Minutes within hours.

 MINUTE TO SECOND An interval that represents a span of minutes and
seconds.

 SECOND Seconds within minutes.

Note: The SECOND field can have an interval

fractional seconds precision, which indicates the
number of decimal digits maintained following the
decimal point in the SECONDS value. When SECOND is

not the first field, it has a precision of 2 places before
the decimal point.

Year/month intervals MONTH Months within year.

 YEAR Unconstrained.

 YEAR TO MONTH An interval that represents a span of years and
months.

Operators

Operators are logical, mathematical, and equality symbols used in SQL to evaluate, compare, or
calculate values.

Binary Operators

Each of the functions in the following table works with binary and varbinary data types.

Operator Function Description

'=' binary_eq Equal to

'<>' binary_ne Not equal to

'<' binary_lt Less than

'<=' binary_le Less than or equal to

'>' binary_gt Greater than

-42-

SQL Reference Manual

 '>=' binary_ge Greater than or equal to

'&' binary_and And

'~' binary_not Not

'|' binary_or Or

'#' binary_xor Either or

'||' binary_cat Concatenate

Notes

If the arguments vary in length binary operators treat the values as though they are all equal in
length by right-extending the smaller values with the zero byte to the full width of the column
(except when using the binary_cat function). For example, given the values 'ff' and 'f', the

value 'f' is treated as 'f0'.

Operators are strict with respect to nulls. The result is null if any argument is null. For example,
null <> 'a'::binary returns null.

To apply the OR ('|') operator to a varbinary type, explicitly cast the arguments; for example:

=> SELECT '1'::VARBINARY | '2'::VARBINARY;

 ?column?

 3

(1 row)

Similarly, to apply the LENGTH (page 381), REPEAT (page 392), TO_HEX (page 260), and
SUBSTRING (page 403) functions to a binary type, explicitly cast the argument; for example:

=> SELECT LENGTH('\\001\\002\\003\\004'::varbinary(4));

 LENGTH

 4

(1 row)

When applying an operator or function to a column, the operator's or function's argument type is
derived from the column type.

Examples

In the following example, the zero byte is not removed from column cat1 when values are
concatenated:

=> SELECT 'ab'::BINARY(3) || 'cd'::BINARY(2) AS cat1, 'ab'::VARBINARY(3) ||

 'cd'::VARBINARY(2) AS cat2;

 cat1 | cat2

----------+------

 ab\000cd | abcd

(1 row)

When the binary value 'ab'::binary(3) is translated to varbinary, the result is equivalent to
'ab\\000'::varbinary(3); for example:

=> SELECT 'ab'::binary(3);

-43-

 SQL Language Elements

 binary

 ab\000

(1 row)

The following example performs a bitwise AND operation on the two input values (see also
BIT_AND (page 119)):

=> SELECT '10001' & '011' as AND;

 AND

 1

(1 row)

The following example performs a bitwise OR operation on the two input values (see also BIT_OR
(page 120)):

=> SELECT '10001' | '011' as OR;

 OR

 10011

(1 row)

The following example concatenates the two input values:

=> SELECT '10001' || '011' as CAT;

 CAT

 10001011

(1 row)

-44-

 44

Boolean Operators

Syntax
[AND | OR | NOT]

Parameters

SQL uses a three-valued Boolean logic where the null value represents "unknown."

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

Notes

 The operators AND and OR are commutative, that is, you can switch the left and right operand

without affecting the result. However, the order of evaluation of subexpressions is not defined.
When it is essential to force evaluation order, use a CASE (page 52) construct.

 Do not confuse Boolean operators with the Boolean-predicate (page 60) or the Boolean
(page 76) data type, which can have only two values: true and false.

Comparison Operators

Comparison operators are available for all data types where comparison makes sense. All
comparison operators are binary operators that return values of True, False, or NULL.

Syntax and Parameters

< less than

> greater than

-45-

 SQL Language Elements

<= less than or equal to

>= greater than or equal to

= or <=> equal

<> or != not equal

Notes

 The != operator is converted to <> in the parser stage. It is not possible to implement != and

<> operators that do different things.

 The comparison operators return NULL (signifying "unknown") when either operand is null.

 The <=> operator performs an equality comparison like the = operator, but it returns true,
instead of NULL, if both operands are NULL, and false, instead of NULL, if one operand is
NULL.

Data Type Coercion Operators (CAST)
Data type coercion (casting) passes an expression value to an input conversion routine for a
specified data type, resulting in a constant of the indicated type.

Syntax
CAST (expression AS data-type)

 expression::data-type

 data-type 'string'

Parameters

expression Is an expression of any type

data-type Converts the value of expression to one of the following data types:

BINARY (page 72)

BOOLEAN (page 76)

CHARACTER (page 76)

DATE/TIME (page 78)

NUMERIC (page 103)

DOUBLE PRECISION (FLOAT) (page 105)

Notes

 In HP Vertica, data type coercion (casting) can be invoked only by an explicit cast request. It
must use, for example, one of the following constructs:

CAST(x AS data-type-name)

or

x::data-type-name

 Type coercion format of data-type 'string' can be used only to specify the data type of a quoted
string constant.

-46-

SQL Reference Manual

 The explicit type cast can be omitted if there is no ambiguity as to the type the constant must
be. For example, when a constant is assigned directly to a column, it is automatically coerced
to the column's data type.

 If a binary value is cast (implicitly or explicitly) to a binary type with a smaller length, the value
is silently truncated. For example:

=> SELECT 'abcd'::BINARY(2);

 binary

 ab

(1 row)

 No casts other than BINARY to and from VARBINARY and resize operations are currently
supported.

 On binary data that contains a value with fewer bytes than the target column, values are

right-extended with the zero byte '\0' to the full width of the column. Trailing zeros on
variable length binary values are not right-extended:

=> SELECT 'ab'::BINARY(4), 'ab'::VARBINARY(4);

 binary | varbinary

------------+-----------

 ab\000\000 | ab

(1 row)

Examples
=> SELECT CAST((2 + 2) AS VARCHAR);

 varchar

 4

(1 row)

=> SELECT (2 + 2)::VARCHAR;

 varchar

 4

(1 row)

=> SELECT '2.2' + 2;

 ERROR: invalid input syntax for integer: "2.2"

=> SELECT FLOAT '2.2' + 2;

 ?column?

 4.2

(1 row)

 See Also

Data Type Coercion (page 112)

Date/Time Operators

Syntax
[+ | - | * | /]

-47-

 SQL Language Elements

Parameters
+ Addition

- Subtraction

* Multiplication

/ Division

Notes

 The operators described below that take TIME or TIMESTAMP inputs actually come in two

variants: one that takes TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE, and one

that takes TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE. For brevity,
these variants are not shown separately.

 The + and * operators come in commutative pairs (for example both DATE + INTEGER and
INTEGER + DATE); only one of each such pair is shown.

Example Result Type Result

DATE '2001-09-28' + INTEGER '7' DATE '2001-10-05'

DATE '2001-09-28' + INTERVAL '1 HOUR' TIMESTAMP '2001-09-28 01:00:00'

DATE '2001-09-28' + TIME '03:00' TIMESTAMP '2001-09-28 03:00:00'

INTERVAL '1 DAY' + INTERVAL '1 HOUR' INTERVAL '1 DAY 01:00:00'

TIMESTAMP '2001-09-28 01:00' + INTERVAL '23 HOURS' TIMESTAMP '2001-09-29 00:00:00'

TIME '01:00' + INTERVAL '3 HOURS' TIME '04:00:00'

- INTERVAL '23 HOURS' INTERVAL '-23:00:00'

DATE '2001-10-01' - DATE '2001-09-28' INTEGER '3'

DATE '2001-10-01' - INTEGER '7' DATE '2001-09-24'

DATE '2001-09-28' - INTERVAL '1 HOUR' TIMESTAMP '2001-09-27 23:00:00'

TIME '05:00' - TIME '03:00' INTERVAL '02:00:00'

TIME '05:00' - INTERVAL '2 HOURS' TIME '03:00:00'

TIMESTAMP '2001-09-28 23:00' - INTERVAL '23 HOURS' TIMESTAMP '2001-09-28 00:00:00'

INTERVAL '1 DAY' - INTERVAL '1 HOUR' INTERVAL '1 DAY -01:00:00'

TIMESTAMP '2001-09-29 03:00' - TIMESTAMP

 '2001-09-27 12:00'

INTERVAL '1 DAY 15:00:00'

900 * INTERVAL '1 SECOND' INTERVAL '00:15:00'

21 * INTERVAL '1 DAY' INTERVAL '21 DAYS'

DOUBLE PRECISION '3.5' * INTERVAL '1 HOUR' INTERVAL '03:30:00'

INTERVAL '1 HOUR' / DOUBLE PRECISION '1.5' INTERVAL '00:40:00'

Mathematical Operators
Mathematical operators are provided for many data types.

Operator Description Example Result

! Factorial 5 ! 120

+ Addition 2 + 3 5

- Subtraction 2 - 3 -1

* Multiplication 2 * 3 6

-48-

SQL Reference Manual

/ Division (integer division produces NUMERIC

results).

4 / 2 2.00...

// With integer division, returns an INTEGER
rather than a NUMERIC.

117.32 // 2.5 46

% Modulo (remainder) 5 % 4 1

^ Exponentiation 2.0 ^ 3.0 8

|/ Square root |/ 25.0 5

||/ Cube root ||/ 27.0 3

!! Factorial (prefix operator) !! 5 120

@ Absolute value @ -5.0 5

& Bitwise AND 91 & 15 11

| Bitwise OR 32 | 3 35

Bitwise XOR 17 # 5 20

~ Bitwise NOT ~1 -2

<< Bitwise shift left 1 << 4 16

>> Bitwise shift right 8 >> 2 2

Notes

 The bitwise operators work only on integer data types, whereas the others are available for all
numeric data types.

 HP Vertica supports the use of the factorial operators on positive and negative floating point
(DOUBLE PRECISION (page 105)) numbers as well as integers. For example:

=> SELECT 4.98!;

 ?column?

 115.978600750905

(1 row)

 Factorial is defined in term of the gamma function, where (-1) = Infinity and the other negative
integers are undefined. For example

(-4)! = NaN

-4! = -(4!) = -24.

 Factorial is defined as z! = gamma(z+1) for all complex numbers z. See the Handbook of
Mathematical Functions http://www.math.sfu.ca/~cbm/aands/ (1964) Section 6.1.5.

 See MOD() (page 310) for details about the behavior of %.

NULL Operators

To check whether a value is or is not NULL, use the constructs:

expression IS NULL

http://www.math.sfu.ca/~cbm/aands/

-49-

 SQL Language Elements

expression IS NOT NULL

Alternatively, use equivalent, but nonstandard, constructs:

expression ISNULL

expression NOTNULL

Do not write expression = NULL because NULL represents an unknown value, and two unknown

values are not necessarily equal. This behavior conforms to the SQL standard.

Note: Some applications might expect that expression = NULL returns true if expression

evaluates to null. HP Vertica strongly recommends that these applications be modified to
comply with the SQL standard.

String Concatenation Operators

To concatenate two strings on a single line, use the concatenation operator (two consecutive
vertical bars).

Syntax
string || string

Parameters

string Is an expression of type CHAR or VARCHAR

Notes

 || is used to concatenate expressions and constants. The expressions are cast to VARCHAR if

possible, otherwise to VARBINARY, and must both be one or the other.

 Two consecutive strings within a single SQL statement on separate lines are automatically
concatenated

Examples

The following example is a single string written on two lines:

=> SELECT E'xx'

-> '\\';

 ?column?

 xx\

(1 row)

This example shows two strings concatenated:

=> SELECT E'xx' ||

-> '\\';

 ?column?

 xx\\

(1 row)

=> SELECT 'auto' || 'mobile';

-50-

SQL Reference Manual

 ?column?

 automobile

(1 row)

=> SELECT 'auto'

-> 'mobile';

 ?column?

 automobile

(1 row)

=> SELECT 1 || 2;

 ?column?

 12

(1 row)

=> SELECT '1' || '2';

 ?column?

 12

(1 row)

=> SELECT '1'

-> '2';

 ?column?

 12

(1 row)

Expressions

SQL expressions are the components of a query that compare a value or values against other
values. They can also perform calculations. Expressions found inside any SQL command are
usually in the form of a conditional statement.

Operator Precedence

The following table shows operator precedence in decreasing (high to low) order.

Note: When an expression includes more than one operator, HP recommends that you specify

the order of operation using parentheses, rather than relying on operator precedence.

Operator/Element Associativity Description

. left table/column name separator

:: left typecast

[] left array element selection

- right unary minus

-51-

 SQL Language Elements

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS UNKNOWN, IS NULL

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE string pattern matching

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order. To force evaluation

in a specific order, use a CASE (page 52) construct. For example, this is an untrustworthy way of
trying to avoid division by zero in a WHERE clause:

=> SELECT x, y WHERE x <> 0 AND y/x > 1.5;

But this is safe:

=> SELECT x, y

 WHERE

 CASE

 WHEN x <> 0 THEN y/x > 1.5

 ELSE false

 END;

A CASE construct used in this fashion defeats optimization attempts, so use it only when

necessary. (In this particular example, it would be best to avoid the issue by writing y > 1.5*x
instead.)

Aggregate Expressions

An aggregate expression represents the application of an aggregate function (page 118) across
the rows or groups of rows selected by a query.

Using AVG() as an example, the syntax of an aggregate expression is one of the following:

 Invokes the aggregate across all input rows for which the given expression yields a non-null
value:
AVG (expression)

-52-

SQL Reference Manual

 Is the same as AVG(expression), because ALL is the default:

AVG (ALL expression)

 Invokes the AVG() function across all input rows for all distinct, non-null values of the

expression, where expression is any value expression that does not itself contain an
aggregate expression.

AVG (DISTINCT expression)

An aggregate expression only can appear in the select list or HAVING clause of a SELECT

statement. It is forbidden in other clauses, such as WHERE, because those clauses are evaluated
before the results of aggregates are formed.

CASE Expressions

The CASE expression is a generic conditional expression that can be used wherever an
expression is valid. It is similar to case and if/then/else statements in other languages.

Syntax (form 1)
CASE

 WHEN condition THEN result

 [WHEN condition THEN result]...

 [ELSE result]

END

Parameters

condition Is an expression that returns a boolean (true/ false) result. If
the result is false, subsequent WHEN clauses are

evaluated in the same manner.

result Specifies the value to return when the associated condition
is true.

ELSE result If no condition is true then the value of the CASE
expression is the result in the ELSE clause. If the ELSE
clause is omitted and no condition matches, the result is

null.

Syntax (form 2)
CASE expression

 WHEN value THEN result

 [WHEN value THEN result]...

 [ELSE result]

END

Parameters

expression Is an expression that is evaluated and compared to all the

value specifications in the WHEN clauses until one is found
that is equal.

-53-

 SQL Language Elements

value Specifies a value to compare to the expression.

result Specifies the value to return when the expression is equal
to the specified value.

ELSE result Specifies the value to return when the expression is not

equal to any value; if no ELSE clause is specified, the value
returned is null.

Notes

The data types of all the result expressions must be convertible to a single output type.

Examples
=> SELECT * FROM test;

 a

 1

 2

 3

=> SELECT a,

 CASE WHEN a=1 THEN 'one'

 WHEN a=2 THEN 'two'

 ELSE 'other'

 END

 FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

=> SELECT a,

 CASE a WHEN 1 THEN 'one'

 WHEN 2 THEN 'two'

 ELSE 'other'

 END

 FROM test;

 a | case

---+-------

 1 | one

 2 | two

 3 | other

Special Example

A CASE expression does not evaluate subexpressions that are not needed to determine the result.

You can use this behavior to avoid division-by-zero errors:

=> SELECT x FROM T1 WHERE

 CASE WHEN x <> 0 THEN y/x > 1.5

 ELSE false

 END;

-54-

SQL Reference Manual

Column References

Syntax
[[[db-name.]schema.] tablename.] columnname

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be

connected to the database you specify, and you cannot change
objects in other databases.

Specifying different database objects lets you qualify database objects

as explicitly as required. For example, you can use a database and a
schema name (mydb.myschema).

tablename. Is one of:

 The name of a table

 An alias for a table defined by means of a FROM clause in a
query

columnname Is the name of a column that must be unique across all the tables being

used in a query

Notes

There are no space characters in a column reference.

If you do not specify a schema, HP Vertica searches the existing schemas according to the order
defined in the SET SEARCH_PATH (page 912) command.

Example

This example uses the schema from the VMart Example Database.

In the following command, transaction_type and transaction_time are the unique

column references, store is the name of the schema, and store_sales_fact is the table
name:

=> SELECT transaction_type, transaction_time

 FROM store.store_sales_fact

 ORDER BY transaction_time;

 transaction_type | transaction_time

------------------+------------------

 purchase | 00:00:23

 purchase | 00:00:32

 purchase | 00:00:54

 purchase | 00:00:54

 purchase | 00:01:15

 purchase | 00:01:30

 purchase | 00:01:50

 return | 00:03:34

-55-

 SQL Language Elements

 return | 00:03:35

 purchase | 00:03:39

 purchase | 00:05:13

 purchase | 00:05:20

 purchase | 00:05:23

 purchase | 00:05:27

 purchase | 00:05:30

 purchase | 00:05:35

 purchase | 00:05:35

 purchase | 00:05:42

 return | 00:06:36

 purchase | 00:06:39

(20 rows)

Comments

A comment is an arbitrary sequence of characters beginning with two consecutive hyphen
characters and extending to the end of the line. For example:

 -- This is a standard SQL comment

A comment is removed from the input stream before further syntax analysis and is effectively
replaced by white space.

Alternatively, C-style block comments can be used where the comment begins with /* and
extends to the matching occurrence of */.

 /* multiline comment

 * with nesting: /* nested block comment */

 */

These block comments nest, as specified in the SQL standard. Unlike C, you can comment out
larger blocks of code that might contain existing block comments.

Date/Time Expressions
HP Vertica uses an internal heuristic parser for all date/time input support. Dates and times are
input as strings, and are broken up into distinct fields with a preliminary determination of what kind
of information might be in the field. Each field is interpreted and either assigned a numeric value,
ignored, or rejected. The parser contains internal lookup tables for all textual fields, including
months, days of the week, and time zones.

The date/time type inputs are decoded using the following procedure.

 Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

 If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

 If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month.

-56-

SQL Reference Manual

 If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date (for
example, 19990113 for January 13, 1999) or time (for example, 141516 for 14:15:16).

 If the token starts with a plus (+) or minus (-), then it is either a time zone or a special field.

 If the token is a text string, match up with possible strings.

 Do a binary-search table lookup for the token as either a special string (for example, today),
day (for example, Thursday), month (for example, January), or noise word (for example, at,
on).

 Set field values and bit mask for fields. For example, set year, month, day for today, and
additionally hour, minute, second for now.

 If not found, do a similar binary-search table lookup to match the token with a time zone.

 If still not found, throw an error.

 When the token is a number or number field:

 If there are eight or six digits, and if no other date fields have been previously read, then
interpret as a "concatenated date" (for example, 19990118 or 990118). The interpretation is
YYYYMMDD or YYMMDD.

 If the token is three digits and a year has already been read, then interpret as day of year.

 If four or six digits and a year has already been read, then interpret as a time (HHMM or
HHMMSS).

 If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

 Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy,
dd-mm-yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

 If BC has been specified, negate the year and add one for internal storage. (There is no year
zero in the our implementation, so numerically 1 BC becomes year zero.)

 If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip: Gregorian years AD 1-99 can be entered by using 4 digits with leading zeros (for example,
0099 is AD 99).

Month Day Year Ordering

For some formats, ordering of month, day, and year in date input is ambiguous and there is
support for specifying the expected ordering of these fields. See Date/Time Run-Time Parameters
for information about output styles.

Special Date/Time Values

HP Vertica supports several special date/time values for convenience, as shown below. All of
these values need to be written in single quotes when used as constants in SQL statements.

The values INFINITY and -INFINITY are specially represented inside the system and are

displayed the same way. The others are simply notational shorthands that are converted to
ordinary date/time values when read. (In particular, NOW and related strings are converted to a

specific time value as soon as they are read.)

-57-

 SQL Language Elements

String Valid Data Types Description

epoch DATE, TIMESTAMP 1970-01-01 00:00:00+00 (UNIX SYSTEM TIME
ZERO)

INFINITY TIMESTAMP Later than all other time stamps

-INFINITY TIMESTAMP Earlier than all other time stamps

NOW DATE, TIME,

TIMESTAMP

Current transaction's start time

Note: NOW is not the same as the NOW (see "NOW

[Date/Time]" on page 235) function.

TODAY DATE, TIMESTAMP Midnight today

TOMORROW DATE, TIMESTAMP Midnight tomorrow

YESTERDAY DATE, TIMESTAMP Midnight yesterday

ALLBALLS TIME 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type:

 CURRENT_DATE (page 200)

 CURRENT_TIME (page 200)

 CURRENT_TIMESTAMP (page 201)

 LOCALTIME (page 226)

 LOCALTIMESTAMP (page 226)

The latter four accept an optional precision specification. (See Date/Time Functions.) Note
however that these are SQL functions and are not recognized as data input strings.

NULL Value

NULL is a reserved keyword used to indicate that a data value is unknown.

Be very careful when using NULL in expressions. NULL is not greater than, less than, equal to, or

not equal to any other expression. Use the Boolean-predicate (on page 60) for determining
whether an expression value is NULL.

Notes

 HP Vertica stores data in projections, which are sorted in a specific way. All columns are

stored in ASC (ascending) order. For columns of data type NUMERIC, INTEGER, DATE, TIME,

TIMESTAMP, and INTERVAL, NULL values are placed at the beginning of sorted projections

(NULLS FIRST), while for columns of data type FLOAT, STRING, and BOOLEAN, NULL values

are placed at the end (NULLS LAST). For details, see Analytics Null Placement and Minimizing
Sort Operations in the Programmer's Guide.

 HP Vertica also accepts NUL characters ('\0') in constant strings and no longer removes null

characters from VARCHAR fields on input or output. NUL is the ASCII abbreviation for the NULL
character.

-58-

SQL Reference Manual

 You can write queries with expressions that contain the <=> operator for NULL=NULL joins.
See Equi-joins and Non Equi-Joins in the Programmer's Guide.

See Also

NULL-handling Functions (page 321)

Numeric Expressions

HP Vertica follows the IEEE specification for floating point, including NaN.

A NaN is not greater than and at the same time not less than anything, even itself. In other words,
comparisons always return false whenever a NaN is involved.

Examples
=> SELECT CBRT('Nan'); -- cube root

 cbrt

 NaN

(1 row)

=> SELECT 'Nan' > 1.0;

 ?column?

 f

(1 row)

Predicates
Predicates are truth-tests. If the predicate test is true, it returns a value. Each predicate is

evaluated per row, so that when the predicate is part of an entire table SELECT statement, the
statement can return multiple results.

Predicates consist of a set of parameters and arguments. For example, in the following example
WHERE clause:

WHERE name = 'Smith';

 name = 'Smith' is the predicate

 'Smith' is an expression

BETWEEN-predicate

The special BETWEEN predicate is available as a convenience.

Syntax
a BETWEEN x AND y

-59-

 SQL Language Elements

Notes
a BETWEEN x AND y

Is equivalent to:

a >= x AND a <= y

Similarly:

a NOT BETWEEN x AND y

is equivalent to:

a < x OR a > y

-60-

 60

Boolean-predicate

Retrieves rows where the value of an expression is true, false, or unknown (null).

Syntax
expression IS [NOT] TRUE

expression IS [NOT] FALSE

expression IS [NOT] UNKNOWN

Notes

 A null input is treated as the value UNKNOWN.

 IS UNKNOWN and IS NOT UNKNOWN are effectively the same as the NULL-predicate (page

69), except that the input expression does not have to be a single column value. To check a
single column value for NULL, use the NULL-predicate.

 Do not confuse the boolean-predicate with Boolean Operators (on page 44) or the Boolean
(page 76) data type, which can have only two values: true and false.

column-value-predicate

Syntax
column-name comparison-op constant-expression

Parameters

column-name Is a single column of one the tables specified in the FROM clause

(page 876).

comparison-op Is one of the comparison operators (on page 44).

constant-expression Is a constant value of the same data type as the column-name.

Notes

To check a column value for NULL, use the NULL-predicate (page 69).

Examples
table.column1 = 2

table.column2 = 'Seafood'

table.column3 IS NULL

-61-

 61

IN-predicate

Syntax
column-expression [NOT] IN (list-expression)

Parameters

column-expression One or more columns from the tables specified in the FROM clause (page
876).

list-expression A comma-separated list of constant values matching the data type of the

column-expression

Examples
x, y IN ((1,2), (3, 4)), OR x, y IN (SELECT a, b FROM table)

x IN (5, 6, 7)

INTERPOLATE

Used to join two event series together using some ordered attribute, event series joins let you
compare values from two series directly, rather than having to normalize the series to the same
measurement interval.

Syntax
expression1 INTERPOLATE PREVIOUS VALUE expression2

Parameters

expression1

expression2

Is the column-reference (see "Column References" on page 54)

from one the tables specified in the FROM clause (page 876).

The column-reference can be any data type, but DATE/TIME types are
the most useful, especially TIMESTAMP,since you are joining data

that represents an event series.

PREVIOUS VALUE Pads the non-preserved side with the previous values from relation
when there is no match.

Input rows are sorted in ascending logical order of the join column.

Note: An ORDER BY clause, if used, does not determine the input

order but only determines query output order.

Notes

 An event series join is an extension of a regular outer join. Instead of padding the
non-preserved side with null values when there is no match, the event series join pads the
non-preserved side with the previous values from the table.

-62-

SQL Reference Manual

 The difference between expressing a regular outer join and an event series join is the
INTERPOLATE predicate, which is used in the ON clause. See the Examples section below

Notes and Restrictions. See also Event Series Joins in the Programmer's Guide.

 Data is logically partitioned on the table in which it resides, based on other ON clause equality
predicates.

 Interpolated values come from the table that contains the null, not from the other table.

 HP Vertica does not guarantee that there will be no null values in the output. If there is no
previous value for a mismatched row, that row will be padded with nulls.

 Event series join requires that both tables be sorted on columns in equality predicates, in any
order, followed by the INTERPOLATED column. If data is already sorted in this order, then an
explicit sort is avoided, which can improve query performance. For example, given the
following tables:

ask: exchange, stock, ts, price

bid: exchange, stock, ts, price

In the query that follows

 ask is sorted on exchange, stock (or the reverse), ts

 bid is sorted on exchange, stock (or the reverse), ts

SELECT ask.price - bid.price, ask.ts, ask.stock, ask.exchange

 FROM ask FULL OUTER JOIN bid

 ON ask.stock = bid.stock AND ask.exchange = bid.exchange

 AND ask.ts INTERPOLATE PREVIOUS VALUE bid.ts;

Restrictions

 Only one INTERPOLATE expression is allowed per join.

 INTERPOLATE expressions are used only with ANSI SQL-99 syntax (the ON clause), which is
already true for full outer joins.

 INTERPOLATE can be used with equality predicates only.

 The AND operator is supported but not the OR and NOT operators.

 Expressions and implicit or explicit casts are not supported, but subqueries are allowed.

Example

The examples that follow use this simple schema.

CREATE TABLE t(x TIME);

CREATE TABLE t1(y TIME);

INSERT INTO t VALUES('12:40:23');

INSERT INTO t VALUES('14:40:25');

INSERT INTO t VALUES('14:45:00');

INSERT INTO t VALUES('14:49:55');

INSERT INTO t1 VALUES('12:40:23');

INSERT INTO t1 VALUES('14:00:00');

COMMIT;

Normal full outer join
=> SELECT * FROM t FULL OUTER JOIN t1 ON t.x = t1.y;

Notice the null rows from the non-preserved table:

-63-

 SQL Language Elements

 x | y

----------+----------

 12:40:23 | 12:40:23

 14:40:25 |

 14:45:00 |

 14:49:55 |

 | 14:00:00

(5 rows)

Full outer join with interpolation
=> SELECT * FROM t FULL OUTER JOIN t1 ON t.x INTERPOLATE PREVIOUS VALUE t1.y;

In this case, the rows with no entry point are padded with values from the previous row.

 x | y

----------+----------

 12:40:23 | 12:40:23

 12:40:23 | 14:00:00

 14:40:25 | 14:00:00

 14:45:00 | 14:00:00

 14:49:55 | 14:00:00

(5 rows)

Normal Left Outer Join
=> SELECT * FROM t LEFT OUTER JOIN t1 ON t.x = t1.y;

Again, there are nulls in the non-preserved table

 x | y

----------+----------

 12:40:23 | 12:40:23

 14:40:25 |

 14:45:00 |

 14:49:55 |

(4 rows)

Left Outer Join with Interpolation
=> SELECT * FROM t LEFT OUTER JOIN t1 ON t.x INTERPOLATE PREVIOUS VALUE t1.y;

Nulls padded with interpolated values.

 x | y

----------+----------

 12:40:23 | 12:40:23

 14:40:25 | 14:00:00

 14:45:00 | 14:00:00

 14:49:55 | 14:00:00

(4 rows)

Inner joins

For inner joins, there is no difference between a regular inner join and an event series inner join.
Since null values are eliminated from the result set, there is nothing to interpolate.

A regular inner join returns only the single matching row at 12:40:23:

=> SELECT * FROM t INNER JOIN t1 ON t.x = t1.y;

-64-

SQL Reference Manual

 x | y

----------+----------

 12:40:23 | 12:40:23

(1 row)

An event series inner join finds the same single-matching row at 12:40:23:

=> SELECT * FROM t INNER JOIN t1 ON t.x INTERPOLATE PREVIOUS VALUE t1.y;

 x | y

----------+----------

 12:40:23 | 12:40:23

(1 row)

Semantics

When you write an event series join in place of normal join, values are evaluated as follows (using
the schema in the above examples):

 t is the outer, preserved table

 t1 is the inner, non-preserved table

 For each row in outer table t, the ON clause predicates are evaluated for each combination of
each row in the inner table t1.

 If the ON clause predicates evaluate to true for any combination of rows, those combination
rows are produced at the output.

 If the ON clause is false for all combinations, a single output row is produced with the values of
the row from t along with the columns of t1 chosen from the row in t1 with the greatest t1.y

value such that t1.y < t.x; If no such row is found, pad with nulls.

Note: t LEFT OUTER JOIN t1 is equivalent to t1 RIGHT OUTER JOIN t.

In the case of a full outer join, all values from both tables are preserved.

See Also

Event Series Joins in the Programmer's Guide

join-predicate
Combines records from two or more tables in a database.

Syntax
column-reference (see "Column References" on page 54) = column-reference

Parameters

column-reference Refers to a column of one the tables specified in the FROM clause

(page 876).

-65-

 SQL Language Elements

-66-

 66

LIKE-predicate

Retrieves rows where the string value of a column matches a specified pattern. The pattern can
contain one or more wildcard characters. ILIKE is equivalent to LIKE except that the match is
case-insensitive (non-standard extension).

Syntax
string [NOT]{ LIKE | ILIKE | LIKEB | ILIKEB }

... pattern [ESCAPE 'escape-character']

Parameters

string (CHAR, VARCHAR, BINARY, VARBINARY) is the column value to be

compared to the pattern.

NOT Returns true if LIKE returns false, and the reverse; equivalent to NOT

string LIKE pattern.

pattern Specifies a string containing wildcard characters.

 Underscore (_) matches any single character.

 Percent sign (%) matches any string of zero or more characters.

ESCAPE Specifies an escape-character. An ESCAPE character can be used to
escape itself, underscore (_), and % only. This is enforced only for

non-default collations.

To match the ESCAPE character itself, use two consecutive escape

characters. The default ESCAPE character is the backslash (\) character,

although standard SQL specifies no default ESCAPE character. ESCAPE

works for char and varchar strings only.

escape-character Causes character to be treated as a literal, rather than a wildcard, when
preceding an underscore or percent sign character in the pattern.

Notes

 The LIKE predicate is compliant with the SQL standard.

 In the default locale, LIKE and ILIKE handle UTF-8 character-at-a-time, locale-insensitive
comparisons. ILIKE handles language-independent case-folding.

Note: In non-default locales, LIKE and ILIKE do locale-sensitive string comparisons,

including some automatic normalization, using the same algorithm as the "=" operator on
VARCHAR types.

 The LIKEB and ILIKEB predicates do byte-at-a-time ASCII comparisons, providing access to
HP Vertica 4.0 functionality.

 LIKE and ILIKE are stable for character strings, but immutable for binary strings, while
LIKEB and ILIKEB are both immutable

-67-

 SQL Language Elements

 For collation=binary settings, the behavior is similar to HP Vertica 4.0. For other

collations, LIKE operates on UTF-8 character strings, with the exact behavior dependent on

collation parameters, such as strength. In particular, ILIKE works by setting S=2 (ignore
case) in the current session locale. See Locale Specification in the Administrator's Guide.

 Although the SQL standard specifies no default ESCAPE character, in HP Vertica the default is
the backslash (\) and works for CHAR and VARCHAR strings only.

Tip: HP recommends that you specify an explicit escape character in all cases, to avoid
problems should this behavior change. To use a backslash character as a literal, either specify
a different escape character or use two backslashes.

 ESCAPE expressions evaluate to exactly one octet — or one UTF-8 character for non-default
locales.

 An ESCAPE character can be used only to escape itself, _, and %. This is enforced only for
non-default collations.

 LIKE requires that the entire string expression match the pattern. To match a sequence of

characters anywhere within a string, the pattern must start and end with a percent sign.

 The LIKE predicate does not ignore trailing "white space" characters. If the data values that

you want to match have unknown numbers of trailing spaces, tabs, etc., terminate each LIKE
predicate pattern with the percent sign wildcard character.

 To use binary data types, you must use a valid binary character as the escape character, since
backslash is not a valid BINARY character.

 The following symbols are substitutes for the actual keywords:

~~ LIKE

~# LIKEB

~~* ILIKE

~#* ILIKEB

!~~ NOT LIKE

!~# NOT LIKEB

!~~* NOT ILIKE

!~#* NOT IILIKEB

The ESCAPE keyword is not valid for the above symbols.

 HP Vertica extends support for single-row subqueries as the pattern argument for LIKEB and
ILIKEB; for example:

SELECT * FROM t1 WHERE t1.x LIKEB (SELECT MAX (t2.a) FROM t2);

Querying Case-sensitive data in System Tables

The V_CATALOG.TABLES (page 978).TABLE_SCHEMA and TABLE_NAME columns are case

sensitive when used with an equality (=) predicate in queries. For example, given the following
sample schema, if you execute a query using the = predicate, HP Vertica returns 0 rows:

=> CREATE SCHEMA SS;

=> CREATE TABLE SS.TT (c1 int);

=> INSERT INTO ss.tt VALUES (1);

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ='ss';

 table_schema | table_name

--------------+------------

-68-

SQL Reference Manual

(0 rows)

TIP: Use the case-insensitive ILIKE predicate to return the expected results.

=> SELECT table_schema, table_name FROM v_catalog.tables WHERE table_schema ILIKE

'ss';

 table_schema | table_name

--------------+------------

 SS | TT

(1 row)

Examples
'abc' LIKE 'abc' true

'abc' LIKE 'a%' true

'abc' LIKE '_b_' true

'abc' LIKE 'c' false

'abc' LIKE 'ABC' false

'abc' ILIKE 'ABC' true

'abc' not like 'abc' false

not 'abc' like 'abc' false

The following example illustrates pattern matching in locales.

\locale default

=> CREATE TABLE src(c1 VARCHAR(100));

=> INSERT INTO src VALUES (U&'\00DF'); --The sharp s (ß)

=> INSERT INTO src VALUES ('ss');

=> COMMIT;

Querying the src table in the default locale returns both ss and sharp s.

=> SELECT * FROM src;

 c1

 ß

 ss

(2 rows)

The following query combines pattern-matching predicates to return the results from column c1:

=> SELECT c1, c1 = 'ss' AS equality, c1 LIKE 'ss' AS LIKE, c1

 ILIKE 'ss' AS ILIKE FROM src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | f | f | f

 ss | t | t | t

(2 rows)

The next query specifies unicode format for c1:

=> SELECT c1, c1 = U&'\00DF' AS equality, c1 LIKE U&'\00DF' AS LIKE,

 c1 ILIKE U&'\00DF' AS ILIKE from src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | t | t | t

-69-

 SQL Language Elements

 ss | f | f | f

(2 rows)

Now change the locale to German with a strength of 1 (ignore case and accents):

\locale LDE_S1

=> SELECT c1, c1 = 'ss' AS equality, c1 LIKE 'ss' as LIKE,

 c1 ILIKE 'ss' AS ILIKE from src;

 c1 | equality | LIKE | ILIKE

----+----------+------+-------

 ß | t | t | t

 ss | t | t | t

(2 rows)

This example illustrates binary data types with pattern-matching predicates:

=> CREATE TABLE t (c BINARY(1));

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

=> SELECT TO_HEX(c) from t;

 TO_HEX

 00

 ff

(2 rows)

select * from t;

 c

 \000

 \377

(2 rows)

=> SELECT c, c = '\000', c LIKE '\000', c ILIKE '\000' from t;

 c | ?column? | ?column? | ?column?

------+----------+----------+----------

 \000 | t | t | t

 \377 | f | f | f

(2 rows)

=> SELECT c, c = '\377', c LIKE '\377', c ILIKE '\377' from t;

 c | ?column? | ?column? | ?column?

------+----------+----------+----------

 \000 | f | f | f

 \377 | t | t | t

(2 rows)

NULL-predicate

Tests for null values.

Syntax
value_expression IS [NOT] NULL

-70-

SQL Reference Manual

Parameters

value_expression A column name, literal, or function.

Examples

Column name:

=> SELECT date_key FROM date_dimension WHERE date_key IS NOT NULL;

 date_key

 1

 366

 1462

 1097

 2

 3

 6

 7

 8

...

Function:

=> SELECT MAX(household_id) IS NULL FROM customer_dimension;

 ?column?

 f

(1 row)

Literal:

=> SELECT 'a' IS NOT NULL;

 ?column?

 t

(1 row)

See Also

NULL Value (page 57)

-71-

SQL Data Types

The following tables summarize the data types that HP Vertica supports. It also shows the default
placement of null values in projections. The Size column is listed as uncompressed bytes.

Type Size Description NULL Sorting

Binary types

BINARY 1 to 65000 Fixed-length binary string NULLS LAST

VARBINARY 1 to 65000 Variable-length binary string NULLS LAST

BYTEA 1 to 65000 Variable-length binary string (synonym for
VARBINARY)

NULLS LAST

RAW 1 to 65000 Variable-length binary string (synonym for
VARBINARY)

NULLS LAST

Boolean types

BOOLEAN 1 True or False or NULL NULLS LAST

Character types

CHAR 1 to 65000 Fixed-length character string NULLS LAST

VARCHAR 1 to 65000 Variable-length character string NULLS LAST

Date/time types

DATE 8 Represents a month, day, and year NULLS FIRST

DATETIME 8 Represents a date and time with or without

timezone (synonym for TIMESTAMP)

NULLS FIRST

SMALLDATETIME 8 Represents a date and time with or without

timezone (synonym for TIMESTAMP)

NULLS FIRST

TIME 8 Represents a time of day without timezone NULLS FIRST

TIME WITH

TIMEZONE

8 Represents a time of day with timezone NULLS FIRST

TIMESTAMP 8 Represents a date and time without timezone NULLS FIRST

TIMESTAMP WITH

TIMEZONE

8 Represents a date and time with timezone NULLS FIRST

INTERVAL 8 Measures the difference between two points
in time

NULLS FIRST

Approximate numeric types

-72-

SQL Reference Manual

DOUBLE PRECISION 8 Signed 64-bit IEEE floating point number,

requiring 8 bytes of storage

NULLS LAST

FLOAT 8 Signed 64-bit IEEE floating point number,
requiring 8 bytes of storage

NULLS LAST

FLOAT(n) 8 Signed 64-bit IEEE floating point number,
requiring 8 bytes of storage

NULLS LAST

FLOAT8 8 Signed 64-bit IEEE floating point number,

requiring 8 bytes of storage

NULLS LAST

REAL 8 Signed 64-bit IEEE floating point number,
requiring 8 bytes of storage

NULLS LAST

Exact numeric types

INTEGER 8 Signed 64-bit integer, requiring 8 bytes of

storage

NULLS FIRST

INT 8 Signed 64-bit integer, requiring 8 bytes of
storage

NULLS FIRST

BIGINT 8 Signed 64-bit integer, requiring 8 bytes of
storage

NULLS FIRST

INT8 8 Signed 64-bit integer, requiring 8 bytes of

storage

NULLS FIRST

SMALLINT 8 Signed 64-bit integer, requiring 8 bytes of
storage

NULLS FIRST

TINYINT 8 Signed 64-bit integer, requiring 8 bytes of
storage

NULLS FIRST

DECIMAL 8+ 8 bytes for the first 18 digits of precision, plus

8 bytes for each additional 19 digits

NULLS FIRST

NUMERIC 8+ 8 bytes for the first 18 digits of precision, plus
8 bytes for each additional 19 digits

NULLS FIRST

NUMBER 8+ 8 bytes for the first 18 digits of precision, plus
8 bytes for each additional 19 digits

NULLS FIRST

MONEY 8+ 8 bytes for the first 18 digits of precision, plus

8 bytes for each additional 19 digits

NULLS FIRST

Binary Data Types
Store raw-byte data, such as IP addresses, up to 65000 bytes.

Syntax
BINARY (length)

{ VARBINARY | BINARY VARYING | BYTEA | RAW } (max-length)

Parameters

-73-

 SQL Data Types

length | max-length Specifies the length of the string (column width, declared

in bytes (octets), in CREATE TABLE (page 770)
statements).

Notes

 BYTEA and RAW are synonyms for VARBINARY.

 The data types BINARY and BINARY VARYING (VARBINARY) are collectively referred to as
binary string types and the values of binary string types are referred to as binary strings.

 A binary string is a sequence of octets, or bytes. Binary strings store raw-byte data, while
character strings store text.

 A binary value value of NULL appears last (largest) in ascending order.

 The binary data types, BINARY and VARBINARY, are similar to the character data types

(page 76), CHAR and VARCHAR, respectively, except that binary data types contain byte
strings, rather than character strings.

 BINARY — A fixed-width string of length bytes, where the number of bytes is declared as an

optional specifier to the type. If length is omitted, the default is 1. Where necessary, values are
right-extended to the full width of the column with the zero byte. For example:

=> SELECT TO_HEX('ab'::BINARY(4));

 to_hex

 61620000

 VARBINARY — A variable-width string up to a length of max-length bytes, where the maximum
number of bytes is declared as an optional specifier to the type. The default is the default
attribute size, which is 80, and the maximum length is 65000 bytes. Varbinary values are not
extended to the full width of the column. For example:

=> SELECT TO_HEX('ab'::VARBINARY(4));

 to_hex

 6162

 You can use several formats when working with binary values, but the hexadecimal format is
generally the most straightforward and is emphasized in HP Vertica documentation.

 Binary operands &, ~, | and # have special behavior for binary data types, as described in
Binary Operators (page 41).

 On input, strings are translated from:

 hexadecimal representation to a binary value using the HEX_TO_BINARY (page 367)

function

 bitstring representation to a binary value using the BITSTRING_TO_BINARY (page 360)
function.

Both functions take a VARCHAR argument and return a VARBINARY value. See the Examples
section below.

 Binary values can also be represented in octal format by prefixing the value with a backslash
'\'.

-74-

SQL Reference Manual

Note: If you use vsql, you must use the escape character (\) when you insert another

backslash on input; for example, input '\141' as '\\141'.

You can also input values represented by printable characters. For example, the hexadecimal
value '0x61' can also be represented by the symbol '.

See Loading Different Formats in the Administrator's Guide.

 Like the input format the output format is a hybrid of octal codes and printable ASCII

characters. A byte in the range of printable ASCII characters (the range [0x20, 0x7e]) is

represented by the corresponding ASCII character, with the exception of the backslash ('\'),

which is escaped as '\\'. All other byte values are represented by their corresponding octal

values. For example, the bytes {97,92,98,99}, which in ASCII are {a,\,b,c}, are translated
to text as 'a\\bc'.

 The following aggregate functions are supported for binary data types:

 BIT_AND (page 119)

 BIT_OR (page 120)

 BIT_XOR (page 122)

 MAX (page 128)

 MIN (page 129)

BIT_AND, BIT_OR, and BIT_XOR are bitwise operations that are applied to each non-null

value in a group, while MAX and MIN are bytewise comparisons of binary values.

 Like their binary operator (page 41) counterparts, if the values in a group vary in length, the
aggregate functions treat the values as though they are all equal in length by extending shorter
values with zero bytes to the full width of the column. For example, given a group containing

the values 'ff', null, and 'f', a binary aggregate ignores the null value and treats the

value 'f' as 'f0'. Also, like their binary operator counterparts, these aggregate functions

operate on VARBINARY types explicitly and operate on BINARY types implicitly through casts.
See Data Type Coercion Operators (CAST) (page 45).

Examples

The following example shows VARBINARY HEX_TO_BINARY (page 367)(VARCHAR) and

VARCHAR TO_HEX (page 260)(VARBINARY) usage.

Table t and and its projection are created with binary columns:

=> CREATE TABLE t (c BINARY(1));

=> CREATE PROJECTION t_p (c) AS SELECT c FROM t;

Insert minimum byte and maximum byte values:

=> INSERT INTO t values(HEX_TO_BINARY('0x00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF'));

Binary values can then be formatted in hex on output using the TO_HEX function:

=> SELECT TO_HEX(c) FROM t;

 to_hex

 00

 ff

-75-

 SQL Data Types

 (2 rows)

The BIT_AND, BIT_OR, and BIT_XOR functions are interesting when operating on a group of

values. For example, create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Now issue the bitwise AND operation. Because these are aggregate functions, an implicit GROUP
BY operation is performed on results using (ff00&(ffff)&f00f):

=> SELECT TO_HEX(BIT_AND(c)) FROM t;

to_hex

f000

(1 row)

Issue the bitwise OR operation on (ff00|(ffff)|f00f):

=> SELECT TO_HEX(BIT_OR(c)) FROM t;

to_hex

ffff

(1 row)

Issue the bitwise XOR operation on (ff00#(ffff)#f00f):

=> SELECT TO_HEX(BIT_XOR(c)) FROM t;

to_hex

f0f0

(1 row)

See Also

Aggregate functions BIT_AND (page 119), BIT_OR (page 120), BIT_XOR (page 122), MAX
(page 128), and MIN (page 129)

Binary Operators (page 41)

-76-

SQL Reference Manual

COPY (page 699)

Data Type Coercion Operators (CAST) (page 45)

IP conversion function INET_ATON (page 292), INET_NTOA (page 293), V6_ATON (page 294),
V6_NTOA (page 295), V6_SUBNETA (page 296), V6_SUBNETN (page 297), V6_TYPE (page
298)

String functions BITCOUNT (page 359), BITSTRING_TO_BINARY (page 360),
HEX_TO_BINARY (page 367), LENGTH (page 381), REPEAT (page 392), SUBSTRING (page
403), TO_HEX (page 260), and TO_BITSTRING (page 256)

Loading Binary Data in the Administrator's Guide

Boolean Data Type
HP Vertica provides the standard SQL type BOOLEAN, which has two states: true and false. The
third state in SQL boolean logic is unknown, which is represented by the NULL value.

Syntax
BOOLEAN

Parameters

Valid literal data values for input are:

TRUE 't' 'true' 'y' 'yes' '1' 1

FALSE 'f' 'false' 'n' 'no' '0' 0

Notes

 Do not confuse the BOOLEAN data type with Boolean Operators (on page 44) or the

Boolean-predicate (on page 60).

 The keywords TRUE and FALSE are preferred and are SQL-compliant.

 A Boolean value of NULL appears last (largest) in ascending order.

 All other values must be enclosed in single quotes.

 Boolean values are output using the letters t and f.

See Also

NULL Value (page 57)

Data Type Coercion Chart (page 115)

Character Data Types
Stores strings of letters, numbers, and symbols.

-77-

 SQL Data Types

Character data can be stored as fixed-length or variable-length strings. Fixed-length strings are
right-extended with spaces on output; variable-length strings are not extended.

Syntax
[CHARACTER | CHAR] (octet_length)

[VARCHAR | CHARACTER VARYING] (octet_length)

Parameters

octet_length Specifies the length of the string (column
width, declared in bytes (octets), in CREATE

TABLE (page 770) statements).

Notes

 The data types CHARACTER (CHAR) and CHARACTER VARYING (VARCHAR) are collectively

referred to as character string types, and the values of character string types are known as
character strings.

 CHAR is conceptually a fixed-length, blank-padded string. Any trailing blanks (spaces) are
removed on input, and only restored on output. The default length is 1, and the maximum
length is 65000 octets (bytes).

 VARCHAR is a variable-length character data type. The default length is 80, and the maximum

length is 65000 octets. Values can include trailing spaces.

 When you define character columns, specify the maximum size of any string to be stored in a
column. For example, to store strings up to 24 octets in length, use either of the following
definitions:

CHAR(24) /* fixed-length */

VARCHAR(24) /* variable-length */

 The maximum length parameter for VARCHAR and CHAR data type refers to the number of
octets that can be stored in that field, not the number of characters (Unicode code points).
When using multibyte UTF-8 characters, the fields must be sized to accommodate from 1 to 4

octets per character, depending on the data. If the data loaded into a VARCHAR/CHAR column
exceeds the specified maximum size for that column, data is truncated on UTF-8 character
boundaries to fit within the specified size. See COPY (page 699).

Note: Remember to include the extra octets required for multibyte characters in the
column-width declaration, keeping in mind the 65000 octet column-width limit.

 String literals in SQL statements must be enclosed in single quotes.

 Due to compression in HP Vertica, the cost of overestimating the length of these fields is
incurred primarily at load time and during sorts.

 NULL appears last (largest) in ascending order. See also GROUP BY Clause (page 878) for
additional information about NULL ordering.

The difference between NULL and NUL

NUL represents a character whose ASCII/Unicode code is 0, sometimes qualified "ASCII NUL".

NULL means no value, and is true of a field (column) or constant, not of a character.

CHAR and VARCHAR string data types accept ASCII NULs.

-78-

SQL Reference Manual

The following example casts the input string containing NUL values to VARCHAR:

=> SELECT 'vert\0ica'::CHARACTER VARYING AS VARCHAR;

 VARCHAR

 vert\0ica

(1 row)

The result contains 9 characters:

=> SELECT LENGTH('vert\0ica'::CHARACTER VARYING);

 length

 9

(1 row)

If you use an extended string literal (page 31), the length is 8 characters:

=> SELECT E'vert\0ica'::CHARACTER VARYING AS VARCHAR;

 VARCHAR

 vertica

(1 row)

=> SELECT LENGTH(E'vert\0ica'::CHARACTER VARYING);

 LENGTH

 8

(1 row)

See Also

Data Type Coercion (page 112)

Date/Time Data Types

HP Vertica supports the full set of SQL date and time data types. In most cases, a combination of
DATE, DATETIME, SMALLDATETIME, TIME, TIMESTAMP WITHOUT TIME ZONE, and TIMESTAMP

WITH TIME ZONE, and INTERVAL provides a complete range of date/time functionality required
by any application.

In compliance with the SQL standard, HP Vertica also supports the TIME WITH TIME ZONE data
type.

The following table lists the date/time data types, their sizes, values, and resolution.

Name Size Description Low Value High Value Resolution

DATE
8 bytes Dates only (no

time of day)
~ 25e+15 BC ~ 25e+15 AD 1 day

-79-

 SQL Data Types

TIME [(p]
8 bytes Time of day only

(no date)

00:00:00.00 23:59:60.999999 1

microsecond

TIMETZ [(p)]
8 bytes Time of day only,

with time zone
00:00:00.00+14 23:59:59.999999-14 1

microsecond

TIMESTAMP [(p)]
8 bytes Both date and

time, without time
zone

290279-12-22
19:59:05.224194 BC

294277-01-09
04:00:54:775806 AD

1
microsecond

TIMESTAMPTZ [(p)]
8 bytes Both date and

time, with time
zone

290279-12-22
19:59:05.224194 BC
UTC

294277-01-09
04:00:54:775806 AD
UTC

1
microsecond

INTERVAL [(p)]

DAY TO SECOND
8 bytes Time intervals -106751991 days

04:00:54.775807
+-106751991 days
04:00:54.775807

1
microsecond

INTERVAL [(p)]

YEAR TO MONTH

8 bytes Time intervals ~ -768e15 yrs ~ 768e15 yrs 1 month

Time zone abbreviations for input

HP Vertica recognizes the files in /opt/vertica/share/timezonesets as date/time input

values and defines the default list of strings accepted in the AT TIME ZONE zone parameter. The
names are not necessarily used for date/time output — output is driven by the official time zone
abbreviations associated with the currently selected time zone parameter setting.

Notes

 In HP Vertica, TIME ZONE is a synonym for TIMEZONE.

 HP Vertica uses Julian dates for all date/time calculations, which can correctly predict and
calculate any date more recent than 4713 BC to far into the future, based on the assumption
that the average length of the year is 365.2425 days.

 All date/time types are stored in eight bytes.

 A date/time value of NULL appears first (smallest) in ascending order.

 All the date/time data types accept the special literal value NOW to specify the current date and
time. For example:

=> SELECT TIMESTAMP 'NOW';

 ?column?

 2012-03-13 11:42:22.766989

(1 row)

 In HP Vertica, the INTERVAL (page 81) data type is SQL:2008 compliant and allows

modifiers, called interval qualifiers (page 40), that divide the INTERVAL type into two primary
subtypes, DAY TO SECOND (the default) and YEAR TO MONTH. You use the SET

INTERVALSTYLE (page 906) command to change the intervalstyle run-time parameter
for the current session.

Intervals are represented internally as some number of microseconds and printed as up to 60
seconds, 60 minutes, 24 hours, 30 days, 12 months, and as many years as necessary. Fields
can be positive or negative.

-80-

SQL Reference Manual

See Also

Set the Default Time Zone and Using Time Zones with HP Vertica in the Installation Guide

Sources for Time Zone and Daylight Saving Time Data
http://www.twinsun.com/tz/tz-link.htm

DATE

Consists of a month, day, and year.

Syntax
DATE

Parameters/limits

Low Value High Value Resolution

~ 25e+15 BC ~ 25e+15 AD 1 DAY

 See SET DATESTYLE (page 903) for information about ordering.

Example Description

January 8, 1999 Unambiguous in any datestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended format)

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode

February 1, 2003 in DMY mode

February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 Year and day of year

J2451187 Julian day

http://www.twinsun.com/tz/tz-link.htm

-81-

 SQL Data Types

January 8, 99 BC Year 99 before the Common Era

DATETIME

DATETIME is an alias for TIMESTAMP (page 97).

INTERVAL

Measures the difference between two points in time. The INTERVAL data type is divided into two
major subtypes:

 DAY TO SECOND (day/time, in microseconds)

 YEAR TO MONTH (year/month, in months)

A day/time interval represents a span of days, hours, minutes, seconds, and fractional seconds. A
year/month interval represents a span of years and months. Intervals can be positive or negative.

Syntax
INTERVAL [(p)] [-] 'interval-literal (on page 38)' [interval-qualifier (on

page 40)]

Parameters

(p) [Optional] Specifies the precision for the number of digits retained in the
seconds field. Enter the precision value in parentheses (). The interval
precision can range from 0 to 6. The default is 6.

- [Optional] Indicates a negative interval.

'interval-literal' Indicates a literal character string expressing a specific interval.

interval-qualifier [Optional] Specifies a range of interval subtypes with optional precision

specifications. If omitted, the default is DAY TO SECOND(6). Somet imes

referred to as subtype in this topic.

Within the single quotes of an interval-literal, units can be plural,

but outside the quotes, the interval-qualifier must be singular.

Limits

Name Low Value High Value Resolution

INTERVAL [(p)] DAY TO SECOND –106751991 days

04:00:54.775807

+–106751991 days

04:00:54.775807

1 microsecond

INTERVAL [(p)] YEAR TO MONTH ~ –768e15 yrs ~ 768e15 yrs 1 month

-82-

SQL Reference Manual

Displaying or omitting interval units in output

To display or omit interval units from the output of a SELECT INTERVAL query, use the

INTERVALSTYLE (page 906) and DATESTYLE (page 903) settings. These settings affect only the
interval output format, not the interval input format.

To omit interval units from the output, set INTERVALSTYLE to PLAIN. This is the default value,
and it follows the SQL:2008 standard (ISO):

=> SET INTERVALSTYLE TO PLAIN;

SET

=> SELECT INTERVAL '3 2';

?column?

 3 02:00

When INTERVALSTYLE is set to PLAIN, units are omitted from the output, even if you specify the

units in the query:

=> SELECT INTERVAL '3 days 2 hours';

 ?column?

 3 02:00

To display interval units in the output, set INTERVALSTYLE to UNITS:

=> SET INTERVALSTYLE TO UNITS;

SET

=> SELECT INTERVAL '3 2';

 ?column?

 3 days 2 hours

When INTERVALSTYLE is set to UNITS to display units in the result, the DATESTYLE (page 903)
setting controls the format of the units in the output.

If you set DATESTYLE to SQL, interval units are omitted from the output, even if you set
INTERVALSTYLE to UNITS:

=> SET INTERVALSTYLE TO UNITS;

SET

=> SET DATESTYLE TO SQL;

SET

=> SELECT INTERVAL '3 2';

 ?column?

 3 02:00

To display interval units on output, set DATESTYLE to ISO:

=> SET INTERVALSTYLE TO UNITS;

SET

-83-

 SQL Data Types

=> SET DATESTYLE TO ISO;

SET

=> SELECT INTERVAL '3 2';

 ?column?

 3 days 2 hours

To check the INTERVALSTYLE or DATESTYLE setting, use the SHOW (page 923) command:

=> SHOW INTERVALSTYLE;

 name | setting

---------------+---------

 intervalstyle | units

=> SHOW DATESTYLE;

 name | setting

-----------+----------

 datestyle | ISO, MDY

Specifying units on input

You can specify interval units in the interval-literal:

=> SELECT INTERVAL '3 days 2 hours';

 ?column?

 3 days 2 hours

The following command uses the same interval-literal as the previous example, but specifies a
MINUTE interval-qualifier to so that the results are displayed only in minutes:

=> SELECT INTERVAL '3 days 2 hours' MINUTE;

 ?column?

 4440 mins

HP Vertica allows combinations of units in the interval-qualifier, as in the next three examples:

=> SELECT INTERVAL '1 second 1 millisecond' DAY TO SECOND;

 ?column?

 1.001 secs

=> SELECT INTERVAL '28 days 3 hours 65 min' HOUR TO MINUTE;

 ?column?

 676 hours 5 mins

Units less than a month are not valid for YEAR TO MONTH interval-qualifiers:

=> SELECT INTERVAL '1 Y 30 DAYS' YEAR TO MONTH;

ERROR: invalid input syntax for type interval year to month: "1 Y 30 DAYS"

If you replace DAYS in the interval-literal with M to represent months, HP Vertica returns the correct

information of 1 year, 3 months:

-84-

SQL Reference Manual

=> SELECT INTERVAL '1 Y 3 M' YEAR TO MONTH;

 ?column?

 1 year 3 months

in the previous example, M was used as the interval-literal, representing months. If you specify a

DAY TO SECOND interval-qualifier, HP Vertica knows that M represents minutes, as in the following
example:

=> SELECT INTERVAL '1 D 3 M' DAY TO SECOND;

 ?column?

 1 day 3 mins

The next two examples use units in the input to return microseconds:

=> SELECT INTERVAL '4:5 1 2 34us';

 ?column?

 1 day 04:05:02.000034

=> SELECT INTERVAL '4:5 1d 2 34us' HOUR TO SECOND;

 ?column?

 28 hours 5 mins 2.000034 secs

How the interval-qualifier affects output units

The interval-qualifier specifies a range of interval subtypes to apply to the interval-literal. You can
also specify the precision in the interval-qualifier.

If an interval-qualifier is not specified, the default subtype is DAY TO SECOND(6), regardless of
what is inside the quotes. For example, as an extension to SQL:2008, both of the following
commands return 910 days:

=> SELECT INTERVAL '2-6';

 ?column?

 910 days

=> SELECT INTERVAL '2 years 6 months';

 ?column?

 910 days

However, if you change the interval-qualifier to YEAR TO MONTH, you get the following results:

=> SELECT INTERVAL '2 years 6 months' YEAR TO MONTH;

 ?column?

 2 years 6 months

An interval-qualifier can extract other values from the input parameters. For example, the following
command extracts the HOUR value from the input parameters:

=> SELECT INTERVAL '3 days 2 hours' HOUR;

 ?column?

-85-

 SQL Data Types

 74 hours

When specifying intervals that use subtype YEAR TO MONTH, the returned value is kept as months:

=> SELECT INTERVAL '2 years 6 months' YEAR TO MONTH;

 ?column?

 2 years 6 months

The primary day/time (DAY TO SECOND) and year/month (YEAR TO MONTH) subtype ranges can

be restricted to more specific range of types by an interval-qualifier. For example, HOUR TO

MINUTE is a limited form of day/time interval, which can be used to express time zone offsets.

=> SELECT INTERVAL '1 3' HOUR to MINUTE;

 ?column?

 01:03

The formats hh:mm:ss and hh:mm are used only when at least two of the fields specified in the
interval-qualifier are non-zero and there are no more than 23 hours or 59 minutes:

=> SELECT INTERVAL '2 days 12 hours 15 mins' DAY TO MINUTE;

 ?column?

 2 days 12:15

=> SELECT INTERVAL '15 mins 20 sec' MINUTE TO SECOND;

 ?column?

 00:15:20

=> SELECT INTERVAL '1 hour 15 mins 20 sec' MINUTE TO SECOND;

 ?column?

 75 mins 20 secs

Specifying precision

SQL:2008 allows you to specify precision for the interval output by entering the precision value in
parentheses after the INTERVAL keyword or the interval-qualifier. HP Vertica rounds the input to
the number of decimal places specified. SECOND(2) and SECOND (2) produce the same result:

If you specify two different precisions, HP Vertica picks the lesser of the two:

=> SELECT INTERVAL(1) '1.2467' SECOND(2);

 ?column?

 1.2 secs

When you specify a precision inside an interval-literal, HP Vertica processes the precision by
removing the parentheses. In this example, (3) is processed as 3 minutes, the first omitted field:

=> SELECT INTERVAL '28 days 3 hours 1.234567 second(3)';

-86-

SQL Reference Manual

 ?column?

 28 days 03:03:01.234567

The following command specifies that the day field can hold 4 digits, the hour field 2 digits, the
minutes field 2 digits, the seconds field 2 digits, and the fractional seconds field 6 digits:

=> SELECT INTERVAL '1000 12:00:01.123456' DAY(4) TO SECOND(6);

 ?column?

 1000 days 12:00:01.123456

AN HP Vertica extension lets you specify the seconds precision on the INTERVAL keyword. The
result is the same:

=> SELECT INTERVAL(6) '1000 12:00:01.123456' DAY(4) TO SECOND;

 1000 days 12:00:01.123456

Casting with intervals

You can cast a string to an interval:

=> SELECT CAST('3700 sec' AS INTERVAL);

 ?column?

 01:01:40

You can cast an interval to a string:

=> SELECT CAST((SELECT INTERVAL '3700 seconds') AS VARCHAR(20));

 ?column?

 01:01:40

You can cast intervals within the day/time or the year/month subtypes but not between them. Use
CAST to convert interval types:

=> SELECT CAST(INTERVAL '4440' MINUTE as INTERVAL);

 ?column?

 3 days 2 hours

=> SELECT CAST(INTERVAL -'01:15' as INTERVAL MINUTE);

 ?column?

 -75 mins

-87-

 SQL Data Types

Processing signed intervals

In the SQL:2008 standard, a minus sign before an interval-literal or as the first character of the
interval-literal negates the entire literal, not just the first component. In HP Vertica, a leading minus
sign negates the entire interval, not just the first component. The following commands both return
the same value:

=> SELECT INTERVAL '-1 month - 1 second';

 ?column?

 -29 days 23:59:59

=> SELECT INTERVAL -'1 month - 1 second';

 ?column?

 -29 days 23:59:59

Use one of the following commands instead to return the intended result:

=> SELECT INTERVAL -'1 month 1 second';

 ?column?

 -30 days 1 sec

=> SELECT INTERVAL -'30 00:00:01';

 ?column?

 -30 days 1 sec

Two negatives together return a positive:

=> SELECT INTERVAL -'-1 month - 1 second';

 ?column?

 29 days 23:59:59

=> SELECT INTERVAL -'-1 month 1 second';

 ?column?

 30 days 1 sec

You can use the year-month syntax with no spaces. HP Vertica allows the input of negative
months but requires two negatives when paired with years.

=> SELECT INTERVAL '3-3' YEAR TO MONTH;

 ?column?

 3 years 3 months

=> SELECT INTERVAL '3--3' YEAR TO MONTH;

 ?column?

 2 years 9 months

-88-

SQL Reference Manual

When the interval-literal looks like a year/month type, but the type is day/second, or vice versa, HP
Vertica reads the interval-literal from left to right, where number-number is years-months, and
number <space> <signed number> is whatever the units specify. HP Vertica processes the
following command as (–) 1 year 1 month = (–) 365 + 30 = –395 days:

=> SELECT INTERVAL '-1-1' DAY TO HOUR;

 ?column?

 -395 days

If you insert a space in the interval-literal, HP Vertica processes it based on the subtype DAY TO

HOUR: (–) 1 day – 1 hour = (–) 24 – 1 = –23 hours:

=> SELECT INTERVAL '-1 -1' DAY TO HOUR;

 ?column?

 -23 hours

Two negatives together returns a positive, so HP Vertica processes the following command as (–)
1 year – 1 month = (–) 365 – 30 = –335 days:

=> SELECT INTERVAL '-1--1' DAY TO HOUR;

 ?column?

 -335 days

If you omit the value after the hyphen, HP Vertica assumes 0 months and processes the following
command as 1 year 0 month –1 day = 365 + 0 – 1 = –364 days:

=> SELECT INTERVAL '1- -1' DAY TO HOUR;

 ?column?

 364 days

Processing interval-literals without units

You can specify quantities of days, hours, minutes, and seconds without explicit units. HP Vertica
recognizes colons in interval-literals as part of the timestamp:

=> SELECT INTERVAL '1 4 5 6';

 ?column?

 1 day 04:05:06

=> SELECT INTERVAL '1 4:5:6';

 ?column?

 1 day 04:05:06

=> SELECT INTERVAL '1 day 4 hour 5 min 6 sec';

 ?column?

 1 day 04:05:06

-89-

 SQL Data Types

If HP Vertica cannot determine the units, it applies the quantity to any missing units based on the
interval-qualifier. In the next two examples, HP Vertica uses the default interval-qualifier (DAY TO

SECOND(6)) and assigns the trailing 1 to days, since it has already processed hours, minutes,
and seconds in the output:

=> SELECT INTERVAL '4:5:6 1';

 ?column?

 1 day 04:05:06

=> SELECT INTERVAL '1 4:5:6';

 ?column?

 1 day 04:05:06

In the next two examples, HP Vertica recognizes 4:5 as hours:minutes. The remaining values in

the interval-literal are assigned to the missing units; 1 is assigned to days and 2 is assigned to
seconds:

SELECT INTERVAL '4:5 1 2';

 ?column?

 1 day 04:05:02

=> SELECT INTERVAL '1 4:5 2';

 ?column?

 1 day 04:05:02

Specifying the interval-qualifier can change how HP Vertica interprets 4:5:

=> SELECT INTERVAL '4:5' MINUTE TO SECOND;

 ?column?

 00:04:05

Using INTERVALYM for INTERVAL YEAR TO MONTH

INTERVALYM is an alias for the INTERVAL YEAR TO MONTH subtypes and is used only on input:

=> SELECT INTERVALYM '1 2';

 ?column?

 1 year 2 months

Operations with intervals

If you divide an interval by an interval, you get a FLOAT:

=> SELECT INTERVAL '28 days 3 hours' HOUR(4) / INTERVAL '27 days 3 hours' HOUR(4);

 ?column?

-90-

SQL Reference Manual

 1.036866359447

An INTERVAL divided by FLOAT returns an INTERVAL:

=> SELECT INTERVAL '3' MINUTE / 1.5;

 ?column?

 2 mins

INTERVAL MODULO (remainder) INTERVAL returns an INTERVAL:

=> SELECT INTERVAL '28 days 3 hours' HOUR % INTERVAL '27 days 3 hours' HOUR;

 ?column?

 24 hours

If you add INTERVAL and TIME, the result is TIME, modulo 24 hours:

=> SELECT INTERVAL '1' HOUR + TIME '1:30';

 ?column?

 02:30:00

Fractional seconds in interval units

HP Vertica supports intervals in milliseconds (hh:mm:ss:ms), where 01:02:03:25 represents 1
hour, 2 minutes, 3 seconds, and 025 milliseconds. Milliseconds are converted to fractional
seconds as in the following example, which returns 1 day, 2 hours, 3 minutes, 4 seconds, and 25.5
milliseconds:

=> SELECT INTERVAL '1 02:03:04:25.5';

 ?column?

 1 day 02:03:04.0255

HP Vertica allows fractional minutes. The fractional minutes are rounded into seconds:

=> SELECT INTERVAL '10.5 minutes';

 ?column?

 00:10:30

=> select interval '10.659 minutes';

 ?column?

 00:10:39.54

=> select interval '10.3333333333333 minutes';

 ?column?

 00:10:20

-91-

 SQL Data Types

Notes

 The HP Vertica INTERVAL data type is SQL:2008 compliant, with extensions. On HP Vertica

databases created prior to version 4.0, all INTERVAL columns are interpreted as INTERVAL
DAY TO SECOND, as in the previous releases.

 An INTERVAL can include only the subset of units that you need; however, year/month
intervals represent calendar years and months with no fixed number of days, so year/month
interval values cannot include days, hours, minutes. When year/month values are specified for
day/time intervals, the intervals extension assumes 30 days per month and 365 days per year.
Since the length of a given month or year varies, day/time intervals are never output as months
or years, only as days, hours, minutes, and so on.

 Day/time and year/month intervals are logically independent and cannot be combined with or

compared to each other. In the following example, an interval-literal that contains DAYS cannot
be combined with the YEAR TO MONTH type:

=> SELECT INTERVAL '1 2 3' YEAR TO MONTH;

ERROR 3679: Invalid input syntax for interval year to month: "1 2 3"

 HP Vertica accepts intervals up to 2 6̂3 – 1 microseconds or months (about 18 digits).

 INTERVAL YEAR TO MONTH can be used in an analytic RANGE window when the ORDER BY

column type is TIMESTAMP/TIMESTAMP WITH TIMEZONE, or DATE. Using TIME/TIME WITH
TIMEZONE are not supported.

 You can use INTERVAL DAY TO SECOND when the ORDER BY column type is
TIMESTAMP/TIMESTAMP WITH TIMEZONE, DATE, and TIME/TIME WITH TIMEZONE.

Examples

The table in this section contains additional interval examples. The INTERVALSTYLE is set to

PLAIN (omitting units on output) for brevity.

Note: If you omit the interval-qualifier (page 40), the interval type defaults to DAY TO
SECOND(6).

Command Result
SELECT INTERVAL '00:2500:00'; 1 17:40

SELECT INTERVAL '2500' MINUTE TO SECOND; 2500

SELECT INTERVAL '2500' MINUTE; 2500

SELECT INTERVAL '28 days 3 hours' HOUR TO SECOND; 675:00

SELECT INTERVAL(3) '28 days 3 hours'; 28 03:00

SELECT INTERVAL(3) '28 days 3 hours 1.234567'; 28 03:01:14.074

SELECT INTERVAL(3) '28 days 3 hours 1.234567 sec'; 28 03:00:01.235

SELECT INTERVAL(3) '28 days 3.3 hours' HOUR TO SECOND; 675:18

SELECT INTERVAL(3) '28 days 3.35 hours' HOUR TO SECOND; 675:21

SELECT INTERVAL(3) '28 days 3.37 hours' HOUR TO SECOND; 675:22:12

SELECT INTERVAL '1.234567 days' HOUR TO SECOND; 29:37:46.5888

SELECT INTERVAL '1.23456789 days' HOUR TO SECOND; 29:37:46.665696

SELECT INTERVAL(3) '1.23456789 days' HOUR TO SECOND; 29:37:46.666

SELECT INTERVAL(3) '1.23456789 days' HOUR TO SECOND(2); 29:37:46.67

SELECT INTERVAL(3) '01:00:01.234567' as "one hour+"; 01:00:01.235

SELECT INTERVAL(3) '01:00:01.234567' = INTERVAL(3) '01:00:01.234567'; t

SELECT INTERVAL(3) '01:00:01.234567' = INTERVAL '01:00:01.234567'; f

SELECT INTERVAL(3) '01:00:01.234567' = INTERVAL '01:00:01.234567'

HOUR TO SECOND(3);

t

-92-

SQL Reference Manual

SELECT INTERVAL(3) '01:00:01.234567' = INTERVAL '01:00:01.234567'

MINUTE TO SECOND(3);

t

SELECT INTERVAL '255 1.1111' MINUTE TO SECOND(3); 255:01.111

SELECT INTERVAL '@ - 5 ago'; 5

SELECT INTERVAL '@ - 5 minutes ago'; 00:05

SELECT INTERVAL '@ 5 minutes ago'; -00:05

SELECT INTERVAL '@ ago -5 minutes'; 00:05

SELECT DATE_PART('month', INTERVAL '2-3' YEAR TO MONTH); 3

SELECT FLOOR((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01')

/ INTERVAL '7');

2

See Also

Interval Values (page 37) for a description of the values that can be represented in an INTERVAL
type

INTERVALSTYLE (page 906) and DATESTYLE (page 903)

AGE_IN_MONTHS (page 197) and AGE_IN_YEARS (page 198)

interval-literal

The following table lists the units allowed for the required interval-literal parameter.

Unit Description

a Julian year, 365.25 days exactly

ago Indicates negative time offset

c, cent, century Century

centuries Centuries

d, day Day

days Days

dec, decade Decade

decades, decs Decades

h, hour, hr Hour

hours, hrs Hours

ka Julian kilo-year, 365250 days exactly

m Minute or month for year/month, depending on context.
See Notes below this table.

microsecond Microsecond

microseconds Microseconds

mil, millennium Millennium

millennia, mils Millennia

-93-

 SQL Data Types

millisecond Millisecond

milliseconds Milliseconds

min, minute, mm Minute

mins, minutes Minutes

mon, month Month

mons, months Months

ms, msec, millisecond Millisecond

mseconds, msecs Milliseconds

q, qtr, quarter Quarter

qtrs, quarters Quarters

s, sec, second Second

seconds, secs Seconds

us, usec Microsecond

microseconds, useconds, usecs Microseconds

w, week Week

weeks Weeks

y, year, yr Year

years, yrs Years

Processing the input unit 'm'

The input unit 'm' can represent either 'months' or 'minutes,' depending on the context. For
instance, the following command creates a one-column table with an interval value:

=> CREATE TABLE int_test(i INTERVAL YEAR TO MONTH);

In the first INSERT statement, the values are inserted as 1 year, six months:

=> INSERT INTO int_test VALUES('1 year 6 months');

The second INSERT statement results in an error from specifying minutes for a YEAR TO MONTH

interval. At runtime, the result will be a NULL:

=> INSERT INTO int_test VALUES('1 year 6 minutes');

ERROR: invalid input syntax for type interval year to month: "1 year 6 minutes"

In the third INSERT statement, the 'm' is processed as months (not minutes), because DAY TO

SECOND is truncated:

=> INSERT INTO int_test VALUES('1 year 6 m'); -- the m counts as months

The table now contains two identical values, with no minutes:

=> SELECT * FROM int_test;

 i

-94-

SQL Reference Manual

 1 year 6 months

 1 year 6 months

(2 rows)

In the following command, the 'm' counts as minutes, because the DAY TO SECOND
interval-qualifier extracts day/time values from the input:

=> SELECT INTERVAL '1y6m' DAY TO SECOND;

 ?column?

 365 days 6 mins

(1 row)

interval-qualifier

The following table lists the optional interval qualifiers. Values in INTERVAL fields, other than

SECOND, are integers with a default precision of 2 when they are not the first field.

You cannot combine day/time and year/month qualifiers. For example, the following intervals are
not allowed:

 DAY TO YEAR

 HOUR TO MONTH

Interval Type Units Valid interval-literal entries

Day/time intervals DAY Unconstrained.

 DAY TO HOUR An interval that represents a span of days and hours.

 DAY TO MINUTE An interval that represents a span of days and

minutes.

 DAY TO SECOND (Default) interval that represents a span of days,
hours, minutes, seconds, and fractions of a second if

subtype unspecified.

 HOUR Hours within days.

 HOUR TO MINUTE An interval that represents a span of hours and

minutes.

 HOUR TO SECOND An interval that represents a span of hours and
seconds.

 MINUTE Minutes within hours.

 MINUTE TO SECOND An interval that represents a span of minutes and
seconds.

-95-

 SQL Data Types

 SECOND Seconds within minutes.

Note: The SECOND field can have an interval

fractional seconds precision, which indicates the

number of decimal digits maintained following the
decimal point in the SECONDS value. When SECOND is

not the first field, it has a precision of 2 places before

the decimal point.

Year/month intervals MONTH Months within year.

 YEAR Unconstrained.

 YEAR TO MONTH An interval that represents a span of years and
months.

SMALLDATETIME

SMALLDATETIME is an alias for TIMESTAMP (page 97).

TIME

Consists of a time of day with or without a time zone.

Syntax

TIME [(p)] [{ WITH | WITHOUT } TIME ZONE] | TIMETZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 96)]

Parameters

p (Precision) specifies the number of fractional digits retained in the seconds
field. By default, there is no explicit bound on precision. The allowed range

0 to 6.

WITH TIME ZONE Specifies that valid values must include a time zone

WITHOUT TIME ZONE Specifies that valid values do not include a time zone (default). If a time

zone is specified in the input it is silently ignored.

TIMETZ Is the same as TIME WITH TIME ZONE with no precision

Limits

Name Low Value High Value Resolution
TIME [p]

00:00:00.00 23:59:60.999999 1 µs

TIME [p] WITH TIME ZONE
00:00:00.00+14 23:59:59.999999-14 1 µs

-96-

SQL Reference Manual

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST Time zone specified by name

Notes

 HP Vertica permits coercion from TIME and TIME WITH TIME ZONE types to TIMESTAMP or
TIMESTAMP WITH TIME ZONE or INTERVAL (Day to Second).

 HP Vertica supports adding milliseconds to a TIME or TIMETZ value.

=> CREATE TABLE temp (datecol TIME);

=> INSERT INTO temp VALUES (TIME '12:47:32.62');

=> INSERT INTO temp VALUES (TIME '12:55:49.123456');

=> INSERT INTO temp VALUES (TIME '01:08:15.12374578');

=> SELECT * FROM temp;

 datecol

 12:47:32.62

 12:55:49.123456

 01:08:15.123746

(3 rows)

See Also

Data Type Coercion Chart (page 115)

TIME AT TIME ZONE

The TIME AT TIME ZONE construct converts TIMESTAMP and TIMESTAMP WITH ZONE types

to different time zones.

-97-

 SQL Data Types

TIME ZONE is a synonym for TIMEZONE. Both are allowed in HP Vertica syntax.

Syntax
timestamp AT TIME ZONE zone

Parameters

timestamp

TIMESTAMP Converts UTC to local time in given time zone

TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC

TIME WITH TIME ZONE Converts local time across time zones

zone Is the desired time zone specified either as a text string (for example: 'PST') or as an

interval (for example: INTERVAL '-08:00'). In the text case, the available zone

names are abbreviations.

The files in /opt/vertica/share/timezonesets define the default list of strings

accepted in the zone parameter

Examples

The local time zone is PST8PDT. The first example takes a zone-less timestamp and interprets it
as MST time (UTC- 7) to produce a UTC timestamp, which is then rotated to PST (UTC-8) for
display:

=> SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST';

 timezone

 2001-02-16 22:38:40-05

(1 row)

The second example takes a timestamp specified in EST (UTC-5) and converts it to local time in
MST (UTC-7):

=> SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'MST';

 timezone

 2001-02-16 18:38:40

(1 row)

TIMESTAMP

Consists of a date and a time with or without a time zone and with or without a historical epoch (AD
or BC).

Syntax
TIMESTAMP [(p)] [{ WITH | WITHOUT } TIME ZONE] | TIMESTAMPTZ

[AT TIME ZONE (see "TIME AT TIME ZONE" on page 96)]

-98-

SQL Reference Manual

Parameters

p Optional precision value that specifies the number of fractional digits

retained in the seconds field. By default, there is no explicit bound on
precision. The allowed range of p is 0 to 6.

WITH TIME ZONE Specifies that valid values must include a time zone. All TIMESTAMP WITH

TIME ZONE values are stored internally in UTC.

They are converted to local time in the zone specified by the time zone

configuration parameter before being displayed to the client.

WITHOUT TIME ZONE Specifies that valid values do not include a time zone (default). If a time
zone is specified in the input it is silently ignored.

TIMESTAMPTZ Is the same as TIMESTAMP WITH TIME ZONE.

Limits

In the following table, values are rounded. See Date/Time Data Types (page 78) for additional
detail.

Name Low Value High Value Resolution
TIMESTAMP [(p)] [WITHOUT TIME ZONE]

290279 BC 294277 AD 1 µs

TIMESTAMP [(p)] WITH TIME ZONE
290279 BC 294277 AD 1 µs

Notes

 TIMESTAMP is an alias for DATETIME and SMALLDATETIME.

 Valid input for TIMESTAMP types consists of a concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC.

 AD/BC can appear before the time zone, but this is not the preferred ordering.

 The SQL standard differentiates TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH

TIME ZONE literals by the existence of a "+"; or "-". Hence, according to the standard:

TIMESTAMP '2004-10-19 10:23:54' is a TIMESTAMP WITHOUT TIME ZONE.

TIMESTAMP '2004-10-19 10:23:54+02' is a TIMESTAMP WITH TIME ZONE.

Note: HP Vertica differs from the standard by requiring that TIMESTAMP WITH TIME ZONE
literals be explicitly typed:
TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

 If a literal is not explicitly indicated as being of TIMESTAMP WITH TIME ZONE, HP Vertica
silently ignores any time zone indication in the literal. That is, the resulting date/time value is
derived from the date/time fields in the input value, and is not adjusted for time zone.

-99-

 SQL Data Types

 For TIMESTAMP WITH TIME ZONE, the internally stored value is always in UTC. An input
value that has an explicit time zone specified is converted to UTC using the appropriate offset
for that time zone. If no time zone is stated in the input string, then it is assumed to be in the

time zone indicated by the system's TIME ZONE parameter, and is converted to UTC using the
offset for the TIME ZONE zone.

 When a TIMESTAMP WITH TIME ZONE value is output, it is always converted from UTC to the

current TIME ZONE zone and displayed as local time in that zone. To see the time in another
time zone, either change TIME ZONE or use the AT TIME ZONE (page 102) construct.

 Conversions between TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE

normally assume that the TIMESTAMP WITHOUT TIME ZONE value are taken or given as TIME

ZONE local time. A different zone reference can be specified for the conversion using AT TIME
ZONE.

 TIMESTAMPTZ and TIMETZ are not parallel SQL constructs. TIMESTAMPTZ records a time

and date in GMT, converting from the specified TIME ZONE. TIMETZ records the specified
time and the specified time zone, in minutes, from GMT.timezone

 The following list represents typical date/time input variations:

 1999-01-08 04:05:06

 1999-01-08 04:05:06 -8:00

 January 8 04:05:06 1999 PST

 HP Vertica supports adding a floating-point (in days) to a TIMESTAMP or TIMESTAMPTZ
value.

 HP Vertica supports adding milliseconds to a TIMESTAMP or TIMESTAMPTZ value.

 In HP Vertica, intervals (page 81) are represented internally as some number of
microseconds and printed as up to 60 seconds, 60 minutes, 24 hours, 30 days, 12 months,
and as many years as necessary. Fields are either positive or negative.

Examples

You can return infinity by specifying 'infinity':

=> SELECT TIMESTAMP 'infinity';

 timestamp

 infinity

(1 row)

To use the minimum TIMESTAMP value lower than the minimum rounded value:

=> SELECT '-infinity'::timestamp;

 timestamp

 -infinity

(1 row)

TIMESTAMP/TIMESTAMPTZ has +/-infinity values.

AD/BC can be placed almost anywhere within the input string; for example:

SELECT TIMESTAMPTZ 'June BC 1, 2000 03:20 PDT';

 timestamptz

-100-

SQL Reference Manual

 2000-06-01 05:20:00-05 BC

(1 row)

Notice the results are the same if you move the BC after the 1:

SELECT TIMESTAMPTZ 'June 1 BC, 2000 03:20 PDT';

 timestamptz

 2000-06-01 05:20:00-05 BC

(1 row)

And the same if you place the BC in front of the year:

SELECT TIMESTAMPTZ 'June 1, BC 2000 03:20 PDT';

 timestamptz

 2000-06-01 05:20:00-05 BC

(1 row);

The following example returns the year 45 before the Common Era:

=> SELECT TIMESTAMP 'April 1, 45 BC';

 timestamp

 0045-04-01 00:00:00 BC

(1 row)

If you omit the BC from the date input string, the system assumes you want the year 45 in the
current century:

=> SELECT TIMESTAMP 'April 1, 45';

 timestamp

 2045-04-01 00:00:00

(1 row)

In the following example, HP Vertica returns results in years, months, and days, whereas other
RDBMS might return results in days only:

=> SELECT TIMESTAMP WITH TIME ZONE '02/02/294276'- TIMESTAMP WITHOUT TIME ZONE

'02/20/2009' AS result;

 result

 292266 years 11 mons 12 days

(1 row)

To specify a specific time zone, add it to the statement, such as the use of 'ACST' in the following
example:

=> SELECT T1 AT TIME ZONE 'ACST', t2 FROM test;

 timezone | t2

---------------------+-------------

 2009-01-01 04:00:00 | 02:00:00-07

 2009-01-01 01:00:00 | 02:00:00-04

 2009-01-01 04:00:00 | 02:00:00-06

You can specify a floating point in days:

=> SELECT 'NOW'::TIMESTAMPTZ + INTERVAL '1.5 day' AS '1.5 days from now';

-101-

 SQL Data Types

 1.5 days from now

 2009-03-18 21:35:23.633-04

(1 row)

The following example illustrates the difference between TIMESTAMPTZ with and without a
precision specified:

=> SELECT TIMESTAMPTZ(3) 'now', TIMESTAMPTZ 'now';

 timestamptz | timestamptz

----------------------------+-------------------------------

 2009-02-24 11:40:26.177-05 | 2009-02-24 11:40:26.177368-05

(1 row)

The following statement returns an error because the TIMESTAMP is out of range:

=> SELECT TIMESTAMP '294277-01-09 04:00:54.775808';

ERROR: date/time field value out of range: "294277-01-09 04:00:54.775808"

There is no 0 AD, so be careful when you subtract BC years from AD years:

=> SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');

 date_part

 2001

(1 row)

The following commands create a table with a TIMESTAMP column that contains milliseconds:

CREATE TABLE temp (datecol TIMESTAMP);

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:47:32.62');

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 12:55:49.123456');

INSERT INTO temp VALUES (TIMESTAMP '2010-03-25 01:08:15.12374578');

 SELECT * FROM temp;

 datecol

 2010-03-25 12:47:32.62

 2010-03-25 12:55:49.123456

 2010-03-25 01:08:15.123746

(3 rows)

Additional Examples

Command Result

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01'); 16 10:10

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01') / 7; 2 08:17:08.571429

select (timestamp '2005-01-17 10:00' - timestamp '2005-01-01') day; 16

select cast((timestamp '2005-01-17 10:00' - timestamp

'2005-01-01') day as integer) / 7;

2

select floor((timestamp '2005-01-17 10:00' - timestamp

'2005-01-01') / interval '7');

2

select timestamptz '2009-05-29 15:21:00.456789'; 2009-05-29

15:21:00.456789-04

select timestamptz '2009-05-28'; 2009-05-28

00:00:00-04

select timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28';

1 15:21:00.456789

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz 1 15:21:00.456789

-102-

SQL Reference Manual

'2009-05-28');

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28')(3);

1 15:21:00.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28')second;

141660.456789

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') year;

0

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') month;

28

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') year;

2

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2007-01-01') year to month;

2-4

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') second(3);

141660.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute(3);

2361

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute;

2361

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute to second(3);

2361:00.457

select (timestamptz '2009-05-29 15:21:00.456789'-timestamptz

'2009-05-28') minute to second;

2361:00.456789

TIMESTAMP AT TIME ZONE

The TIMESTAMP AT TIME ZONE (or TIMEZONE) construct converts TIMESTAMP and TIMESTAMP

WITH TIMEZONE intervals to different time zones.

NOTE: TIME ZONE is a synonym for TIMEZONE. Both are allowed in HP Vertica syntax.

Syntax
timestamp AT TIME ZONE zone

Parameters

timestamp

TIMESTAMP Converts UTC to local time in the given time
zone

TIMESTAMP WITH TIME ZONE Converts local time in given time zone to UTC

TIME Converts local time.

TIME WITH TIME ZONE Converts local time across time zones

zone Specifies the time zone either as a text string, (such as 'America/Chicago') or as

an interval (INTERVAL '-08:00'). The preferred way to express a time zone is in the

format 'America/Chicago'.

For a list of time zone text strings, see Set the Default Time Zone in the Installation
Guide.

To view the default list of acceptable strings for the zone parameter, see the files in:

/opt/vertica/share/timezonesets

-103-

 SQL Data Types

Examples

If you indicate a TIME interval timezone (such as America/Chicago in the following example),

the interval function converts the interval to the timezone you specify and includes the UTC offset
value (-05 here):

=> select time '10:00' at time zone 'America/Chicago';

 ?column?

 09:00:00-05

(1 row)

Casting a TIMESTAMPTZ interval to a TIMESTAMP without a zone depends on the local time
zone.

=> select (varchar '2013-03-31 5:10 AMERICA/CHICAGO')::timestamp;

 ?column?

 2013-03-31 06:10:00

(1 row)

NOTE: For a complete list of valid time zone definitions, see Wikipedia - tz database time
zones http://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

Casting a TIME (or TIMETZ) interval to a TIMESTAMP returns the local date and time, without the
UTC offset:

=> select (time '3:01am')::timestamp;

 ?column?

 2012-08-30 03:01:00

(1 row)

=> select (timetz '3:01am')::timestamp;

 ?column?

 2012-08-22 03:01:00

(1 row)

Casting the same interval (TIME or TIMETZ) to a TIMESTAMPTZ returns the local date and time
appended with the UTC offset (-04 here):

=> select (time '3:01am')::timestamptz;

 ?column?

 2012-08-30 03:01:00-04

(1 row)

Numeric Data Types

Numeric data types are numbers stored in database columns. These data types are typically
grouped by:

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

-104-

SQL Reference Manual

 Exact numeric types , values where the precision and scale need to be preserved. The exact

numeric types are BIGINT, DECIMAL, INTEGER, NUMERIC, NUMBER, and MONEY.

 Approximate numeric types, values where the precision needs to be preserved and the scale

can be floating. The approximate numeric types are DOUBLE PRECISION, FLOAT, and REAL.

Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported. If you need
that functionality, write an explicit cast using one of the following forms:

CAST(x AS data-type-name) or x::data-type-name

The following example casts a float to an integer:

=> SELECT(FLOAT '123.5')::INT;

 ?column?

 124

(1 row)

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

 Scientific notation:

=> SELECT FLOAT '1e10';

 ?column?

 10000000000

(1 row)

 BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

 1024

(1 row)

 Hexadecimal:

=> SELECT NUMERIC '0x0abc';

 ?column?

 2748

(1 row)

-105-

 SQL Data Types

DOUBLE PRECISION (FLOAT)

HP Vertica supports the numeric data type DOUBLE PRECISION, which is the IEEE-754 8-byte
floating point type, along with most of the usual floating point operations.

Syntax
[DOUBLE PRECISION | FLOAT | FLOAT(n) | FLOAT8 | REAL]

Parameters

Note: On a machine whose floating-point arithmetic does not follow IEEE-754, these values
probably do not work as expected.

Double precision is an inexact, variable-precision numeric type. In other words, some values
cannot be represented exactly and are stored as approximations. Thus, input and output
operations involving double precision might show slight discrepancies.

 All of the DOUBLE PRECISION data types are synonyms for 64-bit IEEE FLOAT.

 The n in FLOAT(n) must be between 1 and 53, inclusive, but a 53-bit fraction is always used.
See the IEEE-754 standard for details.

 For exact numeric storage and calculations (money for example), use NUMERIC.

 Floating point calculations depend on the behavior of the underlying processor, operating
system, and compiler.

 Comparing two floating-point values for equality might not work as expected.

Values

COPY (page 699) accepts floating-point data in the following format:

 Optional leading white space

 An optional plus ("+") or minus sign ("-")

 A decimal number, a hexadecimal number, an infinity, a NAN, or a null value

A decimal number consists of a non-empty sequence of decimal digits possibly containing a radix
character (decimal point "."), optionally followed by a decimal exponent. A decimal exponent
consists of an "E" or "e", followed by an optional plus or minus sign, followed by a non-empty
sequence of decimal digits, and indicates multiplication by a power of 10.

A hexadecimal number consists of a "0x" or "0X" followed by a non-empty sequence of
hexadecimal digits possibly containing a radix character, optionally followed by a binary exponent.
A binary exponent consists of a "P" or "p", followed by an optional plus or minus sign, followed by
a non-empty sequence of decimal digits, and indicates multiplication by a power of 2. At least one
of radix character and binary exponent must be present.

An infinity is either INF or INFINITY, disregarding case.

A NaN (Not A Number) is NAN (disregarding case) optionally followed by a sequence of characters
enclosed in parentheses. The character string specifies the value of NAN in an
implementation-dependent manner. (The HP Vertica internal representation of NAN is
0xfff8000000000000LL on x86 machines.)

-106-

SQL Reference Manual

When writing infinity or NAN values as constants in a SQL statement, enclose them in single
quotes. For example:

=> UPDATE table SET x = 'Infinity'

Note: HP Vertica follows the IEEE definition of NaNs (IEEE 754). The SQL standards do not
specify how floating point works in detail.

IEEE defines NaNs as a set of floating point values where each one is not equal to anything, even
to itself. A NaN is not greater than and at the same time not less than anything, even itself. In other
words, comparisons always return false whenever a NaN is involved.

However, for the purpose of sorting data, NaN values must be placed somewhere in the result.
The value generated 'NaN' appears in the context of a floating point number matches the NaN
value generated by the hardware. For example, Intel hardware generates
(0xfff8000000000000LL), which is technically a Negative, Quiet, Non-signaling NaN.

HP Vertica uses a different NaN value to represent floating point NULL (0x7ffffffffffffffeLL). This is a
Positive, Quiet, Non-signaling NaN and is reserved by HP Vertica

The load file format of a null value is user defined, as described in the COPY (page 699) command.
The HP Vertica internal representation of a null value is 0x7fffffffffffffffLL. The interactive format is
controlled by the vsql printing option null. For example:

\pset null '(null)'

The default option is not to print anything.

Rules

 -0 == +0

 1/0 = Infinity

 0/0 == Nan

 NaN != anything (even NaN)

To search for NaN column values, use the following predicate:

... WHERE column != column

This is necessary because WHERE column = 'Nan' cannot be true by definition.

Sort Order (Ascending)

 NaN

 -Inf

 numbers

 +Inf

 NULL

Notes

 NULL appears last (largest) in ascending order.

 All overflows in floats generate +/-infinity or NaN, per the IEEE floating point standard.

-107-

 SQL Data Types

INTEGER

A signed 8-byte (64-bit) data type.

Syntax
[INTEGER | INT | BIGINT | INT8 | SMALLINT | TINYINT]

Parameters

INT, INTEGER, INT8, SMALLINT, TINYINT, and BIGINT are all synonyms for the same signed
64-bit integer data type. Automatic compression techniques are used to conserve disk space in
cases where the full 64 bits are not required.

Notes

 The range of values is -2^63+1 to 2^63-1.

 2 6̂3 = 9,223,372,036,854,775,808 (19 digits).

 The value -2^63 is reserved to represent NULL.

 NULL appears first (smallest) in ascending order.

 HP Vertica does not have an explicit 4-byte (32-bit integer) or smaller types. HP Vertica's
encoding and compression automatically eliminate the storage overhead of values that fit in
less than 64 bits.

Restrictions

 The JDBC type INTEGER is 4 bytes and is not supported by HP Vertica. Use BIGINT instead.

 HP Vertica does not support the SQL/JDBC types NUMERIC, SMALLINT, or TINYINT.

 HP Vertica does not check for overflow (positive or negative) except in the aggregate function
SUM (page 137)(). If you encounter overflow when using SUM, use SUM_FLOAT (page

138)(), which converts to floating point.

See Also

Data Type Coercion Chart (page 115)

NUMERIC
Numeric data types store numeric data. For example, a money value of $123.45 can be stored in a
NUMERIC(5,2) field.

Syntax
NUMERIC | DECIMAL | NUMBER | MONEY [(precision [, scale])]

Parameters

precision The total number of significant digits that the data type stores.

-108-

SQL Reference Manual

precision must be positive and <= 1024. If you assign a value

that exceeds the precision value, an error occurs.

scale The maximum number of digits to the right of the decimal point
that the data type stores. scale must be non-negative and less

than or equal to precision. If you omit the scale parameter, the
scale value is set to 0. If you assign a value with more decimal
digits than scale, the value is rounded to scale digits.

Notes

 NUMERIC, DECIMAL, NUMBER, and MONEY are all synonyms that return NUMERIC types.

However, the default values NUMBER and MONEY are different:

Type Precision Scale

NUMERIC 37 15

DECIMAL 37 15

NUMBER 38 0

MONEY 18 4

 NUMERIC data types support exact representations of numbers that can be expressed with a
number of digits before and after a decimal point. This contrasts slightly with existing HP
Vertica data types:

 DOUBLE PRECISION (page 105) (FLOAT) types support ~15 digits, variable exponent, and
represent numeric values approximately.

 INTEGER (page 107) (and similar) types support ~18 digits, whole numbers only.

 NUMERIC data types are generally called exact numeric data types because they store
numbers of a specified precision and scale. The approximate numeric data types, such as
DOUBLE PRECISION, use floating points and are less precise.

 Supported numeric operations include the following:

 Basic math: +, –, *, /

 Aggregation: SUM, MIN, MAX, COUNT

 Comparison operators: <, <=, =, <=>, <>, >, >=

 NUMERIC divide operates directly on numeric values, without converting to floating point. The
result has at least 18 decimal places and is rounded.

 NUMERIC mod (including %) operates directly on numeric values, without converting to
floating point. The result has the same scale as the numerator and never needs rounding.

 NULL appears first (smallest) in ascending order.

 COPY (page 699) accepts a DECIMAL data type with a decimal point ('.'), prefixed by – or
+(optional).

 LZO, RLE, and BLOCK_DICT are supported encoding types. Anything that can be used on an
INTEGER can also be used on a NUMERIC, as long as the precision is <= 18.

 The NUMERIC data type is preferred for non-integer constants, because it is always exact. For
example:

=> SELECT 1.1 + 2.2 = 3.3;

 ?column?

 t

-109-

 SQL Data Types

(1 row)

=> SELECT 1.1::float + 2.2::float = 3.3::float;

 ?column?

 f

(1 row)

 Performance of the NUMERIC data type has been fine tuned for the common case of 18 digits

of precision.

 Some of the more complex operations used with NUMERIC data types result in an implicit cast

to FLOAT. When using SQRT, STDDEV, transcendental functions such as LOG, and
TO_CHAR/TO_NUMBER formatting, the result is always FLOAT.

Examples

The following series of commands creates a table that contains a NUMERIC data type and then

performs some mathematical operations on the data:

=> CREATE TABLE num1 (id INTEGER, amount NUMERIC(8,2));

Insert some values into the table:

=> INSERT INTO num1 VALUES (1, 123456.78);

Query the table:

=> SELECT * FROM num1;

 id | amount

------+-----------

 1 | 123456.78

(1 row)

The following example returns the NUMERIC column, amount, from table num1:

=> SELECT amount FROM num1;

 amount

 123456.78

(1 row)

The following syntax adds one (1) to the amount:

=> SELECT amount+1 AS 'amount' FROM num1;

 amount

 123457.78

(1 row)

The following syntax multiplies the amount column by 2:

=> SELECT amount*2 AS 'amount' FROM num1;

 amount

 246913.56

(1 row)

The following syntax returns a negative number for the amount column:

=> SELECT -amount FROM num1;

-110-

SQL Reference Manual

 ?column?

 -123456.78

(1 row)

The following syntax returns the absolute value of the amount argument:

=> SELECT ABS(amount) FROM num1;

 ABS

 123456.78

(1 row)

The following syntax casts the NUMERIC amount as a FLOAT data type:

=> SELECT amount::float FROM num1;

 amount

 123456.78

(1 row)

See Also

Mathematical Functions (page 300)

Numeric data type overflow

HP Vertica does not check for overflow (positive or negative) except in the aggregate function SUM

(page 137)(). If you encounter overflow when using SUM, use SUM_FLOAT (page 138)()
which converts to floating point.

Dividing zero by zero returns zero:

=> select 0/0;

 ?column?

0.000000000000000000

(1 row)

=> select 0.0/0;

 ?column?

0.0000000000000000000

=> select 0 // 0;

 ?column?

 0

Dividing zero as a FLOAT by zero returns NaN:

=> select 0.0::float/0;

-111-

 SQL Data Types

?column?

 NaN

=> select 0.0::float//0;

 ?column?

 NaN

Dividing a non-zero FLOAT by zero returns Infinity:

=> select 2.0::float/0;

?column?

Infinity

=> select 200.0::float//0;

?column?

Infinity

All other division-by-zero operations return an error:

=> select 1/0;

ERROR 3117: Division by zero

=> select 200/0;

ERROR 3117: Division by zero

=> select 200.0/0;

ERROR 3117: Division by zero

=> select 116.43 // 0;

ERROR 3117: Division by zero

Add, subtract, and multiply operations ignore overflow. Sum and average operations use 128-bit
arithmetic internally. SUM (page 137)() reports an error if the final result overflows, suggesting

the use of SUM_FLOAT (page 138)(INT), which converts the 128-bit sum to a FLOAT8. For

example:

=> CREATE TEMP TABLE t (i INT);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> INSERT INTO t VALUES (1<<62);

=> SELECT SUM(i) FROM t;

 ERROR: sum() overflowed

 HINT: try sum_float() instead

=> SELECT SUM_FLOAT(i) FROM t;

 sum_float

 2.30584300921369e+19

-112-

SQL Reference Manual

Data Type Coercion

HP Vertica currently has two types of cast, implicit and explicit. HP Vertica implicitly casts
(coerces) expressions from one type to another under certain circumstances.

NOTE: Non-standard implicit casts from numeric types to varchar are not supported. Use

explicit casts if required. A non-standard implicit cast from char to float exists to match the one
from varchar to float.

When there is no ambiguity as to the data type of an expression value, it is implicitly coerced to

match the expected data type. In the following command,the quoted string constant '2' is implicitly
coerced into an INTEGER value so that it can be the operand of an arithmetic operator (addition):

=> SELECT 2 + '2';

 ?column?

 4

(1 row)

The result of the following arithmetic expression 2 + 2 and the INTEGER constant 2 are implicitly

coerced into VARCHAR values so that they can be concatenated.

=> SELECT 2 + 2 || 2;

 ?column?

 42

(1 row)

Another example is to first get today's date:

=> SELECT DATE 'now';

 ?column?

 2012-05-30

(1 row)

The following command converts DATE to a TIMESTAMP and adds a day and a half to the results

by using INTERVAL:

=> SELECT DATE 'now' + INTERVAL '1 12:00:00';

 ?column?

 2012-05-31 12:00:00

(1 row)

Most implicit casts stay within their relational family and go in one direction, from less detailed to
more detailed. For example:

 DATE to TIMESTAMP/TZ

 INTEGER to NUMERIC to FLOAT

 CHAR to FLOAT

 CHAR to VARCHAR

 CHAR and/or VARCHAR to FLOAT

-113-

 SQL Data Types

More specifically, data type coercion works in this manner in HP Vertica:

Type Direction Type Notes

INT8 > FLOAT8 Implicit, can lost
significance

FLOAT8 > INT8 Explicit, rounds

VARCHAR <-> CHAR Implicit, adjusts trailing
spaces

VARBINARY <-> BINARY Implicit, adjusts trailing
NULs

No other types cast to or from varbinary or binary. In the following list, <any> means one these
types: INT8, FLOAT8, DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ, INTERVAL

 <any> -> VARCHAR—implicit

 VARCHAR -> <any>—explicit, except that VARCHAR->FLOAT is implicit

 <any> <-> CHAR—explicit

 DATE -> TIMESTAMP/TZ—implicit

 TIMESTAMP/TZ -> DATE—explicit, loses time-of-day

 TIME -> TIMETZ—implicit, adds local timezone

 TIMETZ -> TIME—explicit, loses timezone

 TIME -> INTERVAL—implicit, day to second with days=0

 INTERVAL -> TIME—explicit, truncates non-time parts

 TIMESTAMP <-> TIMESTAMPTZ—implicit, adjusts to local timezone

 TIMESTAMP/TZ -> TIME—explicit, truncates non-time parts

 TIMESTAMPTZ -> TIMETZ—explicit

IMPORTANT: Implicit casts from INTEGER, FLOAT, and NUMERIC to VARCHAR are not supported.

If you need that functionality, write an explicit cast:

CAST(x AS data-type-name)

or

x::data-type-name

The following example casts a FLOAT to an INTEGER:

=> SELECT(FLOAT '123.5')::INT;

 ?column?

 124

(1 row)

String-to-numeric data type conversions accept formats of quoted constants for scientific notation,
binary scaling, hexadecimal, and combinations of numeric-type literals:

 Scientific notation:

-114-

SQL Reference Manual

=> SELECT FLOAT '1e10';

 ?column?

 10000000000

(1 row)

 BINARY scaling:

=> SELECT NUMERIC '1p10';

 ?column?

 1024

(1 row)

 Hexadecimal:

=> SELECT NUMERIC '0x0abc';

 ?column?

 2748

(1 row)

 Examples
=> SELECT NUMERIC '12.3e3', '12.3p10'::NUMERIC, CAST('0x12.3p-10e3' AS NUMERIC);

 ?column? | ?column? | ?column?

----------+----------+-------------------

 12300 | 12595.2 | 17.76123046875000

(1 row)

=> SELECT (18. + 3./16)/1024*1000;

 ?column?

 17.761230468750000000000000000000000000

(1 row)

Note: In SQL expressions, pure numbers between -(2 6̂3-1) and (2^63-1) are INTEGERs;

numbers with decimal points are NUMERIC, and do not support the above notation. Numbers
using e notation are FLOAT.

The following two examples show queries that once work but now fail; below the failed query is a
rewrite with the cast to VARCHAR to make such queries work again:

=> SELECT TO_NUMBER(1);

ERROR: function to_number(int) does not exist

HINT: No function matches the given name and argument types. You may need to add

explicit type casts.

=> SELECT TO_NUMBER(1::VARCHAR);

 to_number

 1

(1 row)

=> SELECT TO_DATE(20100302, 'YYYYMMDD');

ERROR: function to_date(int, "unknown") does not exist

-115-

 SQL Data Types

HINT: No function matches the given name and argument types. You may need to add

explicit type casts.

=> SELECT TO_DATE(20100302::VARCHAR, 'YYYYMMDD');

 to_date

 2010-03-02

(1 row)

See Also

Data Type Coercion Chart (page 115)

Data Type Coercion Operators (CAST) (page 45)

Data Type Coercion Chart

Conversion Types

The following table defines all possible type conversions that HP Vertica supports. The values
across the top row are the data types you want, and the values down the first column on the left
are the data types that you have.

Want> BOOL INT NUM FLT VCHR CHAR TS TSTZ DATE TIME TTZ INTDS INTYM VBIN BIN

Have

BOOL N/A a a a

INT i N/A i i a** a** a a

NUM a Yes i a** a**

FLT a a N/A a** a**

VCHR e e e i Yes i e e e e e e e

CHAR e e e i i Yes e e e e e e e

TS a a Yes i a a

TSTZ a a i Yes a a a

DATE a a i a N/A

TIME a a e e Yes i e

TTZ a a e e a Yes

INTDS a a a e Yes

INTYM a a a Yes

VBIN Yes i

BIN i Yes

Notes

 i = implicit. HP Vertica implicitly converts the source data to the target column's data type when
what needs to be converted is clear. For example, with "INT + NUMERIC -> NUMERIC", the
integer is implicitly cast to numeric(18,0); another precision/scale conversion may occur as
part of the add.

-116-

SQL Reference Manual

 a = assignment. Coercion implicitly occurs when values are assigned to database columns in
an INSERT or UPDATE..SET command. For example, in a statement that includes INSERT ...
VALUES('2.5'), where the target column is NUMERIC(18,5), a cast from VARCHAR to
NUMERIC(18,5) is inferred.

 e = explicit. The source data requires explicit casting to the target column's data type.

 N/A — no possible conversion can take place (such as INT->INT).

 Yes — HP Vertica supports a conversion of data types without explicit casting, such as
NUMERIC(10,6) -> NUMERIC(18,4).

 Double asterisks (**) mean that the numeric meaning is lost, and the value is subject to
VARCHAR/CHAR compares.

Abbreviations used in table

 BOOL = Boolean

 INT = Integer

 NUM = Numeric

 FLT = Float

 VCHR = Varchar

 TS = Timestamp

 TSTZ = Timestamp with Time Zone

 TTZ = Time with Time Zone

 INTDS = Interval Day/Second

 INTYM = Interval Year/Month

 VBIN = Varbinary

 BIN = Binary

See Also

Data Type Coercion Operators (CAST) (page 45)

-117-

SQL Functions

Functions return information from the database and are allowed anywhere an expression is
allowed. The exception is HP Vertica-specific functions (page 425), which are not allowed
everywhere.

Some functions could produce different results on different invocations with the same set of
arguments. The following three categories of functions are defined based on their behavior:

 Immutable (invariant): When run with a given set of arguments, immutable functions always
produce the same result. The function is independent of any environment or session settings,
such as locale. For example, 2+2 always equals 4. Another immutable function is AVG().
Some immutable functions can take an optional stable argument; in this case they are treated
as stable functions.

 Stable: When run with a given set of arguments, stable functions produce the same result
within a single query or scan operation. However, a stable function could produce different
results when issued under a different environment, such as a change of locale and time zone.
Expressions that could give different results in the future are also stable, for example
SYSDATE() or 'today'.

 Volatile: Regardless of the arguments or environment, volatile functions can return different

results on multiple invocations. RANDOM() is one example.

This chapter describes the functions that HP Vertica supports.

 Each function is annotated with behavior type as immutable, stable or volatile.

 All HP Vertica-specific functions can be assumed to be volatile and are not annotated
individually.

-118-

 118

Aggregate Functions
Note: All functions in this section that have an analytic (page 141) function counterpart are
appended with [Aggregate] to avoid confusion between the two.

Aggregate functions summarize data over groups of rows from a query result set. The groups are
specified using the GROUP BY (page 878) clause. They are allowed only in the select list and in
the HAVING (page 880) and ORDER BY (page 893) clauses of a SELECT (page 870) statement
(as described in Aggregate Expressions (page 51)).

Notes

 Except for COUNT, these functions return a null value when no rows are selected. In
particular, SUM of no rows returns NULL, not zero.

 In some cases you can replace an expression that includes multiple aggregates with an single
aggregate of an expression. For example SUM(x) + SUM(y) can be expressed as as
SUM(x+y) (where x and y are NOT NULL).

 HP Vertica does not support nested aggregate functions.

You can also use some of the simple aggregate functions as analytic (window) functions. See
Analytic Functions (page 141) for details. See also Using SQL Analytics in the Programmer's
Guide.

AVG [Aggregate]

Computes the average (arithmetic mean) of an expression over a group of rows. It returns a

DOUBLE PRECISION value for a floating-point expression. Otherwise, the return value is the same
as the expression data type.

Behavior Type

Immutable

Syntax
AVG ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression

found in the group.

expression The value whose average is calculated over a set of rows. Can be any
expression resulting in DOUBLE PRECISION.

-119-

 SQL Functions

Notes

The AVG() aggregate function is different from the AVG() analytic function, which computes an

average of an expression over a group of rows within a window.

Examples

The following example returns the average income from the customer table:

=> SELECT AVG(annual_income) FROM customer_dimension;

 avg

 2104270.6485

(1 row)

See Also

AVG (page 150) analytic function

COUNT (page 123) and SUM (page 137)

Numeric Data Types (page 103)

BIT_AND

Takes the bitwise AND of all non-null input values. If the input parameter is NULL, the return value
is also NULL.

Behavior Type

Immutable

Syntax
BIT_AND (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.

BIT_AND() operates on VARBINARY types explicitly and

on BINARY types implicitly through casts (page 115).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if all bits are 1, the function returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'
to 'f0'..

-120-

SQL Reference Manual

Example

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Query table t to get the AND value for column c:

SELECT TO_HEX(BIT_AND(c)) FROM t;

 TO_HEX

 f000

(1 row)

The function is applied pairwise to all values in the group, resulting in f000, which is determined
as follows:

1 ff00 (record 1) is compared with ffff (record 2), which results in ff00.

2 The result from the previous comparison is compared with f00f (record 3), which results in

f000.

See Also

Binary Data Types (page 72)

BIT_OR

Takes the bitwise OR of all non-null input values. If the input parameter is NULL, the return value is

also NULL.

Behavior Type

Immutable

Syntax
BIT_OR (expression)

Parameters

-121-

 SQL Functions

expression The [BINARY |VARBINARY] input value to be evaluated. BIT_OR()

operates on VARBINARY types explicitly and on BINARY types implicitly

through casts (page 115).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if any bit is 1, the function returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'
to 'f0'.

Example

This examples uses the following schema, which creates table t with a single column of

VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Query table t to get the OR value for column c:

SELECT TO_HEX(BIT_OR(c)) FROM t;

 TO_HEX

 ffff

(1 row)

The function is applied pairwise to all values in the group, resulting in ffff, which is determined

as follows:

1 ff00 (record 1) is compared with ffff, which results in ffff.

2 The ff00 result from the previous comparison is compared with f00f (record 3), which results

in ffff.

See Also

Binary Data Types (page 72)

-122-

SQL Reference Manual

BIT_XOR

Takes the bitwise XOR of all non-null input values. If the input parameter is NULL, the return value
is also NULL.

Behavior Type

Immutable

Syntax
BIT_XOR (expression)

Parameters

expression The [BINARY |VARBINARY] input value to be evaluated.

BIT_XOR() operates on VARBINARY types explicitly and on

BINARY types implicitly through casts (page 115).

Notes

 The function returns the same value as the argument data type.

 For each bit compared, if there are an odd number of arguments with set bits, the function
returns 1; otherwise it returns 0.

 If the columns are different lengths, the return values are treated as though they are all equal in
length and are right-extended with zero bytes. For example, given a group containing the hex

values 'ff', null, and 'f', the function ignores the null value and extends the value 'f'
to 'f0'.

Example

First create a sample table and projections with binary columns:

This examples uses the following schema, which creates table t with a single column of
VARBINARY data type:

=> CREATE TABLE t (

 c VARBINARY(2));

=> INSERT INTO t values(HEX_TO_BINARY('0xFF00'));

=> INSERT INTO t values(HEX_TO_BINARY('0xFFFF'));

=> INSERT INTO t values(HEX_TO_BINARY('0xF00F'));

Query table t to see column c output:

=> SELECT TO_HEX(c) FROM t;

 TO_HEX

 ff00

 ffff

 f00f

(3 rows)

Query table t to get the XOR value for column c:

-123-

 SQL Functions

SELECT TO_HEX(BIT_XOR(c)) FROM t;

 TO_HEX

 f0f0

(1 row)

See Also

Binary Data Types (page 72)

CORR

Returns the coefficient of correlation of a set of expression pairs (expression1 and expression2).
The return value is of type DOUBLE PRECISION. The function eliminates expression pairs
where either expression in the pair is NULL. If no rows remain, the function returns NULL.Syntax

SELECT CORR (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT CORR (Annual_salary, Employee_age) FROM employee_dimension;

 CORR

 -0.00719153413192422

(1 row)

COUNT [Aggregate]

Returns the number of rows in each group of the result set for which the expression is not NULL.
The return value is a BIGINT.

Behavior Type

Immutable

Syntax
COUNT ([*] [ALL | DISTINCT] expression)

Parameters

* Indicates that the count does not apply to any specific column or expression in
the select list. Requires a FROM clause (page 876).

ALL Invokes the aggregate function for all rows in the group (default).

-124-

SQL Reference Manual

DISTINCT Invokes the aggregate function for all distinct non-null values of the expression

found in the group.

expression Returns the number of rows in each group for which the expression is not null.
Can be any expression resulting in BIGINT.

Notes

The COUNT() aggregate function is different from the COUNT() analytic function, which returns
the number over a group of rows within a window.

Examples

The following query returns the number of distinct values in the primary_key column of the
date_dimension table:

=> SELECT COUNT (DISTINCT date_key) FROM date_dimension;

 count

 1826

(1 row)

The next example returns all distinct values of evaluating the expression x+y for all records of fact.

=> SELECT COUNT (DISTINCT date_key + product_key) FROM inventory_fact;

 count

 21560

(1 row)

An equivalent query is as follows (using the LIMIT key to restrict the number of rows returned):

=> SELECT COUNT(date_key + product_key) FROM inventory_fact

 GROUP BY date_key LIMIT 10;

 count

 173

 31

 321

 113

 286

 84

 244

 238

 145

 202

(10 rows)

Each distinct product_key value in table inventory_fact and returns the number of distinct

values of date_key in all records with the specific distinct product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key) FROM inventory_fact

 GROUP BY product_key LIMIT 10;

 product_key | count

-------------+-------

-125-

 SQL Functions

 1 | 12

 2 | 18

 3 | 13

 4 | 17

 5 | 11

 6 | 14

 7 | 13

 8 | 17

 9 | 15

 10 | 12

(10 rows)

This query counts each distinct product_key value in table inventory_fact with the constant

"1".

=> SELECT product_key, COUNT (DISTINCT product_key) FROM inventory_fact

 GROUP BY product_key LIMIT 10;

product_key | count

-------------+-------

 1 | 1

 2 | 1

 3 | 1

 4 | 1

 5 | 1

 6 | 1

 7 | 1

 8 | 1

 9 | 1

 10 | 1

(10 rows)

This query selects each distinct date_key value and counts the number of distinct

product_key values for all records with the specific product_key value. It then sums the

qty_in_stock values in all records with the specific product_key value and groups the
results by date_key.

=> SELECT date_key, COUNT (DISTINCT product_key), SUM(qty_in_stock) FROM

inventory_fact

 GROUP BY date_key LIMIT 10;

 date_key | count | sum

----------+-------+--------

 1 | 173 | 88953

 2 | 31 | 16315

 3 | 318 | 156003

 4 | 113 | 53341

 5 | 285 | 148380

 6 | 84 | 42421

 7 | 241 | 119315

 8 | 238 | 122380

 9 | 142 | 70151

 10 | 202 | 95274

(10 rows)

-126-

SQL Reference Manual

This query selects each distinct product_key value and then counts the number of distinct

date_key values for all records with the specific product_key value and counts the number of
distinct warehouse_key values in all records with the specific product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key), COUNT (DISTINCT warehouse_key)

 FROM inventory_fact GROUP BY product_key LIMIT 15;

 product_key | count | count

-------------+-------+-------

 1 | 12 | 12

 2 | 18 | 18

 3 | 13 | 12

 4 | 17 | 18

 5 | 11 | 9

 6 | 14 | 13

 7 | 13 | 13

 8 | 17 | 15

 9 | 15 | 14

 10 | 12 | 12

 11 | 11 | 11

 12 | 13 | 12

 13 | 9 | 7

 14 | 13 | 13

 15 | 18 | 17

(15 rows)

This query selects each distinct product_key value, counts the number of distinct date_key and

warehouse_key values for all records with the specific product_key value, and then sums all

qty_in_stock values in records with the specific product_key value. It then returns the number of

product_version values in records with the specific product_key value.

=> SELECT product_key, COUNT (DISTINCT date_key), COUNT (DISTINCT warehouse_key),

 SUM (qty_in_stock), COUNT (product_version)

 FROM inventory_fact GROUP BY product_key LIMIT 15;

 product_key | count | count | sum | count

-------------+-------+-------+-------+-------

 1 | 12 | 12 | 5530 | 12

 2 | 18 | 18 | 9605 | 18

 3 | 13 | 12 | 8404 | 13

 4 | 17 | 18 | 10006 | 18

 5 | 11 | 9 | 4794 | 11

 6 | 14 | 13 | 7359 | 14

 7 | 13 | 13 | 7828 | 13

 8 | 17 | 15 | 9074 | 17

 9 | 15 | 14 | 7032 | 15

 10 | 12 | 12 | 5359 | 12

 11 | 11 | 11 | 6049 | 11

 12 | 13 | 12 | 6075 | 13

 13 | 9 | 7 | 3470 | 9

 14 | 13 | 13 | 5125 | 13

 15 | 18 | 17 | 9277 | 18

(15 rows)

The following example returns the number of warehouses from the warehouse dimension table:

=> SELECT COUNT(warehouse_name) FROM warehouse_dimension;

 count

-127-

 SQL Functions

 100

(1 row)

The next example returns the total number of vendors:

=> SELECT COUNT(*) FROM vendor_dimension;

 count

 50

(1 row)

See Also

Analytic Functions (page 141)

AVG (page 118)

SUM (page 137)

Using SQL Analytics in the Programmer's Guide

COVAR_POP

Returns the population covariance for a set of expression pairs (expression1 and expression2).
The return value is of type DOUBLE PRECISION. The function eliminates expression pairs
where either expression in the pair is NULL. If no rows remain, the function returns NULL.

Syntax
SELECT COVAR_POP (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT COVAR_POP (Annual_salary, Employee_age) FROM employee_dimension;

 COVAR_POP

 -9032.34810730019

(1 row)

COVAR_SAMP
Returns the sample covariance for a set of expression pairs (expression1 and expression2). The
return value is of type DOUBLE PRECISION. The function eliminates expression pairs where
either expression in the pair is NULL. If no rows remain, the function returns NULL.

-128-

SQL Reference Manual

Syntax
COVAR_SAMP (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT COVAR_SAMP (Annual_salary, Employee_age) FROM employee_dimension;

 COVAR_SAMP

 -9033.25143244343

(1 row)

MAX [Aggregate]

Returns the greatest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax
MAX ([ALL | DISTINCT] expression)

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the maximum value is calculated,

typically a column reference (see "Column References" on page 54).

Notes

The MAX() aggregate function is different from the MAX() analytic function, which returns the

maximum value of an expression over a group of rows within a window.

Example

This example returns the largest value (dollar amount) of the sales_dollar_amount column.

=> SELECT MAX(sales_dollar_amount) AS highest_sale FROM store.store_sales_fact;

 highest_sale

 600

(1 row)

-129-

 SQL Functions

See Also

Analytic Functions (page 141)

MIN (page 129)

MIN [Aggregate]

Returns the smallest value of an expression over a group of rows. The return value is the same as
the expression data type.

Behavior Type

Immutable

Syntax
MIN ([ALL | DISTINCT] expression)

Parameters

ALL | DISTINCT Are meaningless in this context.

expression Can be any expression for which the minimum value is calculated, typically
a column reference (see "Column References" on page 54).

Notes

The MIN() aggregate function is different from the MIN() analytic function, which returns the
minimum value of an expression over a group of rows within a window.

Example

This example returns the lowest salary from the employee dimension table.

=> SELECT MIN(annual_salary) AS lowest_paid FROM employee_dimension;

 lowest_paid

 1200

(1 row)

See Also

Analytic Functions (page 141)

MAX (page 128)

Using SQL Analytics in the Programmer's Guide

-130-

SQL Reference Manual

REGR_AVGX

Returns the average of the independent expression in an expression pair (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax
SELECT REGR_AVGX (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=>=> SELECT REGR_AVGX (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_AVGX

 39.321

(1 row)

REGR_AVGY

Returns the average of the dependent expression in an expression pair (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax
REGR_AVGY (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_AVGY (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_AVGY

 58354.4913

(1 row)

(1 row)

-131-

 SQL Functions

REGR_COUNT

Returns the number of expression pairs (expression1 and expression2). The return value is of
type INTEGER. The function eliminates expression pairs where either expression in the pair is
NULL. If no rows remain, the function returns 0.

Syntax
SELECT REGR_COUNT (expression1, expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_COUNT (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_COUNT

 10000

(1 row)

REGR_INTERCEPT

Returns the y-intercept of the regression line determined by a set of expression pairs
(expression1 and expression2). The return value is of type DOUBLE PRECISION. The function
eliminates expression pairs where either expression in the pair is NULL. If no rows remain, the
function returns NULL.

Syntax
SELECT REGR_INTERCEPT (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
b=> SELECT REGR_INTERCEPT (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_INTERCEPT

 59929.5490163437

(1 row)

-132-

SQL Reference Manual

REGR_R2

Returns the square of the correlation coefficient of a set of expression pairs (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax
SELECT REGR_R2 (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_R2 (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_R2

 5.17181631706311e-05

(1 row)

REGR_SLOPE

Returns the slope of the regression line, determined by a set of expression pairs (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax
SELECT REGR_SLOPE (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_SLOPE (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_SLOPE

 -40.056400303749

(1 row)

-133-

 SQL Functions

REGR_SXX

Returns the sum of squares of the independent expression in an expression pair (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.,

Syntax
SELECT REGR_SXX (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_SXX (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_SXX

 2254907.59

(1 row)

REGR_SXY
Returns the sum of products of the independent expression multiplied by the dependent
expression in an expression pair (expression1 and expression2). The return value is of type
DOUBLE PRECISION. The function eliminates expression pairs where either expression in the
pair is NULL. If no rows remain, the function returns NULL.

Syntax
SELECT REGR_SXY (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_SXY (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_SXY

 -90323481.0730019

(1 row)

-134-

SQL Reference Manual

REGR_SYY

Returns the sum of squares of the dependent expression in an expression pair (expression1 and
expression2). The return value is of type DOUBLE PRECISION. The function eliminates
expression pairs where either expression in the pair is NULL. If no rows remain, the function
returns NULL.

Syntax
SELECT REGR_SYY (expression1,expression2)

Parameters

expression1 The dependent expression. Is of type DOUBLE PRECISION.

expression2 The independent expression. Is of type DOUBLE PRECISION.

Example
=> SELECT REGR_SYY (Annual_salary, Employee_age) FROM employee_dimension;

 REGR_SYY

 69956728794707.2

(1 row)

STDDEV [Aggregate]

Note: The non-standard function STDDEV() is provided for compatibility with other databases.
It is semantically identical to STDDEV_SAMP() (page 136).

Evaluates the statistical sample standard deviation for each member of the group. The STDDEV()
return value is the same as the square root of the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax
STDDEV (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type.

The function returns the same data type as the numeric data
type of the argument.

-135-

 SQL Functions

Notes

The STDDEV() aggregate function is different from the STDDEV() analytic function, which

computes the statistical sample standard deviation of the current row with respect to the group of
rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID
from the customer_dimension table of the VMart example database:

=> SELECT STDDEV(household_id) FROM customer_dimension;

 STDDEV

 8651.5084240071

See Also

Analytic Functions (page 141)

STDDEV_SAMP (page 136)

Using SQL Analytics in the Programmer's Guide

STDDEV_POP [Aggregate]
Evaluates the statistical population standard deviation for each member of the group. The
STDDEV_POP() return value is the same as the square root of the VAR_POP() function

STDDEV_POP(expression) = SQRT(VAR_POP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax
STDDEV_POP (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type. The

function returns the same data type as the numeric data type of
the argument.

-136-

SQL Reference Manual

Notes

The STDDEV_POP() aggregate function is different from the STDDEV_POP() analytic function,

which evaluates the statistical population standard deviation for each member of the group of rows
within a window.

Examples

The following example returns the statistical population standard deviation for each household ID
in the customer table.

=> SELECT STDDEV_POP(household_id) FROM customer_dimension;

 stddev_samp

 8651.41895973367

(1 row)

See Also

Analytic Functions (page 141)

Using SQL for Analytics in the Programmer's Guide

STDDEV_SAMP [Aggregate]

Evaluates the statistical sample standard deviation for each member of the group. The
STDDEV_SAMP() return value is the same as the square root of the VAR_SAMP() function:

STDDEV_SAMP(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type:

Immutable

Syntax
STDDEV_SAMP (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type. The

function returns the same data type as the numeric data type of
the argument.

Notes

 STDDEV_SAMP() is semantically identical to the non-standard function, STDDEV() (page

134), which is provided for compatibility with other databases.

-137-

 SQL Functions

 The STDDEV_SAMP() aggregate function is different from the STDDEV_SAMP() analytic
function, which computes the statistical sample standard deviation of the current row with
respect to the group of rows within a window.

Examples

The following example returns the statistical sample standard deviation for each household ID
from the customer dimension table.

=> SELECT STDDEV_SAMP(household_id) FROM customer_dimension;

 stddev_samp

 8651.50842400771

(1 row)

See Also

Analytic Functions (page 141)

STDDEV (page 134)

Using SQL Analytics in the Programmer's Guide

SUM [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value
for a floating-point expression. Otherwise, the return value is the same as the expression data
type.

Behavior Type

Immutable

Syntax
SUM ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default)

DISTINCT Invokes the aggregate function for all distinct non-null values of

the expression found in the group

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type. The

function returns the same data type as the numeric data type of
the argument.

-138-

SQL Reference Manual

Notes

 The SUM() aggregate function is different from the SUM() analytic function, which computes

the sum of an expression over a group of rows within a window.

 If you encounter data overflow when using SUM(), use SUM_FLOAT() (page 138) which

converts the data to a floating point.

Example

This example returns the total sum of the product_cost column.

=> SELECT SUM(product_cost) AS cost FROM product_dimension;

 cost

 9042850

(1 row)

See Also

AVG (page 118)

COUNT (page 123)

Numeric Data Types (page 103)

Using SQL Analytics in the Programmer's Guide

SUM_FLOAT [Aggregate]

Computes the sum of an expression over a group of rows. It returns a DOUBLE PRECISION value
for the expression, regardless of the expression type.

Behavior Type

Immutable

Syntax
SUM_FLOAT ([ALL | DISTINCT] expression)

Parameters

ALL Invokes the aggregate function for all rows in the group (default).

DISTINCT Invokes the aggregate function for all distinct non-null values of the
expression found in the group.

expression Can be any expression resulting in DOUBLE PRECISION.

Example

The following example returns the floating point sum of the average price from the product table:

-139-

 SQL Functions

=> SELECT SUM_FLOAT(average_competitor_price) AS cost FROM product_dimension;

 cost

 18181102

(1 row)

VAR_POP [Aggregate]

Evaluates the population variance for each member of the group. This is defined as the sum of
squares of the difference of expression from the mean of expression, divided by the number of
rows remaining.

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

COUNT(expression)) / COUNT(expression)

Behavior Type

Immutable

Syntax
VAR_POP (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type. The

function returns the same data type as the numeric data type of
the argument.

Notes

The VAR_POP() aggregate function is different from the VAR_POP() analytic function, which

computes the population variance of the current row with respect to the group of rows within a
window.

Examples

The following example returns the population variance for each household ID in the customer

table.

=> SELECT VAR_POP(household_id) FROM customer_dimension;

 var_pop

 74847050.0168393

(1 row)

VAR_SAMP [Aggregate]

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

-140-

SQL Reference Manual

(SUM(expression*expression) - SUM(expression) *SUM(expression) /

COUNT(expression)) / (COUNT(expression) -1)

Behavior Type

Immutable

Syntax
VAR_SAMP (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric

data type that can be implicitly converted to a numeric data
type. The function returns the same data type as the

numeric data type of the argument.

Notes

 VAR_SAMP() is semantically identical to the non-standard function, VARIANCE (page

140)(), which is provided for compatibility with other databases.

 The VAR_SAMP() aggregate function is different from the VAR_SAMP() analytic function,
which computes the sample variance of the current row with respect to the group of rows within
a window.

Examples

The following example returns the sample variance for each household ID in the customer table.

=> SELECT VAR_SAMP(household_id) FROM customer_dimension;

 var_samp

 74848598.0106764

(1 row)

See Also

Analytic Functions (page 141)

VARIANCE (page 140)

Using SQL Analytics in the Programmer's Guide

VARIANCE [Aggregate]

Note: The non-standard function VARIANCE() is provided for compatibility with other
databases. It is semantically identical to VAR_SAMP() (page 139).

Evaluates the sample variance for each row of the group. This is defined as the sum of squares of
the difference of expression from the mean of expression, divided by the number of rows
remaining minus 1 (one).

(SUM(expression*expression) - SUM(expression) *SUM(expression) /

-141-

 SQL Functions

COUNT(expression)) / (COUNT(expression) -1)

Behavior Type

Immutable

Syntax
VARIANCE (expression)

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data type

that can be implicitly converted to a numeric data type. The
function returns the same data type as the numeric data type of the

argument.

Notes

The VARIANCE() aggregate function is different from the VARIANCE() analytic function, which
computes the sample variance of the current row with respect to the group of rows within a
window.

Examples

The following example returns the sample variance for each household ID in the customer table.

=> SELECT VARIANCE(household_id) FROM customer_dimension;

 variance

 74848598.0106764

(1 row)

See Also

Analytic Functions (page 141)

VAR_SAMP (page 139)

Using SQL Analytics in the Programmer's Guide

Analytic Functions
Note: All analytic functions in this section that have an aggregate counterpart are appended

with [Analytics] in the heading to avoid confusion between the two.

HP Vertica analytics are SQL functions based on the ANSI 99 standard. These functions handle
complex analysis and reporting tasks such as:

 Rank the longest-standing customers in a particular state

 Calculate the moving average of retail volume over a specified time

 Find the highest score among all students in the same grade

-142-

SQL Reference Manual

 Compare the current sales bonus each salesperson received against his or her previous
bonus

Analytic functions return aggregate results but they do not group the result set. They return the
group value multiple times, once per record.

You can sort these group values, or partitions, using a window ORDER BY clause, but the order
affects only the function result set, not the entire query result set. This ordering concept is
described more fully later.

Analytic function syntax
ANALYTIC_FUNCTION(argument-1, ..., argument-n)

 OVER([window_partition_clause (on page 143)]

 [window_order_clause (on page 144)]

 [window_frame_clause (on page 145)])

Analytic syntactic construct

ANALYTIC_FUNCTION() HP Vertica provides a number of analytic functions that allow
advanced data manipulation and analysis. Each of these funct ions

takes one or more arguments.

OVER(...) Specifies partitioning, ordering, and window framing for the
function—important elements that determine what data the

analytic function takes as input with respect to the current row. The
OVER() clause is evaluated after the FROM, WHERE, GROUP BY,

and HAVING clauses. The SQL OVER() clause must follow the

analytic function.

window_partition_clause Groups the rows in the input table by a given list of columns or

expressions.

The window_partition_clause is optional; if you omit it, the

rows are not grouped, and the analytic function applies to all rows

in the input set as a single partition. See
window_partition_clause (page 143).

window_order_clause Sorts the rows specified by the OVER() operator and supplies the
ordered set of rows to the analytic function. If the partition clause is
present, the window_order_clause applies within each

partition.

The order clause is optional. If you do not use it, the selection set is
not sorted. See window_order_clause (page 144).

window_frame_clause Used by only some analytic functions. If you include the frame
clause in the OVER() statement, which specifies the beginning and

end of the window relative to the current row, the analytic function
applies only to a subset of the rows defined by the partition clause.
This subset changes as the rows in the partition change (called a

moving window). See window_frame_clause. (page 145)

Notes

Analytic functions:

-143-

 SQL Functions

 Require the OVER() clause. However, depending on the function, the window_frame_clause
and window_order_clause might not apply. For example, when used with analytic aggregate
functions like SUM(x), you can use the OVER() clause without supplying any of the windowing
clauses; in this case, the aggregate returns the same aggregated value for each row of the
result set.

 Are allowed only in the SELECT and ORDER BY clauses.

 Can be used in a subquery or in the parent query but cannot be nested; for example, the
following query is not allowed:

=> SELECT MEDIAN(RANK() OVER(ORDER BY sal) OVER()).

 WHERE, GROUP BY and HAVING operators are technically not part of the analytic function;
however, they determine on which rows the analytic functions operate.

See Also

Using SQL Analytics and Sort Optimizations in the Programmer's Guide

window_partition_clause

Window partitioning is optional. When specified, the window_partition_clause divides the rows in
the input based on user-provided expressions, such as aggregation functions like SUM(x).
Window partitioning is similar to the GROUP BY clause except that it returns only one result row
per input row. If you omit the window_partition_clause, all input rows are treated as a single
partition.

The analytic function is computed per partition and starts over again (resets) at the beginning of

each subsequent partition. The window_partition_clause is specified within the OVER()
clause.

Syntax
OVER (PARTITION BY expression [, ...])

Parameters

expression Expression on which to to sort the partition on. May involve
columns, constants or an arbitrary expression formed on
columns.

For examples, see Window Partitioning in the Programmer's Guide.

-144-

SQL Reference Manual

window_order_clause

Sorts the rows specified by the OVER() clause and specifies whether data is sorted in ascending
or descending order as well as the placement of null values; for example: ORDER BY expr_list [
ASC | DESC] [NULLS { FIRST | LAST | AUTO]. The ordering of the data affects the results.

Using ORDER BY in an OVER clause changes the default window to RANGE UNBOUNDED
PRECEDING AND CURRENT ROW, which is described in the window_frame_clause (page
145).

The following table shows the default null placement, with bold clauses to indicate what is implicit:

Ordering Null placement

ORDER BY column1 ORDER BY a ASC NULLS LAST

ORDER BY column1 ASC ORDER BY a ASC NULLS LAST

ORDER BY column1 DESC ORDER BY a DESC NULLS FIRST

Because the window_order_clause is different from a query's final ORDER BY clause, window
ordering might not guarantee the final result order; it specifies only the order within a window result
set, supplying the ordered set of rows to the window_frame_clause (if present), to the analytic
function, or to both. Use the SQL ORDER BY clause (page 893) to guarantee ordering of the final
result set.

Syntax
OVER (ORDER BY expression [{ ASC | DESC }]

... [NULLS { FIRST | LAST | AUTO }] [, expression ...])

Parameters

expression Expression on which to sort the partition, which may
involve columns, constants, or an arbitrary expression
formed on columns.

ASC | DESC Specifies the ordering sequence as ascending (default)
or descending.

NULLS { FIRST | LAST | AUTO } Indicates the position of nulls in the ordered sequence

as either first or last. The order makes nulls compare
either high or low with respect to non-null values.

If the sequence is specified as ascending order, ASC

NULLS FIRST implies that nulls are smaller than other

non-null values. ASC NULLS LAST implies that nulls are

larger than non-null values. The opposite is true for
descending order. If you specify NULLS AUTO, HP

Vertica chooses the most efficient placement of nulls
(for example, either NULLS FIRST or NULLS LAST)

based on your query. The default is ASC NULLS LAST

-145-

 SQL Functions

and DESC NULLS FIRST.

See also Analytics Null Placement and Minimizing Sort
Operations in the Programmer's Guide.

The following analytic functions require the window_order_clause:

 RANK() (page 182) / DENSE_RANK() (page 156)

 LEAD() (page 168) / LAG() (page 163)

 PERCENT_RANK() (page 176) / CUME_DIST() (page 155)

 NTILE() (page 175)

You can also use the window_order_clause with aggregation functions, such as SUM(x).

The ORDER BY clause is optional for the ROW_NUMBER() (page 184) function.

The ORDER BY clause is not allowed with the following functions:

 PERCENTILE_CONT() (page 178) / PERCENTILE_DISC() (page 180)

 MEDIAN() (page 172)

For examples, see Window Ordering in the Programmer's Guide.

window_frame_clause

Allowed for some analytic functions in the analytic OVER() clause, window framing represents a
unique construct, called a moving window. It defines which values in the partition are evaluated
relative to the current row. You specify a window frame in terms of either logical intervals (such as
time) using the RANGE keyword or on a physical number of rows before and/or after the current
row using the ROWS keyword. The CURRENT ROW is the next row for which the analytic function
computes results.

As the current row advances, the window boundaries are recomputed (move) along with it,
determining which rows fall into the current window.

An analytic function with a window frame specification is computed for each row based on the
rows that fall into the window relative to that row.

An analytic function with a window frame specification is computed for each row based on the

rows that fall into the window relative to that row. If you omit the window_frame_clause, the
default window is RANGE UNBOUNDED PRECEDING AND CURRENT ROW.

-146-

SQL Reference Manual

Syntax
{ ROWS | RANGE }

{

 {

 BETWEEN

 { UNBOUNDED PRECEDING

 | CURRENT ROW

 | constant-value { PRECEDING | FOLLOWING }

 }

 AND

 { UNBOUNDED FOLLOWING

 | CURRENT ROW

 | constant-value { PRECEDING | FOLLOWING }

 }

 }

|

 {

 { UNBOUNDED PRECEDING

 | CURRENT ROW

 | constant-value PRECEDING

 }

 }

}

Parameters

ROWS | RANGE The ROWS and RANGE keywords define the window frame type.

ROWS specifies a window as a physical offset and defines the

window's start and end point by the number of rows before or after
the current row. The value can be INTEGER data type only.

RANGE specifies the window as a logical offset, such as time. The

range value must match the window_order_clause data type,

which can be NUMERIC, DATE/TIME, FLOAT or INTEGER.

Note: The value returned by an analytic function with a logical

offset is always deterministic. However, the value returned by an
analytic function with a physical offset could produce

nondeterministic results unless the ordering expression results in a
unique ordering. You might have to specify multiple columns in the
window_order_clause (on page 144) to achieve this uni que

ordering.

BETWEEN ... AND Specifies a start point and end point for the window. The first

expression (before AND) defines the start point and the second

expression (after AND) defines the end point.

Note: If you use the keyword BETWEEN, you must also use AND.

UNBOUNDED PRECEDING Within a partition, indicates that the window frame starts at the first

row of the partition. This start-point specification cannot be used as
an end-point specification, and the default is RANGE
UNBOUNDED PRECEDING AND CURRENT ROW

UNBOUNDED FOLLOWING Within a partition, indicates that the window frame ends at the last

-147-

 SQL Functions

row of the partition. This end-point specification cannot be used as

a start-point specification.

CURRENT ROW As a start point, CURRENT ROW specifies that the window begins at

the current row or value, depending on whether you have specified

ROW or RANGE, respectively. In this case, the end point cannot be

constant-value PRECEDING.

As an end point, CURRENT ROW specifies that the window ends at

the current row or value, depending on whether you have specified

ROW or RANGE, respectively. In this case the start point cannot be

constant-value FOLLOWING.

constant-value {

PRECEDING | FOLLOWING }

For RANGE or ROW:

 If constant-value FOLLOWING is the start point, the end

point must be constant-value FOLLOWING.

 If constant-value PRECEDING is the end point, the start

point must be constant-value PRECEDING.

 If you specify a logical window that is defined by a time

interval in NUMERIC format, you might need to use
conversion functions.

If you specified ROWS:

 constant-value is a physical offset. It must be a constant or
expression and must evaluate to an INTEGER data type

value.

 If constant-value is part of the start point, it must evaluate to
a row before the end point.

If you specified RANGE:

 constant-value is a logical offset. It must be a constant or
expression that evaluates to a positive numeric value or an

INTERVAL literal.

 If constant-value evaluates to a NUMERIC value, the ORDER

BY column type must be a NUMERIC data type..

 If the constant-value evaluates to an INTERVAL DAY TO

SECOND subtype, the ORDER BY column type can only be

TIMESTAMP, TIME, DATE, or INTERVAL DAY TO SECOND.

 If the constant-value evaluates to an INTERVAL YEAR TO

MONTH, the ORDER BY column type can only be

TIMESTAMP, DATE, or INTERVAL YEAR TO MONTH.

 You can specify only one expression in the
window_order_clause.

Window Aggregates

Analytic functions that take the window_frame_clause are called window aggregates, and they

return information such as moving averages and cumulative results. To use the following functions
as window (analytic) aggregates, instead of basic aggregates, specify both an ORDER BY clause

(window_order_clause) and a moving window (window_frame_clause) in the OVER()
clause.

-148-

SQL Reference Manual

Within a partition, UNBOUNDED PRECEDING/FOLLOWING means beginning/end of partition. If

you omit the window_frame_clause but you specify the window_order_clause, the system
provides the default window of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW.

The following analytic functions take the window_frame_clause:

 AVG() (page 150)

 COUNT() (page 153)

 MAX() (page 171) and MIN() (page 174)

 SUM() (page 189)

 STDDEV() (page 186), STDDEV_POP() (page 186), and STDDEV_SAMP() (page 186)

 VARIANCE() (page 193), VAR_POP() (page 191), and VAR_SAMP() (page 192)

Note: FIRST_VALUE (page 160) and LAST_VALUE (page 166) functions also accept the

window_frame_clause, but they are analytic functions only and have no aggregate counterpart.
EXPONENTIAL_MOVING_AVERAGE (page 158), LAG (page 163), and LEAD (page 168)
analytic functions do not take the window_frame_clause.

If you use a window aggregate with an empty OVER() clause, there is no moving window, and the
function is used as a reporting function, where the entire input is treated as one partition.

The value returned by an analytic function with a logical offset is always deterministic. However,
the value returned by an analytic function with a physical offset could produce nondeterministic
results unless the ordering expression results in a unique ordering. You might have to specify
multiple columns in the window_order_clause to achieve this unique ordering.

See Window Framing in the Programmer's Guide for examples.

named_windows

You can use the WINDOW clause to name your windows and avoid typing long OVER() clause
syntax.

The window_partition_clause is defined in the named window specification, not in the

OVER() clause, and a window definition cannot contain a window_frame_clause.

Each window defined in the window_definition_clause must have a unique name.

Syntax
WINDOW window_name AS (window_definition_clause);

Parameters

window_name User-supplied name of the analytics window.

-149-

 SQL Functions

window_definition_clause [window_partition_clause (on page 143)]

Groups the rows in the input table by a given list of
columns or expressions.

The window_partition_clause is optional; if you

omit it, the rows are not grouped, and the analytic
function applies to all rows in the input set as a single

partition. See window_partition_clause (page

143).

[window_order_clause (on page 144)] Sorts the

rows specified by the window_partition_clause

and supplies an ordered set of rows to the

window_frame_clause (if present), to the analytic

function, or to both. The window_order_clause

specifies whether data is returned in ascending or
descending order and specifies where null values
appear in the sorted result as either first or last. The

ordering of the data affects the results.

Note: The window_order_clause does not

guarantee the order of the SQL result. Use the SQL
ORDER BY clause (page 893) to guarantee the
ordering of the final result set.

Examples

In the following example, RANK() and DENSE_RANK() use the partitioning and ordering

specifications in the window definition for a window named w:

=> SELECT RANK() OVER w , DENSE_RANK() OVER w

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region ORDER by annual_salary);

Though analytic functions can reference a named window to inherit the
window_partition_clause (page 143), you can use OVER() to define your own

window_order_clause (page 144), but only if the window_definition_clause did not

already define it. Because ORDER by annual_salary was already defined in the WINDOW

clause in the previous example, the following query would return an error.

=> SELECT RANK() OVER(w ORDER BY annual_salary ASC),

 DENSE_RANK() OVER(w ORDER BY annual_salary DESC)

 FROM employee_dimension

 WINDOW w AS (PARTITION BY employee_region);

 ERROR: cannot override ORDER BY clause of window "w"

You can reference window names within their scope only. For example, because named window
w1 in the following query is defined before w2, w2 is within the scope of w1:

=> SELECT RANK() OVER(w1 ORDER BY sal DESC), RANK() OVER w2

 FROM EMP

 WINDOW w1 AS (PARTITION BY deptno), w2 AS (w1 ORDER BY sal);

-150-

SQL Reference Manual

AVG [Analytic]

Computes an average of an expression in a group within a window.

Behavior Type

Immutable

Syntax
AVG (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression The value whose average is calculated over a set of rows. Can

be any expression resulting in DOUBLE PRECISION.

OVER(...) See Analytic Functions. (page 141)

Notes

AVG() takes as an argument any numeric data type or any non-numeric data type that can be

implicitly converted to a numeric data type. The function returns the same data type as the
argument's numeric data type.

Examples

The following query finds the sales for that calendar month and returns a running/cumulative
average (sometimes called a moving average) using the default window of RANGE UNBOUNDED
PRECEDING AND CURRENT ROW:

=> SELECT calendar_month_number_in_year, SUM(product_price) AS sales,

 AVG(SUM(product_price)) OVER (ORDER BY calendar_month_number_in_year)

 FROM product_dimension, date_dimension, inventory_fact

 WHERE date_dimension.date_key = inventory_fact.date_key

 AND product_dimension.product_key = inventory_fact.product_key

 GROUP BY calendar_month_number_in_year;

 calendar_month_number_in_year | sales | ?column?

-------------------------------+----------+------------------

 1 | 23869547 | 23869547

 2 | 19604661 | 21737104

 3 | 22877913 | 22117373.6666667

 4 | 22901263 | 22313346

 5 | 23670676 | 22584812

 6 | 22507600 | 22571943.3333333

 7 | 21514089 | 22420821.2857143

 8 | 24860684 | 22725804.125

 9 | 21687795 | 22610469.7777778

 10 | 23648921 | 22714314.9

-151-

 SQL Functions

 11 | 21115910 | 22569005.3636364

 12 | 24708317 | 22747281.3333333

(12 rows)

To return a moving average that is not a running (cumulative) average, the window should specify
ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT calendar_month_number_in_year, SUM(product_price) AS sales,

 AVG(SUM(product_price)) OVER (ORDER BY calendar_month_number_in_year

 ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)

 FROM product_dimension, date_dimension, inventory_fact

 WHERE date_dimension.date_key = inventory_fact.date_key

 AND product_dimension.product_key = inventory_fact.product_key

 GROUP BY calendar_month_number_in_year;

See Also

AVG (page 118) aggregate function

COUNT (page 153) and SUM (page 189) analytic functions

Using SQL Analytics in the Programmer's Guide

CONDITIONAL_CHANGE_EVENT [Analytic]
Assigns an event window number to each row, starting from 0, and increments by 1 when the
result of evaluating the argument expression on the current row differs from that on the previous
row.

Behavior Type

Immutable

Syntax
CONDITIONAL_CHANGE_EVENT (expression) OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

expression Is a SQL scalar expression that is evaluated on an input record.

The result of expression can be of any data type.

OVER(...) See Analytic Functions. (page 141)

Notes

The analytic window_order_clause is required but the window_partition_clause is
optional.

Example
=> SELECT CONDITIONAL_CHANGE_EVENT(bid)

-152-

SQL Reference Manual

 OVER (PARTITION BY symbol ORDER BY ts) AS cce

 FROM TickStore;

The system returns an error when no ORDER BY is present:

=> SELECT CONDITIONAL_CHANGE_EVENT(bid)

 OVER (PARTITION BY symbol) AS cce

 FROM TickStore;

 ERROR: conditional_change_event must contain an ORDER BY clause within

 its analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.

See Also

CONDITIONAL_TRUE_EVENT (page 152)

ROW_NUMBER (page 184)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

CONDITIONAL_TRUE_EVENT [Analytic]

Assigns an event window number to each row, starting from 0, and increments the number by 1
when the result of the boolean argument expression evaluates true. For example, given a
sequence of values for column a:

(1, 2, 3, 4, 5, 6)

CONDITIONAL_TRUE_EVENT(a > 3) returns 0, 0, 0, 1, 2, 3.

Behavior Type:

Immutable

Syntax
CONDITIONAL_TRUE_EVENT (boolean-expression) OVER

... ([window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

boolean-expression Is a SQL scalar expression that is evaluated on an input
record. The result of boolean-expression is boolean type.

OVER(...) See Analytic Functions (page 141).

Notes

The analytic window_order_clause is required but the window_partition_clause is
optional.

-153-

 SQL Functions

Example

=> SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)

 OVER(PARTITION BY bid ORDER BY ts) AS cte

 FROM Tickstore;

The system returns an error if the ORDER BY clause is omitted:

=> SELECT CONDITIONAL_TRUE_EVENT(bid > 10.6)

 OVER(PARTITION BY bid) AS cte

 FROM Tickstore;

 ERROR: conditional_true_event must contain an ORDER BY clause within its

 analytic clause

For more examples, see Event-based Windows in the Programmer's Guide.

See Also

CONDITIONAL_CHANGE_EVENT (page 151)

Using Time Series Analytics and Event-based Windows in the Programmer's Guide

COUNT [Analytic]

Counts occurrences within a group within a window. If you specify * or some non-null constant,
COUNT() counts all rows.

Behavior Type

Immutable

Syntax
COUNT (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Returns the number of rows in each group for which the expression
is not null. Can be any expression resulting in BIGINT.

OVER(...) See Analytic Functions. (page 141)

Example

Using the schema defined in Window Framing in the Programmer's Guide, the following COUNT
function does not specify an order_clause or a frame_clause; otherwise it would be treated as a
window aggregate. Think of the window of reporting aggregates as UNBOUNDED PRECEDING
and UNBOUNDED FOLLOWING.

=> SELECT deptno, sal, empno, COUNT(sal)

-154-

SQL Reference Manual

 OVER (PARTITION BY deptno) AS count FROM emp;

 deptno | sal | empno | count

--------+-----+-------+-------

 10 | 101 | 1 | 2

 10 | 104 | 4 | 2

 20 | 110 | 10 | 6

 20 | 110 | 9 | 6

 20 | 109 | 7 | 6

 20 | 109 | 6 | 6

 20 | 109 | 8 | 6

 20 | 109 | 11 | 6

 30 | 105 | 5 | 3

 30 | 103 | 3 | 3

 30 | 102 | 2 | 3

Using ORDER BY sal creates a moving window query with default window: RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW.

=> SELECT deptno, sal, empno, COUNT(sal)

 OVER (PARTITION BY deptno ORDER BY sal) AS count

 FROM emp;

 deptno | sal | empno | count

--------+-----+-------+-------

 10 | 101 | 1 | 1

 10 | 104 | 4 | 2

 20 | 100 | 11 | 1

 20 | 109 | 7 | 4

 20 | 109 | 6 | 4

 20 | 109 | 8 | 4

 20 | 110 | 10 | 6

 20 | 110 | 9 | 6

 30 | 102 | 2 | 1

 30 | 103 | 3 | 2

 30 | 105 | 5 | 3

Using the VMart schema, the following query finds the number of employees who make less than
or equivalent to the hourly rate of the current employee. The query returns a running/cumulative

average (sometimes called a moving average) using the default window of RANGE UNBOUNDED
PRECEDING AND CURRENT ROW:

=> SELECT employee_last_name AS "last_name", hourly_rate, COUNT(*)

 OVER (ORDER BY hourly_rate) AS moving_count from employee_dimension;

 last_name | hourly_rate | moving_count

------------+-------------+--------------

 Gauthier | 6 | 4

 Taylor | 6 | 4

 Jefferson | 6 | 4

 Nielson | 6 | 4

 McNulty | 6.01 | 11

 Robinson | 6.01 | 11

-155-

 SQL Functions

 Dobisz | 6.01 | 11

 Williams | 6.01 | 11

 Kramer | 6.01 | 11

 Miller | 6.01 | 11

 Wilson | 6.01 | 11

 Vogel | 6.02 | 14

 Moore | 6.02 | 14

 Vogel | 6.02 | 14

 Carcetti | 6.03 | 19

...

To return a moving average that is not also a running (cumulative) average, the window should
specify ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING:

=> SELECT employee_last_name AS "last_name", hourly_rate, COUNT(*)

 OVER (ORDER BY hourly_rate ROWS BETWEEN 2 PRECEDING AND 2 FOLLOWING)

 AS moving_count from employee_dimension;

See Also

COUNT (page 123) aggregate function

AVG (page 150) and SUM (page 189) analytic functions

Using SQL Analytics in the Programmer's Guide

CUME_DIST [Analytic]

Calculates the cumulative distribution, or relative rank, of the current row with regard to other rows
in the same partition within a window.

CUME_DIST() returns a number greater then 0 and less then or equal to 1, where the number

represents the relative position of the specified row within a group of N rows. For a row x

(assuming ASC ordering), the CUME_DIST of x is the number of rows with values lower than or

equal to the value of x, divided by the number of rows in the partition. In a group of three rows, for
example, the cumulative distribution values returned would be 1/3, 2/3, and 3/3.

Note: Because the result for a given row depends on the number of rows preceding that row in

the same partition, HP recommends that you always specify a window_order_clause when
you call this function.

Behavior Type

Immutable

Syntax
CUME_DIST () OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

-156-

SQL Reference Manual

OVER(...) See Analytic Functions. (page 141)

Notes

The analytic window_order_clause is required but the window_partition_clause is
optional.

Examples

The following example returns the cumulative distribution of sales for different transaction types
within each month of the first quarter.

=> SELECT calendar_month_name AS month, tender_type, SUM(sales_quantity),

 CUME_DIST()

 OVER (PARTITION BY calendar_month_name ORDER BY SUM(sales_quantity)) AS

CUME_DIST

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key) WHERE calendar_month_name IN ('January','February','March')

 AND tender_type NOT LIKE 'Other'

 GROUP BY calendar_month_name, tender_type;

 month | tender_type | SUM | CUME_DIST

----------+-------------+--------+-----------

 March | Credit | 469858 | 0.25

 March | Cash | 470449 | 0.5

 March | Check | 473033 | 0.75

 March | Debit | 475103 | 1

 January | Cash | 441730 | 0.25

 January | Debit | 443922 | 0.5

 January | Check | 446297 | 0.75

 January | Credit | 450994 | 1

 February | Check | 425665 | 0.25

 February | Debit | 426726 | 0.5

 February | Credit | 430010 | 0.75

 February | Cash | 430767 | 1

(12 rows)

See Also

PERCENT_RANK (page 176)

PERCENTILE_DISC (page 180)

Using SQL Analytics in the Programmer's Guide

DENSE_RANK [Analytic]

Computes the relative rank of each row returned from a query with respect to the other rows,
based on the values of the expressions in the window ORDER BY clause.

-157-

 SQL Functions

The data within a group is sorted by the ORDER BY clause and then a numeric ranking is assigned
to each row in turn starting with 1 and continuing from there. The rank is incremented every time

the values of the ORDER BY expressions change. Rows with equal values receive the same rank

(nulls are considered equal in this comparison). A DENSE_RANK() function returns a ranking

number without any gaps, which is why it is called "DENSE."

Behavior Type

Immutable

Syntax
DENSE_RANK () OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

OVER(...) See Analytic Functions. (page 141)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The ranks are consecutive integers beginning with 1. The largest rank value is the number of
unique values returned by the query.

 The primary difference between DENSE_RANK() and RANK() (page 182) is that RANK leaves

gaps when ranking records whereas DENSE_RANK leaves no gaps. For example, N records

occupy a particular position (say, a tie for rank X), RANK assigns all those records with rank X

and skips the next N ranks, therefore the next assigned rank is X+N. DENSE_RANK places all
the records in that position only—it does not skip any ranks.

If there is a tie at the third position with two records having the same value, RANK and

DENSE_RANK place both the records in the third position, but RANK places the next record at

the fifth position, while DENSE_RANK places the next record at the fourth position.

 If you omit NULLS FIRST | LAST | AUTO, the ordering of the NULL values depends on the

ASC or DESC arguments. NULL values are considered larger than any other value. If the

ordering sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are

considered equal to other nulls and, therefore, the order in which nulls are presented is
non-deterministic.

Examples

The following example shows the difference between RANK and DENSE_RANK when ranking

customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while
DENSE_RANK leaves no gaps in the ranking sequence:

=> SELECT customer_name, SUM(annual_income),

 RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC) rank,

-158-

SQL Reference Manual

 DENSE_RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC)

dense_rank

 FROM customer_dimension GROUP BY customer_name LIMIT 15;

 customer_name | sum | rank | dense_rank

---------------------+-------+------+------------

 Brian M. Garnett | 99838 | 1 | 1

 Tanya A. Brown | 99834 | 2 | 2

 Tiffany P. Farmer | 99826 | 3 | 3

 Jose V. Sanchez | 99673 | 4 | 4

 Marcus D. Rodriguez | 99631 | 5 | 5

 Alexander T. Nguyen | 99604 | 6 | 6

 Sarah G. Lewis | 99556 | 7 | 7

 Ruth Q. Vu | 99542 | 8 | 8

 Theodore T. Farmer | 99532 | 9 | 9

 Daniel P. Li | 99497 | 10 | 10

 Seth E. Brown | 99497 | 10 | 10

 Matt X. Gauthier | 99402 | 12 | 11

 Rebecca W. Lewis | 99296 | 13 | 12

 Dean L. Wilson | 99276 | 14 | 13

 Tiffany A. Smith | 99257 | 15 | 14

(15 rows)

See Also

RANK (page 182)

Using SQL Analytics in the Programmer's Guide

EXPONENTIAL_MOVING_AVERAGE [Analytic]

Calculates the exponential moving average of expression E with smoothing factor X.

The exponential moving average (EMA) is calculated by adding the previous EMA value to the
current data point scaled by the smoothing factor, as in the following formula, where:

 EMA0 is the previous row's EMA value

 X is the smoothing factor

 E is the current data point: EMA = EMA0 + (X * (E - EMA0))

EXPONENTIAL_MOVING_AVERAGE() is different from a simple moving average in that it
provides a more stable picture of changes to data over time.

Behavior Type

Immutable

Syntax
EXPONENTIAL_MOVING_AVERAGE (E , X) OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

-159-

 SQL Functions

Parameters

E The value whose average is calculated over a set of rows. Can

be INTEGER, FLOAT or NUMERIC type and must be a constant.

X A positive FLOAT value between 0 and 1 that is used as the

smoothing factor.

OVER(...) See Analytic Functions. (page 141)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 There is no [Aggregate] equivalent of this function because of its unique semantics.

 The EXPONENTIAL_MOVING_AVERAGE() function also works at the row level; for example,
EMA assumes the data in a given column is sampled at uniform intervals. If the users' data
points are sampled at non-uniform intervals, they should run the time series gap filling and
interpolation (GFI) operations before EMA().

Examples

The following example uses time series gap filling and interpolation (GFI) first in a subquery, and
then performs an EXPONENTIAL_MOVING_AVERAGE operation on the subquery result.

Create a simple 4-column table:

=> CREATE TABLE ticker(

 time TIMESTAMP,

 symbol VARCHAR(8),

 bid1 FLOAT,

 bid2 FLOAT);

Now insert some data, including nulls, so GFI can do its interpolation and gap filling:

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:00', 'ABC', 60.45, 60.44);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:01', 'ABC', 60.49, 65.12);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:02', 'ABC', 57.78, 59.25);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'ABC', null, 65.12);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:04', 'ABC', 67.88, null);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:00', 'XYZ', 47.55, 40.15);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:01', 'XYZ', 44.35, 46.78);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:02', 'XYZ', 71.56, 75.78);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:03', 'XYZ', 85.55, 70.21);

=> INSERT INTO ticker VALUES ('2009-07-12 03:00:04', 'XYZ', 45.55, 58.65);

=> COMMIT;

Note: During gap filling and interpolation, HP Vertica takes the closest non null value on either
side of the time slice and uses that value. For example, if you use a linear interpolation scheme

and you do not specify IGNORE NULLS, and your data has one real value and one null, the
result is null. If the value on either side is null, the result is null. See When Time Series Data
Contains Nulls in the Programmer's Guide for details.

Query the table you just created to you can see the output:

-160-

SQL Reference Manual

=> SELECT * FROM ticker;

 time | symbol | bid1 | bid2

---------------------+--------+-------+-------

 2009-07-12 03:00:00 | ABC | 60.45 | 60.44

 2009-07-12 03:00:01 | ABC | 60.49 | 65.12

 2009-07-12 03:00:02 | ABC | 57.78 | 59.25

 2009-07-12 03:00:03 | ABC | | 65.12

 2009-07-12 03:00:04 | ABC | 67.88 |

 2009-07-12 03:00:00 | XYZ | 47.55 | 40.15

 2009-07-12 03:00:01 | XYZ | 44.35 | 46.78

 2009-07-12 03:00:02 | XYZ | 71.56 | 75.78

 2009-07-12 03:00:03 | XYZ | 85.55 | 70.21

 2009-07-12 03:00:04 | XYZ | 45.55 | 58.65

(10 rows)

The following query processes the first and last values that belong to each 2-second time slice in
table trades' column a. The query then calculates the exponential moving average of expression
fv and lv with a smoothing factor of 50%:

=> SELECT symbol, slice_time, fv, lv,

 EXPONENTIAL_MOVING_AVERAGE(fv, 0.5)

 OVER (PARTITION BY symbol ORDER BY slice_time) AS ema_first,

 EXPONENTIAL_MOVING_AVERAGE(lv, 0.5)

 OVER (PARTITION BY symbol ORDER BY slice_time) AS ema_last

 FROM (

 SELECT symbol, slice_time,

 TS_FIRST_VALUE(bid1 IGNORE NULLS) as fv,

 TS_LAST_VALUE(bid2 IGNORE NULLS) AS lv

 FROM ticker TIMESERIES slice_time AS '2 seconds'

 OVER (PARTITION BY symbol ORDER BY time)) AS sq;

 symbol | slice_time | fv | lv | ema_first | ema_last

--------+---------------------+-------+-------+-----------+----------

 ABC | 2009-07-12 03:00:00 | 60.45 | 65.12 | 60.45 | 65.12

 ABC | 2009-07-12 03:00:02 | 57.78 | 65.12 | 59.115 | 65.12

 ABC | 2009-07-12 03:00:04 | 67.88 | 65.12 | 63.4975 | 65.12

 XYZ | 2009-07-12 03:00:00 | 47.55 | 46.78 | 47.55 | 46.78

 XYZ | 2009-07-12 03:00:02 | 71.56 | 70.21 | 59.555 | 58.495

 XYZ | 2009-07-12 03:00:04 | 45.55 | 58.65 | 52.5525 | 58.5725

(6 rows)

See Also

TIMESERIES Clause (page 894)

Using Time Series Analytics and Using SQL Analytics in the Programmer's Guide

FIRST_VALUE [Analytic]
Allows the selection of the first value of a table or partition without having to use a self-join. If no

window is specified for the current row, the default window is UNBOUNDED PRECEDING AND
CURRENT ROW.

-161-

 SQL Functions

Behavior Type

Immutable

Syntax
FIRST_VALUE (expression [IGNORE NULLS]) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or

expressions involving any of these.

IGNORE NULLS Returns the first non-null value in the set, or NULL i f all values

are NULL.

OVER(...) See Analytic Functions. (page 141)

Notes

 The FIRST_VALUE() function lets you select a table's first value (determined by the

window_order_clause) without having to use a self join. This function is useful when you

want to use the first value as a baseline in calculations.

 HP recommends that you use FIRST_VALUE with the window_order_clause to produce
deterministic results.

 If the first value in the set is null, then the function returns NULL unless you specify IGNORE

NULLS. If you specify IGNORE NULLS, FIRST_VALUE returns the first non-null value in the
set, or NULL if all values are null.

Examples

The following query, which asks for the first value in the partitioned day of week, illustrates the
potential nondeterministic nature of the FIRST_VALUE function:

=> SELECT calendar_year, date_key, day_of_week, full_date_description,

 FIRST_VALUE(full_date_description)

 OVER(PARTITION BY calendar_month_number_in_year ORDER BY day_of_week) AS "first_value"

 FROM date_dimension

 WHERE calendar_year=2003 AND calendar_month_number_in_year=1;

The first value returned is January 31, 2003; however, the next time the same query is run, the first
value could be January 24 or January 3, or the 10th or 17th. The reason is because the analytic

ORDER BY column (day_of_week) returns rows that contain ties (multiple Fridays). These

repeated values make the ORDER BY evaluation result nondeterministic, because rows that
contain ties can be ordered in any way, and any one of those rows qualifies as being the first value
of day_of_week.

 calendar_year | date_key | day_of_week | full_date_description | first_value

---------------+----------+-------------+-----------------------+-------------

-162-

SQL Reference Manual

 2003 | 31 | Friday | January 31, 2003 | January 31, 2003

 2003 | 24 | Friday | January 24, 2003 | January 31, 2003

 2003 | 3 | Friday | January 3, 2003 | January 31, 2003

 2003 | 10 | Friday | January 10, 2003 | January 31, 2003

 2003 | 17 | Friday | January 17, 2003 | January 31, 2003

 2003 | 6 | Monday | January 6, 2003 | January 31, 2003

 2003 | 27 | Monday | January 27, 2003 | January 31, 2003

 2003 | 13 | Monday | January 13, 2003 | January 31, 2003

 2003 | 20 | Monday | January 20, 2003 | January 31, 2003

 2003 | 11 | Saturday | January 11, 2003 | January 31, 2003

 2003 | 18 | Saturday | January 18, 2003 | January 31, 2003

 2003 | 25 | Saturday | January 25, 2003 | January 31, 2003

 2003 | 4 | Saturday | January 4, 2003 | January 31, 2003

 2003 | 12 | Sunday | January 12, 2003 | January 31, 2003

 2003 | 26 | Sunday | January 26, 2003 | January 31, 2003

 2003 | 5 | Sunday | January 5, 2003 | January 31, 2003

 2003 | 19 | Sunday | January 19, 2003 | January 31, 2003

 2003 | 23 | Thursday | January 23, 2003 | January 31, 2003

 2003 | 2 | Thursday | January 2, 2003 | January 31, 2003

 2003 | 9 | Thursday | January 9, 2003 | January 31, 2003

 2003 | 16 | Thursday | January 16, 2003 | January 31, 2003

 2003 | 30 | Thursday | January 30, 2003 | January 31, 2003

 2003 | 21 | Tuesday | January 21, 2003 | January 31, 2003

 2003 | 14 | Tuesday | January 14, 2003 | January 31, 2003

 2003 | 7 | Tuesday | January 7, 2003 | January 31, 2003

 2003 | 28 | Tuesday | January 28, 2003 | January 31, 2003

 2003 | 22 | Wednesday | January 22, 2003 | January 31, 2003

 2003 | 29 | Wednesday | January 29, 2003 | January 31, 2003

 2003 | 15 | Wednesday | January 15, 2003 | January 31, 2003

 2003 | 1 | Wednesday | January 1, 2003 | January 31, 2003

 2003 | 8 | Wednesday | January 8, 2003 | January 31, 2003

(31 rows)

Note: The day_of_week results are returned in alphabetical order because of lexical rules.
The fact that each day does not appear ordered by the 7-day week cycle (for example, starting
with Sunday followed by Monday, Tuesday, and so on) has no affect on results.

To return deterministic results, modify the query so that it performs its analytic ORDER BY

operations on a unique field, such as date_key:

=> SELECT calendar_year, date_key, day_of_week, full_date_description,

 FIRST_VALUE(full_date_description) OVER

 (PARTITION BY calendar_month_number_in_year ORDER BY date_key) AS "first_value"
 FROM date_dimension WHERE calendar_year=2003;

Notice that the results return a first value of January 1 for the January partition and the first value of
February 1 for the February partition. Also, there are no ties in the full_date_description
column:

 calendar_year | date_key | day_of_week | full_date_description | first_value

---------------+----------+-------------+-----------------------+-------------

 2003 | 1 | Wednesday | January 1, 2003 | January 1, 2003

 2003 | 2 | Thursday | January 2, 2003 | January 1, 2003

 2003 | 3 | Friday | January 3, 2003 | January 1, 2003

 2003 | 4 | Saturday | January 4, 2003 | January 1, 2003

-163-

 SQL Functions

 2003 | 5 | Sunday | January 5, 2003 | January 1, 2003

 2003 | 6 | Monday | January 6, 2003 | January 1, 2003

 2003 | 7 | Tuesday | January 7, 2003 | January 1, 2003

 2003 | 8 | Wednesday | January 8, 2003 | January 1, 2003

 2003 | 9 | Thursday | January 9, 2003 | January 1, 2003

 2003 | 10 | Friday | January 10, 2003 | January 1, 2003

 2003 | 11 | Saturday | January 11, 2003 | January 1, 2003

 2003 | 12 | Sunday | January 12, 2003 | January 1, 2003

 2003 | 13 | Monday | January 13, 2003 | January 1, 2003

 2003 | 14 | Tuesday | January 14, 2003 | January 1, 2003

 2003 | 15 | Wednesday | January 15, 2003 | January 1, 2003

 2003 | 16 | Thursday | January 16, 2003 | January 1, 2003

 2003 | 17 | Friday | January 17, 2003 | January 1, 2003

 2003 | 18 | Saturday | January 18, 2003 | January 1, 2003

 2003 | 19 | Sunday | January 19, 2003 | January 1, 2003

 2003 | 20 | Monday | January 20, 2003 | January 1, 2003

 2003 | 21 | Tuesday | January 21, 2003 | January 1, 2003

 2003 | 22 | Wednesday | January 22, 2003 | January 1, 2003

 2003 | 23 | Thursday | January 23, 2003 | January 1, 2003

 2003 | 24 | Friday | January 24, 2003 | January 1, 2003

 2003 | 25 | Saturday | January 25, 2003 | January 1, 2003

 2003 | 26 | Sunday | January 26, 2003 | January 1, 2003

 2003 | 27 | Monday | January 27, 2003 | January 1, 2003

 2003 | 28 | Tuesday | January 28, 2003 | January 1, 2003

 2003 | 29 | Wednesday | January 29, 2003 | January 1, 2003

 2003 | 30 | Thursday | January 30, 2003 | January 1, 2003

 2003 | 31 | Friday | January 31, 2003 | January 1, 2003

 2003 | 32 | Saturday | February 1, 2003 | February 1, 2003

 2003 | 33 | Sunday | February 2, 2003 | February 1, 2003

 ...

(365 rows)

See Also

LAST_VALUE (page 166)

TIME_SLICE (page 240)

Using SQL Analytics in the Programmer's Guide

LAG [Analytic]

Returns the value of the input expression at the given offset before the current row within a
window.

Behavior Type

Immutable

Syntax
LAG (expression [, offset] [, default]) OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

-164-

SQL Reference Manual

Parameters

expression Is the expression to evaluate; for example, a constant, column,

non-analytic function, function expression, or expressions involving
any of these.

offset [Optional] Indicates how great is the lag. The default value is 1 (the

previous row). The offset parameter must be (or can be evaluated to)
a constant positive integer.

default Is NULL. This optional parameter is the value returned if offset falls

outside the bounds of the table or partition.

Note: The default input argument must be a constant value or an

expression that can be evaluated to a constant; its data type is
coercible to that of the first argument.

OVER(...) See Analytic Functions. (page 141)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The LAG() function returns values from the row before the current row, letting you access
more than one row in a table at the same time. This is useful for comparing values when the
relative positions of rows can be reliably known. It also lets you avoid the more costly self join,
which enhances query processing speed.

 See LEAD() (page 168) for how to get the next rows.

 Analytic functions, such as LAG(), cannot be nested within aggregate functions.

Examples

This example sums the current balance by date in a table and also sums the previous balance
from the last day. Given the inputs that follow, the data satisfies the following conditions:

 For each some_id, there is exactly 1 row for each date represented by month_date.

 For each some_id, the set of dates is consecutive; that is, if there is a row for February 24 and
a row for February 26, there would also be a row for February 25.

 Each some_id has the same set of dates.

=> CREATE TABLE balances (

 month_date DATE,

 current_bal INT,

 some_id INT);

=> INSERT INTO balances values ('2009-02-24', 10, 1);

=> INSERT INTO balances values ('2009-02-25', 10, 1);

=> INSERT INTO balances values ('2009-02-26', 10, 1);

=> INSERT INTO balances values ('2009-02-24', 20, 2);

=> INSERT INTO balances values ('2009-02-25', 20, 2);

=> INSERT INTO balances values ('2009-02-26', 20, 2);

=> INSERT INTO balances values ('2009-02-24', 30, 3);

-165-

 SQL Functions

=> INSERT INTO balances values ('2009-02-25', 20, 3);

=> INSERT INTO balances values ('2009-02-26', 30, 3);

Now run the LAG() function to sum the current balance for each date and sum the previous

balance from the last day:

=> SELECT month_date,

 SUM(current_bal) as current_bal_sum,

 SUM(previous_bal) as previous_bal_sum FROM

 (SELECT month_date, current_bal,

 LAG(current_bal, 1, 0) OVER

 (PARTITION BY some_id ORDER BY month_date)

 AS previous_bal FROM balances) AS subQ

 GROUP BY month_date ORDER BY month_date;

month_date | current_bal_sum | previous_bal_sum

------------+-----------------+------------------

 2009-02-24 | 60 | 0

 2009-02-25 | 50 | 60

 2009-02-26 | 60 | 50

(3 rows)

Using the same example data, the following query would not be allowed because LAG() is nested
inside an aggregate function:

=> SELECT month_date,

 SUM(current_bal) as current_bal_sum,

 SUM(LAG(current_bal, 1, 0) OVER

 (PARTITION BY some_id ORDER BY month_date)) AS previous_bal_sum

 FROM some_table GROUP BY month_date ORDER BY month_date;

In the next example, which uses the VMart example database, the LAG() function first returns the
annual income from the previous row, and then it calculates the difference between the income in
the current row from the income in the previous row. Note: The vmart example database returns
over 50,000 rows, so we'll limit the results to 20 records:

=> SELECT occupation, customer_key, customer_name, annual_income,

 LAG(annual_income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual_income) AS prev_income,

annual_income -

 LAG(annual_income, 1, 0) OVER (PARTITION BY occupation ORDER BY annual_income) AS difference

 FROM customer_dimension ORDER BY occupation, customer_key LIMIT 20;

 occupation | customer_key | customer_name | annual_income | prev_income | difference

------------+--------------+----------------------+---------------+-------------+------------

 Accountant | 15 | Midori V. Peterson | 692610 | 692535 | 75

 Accountant | 43 | Midori S. Rodriguez | 282359 | 280976 | 1383

 Accountant | 93 | Robert P. Campbell | 471722 | 471355 | 367

 Accountant | 102 | Sam T. McNulty | 901636 | 901561 | 75

 Accountant | 134 | Martha B. Overstreet | 705146 | 704335 | 811

 Accountant | 165 | James C. Kramer | 376841 | 376474 | 367

 Accountant | 225 | Ben W. Farmer | 70574 | 70449 | 125

 Accountant | 270 | Jessica S. Lang | 684204 | 682274 | 1930

 Accountant | 273 | Mark X. Lampert | 723294 | 722737 | 557

 Accountant | 295 | Sharon K. Gauthier | 29033 | 28412 | 621

 Accountant | 338 | Anna S. Jackson | 816858 | 815557 | 1301

 Accountant | 377 | William I. Jones | 915149 | 914872 | 277

 Accountant | 438 | Joanna A. McCabe | 147396 | 144482 | 2914

 Accountant | 452 | Kim P. Brown | 126023 | 124797 | 1226

 Accountant | 467 | Meghan K. Carcetti | 810528 | 810284 | 244

 Accountant | 478 | Tanya E. Greenwood | 639649 | 639029 | 620

 Accountant | 511 | Midori P. Vogel | 187246 | 185539 | 1707

-166-

SQL Reference Manual

 Accountant | 525 | Alexander K. Moore | 677433 | 677050 | 383

 Accountant | 550 | Sam P. Reyes | 735691 | 735355 | 336

 Accountant | 577 | Robert U. Vu | 616101 | 615439 | 662

(20 rows)

Continuing with the Vmart database, the next example uses both LEAD() and LAG() to return the
third row after the salary in the current row and fifth salary before the salary in the current row.

=> SELECT hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "next_hired" ,

 LAG(hire_date, 1) OVER (ORDER BY hire_date) AS "last_hired"

 FROM employee_dimension ORDER BY hire_date, employee_key;

 hire_date | employee_key | employee_last_name | next_hired | last_hired

------------+--------------+--------------------+------------+------------

 1956-04-11 | 2694 | Farmer | 1956-05-12 |

 1956-05-12 | 5486 | Winkler | 1956-09-18 | 1956-04-11

 1956-09-18 | 5525 | McCabe | 1957-01-15 | 1956-05-12

 1957-01-15 | 560 | Greenwood | 1957-02-06 | 1956-09-18

 1957-02-06 | 9781 | Bauer | 1957-05-25 | 1957-01-15

 1957-05-25 | 9506 | Webber | 1957-07-04 | 1957-02-06

 1957-07-04 | 6723 | Kramer | 1957-07-07 | 1957-05-25

 1957-07-07 | 5827 | Garnett | 1957-11-11 | 1957-07-04

 1957-11-11 | 373 | Reyes | 1957-11-21 | 1957-07-07

 1957-11-21 | 3874 | Martin | 1958-02-06 | 1957-11-11

(10 rows)

The following example specifies arguments that use different data types; for example
annual_income(INT) and occupation(VARCHAR). The query returns an error:

=> SELECT customer_key, customer_name, occupation, annual_income,

 LAG (annual_income, 1, occupation) OVER

 (PARTITION BY occupation ORDER BY customer_key) LAG1

 FROM customer_dimension ORDER BY 3, 1;

 ERROR: Third argument of lag could not be converted from type character varying

to type int8

 HINT: You may need to add explicit type cast.

See Also

LEAD (page 168)

Using SQL Analytics in the Programmer's Guide

LAST_VALUE [Analytic]

Returns values of the expression from the last row of a window for the current row. If no window is
specified for the current row, the default window is UNBOUNDED PRECEDING AND CURRENT ROW.

Behavior Type

Immutable

-167-

 SQL Functions

Syntax
LAST_VALUE (expression [IGNORE NULLS]) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Is the expression to evaluate; for example, a constant,
column, nonanalytic function, function expression, or

expressions involving any of these.

IGNORE NULLS Returns the last non-null value in the set, or NULL if all
values are NULL.

OVER(...) See Analytic Functions. (page 141)

Notes

 The LAST_VALUE() function lets you select a window's last value (determined by the
window_order_clause), without having to use a self join. This function is useful when you want
to use the last value as a baseline in calculations.

 LAST_VALUE() takes the last record from the partition after the analytic
window_order_clause. The expression is then computed against the last record, and results
are returned.

 HP recommends that you use LAST_VALUE with the window_order_clause to produce
deterministic results.

TIP: Due to default window semantics, LAST_VALUE does not always return the last value of
a partition. If you omit the window_frame_clause from the analytic clause, LAST_VALUE
operates on this default window. Although results can seem non-intuitive by not returning the
bottom of the current partition, it returns the bottom of the window, which continues to change
along with the current input row being processed. If you want to return the last value of a
partition, use UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. See examples
below.

 If the last value in the set is null, then the function returns NULL unless you specify IGNORE
NULLS. If you specify IGNORE NULLS, LAST_VALUE returns the fist non-null value in the
set, or NULL if all values are null.

Example

Using the schema defined in Window Framing in the Programmer's Guide, the following query
does not show the highest salary value by department; instead it shows the highest salary value
by department by salary.

=> SELECT deptno, sal, empno, LAST_VALUE(sal)

 OVER (PARTITION BY deptno ORDER BY sal) AS lv

 FROM emp;

 deptno | sal | empno | lv

--------+-----+-------+--------

 10 | 101 | 1 | 101

-168-

SQL Reference Manual

 10 | 104 | 4 | 104

 20 | 100 | 11 | 100

 20 | 109 | 7 | 109

 20 | 109 | 6 | 109

 20 | 109 | 8 | 109

 20 | 110 | 10 | 110

 20 | 110 | 9 | 110

 30 | 102 | 2 | 102

 30 | 103 | 3 | 103

 30 | 105 | 5 | 105

If you include the window_frame clause ROWS BETWEEN UNBOUNDED PRECEDING AND

UNBOUNDED FOLLOWING, the LAST_VALUE() function will return the highest salary by
department, an accurate representation of the information.

=> SELECT deptno, sal, empno, LAST_VALUE(sal)

 OVER (PARTITION BY deptno ORDER BY sal

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS lv

 FROM emp;

 deptno | sal | empno | lv

--------+-----+-------+--------

 10 | 101 | 1 | 104

 10 | 104 | 4 | 104

 20 | 100 | 11 | 110

 20 | 109 | 7 | 110

 20 | 109 | 6 | 110

 20 | 109 | 8 | 110

 20 | 110 | 10 | 110

 20 | 110 | 9 | 110

 30 | 102 | 2 | 105

 30 | 103 | 3 | 105

 30 | 105 | 5 | 105

For additional examples, see FIRST_VALUE() (page 160).

See Also

FIRST_VALUE (page 160)

TIME_SLICE (page 240)

Using SQL for Analytics in the Programmer's Guide

LEAD [Analytic]

Returns the value of the input expression at the given offset after the current row within a window.

Behavior Type

Immutable

-169-

 SQL Functions

Syntax
LEAD (expression [, offset] [, default]) OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

expression Is the expression to evaluate; for example, a constant, column,
nonanalytic function, function expression, or expressions

involving any of these.

offset Is an optional parameter that defaults to 1 (the next row). The
offset parameter must be (or can be evaluated to) a constant

positive integer.

default Is NULL. This optional parameter is the value returned if offset
falls outside the bounds of the table or partition.

Note: The third input argument must be a constant value or an

expression that can be evaluated to a constant; its data type is

coercible to that of the first argument.

OVER(...) See Analytic Functions. (page 141)

Notes

 The analytic window_order_clause is required but the window_partition_clause is

optional.

 The LEAD() function returns values from the row after the current row, letting you access
more than one row in a table at the same time. This is useful for comparing values when the
relative positions of rows can be reliably known. It also lets you avoid the more costly self join,
which enhances query processing speed.

 Analytic functions, such as LEAD(), cannot be nested within aggregate functions.

Examples

In this example, the LEAD() function finds the hire date of the employee hired just after the current

row:

=> SELECT employee_region, hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (PARTITION BY employee_region ORDER BY hire_date) AS "next_hired"

 FROM employee_dimension ORDER BY employee_region, hire_date, employee_key;

 employee_region | hire_date | employee_key | employee_last_name | next_hired

-------------------+------------+--------------+--------------------+---------

 East | 1956-04-08 | 9218 | Harris | 1957-02-06

 East | 1957-02-06 | 7799 | Stein | 1957-05-25
 East | 1957-05-25 | 3687 | Farmer | 1957-06-26

 East | 1957-06-26 | 9474 | Bauer | 1957-08-18

 East | 1957-08-18 | 570 | Jefferson | 1957-08-24

 East | 1957-08-24 | 4363 | Wilson | 1958-02-17

 East | 1958-02-17 | 6457 | McCabe | 1958-06-26

 East | 1958-06-26 | 6196 | Li | 1958-07-16

-170-

SQL Reference Manual

 East | 1958-07-16 | 7749 | Harris | 1958-09-18

 East | 1958-09-18 | 9678 | Sanchez | 1958-11-10

(10 rows)

The next example uses both LEAD() and LAG() to return the third row after the salary in the
current row and fifth salary before the salary in the current row.

=> SELECT hire_date, employee_key, employee_last_name,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "next_hired" ,

 LAG(hire_date, 1) OVER (ORDER BY hire_date) AS "last_hired"

 FROM employee_dimension ORDER BY hire_date, employee_key;

 hire_date | employee_key | employee_last_name | next_hired | last_hired

------------+--------------+--------------------+------------+------------

 1956-04-11 | 2694 | Farmer | 1956-05-12 |

 1956-05-12 | 5486 | Winkler | 1956-09-18 | 1956-04-11

 1956-09-18 | 5525 | McCabe | 1957-01-15 | 1956-05-12

 1957-01-15 | 560 | Greenwood | 1957-02-06 | 1956-09-18

 1957-02-06 | 9781 | Bauer | 1957-05-25 | 1957-01-15

 1957-05-25 | 9506 | Webber | 1957-07-04 | 1957-02-06

 1957-07-04 | 6723 | Kramer | 1957-07-07 | 1957-05-25

 1957-07-07 | 5827 | Garnett | 1957-11-11 | 1957-07-04

 1957-11-11 | 373 | Reyes | 1957-11-21 | 1957-07-07

 1957-11-21 | 3874 | Martin | 1958-02-06 | 1957-11-11

(10 rows)

The following example returns employee name and salary, along with the next highest and lowest
salaries.

=> SELECT employee_last_name, annual_salary,

 NVL(LEAD(annual_salary) OVER (ORDER BY annual_salary),

 MIN(annual_salary) OVER()) "Next Highest",

 NVL(LAG(annual_salary) OVER (ORDER BY annual_salary),

 MAX(annual_salary) OVER()) "Next Lowest"

 FROM employee_dimension;

 employee_last_name | annual_salary | Next Highest | Next Lowest

--------------------+---------------+--------------+-------------

 Nielson | 1200 | 1200 | 995533

 Lewis | 1200 | 1200 | 1200

 Harris | 1200 | 1202 | 1200

 Robinson | 1202 | 1202 | 1200

 Garnett | 1202 | 1202 | 1202

 Weaver | 1202 | 1202 | 1202

 Nielson | 1202 | 1202 | 1202

 McNulty | 1202 | 1204 | 1202

 Farmer | 1204 | 1204 | 1202

 Martin | 1204 | 1204 | 1204

(10 rows)

The next example returns, for each assistant director in the employees table, the hire date of the
director hired just after the director on the current row. For example, Jackson was hired on
2007-12-28, and the next director hired was Bauer:

=> SELECT employee_last_name, hire_date,

 LEAD(hire_date, 1) OVER (ORDER BY hire_date DESC) as "NextHired"

-171-

 SQL Functions

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | hire_date | NextHired

--------------------+------------+------------

 Jackson | 2007-12-28 | 2007-12-26

 Bauer | 2007-12-26 | 2007-12-11

 Miller | 2007-12-11 | 2007-12-07

 Fortin | 2007-12-07 | 2007-11-27

 Harris | 2007-11-27 | 2007-11-15

 Goldberg | 2007-11-15 |

(5 rows)

See Also

LAG (page 163)

Using SQL for Analytics in the Programmer's Guide

MAX [Analytic]

Returns the maximum value of an expression within a window. The return value is the same as the
expression data type.

Behavior Type

Immutable

Syntax
MAX ([DISTINCT] expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the maximum value is

calculated, typically a column reference (see "Column
References" on page 54).

OVER(...) See Analytic Functions. (page 141)

Example

The following query computes the deviation between the employees' annual salary and the
maximum annual salary in Massachusetts:

=> SELECT employee_state, annual_salary,

 MAX(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) max,

-172-

SQL Reference Manual

 annual_salary- MAX(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) diff

 FROM employee_dimension

 WHERE employee_state = 'MA';

 employee_state | annual_salary | max | diff

----------------+---------------+--------+---------

 MA | 1918 | 995533 | -993615

 MA | 2058 | 995533 | -993475

 MA | 2586 | 995533 | -992947

 MA | 2500 | 995533 | -993033

 MA | 1318 | 995533 | -994215

 MA | 2072 | 995533 | -993461

 MA | 2656 | 995533 | -992877

 MA | 2148 | 995533 | -993385

 MA | 2366 | 995533 | -993167

 MA | 2664 | 995533 | -992869

(10 rows)

See Also

MAX (page 128) aggregate function

MIN (page 174) analytic function

Using SQL Analytics in the Programmer's Guide

MEDIAN [Analytic]
A numerical value of an expression in a result set within a window, which separates the higher half
of a sample from the lower half. For example, a query can retrieve the median of a finite list of
numbers by arranging all observations from lowest value to highest value and then picking the
middle one.

If there is an even number of observations, then there is no single middle value; thus, the median
is defined to be the mean (average) of the two middle values

MEDIAN() is an alias for 50% PERCENTILE(); for example:

PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY expression)

Behavior Type

Immutable

Syntax
MEDIAN (expression) OVER ([window_partition_clause (page 143)])

Parameters

-173-

 SQL Functions

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type.
The function returns the middle value or an interpolated value
that would be the middle value once the values are sorted.

Null values are ignored in the calculation.

OVER(...) See Analytic Functions. (page 141)

Notes

 For each row, MEDIAN() returns the value that would fall in the middle of a value set within
each partition.

 HP Vertica determines the argument with the highest numeric precedence, implicitly converts
the remaining arguments to that data type, and returns that data type.

 MEDIAN() does not allow the window_order_clause or window_frame_clause.

Examples

The following query computes the median annual income for first 500 customers in Wisconsin and
in the District of Columbia. Note that median is reported for every row in each partitioned result set:

=> SELECT customer_state, annual_income,

 MEDIAN(annual_income) OVER (PARTITION BY customer_state) AS MEDIAN

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 ORDER BY customer_state;

 customer_state | customer_key | annual_income | MEDIAN

----------------+--------------+---------------+----------

 DC | 120 | 299768 | 535413

 DC | 113 | 535413 | 535413

 DC | 130 | 848360 | 535413

--

 WI | 372 | 34962 | 668147

 WI | 437 | 47128 | 668147

 WI | 435 | 67770 | 668147

 WI | 282 | 638054 | 668147

 WI | 314 | 668147 | 668147

 WI | 128 | 675608 | 668147

 WI | 179 | 825304 | 668147

 WI | 302 | 827618 | 668147

 WI | 29 | 922760 | 668147

(12 rows)

See Also

PERCENTILE_CONT (page 178)

Using SQL Analytics in the Programmer's Guide

-174-

SQL Reference Manual

MIN [Analytic]

Returns the minimum value of an expression within a window. The return value is the same as the
expression data type.

Behavior Type

Immutable

Syntax
MIN ([DISTINCT] expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

DISTINCT Is meaningless in this context.

expression Can be any expression for which the minimum value is

calculated, typically a column reference (see "Column
References" on page 54).

OVER(...) See Analytic Functions. (page 141)

Examples

The following query computes the deviation between the employees' annual salary and the
minimum annual salary in Massachusetts:

=> SELECT employee_state, annual_salary,

 MIN(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) min,

 annual_salary- MIN(annual_salary)

 OVER(PARTITION BY employee_state ORDER BY employee_key) diff

 FROM employee_dimension

 WHERE employee_state = 'MA';

 employee_state | annual_salary | min | diff

----------------+---------------+------+------

 MA | 1918 | 1204 | 714

 MA | 2058 | 1204 | 854

 MA | 2586 | 1204 | 1382

 MA | 2500 | 1204 | 1296

 MA | 1318 | 1204 | 114

 MA | 2072 | 1204 | 868

 MA | 2656 | 1204 | 1452

 MA | 2148 | 1204 | 944

 MA | 2366 | 1204 | 1162

 MA | 2664 | 1204 | 1460

(10 rows)

-175-

 SQL Functions

See Also

MIN (page 129) aggregate function

MAX (page 171) analytic function

Using SQL Analytics in the Programmer's Guide

NTILE [Analytic]
Equally divides an ordered data set (partition) into a {value} number of subsets within a window,
with buckets (subsets) numbered 1 through constant-value. For example, if constant-value = 4,
then each row in the partition is assigned a number from 1 to 4. If the partition contains 20 rows,
the first 5 would be assigned 1, the next 5 would be assigned 2, and so on.

Behavior Type

Immutable

Syntax
NTILE (constant-value) OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

constant-value Represents the number of subsets and must resolve to a

positive constant for each partition.

OVER(...) See Analytic Functions. (page 141)

Notes

 The analytic window_order_clause is required but the window_partition_clause is
optional.

 If the number of subsets is greater than the number of rows, then a number of subsets equal to
the number of rows is filled, and the remaining subsets are empty.

 In the event the cardinality of the partition is not evenly divisible by the number of subsets, the
rows are distributed so no subset has more than 1 row more then any other subset, and the
lowest subsets are the ones that have extra rows. For example, using constant-value = 4 again
and the number of rows = 21, subset = 1 has 6 rows, subset = 2 has 5, and so on.

 Analytic functions, such as NTILE(), cannot be nested within aggregate functions.

Examples

The following query assigns each month's sales total into one of four subsets:

=> SELECT calendar_month_name AS MONTH, SUM(sales_quantity),

 NTILE(4) OVER (ORDER BY SUM(sales_quantity)) AS NTILE

-176-

SQL Reference Manual

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key)

 GROUP BY calendar_month_name

 ORDER BY NTILE;

 MONTH | SUM | NTILE

-----------+------+-------

 February | 755 | 1

 June | 842 | 1

 September | 849 | 1

 January | 881 | 2

 May | 882 | 2

 July | 894 | 2

 August | 921 | 3

 April | 952 | 3

 March | 987 | 3

 October | 1010 | 4

 November | 1026 | 4

 December | 1094 | 4

(12 rows)

See Also

PERCENTILE_CONT (page 178)

WIDTH_BUCKET (page 319)

Using SQL Analytics in the Programmer's Guide

PERCENT_RANK [Analytic]
Calculates the relative rank of a row for a given row in a group within a window by dividing that
row‘s rank less 1 by the number of rows in the partition, also less 1. This function always returns

values from 0 to 1 inclusive. The first row in any set has a PERCENT_RANK() of 0. The return
value is NUMBER.

(rank - 1) / ([rows] - 1)

In the above formula, rank is the rank position of a row in the group and rows is the total number

of rows in the partition defined by the OVER() clause.

Behavior Type

Immutable

Syntax
PERCENT_RANK () OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

-177-

 SQL Functions

OVER(...) See Analytic Functions. (page 141)

Notes

The window_order_clause is required but the window_partition_clause is
optional.

Examples

The following example finds the percent rank of gross profit for different states within each month
of the first quarter:

=> SELECT calendar_month_name AS MONTH, store_state ,

 SUM(gross_profit_dollar_amount),

 PERCENT_RANK() OVER (PARTITION BY calendar_month_name

 ORDER BY SUM(gross_profit_dollar_amount)) AS PERCENT_RANK

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key)

 JOIN store.store_dimension

 USING (store_key)

 WHERE calendar_month_name IN ('January','February','March')

 AND store_state IN ('OR','IA','DC','NV','WI')

 GROUP BY calendar_month_name, store_state

 ORDER BY calendar_month_name, PERCENT_RANK;

 MONTH | store_state | SUM | PERCENT_RANK

----------+-------------+------+-------------------

 February | OR | 16 | 0

 February | IA | 47 | 0.25

 February | DC | 94 | 0.5

 February | NV | 113 | 0.75

 February | WI | 119 | 1

 January | IA | -263 | 0

 January | OR | 91 | 0.333333333333333

 January | NV | 372 | 0.666666666666667

 January | DC | 497 | 1

 March | NV | -141 | 0

 March | OR | 224 | 1

(11 rows)

The following example calculates, for each employee, the percent rank of the employee's salary
by their job title:

=> SELECT job_title, employee_last_name, annual_salary,

 PERCENT_RANK()

 OVER (PARTITION BY job_title ORDER BY annual_salary DESC) AS percent_rank

 FROM employee_dimension

 ORDER BY percent_rank, annual_salary;

 job_title | employee_last_name | annual_salary | PERCENT_RANK

--------------------+--------------------+---------------+--------------------

-

-178-

SQL Reference Manual

 CEO | Campbell | 963914 | 0

 Co-Founder | Nguyen | 968625 | 0

 Founder | Overstreet | 995533 | 0

 Greeter | Peterson | 3192 | 0.00113895216400911

 Greeter | Greenwood | 3192 | 0.00113895216400911

 Customer Service | Peterson | 3190 | 0.00121065375302663

 Delivery Person | Rodriguez | 3192 | 0.00121065375302663

 Shelf Stocker | Martin | 3194 | 0.00125786163522013

 Shelf Stocker | Vu | 3194 | 0.00125786163522013

 Marketing | Li | 99711 | 0.00190114068441065

 Assistant Director | Sanchez | 99913 | 0.00190839694656489

 Branch Manager | Perkins | 99901 | 0.00192307692307692

 Advertising | Lampert | 99809 | 0.00204918032786885

 Sales | Miller | 99727 | 0.00211416490486258

 Shift Manager | King | 99904 | 0.00215982721382289

 Custodian | Bauer | 3196 | 0.00235849056603774

 Custodian | Goldberg | 3196 | 0.00235849056603774

 Customer Service | Fortin | 3184 | 0.00242130750605327

 Delivery Person | Greenwood | 3186 | 0.00242130750605327

 Cashier | Overstreet | 3178 | 0.00243605359317905

 Regional Manager | McCabe | 199688 | 0.00306748466257669

 VP of Sales | Li | 199309 | 0.00313479623824451

 Director of HR | Goldberg | 199592 | 0.00316455696202532

 Head of Marketing | Stein | 199941 | 0.00317460317460317

 VP of Advertising | Goldberg | 199036 | 0.00323624595469256

 Head of PR | Stein | 199767 | 0.00323624595469256

 Customer Service | Rodriguez | 3180 | 0.0036319612590799

 Delivery Person | King | 3184 | 0.0036319612590799

 Cashier | Dobisz | 3174 | 0.00365408038976857

 Cashier | Miller | 3174 | 0.00365408038976857

 Marketing | Dobisz | 99655 | 0.00380228136882129

 Branch Manager | Gauthier | 99082 | 0.025

 Branch Manager | Moore | 98415 | 0.05

...

See Also

CUME_DIST (page 155)

Using SQL Analytics in the Programmer's Guide

PERCENTILE_CONT [Analytic]

An inverse distribution function where, for each row, PERCENTILE_CONT() returns the value that

would fall into the specified percentile among a set of values in each partition within a window. For
example, if the argument to the function is 0.5, the result of the function is the median of the data

set (the 50th percentile). PERCENTILE_CONT() assumes a continuous distribution data model.
Nulls are ignored.

Behavior Type

Immutable

-179-

 SQL Functions

Syntax
PERCENTILE_CONT (%_number) WITHIN GROUP (

... ORDER BY expression [ASC | DESC]) OVER (

... [window_partition_clause (page 143)])

Parameters

%_number Is the percentile value, which must be a FLOAT constant ranging

from 0 to 1 (inclusive).

WITHIN GROUP(ORDER BY

expression)

Specifies how the data is sorted within each group. ORDER BY takes

only one column/expression that must be INTEGER, FLOAT,

INTERVAL, or NUMERIC data type. Nulls are discarded.

Note: The WITHIN GROUP(ORDER BY) clause does not guarantee

the order of the SQL result. Use the SQL ORDER BY clause (page
893) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 141)

Notes

 HP Vertica computes the percentile by first computing the row number where the percentile
row would exist; for example:

ROW_NUMBER = 1 + PERCENTILE_VALUE * (NUMBER_OF_ROWS_IN_PARTITION -1)

If the CEILING(ROW_NUMBER) = FLOOR(ROW_NUMBER), then the percentile is the value at

the ROW_NUMBER. Otherwise there was an even number of rows, and HP Vertica interpolates

the value between the rows. In this case, the percentile CEILING_VAL = get the value at the

CEILING(ROW_NUMBER). FLOOR_VAL = get the value at the FLOOR(ROW_NUMBER) would

be (CEILING(ROW_NUMBER) - ROW_NUMBER) * CEILING_VAL + (ROW_NUMBER -

FLOOR(ROW_NUMBER) * FLOOR+VAL.

If CEIL(num) = FLOOR(num) = num, then retrieve the value in that row. Otherwise compute

values at [CEIL(num) + FLOOR(num)] / 2

 Specifying ASC or DESC in the WITHIN GROUP clause affects results as long as the percentile
parameter is not .5.

 The MEDIAN() function is a specific case of PERCENTILE_CONT() where the percentile
value defaults to 0.5. For more information, see MEDIAN() (page 172).

Examples

This query computes the median annual income per group for the first 500 customers in Wisconsin
and the District of Columbia.

=> SELECT customer_state, customer_key, annual_income,

 PERCENTILE_CONT(.5) WITHIN GROUP(ORDER BY annual_income)

 OVER (PARTITION BY customer_state) AS PERCENTILE_CONT

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

-180-

SQL Reference Manual

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | PERCENTILE_CONT

----------------+--------------+---------------+-----------------

 DC | 104 | 658383 | 658383

 DC | 168 | 417092 | 658383

 DC | 245 | 670205 | 658383

 WI | 106 | 227279 | 458607

 WI | 127 | 703889 | 458607

 WI | 209 | 458607 | 458607

(6 rows)

The median value for DC is 65838, and the median value for WI is 458607. Note that with a

%_number of .5 in the above query, PERCENTILE_CONT() returns the same result as
MEDIAN() in the following query:

=> SELECT customer_state, customer_key, annual_income,

 MEDIAN(annual_income)

 OVER (PARTITION BY customer_state) AS MEDIAN

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | MEDIAN

----------------+--------------+---------------+--------

 DC | 104 | 658383 | 658383

 DC | 168 | 417092 | 658383

 DC | 245 | 670205 | 658383

 WI | 106 | 227279 | 458607

 WI | 127 | 703889 | 458607

 WI | 209 | 458607 | 458607

(6 rows)

See Also

MEDIAN (page 172)

Using SQL Analytics in the Programmer's Guide

PERCENTILE_DISC [Analytic]

An inverse distribution function where, for each row, PERCENTILE_DISC() returns the value that
would fall into the specified percentile among a set of values in each partition within a window.
PERCENTILE_DISC() assumes a discrete distribution data model. Nulls are ignored.

Behavior Type

Immutable

Syntax
PERCENTILE_DISC (%_number) WITHIN GROUP (

-181-

 SQL Functions

... ORDER BY expression [ASC | DESC]) OVER (

... [window_partition_clause (page 143)])

Parameters

%_number Is the percentile value, which must be a FLOAT constant ranging
from 0 to 1 (inclusive).

WITHIN GROUP(ORDER BY

expression)

Specifies how the data is sorted within each group. ORDER BY

takes only one column/expression that must be INTEGER,

FLOAT, INTERVAL, or NUMERIC data type. Nulls are discarded.

Note: The WITHIN GROUP(ORDER BY) clause does not

guarantee the order of the SQL result. Use the SQL ORDER BY

clause (page 893) to guarantee the ordering of the final result set.

ASC | DESC Specifies the ordering sequence as ascending (default) or
descending.

OVER(...) See Analytic Functions. (page 141)

Notes

 PERCENTILE_DISC(%_number) examines the cumulative distribution values in each group

until it finds one that is greater than or equal to %_number.

 HP Vertica computes the percentile where, for each row, PERCENTILE_DISC outputs the first

value of the WITHIN GROUP(ORDER BY) column whose CUME_DIST (cumulative distribution)
value is >= the argument FLOAT value (for example, .4). Specifically:

PERCENTILE_DIST(.4) WITHIN GROUP (ORDER BY salary) OVER(PARTITION By

deptno) ...

If you write, for example, SELECT CUME_DIST() OVER(ORDER BY salary) FROM table;

you notice that the smallest CUME_DIST value that is greater than .4 is also the

PERCENTILE_DISC.

Examples

This query computes the 20th percentile annual income by group for first 500 customers in
Wisconsin and the District of Columbia.

=> SELECT customer_state, customer_key, annual_income,

 PERCENTILE_DISC(.2) WITHIN GROUP(ORDER BY annual_income)

 OVER (PARTITION BY customer_state) AS PERCENTILE_DISC

 FROM customer_dimension

 WHERE customer_state IN ('DC','WI')

 AND customer_key < 300

 ORDER BY customer_state, customer_key;

 customer_state | customer_key | annual_income | PERCENTILE_DISC

----------------+--------------+---------------+-----------------

 DC | 104 | 658383 | 417092

 DC | 168 | 417092 | 417092

 DC | 245 | 670205 | 417092

 WI | 106 | 227279 | 227279

-182-

SQL Reference Manual

 WI | 127 | 703889 | 227279

 WI | 209 | 458607 | 227279

(6 rows)

See Also

CUME_DIST (page 155)

PERCENTILE_CONT (page 178)

Using SQL Analytics in the Programmer's Guide

RANK [Analytic]

Assigns a rank to each row returned from a query with respect to the other ordered rows, based on

the values of the expressions in the window ORDER BY clause. The data within a group is sorted by

the ORDER BY clause and then a numeric ranking is assigned to each row in turn, starting with 1,

and continuing up. Rows with the same values of the ORDER BY expressions receive the same

rank; however, if two rows receive the same rank (a tie), RANK() skips the ties. If, for example, two

rows are numbered 1, RANK() skips number 2 and assigns 3 to the next row in the group. This is
in contrast to DENSE_RANK() (page 156), which does not skip values.

Behavior Type

Immutable

Syntax
RANK () OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

OVER(...) See Analytic Functions. (page 141)

Notes

 Ranking functions return a rank value for each row in a result set based on the order specified
in the query. For example, a territory sales manager might want to identify the top or bottom
ranking sales associates in a department or the highest/lowest-performing sales offices by
region.

 RANK() requires an OVER() clause. The window_partition_clause is optional.

 In ranking functions, OVER() specifies the measures expression on which ranking is done and
defines the order in which rows are sorted in each group (or partition). Once the data is sorted
within each partition, ranks are given to each row starting from 1.

-183-

 SQL Functions

 The primary difference between RANK and DENSE_RANK is that RANK leaves gaps when

ranking records; DENSE_RANK leaves no gaps. For example, if more than one record occupies

a particular position (a tie), RANK places all those records in that position and it places the

next record after a gap of the additional records (it skips one). DENSE_RANK places all the
records in that position only—it does not leave a gap for the next rank.

If there is a tie at the third position with two records having the same value, RANK and

DENSE_RANK place both the records in the third position only, but RANK has the next record at

the fifth position — leaving a gap of 1 position—while DENSE_RANK places the next record at
the forth position (no gap).

 If you omit NULLS FIRST | LAST | AUTO, the ordering of the null values depends on the ASC

or DESC arguments. Null values are considered larger than any other values. If the ordering

sequence is ASC, then nulls appear last; nulls appear first otherwise. Nulls are considered

equal to other nulls and, therefore, the order in which nulls are presented is non-deterministic.

Examples

This example ranks the longest-standing customers in Massachusetts. The query first computes
the customer_since column by region, and then partitions the results by customers with

businesses in MA. Then within each region, the query ranks customers over the age of 70.

=> SELECT customer_type, customer_name,

 RANK() OVER (PARTITION BY customer_region ORDER BY customer_since) as rank

 FROM customer_dimension

 WHERE customer_state = 'MA'

 AND customer_age > '70';

 customer_type | customer_name | rank

---------------+---------------+------

 Company | Virtadata | 1

 Company | Evergen | 2

 Company | Infocore | 3

 Company | Goldtech | 4

 Company | Veritech | 5

 Company | Inishop | 6

 Company | Intracom | 7

 Company | Virtacom | 8

 Company | Goldcom | 9

 Company | Infostar | 10

 Company | Golddata | 11

 Company | Everdata | 12

 Company | Goldcorp | 13

(13 rows)

The following example shows the difference between RANK and DENSE_RANK when ranking

customers by their annual income. Notice that RANK has a tie at 10 and skips 11, while
DENSE_RANK leaves no gaps in the ranking sequence:

=> SELECT customer_name, SUM(annual_income),

 RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC) rank,

 DENSE_RANK () OVER (ORDER BY TO_CHAR(SUM(annual_income),'100000') DESC)

dense_rank

 FROM customer_dimension

-184-

SQL Reference Manual

 GROUP BY customer_name

 LIMIT 15;

 customer_name | sum | rank | dense_rank

---------------------+-------+------+------------

 Brian M. Garnett | 99838 | 1 | 1

 Tanya A. Brown | 99834 | 2 | 2

 Tiffany P. Farmer | 99826 | 3 | 3

 Jose V. Sanchez | 99673 | 4 | 4

 Marcus D. Rodriguez | 99631 | 5 | 5

 Alexander T. Nguyen | 99604 | 6 | 6

 Sarah G. Lewis | 99556 | 7 | 7

 Ruth Q. Vu | 99542 | 8 | 8

 Theodore T. Farmer | 99532 | 9 | 9

 Daniel P. Li | 99497 | 10 | 10

 Seth E. Brown | 99497 | 10 | 10

 Matt X. Gauthier | 99402 | 12 | 11

 Rebecca W. Lewis | 99296 | 13 | 12

 Dean L. Wilson | 99276 | 14 | 13

 Tiffany A. Smith | 99257 | 15 | 14

(15 rows)

See Also

DENSE_RANK (page 156)

Using SQL Analytics in the Programmer's Guide

ROW_NUMBER [Analytic]

Assigns a unique number, sequentially, starting from 1, to each row in a partition within a window.

Behavior Type

Immutable

Syntax
ROW_NUMBER () OVER (

... [window_partition_clause (page 143)]

... window_order_clause (page 144))

Parameters

OVER(...) See Analytic Functions. (page 141)

Notes

 ROW_NUMBER() is an HP Vertica extension, not part of the SQL-99 standard. It requires an

OVER() clause. The window_partition_clause is optional.

 You can use the optional partition clause to group data into partitions before operating on it; for
example:

SUM OVER (PARTITION BY col1, col2, ...)

-185-

 SQL Functions

 You can substitute any RANK() example for ROW_NUMBER(). The difference is that

ROW_NUMBER assigns a unique ordinal number, starting with 1, to each row in the ordered set.

Examples

The following query first partitions customers in the customer_dimension table by occupation and
then ranks those customers based on the ordered set specified by the analytic partition_clause.

=> SELECT occupation, customer_key, customer_since, annual_income,

 ROW_NUMBER() OVER (PARTITION BY occupation) AS customer_since_row_num

 FROM public.customer_dimension

 ORDER BY occupation, customer_since_row_num;

 occupation | customer_key | customer_since | annual_income | customer_since_row_num

--------------------+--------------+----------------+---------------+------------------------

 Accountant | 19453 | 1973-11-06 | 602460 | 1

 Accountant | 42989 | 1967-07-09 | 850814 | 2

 Accountant | 24587 | 1995-05-18 | 180295 | 3

 Accountant | 26421 | 2001-10-08 | 126490 | 4

 Accountant | 37783 | 1993-03-16 | 790282 | 5

 Accountant | 39170 | 1980-12-21 | 823917 | 6

 Banker | 13882 | 1998-04-10 | 15134 | 1

 Banker | 14054 | 1989-03-16 | 961850 | 2

 Banker | 15850 | 1996-01-19 | 262267 | 3

 Banker | 29611 | 2004-07-14 | 739016 | 4

 Doctor | 261 | 1969-05-11 | 933692 | 1

 Doctor | 1264 | 1981-07-19 | 593656 | 2

 Psychologist | 5189 | 1999-05-04 | 397431 | 1

 Psychologist | 5729 | 1965-03-26 | 339319 | 2

 Software Developer | 2513 | 1996-09-22 | 920003 | 1

 Software Developer | 5927 | 2001-03-12 | 633294 | 2

 Software Developer | 9125 | 1971-10-06 | 198953 | 3

 Software Developer | 16097 | 1968-09-02 | 748371 | 4

 Software Developer | 23137 | 1988-12-07 | 92578 | 5

 Software Developer | 24495 | 1989-04-16 | 149371 | 6

 Software Developer | 24548 | 1994-09-21 | 743788 | 7

 Software Developer | 33744 | 2005-12-07 | 735003 | 8

 Software Developer | 9684 | 1970-05-20 | 246000 | 9

 Software Developer | 24278 | 2001-11-14 | 122882 | 10

 Software Developer | 27122 | 1994-02-05 | 810044 | 11

 Stock Broker | 5950 | 1965-01-20 | 752120 | 1

 Stock Broker | 12517 | 2003-06-13 | 380102 | 2

 Stock Broker | 33010 | 1984-05-07 | 384463 | 3

 Stock Broker | 46196 | 1972-11-28 | 497049 | 4

 Stock Broker | 8710 | 2005-02-11 | 79387 | 5

 Writer | 3149 | 1998-11-17 | 643972 | 1

 Writer | 17124 | 1965-01-18 | 444747 | 2

 Writer | 20100 | 1994-08-13 | 106097 | 3

 Writer | 23317 | 2003-05-27 | 511750 | 4

 Writer | 42845 | 1967-10-23 | 433483 | 5

 Writer | 47560 | 1997-04-23 | 515647 | 6

(39 rows)

See Also

RANK (page 182)

Using SQL for Analytics in the Programmer's Guide

-186-

SQL Reference Manual

STDDEV [Analytic]

Note: The non-standard function STDDEV() is provided for compatibility with other databases.
It is semantically identical to STDDEV_SAMP() (page 188).

Computes the statistical sample standard deviation of the current row with respect to the group

within a window. The STDDEV_SAMP() return value is the same as the square root of the variance
defined for the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax
STDDEV (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type.

The function returns the same data type as the numeric data
type of the argument.

OVER(...) See Analytic Functions. (page 141)

Example

The following example returns the standard deviations of salaries in the employee dimension table
by job title Assistant Director:

=> SELECT employee_last_name, annual_salary,

 STDDEV(annual_salary) OVER (ORDER BY hire_date) as "stddev"

 FROM employee_dimension

 WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev

--------------------+---------------+------------------

 Goldberg | 61859 | NaN

 Miller | 79582 | 12532.0534829692

 Goldberg | 74236 | 9090.97147357388

 Campbell | 66426 | 7909.9541665339

 Moore | 66630 | 7068.30282316761

 Nguyen | 53530 | 9154.14713486005

 Harris | 74115 | 8773.54346886142

 Lang | 59981 | 8609.60471031374

-187-

 SQL Functions

 Farmer | 60597 | 8335.41158418579

 Nguyen | 78941 | 8812.87941405456

 Smith | 55018 | 9179.7672390773

...

See Also

STDDEV (page 134) and STDDEV_SAMP (page 136) aggregate functions

STDDEV_SAMP (page 188) analytic function

Using SQL Analytics in the Programmer's Guide

STDDEV_POP [Analytic]

Computes the statistical population standard deviation and returns the square root of the

population variance within a window. The STDDEV_POP() return value is the same as the square
root of the VAR_POP() function:

STDDEV_POP(expression) = SQRT(VAR_POP(expression))

When VAR_POP returns null, this function returns null.

Behavior Type

Immutable

Syntax
STDDEV_POP (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any

non-numeric data type that can be implicitly converted

to a numeric data type. The function returns the same
data type as the numeric data type of the argument.

OVER(...) See Analytic Functions. (page 141)

Examples

The following example returns the population standard deviations of salaries in the employee
dimension table by job title Assistant Director:

=> SELECT employee_last_name, annual_salary,

 STDDEV_POP(annual_salary) OVER (ORDER BY hire_date) as "stddev_pop"

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev_pop

--------------------+---------------+------------------

-188-

SQL Reference Manual

 Goldberg | 61859 | 0

 Miller | 79582 | 8861.5

 Goldberg | 74236 | 7422.74712548456

 Campbell | 66426 | 6850.22125098891

 Moore | 66630 | 6322.08223926257

 Nguyen | 53530 | 8356.55480080699

 Harris | 74115 | 8122.72288970008

 Lang | 59981 | 8053.54776538731

 Farmer | 60597 | 7858.70140687825

 Nguyen | 78941 | 8360.63150784682

See Also

STDDEV_POP (page 135) aggregate functions

Using SQL Analytics in the Programmer's Guide

STDDEV_SAMP [Analytic]

Computes the statistical sample standard deviation of the current row with respect to the group

within a window. The STDDEV_SAMP() return value is the same as the square root of the variance
defined for the VAR_SAMP() function:

STDDEV(expression) = SQRT(VAR_SAMP(expression))

When VAR_SAMP() returns null, this function returns null.

Behavior Type

Immutable

Syntax
STDDEV_SAMP (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric

data type that can be implicitly converted to a numeric data

type. The function returns the same data type as the
numeric data type of the argument..

OVER(...) See Analytic Functions. (page 141)

Notes

STDDEV_SAMP() is semantically identical to the non-standard function, STDDEV() (page 134).

-189-

 SQL Functions

Examples

The following example returns the sample standard deviations of salaries in the employee

dimension table by job title Assistant Director:

=> SELECT employee_last_name, annual_salary,

 STDDEV(annual_salary) OVER (ORDER BY hire_date) as "stddev_samp"

 FROM employee_dimension WHERE job_title = 'Assistant Director';

 employee_last_name | annual_salary | stddev_samp

--------------------+---------------+------------------

 Goldberg | 61859 | NaN

 Miller | 79582 | 12532.0534829692

 Goldberg | 74236 | 9090.97147357388

 Campbell | 66426 | 7909.9541665339

 Moore | 66630 | 7068.30282316761

 Nguyen | 53530 | 9154.14713486005

 Harris | 74115 | 8773.54346886142

 Lang | 59981 | 8609.60471031374

 Farmer | 60597 | 8335.41158418579

 Nguyen | 78941 | 8812.87941405456

...

See Also

Analytic Functions (page 141)

STDDEV (page 186) analytic function

STDDEV (page 134) and STDDEV_SAMP (page 136) aggregate functions

Using SQL Analytics in the Programmer's Guide

SUM [Analytic]

Computes the sum of an expression over a group of rows within a window. It returns a DOUBLE

PRECISION value for a floating-point expression. Otherwise, the return value is the same as the
expression data type.

Behavior Type

Immutable

Syntax
SUM (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

 Parameters

-190-

SQL Reference Manual

expression Any NUMERIC data type (page 103) or any non-numeric

data type that can be implicitly converted to a numeric data
type. The function returns the same data type as the
numeric data type of the argument.

OVER(...) See Analytic Functions. (page 141)

Notes

 If you encounter data overflow when using SUM(), use SUM_FLOAT() (page 138) which

converts data to a floating point.

 SUM() returns the sum of values of an expression.

Examples

The following query returns the cumulative sum all of the returns made to stores in January:

=> SELECT calendar_month_name AS month, transaction_type, sales_quantity,

 SUM(sales_quantity)

 OVER (PARTITION BY calendar_month_name ORDER BY date_dimension.date_key) AS

SUM

 FROM store.store_sales_fact JOIN date_dimension

 USING(date_key) WHERE calendar_month_name IN ('January')

 AND transaction_type= 'return';

 month | transaction_type | sales_quantity | SUM

---------+------------------+----------------+------

 January | return | 4 | 2338

 January | return | 3 | 2338

 January | return | 1 | 2338

 January | return | 5 | 2338

 January | return | 8 | 2338

 January | return | 3 | 2338

 January | return | 5 | 2338

 January | return | 10 | 2338

 January | return | 9 | 2338

 January | return | 10 | 2338

(10 rows)

See Also

SUM (page 137) aggregate function

Numeric Data Types (page 103)

Using SQL Analytics in the Programmer's Guide

-191-

 SQL Functions

VAR_POP [Analytic]

Returns the statistical population variance of a non-null set of numbers (nulls are ignored) in a
group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

 COUNT(expression)) / COUNT(expression)

Behavior Type

Immutable

Syntax
VAR_POP (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type.

The function returns the same data type as the numeric data
type of the argument

OVER(...) See Analytic Functions. (page 141)

Examples

The following example calculates the cumulative population in the store orders fact table of sales
in December 2007:

=> SELECT date_ordered,

 VAR_POP(SUM(total_order_cost))

 OVER (ORDER BY date_ordered) "var_pop"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | var_pop

--------------+------------------

 2007-12-01 | 0

 2007-12-02 | 1129564881

 2007-12-03 | 1206008121.55542

 2007-12-04 | 26353624176.1875

 2007-12-05 | 21315288023.4402

 2007-12-06 | 21619271028.3333

 2007-12-07 | 19867030477.6328

 2007-12-08 | 19197735288.5

 2007-12-09 | 19100157155.2097

-192-

SQL Reference Manual

 2007-12-10 | 19369222968.0896

(10 rows)

See Also

VAR_POP (page 139) aggregate function

Using SQL Analytics in the Programmer's Guide

VAR_SAMP [Analytic]

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

 COUNT(expression)) / (COUNT(expression) - 1)

Behavior Type

Immutable

Syntax
VAR_SAMP (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric data

type that can be implicitly converted to a numeric data type.

The function returns the same data type as the numeric data
type of the argument

OVER(...) See Analytic Functions. (page 141)

Notes

 VAR_SAMP() returns the sample variance of a set of numbers after it discards the nulls in the

set.

 If the function is applied to an empty set, then it returns null.

 This function is similar to VARIANCE(), except that given an input set of one element,
VARIANCE() returns 0 and VAR_SAMP() returns null.

Examples

The following example calculates the sample variance in the store orders fact table of sales in
December 2007:

=> SELECT date_ordered,

 VAR_SAMP(SUM(total_order_cost))

-193-

 SQL Functions

 OVER (ORDER BY date_ordered) "var_samp"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | var_samp

--------------+------------------

 2007-12-01 | NaN

 2007-12-02 | 2259129762

 2007-12-03 | 1809012182.33301

 2007-12-04 | 35138165568.25

 2007-12-05 | 26644110029.3003

 2007-12-06 | 25943125234

 2007-12-07 | 23178202223.9048

 2007-12-08 | 21940268901.1431

 2007-12-09 | 21487676799.6108

 2007-12-10 | 21521358853.4331

(10 rows)

See Also

VARIANCE (page 193) analytic function

VAR_SAMP (page 139) aggregate function

Using SQL Analytics in the Programmer's Guide

VARIANCE [Analytic]

Note: The non-standard function VARIANCE() is provided for compatibility with other
databases. It is semantically identical to VAR_SAMP() (page 192).

Returns the sample variance of a non-null set of numbers (nulls in the set are ignored) for each
row of the group within a window. Results are calculated by the sum of squares of the difference of
expression from the mean of expression, divided by the number of rows remaining minus 1:

(SUM(expression*expression) - SUM(expression)*SUM(expression) /

 COUNT(expression)) / (COUNT(expression) - 1)

Behavior Type

Immutable

Syntax
VAR_SAMP (expression) OVER (

... [window_partition_clause (page 143)]

... [window_order_clause (page 144)]

... [window_frame_clause (page 145)])

Parameters

expression Any NUMERIC data type (page 103) or any non-numeric
data type that can be implicitly converted to a numeric data

-194-

SQL Reference Manual

type. The function returns the same data type as the

numeric data type of the argument.

OVER(...) See Analytic Functions. (page 141)

Notes

 VARIANCE() returns the variance of expression.

 The variance of expression is calculated as follows:

 0 if the number of rows in expression = 1

 VAR_SAMP() if the number of rows in expression > 1

Examples

The following example calculates the cumulative variance in the store orders fact table of sales in
December 2007:

=> SELECT date_ordered,

 VARIANCE(SUM(total_order_cost))

 OVER (ORDER BY date_ordered) "variance"

 FROM store.store_orders_fact s

 WHERE date_ordered BETWEEN '2007-12-01' AND '2007-12-31'

 GROUP BY s.date_ordered;

 date_ordered | variance

--------------+------------------

 2007-12-01 | NaN

 2007-12-02 | 2259129762

 2007-12-03 | 1809012182.33301

 2007-12-04 | 35138165568.25

 2007-12-05 | 26644110029.3003

 2007-12-06 | 25943125234

 2007-12-07 | 23178202223.9048

 2007-12-08 | 21940268901.1431

 2007-12-09 | 21487676799.6108

 2007-12-10 | 21521358853.4331

(10 rows)

See Also

VAR_SAMP (page 192) analytic function

VARIANCE (page 140) and VAR_SAMP (page 139) aggregate functions

Using SQL Analytics in the Programmer's Guide

Date/Time Functions
Date and time functions perform conversion, extraction, or manipulation operations on date and
time data types and can return date and time information.

-195-

 SQL Functions

Usage

Functions that take TIME or TIMESTAMP inputs come in two variants:

 TIME WITH TIME ZONE or TIMESTAMP WITH TIME ZONE

 TIME WITHOUT TIME ZONE or TIMESTAMP WITHOUT TIME ZONE

For brevity, these variants are not shown separately.

The + and * operators come in commutative pairs; for example, both DATE + INTEGER and

INTEGER + DATE. We show only one of each such pair.

Daylight Savings Time Considerations

When adding an INTERVAL value to (or subtracting an INTERVAL value from) a TIMESTAMP

WITH TIME ZONE value, the days component advances (or decrements) the date of the

TIMESTAMP WITH TIME ZONE by the indicated number of days. Across daylight saving time
changes (with the session time zone set to a time zone that recognizes DST), this means
INTERVAL '1 day' does not necessarily equal INTERVAL '24 hours'.

For example, with the session time zone set to CST7CDT:

TIMESTAMP WITH TIME ZONE '2005-04-02 12:00-07' + INTERVAL '1 day'

produces

TIMESTAMP WITH TIME ZONE '2005-04-03 12:00-06'

Adding INTERVAL '24 hours' to the same initial TIMESTAMP WITH TIME ZONE produces

TIMESTAMP WITH TIME ZONE '2005-04-03 13:00-06',

as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Date/Time Functions in Transactions

CURRENT_TIMESTAMP() and related functions return the start time of the current transaction;
their values do not change during the transaction. The intent is to allow a single transaction to
have a consistent notion of the "current" time, so that multiple modifications within the same

transaction bear the same timestamp. However, TIMEOFDAY() returns the wall-clock time and
advances during transactions.

See Also

Template Patterns for Date/Time Formatting (page 265)

ADD_MONTHS

Takes a DATE, TIMESTAMP, or TIMESTAMPTZ argument and a number of months and returns a
date. TIMESTAMPTZ arguments are implicitly cast to TIMESTAMP.

Behavior Type

Immutable if called with DATE or TIMESTAMP but stable with TIMESTAMPTZ in that its results
can change based on TIMEZONE settings

-196-

SQL Reference Manual

Syntax
ADD_MONTHS (d , n);

Parameters

d Is the incoming DATE, TIMESTAMP, or TIMESTAMPTZ. If the start date
falls on the last day of the month, or i f the resulting month has fewer days
than the given day of the month, then the result is the last day of the

resulting month. Otherwise, the result has the same start day.

n Can be any INTEGER.

Examples

The following example's results include a leap year:

SELECT ADD_MONTHS('31-Jan-08', 1) "Months";

 Months

 2008-02-29

(1 row)

The next example adds four months to January and returns a date in May:

SELECT ADD_MONTHS('31-Jan-08', 4) "Months";

 Months

 2008-05-31

(1 row)

This example subtracts 4 months from January, returning a date in September:

SELECT ADD_MONTHS('31-Jan-08', -4) "Months";

 Months

 2007-09-30

(1 row)

Because the following example specifies NULL, the result set is empty:

SELECT ADD_MONTHS('31-Jan-03', NULL) "Months";

 Months

(1 row)

This example provides no date argument, so even though the number of months specified is 1, the
result set is empty:

SELECT ADD_MONTHS(NULL, 1) "Months";

 Months

(1 row)

-197-

 SQL Functions

In this example, the date field defaults to a timestamp, so the PST is ignored. Notice that even
though it is already the next day in Pacific time, the result falls on the same date in New York (two
years later):

SET TIME ZONE 'America/New_York';

SELECT ADD_MONTHS('2008-02-29 23:30 PST', 24);

 add_months

 2010-02-28

(1 row)

This example specifies a timestamp with time zone, so the PST is taken into account:

SET TIME ZONE 'America/New_York';

SELECT ADD_MONTHS('2008-02-29 23:30 PST'::TIMESTAMPTZ, 24);

 add_months

 2010-03-01

(1 row)

AGE_IN_MONTHS
Returns an INTEGER value representing the difference in months between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

Syntax
AGE_IN_MONTHS (expression1 [, expression2])

Parameters

expression1 specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE

(page 200).

Notes

The inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.

Examples

The following example returns the age in months of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE_IN_MONTHS(TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');

 AGE_IN_MONTHS

-198-

SQL Reference Manual

 219

(1 row)

The next example shows the age in months of the same person (born March 2, 1972) as of March
16, 2010:

SELECT AGE_IN_MONTHS(TIMESTAMP 'March 16, 2010', TIMESTAMP '1972-03-02');

 AGE_IN_MONTHS

 456

(1 row)

This example returns the age in months of a person born on November 21, 1939:

SELECT AGE_IN_MONTHS(TIMESTAMP '1939-11-21');

 AGE_IN_MONTHS

 844

(1 row)

In the above form, the result changes as time goes by.

See Also

AGE_IN_YEARS (page 198)

INTERVAL (page 81)

AGE_IN_YEARS

Returns an INTEGER value representing the difference in years between two TIMESTAMP,
DATE or TIMESTAMPTZ values.

Behavior Type

Stable if second argument is omitted or if either argument is TIMESTAMPTZ. Immutable
otherwise.

Syntax
AGE_IN_YEARS (expression1 [, expression2])

Parameters

expression1 specifies the beginning of the period.

expression2 specifies the end of the period. The default is the CURRENT_DATE
(page 200).

Notes

 The AGE_IN_YEARS() function was previously called AGE. AGE() is not supported.

 Inputs can be TIMESTAMP, TIMESTAMPTZ, or DATE.

-199-

 SQL Functions

Examples

The following example returns the age in years of a person born on March 2, 1972 on the date
June 21, 1990, with a time elapse of 18 years, 3 months, and 19 days:

SELECT AGE_IN_YEARS(TIMESTAMP '1990-06-21', TIMESTAMP '1972-03-02');

 AGE_IN_YEARS

 18

(1 row)

The next example shows the age in years of the same person (born March 2, 1972) as of February
24, 2009:

SELECT AGE_IN_YEARS(TIMESTAMP '2009-02-24', TIMESTAMP '1972-03-02');

 AGE_IN_YEARS

 36

(1 row)

This example returns the age in years of a person born on November 21, 1939:

SELECT AGE_IN_YEARS(TIMESTAMP '1939-11-21');

 AGE_IN_YEARS

 70

(1 row)

See Also

AGE_IN_MONTHS (page 197)

INTERVAL (page 81)

CLOCK_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIMEZONE representing the current system-clock
time.

Behavior Type

Volatile

Syntax
CLOCK_TIMESTAMP()

Notes

This function uses the date and time supplied by the operating system on the server to which you
are connected, which should be the same across all servers. The value changes each time you
call it.

Examples

The following command returns the current time on your system:

-200-

SQL Reference Manual

SELECT CLOCK_TIMESTAMP() "Current Time";

 Current Time

 2010-09-23 11:41:23.33772-04

(1 row)

Each time you call the function, you get a different result. The difference in this example is in
microseconds:

SELECT CLOCK_TIMESTAMP() "Time 1", CLOCK_TIMESTAMP() "Time 2";

 Time 1 | Time 2

-------------------------------+-------------------------------

 2010-09-23 11:41:55.369201-04 | 2010-09-23 11:41:55.369202-04

(1 row)

See Also

STATEMENT_TIMESTAMP (page 239)

TRANSACTION_TIMESTAMP (page 251)

CURRENT_DATE

Returns the date (date-type value) on which the current transaction started.

Behavior Type

Stable

Syntax
CURRENT_DATE

Notes

The CURRENT_DATE function does not require parentheses.

Examples
SELECT CURRENT_DATE;

 ?column?

 2010-09-23

(1 row)

CURRENT_TIME
Returns a value of type TIME WITH TIMEZONE representing the time of day.

Behavior Type

Stable

-201-

 SQL Functions

Syntax
CURRENT_TIME [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number
of fractional digits in the seconds field.

Notes

 This function returns the start time of the current transaction; the value does not change during
the transaction. The intent is to allow a single transaction to have a consistent notion of the
current time, so that multiple modifications within the same transaction bear the same
timestamp.

 The CURRENT_TIME function does not require parentheses.

Examples
SELECT CURRENT_TIME "Current Time";

 Current Time

 12:45:12.186089-05

(1 row)

CURRENT_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction.

Behavior Type

Stable

Syntax
CURRENT_TIMESTAMP [(precision)]

Parameters

precision (INTEGER) causes the result to be rounded to the specified number

of fractional digits in the seconds field. Range of INTEGER is 0-6.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples
SELECT CURRENT_TIMESTAMP;

 ?column?

 2010-09-23 11:37:22.354823-04

-202-

SQL Reference Manual

(1 row)

SELECT CURRENT_TIMESTAMP(2);

 ?column?

 2010-09-23 11:37:22.35-04

(1 row)

DATE_PART

Is modeled on the traditional Ingres equivalent to the SQL-standard function EXTRACT. Internally
DATE_PART is used by the EXTRACT function.

Behavior Type

Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

Syntax
DATE_PART (field , source)

Parameters

field Is a single-quoted string value that specifies the field to extract. You must enter the
constant field values (i.e. CENTURY, DAY, etc). when specifying the field.

Note: The field parameter values are the same for the EXTRACT (page 218) function.

source Is a date/time (page 78) expression

Field Values

CENTURY

The century number.

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');

Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all
Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT EXTRACT(DAY FROM DATE '2001-02-16');

Result: 16

DECADE The year field divided by 10.

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

SELECT EXTRACT(DECADE FROM DATE '2001-02-16');
Result: 200

-203-

 SQL Functions

DOQ The day within the current quarter.

SELECT EXTRACT(DOQ FROM CURRENT_DATE);

Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW The day of the week (0 - 6; Sunday is 0).

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 5

SELECT EXTRACT(DOW FROM DATE '2001-02-16');
Result: 5

Note that EXTRACT's day of the week numbering is different from that of the

TO_CHAR function.

DOY The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

SELECT EXTRACT(DOY FROM DATE '2001-02-16');

Result: 5

EPOCH For DATE and TIMESTAMP values, the number of seconds since 1970-01-01

00:00:00-00 (can be negative); for INTERVAL values, the total number of

seconds in the interval.

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16

20:38:40-08');

Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800

Here is how you can convert an epoch value back to a timestamp:

SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL '1 second';

HOUR The hour field (0 - 23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

SELECT EXTRACT(HOUR FROM TIME '13:45:59');
Result: 13

ISODOW The ISO day of the week (1 - 7; Monday is 1).

SELECT EXTRACT(ISODOW FROM DATE '2010-09-27');

Result: 1

ISOWEEK The ISO week, which consists of 7 days starting on Monday and ending on
Sunday. The first week of the year is the week that contains January 4.

ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

SELECT EXTRACT(ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This

includes full seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

-204-

SQL Reference Manual

MILLENNIUM The millennium number.

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 3

Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.

MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this

includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500

MINUTE The minutes field (0 - 59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

SELECT EXTRACT(MINUTE FROM TIME '13:45:59');

Result: 45

MONTH For timestamp values, the number of the month within the year (1 - 12) ; for

interval values the number of months, modulo 12 (0 - 11).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1

SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are
implemented by the operating system).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.5

TIME ZONE The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The number of the week of the calendar year that the day is in.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

SELECT EXTRACT(WEEK FROM DATE '2001-02-16');

Result: 7

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD

years with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

Examples

The following example extracts the day value from the input parameters:

SELECT DATE_PART('day', TIMESTAMP '2009-02-24 20:38:40') "Day";

 Day

-205-

 SQL Functions

 24

(1 row)

The following example extracts the month value from the input parameters:

SELECT DATE_PART('month', TIMESTAMP '2009-02-24 20:38:40') "Month";

 Month

 2

(1 row)

The following example extracts the year value from the input parameters:

SELECT DATE_PART('year', TIMESTAMP '2009-02-24 20:38:40') "Year";

 Year

 2009

(1 row)

The following example extracts the hours from the input parameters:

SELECT DATE_PART('hour', TIMESTAMP '2009-02-24 20:38:40') "Hour";

 Hour

 20

(1 row)

The following example extracts the minutes from the input parameters:

SELECT DATE_PART('minutes', TIMESTAMP '2009-02-24 20:38:40') "Minutes";

 Minutes

 38

(1 row)

The following example extracts the seconds from the input parameters:

SELECT DATE_PART('seconds', TIMESTAMP '2009-02-24 20:38:40') "Seconds";

 Seconds

 40

(1 row)

The following example extracts the day of quarter (DOQ) from the input parameters:

SELECT DATE_PART('DOQ', TIMESTAMP '2009-02-24 20:38:40') "DOQ";

 DOQ

 55

(1 row)

SELECT DATE_PART('day', INTERVAL '29 days 23 hours');

 date_part

 29

(1 row)

Notice what happens to the above query if you add an hour:

SELECT DATE_PART('day', INTERVAL '29 days 24 hours');

-206-

SQL Reference Manual

 date_part

 30

(1 row)

The following example returns 0 because an interval in hours is up to 24 only:

SELECT DATE_PART('hour', INTERVAL '24 hours 45 minutes');

 date_part

 0

(1 row)

See Also

EXTRACT (page 218)

DATE

Converts a TIMESTAMP, TIMESTAMPTZ, DATE, or VARCHAR to a DATE. You can also use this
function to convert an INTEGER to a DATE. In this case, the resulting date reflects the int number
of days after 0001 AD. (Day 1 is January 1, 0001.)

Syntax
DATE (d | n)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.

n Is the integer you want to convert to a DATE.

Example
=> SELECT DATE (1);

 DATE

 0001-01-01

(1 row)

=> SELECT DATE (734260);

 DATE

 2011-05-03

(1 row)

-207-

 SQL Functions

=> SELECT DATE ('TODAY');

 DATE

 2011-05-31

(1 row)

DATE_TRUNC

Truncates date and time values as indicated. The return value is of type TIME or TIMETZ with all
fields that are less significant than the selected one set to zero (or one, for day and month).

Behavior Type

Stable.

Syntax
DATE_TRUNC (field , source)

Parameters

field Is a string constant that selects the precision to which truncate the
input value.

source Is a value expression of type TIME or TIMETZ.

Field Values

CENTURY

The century number.

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all
Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).

DECADE The year field divided by 10.

HOUR The hour field (0 - 23).

MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This

includes full seconds.

MILLENNIUM The millennium number.

Years in the 1900s are in the second millennium. The third millennium starts
January 1, 2001.

MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.

MINUTE The minutes field (0 - 59).

MONTH For timestamp values, the number of the month within the year (1 - 12) ; for

interval values the number of months, modulo 12 (0 - 11).

-208-

SQL Reference Manual

SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are

implemented by the operating system).

WEEK The number of the week of the year that the day is in. By definition, the
ISO-8601 week starts on Monday, and the first week of a year contains

January 4 of that year. In other words, the first Thursday of a year is in week 1
of that year.

Because of this, it is possible for early January dates to be part of the 52nd or

53rd week of the previous year. For example, 2005-01-01 is part of the 53rd

week of year 2004, and 2006-01-01 is part of the 52nd week of year 2005.

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD

years with care.

Examples

The following example sets the field value as hour and returns the hour, truncating the minutes
and seconds:

VMart=> select date_trunc('hour', timestamp '2012-02-24 13:38:40') as hour;

 hour

 2012-02-24 13:00:00

(1 row)

The following example returns the year from the input timestamptz '2012-02-24

13:38:40'. The function also defaults the month and day to January 1, truncates the
hour:minute:second of the timestamp, and appends the time zone (-05):

VMart=> select date_trunc('year', timestamptz '2012-02-24 13:38:40') as year;

 year

 2012-01-01 00:00:00-05

(1 row)

The following example returns the year and month and defaults day of month to 1, truncating the
rest of the string:

VMart=> select date_trunc('month', timestamp '2012-02-24 13:38:40') as year;

 year

 2012-02-01 00:00:00

(1 row)

-209-

 SQL Functions

DATEDIFF

Returns the difference between two date or time values, based on the specified start and end
arguments.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1
DATEDIFF (datepart , startdate , enddate);

Syntax 2
DATEDIFF (datepart , starttime , endtime);

Parameters

datepart Returns the number of specified datepart boundaries between the
specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart

abbreviation

year yy, yyyy

quarter qq, q

month mm, m

day dd, d, dy, dayofyear, y

week wk, ww

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs, us

startdate Is the start date for the calculation and is an expression that returns a
TIMESTAMP (page 97), DATE (page 80), or TIMESTAMPTZ value.

The startdate value is not included in the count.

enddate Is the end date for the calculation and is an expression that returns a
TIMESTAMP (page 97), DATE (page 80), or TIMESTAMPTZ value.

The enddate value is included in the count.

-210-

SQL Reference Manual

starttime Is the start time for the calculation and is an expression that returns

an INTERVAL (page 81) or TIME (page 95) data type.

 The starttime value is not included in the count.

 Year, quarter, or month dateparts are not allowed.

endtime Is the end time for the calculation and is an expression that returns

an INTERVAL (page 81) or TIME (page 95) data type.

 The endtime value is included in the count.

 Year, quarter, or month dateparts are not allowed.

Notes

 DATEDIFF() is an immutable function with a default type of TIMESTAMP. It also takes DATE.
If TIMESTAMPTZ is specified, the function is stable.

 HP Vertica accepts statements written in any of the following forms:

DATEDIFF(year, s, e);

DATEDIFF('year', s, e);

If you use an expression, the expression must be enclosed in parentheses:

DATEDIFF((expression), s, e);

 Starting arguments are not included in the count, but end arguments are included.

The datepart boundaries

DATEDIFF calculates results according to ticks—or boundaries—within the date range or time
range. Results are calculated based on the specified datepart. Let's examine the following
statement and its results:

SELECT DATEDIFF('year', TO_DATE('01-01-2005','MM-DD-YYYY'),

TO_DATE('12-31-2008','MM-DD-YYYY'));

 datediff

 3

(1 row)

In the above example, we specified a datepart of year, a startdate of January 1, 2005 and an
enddate of December 31, 2008. DATEDIFF returns 3 by counting the year intervals as follows:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

The function returns 3, and not 4, because startdate (January 1, 2005) is not counted in the
calculation. DATEDIFF also ignores the months between January 1, 2008 and December 31,
2008 because the datepart specified is year and only the start of each year is counted.

Sometimes the enddate occurs earlier in the ending year than the startdate in the starting year.
For example, assume a datepart of year, a startdate of August 15, 2005, and an enddate of
January 1, 2009. In this scenario, less than three years have elapsed, but DATEDIFF counts the
same way it did in the previous example, returning 3 because it returns the number of January 1s
between the limits:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 = 3

In the following query, HP Vertica recognizes the full year 2005 as the starting year and 2009 as
the ending year.

-211-

 SQL Functions

SELECT DATEDIFF('year', TO_DATE('08-15-2005','MM-DD-YYYY'),

TO_DATE('01-01-2009','MM-DD-YYYY'));

The count occurs as follows:

 [1] January 1, 2006 + [2] January 1, 2007 + [3] January 1, 2008 + [4] January 1,

2009 = 4

Even though August 15 has not yet occurred in the enddate, the function counts the entire enddate
year as one tick or boundary because of the year datepart.

Examples

Year: In this example, the startdate and enddate are adjacent. The difference between the dates

is one time boundary (second) of its datepart, so the result set is 1.

SELECT DATEDIFF('year', TIMESTAMP '2008-12-31 23:59:59',

 '2009-01-01 00:00:00');

 datediff

 1

(1 row)

Quarters start on January, April, July, and October.

In the following example, the result is 0 because the difference from January to February in the
same calendar year does not span a quarter:

SELECT DATEDIFF('qq', TO_DATE('01-01-1995','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 0

(1 row)

The next example, however, returns 8 quarters because the difference spans two full years. The
extra month is ignored:

SELECT DATEDIFF('quarter', TO_DATE('01-01-1993','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 8

(1 row)

Months are based on real calendar months.

The following statement returns 1 because there is month difference between January and
February in the same calendar year:

SELECT DATEDIFF('mm', TO_DATE('01-01-2005','MM-DD-YYYY'),

 TO_DATE('02-02-2005','MM-DD-YYYY'));

 datediff

 1

(1 row)

The next example returns a negative value of 1:

SELECT DATEDIFF('month', TO_DATE('02-02-1995','MM-DD-YYYY'),

-212-

SQL Reference Manual

 TO_DATE('01-01-1995','MM-DD-YYYY'));

 datediff

 -1

(1 row)

And this third example returns 23 because there are 23 months difference between

SELECT DATEDIFF('m', TO_DATE('02-02-1993','MM-DD-YYYY'),

 TO_DATE('01-01-1995','MM-DD-YYYY'));

 datediff

 23

(1 row)

Weeks start on Sunday at midnight.

The first example returns 0 because, even though the week starts on a Sunday, it is not a full
calendar week:

SELECT DATEDIFF('ww', TO_DATE('02-22-2009','MM-DD-YYYY'),

 TO_DATE('02-28-2009','MM-DD-YYYY'));

 datediff

 0

(1 row)

The following example returns 1 (week); January 1, 2000 fell on a Saturday.

SELECT DATEDIFF('week', TO_DATE('01-01-2000','MM-DD-YYYY'),

 TO_DATE('01-02-2000','MM-DD-YYYY'));

 datediff

 1

(1 row)

In the next example, DATEDIFF() counts the weeks between January 1, 1995 and February 2,
1995 and returns 4 (weeks):

SELECT DATEDIFF('wk', TO_DATE('01-01-1995','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 4

(1 row)

The next example returns a difference of 100 weeks:

SELECT DATEDIFF('ww', TO_DATE('02-02-2006','MM-DD-YYYY'),

 TO_DATE('01-01-2008','MM-DD-YYYY'));

 datediff

 100

(1 row)

Days are based on real calendar days.

The first example returns 31, the full number of days in the month of July 2008.

-213-

 SQL Functions

SELECT DATEDIFF('day', 'July 1, 2008', 'Aug 1, 2008'::date);

 datediff

 31

(1 row)

Just over two years of days:

SELECT DATEDIFF('d', TO_TIMESTAMP('01-01-1993','MM-DD-YYYY'),

 TO_TIMESTAMP('02-02-1995','MM-DD-YYYY'));

 datediff

 762

(1 row)

Hours, minutes, and seconds are based on clock time.

The first example counts backwards from March 2 to February 14 and returns -384 hours:

SELECT DATEDIFF('hour', TO_DATE('03-02-2009','MM-DD-YYYY'),

 TO_DATE('02-14-2009','MM-DD-YYYY'));

 datediff

 -384

(1 row)

Another hours example:

SELECT DATEDIFF('hh', TO_TIMESTAMP('01-01-1993','MM-DD-YYYY'),

 TO_TIMESTAMP('02-02-1995','MM-DD-YYYY'));

 datediff

 18288

(1 row)

This example counts the minutes backwards:

SELECT DATEDIFF('mi', TO_TIMESTAMP('01-01-1993 03:00:45','MM-DD-YYYY HH:MI:SS'),

 TO_TIMESTAMP('01-01-1993 01:30:21',' MM-DD-YYYY HH:MI:SS'));

 datediff

 -90

(1 row)

And this example counts the minutes forward:

SELECT DATEDIFF('minute', TO_DATE('01-01-1993','MM-DD-YYYY'),

 TO_DATE('02-02-1995','MM-DD-YYYY'));

 datediff

 1097280

(1 row)

In the following example, the query counts the difference in seconds, beginning at a start time of
4:44 and ending at 5:55 with an interval of 2 days:

SELECT DATEDIFF('ss', TIME '04:44:42.315786',

 INTERVAL '2 05:55:52.963558');

 datediff

-214-

SQL Reference Manual

 177070

(1 row)

See Also

Date/Time Expressions (page 55)

DAY

Extracts the day of the month from a TIMESTAMP, TIMESTAMPTZ, INTEGER, VARCHAR or
INTERVAL input value. The return value is of type INTEGER.

Syntax
DAY (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, INTERVAL, VARCHAR, or

INTEGER input value.

Examples
=> SELECT DAY (6);

 DAY

 6

(1 row)

=> SELECT DAY(TIMESTAMP 'sep 22, 2011 12:34');

 DAY

 22

(1 row)

=> SELECT DAY('sep 22, 2011 12:34');

 DAY

 22

(1 row)

=> SELECT DAY(INTERVAL '35 12:34');

 DAY

 35

(1 row)

-215-

 SQL Functions

DAYOFMONTH

Returns an integer representing the day of the month based on a VARCHAR, DATE,
TIMESTAMP, OR TIMESTAMPTZ input value.

Syntax
DAYOFMONTH (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example
=> SELECT DAYOFMONTH (TIMESTAMP 'sep 22, 2011 12:34');

 DAYOFMONTH

 22

(1 row)

DAYOFWEEK

Returns an INTEGER representing the day of the week based on a TIMESTAMP,
TIMESTAMPTZ, VARCHAR, or DATE input value. Valid return values are:

Integer Week Day

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

Syntax
DAYOFWEEK (d)

-216-

SQL Reference Manual

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.

Example
=> SELECT DAYOFWEEK (TIMESTAMP 'sep 17, 2011 12:34');

 DAYOFWEEK

 7

(1 row)

DAYOFWEEK_ISO

Returns an INTEGER representing the ISO 8061 day of the week based on a VARCHAR, DATE,
TIMESTAMP or TIMESTAMPTZ input value. Valid return values are:

Integer Week Day

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

7 Sunday

Syntax
DAYOFWEEK_ISO (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

-217-

 SQL Functions

Example
=> SELECT DAYOFWEEK_ISO(TIMESTAMP 'Sep 22, 2011 12:34');

 DAYOFWEEK_ISO

 4

(1 row)

The following example shows how to combine the DAYOFWEEK_ISO, WEEK_ISO, and
YEAR_ISO functions to find the ISO day of the week, week, and year:

=> SELECT DAYOFWEEK_ISO('Jan 1, 2000'), WEEK_ISO('Jan 1,

2000'),YEAR_ISO('Jan1,2000');

 DAYOFWEEK_ISO | WEEK_ISO | YEAR_ISO

---------------+----------+----------

 6 | 52 | 1999

(1 row)

See Also

WEEK_ISO (page 253)

DAYOFWEEK_ISO (page 216)

http://en.wikipedia.org/wiki/ISO_8601 (http://en.wikipedia.org/wiki/ISO_8601)

DAYOFYEAR
Returns an INTEGER representing the day of the year based on a TIMESTAMP, TIMESTAMPTZ
, VARCHAR, or DATE input value. (January 1 is day 1.)

Syntax
DAYOFYEAR (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, OR DATE input value.

Example
=> SELECT DAYOFYEAR (TIMESTAMP 'SEPT 22,2011 12:34');

 DAYOFYEAR

 265

(1 row)

http://en.wikipedia.org/wiki/ISO_8601

-218-

SQL Reference Manual

DAYS
Converts a DATE, VARCHAR, TIMESTAMP, or TIMESTAMPTZ to an INTEGER, reflecting the
number of days after 0001 AD.

Syntax
DAYS(DATE d)

Behavior type
Immutable

Parameters

DATE d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example
=> SELECT DAYS (DATE '2011-01-22');

 DAYS

 734159

(1 row)

=> SELECT DAYS ('1999-12-31');

 DAYS

 730119

(1 row)

EXTRACT

Retrieves subfields such as year or hour from date/time values and returns values of type
NUMERIC (page 107). EXTRACT is primarily intended for computational processing, rather than
for formatting date/time values for display.

Internally EXTRACT uses the DATE_PART function.

Behavior Type

Stable when source is of type TIMESTAMPTZ, Immutable otherwise.

Syntax
EXTRACT (field FROM source)

-219-

 SQL Functions

Parameters

field Is an identifier or string that selects what field to extract from the source value.

You must enter the constant field values (i.e. CENTURY, DAY, etc). when
specifying the field.

Note: The field parameter is the same for the DATE_PART() (page 202)

function.

source Is an expression of type DATE, TIMESTAMP, TIME, or INTERVAL.

Note: Expressions of type DATE are cast to TIMESTAMP.

Field Values

CENTURY

The century number.

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to all

Gregorian calendar countries. There is no century number 0, you go from -1 to
1.

DAY The day (of the month) field (1 - 31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT EXTRACT(DAY FROM DATE '2001-02-16');

Result: 16

DECADE The year field divided by 10.

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

SELECT EXTRACT(DECADE FROM DATE '2001-02-16');

Result: 200

DOQ The day within the current quarter.

SELECT EXTRACT(DOQ FROM CURRENT_DATE);
Result: 89

The result is calculated as follows: Current date = June 28, current quarter = 2
(April, May, June). 30 (April) + 31 (May) + 28 (June current day) = 89.

DOQ recognizes leap year days.

DOW The day of the week (0 - 6; Sunday is 0).

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 5

SELECT EXTRACT(DOW FROM DATE '2001-02-16');
Result: 5

Note that EXTRACT's day of the week numbering is different from that of the

TO_CHAR function.

DOY The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 47

SELECT EXTRACT(DOY FROM DATE '2001-02-16');
Result: 5

-220-

SQL Reference Manual

EPOCH For DATE and TIMESTAMP values, the number of seconds since 1970-01-01

00:00:00-00 (can be negative); for INTERVAL values, the total number of

seconds in the interval.

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16

20:38:40-08');
Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');

Result: 442800

Here is how you can convert an epoch value back to a timestamp:

SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720 * INTERVAL '1 second';

HOUR The hour field (0 - 23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

SELECT EXTRACT(HOUR FROM TIME '13:45:59');

Result: 13

ISODOW The ISO day of the week (1 - 7; Monday is 1).

SELECT EXTRACT(ISODOW FROM DATE '2010-09-27');
Result: 1

ISOWEEK The ISO week, which consists of 7 days starting on Monday and ending on
Sunday. The first week of the year is the week that contains January 4.

ISOYEAR The ISO year, which is 52 or 53 weeks (Monday - Sunday).

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');

Result: 2005

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

SELECT EXTRACT(ISOYEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

MICROSECONDS The seconds field, including fractional parts, multiplied by 1,000,000. This
includes full seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

MILLENNIUM The millennium number.

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3

Years in the 1900s are in the second millennium. The third millennium starts

January 1, 2001.

MILLISECONDS The seconds field, including fractional parts, multiplied by 1000. Note that this
includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500

MINUTE The minutes field (0 - 59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

SELECT EXTRACT(MINUTE FROM TIME '13:45:59');

Result: 45

MONTH For timestamp values, the number of the month within the year (1 - 12) ; for

interval values the number of months, modulo 12 (0 - 11).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

-221-

 SQL Functions

QUARTER The quarter of the year (1 - 4) that the day is in (for timestamp values only).

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 1

SECOND The seconds field, including fractional parts (0 - 59) (60 if leap seconds are
implemented by the operating system).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.5

TIME ZONE The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The number of the week of the calendar year that the day is in.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

SELECT EXTRACT(WEEK FROM DATE '2001-02-16');

Result: 7

YEAR The year field. Keep in mind there is no 0 AD, so subtract BC years from AD

years with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');

Result: 2001

Examples
=> SELECT EXTRACT (DAY FROM DATE '2008-12-25');

date_part

 25

(1 row)

=> SELECT EXTRACT (MONTH FROM DATE '2008-12-25');

date_part

 12

(1 row

SELECT EXTRACT(DOQ FROM CURRENT_DATE);

 date_part

 89

(1 row)

-222-

SQL Reference Manual

Remember that internally EXTRACT() uses the DATE_PART() function:

=> SELECT EXTRACT(EPOCH FROM AGE_IN_YEARS(TIMESTAMP '2009-02-24',

 TIMESTAMP '1972-03-02') :: INTERVAL year);

 date_part

 1136073600

(1 row)

In the above example, AGE_IN_YEARS is 36. The UNIX epoch uses 365.25 days per year:

=> SELECT 1136073600.0/36/(24*60*60);

 ?column?

 365.25

(1 row)

You can extract the timezone hour from TIMETZ:

=> SELECT EXTRACT(timezone_hour FROM TIMETZ '10:30+13:30');

 date_part

 13

(1 row)

See Also

DATE_PART (page 202)

GETDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type

Stable

Syntax
GETDATE();

Notes

 GETDATE is a stable function that requires parentheses but accepts no arguments.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

 GETDATE internally converts STATEMENT_TIMESTAMP() (page 239) from TIMESTAMPTZ
to TIMESTAMP.

 This function is identical to SYSDATE() (page 239).

Example
=> SELECT GETDATE();

 GETDATE

-223-

 SQL Functions

 2011-03-07 13:21:29.497742

(1 row)

See Also

Date/Time Expressions (page 55)

GETUTCDATE

Returns the current system date and time as a TIMESTAMP value relative to UTC.

Behavior Type

Stable

Syntax
GETUTCDATE();

Notes

 GETUTCDATE is a stable function that requires parentheses but accepts no arguments.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which is the same across all servers.

 GETUTCDATE is internally converted to STATEMENT_TIMESTAMP() at TIME ZONE 'UTC'.

Example
=> SELECT GETUTCDATE();

 GETUTCDATE

 2011-03-07 20:20:26.193052

(1 row)

See Also

Date/Time Expressions (page 55)

HOUR

Extracts the hour from a DATE, TIMESTAMP, TIMESTAMPTZ, VARCHAR, or INTERVAL value.
The return value is of type INTEGER. (Hour 0 is midnight to 1 a.m.)

Syntax
HOUR (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

-224-

SQL Reference Manual

d Is the incoming DATE, TIMESTAMP, TIMESTAMPTZ, VARCHAR, or

INTERVAL value.

Example
=> SELECT HOUR (TIMESTAMP 'sep 22, 2011 12:34');

 HOUR

 12

(1 row)

=> SELECT HOUR (INTERVAL '35 12:34');

 HOUR

 12

(1 row)

=> SELECT HOUR ('12:34');

 HOUR

 12

(1 row)

ISFINITE

Tests for the special TIMESTAMP constant INFINITY and returns a value of type BOOLEAN.

Behavior Type

Immutable

Syntax
ISFINITE (timestamp)

Parameters

timestamp Is an expression of type TIMESTAMP

Examples
SELECT ISFINITE(TIMESTAMP '2009-02-16 21:28:30');

 isfinite

 t

(1 row)

SELECT ISFINITE(TIMESTAMP 'INFINITY');

 isfinite

 f

(1 row)

-225-

 SQL Functions

JULIAN_DAY

Returns an INTEGER representing the Julian day based on an input TIMESTAMP,
TIMESTAMPTZ, VARCHAR, or DATE value.

Syntax
JULIAN_DAY (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the TIMESTAMP, TIMESTAMPTZ, VARCHAR, or DATE input value.

Example
=> SELECT JULIAN_DAY(TIMESTAMP 'sep 22, 2011 12:34');

 JULIAN_DAY

 2455827

(1 row)

LAST_DAY
Returns the last day of the month based on a TIMESTAMP. The TIMESTAMP can be supplied as
a DATE or a TIMESTAMPTZ data type.

Behavior Type

Immutable, unless called with TIMESTAMPTZ, in which case it is Stable.

Syntax
LAST_DAY (date);

Examples

The following example returns the last day of the month, February, as 29 because 2008 was a
leap year:

SELECT LAST_DAY('2008-02-28 23:30 PST') "Last";

 Last

 2008-02-29

(1 row)

-226-

SQL Reference Manual

The following example returns the last day of the month in March, after converting the string value
to the specified DATE type:

SELECT LAST_DAY('2003/03/15') "Last";

 Last

 2003-03-31

(1 row)

The following example returns the last day of February in the specified year (not a leap year):

SELECT LAST_DAY('2003/02/03') "Last";

 Last

 2003-02-28

(1 row)

LOCALTIME

Returns a value of type TIME representing the time of day.

Behavior Type

Stable

Syntax
LOCALTIME [(precision)]

Parameters

precision Causes the result to be rounded to the specified number

of fractional digits in the seconds field.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples
SELECT LOCALTIME;

 time

 16:16:06.790771

(1 row)

LOCALTIMESTAMP
Returns a value of type TIMESTAMP representing today's date and time of day.

-227-

 SQL Functions

Behavior Type

Stable

Syntax
LOCALTIMESTAMP [(precision)]

Parameters

precision Causes the result to be rounded to the specified number of fractional
digits in the seconds field.

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples
SELECT LOCALTIMESTAMP;

 timestamp

 2009-02-24 14:47:48.5951

(1 row)

MICROSECOND

Returns an INTEGER representing the microsecond portion of an input DATE, VARCHAR,
TIMESTAMP, TIMESTAMPTZ, or INTERVAL value.

Syntax
MICROSECOND (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the DATE, VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL
input value.

Example
=> SELECT MICROSECOND (TIMESTAMP 'Sep 22, 2011 12:34:01.123456');

 MICROSECOND

 123456

(1 row)

-228-

SQL Reference Manual

MIDNIGHT_SECONDS

Returns an INTEGER representing the number of seconds between midnight and the input value.
The input value can be of type VARCHAR, TIME, TIMESTAMP, or TIMESTAMPTZ.

Syntax
MIDNIGHT_SECONDS (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, TIME, TIMESTAMP, or TIMESTAMPTZ input value.

Example
=> SELECT MIDNIGHT_SECONDS('12:34:00.987654');

 MIDNIGHT_SECONDS

 45240

(1 row)

=> SELECT MIDNIGHT_SECONDS(TIME '12:34:00.987654');

 MIDNIGHT_SECONDS

 45240

(1 row)

=> SELECT MIDNIGHT_SECONDS (TIMESTAMP 'sep 22, 2011 12:34');

 MIDNIGHT_SECONDS

 45240

(1 row)

MINUTE

Returns an INTEGER representing the minute value of the input value. The input value can be of
type VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax
MINUTE (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

-229-

 SQL Functions

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL
input value.

Example
=> SELECT MINUTE('12:34:03.456789');

 MINUTE

 34

(1 row)

=>SELECT MINUTE (TIMESTAMP 'sep 22, 2011 12:34');

 MINUTE

 34

(1 row)

=> SELECT MINUTE(INTERVAL '35 12:34:03.456789');

 MINUTE

 34

(1 row)

MONTH
Returns an INTEGER representing the month portion of the input value. The input value can be of
type VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax
MONTH(d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the incoming VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ, or

INTERVAL value.

Examples
=> SELECT MONTH('6-9');

 MONTH

 9

-230-

SQL Reference Manual

(1 row)

=> SELECT MONTH (TIMESTAMP 'sep 22, 2011 12:34');

 MONTH

 9

(1 row)

=> SELECT MONTH(INTERVAL '2-35' year to month);

 MONTH

 11

(1 row)

MONTHS_BETWEEN

Returns the number of months between date1 and date2 as a FLOAT8. where the input
arguments can be of TIMESTAMP, DATE, or TIMESTAMPTZ type.

Behavior Type

Immutable for TIMESTAMP and Date, Stable for TIMESTAMPTZ

Syntax
MONTHS_BETWEEN (date1 , date2);

Parameters

date1, date2 If date1 is later than date2, then the result is positive. If date1 is earlier
than date2, then the result is negative.

If date1 and date2 are either the same days of the month or both are

the last days of their respective month, then the result is always an
integer. Otherwise MONTHS_BETWEEN returns a FLOAT8 result
based on a 31-day month, which considers the difference between

date1 and date2.

Examples

Note the following result is an integral number of days because the dates are on the same day of
the month:

SELECT MONTHS_BETWEEN('2009-03-07 16:00'::TIMESTAMP, '2009-04-07

15:00'::TIMESTAMP);

 months_between

 -1

(1 row)

-231-

 SQL Functions

The result from the following example returns an integral number of days because the days fall on
the last day of their respective months:

SELECT MONTHS_BETWEEN('29Feb2000', '30Sep2000') "Months";

 Months

 -7

(1 row)

In this example, and in the example that immediately follows it, MONTHS_BETWEEN() returns the

number of months between date1 and date2 as a fraction because the days do not fall on the
same day or on the last day of their respective months:

SELECT MONTHS_BETWEEN(TO_DATE('02-02-1995','MM-DD-YYYY'),

 TO_DATE('01-01-1995','MM-DD-YYYY')) "Months";

 Months

 1.03225806451613

(1 row)

SELECT MONTHS_BETWEEN(TO_DATE ('2003/01/01', 'yyyy/mm/dd'),

 TO_DATE ('2003/03/14', 'yyyy/mm/dd')) "Months";

 Months

 -2.41935483870968

(1 row)

The following two examples use the same date1 and date2 strings, but they are cast to a different
data types (TIMESTAMP and TIMESTAMPTZ). The result set is the same for both statements:

SELECT MONTHS_BETWEEN('2008-04-01'::timestamp, '2008-02-29'::timestamp);

 months_between

 1.09677419354839

(1 row)

SELECT MONTHS_BETWEEN('2008-04-01'::timestamptz, '2008-02-29'::timestamptz);

 months_between

 1.09677419354839

(1 row)

The following two examples show alternate inputs:

SELECT MONTHS_BETWEEN('2008-04-01'::date, '2008-02-29'::timestamp);

 months_between

 1.09677419354839

(1 row)

SELECT MONTHS_BETWEEN('2008-02-29'::timestamptz, '2008-04-01'::date);

 months_between

 -1.09677419354839

(1 row)

-232-

SQL Reference Manual

NEW_TIME

Converts a TIMESTAMP value between time zones. Intervals are not permitted.

Behavior Type

Immutable

Syntax
NEW_TIME('timestamp' , 'timezone1' , 'timezone2')

Returns

TIMESTAMP

Parameters

timestamp The TIMESTAMP (or a TIMESTAMPTZ, DATE, or character string
which can be converted to a TIMESTAMP) representing a

TIMESTAMP in timezone1 that returns the equivalent timestamp in
timezone2.

timezone1

VARCHAR string of the form required by the TIMESTAMP AT

TIMEZONE (page 102) 'zone ' clause. timezone1 indicates the time
zone from which you want to convert timestamp. It must be a valid
timezone, as listed in the field for timezone2 below.

timezone2 VARCHAR string of the form required by the TIMESTAMP AT
TIMEZONE (page 102) 'zone ' clause. timezone2 indicates the time
zone into which you want to convert timestamp.

Notes

The timezone arguments are character strings of the form required by the TIMESTAMP AT
TIMEZONE (page 102) 'zone' clause; for example:

AST, ADT Atlantic Standard Time or Daylight Time

BST, BDT Bering Standard Time or Daylight Time

CST, CDT Central Standard Time or Daylight Time

EST, EDT Eastern Standard Time or Daylight Time

GMT Greenwich Mean Time

HST Alaska-Hawaii Standard Time

MST, MDT Mountain Standard Time or Daylight Time

NST Newfoundland Standard Time

PST, PDT Pacific Standard Time or Daylight Time

-233-

 SQL Functions

Examples

The following command converts the specified time from Eastern Standard Time to Pacific
Standard Time:

=> SELECT NEW_TIME('05-24-12 13:48:00', 'EST', 'PST');

 NEW_TIME

 2012-05-24 10:48:00

(1 row)

This command converts the time on January 1 from Eastern Standard Time to Pacific Standard
Time. Notice how the time rolls back to the previous year:

=> SELECT NEW_TIME('01-01-12 01:00:00', 'EST', 'PST');

 NEW_TIME

 2011-12-31 22:00:00

(1 row)

Query the current system time:

=> SELECT NOW();

 now

 2012-05-24 08:28:10.155887-04

(1 row)

=> SELECT NEW_TIME('NOW', 'EDT', 'CDT');

 NEW_TIME

 2012-05-24 07:28:10.155887

(1 row)

The following example returns the year 45 before the Common Era in Greenwich Mean Time and
converts it to Newfoundland Standard Time:

=> SELECT NEW_TIME('April 1, 45 BC', 'GMT', 'NST');

 NEW_TIME

 0045-03-31 20:30:00 BC

(1 row)

=> SELECT NEW_TIME('April 1 2011', 'EDT', 'PDT');

 NEW_TIME

 2011-03-31 21:00:00

(1 row)

=> SELECT NEW_TIME('May 24, 2012 10:00', 'Pacific/Kiritamati', 'EDT');

 NEW_TIME

 2011-05-23 16:00:00

-234-

SQL Reference Manual

(1 row)

NEXT_DAY

Returns the date of the first instance of a particular day of the week that follows the specified date.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax
NEXT_DAY('date', 'DOW')

Parameters

date Can be VARCHAR, TIMESTAMP, TIMESTAMPTZ, or DATE. Only
standard English day-names and day-name abbreviations are accepted.

DOW Day of week can be a CHAR/VARCHAR string or a character constant.

DOW is not case sensitive and trailing spaces are ignored.

Examples

The following example returns the date of the next Friday following the specified date. All are
variations on the same query, and all return the same result:

=> SELECT NEXT_DAY('28-MAR-2011','FRIDAY') "NEXT DAY" FROM DUAL;

 NEXT DAY

 2011-04-01

(1 row)

=> SELECT NEXT_DAY('March 28 2011','FRI') "NEXT DAY" FROM DUAL;

 NEXT DAY

 2011-04-01

(1 row)

=> SELECT NEXT_DAY('3-29-11','FRI') "NEXT DAY" FROM DUAL;

 NEXT DAY

 2011-04-01

(1 row)

-235-

 SQL Functions

NOW [Date/Time]

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. NOW is equivalent to CURRENT_TIMESTAMP (page 201) except that it does not
accept a precision parameter.

Behavior Type

Stable

Syntax
NOW()

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples
SELECT NOW();

 NOW

 2010-04-01 15:31:12.144584-04

(1 row)

See Also

CURRENT_TIMESTAMP (page 201)

OVERLAPS

Returns true when two time periods overlap, false when they do not overlap.

Behavior Type

Stable when TIMESTAMP and TIMESTAMPTZ are both used, or when TIMESTAMPTZ is used
with INTERVAL, Immutable otherwise.

Syntax
(start, end) OVERLAPS (start, end)

(start, interval) OVERLAPS (start, interval)

Parameters

start Is a DATE, TIME, or TIME STAMP value that specifies the
beginning of a time period.

end Is a DATE, TIME, or TIME STAMP value that specifies the end of a
time period.

-236-

SQL Reference Manual

interval Is a value that specifies the length of the time period.

Examples

The first command returns true for an overlap in date range of 2007-02-16 – 2007-12-21 with
2007-10-30 – 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21')

 OVERLAPS (DATE '2007-10-30', DATE '2008-10-30');

 overlaps

 t

(1 row)

The next command returns false for an overlap in date range of 2007-02-16 – 2007-12-21 with
2008-10-30 – 2008-10-30.

SELECT (DATE '2007-02-16', DATE '2007-12-21')

 OVERLAPS (DATE '2008-10-30', DATE '2008-10-30');

 overlaps

 f

(1 row)

The next command returns false for an overlap in date range of 2007-02-16, 22 hours ago with
2007-10-30, 22 hours ago.

SELECT (DATE '2007-02-16', INTERVAL '1 12:59:10')

 OVERLAPS (DATE '2007-10-30', INTERVAL '1 12:59:10');

 overlaps

 f

(1 row)

QUARTER

Returns an INTEGER representing calendar quarter into which the input value falls. The input
value can be of type VARCHAR, DATE, TIMESTAMP or TIMESTAMPTZ.

Syntax
QUARTER(d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the DATE, VARCHAR, TIMESTAMP, or TIMESTAMPTZ input value.

Example
=> SELECT QUARTER (TIMESTAMP 'sep 22, 2011 12:34');

-237-

 SQL Functions

 QUARTER

 3

(1 row)

ROUND [Date/Time]

Rounds a TIMESTAMP, TIMESTAMPTZ, or DATE. The return value is of type TIMESTAMP.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax
ROUND([TIMESTAMP | DATE] , format)

Parameters

TIMESTAMP | DATE Is the TIMESTAMP or DATE input value.

format Is a string constant that selects the precision to which
truncate the input value. Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY, YY,Y

ISO Year IYYY, IYY, IY, I

Quarter Q

Month MONTH, MON, MM, RM

Same day of the
week as the first

day of the year

WW

Same day of the
week as the first

day of the ISO
year

IW

Same day of the

week as the first
day of the month

W

Day DDD, DD, J

Starting day of
the week

DAY, DY, D

Hour HH, HH12, HH24

Minute MI

Second SS

-238-

SQL Reference Manual

Examples

=> SELECT ROUND(TIMESTAMP 'sep 22, 2011 12:34:00', 'dy');

 ROUND

 2011-09-18 00:00:00

(1 row)

SECOND

Returns an INTEGER representing the second portion of the input value. The input value can be of
type VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax
SECOND(d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL input
value.

Examples
=> SELECT SECOND ('23:34:03.456789');

 SECOND

 3

(1 row)

=> SELECT SECOND (TIMESTAMP 'sep 22, 2011 12:34');

 SECOND

 0

(1 row)

=> SELECT SECOND (INTERVAL '35 12:34:03.456789');

 SECOND

 3

(1 row)

-239-

 SQL Functions

STATEMENT_TIMESTAMP

Is similar to TRANSACTION_TIMESTAMP (page 251). It returns a value of type TIMESTAMP
WITH TIME ZONE representing the start of the current statement.

Behavior Type

Stable

Syntax
STATEMENT_TIMESTAMP()

Notes

This function returns the start time of the current statement; the value does not change during the
statement. The intent is to allow a single statement to have a consistent notion of the "current"
time, so that multiple modifications within the same statement bear the same timestamp.

Examples
SELECT STATEMENT_TIMESTAMP();

 STATEMENT_TIMESTAMP

 2010-04-01 15:40:42.223736-04

(1 row)

See Also

CLOCK_TIMESTAMP (page 199)

TRANSACTION_TIMESTAMP (page 251)

SYSDATE

Returns the current system date and time as a TIMESTAMP value.

Behavior Type

Stable

Syntax
SYSDATE();

Notes

 SYSDATE is a stable function (called once per statement) that requires no arguments.
Parentheses are optional.

 This function uses the date and time supplied by the operating system on the server to which
you are connected, which must be the same across all servers.

 In implementation, SYSDATE converts STATEMENT_TIMESTAMP (page 239) from
TIMESTAMPTZ to TIMESTAMP.

-240-

SQL Reference Manual

 This function is identical to GETDATE() (page 222).

Examples
=> SELECT SYSDATE();

 sysdate

 2011-03-07 13:22:28.295802

(1 row)

See Also

Date/Time Expressions (page 55)

TIME_SLICE

Aggregates data by different fixed-time intervals and returns a rounded-up input TIMESTAMP
value to a value that corresponds with the start or end of the time slice interval.

Given an input TIMESTAMP value, such as '2000-10-28 00:00:01', the start time of a 3-second
time slice interval is '2000-10-28 00:00:00', and the end time of the same time slice is '2000-10-28
00:00:03'.

Behavior Type

Immutable

Syntax
TIME_SLICE(expression, slice_length,

 [time_unit = 'SECOND'],

 [start_or_end = 'START'])

Parameters

expression Is evaluated on each row.

Can be either a column of type TIMESTAMP or a (string) constant that can

be parsed into a TIMESTAMP value, such as '2004-10-19 10:23:54'.

slice_length Is the length of the slice specified in integers. Input must be a positive integer.

time_unit Is the time unit of the slice with a default of SECOND.

Domain of possible values: { HOUR, MINUTE, SECOND, MILLISECOND,
MICROSECOND }.

start_or_end Indicates whether the returned value corresponds to the start or end time of
the time slice interval. The default is START.

Domain of possible values: { START, END }.

Notes

 The returned value's data type is TIMESTAMP.

-241-

 SQL Functions

 The corresponding SQL data type for TIMESTAMP is TIMESTAMP WITHOUT TIME ZONE.
HP Vertica supports TIMESTAMP for TIME_SLICE instead of DATE and TIME data types.

 TIME_SLICE exhibits the following behavior around nulls:

 The system returns an error when any one of slice_length, time_unit, or start_or_end
parameters is null.

 When slice_length, time_unit, and start_or_end contain legal values, and expression is
null, the system returns a NULL value, instead of an error.

Usage

The following command returns the (default) start time of a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3);

 time_slice

 2009-09-19 00:00:00

(1 row)

The following command returns the end time of a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'SECOND', 'END');

 time_slice

 2009-09-19 00:00:03

(1 row)

This command returns results in milliseconds, using a 3-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'ms');

 time_slice

 2009-09-19 00:00:00.999

(1 row)

This command returns results in microseconds, using a 9-second time slice:

SELECT TIME_SLICE('2009-09-19 00:00:01', 3, 'us');

 time_slice

 2009-09-19 00:00:00.999999

(1 row)

The next example uses a 3-second interval with an input value of '00:00:01'. To focus specifically
on seconds, the example omits date, though all values are implied as being part of the timestamp
with a given input of '00:00:01':

 '00:00:00' is the start of the 3-second time slice

 '00:00:03' is the end of the 3-second time slice.

-242-

SQL Reference Manual

 '00:00:03' is also the start of the second 3-second time slice. In time slice boundaries, the end
value of a time slice does not belong to that time slice; it starts the next one.

When the time slice interval is not a factor of 60 seconds, such as a given slice length of 9 in the
following example, the slice does not always start or end on 00 seconds:

SELECT TIME_SLICE('2009-02-14 20:13:01', 9);

 time_slice

 2009-02-14 20:12:54

(1 row)

This is expected behavior, as the following properties are true for all time slices:

 Equal in length

 Consecutive (no gaps between them)

 Non-overlapping

To force the above example ('2009-02-14 20:13:01') to start at '2009-02-14 20:13:00', adjust the
output timestamp values so that the remainder of 54 counts up to 60:

SELECT TIME_SLICE('2009-02-14 20:13:01', 9)+'6 seconds'::INTERVAL AS time;

 time

 2009-02-14 20:13:00

(1 row)

Alternatively, you could use a different slice length, which is divisible by 60, such as 5:

SELECT TIME_SLICE('2009-02-14 20:13:01', 5);

 time_slice

 2009-02-14 20:13:00

(1 row)

A TIMESTAMPTZ value is implicitly cast to TIMESTAMP. For example, the following two
statements have the same effect.

-243-

 SQL Functions

SELECT TIME_SLICE('2009-09-23 11:12:01'::timestamptz, 3);

 TIME_SLICE

 2009-09-23 11:12:00

(1 row)

SELECT TIME_SLICE('2009-09-23 11:12:01'::timestamptz::timestamp, 3);

 TIME_SLICE

 2009-09-23 11:12:00

(1 row)

Examples

You can use the SQL analytic functions FIRST_VALUE and LAST_VALUE to find the first/last
price within each time slice group (set of rows belonging to the same time slice). This structure
could be useful if you want to sample input data by choosing one row from each time slice group.

SELECT date_key, transaction_time, sales_dollar_amount,

TIME_SLICE(DATE '2000-01-01' + date_key + transaction_time, 3),

FIRST_VALUE(sales_dollar_amount)

OVER (PARTITION BY TIME_SLICE(DATE '2000-01-01' + date_key + transaction_time, 3)

 ORDER BY DATE '2000-01-01' + date_key + transaction_time) AS first_value

FROM store.store_sales_fact

LIMIT 20;

 date_key | transaction_time | sales_dollar_amount | time_slice | first_value

----------+------------------+---------------------+---------------------+-------------

 1 | 00:41:16 | 164 | 2000-01-02 00:41:15 | 164

 1 | 00:41:33 | 310 | 2000-01-02 00:41:33 | 310

 1 | 15:32:51 | 271 | 2000-01-02 15:32:51 | 271

 1 | 15:33:15 | 419 | 2000-01-02 15:33:15 | 419

 1 | 15:33:44 | 193 | 2000-01-02 15:33:42 | 193

 1 | 16:36:29 | 466 | 2000-01-02 16:36:27 | 466

 1 | 16:36:44 | 250 | 2000-01-02 16:36:42 | 250

 2 | 03:11:28 | 39 | 2000-01-03 03:11:27 | 39

 3 | 03:55:15 | 375 | 2000-01-04 03:55:15 | 375

 3 | 11:58:05 | 369 | 2000-01-04 11:58:03 | 369

 3 | 11:58:24 | 174 | 2000-01-04 11:58:24 | 174

 3 | 11:58:52 | 449 | 2000-01-04 11:58:51 | 449

 3 | 19:01:21 | 201 | 2000-01-04 19:01:21 | 201

 3 | 22:15:05 | 156 | 2000-01-04 22:15:03 | 156

 4 | 13:36:57 | -125 | 2000-01-05 13:36:57 | -125

 4 | 13:37:24 | -251 | 2000-01-05 13:37:24 | -251

 4 | 13:37:54 | 353 | 2000-01-05 13:37:54 | 353

 4 | 13:38:04 | 426 | 2000-01-05 13:38:03 | 426

 4 | 13:38:31 | 209 | 2000-01-05 13:38:30 | 209

 5 | 10:21:24 | 488 | 2000-01-06 10:21:24 | 488

(20 rows)

Notice how TIME_SLICE rounds the transaction time to the 3-second slice length.

The following example uses the analytic (window) OVER() clause to return the last trading price
(the last row ordered by TickTime) in each 3-second time slice partition:

SELECT DISTINCT TIME_SLICE(TickTime, 3), LAST_VALUE(price)

OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING);

-244-

SQL Reference Manual

Note: If you omit the windowing clause from an analytic clause, LAST_VALUE defaults to
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. Results can seem
non-intuitive, because instead of returning the value from the bottom of the current partition, the
function returns the bottom of the window, which continues to change along with the current
input row that is being processed. For more information, see Using Time Series Analytics and
Using SQL Analytics in the Programmer's Guide.

In the example below, FIRST_VALUE is evaluated once for each input record and the data is
sorted by ascending values. Use SELECT DISTINCT to remove the duplicates and return only
one output record per TIME_SLICE:

SELECT DISTINCT TIME_SLICE(TickTime, 3), FIRST_VALUE(price)

OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ASC)

FROM tick_store;

 TIME_SLICE | ?column?

---------------------+----------

 2009-09-21 00:00:06 | 20.00

 2009-09-21 00:00:09 | 30.00

 2009-09-21 00:00:00 | 10.00

(3 rows)

The information output by the above query can also return MIN, MAX, and AVG of the trading
prices within each time slice.

SELECT DISTINCT TIME_SLICE(TickTime, 3),

FIRST_VALUE(Price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)

ORDER BY TickTime ASC),

 MIN(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)),

 MAX(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3)),

 AVG(price) OVER (PARTITION BY TIME_SLICE(TickTime, 3))

FROM tick_store;

See Also

Aggregate Functions (page 118)

FIRST_VALUE (page 160), LAST_VALUE (page 166), TIMESERIES Clause (page 894),
TS_FIRST_VALUE (page 421), and TS_LAST_VALUE (page 422)

Using Time Zones with HP Vertica in the Administrator's Guide

TIMEOFDAY

Returns a text string representing the time of day.

Behavior Type

Volatile

-245-

 SQL Functions

Syntax
TIMEOFDAY()

Notes

TIMEOFDAY() returns the wall-clock time and advances during transactions.

Examples
SELECT TIMEOFDAY();

 TIMEOFDAY

 Thu Apr 01 15:42:04.483766 2010 EDT

(1 row)

TIMESTAMPADD

Adds a specified number of intervals to a TIMESTAMP or TIMESTAMPTZ. The return value
depends on the input, as follows:

 If starttimestamp is of TIMESTAMP, the return value is of type TIMESTAMP.

 If starttimestamp is of TIMESTAMPTZ, the return value is of type TIMESTAMPTZ.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1
TIMESTAMPADD (datepart ,interval, starttimestamp);

Parameters

-246-

SQL Reference Manual

datepart (VARCHAR) Returns the number of specified datepart boundaries

between the specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in
parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart*

abbreviation

YEAR yy, yyyy

QUARTER qq, q

MONTH mm, m

DAY dd, d, dy,

dayofyear, y

WEEK wk, ww

HOUR hh

MINUTE mi, n

SECOND ss, s

MILLISECOND ms

MICROSECOND mcs, us

* Each of these dateparts can be prefixed with SQL_TSI_ (i.e.
SQL_TSI_YEAR, SQL_TSI_DAY, and so forth.)

starttimestamp Is the start TIMESTAMP or TIMESTAMPTZ for the calculation.

endtimestamp Is the end TIMESTAMP for the calculation.

Notes

 TIMESTAMPDIFF() is an immutable function with a default type of TIMESTAMP. If
TIMESTAMPTZ is specified, the function is stable.

 HP Vertica accepts statements written in any of the following forms:

TIMESTAMPDIFF(year, s, e);

TIMESTAMPDIFF('year', s, e);

If you use an expression, the expression must be enclosed in parentheses:

DATEDIFF((expression), s, e);

 Starting arguments are not included in the count, but end arguments are included.

Example
=> SELECT TIMESTAMPADD (SQL_TSI_MONTH, 2,('jan 1, 2006'));

 timestampadd

 2006-03-01 00:00:00-05

(1 row)

-247-

 SQL Functions

See Also

Date/Time Expressions (page 55)

TIMESTAMPDIFF

Returns the difference between two TIMESTAMP or TIMESTAMPTZ values, based on the
specified start and end arguments.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax 1
TIMESTAMPDIFF (datepart , starttimestamp , endtimestamp);

Parameters

datepart (VARCHAR) Returns the number of specified datepart boundaries
between the specified startdate and enddate.

Can be an unquoted identifier, a quoted string, or an expression in

parentheses, which evaluates to the datepart as a character string.

The following table lists the valid datepart arguments.

datepart

abbreviation

year yy, yyyy

quarter qq, q

month mm, m

day dd, d, dy, dayofyear, y

week wk, ww

hour hh

minute mi, n

second ss, s

millisecond ms

microsecond mcs, us

starttimestamp Is the start TIMESTAMP for the calculation.

endtimestamp Is the end TIMESTAMP for the calculation.

-248-

SQL Reference Manual

Notes

 TIMESTAMPDIFF() is an immutable function with a default type of TIMESTAMP. If
TIMESTAMPTZ is specified, the function is stable.

 HP Vertica accepts statements written in any of the following forms:

TIMESTAMPDIFF(year, s, e);

TIMESTAMPDIFF('year', s, e);

If you use an expression, the expression must be enclosed in parentheses:

TIMESTAMPDIFF((expression), s, e);

 Starting arguments are not included in the count, but end arguments are included.

Example
=> SELECT TIMESTAMPDIFF ('YEAR',('jan 1, 2006 12:34:00'), ('jan 1, 2008

12:34:00'));

 timestampdiff

 2

(1 row)

See Also

Date/Time Expressions (page 55)

TIMESTAMP_ROUND

Rounds a TIMESTAMP to a specified format. The return value is of type TIMESTAMP.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax
TIMESTAMP_ROUND (timestamp, format)

Parameters

timestamp Is the TIMESTAMP or TIMESTAMPTZ input value.

-249-

 SQL Functions

format Is a string constant that selects the precision to which truncate the

input value. Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY, YY,Y

ISO Year IYYY, IYY, IY, I

Quarter Q

Month MONTH, MON, MM, RM

Same day of the
week as the first

day of the year

WW

Same day of the
week as the first

day of the ISO year

IW

Same day of the
week as the first

day of the month

W

Day DDD, DD, J

Starting day of the

week

DAY, DY, D

Hour HH, HH12, HH24

Minute MI

Second SS

Examples

b=> SELECT TIMESTAMP_ROUND('sep 22, 2011 12:34:00', 'dy');

 TIMESTAMP_ROUND

 2011-09-18 00:00:00

(1 row)

TIMESTAMP_TRUNC

Truncates a TIMESTAMP. The return value is of type TIMESTAMP.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

-250-

SQL Reference Manual

Syntax
TIMESTAMP_TRUNC (timestamp, format)

Parameters

timestamp Is the TIMESTAMP or TIMESTAMPTZ input value.

format Is a string constant that selects the precision to which truncate the input value. Valid
values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY,

YY,Y

ISO Year IYYY, IYY, IY, I

Quarter Q

Month MONTH, MON, MM, RM

Same day of the week as the first day of the year WW

Same day of the week as the first day of the ISO

year

IW

Same day of the week as the first day of the month W

Day DDD, DD, J

Starting day of the week DAY, DY, D

Hour HH, HH12, HH24

Minute MI

Second SS

Examples
=> SELECT TIMESTAMP_TRUNC('sep 22, 2011 12:34:00');

 TIMESTAMP_TRUNC

 2011-09-22 00:00:00

(1 row)

=> SELECT TIMESTAMP_TRUNC('sep 22, 2011 12:34:00', 'dy');

 TIMESTAMP_TRUNC

 2011-09-18 00:00:00

(1 row)

-251-

 SQL Functions

TRANSACTION_TIMESTAMP

Returns a value of type TIMESTAMP WITH TIME ZONE representing the start of the current
transaction. TRANSACTION_TIMESTAMP is equivalent to CURRENT_TIMESTAMP (page 201)
except that it does not accept a precision parameter.

Behavior Type

Stable

Syntax
TRANSACTION_TIMESTAMP()

Notes

This function returns the start time of the current transaction; the value does not change during the
transaction. The intent is to allow a single transaction to have a consistent notion of the "current"
time, so that multiple modifications within the same transaction bear the same timestamp.

Examples
SELECT TRANSACTION_TIMESTAMP();

 TRANSACTION_TIMESTAMP

 2010-04-01 15:31:12.144584-04

(1 row)

See Also

CLOCK_TIMESTAMP (page 199) and STATEMENT_TIMESTAMP (page 239)

TRUNC [Date/Time]

Truncates a TIMESTAMP, TIMESTAMPTZ, or DATE. The return value is of type TIMESTAMP.

Behavior Type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Syntax
TRUNC ([TIMESTAMP | DATE] , format)

Parameters

TIMESTAMP | DATE Is the TIMESTAMP or DATE input value.

-252-

SQL Reference Manual

format Is a string constant that selects the precision to which truncate the input value.

Valid values for format are:

Precision Valid values

Century CC, SCC

Year SYYY, YYYY, YEAR, YYY,
YY,Y

ISO Year IYYY, IYY, IY, I

Quarter Q

Month MONTH, MON, MM, RM

Same day of the week as the first day of

the year

WW

Same day of the week as the first day of
the ISO year

IW

Same day of the week as the first day of
the month

W

Day DDD, DD, J

Starting day of the week DAY, DY, D

Hour HH, HH12, HH24

Minute MI

Second SS

Examples
=> SELECT TRUNC(TIMESTAMP 'sep 22, 2011 12:34:00', 'dy');

 TRUNC

 2011-09-18 00:00:00

(1 row)

WEEK

Returns an INTEGER representing the week of the year into which the input value falls. A week
starts on Sunday. January 1 is always in the first week of the year.

The input is of type VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ.

Syntax
WEEK (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

-253-

 SQL Functions

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, TIMESTAMPTZ input value.

Example
=> SELECT WEEK (TIMESTAMP 'sep 22, 2011 12:34');

 WEEK

 39

(1 row)

WEEK_ISO

Returns an INTEGER from 1 - 53 representing the week of the year into which the input value falls.
The return value is based on the ISO 8061 standard. The input is of VARCHAR, DATE,
TIMESTAMP, or TIMESTAMPTZ.

The ISO week consists of 7 days starting on Monday and ending on Sunday. The first week of the
year is the week that contains January 4.

Syntax
WEEK_ISO (d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example

The following examples illustrate the different results returned by WEEK_ISO. The first shows that
December 28, 2011 falls within week 52 of the ISO calendar:

=> SELECT WEEK_ISO (TIMESTAMP 'Dec 28, 2011 10:00:00');

 WEEK_ISO

 52

(1 row)

The second example shows WEEK_ISO results for January 1, 2012. Note that, since this date
falls on a Sunday, it falls within week 52 of the ISO year:

=> SELECT WEEK_ISO (TIMESTAMP 'Jan 1, 2012 10:00:00');

 WEEK_ISO

-254-

SQL Reference Manual

 52

(1 row)

The third example shows WEEK_ISO results for January 2, 2012, which occurs on a Monday. This
is the first week of the year that contains a Thursday and contains January 4. The function returns
week 1.

=> SELECT WEEK_ISO (TIMESTAMP 'Jan 2, 2012 10:00:00');

 WEEK_ISO

 1

The last example shows how to combine the DAYOFWEEK_ISO, WEEK_ISO, and YEAR_ISO
functions to find the ISO day of the week, week, and year:

=> SELECT DAYOFWEEK_ISO('Jan 1, 2000'), WEEK_ISO('Jan 1,

2000'),YEAR_ISO('Jan1,2000');

 DAYOFWEEK_ISO | WEEK_ISO | YEAR_ISO

---------------+----------+----------

 6 | 52 | 1999

(1 row)

See Also

YEAR_ISO (page 255)

DAYOFWEEK_ISO (page 216)

http://en.wikipedia.org/wiki/ISO_8601 (http://en.wikipedia.org/wiki/ISO_8601)

YEAR

Returns an INTEGER representing the year portion of the input value. The input value can be of
type VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL.

Syntax
YEAR(d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, TIMESTAMP, TIMESTAMPTZ, or INTERVAL input
value.

Example
=> SELECT YEAR ('6-9');

 YEAR

http://en.wikipedia.org/wiki/ISO_8601

-255-

 SQL Functions

 6

(1 row)

=> SELECT YEAR (TIMESTAMP 'sep 22, 2011 12:34');

 YEAR

 2011

(1 row)

=> SELECT YEAR (INTERVAL '2-35' year to month);

 YEAR

 4

(1 row)

YEAR_ISO

Returns an INTEGER representing the year portion of the input value. The return value is based
on the ISO 8061 standard. The input value can be of type VARCHAR, DATE, TIMESTAMP, or
TIMESTAMPTZ.

The first week of the ISO year is the week that contains January 4.

Syntax
YEAR_ISO(d)

Behavior type

Immutable, except for TIMESTAMPTZ arguments where it is Stable.

Parameters

d Is the VARCHAR, DATE, TIMESTAMP, or TIMESTAMPTZ input value.

Example
=> SELECT YEAR_ISO (TIMESTAMP 'sep 22, 2011 12:34');

 YEAR_ISO

 2011

(1 row)

The following example shows how to combine the DAYOFWEEK_ISO, WEEK_ISO, and
YEAR_ISO functions to find the ISO day of the week, week, and year:

=> SELECT DAYOFWEEK_ISO('Jan 1, 2000'), WEEK_ISO('Jan 1,

2000'),YEAR_ISO('Jan1,2000');

-256-

SQL Reference Manual

 DAYOFWEEK_ISO | WEEK_ISO | YEAR_ISO

---------------+----------+----------

 6 | 52 | 1999

(1 row)

See also

WEEK_ISO (page 253)

DAYOFWEEK_ISO (page 216)

http://en.wikipedia.org/wiki/ISO_8601 (http://en.wikipedia.org/wiki/ISO_8601)

Formatting Functions

Formatting functions provide a powerful tool set for converting various data types (DATE/TIME,
INTEGER, FLOATING POINT) to formatted strings and for converting from formatted strings to
specific data types.

These functions all follow a common calling convention:

 The first argument is the value to be formatted.

 The second argument is a template that defines the output or input format.

Exception: The TO_TIMESTAMP function can take a single double precision argument.

TO_BITSTRING

Returns a VARCHAR that represents the given VARBINARY value in bitstring format

Behavior Type

Immutable

Syntax
TO_BITSTRING (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARCHAR TO_BITSTRING(VARBINARY) converts data from binary type to character type
(where the character representation is the bitstring format). This function is the inverse of
BITSTRING_TO_BINARY:

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x)

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x)

http://en.wikipedia.org/wiki/ISO_8601

-257-

 SQL Functions

Examples
SELECT TO_BITSTRING('ab'::BINARY(2));

 to_bitstring

 0110000101100010

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0x10'));

to_bitstring

00010000

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0xF0'));

to_bitstring

11110000

(1 row)

See Also

BITCOUNT (page 359) and BITSTRING_TO_BINARY (page 360)

TO_CHAR

Converts various date/time and numeric values into text strings.

Behavior Type

Stable

Syntax
TO_CHAR (expression [, pattern])

Parameters

expression (TIMESTAMP, TIMESTAMPTZ, TIME, TIMETZ, INTERVAL,
INTEGER, DOUBLE PRECISION) specifies the value to convert.

pattern [Optional] (CHAR or VARCHAR) specifies an output pattern string
using the Template Patterns for Date/Time Formatting (page
265) and and/or Template Patterns for Numeric Formatting

(page 268).

Notes

 TO_CHAR(any) casts any type, except BINARY/VARBINARY, to VARCHAR.

The following example returns an error if you attempt to cast TO_CHAR to a binary data type:

=> SELECT TO_CHAR('abc'::VARBINARY);

ERROR: cannot cast type varbinary to varchar

 TO_CHAR accepts TIME and TIMETZ data types as inputs if you explicitly cast TIME to
TIMESTAMP and TIMETZ to TIMESTAMPTZ.

-258-

SQL Reference Manual

=> SELECT TO_CHAR(TIME '14:34:06.4','HH12:MI am');

=> SELECT TO_CHAR(TIMETZ '14:34:06.4+6','HH12:MI am');

You can extract the timezone hour from TIMETZ:

SELECT EXTRACT(timezone_hour FROM TIMETZ '10:30+13:30');

 date_part

 13

(1 row)

 Ordinary text is allowed in to_char templates and is output literally. You can put a substring in
double quotes to force it to be interpreted as literal text even if it contains pattern key words.
For example, in '"Hello Year "YYYY', the YYYY is replaced by the year data, but the

single Y in Year is not.

 The TO_CHAR function's day-of-the-week numbering (see the 'D' template pattern (page
265)) is different from that of the EXTRACT (page 218) function.

 Given an INTERVAL type, TO_CHAR formats HH and HH12 as hours in a single day, while
HH24 can output hours exceeding a single day, for example, >24.

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: '\\"YYYY Month\\"'

 TO_CHAR does not support the use of V combined with a decimal point. For example: 99.9V99
is not allowed.

Examples

 Expression Result

SELECT TO_CHAR(CURRENT_TIMESTAMP,

'Day, DD HH12:MI:SS');

'Tuesday , 06 05:39:

18'

SELECT TO_CHAR(CURRENT_TIMESTAMP,

'FMDay, FMDD HH12:MI:SS');

'Tuesday, 6 05:39:18'

SELECT TO_CHAR(TIMEtz '14:34:06.4+6','HH12:MI am');

 TO_CHAR

 04:34 am

SELECT TO_CHAR(-0.1, '99.99'); ' -.10'

SELECT TO_CHAR(-0.1, 'FM9.99'); '-.1'

SELECT TO_CHAR(0.1, '0.9'); ' 0.1'

SELECT TO_CHAR(12, '9990999.9'); ' 0012.0'

SELECT TO_CHAR(12, 'FM9990999.9'); '0012.'

SELECT TO_CHAR(485, '999'); ' 485'

SELECT TO_CHAR(-485, '999'); '-485'

SELECT TO_CHAR(485, '9 9 9'); ' 4 8 5'

SELECT TO_CHAR(1485, '9,999'); ' 1,485'

SELECT TO_CHAR(1485, '9G999'); ' 1 485'

SELECT TO_CHAR(148.5, '999.999'); ' 148.500'

SELECT TO_CHAR(148.5, 'FM999.999'); '148.5'

SELECT TO_CHAR(148.5, 'FM999.990'); '148.500'

SELECT TO_CHAR(148.5, '999D999'); ' 148,500'

SELECT TO_CHAR(3148.5, '9G999D999'); ' 3 148,500'

SELECT TO_CHAR(-485, '999S'); '485-'

-259-

 SQL Functions

SELECT TO_CHAR(-485, '999MI'); '485-'

SELECT TO_CHAR(485, '999MI'); '485 '

SELECT TO_CHAR(485, 'FM999MI'); '485'

SELECT TO_CHAR(485, 'PL999'); '+485'

SELECT TO_CHAR(485, 'SG999'); '+485'

SELECT TO_CHAR(-485, 'SG999'); '-485'

SELECT TO_CHAR(-485, '9SG99'); '4-85'

SELECT TO_CHAR(-485, '999PR'); '<485>'

SELECT TO_CHAR(485, 'L999'); 'DM 485

SELECT TO_CHAR(485, 'RN'); ' CDLXXXV'

SELECT TO_CHAR(485, 'FMRN'); 'CDLXXXV'

SELECT TO_CHAR(5.2, 'FMRN'); 'V'

SELECT TO_CHAR(482, '999th'); ' 482nd'

SELECT TO_CHAR(485, '"Good number:"999'); 'Good number: 485'

SELECT TO_CHAR(485.8, '"Pre:"999" Post:" .999'); 'Pre: 485 Post: .800'

SELECT TO_CHAR(12, '99V999'); ' 12000'

SELECT TO_CHAR(12.4, '99V999'); ' 12400'

SELECT TO_CHAR(12.45, '99V9'); ' 125'

SELECT TO_CHAR(-1234.567); -1234.567

SELECT TO_CHAR('1999-12-25'::DATE); 1999-12-25

SELECT TO_CHAR('1999-12-25 11:31'::TIMESTAMP); 1999-12-25 11:31:00

SELECT TO_CHAR('1999-12-25 11:31 EST'::TIMESTAMPTZ); 1999-12-25 11:31:00-05

SELECT TO_CHAR('3 days 1000.333 secs'::INTERVAL); 3 days 00:16:40.333

TO_DATE
Converts a string value to a DATE type.

Behavior Type

Stable

Syntax
TO_DATE (expression , pattern)

Parameters

expression (CHAR or VARCHAR) specifies the value to convert.

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 265) and/or
Template Patterns for Numeric Formatting (page 268).

Input Value Considerations

The TO_DATE function requires a CHAR or VARCHAR expression. For other input types, use
TO_CHAR (page 257) to perform an explicit cast to a CHAR or VARCHAR before using this
function.

-260-

SQL Reference Manual

Notes

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: '\\"YYYY Month\\"'

 TO_TIMESTAMP, TO_TIMESTAMP_TZ, and TO_DATE skip multiple blank spaces in the
input string if the FX option is not used. FX must be specified as the first item in the template.
For example:

 For example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct.

 TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because

TO_TIMESTAMP expects one space only.

 The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO_DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO_DATE('20000-1131',

'YYYY-MMDD') or TO_DATE('20000Nov31', 'YYYYMonDD').

 In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

SELECT TO_DATE('13 Feb 2000', 'DD Mon YYYY');

 to_date

 2000-02-13

(1 row)

See Also

Template Pattern Modifiers for Date/Time Formatting (page 267)

TO_HEX

Returns a VARCHAR or VARBINARY representing the hexadecimal equivalent of a number.

Behavior Type

Immutable

Syntax
TO_HEX (number)

Parameters

number (INTEGER) is the number to convert to hexadecimal

-261-

 SQL Functions

Notes

VARCHAR TO_HEX(INTEGER) and VARCHAR TO_HEX(VARBINARY) are similar. The function
converts data from binary type to character type (where the character representation is in
hexadecimal format). This function is the inverse of HEX_TO_BINARY.

TO_HEX(HEX_TO_BINARY(x)) = x).

HEX_TO_BINARY(TO_HEX(x)) = x).

Examples
SELECT TO_HEX(123456789);

 to_hex

 75bcd15

(1 row)

For VARBINARY inputs, the returned value is not preceded by "0x". For example:

SELECT TO_HEX('ab'::binary(2));

 to_hex

 6162

(1 row)

TO_TIMESTAMP

Converts a string value or a UNIX/POSIX epoch value to a TIMESTAMP type. Output depends on
the current session time zone.

Behavior Type

Stable

Syntax
TO_TIMESTAMP (expression, pattern)

TO_TIMESTAMP (unix-epoch)

Parameters

expression (CHAR or VARCHAR) is the string to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the
Template Patterns for Date/Time Formatting (page 265) and/or
Template Patterns for Numeric Formatting (page 268).

unix-epoch (DOUBLE PRECISION) specifies some number of seconds
elapsed since midnight UTC of January 1, 1970, not counting leap
seconds. INTEGER values are implicitly cast to DOUBLE

PRECISION.

-262-

SQL Reference Manual

Notes

 For more information about UNIX/POSIX time, see Wikipedia
http://en.wikipedia.org/wiki/Unix_time.

 Millisecond (MS) and microsecond (US) values in a conversion from string to TIMESTAMP are
used as part of the seconds after the decimal point. For example TO_TIMESTAMP('12:3',
'SS:MS') is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds.
This means for the format SS:MS, the input values 12:3, 12:30, and 12:300 specify the same
number of milliseconds. To get three milliseconds, use 12:003, which the conversion counts as
12 + 0.003 = 12.003 seconds.

Here is a more complex example: TO_TIMESTAMP('15:12:02.020.001230',
'HH:MI:SS.MS.US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: '\\"YYYY Month\\"'

 TZ/tz are not supported patterns for the TO_TIMESTAMP function; for example, the following
command returns an error:

SELECT TO_TIMESTAMP('01-01-01 01:01:01+03:00','DD-MM-YY

HH24:MI:SSTZ');

ERROR: "TZ"/"tz" not supported

 TO_TIMESTAMP, TO_TIMESTAMP_TZ, and TO_DATE skip multiple blank spaces in the
input string if the FX option is not used. FX must be specified as the first item in the template.
For example:

 For example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct.

 TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

 The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO_DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO_DATE('20000-1131',

'YYYY-MMDD') or TO_DATE('20000Nov31', 'YYYYMonDD').

 In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

=> SELECT TO_TIMESTAMP('13 Feb 2009', 'DD Mon YYY');

 TO_TIMESTAMP

 1200-02-13 00:00:00

(1 row)

VMart=> SELECT TO_TIMESTAMP(200120400);

 TO_TIMESTAMP

http://en.wikipedia.org/wiki/Unix_time

-263-

 SQL Functions

 1976-05-05 01:00:00

(1 row)

See Also

Template Pattern Modifiers for Date/Time Formatting (page 267)

TO_TIMESTAMP_TZ

Converts a string value or a UNIX/POSIX epoch value to a TIMESTAMP WITH TIME ZONE type.

Behavior Type

Stable

Syntax
TO_TIMESTAMP_TZ (expression, pattern)

TO_TIMESTAMP (unix-epoch)

Parameters

expression (CHAR or VARCHAR) is the string to convert

pattern (CHAR or VARCHAR) specifies an output pattern string using the

Template Patterns for Date/Time Formatting (page 265) and/or
Template Patterns for Numeric Formatting (page 268).

unix-epoch (DOUBLE PRECISION) specifies some number of seconds

elapsed since midnight UTC of January 1, 1970, not counting leap
seconds. INTEGER values are implicitly cast to DOUBLE

PRECISION.

Notes

 For more information about UNIX/POSIX time, see Wikipedia
http://en.wikipedia.org/wiki/Unix_time.

 Millisecond (MS) and microsecond (US) values in a conversion from string to TIMESTAMP are
used as part of the seconds after the decimal point. For example TO_TIMESTAMP('12:3',
'SS:MS') is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds.
This means for the format SS:MS, the input values 12:3, 12:30, and 12:300 specify the same
number of milliseconds. To get three milliseconds, use 12:003, which the conversion counts as
12 + 0.003 = 12.003 seconds.

Here is a more complex example: TO_TIMESTAMP('15:12:02.020.001230',
'HH:MI:SS.MS.US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

 To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: '\\"YYYY Month\\"'

http://en.wikipedia.org/wiki/Unix_time

-264-

SQL Reference Manual

 TO_TIMESTAMP, TO_TIMESTAMP_TZ, and TO_DATE skip multiple blank spaces in the
input string if the FX option is not used. FX must be specified as the first item in the template.
For example:

 For example TO_TIMESTAMP('2000 JUN', 'YYYY MON') is correct.

 TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') returns an error, because
TO_TIMESTAMP expects one space only.

 The YYYY conversion from string to TIMESTAMP or DATE has a restriction if you use a year
with more than four digits. You must use a non-digit character or template after YYYY,
otherwise the year is always interpreted as four digits. For example (with the year 20000):

TO_DATE('200001131', 'YYYYMMDD') is interpreted as a four-digit year

Instead, use a non-digit separator after the year, such as TO_DATE('20000-1131',

'YYYY-MMDD') or TO_DATE('20000Nov31', 'YYYYMonDD').

 In conversions from string to TIMESTAMP or DATE, the CC field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

Examples

=> SELECT TO_TIMESTAMP_TZ('13 Feb 2009', 'DD Mon YYY');

 TO_TIMESTAMP_TZ

 1200-02-13 00:00:00-05

(1 row)

=> SELECT TO_TIMESTAMP_TZ(200120400);

 TO_TIMESTAMP_TZ

 1976-05-05 01:00:00-04

(1 row)

See Also

Template Pattern Modifiers for Date/Time Formatting (page 267)

TO_NUMBER

Converts a string value to DOUBLE PRECISION.

Behavior Type

Stable

Syntax
TO_NUMBER (expression, [pattern])

Parameters

-265-

 SQL Functions

expression (CHAR or VARCHAR) specifies the string to convert.

pattern (CHAR or VARCHAR) Optional parameter specifies an output
pattern string using the Template Patterns for Date/Time
Formatting (page 265) and/or Template Patterns for Numeric

Formatting (page 268). If omitted, function returns a floating point.

Notes

To use a double quote character in the output, precede it with a double backslash. This is
necessary because the backslash already has a special meaning in a string constant. For
example: '\\"YYYY Month\\"'

Examples
SELECT TO_CHAR(2009, 'rn'), TO_NUMBER('mmix', 'rn');

 to_char | to_number

-----------------+-----------

 mmix | 2009

(1 row)

It the pattern parameter is omitted, the function returns a floating point.

SELECT TO_NUMBER('-123.456e-01');

 to_number

 -12.3456

Template Patterns for Date/Time Formatting

In an output template string (for TO_CHAR), there are certain patterns that are recognized and
replaced with appropriately-formatted data from the value to be formatted. Any text that is not a
template pattern is copied verbatim. Similarly, in an input template string (for anything other than

TO_CHAR), template patterns identify the parts of the input data string to be looked at and the
values to be found there.

Note: HP Vertica uses the ISO 8601:2004 style for date/time fields in HP Vertica *.log files.
For example,
2008-09-16 14:40:59.123 TM Moveout:0x2aaaac002180 [Txn] <INFO>

Certain modifiers can be applied to any template pattern to alter its behavior as described in
Template Pattern Modifiers for Date/Time Formatting (page 267).

Pattern Description

HH Hour of day (00-23)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

-266-

SQL Reference Manual

MS Millisecond (000-999)

US Microsecond (000000-999999)

SSSS Seconds past midnight (0-86399)

AM or A.M. or PM or P.M. Meridian indicator (uppercase)

am or a.m. or pm or p.m. Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma

YYYY Year (4 and more digits)

YYY Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last digits of ISO year

BC or B.C. or AD or A.D. Era indicator (uppercase)

bc or b.c. or ad or a.d. Era indicator (lowercase)

MONTH Full uppercase month name (blank-padded to 9 chars)

Month Full mixed-case month name (blank-padded to 9 chars)

month Full lowercase month name (blank -padded to 9 chars)

MON Abbreviated uppercase month name (3 chars)

Mon Abbreviated mixed-case month name (3 chars)

mon Abbreviated lowercase month name (3 chars)

MM Month number (01-12)

DAY Full uppercase day name (blank-padded to 9 chars)

Day Full mixed-case day name (blank-padded to 9 chars)

day full lowercase day name (blank -padded to 9 chars)

DY Abbreviated uppercase day name (3 chars)

Dy Abbreviated mixed-case day name (3 chars)

dy Abbreviated lowercase day name (3 chars)

DDD Day of year (001-366)

DD Day of month (01-31) for TIMESTAMP

Note: For INTERVAL, DD is day of year (001-366) because day of

month is undefined.

D Day of week (1-7; Sunday is 1)

-267-

 SQL Functions

W Week of month (1-5) (The first week starts on the first day of the

month.)

WW Week number of year (1-53) (The first week starts on the first day of
the year.)

IW ISO week number of year (The first Thursday of the new year is in
week 1.)

CC Century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

TZ Time-zone name (uppercase)

tz Time-zone name (lowercase)

Template Pattern Modifiers for Date/Time Formatting

Certain modifiers can be applied to any template pattern to alter its behavior. For example,
FMMonth is the Month pattern with the FM modifier.

Modifier Description

AM Time is before 12:00

AT Ignored

JULIAN, JD, J Next field is Julian Day

FM prefix Fill mode (suppress padding blanks and zeros)

For example: FMMonth

Note: The FM modifier suppresses leading zeros and trailing blanks

that would otherwise be added to make the output of a pattern fixed
width.

FX prefix Fixed format global option

For example: FX Month DD Day

ON Ignored

PM Time is on or after 12:00

T Next field is time

TH suffix Uppercase ordinal number suffix

For example: DDTH

th suffix Lowercase ordinal number suffix

For example: DDth

-268-

SQL Reference Manual

TM prefix Translation mode (print localized day and month names based on

lc_messages). For example: TMMonth

Template Patterns for Numeric Formatting

Pattern Description

9 Value with the specified number of digits

0 Value with leading zeros

. (period) Decimal point

, (comma) Group (thousand) separator

PR Negative value in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign in specified position (if number < 0)

PL Plus sign in specified position (if number > 0)

SG Plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

TH or th Ordinal number suffix

V Shift specified number of digits (see notes)

EEEE Scientific notation (not implemented yet)

Usage

 A sign formatted using SG, PL, or MI is not anchored to the number; for example:

 TO_CHAR(-12, 'S9999') produces ' -12'

 TO_CHAR(-12, 'MI9999') produces '- 12'

 9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

 TH does not convert values less than zero and does not convert fractional numbers.

 V effectively multiplies the input values by 10^n, where n is the number of digits following V.
TO_CHAR does not support the use of V combined with a decimal point. For example:
99.9V99 is not allowed.

-269-

 SQL Functions

Geospatial Package SQL Functions

The HP Vertica Geospatial package contains a suite of geospatial SQL functions you can install to
report on and analyze geographic location data.

To install the Geospatial package:

Run the install.sh script that appears in the /opt/vertica/packages/geospatial directory.

If you choose to install the Geospatial package in a directory other than the default, be sure to
set the GEOSPATIAL_HOME environment variable to reflect the correct directory.

Contents of the Geospatial package

When you installed HP Vertica, the RPM saved the Geospatial package files here:

 /opt/vertica/packages/geospatial

This directory contains these files:

install.sh Installs the Geospatial package.

readme.txt Contains instructions for installing the package.

This directory also contains these directories:

/src Contains this file:

 geospatial.sql—This file contains all the functions

that are installed with the package. The file describes

the calculations used for each function, and provides
examples. This file also contains links to helpful sites
that provide more information about standards and
calculations.

/examples Contains this file:

 regions_demo.sql—This file is a demo, intended to

illustrate a simple use case: determine the New England
state in which a given point lies.

Using Geospatial Package SQL Functions

For high-level descriptions of all of the functions included in the package, see Geospatial SQL
Functions (page 270). For more detailed information about each function and for links to other
useful information, see /opt/vertica/packages/geospatial/src/geospatial.sql.

Using built-in HP Vertica functions for Geospatial analysis

Four mathematical functions, automatically installed with HP Vertica, perform geospatial
operations:

 DEGREES (page 304)

 DISTANCE (page 305)

 DISTANCEV (page 306)

-270-

SQL Reference Manual

 RADIANS (page 313)

These functions are not part of the Vertica Geospatial Package; they are installed with HP Vertica.

Geospatial SQL Functions

With the Geospatial Package, HP Vertica provides SQL functions that let you find geographic
constants to use in your calculations and analysis. These functions appear in the file
/opt/vertica/packages/geospatial/src/geospatial.sql.

You can use these functions as they are supplied; you can also edit the geospatial.sql file to
change the calculations according to your needs. If you do modify the geospatial functions, be
sure to save a copy of your changes in a private location so that your changes are not lost if you
upgrade your HP Vertica installation. Note that an upgrade does not overwrite any functions

already loaded in your database; the upgrade only overwrites only the .sql file containing the
function definitions.

These functions measure distances in kilometers and angles in fractional degrees, unless stated
otherwise.

Of the several possible definitions of latitude, the geodetic latitude is most commonly used; and
this is what the HP Vertica Geospatial Package uses. Latitude goes from +90 degrees at the North
Pole to –90 at the South Pole. Longitude 0 is near Greenwich, England. It increases going east to
+180 degrees, and decreases going west to –180 degrees. True bearings are measured
clockwise from north. For more information, see: http://en.wikipedia.org/wiki/Latitude
(http://en.wikipedia.org/wiki/Latitude).

WGS-84 SQL Functions

The following functions return constants determined by the World Geodetic System (WGS)
standard, WGS-84.

 WGS84_a() (page 289)

 WGS84_b() (page 290)

 WGS84_e2() (page 290)

 WGS84_f() (page 291)

 WGS84_if() (page 291)

Earth Radius, Radius of Curvature, and Bearing SQL Functions

These functions return the earth's radius, radius of curvature, and bearing values.

 RADIUS_r(lat) (page 285)

 WGS84_r1() (page 291)

 RADIUS_SI() (page 288)

 RADIUS_M(lat) (page 284)

 RADIUS_N (lat) (page 284)

 RADIUS_Ra (lat)

 RADIUS_Rv (lat) (page 287)

http://en.wikipedia.org/wiki/Latitude

-271-

 SQL Functions

 RADIUS_Rc (lat,bearing) (page 286)

 BEARING (lat1,lon1,lat2,lon2) (page 272)

 RADIUS_LON (lat) (page 283)

ECEF Conversion SQL Functions

The following functions convert values to Earth-Centered, Earth-Fixed (ECEF) values. The ECEF
system represents positions on x, y, and z axes in meters. (0,0,0) is the center of the earth; x is
toward latitude 0, longitude 0; y is toward latitude 0, longitude 90 degrees; and z is toward the
North Pole. The height above mean sea level (h) is also in meters.

 ECEF_x (lat,lon,h) (page 276)

 ECEF_y (lat,lon,h) (page 276)

 ECEF_z (lat,lon,h) (page 277)

 ECEF_chord (lat1,lon1,h1,lat2,lon2,h2) (page 275)

 CHORD_TO_ARC (chord) (page 273)

Bounding Box SQL Functions

These functions determine whether points are within a bounding box, a rectangular area whose
edges are latitude and longitude lines. Bounding box methods allow you to narrow your focus, and
they work best on HP Vertica projections that are sorted by latitude, or by region (such as swtate)
and then by latitude. These methods also work on projections sorted by longitude.

 BB_WITHIN (lat,lon,llat,llon,ulat,rlon) (page 271)

 LAT_WITHIN (lat,lat0,d) (page 279)

 LON_WITHIN (lon,lat0,lon0,d) (page 282)

 LL_WITHIN (lat,lon,lat0,lon0,d) (page 280)

 DWITHIN (lat,lon,lat0,lon0,d) (page 274)

 LLD_WITHIN (lat,lon,lat0,lon0,d) (page 281)

 ISLEFT (x0,y0,x1,y1,x2,y2) (page 278)

 RAYCROSSING (x0,y0,x1,y1,x2,y2) (page 288)

Miles/Kilometer Conversion SQL Functions

These functions convert miles to kilometers and kilometers to miles:

 MILES2KM (miles) (page 283)

 KM2MILES (km) (page 279)

BB_WITHIN

Determines whether a point (lat, lon) falls within a bounding box defined by its lower-left and
upper-right corners. The return value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

-272-

SQL Reference Manual

Behavior Type

Immutable

Syntax
BB_WITHIN (lat,lon,llat,llon,ulat,rlon)

Parameters

lat A value of type DOUBLE PRECISION indicating the latitude of a

given point.

lon A value of type DOUBLE PRECISION indicating the longitude of a
given point.

llat A value of type DOUBLE PRECISION indicating the latitude used
to define the lower-left corner of the bounding box.

llon A value of type DOUBLE PRECISION indicating the longitude

used to define the lower-left corner of the bounding box.

ulat A value of type DOUBLE PRECISION indicating the latitude used
to define the upper-right corner of the bounding box.

rlon A value of type DOUBLE PRECISION indicating the longitude
used in defining the upper-right corner of the bounding box.

Example

The following example determines that the point (14,30) is not contained in the bounding box
defined by (23.0,45) and (13,37):

=> SELECT BB_WITHIN(14,30,23.0,45,13,37);

 BB_WITHIN

 f

(1 row)

The following example determines that the point (14,30) is contained in the bounding box defined
by (13.0,45) and (23,37).

=> SELECT BB_WITHIN(14,30,13.0,45,23,37);

 BB_WITHIN

 t

(1 row)

BEARING

Returns the approximate bearing from a starting point to an ending point, in degrees. It assumes a
flat earth and is useful only for short distances. The return value has the type DOUBLE
PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

-273-

 SQL Functions

Behavior Type

Immutable

Syntax
BEARING (lat1,lon1,lat2,lon2)

Parameters

lat1 A value of type DOUBLE PRECISION indicating latitude of the
starting point.

lon1 A value of type DOUBLE PRECISION indicating longitude of the

starting point.

lat2 A value of type DOUBLE PRECISION indicating latitude of the
ending point.

lon2 A value of type DOUBLE PRECISION indicating longitude of the
ending point.

Example

The following examples calculate the bearing, in degrees, from point (45,13) to (33,3) and from
point (33,3) to (45,13):

=> SELECT BEARING(45,13,33,3);

 BEARING

 -140.194428907735

(1 row)

=> SELECT BEARING(33,3,45,13);

 BEARING

 39.8055710922652

(1 row)

CHORD_TO_ARC

Converts a chord (the straight line between two points) in meters to a geodesic arc length, also in
meters. The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
CHORD_TO_ARC (chord)

-274-

SQL Reference Manual

Parameters

chord A value of type DOUBLE PRECISION indicating chord length (in
meters)

Example

The following examples convert the length of a chord to the length of its geodesic arc:

=> SELECT CHORD_TO_ARC(120);

 CHORD_TO_ARC

 120.000000001774

(1 row)

=> SELECT CHORD_TO_ARC(12000);

 CHORD_TO_ARC

 12000.0017738474

(1 row)

=> SELECT CHORD_TO_ARC(1200000);

 CHORD_TO_ARC

 1201780.96402514

(1 row)

DWITHIN

Determines whether a point (lat,lon) is within a circle of radius d kilometers centered at a given
point (lat0,lon0). The return value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
DWITHIN (lat,lon,lat0,lon0,d)

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of a circle.

-275-

 SQL Functions

lon0 A value of type DOUBLE PRECISION indicating the longitude of

the center point of a circle.

d A value of type DOUBLE PRECISION indicating the radius of the
circle (in kilometers).

Example

The following examples determine that the point (13.6,43.5) is within 3880–3890 kilometers of the
radius of a circle centered at (48.5,45.5):

=> SELECT DWITHIN(13.6,43.5,48.5,45.5,3880);

 DWITHIN

 f

(1 row)

=> SELECT DWITHIN(13.6,43.5,48.5,45.5,3890);

 DWITHIN

 t

(1 row)

ECEF_CHORD
Calculates the distance in meters between two ECEF coordinates. The return value has the type
DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
ECEF_CHORD (lat1,lon1,h1,lat2,lon2,h2)

Parameters

lat A value of type DOUBLE PRECISION indicating the latitude of one

end point of the line.

lon1 A value of type DOUBLE PRECISION indicating the longitude of
one end point of the line.

h1 A value of type DOUBLE PRECISION indicating the height above
sea level (in meters) of one end point of the line.

lat2 A value of type DOUBLE PRECISION indicating the latitude of one

end point of the line.

lon2 A value of type DOUBLE PRECISION indicating the longitude of
one end point of the line.

-276-

SQL Reference Manual

h2 A value of type DOUBLE PRECISION indicating the height of one

end point of the line.

Example

The following example calculates the distance in meters between the ECEF coordinates
(-12,10.0,14) and (12,-10,17):

=> SELECT ECEF_chord (-12,10.0,14,12,-10,17);

 ECEF_chord

 3411479.93992789

(1 row)

ECEF_x
Converts a given latitude, longitude, and height into the ECEF x coordinate in meters. The return
value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
ECEF_x (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.

lon A value of type DOUBLE PRECISION indicating longitude.

h A value of type DOUBLE PRECISION indicating height.

Example

The following example calculates the ECEF x coordinate in meters for the point (-12,13.2,0):

=> SELECT ECEF_x(-12,13.2,0);

 ECEF_x

 6074803.56179976

(1 row)

ECEF_y

Converts a given latitude, longitude, and height into the ECEF y coordinate in meters. The return
value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

-277-

 SQL Functions

Behavior Type

Immutable

Syntax
ECEF_y (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.

lon A value of type DOUBLE PRECISION indicating longitude.

h A value of type DOUBLE PRECISION indicating height.

Example

The following example calculates the ECEF y coordinate in meters for the point (12.0,-14.2,12):

=> SELECT ECEF_y(12.0,-14.2,12);

 ECEF_y

 -1530638.12327962

(1 row)

ECEF_z

Converts a given latitude, longitude, and height into the ECEF z coordinate in meters. The return
value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
ECEF_Z (lat,lon,h)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude.

lon A value of type DOUBLE PRECISION indicating longitude.

h A value of type DOUBLE PRECISION indicating height.

Example

The following example calculates the ECEF z coordinate in meters for the point (12.0,-14.2,12):

=> SELECT ECEF_z(12.0,-14.2,12);

 ECEF_z

-278-

SQL Reference Manual

 1317405.02616989

(1 row)

ISLEFT

Determines whether a given point is anywhere to the left of a directed line that goes though two
specified points. The return value has the type FLOAT and has the following possible values:

 > 0: The point is to the left of the line.

 = 0: The point is on the line.

 < 0: The point is to the right of the line.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
ISLEFT (x0,y0,x1,y1,x2,y2)

Parameters

x0 A value of type DOUBLE PRECISION indicating the latitude of the
first point through which the directed line passes.

y0 A value of type DOUBLE PRECISION indicating the longitude of
the the first point through which the directed line passes.

x1 A value of type DOUBLE PRECISION indicating the latitude of the

second point through which the directed line passes.

y1 A value of type DOUBLE PRECISION indicating the longitude of
the the second point through which the directed line passes.

x2 A value of type DOUBLE PRECISION indicating the latitude of the
point whose position you are evaluating.

y2 A value of type DOUBLE PRECISION indicating the longitude of a

whose position you are evaluating.

Example

The following example determines that (0,0) is to the left of the line that passes through (1,1) and
(2,3):

=> SELECT ISLEFT(1,1,2,3,0,0);

 ISLEFT

 1

(1 row)

-279-

 SQL Functions

KM2MILES

Converts a value from kilometers to miles. The return value is of type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
KM2MILES (km)

Parameters

km A value of type DOUBLE PRECISION indicating the number of
kilometers you want to convert.

Example

The following example converts 1.0 kilometers to miles:

=> SELECT KM2MILES(1.0);

 KM2MILES

 0.621371192237334

(1 row)

LAT_WITHIN
Determines whether a certain latitude (lat) is within d kilometers of another latitude point (lat0),
independent of longitude. The return value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
LAT_WITHIN (lat,lat0,d)

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
point to which you are comparing the first latitude.

d A value of type DOUBLE PRECISION indicating the number of

kilometers that determines the range you are evaluating.

-280-

SQL Reference Manual

Example

The following examples determine that latitude 12 is between 220 and 230 kilometers of latitude
14.0:

=> SELECT LAT_WITHIN(12,14.0,220);

 LAT_WITHIN

 f

(1 row)

=> SELECT LAT_WITHIN(12,14.0,230);

 LAT_WITHIN

 t

(1 row)

LL_WITHIN

Determines whether a point (lat, lon) is within a bounding box whose sides are 2d kilometers long,
centered at a given point (lat0, lon0). The return value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
LL_WITHIN (lat,lon,lat0,lon0,d);

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of the bounding box.

lon0 A value of type DOUBLE PRECISION indicating the longitude of

the center point of the bounding box.

d A value of type DOUBLE PRECISION indicating the length of half
the side of the box.

Example

The following examples determine that the point (16,15) is within a bounding box centered at
(12,13) whose sides are between 880 and 890 kilometers long:

=> SELECT LL_WITHIN(16,15,12,13.0,440);

 LL_WITHIN

-281-

 SQL Functions

 f

(1 row)

=> SELECT LL_WITHIN(16,15,12,13.0,445);

 LL_WITHIN

 t

(1 row)

LLD_WITHIN

Determines whether a point (lat,lon) is within a circle of radius d kilometers centered at a given
point (lat0,lon0). LLD_WITHIN is a faster, but less accurate version of DWITHIN (page 274). The
return value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
LLD_WITHIN (lat,lon,lat0,lon0,d)

Parameters

lat A value of type DOUBLE PRECISION indicating a given latitude.

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the
center point of a circle.

lon0 A value of type DOUBLE PRECISION indicating the longitude of

the center point of a circle.

d A value of type DOUBLE PRECISION indicating the radius of the
circle (in kilometers).

Example

The following examples determine that the point (13.6,43.5) is within a circle centered at
(48.5,45.5) whose radius is between 3800 and 3900 kilometers long:

=> SELECT LLD_WITHIN(13.6,43.5,48.5,45.5,3800);

 LLD_WITHIN

 f

(1 row)

=> SELECT LLD_WITHIN(13.6,43.5,48.5,45.5,3900);

-282-

SQL Reference Manual

 LLD_WITHIN

 t

(1 row)

LON_WITHIN

Determines whether a longitude (lon) is within d kilometers of a given point (lat0, lon0). The return
value has the type BOOLEAN.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
LON_WITHIN (lon,lat0,lon0,d)

Parameters

lon A value of type DOUBLE PRECISION indicating a given longitude.

lat0 A value of type DOUBLE PRECISION indicating the latitude of the

point to which you want to compare the lon value.

lon0 A value of type DOUBLE PRECISION indicating the longitude of
the point to which you want to compare the lon value.

d A value of type DOUBLE PRECISION indicating the distance, in
kilometers, that defines your range.

Example

The following examples determine that the longitude 15 is between 1600 and 1700 kilometers
from the point (16,0):

=> SELECT LON_WITHIN(15,16,0,1600);

 LON_WITHIN

 f

(1 row)

=> SELECT LON_WITHIN(15,16,0,1700);

 LON_WITHIN

 t

(1 row)

-283-

 SQL Functions

MILES2KM

Converts a value from miles to kilometers. The return value is of type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
MILES2KM (miles)

Parameters

miles A value of type DOUBLE PRECISION indicating the number of
miles you want to convert.

Example

The following example converts 1.0 miles to kilometers:

=> SELECT MILES2KM(1.0);

 MILES2KM

 1.609344

(1 row)

RADIUS_LON
Returns the radius of the circle of longitude in kilometers at a given latitude. The return value has
the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_LON (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which

you want to measure the radius.

Example

The following example calculates the circle of longitude in kilometers at a latitude of 45:

-284-

SQL Reference Manual

=> SELECT RADIUS_LON(45);

 RADIUS_LON

 4517.59087884893

(1 row)

RADIUS_M

Returns the earth's radius of curvature in kilometers along the meridian at the given latitude. The
return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_M (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which

you want to measure the radius of curvature.

Example

The following example calculates the earth's radius of curvature in kilometers along the meridian
at latitude –90 (the South Pole):

=> SELECT RADIUS_M(-90);

 RADIUS_M

 6399.5936257585

(1 row)

RADIUS_N
Returns the earth's radius of curvature in kilometer normal to the meridian at a given latitude. The
return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_N (lat)

-285-

 SQL Functions

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which

you want to measure the radius of curvature.

Example

The following example calculates the earth's radius of curvature in kilometers normal to the
meridian at latitude –90 (the South Pole):

=> SELECT RADIUS_N(-90);

 RADIUS_N

 6399.59362575849

(1 row)

RADIUS_R
Returns the WGS-84 radius of the earth (to the center of mass) in kilometers at a given latitude.
The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_R (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the earth's radius.

Example

The following example calculates the WGS-84 radius of the earth in kilometers at latitude –90 (the
South Pole):

=> SELECT RADIUS_R(-90);

 RADIUS_R

 6356.75231424518

(1 row)

-286-

SQL Reference Manual

RADIUS_Ra

Returns the earth's average radius of curvature in kilometers at a given latitude. This function is
the geometric mean of RADIUS_M (page 284) and RADIUS_N (page 284). (RADIUS_Rv (page
287) is a faster approximation of this function.)

The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_Ra (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

The following example calculates the earth's average radius of curvature in kilometers at latitude
–90 (the South Pole):

=> SELECT RADIUS_Ra(-90);

 RADIUS_Ra

 6399.59362575849

(1 row)

RADIUS_Rc

Returns the earth's radius of curvature in kilometers at a given bearing measured clockwise from
north. The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_Rc (lat, bearing)

Parameters

-287-

 SQL Functions

lat A value of type DOUBLE PRECISION indicating latitude at which

you want to measure the radius of curvature.

bearing A value of type DOUBLE PRECISION indicating a given bearing.

Example

The following example measures the earth's radius of curvature in kilometers at latitude 45, with a
bearing of 45 measured clockwise from north:

=> SELECT RADIUS_Rc(45,45);

 RADIUS_Rc

 6378.09200754445

(1 row)

RADIUS_Rv

Returns the earth's average radius of curvature in kilometers at a given latitude. This value is the
geometric mean of RADIUS_M (page 284) and RADIUS_N (page 284). This function is a fast
approximation of RADIUS_Ra. The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_Rv (lat)

Parameters

lat A value of type DOUBLE PRECISION indicating latitude at which
you want to measure the radius of curvature.

Example

The following example calculates the earth's average radius of curvature in kilometers at latitude
–90 (the South Pole):

=> SELECT RADIUS_Rv(-90);

 RADIUS_Rv

 6399.59362575849

(1 row)

-288-

SQL Reference Manual

RADIUS_SI

Returns the International System of Units (SI) radius based on the nautical mile. (A nautical mile is
a unit of length about one minute of arc of latitude measured along any meridian, or about one
minute of arc of longitude measured at the equator.) The return value has the type NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RADIUS_SI ()

Example

The following example calculates the SI radius based on the nautical mile:

=> SELECT RADIUS_SI();

 RADIUS_SI

 6366.70701949370750

(1 row)

RAYCROSSING

Determines whether a ray traveling to the right from point (x2,y2), in the direction of increasing x,
intersects a directed line segment that starts at point (x0,y0) and ends at point (x1,y1).

This function returns:

 0 if the ray does not intersect the directed line segment.

 1 if the ray intersects the line and y1 is above y0.

 –1 if the ray intersects the line and y1 is below or equal to y0.

The return value has the type DOUBLE PRECISION.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
RAYCROSSING (x0,y0,x1,y1,x2,y2)

Parameters

x0 A value of type DOUBLE PRECISION indicating the latitude of the

-289-

 SQL Functions

starting point of the line segment.

y0 A value of type DOUBLE PRECISION indicating the longitude of
the starting point of the line segment

x1 A value of type DOUBLE PRECISION indicating the latitude of the

ending point of the line segment.

y1 A value of type DOUBLE PRECISION indicating the longitude of
the the ending point of the line segment.

x2 A value of type DOUBLE PRECISION indicating the latitude of the
point from which the ray starts.

y2 A value of type DOUBLE PRECISION indicating the longitude of

the point from which the ray starts.

Example

The following example checks if a line traveling to the right from the point (0,0) intersects the line
from (1,1) to (2,3):

=> SELECT RAYCROSSING(1,1,2,3,0,0);

 RAYCROSSING

 0

(1 row)

The following example checks if a line traveling to the right from the point (0,2) intersects the line
from (1,1) to (2,3):

=> SELECT RAYCROSSING(1,1,2,3,0,2);

 RAYCROSSING

 1

(1 row)

The following example checks if a line traveling to the right from the point (0,2) intersects the line
from (1,3) to (2,1):

=> SELECT RAYCROSSING(1,3,2,1,0,2);

 RAYCROSSING

 -1

(1 row)

WGS84_a

Returns the length, in kilometers, of the earth's semi-major axis. The return value is of type
NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

-290-

SQL Reference Manual

Behavior Type

Immutable

Syntax
WGS84_a ()

Example
=> SELECT WGS84_a();

 wgs84_a

 6378.137000

(1 row)

WGS84_b

Returns the WGS-84 semi-minor axis length value in kilometers. The return value is of type
NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
WGS84_b ()

Example
=> SELECT WGS84_b();

 WGS84_b

 6356.75231424517950

(1 row)

WGS84_e2

Returns the WGS-84 eccentricity squared value. The return value is of type NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
WGS84_e2 ()

Example
=> SELECT WGS84_e2();

-291-

 SQL Functions

 WGS84_e2

 .00669437999014131700

(1 row)

WGS84_f

Returns the WGS-84 flattening value. The return value is of type NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
WGS84_f ()

Example
=> SELECT WGS84_f();

 WGS84_f

 .00335281066474748072

(1 row)

WGS84_if

Returns the WGS-84 inverse flattening value. The return value is of type NUMERIC.

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
WGS84_if ()

Example
=> SELECT WGS84_if();

 WGS84_if

 298.257223563

(1 row)

WGS84_r1

Returns the International Union of Geodesy and Geophysics (IUGG) mean radius of the earth, in
kilometers. The return value is of type NUMERIC.

-292-

SQL Reference Manual

This function is available only if you install the HP Vertica Geospatial Package. See Geospatial
Package SQL Functions (page 270) for information on installing the package.

Behavior Type

Immutable

Syntax
WGS84_r1 ()

Example
=> SELECT WGS84_r1();

 WGS84_r1

 6371.00877141505983

(1 row)

IP Conversion Functions
IP functions perform conversion, calculation, and manipulation operations on IP, network, and
subnet addresses.

INET_ATON

Returns an integer that represents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

Behavior Type

Immutable

Syntax
INET_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv4 address represented as the string A to an integer I.

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

INET_ATON(VARCHAR A) -> INT8 I

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

-293-

 SQL Functions

If A is NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209×256 3̂ + 207×256^2 + 224×256 + 40.

SELECT INET_ATON('209.207.224.40');

 inet_aton

 3520061480

(1 row)

SELECT INET_ATON('1.2.3.4');

 inet_aton

 16909060

(1 row)

SELECT TO_HEX(INET_ATON('1.2.3.4'));

 to_hex

 1020304

(1 row)

See Also

INET_NTOA (page 293)

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

Behavior Type

Immutable

Syntax
INET_NTOA (expression)

Parameters

expression (INTEGER) is the network address to convert.

Notes

The following syntax converts an IPv4 address represented as integer I to a string A.

INET_NTOA converts I from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-294-

SQL Reference Manual

INET_NTOA(INT8 I) -> VARCHAR A

If I is NULL, greater than 2^32 or negative, the result is NULL.

Examples
SELECT INET_NTOA(16909060);

 inet_ntoa

 1.2.3.4

(1 row)

SELECT INET_NTOA(03021962);

 inet_ntoa

 0.46.28.138

(1 row)

See Also

INET_ATON (page 292)

V6_ATON
Converts an IPv6 address represented as a character string to a binary string.

Behavior Type

Immutable

Syntax
V6_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv6 address represented as the character string A to a binary
string B.

V6_ATON trims any spaces from the right of A and calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_ATON(VARCHAR A) -> VARBINARY(16) B

If A has no colons it is prepended with '::ffff:'. If A is NULL, too long, or if inet_pton returns an error,
the result is NULL.

Examples
SELECT V6_ATON('2001:DB8::8:800:200C:417A');

 v6_aton

--

 \001\015\270\000\000\000\000\000\010\010\000 \014Az

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-295-

 SQL Functions

(1 row)

SELECT TO_HEX(V6_ATON('2001:DB8::8:800:200C:417A'));

 to_hex

 20010db80000000000080800200c417a

(1 row)

SELECT V6_ATON('1.2.3.4');

 v6_aton

--

--

\000\000\000\000\000\000\000\000\000\000\377\377\001\002\003\004

(1 row)

SELECT V6_ATON('::1.2.3.4');

 v6_aton

--

--

\000\000\000\000\000\000\000\000\000\000\000\000\001\002\003\004

(1 row)

See Also

V6_NTOA (page 295)

V6_NTOA
Converts an IPv6 address represented as varbinary to a character string.

Behavior Type

Immutable

Syntax
V6_NTOA (expression)

Parameters

expression (VARBINARY) is the binary string to convert.

Notes

The following syntax converts an IPv6 address represented as VARBINARY B to a string A.

V6_NTOA right-pads B to 16 bytes with zeros, if necessary, and calls the Linux function inet_ntop
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_NTOA(VARBINARY B) -> VARCHAR A

If B is NULL or longer than 16 bytes, the result is NULL.

HP Vertica automatically converts the form '::ffff:1.2.3.4' to '1.2.3.4'.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-296-

SQL Reference Manual

Examples
SELECT V6_NTOA(' \001\015\270\000\000\000\000\000\010\010\000 \014Az');

 v6_ntoa

 2001:db8::8:800:200c:417a

(1 row)

SELECT V6_NTOA(V6_ATON('1.2.3.4'));

 v6_ntoa

 1.2.3.4

(1 row)

SELECT V6_NTOA(V6_ATON('::1.2.3.4'));

 v6_ntoa

 ::1.2.3.4

(1 row)

See Also

N6_ATON (page 294)

V6_SUBNETA

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax
V6_SUBNETA (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax calculates a subnet address in CIDR format from a binary or varchar IPv6
address.

V6_SUBNETA masks a binary IPv6 address B so that the N leftmost bits form a subnet address,
while the remaining rightmost bits are cleared. It then converts to an alphanumeric IPv6 address,
appending a slash and N.

V6_SUBNETA(BINARY B, INT8 N) -> VARCHAR C

The following syntax calculates a subnet address in CIDR format from an alphanumeric IPv6
address.

-297-

 SQL Functions

V6_SUBNETA(VARCHAR A, INT8 N) -> V6_SUBNETA(V6_ATON(A), N) -> VARCHAR C

Examples
SELECT V6_SUBNETA(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subneta

 2001:db0::/28

(1 row)

See Also

V6_SUBNETN (page 297)

V6_SUBNETN

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a varbinary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax
V6_SUBNETN (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

Notes:

 V6_SUBNETN(<VARBINARY>,
<INTEGER>) returns varbinary.

OR

 V6_SUBNETN(<VARCHAR>, <INTEGER>)

returns varbinary, after using V6_ATON to
convert the <VARCHAR> string to
<VARBINARY>.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax masks a BINARY IPv6 address B so that the N left-most bits of S form a
subnet address, while the remaining right-most bits are cleared.

V6_SUBNETN right-pads B to 16 bytes with zeros, if necessary and masks B, preserving its N-bit
subnet prefix.

V6_SUBNETN(VARBINARY B, INT8 N) -> VARBINARY(16) S

If B is NULL or longer than 16 bytes, or if N is not between 0 and 128 inclusive, the result is NULL.

-298-

SQL Reference Manual

S = [B]/N in Classless Inter-Domain Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing notation (CIDR notation).

The following syntax masks an alphanumeric IPv6 address A so that the N leftmost bits form a
subnet address, while the remaining rightmost bits are cleared.

V6_SUBNETN(VARCHAR A, INT8 N) -> V6_SUBNETN(V6_ATON(A), N) -> VARBINARY(16) S

Example

This example returns VARBINARY, after using V6_ATON to convert the VARCHAR string to
VARBINARY:

=> SELECT V6_SUBNETN(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subnetn

 \001\015\260\000\000\000\000\000\000\000\000\000\000\000\000

See Also

V6_ATON (page 294)

V6_SUBNETA (page 296)

V6_TYPE

Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Behavior Type

Immutable

Syntax
V6_TYPE (expression)

Parameters

expression (VARBINARY or VARCHAR) is the type to convert.

Notes

V6_TYPE(VARBINARY B) returns INT8 T.

V6_TYPE(VARCHAR A) -> V6_TYPE(V6_ATON(A)) -> INT8 T

The IPv6 types are defined in the Network Working Group's IP Version 6 Addressing
Architecture memo http://www.ietf.org/rfc/rfc4291.

 GLOBAL = 0 Global unicast addresses

 LINKLOCAL = 1 Link-Local unicast (and Private-Use) addresses

 LOOPBACK = 2 Loopback

 UNSPECIFIED = 3 Unspecified

 MULTICAST = 4 Multicast

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://www.ietf.org/rfc/rfc4291

-299-

 SQL Functions

IPv4-mapped and IPv4-compatible IPv6 addresses are also interpreted, as specified in IPv4
Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml.

 For IPv4, Private-Use is grouped with Link-Local.

 If B is VARBINARY, it is right-padded to 16 bytes with zeros, if necessary.

 If B is NULL or longer than 16 bytes, the result is NULL.

Details

 IPv4 (either kind):

 0.0.0.0/8 UNSPECIFIED

 10.0.0.0/8 LINKLOCAL

 127.0.0.0/8 LOOPBACK

 169.254.0.0/16 LINKLOCAL

 172.16.0.0/12 LINKLOCAL

 192.168.0.0/16 LINKLOCAL

 224.0.0.0/4 MULTICAST

 others GLOBAL

 IPv6:

 ::0/128 UNSPECIFIED

 ::1/128 LOOPBACK

 fe80::/10 LINKLOCAL

 ff00::/8 MULTICAST

 others GLOBAL

Examples
SELECT V6_TYPE(V6_ATON('192.168.2.10'));

 v6_type

 1

(1 row)

SELECT V6_TYPE(V6_ATON('2001:db8::8:800:200c:417a'));

 v6_type

 0

(1 row)

See Also

INET_ATON (page 292)

IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291

IPv4 Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.ietf.org/rfc/rfc4291
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

-300-

SQL Reference Manual

Mathematical Functions

Some of these functions are provided in multiple forms with different argument types. Except
where noted, any given form of a function returns the same data type as its argument. The

functions working with DOUBLE PRECISION (page 105) data could vary in accuracy and behavior
in boundary cases depending on the host system.

See Also

Template Patterns for Numeric Formatting (page 267)

ABS

Returns the absolute value of the argument. The return value has the same data type as the
argument..

Behavior Type

Immutable

Syntax
ABS (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Examples
SELECT ABS(-28.7);

 abs

 28.7

(1 row)

ACOS

Returns a DOUBLE PRECISION value representing the trigonometric inverse cosine of the
argument.

Behavior Type

Immutable

Syntax
ACOS (expression)

Parameters

-301-

 SQL Functions

expression Is a value of type DOUBLE PRECISION

Example
SELECT ACOS (1);

 acos

 0

(1 row)

ASIN

Returns a DOUBLE PRECISION value representing the trigonometric inverse sine of the
argument.

Behavior Type

Immutable

Syntax
ASIN (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example
SELECT ASIN(1);

 asin

 1.5707963267949

(1 row)

ATAN

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
argument.

Behavior Type

Immutable

Syntax
ATAN (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

-302-

SQL Reference Manual

Example
SELECT ATAN(1);

 atan

 0.785398163397448

(1 row)

ATAN2

Returns a DOUBLE PRECISION value representing the trigonometric inverse tangent of the
arithmetic dividend of the arguments.

Behavior Type

Immutable

Syntax
ATAN2 (quotient, divisor)

Parameters

quotient Is an expression of type DOUBLE PRECISION representing the quotient

divisor Is an expression of type DOUBLE PRECISION representing the divisor

Example
SELECT ATAN2(2,1);

 atan2

 1.10714871779409

(1 row)

CBRT
Returns the cube root of the argument. The return value has the type DOUBLE PRECISION.

Behavior Type

Immutable

Syntax
CBRT (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Examples
SELECT CBRT(27.0);

-303-

 SQL Functions

 cbrt

 3

(1 row)

CEILING (CEIL)

Rounds the returned value up to the next whole number. Any expression that contains even a
slight decimal is rounded up.

Behavior Type

Immutable

Syntax
CEILING (expression)

CEIL (expression)

Parameters

expression Is a value of type INTEGER or DOUBLE PRECISION

Notes

CEILING is the opposite of FLOOR (page 307), which rounds the returned value down:

=> SELECT CEIL(48.01) AS ceiling, FLOOR(48.01) AS floor;

 ceiling | floor

---------+-------

 49 | 48

(1 row)

Examples
=> SELECT CEIL(-42.8);

 CEIL

 -42

(1 row)

SELECT CEIL(48.01);

 CEIL

 49

(1 row)

COS

Returns a DOUBLE PRECISION value representing the trigonometric cosine of the argument.

-304-

SQL Reference Manual

Behavior Type

Immutable

Syntax
COS (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example
SELECT COS(-1);

 cos

 0.54030230586814

(1 row)

COT

Returns a DOUBLE PRECISION value representing the trigonometric cotangent of the argument.

Behavior Type

Immutable

Syntax
COT (expression)

Parameters

expression Is a value of type DOUBLE PRECISION

Example
SELECT COT(1);

 cot

 0.642092615934331

(1 row)

DEGREES
Converts an expression from radians (page 313) to fractional degrees, or from degrees, minutes,
and seconds to fractional degrees. The return value has the type DOUBLE PRECISION.

Behavior Type

Immutable

-305-

 SQL Functions

Syntax
DEGREES (radians)

Syntax2
DEGREES (degrees, minutes, seconds)

Parameters

radians A unit of angular measure, 2π radians is equal to a full rotation.

degrees A unit of angular measure, equal to 1/360 of a full rotation.

minutes A unit of angular measurement, representing 1/60 of a degree.

seconds A unit of angular measurement, representing 1/60 of a minute.

Examples
SELECT DEGREES(0.5);

 DEGREES

 28.6478897565412

(1 row)

SELECT DEGREES(1,2,3);

 DEGREES

 1.03416666666667

(1 row)

DISTANCE
Returns the distance (in kilometers) between two points. You specify the latitude and longitude of
both the starting point and the ending point. You can also specify the radius of curvature for
greater accuracy when using an ellipsoidal model.

Behavior type

Immutable

Syntax
DISTANCE (lat0, lon0, lat1, lon1, radius_of_curvature)

Parameters

lat0 Specifies the latitude of the starting point.

lon0 Specifies the longitude of the starting point.

lat1 Specifies the latitude of the ending point

lon1 Specifies the longitude of the ending point.

-306-

SQL Reference Manual

radius_of_

curvature

Specifies the radius of the curvature of the earth at the midpoint

between the starting and ending points. This parameter allows
for greater accuracy when using an ellipsoidal earth model. If
you do not specify this parameter, it defaults to the WGS-84

average r1 radius, about 6371.009 km.

Examples

This example finds the distance in kilometers for 1 degree of longitude at latitude 45 degrees,
assuming earth is spherical.

SELECT DISTANCE(45,0, 45,1);

 distance

 78.6262959272162

(1 row)

DISTANCEV

Returns the distance (in kilometers) between two points using the Vincenty formula. Because the
Vincenty formula includes the parameters of the WGS-84 ellipsoid model, you need not specify a
radius of curvature. You specify the latitude and longitude of both the starting point and the
ending point. This function is more accurate, but will be slower, than the DISTANCE function.

Behavior type

Immutable

Syntax
DISTANCEV (lat0, lon0, lat1, lon1);

Parameter

lat0 Specifies the latitude of the starting point.

lon0 Specifies the longitude of the starting point.

lat1 Specifies the latitude of the ending point

lon1 Specifies the longitude of the ending point.

Examples

This example finds the distance in kilometers for 1 degree of longitude at latitude 45 degrees,
assuming earth is ellipsoidal.

SELECT DISTANCEV(45,0, 45,1);

 distanceV

-307-

 SQL Functions

 78.8463347095916

(1 row)

EXP

Returns the exponential function, e to the power of a number. The return value has the same data
type as the argument.

Behavior Type

Immutable

Syntax
EXP (exponent)

Parameters

exponent Is an expression of type INTEGER or DOUBLE PRECISION

Example
SELECT EXP(1.0);

 exp

 2.71828182845905

(1 row)

FLOOR

Rounds the returned value down to the next whole number. For example, each of these functions
evaluates to 5:

floor(5.01)

floor(5.5)

floor(5.99)

Behavior Type

Immutable

Syntax
FLOOR (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION.

Notes

FLOOR is the opposite of CEILING (page 303), which rounds the returned value up:

-308-

SQL Reference Manual

=> SELECT FLOOR(48.01) AS floor, CEIL(48.01) AS ceiling;

 floor | ceiling

-------+---------

 48 | 49

(1 row)

Examples
=> SELECT FLOOR((TIMESTAMP '2005-01-17 10:00' - TIMESTAMP '2005-01-01') / INTERVAL '7');

 floor

 2

(1 row)

=> SELECT FLOOR(-42.8);

 floor

 -43

(1 row)

=> SELECT FLOOR(42.8);

 floor

 42

(1 row)

Although the following example looks like an INTEGER, the number on the left is 2^49 as an
INTEGER, but the number on the right is a FLOAT:

=> SELECT 1<<49, FLOOR(1 << 49);

 ?column? | floor

-----------------+-----------------

 562949953421312 | 562949953421312

(1 row)

Compare the above example to:

=> SELECT 1<<50, FLOOR(1 << 50);

 ?column? | floor

------------------+----------------------

 1125899906842624 | 1.12589990684262e+15

(1 row)

HASH

Calculates a hash value over its arguments, producing a value in the range 0 <= x < 263 (two to the
sixty-third power or 2^63).

Behavior Type

Immutable

Syntax
HASH (expression [,...])

Parameters

-309-

 SQL Functions

expression Is an expression of any data type. For the purpose of hash segmentation,

each expression is a column reference (see "Column References" on
page 54).

Notes

 The HASH() function is used to provide projection segmentation over a set of nodes in a
cluster and takes up to 32 arguments, usually column names, and selects a specific node for
each row based on the values of the columns for that row. HASH (Col1, Col2).

 If your data is fairly regular and you want more even distribution than you get with HASH,
consider using MODULARHASH (page 311)() for project segmentation.

Examples
SELECT HASH(product_price, product_cost)

FROM product_dimension

WHERE product_price = '11';

 hash

 4157497907121511878

 1799398249227328285

 3250220637492749639

(3 rows)

See Also

MODULARHASH (page 311)

LN

Returns the natural logarithm of the argument. The return data type is the same as the argument.

Behavior Type

Immutable

Syntax
LN (expression)

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION

Examples
SELECT LN(2);

 ln

 0.693147180559945

(1 row)

-310-

SQL Reference Manual

LOG

Returns the logarithm to the specified base of the argument. The return data type is the same as
the argument.

Behavior Type

Immutable

Syntax
LOG ([base,] expression)

Parameters

base Specifies the base (default is base 10)

expression Is an expression of type INTEGER or DOUBLE PRECISION

Examples
SELECT LOG(2.0, 64);

 log

 6

(1 row)

SELECT LOG(100);

 log

 2

(1 row)

MOD

Returns the remainder of a division operation. MOD is also called modulo.

Behavior Type

Immutable

Syntax
MOD(expression1, expression2)

Parameters

expression1 Specifies the dividend (INTEGER, NUMERIC, or FLOAT)

expression2 Specifies the divisor (type same as dividend)

Notes

When computing mod(N,M), the following rules apply:

-311-

 SQL Functions

 If either N or M is the null value, then the result is the null value.

 If M is zero, then an exception condition is raised: data exception — division by zero.

 Otherwise, the result is the unique exact numeric value R with scale 0 (zero) such that all of the
following are true:

 R has the same sign as N.

 The absolute value of R is less than the absolute value of M.

 N = M * K + R for some exact numeric value K with scale 0 (zero).

Examples
SELECT MOD(9,4);

 mod

 1

(1 row)

SELECT MOD(10,3);

 mod

 1

(1 row)

SELECT MOD(-10,3);

 mod

 -1

(1 row)

SELECT MOD(-10,-3);

 mod

 -1

(1 row)

SELECT MOD(10,-3);

 mod

 1

(1 row)

MOD(<float>, 0) gives an error:

=> SELECT MOD(6.2,0);

ERROR: numeric division by zero

MODULARHASH

Calculates a hash value over its arguments for the purpose of projection segmentation. In all other
uses, returns 0.

-312-

SQL Reference Manual

If you can hash segment your data using a column with a regular pattern, such as a sequential
unique identifier, MODULARHASH distributes the data more evenly than HASH, which distributes
data using a normal statistical distribution.

Behavior Type

Immutable

Syntax
MODULARHASH (expression [,...])

Parameters

expression Is a column reference (see "Column References" on page 54) of any
data type.

Notes

The MODULARHASH() function takes up to 32 arguments, usually column names, and selects a
specific node for each row based on the values of the columns for that row.

Examples
CREATE PROJECTION fact_ts_2 (f_price, f_cid, f_tid, f_cost, f_date)

AS (SELECT price, cid, tid, cost, dwdate

 FROM fact)

 SEGMENTED BY MODULARHASH(dwdate)

 ALL NODES OFFSET 2;

See Also

HASH (page 308)

PI

Returns the constant pi (, the ratio of any circle's circumference to its diameter in Euclidean

geometry The return type is DOUBLE PRECISION.

Behavior Type

Immutable

Syntax
PI()

Examples

SELECT PI();

 pi

 3.14159265358979

(1 row)

-313-

 SQL Functions

POWER (or POW)
Returns a DOUBLE PRECISION value representing one number raised to the power of another
number. You can use either POWER or POW as the function name.

Behavior Type

Immutable

Syntax
POWER (expression1, expression2)

Parameters

expression1 Is an expression of type DOUBLE PRECISION that represents the

base

expression2 Is an expression of type DOUBLE PRECISION that represents the
exponent

Examples
SELECT POWER(9.0, 3.0);

 power

 729

(1 row)

RADIANS

Returns a DOUBLE PRECISION value representing an angle expressed in radians. You can
express the input angle in degrees (page 304), and optionally include minutes and seconds.

Behavior Type

Immutable

Syntax
RADIANS (degrees [, minutes, seconds])

Parameters

degrees A unit of angular measurement, representing 1/360 of a full
rotation.

minutes A unit of angular measurement, representing 1/60 of a degree.

-314-

SQL Reference Manual

seconds A unit of angular measurement, representing 1/60 of a minute.

Examples

SELECT RADIANS(45);

 RADIANS

 0.785398163397448

(1 row)

SELECT RADIANS (1,2,3);

 RADIANS

 0.018049613347708

(1 row)

RANDOM

Returns a uniformly-distributed random number x, where 0 <= x < 1.

Behavior Type

Volatile

Syntax
RANDOM()

Parameters

RANDOM has no arguments. Its result is a FLOAT8 data type (also called DOUBLE
PRECISION (page 105)).

Notes

Typical pseudo-random generators accept a seed, which is set to generate a reproducible
pseudo-random sequence. HP Vertica, however, distributes SQL processing over a cluster of
nodes, where each node generates its own independent random sequence.

Results depending on RANDOM are not reproducible because the work might be divided
differently across nodes. Therefore, HP Vertica automatically generates truly random seeds for
each node each time a request is executed and does not provide a mechanism for forcing a
specific seed.

Examples

In the following example, the result is a float, which is >= 0 and < 1.0:

SELECT RANDOM();

 random

 0.211625560652465

-315-

 SQL Functions

(1 row)

RANDOMINT

Returns a uniformly-distributed integer I, where 0 <= I < N, where N <= MAX_INT8. That is,
RANDOMINT(N) returns one of the N integers from 0 through N-1.

Behavior Type

Volatile

Syntax
RANDOMINT (N)

Example

In the following example, the result is an INT8, which is >= 0 and < N. In this case, INT8 is
randomly chosen from the set {0,1,2,3,4}.

SELECT RANDOMINT(5);

randomint

 3

(1 row)

ROUND

Rounds a value to a specified number of decimal places, retaining the original scale and precision.
Fractions greater than or equal to .5 are rounded up. Fractions less than .5 are rounded down
(truncated).

Behavior Type

Immutable

Syntax
ROUND (expression [, decimal-places])

Parameters

expression Is an expression of type NUMERIC.

decimal-places If positive, specifies the number of decimal places to
display to the right of the decimal point; if negative,
specifies the number of decimal places to display to the

left of the decimal point.

Notes

NUMERIC ROUND() returns NUMERIC, retaining the original scale and precision:

-316-

SQL Reference Manual

=> SELECT ROUND(3.5);

 ROUND

 4.0

(1 row)

The internal floating point representation used to compute the ROUND function causes the
fraction to be evaluated as 3.5, which is rounded up.

Examples
SELECT ROUND(2.0, 1.0) FROM dual;

 round

 2

(1 row)

SELECT ROUND(12.345, 2.0);

 round

 12.35

(1 row)

SELECT ROUND(3.444444444444444);

 ROUND

 3.000000000000000

(1 row)

SELECT ROUND(3.14159, 3);

 ROUND

 3.14200

(1 row)

SELECT ROUND(1234567, -3);

 round

 1235000

(1 row)

SELECT ROUND(3.4999, -1);

 ROUND

 .0000

(1 row)

SELECT employee_last_name, ROUND(annual_salary,4) FROM

employee_dimension;

 employee_last_name | ROUND

--------------------+--------

 Li | 1880

 Rodriguez | 1704

 Goldberg | 2282

 Meyer | 1628

 Pavlov | 3168

 McNulty | 1516

 Dobisz | 3006

 Pavlov | 2142

 Goldberg | 2268

 Pavlov | 1918

-317-

 SQL Functions

 Robinson | 2366

 ...

SIGN

Returns a DOUBLE PRECISION value of -1, 0, or 1 representing the arithmetic sign of the
argument.

Behavior Type

Immutable

Syntax
SIGN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples
SELECT SIGN(-8.4);

 sign

 -1

(1 row)

SIN

Returns a DOUBLE PRECISION value representing the trigonometric sine of the argument.

Behavior Type

Immutable

Syntax
SIN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Example
SELECT SIN(30 * 2 * 3.14159 / 360);

 sin

 0.499999616987256

(1 row)

-318-

SQL Reference Manual

SQRT

Returns a DOUBLE PRECISION value representing the arithmetic square root of the argument.

Behavior Type

Immutable

Syntax
SQRT (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Examples
SELECT SQRT(2);

 sqrt

 1.4142135623731

(1 row)

TAN

Returns a DOUBLE PRECISION value representing the trigonometric tangent of the argument.

Behavior Type

Immutable

Syntax
TAN (expression)

Parameters

expression Is an expression of type DOUBLE PRECISION

Example
SELECT TAN(30);

 tan

 -6.40533119664628

(1 row)

-319-

 SQL Functions

TRUNC

Returns a value representing the argument fully truncated (toward zero) or truncated to a specific
number of decimal places, retaining the original scale and precision.

Behavior Type

Immutable

Syntax
TRUNC (expression [, places]

Parameters

expression Is an expression of type INTEGER or DOUBLE PRECISION that
represents the number to truncate

places Is an expression of type INTEGER that specifies the number of
decimal places to return

Notes

NUMERIC TRUNC() returns NUMERIC, retaining the original scale and precision:

=> SELECT TRUNC(3.5);

 TRUNC

 3.0

(1 row)

Examples
=>SELECT TRUNC(42.8);

 TRUNC

 42.0

(1 row)

=>SELECT TRUNC(42.4382, 2);

 TRUNC

 42.4300

(1 row)

WIDTH_BUCKET
Constructs equiwidth histograms, in which the histogram range is divided into intervals (buckets)
of identical sizes. In addition, values below the low bucket return 0, and values above the high
bucket return bucket_count +1. Returns an integer value.

-320-

SQL Reference Manual

Behavior Type

Immutable

Syntax
WIDTH_BUCKET (expression, hist_min, hist_max, bucket_count)

Parameters

expression Is the expression for which the histogram is created. This
expression must evaluate to a numeric or datetime value or to
a value that can be implicitly converted to a numeric or

datetime value. If expression evaluates to null, then the
expression returns null.

hist_min Is an expression that resolves to the low boundary of bucket 1.

Must also evaluate to numeric or datetime values and cannot
evaluate to null.

hist_max Is an expression that resolves to the high boundary of bucket

bucket_count. Must also evaluate to a numeric or datetime
value and cannot evaluate to null.

bucket_count Is an expression that resolves to a constant, indicating the

number of buckets. This expression always evaluates to a
positive INTEGER.

Notes

 WIDTH_BUCKET divides a data set into buckets of equal width. For example, Age = 0-20,
20-40, 40-60, 60-80. This is known as an equiwidth histogram.

 When using WIDTH_BUCKET pay attention to the minimum and maximum boundary values.
Each bucket contains values equal to or greater than the base value of that bucket, so that age
ranges of 0-20, 20-40, and so on, are actually 0-19.99 and 20-39.999.

 WIDTH_BUCKET accepts the following data types: (FLOAT and/or INT), (TIMESTAMP and/or
DATE and/or TIMESTAMPTZ), or (INTERVAL and/or TIME).

Examples

The following example returns five possible values and has three buckets: 0 [Up to 100), 1
[100-300), 2 [300-500), 3 [500-700), and 4 [700 and up):

SELECT product_description, product_cost,

WIDTH_BUCKET(product_cost, 100, 700, 3);

The following example creates a nine-bucket histogram on the annual_income column for
customers in Connecticut who are female doctors. The results return the bucket number to an
―Income‖ column, divided into eleven buckets, including an underflow and an overflow. Note that if
customers had an annual incomes greater than the maximum value, they would be assigned to an
overflow bucket, 10:

SELECT customer_name, annual_income,

WIDTH_BUCKET (annual_income, 100000, 1000000, 9) AS "Income"

FROM public.customer_dimension WHERE customer_state='CT'

-321-

 SQL Functions

AND title='Dr.' AND customer_gender='Female' AND household_id < '1000'

ORDER BY "Income";

In the following result set, the reason there is a bucket 0 is because buckets are numbered from 1

to bucket_count. Anything less than the given value of hist_min goes in bucket 0, and anything

greater than the given value of hist_max goes in the bucket bucket_count+1. In this
example, bucket 9 is empty, and there is no overflow. The value 12,283 is less than 100,000, so it
goes into the underflow bucket.

 customer_name | annual_income | Income

--------------------+---------------+--------

 Joanna A. Nguyen | 12283 | 0

 Amy I. Nguyen | 109806 | 1

 Juanita L. Taylor | 219002 | 2

 Carla E. Brown | 240872 | 2

 Kim U. Overstreet | 284011 | 2

 Tiffany N. Reyes | 323213 | 3

 Rebecca V. Martin | 324493 | 3

 Betty . Roy | 476055 | 4

 Midori B. Young | 462587 | 4

 Martha T. Brown | 687810 | 6

 Julie D. Miller | 616509 | 6

 Julie Y. Nielson | 894910 | 8

 Sarah B. Weaver | 896260 | 8

 Jessica C. Nielson | 861066 | 8

(14 rows)

See Also

NTILE (page 175)

NULL-handling Functions
NULL-handling functions take arguments of any type, and their return type is based on their
argument types.

COALESCE

Returns the value of the first non-null expression in the list. If all expressions evaluate to null, then
the COALESCE function returns null.

Behavior Type

Immutable

Syntax
COALESCE (expression1, expression2);

COALESCE (expression1, expression2, ... expression-n);

-322-

SQL Reference Manual

Parameters

 COALESCE (expression1, expression2) is equivalent to the following CASE

expression:

CASE WHEN expression1 IS NOT NULL THEN expression1 ELSE expression2 END;

 COALESCE (expression1, expression2, ... expression-n), for n >= 3, is

equivalent to the following CASE expression:

CASE WHEN expression1 IS NOT NULL THEN expression1

ELSE COALESCE (expression2, . . . , expression-n) END;

Notes

COALESCE is an ANSI standard function (SQL-92).

Example
SELECT product_description, COALESCE(lowest_competitor_price,

 highest_competitor_price, average_competitor_price) AS price

FROM product_dimension;

 product_description | price

------------------------------------+-------

 Brand #54109 kidney beans | 264

 Brand #53364 veal | 139

 Brand #50720 ice cream sandwiches | 127

 Brand #48820 coffee cake | 174

 Brand #48151 halibut | 353

 Brand #47165 canned olives | 250

 Brand #39509 lamb | 306

 Brand #36228 tuna | 245

 Brand #34156 blueberry muffins | 183

 Brand #31207 clams | 163

(10 rows)

See Also

Case Expressions (page 52)

ISNULL (page 323)

IFNULL

Returns the value of the first non-null expression in the list.

IFNULL is an alias of NVL (page 327).

Behavior Type

Immutable

Syntax
IFNULL (expression1 , expression2);

-323-

 SQL Functions

Parameters

 If expression1 is null, then IFNULL returns expression2.

 If expression1 is not null, then IFNULL returns expression1.

Notes

 COALESCE (page 321) is the more standard, more general function.

 IFNULL is equivalent to ISNULL.

 IFNULL is equivalent to COALESCE except that IFNULL is called with only two arguments.

 ISNULL(a,b) is different from x IS NULL.

 The arguments can have any data type supported by HP Vertica.

 Implementation is equivalent to the CASE expression. For example:

CASE WHEN expression1 IS NULL THEN expression2 ELSE expression1 END;

 The following statement returns the value 140:

SELECT IFNULL(NULL, 140) FROM employee_dimension;

 The following statement returns the value 60:

SELECT IFNULL(60, 90) FROM employee_dimension;

Examples

=> SELECT IFNULL (SCORE, 0.0) FROM TESTING;

 IFNULL

 100.0

 87.0

 .0

 .0

 .0

(5 rows)

See Also

Case Expressions (page 52)

COALESCE (page 321)

NVL (page 327)

ISNULL (page 323)

ISNULL
Returns the value of the first non-null expression in the list.

ISNULL is an alias of NVL (page 327).

-324-

SQL Reference Manual

Behavior Type

Immutable

Syntax
ISNULL (expression1 , expression2);

Parameters

 If expression1 is null, then ISNULL returns expression2.

 If expression1 is not null, then ISNULL returns expression1.

Notes

 COALESCE (page 321) is the more standard, more general function.

 ISNULL is equivalent to COALESCE except that ISNULL is called with only two arguments.

 ISNULL(a,b) is different from x IS NULL.

 The arguments can have any data type supported by HP Vertica.

 Implementation is equivalent to the CASE expression. For example:

CASE WHEN expression1 IS NULL THEN expression2 ELSE expression1 END;

 The following statement returns the value 140:

SELECT ISNULL(NULL, 140) FROM employee_dimension;

 The following statement returns the value 60:

SELECT ISNULL(60, 90) FROM employee_dimension;

Examples

SELECT product_description, product_price, ISNULL(product_cost, 0.0) AS cost

FROM product_dimension;

 product_description | product_price | cost

--------------------------------+---------------+------

 Brand #59957 wheat bread | 405 | 207

 Brand #59052 blueberry muffins | 211 | 140

 Brand #59004 english muffins | 399 | 240

 Brand #53222 wheat bread | 323 | 94

 Brand #52951 croissants | 367 | 121

 Brand #50658 croissants | 100 | 94

 Brand #49398 white bread | 318 | 25

 Brand #46099 wheat bread | 242 | 3

 Brand #45283 wheat bread | 111 | 105

 Brand #43503 jelly donuts | 259 | 19

(10 rows)

See Also

Case Expressions (page 52)

COALESCE (page 321)

NVL (page 327)

-325-

 SQL Functions

NULLIF

Compares two expressions. If the expressions are not equal, the function returns the first
expression (expression1). If the expressions are equal, the function returns null.

Behavior Type

Immutable

Syntax
NULLIF(expression1, expression2)

Parameters

expression1 Is a value of any data type.

expression2 Must have the same data type as expr1 or a type that can be

implicitly cast to match expression1. The result has the same
type as expression1.

Examples

The following series of statements illustrates one simple use of the NULLIF function.

Creates a single-column table t and insert some values:

CREATE TABLE t (x TIMESTAMPTZ);

INSERT INTO t VALUES('2009-09-04 09:14:00-04');

INSERT INTO t VALUES('2010-09-04 09:14:00-04');

Issue a select statement:

SELECT x, NULLIF(x, '2009-09-04 09:14:00 EDT') FROM t;

 x | nullif

------------------------+------------------------

 2009-09-04 09:14:00-04 |

 2010-09-04 09:14:00-04 | 2010-09-04 09:14:00-04

SELECT NULLIF(1, 2);

 NULLIF

 1

(1 row)

SELECT NULLIF(1, 1);

 NULLIF

(1 row)

SELECT NULLIF(20.45, 50.80);

 NULLIF

 20.45

-326-

SQL Reference Manual

(1 row)

NULLIFZERO

Evaluates to NULL if the value in the column is 0.

Syntax
NULLIFZERO(expression)

Parameters

expression (INTEGER, DOUBLE PRECISION, INTERVAL, or

NUMERIC) Is the string to evaluate for 0 values.

Example

The TESTING table below shows the test scores for 5 students. Note that test scores are missing
for S. Robinson and K. Johnson (NULL values appear in the Score column.)

=> select * from TESTING;

 Name | Score

-------------+-------

 J. Doe | 100

 R. Smith | 87

 L. White | 0

 S. Robinson |

 K. Johnson |

(5 rows)

The SELECT statement below specifies that HP Vertica should return any 0 values in the Score
column as Null. In the results, you can see that HP Vertica returns L. White's 0 score as Null.

=> SELECT Name, NULLIFZERO(Score) FROM TESTING;

 Name | NULLIFZERO

-------------+------------

 J. Doe | 100

 R. Smith | 87

 L. White |

 S. Robinson |

 K. Johnson |

(5 rows)

-327-

 SQL Functions

NVL

Returns the value of the first non-null expression in the list.

Behavior Type

Immutable

Syntax
NVL (expression1 , expression2);

Parameters

 If expression1 is null, then NVL returns expression2.

 If expression1 is not null, then NVL returns expression1.

Notes

 COALESCE (page 321) is the more standard, more general function.

 NVL is equivalent to COALESCE except that NVL is called with only two arguments.

 The arguments can have any data type supported by HP Vertica.

 Implementation is equivalent to the CASE expression:
CASE WHEN expression1 IS NULL THEN expression2 ELSE expression1 END;

Examples

expression1 is not null, so NVL returns expression1:

SELECT NVL('fast', 'database');

 nvl

 fast

(1 row)

expression1 is null, so NVL returns expression2:

SELECT NVL(null, 'database');

 nvl

 database

(1 row)

expression2 is null, so NVL returns expression1:

SELECT NVL('fast', null);

 nvl

 fast

(1 row)

In the following example, expression1 (title) contains nulls, so NVL returns expression2 and
substitutes 'Withheld' for the unknown values:

SELECT customer_name,

 NVL(title, 'Withheld') as title

-328-

SQL Reference Manual

FROM customer_dimension

ORDER BY title;

 customer_name | title

------------------------+-------

 Alexander I. Lang | Dr.

 Steve S. Harris | Dr.

 Daniel R. King | Dr.

 Luigi I. Sanchez | Dr.

 Duncan U. Carcetti | Dr.

 Meghan K. Li | Dr.

 Laura B. Perkins | Dr.

 Samantha V. Robinson | Dr.

 Joseph P. Wilson | Mr.

 Kevin R. Miller | Mr.

 Lauren D. Nguyen | Mrs.

 Emily E. Goldberg | Mrs.

 Darlene K. Harris | Ms.

 Meghan J. Farmer | Ms.

 Bettercare | Withheld

 Ameristar | Withheld

 Initech | Withheld

(17 rows)

See Also

Case Expressions (page 52)

COALESCE (page 321)

ISNULL (page 323)

NVL2 (page 328)

NVL2

Takes three arguments. If the first argument is not NULL, it returns the second argument,
otherwise it returns the third argument. The data types of the second and third arguments are
implicitly cast to a common type if they don't agree, similar to COALESCE (page 321).

Behavior Type

Immutable

Syntax
NVL2 (expression1 , expression2 , expression3);

Parameters

 If expression1 is not null, then NVL2 returns expression2.

 If expression1 is null, then NVL2 returns expression3.

Notes

Arguments two and three can have any data type supported by HP Vertica.

-329-

 SQL Functions

Implementation is equivalent to the CASE expression:

 CASE WHEN expression1 IS NOT NULL THEN expression2 ELSE expression3 END;

Examples

In this example, expression1 is not null, so NVL2 returns expression2:

SELECT NVL2('very', 'fast', 'database');

 nvl2

 fast

(1 row)

In this example, expression1 is null, so NVL2 returns expression3:

SELECT NVL2(null, 'fast', 'database');

 nvl2

 database

(1 row)

In the following example, expression1 (title) contains nulls, so NVL2 returns expression3
('Withheld') and also substitutes the non-null values with the expression 'Known':

SELECT customer_name,

 NVL2(title, 'Known', 'Withheld') as title

FROM customer_dimension

ORDER BY title;

 customer_name | title

------------------------+-------

 Alexander I. Lang | Known

 Steve S. Harris | Known

 Daniel R. King | Known

 Luigi I. Sanchez | Known

 Duncan U. Carcetti | Known

 Meghan K. Li | Known

 Laura B. Perkins | Known

 Samantha V. Robinson | Known

 Joseph P. Wilson | Known

 Kevin R. Miller | Known

 Lauren D. Nguyen | Known

 Emily E. Goldberg | Known

 Darlene K. Harris | Known

 Meghan J. Farmer | Known

 Bettercare | Withheld

 Ameristar | Withheld

 Initech | Withheld

(17 rows)

See Also

Case Expressions (page 52)

COALESCE (page 321)

NVL (page 321)

-330-

SQL Reference Manual

ZEROIFNULL

Evaluates to 0 if the column is NULL.

Syntax
ZEROIFNULL(expression)

Parameters

expression (INTEGER, DOUBLE PRECISION, INTERVAL, or

NUMERIC) Is the string to evaluate for NULL
values.

Example

The TESTING table below shows the test scores for 5 students. Note that L. White's score is 0,
and that scores are missing for S. Robinson and K. Johnson.

=> select * from TESTING;

 Name | Score

-------------+-------

 J. Doe | 100

 R. Smith | 87

 L. White | 0

 S. Robinson |

 K. Johnson |

(5 rows)

The SELECT statement below specifies that HP Vertica should return any Null values in the Score
column as 0s. In the results, you can see that HP Vertica returns a 0 score for S. Robinson and K.
Johnson.

=> SELECT Name, ZEROIFNULL (Score) FROM TESTING;

 Name | ZEROIFNULL

-------------+------------

 J. Doe | 100

 R. Smith | 87

 L. White | 0

 S. Robinson | 0

 K. Johnson | 0

(5 rows)

-331-

 SQL Functions

Pattern Matching Functions

Used with the MATCH clause (page 887), the HP Vertica pattern matching functions return
additional data about the patterns found/output. For example, you can use these functions to
return values representing the name of the event or pattern that matched the input row, the
sequential number of the match, or a partition-wide unique identifier for the instance of the pattern
that matched.

Pattern matching is particularly useful for clickstream analysis where you might want to identify
users' actions based on their Web browsing behavior (page clicks). A typical online clickstream
funnel is:

Company home page -> product home page -> search -> results -> purchase online

Using the above clickstream funnel, you can search for a match on the user's sequence of web
clicks and identify that the user:

 landed on the company home page

 navigated to the product page

 ran a search

 clicked a link from the search results

 made a purchase

For examples that use this clickstream model, see Event Series Pattern Matching in the
Programmer's Guide.

See Also

MATCH Clause (page 887)

Event Series Pattern Matching in the Programmer's Guide

EVENT_NAME

Returns a VARCHAR value representing the name of the event that matched the row.

Syntax
EVENT_NAME()

Notes

Pattern matching functions must be used in MATCH clause (page 887) syntax; for example, if you
call EVENT_NAME() on its own, HP Vertica returns the following error message:

=> SELECT event_name();

ERROR: query with pattern matching function event_name must include a MATCH clause

-332-

SQL Reference Manual

Example

Note: This example uses the schema defined in Event Series Pattern Matching in the
Programmer's Guide. For a more detailed example, see that topic.

The following statement analyzes users' browsing history on website2.com and identifies patterns
where the user landed on website2.com from another Web site (Entry) and browsed to any
number of other pages (Onsite) before making a purchase (Purchase). The query also outputs the
values for EVENT_NAME(), which is the name of the event that matched the row.

SELECT uid,

 sid,

 ts,

 refurl,

 pageurl,

 action,

 event_name()

FROM clickstream_log

MATCH

 (PARTITION BY uid, sid ORDER BY ts

 DEFINE

 Entry AS RefURL NOT ILIKE '%website2.com%' AND PageURL ILIKE '%website2.com%',

 Onsite AS PageURL ILIKE '%website2.com%' AND Action='V',

 Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

 PATTERN

 P AS (Entry Onsite* Purchase)

 RESULTS ALL ROWS);

 uid | sid | ts | refurl | pageurl | action | event_name

-----+-----+----------+----------------------+----------------------+--------+------------

 1 | 100 | 12:00:00 | website1.com | website2.com/home | V | Entry

 1 | 100 | 12:01:00 | website2.com/home | website2.com/floby | V | Onsite

 1 | 100 | 12:02:00 | website2.com/floby | website2.com/shamwow | V | Onsite

 1 | 100 | 12:03:00 | website2.com/shamwow | website2.com/buy | P | Purchase

 2 | 100 | 12:10:00 | website1.com | website2.com/home | V | Entry

 2 | 100 | 12:11:00 | website2.com/home | website2.com/forks | V | Onsite

 2 | 100 | 12:13:00 | website2.com/forks | website2.com/buy | P | Purchase

(7 rows)

See Also

MATCH Clause (page 887)

MATCH_ID (page 332)

PATTERN_ID (page 334)

Event Series Pattern Matching in the Programmer's Guide

MATCH_ID

Returns a successful pattern match as an INTEGER value. The returned value is the ordinal
position of a match within a partition.

Syntax
MATCH_ID()

-333-

 SQL Functions

Notes

Pattern matching functions must be used in MATCH clause (page 887) syntax; for example, if you
call MATCH_ID() on its own, HP Vertica returns the following error message:

=> SELECT match_id();

ERROR: query with pattern matching function match_id must include a MATCH clause

Example

Note: This example uses the schema defined in Event Series Pattern Matching in the
Programmer's Guide. For a more detailed example, see that topic.

The following statement analyzes users' browsing history on a site called website2.com and

identifies patterns where the user reached website2.com from another Web site (Entry in the

MATCH clause) and browsed to any number of other pages (Onsite) before making a purchase
(Purchase). The query also outputs values for the MATCH_ID(), which represents a sequential
number of the match.

SELECT uid,

 sid,

 ts,

 refurl,

 pageurl,

 action,

 match_id()
FROM clickstream_log

MATCH

 (PARTITION BY uid, sid ORDER BY ts

 DEFINE

 Entry AS RefURL NOT ILIKE '%website2.com%' AND PageURL ILIKE '%website2.com%',

 Onsite AS PageURL ILIKE '%website2.com%' AND Action='V',

 Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

 PATTERN

 P AS (Entry Onsite* Purchase)

 RESULTS ALL ROWS);

 uid | sid | ts | refurl | pageurl | action | match_id

-----+-----+----------+----------------------+----------------------+--------+----------

 2 | 100 | 12:10:00 | website1.com | website2.com/home | V | 1

 2 | 100 | 12:11:00 | website2.com/home | website2.com/forks | V | 2

 2 | 100 | 12:13:00 | website2.com/forks | website2.com/buy | P | 3

 1 | 100 | 12:00:00 | website1.com | website2.com/home | V | 1

 1 | 100 | 12:01:00 | website2.com/home | website2.com/floby | V | 2

 1 | 100 | 12:02:00 | website2.com/floby | website2.com/shamwow | V | 3

 1 | 100 | 12:03:00 | website2.com/shamwow | website2.com/buy | P | 4

(7 rows)

See Also

MATCH Clause (page 887)

EVENT_NAME (page 331)

PATTERN_ID (page 334)

Event Series Pattern Matching in the Programmer's Guide

-334-

SQL Reference Manual

PATTERN_ID

Returns an integer value that is a partition-wide unique identifier for the instance of the pattern that
matched.

Syntax
PATTERN_ID()

Notes

Pattern matching functions must be used in MATCH clause (page 887) syntax; for example, if call
PATTERN_ID() on its own, HP Vertica returns the following error message:

=> SELECT pattern_id();

ERROR: query with pattern matching function pattern_id must include a MATCH clause

Example

Note: This example uses the schema defined in Event Series Pattern Matching in the

Programmer's Guide. For a more detailed example, see that topic.

The following statement analyzes users' browsing history on website2.com and identifies patterns
where the user landed on website2.com from another Web site (Entry) and browsed to any
number of other pages (Onsite) before making a purchase (Purchase). The query also outputs
values for PATTERN_ID(), which represents the partition-wide identifier for the instance of the
pattern that matched.

SELECT uid,

 sid,

 ts,

 refurl,

 pageurl,

 action,

 pattern_id()
FROM clickstream_log

MATCH

 (PARTITION BY uid, sid ORDER BY ts

 DEFINE

 Entry AS RefURL NOT ILIKE '%website2.com%' AND PageURL ILIKE '%website2.com%',

 Onsite AS PageURL ILIKE '%website2.com%' AND Action='V',

 Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

 PATTERN

 P AS (Entry Onsite* Purchase)

 RESULTS ALL ROWS);

 uid | sid | ts | refurl | pageurl | action | pattern_id

-----+-----+----------+----------------------+----------------------+--------+------------

 2 | 100 | 12:10:00 | website1.com | website2.com/home | V | 1

 2 | 100 | 12:11:00 | website2.com/home | website2.com/forks | V | 1

 2 | 100 | 12:13:00 | website2.com/forks | website2.com/buy | P | 1

 1 | 100 | 12:00:00 | website1.com | website2.com/home | V | 1

 1 | 100 | 12:01:00 | website2.com/home | website2.com/floby | V | 1

 1 | 100 | 12:02:00 | website2.com/floby | website2.com/shamwow | V | 1

 1 | 100 | 12:03:00 | website2.com/shamwow | website2.com/buy | P | 1

(7 rows)

-335-

 SQL Functions

See Also

MATCH Clause (page 887)

EVENT_NAME (page 331)

MATCH_ID (page 332)

Event Series Pattern Matching in the Programmer's Guide

Regular Expression Functions

A regular expression lets you perform pattern matching on strings of characters. The regular
expression syntax allows you to very precisely define the pattern used to match strings, giving you
much greater control than the wildcard matching used in the LIKE (page 66) predicate. HP
Vertica's regular expression functions let you perform tasks such as determining if a string value
matches a pattern, extracting a portion of a string that matches a pattern, or counting the number
of times a string matches a pattern.

HP Vertica uses the Perl Compatible Regular Expression library http://www.pcre.org/
(PCRE) to evaluate regular expressions. As its name implies, PCRE's regular expression syntax is
compatible with the syntax used by the Perl 5 programming language. You can read PCRE's
documentation on its regular expression syntax
http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co. However, you
might find the Perl Regular Expressions Documentation (http://perldoc.perl.org/perlre.html)
to be a better introduction, especially if you are unfamiliar with regular expressions.

Note: The regular expression functions only operate on valid UTF-8 strings. If you attempt to
use a regular expression function on a string that is not valid UTF-8, then the query fails with an
error. To prevent an error from occurring, you can use the ISUTF8 (page 335) function as a
clause in the statement to ensure the strings you want to pass to the regular expression
functions are actually valid UTF-8 strings, or you can use the 'b' argument to treat the strings as
binary octets rather than UTF-8 encoded strings.

ISUTF8

Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance before
passing them to one of the regular expression functions, such as REGEXP_LIKE (page 341),
which expect UTF-8 characters by default.

ISUTF8 checks for invalid UTF8 byte sequences, according to UTF-8 rules:

 invalid bytes

 an unexpected continuation byte

 a start byte not followed by enough continuation bytes

http://www.pcre.org/
http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co
http://perldoc.perl.org/perlre.html

-336-

SQL Reference Manual

 an Overload Encoding

The presence of an invalid UTF8 byte sequence results in a return value of false.

Syntax
ISUTF8(string);

Parameters
string The string to test for UTF-8 compliance.

Examples
=> SELECT ISUTF8(E'\xC2\xBF'); -- UTF-8 INVERTED QUESTION MARK

 ISUTF8

 t

(1 row)

=> SELECT ISUTF8(E'\xC2\xC0'); -- UNDEFINED UTF-8 CHARACTER

 ISUTF8

 f

(1 row)

REGEXP_COUNT

Returns the number times a regular expression matches a string.

Syntax
REGEXP_COUNT(string, pattern [, position [, regexp_modifier]])

Parameters

string The string to be searched for matches.

pattern The regular expression to search for within the string.

The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation

(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.

The default value, 1, means to start searching for a match
at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the

pattern that many characters into the string.

http://perldoc.perl.org/perlre.html

-337-

 SQL Functions

regexp_modifier A string containing one or more single-character flags

that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than

UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple
lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular

expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space

characters and comments in the regular
expression to be ignored. Comments start
with a hash character (#) and end with a

newline. All spaces in the regular expression
that you want to be matched in strings must
be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while HP Vertica does not.

Examples

Count the number of occurrences of the substring "an" in the string "A man, a plan, a canal,
Panama."

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an');

 REGEXP_COUNT

 4

(1 row)

-338-

SQL Reference Manual

Find the number of occurrences of the substring "an" in the string "a man, a plan, a canal:
Panama" starting with the fifth character.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', 'an',5);

 REGEXP_COUNT

 3

(1 row)

Find the number of occurrences of a substring containing a lower-case character followed by "an."
In the first example, the query does not have a modifier. In the second example, the "i" query
modifier is used to force the regular expression to ignore case.

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an');

 REGEXP_COUNT

 3

(1 row)

=> SELECT REGEXP_COUNT('a man, a plan, a canal: Panama', '[a-z]an', 1, 'i');

 REGEXP_COUNT

 4

REGEXP_INSTR

Returns the starting or ending position in a string where a regular expression matches. This
function returns 0 if no match for the regular expression is found in the string.

Syntax
REGEXP_INSTR(string, pattern [, position [, occurrence

... [, return_position [, regexp_modifier]

... [, captured_subexp]]]])

Parameters

string The string to search for the pattern.

pattern The regular expression to search for within the string.
The syntax of the regular expression is compatible with

the Perl 5 regular expression syntax. See the Perl
Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match

at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

http://perldoc.perl.org/perlre.html

-339-

 SQL Functions

occurrence Controls which occurrence of a match between the string

and the pattern is returned. With the default value (1), the
function returns the position of the first substring that
matches the pattern. You can use this parameter to find

the position of additional matches between the string and
the pattern. For example, set this parameter to 3 to find
the position of the third substring that matched the

pattern.

return_position Sets the position within the string that is returned. When
set to the default value (0), this function returns the

position in the string of the first character of the substring
that matched the pattern. If you set this value to 1, the
function returns the position of the first character after the

end of the matching substring.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched

against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple
lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match

the start and end of the string.

n Allows the single character regular
expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular

expression to be ignored. Comments start
with a hash character (#) and end with a
newline. All spaces in the regular expression

that you want to be matched in strings must
be escaped with a backslash (\) character.

-340-

SQL Reference Manual

captured_subexp The captured subexpression whose position should be

returned. If omitted or set to 0, the function returns the
position of the first character in the entire string that
matched the regular expression. If set to 1 through 9, the

function returns the subexpression captured by the
corresponding set of parentheses in the regular
expression. For example, setting this value to 3 returns

the substring captured by the third set of parentheses in
the regular expression.

Note: The subexpressions are numbered left to right,

based on the appearance of opening parenthesis, so
nested regular expressions . For example, in the regular

expression \s*(\w+\s+(\w+)), subexpression 1 is the

one that captures everything but any leading

whitespaces.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while HP Vertica does not.

Examples

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y in the phrase "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y');

 REGEXP_INSTR

 1

(1 row)

Find the first occurrence of a sequence of letters starting with the letter e and ending with the letter
y starting at the second character in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',2);

 REGEXP_INSTR

 12

(1 row)

Find the second sequence of letters starting with the letter e and ending with the letter y in the
string "easy come, easy go" starting at the first character.

=> SELECT REGEXP_INSTR('easy come, easy go','e\w*y',1,2);

 REGEXP_INSTR

 12

(1 row)

-341-

 SQL Functions

Find the position of the first character after the first whitespace in the string "easy come, easy go."

=> SELECT REGEXP_INSTR('easy come, easy go','\s',1,1,1);

 REGEXP_INSTR

 6

(1 row)

Find the position of the start of the third word in a string by capturing each word as a
subexpression, and returning the third subexpression's start position.

=> SELECT REGEXP_INSTR('one two three','(\w+)\s+(\w+)\s+(\w+)', 1,1,0,'',3);

 REGEXP_INSTR

 9

(1 row)

REGEXP_LIKE
Returns true if the string matches the regular expression. This function is similar to the
LIKE-predicate (page 66), except that it uses regular expressions rather than simple wildcard
character matching.

Syntax
REGEXP_LIKE(string, pattern [, modifiers])

Parameters

string The string to match against the regular expression.

pattern A string containing the regular expression to match against the
string. The syntax of the regular expression is compatible with

the Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

http://perldoc.perl.org/perlre.html

-342-

SQL Reference Manual

modifiers A string containing one or more single-character flags that

change how the regular expression is matched against the
string:

b Treat strings as binary octets rather than UTF-8

characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple
lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start
and end of the string.

n Allows the single character regular expression

operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space

characters and comments in the regular
expression to be ignored. Comments start with
a hash character (#) and end with a newline.

All spaces in the regular expression that you
want to be matched in strings must be escaped
with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while HP Vertica does not.

Examples

This example creates a table containing several strings to demonstrate regular expressions.

=> create table t (v varchar);

CREATE TABLE

=> create projection t1 as select * from t;

CREATE PROJECTION

=> COPY t FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> aaa

>> Aaa

-343-

 SQL Functions

>> abc

>> abc1

>> 123

>> \.

=> SELECT * FROM t;

 v

 aaa

 Aaa

 abc

 abc1

 123

(5 rows)

Select all records in the table that contain the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a');

 v

 Aaa

 aaa

 abc

 abc1

(4 rows)

Select all of the rows in the table that start with the letter "a."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'^a');

 v

 aaa

 abc

 abc1

(3 rows)

Select all rows that contain the substring "aa."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aa');

 v

 Aaa

 aaa

(2 rows)

Select all rows that contain a digit.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'\d');

 v

 123

 abc1

(2 rows)

Select all rows that contain the substring "aaa."

-344-

SQL Reference Manual

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa');

 v

 aaa

(1 row)

Select all rows that contain the substring "aaa" using case insensitive matching.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'aaa', 'i');

 v

 Aaa

 aaa

(2 rows)

Select rows that contain the substring "a b c."

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c');

 v

(0 rows)

Select rows that contain the substring "a b c" ignoring space within the regular expression.

=> SELECT v FROM t WHERE REGEXP_LIKE(v,'a b c','x');

 v

 abc

 abc1

(2 rows)

Add multi-line rows to demonstrate using the "m" modifier.

=> COPY t FROM stdin RECORD TERMINATOR '!';

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Record 1 line 1

>> Record 1 line 2

>> Record 1 line 3!

>> Record 2 line 1

>> Record 2 line 2

>> Record 2 line 3!

>> \.

Select rows that start with the substring "Record" and end with the substring "line 2."

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$');

 v

(0 rows)

Select rows that start with the substring "Record" and end with the substring "line 2," treating
multiple lines as separate strings.

-345-

 SQL Functions

=> SELECT v from t WHERE REGEXP_LIKE(v,'^Record.*line 2$','m');

 v

--

Record 2 line 1

Record 2 line 2

Record 2 line 3

 Record 1 line 1

Record 1 line 2

Record 1 line 3

(2 rows)

REGEXP_REPLACE

Replace all occurrences of a substring that match a regular expression with another substring. It is
similar to the REPLACE (page 393) function, except it uses a regular expression to select the
substring to be replaced.

Syntax
REGEXP_REPLACE(string, target [, replacement [, position [, occurrence

... [, regexp_modifiers]]]])

Parameters

string The string whose to be searched and replaced.

target The regular expression to search for within the string.
The syntax of the regular expression is compatible with
the Perl 5 regular expression syntax. See the Perl

Regular Expressions Documentation
(http://perldoc.perl.org/perlre.html) for details.

replacement The string to replace matched substrings. If not supplied,

the matched substrings are deleted. This string can
contain baccalaureates for substrings captured by the
regular expression. The first captured substring is

inserted into the replacement string using \1, the second

\2, and so on.

position The number of characters from the start of the string
where the function should start searching for matches.
The default value, 1, means to start searching for a match

at the first (leftmost) character. Setting this parameter to
a value greater than 1 starts searching for a match to the
pattern that many characters into the string.

http://perldoc.perl.org/perlre.html

-346-

SQL Reference Manual

occurrence Controls which occurrence of a match between the string

and the pattern is replaced. With the default value (0), the
function replaces all matching substrings with the
replacement string. For any value above zero, the

function replaces just a single occurrence. For example,
set this parameter to 3 to replace the third substring that
matched the pattern.

regexp_modifier A string containing one or more single-character flags
that change how the regular expression is matched
against the string:

b Treat strings as binary octets rather than
UTF-8 characters.

c Forces the match to be case sensitive (the

default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple

lines. With this modifier, the start of line (^)

and end of line ($) regular expression

operators match line breaks (\n) within the

string. Ordinarily, these operators only match
the start and end of the string.

n Allows the single character regular
expression operator (.) to match a newline

(\n). Normally, the . operator will match any

character except a newline.

x Allows you to document your regular

expressions. It causes all unescaped space
characters and comments in the regular
expression to be ignored. Comments start

with a hash character (#) and end with a
newline. All spaces in the regular expression
that you want to be matched in strings must

be escaped with a backslash (\) character.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while HP Vertica does not.

-347-

 SQL Functions

Another key difference between Oracle and HP Vertica is that HP Vertica can handle an unlimited
number of captured subexpressions where Oracle is limited to nine. In HP Vertica, you are able to

use \10 in the replacement pattern to access the substring captured by the tenth set of

parentheses in the regular expression. In Oracle, \10 is treated as the substring captured by the

first set of parentheses followed by a zero. To force the same behavior in HP Vertica, use the \g
backreference with the number of the captured subexpression enclosed in curly braces. For

example, \g{1}0 is the substring captured by the first set of parentheses followed by a zero. You
can also name your captured subexpressions, to make your regular expressions less ambiguous.
See the PCRE http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co
documentation for details.

Examples

Find groups of "word characters" (letters, numbers and underscore) ending with "thy" in the string
"healthy, wealthy, and wise" and replace them with nothing.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy');

 REGEXP_REPLACE

 , , and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something');

 REGEXP_REPLACE

 something, something, and wise

(1 row)

Find groups of word characters ending with "thy" and replace with the string "something" starting
at the third character in the string.

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 3);

 REGEXP_REPLACE

 hesomething, something, and wise

(1 row)

Replace the second group of word characters ending with "thy" with the string "something."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','\w+thy', 'something', 1,

2);

 REGEXP_REPLACE

 healthy, something, and wise

(1 row)

Find groups of word characters ending with "thy" capturing the letters before the "thy", and replace
with the captured letters plus the letters "ish."

=> SELECT REGEXP_REPLACE('healthy, wealthy, and wise','(\w+)thy', '\1ish');

http://vcs.pcre.org/viewvc/code/trunk/doc/html/pcrepattern.html?view=co

-348-

SQL Reference Manual

 REGEXP_REPLACE

 healish, wealish, and wise

(1 row)

Create a table to demonstrate replacing strings in a query.

=> CREATE TABLE customers (name varchar(50), phone varchar(11));

CREATE TABLE

=> CREATE PROJECTION customers1 AS SELECT * FROM customers;

CREATE PROJECTION

=> COPY customers FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.

>> Able, Adam|17815551234

>> Baker,Bob|18005551111

>> Chu,Cindy|16175559876

>> Dodd,Dinara|15083452121

>> \.

Query the customers, using REGEXP_REPLACE to format the phone numbers.

=> SELECT name, REGEXP_REPLACE(phone, '(\d)(\d{3})(\d{3})(\d{4})', '\1-(\2)

\3-\4') as phone FROM customers;

 name | phone

-------------+------------------

 Able, Adam | 1-(781) 555-1234

 Baker,Bob | 1-(800) 555-1111

 Chu,Cindy | 1-(617) 555-9876

 Dodd,Dinara | 1-(508) 345-2121

(4 rows)

REGEXP_SUBSTR

Returns the substring that matches a regular expression within a string. If no matches are found,
this function returns NULL. This is different than an empty string, which can be returned by this
function if the regular expression matches a zero-length string.

Syntax
REGEXP_SUBSTR(string, pattern [, position [, occurrence

... [, regexp_modifier] [, captured_subexp]]])

Parameters

string The string to search for the pattern.

-349-

 SQL Functions

pattern The regular expression to find the substring to be extracted.

The syntax of the regular expression is compatible with the
Perl 5 regular expression syntax. See the Perl Regular
Expressions Documentation

(http://perldoc.perl.org/perlre.html) for details.

position The character in the string where the search for a match
should start. The default value, 1, starts the search at the

beginning of the string. If you supply a value larger than 1
for this parameter, the function will start searching that
many characters into the string.

occurrence Controls which matching substring is returned by the
function. When given the default value (1), the function will
return the first matching substring it finds in the string. By

setting this value to a number greater than 1, this function
will return subsequent matching substrings. For example,
setting this parameter to 3 will return the third substring that

matches the regular expression within the string.

regexp_modifier A string containing one or more single-character flags that
change how the regular expression is matched against the

string:

b Treat strings as binary octets rather than UTF-8
characters.

c Forces the match to be case sensitive (the
default).

i Forces the match to be case insensitive.

m Treats the string being matched as multiple
lines. With this modifier, the start of line (^) and

end of line ($) regular expression operators

match line breaks (\n) within the string.

Ordinarily, these operators only match the start

and end of the string.

n Allows the single character regular expression
operator (.) to match a newline (\n).

Normally, the . operator will match any

character except a newline.

x Allows you to document your regular
expressions. It causes all unescaped space
characters and comments in the regular

expression to be ignored. Comments start with
a hash character (#) and end with a newline.
All spaces in the regular expression that you

want to be matched in strings must be escaped
with a backslash (\) character.

http://perldoc.perl.org/perlre.html

-350-

SQL Reference Manual

captured_subexp The captured subexpression whose contents should be

returned. If omitted or set to 0, the function returns the
entire string that matched the regular expression. If set to 1
through 9, the function returns the subexpression captured

by the corresponding set of parentheses in the regular
expression. For example, setting this value to 3 returns the
substring captured by the third set of parentheses in the

regular expression.

Note: The subexpressions are numbered left to right,

based on the appearance of opening parenthesis, so
nested regular expressions . For example, in the regular
expression \s*(\w+\s+(\w+)), subexpression 1 is the

one that captures everything but any leading whitespaces.

Notes

This function operates on UTF-8 strings using the default locale, even if the locale has been set to
something else.

If you are porting a regular expression query from an Oracle database, remember that Oracle
considers a zero-length string to be equivalent to NULL, while HP Vertica does not.

Examples

Select the first substring of letters that end with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy');

 REGEXP_SUBSTR

 healthy

(1 row)

Select the first substring of letters that ends with "thy" starting at the second character in the string.

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',2);

 REGEXP_SUBSTR

 ealthy

(1 row)

Select the second substring of letters that ends with "thy."

=> SELECT REGEXP_SUBSTR('healthy, wealthy, and wise','\w+thy',1,2);

 REGEXP_SUBSTR

 wealthy

(1 row)

Return the contents of the third captured subexpression, which captures the third word in the
string.

=> SELECT REGEXP_SUBSTR('one two three', '(\w+)\s+(\w+)\s+(\w+)', 1, 1, '', 3);

-351-

 SQL Functions

 REGEXP_SUBSTR

 three

(1 row)

Sequence Functions

The sequence functions provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

NEXTVAL

Returns the next value in a sequence. Calling NEXTVAL after creating a sequence initializes the
sequence with its default value, incrementing a positive value for ascending sequences, and
decrementing a negative value for descending sequences. Thereafter, calling NEXTVAL
increments the sequence value. NEXTVAL is used in INSERT, COPY, and SELECT statements
to create unique values.

Behavior Type

Volatile

Syntax
[[db-name.]schema.]sequence_name.NEXTVAL

NEXTVAL('[[db-name.]schema.]sequence_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name, but

you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

sequence_name Identifies the sequence for which to determine the next value.

Permissions

 SELECT privilege on sequence

 USAGE privilege on sequence schema

-352-

SQL Reference Manual

Examples

The following example creates an ascending sequence called my_seq, starting at 101:

CREATE SEQUENCE my_seq START 101;

The following command generates the first number in the sequence:

SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

The following command generates the next number in the sequence:

SELECT NEXTVAL('my_seq');

 nextval

 102

(1 row)

The following command illustrates how NEXTVAL is evaluated on a per-row basis, so in this
example, both calls to NEXTVAL yield the same result:

SELECT NEXTVAL('my_seq'), NEXTVAL('my_seq');

nextval | nextval

---------+---------

 103 | 103

(1 row)

The following example illustrates how the NEXTVAL is always evaluated first (and here,

increments the my_seq sequence from its previous value), even when CURRVAL precedes
NEXTVAL:

SELECT CURRVAL('my_seq'), NEXTVAL('my_seq');

 currval | nextval

---------+---------

 104 | 104

(1 row)

The following example shows how to use NEXTVAL in a table SELECT statement. Notice that the

nextval column is incremented by 1 again:

SELECT NEXTVAL('my_seq'), product_description FROM product_dimension LIMIT 10;

 nextval | product_description

---------+------------------------------

 105 | Brand #2 bagels

 106 | Brand #1 butter

 107 | Brand #6 chicken noodle soup

 108 | Brand #5 golf clubs

 109 | Brand #4 brandy

 110 | Brand #3 lamb

 111 | Brand #11 vanilla ice cream

 112 | Brand #10 ground beef

-353-

 SQL Functions

 113 | Brand #9 camera case

 114 | Brand #8 halibut

(10 rows)

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

CURRVAL (page 353)

DROP SEQUENCE (page 822)

Using Sequences and Sequence Privileges in the Administrator's Guide

CURRVAL

For a sequence generator, returns the LAST value across all nodes returned by a previous
invocation of NEXTVAL (page 351) in the same session. If there were no calls to NEXTVAL after
the sequence was created, an error is returned.

Behavior Type

Volatile

Syntax
[[db-name.]schema.]sequence_name.CURRVAL

CURRVAL('[[db-name.]schema.]sequence_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current
search path (see Setting Schema Search Paths).

You can optionally precede a schema with a database
name, but you must be connected to the database you
specify. You cannot make changes to objects in other

databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you

qualify database objects as explicitly as required. For
example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification,

a database, schema, table, and column

(mydb.myschema.mytable.column1).

sequence_name Identifies the sequence for which to return the current value.

-354-

SQL Reference Manual

Permissions

 SELECT privilege on sequence

 USAGE privilege on sequence schema

Examples

The following example creates an ascending sequence called sequential, starting at 101:

CREATE SEQUENCE seq2 START 101;

You cannot call CURRVAL until after you have initiated the sequence with NEXTVAL or the
system returns an error:

SELECT CURRVAL('seq2');

ERROR: Sequence seq2 has not been accessed in the session

Use the NEXTVAL function to generate the first number for this sequence:

SELECT NEXTVAL('seq2');

 nextval

 101

(1 row)

Now you can use CURRVAL to return the current number from this sequence:

SELECT CURRVAL('seq2');

 currval

 101

(1 row)

The following command shows how to use CURRVAL in a SELECT statement:

CREATE TABLE customer3 (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 ID INTEGER

);

INSERT INTO customer3 VALUES ('Brown' ,'Sabra', 072753, CURRVAL('my_seq'));

SELECT CURRVAL('seq2'), lname FROM customer3;

 CURRVAL | lname

---------+-------

 101 | Brown

(1 row)

The following example illustrates how the NEXTVAL is always evaluated first (and here,
increments the my_seq sequence from its previous value), even when CURRVAL precedes
NEXTVAL:

SELECT CURRVAL('my_seq'), NEXTVAL('my_seq');

 currval | nextval

---------+---------

 102 | 102

(1 row)

-355-

 SQL Functions

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

DROP SEQUENCE (page 822)

NEXTVAL (page 351)

Using Sequences and Sequence Privileges in the Administrator's Guide

LAST_INSERT_ID
Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 783). If multiple sessions
concurrently load the same table, the returned value is the last value generated for an
AUTO_INCREMENT column by an insert in that session.

Behavior Type

Volatile

Syntax
LAST_INSERT_ID()

Privileges

 Table owner

 USAGE privileges on schema

Notes

 This function works only with AUTO_INCREMENT and IDENTITY columns. See
column-constraints (page 783) for the CREATE TABLE (page 770) statement.

 LAST_INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 765) statement.

Examples

Create a sample table called customer4.

=> CREATE TABLE customer4(

 ID IDENTITY(2,2),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

-356-

SQL Reference Manual

Notice that the IDENTITY column has a seed of 2, which specifies the value for the first row loaded
into the table, and an increment of 2, which specifies the value that is added to the IDENTITY
value of the previous row.

Query the table you just created:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

(1 row)

Insert some additional values:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

last_insert_id

 4

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

(2 rows)

Add another row:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 6

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

 6 | Davis | Bill | 469543

(3 rows)

-357-

 SQL Functions

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

DROP SEQUENCE (page 822)

V_CATALOG.SEQUENCES (page 969)

Using Sequences and Sequence Privileges in the Administrator's Guide

String Functions
String functions perform conversion, extraction, or manipulation operations on strings, or return
information about strings.

This section describes functions and operators for examining and manipulating string values.
Strings in this context include values of the types CHAR, VARCHAR, BINARY, and VARBINARY.

Unless otherwise noted, all of the functions listed in this section work on all four data types. As
opposed to some other SQL implementations, HP Vertica keeps CHAR strings unpadded
internally, padding them only on final output. So converting a CHAR(3) 'ab' to VARCHAR(5)
results in a VARCHAR of length 2, not one with length 3 including a trailing space.

Some of the functions described here also work on data of non-string types by converting that data
to a string representation first. Some functions work only on character strings, while others work
only on binary strings. Many work for both. BINARY and VARBINARY functions ignore multibyte
UTF-8 character boundaries.

Non-binary character string functions handle normalized multibyte UTF-8 characters, as specified
by the Unicode Consortium. Unless otherwise specified, those character string functions for which
it matters can optionally specify whether VARCHAR arguments should be interpreted as octet
(byte) sequences, or as (locale-aware) sequences of UTF-8 characters. This is accomplished by
adding "USING OCTETS" or "USING CHARACTERS" (default) as a parameter to the function.

Some character string functions are stable because in general UTF-8 case-conversion, searching
and sorting can be locale dependent. Thus, LOWER is stable, while LOWERB is immutable. The
USING OCTETS clause converts these functions into their "B" forms, so they become immutable.
If the locale is set to collation=binary, which is the default, all string functions — except
CHAR_LENGTH/CHARACTER_LENGTH, LENGTH, SUBSTR, and OVERLAY — are converted
to their "B" forms and so are immutable.

BINARY implicitly converts to VARBINARY, so functions that take VARBINARY arguments work
with BINARY.

ASCII

Converts the first octet of a VARCHAR to an INTEGER.

-358-

SQL Reference Manual

Behavior Type

Immutable

Syntax
ASCII (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

 ASCII is the opposite of the CHR (page 362) function.

 ASCII operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result

SELECT ASCII('A'); 65

SELECT ASCII('ab'); 97

SELECT ASCII(null);

SELECT ASCII('');

BIT_LENGTH

Returns the length of the string expression in bits (bytes * 8) as an INTEGER.

Behavior Type

Immutable

Syntax
BIT_LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is

the string to convert.

Notes

BIT_LENGTH applies to the contents of VARCHAR and VARBINARY fields.

-359-

 SQL Functions

Examples

Expression Result

SELECT BIT_LENGTH('abc'::varbinary); 24

SELECT BIT_LENGTH('abc'::binary); 8

SELECT BIT_LENGTH(''::varbinary); 0

SELECT BIT_LENGTH(''::binary); 8

SELECT BIT_LENGTH(null::varbinary);

SELECT BIT_LENGTH(null::binary);

SELECT BIT_LENGTH(VARCHAR 'abc'); 24

SELECT BIT_LENGTH(CHAR 'abc'); 24

SELECT BIT_LENGTH(CHAR(6) 'abc'); 48

SELECT BIT_LENGTH(VARCHAR(6) 'abc'); 24

SELECT BIT_LENGTH(BINARY(6) 'abc'); 48

SELECT BIT_LENGTH(BINARY 'abc'); 24

SELECT BIT_LENGTH(VARBINARY 'abc'); 24

SELECT BIT_LENGTH(VARBINARY(6) 'abc'); 24

See Also

CHARACTER_LENGTH (page 361), LENGTH (page 381), OCTET_LENGTH (page 385)

BITCOUNT

Returns the number of one-bits (sometimes referred to as set-bits) in the given VARBINARY
value. This is also referred to as the population count.

Behavior Type

Immutable

Syntax
BITCOUNT (expression)

Parameters

expression (BINARY or VARBINARY) is the string to return.

Examples
SELECT BITCOUNT(HEX_TO_BINARY('0x10'));

 bitcount

 1

(1 row)

SELECT BITCOUNT(HEX_TO_BINARY('0xF0'));

 bitcount

 4

(1 row)

-360-

SQL Reference Manual

SELECT BITCOUNT(HEX_TO_BINARY('0xAB'))

 bitcount

 5

(1 row)

BITSTRING_TO_BINARY

Translates the given VARCHAR bitstring representation into a VARBINARY value.

Behavior Type

Immutable

Syntax
BITSTRING_TO_BINARY (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARBINARY BITSTRING_TO_BINARY(VARCHAR) converts data from character type (in
bitstring format) to binary type. This function is the inverse of TO_BITSTRING.

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x

Examples

If there are an odd number of characters in the hex value, then the first character is treated as the
low nibble of the first (furthest to the left) byte.

SELECT BITSTRING_TO_BINARY('0110000101100010');

 bitstring_to_binary

 ab

(1 row)

If an invalid bitstring is supplied, the system returns an error:

SELECT BITSTRING_TO_BINARY('010102010');

ERROR: invalid bitstring "010102010"

BTRIM

Removes the longest string consisting only of specified characters from the start and end of a
string.

-361-

 SQL Functions

Behavior Type

Immutable

Syntax
BTRIM (expression [, characters-to-remove])

Parameters

expression (CHAR or VARCHAR) is the string to modify

characters-to-remove (CHAR or VARCHAR) specifies the characters to
remove. The default is the space character.

Examples
SELECT BTRIM('xyxtrimyyx', 'xy');

 btrim

 trim

(1 row)

See Also

LTRIM (page 384), RTRIM (page 396), TRIM (page 406)

CHARACTER_LENGTH

The CHARACTER_LENGTH() function:

 Returns the string length in UTF-8 characters for CHAR and VARCHAR columns

 Returns the string length in bytes (octets) for BINARY and VARBINARY columns

 Strips the padding from CHAR expressions but not from VARCHAR expressions

 Is identical to LENGTH() (page 381) for CHAR and VARCHAR. For binary types,
CHARACTER_LENGTH() is identical to OCTET_LENGTH() (page 385).

Behavior Type

Immutable if USING OCTETS, stable otherwise.

Syntax
[CHAR_LENGTH | CHARACTER_LENGTH] (expression ,

... [USING { CHARACTERS | OCTETS }])

Parameters

expression (CHAR or VARCHAR) is the string to measure

USING CHARACTERS | OCTETS Determines whether the character length is expressed in
characters (the default) or octets.

-362-

SQL Reference Manual

Examples
SELECT CHAR_LENGTH('1234 '::CHAR(10), USING OCTETS);

 char_length

 4

(1 row)

SELECT CHAR_LENGTH('1234 '::VARCHAR(10));

 char_length

 6

(1 row)

SELECT CHAR_LENGTH(NULL::CHAR(10)) IS NULL;

 ?column?

 t

(1 row)

See Also

BIT_LENGTH (page 358)

CHR

Converts the first octet of an INTEGER to a VARCHAR.

Behavior Type

Immutable

Syntax
CHR (expression)

Parameters

expression (INTEGER) is the string to convert and is masked to a single
octet.

Notes

 CHR is the opposite of the ASCII (page 357) function.

 CHR operates on UTF-8 characters, not only on single-byte ASCII characters. It continues to
get the same results for the ASCII subset of UTF-8.

Examples

Expression Result

SELECT CHR(65); A

SELECT CHR(65+32); a

-363-

 SQL Functions

SELECT CHR(null);

CONCAT

Used to concatenate two or more VARBINARY strings. The return value is of type VARBINARY.

Syntax
CONCAT ('a','b')

Behavior type

Immutable

Parameters

a Is the first VARBINARY string.

b Is the second VARBINARY string.

Examples
=> SELECT CONCAT ('A','B');

 CONCAT

 AB

(1 row)

DECODE

Compares expression to each search value one by one. If expression is equal to a search, the
function returns the corresponding result. If no match is found, the function returns default. If
default is omitted, the function returns null.

Behavior Type

Immutable

Syntax
DECODE (expression, search, result [, search, result]

...[, default]);

Parameters

expression Is the value to compare.

search Is the value compared against expression.

result Is the value returned, if expression is equal to search.

default Is optional. If no matches are found, DECODE returns default. If

-364-

SQL Reference Manual

default is omitted, then DECODE returns NULL (if no matches are

found).

Notes

DECODE is similar to the IF-THEN-ELSE and CASE (page 52) expression:

CASE expression

WHEN search THEN result

[WHEN search THEN result]

[ELSE default];

The arguments can have any data type supported by HP Vertica. The result types of individual
results are promoted to the least common type that can be used to represent all of them. This
leads to a character string type, an exact numeric type, an approximate numeric type, or a
DATETIME type, where all the various result arguments must be of the same type grouping.

Examples

The following example converts numeric values in the weight column from the product_dimension
table to descriptive values in the output.

SELECT product_description, DECODE(weight,

 2, 'Light',

 50, 'Medium',

 71, 'Heavy',

 99, 'Call for help',

 'N/A')

FROM product_dimension

WHERE category_description = 'Food'

AND department_description = 'Canned Goods'

AND sku_number BETWEEN 'SKU-#49750' AND 'SKU-#49999'

LIMIT 15;

 product_description | case

-----------------------------------+---------------

 Brand #499 canned corn | N/A

 Brand #49900 fruit cocktail | Medium

 Brand #49837 canned tomatoes | Heavy

 Brand #49782 canned peaches | N/A

 Brand #49805 chicken noodle soup | N/A

 Brand #49944 canned chicken broth | N/A

 Brand #49819 canned chili | N/A

 Brand #49848 baked beans | N/A

 Brand #49989 minestrone soup | N/A

 Brand #49778 canned peaches | N/A

 Brand #49770 canned peaches | N/A

 Brand #4977 fruit cocktail | N/A

 Brand #49933 canned olives | N/A

 Brand #49750 canned olives | Call for help

 Brand #49777 canned tomatoes | N/A

(15 rows)

-365-

 SQL Functions

GREATEST

Returns the largest value in a list of expressions.

Behavior Type

Stable

Syntax
GREATEST (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples.

 A NULL value in any one of the expressions returns NULL.

 Depends on the collation setting of the locale.

Examples

This example returns 9 as the greatest in the list of expressions:

SELECT GREATEST(7, 5, 9);

 greatest

 9

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT GREATEST('7', '5', '9');

 greatest

 9

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATEST(1, 1.5);

 greatest

 1.5

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATEST('vertica', 'analytic', 'database');

 greatest

 vertica

(1 row)

-366-

SQL Reference Manual

Notice this next command returns NULL:

SELECT GREATEST('vertica', 'analytic', 'database', null);

 greatest

(1 row)

And one more:

SELECT GREATEST('sit', 'site', 'sight');

 greatest

 site

(1 row)

See Also

LEAST (page 377)

GREATESTB

Returns its greatest argument, using binary ordering, not UTF-8 character ordering.

Behavior Type

Immutable

Syntax
GREATESTB (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples.

 A NULL value in any one of the expressions returns NULL.

 Depends on the collation setting of the locale.

Examples

The following command selects straße as the greatest in the series of inputs:

SELECT GREATESTB('straße', 'strasse');

 GREATESTB

 straße

(1 row)

This example returns 9 as the greatest in the list of expressions:

SELECT GREATESTB(7, 5, 9);

 GREATESTB

-367-

 SQL Functions

 9

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

 GREATESTB

 9

(1 row)

The next example returns FLOAT 1.5 as the greatest because the integer is implicitly cast to float:

SELECT GREATESTB(1, 1.5);

 GREATESTB

 1.5

(1 row)

The following example returns 'vertica' as the greatest:

SELECT GREATESTB('vertica', 'analytic', 'database');

 GREATESTB

 vertica

(1 row)

Notice this next command returns NULL:

SELECT GREATESTB('vertica', 'analytic', 'database', null);

 GREATESTB

(1 row)

And one more:

SELECT GREATESTB('sit', 'site', 'sight');

 GREATESTB

 site

(1 row)

See Also

LEASTB (page 379)

HEX_TO_BINARY

Translates the given VARCHAR hexadecimal representation into a VARBINARY value.

Behavior Type

Immutable

-368-

SQL Reference Manual

Syntax
HEX_TO_BINARY ([0x] expression)

Parameters

expression (BINARY or VARBINARY) is the string to translate.

0x Is optional prefix

Notes

VARBINARY HEX_TO_BINARY(VARCHAR) converts data from character type in hexadecimal
format to binary type. This function is the inverse of TO_HEX (page 260).

HEX_TO_BINARY(TO_HEX(x)) = x)

TO_HEX(HEX_TO_BINARY(x)) = x)

If there are an odd number of characters in the hexadecimal value, the first character is treated as
the low nibble of the first (furthest to the left) byte.

Examples

If the given string begins with "0x" the prefix is ignored. For example:

SELECT HEX_TO_BINARY('0x6162') AS hex1, HEX_TO_BINARY('6162') AS hex2;

 hex1 | hex2

------+------

 ab | ab

(1 row)

If an invalid hex value is given, HP Vertica returns an ―invalid binary representation" error; for
example:

SELECT HEX_TO_BINARY('0xffgf');

ERROR: invalid hex string "0xffgf"

See Also

TO_HEX (page 260)

HEX_TO_INTEGER
Translates the given VARCHAR hexadecimal representation into an INTEGER value.

HP Vertica completes this conversion as follows:

 Adds the 0x prefix if it is not specified in the input

 Casts the VARCHAR string to a NUMERIC

 Casts the NUMERIC to an INTEGER

Behavior Type

Immutable

-369-

 SQL Functions

Syntax
HEX_TO_INTEGER ([0x] expression)

Parameters

expression VARCHAR is the string to translate.

0x Is the optional prefix.

Examples

You can enter the string with or without the Ox prefix. For example:

VMart=> SELECT HEX_TO_INTEGER ('0aedc')AS hex1,HEX_TO_INTEGER ('aedc') AS hex2;

 hex1 | hex2

-------+-------

 44764 | 44764

(1 row)

If you pass the function an invalid hex value, HP Vertica returns an invalid input syntax
error; for example:

VMart=> SELECT HEX_TO_INTEGER ('0xffgf');

ERROR 3691: Invalid input syntax for numeric: "0xffgf"

See Also

TO_HEX (page 260)

HEX_TO_BINARY (page 367)

INET_ATON

Returns an integer that represents the value of the address in host byte order, given the
dotted-quad representation of a network address as a string.

Behavior Type

Immutable

Syntax
INET_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv4 address represented as the string A to an integer I.

-370-

SQL Reference Manual

INET_ATON trims any spaces from the right of A, calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html, and converts
the result from network byte order to host byte order using ntohl
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html.

INET_ATON(VARCHAR A) -> INT8 I

If A is NULL, too long, or inet_pton returns an error, the result is NULL.

Examples

The generated number is always in host byte order. In the following example, the number is
calculated as 209×256 3̂ + 207×256^2 + 224×256 + 40.

SELECT INET_ATON('209.207.224.40');

 inet_aton

 3520061480

(1 row)

SELECT INET_ATON('1.2.3.4');

 inet_aton

 16909060

(1 row)

SELECT TO_HEX(INET_ATON('1.2.3.4'));

 to_hex

 1020304

(1 row)

See Also

INET_NTOA (page 293)

INET_NTOA

Returns the dotted-quad representation of the address as a VARCHAR, given a network address
as an integer in network byte order.

Behavior Type

Immutable

Syntax
INET_NTOA (expression)

Parameters

expression (INTEGER) is the network address to convert.

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html
http://opengroup.org/onlinepubs/007908775/xns/ntohl.html

-371-

 SQL Functions

Notes

The following syntax converts an IPv4 address represented as integer I to a string A.

INET_NTOA converts I from host byte order to network byte order using htonl
http://opengroup.org/onlinepubs/007908775/xns/htonl.html, and calls the Linux function
inet_ntop http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

INET_NTOA(INT8 I) -> VARCHAR A

If I is NULL, greater than 2^32 or negative, the result is NULL.

Examples
SELECT INET_NTOA(16909060);

 inet_ntoa

 1.2.3.4

(1 row)

SELECT INET_NTOA(03021962);

 inet_ntoa

 0.46.28.138

(1 row)

See Also

INET_ATON (page 292)

INITCAP
Capitalizes first letter of each alphanumeric word and puts the rest in lowercase. Starting in

Release 5.1, this function treats the string argument as a UTF-8 encoded string, rather than
depending on the collation setting of the locale (for example, collation=binary) to identify the
encoding. Prior to Release 5.1, the behavior type of this function was stable.

Behavior Type

Immutable

Syntax
INITCAP (expression)

Parameters

expression (VARCHAR) is the string to format.

Notes

 Depends on collation setting of the locale.

 INITCAP is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

http://opengroup.org/onlinepubs/007908775/xns/htonl.html
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-372-

SQL Reference Manual

Examples

Expression Result

SELECT INITCAP('high speed database'); High Speed Database

SELECT INITCAP('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAP('abc DEF 123aVC 124Btd,lAsT'); Abc Def 123Avc

124Btd,Last

SELECT INITCAP('');

SELECT INITCAP(null);

INITCAPB

Capitalizes first letter of each alphanumeric word and puts the rest in lowercase. Multibyte
characters are not converted and are skipped.

Behavior Type

Immutable

Syntax
INITCAPB (expression)

Parameters

expression (VARCHAR) is the string to format.

Notes

Depends on collation setting of the locale.

Examples

Expression Result

SELECT INITCAPB('étudiant'); éTudiant

SELECT INITCAPB('high speed database'); High Speed Database

SELECT INITCAPB('LINUX TUTORIAL'); Linux Tutorial

SELECT INITCAPB('abc DEF 123aVC 124Btd,lAsT'); Abc Def 123Avc

124Btd,Last

SELECT INITCAPB('');

SELECT INITCAPB(null);

INSERT

Inserts a character string into a specified location in another character string.

-373-

 SQL Functions

Syntax
INSERT('string1', n, m, 'string2');

Behavior type

Immutable

Parameters

string1 (VARCHAR) Is the string in which to insert the new string.

n A character of type INTEGER that represents the starting point
for the insertion within string1. You specify the number of

characters from the first character in string1 as the starting point
for the insertion. For example, to insert characters before "c", in
the string "abcdef," enter 3.

m A character of type INTEGER that represents the the number of
characters in string1 (i f any) that should be replaced by the
insertion. For example,if you want the insertion to replace the

letters "cd" in the string "abcdef, " enter 2.

string2 (VARCHAR) Is the string to be inserted.

Example

The following example changes the string Warehouse to Storehouse using the INSERT function:

=> SELECT INSERT ('Warehouse',1,3,'Stor');

 INSERT

 Storehouse

(1 row)

INSTR

Searches string for substring and returns an integer indicating the position of the character in
string that is the first character of this occurrence. The return value is based on the character

position of the identified character. Starting in Release 5.1, this function treats the string
argument as a UTF-8 encoded string, rather than depending on the collation setting of the locale
(for example, collation=binary) to identify the encoding. Prior to Release 5.1, the behavior type of
this function was stable.

Behavior Type

Immutable

Syntax
INSTR (string , substring [, position [, occurrence]])

-374-

SQL Reference Manual

Parameters

string (CHAR or VARCHAR, or BINARY or VARBINARY) Is the text

expression to search.

substring (CHAR or VARCHAR, or BINARY or VARBINARY) Is the string to
search for.

position Is a nonzero integer indicating the character of string where HP
Vertica begins the search. If position is negative, then HP Vertica
counts backward from the end of string and then searches

backward from the resulting position. The first character of string
occupies the default position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string HP Vertica

searches. The value of occurrence must be positive (greater than
0), and the default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning HP Vertica begins searching at the first character of string for the
first occurrence of substring. The return value is relative to the beginning of string, regardless of
the value of position, and is expressed in characters.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.

Examples

The first example searches forward in string ‗abc‘ for substring ‗b‘. The search returns the position
in ‗abc‘ where ‗b‘ occurs, or position 2. Because no position parameters are given, the default
search starts at ‗a‘, position 1.

SELECT INSTR('abc', 'b');

INSTR

 2

(1 row)

The following three examples use character position to search backward to find the position of a
substring.

Note: Although it might seem intuitive that the function returns a negative integer, the position

of n occurrence is read left to right in the sting, even though the search happens in reverse
(from the end — or right side — of the string).

In the first example, the function counts backward one character from the end of the string, starting
with character ‗c‘. The function then searches backward for the first occurrence of ‗a‘, which it finds
it in the first position in the search string.

SELECT INSTR('abc', 'a', -1);

 INSTR

 1

-375-

 SQL Functions

(1 row)

In the second example, the function counts backward one byte from the end of the string, starting
with character ‗c‘. The function then searches backward for the first occurrence of ‗a‘, which it finds
it in the first position in the search string.

SELECT INSTR(VARBINARY 'abc', VARBINARY 'a', -1);

 INSTR

 1

(1 row)

In the third example, the function counts backward one character from the end of the string,
starting with character ‗b‘, and searches backward for substring ‗bc‘, which it finds in the second
position of the search string.

SELECT INSTR('abcb', 'bc', -1);

 INSTR

 2

(1 row)

In the fourth example, the function counts backward one character from the end of the string,
starting with character ‗b‘, and searches backward for substring ‗bcef‘, which it does not find. The
result is 0.

SELECT INSTR('abcb', 'bcef', -1);

INSTR

 0

(1 row)

In the fifth example, the function counts backward one byte from the end of the string, starting with
character ‗b‘, and searches backward for substring ‗bcef‘, which it does not find. The result is 0.

SELECT INSTR(VARBINARY 'abcb', VARBINARY 'bcef', -1);

 INSTR

 0

(1 row)

Multibyte characters are treated as a single character:

dbadmin=> SELECT INSTR('aébc', 'b');

 INSTR

 3

(1 row)

Use INSTRB to treat multibyte characters as binary:

dbadmin=> SELECT INSTRB('aébc', 'b');

 INSTRB

 4

-376-

SQL Reference Manual

(1 row)

INSTRB

Searches string for substring and returns an integer indicating the octet position within string that
is the first occurrence. The return value is based on the octet position of the identified byte.

Behavior Type

Immutable

Syntax
INSTRB (string , substring [, position [, occurrence]])

Parameters

string Is the text expression to search.

substring Is the string to search for.

position Is a nonzero integer indicating the character of string where HP

Vertica begins the search. If position is negative, then HP Vertica
counts backward from the end of string and then searches backward
from the resulting position. The first byte of string occupies the

default position 1, and position cannot be 0.

occurrence Is an integer indicating which occurrence of string HP Vertica
searches. The value of occurrence must be positive (greater than 0),

and the default is 1.

Notes

Both position and occurrence must be of types that can resolve to an integer. The default values of
both parameters are 1, meaning HP Vertica begins searching at the first byte of string for the first
occurrence of substring. The return value is relative to the beginning of string, regardless of the
value of position, and is expressed in octets.

If the search is unsuccessful (that is, if substring does not appear occurrence times after the
position character of string, then the return value is 0.

Examples
SELECT INSTRB('straße', 'ß');

 INSTRB

 5

(1 row)

See Also

INSTR (page 373)

-377-

 SQL Functions

ISUTF8

Tests whether a string is a valid UTF-8 string. Returns true if the string conforms to UTF-8
standards, and false otherwise. This function is useful to test strings for UTF-8 compliance before
passing them to one of the regular expression functions, such as REGEXP_LIKE (page 341),
which expect UTF-8 characters by default.

ISUTF8 checks for invalid UTF8 byte sequences, according to UTF-8 rules:

 invalid bytes

 an unexpected continuation byte

 a start byte not followed by enough continuation bytes

 an Overload Encoding

The presence of an invalid UTF8 byte sequence results in a return value of false.

Syntax
ISUTF8(string);

Parameters
string The string to test for UTF-8 compliance.

Examples
=> SELECT ISUTF8(E'\xC2\xBF'); -- UTF-8 INVERTED QUESTION MARK

 ISUTF8

 t

(1 row)

=> SELECT ISUTF8(E'\xC2\xC0'); -- UNDEFINED UTF-8 CHARACTER

 ISUTF8

 f

(1 row)

LEAST
Returns the smallest value in a list of expressions.

Behavior Type

Stable

Syntax
LEAST (expression1, expression2, ... expression-n);

-378-

SQL Reference Manual

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples below.

 A NULL value in any one of the expressions returns NULL.

Examples

This example returns 5 as the least:

SELECT LEAST(7, 5, 9);

 least

 5

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEAST('7', '5', '9');

 least

 5

(1 row)

In the above example, the values are being compared as strings, so '10' would be less than '2'.

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEAST(2, 1.5);

 least

 1.5

(1 row)

The following example returns 'analytic' as the least:

SELECT LEAST('vertica', 'analytic', 'database');

 least

 analytic

(1 row)

Notice this next command returns NULL:

SELECT LEAST('vertica', 'analytic', 'database', null);

 least

(1 row)

And one more:

SELECT LEAST('sit', 'site', 'sight');

 least

-379-

 SQL Functions

 sight

(1 row)

See Also

GREATEST (page 365)

LEASTB
Returns the function's least argument, using binary ordering, not UTF-8 character ordering.

Behavior Type

Immutable

Syntax
LEASTB (expression1, expression2, ... expression-n);

Parameters

expression1, expression2, and expression-n are the expressions to be evaluated.

Notes

 Works for all data types, and implicitly casts similar types. See Examples below.

 A NULL value in any one of the expressions returns NULL.

Examples

The following command selects strasse as the least in the series of inputs:

SELECT LEASTB('straße', 'strasse');

 LEASTB

 strasse

(1 row)

This example returns 5 as the least:

SELECT LEASTB(7, 5, 9);

 LEASTB

 5

(1 row)

Note that putting quotes around the integer expressions returns the same result as the first
example:

SELECT LEASTB('7', '5', '9');

 LEASTB

 5

(1 row)

In the above example, the values are being compared as strings, so '10' would be less than '2'.

-380-

SQL Reference Manual

The next example returns 1.5, as INTEGER 2 is implicitly cast to FLOAT:

SELECT LEASTB(2, 1.5);

 LEASTB

 1.5

(1 row)

The following example returns 'analytic' as the least in the series of inputs:

SELECT LEASTB('vertica', 'analytic', 'database');

 LEASTB

 analytic

(1 row)

Notice this next command returns NULL:

SELECT LEASTB('vertica', 'analytic', 'database', null);

 LEASTB

(1 row)

See Also

GREATESTB (page 366)

LEFT

Returns the specified characters from the left side of a string.

Behavior Type

Immutable

Syntax
LEFT (string , length)

Parameters

string (CHAR or VARCHAR) is the string to return.

length Is an INTEGER value that specifies the count of characters to

return.

Examples
SELECT LEFT('vertica', 3);

 left

 ver

(1 row)

-381-

 SQL Functions

SELECT LEFT('straße', 5);

 LEFT

 straß

(1 row)

See Also

SUBSTR (page 400)

LENGTH

The LENGTH() function:

 Returns the string length in UTF-8 characters for CHAR and VARCHAR columns

 Returns the string length in bytes (octets) for BINARY and VARBINARY columns

 Strips the padding from CHAR expressions but not from VARCHAR expressions

 Is is identical to CHARACTER_LENGTH (page 361) for CHAR and VARCHAR. For binary
types, LENGTH() is identical to OCTET_LENGTH (page 385).

Behavior Type

Immutable

Syntax
LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the string to
measure

Examples

Expression Result

SELECT LENGTH('1234 '::CHAR(10)); 4

SELECT LENGTH('1234 '::VARCHAR(10)); 6

SELECT LENGTH('1234 '::BINARY(10)); 10

SELECT LENGTH('1234 '::VARBINARY(10)); 6

SELECT LENGTH(NULL::CHAR(10)) IS NULL; t

See Also

BIT_LENGTH (page 358)

-382-

SQL Reference Manual

LOWER

Returns a VARCHAR value containing the argument converted to lowercase letters. Starting in

Release 5.1, this function treats the string argument as a UTF-8 encoded string, rather than
depending on the collation setting of the locale (for example, collation=binary) to identify the
encoding. Prior to Release 5.1, the behavior type of this function was stable.

Behavior Type

Immutable

Syntax
LOWER (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Notes

LOWER is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples
SELECT LOWER('AbCdEfG');

 lower

 abcdefg

(1 row)

SELECT LOWER('The Cat In The Hat');

 lower

 the cat in the hat

(1 row)

dbadmin=> SELECT LOWER('ÉTUDIANT');

 LOWER

 étudiant

(1 row)

LOWERB

Returns a character string with each ASCII character converted to lowercase. Multibyte
characters are not converted and are skipped.

Behavior Type

Immutable

-383-

 SQL Functions

Syntax
LOWERB (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Examples

In the following example, the multibyte UTF-8 character É is not converted to
lowercase:

SELECT LOWERB('ÉTUDIANT');

 LOWERB

 Étudiant

(1 row)

dbadmin=> SELECT LOWER('ÉTUDIANT');

 LOWER

 étudiant

(1 row)

SELECT LOWERB('AbCdEfG');

 LOWERB

 abcdefg

(1 row)

SELECT LOWERB('The Vertica Database');

 LOWERB

 the vertica database

(1 row)

LPAD

Returns a VARCHAR value representing a string of a specific length filled on the left with specific
characters.

Behavior Type

Immutable

Syntax
LPAD (expression , length [, fill])

Parameters

expression (CHAR OR VARCHAR) specifies the string to fill

-384-

SQL Reference Manual

length (INTEGER) specifies the number of characters to return

fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.

Examples
SELECT LPAD('database', 15, 'xzy');

 lpad

 xzyxzyxdatabase

(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT LPAD('establishment', 10, 'abc');

 lpad

 establishm

(1 row)

LTRIM
Returns a VARCHAR value representing a string with leading blanks removed from the left side
(beginning).

Behavior Type

Immutable

Syntax
LTRIM (expression [, characters])

Parameters

expression (CHAR or VARCHAR) is the string to trim

characters (CHAR or VARCHAR) specifies the characters to remove from
the left side of expression. The default is the space character.

Examples

SELECT LTRIM('zzzyyyyyyxxxxxxxxtrim', 'xyz');

 ltrim

 trim

(1 row)

See Also

BTRIM (page 360), RTRIM (page 396), TRIM (page 406)

-385-

 SQL Functions

MD5

Calculates the MD5 hash of string, returning the result as a VARCHAR string in hexadecimal.

Behavior Type

Immutable

Syntax
MD5 (string)

Parameters

string Is the argument string.

Examples
SELECT MD5('123');

 md5

 202cb962ac59075b964b07152d234b70

(1 row)

SELECT MD5('Vertica'::bytea);

 md5

 fc45b815747d8236f9f6fdb9c2c3f676

(1 row)

OCTET_LENGTH

Takes one argument as an input and returns the string length in octets for all string types.

Behavior Type

Immutable

Syntax
OCTET_LENGTH (expression)

Parameters

expression (CHAR or VARCHAR or BINARY or VARBINARY) is the
string to measure.

Notes

 If the data type of expression is a CHAR, VARCHAR or VARBINARY, the result is the same as
the actual length of expression in octets. For CHAR, the length does not include any trailing
spaces.

-386-

SQL Reference Manual

 If the data type of expression is BINARY, the result is the same as the fixed-length of
expression.

 If the value of expression is NULL, the result is NULL.

Examples

Expression Result

SELECT OCTET_LENGTH(CHAR(10) '1234 '); 4

SELECT OCTET_LENGTH(CHAR(10) '1234'); 4

SELECT OCTET_LENGTH(CHAR(10) ' 1234'); 6

SELECT OCTET_LENGTH(VARCHAR(10) '1234 '); 6

SELECT OCTET_LENGTH(VARCHAR(10) '1234 '); 5

SELECT OCTET_LENGTH(VARCHAR(10) '1234'); 4

SELECT OCTET_LENGTH(VARCHAR(10) ' 1234'); 7

SELECT OCTET_LENGTH('abc'::VARBINARY); 3

SELECT OCTET_LENGTH(VARBINARY 'abc'); 3

SELECT OCTET_LENGTH(VARBINARY 'abc '); 5

SELECT OCTET_LENGTH(BINARY(6) 'abc'); 6

SELECT OCTET_LENGTH(VARBINARY ''); 0

SELECT OCTET_LENGTH(''::BINARY); 1

SELECT OCTET_LENGTH(null::VARBINARY);

SELECT OCTET_LENGTH(null::BINARY);

See Also

BIT_LENGTH (page 358), CHARACTER_LENGTH (page 361), LENGTH (page 381)

OVERLAY

Returns a VARCHAR value representing a string having had a substring replaced by another
string.

Behavior Type

Immutable if using OCTETS, Stable otherwise

Syntax
OVERLAY (expression1 PLACING expression2 FROM position

... [FOR extent]

... [USING { CHARACTERS | OCTETS }])

Parameters

expression1 (CHAR or VARCHAR) is the string to process

expression2 (CHAR or VARCHAR) is the substring to overlay

position (INTEGER) is the character or octet position (counting from one)

-387-

 SQL Functions

at which to begin the overlay

extent (INTEGER) specifies the number of characters or octets to
replace with the overlay

USING CHARACTERS | OCTETS Determines whether OVERLAY uses characters (the default) or

octets

Examples
SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2);

 overlay

 1xxx56789

(1 row)

SELECT OVERLAY('123456789' PLACING 'XXX' FROM 2 USING OCTETS);

 overlay

 1XXX56789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 4);

 overlay

 1xxx6789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 5);

 overlay

 1xxx789

(1 row)

SELECT OVERLAY('123456789' PLACING 'xxx' FROM 2 FOR 6);

 overlay

 1xxx89

(1 row)

OVERLAYB

Returns an octet value representing a string having had a substring replaced by another string.

Behavior Type

Immutable

Syntax
OVERLAYB (expression1, expression2, position [, extent])

Parameters

expression1 (CHAR or VARCHAR) is the string to process

expression2 (CHAR or VARCHAR) is the substring to overlay

position (INTEGER) is the octet position (counting from one) at which to begin the

-388-

SQL Reference Manual

overlay

extent (INTEGER) specifies the number of octets to replace with the overlay

Notes

This function treats the multibyte character string as a string of octets (bytes) and use octet
numbers as incoming and outgoing position specifiers and lengths. The strings themselves are
type VARCHAR, but they treated as if each byte was a separate character.

Examples
SELECT OVERLAYB('123456789', 'ééé', 2);

 OVERLAYB

 1ééé89

(1 row)

SELECT OVERLAYB('123456789', 'ßßß', 2);

 OVERLAYB

 1ßßß89

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2);

 OVERLAYB

 1xxx56789

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 4);

 OVERLAYB

 1xxx6789

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 5);

 OVERLAYB

 1xxx789

(1 row)

SELECT OVERLAYB('123456789', 'xxx', 2, 6);

 OVERLAYB

 1xxx89

(1 row)

POSITION

Returns an INTEGER value representing the character location of a specified substring with a

string (counting from one). Starting in Release 5.1, this function treats the string argument as a
UTF-8 encoded string, rather than depending on the collation setting of the locale (for example,
collation=binary) to identify the encoding. Prior to Release 5.1, the behavior type of this function
was stable.

-389-

 SQL Functions

Behavior Type

Immutable

Syntax 1
POSITION (substring IN string [USING { CHARACTERS | OCTETS }])

Parameters

substring (CHAR or VARCHAR) is the substring to locate

string (CHAR or VARCHAR) is the string in which to locate the
substring

USING CHARACTERS | OCTETS Determines whether the position is reported by using
characters (the default) or octets.

Syntax 2
POSITION (substring IN string)

Parameters

substring (VARBINARY) is the substring to locate

string (VARBINARY) is the string in which to locate the substring

Notes

 When the string and substring are CHAR or VARCHAR, the return value is based on either the
character or octet position of the substring.

 When the string and substring are VARBINARY, the return value is always based on the octet
position of the substring.

 The string and substring must be consistent. Do not mix VARBINARY with CHAR or
VARCHAR.

Examples
SELECT POSITION('é' IN 'étudiant' USING CHARACTERS);

 position

 1

(1 row)

SELECT POSITION('ß' IN 'straße' USING OCTETS);

 position

 5

(1 row)

SELECT POSITION('c' IN 'abcd' USING CHARACTERS);

 position

 3

(1 row)

SELECT POSITION(VARBINARY '456' IN VARBINARY '123456789');

 position

-390-

SQL Reference Manual

 4

(1 row)

SELECT POSITION('n' in 'León') as 'default',

 POSITIONB('León', 'n') as 'POSITIONB',

 POSITION('n' in 'León' USING CHARACTERS) as 'pos_chars',

 POSITION('n' in 'León' USING OCTETS) as 'pos_oct',INSTR('León','n'),

 INSTRB('León','n'),REGEXP_INSTR('León','n');

-[RECORD 1]+--

default | 4

POSITIONB | 5

pos_chars | 4

pos_oct | 5

INSTR | 4

INSTRB | 5

REGEXP_INSTR | 4

POSITIONB

Returns an INTEGER value representing the octet location of a specified substring with a string
(counting from one).

Behavior Type

Immutable

Syntax
POSITIONB (string, substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

Examples

SELECT POSITIONB('straße', 'ße');

 POSITIONB

 5

(1 row)

SELECT POSITIONB('étudiant', 'é');

 position

 1

(1 row)

-391-

 SQL Functions

QUOTE_IDENT

Returns the given string, suitably quoted, to be used as an identifier (page 22) in a SQL statement
string. Quotes are added only if necessary; that is, if the string contains non-identifier characters,

is a SQL keyword (page 19), such as '1time', 'Next week' and 'Select'. Embedded
double quotes are doubled.

Behavior Type

Immutable

Syntax
QUOTE_IDENT(string)

Parameters

string Is the argument string.

Notes

 SQL identifiers, such as table and column names, are stored as created, and references to
them are resolved using case-insensitive compares. Thus, you do not need to double-quote
mixed-case identifiers.

 HP Vertica quotes all currently-reserved keywords, even those not currently being used.

Examples

Quoted identifiers are case-insensitive, and HP Vertica does not supply the quotes:

SELECT QUOTE_IDENT('VErtIcA');

 QUOTE_IDENT

 VErtIcA

(1 row)

SELECT QUOTE_IDENT('Vertica database');

 QUOTE_IDENT

 "Vertica database"

(1 row)

Embedded double quotes are doubled:

SELECT QUOTE_IDENT('Vertica "!" database');

 QUOTE_IDENT

 "Vertica ""!"" database"

(1 row)

The following example uses the SQL keyword, SELECT; results are double quoted:

 SELECT QUOTE_IDENT('select');

 QUOTE_IDENT

-392-

SQL Reference Manual

 "select"

(1 row)

QUOTE_LITERAL

Returns the given string, suitably quoted, to be used as a string literal in a SQL statement string.
Embedded single quotes and backslashes are doubled.

Behavior Type

Immutable

Syntax
QUOTE_LITERAL (string)

Parameters

string Is the argument string.

Notes

HP Vertica recognizes two consecutive single quotes within a string literal as one single quote
character. For example, 'You''re here!'. This is the SQL standard representation and is

preferred over the form, 'You\'re here!', as backslashes are not parsed as before.

Examples
SELECT QUOTE_LITERAL('You''re here!');

 QUOTE_LITERAL

 'You''re here!'

(1 row)

SELECT QUOTE_LITERAL('You\'re here!');

WARNING: nonstandard use of \' in a string literal at character 22

HINT: Use '' to write quotes in strings, or use the escape string syntax (E'\'').

See Also

String Literals (Character) (page 26)

REPEAT

Returns a VARCHAR or VARBINARY value that repeats the given value COUNT times, given a
value and a count this function.

If the return value is truncated the given value might not be repeated count times, and the last
occurrence of the given value might be truncated.

-393-

 SQL Functions

Behavior Type

Immutable

Syntax
REPEAT (string , repetitions)

Parameters

string (CHAR or VARCHAR or BINARY or VARBINARY) is the string
to repeat

repetitions (INTEGER) is the number of times to repeat the string

Notes

If the repetitions field depends on the contents of a column (is not a constant), then the repeat
operator maximum length is 65000 bytes. You can add a cast of the repeat to cast the result
down to a size big enough for your purposes (reflects the actual maximum size) so you can do
other things with the result.

REPEAT () and || check for result strings longer than 65000. REPEAT () silently truncates to
65000 octets, and || reports an error (including the octet length).

Examples

The following example repeats 'vmart' three times:

SELECT REPEAT ('vmart', 3);

 repeat

 vmartvmartvmart

(1 row)

If you run the following example, you get an error message:

SELECT '123456' || REPEAT('a', colx);

ERROR: Operator || may give a 65006-byte Varchar result; the limit is 65000 bytes.

If you know that colx can never be greater than 3, the solution is to add a cast (::VARCHAR(3)):

SELECT '123456' || REPEAT('a', colx)::VARCHAR(3);

If colx is greater than 3, the repeat is truncated to exactly three (3) a's.

REPLACE

Replaces all occurrences of characters in a string with another set of characters.

Behavior Type

Immutable

-394-

SQL Reference Manual

Syntax
REPLACE (string , target , replacement)

Parameters

string (CHAR OR VARCHAR) is the string to which to perform the replacement

target (CHAR OR VARCHAR) is the string to replace

replacement (CHAR OR VARCHAR) is the string with which to replace the target

Examples
SELECT REPLACE('Documentation%20Library', '%20', ' ');

 replace

 Documentation Library

(1 row)

SELECT REPLACE('This & That', '&', 'and');

 replace

 This and That

(1 row)

SELECT REPLACE('straße', 'ß', 'ss');

 REPLACE

 strasse

(1 row)

RIGHT
Returns the specified characters from the right side of a string.

Behavior Type

Immutable

Syntax
RIGHT (string , length)

Parameters

string (CHAR or VARCHAR) is the string to return.

length Is an INTEGER value that specifies the count of characters to
return.

Examples

The following command returns the last three characters of the string 'vertica':

SELECT RIGHT('vertica', 3);

 right

-395-

 SQL Functions

 ica

(1 row)

The following command returns the last two characters of the string 'straße':

SELECT RIGHT('straße', 2);

 RIGHT

 ße

(1 row)

See Also

SUBSTR (page 400)

RPAD

Returns a VARCHAR value representing a string of a specific length filled on the right with specific
characters.

Behavior Type

Immutable

Syntax
RPAD (expression , length [, fill])

Parameters

expression (CHAR OR VARCHAR) specifies the string to fill

length (INTEGER) specifies the number of characters to return

fill (CHAR OR VARCHAR) specifies the repeating string of characters with
which to fill the output string. The default is the space character.

Examples
SELECT RPAD('database', 15, 'xzy');

 rpad

 databasexzyxzyx

(1 row)

If the string is already longer than the specified length it is truncated on the right:

SELECT RPAD('database', 6, 'xzy');

 rpad

 databa

(1 row)

-396-

SQL Reference Manual

RTRIM

Returns a VARCHAR value representing a string with trailing blanks removed from the right side
(end).

Behavior Type

Immutable

Syntax
RTRIM (expression [, characters])

Parameters

expression (CHAR or VARCHAR) is the string to trim

characters (CHAR or VARCHAR) specifies the characters to remove from

the right side of expression. The default is the space character.

Examples
SELECT RTRIM('trimzzzyyyyyyxxxxxxxx', 'xyz');

 ltrim

 trim

(1 row)

See Also

BTRIM (page 360), LTRIM (page 384), TRIM (page 406)

SPACE
Inserts blank spaces into a specified location within a character string.

Syntax
SELECT INSERT('string1', || SPACE (n) || 'string2');

Parameters

string1 (VARCHAR) Is the string after which to insert the space.

n A character of type INTEGER that represents the number of
spaces to insert.

string2 (VARCHAR) Is the remainder of the string that appears after the

inserted spaces

Example

The following example inserts 10 spaces between the strings 'x' and 'y':

-397-

 SQL Functions

SELECT 'x' || SPACE(10) || 'y';

 ?column?

 x y

(1 row)

SPLIT_PART

Splits string on the delimiter and returns the location of the beginning of the given field (counting

from one). Starting in Release 5.1, this function treats the string argument as a UTF-8 encoded
string, rather than depending on the collation setting of the locale (for example, collation=binary) to
identify the encoding. Prior to Release 5.1, the behavior type of this function was stable.

Behavior Type

Immutable

Syntax
SPLIT_PART (string , delimiter , field)

Parameters

string Is the argument string.

delimiter Is the given delimiter.

field (INTEGER) is the number of the part to return.

Note

Use this with the character form of the subfield.

Examples

The specified integer of 2 returns the second string, or def.

SELECT SPLIT_PART('abc~@~def~@~ghi', '~@~', 2);

 split_part

 def

(1 row)

Here, we specify 3, which returns the third string, or 789.

SELECT SPLIT_PART('123~|~456~|~789', '~|~', 3);

 split_part

 789

(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT_PART('123|456|789', '|', 3);

-398-

SQL Reference Manual

 split_part

 789

(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

SELECT SPLIT_PART('123|456|789', '|', 4);

 split_part

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT_PART('123|456|789', '|', 4) IS NULL;

 ?column?

 f

(1 row)

If SPLIT_PART had returned NULL, LENGTH would have returned null.

SELECT LENGTH (SPLIT_PART('123|456|789', '|', 4));

 length

 0

(1 row)

SPLIT_PARTB

Splits string on the delimiter and returns the location of the beginning of the given field (counting
from one). The VARCHAR arguments are treated as octets rather than UTF-8 characters.

Behavior Type

Immutable

Syntax
SPLIT_PARTB (string , delimiter , field)

Parameters

string (VARCHAR) Is the argument string.

delimiter (VARCHAR) Is the given delimiter.

field (INTEGER) is the number of the part to return.

Note

Use this function with the character form of the subfield.

Examples

The specified integer of 3 returns the third string, or soupçon.

-399-

 SQL Functions

SELECT SPLIT_PARTB('straße~@~café~@~soupçon', '~@~', 3);

 SPLIT_PARTB

 soupçon

(1 row)

Note that the tildes are for readability only. Omitting them returns the same results:

SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 3);

 SPLIT_PARTB

 soupçon

(1 row)

See what happens if you specify an integer that exceeds the number of strings: No results.

 SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 4);

 SPLIT_PARTB

(1 row)

The above result is not null, it is the empty string.

SELECT SPLIT_PARTB('straße @ café @ soupçon', '@', 4) IS NULL;

 ?column?

 f

(1 row)

STRPOS

Returns an INTEGER value representing the character location of a specified substring within a

string (counting from one). Starting in Release 5.1, this function treats the string argument as a
UTF-8 encoded string, rather than depending on the collation setting of the locale (for example,
collation=binary) to identify the encoding. Prior to Release 5.1, the behavior type of this function
was stable.

Behavior Type

Immutable

Syntax
STRPOS (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

Notes

STRPOS is identical to POSITION (page 388) except for the order of the arguments.

-400-

SQL Reference Manual

Examples
SELECT STRPOS('abcd','c');

 strpos

 3

(1 row)

STRPOSB
Returns an INTEGER value representing the location of a specified substring within a string,
counting from one, where each octet in the string is counted (as opposed to characters).

Behavior Type

Immutable

Syntax
STRPOSB (string , substring)

Parameters

string (CHAR or VARCHAR) is the string in which to locate the substring

substring (CHAR or VARCHAR) is the substring to locate

Notes

STRPOSB is identical to POSITIONB (page 390) except for the order of the arguments.

Examples
dbadmin=> SELECT STRPOSB('straße', 'e');

 STRPOSB

 7

(1 row)

dbadmin=> SELECT STRPOSB('étudiant', 'tud');

 STRPOSB

 3

(1 row)

SUBSTR
Returns VARCHAR or VARBINARY value representing a substring of a specified string.

-401-

 SQL Functions

Behavior Type

Immutable

Syntax
SUBSTR (string , position [, extent])

Parameters

string (CHAR/VARCHAR or BINARY/VARBINARY) is the string from
which to extract a substring.

position (INTEGER or DOUBLE PRECISION) is the starting position of the

substring (counting from one by characters).

extent (INTEGER or DOUBLE PRECISION) is the length of the substring to
extract (in characters). The default is the end of the string.

Notes

SUBSTR truncates DOUBLE PRECISION input values.

Examples
=> SELECT SUBSTR('abc'::binary(3),1);

 substr

 abc

(1 row)

=> SELECT SUBSTR('123456789', 3, 2);

 substr

 34

(1 row)

=> SELECT SUBSTR('123456789', 3);

 substr

 3456789

(1 row)

=> SELECT SUBSTR(TO_BITSTRING(HEX_TO_BINARY('0x10')), 2, 2);

 substr

 00

(1 row)

=> SELECT SUBSTR(TO_HEX(10010), 2, 2);

 substr

 71

(1 row)

-402-

SQL Reference Manual

SUBSTRB

Returns an octet value representing the substring of a specified string.

Behavior Type

Immutable

Syntax
SUBSTRB (string , position [, extent])

Parameters

string (CHAR/VARCHAR) is the string from which to extract a substring.

position (INTEGER or DOUBLE PRECISION) is the starting position of the

substring (counting from one in octets).

extent (INTEGER or DOUBLE PRECISION) is the length of the substring to
extract (in octets). The default is the end of the string

Notes

 This function treats the multibyte character string as a string of octets (bytes) and uses octet
numbers as incoming and outgoing position specifiers and lengths. The strings themselves
are type VARCHAR, but they treated as if each octet were a separate character.

 SUBSTRB truncates DOUBLE PRECISION input values.

Examples
=> SELECT SUBSTRB('soupçon', 5);

 SUBSTRB

 çon

(1 row)

=> SELECT SUBSTRB('soupçon', 5, 2);

 SUBSTRB

 ç

(1 row)

HP Vertica returns the following error message if you use BINARY/VARBINARY:

=>SELECT SUBSTRB('abc'::binary(3),1);

ERROR: function substrb(binary, int) does not exist, or permission is denied for

substrb(binary, int)

HINT: No function matches the given name and argument types. You may need to add

explicit type casts.

-403-

 SQL Functions

SUBSTRING

Returns a value representing a substring of the specified string at the given position, given a value,
a position, and an optional length.

Behavior Type

Immutable if USING OCTETS, stable otherwise.

Syntax
SUBSTRING (string , position [, length]

... [USING {CHARACTERS | OCTETS }])

SUBSTRING (string FROM position [FOR length]

... [USING { CHARACTERS | OCTETS }])

Parameters

string (CHAR/VARCHAR or BINARY/VARBINARY) is the string from

which to extract a substring

position (INTEGER or DOUBLE PRECISION) is the starting position of the
substring (counting from one by either characters or octets). (The

default is characters.) If position is greater than the length of the
given value, an empty value is returned.

length (INTEGER or DOUBLE PRECISION) is the length of the substring

to extract in either characters or octets. (The default is characters.)
The default is the end of the string.If a length is given the result is
at most that many bytes. The maximum length is the length of the

given value less the given position. If no length is given or i f the
given length is greater than the maximum length then the length is
set to the maximum length.

USING CHARACTERS | OCTETS Determines whether the value is expressed in characters (the
default) or octets.

Notes

 SUBSTRING truncates DOUBLE PRECISION input values.

 Neither length nor position can be negative, and the position cannot be zero because it is one
based. If these forms are violated, the system returns an error:

SELECT SUBSTRING('ab'::binary(2), -1, 2);

ERROR: negative or zero substring start position not allowed

Examples
=> SELECT SUBSTRING('abc'::binary(3),1);

 substring

 abc

(1 row)

=> SELECT SUBSTRING('soupçon', 5, 2 USING CHARACTERS);

-404-

SQL Reference Manual

 substring

 ço

(1 row)

=> SELECT SUBSTRING('soupçon', 5, 2 USING OCTETS);

 substrb

 ç

(1 row)

TO_BITSTRING

Returns a VARCHAR that represents the given VARBINARY value in bitstring format

Behavior Type

Immutable

Syntax
TO_BITSTRING (expression)

Parameters

expression (VARCHAR) is the string to return.

Notes

VARCHAR TO_BITSTRING(VARBINARY) converts data from binary type to character type
(where the character representation is the bitstring format). This function is the inverse of
BITSTRING_TO_BINARY:

TO_BITSTRING(BITSTRING_TO_BINARY(x)) = x)

BITSTRING_TO_BINARY(TO_BITSTRING(x)) = x)

Examples
SELECT TO_BITSTRING('ab'::BINARY(2));

 to_bitstring

 0110000101100010

(1 row)

SELECT TO_BITSTRING(HEX_TO_BINARY('0x10'));

to_bitstring

00010000

(1 row)

-405-

 SQL Functions

SELECT TO_BITSTRING(HEX_TO_BINARY('0xF0'));

to_bitstring

11110000

(1 row)

See Also

BITCOUNT (page 359) and BITSTRING_TO_BINARY (page 360)

TO_HEX

Returns a VARCHAR or VARBINARY representing the hexadecimal equivalent of a number.

Behavior Type

Immutable

Syntax
TO_HEX (number)

Parameters

number (INTEGER) is the number to convert to hexadecimal

Notes

VARCHAR TO_HEX(INTEGER) and VARCHAR TO_HEX(VARBINARY) are similar. The function
converts data from binary type to character type (where the character representation is in
hexadecimal format). This function is the inverse of HEX_TO_BINARY.

TO_HEX(HEX_TO_BINARY(x)) = x).

HEX_TO_BINARY(TO_HEX(x)) = x).

Examples
SELECT TO_HEX(123456789);

 to_hex

 75bcd15

(1 row)

For VARBINARY inputs, the returned value is not preceded by "0x". For example:

SELECT TO_HEX('ab'::binary(2));

 to_hex

 6162

(1 row)

-406-

SQL Reference Manual

TRANSLATE

Replaces individual characters in string_to_replace with other characters.

Behavior Type

Immutable

Syntax
TRANSLATE (string_to_replace , from_string , to_string);

Parameters

string_to_replace Is the string to be translated.

from_string Contains characters that should be replaced in

string_to_replace.

to_string Any character in string_to_replace that matches a character
in from_string is replaced by the corresponding character in

to_string.

Example
SELECT TRANSLATE('straße', 'ß', 'ss');

 TRANSLATE

 strase

(1 row)

TRIM

Combines the BTRIM, LTRIM, and RTRIM functions into a single function.

Behavior Type

Immutable

Syntax
TRIM ([[LEADING | TRAILING | BOTH] characters FROM] expression)

Parameters

LEADING Removes the specified characters from the left side of the string

TRAILING Removes the specified characters from the right side of the string

BOTH Removes the specified characters from both sides of the string (default)

characters (CHAR or VARCHAR) specifies the characters to remove from expression.
The default is the space character.

-407-

 SQL Functions

expression (CHAR or VARCHAR) is the string to trim

Examples
SELECT '-' || TRIM(LEADING 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -databasexx-

(1 row)

SELECT '-' || TRIM(TRAILING 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -xxdatabase-

(1 row)

SELECT '-' || TRIM(BOTH 'x' FROM 'xxdatabasexx') || '-';

 ?column?

 -database-

(1 row)

SELECT '-' || TRIM('x' FROM 'xxdatabasexx') || '-';

 ?column?

 -database-

(1 row)

SELECT '-' || TRIM(LEADING FROM ' database ') || '-';

 ?column?

 -database -

(1 row)

SELECT '-' || TRIM(' database ') || '-';

 ?column?

 -database-

(1 row)

See Also

BTRIM (page 360)

LTRIM (page 384)

RTRIM (page 396)

UPPER

Returns a VARCHAR value containing the argument converted to uppercase letters. Starting in

Release 5.1, this function treats the string argument as a UTF-8 encoded string, rather than
depending on the collation setting of the locale (for example, collation=binary) to identify the
encoding. Prior to Release 5.1, the behavior type of this function was stable.

Behavior Type

Immutable

-408-

SQL Reference Manual

Syntax
UPPER (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Notes

UPPER is restricted to 32750 octet inputs, since it is possible for the UTF-8 representation of
result to double in size.

Examples

SELECT UPPER('AbCdEfG');

 upper

 ABCDEFG

(1 row)

dbadmin=> SELECT UPPER('étudiant');

 UPPER

 ÉTUDIANT

(1 row)

UPPERB

Returns a character string with each ASCII character converted to uppercase. Multibyte
characters are not converted and are skipped.

Behavior Type

Immutable

Syntax
UPPERB (expression)

Parameters

expression (CHAR or VARCHAR) is the string to convert

Examples

In the following example, the multibyte UTF-8 character é is not converted to uppercase:

SELECT UPPERB('étudiant');

 UPPERB

-409-

 SQL Functions

 éTUDIANT

(1 row)

SELECT UPPERB('AbCdEfG');

 UPPERB

 ABCDEFG

(1 row)

SELECT UPPERB('The Vertica Database');

 UPPERB

 THE VERTICA DATABASE

(1 row)

V6_ATON

Converts an IPv6 address represented as a character string to a binary string.

Behavior Type

Immutable

Syntax
V6_ATON (expression)

Parameters

expression (VARCHAR) is the string to convert.

Notes

The following syntax converts an IPv6 address represented as the character string A to a binary
string B.

V6_ATON trims any spaces from the right of A and calls the Linux function inet_pton
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_ATON(VARCHAR A) -> VARBINARY(16) B

If A has no colons it is prepended with '::ffff:'. If A is NULL, too long, or if inet_pton returns an error,
the result is NULL.

Examples
SELECT V6_ATON('2001:DB8::8:800:200C:417A');

 v6_aton

--

 \001\015\270\000\000\000\000\000\010\010\000 \014Az

(1 row)

SELECT TO_HEX(V6_ATON('2001:DB8::8:800:200C:417A'));

 to_hex

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-410-

SQL Reference Manual

 20010db80000000000080800200c417a

(1 row)

SELECT V6_ATON('1.2.3.4');

 v6_aton

--

--

\000\000\000\000\000\000\000\000\000\000\377\377\001\002\003\004

(1 row)

SELECT V6_ATON('::1.2.3.4');

 v6_aton

--

--

\000\000\000\000\000\000\000\000\000\000\000\000\001\002\003\004

(1 row)

See Also

V6_NTOA (page 295)

V6_NTOA

Converts an IPv6 address represented as varbinary to a character string.

Behavior Type

Immutable

Syntax
V6_NTOA (expression)

Parameters

expression (VARBINARY) is the binary string to convert.

Notes

The following syntax converts an IPv6 address represented as VARBINARY B to a string A.

V6_NTOA right-pads B to 16 bytes with zeros, if necessary, and calls the Linux function inet_ntop
http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html.

V6_NTOA(VARBINARY B) -> VARCHAR A

If B is NULL or longer than 16 bytes, the result is NULL.

HP Vertica automatically converts the form '::ffff:1.2.3.4' to '1.2.3.4'.

Examples
SELECT V6_NTOA(' \001\015\270\000\000\000\000\000\010\010\000 \014Az');

 v6_ntoa

http://www.opengroup.org/onlinepubs/000095399/functions/inet_ntop.html

-411-

 SQL Functions

 2001:db8::8:800:200c:417a

(1 row)

SELECT V6_NTOA(V6_ATON('1.2.3.4'));

 v6_ntoa

 1.2.3.4

(1 row)

SELECT V6_NTOA(V6_ATON('::1.2.3.4'));

 v6_ntoa

 ::1.2.3.4

(1 row)

See Also

N6_ATON (page 294)

V6_SUBNETA

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a binary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax
V6_SUBNETA (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax calculates a subnet address in CIDR format from a binary or varchar IPv6
address.

V6_SUBNETA masks a binary IPv6 address B so that the N leftmost bits form a subnet address,
while the remaining rightmost bits are cleared. It then converts to an alphanumeric IPv6 address,
appending a slash and N.

V6_SUBNETA(BINARY B, INT8 N) -> VARCHAR C

The following syntax calculates a subnet address in CIDR format from an alphanumeric IPv6
address.

V6_SUBNETA(VARCHAR A, INT8 N) -> V6_SUBNETA(V6_ATON(A), N) -> VARCHAR C

-412-

SQL Reference Manual

Examples
SELECT V6_SUBNETA(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subneta

 2001:db0::/28

(1 row)

See Also

V6_SUBNETN (page 297)

V6_SUBNETN

Calculates a subnet address in CIDR (Classless Inter-Domain Routing) format from a varbinary or
alphanumeric IPv6 address.

Behavior Type

Immutable

Syntax
V6_SUBNETN (expression1, expression2)

Parameters

expression1 (VARBINARY or VARCHAR) is the string to calculate.

Notes:

 V6_SUBNETN(<VARBINARY>,
<INTEGER>) returns varbinary.

OR

 V6_SUBNETN(<VARCHAR>, <INTEGER>)

returns varbinary, after using V6_ATON to
convert the <VARCHAR> string to
<VARBINARY>.

expression2 (INTEGER) is the size of the subnet.

Notes

The following syntax masks a BINARY IPv6 address B so that the N left-most bits of S form a
subnet address, while the remaining right-most bits are cleared.

V6_SUBNETN right-pads B to 16 bytes with zeros, if necessary and masks B, preserving its N-bit
subnet prefix.

V6_SUBNETN(VARBINARY B, INT8 N) -> VARBINARY(16) S

If B is NULL or longer than 16 bytes, or if N is not between 0 and 128 inclusive, the result is NULL.

S = [B]/N in Classless Inter-Domain Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing notation (CIDR notation).

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

-413-

 SQL Functions

The following syntax masks an alphanumeric IPv6 address A so that the N leftmost bits form a

subnet address, while the remaining rightmost bits are cleared.

V6_SUBNETN(VARCHAR A, INT8 N) -> V6_SUBNETN(V6_ATON(A), N) -> VARBINARY(16) S

Example

This example returns VARBINARY, after using V6_ATON to convert the VARCHAR string to
VARBINARY:

=> SELECT V6_SUBNETN(V6_ATON('2001:db8::8:800:200c:417a'), 28);

 v6_subnetn

 \001\015\260\000\000\000\000\000\000\000\000\000\000\000\000

See Also

V6_ATON (page 294)

V6_SUBNETA (page 296)

V6_TYPE
Characterizes a binary or alphanumeric IPv6 address B as an integer type.

Behavior Type

Immutable

Syntax
V6_TYPE (expression)

Parameters

expression (VARBINARY or VARCHAR) is the type to convert.

Notes

V6_TYPE(VARBINARY B) returns INT8 T.

V6_TYPE(VARCHAR A) -> V6_TYPE(V6_ATON(A)) -> INT8 T

The IPv6 types are defined in the Network Working Group's IP Version 6 Addressing
Architecture memo http://www.ietf.org/rfc/rfc4291.

 GLOBAL = 0 Global unicast addresses

 LINKLOCAL = 1 Link-Local unicast (and Private-Use) addresses

 LOOPBACK = 2 Loopback

 UNSPECIFIED = 3 Unspecified

 MULTICAST = 4 Multicast

IPv4-mapped and IPv4-compatible IPv6 addresses are also interpreted, as specified in IPv4
Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml.

http://www.ietf.org/rfc/rfc4291
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

-414-

SQL Reference Manual

 For IPv4, Private-Use is grouped with Link-Local.

 If B is VARBINARY, it is right-padded to 16 bytes with zeros, if necessary.

 If B is NULL or longer than 16 bytes, the result is NULL.

Details

 IPv4 (either kind):

 0.0.0.0/8 UNSPECIFIED

 10.0.0.0/8 LINKLOCAL

 127.0.0.0/8 LOOPBACK

 169.254.0.0/16 LINKLOCAL

 172.16.0.0/12 LINKLOCAL

 192.168.0.0/16 LINKLOCAL

 224.0.0.0/4 MULTICAST

 others GLOBAL

 IPv6:

 ::0/128 UNSPECIFIED

 ::1/128 LOOPBACK

 fe80::/10 LINKLOCAL

 ff00::/8 MULTICAST

 others GLOBAL

Examples
SELECT V6_TYPE(V6_ATON('192.168.2.10'));

 v6_type

 1

(1 row)

SELECT V6_TYPE(V6_ATON('2001:db8::8:800:200c:417a'));

 v6_type

 0

(1 row)

See Also

INET_ATON (page 292)

IP Version 6 Addressing Architecture http://www.ietf.org/rfc/rfc4291

IPv4 Global Unicast Address Assignments
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

System Information Functions

These functions provide system information regarding user sessions. A superuser has
unrestricted access to all system information, but users can view only information about their own,
current sessions.

http://www.ietf.org/rfc/rfc4291
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml

-415-

 SQL Functions

CURRENT_DATABASE

Returns a VARCHAR value containing the name of the database to which you are connected.

Behavior Type

Immutable

Syntax
CURRENT_DATABASE()

Notes

 The parentheses following the CURRENT_DATABASE function are optional.

 This function is equivalent to DBNAME.

Examples
SELECT CURRENT_DATABASE();

 current_database

 VMart

(1 row)

The following command returns the same results without the parentheses:

SELECT CURRENT_DATABASE;

 current_database

 VMart

(1 row)

CURRENT_SCHEMA

Returns the name of the current schema.

Behavior Type

Stable

Syntax
CURRENT_SCHEMA()

Privileges

None

Notes

The CURRENT_SCHEMA function does not require parentheses.

Example
=> SELECT CURRENT_SCHEMA();

-416-

SQL Reference Manual

 current_schema

 public

(1 row)

The following command returns the same results without the parentheses:

=> SELECT CURRENT_SCHEMA;

 current_schema

 public

(1 row)

The following command shows the current schema, listed after the current user (page 416), in the
search path:

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

See Also

SET SEARCH_PATH

CURRENT_USER

Returns a VARCHAR containing the name of the user who initiated the current database
connection.

Behavior Type

Stable

Syntax
CURRENT_USER()

Notes

 The CURRENT_USER function does not require parentheses.

 This function is useful for permission checking.

 Is equivalent to SESSION_USER (page 419), USER (page 419), and USERNAME (page
420).

Examples
SELECT CURRENT_USER();

 current_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

-417-

 SQL Functions

SELECT CURRENT_USER;

 current_user

 dbadmin

(1 row)

DBNAME (function)

Returns a VARCHAR value containing the name of the database to which you are connected.
DBNAME is equivalent to CURRENT_DATABASE (page 415).

Behavior Type

Immutable

Syntax
DBNAME()

Examples
SELECT DBNAME();

 dbname

 VMart

(1 row)

HAS_TABLE_PRIVILEGE
Indicates whether a user can access a table in a particular way. The function returns a true (t) or
false (f) value.

A superuser can check all other user's table privileges.

Users without superuser privileges can use HAS_TABLE_PRIVILEGE to check:

 Any tables they own.

 Tables in a schema to which they have been granted USAGE privileges, and at least one other
table privilege, as described in GRANT (Table) (page 842).

Behavior Type

Stable

Syntax
HAS_TABLE_PRIVILEGE ([user,] [[db-name.]schema-name.]table , privilege)

Parameters

user Specifies the name or OID of a database user. The default is the

CURRENT_USER (page 416).

-418-

SQL Reference Manual

[[db-name.]schema.

]
[Optional] Specifies the schema name. Using a schema identifies objects that

are not unique within the current search path (see Setting Schema Search
Paths).

You can optionally precede a schema with a database name, but you must be

connected to the database you specify. You cannot make changes to objects in
other databases.

The ability to specify different database objects (from database and schemas

to tables and columns) lets you qualify database objects as explicitly as
required. For example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a database,

schema, table, and column (mydb.myschema.mytable.column1).

table Specifies the name or OID of a table in the logical schema. If necessary,
specify the database and schema, as noted above.

privilege SELECT Allows the user to SELECT from any column of the specified

table.

 INSERT Allows the user to INSERT records into the specified table
and to use the COPY (page 699) command to load the table.

 UPDATE Allows the user to UPDATE records in the specified table.

 DELETE Allows the user to delete a row from the specified table.

 REFERENCES Allows the user to create a foreign key constraint

(privileges required on both the referencing and referenced tables).

Examples
SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'SELECT');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('release', 'store.store_dimension',

'INSERT');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'UPDATE');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE('store.store_dimension', 'REFERENCES');

 has_table_privilege

 t

(1 row)

SELECT HAS_TABLE_PRIVILEGE(45035996273711159, 45035996273711160,

'select');

 has_table_privilege

t

-419-

 SQL Functions

(1 row)

SESSION_USER

Returns a VARCHAR containing the name of the user who initiated the current database session.

Behavior Type

Stable

Syntax
SESSION_USER()

Notes

 The SESSION_USER function does not require parentheses.

 Is equivalent to CURRENT_USER (page 416), USER (page 419), and USERNAME (page
420).

Examples
SELECT SESSION_USER();

 session_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

SELECT SESSION_USER;

 session_user

 dbadmin

(1 row)

USER

Returns a VARCHAR containing the name of the user who initiated the current database
connection.

Behavior Type

Stable

Syntax
USER()

Notes

 The USER function does not require parentheses.

 Is equivalent to CURRENT_USER (page 416), SESSION_USER (page 419), and
USERNAME (page 420).

-420-

SQL Reference Manual

Examples
SELECT USER();

 current_user

 dbadmin

(1 row)

The following command returns the same results without the parentheses:

SELECT USER;

 current_user

 dbadmin

(1 row)

USERNAME

Returns a VARCHAR containing the name of the user who initiated the current database
connection.

Behavior Type

Stable

Syntax
USERNAME()

Notes

 This function is useful for permission checking.

 It is equivalent to CURRENT_USER (page 416), SESSION_USER (page 419) and USER
(page 419).

Examples
SELECT USERNAME();

 username

 dbadmin

(1 row)

VERSION

Returns a VARCHAR containing an HP Vertica node's version information.

Behavior Type

Stable

Syntax
VERSION()

-421-

 SQL Functions

Examples
SELECT VERSION();

 VERSION

--

 Vertica Analytic Database v4.0.12-20100513010203

(1 row)

The parentheses are required. If you omit them, the system returns an error:

SELECT VERSION;

ERROR: column "version" does not exist

Timeseries Functions

Timeseries aggregate functions evaluate the values of a given set of var iables over time and
group those values into a window for analysis and aggregation.

One output row is produced per time slice—or per partition per time slice—if partition expressions
are present.

See Also

TIMESERIES Clause (page 894)

CONDITIONAL_CHANGE_EVENT (page 151) and CONDITIONAL_TRUE_EVENT (page 152)

Using Time Series Analytics in the Programmer's Guide

TS_FIRST_VALUE

Processes the data that belongs to each time slice. A time series aggregate (TSA) function,
TS_FIRST_VALUE returns the value at the start of the time slice, where an interpolation scheme
is applied if the timeslice is missing, in which case the value is determined by the values
corresponding to the previous (and next) timeslices based on the interpolation scheme of const
(linear). There is one value per time slice per partition.

Behavior Type

Immutable

Syntax
TS_FIRST_VALUE (expression [IGNORE NULLS]

... [, { 'CONST' | 'LINEAR' }])

Parameters

expression Is the argument expression on which to aggregate and interpolate.

expression is data type INTEGER or FLOAT.

-422-

SQL Reference Manual

IGNORE NULLS The IGNORE NULLS behavior changes depending on a CONST
or LINEAR interpolation scheme. See When Time Series Data
Contains Nulls in the Programmer's Guide for details.

'CONST' | 'LINEAR' (default CONST) Optionally specifies the interpolation value as
either constant or linear.

 CONST—New value are interpolated based on previous
input records.

 LINEAR—Values are interpolated in a linear slope based
on the specified time slice.

Notes

 The function returns one output row per time slice or one output row per partition per time slice
if partition expressions are specified.

 Multiple time series aggregate functions can exists in the same query. They share the same
gap-filling policy as defined by the TIMESERIES clause (page 894); however, each time
series aggregate function can specify its own interpolation policy. For example:

SELECT slice_time, symbol,

 TS_FIRST_VALUE(bid, 'const') fv_c,

 TS_FIRST_VALUE(bid, 'linear') fv_l,

 TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore

TIMESERIES slice_time AS '3 seconds' OVER(PARTITION BY symbol ORDER BY ts);

 You must use an ORDER BY clause with a timestamp column.

Example

For detailed examples, see Gap Filling and Interpolation in the Programmer's Guide.

See Also

TIMESERIES Clause (page 894) and TS_LAST_VALUE (page 422)

Using Time Series Analytics in the Programmer's Guide

TS_LAST_VALUE

Processes the data that belongs to each time slice. A time series aggregate (TSA) function,
TS_LAST_VALUE returns the value at the end of the time slice, where an interpolation scheme is
applied if the timeslice is missing, in which case the value is determined by the values
corresponding to the previous (and next) timeslices based on the interpolation scheme of const
(linear). There is one value per time slice per partition.

Behavior Type

Immutable

-423-

 SQL Functions

Syntax
TS_LAST_VALUE (expression [IGNORE NULLS]

... [, { 'CONST' | 'LINEAR' }])

Parameters

expression Is the argument expression on which to aggregate and
interpolate.

expression is data type INTEGER or FLOAT.

IGNORE NULLS The IGNORE NULLS behavior changes depending on a
CONST or LINEAR interpolation scheme. See When Time

Series Data Contains Nulls in the Programmer's Guide for
details.

'CONST' | 'LINEAR' (default CONST) Optionally specifies the interpolation value as

either constant or linear.

 CONST—New value are interpolated based on
previous input records.

 LINEAR—Values are interpolated in a linear slope
based on the specified time slice.

Notes

 The function returns one output row per time slice or one output row per partition per time slice
if partition expressions are specified.

 Multiple time series aggregate functions can exists in the same query. They share the same
gap-filling policy as defined by the TIMESERIES clause (page 894); however, each time
series aggregate function can specify its own interpolation policy. For example:

SELECT slice_time, symbol,

 TS_FIRST_VALUE(bid, 'const') fv_c,

 TS_FIRST_VALUE(bid, 'linear') fv_l,

 TS_LAST_VALUE(bid, 'const') lv_c

FROM TickStore

TIMESERIES slice_time AS 3 seconds OVER(PARTITION BY symbol ORDER BY ts);

 You must use the ORDER BY clause with a TIMESTAMP column.

Example

For detailed examples, see Gap Filling and Interpolation in the Programmer's Guide.

See Also

TIMESERIES Clause (page 894) and TS_FIRST_VALUE (page 421)

Using Time Series Analytics in the Programmer's Guide

-424-

SQL Reference Manual

URI Encode/Decode Functions

The functions in this section follow the RFC 3986 standard for percent-encoding a Universal
Resource Identifier (URI).

URI_PERCENT_DECODE
Decodes a percent-encoded Universal Resource Identifier (URI) according to the RFC 3986
standard.

Syntax
URI_PERCENT_DECODE (expression)

Behavior type

Immutable

Parameters

expression (VARCHAR) is the string to convert.

Examples

The following example invokes uri_percent_decode on the Websites column of the URI table and
returns a decoded URI:

=> SELECT URI_PERCENT_DECODE(Websites) from URI;

 URI_PERCENT_DECODE

 http://www.faqs.org/rfcs/rfc3986.html x xj%a%

(1 row)

The following example returns the original URI in the Websites column and its decoded version:

=> SELECT Websites, URI_PERCENT_DECODE (Websites) from URI;

 Websites |

URI_PERCENT_DECODE

---+--------------------------

 http://www.faqs.org/rfcs/rfc3986.html+x%20x%6a%a% |

http://www.faqs.org/rfcs/rfc3986.html x xj%a%

(1 row)

-425-

 SQL Functions

URI_PERCENT_ENCODE

Encodes a Universal Resource Identifier (URI) according to the RFC 3986 standard for percent
encoding. In addition, for compatibility with older encoders this function converts '+' to space;
space is converted to %20 by uri_percent_encode.

Syntax
URI_PERCENT_ENCODE (expression)

Behavior type

Immutable

Parameters

expression (VARCHAR) is the string to convert.

Example

The following example shows how the uri_percent_encode function is invoked on a the Websites
column of the URI table and returns an encoded URI:

=> SELECT URI_PERCENT_ENCODE(Websites) from URI;

 URI_PERCENT_ENCODE

--

 http%3A%2F%2Fexample.com%2F%3F%3D11%2F15

(1 row)

The following example returns the original URI in the Websites column and it's encoded form:

=> SELECT Websites, URI_PERCENT_ENCODE(Websites) from URI;

 Websites | URI_PERCENT_ENCODE

----------------------------+--

 http://example.com/?=11/15 | http%3A%2F%2Fexample.com%2F%3F%3D11%2F15

(1 row)

HP Vertica Meta-functions

HP Vertica built-in (meta) functions access the internal state of HP Vertica and are used in
SELECT queries with the function name and an argument (where required). These functions are
not part of the SQL standard and take the following form:

SELECT <meta-function>(<args>);

Note: The query cannot contain other clauses, such as FROM or WHERE.

-426-

SQL Reference Manual

The behavior type of HP Vertica meta-functions is immutable.

Alphabetical List of HP Vertica Meta-functions

This section contains the HP Vertica meta-functions, listed alphabetically. These functions are
also grouped into their appropriate category.

ADD_LOCATION

Adds a storage location to the cluster. Use this function to add a new location, optionally with a
location label. You can also add a location specifically for user access, and then grant one or more
users access to the location.

Syntax
ADD_LOCATION ('path' [, 'node' , 'usage', 'location_label'])

Parameters

path [Required] Specifies where the storage location is mounted. Path

must be an empty directory with write permissions for user, group, or
all.

node [Optional] Indicates the cluster node on which a storage location

resides. If you omit this parameter, the function adds the location to
only the initiator node. Specifying the node parameter as an empty
string ('') adds a storage location to all cluster nodes in a single

transaction.

NOTE: If you specify a node, you must also add a usage parameter.

usage [Optional] Specifies what the storage location will be used for:

 DATA: Stores only data files. Use this option for labeled
storage locations.

 TEMP: Stores only temporary files, created during loads or
queries.

 DATA,TEMP: Stores both types of files in the location.

 USER: Allows non-dbadmin users access to the storage
location for data files (not temp files), once they are granted

privileges. DO NOT create a storage location for later use in a
storage policy. Storage locations with policies must be for
DATA usage. Also, note that this keyword is orthogonal to

DATA and TEMP, and does not specify a particular usage,
other than being accessible to non-dbadmin users with
assigned privileges. You cannot alter a storage location to or
from USER usage.

NOTE: You can use this parameter only in conjunction with the node

option. If you omit the usage parameter, the default is DATA,TEMP.

-427-

 SQL Functions

location_label [Optional] Specifies a location label as a string, for example, SSD.

Labeling a storage location lets you use the location label to create
storage policies and as part of a multi-tenanted storage scheme.

Privileges

Must be a superuser

Storage Location Subdirectories

You cannot create a storage location in a subdirectory of an existing location. For example, if you
create a storage location at one location, you cannot add a second storage location in a
subdirectory of the first:

dbt=> select add_location ('/myvertica/Test/KMM','','DATA','SSD');

 add_location

--

 /myvertica/Test/KMM added.

(1 row)

dbt=> select add_location ('/myvertica/Test/KMM/SSD','','DATA','SSD');

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0001

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0002

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0003

Example

This example adds a location that stores data and temporary files on the initiator node:

=> SELECT ADD_LOCATION('/secondverticaStorageLocation/');

This example adds a location to store data on v_vmartdb_node0004:

=> SELECT ADD_LOCATION('/secondverticaStorageLocation/' , 'v_vmartdb_node0004' ,

'DATA');

This example adds a new DATA storage location with a label, SSD. The label identifies the location

when you create storage policies. Specifying the node parameter as an empty string adds the
storage location to all cluster nodes in a single transaction:

VMART=> select add_location ('home/dbadmin/SSD/schemas', '', 'DATA', 'SSD');

 add_location

 home/dbadmin/SSD/schemas added.

(1 row)

See Also

Adding Storage Locations in the Administrator's Guide

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

-428-

SQL Reference Manual

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

-429-

 SQL Functions

ADVANCE_EPOCH

Manually closes the current epoch and begins a new epoch.

Syntax
ADVANCE_EPOCH ([integer])

Parameters

integer Specifies the number of epochs to advance.

Privileges

Must be a superuser

Note

This function is primarily maintained for backward compatibility with earlier versions of HP Vertica.

Example

The following command increments the epoch number by 1:

=> SELECT ADVANCE_EPOCH(1);

See Also

ALTER PROJECTION (page 659)

ALTER_LOCATION_USE

Alters the type of files that can be stored at the specified storage location.

Syntax
ALTER_LOCATION_USE ('path' , ['node'] , 'usage')

Parameters

path Specifies where the storage location is mounted.

node [Optional] The HP Vertica node with the storage location.
Specifying the node parameter as an empty string ('')

alters the location across all cluster nodes in a single

transaction.

If you omit this parameter, node defaults to the initiator.

-430-

SQL Reference Manual

usage Is one of the following:

 DATA: The storage location stores only data files.
This is the supported use for both a USER storage
location, and a labeled storage location.

 TEMP: The location stores only temporary files
that are created during loads or queries.

 DATA,TEMP: The location can store both types of
files.

Privileges

Must be a superuser

USER Storage Location Restrictions

You cannot change a storage location from a USER usage type if you created the location that
way, or to a USER type if you did not. You can change a USER storage location to specify DATA
(storing TEMP files is not supported). However, doing so does not affect the primary objective of a
USER storage location, to be accessible by non-dbadmin users with assigned privileges.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example alters the storage location across all cluster nodes to store only data:

=> SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' , '' , 'DATA');

See Also

Altering Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

DROP_LOCATION (page 472)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

ALTER_LOCATION_LABEL

Alters the location label. Use this function to add, change, or remove a location label. You change
a location label only if it is not currently in use as part of a storage policy.

-431-

 SQL Functions

You can use this function to remove a location label. However, you cannot remove a location label
if the name being removed is used in a storage policy, and the location from which you are
removing the label is the last available storage for its associated objects.

NOTE: If you label an existing storage location that already contains data, and then include the

labeled location in one or more storage policies, existing data could be moved. If the ATM
determines data stored on a labeled location does not comply with a storage policy, the ATM
moves the data elsewhere.

Syntax
ALTER_LOCATION_LABEL ('path' , 'node' , 'location_label')

Parameters

path Specifies the path of the storage location.

node The HP Vertica node for the storage location.

If you enter node as an empty string (''), the function

performs a cluster-wide label change to all nodes. Any

node that is unavailable generates an error.

location_label Specifies a storage label as a string, for instance SSD.
You can change an existing label assigned to a storage

location, or add a new label. Specifying an empty string ('')
removes an existing label.

Privileges

Must be a superuser

Example

The following example alters (or adds) the label SSD to the storage location at the given path on all

cluster nodes:

VMART=> select alter_location_label('/home/dbadmin/SSD/tables','', 'SSD');

 alter_location_label

 /home/dbadmin/SSD/tables label changed.

(1 row)

See Also

Altering Location Labels in the Administrator's Guide

CLEAR_OBJECT_STORAGE_POLICY (page 457)

SET_OBJECT_STORAGE_POLICY (page 534)

-432-

SQL Reference Manual

ANALYZE_CONSTRAINTS

Analyzes and reports on constraint violations within the current schema search path, or externa l to
that path if you specify a database name (noted in the syntax statement and parameter table).

You can check for constraint violations by passing arguments to the function as follows:

1 An empty argument (' '), which returns violations on all tables within the current schema

2 One argument, referencing a table

3 Two arguments, referencing a table name and a column or list of columns

Syntax
ANALYZE_CONSTRAINTS [('')

... | ('[[db-name.]schema.]table [.column_name]')

... | ('[[db-name.]schema.]table' , 'column')]

Parameters

('') Analyzes and reports on all tables within the current schema search
path.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.

Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be connected
to the database you specify, and you cannot change objects in other

databases.

Specifying different database objects lets you qualify database objects
as explicitly as required. For example, you can use a database and a

schema name (mydb.myschema).

table Analyzes and reports on all constraints referring to the specified table.

column Analyzes and reports on all constraints referring to the specified table
that contains the column.

Privileges

 SELECT privilege on table

 USAGE privilege on schema

Notes

ANALYZE_CONSTRAINTS() performs a lock in the same way that SELECT * FROM t1 holds a
lock on table t1. See LOCKS (page 1037) for additional information.

Detecting Constraint Violations During a Load Process

HP Vertica checks for constraint violations when queries are run, not when data is loaded. To
detect constraint violations as part of the load process, use a COPY (page 699) statement with the
NO COMMIT option. By loading data without committing it, you can run a post-load check of your
data using the ANALYZE_CONSTRAINTS function. If the function finds constraint violations, you
can roll back the load because you have not committed it.

-433-

 SQL Functions

If ANALYZE_CONSTRAINTS finds violations, such as when you insert a duplicate value into a
primary key, you can correct errors using the following functions. Effects last until the end of the
session only:

 SELECT DISABLE_DUPLICATE_KEY_ERROR (page 466)

 SELECT REENABLE_DUPLICATE_KEY_ERROR (page 522)

Return Values

ANALYZE_CONSTRAINTS returns results in a structured set (see table below) that lists the
schema name, table name, column name, constraint name, constraint type, and the column
values that caused the violation.

If the result set is empty, then no constraint violations exist; for example:

=> SELECT ANALYZE_CONSTRAINTS ('public.product_dimension', 'product_key');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

The following result set shows a primary key violation, along with the value that caused the
violation ('10'):

=> SELECT ANALYZE_CONSTRAINTS ('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 store t1 c1 pk_t1 PRIMARY ('10')

(1 row)

The result set columns are described in further detail in the following table:

Column Name Data Type Description

Schema Name VARCHAR The name of the schema.

Table Name VARCHAR The name of the table, if specified.

Column Names VARCHAR Names of columns containing constraints. Multiple columns
are in a comma-separated list:

store_key,

store_key, date_key,

Constraint Name VARCHAR The given name of the primary key, foreign key, unique, or not
null constraint, if specified.

Constraint Type VARCHAR Identified by one of the following strings: 'PRIMARY KEY',
'FOREIGN KEY', 'UNIQUE', or 'NOT NULL'.

Column Values VARCHAR Value of the constraint column, in the same order in which

Column Names contains the value of that column in the

violating row.

When interpreted as SQL, the value of this column forms a list

of values of the same type as the columns in Column Names;

for example:

('1'),

('1', 'z')

-434-

SQL Reference Manual

Understanding Function Failures

If ANALYZE_CONSTRAINTS() fails, HP Vertica returns an error identifying the failure condition.
For example, if there are insufficient resources, the database cannot perform constraint checks
and ANALYZE_CONSTRAINTS() fails.

If you specify the wrong table, the system returns an error message:

=> SELECT ANALYZE_CONSTRAINTS('abc');

 ERROR 2069: 'abc' is not a table in the current search_path

If you issue the function with incorrect syntax, the system returns an error message with a hint:

ANALYZE ALL CONSTRAINT;

Or

ANALYZE CONSTRAINT abc;

ERROR: ANALYZE CONSTRAINT is not supported.

HINT: You may consider using analyze_constraints().

If you run ANALYZE_CONSTRAINTS from a non-default locale, the function returns an error with
a hint:

=> \locale LEN

INFO 2567: Canonical locale: 'en'

Standard collation: 'LEN'

English

=> SELECT ANALYZE_CONSTRAINTS('t1');

ERROR: ANALYZE_CONSTRAINTS is currently not supported in non-default

locales

HINT: Set the locale in this session to en_US@collation=binary using

the

command "\locale en_US@collation=binary"

Examples

Given the following inputs, HP Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

=> CREATE TABLE t1(c1 INT);

=> ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

=> CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

=> INSERT INTO t1 values (10);

=> INSERT INTO t1 values (10); --Duplicate primary key value

=> SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

In the following example, create a table that contains three integer columns, one a unique key and
one a primary key:

=> CREATE TABLE fact_1(

 f INTEGER,

-435-

 SQL Functions

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Issue a command that refers to a nonexistent table and column:

=> SELECT ANALYZE_CONSTRAINTS('f_BB');

 ERROR: 'f_BB' is not a table name in the current search path

Issue a command that refers to a nonexistent column:

=> SELECT ANALYZE_CONSTRAINTS('fact_1','x');

 ERROR 41614: Nonexistent columns: 'x '

Insert some values into table fact_1 and commit the changes:

=> INSERT INTO fact_1 values (1, 1, 1);

=> COMMIT;

Run ANALYZE_CONSTRAINTS on table fact_1. No constraint violations are reported:

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table

fact_1 again. The system shows two violations: one against the primary key and one against the
unique key:

=> INSERT INTO fact_1 VALUES (1, 1, 1);

=> COMMIT;

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validations on only the unique key in the table
fact_1, qualified with its schema name:

=> SELECT ANALYZE_CONSTRAINTS('public.fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

The following example shows that you can specify the same column more than once;
ANALYZE_CONSTRAINTS, however, returns the violation only once:

=> SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

The following example creates a new dimension table, dim_1, and inserts a foreign key and

different (character) data types:

=> CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

=> ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

-436-

SQL Reference Manual

The following command inserts a missing foreign key (0) into table dim_1 and commits the

changes:

=> INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

=> COMMIT;

Checking for constraints on the table dim_1 in the public schema detects a foreign key

violation:

=> SELECT ANALYZE_CONSTRAINTS('public.dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

=> INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

=> INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

=> COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

=> SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Create a table with multicolumn foreign key and create the superprojections:

=> CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

=> ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

=> INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

=> COMMIT;

Checking for constraints on table dim_2 detects no violations:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

=> INSERT INTO dim_2 values ('r1', 'NONE');

=> COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

Analyze all constraints on all tables:

=> SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

-437-

 SQL Functions

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(5 rows)

To quickly clean up your database, issue the following command:

=> DROP TABLE fact_1 cascade;

=> DROP TABLE dim_1 cascade;

=> DROP TABLE dim_2 cascade;

To learn how to remove violating rows, see the DISABLE_DUPLICATE_KEY_ERROR (page
466) function.

See Also

Adding Constraints in the Administrator's Guide

COPY (page 699)

ALTER TABLE (page 672)

CREATE TABLE (page 770)

ANALYZE_HISTOGRAM

Collects and aggregates data samples and storage information from all nodes that store
projections associated with the specified table or column.

If the function returns successfully (0), HP Vertica writes the returned statistics to the catalog. The
query optimizer uses this collected data to recommend the best possible plan to execute a query.
Without analyzing table statistics, the query optimizer would assume uniform distribution of data
values and equal storage usage for all projections.

ANALYZE_HISTOGRAM is a DDL operation that auto-commits the current transaction, if any. The
ANALYZE_HISTOGRAM function reads a variable amount of disk contents to aggregate sample
data for statistical analysis. Use the function's percent float parameter to specify the total disk
space from which HP Vertica collects sample data. The ANALYZE_STATISTICS (page 440)
function returns similar data, but uses a fixed disk space amount (10 percent). Analyzing more
than 10 percent disk space takes proportionally longer to process, but produces a higher level of
sampling accuracy. ANALYZE_HISTOGRAM is supported on local temporary tables, but not on
global temporary tables.

Syntax
ANALYZE_HISTOGRAM ('')

... | ('[[db-name.]schema.]table [.column-name]' [, percent])

Return value

0 - For success. If an error occurs, refer to vertica.log for details.

Parameters

'' Empty string. Collects statistics for all tables.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search

-438-

SQL Reference Manual

path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a

table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Specifies the name of the table and collects statistics for all

projections of that table. If you are using more than one schema,
specify the schema that contains the projection, as noted in the
[[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column, typically a
predicate column. Using this option with a table specification lets
you collect statistics for only that column.

Note: If you alter a table to add or drop a column, or add a new

column to a table and populate its contents with either default or
other values, HP Vertica recommends calling this function on the
new table column to get the most current statistics.

percent [Optional] Specifies what percentage of data to read from disk
(not the amount of data to analyze). Specify a float from 1 – 100,
such as 33.3. By default, the function reads 10% of the table

data from disk.

For more information, see Collecting Statistics in the
Administrator's Guide.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Use the HP Vertica statistics functions as follows:

Use this function... To obtain...

ANALYZE_STATISTIC

S (page 440)

A fixed-size statistical data sampling (10 percent per

disk). This function returns results quickly, but is less
accurate than using ANALYZE_HISTOGRAM to get a
larger sampling of disk data.

ANALYZE_HISTOGRA
M (page 437)

A specified percentage of disk data sampling (from 1 -
100). If you analyze more than 10 percent data per disk,
this function is more accurate than

ANALYZE_STATISTICS, but requires proportionately
longer to return statistics.

-439-

 SQL Functions

Analyzing Results

To retrieve hints about under-performing queries and the associated root causes, use the
ANALYZE_WORKLOAD (page 443) function. This function runs the Workload Analyzer and

returns tuning recommendations, such as "run analyze_statistics on

schema.table.column". You or your database administrator should act upon the tuning
recommendations.

You can also find database tuning recommendations on the Management Console.

Canceling ANALYZE_HISTOGRAM

You can cancel this function mid-analysis by issuing CTRL-C in a vsql shell or by invoking the
INTERRUPT_STATEMENT() (page 503) function.

Notes

By default, HP Vertica analyzes more than one column (subject to resource limits) in a
single-query execution plan to:

 Reduce plan execution latency

 Help speed up analysis of relatively small tables that have a large number of columns

Examples

In this example, the ANALYZE_STATISTICS() function reads 10 percent of the disk data. This is
the static default value for this function. The function returns 0 for success:

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

 ANALYZE_STATISTICS

 0

(1 row)

This example uses ANALYZE_HISTOGRAM () without specifying a percentage value. Since this
function has a default value of 10 percent, it returns the identical data as the
ANALYZE_STATISTICS() function, and returns 0 for success:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key');

 ANALYZE_HISTOGRAM

 0

(1 row)

This example uses ANALYZE_HISTOGRAM (), specifying its percent parameter as 100,
indicating it will read the entire disk to gather data. After the function performs a full column scan,
it returns 0 for success:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 100);

 ANALYZE_HISTOGRAM

 0

(1 row)

In this command, only 0.1% (1/1000) of the disk is read:

-440-

SQL Reference Manual

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 0.1);

 ANALYZE_HISTOGRAM

 0

(1 row)

See Also

ANALYZE_STATISTICS (page 440)

ANALYZE_WORKLOAD (page 443)

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

IMPORT_STATISTICS (page 502)

INTERRUPT_STATEMENT (page 503)

Collecting Statistics in the Administrator's Guide

ANALYZE_STATISTICS

Collects and aggregates data samples and storage information from all nodes that store
projections associated with the specified table or column.

If the function returns successfully (0), HP Vertica writes the returned statistics to the catalog. The
query optimizer uses this collected data to recommend the best possible plan to execute a query.
Without analyzing table statistics, the query optimizer would assume uniform distribution of data
values and equal storage usage for all projections.

ANALYZE_STATISTICS is a DDL operation that auto-commits the current transaction, if any. The
ANALYZE_STATISTICS function reads a fixed, 10 percent of disk contents to aggregate sample
data for statistical analysis. To obtain a larger (or smaller) data sampling, use the
ANALYZE_HISTOGRAM (page 437) function, which lets you specify the percent of disk to read.
Analyzing more that 10 percent disk space takes proportionally longer to process, but results in a
higher level of sampling accuracy. ANALYZE_STATISTICS (page 440) is supported on local
temporary tables, but not on global temporary tables.

Syntax
ANALYZE_STATISTICS [('')

... | ('[[db-name.]schema.]table [.column-name]')]

Return Value

0 - For success.

If an error occurs, refer to vertica.log for details.

Parameters

-441-

 SQL Functions

'' Empty string. Collects statistics for all tables.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see

Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot

make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database

objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Specifies the name of the table and collects statistics for all
projections of that table.

Note: If you are using more than one schema, specify the schema

that contains the projection, as noted as noted in the
[[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column, typically a

predicate column. Using this option with a table specification lets
you collect statistics for only that column.

Note: If you alter a table to add or drop a column, or add a new

column to a table and populate its contents with either default or
other values, HP Vertica recommends calling this function on the

new table column to get the most current statistics.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Use the HP Vertica statistics functions as follows:

Use this function... To obtain...

ANALYZE_STATISTIC

S (page 440)

A fixed-size statistical data sampling (10 percent per

disk). This function returns results quickly, but is less
accurate than using ANALYZE_HISTOGRAM to get a
larger sampling of disk data.

ANALYZE_HISTOGRA
M (page 437)

A specified percentage of disk data sampling (from 1 -
100). If you analyze more than 10 percent data per disk,
this function is more accurate than

ANALYZE_STATISTICS, but requires proportionately
longer to return statistics.

-442-

SQL Reference Manual

Analyzing results

To retrieve hints about under-performing queries and the associated root causes, use the
ANALYZE_WORKLOAD (page 443) function. This function runs the Workload Analyzer and

returns tuning recommendations, such as "run analyze_statistics on

schema.table.column". You or your database administrator should act upon the tuning
recommendations.

You can also find database tuning recommendations on the Management Console.

Canceling this function

You can cancel statistics analysis by issuing CTRL-C in a vsql shell or by invoking the
INTERRUPT_STATEMENT() (page 503) function.

Notes

 Always run ANALYZE_STATISTICS on a table or column rather than a projection.

 By default, HP Vertica analyzes more than one column (subject to resource limits) in a
single-query execution plan to:

 reduce plan execution latency

 help speed up analysis of relatively small tables that have a large number of columns

 Pre-join projection statistics are updated on any pre-joined tables.

Examples

Computes statistics on all projections in the Vmart database and returns 0 (success):

=> SELECT ANALYZE_STATISTICS ('');

 analyze_statistics

 0

(1 row)

Computes statistics on a single table (shipping_dimension) and returns 0 (success):

=> SELECT ANALYZE_STATISTICS ('shipping_dimension');

 analyze_statistics

 0

(1 row)

Computes statistics on a single column (shipping_key) across all projections for the

shipping_dimension table and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

 analyze_statistics

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

-443-

 SQL Functions

See Also

ANALYZE_HISTOGRAM (page 437)

ANALYZE_WORKLOAD (page 443)

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

IMPORT_STATISTICS (page 502)

INTERRUPT_STATEMENT (page 503)

ANALYZE_WORKLOAD

Runs the Workload Analyzer (WLA), a utility that analyzes system information held in system
tables (page 933).

The Workload Analyzer intelligently monitors the performance of SQL queries and workload
history, resources, and configurations to identify the root causes for poor query performance.
Calling the ANALYZE_WORKLOAD function returns tuning recommendations for all events within
the scope and time that you specify.

Tuning recommendations are based on a combination of statistics, system and data collector
events, and database-table-projection design. WLA's recommendations let database
administrators quickly and easily tune query performance without needing sophisticated skills.

See Understanding WLA Triggering Conditions in the Administrator's Guide for the most
common triggering conditions and recommendations.

Syntax 1
ANALYZE_WORKLOAD ('scope' , 'since_time');

Syntax 2
ANALYZE_WORKLOAD ('scope' , [true]);

Parameters

scope Specifies which HP Vertica catalog objects to analyze.

Can be one of:

 An empty string ('') returns recommendations for all database objects

 'table_name' returns all recommendations related to the specified table

 'schema_name' returns recommendations on all database objects in the
specified schema

-444-

SQL Reference Manual

since_time Limits the recommendations from all events that you specified in 'scope' since the

specified time in this argument, up to the current system status. If you omit the
since_time parameter, ANALYZE_WORKLOAD returns recommendations on events
since the last recorded time that you called this function.

Note: You must explicitly cast strings that you use for the since_time parameter to

TIMESTAMP or TIMESTAMPTZ. For example:

SELECT ANALYZE_WORKLOAD('T1', '2010-10-04 11:18:15'::TIMESTAMPTZ);

SELECT ANALYZE_WORKLOAD('T1', TIMESTAMPTZ '2010-10-04 11:18:15');

true [Optional] Tells HP Vertica to record this particular call of WORKLOAD_ANALYZER()
in the system. The default value is false (do not record). If recorded, subsequent calls
to ANALYZE_WORKLOAD analyze only the events that have occurred since this

recorded time, ignoring all prior events.

Return value

ANALYZE_WORKLOAD() returns aggregated tuning recommendations, as described in the
following table.

Column Data type Description

observation_count INTEGER Integer for the total number of events observed
for this tuning recommendation. For example, if

you see a return value of 1, WLA is making its
first tuning recommendation for the event in
'scope'.

first_observation_time TIMESTAMPT

Z

Timestamp when the event first occurred. If this

column returns a null value, the tuning
recommendation is from the current status of
the system instead of from any prior event.

last_observation_time TIMESTAMPT

Z

Timestamp when the event last occurred. If this

column returns a null value, the tuning
recommendation is from the current status of
the system instead of from any prior event.

tuning_parameter VARCHAR Objects on which you should perform a tuning

action. For example, a return value of:

 public.t informs the DBA to run

Database Designer on table t in the
public schema

 bsmith notifies a DBA to set a
password for user bsmith

-445-

 SQL Functions

tuning_description VARCHAR Textual description of the tuning
recommendation from the Workload Analyzer to

perform on the tuning_parameter object.
Examples of some of the returned values
include, but are not limited to:

 Run database designer on table
schema.table

 Create replicated projection for table
schema.table

 Consider query-specific design on
query

 Reset configuration parameter with
SELECT

set_config_parameter('parame

ter', 'new_value')

 Re-segment projection

projection-name on high-cardinality
column(s)

 Drop the projection
projection-name

 Alter a table's partition expression

 Reorganize data in partitioned table

 Decrease the MoveOutInterval
configuration parameter setting

tuning_command VARCHAR Command string if tuning action is a SQL

command. For example, the following example
statements recommend that the DBA:

Update statistics on a particular schema's

table.column:

SELECT

 ANALYZE_STATISTICS('public.table.column');

Resolve mismatched configuration parameter
'LockTimeout':

SELECT * FROM CONFIGURATION_PARAMETERS

WHERE parameter_name = 'LockTimeout';

Set the password for user bsmith:

ALTER USER (user) IDENTIFIED BY

 ('new_password');

-446-

SQL Reference Manual

tuning_cost VARCHAR Cost is based on the type of tuning
recommendation and is one of:

 LOW—minimal impact on resources
from running the tuning command

 MEDIUM—moderate impact on
resources from running the tuning
command

 HIGH—maximum impact on resources
from running the tuning command

Depending on the size of your database or

table, consider running high-cost operations
after hours instead of during peak load times.

Privileges

Must be a superuser

Examples

See Analyzing Workloads through an API in the Administrator's Guide for examples.

See also

V_MONITOR.TUNING_RECOMMENDATIONS (page 1120) in this guide

Analyzing Workloads in the Administrator's Guide

Understanding WLA Triggering Conditions in the Administrator's Guide

AUDIT

Estimates the raw data size of a database, a schema, a projection, or a table as it is counted in an
audit of the database size.

The AUDIT function estimates the size using the same data sampling method as the audit that HP
Vertica performs to determine if a database is compliant with the database size allowances in its
license. The results of this function are not considered when HP Vertica determines whether the
size of the database complies with the HP Vertica license's data allowance. See How HP Vertica
Calculates Database Size in the Administrator's Guide for details.

Note: This function can only audit the size of tables, projections, schemas, and databases

which the user has permission to access. If a non-superuser attempts to audit the entire
database, the audit will only estimate the size of the data that the user is allowed to read.

Syntax
AUDIT([name] [, granularity] [, error_tolerance [, confidence_level]])

Parameters

name Specifies the schema, projection, or table to audit.
Enter name as a string, in single quotes (''). If the

-447-

 SQL Functions

name string is empty (''), the entire database is

audited.

granularity Indicates the level at which the audit reports its
results. The recognized levels are:

 'schema'

 'table'

 'projection'

By default, the granularity is the same level as

name. For example, if name is a schema, then the

size of the entire schema is reported. If you instead
specify 'table' as the granularity, AUDIT reports

the size of each table in the schema. The
granularity must be finer than that of object:
specifying 'schema' for an audit of a table has no

effect.

The results of an audit with a granularity are
reported in the V_CATALOG.USER_AUDITS

system table.

error_tolerance Specifies the percentage margin of error allowed in
the audit estimate. Enter the tolerance value as a

decimal number, between 0 and 100. The default
value is 5, for a 5% margin of error.

Note: The lower this value is, the more resources

the audit uses since it will perform more data

sampling. Setting this value to 0 results in a full
audit of the database, which is very resource
intensive, as all of the data in the database is

analyzed. Doing a full audit of the database
significantly impacts performance and is not
recommended on a production database.

confidence_level Specifies the statistical confidence level
percentage of the estimate. Enter the confidence
value as a decimal number, between 0 and 100.

The default value is 99, indicating a confidence
level of 99%.

Note: The higher the confidence value, the more

resources the function uses since it will perform
more data sampling. Setting this value to 1 results

in a full audit of the database, which is very
resource intensive, as all of the database is
analyzed. Doing a full audit of the database

significantly impacts performance and is not
recommended on a production database.

Permissions

 SELECT privilege on table

 USAGE privilege on schema

-448-

SQL Reference Manual

Note: AUDIT() works only on the tables where the user calling the function has SELECT

permissions.

Notes

Due to the iterative sampling used in the auditing process, making the error tolerance a small
fraction of a percent (0.00001, for example) can cause the AUDIT function to run for a longer
period than a full database audit.

Examples

To audit the entire database:

=> SELECT AUDIT('');

 AUDIT

 76376696

(1 row)

To audit the database with a 25% error tolerance:

=> SELECT AUDIT('',25);

 AUDIT

 75797126

(1 row)

To audit the database with a 25% level of tolerance and a 90% confidence level:

=> SELECT AUDIT('',25,90);

 AUDIT

 76402672

(1 row)

To audit just the online_sales schema in the VMart example database:

VMart=> SELECT AUDIT('online_sales');

 AUDIT

 35716504

(1 row)

To audit the online_sales schema and report the results by table:

=> SELECT AUDIT('online_sales','table');

 AUDIT

--

 See table sizes in v_catalog.user_audits for schema online_sales

(1 row)

=> \x

Expanded display is on.

=> SELECT * FROM user_audits WHERE object_schema = 'online_sales';

-[RECORD 1]-------------------------+------------------------------

-449-

 SQL Functions

size_bytes | 64960

user_id | 45035996273704962

user_name | dbadmin

object_id | 45035996273717636

object_type | TABLE

object_schema | online_sales

object_name | online_page_dimension

audit_start_timestamp | 2011-04-05 09:24:48.224081-04

audit_end_timestamp | 2011-04-05 09:24:48.337551-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | f

confidence_interval_lower_bound_bytes | 64960

confidence_interval_upper_bound_bytes | 64960

sample_count | 0

cell_count | 0

-[RECORD 2]-------------------------+------------------------------

size_bytes | 20197

user_id | 45035996273704962

user_name | dbadmin

object_id | 45035996273717640

object_type | TABLE

object_schema | online_sales

object_name | call_center_dimension

audit_start_timestamp | 2011-04-05 09:24:48.340206-04

audit_end_timestamp | 2011-04-05 09:24:48.365915-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | f

confidence_interval_lower_bound_bytes | 20197

confidence_interval_upper_bound_bytes | 20197

sample_count | 0

cell_count | 0

-[RECORD 3]-------------------------+------------------------------

size_bytes | 35614800

user_id | 45035996273704962

user_name | dbadmin

object_id | 45035996273717644

object_type | TABLE

object_schema | online_sales

object_name | online_sales_fact

audit_start_timestamp | 2011-04-05 09:24:48.368575-04

audit_end_timestamp | 2011-04-05 09:24:48.379307-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | t

confidence_interval_lower_bound_bytes | 34692956

confidence_interval_upper_bound_bytes | 36536644

sample_count | 10000

cell_count | 9000000

-450-

SQL Reference Manual

AUDIT_LICENSE_SIZE

Triggers an immediate audit of the database size to determine if it is in compliance with the raw
data storage allowance included in your HP Vertica license. The audit is performed in the
background, so this function call returns immediately. To see the results of the audit when it is
done, use the GET_COMPLIANCE_STATUS (page 494) function.

Syntax
AUDIT_LICENSE_SIZE()

Privileges

Must be a superuser

Example
=> SELECT audit_license_size();

 audit_license_size

 Service hurried

(1 row)

AUDIT_LICENSE_TERM

Triggers an immediate audit to determine if the HP Vertica license has expired. The audit happens
in the background, so this function returns immediately. To see the result of the audit, use the
GET_COMPLIANCE_STATUS (page 494) function.

Syntax
AUDIT_LICENSE_TERM()

Privileges

Must be a superuser

Example
=> SELECT AUDIT_LICENSE_TERM();

 AUDIT_LICENSE_TERM

 Service hurried

(1 row)

CANCEL_REBALANCE_CLUSTER

Stops any rebalance task currently in progress.

Syntax
CANCEL_REBALANCE_CLUSTER()

-451-

 SQL Functions

Privileges

Must be a superuser

Example
=> SELECT CANCEL_REBALANCE_CLUSTER();

 CANCEL_REBALANCE_CLUSTER

 CANCELED

(1 row)

See Also

 START_REBALANCE_CLUSTER (page 537)

 REBALANCE_CLUSTER (page 522)

CANCEL_REFRESH

Cancels refresh-related internal operations initiated by START_REFRESH().

Syntax
CANCEL_REFRESH()

Privileges

None

Notes

 Refresh tasks run in a background thread in an internal session, so you cannot use
INTERRUPT_STATEMENT (page 503) to cancel those statements. Instead, use
CANCEL_REFRESH to cancel statements that are run by refresh-related internal sessions.

 Run CANCEL_REFRESH() on the same node on which START_REFRESH() was initiated.

 CANCEL_REFRESH() cancels the refresh operation running on a node, waits for the
cancelation to complete, and returns SUCCESS.

 Only one set of refresh operations runs on a node at any time.

See Also

INTERRUPT_STATEMENT (page 503)

SESSIONS (page 1095)

START_REFRESH (page 538)

PROJECTION_REFRESHES (page 1056)

CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY

Changes the run-time priority of a query that is actively running.

-452-

SQL Reference Manual

Syntax
CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY(TRANSACTION_ID, 'value')

Parameters

TRANSACTION_ID An identifier for the transaction within the session.

TRANSACTION_ID cannot be NULL.

You can find the transaction ID in the Sessions

table.

'value' The RUNTIMEPRIORITY value. Can be HIGH,

MEDIUM, or LOW.

Privileges

No special privileges required. However, non-super users can change the run-time priority of their
own queries only. In addition, non-superusers can never raise the run-time priority of a query to a
level higher than that of the resource pool.

Example
VMart => SELECT CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY(45035996273705748,

'low')

CHANGE_RUNTIME_PRIORITY

Changes the run-time priority of a query that is actively running. Note that, while this function is still
valid, you should instead use CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY to change
run-time priority. CHANGE_RUNTIME_PRIORITY will be deprecated in a future release of Vertica.

Syntax
CHANGE_RUNTIME_PRIORITY(TRANSACTION_ID,STATEMENT_ID, 'value')

Parameters

TRANSACTION_ID An identifier for the transaction within the session.

TRANSACTION_ID cannot be NULL.

You can find the transaction ID in the Sessions
table.

STATEMENT_ID A unique numeric ID assigned by the HP Vertica
catalog, which identifies the currently executing
statement.

You can find the statement ID in the Sessions
table.

You can specify NULL to change the run-time

priority of the currently running query within the
transaction.

'value' The RUNTIMEPRIORITY value. Can be HIGH,

MEDIUM, or LOW.

-453-

 SQL Functions

Privileges

No special privileges required. However, non-super users can change the run-time priority of their
own queries only. In addition, non-superusers can never raise the run-time priority of a query to a
level higher than that of the resource pool.

Example
VMart => SELECT CHANGE_RUNTIME_PRIORITY(45035996273705748, NULL, 'low')

CLEAR_CACHES

Clears the HP Vertica internal cache files.

Syntax
CLEAR_CACHES ()

Privileges

Must be a superuser

Notes

If you want to run benchmark tests for your queries, in addition to clearing the internal HP Vertica
cache files, clear the Linux file system cache. The kernel uses unallocated memory as a cache to
hold clean disk blocks. If you are running version 2.6.16 or later of Linux and you have root access,
you can clear the kernel filesystem cache as follows:

1 Make sure that all data is the cache is written to disk:

sync

2 Writing to the drop_caches file causes the kernel to drop clean caches, dentries, and inodes
from memory, causing that memory to become free, as follows:

 To clear the page cache:

echo 1 > /proc/sys/vm/drop_caches

 To clear the dentries and inodes:

echo 2 > /proc/sys/vm/drop_caches

 To clear the page cache, dentries, and inodes:

echo 3 > /proc/sys/vm/drop_caches

Example

The following example clears the HP Vertica internal cache files:

=> CLEAR_CACHES();

 CLEAR_CACHES

 Cleared

(1 row)

-454-

SQL Reference Manual

CLEAR_DATA_COLLECTOR

Clears all memory and disk records on the Data Collector tables and functions and resets
collection statistics in the V_MONITOR.DATA_COLLECTOR system table. A superuser can
clear Data Collector data for all components or specify an individual component

After you clear the DataCollector log, the information is no longer available for querying.

Syntax
CLEAR_DATA_COLLECTOR(['component'])

Parameters

component Clears memory and disk records for the specified
component only. If you provide no argument, the function

clears all Data Collector memory and disk records fo r all
components.

For the current list of component names, query the

V_MONITOR.DATA_COLLECTOR (page 1002) system
table.

Privileges

Must be a superuser

Example

The following command clears memory and disk records for the ResourceAcquisitions
component:

=> SELECT clear_data_collector('ResourceAcquisitions');

 clear_data_collector

 CLEAR

(1 row)

The following command clears data collection for all components on all nodes:

=> SELECT clear_data_collector();

 clear_data_collector

 CLEAR

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

-455-

 SQL Functions

CLEAR_PROFILING

HP Vertica stores profiled data is in memory, so depending on how much data you collect, profiling
could be memory intensive. You can use this function to clear profiled data from memory.

Syntax
CLEAR_PROFILING('profiling-type')

Parameters

profiling-type The type of profiling data you want to clear. Can be one of:

 session—clears profiling for basic session
parameters and lock time out data

 query—clears profiling for general information about

queries that ran, such as the query strings used and
the duration of queries

 ee—clears profiling for information about the
execution run of each query

Example

The following statement clears profiled data for queries:

=> SELECT CLEAR_PROFILING('query');

See also

DISABLE_PROFILING (page 469)

ENABLE_PROFILING (page 483)

Profiling Database Performance in the Administrator's Guide

CLEAR_PROJECTION_REFRESHES

Triggers HP Vertica to clear information about refresh operations for projections immediately.

Syntax
CLEAR_PROJECTION_REFRESHES()

Notes

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 1056) system table until either the
CLEAR_PROJECTION_REFRESHES (page 455)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a
boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

-456-

SQL Reference Manual

Privileges

Must be a superuser

Example

To immediately purge projection refresh history, use the CLEAR_PROJECTION_REFRESHES()
function:

=> SELECT CLEAR_PROJECTION_REFRESHES();

 CLEAR_PROJECTION_REFRESHES

 CLEAR

(1 row)

Only the rows where the PROJECTION_REFRESHES.IS_EXECUTING column equals false are
cleared.

See Also

PROJECTION_REFRESHES (page 1056)

REFRESH (page 523)

START_REFRESH (page 538)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

CLEAR_RESOURCE_REJECTIONS

Clears the content of the RESOURCE_REJECTIONS (page 1089) and
DISK_RESOURCE_REJECTIONS (page 1013) system tables. Normally, these tables are only
cleared during a node restart. This function lets you clear the tables whenever you need. For
example, you might want to clear the system tables after you resolved a disk space issue that was
causing disk resource rejections.

Syntax
CLEAR_RESOURCE_REJECTIONS();

Privileges

Must be a superuser

Example

The following command clears the content of the RESOURCE_REJECTIONS and
DISK_RESOURCE_REJECTIONS system tables:

=> SELECT clear_resource_rejections();

 clear_resource_rejections

 OK

(1 row)

-457-

 SQL Functions

See Also

DISK_RESOURCE_REJECTIONS (page 1013)

RESOURCE_REJECTIONS (page 1089)

CLEAR_OBJECT_STORAGE_POLICY

Removes an existing storage policy. The specified object will no longer use a default storage
location. Any existing data stored currently at the labeled location in the object's storage policy is
moved to default storage during the next TM moveout operation.

Syntax
CLEAR_OBJECT_STORAGE_POLICY ('object_name' , [', key_min, key_max '])

Parameters

object_name Specifies the database object with a storage policy to
clear.

key_min, key_max Specifies the table partition key value ranges stored at the

labeled location. These parameters are applicable only
when object_name is a table.

Privileges

Must be a superuser

Example

This example clears the storage policy for the object lineorder:

release=> select clear_object_storage_policy('lineorder');

 clear_object_storage_policy

 Default storage policy cleared.

(1 row)

See Also

Clearing a Storage Policy in the Administrator's Guide

ALTER_LOCATION_LABEL (page 430)

SET_OBJECT_STORAGE_POLICY (page 534)

-458-

SQL Reference Manual

CLOSE_SESSION

Interrupts the specified external session, rolls back the current transaction, if any, and closes the
socket.

Syntax
CLOSE_SESSION ('sessionid')

Parameters

sessionid A string that specifies the session to close. This identifier is unique
within the cluster at any point in time but can be reused when the
session closes.

Privileges

None; however, a non-superuser can only close his or her own session.

Notes

 Closing of the session is processed asynchronously. It could take some time for the session to
be closed. Check the SESSIONS (page 1095) table for the status.

 Database shutdown is prevented if new sessions connect after the CLOSE_SESSION()
command is invoked (and before the database is actually shut down. See Controlling
Sessions below.

Messages

The following are the messages you could encounter:

 For a badly formatted sessionID

close_session | Session close command sent. Check SESSIONS for progress.

Error: invalid Session ID format

 For an incorrect sessionID parameter

Error: Invalid session ID or statement key

Examples

User session opened. RECORD 2 shows the user session running COPY DIRECT statement.

vmartdb=> SELECT * FROM sessions;

-[RECORD 1]--------------+---

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

-459-

 SQL Functions

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2]--------------+---

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY ClickStream_Fact FROM '/data/clickstream

 /1g/ClickStream_Fact.tbl' DELIMITER '|' NULL

 '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close user session stress05-27944:0xc1a

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_SESSION('stress05-27944:0xc1a');

 CLOSE_SESSION

--

 Session close command sent. Check v_monitor.sessions for progress.

(1 row)

Query the sessions table again for current status, and you can see that the second session has
been closed:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from SESSIONS;)

statement_start | 2011-01-03 16:12:07.841298

statement_id | 20

last_statement_duration_us | 2099

-460-

SQL Reference Manual

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the
database to shut down and disallow new connections. See SHUTDOWN (page 535) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in
order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the
V_MONITOR.CONFIGURATIONS_PARAMETERS (page 996) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop
Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_ALL_SESSIONS (page 461), CONFIGURATION_PARAMETERS (page 996),
SESSIONS (page 1095), SHUTDOWN (page 535)

Managing Sessions and Configuration Parameters in the Administrator's Guide

-461-

 SQL Functions

CLOSE_ALL_SESSIONS

Closes all external sessions except the one issuing the CLOSE_ALL_SESSIONS functions.

Syntax
CLOSE_ALL_SESSIONS()

Privileges

None; however, a non-superuser can only close his or her own session.

Notes

Closing of the sessions is processed asynchronously. It might take some time for the session to be
closed. Check the SESSIONS (page 1095) table for the status.

Database shutdown is prevented if new sessions connect after the CLOSE_SESSION or
CLOSE_ALL_SESSIONS() command is invoked (and before the database is actually shut down).
See Controlling Sessions below.

Message
close_all_sessions | Close all sessions command sent.

Check SESSIONS for progress.

Examples

Two user sessions opened, each on a different node:

vmartdb=> SELECT * FROM sessions;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

-462-

SQL Reference Manual

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/mart_Fact.tbl'

 DELIMITER '|' NULL '\\n';)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n';

ssl_state | None

authentication_method | Trust

-[RECORD 3

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id |

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close all sessions:

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_ALL_SESSIONS();

 CLOSE_ALL_SESSIONS

 Close all sessions command sent. Check v_monitor.sessions for progress.

(1 row)

Sessions contents after issuing the CLOSE_ALL_SESSIONS() command:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

-463-

 SQL Functions

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 16:19:56.720071

statement_id | 25

last_statement_duration_us | 15605

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the
database to shut down and disallow new connections. See SHUTDOWN (page 535) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in

order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the
V_MONITOR.CONFIGURATIONS_PARAMETERS (page 996) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop
Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

-464-

SQL Reference Manual

See Also

CLOSE_SESSION (page 458)

CONFIGURATION_PARAMETERS (page 996)

SHUTDOWN (page 535)

V_MONITOR.SESSIONS (page 1095)

Managing Sessions and Configuration Parameters in the Administrator's Guide

CURRENT_SCHEMA

Returns the name of the current schema.

Behavior Type

Stable

Syntax
CURRENT_SCHEMA()

Privileges

None

Notes

The CURRENT_SCHEMA function does not require parentheses.

Example
=> SELECT CURRENT_SCHEMA();

 current_schema

 public

(1 row)

The following command returns the same results without the parentheses:

=> SELECT CURRENT_SCHEMA;

 current_schema

 public

(1 row)

The following command shows the current schema, listed after the current user (page 416), in the
search path:

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

-465-

 SQL Functions

See Also

SET SEARCH_PATH

DATA_COLLECTOR_HELP

Returns online usage instructions about the Data Collector, the
V_MONITOR.DATA_COLLECTOR system table, and the Data Collector control functions.

Syntax
DATA_COLLECTOR_HELP()

Privileges

None

Returns

Invoking DATA_COLLECTOR_HELP() returns the following information:

=> SELECT DATA_COLLECTOR_HELP();

 Usage Data Collector

 The data collector retains history of important system activities.

 This data can be used as a reference of what actions have been taken

 by users, but it can also be used to locate performance bottlenecks,

 or identify potential improvements to the Vertica configuration.

 This data is queryable via Vertica system tables.

 The list of data collector components, and some statistics, can be found using:

 SELECT * FROM v_monitor.data_collector;

 The amount of data retained can be controlled with:

 set_data_collector_policy(<component>,

 <memory retention (KB)>,

 <disk retention (KB)>);

 The current retention policy for a component can be queried with:

 get_data_collector_policy(<component>);

 Data on disk is kept in the "DataCollector" directory under the Vertica

 catalog path. This directory also contains instructions on how to load

 the monitoring data into another Vertica database.

 Additional commands can be used to affect the data collection logs.

 The log can be cleared with:

 clear_data_collector([<optional component>]);

-466-

SQL Reference Manual

 The log can be synchronized with the disk storage using:

 flush_data_collector([<optional component>]);

Note: Data Collector works in conjunction with the Workload Analyzer, an advisor tool that
intelligently monitors the performance of SQL queries and workloads and recommends tuning
actions based on observations of the actual workload history.

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

V_MONITOR.TUNING_RECOMMENDATIONS (page 1120)

Analyzing Workloads in the Administrator's Guide

Retaining Monitoring Information in the Administrator's Guide

DISABLE_DUPLICATE_KEY_ERROR

Disables error messaging when HP Vertica finds duplicate PRIMARY KEY/UNIQUE KEY values
at run time. Queries execute as though no constraints are defined on the schema. Effects are
session scoped.

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR() suppresses data integrity
checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a pre-join projection. Then
correct the violations and turn integrity checking back on with
REENABLE_DUPLICATE_KEY_ERROR (page 522)().

Syntax
DISABLE_DUPLICATE_KEY_ERROR();

Privileges

Must be a superuser

Notes

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

The next two statements create a table named fact and the pre-join projection that joins fact to

dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. The last statement inserts a duplicate primary
key value of 1:

-467-

 SQL Functions

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

Table dim now contains duplicate primary key values, but you cannot delete the violating row
because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,
which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 Save the original dim rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

Caution: Remember that running the DISABLE_DUPLICATE_KEY_ERROR function
suppresses the enforcement of data integrity checking.

3 Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
A row with values from the fact and dimension table is now in the pre-join projection. In order for
the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
pre-join).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

-468-

SQL Reference Manual

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

To remove the violation:

1 Save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps also implicitly remove all fact rows with the
matching foreign key.

a) Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

DELETE FROM dim WHERE pk=1;

4 Reenable integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

Validate your dimension and fact tables.

See Also

ANALYZE_CONSTRAINTS (page 432)

REENABLE_DUPLICATE_KEY_ERROR (page 522)

DISABLE_ELASTIC_CLUSTER

Disables elastic cluster scaling, which prevents HP Vertica from bundling data into chunks that are
easily transportable to other nodes when performing cluster resizing. The main reason to disable
elastic clustering is if you find that the slightly unequal data distribution in your cluster caused by
grouping data into discrete blocks results in performance issues.

Syntax
DISABLE_ELASTIC_CLUSTER()

-469-

 SQL Functions

Privileges

Must be a superuser

Example
=> SELECT DISABLE_ELASTIC_CLUSTER();

 DISABLE_ELASTIC_CLUSTER

 DISABLED

(1 row)

See Also

 ENABLE_ELASTIC_CLUSTER (page 482)

DISABLE_LOCAL_SEGMENTS

Disable local data segmentation, which breaks projections segments on nodes into containers that
can be easily moved to other nodes. See Local Data Segmentation in the Administrator's Guide for
details.

Syntax
DISABLE_LOCAL_SEGMENTS()

Privileges

Must be a superuser

Example
=> SELECT DISABLE_LOCAL_SEGMENTS();

 DISABLE_LOCAL_SEGMENTS

 DISABLED

(1 row)

DISABLE_PROFILING

Disables profiling for the profiling type you specify.

Syntax
DISABLE_PROFILING('profiling-type')

Parameters

-470-

SQL Reference Manual

profiling-type The type of profiling data you want to disable. Can be one of:

 session—disables profiling for basic session
parameters and lock time out data

 query—disables profiling for general information
about queries that ran, such as the query strings
used and the duration of queries

 ee—disables profiling for information about the
execution run of each query

Example

The following statement disables profiling on query execution runs:

=> SELECT DISABLE_PROFILING('ee');

 DISABLE_PROFILING

 EE Profiling Disabled

(1 row)

See also

CLEAR_PROFILING (page 455)

ENABLE_PROFILING (page 483)

Profiling Database Performance in the Administrator's Guide

DISPLAY_LICENSE

Returns the terms of your HP Vertica license. The information this function displays is:

 The start and end dates for which the license is valid (or "Perpetual" if the license has no
expiration).

 The number of days you are allowed to use HP Vertica after your license term expires (the
grace period)

 The amount of data your database can store, if your license includes a data allowance.

Syntax
DISPLAY_LICENSE()

Privileges

None

Examples
=> SELECT DISPLAY_LICENSE();

 DISPLAY_LICENSE

--

 HP Vertica Systems, Inc.

1/1/2011

-471-

 SQL Functions

12/31/2011

30

50TB

(1 row)

DO_TM_TASK

Runs a Tuple Mover operation on one or more projections defined on the specified table.

Tip: You do not need to stop the Tuple Mover to run this function.

Syntax
DO_TM_TASK ('task' [, '[[db-name.]schema.]table' |

'[[db-name.]schema.]projection'])

Parameters

task Is one of the following tuple mover operations:

 'moveout' — Moves out all projections on the

specified table (i f a particular projection is not
specified) from WOS to ROS.

 'mergeout' — Consolidates ROS containers and
purges deleted records.

 'analyze_row_count' — Automatically collects

the number of rows in a projection every 60 seconds
and aggregates row counts calculated during loads.

[[db-name.]schema.

]
[Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current

search path (see Setting Schema Search Paths).

You can optionally precede a schema with a database
name, but you must be connected to the database you

specify. You cannot make changes to objects in other
databases.

The ability to specify different database objects (from

database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For
example, you can specify a table and column

(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification,

a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Runs a tuple mover operation for all projections within the

specified table. When using more than one schema, specify
the schema that contains the table with the projections you
want to affect, as noted above.

-472-

SQL Reference Manual

projection If projection is not passed as an argument, all projections in

the system are used. If projection is specified,
DO_TM_TASK looks for a projection of that name and, if
found, uses it; if a named projection is not found, the function

looks for a table with that name and, if found, moves out all
projections on that table.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privileges on schema

Notes

DO_TM_TASK() is useful for moving out all projections from a table or database without having to
name each projection individually.

Examples

The following example performs a moveout of all projections for table t1:

=> SELECT DO_TM_TASK('moveout', 't1');

The following example performs a moveout for projection t1_proj:

=> SELECT DO_TM_TASK('moveout', 't1_proj')

See Also

COLUMN_STORAGE (page 992)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Partitioning Tables in the Administrator's Guide

Collecting Statistics in the Administrator's Guide

DROP_LOCATION

Removes the specified storage location.

Syntax
DROP_LOCATION ('path' , 'node')

Parameters

-473-

 SQL Functions

path Specifies where the storage location to drop is mounted.

node Is the HP Vertica node where the location is available.

Privileges

Must be a superuser

Retiring or Dropping a Storage Location

Dropping a storage location is a permanent operation and cannot be undone. Therefore, HP
recommends that you retire a storage location before dropping it. Retiring a storage location lets
you verify that you do not need the storage before dropping it. Additionally, you can easily restore
a retired storage location if you determine it is still in use.

Storage Locations with Temp and Data Files

Dropping storage locations is limited to storage locations that contain only temp files.

If you use a storage location to store data and then alter it to store only temp files, the location can
still contain data files. HP Vertica does not let you drop a storage location containing data files.
You can manually merge out the data files from the storage location, and then wait for the ATM to
mergeout the data files automatically, or, you can drop partitions. Deleting data files does not
work.

Example

The following example drops a storage location on node3 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondHP VerticaStorageLocation/' , 'node3');

See Also

Dropping Storage Locations and Retiring Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

DROP_PARTITION

Forces the partition of projections (if needed) and then drops the specified partition.

Syntax
DROP_PARTITION (table_name , partition_value [, ignore_moveout_errors,

reorganize_data])

-474-

SQL Reference Manual

Parameters

table-name Specifies the name of the table.

Note: The table_name argument cannot be used as a dimension table

in a pre-joined projection and cannot contain projections that are not
up to date (have not been refreshed).

partition_value The key of the partition to drop. For example:
DROP_PARTITION('trade', 2006);

ignore_moveout_error

s
Optional Boolean, defaults to false.

 true—Ignores any WOS moveout errors and forces the

operation to continue. Set this parameter to true only if there

is no WOS data for the partition.

 false (or omit)—Displays any moveout errors and aborts the
operation on error.

Note: If you set this parameter to true and the WOS includes data for

the partition in WOS, partition data in WOS is not dropped.

reorganize_data Optional Boolean, defaults to false.

 true—Reorganizes the data if it is not organized, and then

drops the partition.

 false—Does not attempt to reorganize the data before

dropping the partition. If this parameter is false and the

function encounters a ROS without partition keys, an error
occurs.

Permissions

 Table owner

 USAGE privilege on schema that contains the table

Notes and Restrictions

The results of a DROP_PARTITION call go into effect immediately. If you drop a partition using
DROP_PARTITION and then try to add data to a partition with the same name, HP Vertica creates
a new partition.

If the operation cannot obtain an O Lock (page 1037) on the table(s), HP Vertica attempts to close
any internal Tuple Mover (TM) sessions running on the same table(s) so that the operation can
proceed. Explicit TM operations that are running in user sessions are not closed. If an explicit TM
operation is running on the table, then the operation cannot proceed until the explicit TM operation
completes.

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

 One container holds the data that belongs to the partition that is to be dropped.

 Another container holds the remaining n partitions.

-475-

 SQL Functions

2 Drops the specified partition.

You can also use the MERGE_PARTITIONS (page 513) function to merge ROS containers that
have data belonging to partitions in a specified partition key range; for example,
[partitionKeyFrom, partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

You cannot perform a DROP_PARTITION operation on tables with projections that are not up to
date (have not been refreshed).

DROP_PARTITION fails if you do not set the optional third parameter to true and the function
encounters ROS's that do not have partition keys.

Examples

Using the example schema in Defining Partitions, the following command explicitly drops the 2009
partition key from table trade:

 SELECT DROP_PARTITION('trade', 2009);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2009-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2010 (2010*12 + 10 = 24130):

 SELECT DROP_PARTITION('dates', '24130');

 DROP_PARTITION

 Partition dropped

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2010*12 + 10);

The following command first reorganizes the data if it is unpartitioned and then explicitly drops the
2009 partition key from table trade:

-476-

SQL Reference Manual

SELECT DROP_PARTITION('trade', 2009, false, true);

 DROP_PARTITION

 Partition dropped

(1 row)

See Also

Dropping Partitions in the Administrator's Guide

ADVANCE EPOCH (page 429)

ALTER PROJECTION (page 659)

COLUMN_STORAGE (page 992)

CREATE TABLE (page 770)

DO_TM_TASK (page 471)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

MERGE_PARTITIONS (page 513)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

PROJECTIONS (page 961)

DROP_STATISTICS

Removes statistics for the specified table and lets you optionally specify the category of statistics
to drop.

Syntax
DROP_STATISTICS { ('') | ('[[db-name.]schema-name.]table' [, {'BASE' |

'HISTOGRAMS' | 'ALL'}])};

Return Value

0 - If successful, DROP_STATISTICS always returns 0. If the command fails,
DROP_STATISTICS displays an error message. See vertica.log for message details.

Parameters

'' Empty string. Drops statistics for all projections.

-477-

 SQL Functions

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify, and

you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

table Drops statistics for all projections within the specified table.
When using more than one schema, specify the schema that

contains the table with the projections you want to delete, as
noted in the syntax.

CATEGORY Specifies the category of statistics to drop for the named

[db-name.]schema-name.]table:

 'BASE' (default) drops histograms and row counts
(min/max column values, histogram.

 'HISTOGRAMS' drops only the histograms. Row counts
statistics remain.

 'ALL' drops all statistics.

Privileges

 INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Notes

Once dropped, statistics can be time consuming to regenerate.

Example

The following command analyzes all statistics on the VMart schema database:

=> SELECT ANALYZE_STATISTICS('');

 ANALYZE_STATISTICS

 0

(1 row)

This command drops base statistics for table store_sales_fact in the store schema:

=> SELECT DROP_STATISTICS('store.store_sales_fact', 'BASE');

 drop_statistics

 0

(1 row)

Note that this command works the same as the previous command:

=> SELECT DROP_STATISTICS('store.store_sales_fact');

 DROP_STATISTICS

 0

(1 row)

-478-

SQL Reference Manual

This command also drops statistics for all table projections:

=> SELECT DROP_STATISTICS ('');

 DROP_STATISTICS

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 440)

EXPORT_STATISTICS (page 490)

IMPORT_STATISTICS (page 502)

DUMP_CATALOG

Returns an internal representation of the HP Vertica catalog. This function is used for diagnostic
purposes.

Syntax
DUMP_CATALOG()

Privileges

None; however, function dumps only the objects visible to the user.

Notes

To obtain an internal representation of the HP Vertica catalog for diagnosis, run the query:

=> SELECT DUMP_CATALOG();

The output is written to the specified file:

\o /tmp/catalog.txt

SELECT DUMP_CATALOG();

\o

DUMP_LOCKTABLE

Returns information about deadlocked clients and the resources they are waiting for.

Syntax
DUMP_LOCKTABLE()

Privileges

None

-479-

 SQL Functions

Notes

Use DUMP_LOCKTABLE if HP Vertica becomes unresponsive:

1 Open an additional vsql connection.

2 Execute the query:

=> SELECT DUMP_LOCKTABLE();

The output is written to vsql. See Monitoring the Log Files.

You can also see who is connected using the following command:

=> SELECT * FROM SESSIONS;

Close all sessions using the following command:

=>SELECT CLOSE_ALL_SESSIONS();

Close a single session using the following command:

How to close a single session:

=> SELECT CLOSE_SESSION('session_id');

You get the session_id value from the V_MONITOR.SESSIONS (page 1095) system table.

See Also

CLOSE_ALL_SESSIONS (page 461)

CLOSE_SESSION (page 458)

V_MONITOR.LOCKS (page 1037)

V_MONITOR.SESSIONS (page 1095)

DUMP_PARTITION_KEYS

Dumps the partition keys of all projections in the system.

Syntax
DUMP_PARTITION_KEYS()

Note: ROS's of partitioned tables without partition keys are ignored by the tuple mover and are
not merged during automatic tuple mover operations.

Privileges

None; however function dumps only the tables for which user has SELECT privileges.

Example
=> SELECT DUMP_PARTITION_KEYS();

Partition keys on node v_vmart_node0001

 Projection 'states_b0'

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: NH

 Storage [ROS container]

-480-

SQL Reference Manual

 No of partition keys: 1

 Partition keys: MA

 Projection 'states_b1'

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: VT

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: ME

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: CT

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

V_MONITOR.PARTITIONS (page 1051)

Partitioning Tables in the Administrator's Guide

DUMP_PROJECTION_PARTITION_KEYS

Dumps the partition keys of the specified projection.

Syntax
DUMP_PROJECTION_PARTITION_KEYS('projection_name')

Parameters

projection_name Specifies the name of the projection.

Privileges

 SELECT privilege on table

 USAGE privileges on schema

Example

The following example creates a simple table called states and partitions the data by state:

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

-481-

 SQL Functions

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now dump the partition key of the specified projection:

=> SELECT DUMP_PROJECTION_PARTITION_KEYS('states_p_node0001');

Partition keys on node helios_node0001

 Projection 'states_p_node0001'

 No of partition keys: 1

Partition keys on node helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

PROJECTIONS (page 961) system table

Partitioning Tables in the Administrator's Guide

DUMP_TABLE_PARTITION_KEYS

Dumps the partition keys of all projections anchored on the specified table.

Syntax
DUMP_TABLE_PARTITION_KEYS ('table_name')

Parameters

table_name Specifies the name of the table.

Privileges

 SELECT privilege on table

 USAGE privileges on schema

Example

The following example creates a simple table called states and partitions the data by state:

-482-

SQL Reference Manual

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now dump the partition keys of all projections anchored on table states:

=> SELECT DUMP_TABLE_PARTITION_KEYS('states');

Partition keys on helios_node0001

Projection 'states_p_node0004'

No of partition keys: 1

Projection 'states_p_node0003'

No of partition keys: 1

Projection 'states_p_node0002'

No of partition keys: 1

Projection 'states_p_node0001'

No of partition keys: 1

Partition keys on helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 480)

DUMP_PROJECTION_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

Partitioning Tables in the Administrator's Guide

ENABLE_ELASTIC_CLUSTER

Enables elastic cluster scaling, which makes enlarging or reducing the size of your database
cluster more efficient by segmenting a node's data into chunks that can be easily moved to other
hosts.

Note: Databases created using HP Vertica Version 5.0 and later have elastic cluster enabled
by default. You need to use this function on databases created before version 5.0 in order for
them to use the elastic clustering feature.

Syntax
ENABLE_ELASTIC_CLUSTER()

-483-

 SQL Functions

Privileges

Must be a superuser

Example
=> SELECT ENABLE_ELASTIC_CLUSTER();

 ENABLE_ELASTIC_CLUSTER

 ENABLED

(1 row)

See Also

 DISABLE_ELASTIC_CLUSTER (page 468)

ENABLE_LOCAL_SEGMENTS

Enables local storage segmentation, which breaks projections segments on nodes into containers
that can be easily moved to other nodes. See Local Data Segmentation in the Administrator's
Guide for more information.

Syntax
ENABLE_LOCAL_SEGMENTS()

Privileges

Must be a superuser

Example
=> SELECT ENABLE_LOCAL_SEGMENTS();

 ENABLE_LOCAL_SEGMENTS

 ENABLED

(1 row)

ENABLE_PROFILING

Enables profiling for the profiling type you specify.

Note: HP Vertica stores profiled data is in memory, so depending on how much data you

collect, profiling could be memory intensive.

Syntax
ENABLE_PROFILING('profiling-type')

Parameters

-484-

SQL Reference Manual

profiling-type The type of profiling data you want to enable. Can be one of:

 session—enables profiling for basic session
parameters and lock time out data

 query—enables profiling for general information
about queries that ran, such as the query strings
used and the duration of queries

 ee—enables profiling for information about the
execution run of each query

Example

The following statement enables profiling on query execution runs:

=> SELECT ENABLE_PROFILING('ee');

 ENABLE_PROFILING

 EE Profiling Enabled

(1 row)

See also

CLEAR_PROFILING (page 455)

DISABLE_PROFILING (page 469)

Profiling Database Performance in the Administrator's Guide

EVALUATE_DELETE_PERFORMANCE

Evaluates projections for potential DELETE (page 807) performance issues. If there are issues
found, a warning message is displayed. For steps you can take to resolve delete and update
performance issues, see Optimizing Deletes and Updates for Performance in the Administrator's
Guide. This function uses data sampling to determine whether there are any issues with a
projection. Therefore, it does not generate false-positives warnings, but it can miss some cases
where there are performance issues.

Note: Optimizing for delete performance is the same as optimizing for update performance. So,

you can use this function to help optimize a projection for updates as well as deletes.

Syntax
EVALUATE_DELETE_PERFORMANCE ('target')

-485-

 SQL Functions

Parameters

target The name of a projection or table. If you supply the name of a projection,
only that projection is evaluated for DELETE performance issues. If you

supply the name of a table, then all of the projections anchored to the
table will be evaluated for issues.

If you do not provide a projection or table name,

EVALUATE_DELETE_PERFORMANCE examines all of the projections
that you can access for DELETE performance issues. Depending on the
size you your database, this may take a long time.

Privileges

None

Note: When evaluating multiple projections, EVALUATE_DELETE_PERFORMANCE reports

up to ten projections that have issues, and refers you to a table that contains the full list of
issues it has found.

Example

The following example demonstrates how you can use EVALUATE_DELETE_PERFORMANCE
to evaluate your projections for slow DELETE performance.

=> create table example (A int, B int,C int);

CREATE TABLE

=> create projection one_sort (A,B,C) as (select A,B,C from example) order by A;

CREATE PROJECTION

=> create projection two_sort (A,B,C) as (select A,B,C from example) order by A,B;

CREATE PROJECTION

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The previous example showed that there was no structural issue with the projection that would
cause poor DELETE performance. However, the data contained within the projection can create
potential delete issues if the sorted columns do not uniquely identify a row or small number of
rows. In the following example, Perl is used to populate the table with data using a nested series of
loops. The inner loop populates column C, the middle loop populates column B, and the outer loop
populates column A. The result is column A contains only three distinct values (0, 1, and 2), while
column B slowly varies between 20 and 0 and column C changes in each row.
EVALUATE_DELETE_PERFORMANCE is run against the projections again to see if the data
within the projections causes any potential DELETE performance issues.

=> \! perl -e 'for ($i=0; $i<3; $i++) { for ($j=0; $j<21; $j++) { for ($k=0; $k<19; $k++) { printf

"%d,%d,%d\n", $i,$j,$k;}}}' | /opt/vertica/bin/vsql -c "copy example from stdin delimiter ',' direct;"

Password:

=> select * from example;

-486-

SQL Reference Manual

 A | B | C

---+----+----

 0 | 20 | 18

 0 | 20 | 17

 0 | 20 | 16

 0 | 20 | 15

 0 | 20 | 14

 0 | 20 | 13

 0 | 20 | 12

 0 | 20 | 11

 0 | 20 | 10

 0 | 20 | 9

 0 | 20 | 8

 0 | 20 | 7

 0 | 20 | 6

 0 | 20 | 5

 0 | 20 | 4

 0 | 20 | 3

 0 | 20 | 2

 0 | 20 | 1

 0 | 20 | 0

 0 | 19 | 18

 1157 rows omitted

 2 | 1 | 0

 2 | 0 | 18

 2 | 0 | 17

 2 | 0 | 16

 2 | 0 | 15

 2 | 0 | 14

 2 | 0 | 13

 2 | 0 | 12

 2 | 0 | 11

 2 | 0 | 10

 2 | 0 | 9

 2 | 0 | 8

 2 | 0 | 7

 2 | 0 | 6

 2 | 0 | 5

 2 | 0 | 4

 2 | 0 | 3

 2 | 0 | 2

 2 | 0 | 1

 2 | 0 | 0

=> SELECT COUNT (*) FROM example;

 COUNT

 1197

(1 row)

=> SELECT COUNT (DISTINCT A) FROM example;

 COUNT

 3

(1 row)

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 Projection exhibits delete performance concerns.

(1 row)

release=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

-487-

 SQL Functions

 No projection delete performance concerns found.

(1 row)

The one_sort projection has potential delete issues since it only sorts on column A which has few
distinct values. This means that each value in the sort column corresponds to many rows in the
projection, which negatively impacts DELETE performance. Since the two_sort projection is
sorted on columns A and B, each combination of values in the two sort columns identifies just a
few rows, allowing deletes to be performed faster.

Not supplying a projection name results in all of the projections you can access being evaluated
for DELETE performance issues.

=> select evaluate_delete_performance();

 evaluate_delete_performance

 The following projection exhibits delete performance concerns:

 "public"."one_sort"

See v_catalog.projection_delete_concerns for more details.

(1 row)

EXPORT_CATALOG

Generates a SQL script that you can use to recreate a physical schema design in its current state
on a different cluster. This function always attempts to recreate projection statements with KSAFE
clauses, if they exist in the original definitions, or OFFSET clauses if they do not.

Syntax
EXPORT_CATALOG (['destination'] , ['scope'])

Parameters

destination Specifies the path and name of the SQL output file. An

empty string (''), which is the default, outputs the script to
standard output. The function writes the script to the catalog
directory if no destination is specified.

If you specify a file that does not exist, the function creates
one. If the file pre-exists, the function silently overwrites its
contents.

-488-

SQL Reference Manual

scope Determines what to export:

 DESIGN — Exports schemas, tables, constraints,
views, and projections to which the user has access.
This is the default value.

 DESIGN_ALL — Exports all the design objects plus

system objects created in Database Designer (for
example, design contexts and their tables). The
objects that are exported are those to which the user
has access.

 TABLES — Exports all tables, constraints, and
projections for for which the user has permissions.
See also EXPORT_TABLES (page 491).

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to file

Example

The following example exports the design to standard output:

=> SELECT EXPORT_CATALOG('','DESIGN');

See Also

EXPORT_OBJECTS

EXPORT_TABLES (page 491)

Exporting the Catalog in the Administrator's Guide

EXPORT_OBJECTS

Generates a SQL script you can use to recreate catalog objects on a different cluster. The
generated script includes only the non-virtual objects to which the user has access. The function
exports catalog objects in order dependency for correct recreation. Running the generated SQL
script on another cluster then creates all referenced objects before their dependent objects.

Note: You cannot use EXPORT_OBJECTS to export a view without its dependencies.

The EXPORT_OBJECTS function always attempts to recreate projection statements with KSAFE
clauses, if they existed in the original definitions, or OFFSET clauses, if they did not.

None of the EXPORT_OBJECTS parameters accepts a NULL value as input.
EXPORT_OBJECTS returns an error if an explicitly-specified object does not exist, or the user
does not have access to the object.

Syntax
EXPORT_OBJECTS(['destination'] , ['scope'] , ['ksafe'])

-489-

 SQL Functions

Parameters

destination Specifies the path and name of the SQL output file. The default empty string

('') outputs the script contents to standard output. Non-DBadmin users can

specify only an empty string.

If you specify a file that does not exist, the function creates one. If the file
pre-exists, the function silently overwrites its contents. If you do not specify
an explicit path destination, the function outputs the script for the exported

objects to the catalog directory.

scope Determines which catalog objects to export, where you specify scope as
follows:

 An empty string (' ')—exports all non-virtual objects to which the user

has access, including constraints. (Note that constraints are not
objects that can be passed as individual arguments.) An empty string
is the default scope value for scope if you do not limit the export.

 A comma-delimited list of catalog objects to export, which can
include the following:

 —' [dbname.]schema.object '— matches each named schema object.
You can optionally qualify the schema with a database prefix. A named
schema object can be a table, projection, view, sequence, or
user-defined SQL function.

 —' [dbname.]schema — matches the named schema, which you can
optionally qualify with a database prefix. For a schema, HP Vertica
exports all non-virtual objects that the user has access to within the

schema. If a schema and table have the same name, the schema takes
precedence.

ksafe

Det erm ines if the st atistics ar e regener at ed befor e loading t hem int o t he design context

Specifies whether to incorporate a MARK_DESIGN_KSAFE statement with
the correct K-safe value for the database. The statement is placed at the end
of the output script.

Use one of the following:

 true—adds the MARK_DESIGN_KSAFE statement to the script.
This is the default value.

 false—omits the MARK_DESIGN_KSAFE statement from the script.

Adding the MARK_DESIGN_KSAFE statement is useful if you plan to import

the SQL script into a new database, and you want the new database to inherit
the K-safety value of the original database.

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to a file

Example

The following example exports all the non-virtual objects to which the user has access to standard
output. The example uses false for the last parameter, indicating that the file will not include the
MARK_DESIGN_KSAFE statement at the end.

-490-

SQL Reference Manual

=> SELECT EXPORT_OBJECTS(' ',' ',false);

EXPORT_STATISTICS

Generates an XML file that contains statistics for the database. You can optionally export statistics
on a single database object (table, projection, or table column).

Before you export statistics for the database, run ANALYZE_STATISTICS() (page 440) to
automatically collect the most up to date statistics information.

Note: Use the second argument only if statistics in the database do not match the statistics of

data.

Syntax
EXPORT_STATISTICS

[('destination')

... | ('[[db-name.]schema.]table [.column-name]')]

Parameters

destination Specifies the path and name of the XML output file. An

empty string returns the script to the screen.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a
schema identifies objects that are not unique within the

current search path (see Setting Schema Search
Paths).

You can optionally precede a schema with a database

name, but you must be connected to the database you
specify. You cannot make changes to objects in other
databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For

example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Specifies the name of the table and exports statistics
for all projections of that table.

Note: If you are using more than one schema, specify

the schema that contains the projection, as noted as

noted in the [[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column,
typically a predicate column. Using this option with a

table specification lets you export statistics for only that
column.

-491-

 SQL Functions

Privileges

Must be a superuser

Examples

The following command exports statistics on the VMart example database to a file:

vmart=> SELECT EXPORT_STATISTICS('/vmart/statistics/vmart_stats.xml');

 export_statistics

 Statistics exported successfully

(1 row)

The next statement exports statistics on a single column (price) from a table called food:

=> SELECT EXPORT_STATISTICS('/vmart/statistics/price.xml', 'food.price');

See Also

ANALYZE_STATISTICS (page 440)

DROP_STATISTICS (page 476)

IMPORT_STATISTICS (page 502)

Collecting Statistics in the Administrator's Guide

EXPORT_TABLES

Generates a SQL script that can be used to recreate a logical schema (schemas, tables,
constraints, and views) on a different cluster.

Syntax
EXPORT_TABLES (['destination'] , ['scope'])

Parameters

destination Specifies the path and name of the SQL output file. An empty
string (''), which is the default, outputs the script to standard

output. The function writes the script to the catalog directory if
no destination is specified.

If you specify a file that does not exist, the function creates

one. If the file pre-exists, the function silently overwrites its
contents.

-492-

SQL Reference Manual

scope Determines the tables to export. Specify the scope as follows:

 An empty string (' ') — exports all non-virtual table
objects to which the user has access, including table
schemas, sequences, and constraints. Exporting all

non-virtual objects is the default scope, and what the
function exports if you do not specify a scope.

 A comma-delimited list of objects, which can include
the following:

 —' [dbname.][schema.]object '— matches the named

objects, which can be schemas, tables, or views, in the
schema. You can optionally qualify a schema with a
database prefix, and objects with a schema. You cannot
pass constraints as individual arguments.

 —' [dbname.]object '— matches a named object,
which can be a schema, table, or view. You can
optionally qualify a schema with a database prefix,

and an object with its schema. For a schema, HP
Vertica exports all non-virtual objects to which the
user has access within the schema. If a schema and

table both have the same name, the schema takes
precedence.

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to file

Example

The following example exports the store_orders_fact table of the store schema (in the
current database) to standard output:

=> SELECT EXPORT_TABLES(' ','store.store_orders_fact');

EXPORT_TABLES returns an error if:

 You explicitly specify an object that does not exist

 The current user does not have access to a specified object

See Also

EXPORT_CATALOG (page 487)

EXPORT_OBJECTS

Exporting Tables in the Administrator's Guide

-493-

 SQL Functions

FLUSH_DATA_COLLECTOR

Waits until memory logs are moved to disk and then flushes the Data Collector, synchronizing the
log with the disk storage. A superuser can flush Data Collector information for an individual
component or for all components.

Syntax
FLUSH_DATA_COLLECTOR(['component'])

Parameters

component Flushes the specified component. If you provide no
argument, the function flushes the Data Collector in full.

For the current list of component names, query the

V_MONITOR.DATA_COLLECTOR system table.

Privileges

Must be a superuser

Example

The following command flushes the Data Collector for the ResourceAcquisitions component:

=> SELECT flush_data_collector('ResourceAcquisitions');

 flush_data_collector

 FLUSH

(1 row)

The following command flushes data collection for all components:

=> SELECT flush_data_collector();

 flush_data_collector

 FLUSH

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

GET_AHM_EPOCH

Returns the number of the epoch in which the Ancient History Mark is located. Data deleted up to
and including the AHM epoch can be purged from physical storage.

Syntax
GET_AHM_EPOCH()

Note: The AHM epoch is 0 (zero) by default (purge is disabled).

-494-

SQL Reference Manual

Privileges

None

Examples

SELECT GET_AHM_EPOCH();

 get_ahm_epoch

 Current AHM epoch: 0

(1 row)

GET_AHM_TIME

Returns a TIMESTAMP value representing the Ancient History Mark. Data deleted up to and
including the AHM epoch can be purged from physical storage.

Syntax
GET_AHM_TIME()

Privileges

None

Examples

SELECT GET_AHM_TIME();

 GET_AHM_TIME

 Current AHM Time: 2010-05-13 12:48:10.532332-04

(1 row)

See Also

SET DATESTYLE (page 903) for information about valid TIMESTAMP (page 97) values.

GET_COMPLIANCE_STATUS

Displays whether your database is in compliance with your HP Vertica license agreement. This
information includes the results of HP Vertica's most recent audit of the database size (if your
license has a data allowance as part of its terms), and the license term (if your license has an end
date).

The information displayed by GET_COMPLIANCE_STATUS includes:

 The estimated size of the database (see How HP Vertica Calculates Database Size in the
Administrator's Guide for an explanation of the size estimate).

 The raw data size allowed by your HP Vertica license.

 The percentage of your allowance that your database is currently using.

 The date and time of the last audit.

 Whether your database complies with the data allowance terms of your license agreement.

-495-

 SQL Functions

 The end date of your license.

 How many days remain until your license expires.

Note: If your license does not have a data allowance or end date, some of the values may not

appear in the output for GET_COMPLIANCE_STATUS.

If the audit shows your license is not in compliance with your data allowance, you should either
delete data to bring the size of the database under the licensed amount, or upgrade your license.
If your license term has expired, you should contact HP immediately to renew your license. See
Managing Your License Key in the Administrator's Guide for further details.

Syntax
GET_COMPLIANCE_STATUS()

Privileges

None

Example

 GET_COMPLIANCE_STATUS

--

 Raw Data Size: 2.00GB +/- 0.003GB

 License Size : 4.000GB

 Utilization : 50%

 Audit Time : 2011-03-09 09:54:09.538704+00

 Compliance Status : The database is in compliance with respect to raw data size.

 License End Date: 04/06/2011

 Days Remaining: 28.59

(1 row)

GET_AUDIT_TIME

Reports the time when the automatic audit of database size occurs. HP Vertica performs this audit
if your HP Vertica license includes a data size allowance. For details of this audit, see Managing
Your License Key in the Administrator's Guide. To change the time the audit runs, use the
SET_AUDIT_TIME (page 530) function.

Syntax
GET_AUDIT_TIME()

Privileges

None

Example
=> SELECT get_audit_time();

 get_audit_time

-496-

SQL Reference Manual

 The audit is scheduled to run at 11:59 PM each day.

(1 row)

GET_CURRENT_EPOCH

Returns the number of the current epoch. The epoch into which data (COPY, INSERT, UPDATE,
and DELETE operations) is currently being written. The current epoch advances automatically
every three minutes.

Syntax
GET_CURRENT_EPOCH()

Privileges

None

Examples

SELECT GET_CURRENT_EPOCH();

 GET_CURRENT_EPOCH

 683

(1 row)

GET_DATA_COLLECTOR_POLICY

Retrieves a brief statement about the retention policy for the specified component.

Syntax
GET_DATA_COLLECTOR_POLICY('component')

Parameters

component Returns the retention policy for the specified

component.

For a current list of component names, query the
V_MONITOR.DATA_COLLECTOR system table

Privileges

None

Example

The following query returns the history of all resource acquisitions by specifying the
ResourceAcquisitions component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

 get_data_collector_policy

--

-497-

 SQL Functions

 1000KB kept in memory, 10000KB kept on disk.

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

GET_LAST_GOOD_EPOCH

Returns the number of the last good epoch. A term used in manual recovery, LGE (Last Good
Epoch) refers to the most recent epoch that can be recovered.

Syntax
GET_LAST_GOOD_EPOCH()

Privileges

None

Examples

SELECT GET_LAST_GOOD_EPOCH();

 GET_LAST_GOOD_EPOCH

 682

(1 row)

GET_NUM_ACCEPTED_ROWS

Returns the number of rows loaded into the database for the last completed load for the current
session. GET_NUM_ACCEPTED_ROWS is a meta-function. Do not use it as a value in an
INSERT query.

The number of accepted rows is not available for a load that is currently in process. Check the
LOAD_STREAMS (page 1031) system table for its status.

Also, this meta-function supports only loads from STDIN or a single file on the initiator. You cannot
use GET_NUM_ACCEPTED_ROWS for multi-node loads.

Syntax
GET_NUM_ACCEPTED_ROWS();

Privileges

None

NOTE: The data regarding accepted rows from the last load during the current session does
not persist, and is lost when you initiate a new load.

See Also

GET_NUM_REJECTED_ROWS (page 498)

-498-

SQL Reference Manual

GET_NUM_REJECTED_ROWS

Returns the number of rows that were rejected during the last completed load for the current
session. GET_NUM_REJECTED_ROWS is a meta-function. Do not use it as a value in an
INSERT query.

Rejected row information is unavailable for a load that is currently running. The number of rejected
rows is not available for a load that is currently in process. Check the LOAD_STREAMS (page
1031) system table for its status.

Also, this meta-function supports only loads from STDIN or a single file on the initiator. You cannot
use GET_NUM_REJECTED_ROWS for multi-node loads.

Syntax
GET_NUM_REJECTED_ROWS();

Privileges

None

Note: The data regarding rejected rows from the last load during the current session does not

persist, and is dropped when you initiate a new load.

See Also

GET_NUM_ACCEPTED_ROWS (page 497)

GET_PROJECTION_STATUS

Returns information relevant to the status of a projection.

Syntax
GET_PROJECTION_STATUS ('[[db-name.]schema-name.]projection');

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search

Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

projection Is the name of the projection for which to display status. When

using more than one schema, specify the schema that contains
the projection, as noted above.

-499-

 SQL Functions

Privileges

None

Description

GET_PROJECTION_STATUS returns information relevant to the status of a projection:

 The current K-safety status of the database

 The number of nodes in the database

 Whether the projection is segmented

 The number and names of buddy projections

 Whether the projection is safe

 Whether the projection is up-to-date

 Whether statistics have been computed for the projection

Notes

 You can use GET_PROJECTION_STATUS to monitor the progress of a projection data
refresh. See ALTER PROJECTION (page 659).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples
=> SELECT GET_PROJECTION_STATUS('public.customer_dimension_site01');

 GET_PROJECTION_STATUS

 Current system K is 1.

of Nodes: 4.

public.customer_dimension_site01 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_site04, public.customer_dimension_site03,

public.customer_dimension_site02] [Safe: Yes] [UptoDate: Yes][Stats: Yes]

See Also

ALTER PROJECTION (page 659)

GET_PROJECTIONS (page 499)

GET_PROJECTIONS, GET_TABLE_PROJECTIONS

Note: This function was formerly named GET_TABLE_PROJECTIONS(). HP Vertica still

supports the former function name.

Returns information relevant to the status of a table:

 The current K-safety status of the database

 The number of sites (nodes) in the database

 The number of projections for which the specified table is the anchor table

 For each projection:

 The projection's buddy projections

-500-

SQL Reference Manual

 Whether the projection is segmented

 Whether the projection is safe

 Whether the projection is up-to-date

Syntax
GET_PROJECTIONS ('[[db-name.]schema-name.]table')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional
schema name. Using a database name identifies objects

that are not unique within the current search path (see
Setting Search Paths). You must be connected to the
database you specify, and you cannot change objects in

other databases.

Specifying different database objects lets you qualify
database objects as explicitly as required. For example,

you can use a database and a schema name
(mydb.myschema).

table Is the name of the table for which to list projections. When

using more than one schema, specify the schema that
contains the table.

Privileges

None

Notes

 You can use GET_PROJECTIONS to monitor the progress of a projection data refresh. See
ALTER PROJECTION (page 659).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

The following example gets information about the store_dimension table in the VMart schema:

=> SELECT GET_PROJECTIONS('store.store_dimension');

--

Current system K is 1.

of Nodes: 4.

Table store.store_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy Projections] [Safe] [UptoDate]

--

store.store_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0003,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

-501-

 SQL Functions

store.store_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0002] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

(1 row)

See Also

ALTER PROJECTION (page 659)

GET_PROJECTION_STATUS (page 498)

HAS_ROLE

Indicates, by a boolean value, whether a role has been assigned to a user. This function is useful
for letting you check your own role membership.

Behavior Type

Stable

Syntax 1
HAS_ROLE(['user_name' ,] 'role_name');

Syntax 2
HAS_ROLE('role_name');

Parameters

user_name [Optional] The name of a user to look up. Currently, only a superuser
can supply the user_name argument.

role_name The name of the role you want to verify has been granted.

Privileges

Users can check their own role membership by calling HAS_ROLE('role_name'), but only a
superuser can look up other users' memberships using the optional user_name parameter.

Notes

You can query V_CATALOG system tables ROLES (page 967), GRANTS (page 944), and
USERS (page 985) to show any directly-assigned roles; however, these tables do not indicate
whether a role is available to a user when roles may be available through other roles (indirectly).

Examples

User Bob wants to see if he has been granted the commentor role:

=> SELECT HAS_ROLE('commentor');

Output t for true indicates that Bob has been assigned the commentor role:

 HAS_ROLE

-502-

SQL Reference Manual

 t

(1 row)

In the following function call, a superuser checks if the logadmin role has been granted to user
Bob:

=> SELECT HAS_ROLE('Bob', 'logadmin');

 HAS_ROLE

 t

(1 row)

To view the names of all roles users can access, along with any roles that have been assigned to
those roles, query the V_CATALOG.ROLES (page 967) system table. An asterisk in the output
means role granted WITH ADMIN OPTION.

=> SELECT * FROM roles;

 name | assigned_roles

-----------------+----------------------

 public |

 dbadmin | dbduser*

 pseudosuperuser | dbadmin

 dbduser |

 logreader |

 logwriter |

 logadmin | logreader, logwriter

(7 rows)

Note: The dbduser role in output above is internal only; you can ignore it.

See Also

GRANTS (page 944)

ROLES (page 967)

USERS (page 985)

Managing Privileges and Roles and Viewing a User's Role in the Administrator's Guide

IMPORT_STATISTICS

Imports statistics from the XML file generated by the EXPORT_STATISTICS command.

Syntax
IMPORT_STATISTICS ('destination')

Parameters

destination Specifies the path and name of the XML input file (which is
the output of EXPORT_STATISTICS function).

-503-

 SQL Functions

Privileges

Must be a superuser

Notes

 Imported statistics override existing statistics for all projections on the specified table.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 440)

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

INTERRUPT_STATEMENT

Interrupts the specified statement (within an external session), rolls back the current transaction,
and writes a success or failure message to the log file.

Syntax
INTERRUPT_STATEMENT('session_id ', statement_id)

Parameters

session_id Specifies the session to interrupt. This identifier is unique within
the cluster at any point in time.

statement_id Specifies the statement to interrupt

Privileges

Must be a superuser

Notes

 Only statements run by external sessions can be interrupted.

 Sessions can be interrupted during statement execution.

 If the statement_id is valid, the statement is interruptible. The command is successfully sent
and returns a success message. Otherwise the system returns an error.

Messages

The following list describes messages you might encounter:

Message Meaning

Statement interrupt sent. Check

 SESSIONS for progress.

This message indicates success.

-504-

SQL Reference Manual

Session <id> could not be successfully

interrupted: session

not found.

The session ID argument to the interrupt

command does not match a running session.

Session <id> could not be successfully

interrupted: statement

 not found.

The statement ID does not match (or no longer
matches) the ID of a running statement (if any).

No interruptible statement running The statement is DDL or otherwise
non-interruptible.

Internal (system) sessions cannot

be interrupted.

The session is internal, and only statements run

by external sessions can be interrupted.

Examples

Two user sessions are open. RECORD 1 shows user session running SELECT FROM SESSION,

and RECORD 2 shows user session running COPY DIRECT:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

-505-

 SQL Functions

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Interrupt the COPY DIRECT statement running in stress06-25663:0xbec:

=> \x

Expanded display is off.

=> SELECT INTERRUPT_STATEMENT('stress06-25663:0x1537', 5);

 interrupt_statement

--

 Statement interrupt sent. Check v_monitor.sessions for progress.

(1 row)

Verify that the interrupted statement is no longer active by looking at the current_statement
column in the SESSIONS system table. This column becomes blank when the statement has
been interrupted:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

-506-

SQL Reference Manual

statement_id | 5

last_statement_duration_us | 1591403

current_statement |

ssl_state | None

authentication_method | Trust

See Also

SESSIONS (page 1095)

Managing Sessions and Configuration Parameters in the Administrator's Guide

INSTALL_LICENSE

Installs the license key in the global catalog.

description

Syntax
INSTALL_LICENSE('filename')

Parameters

filename specifies the absolute pathname of a valid license file.

Privileges

Must be a superuser

Notes

See Managing Your License Key in the Administrator's Guide for more information about license
keys.

Examples

=> SELECT INSTALL_LICENSE('/tmp/vlicense.dat');

LAST_INSERT_ID

Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 783). If multiple sessions
concurrently load the same table, the returned value is the last value generated for an
AUTO_INCREMENT column by an insert in that session.

Behavior Type

Volatile

Syntax
LAST_INSERT_ID()

-507-

 SQL Functions

Privileges

 Table owner

 USAGE privileges on schema

Notes

 This function works only with AUTO_INCREMENT and IDENTITY columns. See
column-constraints (page 783) for the CREATE TABLE (page 770) statement.

 LAST_INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 765) statement.

Examples

Create a sample table called customer4.

=> CREATE TABLE customer4(

 ID IDENTITY(2,2),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Notice that the IDENTITY column has a seed of 2, which specifies the value for the first row loaded
into the table, and an increment of 2, which specifies the value that is added to the IDENTITY
value of the previous row.

Query the table you just created:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

(1 row)

Insert some additional values:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

last_insert_id

 4

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

-508-

SQL Reference Manual

(2 rows)

Add another row:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 6

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

 6 | Davis | Bill | 469543

(3 rows)

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

DROP SEQUENCE (page 822)

V_CATALOG.SEQUENCES (page 969)

Using Sequences and Sequence Privileges in the Administrator's Guide

MAKE_AHM_NOW

Sets the Ancient History Mark (AHM) to the greatest allowable value, and lets you drop any
projections that existed before the issue occurred.

Caution: This function is intended for use by Administrators only.

Syntax
MAKE_AHM_NOW ([true])

Parameters

true [Optional] Allows AHM to advance when nodes are down.
Note: If the AHM is advanced after the last good epoch of

the failed nodes, those nodes must recover all data from
scratch. Use with care.

-509-

 SQL Functions

Privileges

Must be a superuser

Notes

 The MAKE_AHM_NOW function performs the following operations:

 Advances the epoch.

 Performs a moveout operation on all projections.

 Sets the AHM to LGE — at least to the current epoch at the time MAKE_AHM_NOW() was
issued.

 All history is lost and you cannot perform historical queries prior to the current epoch.

Example
=> SELECT MAKE_AHM_NOW();

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 683)

(1 row)

The following command allows the AHM to advance, even though node 2 is down:

=> SELECT MAKE_AHM_NOW(true);

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in set AHM

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 684)

(1 row)

See Also

DROP PROJECTION (page 818)

MARK_DESIGN_KSAFE (page 510)

SET_AHM_EPOCH (page 527)

SET_AHM_TIME (page 528)

-510-

 510

MARK_DESIGN_KSAFE

Enables or disables high availability in your environment, in case of a failure. Before enabling
recovery, MARK_DESIGN_KSAFE queries the catalog to determine whether a cluster's physical
schema design meets the following requirements:

 Small, unsegmented tables are replicated on all nodes.

 Large table superprojections are segmented with each segment on a different node.

 Each large table projection has at least one buddy projection for K-safety=1 (or two buddy
projections for K-safety=2).

Buddy projections are also segmented across database nodes, but the distribution is modified
so that segments that contain the same data are distributed to different nodes. See High
Availability Through Projections in the Concepts Guide.

Note: Projections are considered to be buddies if they contain the same columns and have the
same segmentation. They can have different sort orders.

MARK_DESIGN_KSAFE does not change the physical schema in any way.

Syntax
MARK_DESIGN_KSAFE (k)

Parameters

k 2 enables high availability if the schema design meets requirements for
K-safety=2

1 enables high availability if the schema design meets requirements for

K-safety=1

0 disables high availability

If you specify a k value of one (1) or two (2), HP Vertica returns one of the following messages.

Success:

 Marked design n-safe

Failure:

 The schema does not meet requirements for K=n.

 Fact table projection projection-name

 has insufficient "buddy" projections.

n in the message is 1 or 2 and represents the k value.

Privileges

Must be a superuser

Notes

 The database's internal recovery state persists across database restarts but it is not checked
at startup time.

 If a database has automatic recovery enabled, you must temporarily disable automatic
recovery before creating a new table.

-511-

 SQL Functions

 When one node fails on a system marked K-safe=1, the remaining nodes are available for
DML operations.

Examples

=> SELECT MARK_DESIGN_KSAFE(1);

 mark_design_ksafe

 Marked design 1-safe

(1 row)

If the physical schema design is not K-Safe, messages indicate which projections do not have a
buddy:

=> SELECT MARK_DESIGN_KSAFE(1);

The given K value is not correct; the schema is 0-safe

Projection pp1 has 0 buddies, which is smaller that the given K of 1

Projection pp2 has 0 buddies, which is smaller that the given K of 1

.

.

.

(1 row)

See Also

SYSTEM (page 1111)

High Availability and Recovery in the Concepts Guide

SQL System Tables (Monitoring APIs) (page 933) topic in the Administrator's Guide

Using Identically Segmented Projections in the Programmer's Guide

Failure Recovery in the Administrator's Guide

MEASURE_LOCATION_PERFORMANCE

Measures disk performance for the location specified.

Syntax
MEASURE_LOCATION_PERFORMANCE ('path' , 'node')

Parameters

path Specifies where the storage location to measure is mounted.

node Is the HP Vertica node where the location to be measured is

available.

Privileges

Must be a superuser

-512-

SQL Reference Manual

Notes

 To get a list of all node names on your cluster, query the V_MONITOR.DISK_STORAGE
(page 1014) system table:

=> SELECT node_name from DISK_STORAGE;

 node_name

 v_vmartdb_node0004

 v_vmartdb_node0004

 v_vmartdb_node0005

 v_vmartdb_node0005

 v_vmartdb_node0006

 v_vmartdb_node0006

(6 rows)

 If you intend to create a tiered disk architecture in which projections, columns, and partitions
are stored on different disks based on predicted or measured access patterns, you need to
measure storage location performance for each location in which data is stored. You do not
need to measure storage location performance for temp data storage locations because
temporary files are stored based on available space.

 The method of measuring storage location performance applies only to configured clusters. If
you want to measure a disk before configuring a cluster see Measuring Location Performance.

 Storage location performance equates to the amount of time it takes to read and write 1MB of
data from the disk. This time equates to:

IO time = Time to read/write 1MB + Time to seek = 1/Throughput + 1/Latency

Throughput is the average throughput of sequential reads/writes (units in MB per second)

Latency is for random reads only in seeks (units in seeks per second)

Note: The IO time of a faster storage location is less than a slower storage location.

Example

The following example measures the performance of a storage location on v_vmartdb_node0004:

=> SELECT MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/' ,

'v_vmartdb_node0004');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

See Also

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

Measuring Location Performance in the Administrator's Guide

-513-

 SQL Functions

MERGE_PARTITIONS

Merges ROS containers that have data belonging to partitions in a specified partition key range:
partitionKeyFrom to partitionKeyTo.

Note: This function is deprecated in HP Vertica 7.0.

Syntax

MERGE_PARTITIONS (table_name , partition_key_from , partition_key_to)

 Parameters

table_name Specifies the name of the table

partition_key_from Specifies the start point of the partition

partition_key_to Specifies the end point of the partition

Privileges

 Table owner

 USAGE privilege on schema that contains the table

Notes

 You cannot run MERGE_PARTITIONS() on a table with data that is not reorganized. You must

reorganize the data first using ALTER_TABLE table REORGANIZE, or
PARTITION_TABLE(table).

 The edge values are included in the range, and partition_key_from must be less than or
equal to partition_key_to.

 Inclusion of partitions in the range is based on the application of less than(<)/greater than(>)
operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

 If partition_key_from is the same as partition_key_to, all ROS containers of the
partition key are merged into one ROS.

Examples
=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

-514-

SQL Reference Manual

MOVE_PARTITIONS_TO_TABLE

Moves partitions from a source table to a target table. The target table must have the same
projection column definitions, segmentation, and partition expressions as the source table. If the
target table does not exist, the function creates a new table based on the source definition. The
function requires both minimum and maximum range values, indicating what partition values to
move.

Syntax
MOVE_PARTITIONS_TO_TABLE ('[[db-name.]schema.]source_table',

'min_range_value', 'max_range_value', '[[db-name.]schema.]target_table')

Parameters

[[db-name.]schema.

]source_table
The source table (optionally qualified), from which you want
to move partitions.

min_range_value The minimum value in the partition to move.

max_range_value The maximum value of the partition being moved.

target_table The table to which the partitions are being moved.

Privileges

 Table owner

 If target table is created as part of moving partitions, the new table has the same owner as the
target. If the target table exists, user must have own the target table, and have ability to call this
function.

Example

If you call move_partitions_to_table and the destination table does not exist, the function

will create the table automatically:

VMART=> select move_partitions_to_table ('prod_trades', '200801', '200801',

'partn_backup.trades_200801');

 move_partitions_to_table

 1 distinct partition values moved at epoch 15. Effective move epoch: 14.

(1 row)

See Also

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

-515-

 SQL Functions

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Moving Partitions and Creating a Table Like Another in the Administrator's Guide

PARTITION_PROJECTION

Forces a split of ROS containers of the specified projection.

Syntax
PARTITION_PROJECTION ('[[db-name.]schema.]projection_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional
schema name. Using a database name identifies objects

that are not unique within the current search path (see
Setting Search Paths). You must be connected to the
database you specify, and you cannot change objects in

other databases.

Specifying different database objects lets you qualify
database objects as explicitly as required. For example,

you can use a database and a schema name
(mydb.myschema).

projection_name Specifies the name of the projection.

Privileges

 Table owner

 USAGE privilege on schema

Notes

Partitioning expressions take immutable functions only, in order that the same information be
available across all nodes.

PARTITION_PROJECTION() is similar to PARTITION_TABLE (page 516)(), except that
PARTITION_PROJECTION works only on the specified projection, instead of the table.

Users must have USAGE privilege on schema that contains the
table.PARTITION_PROJECTION() purges data while partitioning ROS containers if deletes were
applied before the AHM epoch.

Example

The following command forces a split of ROS containers on the states_p_node01 projection:

=> SELECT PARTITION_PROJECTION ('states_p_node01');

 partition_projection

 Projection partitioned

-516-

SQL Reference Manual

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_TABLE (page 516)

Partitioning Tables in the Administrator's Guide

PARTITION_TABLE

Forces the system to break up any ROS containers that contain multiple distinct values of the
partitioning expression. Only ROS containers with more than one distinct value participate in the
split.

Syntax
PARTITION_TABLE ('[[db-name.]schema.]table_name')

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional

schema name. Using a database name identifies objects
that are not unique within the current search path (see
Setting Search Paths). You must be connected to the

database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example, you
can use a database and a schema name
(mydb.myschema).

table_name Specifies the name of the table.

Privileges

 Table owner

 USAGE privilege on schema

Notes

PARTITION_TABLE is similar to PARTITION_PROJECTION (page 515), except that
PARTITION_TABLE works on the specified table.

Users must have USAGE privilege on schema that contains the table.Partitioning functions take
immutable functions only, in order that the same information be available across all nodes.

-517-

 SQL Functions

Example

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

partition operation for projection 'states_p_node0004'

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Partitioning Tables in the Administrator's Guide

PURGE

Purges all projections in the physical schema. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax
PURGE()

Privileges

 Table owner

 USAGE privilege on schema

-518-

SQL Reference Manual

Note

 PURGE() was formerly named PURGE_ALL_PROJECTIONS. HP Vertica supports both
function calls.

Caution: PURGE could temporarily take up significant disk space while the data is being

purged.

See Also

MERGE_PARTITIONS (page 513)

PARTITION_TABLE (page 516)

PURGE_PROJECTION (page 520)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

PURGE_PARTITION

Purges a table partition of deleted rows. Similar to PURGE and PURGE_PROJECTION, this
function removes deleted data from physical storage so that the disk space can be reused. It only
removes data from the AHM epoch and earlier.

Syntax
PURGE_PARTITION ('[[db_name.]schema_name.]table_name', partition_key)

Parameters

[[db_name.]schema_name.] [Optional] Specifies the database name and
optional schema name. Using a database name

identifies objects that are not unique within the
current search path (see Setting Search Paths).
You must be connected to the database you

specify, and you cannot change objects in other
databases.

Specifying different database objects lets you

qualify database objects as explicitly as required.
For example, you can use a database and a
schema name (mydb.myschema).

table_name The name of the partitioned table

partition_key The key of the partition to be purged of deleted
rows

Privileges

 Table owner

 USAGE privilege on schema

-519-

 SQL Functions

Example

The following example lists the count of deleted rows for each partition in a table, then calls
PURGE_PARTITION to purge the deleted rows from the data.

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 2

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

=> SELECT PURGE_PARTITION('t',5); -- Purge partition with key 5.

 purge_partition

--

 Task: merge partitions

(Table: public.t) (Projection: public.t_super)

(1 row)

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 0

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

See Also

PURGE (page 517)

PURGE_PROJECTION (on page 520)

PURGE_TABLE (page 520)

MERGE_PARTITIONS (page 513)

STORAGE_CONTAINERS (page 1098)

-520-

SQL Reference Manual

PURGE_PROJECTION

Purges the specified projection. Permanently removes deleted data from physical storage so that
the disk space can be reused. You can purge historical data up to and including the epoch in which
the Ancient History Mark is contained.

Caution: PURGE_PROJECTION could temporarily take up significant disk space while

purging the data.

Syntax
PURGE_PROJECTION ('[[db-name.]schema.]projection_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within

the current search path (see Setting Search Paths). You must be
connected to the database you specify, and you cannot change
objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

projection_name Identifies the projection name. When using more than one schema,
specify the schema that contains the projection, as noted above.

Privileges

 Table owner

 USAGE privilege on schema

Notes

See PURGE (page 517) for notes about the outcome of purge operations.

See Also

MERGE_PARTITIONS (page 513)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

PURGE_TABLE

Note: This function was formerly named PURGE_TABLE_PROJECTIONS(). HP Vertica still
supports the former function name.

-521-

 SQL Functions

Purges all projections of the specified table. You cannot use this function to purge temporary
tables. Permanently removes deleted data from physical storage so that the disk space can be
reused. You can purge historical data up to and including the epoch in which the Ancient History
Mark is contained.

Syntax
PURGE_TABLE ('[[db-name.]schema.]table_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional
schema name. Using a database name identifies objects
that are not unique within the current search path (see

Setting Search Paths). You must be connected to the
database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify
database objects as explicitly as required. For example,
you can use a database and a schema name

(mydb.myschema).

table_name Specifies the table to purge.

Privileges

 Table owner

 USAGE privilege on schema

Caution: PURGE_TABLE could temporarily take up significant disk space while the data is
being purged.

Example

The following example purges all projections for the store sales fact table located in the Vmart
schema:

=> SELECT PURGE_TABLE('store.store_sales_fact');

See Also

PURGE (page 517) for notes about the outcome of purge operations.

MERGE_PARTITIONS (page 513)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

-522-

SQL Reference Manual

REBALANCE_CLUSTER

Starts rebalancing data in the cluster synchronously. Rebalancing redistributes your database
projections' data across all nodes, refreshes projections, sets the Ancient History Mark, and drops
projections that are no longer needed. Rebalancing is useful after you:

 mark one or more nodes as ephemeral in preparation of removing them from the cluster, so
that HP Vertica migrates the data on the ephemeral nodes away to other nodes.

 add one or more nodes to the cluster, so that HP Vertica can populate the empty nodes with
data.

 change the scaling factor, which determines the number of storage containers used to store a
projection across the database.

Since function runs the rebalance task synchronously, it does not return until the data has been
rebalanced. Closing or dropping the session cancels the rebalance task.

Syntax
REBALANCE_CLUSTER()

Privileges

Must be a superuser

Example
=> SELECT REBALANCE_CLUSTER();

 REBALANCE_CLUSTER

 REBALANCED

(1 row)

See Also

 Rebalancing Data Across Nodes

 START_REBALANCE_CLUSTER (page 537)

 CANCEL_REBALANCE_CLUSTER (page 450)

REENABLE_DUPLICATE_KEY_ERROR

Restores the default behavior of error reporting by reversing the effects of
DISABLE_DUPLICATE_KEY_ERROR. Effects are session scoped.

Syntax
REENABLE_DUPLICATE_KEY_ERROR();

Privileges

Must be a superuser

Examples

For examples and usage see DISABLE_DUPLICATE_KEY_ERROR (page 466).

-523-

 SQL Functions

See Also

ANALYZE_CONSTRAINTS (page 432)

REFRESH

Performs a synchronous, optionally-targeted refresh of a specified table's projections.

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 1056) system table until either the
CLEAR_PROJECTION_REFRESHES (page 455)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a
boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

Syntax
REFRESH ('[[db-name.]schema.]table_name [, ...]')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search

Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

table_name Specifies the name of a specific table containing the projections
to be refreshed. The REFRESH() function attempts to refresh
all the tables provided as arguments in parallel. Such calls will

be part of the Database Designer deployment (and deployment
script).

When using more than one schema, specify the schema that

contains the table, as noted above.

Returns

Column Name Description

Projection Name The name of the projection that is targeted for refresh.

Anchor Table The name of the projection's associated anchor table.

Status The status of the projection:

 Queued — Indicates that a projection is queued for
refresh.

 Refreshing — Indicates that a refresh for a projection is
in process.

 Refreshed — Indicates that a refresh for a projection
has successfully completed.

-524-

SQL Reference Manual

 Failed — Indicates that a refresh for a projection did not
successfully complete.

Refresh Method The method used to refresh the projection:

 Buddy – Uses the contents of a buddy to refresh the

projection. This method maintains historical data. This
enables the projection to be used for historical queries.

 Scratch – Refreshes the projection without using a
buddy. This method does not generate historical data.

This means that the projection cannot participate in
historical queries from any point before the projection
was refreshed.

Error Count The number of times a refresh failed for the projection.

Duration (sec) The length of time that the projection refresh ran in seconds.

Privileges

REFRESH() works only if invoked on tables owned by the calling user.

Notes

 Unlike START_REFRESH(), which runs in the background, REFRESH() runs in the
foreground of the caller's session.

 The REFRESH() function refreshes only the projections in the specified table.

 If you run REFRESH() without arguments, it refreshes all non up-to-date projections. If the
function returns a header string with no results, then no projections needed refreshing.

Example

The following command refreshes the projections in tables t1 and t2:

=> SELECT REFRESH('t1, t2');

refresh

--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"public"."t1_p": [t1] [refreshed] [scratch] [0] [0]

"public"."t2_p": [t2] [refreshed] [scratch] [0] [0]

This next command shows that only the projection on table t was refreshed:

=> SELECT REFRESH('allow, public.deny, t');"

refresh
--

 Refresh completed with the following outcomes:

Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "allow"] [] [1] [0]

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "public.deny"] [] [1] [0]

"public"."t_p1": [t] [refreshed] [scratch] [0] [0]

See Also

CLEAR_PROJECTION_REFRESHES (page 455)

-525-

 SQL Functions

PROJECTION_REFRESHES (page 1056)

START_REFRESH (page 538)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

RESTORE_LOCATION

Restores a storage location that was previously retired with RETIRE_LOCATION (page 526).

Syntax
RESTORE_LOCATION ('path' , 'node')

Parameters

path Specifies where the retired storage location is mounted.

node Is the HP Vertica node where the retired location is

available.

Privileges

Must be a superuser

Effects of Restoring a Previously Retired Location

After restoring a storage location, HP Vertica re-ranks all of the cluster storage locations and uses
the newly-restored location to process queries as determined by its rank.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example restores the retired storage location on node3:

=> SELECT RESTORE_LOCATION ('/thirdHP VerticaStorageLocation/' ,

'v_vmartdb_node0004');

See Also

Modifying Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

-526-

SQL Reference Manual

RETIRE_LOCATION

Makes the specified storage location inactive.

Syntax
RETIRE_LOCATION ('path' , 'node')

Parameters

path Specifies where the storage location to retire is mounted.

node Is the HP Vertica node where the location is available.

Privileges

Must be a superuser

Effects of Retiring a Storage Location

When you use this function, HP Vertica checks that the location is not the only storage for data and
temp files. At least one location must exist on each node to store data and temp files, though you
can store both sorts of files in either the same location, or separate locations.

NOTE: You cannot retire a location if it is used in a storage policy, and is the last available

storage for its associated objects.

When you retire a storage location:

 No new data is stored at the retired location, unless you first restore it with the
RESTORE_LOCATION() (page 525) function.

 If the storage location being retired contains stored data, the data is not moved, so you cannot
drop the storage location. Instead, HP Vertica removes the stored data through one or more
mergeouts.

 If the storage location being retired was used only for temp files, you can drop the location. See
Dropping Storage Locations in the Administrators Guide and the DROP_LOCATION() (page
472) function.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example retires a storage location:

=> SELECT RETIRE_LOCATION ('/secondVerticaStorageLocation/' ,

'v_vmartdb_node0004');

See Also

Retiring Storage Locations in the Administrator's Guide

-527-

 SQL Functions

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

RESTORE_LOCATION (page 525)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

SET_AHM_EPOCH

Sets the Ancient History Mark (AHM) to the specified epoch. This function allows deleted data up
to and including the AHM epoch to be purged from physical storage.

SET_AHM_EPOCH is normally used for testing purposes. Consider SET_AHM_TIME (page 528)
instead, which is easier to use.

Syntax
SET_AHM_EPOCH (epoch, [true])

Parameters

epoch Specifies one of the following:

 The number of the epoch in which to set the AHM

 Zero (0) (the default) disables purge (page 517)

true Optionally allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the failed

nodes, those nodes must recover all data from scratch. Use with care.

Privileges

Must be a superuser

Notes

If you use SET_AHM_EPOCH , the number of the specified epoch must be:

 Greater than the current AHM epoch

 Less than the current epoch

 Less than or equal to the cluster last good epoch (the minimum of the last good epochs of the
individual nodes in the cluster)

 Less than or equal to the cluster refresh epoch (the minimum of the refresh epochs of the
individual nodes in the cluster)

Use the SYSTEM (page 1111) table to see current values of various epochs related to the AHM;
for example:

=> SELECT * from SYSTEM;

-528-

SQL Reference Manual

-[RECORD 1]------------+---------------------------

current_timestamp | 2009-08-11 17:09:54.651413

current_epoch | 1512

ahm_epoch | 961

last_good_epoch | 1510

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 41490783

ros_row_count | 1298104

total_used_bytes | 41490783

total_row_count | 1298104

All nodes must be up. You cannot use SET_AHM_EPOCH when any node in the cluster is down,
except by using the optional true parameter.

When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed to
the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they will perform full recovery.

Examples

The following command sets the AHM to a specified epoch of 12:

=> SELECT SET_AHM_EPOCH(12);

The following command sets the AHM to a specified epoch of 2 and allows the AHM to advance
despite a failed node:

=> SELECT SET_AHM_EPOCH(2, true);

See Also

MAKE_AHM_NOW (page 508)

SET_AHM_TIME (page 528)

SYSTEM (page 1111)

SET_AHM_TIME

Sets the Ancient History Mark (AHM) to the epoch corresponding to the specified time on the
initiator node. This function allows historical data up to and including the AHM epoch to be purged
from physical storage.

Syntax
SET_AHM_TIME (time , [true])

Parameters

-529-

 SQL Functions

time Is a TIMESTAMP (page 97) value that is automatically converted

to the appropriate epoch number.

true [Optional] Allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the

failed nodes, those nodes must recover all data from scratch.

Privileges

Must be a superuser

Notes

 SET_AHM_TIME returns a TIMESTAMP WITH TIME ZONE value representing the end point
of the AHM epoch.

 You cannot change the AHM when any node in the cluster is down, except by using the
optional true parameter.

 When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed
to the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they

will perform full recovery.

Examples

Epochs depend on a configured epoch advancement interval. If an epoch includes a three-minute
range of time, the purge operation is accurate only to within minus three minutes of the specified
timestamp:

=> SELECT SET_AHM_TIME('2008-02-27 18:13');

 set_ahm_time

 AHM set to '2008-02-27 18:11:50-05'

(1 row)

Note: The -05 part of the output string is a time zone value, an offset in hours from UTC
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, or GMT).

In the above example, the actual AHM epoch ends at 18:11:50, roughly one minute before the
specified timestamp. This is because SET_AHM_TIME selects the epoch that ends at or before
the specified timestamp. It does not select the epoch that ends after the specified timestamp
because that would purge data deleted as much as three minutes after the AHM.

For example, using only hours and minutes, suppose that epoch 9000 runs from 08:50 to 11:50

and epoch 9001 runs from 11:50 to 15:50. SET_AHM_TIME('11:51') chooses epoch 9000
because it ends roughly one minute before the specified timestamp.

In the next example, if given an environment variable set as date =`date`; the following
command fails if a node is down:

=> SELECT SET_AHM_TIME('$date');

In order to force the AHM to advance, issue the following command instead:

=> SELECT SET_AHM_TIME('$date', true);

-530-

SQL Reference Manual

See Also

MAKE_AHM_NOW (page 508)

SET_AHM_EPOCH (page 527) for a description of the range of valid epoch numbers.

SET DATESTYLE (page 903) for information about specifying a TIMESTAMP (page 97) value.

SET_AUDIT_TIME

Sets the time that HP Vertica performs automatic database size audit to determine if the size of the
database is compliant with the raw data allowance in your HP Vertica license. Use this function if
the audits are currently scheduled to occur during your database's peak activity time. This is
normally not a concern, since the automatic audit has little impact on database performance.

Note: Audits are scheduled by the preceding audit, so changing the audit time does not

affect the next scheduled audit. For example, if your next audit is scheduled to take place at
11:59PM and you use SET_AUDIT_TIME to change the audit schedule 3AM, the previously
scheduled 11:59PM audit still runs. As that audit finishes, it schedules the next audit to
occur at 3AM.

If you want to prevent the next scheduled audit from running at its scheduled time, you can
change the scheduled time using SET_AUDIT_TIME then manually trigger an audit to run
immediately using AUDIT_LICENSE_SIZE (page 450). As the manually-triggered audit
finishes, it schedules the next audit to occur at the time you set using SET_AUDIT_TIME
(effectively overriding the previously scheduled audit).

Syntax
SET_AUDIT_TIME(time)

time A string containing the time in 'HH:MM AM/PM' format (for example, '1:00

AM') when the audit should run daily.

Privileges

Must be a superuser

Example
=> SELECT SET_AUDIT_TIME('3:00 AM');

 SET_AUDIT_TIME

 The scheduled audit time will be set to 3:00 AM after the next audit.

(1 row)

SET_DATA_COLLECTOR_POLICY

Sets the retention policy for the specified component on all nodes. Failed nodes receive the setting
when they rejoin the cluster.

-531-

 SQL Functions

Syntax
SET_DATA_COLLECTOR_POLICY('component', 'memoryKB', 'diskKB')

Parameters

component Returns the retention policy for the specified component.

memoryKB Specifies the memory size to retain in kilobytes.

diskKB Specifies the disk size in kilobytes.

Privileges

Must be a superuser

Notes

 Only a superuser can configure the Data Collector.

 Before you change a retention policy, view its current setting by calling the
GET_DATA_COLLECTOR_POLICY() function.

 If you don't know the name of a component, query the V_MONITOR.DATA_COLLECTOR
system table for a list; for example:

=> SELECT DISTINCT component, description FROM data_collector ORDER BY

1 ASC;

Example

The following command returns the retention policy for the ResourceAcquisitions component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

 get_data_collector_policy

--

 1000KB kept in memory, 10000KB kept on disk.

(1 row)

This command changes the memory and disk setting for ResourceAcquisitions from their current
setting of 1,000 KB and 10,000 KB to 1,500 KB and 25,000 KB, respectively:

=> SELECT set_data_collector_policy('ResourceAcquisitions', '1500', '25000');

 set_data_collector_policy

 SET

(1 row)

To verify the setting, call the GET_DATA_COLLECTOR_POLICY() function on the specified
component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

 get_data_collector_policy

--

 1500KB kept in memory, 25000KB kept on disk.

(1 row)

-532-

SQL Reference Manual

See Also

GET_DATA_COLLECTOR_POLICY() (page 496)

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

SET_LOCATION_PERFORMANCE

Sets disk performance for the location specified.

Syntax
SET_LOCATION_PERFORMANCE ('path' , 'node' , 'throughput' , 'average_latency')

Parameters

path Specifies where the storage location to set is mounted.

node Is the HP Vertica node where the location to be set is
available.

If this parameter is omitted, node defaults to the initiator.

throughput Specifies the throughput for the location, which must be 1
or more.

average_latency Specifies the average latency for the location. The
average_latency must be 1 or more.

Privileges

Must be a superuser

Notes

To obtain the throughput and average latency for the location, run the
MEASURE_LOCATION_PERFORMANCE() (page 511) function before you attempt to set the
location's performance.

Example

The following example sets the performance of a storage location on node2 to a throughput of 122
megabytes per second and a latency of 140 seeks per second.

=> SELECT SET_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/','node2','122','140');

See Also

ADD_LOCATION (page 426)

MEASURE_LOCATION_PERFORMANCE (page 511)

-533-

 SQL Functions

Measuring Location Performance and Setting Location Performance in the Administrator's Guide

SET_LOGLEVEL

Use SET_LOGLEVEL to set the logging level in the HP Vertica database log files.

Syntax
SELECT SET_LOGLEVEL(n)

Parameters

n Logging Level Description

0 DISABLE No logging

1 CRITICAL Errors requiring database recovery

2 WARNING Errors indicating problems of lesser magnitude

3 INFO Informational messages

4 DEBUG Debugging messages

5 TRACE Verbose debugging messages

6 TIMING Verbose debugging messages

Privileges

Must be a superuser

SET_SCALING_FACTOR

Sets the scaling factor used to determine the size of the storage containers used when
rebalancing the database and when using local data segmentation is enabled. See Cluster
Scaling for details.

Syntax
SET_SCALING_FACTOR(factor)

Parameters

factor An integer value between 1 and 32. HP Vertica uses
this value to calculate the number of storage
containers each projection is broken into when

rebalancing or when local data segmentation is
enabled.

-534-

SQL Reference Manual

Note: Setting the scaling factor value too high can cause nodes to create too many small
container files, greatly reducing efficiency and potentially causing a Too Many ROS containers
error (also known as "ROS pushback"). The scaling factor should be set high enough so that
rebalance can transfer local segments to satisfy the skew threshold, but small enough that the
number of storage containers does not exceed ROS pushback. The number of storage
containers should be greater than or equal to the number of partitions multiplied by the number
local of segments (# storage containers >= # partitions * # local segments).

Privileges

Must be a superuser

Example
=> SELECT SET_SCALING_FACTOR(12);

 SET_SCALING_FACTOR

 SET

(1 row)

SET_OBJECT_STORAGE_POLICY

Creates or changes an object storage policy by associating a database object with a labeled
storage location.

NOTE: You cannot create a storage policy on a USER type storage location.

Syntax
SET_OBJECT_STORAGE_POLICY ('object_name', 'location_label' [, 'key_min,

key_max'] [, 'enforce_storage_move'])

Parameters

object_name Identifies the database object assigned to a labeled storage location.
The object_name can resolve to a database, schema, or table.

location_label The label of the storage location with which object_name is being
associated.

key_min, key_max Applicable only when object_name is a table, key_min and key_max

specify the table partition key value range to be stored at the location.

enforce_storage_move=

{true | false}
[Optional] Applicable only when setting a storage policy for an object

that has data stored at another labeled location. Specify this
parameter as true to move all existing storage data to the target

location within this function's transaction.

Privileges

Must be the object owner to set the storage policy, and have access to the storage location.

-535-

 SQL Functions

New Storage Policy

If an object does not have a storage policy, this function creates a new policy. The labeled location
is then used as the default storage location during TM operations, such as moveout and mergeout.

Existing Storage Policy

If the object already has an active storage policy, calling this function changes the default storage
for the object to the new labeled location. Any existing data stored on the previous storage location
is marked to move to the new location during the next TM moveout operations, unless you use the
enforce_storage_move option.

Forcing Existing Data Storage to a New Storage Location

You can optionally use this function to move existing data storage to a new location as part of
completing the current transaction, by specifying the last parameter as true.

To move existing data as part of the next TM moveout, either omit the parameter, or specify its
value as false.

NOTE: Specifying the parameter as true performs a cluster-wide operation. If an error occurs
on any node, the function displays a warning message, skips the offending node, and
continues execution on the remaining nodes.

Example

This example sets a storage policy for the table states to use the storage labeled SSD as its

default location:

VMART=> select set_object_storage_policy ('states', 'SSD');

 set_object_storage_policy

 Default storage policy set.

(1 row)

See Also

ALTER_LOCATION_LABEL (page 430)

CLEAR_OBJECT_STORAGE_POLICY (page 457)

Creating Storage Policies in the Administrator's Guide

Moving Data Storage Locations in the Administrator's Guide

SHUTDOWN

Forces a database to shut down, even if there are users connected.

Syntax
SHUTDOWN (['false' | 'true'])

-536-

SQL Reference Manual

Parameters

false [Default] Returns a message if users are connected. Has the same effect

as supplying no parameters.

true Performs a moveout operation and forces the database to shut down,
disallowing further connections.

Privileges

Must be a superuser

Notes

 Quotes around the true or false arguments are optional.

 Issuing the shutdown command without arguments or with the default (false) argument returns
a message if users are connected, and the shutdown fails. If no users are connected, the
database performs a moveout operation and shuts down.

 Issuing the SHUTDOWN('true') command forces the database to shut down whether users
are connected or not.

 You can check the status of the shutdown operation in the vertica.log file:

2010-03-09 16:51:52.625 unknown:0x7fc6d6d2e700 [Init] <INFO> Shutdown

complete. Exiting.

 As an alternative to SHUTDOWN(), you can also temporarily set MaxClientSessions to 0 and
then use CLOSE_ALL_SESSIONS(). New client connections cannot connect unless they
connect using the dbadmin account. See CLOSE_ALL_SESSIONS (page 461) for details.

Examples

The following command attempts to shut down the database. Because users are connected, the
command fails:

=> SELECT SHUTDOWN('false');

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Note that SHUTDOWN() and SHUTDOWN('false') perform the same operation:

=> SELECT SHUTDOWN();

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Using the 'true' parameter forces the database to shut down, even though clients might be
connected:

=> SELECT SHUTDOWN('true');

-537-

 SQL Functions

 SHUTDOWN

 Shutdown: moveout complete

(1 row)

See Also

SESSIONS (page 1095)

SLEEP

Waits a specified number of seconds before executing another statement or command.

Syntax
SLEEP(seconds)

Parameters

seconds The wait time, specified in one or more seconds (0 or higher) expressed as
a positive integer. Single quotes are optional; for example, SLEEP(3) is

the same as SLEEP('3').

Notes

 This function returns value 0 when successful; otherwise it returns an error message due to
syntax errors.

 You cannot cancel a sleep operation.

 Be cautious when using SLEEP() in an environment with shared resources, such as in
combination with transactions that take exclusive locks.

Example

The following command suspends execution for 100 seconds:

=> SELECT SLEEP(100);

 sleep

 0

(1 row)

START_REBALANCE_CLUSTER

Asynchronously starts a data rebalance task. Rebalancing redistributes your database
projections' data across all nodes, refreshes projections, sets the Ancient History Mark, and drops
projections that are no longer needed. Rebalancing is useful after you:

 mark one or more nodes as ephemeral in preparation of removing them from the cluster, so
that HP Vertica migrates the data on the ephemeral nodes away to other nodes.

-538-

SQL Reference Manual

 add one or more nodes to the cluster, so that HP Vertica can populate the empty nodes with
data.

 change the scaling factor, which determines the number of storage containers used to store a
projection across the database.

Since this function starts the rebalance task in the background, it returns immediately after the
task has started. Since it is a background task, rebalancing will continue even if the session that
started it is closed. It even continues after a cluster recovery if the database shuts down while it is
in progress. The only way to stop the task is by the CANCEL_REBALANCE_CLUSTER function.

Syntax
START_REBALANCE_CLUSTER()

Privileges

Must be a superuser

Example
=> SELECT START_REBALANCE_CLUSTER();

 START_REBALANCE_CLUSTER

 REBALANCING

(1 row)

See Also

 Rebalancing Data Across Nodes

 CANCEL_REBALANCE_CLUSTER (page 450)

 REBALANCE_CLUSTER (page 522)

START_REFRESH

Transfers data to projections that are not able to participate in query execution due to missing or
out-of-date data.

Syntax
START_REFRESH()

Notes

 When a design is deployed through the Database Designer, it is automatically refreshed. See
Deploying Designs in the Administrator's Guide.

 All nodes must be up in order to start a refresh.

 START_REFRESH() has no effect if a refresh is already running.

 A refresh is run asynchronously.

 Shutting down the database ends the refresh.

 To view the progress of the refresh, see the PROJECTION_REFRESHES (page 1056) and
PROJECTIONS (page 961) system tables.

-539-

 SQL Functions

 If a projection is updated from scratch, the data stored in the projection represents the table
columns as of the epoch in which the refresh commits. As a result, the query optimizer might
not choose the new projection for AT EPOCH queries that request historical data at epochs
older than the refresh epoch of the projection. Projections refreshed from buddies retain
history and can be used to answer historical queries.

Privileges

None

Example

The following command starts the refresh operation:

=> SELECT START_REFRESH();

 start_refresh

--

 Starting refresh background process.

See Also

CLEAR_PROJECTION_REFRESHES (page 455)

MARK_DESIGN_KSAFE (page 510)

PROJECTION_REFRESHES (page 1056)

PROJECTIONS (page 961)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

Catalog Management Functions

This section contains catalog management functions specific to HP Vertica.

DUMP_CATALOG

Returns an internal representation of the HP Vertica catalog. This function is used for diagnostic
purposes.

Syntax
DUMP_CATALOG()

Privileges

None; however, function dumps only the objects visible to the user.

Notes

To obtain an internal representation of the HP Vertica catalog for diagnosis, run the query:

-540-

SQL Reference Manual

=> SELECT DUMP_CATALOG();

The output is written to the specified file:

\o /tmp/catalog.txt

SELECT DUMP_CATALOG();

\o

EXPORT_CATALOG

Generates a SQL script that you can use to recreate a physical schema design in its current state
on a different cluster. This function always attempts to recreate projection statements with KSAFE
clauses, if they exist in the original definitions, or OFFSET clauses if they do not.

Syntax
EXPORT_CATALOG (['destination'] , ['scope'])

Parameters

destination Specifies the path and name of the SQL output file. An

empty string (''), which is the default, outputs the script to
standard output. The function writes the script to the catalog
directory if no destination is specified.

If you specify a file that does not exist, the function creates
one. If the file pre-exists, the function silently overwrites its
contents.

scope Determines what to export:

 DESIGN — Exports schemas, tables, constraints,
views, and projections to which the user has access.
This is the default value.

 DESIGN_ALL — Exports all the design objects plus
system objects created in Database Designer (for
example, design contexts and their tables). The

objects that are exported are those to which the user
has access.

 TABLES — Exports all tables, constraints, and
projections for for which the user has permissions.
See also EXPORT_TABLES (page 491).

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to file

Example

The following example exports the design to standard output:

=> SELECT EXPORT_CATALOG('','DESIGN');

-541-

 SQL Functions

See Also

EXPORT_OBJECTS

EXPORT_TABLES (page 491)

Exporting the Catalog in the Administrator's Guide

EXPORT_OBJECTS

Generates a SQL script you can use to recreate catalog objects on a different cluster. The
generated script includes only the non-virtual objects to which the user has access. The function
exports catalog objects in order dependency for correct recreation. Running the generated SQL
script on another cluster then creates all referenced objects before their dependent objects.

Note: You cannot use EXPORT_OBJECTS to export a view without its dependencies.

The EXPORT_OBJECTS function always attempts to recreate projection statements with KSAFE
clauses, if they existed in the original definitions, or OFFSET clauses, if they did not.

None of the EXPORT_OBJECTS parameters accepts a NULL value as input.
EXPORT_OBJECTS returns an error if an explicitly-specified object does not exist, or the user
does not have access to the object.

Syntax
EXPORT_OBJECTS(['destination'] , ['scope'] , ['ksafe'])

Parameters

destination Specifies the path and name of the SQL output file. The default empty string
('') outputs the script contents to standard output. Non-DBadmin users can

specify only an empty string.

If you specify a file that does not exist, the function creates one. If the file

pre-exists, the function silently overwrites its contents. If you do not specify
an explicit path destination, the function outputs the script for the exported
objects to the catalog directory.

-542-

SQL Reference Manual

scope Determines which catalog objects to export, where you specify scope as

follows:

 An empty string (' ')—exports all non-virtual objects to which the user
has access, including constraints. (Note that constraints are not

objects that can be passed as individual arguments.) An empty string
is the default scope value for scope if you do not limit the export.

 A comma-delimited list of catalog objects to export, which can
include the following:

 —' [dbname.]schema.object '— matches each named schema object.

You can optionally qualify the schema with a database prefix. A named
schema object can be a table, projection, view, sequence, or
user-defined SQL function.

 —' [dbname.]schema — matches the named schema, which you can

optionally qualify with a database prefix. For a schema, HP Vertica
exports all non-virtual objects that the user has access to within the
schema. If a schema and table have the same name, the schema takes
precedence.

ksafe

Det erm ines if the st atistics ar e regener at ed befor e loading t hem int o t he design context

Specifies whether to incorporate a MARK_DESIGN_KSAFE statement with
the correct K-safe value for the database. The statement is placed at the end

of the output script.

Use one of the following:

 true—adds the MARK_DESIGN_KSAFE statement to the script.
This is the default value.

 false—omits the MARK_DESIGN_KSAFE statement from the script.

Adding the MARK_DESIGN_KSAFE statement is useful if you plan to import
the SQL script into a new database, and you want the new database to inherit

the K-safety value of the original database.

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to a file

Example

The following example exports all the non-virtual objects to which the user has access to standard
output. The example uses false for the last parameter, indicating that the file will not include the
MARK_DESIGN_KSAFE statement at the end.

=> SELECT EXPORT_OBJECTS(' ',' ',false);

INSTALL_LICENSE

Installs the license key in the global catalog.

description

Syntax
INSTALL_LICENSE('filename')

-543-

 SQL Functions

Parameters

filename specifies the absolute pathname of a valid license file.

Privileges

Must be a superuser

Notes

See Managing Your License Key in the Administrator's Guide for more information about license
keys.

Examples

=> SELECT INSTALL_LICENSE('/tmp/vlicense.dat');

-544-

 544

MARK_DESIGN_KSAFE

Enables or disables high availability in your environment, in case of a failure. Before enabling
recovery, MARK_DESIGN_KSAFE queries the catalog to determine whether a cluster's physical
schema design meets the following requirements:

 Small, unsegmented tables are replicated on all nodes.

 Large table superprojections are segmented with each segment on a different node.

 Each large table projection has at least one buddy projection for K-safety=1 (or two buddy
projections for K-safety=2).

Buddy projections are also segmented across database nodes, but the distribution is modified
so that segments that contain the same data are distributed to different nodes. See High
Availability Through Projections in the Concepts Guide.

Note: Projections are considered to be buddies if they contain the same columns and have the
same segmentation. They can have different sort orders.

MARK_DESIGN_KSAFE does not change the physical schema in any way.

Syntax
MARK_DESIGN_KSAFE (k)

Parameters

k 2 enables high availability if the schema design meets requirements for
K-safety=2

1 enables high availability if the schema design meets requirements for

K-safety=1

0 disables high availability

If you specify a k value of one (1) or two (2), HP Vertica returns one of the following messages.

Success:

 Marked design n-safe

Failure:

 The schema does not meet requirements for K=n.

 Fact table projection projection-name

 has insufficient "buddy" projections.

n in the message is 1 or 2 and represents the k value.

Privileges

Must be a superuser

Notes

 The database's internal recovery state persists across database restarts but it is not checked
at startup time.

 If a database has automatic recovery enabled, you must temporarily disable automatic
recovery before creating a new table.

-545-

 SQL Functions

 When one node fails on a system marked K-safe=1, the remaining nodes are available for
DML operations.

Examples

=> SELECT MARK_DESIGN_KSAFE(1);

 mark_design_ksafe

 Marked design 1-safe

(1 row)

If the physical schema design is not K-Safe, messages indicate which projections do not have a
buddy:

=> SELECT MARK_DESIGN_KSAFE(1);

The given K value is not correct; the schema is 0-safe

Projection pp1 has 0 buddies, which is smaller that the given K of 1

Projection pp2 has 0 buddies, which is smaller that the given K of 1

.

.

.

(1 row)

See Also

SYSTEM (page 1111)

High Availability and Recovery in the Concepts Guide

SQL System Tables (Monitoring APIs) (page 933) topic in the Administrator's Guide

Using Identically Segmented Projections in the Programmer's Guide

Failure Recovery in the Administrator's Guide

Cluster Scaling Functions

This section contains functions that control how the cluster organizes data for rebalancing.

CANCEL_REBALANCE_CLUSTER

Stops any rebalance task currently in progress.

Syntax
CANCEL_REBALANCE_CLUSTER()

Privileges

Must be a superuser

-546-

SQL Reference Manual

Example
=> SELECT CANCEL_REBALANCE_CLUSTER();

 CANCEL_REBALANCE_CLUSTER

 CANCELED

(1 row)

See Also

 START_REBALANCE_CLUSTER (page 537)

 REBALANCE_CLUSTER (page 522)

DISABLE_ELASTIC_CLUSTER

Disables elastic cluster scaling, which prevents HP Vertica from bundling data into chunks that are
easily transportable to other nodes when performing cluster resizing. The main reason to disable
elastic clustering is if you find that the slightly unequal data distribution in your cluster caused by
grouping data into discrete blocks results in performance issues.

Syntax
DISABLE_ELASTIC_CLUSTER()

Privileges

Must be a superuser

Example
=> SELECT DISABLE_ELASTIC_CLUSTER();

 DISABLE_ELASTIC_CLUSTER

 DISABLED

(1 row)

See Also

 ENABLE_ELASTIC_CLUSTER (page 482)

DISABLE_LOCAL_SEGMENTS

Disable local data segmentation, which breaks projections segments on nodes into containers that
can be easily moved to other nodes. See Local Data Segmentation in the Administrator's Guide for
details.

Syntax
DISABLE_LOCAL_SEGMENTS()

Privileges

Must be a superuser

-547-

 SQL Functions

Example
=> SELECT DISABLE_LOCAL_SEGMENTS();

 DISABLE_LOCAL_SEGMENTS

 DISABLED

(1 row)

ENABLE_ELASTIC_CLUSTER

Enables elastic cluster scaling, which makes enlarging or reducing the size of your database
cluster more efficient by segmenting a node's data into chunks that can be easily moved to other
hosts.

Note: Databases created using HP Vertica Version 5.0 and later have elastic cluster enabled

by default. You need to use this function on databases created before version 5.0 in order for
them to use the elastic clustering feature.

Syntax
ENABLE_ELASTIC_CLUSTER()

Privileges

Must be a superuser

Example
=> SELECT ENABLE_ELASTIC_CLUSTER();

 ENABLE_ELASTIC_CLUSTER

 ENABLED

(1 row)

See Also

 DISABLE_ELASTIC_CLUSTER (page 468)

ENABLE_LOCAL_SEGMENTS

Enables local storage segmentation, which breaks projections segments on nodes into containers
that can be easily moved to other nodes. See Local Data Segmentation in the Administrator's
Guide for more information.

Syntax
ENABLE_LOCAL_SEGMENTS()

Privileges

Must be a superuser

Example
=> SELECT ENABLE_LOCAL_SEGMENTS();

 ENABLE_LOCAL_SEGMENTS

-548-

SQL Reference Manual

 ENABLED

(1 row)

REBALANCE_CLUSTER

Starts rebalancing data in the cluster synchronously. Rebalancing redistributes your database
projections' data across all nodes, refreshes projections, sets the Ancient History Mark, and drops
projections that are no longer needed. Rebalancing is useful after you:

 mark one or more nodes as ephemeral in preparation of removing them from the cluster, so
that HP Vertica migrates the data on the ephemeral nodes away to other nodes.

 add one or more nodes to the cluster, so that HP Vertica can populate the empty nodes with
data.

 change the scaling factor, which determines the number of storage containers used to store a
projection across the database.

Since function runs the rebalance task synchronously, it does not return until the data has been
rebalanced. Closing or dropping the session cancels the rebalance task.

Syntax
REBALANCE_CLUSTER()

Privileges

Must be a superuser

Example
=> SELECT REBALANCE_CLUSTER();

 REBALANCE_CLUSTER

 REBALANCED

(1 row)

See Also

 Rebalancing Data Across Nodes

 START_REBALANCE_CLUSTER (page 537)

 CANCEL_REBALANCE_CLUSTER (page 450)

SET_SCALING_FACTOR

Sets the scaling factor used to determine the size of the storage containers used when
rebalancing the database and when using local data segmentation is enabled. See Cluster
Scaling for details.

Syntax
SET_SCALING_FACTOR(factor)

-549-

 SQL Functions

Parameters

factor An integer value between 1 and 32. HP Vertica uses
this value to calculate the number of storage

containers each projection is broken into when
rebalancing or when local data segmentation is
enabled.

Note: Setting the scaling factor value too high can cause nodes to create too many small
container files, greatly reducing efficiency and potentially causing a Too Many ROS containers
error (also known as "ROS pushback"). The scaling factor should be set high enough so that
rebalance can transfer local segments to satisfy the skew threshold, but small enough that the
number of storage containers does not exceed ROS pushback. The number of storage
containers should be greater than or equal to the number of partitions multiplied by the number
local of segments (# storage containers >= # partitions * # local segments).

Privileges

Must be a superuser

Example
=> SELECT SET_SCALING_FACTOR(12);

 SET_SCALING_FACTOR

 SET

(1 row)

START_REBALANCE_CLUSTER

Asynchronously starts a data rebalance task. Rebalancing redistributes your database
projections' data across all nodes, refreshes projections, sets the Ancient History Mark, and drops
projections that are no longer needed. Rebalancing is useful after you:

 mark one or more nodes as ephemeral in preparation of removing them from the cluster, so
that HP Vertica migrates the data on the ephemeral nodes away to other nodes.

 add one or more nodes to the cluster, so that HP Vertica can populate the empty nodes with
data.

 change the scaling factor, which determines the number of storage containers used to store a
projection across the database.

Since this function starts the rebalance task in the background, it returns immediately after the
task has started. Since it is a background task, rebalancing will continue even if the session that
started it is closed. It even continues after a cluster recovery if the database shuts down while it is
in progress. The only way to stop the task is by the CANCEL_REBALANCE_CLUSTER function.

Syntax
START_REBALANCE_CLUSTER()

Privileges

Must be a superuser

-550-

SQL Reference Manual

Example
=> SELECT START_REBALANCE_CLUSTER();

 START_REBALANCE_CLUSTER

 REBALANCING

(1 row)

See Also

 Rebalancing Data Across Nodes

 CANCEL_REBALANCE_CLUSTER (page 450)

 REBALANCE_CLUSTER (page 522)

Constraint Management Functions

This section contains constraint management functions specific to HP Vertica.

See also SQL system table V_CATALOG.TABLE_CONSTRAINTS (page 977)

ANALYZE_CONSTRAINTS

Analyzes and reports on constraint violations within the current schema search path, or external to
that path if you specify a database name (noted in the syntax statement and parameter table).

You can check for constraint violations by passing arguments to the function as follows:

1 An empty argument (' '), which returns violations on all tables within the current schema

2 One argument, referencing a table

3 Two arguments, referencing a table name and a column or list of columns

Syntax
ANALYZE_CONSTRAINTS [('')

... | ('[[db-name.]schema.]table [.column_name]')

... | ('[[db-name.]schema.]table' , 'column')]

Parameters

('') Analyzes and reports on all tables within the current schema search
path.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.

Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be connected
to the database you specify, and you cannot change objects in other

databases.

Specifying different database objects lets you qualify database objects
as explicitly as required. For example, you can use a database and a

schema name (mydb.myschema).

-551-

 SQL Functions

table Analyzes and reports on all constraints referring to the specified table.

column Analyzes and reports on all constraints referring to the specified table
that contains the column.

Privileges

 SELECT privilege on table

 USAGE privilege on schema

Notes

ANALYZE_CONSTRAINTS() performs a lock in the same way that SELECT * FROM t1 holds a
lock on table t1. See LOCKS (page 1037) for additional information.

Detecting Constraint Violations During a Load Process

HP Vertica checks for constraint violations when queries are run, not when data is loaded. To
detect constraint violations as part of the load process, use a COPY (page 699) statement with the
NO COMMIT option. By loading data without committing it, you can run a post-load check of your
data using the ANALYZE_CONSTRAINTS function. If the function finds constraint violations, you
can roll back the load because you have not committed it.

If ANALYZE_CONSTRAINTS finds violations, such as when you insert a duplicate value into a
primary key, you can correct errors using the following functions. Effects last until the end of the
session only:

 SELECT DISABLE_DUPLICATE_KEY_ERROR (page 466)

 SELECT REENABLE_DUPLICATE_KEY_ERROR (page 522)

Return Values

ANALYZE_CONSTRAINTS returns results in a structured set (see table below) that lists the
schema name, table name, column name, constraint name, constraint type, and the column
values that caused the violation.

If the result set is empty, then no constraint violations exist; for example:

=> SELECT ANALYZE_CONSTRAINTS ('public.product_dimension', 'product_key');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

The following result set shows a primary key violation, along with the value that caused the
violation ('10'):

=> SELECT ANALYZE_CONSTRAINTS ('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 store t1 c1 pk_t1 PRIMARY ('10')

(1 row)

The result set columns are described in further detail in the following table:

-552-

SQL Reference Manual

Column Name Data Type Description

Schema Name VARCHAR The name of the schema.

Table Name VARCHAR The name of the table, if specified.

Column Names VARCHAR Names of columns containing constraints. Multiple columns
are in a comma-separated list:

store_key,

store_key, date_key,

Constraint Name VARCHAR The given name of the primary key, foreign key, unique, or not

null constraint, if specified.

Constraint Type VARCHAR Identified by one of the following strings: 'PRIMARY KEY',
'FOREIGN KEY', 'UNIQUE', or 'NOT NULL'.

Column Values VARCHAR Value of the constraint column, in the same order in which
Column Names contains the value of that column in the

violating row.

When interpreted as SQL, the value of this column forms a list
of values of the same type as the columns in Column Names;

for example:

('1'),

('1', 'z')

Understanding Function Failures

If ANALYZE_CONSTRAINTS() fails, HP Vertica returns an error identifying the failure condition.
For example, if there are insufficient resources, the database cannot perform constraint checks
and ANALYZE_CONSTRAINTS() fails.

If you specify the wrong table, the system returns an error message:

=> SELECT ANALYZE_CONSTRAINTS('abc');

 ERROR 2069: 'abc' is not a table in the current search_path

If you issue the function with incorrect syntax, the system returns an error message with a hint:

ANALYZE ALL CONSTRAINT;

Or

ANALYZE CONSTRAINT abc;

ERROR: ANALYZE CONSTRAINT is not supported.

HINT: You may consider using analyze_constraints().

If you run ANALYZE_CONSTRAINTS from a non-default locale, the function returns an error with
a hint:

=> \locale LEN

INFO 2567: Canonical locale: 'en'

Standard collation: 'LEN'

English

=> SELECT ANALYZE_CONSTRAINTS('t1');

-553-

 SQL Functions

ERROR: ANALYZE_CONSTRAINTS is currently not supported in non-default

locales

HINT: Set the locale in this session to en_US@collation=binary using

the

command "\locale en_US@collation=binary"

Examples

Given the following inputs, HP Vertica returns one row, indicating one violation, because the same
primary key value (10) was inserted into table t1 twice:

=> CREATE TABLE t1(c1 INT);

=> ALTER TABLE t1 ADD CONSTRAINT pk_t1 PRIMARY KEY (c1);

=> CREATE PROJECTION t1_p (c1) AS SELECT * FROM t1 UNSEGMENTED ALL NODES;

=> INSERT INTO t1 values (10);

=> INSERT INTO t1 values (10); --Duplicate primary key value

=> SELECT ANALYZE_CONSTRAINTS('t1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public t1 c1 pk_t1 PRIMARY ('10')

(1 row)

If the second INSERT statement above had contained any different value, the result would have
been 0 rows (no violations).

In the following example, create a table that contains three integer columns, one a unique key and
one a primary key:

=> CREATE TABLE fact_1(

 f INTEGER,

 f_UK INTEGER UNIQUE,

 f_PK INTEGER PRIMARY KEY

);

Issue a command that refers to a nonexistent table and column:

=> SELECT ANALYZE_CONSTRAINTS('f_BB');

 ERROR: 'f_BB' is not a table name in the current search path

Issue a command that refers to a nonexistent column:

=> SELECT ANALYZE_CONSTRAINTS('fact_1','x');

 ERROR 41614: Nonexistent columns: 'x '

Insert some values into table fact_1 and commit the changes:

=> INSERT INTO fact_1 values (1, 1, 1);

=> COMMIT;

Run ANALYZE_CONSTRAINTS on table fact_1. No constraint violations are reported:

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Insert duplicate unique and primary key values and run ANALYZE_CONSTRAINTS on table
fact_1 again. The system shows two violations: one against the primary key and one against the
unique key:

=> INSERT INTO fact_1 VALUES (1, 1, 1);

=> COMMIT;

=> SELECT ANALYZE_CONSTRAINTS('fact_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

-554-

SQL Reference Manual

 public | fact_1 | f_pk | - | PRIMARY | ('1')

 public | fact_1 | f_uk | - | UNIQUE | ('1')

(2 rows)

The following command looks for constraint validations on only the unique key in the table
fact_1, qualified with its schema name:

=> SELECT ANALYZE_CONSTRAINTS('public.fact_1', 'f_UK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(1 row)

The following example shows that you can specify the same column more than once;
ANALYZE_CONSTRAINTS, however, returns the violation only once:

=> SELECT ANALYZE_CONSTRAINTS('fact_1', 'f_PK, F_PK');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

(1 row)

The following example creates a new dimension table, dim_1, and inserts a foreign key and

different (character) data types:

=> CREATE TABLE dim_1 (b VARCHAR(3), b_PK VARCHAR(4), b_FK INTEGER REFERENCES fact_1(f_PK));

Alter the table to create a multicolumn unique key and multicolumn foreign key and create
superprojections:

=> ALTER TABLE dim_1 ADD CONSTRAINT dim_1_multiuk PRIMARY KEY (b, b_PK);

The following command inserts a missing foreign key (0) into table dim_1 and commits the
changes:

=> INSERT INTO dim_1 VALUES ('r1', 'Xpk1', 0);

=> COMMIT;

Checking for constraints on the table dim_1 in the public schema detects a foreign key

violation:

=> SELECT ANALYZE_CONSTRAINTS('public.dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(1 row)

Now add a duplicate value into the unique key and commit the changes:

=> INSERT INTO dim_1 values ('r2', 'Xpk1', 1);

=> INSERT INTO dim_1 values ('r1', 'Xpk1', 1);

=> COMMIT;

Checking for constraint violations on table dim_1 detects the duplicate unique key error:

=> SELECT ANALYZE_CONSTRAINTS('dim_1');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

(2 rows)

Create a table with multicolumn foreign key and create the superprojections:

=> CREATE TABLE dim_2(z_fk1 VARCHAR(3), z_fk2 VARCHAR(4));

=> ALTER TABLE dim_2 ADD CONSTRAINT dim_2_multifk FOREIGN KEY (z_fk1, z_fk2) REFERENCES dim_1(b, b_PK);

Insert a foreign key that matches a foreign key in table dim_1 and commit the changes:

-555-

 SQL Functions

=> INSERT INTO dim_2 VALUES ('r1', 'Xpk1');

=> COMMIT;

Checking for constraints on table dim_2 detects no violations:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

(0 rows)

Add a value that does not match and commit the change:

=> INSERT INTO dim_2 values ('r1', 'NONE');

=> COMMIT;

Checking for constraints on table dim_2 detects a foreign key violation:

=> SELECT ANALYZE_CONSTRAINTS('dim_2');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+----------------

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

(1 row)

Analyze all constraints on all tables:

=> SELECT ANALYZE_CONSTRAINTS('');

 Schema Name | Table Name | Column Names | Constraint Name | Constraint Type | Column Values

-------------+------------+--------------+-----------------+-----------------+---------------

 public | dim_1 | b, b_pk | dim_1_multiuk | PRIMARY | ('r1', 'Xpk1')

 public | dim_1 | b_fk | C_FOREIGN | FOREIGN | ('0')

 public | dim_2 | z_fk1, z_fk2 | dim_2_multifk | FOREIGN | ('r1', 'NONE')

 public | fact_1 | f_pk | C_PRIMARY | PRIMARY | ('1')

 public | fact_1 | f_uk | C_UNIQUE | UNIQUE | ('1')

(5 rows)

To quickly clean up your database, issue the following command:

=> DROP TABLE fact_1 cascade;

=> DROP TABLE dim_1 cascade;

=> DROP TABLE dim_2 cascade;

To learn how to remove violating rows, see the DISABLE_DUPLICATE_KEY_ERROR (page
466) function.

See Also

Adding Constraints in the Administrator's Guide

COPY (page 699)

ALTER TABLE (page 672)

CREATE TABLE (page 770)

DISABLE_DUPLICATE_KEY_ERROR

Disables error messaging when HP Vertica finds duplicate PRIMARY KEY/UNIQUE KEY values
at run time. Queries execute as though no constraints are defined on the schema. Effects are
session scoped.

-556-

SQL Reference Manual

CAUTION: When called, DISABLE_DUPLICATE_KEY_ERROR() suppresses data integrity

checking and can lead to incorrect query results. Use this function only after you insert
duplicate primary keys into a dimension table in the presence of a pre-join projection. Then
correct the violations and turn integrity checking back on with
REENABLE_DUPLICATE_KEY_ERROR (page 522)().

Syntax
DISABLE_DUPLICATE_KEY_ERROR();

Privileges

Must be a superuser

Notes

The following series of commands create a table named dim and the corresponding projection:

CREATE TABLE dim (pk INTEGER PRIMARY KEY, x INTEGER);

CREATE PROJECTION dim_p (pk, x) AS SELECT * FROM dim ORDER BY x UNSEGMENTED ALL

NODES;

The next two statements create a table named fact and the pre-join projection that joins fact to
dim.

CREATE TABLE fact(fk INTEGER REFERENCES dim(pk));

CREATE PROJECTION prejoin_p (fk, pk, x) AS SELECT * FROM fact, dim WHERE pk=fk ORDER

BY x;

The following statements load values into table dim. The last statement inserts a duplicate primary
key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO dim values (1,2); --Constraint violation

COMMIT;

Table dim now contains duplicate primary key values, but you cannot delete the violating row
because of the presence of the pre-join projection. Any attempt to delete the record results in the
following error message:

ROLLBACK: Duplicate primary key detected in FK-PK join Hash-Join (x dim_p), value

1

In order to remove the constraint violation (pk=1), use the following sequence of commands,

which puts the database back into the state just before the duplicate primary key was added.

To remove the violation:

1 Save the original dim rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

2 Temporarily disable error messaging on duplicate constraint values:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

-557-

 SQL Functions

Caution: Remember that running the DISABLE_DUPLICATE_KEY_ERROR function
suppresses the enforcement of data integrity checking.

3 Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1;

4 Allow the database to resume data integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the dimension table:

INSERT INTO dim SELECT * from dim_temp;

COMMIT;

6 Validate your dimension and fact tables.

If you receive the following error message, it means that the duplicate records you want to delete
are not identical. That is, the records contain values that differ in at least one column that is not a
primary key; for example, (1,1) and (1,2).

ROLLBACK: Delete: could not find a data row to delete (data integrity violation?)

The difference between this message and the rollback message in the previous example is that a
fact row contains a foreign key that matches the duplicated primary key, which has been inserted.
A row with values from the fact and dimension table is now in the pre-join projection. In order for
the DELETE statement (Step 3 in the following example) to complete successfully, extra
predicates are required to identify the original dimension table values (the values that are in the
pre-join).

This example is nearly identical to the previous example, except that an additional INSERT
statement joins the fact table to the dimension table by a primary key value of 1:

INSERT INTO dim values (1,1);

INSERT INTO dim values (2,2);

INSERT INTO fact values (1); -- New insert statement joins fact with dim on
primary key value=1

INSERT INTO dim values (1,2); -- Duplicate primary key value=1

COMMIT;

To remove the violation:

1 Save the original dim and fact rows that match the duplicated primary key:

CREATE TEMP TABLE dim_temp(pk integer, x integer);

CREATE TEMP TABLE fact_temp(fk integer);

INSERT INTO dim_temp SELECT * FROM dim WHERE pk=1 AND x=1; -- original

dim row

INSERT INTO fact_temp SELECT * FROM fact WHERE fk=1;

2 Temporarily suppresses the enforcement of data integrity checking:

SELECT DISABLE_DUPLICATE_KEY_ERROR();

3 Remove the duplicate primary keys. These steps also implicitly remove all fact rows with the
matching foreign key.

a) Remove the original row that contains duplicate values:

DELETE FROM dim WHERE pk=1 AND x=1;

-558-

SQL Reference Manual

Note: The extra predicate (x=1) specifies removal of the original (1,1) row, rather than the

newly inserted (1,2) values that caused the violation.

b) Remove all remaining rows:

DELETE FROM dim WHERE pk=1;

4 Reenable integrity checking:

SELECT REENABLE_DUPLICATE_KEY_ERROR();

5 Reinsert the original values back into the fact and dimension table:

INSERT INTO dim SELECT * from dim_temp;

INSERT INTO fact SELECT * from fact_temp;

COMMIT;

Validate your dimension and fact tables.

See Also

ANALYZE_CONSTRAINTS (page 432)

REENABLE_DUPLICATE_KEY_ERROR (page 522)

LAST_INSERT_ID

Returns the last value of a column whose value is automatically incremented through the
AUTO_INCREMENT or IDENTITY column-constraint (page 783). If multiple sessions
concurrently load the same table, the returned value is the last value generated for an
AUTO_INCREMENT column by an insert in that session.

Behavior Type

Volatile

Syntax
LAST_INSERT_ID()

Privileges

 Table owner

 USAGE privileges on schema

Notes

 This function works only with AUTO_INCREMENT and IDENTITY columns. See
column-constraints (page 783) for the CREATE TABLE (page 770) statement.

 LAST_INSERT_ID does not work with sequence generators created through the CREATE
SEQUENCE (page 765) statement.

Examples

Create a sample table called customer4.

=> CREATE TABLE customer4(

 ID IDENTITY(2,2),

 lname VARCHAR(25),

-559-

 SQL Functions

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Notice that the IDENTITY column has a seed of 2, which specifies the value for the first row loaded
into the table, and an increment of 2, which specifies the value that is added to the IDENTITY
value of the previous row.

Query the table you just created:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

(1 row)

Insert some additional values:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Lee', 'Chen', 598742);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

last_insert_id

 4

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

(2 rows)

Add another row:

=> INSERT INTO customer4(lname, fname, membership_card)

 VALUES ('Davis', 'Bill', 469543);

Call the LAST_INSERT_ID function:

=> SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 6

(1 row)

Query the table again:

=> SELECT * FROM customer4;

 ID | lname | fname | membership_card

----+-------+--------+-----------------

 2 | Gupta | Saleem | 475987

 4 | Lee | Chen | 598742

-560-

SQL Reference Manual

 6 | Davis | Bill | 469543

(3 rows)

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

DROP SEQUENCE (page 822)

V_CATALOG.SEQUENCES (page 969)

Using Sequences and Sequence Privileges in the Administrator's Guide

REENABLE_DUPLICATE_KEY_ERROR

Restores the default behavior of error reporting by reversing the effects of
DISABLE_DUPLICATE_KEY_ERROR. Effects are session scoped.

Syntax
REENABLE_DUPLICATE_KEY_ERROR();

Privileges

Must be a superuser

Examples

For examples and usage see DISABLE_DUPLICATE_KEY_ERROR (page 466).

See Also

ANALYZE_CONSTRAINTS (page 432)

Data Collector Functions

The HP Vertica Data Collector is a utility that extends system table (page 933) functionality by
providing a framework for recording events. It gathers and retains monitoring information about
your database cluster and makes that information available in system tables, requiring few
configuration parameter tweaks, and having negligible impact on performance.

Collected data is stored on disk in the DataCollector directory under the HP Vertica /catalog
path. You can use the information the Data Collector retains to query the past state of system
tables and extract aggregate information, as well as do the following:

 See what actions users have taken

 Locate performance bottlenecks

 Identify potential improvements to HP Vertica configuration

-561-

 SQL Functions

Data Collector works in conjunction with an advisor tool called Workload Analyzer, which
intelligently monitors the performance of SQL queries and workloads and recommends tuning
actions based on observations of the actual workload history.

By default, Data Collector is on and retains information for all sessions. If performance issues
arise, a superuser can disable DC. See Data Collector Parameters and Enabling and Disabling
Data Collector in the Administrator's Guide.

This section describes the Data Collection control functions.

Related topics

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining monitoring information and Analyzing Workloads in the Administrator's Guide

CLEAR_DATA_COLLECTOR

Clears all memory and disk records on the Data Collector tables and functions and resets
collection statistics in the V_MONITOR.DATA_COLLECTOR system table. A superuser can
clear Data Collector data for all components or specify an individual component

After you clear the DataCollector log, the information is no longer available for querying.

Syntax
CLEAR_DATA_COLLECTOR(['component'])

Parameters

component Clears memory and disk records for the specified
component only. If you provide no argument, the function
clears all Data Collector memory and disk records for all

components.

For the current list of component names, query the
V_MONITOR.DATA_COLLECTOR (page 1002) system

table.

Privileges

Must be a superuser

Example

The following command clears memory and disk records for the ResourceAcquisitions
component:

=> SELECT clear_data_collector('ResourceAcquisitions');

 clear_data_collector

 CLEAR

-562-

SQL Reference Manual

(1 row)

The following command clears data collection for all components on all nodes:

=> SELECT clear_data_collector();

 clear_data_collector

 CLEAR

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

DATA_COLLECTOR_HELP

Returns online usage instructions about the Data Collector, the
V_MONITOR.DATA_COLLECTOR system table, and the Data Collector control functions.

Syntax
DATA_COLLECTOR_HELP()

Privileges

None

Returns

Invoking DATA_COLLECTOR_HELP() returns the following information:

=> SELECT DATA_COLLECTOR_HELP();

 Usage Data Collector

 The data collector retains history of important system activities.

 This data can be used as a reference of what actions have been taken

 by users, but it can also be used to locate performance bottlenecks,

 or identify potential improvements to the Vertica configuration.

 This data is queryable via Vertica system tables.

 The list of data collector components, and some statistics, can be found using:

 SELECT * FROM v_monitor.data_collector;

 The amount of data retained can be controlled with:

 set_data_collector_policy(<component>,

 <memory retention (KB)>,

 <disk retention (KB)>);

 The current retention policy for a component can be queried with:

 get_data_collector_policy(<component>);

-563-

 SQL Functions

 Data on disk is kept in the "DataCollector" directory under the Vertica

 catalog path. This directory also contains instructions on how to load

 the monitoring data into another Vertica database.

 Additional commands can be used to affect the data collection logs.

 The log can be cleared with:

 clear_data_collector([<optional component>]);

 The log can be synchronized with the disk storage using:

 flush_data_collector([<optional component>]);

Note: Data Collector works in conjunction with the Workload Analyzer, an advisor tool that

intelligently monitors the performance of SQL queries and workloads and recommends tuning
actions based on observations of the actual workload history.

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

V_MONITOR.TUNING_RECOMMENDATIONS (page 1120)

Analyzing Workloads in the Administrator's Guide

Retaining Monitoring Information in the Administrator's Guide

FLUSH_DATA_COLLECTOR

Waits until memory logs are moved to disk and then flushes the Data Collector, synchronizing the
log with the disk storage. A superuser can flush Data Collector information for an individual
component or for all components.

Syntax
FLUSH_DATA_COLLECTOR(['component'])

Parameters

component Flushes the specified component. If you provide no
argument, the function flushes the Data Collector in full.

For the current list of component names, query the

V_MONITOR.DATA_COLLECTOR system table.

Privileges

Must be a superuser

Example

The following command flushes the Data Collector for the ResourceAcquisitions component:

=> SELECT flush_data_collector('ResourceAcquisitions');

 flush_data_collector

-564-

SQL Reference Manual

 FLUSH

(1 row)

The following command flushes data collection for all components:

=> SELECT flush_data_collector();

 flush_data_collector

 FLUSH

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

GET_DATA_COLLECTOR_POLICY

Retrieves a brief statement about the retention policy for the specified component.

Syntax
GET_DATA_COLLECTOR_POLICY('component')

Parameters

component Returns the retention policy for the specified

component.

For a current list of component names, query the
V_MONITOR.DATA_COLLECTOR system table

Privileges

None

Example

The following query returns the history of all resource acquisitions by specifying the
ResourceAcquisitions component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

 get_data_collector_policy

--

 1000KB kept in memory, 10000KB kept on disk.

(1 row)

See Also

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

-565-

 SQL Functions

SET_DATA_COLLECTOR_POLICY

Sets the retention policy for the specified component on all nodes. Failed nodes receive the setting
when they rejoin the cluster.

Syntax
SET_DATA_COLLECTOR_POLICY('component', 'memoryKB', 'diskKB')

Parameters

component Returns the retention policy for the specified component.

memoryKB Specifies the memory size to retain in kilobytes.

diskKB Specifies the disk size in kilobytes.

Privileges

Must be a superuser

Notes

 Only a superuser can configure the Data Collector.

 Before you change a retention policy, view its current setting by calling the
GET_DATA_COLLECTOR_POLICY() function.

 If you don't know the name of a component, query the V_MONITOR.DATA_COLLECTOR
system table for a list; for example:

=> SELECT DISTINCT component, description FROM data_collector ORDER BY

1 ASC;

Example

The following command returns the retention policy for the ResourceAcquisitions component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

 get_data_collector_policy

--

 1000KB kept in memory, 10000KB kept on disk.

(1 row)

This command changes the memory and disk setting for ResourceAcquisitions from their current
setting of 1,000 KB and 10,000 KB to 1,500 KB and 25,000 KB, respectively:

=> SELECT set_data_collector_policy('ResourceAcquisitions', '1500', '25000');

 set_data_collector_policy

 SET

(1 row)

To verify the setting, call the GET_DATA_COLLECTOR_POLICY() function on the specified
component:

=> SELECT get_data_collector_policy('ResourceAcquisitions');

-566-

SQL Reference Manual

 get_data_collector_policy

--

 1500KB kept in memory, 25000KB kept on disk.

(1 row)

See Also

GET_DATA_COLLECTOR_POLICY() (page 496)

V_MONITOR.DATA_COLLECTOR (page 1002)

Retaining Monitoring Information in the Administrator's Guide

Database Management Functions

This section contains the database management functions specific to HP Vertica.

CLEAR_RESOURCE_REJECTIONS

Clears the content of the RESOURCE_REJECTIONS (page 1089) and
DISK_RESOURCE_REJECTIONS (page 1013) system tables. Normally, these tables are only
cleared during a node restart. This function lets you clear the tables whenever you need. For
example, you might want to clear the system tables after you resolved a disk space issue that was
causing disk resource rejections.

Syntax
CLEAR_RESOURCE_REJECTIONS();

Privileges

Must be a superuser

Example

The following command clears the content of the RESOURCE_REJECTIONS and
DISK_RESOURCE_REJECTIONS system tables:

=> SELECT clear_resource_rejections();

 clear_resource_rejections

 OK

(1 row)

See Also

DISK_RESOURCE_REJECTIONS (page 1013)

RESOURCE_REJECTIONS (page 1089)

-567-

 SQL Functions

DUMP_LOCKTABLE

Returns information about deadlocked clients and the resources they are waiting for.

Syntax
DUMP_LOCKTABLE()

Privileges

None

Notes

Use DUMP_LOCKTABLE if HP Vertica becomes unresponsive:

1 Open an additional vsql connection.

2 Execute the query:

=> SELECT DUMP_LOCKTABLE();

The output is written to vsql. See Monitoring the Log Files.

You can also see who is connected using the following command:

=> SELECT * FROM SESSIONS;

Close all sessions using the following command:

=>SELECT CLOSE_ALL_SESSIONS();

Close a single session using the following command:

How to close a single session:

=> SELECT CLOSE_SESSION('session_id');

You get the session_id value from the V_MONITOR.SESSIONS (page 1095) system table.

See Also

CLOSE_ALL_SESSIONS (page 461)

CLOSE_SESSION (page 458)

V_MONITOR.LOCKS (page 1037)

V_MONITOR.SESSIONS (page 1095)

DUMP_PARTITION_KEYS

Dumps the partition keys of all projections in the system.

Syntax
DUMP_PARTITION_KEYS()

Note: ROS's of partitioned tables without partition keys are ignored by the tuple mover and are

not merged during automatic tuple mover operations.

-568-

SQL Reference Manual

Privileges

None; however function dumps only the tables for which user has SELECT privileges.

Example
=> SELECT DUMP_PARTITION_KEYS();

Partition keys on node v_vmart_node0001

 Projection 'states_b0'

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: NH

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: MA

 Projection 'states_b1'

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: VT

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: ME

 Storage [ROS container]

 No of partition keys: 1

 Partition keys: CT

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

V_MONITOR.PARTITIONS (page 1051)

Partitioning Tables in the Administrator's Guide

EXPORT_TABLES

Generates a SQL script that can be used to recreate a logical schema (schemas, tables,
constraints, and views) on a different cluster.

Syntax
EXPORT_TABLES (['destination'] , ['scope'])

Parameters

-569-

 SQL Functions

destination Specifies the path and name of the SQL output file. An empty

string (''), which is the default, outputs the script to standard
output. The function writes the script to the catalog directory if
no destination is specified.

If you specify a file that does not exist, the function creates
one. If the file pre-exists, the function silently overwrites its
contents.

scope Determines the tables to export. Specify the scope as follows:

 An empty string (' ') — exports all non-virtual table
objects to which the user has access, including table

schemas, sequences, and constraints. Exporting all
non-virtual objects is the default scope, and what the
function exports if you do not specify a scope.

 A comma-delimited list of objects, which can include
the following:

 —' [dbname.][schema.]object '— matches the named
objects, which can be schemas, tables, or views, in the
schema. You can optionally qualify a schema with a

database prefix, and objects with a schema. You cannot
pass constraints as individual arguments.

 —' [dbname.]object '— matches a named object,
which can be a schema, table, or view. You can

optionally qualify a schema with a database prefix,
and an object with its schema. For a schema, HP
Vertica exports all non-virtual objects to which the

user has access within the schema. If a schema and
table both have the same name, the schema takes
precedence.

Privileges

None; however:

 Function exports only the objects visible to the user

 Only a superuser can export output to file

Example

The following example exports the store_orders_fact table of the store schema (in the

current database) to standard output:

=> SELECT EXPORT_TABLES(' ','store.store_orders_fact');

EXPORT_TABLES returns an error if:

 You explicitly specify an object that does not exist

 The current user does not have access to a specified object

See Also

EXPORT_CATALOG (page 487)

EXPORT_OBJECTS

-570-

SQL Reference Manual

Exporting Tables in the Administrator's Guide

HAS_ROLE

Indicates, by a boolean value, whether a role has been assigned to a user. This function is useful
for letting you check your own role membership.

Behavior Type

Stable

Syntax 1
HAS_ROLE(['user_name' ,] 'role_name');

Syntax 2
HAS_ROLE('role_name');

Parameters

user_name [Optional] The name of a user to look up. Currently, only a superuser
can supply the user_name argument.

role_name The name of the role you want to verify has been granted.

Privileges

Users can check their own role membership by calling HAS_ROLE('role_name'), but only a
superuser can look up other users' memberships using the optional user_name parameter.

Notes

You can query V_CATALOG system tables ROLES (page 967), GRANTS (page 944), and
USERS (page 985) to show any directly-assigned roles; however, these tables do not indicate
whether a role is available to a user when roles may be available through other roles (indirectly).

Examples

User Bob wants to see if he has been granted the commentor role:

=> SELECT HAS_ROLE('commentor');

Output t for true indicates that Bob has been assigned the commentor role:

 HAS_ROLE

 t

(1 row)

In the following function call, a superuser checks if the logadmin role has been granted to user
Bob:

=> SELECT HAS_ROLE('Bob', 'logadmin');

 HAS_ROLE

-571-

 SQL Functions

 t

(1 row)

To view the names of all roles users can access, along with any roles that have been assigned to
those roles, query the V_CATALOG.ROLES (page 967) system table. An asterisk in the output
means role granted WITH ADMIN OPTION.

=> SELECT * FROM roles;

 name | assigned_roles

-----------------+----------------------

 public |

 dbadmin | dbduser*

 pseudosuperuser | dbadmin

 dbduser |

 logreader |

 logwriter |

 logadmin | logreader, logwriter

(7 rows)

Note: The dbduser role in output above is internal only; you can ignore it.

See Also

GRANTS (page 944)

ROLES (page 967)

USERS (page 985)

Managing Privileges and Roles and Viewing a User's Role in the Administrator's Guide

SET_CONFIG_PARAMETER

Use SET_CONFIG_PARAMETER to set a configuration parameter.

Note: HP Vertica is designed to operate with minimal configuration changes. Use this function

sparingly and carefully follow any documented guidelines for that parameter.

If a node is down when you invoke this function, changes will occur on UP nodes only. You must
re-issue the function after down nodes recover in order for the changes to take effect on those
nodes. Alternatively, use the Administration Tools to copy the files. Redistributing Configuration
Files to Nodes.

Syntax
SET_CONFIG_PARAMETER('parameter', value)

Parameters

parameter Specifies the name of the parameter value being set. See

Configuration Parameters in the Administrator's Guide for a
list of supported parameters, their function, and usage

-572-

SQL Reference Manual

examples.

value Specifies the value of the supplied parameter argument.
Syntax for this argument will vary depending upon the
parameter and its expected data type. For strings, you must

enclose the argument in single quotes; integer arguments
can be unquoted.

You can also query the V_MONITOR.CONFIGURATION_PARAMETERS (page 996) system
table to get information about configuration parameters currently in use by the system.

For example, the following statement returns all current configuration parameters in HP Vertica:

=> SELECT * FROM CONFIGURATION_PARAMETERS;

SET_LOGLEVEL

Use SET_LOGLEVEL to set the logging level in the HP Vertica database log files.

Syntax
SELECT SET_LOGLEVEL(n)

Parameters

n Logging Level Description

0 DISABLE No logging

1 CRITICAL Errors requiring database recovery

2 WARNING Errors indicating problems of lesser magnitude

3 INFO Informational messages

4 DEBUG Debugging messages

5 TRACE Verbose debugging messages

6 TIMING Verbose debugging messages

Privileges

Must be a superuser

SHUTDOWN

Forces a database to shut down, even if there are users connected.

Syntax
SHUTDOWN (['false' | 'true'])

-573-

 SQL Functions

Parameters

false [Default] Returns a message if users are connected. Has the same effect

as supplying no parameters.

true Performs a moveout operation and forces the database to shut down,
disallowing further connections.

Privileges

Must be a superuser

Notes

 Quotes around the true or false arguments are optional.

 Issuing the shutdown command without arguments or with the default (false) argument returns
a message if users are connected, and the shutdown fails. If no users are connected, the
database performs a moveout operation and shuts down.

 Issuing the SHUTDOWN('true') command forces the database to shut down whether users
are connected or not.

 You can check the status of the shutdown operation in the vertica.log file:

2010-03-09 16:51:52.625 unknown:0x7fc6d6d2e700 [Init] <INFO> Shutdown

complete. Exiting.

 As an alternative to SHUTDOWN(), you can also temporarily set MaxClientSessions to 0 and
then use CLOSE_ALL_SESSIONS(). New client connections cannot connect unless they
connect using the dbadmin account. See CLOSE_ALL_SESSIONS (page 461) for details.

Examples

The following command attempts to shut down the database. Because users are connected, the
command fails:

=> SELECT SHUTDOWN('false');

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Note that SHUTDOWN() and SHUTDOWN('false') perform the same operation:

=> SELECT SHUTDOWN();

NOTICE: Cannot shut down while users are connected

 SHUTDOWN

 Shutdown: aborting shutdown

(1 row)

Using the 'true' parameter forces the database to shut down, even though clients might be
connected:

=> SELECT SHUTDOWN('true');

-574-

SQL Reference Manual

 SHUTDOWN

 Shutdown: moveout complete

(1 row)

See Also

SESSIONS (page 1095)

Epoch Management Functions

This section contains the epoch management functions specific to HP Vertica.

-575-

 SQL Functions

ADVANCE_EPOCH

Manually closes the current epoch and begins a new epoch.

Syntax
ADVANCE_EPOCH ([integer])

Parameters

integer Specifies the number of epochs to advance.

Privileges

Must be a superuser

Note

This function is primarily maintained for backward compatibility with earlier versions of HP Vertica.

Example

The following command increments the epoch number by 1:

=> SELECT ADVANCE_EPOCH(1);

See Also

ALTER PROJECTION (page 659)

GET_AHM_EPOCH

Returns the number of the epoch in which the Ancient History Mark is located. Data deleted up to
and including the AHM epoch can be purged from physical storage.

Syntax
GET_AHM_EPOCH()

Note: The AHM epoch is 0 (zero) by default (purge is disabled).

Privileges

None

Examples

SELECT GET_AHM_EPOCH();

 get_ahm_epoch

 Current AHM epoch: 0

(1 row)

-576-

SQL Reference Manual

GET_AHM_TIME

Returns a TIMESTAMP value representing the Ancient History Mark. Data deleted up to and
including the AHM epoch can be purged from physical storage.

Syntax
GET_AHM_TIME()

Privileges

None

Examples

SELECT GET_AHM_TIME();

 GET_AHM_TIME

 Current AHM Time: 2010-05-13 12:48:10.532332-04

(1 row)

See Also

SET DATESTYLE (page 903) for information about valid TIMESTAMP (page 97) values.

GET_CURRENT_EPOCH

Returns the number of the current epoch. The epoch into which data (COPY, INSERT, UPDATE,
and DELETE operations) is currently being written. The current epoch advances automatically
every three minutes.

Syntax
GET_CURRENT_EPOCH()

Privileges

None

Examples

SELECT GET_CURRENT_EPOCH();

 GET_CURRENT_EPOCH

 683

(1 row)

GET_LAST_GOOD_EPOCH

Returns the number of the last good epoch. A term used in manual recovery, LGE (Last Good
Epoch) refers to the most recent epoch that can be recovered.

-577-

 SQL Functions

Syntax
GET_LAST_GOOD_EPOCH()

Privileges

None

Examples

SELECT GET_LAST_GOOD_EPOCH();

 GET_LAST_GOOD_EPOCH

 682

(1 row)

MAKE_AHM_NOW

Sets the Ancient History Mark (AHM) to the greatest allowable value, and lets you drop any
projections that existed before the issue occurred.

Caution: This function is intended for use by Administrators only.

Syntax
MAKE_AHM_NOW ([true])

Parameters

true [Optional] Allows AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of

the failed nodes, those nodes must recover all data from
scratch. Use with care.

Privileges

Must be a superuser

Notes

 The MAKE_AHM_NOW function performs the following operations:

 Advances the epoch.

 Performs a moveout operation on all projections.

 Sets the AHM to LGE — at least to the current epoch at the time MAKE_AHM_NOW() was
issued.

 All history is lost and you cannot perform historical queries prior to the current epoch.

Example
=> SELECT MAKE_AHM_NOW();

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 683)

(1 row)

The following command allows the AHM to advance, even though node 2 is down:

-578-

SQL Reference Manual

=> SELECT MAKE_AHM_NOW(true);

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in get cluster LGE

WARNING: Received no response from v_vmartdb_node0002 in set AHM

 MAKE_AHM_NOW

 AHM set (New AHM Epoch: 684)

(1 row)

See Also

DROP PROJECTION (page 818)

MARK_DESIGN_KSAFE (page 510)

SET_AHM_EPOCH (page 527)

SET_AHM_TIME (page 528)

SET_AHM_EPOCH

Sets the Ancient History Mark (AHM) to the specified epoch. This function allows deleted data up
to and including the AHM epoch to be purged from physical storage.

SET_AHM_EPOCH is normally used for testing purposes. Consider SET_AHM_TIME (page 528)
instead, which is easier to use.

Syntax
SET_AHM_EPOCH (epoch, [true])

Parameters

epoch Specifies one of the following:

 The number of the epoch in which to set the AHM

 Zero (0) (the default) disables purge (page 517)

true Optionally allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the failed

nodes, those nodes must recover all data from scratch. Use with care.

Privileges

Must be a superuser

Notes

If you use SET_AHM_EPOCH , the number of the specified epoch must be:

 Greater than the current AHM epoch

 Less than the current epoch

 Less than or equal to the cluster last good epoch (the minimum of the last good epochs of the
individual nodes in the cluster)

-579-

 SQL Functions

 Less than or equal to the cluster refresh epoch (the minimum of the refresh epochs of the
individual nodes in the cluster)

Use the SYSTEM (page 1111) table to see current values of various epochs related to the AHM;
for example:

=> SELECT * from SYSTEM;

-[RECORD 1]------------+---------------------------

current_timestamp | 2009-08-11 17:09:54.651413

current_epoch | 1512

ahm_epoch | 961

last_good_epoch | 1510

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 41490783

ros_row_count | 1298104

total_used_bytes | 41490783

total_row_count | 1298104

All nodes must be up. You cannot use SET_AHM_EPOCH when any node in the cluster is down,
except by using the optional true parameter.

When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed to
the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they will perform full recovery.

Examples

The following command sets the AHM to a specified epoch of 12:

=> SELECT SET_AHM_EPOCH(12);

The following command sets the AHM to a specified epoch of 2 and allows the AHM to advance
despite a failed node:

=> SELECT SET_AHM_EPOCH(2, true);

See Also

MAKE_AHM_NOW (page 508)

SET_AHM_TIME (page 528)

SYSTEM (page 1111)

-580-

SQL Reference Manual

SET_AHM_TIME

Sets the Ancient History Mark (AHM) to the epoch corresponding to the specified time on the
initiator node. This function allows historical data up to and including the AHM epoch to be purged
from physical storage.

Syntax
SET_AHM_TIME (time , [true])

Parameters

time Is a TIMESTAMP (page 97) value that is automatically converted
to the appropriate epoch number.

true [Optional] Allows the AHM to advance when nodes are down.

Note: If the AHM is advanced after the last good epoch of the

failed nodes, those nodes must recover all data from scratch.

Privileges

Must be a superuser

Notes

 SET_AHM_TIME returns a TIMESTAMP WITH TIME ZONE value representing the end point
of the AHM epoch.

 You cannot change the AHM when any node in the cluster is down, except by using the
optional true parameter.

 When a node is down and you issue SELECT MAKE_AHM_NOW(), the following error is printed
to the vertica.log:

Some nodes were excluded from setAHM. If their LGE is before the AHM they

will perform full recovery.

Examples

Epochs depend on a configured epoch advancement interval. If an epoch includes a three-minute
range of time, the purge operation is accurate only to within minus three minutes of the specified
timestamp:

=> SELECT SET_AHM_TIME('2008-02-27 18:13');

 set_ahm_time

 AHM set to '2008-02-27 18:11:50-05'

(1 row)

Note: The -05 part of the output string is a time zone value, an offset in hours from UTC
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, or GMT).

In the above example, the actual AHM epoch ends at 18:11:50, roughly one minute before the
specified timestamp. This is because SET_AHM_TIME selects the epoch that ends at or before
the specified timestamp. It does not select the epoch that ends after the specified timestamp
because that would purge data deleted as much as three minutes after the AHM.

-581-

 SQL Functions

For example, using only hours and minutes, suppose that epoch 9000 runs from 08:50 to 11:50

and epoch 9001 runs from 11:50 to 15:50. SET_AHM_TIME('11:51') chooses epoch 9000
because it ends roughly one minute before the specified timestamp.

In the next example, if given an environment variable set as date =`date`; the following
command fails if a node is down:

=> SELECT SET_AHM_TIME('$date');

In order to force the AHM to advance, issue the following command instead:

=> SELECT SET_AHM_TIME('$date', true);

See Also

MAKE_AHM_NOW (page 508)

SET_AHM_EPOCH (page 527) for a description of the range of valid epoch numbers.

SET DATESTYLE (page 903) for information about specifying a TIMESTAMP (page 97) value.

License Management Functions

This section contains function that monitor HP Vertica license status and compliance.

AUDIT

Estimates the raw data size of a database, a schema, a projection, or a table as it is counted in an
audit of the database size.

The AUDIT function estimates the size using the same data sampling method as the audit that HP
Vertica performs to determine if a database is compliant with the database size allowances in its
license. The results of this function are not considered when HP Vertica determines whether the
size of the database complies with the HP Vertica license's data allowance. See How HP Vertica
Calculates Database Size in the Administrator's Guide for details.

Note: This function can only audit the size of tables, projections, schemas, and databases

which the user has permission to access. If a non-superuser attempts to audit the entire
database, the audit will only estimate the size of the data that the user is allowed to read.

Syntax
AUDIT([name] [, granularity] [, error_tolerance [, confidence_level]])

Parameters

name Specifies the schema, projection, or table to audit.

Enter name as a string, in single quotes (''). If the
name string is empty (''), the entire database is
audited.

-582-

SQL Reference Manual

granularity Indicates the level at which the audit reports its

results. The recognized levels are:

 'schema'

 'table'

 'projection'

By default, the granularity is the same level as
name. For example, if name is a schema, then the

size of the entire schema is reported. If you instead
specify 'table' as the granularity, AUDIT reports

the size of each table in the schema. The
granularity must be finer than that of object:

specifying 'schema' for an audit of a table has no

effect.

The results of an audit with a granularity are

reported in the V_CATALOG.USER_AUDITS
system table.

error_tolerance Specifies the percentage margin of error allowed in

the audit estimate. Enter the tolerance value as a
decimal number, between 0 and 100. The default
value is 5, for a 5% margin of error.

Note: The lower this value is, the more resources

the audit uses since it will perform more data
sampling. Setting this value to 0 results in a full
audit of the database, which is very resource

intensive, as all of the data in the database is
analyzed. Doing a full audit of the database
significantly impacts performance and is not

recommended on a production database.

confidence_level Specifies the statistical confidence level
percentage of the estimate. Enter the confidence

value as a decimal number, between 0 and 100.
The default value is 99, indicating a confidence
level of 99%.

Note: The higher the confidence value, the more

resources the function uses since it will perform

more data sampling. Setting this value to 1 results
in a full audit of the database, which is very
resource intensive, as all of the database is

analyzed. Doing a full audit of the database
significantly impacts performance and is not
recommended on a production database.

Permissions

 SELECT privilege on table

 USAGE privilege on schema

Note: AUDIT() works only on the tables where the user calling the function has SELECT

permissions.

-583-

 SQL Functions

Notes

Due to the iterative sampling used in the auditing process, making the error tolerance a small
fraction of a percent (0.00001, for example) can cause the AUDIT function to run for a longer
period than a full database audit.

Examples

To audit the entire database:

=> SELECT AUDIT('');

 AUDIT

 76376696

(1 row)

To audit the database with a 25% error tolerance:

=> SELECT AUDIT('',25);

 AUDIT

 75797126

(1 row)

To audit the database with a 25% level of tolerance and a 90% confidence level:

=> SELECT AUDIT('',25,90);

 AUDIT

 76402672

(1 row)

To audit just the online_sales schema in the VMart example database:

VMart=> SELECT AUDIT('online_sales');

 AUDIT

 35716504

(1 row)

To audit the online_sales schema and report the results by table:

=> SELECT AUDIT('online_sales','table');

 AUDIT

--

 See table sizes in v_catalog.user_audits for schema online_sales

(1 row)

=> \x

Expanded display is on.

=> SELECT * FROM user_audits WHERE object_schema = 'online_sales';

-[RECORD 1]-------------------------+------------------------------

size_bytes | 64960

user_id | 45035996273704962

user_name | dbadmin

-584-

SQL Reference Manual

object_id | 45035996273717636

object_type | TABLE

object_schema | online_sales

object_name | online_page_dimension

audit_start_timestamp | 2011-04-05 09:24:48.224081-04

audit_end_timestamp | 2011-04-05 09:24:48.337551-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | f

confidence_interval_lower_bound_bytes | 64960

confidence_interval_upper_bound_bytes | 64960

sample_count | 0

cell_count | 0

-[RECORD 2]-------------------------+------------------------------

size_bytes | 20197

user_id | 45035996273704962

user_name | dbadmin

object_id | 45035996273717640

object_type | TABLE

object_schema | online_sales

object_name | call_center_dimension

audit_start_timestamp | 2011-04-05 09:24:48.340206-04

audit_end_timestamp | 2011-04-05 09:24:48.365915-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | f

confidence_interval_lower_bound_bytes | 20197

confidence_interval_upper_bound_bytes | 20197

sample_count | 0

cell_count | 0

-[RECORD 3]-------------------------+------------------------------

size_bytes | 35614800

user_id | 45035996273704962

user_name | dbadmin

object_id | 45035996273717644

object_type | TABLE

object_schema | online_sales

object_name | online_sales_fact

audit_start_timestamp | 2011-04-05 09:24:48.368575-04

audit_end_timestamp | 2011-04-05 09:24:48.379307-04

confidence_level_percent | 99

error_tolerance_percent | 5

used_sampling | t

confidence_interval_lower_bound_bytes | 34692956

confidence_interval_upper_bound_bytes | 36536644

sample_count | 10000

cell_count | 9000000

-585-

 SQL Functions

AUDIT_LICENSE_SIZE

Triggers an immediate audit of the database size to determine if it is in compliance with the raw
data storage allowance included in your HP Vertica license. The audit is performed in the
background, so this function call returns immediately. To see the results of the audit when it is
done, use the GET_COMPLIANCE_STATUS (page 494) function.

Syntax
AUDIT_LICENSE_SIZE()

Privileges

Must be a superuser

Example
=> SELECT audit_license_size();

 audit_license_size

 Service hurried

(1 row)

AUDIT_LICENSE_TERM

Triggers an immediate audit to determine if the HP Vertica license has expired. The audit happens
in the background, so this function returns immediately. To see the result of the audit, use the
GET_COMPLIANCE_STATUS (page 494) function.

Syntax
AUDIT_LICENSE_TERM()

Privileges

Must be a superuser

Example
=> SELECT AUDIT_LICENSE_TERM();

 AUDIT_LICENSE_TERM

 Service hurried

(1 row)

GET_AUDIT_TIME

Reports the time when the automatic audit of database size occurs. HP Vertica performs this audit
if your HP Vertica license includes a data size allowance. For details of this audit, see Managing
Your License Key in the Administrator's Guide. To change the time the audit runs, use the
SET_AUDIT_TIME (page 530) function.

-586-

SQL Reference Manual

Syntax
GET_AUDIT_TIME()

Privileges

None

Example
=> SELECT get_audit_time();

 get_audit_time

 The audit is scheduled to run at 11:59 PM each day.

(1 row)

GET_COMPLIANCE_STATUS

Displays whether your database is in compliance with your HP Vertica license agreement. This
information includes the results of HP Vertica's most recent audit of the database size (if your
license has a data allowance as part of its terms), and the license term (if your license has an end
date).

The information displayed by GET_COMPLIANCE_STATUS includes:

 The estimated size of the database (see How HP Vertica Calculates Database Size in the
Administrator's Guide for an explanation of the size estimate).

 The raw data size allowed by your HP Vertica license.

 The percentage of your allowance that your database is currently using.

 The date and time of the last audit.

 Whether your database complies with the data allowance terms of your license agreement.

 The end date of your license.

 How many days remain until your license expires.

Note: If your license does not have a data allowance or end date, some of the values may not
appear in the output for GET_COMPLIANCE_STATUS.

If the audit shows your license is not in compliance with your data allowance, you should either
delete data to bring the size of the database under the licensed amount, or upgrade your license.
If your license term has expired, you should contact HP immediately to renew your license. See
Managing Your License Key in the Administrator's Guide for further details.

Syntax
GET_COMPLIANCE_STATUS()

Privileges

None

Example

 GET_COMPLIANCE_STATUS

-587-

 SQL Functions

--

 Raw Data Size: 2.00GB +/- 0.003GB

 License Size : 4.000GB

 Utilization : 50%

 Audit Time : 2011-03-09 09:54:09.538704+00

 Compliance Status : The database is in compliance with respect to raw data size.

 License End Date: 04/06/2011

 Days Remaining: 28.59

(1 row)

DISPLAY_LICENSE

Returns the terms of your HP Vertica license. The information this function displays is:

 The start and end dates for which the license is valid (or "Perpetual" if the license has no
expiration).

 The number of days you are allowed to use HP Vertica after your license term expires (the
grace period)

 The amount of data your database can store, if your license includes a data allowance.

Syntax
DISPLAY_LICENSE()

Privileges

None

Examples
=> SELECT DISPLAY_LICENSE();

 DISPLAY_LICENSE

--

 HP Vertica Systems, Inc.

1/1/2011

12/31/2011

30

50TB

(1 row)

SET_AUDIT_TIME

Sets the time that HP Vertica performs automatic database size audit to determine if the size of the
database is compliant with the raw data allowance in your HP Vertica license. Use this function if
the audits are currently scheduled to occur during your database's peak activity time. This is
normally not a concern, since the automatic audit has little impact on database performance.

-588-

SQL Reference Manual

Note: Audits are scheduled by the preceding audit, so changing the audit time does not
affect the next scheduled audit. For example, if your next audit is scheduled to take place at
11:59PM and you use SET_AUDIT_TIME to change the audit schedule 3AM, the previously
scheduled 11:59PM audit still runs. As that audit finishes, it schedules the next audit to
occur at 3AM.

If you want to prevent the next scheduled audit from running at its scheduled time, you can
change the scheduled time using SET_AUDIT_TIME then manually trigger an audit to run
immediately using AUDIT_LICENSE_SIZE (page 450). As the manually-triggered audit
finishes, it schedules the next audit to occur at the time you set using SET_AUDIT_TIME
(effectively overriding the previously scheduled audit).

Syntax
SET_AUDIT_TIME(time)

time A string containing the time in 'HH:MM AM/PM' format (for example, '1:00

AM') when the audit should run daily.

Privileges

Must be a superuser

Example
=> SELECT SET_AUDIT_TIME('3:00 AM');

 SET_AUDIT_TIME

 The scheduled audit time will be set to 3:00 AM after the next audit.

(1 row)

Partition Management Functions
This section contains partition management functions specific to HP Vertica.

DROP_PARTITION

Forces the partition of projections (if needed) and then drops the specified partition.

Syntax
DROP_PARTITION (table_name , partition_value [, ignore_moveout_errors,

reorganize_data])

Parameters

table-name Specifies the name of the table.

Note: The table_name argument cannot be used as a dimension table

in a pre-joined projection and cannot contain projections that are not
up to date (have not been refreshed).

-589-

 SQL Functions

partition_value The key of the partition to drop. For example:
DROP_PARTITION('trade', 2006);

ignore_moveout_error

s
Optional Boolean, defaults to false.

 true—Ignores any WOS moveout errors and forces the

operation to continue. Set this parameter to true only if there
is no WOS data for the partition.

 false (or omit)—Displays any moveout errors and aborts the

operation on error.

Note: If you set this parameter to true and the WOS includes data for

the partition in WOS, partition data in WOS is not dropped.

reorganize_data Optional Boolean, defaults to false.

 true—Reorganizes the data if it is not organized, and then
drops the partition.

 false—Does not attempt to reorganize the data before

dropping the partition. If this parameter is false and the

function encounters a ROS without partition keys, an error
occurs.

Permissions

 Table owner

 USAGE privilege on schema that contains the table

Notes and Restrictions

The results of a DROP_PARTITION call go into effect immediately. If you drop a partition using
DROP_PARTITION and then try to add data to a partition with the same name, HP Vertica creates
a new partition.

If the operation cannot obtain an O Lock (page 1037) on the table(s), HP Vertica attempts to close
any internal Tuple Mover (TM) sessions running on the same table(s) so that the operation can
proceed. Explicit TM operations that are running in user sessions are not closed. If an explicit TM
operation is running on the table, then the operation cannot proceed until the explicit TM operation
completes.

In general, if a ROS container has data that belongs to n+1 partitions and you want to drop a
specific partition, the DROP_PARTITION operation:

1 Forces the partition of data into two containers where

 One container holds the data that belongs to the partition that is to be dropped.

 Another container holds the remaining n partitions.

2 Drops the specified partition.

You can also use the MERGE_PARTITIONS (page 513) function to merge ROS containers that
have data belonging to partitions in a specified partition key range; for example,
[partitionKeyFrom, partitionKeyTo].

DROP_PARTITION forces a moveout if there is data in the WOS (WOS is not partition aware).

-590-

SQL Reference Manual

DROP_PARTITION acquires an exclusive lock on the table to prevent DELETE | UPDATE |
INSERT | COPY statements from affecting the table, as well as any SELECT statements issued at
SERIALIZABLE isolation level.

You cannot perform a DROP_PARTITION operation on tables with projections that are not up to
date (have not been refreshed).

DROP_PARTITION fails if you do not set the optional third parameter to true and the function
encounters ROS's that do not have partition keys.

Examples

Using the example schema in Defining Partitions, the following command explicitly drops the 2009
partition key from table trade:

 SELECT DROP_PARTITION('trade', 2009);

 DROP_PARTITION

 Partition dropped

(1 row)

Here, the partition key is specified:

SELECT DROP_PARTITION('trade', EXTRACT('year' FROM '2009-01-01'::date));

 DROP_PARTITION

 Partition dropped

(1 row)

The following example creates a table called dates and partitions the table by year:

CREATE TABLE dates (

 year INTEGER NOT NULL,

 month VARCHAR(8) NOT NULL)

PARTITION BY year * 12 + month;

The following statement drops the partition using a constant for Oct 2010 (2010*12 + 10 = 24130):

 SELECT DROP_PARTITION('dates', '24130');

 DROP_PARTITION

 Partition dropped

(1 row)

Alternatively, the expression can be placed in line: SELECT DROP_PARTITION('dates',
2010*12 + 10);

The following command first reorganizes the data if it is unpartitioned and then explicitly drops the
2009 partition key from table trade:

SELECT DROP_PARTITION('trade', 2009, false, true);

 DROP_PARTITION

 Partition dropped

(1 row)

-591-

 SQL Functions

See Also

Dropping Partitions in the Administrator's Guide

ADVANCE EPOCH (page 429)

ALTER PROJECTION (page 659)

COLUMN_STORAGE (page 992)

CREATE TABLE (page 770)

DO_TM_TASK (page 471)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

MERGE_PARTITIONS (page 513)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

PROJECTIONS (page 961)

DUMP_PROJECTION_PARTITION_KEYS

Dumps the partition keys of the specified projection.

Syntax
DUMP_PROJECTION_PARTITION_KEYS('projection_name')

Parameters

projection_name Specifies the name of the projection.

Privileges

 SELECT privilege on table

 USAGE privileges on schema

Example

The following example creates a simple table called states and partitions the data by state:

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

-592-

SQL Reference Manual

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now dump the partition key of the specified projection:

=> SELECT DUMP_PROJECTION_PARTITION_KEYS('states_p_node0001');

Partition keys on node helios_node0001

 Projection 'states_p_node0001'

 No of partition keys: 1

Partition keys on node helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

PROJECTIONS (page 961) system table

Partitioning Tables in the Administrator's Guide

DUMP_TABLE_PARTITION_KEYS

Dumps the partition keys of all projections anchored on the specified table.

Syntax
DUMP_TABLE_PARTITION_KEYS ('table_name')

Parameters

table_name Specifies the name of the table.

Privileges

 SELECT privilege on table

 USAGE privileges on schema

Example

The following example creates a simple table called states and partitions the data by state:

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

-593-

 SQL Functions

=> CREATE PROJECTION states_p (state, year) AS SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now dump the partition keys of all projections anchored on table states:

=> SELECT DUMP_TABLE_PARTITION_KEYS('states');

Partition keys on helios_node0001

Projection 'states_p_node0004'

No of partition keys: 1

Projection 'states_p_node0003'

No of partition keys: 1

Projection 'states_p_node0002'

No of partition keys: 1

Projection 'states_p_node0001'

No of partition keys: 1

Partition keys on helios_node0002

...

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 480)

DUMP_PROJECTION_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

Partitioning Tables in the Administrator's Guide

MERGE_PARTITIONS

Merges ROS containers that have data belonging to partitions in a specified partition key range:
partitionKeyFrom to partitionKeyTo.

Note: This function is deprecated in HP Vertica 7.0.

Syntax

MERGE_PARTITIONS (table_name , partition_key_from , partition_key_to)

 Parameters

table_name Specifies the name of the table

partition_key_from Specifies the start point of the partition

-594-

SQL Reference Manual

partition_key_to Specifies the end point of the partition

Privileges

 Table owner

 USAGE privilege on schema that contains the table

Notes

 You cannot run MERGE_PARTITIONS() on a table with data that is not reorganized. You must

reorganize the data first using ALTER_TABLE table REORGANIZE, or
PARTITION_TABLE(table).

 The edge values are included in the range, and partition_key_from must be less than or
equal to partition_key_to.

 Inclusion of partitions in the range is based on the application of less than(<)/greater than(>)
operators of the corresponding data type.

Note: No restrictions are placed on a partition key's data type.

 If partition_key_from is the same as partition_key_to, all ROS containers of the

partition key are merged into one ROS.

Examples
=> SELECT MERGE_PARTITIONS('T1', '200', '400');

=> SELECT MERGE_PARTITIONS('T1', '800', '800');

=> SELECT MERGE_PARTITIONS('T1', 'CA', 'MA');

=> SELECT MERGE_PARTITIONS('T1', 'false', 'true');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008', '06/07/2008');

=> SELECT MERGE_PARTITIONS('T1', '02:01:10', '04:20:40');

=> SELECT MERGE_PARTITIONS('T1', '06/06/2008 02:01:10', '06/07/2008 02:01:10');

=> SELECT MERGE_PARTITIONS('T1', '8 hours', '1 day 4 hours 20 seconds');

MOVE_PARTITIONS_TO_TABLE

Moves partitions from a source table to a target table. The target table must have the same
projection column definitions, segmentation, and partition expressions as the source table. If the
target table does not exist, the function creates a new table based on the source definition. The
function requires both minimum and maximum range values, indicating what partition values to
move.

Syntax
MOVE_PARTITIONS_TO_TABLE ('[[db-name.]schema.]source_table',

'min_range_value', 'max_range_value', '[[db-name.]schema.]target_table')

Parameters

[[db-name.]schema.

]source_table
The source table (optionally qualified), from which you want

to move partitions.

-595-

 SQL Functions

min_range_value The minimum value in the partition to move.

max_range_value The maximum value of the partition being moved.

target_table The table to which the partitions are being moved.

Privileges

 Table owner

 If target table is created as part of moving partitions, the new table has the same owner as the
target. If the target table exists, user must have own the target table, and have ability to call this
function.

Example

If you call move_partitions_to_table and the destination table does not exist, the function
will create the table automatically:

VMART=> select move_partitions_to_table ('prod_trades', '200801', '200801',

'partn_backup.trades_200801');

 move_partitions_to_table

 1 distinct partition values moved at epoch 15. Effective move epoch: 14.

(1 row)

See Also

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Moving Partitions and Creating a Table Like Another in the Administrator's Guide

PARTITION_PROJECTION

Forces a split of ROS containers of the specified projection.

Syntax
PARTITION_PROJECTION ('[[db-name.]schema.]projection_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional

schema name. Using a database name identifies objects
that are not unique within the current search path (see

-596-

SQL Reference Manual

Setting Search Paths). You must be connected to the

database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example,
you can use a database and a schema name
(mydb.myschema).

projection_name Specifies the name of the projection.

Privileges

 Table owner

 USAGE privilege on schema

Notes

Partitioning expressions take immutable functions only, in order that the same information be
available across all nodes.

PARTITION_PROJECTION() is similar to PARTITION_TABLE (page 516)(), except that
PARTITION_PROJECTION works only on the specified projection, instead of the table.

Users must have USAGE privilege on schema that contains the
table.PARTITION_PROJECTION() purges data while partitioning ROS containers if deletes were
applied before the AHM epoch.

Example

The following command forces a split of ROS containers on the states_p_node01 projection:

=> SELECT PARTITION_PROJECTION ('states_p_node01');

 partition_projection

 Projection partitioned

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_TABLE (page 516)

Partitioning Tables in the Administrator's Guide

-597-

 SQL Functions

PARTITION_TABLE

Forces the system to break up any ROS containers that contain multiple distinct values of the
partitioning expression. Only ROS containers with more than one distinct value participate in the
split.

Syntax
PARTITION_TABLE ('[[db-name.]schema.]table_name')

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional
schema name. Using a database name identifies objects
that are not unique within the current search path (see

Setting Search Paths). You must be connected to the
database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify
database objects as explicitly as required. For example, you
can use a database and a schema name

(mydb.myschema).

table_name Specifies the name of the table.

Privileges

 Table owner

 USAGE privilege on schema

Notes

PARTITION_TABLE is similar to PARTITION_PROJECTION (page 515), except that
PARTITION_TABLE works on the specified table.

Users must have USAGE privilege on schema that contains the table.Partitioning functions take
immutable functions only, in order that the same information be available across all nodes.

Example

The following example creates a simple table called states and partitions data by state.

=> CREATE TABLE states (

 year INTEGER NOT NULL,

 state VARCHAR NOT NULL)

 PARTITION BY state;

=> CREATE PROJECTION states_p (state, year) AS

 SELECT * FROM states

 ORDER BY state, year UNSEGMENTED ALL NODES;

Now issue the command to partition table states:

=> SELECT PARTITION_TABLE('states');

 PARTITION_TABLE

-598-

SQL Reference Manual

partition operation for projection 'states_p_node0004'

partition operation for projection 'states_p_node0003'

partition operation for projection 'states_p_node0002'

partition operation for projection 'states_p_node0001'

(1 row)

See Also

DO_TM_TASK (page 471)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Partitioning Tables in the Administrator's Guide

PURGE_PARTITION

Purges a table partition of deleted rows. Similar to PURGE and PURGE_PROJECTION, this
function removes deleted data from physical storage so that the disk space can be reused. It only
removes data from the AHM epoch and earlier.

Syntax
PURGE_PARTITION ('[[db_name.]schema_name.]table_name', partition_key)

Parameters

[[db_name.]schema_name.] [Optional] Specifies the database name and

optional schema name. Using a database name
identifies objects that are not unique within the
current search path (see Setting Search Paths).

You must be connected to the database you
specify, and you cannot change objects in other
databases.

Specifying different database objects lets you
qualify database objects as explicitly as required.
For example, you can use a database and a

schema name (mydb.myschema).

table_name The name of the partitioned table

partition_key The key of the partition to be purged of deleted
rows

Privileges

 Table owner

 USAGE privilege on schema

-599-

 SQL Functions

Example

The following example lists the count of deleted rows for each partition in a table, then calls
PURGE_PARTITION to purge the deleted rows from the data.

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 2

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

=> SELECT PURGE_PARTITION('t',5); -- Purge partition with key 5.

 purge_partition

--

 Task: merge partitions

(Table: public.t) (Projection: public.t_super)

(1 row)

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 0

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

See Also

PURGE (page 517)

PURGE_PROJECTION (on page 520)

PURGE_TABLE (page 520)

MERGE_PARTITIONS (page 513)

STORAGE_CONTAINERS (page 1098)

-600-

SQL Reference Manual

Profiling Functions

This section contains profiling functions specific to HP Vertica.

CLEAR_PROFILING

HP Vertica stores profiled data is in memory, so depending on how much data you collect, profiling
could be memory intensive. You can use this function to clear profiled data from memory.

Syntax
CLEAR_PROFILING('profiling-type')

Parameters

profiling-type The type of profiling data you want to clear. Can be one of:

 session—clears profiling for basic session
parameters and lock time out data

 query—clears profiling for general information about
queries that ran, such as the query strings used and
the duration of queries

 ee—clears profiling for information about the
execution run of each query

Example

The following statement clears profiled data for queries:

=> SELECT CLEAR_PROFILING('query');

See also

DISABLE_PROFILING (page 469)

ENABLE_PROFILING (page 483)

Profiling Database Performance in the Administrator's Guide

DISABLE_PROFILING

Disables profiling for the profiling type you specify.

Syntax
DISABLE_PROFILING('profiling-type')

-601-

 SQL Functions

Parameters

profiling-type The type of profiling data you want to disable. Can be one of:

 session—disables profiling for basic session
parameters and lock time out data

 query—disables profiling for general information
about queries that ran, such as the query strings
used and the duration of queries

 ee—disables profiling for information about the
execution run of each query

Example

The following statement disables profiling on query execution runs:

=> SELECT DISABLE_PROFILING('ee');

 DISABLE_PROFILING

 EE Profiling Disabled

(1 row)

See also

CLEAR_PROFILING (page 455)

ENABLE_PROFILING (page 483)

Profiling Database Performance in the Administrator's Guide

ENABLE_PROFILING

Enables profiling for the profiling type you specify.

Note: HP Vertica stores profiled data is in memory, so depending on how much data you

collect, profiling could be memory intensive.

Syntax
ENABLE_PROFILING('profiling-type')

Parameters

-602-

SQL Reference Manual

profiling-type The type of profiling data you want to enable. Can be one of:

 session—enables profiling for basic session
parameters and lock time out data

 query—enables profiling for general information
about queries that ran, such as the query strings
used and the duration of queries

 ee—enables profiling for information about the
execution run of each query

Example

The following statement enables profiling on query execution runs:

=> SELECT ENABLE_PROFILING('ee');

 ENABLE_PROFILING

 EE Profiling Enabled

(1 row)

See also

CLEAR_PROFILING (page 455)

DISABLE_PROFILING (page 469)

Profiling Database Performance in the Administrator's Guide

Projection Management Functions
This section contains projection management functions specific to HP Vertica.

See also the following SQL system tables:

 V_CATALOG.PROJECTIONS (page 961)

 V_CATALOG.PROJECTION_COLUMNS (page 955)

 V_MONITOR.PROJECTION_REFRESHES (page 1056)

 V_MONITOR.PROJECTION_STORAGE (page 1059)

EVALUATE_DELETE_PERFORMANCE

Evaluates projections for potential DELETE (page 807) performance issues. If there are issues
found, a warning message is displayed. For steps you can take to resolve delete and update
performance issues, see Optimizing Deletes and Updates for Performance in the Administrator's
Guide. This function uses data sampling to determine whether there are any issues with a
projection. Therefore, it does not generate false-positives warnings, but it can miss some cases
where there are performance issues.

Note: Optimizing for delete performance is the same as optimizing for update performance. So,

you can use this function to help optimize a projection for updates as well as deletes.

-603-

 SQL Functions

Syntax
EVALUATE_DELETE_PERFORMANCE ('target')

Parameters

target The name of a projection or table. If you supply the name of a projection,

only that projection is evaluated for DELETE performance issues. If you
supply the name of a table, then all of the projections anchored to the
table will be evaluated for issues.

If you do not provide a projection or table name,
EVALUATE_DELETE_PERFORMANCE examines all of the projections
that you can access for DELETE performance issues. Depending on the

size you your database, this may take a long time.

Privileges

None

Note: When evaluating multiple projections, EVALUATE_DELETE_PERFORMANCE reports

up to ten projections that have issues, and refers you to a table that contains the full list of
issues it has found.

Example

The following example demonstrates how you can use EVALUATE_DELETE_PERFORMANCE
to evaluate your projections for slow DELETE performance.

=> create table example (A int, B int,C int);

CREATE TABLE

=> create projection one_sort (A,B,C) as (select A,B,C from example) order by A;

CREATE PROJECTION

=> create projection two_sort (A,B,C) as (select A,B,C from example) order by A,B;

CREATE PROJECTION

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The previous example showed that there was no structural issue with the projection that would
cause poor DELETE performance. However, the data contained within the projection can create
potential delete issues if the sorted columns do not uniquely identify a row or small number of
rows. In the following example, Perl is used to populate the table with data using a nested series of
loops. The inner loop populates column C, the middle loop populates column B, and the outer loop
populates column A. The result is column A contains only three distinct values (0, 1, and 2), while
column B slowly varies between 20 and 0 and column C changes in each row.
EVALUATE_DELETE_PERFORMANCE is run against the projections again to see if the data
within the projections causes any potential DELETE performance issues.

=> \! perl -e 'for ($i=0; $i<3; $i++) { for ($j=0; $j<21; $j++) { for ($k=0; $k<19; $k++) { printf

"%d,%d,%d\n", $i,$j,$k;}}}' | /opt/vertica/bin/vsql -c "copy example from stdin delimiter ',' direct;"

-604-

SQL Reference Manual

Password:

=> select * from example;

 A | B | C

---+----+----

 0 | 20 | 18

 0 | 20 | 17

 0 | 20 | 16

 0 | 20 | 15

 0 | 20 | 14

 0 | 20 | 13

 0 | 20 | 12

 0 | 20 | 11

 0 | 20 | 10

 0 | 20 | 9

 0 | 20 | 8

 0 | 20 | 7

 0 | 20 | 6

 0 | 20 | 5

 0 | 20 | 4

 0 | 20 | 3

 0 | 20 | 2

 0 | 20 | 1

 0 | 20 | 0

 0 | 19 | 18

 1157 rows omitted

 2 | 1 | 0

 2 | 0 | 18

 2 | 0 | 17

 2 | 0 | 16

 2 | 0 | 15

 2 | 0 | 14

 2 | 0 | 13

 2 | 0 | 12

 2 | 0 | 11

 2 | 0 | 10

 2 | 0 | 9

 2 | 0 | 8

 2 | 0 | 7

 2 | 0 | 6

 2 | 0 | 5

 2 | 0 | 4

 2 | 0 | 3

 2 | 0 | 2

 2 | 0 | 1

 2 | 0 | 0

=> SELECT COUNT (*) FROM example;

 COUNT

 1197

(1 row)

=> SELECT COUNT (DISTINCT A) FROM example;

 COUNT

 3

(1 row)

=> select evaluate_delete_performance('one_sort');

 evaluate_delete_performance

 Projection exhibits delete performance concerns.

(1 row)

-605-

 SQL Functions

release=> select evaluate_delete_performance('two_sort');

 evaluate_delete_performance

 No projection delete performance concerns found.

(1 row)

The one_sort projection has potential delete issues since it only sorts on column A which has few
distinct values. This means that each value in the sort column corresponds to many rows in the
projection, which negatively impacts DELETE performance. Since the two_sort projection is
sorted on columns A and B, each combination of values in the two sort columns identifies just a
few rows, allowing deletes to be performed faster.

Not supplying a projection name results in all of the projections you can access being evaluated
for DELETE performance issues.

=> select evaluate_delete_performance();

 evaluate_delete_performance

 The following projection exhibits delete performance concerns:

 "public"."one_sort"

See v_catalog.projection_delete_concerns for more details.

(1 row)

GET_PROJECTION_STATUS

Returns information relevant to the status of a projection.

Syntax
GET_PROJECTION_STATUS ('[[db-name.]schema-name.]projection');

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

projection Is the name of the projection for which to display status. When
using more than one schema, specify the schema that contains
the projection, as noted above.

Privileges

None

-606-

SQL Reference Manual

Description

GET_PROJECTION_STATUS returns information relevant to the status of a projection:

 The current K-safety status of the database

 The number of nodes in the database

 Whether the projection is segmented

 The number and names of buddy projections

 Whether the projection is safe

 Whether the projection is up-to-date

 Whether statistics have been computed for the projection

Notes

 You can use GET_PROJECTION_STATUS to monitor the progress of a projection data
refresh. See ALTER PROJECTION (page 659).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples
=> SELECT GET_PROJECTION_STATUS('public.customer_dimension_site01');

 GET_PROJECTION_STATUS

 Current system K is 1.

of Nodes: 4.

public.customer_dimension_site01 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_site04, public.customer_dimension_site03,

public.customer_dimension_site02] [Safe: Yes] [UptoDate: Yes][Stats: Yes]

See Also

ALTER PROJECTION (page 659)

GET_PROJECTIONS (page 499)

GET_PROJECTIONS, GET_TABLE_PROJECTIONS

Note: This function was formerly named GET_TABLE_PROJECTIONS(). HP Vertica still
supports the former function name.

Returns information relevant to the status of a table:

 The current K-safety status of the database

 The number of sites (nodes) in the database

 The number of projections for which the specified table is the anchor table

 For each projection:

 The projection's buddy projections

 Whether the projection is segmented

 Whether the projection is safe

 Whether the projection is up-to-date

-607-

 SQL Functions

Syntax
GET_PROJECTIONS ('[[db-name.]schema-name.]table')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional

schema name. Using a database name identifies objects
that are not unique within the current search path (see
Setting Search Paths). You must be connected to the

database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example,
you can use a database and a schema name
(mydb.myschema).

table Is the name of the table for which to list projections. When
using more than one schema, specify the schema that
contains the table.

Privileges

None

Notes

 You can use GET_PROJECTIONS to monitor the progress of a projection data refresh. See
ALTER PROJECTION (page 659).

 To view a list of the nodes in a database, use the View Database Command in the
Administration Tools.

Examples

The following example gets information about the store_dimension table in the VMart schema:

=> SELECT GET_PROJECTIONS('store.store_dimension');

--

Current system K is 1.

of Nodes: 4.

Table store.store_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy Projections] [Safe] [UptoDate]

--

store.store_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0003,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0002, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

store.store_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3] [store.store_dimension_node0004,

store.store_dimension_node0003, store.store_dimension_node0002] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

(1 row)

-608-

SQL Reference Manual

See Also

ALTER PROJECTION (page 659)

GET_PROJECTION_STATUS (page 498)

REFRESH

Performs a synchronous, optionally-targeted refresh of a specified table's projections.

Information about a refresh operation—whether successful or unsuccessful—is maintained in the
PROJECTION_REFRESHES (page 1056) system table until either the
CLEAR_PROJECTION_REFRESHES (page 455)() function is executed or the storage quota for

the table is exceeded. The PROJECTION_REFRESHES.IS_EXECUTING column returns a
boolean value that indicates whether the refresh is currently running (t) or occurred in the past (f).

Syntax
REFRESH ('[[db-name.]schema.]table_name [, ...]')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

table_name Specifies the name of a specific table containing the projections
to be refreshed. The REFRESH() function attempts to refresh
all the tables provided as arguments in parallel. Such calls will

be part of the Database Designer deployment (and deployment
script).

When using more than one schema, specify the schema that

contains the table, as noted above.

Returns

Column Name Description

Projection Name The name of the projection that is targeted for refresh.

Anchor Table The name of the projection's associated anchor table.

Status The status of the projection:

 Queued — Indicates that a projection is queued for
refresh.

 Refreshing — Indicates that a refresh for a projection is

-609-

 SQL Functions

in process.

 Refreshed — Indicates that a refresh for a projection
has successfully completed.

 Failed — Indicates that a refresh for a projection did not
successfully complete.

Refresh Method The method used to refresh the projection:

 Buddy – Uses the contents of a buddy to refresh the
projection. This method maintains historical data. This
enables the projection to be used for historical queries.

 Scratch – Refreshes the projection without using a

buddy. This method does not generate historical data.
This means that the projection cannot participate in
historical queries from any point before the projection
was refreshed.

Error Count The number of times a refresh failed for the projection.

Duration (sec) The length of time that the projection refresh ran in seconds.

Privileges

REFRESH() works only if invoked on tables owned by the calling user.

Notes

 Unlike START_REFRESH(), which runs in the background, REFRESH() runs in the
foreground of the caller's session.

 The REFRESH() function refreshes only the projections in the specified table.

 If you run REFRESH() without arguments, it refreshes all non up-to-date projections. If the
function returns a header string with no results, then no projections needed refreshing.

Example

The following command refreshes the projections in tables t1 and t2:

=> SELECT REFRESH('t1, t2');

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"public"."t1_p": [t1] [refreshed] [scratch] [0] [0]

"public"."t2_p": [t2] [refreshed] [scratch] [0] [0]

This next command shows that only the projection on table t was refreshed:

=> SELECT REFRESH('allow, public.deny, t');"

refresh
--

 Refresh completed with the following outcomes:
Projection Name: [Anchor Table] [Status] [Refresh Method] [Error Count] [Duration (sec)]

--

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "allow"] [] [1] [0]

"n/a"."n/a": [n/a] [failed: insufficient permissions on table "public.deny"] [] [1] [0]

"public"."t_p1": [t] [refreshed] [scratch] [0] [0]

-610-

SQL Reference Manual

See Also

CLEAR_PROJECTION_REFRESHES (page 455)

PROJECTION_REFRESHES (page 1056)

START_REFRESH (page 538)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

START_REFRESH

Transfers data to projections that are not able to participate in query execution due to missing or
out-of-date data.

Syntax
START_REFRESH()

Notes

 When a design is deployed through the Database Designer, it is automatically refreshed. See
Deploying Designs in the Administrator's Guide.

 All nodes must be up in order to start a refresh.

 START_REFRESH() has no effect if a refresh is already running.

 A refresh is run asynchronously.

 Shutting down the database ends the refresh.

 To view the progress of the refresh, see the PROJECTION_REFRESHES (page 1056) and
PROJECTIONS (page 961) system tables.

 If a projection is updated from scratch, the data stored in the projection represents the table
columns as of the epoch in which the refresh commits. As a result, the query optimizer might
not choose the new projection for AT EPOCH queries that request historical data at epochs
older than the refresh epoch of the projection. Projections refreshed from buddies retain
history and can be used to answer historical queries.

Privileges

None

Example

The following command starts the refresh operation:

=> SELECT START_REFRESH();

 start_refresh

--

 Starting refresh background process.

See Also

CLEAR_PROJECTION_REFRESHES (page 455)

MARK_DESIGN_KSAFE (page 510)

-611-

 SQL Functions

PROJECTION_REFRESHES (page 1056)

PROJECTIONS (page 961)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

Purge Functions

This section contains purge functions specific to HP Vertica.

PURGE

Purges all projections in the physical schema. Permanently removes deleted data from physical
storage so that the disk space can be reused. You can purge historical data up to and including the
epoch in which the Ancient History Mark is contained.

Syntax
PURGE()

Privileges

 Table owner

 USAGE privilege on schema

Note

 PURGE() was formerly named PURGE_ALL_PROJECTIONS. HP Vertica supports both
function calls.

Caution: PURGE could temporarily take up significant disk space while the data is being

purged.

See Also

MERGE_PARTITIONS (page 513)

PARTITION_TABLE (page 516)

PURGE_PROJECTION (page 520)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

-612-

SQL Reference Manual

PURGE_PARTITION

Purges a table partition of deleted rows. Similar to PURGE and PURGE_PROJECTION, this
function removes deleted data from physical storage so that the disk space can be reused. It only
removes data from the AHM epoch and earlier.

Syntax
PURGE_PARTITION ('[[db_name.]schema_name.]table_name', partition_key)

Parameters

[[db_name.]schema_name.] [Optional] Specifies the database name and

optional schema name. Using a database name
identifies objects that are not unique within the
current search path (see Setting Search Paths).

You must be connected to the database you
specify, and you cannot change objects in other
databases.

Specifying different database objects lets you
qualify database objects as explicitly as required.
For example, you can use a database and a

schema name (mydb.myschema).

table_name The name of the partitioned table

partition_key The key of the partition to be purged of deleted
rows

Privileges

 Table owner

 USAGE privilege on schema

Example

The following example lists the count of deleted rows for each partition in a table, then calls
PURGE_PARTITION to purge the deleted rows from the data.

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 2

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

=> SELECT PURGE_PARTITION('t',5); -- Purge partition with key 5.

-613-

 SQL Functions

 purge_partition

--

 Task: merge partitions

(Table: public.t) (Projection: public.t_super)

(1 row)

=> SELECT partition_key,table_schema,projection_name,sum(deleted_row_count) AS deleted_row_count

FROM partitions

-> GROUP BY partition_key,table_schema,projection_name ORDER BY partition_key;

 partition_key | table_schema | projection_name | deleted_row_count

---------------+--------------+-----------------+-------------------

 0 | public | t_super | 2

 1 | public | t_super | 2

 2 | public | t_super | 2

 3 | public | t_super | 2

 4 | public | t_super | 2

 5 | public | t_super | 0

 6 | public | t_super | 2

 7 | public | t_super | 2

 8 | public | t_super | 2

 9 | public | t_super | 1

(10 rows)

See Also

PURGE (page 517)

PURGE_PROJECTION (on page 520)

PURGE_TABLE (page 520)

MERGE_PARTITIONS (page 513)

STORAGE_CONTAINERS (page 1098)

PURGE_PROJECTION

Purges the specified projection. Permanently removes deleted data from physical storage so that
the disk space can be reused. You can purge historical data up to and including the epoch in which
the Ancient History Mark is contained.

Caution: PURGE_PROJECTION could temporarily take up significant disk space while

purging the data.

Syntax
PURGE_PROJECTION ('[[db-name.]schema.]projection_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.

Using a database name identifies objects that are not unique within
the current search path (see Setting Search Paths). You must be
connected to the database you specify, and you cannot change

objects in other databases.

Specifying different database objects lets you qualify database

-614-

SQL Reference Manual

objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

projection_name Identifies the projection name. When using more than one schema,
specify the schema that contains the projection, as noted above.

Privileges

 Table owner

 USAGE privilege on schema

Notes

See PURGE (page 517) for notes about the outcome of purge operations.

See Also

MERGE_PARTITIONS (page 513)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

PURGE_TABLE

Note: This function was formerly named PURGE_TABLE_PROJECTIONS(). HP Vertica still
supports the former function name.

Purges all projections of the specified table. You cannot use this function to purge temporary
tables. Permanently removes deleted data from physical storage so that the disk space can be
reused. You can purge historical data up to and including the epoch in which the Ancient History
Mark is contained.

Syntax
PURGE_TABLE ('[[db-name.]schema.]table_name')

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional

schema name. Using a database name identifies objects
that are not unique within the current search path (see
Setting Search Paths). You must be connected to the

database you specify, and you cannot change objects in
other databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example,
you can use a database and a schema name
(mydb.myschema).

table_name Specifies the table to purge.

-615-

 SQL Functions

Privileges

 Table owner

 USAGE privilege on schema

Caution: PURGE_TABLE could temporarily take up significant disk space while the data is
being purged.

Example

The following example purges all projections for the store sales fact table located in the Vmart
schema:

=> SELECT PURGE_TABLE('store.store_sales_fact');

See Also

PURGE (page 517) for notes about the outcome of purge operations.

MERGE_PARTITIONS (page 513)

PURGE_TABLE (page 520)

STORAGE_CONTAINERS (page 1098)

Purging Deleted Data in the Administrator's Guide

Session Management Functions

This section contains session management functions specific to HP Vertica.

See also the SQL system table V_MONITOR.SESSIONS (page 1095)

CANCEL_REFRESH

Cancels refresh-related internal operations initiated by START_REFRESH().

Syntax
CANCEL_REFRESH()

Privileges

None

Notes

 Refresh tasks run in a background thread in an internal session, so you cannot use
INTERRUPT_STATEMENT (page 503) to cancel those statements. Instead, use
CANCEL_REFRESH to cancel statements that are run by refresh-related internal sessions.

 Run CANCEL_REFRESH() on the same node on which START_REFRESH() was initiated.

 CANCEL_REFRESH() cancels the refresh operation running on a node, waits for the
cancelation to complete, and returns SUCCESS.

-616-

SQL Reference Manual

 Only one set of refresh operations runs on a node at any time.

See Also

INTERRUPT_STATEMENT (page 503)

SESSIONS (page 1095)

START_REFRESH (page 538)

PROJECTION_REFRESHES (page 1056)

CLOSE_ALL_SESSIONS

Closes all external sessions except the one issuing the CLOSE_ALL_SESSIONS functions.

Syntax
CLOSE_ALL_SESSIONS()

Privileges

None; however, a non-superuser can only close his or her own session.

Notes

Closing of the sessions is processed asynchronously. It might take some time for the session to be
closed. Check the SESSIONS (page 1095) table for the status.

Database shutdown is prevented if new sessions connect after the CLOSE_SESSION or
CLOSE_ALL_SESSIONS() command is invoked (and before the database is actually shut down).
See Controlling Sessions below.

Message
close_all_sessions | Close all sessions command sent.

Check SESSIONS for progress.

Examples

Two user sessions opened, each on a different node:

vmartdb=> SELECT * FROM sessions;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

-617-

 SQL Functions

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/mart_Fact.tbl'

 DELIMITER '|' NULL '\\n';)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n';

ssl_state | None

authentication_method | Trust

-[RECORD 3

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id |

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close all sessions:

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_ALL_SESSIONS();

-618-

SQL Reference Manual

 CLOSE_ALL_SESSIONS

 Close all sessions command sent. Check v_monitor.sessions for progress.

(1 row)

Sessions contents after issuing the CLOSE_ALL_SESSIONS() command:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 16:19:56.720071

statement_id | 25

last_statement_duration_us | 15605

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the
database to shut down and disallow new connections. See SHUTDOWN (page 535) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in
order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the
V_MONITOR.CONFIGURATIONS_PARAMETERS (page 996) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

-619-

 SQL Functions

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop
Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_SESSION (page 458)

CONFIGURATION_PARAMETERS (page 996)

SHUTDOWN (page 535)

V_MONITOR.SESSIONS (page 1095)

Managing Sessions and Configuration Parameters in the Administrator's Guide

CLOSE_SESSION

Interrupts the specified external session, rolls back the current transaction, if any, and closes the
socket.

Syntax
CLOSE_SESSION ('sessionid')

Parameters

sessionid A string that specifies the session to close. This identifier is unique

within the cluster at any point in time but can be reused when the
session closes.

Privileges

None; however, a non-superuser can only close his or her own session.

Notes

 Closing of the session is processed asynchronously. It could take some time for the session to
be closed. Check the SESSIONS (page 1095) table for the status.

 Database shutdown is prevented if new sessions connect after the CLOSE_SESSION()
command is invoked (and before the database is actually shut down. See Controlling
Sessions below.

Messages

The following are the messages you could encounter:

-620-

SQL Reference Manual

 For a badly formatted sessionID

close_session | Session close command sent. Check SESSIONS for progress.

Error: invalid Session ID format

 For an incorrect sessionID parameter

Error: Invalid session ID or statement key

Examples

User session opened. RECORD 2 shows the user session running COPY DIRECT statement.

vmartdb=> SELECT * FROM sessions;

-[RECORD 1]--------------+---

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (SELECT * FROM sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2]--------------+---

node_name | v_vmartdb_node0002

user_name | dbadmin

client_hostname | 127.0.0.1:57174

client_pid | 30117

login_timestamp | 2011-01-03 15:33:00.842021-05

session_id | stress05-27944:0xc1a

client_label |

transaction_start | 2011-01-03 15:34:46.538102

transaction_id | -1

transaction_description | user dbadmin (COPY ClickStream_Fact FROM

 '/data/clickstream/1g/ClickStream_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:34:46.538862

statement_id |

last_statement_duration_us | 26250

current_statement | COPY ClickStream_Fact FROM '/data/clickstream

 /1g/ClickStream_Fact.tbl' DELIMITER '|' NULL

 '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Close user session stress05-27944:0xc1a

vmartdb=> \x

Expanded display is off.

vmartdb=> SELECT CLOSE_SESSION('stress05-27944:0xc1a');

-621-

 SQL Functions

 CLOSE_SESSION

--

 Session close command sent. Check v_monitor.sessions for progress.

(1 row)

Query the sessions table again for current status, and you can see that the second session has
been closed:

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from SESSIONS;)

statement_start | 2011-01-03 16:12:07.841298

statement_id | 20

last_statement_duration_us | 2099

current_statement | SELECT * FROM SESSIONS;

ssl_state | None

authentication_method | Trust

Controlling Sessions

The database administrator must be able to disallow new incoming connections in order to shut
down the database. On a busy system, database shutdown is prevented if new sessions connect
after the CLOSE_SESSION or CLOSE_ALL_SESSIONS() command is invoked — and before the
database actually shuts down.

One option is for the administrator to issue the SHUTDOWN('true') command, which forces the
database to shut down and disallow new connections. See SHUTDOWN (page 535) in the SQL
Reference Manual.

Another option is to modify the MaxClientSessions parameter from its original value to 0, in
order to prevent new non-dbadmin users from connecting to the database.

1 Determine the original value for the MaxClientSessions parameter by querying the
V_MONITOR.CONFIGURATIONS_PARAMETERS (page 996) system table:

=> SELECT CURRENT_VALUE FROM CONFIGURATION_PARAMETERS WHERE

parameter_name='MaxClientSessions';

 CURRENT_VALUE

 50

(1 row)

2 Set the MaxClientSessions parameter to 0 to prevent new non-dbadmin connections:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 0);

-622-

SQL Reference Manual

Note: The previous command allows up to five administrators to log in.

3 Issue the CLOSE_ALL_SESSIONS() command to remove existing sessions:

=> SELECT CLOSE_ALL_SESSIONS();

4 Query the SESSIONS table:

=> SELECT * FROM SESSIONS;

When the session no longer appears in the SESSIONS table, disconnect and run the Stop
Database command.

5 Restart the database.

6 Restore the MaxClientSessions parameter to its original value:

=> SELECT SET_CONFIG_PARAMETER('MaxClientSessions', 50);

See Also

CLOSE_ALL_SESSIONS (page 461), CONFIGURATION_PARAMETERS (page 996),
SESSIONS (page 1095), SHUTDOWN (page 535)

Managing Sessions and Configuration Parameters in the Administrator's Guide

GET_NUM_ACCEPTED_ROWS

Returns the number of rows loaded into the database for the last completed load for the current
session. GET_NUM_ACCEPTED_ROWS is a meta-function. Do not use it as a value in an
INSERT query.

The number of accepted rows is not available for a load that is currently in process. Check the
LOAD_STREAMS (page 1031) system table for its status.

Also, this meta-function supports only loads from STDIN or a single file on the initiator. You cannot
use GET_NUM_ACCEPTED_ROWS for multi-node loads.

Syntax
GET_NUM_ACCEPTED_ROWS();

Privileges

None

NOTE: The data regarding accepted rows from the last load during the current session does

not persist, and is lost when you initiate a new load.

See Also

GET_NUM_REJECTED_ROWS (page 498)

-623-

 SQL Functions

GET_NUM_REJECTED_ROWS

Returns the number of rows that were rejected during the last completed load for the current
session. GET_NUM_REJECTED_ROWS is a meta-function. Do not use it as a value in an
INSERT query.

Rejected row information is unavailable for a load that is currently running. The number of rejected
rows is not available for a load that is currently in process. Check the LOAD_STREAMS (page
1031) system table for its status.

Also, this meta-function supports only loads from STDIN or a single file on the initiator. You cannot
use GET_NUM_REJECTED_ROWS for multi-node loads.

Syntax
GET_NUM_REJECTED_ROWS();

Privileges

None

Note: The data regarding rejected rows from the last load during the current session does not

persist, and is dropped when you initiate a new load.

See Also

GET_NUM_ACCEPTED_ROWS (page 497)

INTERRUPT_STATEMENT

Interrupts the specified statement (within an external session), rolls back the current transaction,
and writes a success or failure message to the log file.

Syntax
INTERRUPT_STATEMENT('session_id ', statement_id)

Parameters

session_id Specifies the session to interrupt. This identifier is unique within
the cluster at any point in time.

statement_id Specifies the statement to interrupt

Privileges

Must be a superuser

Notes

 Only statements run by external sessions can be interrupted.

 Sessions can be interrupted during statement execution.

-624-

SQL Reference Manual

 If the statement_id is valid, the statement is interruptible. The command is successfully sent
and returns a success message. Otherwise the system returns an error.

Messages

The following list describes messages you might encounter:

Message Meaning

Statement interrupt sent. Check

 SESSIONS for progress.

This message indicates success.

Session <id> could not be successfully

interrupted: session

not found.

The session ID argument to the interrupt

command does not match a running session.

Session <id> could not be successfully

interrupted: statement

 not found.

The statement ID does not match (or no longer

matches) the ID of a running statement (if any).

No interruptible statement running The statement is DDL or otherwise
non-interruptible.

Internal (system) sessions cannot

be interrupted.

The session is internal, and only statements run
by external sessions can be interrupted.

Examples

Two user sessions are open. RECORD 1 shows user session running SELECT FROM SESSION,
and RECORD 2 shows user session running COPY DIRECT:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

user_name | dbadmin

-625-

 SQL Functions

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement | COPY Mart_Fact FROM '/data/Mart_Fact.tbl' DELIMITER

'|'

 NULL '\\n' DIRECT;

ssl_state | None

authentication_method | Trust

Interrupt the COPY DIRECT statement running in stress06-25663:0xbec:

=> \x

Expanded display is off.

=> SELECT INTERRUPT_STATEMENT('stress06-25663:0x1537', 5);

 interrupt_statement

--

 Statement interrupt sent. Check v_monitor.sessions for progress.

(1 row)

Verify that the interrupted statement is no longer active by looking at the current_statement
column in the SESSIONS system table. This column becomes blank when the statement has
been interrupted:

=> SELECT * FROM SESSIONS;

-[RECORD 1

]--------------+--

node_name | v_vmartdb_node0001

user_name | dbadmin

client_hostname | 127.0.0.1:52110

client_pid | 4554

login_timestamp | 2011-01-03 14:05:40.252625-05

session_id | stress04-4325:0x14

client_label |

transaction_start | 2011-01-03 14:05:44.325781

transaction_id | 45035996273728326

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2011-01-03 15:36:13.896288

statement_id | 10

last_statement_duration_us | 14978

current_statement | select * from sessions;

ssl_state | None

authentication_method | Trust

-[RECORD 2

]--------------+--

node_name | v_vmartdb_node0003

-626-

SQL Reference Manual

user_name | dbadmin

client_hostname | 127.0.0.1:56367

client_pid | 1191

login_timestamp | 2011-01-03 15:31:44.939302-05

session_id | stress06-25663:0xbec

client_label |

transaction_start | 2011-01-03 15:34:51.05939

transaction_id | 54043195528458775

transaction_description | user dbadmin (COPY Mart_Fact FROM

'/data/Mart_Fact.tbl'

 DELIMITER '|' NULL '\\n' DIRECT;)

statement_start | 2011-01-03 15:35:46.436748

statement_id | 5

last_statement_duration_us | 1591403

current_statement |

ssl_state | None

authentication_method | Trust

See Also

SESSIONS (page 1095)

Managing Sessions and Configuration Parameters in the Administrator's Guide

Statistic Management Functions

This section contains statistic management functions specific to HP Vertica.

ANALYZE_HISTOGRAM

Collects and aggregates data samples and storage information from all nodes that store
projections associated with the specified table or column.

If the function returns successfully (0), HP Vertica writes the returned statistics to the catalog. The
query optimizer uses this collected data to recommend the best possible plan to execute a query.
Without analyzing table statistics, the query optimizer would assume uniform distribution of data
values and equal storage usage for all projections.

ANALYZE_HISTOGRAM is a DDL operation that auto-commits the current transaction, if any. The
ANALYZE_HISTOGRAM function reads a variable amount of disk contents to aggregate sample
data for statistical analysis. Use the function's percent float parameter to specify the total disk
space from which HP Vertica collects sample data. The ANALYZE_STATISTICS (page 440)
function returns similar data, but uses a fixed disk space amount (10 percent). Analyzing more
than 10 percent disk space takes proportionally longer to process, but produces a higher level of
sampling accuracy. ANALYZE_HISTOGRAM is supported on local temporary tables, but not on
global temporary tables.

Syntax
ANALYZE_HISTOGRAM ('')

... | ('[[db-name.]schema.]table [.column-name]' [, percent])

-627-

 SQL Functions

Return value

0 - For success. If an error occurs, refer to vertica.log for details.

Parameters

'' Empty string. Collects statistics for all tables.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name, but

you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

table Specifies the name of the table and collects statistics for all

projections of that table. If you are using more than one schema,
specify the schema that contains the projection, as noted in the
[[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column, typically a
predicate column. Using this option with a table specification lets
you collect statistics for only that column.

Note: If you alter a table to add or drop a column, or add a new

column to a table and populate its contents with either default or

other values, HP Vertica recommends calling this function on the
new table column to get the most current statistics.

percent [Optional] Specifies what percentage of data to read from disk

(not the amount of data to analyze). Specify a float from 1 – 100,
such as 33.3. By default, the function reads 10% of the table
data from disk.

For more information, see Collecting Statistics in the
Administrator's Guide.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Use the HP Vertica statistics functions as follows:

Use this function... To obtain...

ANALYZE_STATISTIC
S (page 440)

A fixed-size statistical data sampling (10 percent per
disk). This function returns results quickly, but is less

-628-

SQL Reference Manual

accurate than using ANALYZE_HISTOGRAM to get a

larger sampling of disk data.

ANALYZE_HISTOGRA
M (page 437)

A specified percentage of disk data sampling (from 1 -
100). If you analyze more than 10 percent data per disk,

this function is more accurate than
ANALYZE_STATISTICS, but requires proportionately
longer to return statistics.

Analyzing Results

To retrieve hints about under-performing queries and the associated root causes, use the
ANALYZE_WORKLOAD (page 443) function. This function runs the Workload Analyzer and
returns tuning recommendations, such as "run analyze_statistics on

schema.table.column". You or your database administrator should act upon the tuning
recommendations.

You can also find database tuning recommendations on the Management Console.

Canceling ANALYZE_HISTOGRAM

You can cancel this function mid-analysis by issuing CTRL-C in a vsql shell or by invoking the
INTERRUPT_STATEMENT() (page 503) function.

Notes

By default, HP Vertica analyzes more than one column (subject to resource limits) in a
single-query execution plan to:

 Reduce plan execution latency

 Help speed up analysis of relatively small tables that have a large number of columns

Examples

In this example, the ANALYZE_STATISTICS() function reads 10 percent of the disk data. This is
the static default value for this function. The function returns 0 for success:

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

 ANALYZE_STATISTICS

 0

(1 row)

This example uses ANALYZE_HISTOGRAM () without specifying a percentage value. Since this
function has a default value of 10 percent, it returns the identical data as the
ANALYZE_STATISTICS() function, and returns 0 for success:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key');

 ANALYZE_HISTOGRAM

 0

(1 row)

This example uses ANALYZE_HISTOGRAM (), specifying its percent parameter as 100,
indicating it will read the entire disk to gather data. After the function performs a full column scan,
it returns 0 for success:

-629-

 SQL Functions

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 100);

 ANALYZE_HISTOGRAM

 0

(1 row)

In this command, only 0.1% (1/1000) of the disk is read:

=> SELECT ANALYZE_HISTOGRAM('shipping_dimension.shipping_key', 0.1);

 ANALYZE_HISTOGRAM

 0

(1 row)

See Also

ANALYZE_STATISTICS (page 440)

ANALYZE_WORKLOAD (page 443)

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

IMPORT_STATISTICS (page 502)

INTERRUPT_STATEMENT (page 503)

Collecting Statistics in the Administrator's Guide

ANALYZE_STATISTICS

Collects and aggregates data samples and storage information from all nodes that store
projections associated with the specified table or column.

If the function returns successfully (0), HP Vertica writes the returned statistics to the catalog. The
query optimizer uses this collected data to recommend the best possible plan to execute a query.
Without analyzing table statistics, the query optimizer would assume uniform distribution of data
values and equal storage usage for all projections.

ANALYZE_STATISTICS is a DDL operation that auto-commits the current transaction, if any. The
ANALYZE_STATISTICS function reads a fixed, 10 percent of disk contents to aggregate sample
data for statistical analysis. To obtain a larger (or smaller) data sampling, use the
ANALYZE_HISTOGRAM (page 437) function, which lets you specify the percent of disk to read.
Analyzing more that 10 percent disk space takes proportionally longer to process, but results in a
higher level of sampling accuracy. ANALYZE_STATISTICS (page 440) is supported on local
temporary tables, but not on global temporary tables.

Syntax
ANALYZE_STATISTICS [('')

... | ('[[db-name.]schema.]table [.column-name]')]

-630-

SQL Reference Manual

Return Value

0 - For success.

If an error occurs, refer to vertica.log for details.

Parameters

'' Empty string. Collects statistics for all tables.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see

Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot

make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database

objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Specifies the name of the table and collects statistics for all
projections of that table.

Note: If you are using more than one schema, specify the schema

that contains the projection, as noted as noted in the
[[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column, typically a

predicate column. Using this option with a table specification lets
you collect statistics for only that column.

Note: If you alter a table to add or drop a column, or add a new

column to a table and populate its contents with either default or
other values, HP Vertica recommends calling this function on the

new table column to get the most current statistics.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Use the HP Vertica statistics functions as follows:

Use this function... To obtain...

ANALYZE_STATISTIC

S (page 440)

A fixed-size statistical data sampling (10 percent per

disk). This function returns results quickly, but is less
accurate than using ANALYZE_HISTOGRAM to get a
larger sampling of disk data.

ANALYZE_HISTOGRA A specified percentage of disk data sampling (from 1 -

-631-

 SQL Functions

M (page 437) 100). If you analyze more than 10 percent data per disk,

this function is more accurate than
ANALYZE_STATISTICS, but requires proportionately
longer to return statistics.

Analyzing results

To retrieve hints about under-performing queries and the associated root causes, use the
ANALYZE_WORKLOAD (page 443) function. This function runs the Workload Analyzer and
returns tuning recommendations, such as "run analyze_statistics on

schema.table.column". You or your database administrator should act upon the tuning
recommendations.

You can also find database tuning recommendations on the Management Console.

Canceling this function

You can cancel statistics analysis by issuing CTRL-C in a vsql shell or by invoking the
INTERRUPT_STATEMENT() (page 503) function.

Notes

 Always run ANALYZE_STATISTICS on a table or column rather than a projection.

 By default, HP Vertica analyzes more than one column (subject to resource limits) in a
single-query execution plan to:

 reduce plan execution latency

 help speed up analysis of relatively small tables that have a large number of columns

 Pre-join projection statistics are updated on any pre-joined tables.

Examples

Computes statistics on all projections in the Vmart database and returns 0 (success):

=> SELECT ANALYZE_STATISTICS ('');

 analyze_statistics

 0

(1 row)

Computes statistics on a single table (shipping_dimension) and returns 0 (success):

=> SELECT ANALYZE_STATISTICS ('shipping_dimension');

 analyze_statistics

 0

(1 row)

Computes statistics on a single column (shipping_key) across all projections for the

shipping_dimension table and returns 0 (success):

=> SELECT ANALYZE_STATISTICS('shipping_dimension.shipping_key');

 analyze_statistics

 0

(1 row)

-632-

SQL Reference Manual

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_HISTOGRAM (page 437)

ANALYZE_WORKLOAD (page 443)

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

IMPORT_STATISTICS (page 502)

INTERRUPT_STATEMENT (page 503)

DROP_STATISTICS

Removes statistics for the specified table and lets you optionally specify the category of statistics
to drop.

Syntax
DROP_STATISTICS { ('') | ('[[db-name.]schema-name.]table' [, {'BASE' |

'HISTOGRAMS' | 'ALL'}])};

Return Value

0 - If successful, DROP_STATISTICS always returns 0. If the command fails,
DROP_STATISTICS displays an error message. See vertica.log for message details.

Parameters

'' Empty string. Drops statistics for all projections.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify, and

you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

table Drops statistics for all projections within the specified table.
When using more than one schema, specify the schema that

contains the table with the projections you want to delete, as
noted in the syntax.

-633-

 SQL Functions

CATEGORY Specifies the category of statistics to drop for the named

[db-name.]schema-name.]table:

 'BASE' (default) drops histograms and row counts
(min/max column values, histogram.

 'HISTOGRAMS' drops only the histograms. Row counts
statistics remain.

 'ALL' drops all statistics.

Privileges

 INSERT/UPDATE/DELETE privilege on table

 USAGE privilege on schema that contains the table

Notes

Once dropped, statistics can be time consuming to regenerate.

Example

The following command analyzes all statistics on the VMart schema database:

=> SELECT ANALYZE_STATISTICS('');

 ANALYZE_STATISTICS

 0

(1 row)

This command drops base statistics for table store_sales_fact in the store schema:

=> SELECT DROP_STATISTICS('store.store_sales_fact', 'BASE');

 drop_statistics

 0

(1 row)

Note that this command works the same as the previous command:

=> SELECT DROP_STATISTICS('store.store_sales_fact');

 DROP_STATISTICS

 0

(1 row)

This command also drops statistics for all table projections:

=> SELECT DROP_STATISTICS ('');

 DROP_STATISTICS

 0

(1 row)

For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 440)

EXPORT_STATISTICS (page 490)

-634-

SQL Reference Manual

IMPORT_STATISTICS (page 502)

EXPORT_STATISTICS

Generates an XML file that contains statistics for the database. You can optionally export statistics
on a single database object (table, projection, or table column).

Before you export statistics for the database, run ANALYZE_STATISTICS() (page 440) to
automatically collect the most up to date statistics information.

Note: Use the second argument only if statistics in the database do not match the statistics of

data.

Syntax
EXPORT_STATISTICS

[('destination')

... | ('[[db-name.]schema.]table [.column-name]')]

Parameters

destination Specifies the path and name of the XML output file. An
empty string returns the script to the screen.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a

schema identifies objects that are not unique within the
current search path (see Setting Schema Search
Paths).

You can optionally precede a schema with a database
name, but you must be connected to the database you
specify. You cannot make changes to objects in other

databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you

qualify database objects as explicitly as required. For
example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

table Specifies the name of the table and exports statistics

for all projections of that table.

Note: If you are using more than one schema, specify

the schema that contains the projection, as noted as
noted in the [[db-name.]schema.] entry.

[.column-name] [Optional] Specifies the name of a single column,
typically a predicate column. Using this option with a
table specification lets you export statistics for only that

column.

-635-

 SQL Functions

Privileges

Must be a superuser

Examples

The following command exports statistics on the VMart example database to a file:

vmart=> SELECT EXPORT_STATISTICS('/vmart/statistics/vmart_stats.xml');

 export_statistics

 Statistics exported successfully

(1 row)

The next statement exports statistics on a single column (price) from a table called food:

=> SELECT EXPORT_STATISTICS('/vmart/statistics/price.xml', 'food.price');

See Also

ANALYZE_STATISTICS (page 440)

DROP_STATISTICS (page 476)

IMPORT_STATISTICS (page 502)

Collecting Statistics in the Administrator's Guide

IMPORT_STATISTICS

Imports statistics from the XML file generated by the EXPORT_STATISTICS command.

Syntax
IMPORT_STATISTICS ('destination')

Parameters

destination Specifies the path and name of the XML input file (which is

the output of EXPORT_STATISTICS function).

Privileges

Must be a superuser

Notes

 Imported statistics override existing statistics for all projections on the specified table.

 For use cases, see Collecting Statistics in the Administrator's Guide

See Also

ANALYZE_STATISTICS (page 440)

-636-

SQL Reference Manual

DROP_STATISTICS (page 476)

EXPORT_STATISTICS (page 490)

Storage Management Functions

This section contains storage management functions specific to HP Vertica.

ADD_LOCATION

Adds a storage location to the cluster. Use this function to add a new location, optionally with a
location label. You can also add a location specifically for user access, and then grant one or more
users access to the location.

Syntax
ADD_LOCATION ('path' [, 'node' , 'usage', 'location_label'])

Parameters

path [Required] Specifies where the storage location is mounted. Path
must be an empty directory with write permissions for user, group, or

all.

node [Optional] Indicates the cluster node on which a storage location
resides. If you omit this parameter, the function adds the location to

only the initiator node. Specifying the node parameter as an empty
string ('') adds a storage location to all cluster nodes in a single

transaction.

NOTE: If you specify a node, you must also add a usage parameter.

usage [Optional] Specifies what the storage location will be used for:

 DATA: Stores only data files. Use this option for labeled
storage locations.

 TEMP: Stores only temporary files, created during loads or
queries.

 DATA,TEMP: Stores both types of files in the location.

 USER: Allows non-dbadmin users access to the storage
location for data files (not temp files), once they are granted
privileges. DO NOT create a storage location for later use in a

storage policy. Storage locations with policies must be for
DATA usage. Also, note that this keyword is orthogonal to
DATA and TEMP, and does not specify a particular usage,

other than being accessible to non-dbadmin users with
assigned privileges. You cannot alter a storage location to or
from USER usage.

NOTE: You can use this parameter only in conjunction with the node

option. If you omit the usage parameter, the default is DATA,TEMP.

-637-

 SQL Functions

location_label [Optional] Specifies a location label as a string, for example, SSD.

Labeling a storage location lets you use the location label to create
storage policies and as part of a multi-tenanted storage scheme.

Privileges

Must be a superuser

Storage Location Subdirectories

You cannot create a storage location in a subdirectory of an existing location. For example, if you
create a storage location at one location, you cannot add a second storage location in a
subdirectory of the first:

dbt=> select add_location ('/myvertica/Test/KMM','','DATA','SSD');

 add_location

--

 /myvertica/Test/KMM added.

(1 row)

dbt=> select add_location ('/myvertica/Test/KMM/SSD','','DATA','SSD');

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0001

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0002

ERROR 5615: Location [/myvertica/Test/KMM/SSD] conflicts with existing location

[/myvertica/Test/KMM] on node v_node0003

Example

This example adds a location that stores data and temporary files on the initiator node:

=> SELECT ADD_LOCATION('/secondverticaStorageLocation/');

This example adds a location to store data on v_vmartdb_node0004:

=> SELECT ADD_LOCATION('/secondverticaStorageLocation/' , 'v_vmartdb_node0004' ,

'DATA');

This example adds a new DATA storage location with a label, SSD. The label identifies the location

when you create storage policies. Specifying the node parameter as an empty string adds the
storage location to all cluster nodes in a single transaction:

VMART=> select add_location ('home/dbadmin/SSD/schemas', '', 'DATA', 'SSD');

 add_location

 home/dbadmin/SSD/schemas added.

(1 row)

See Also

Adding Storage Locations in the Administrator's Guide

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

-638-

SQL Reference Manual

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

ALTER_LOCATION_USE

Alters the type of files that can be stored at the specified storage location.

Syntax
ALTER_LOCATION_USE ('path' , ['node'] , 'usage')

Parameters

path Specifies where the storage location is mounted.

node [Optional] The HP Vertica node with the storage location.
Specifying the node parameter as an empty string ('')

alters the location across all cluster nodes in a single
transaction.

If you omit this parameter, node defaults to the initiator.

usage Is one of the following:

 DATA: The storage location stores only data files.
This is the supported use for both a USER storage
location, and a labeled storage location.

 TEMP: The location stores only temporary files
that are created during loads or queries.

 DATA,TEMP: The location can store both types of
files.

Privileges

Must be a superuser

USER Storage Location Restrictions

You cannot change a storage location from a USER usage type if you created the location that
way, or to a USER type if you did not. You can change a USER storage location to specify DATA
(storing TEMP files is not supported). However, doing so does not affect the primary objective of a
USER storage location, to be accessible by non-dbadmin users with assigned privileges.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example alters the storage location across all cluster nodes to store only data:

-639-

 SQL Functions

=> SELECT ALTER_LOCATION_USE ('/thirdVerticaStorageLocation/' , '' , 'DATA');

See Also

Altering Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

DROP_LOCATION (page 472)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

ALTER_LOCATION_LABEL

Alters the location label. Use this function to add, change, or remove a location label. You change
a location label only if it is not currently in use as part of a storage policy.

You can use this function to remove a location label. However, you cannot remove a location label
if the name being removed is used in a storage policy, and the location from which you are
removing the label is the last available storage for its associated objects.

NOTE: If you label an existing storage location that already contains data, and then include the

labeled location in one or more storage policies, existing data could be moved. If the ATM
determines data stored on a labeled location does not comply with a storage policy, the ATM
moves the data elsewhere.

Syntax
ALTER_LOCATION_LABEL ('path' , 'node' , 'location_label')

Parameters

path Specifies the path of the storage location.

node The HP Vertica node for the storage location.

If you enter node as an empty string (''), the function

performs a cluster-wide label change to all nodes. Any

node that is unavailable generates an error.

location_label Specifies a storage label as a string, for instance SSD.
You can change an existing label assigned to a storage

location, or add a new label. Specifying an empty string ('')
removes an existing label.

Privileges

Must be a superuser

-640-

SQL Reference Manual

Example

The following example alters (or adds) the label SSD to the storage location at the given path on all

cluster nodes:

VMART=> select alter_location_label('/home/dbadmin/SSD/tables','', 'SSD');

 alter_location_label

 /home/dbadmin/SSD/tables label changed.

(1 row)

See Also

Altering Location Labels in the Administrator's Guide

CLEAR_OBJECT_STORAGE_POLICY (page 457)

SET_OBJECT_STORAGE_POLICY (page 534)

CLEAR_OBJECT_STORAGE_POLICY

Removes an existing storage policy. The specified object will no longer use a default storage
location. Any existing data stored currently at the labeled location in the object's storage policy is
moved to default storage during the next TM moveout operation.

Syntax
CLEAR_OBJECT_STORAGE_POLICY ('object_name' , [', key_min, key_max '])

Parameters

object_name Specifies the database object with a storage policy to

clear.

key_min, key_max Specifies the table partition key value ranges stored at the
labeled location. These parameters are applicable only

when object_name is a table.

Privileges

Must be a superuser

Example

This example clears the storage policy for the object lineorder:

release=> select clear_object_storage_policy('lineorder');

 clear_object_storage_policy

 Default storage policy cleared.

(1 row)

-641-

 SQL Functions

See Also

Clearing a Storage Policy in the Administrator's Guide

ALTER_LOCATION_LABEL (page 430)

SET_OBJECT_STORAGE_POLICY (page 534)

DROP_LOCATION

Removes the specified storage location.

Syntax
DROP_LOCATION ('path' , 'node')

Parameters

path Specifies where the storage location to drop is mounted.

node Is the HP Vertica node where the location is available.

Privileges

Must be a superuser

Retiring or Dropping a Storage Location

Dropping a storage location is a permanent operation and cannot be undone. Therefore, HP
recommends that you retire a storage location before dropping it. Retiring a storage location lets
you verify that you do not need the storage before dropping it. Additionally, you can easily restore
a retired storage location if you determine it is still in use.

Storage Locations with Temp and Data Files

Dropping storage locations is limited to storage locations that contain only temp files.

If you use a storage location to store data and then alter it to store only temp files, the location can
still contain data files. HP Vertica does not let you drop a storage location containing data files.
You can manually merge out the data files from the storage location, and then wait for the ATM to
mergeout the data files automatically, or, you can drop partitions. Deleting data files does not
work.

Example

The following example drops a storage location on node3 that was used to store temp files:

=> SELECT DROP_LOCATION('/secondHP VerticaStorageLocation/' , 'node3');

See Also

Dropping Storage Locations and Retiring Storage Locations in the Administrator's Guide

-642-

SQL Reference Manual

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

MEASURE_LOCATION_PERFORMANCE

Measures disk performance for the location specified.

Syntax
MEASURE_LOCATION_PERFORMANCE ('path' , 'node')

Parameters

path Specifies where the storage location to measure is mounted.

node Is the HP Vertica node where the location to be measured is
available.

Privileges

Must be a superuser

Notes

 To get a list of all node names on your cluster, query the V_MONITOR.DISK_STORAGE
(page 1014) system table:

=> SELECT node_name from DISK_STORAGE;

 node_name

 v_vmartdb_node0004

 v_vmartdb_node0004

 v_vmartdb_node0005

 v_vmartdb_node0005

 v_vmartdb_node0006

 v_vmartdb_node0006

(6 rows)

 If you intend to create a tiered disk architecture in which projections, columns, and partitions
are stored on different disks based on predicted or measured access patterns, you need to
measure storage location performance for each location in which data is stored. You do not
need to measure storage location performance for temp data storage locations because
temporary files are stored based on available space.

 The method of measuring storage location performance applies only to configured clusters. If
you want to measure a disk before configuring a cluster see Measuring Location Performance.

-643-

 SQL Functions

 Storage location performance equates to the amount of time it takes to read and write 1MB of
data from the disk. This time equates to:

IO time = Time to read/write 1MB + Time to seek = 1/Throughput + 1/Latency

Throughput is the average throughput of sequential reads/writes (units in MB per second)

Latency is for random reads only in seeks (units in seeks per second)

Note: The IO time of a faster storage location is less than a slower storage location.

Example

The following example measures the performance of a storage location on v_vmartdb_node0004:

=> SELECT MEASURE_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/' ,

'v_vmartdb_node0004');

WARNING: measure_location_performance can take a long time. Please check logs for

progress

 measure_location_performance

--

 Throughput : 122 MB/sec. Latency : 140 seeks/sec

See Also

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

RESTORE_LOCATION (page 525)

RETIRE_LOCATION (page 526)

Measuring Location Performance in the Administrator's Guide

RESTORE_LOCATION

Restores a storage location that was previously retired with RETIRE_LOCATION (page 526).

Syntax
RESTORE_LOCATION ('path' , 'node')

Parameters

path Specifies where the retired storage location is mounted.

node Is the HP Vertica node where the retired location is
available.

Privileges

Must be a superuser

-644-

SQL Reference Manual

Effects of Restoring a Previously Retired Location

After restoring a storage location, HP Vertica re-ranks all of the cluster storage locations and uses
the newly-restored location to process queries as determined by its rank.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example restores the retired storage location on node3:

=> SELECT RESTORE_LOCATION ('/thirdHP VerticaStorageLocation/' ,

'v_vmartdb_node0004');

See Also

Modifying Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

RETIRE_LOCATION (page 526)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

RETIRE_LOCATION

Makes the specified storage location inactive.

Syntax
RETIRE_LOCATION ('path' , 'node')

Parameters

path Specifies where the storage location to retire is mounted.

node Is the HP Vertica node where the location is available.

Privileges

Must be a superuser

Effects of Retiring a Storage Location

When you use this function, HP Vertica checks that the location is not the only storage for data and
temp files. At least one location must exist on each node to store data and temp files, though you
can store both sorts of files in either the same location, or separate locations.

-645-

 SQL Functions

NOTE: You cannot retire a location if it is used in a storage policy, and is the last available

storage for its associated objects.

When you retire a storage location:

 No new data is stored at the retired location, unless you first restore it with the
RESTORE_LOCATION() (page 525) function.

 If the storage location being retired contains stored data, the data is not moved, so you cannot
drop the storage location. Instead, HP Vertica removes the stored data through one or more
mergeouts.

 If the storage location being retired was used only for temp files, you can drop the location. See
Dropping Storage Locations in the Administrators Guide and the DROP_LOCATION() (page
472) function.

Monitoring Storage Locations

Disk storage information that the database uses on each node is available in the
V_MONITOR.DISK_STORAGE (page 1014) system table.

Example

The following example retires a storage location:

=> SELECT RETIRE_LOCATION ('/secondVerticaStorageLocation/' ,

'v_vmartdb_node0004');

See Also

Retiring Storage Locations in the Administrator's Guide

ADD_LOCATION (page 426)

ALTER_LOCATION_USE (page 429)

DROP_LOCATION (page 472)

RESTORE_LOCATION (page 525)

GRANT (Storage Location) (page 839)

REVOKE (Storage Location) (page 861)

SET_LOCATION_PERFORMANCE

Sets disk performance for the location specified.

Syntax
SET_LOCATION_PERFORMANCE ('path' , 'node' , 'throughput' , 'average_latency')

Parameters

path Specifies where the storage location to set is mounted.

node Is the HP Vertica node where the location to be set is

-646-

SQL Reference Manual

available.

If this parameter is omitted, node defaults to the initiator.

throughput Specifies the throughput for the location, which must be 1
or more.

average_latency Specifies the average latency for the location. The
average_latency must be 1 or more.

Privileges

Must be a superuser

Notes

To obtain the throughput and average latency for the location, run the
MEASURE_LOCATION_PERFORMANCE() (page 511) function before you attempt to set the
location's performance.

Example

The following example sets the performance of a storage location on node2 to a throughput of 122
megabytes per second and a latency of 140 seeks per second.

=> SELECT SET_LOCATION_PERFORMANCE('/secondVerticaStorageLocation/','node2','122','140');

See Also

ADD_LOCATION (page 426)

MEASURE_LOCATION_PERFORMANCE (page 511)

Measuring Location Performance and Setting Location Performance in the Administrator's Guide

SET_OBJECT_STORAGE_POLICY

Creates or changes an object storage policy by associating a database object with a labeled
storage location.

NOTE: You cannot create a storage policy on a USER type storage location.

Syntax
SET_OBJECT_STORAGE_POLICY ('object_name', 'location_label' [, 'key_min,

key_max'] [, 'enforce_storage_move'])

Parameters

object_name Identifies the database object assigned to a labeled storage location.
The object_name can resolve to a database, schema, or table.

location_label The label of the storage location with which object_name is being

associated.

-647-

 SQL Functions

key_min, key_max Applicable only when object_name is a table, key_min and key_max

specify the table partition key value range to be stored at the location.

enforce_storage_move=

{true | false}
[Optional] Applicable only when setting a storage policy for an object

that has data stored at another labeled location. Specify this
parameter as true to move all existing storage data to the target

location within this function's transaction.

Privileges

Must be the object owner to set the storage policy, and have access to the storage location.

New Storage Policy

If an object does not have a storage policy, this function creates a new policy. The labeled location
is then used as the default storage location during TM operations, such as moveout and mergeout.

Existing Storage Policy

If the object already has an active storage policy, calling this function changes the default storage
for the object to the new labeled location. Any existing data stored on the previous storage location
is marked to move to the new location during the next TM moveout operations, unless you use the
enforce_storage_move option.

Forcing Existing Data Storage to a New Storage Location

You can optionally use this function to move existing data storage to a new location as part of
completing the current transaction, by specifying the last parameter as true.

To move existing data as part of the next TM moveout, either omit the parameter, or specify its
value as false.

NOTE: Specifying the parameter as true performs a cluster-wide operation. If an error occurs
on any node, the function displays a warning message, skips the offending node, and
continues execution on the remaining nodes.

Example

This example sets a storage policy for the table states to use the storage labeled SSD as its
default location:

VMART=> select set_object_storage_policy ('states', 'SSD');

 set_object_storage_policy

 Default storage policy set.

(1 row)

See Also

ALTER_LOCATION_LABEL (page 430)

CLEAR_OBJECT_STORAGE_POLICY (page 457)

Creating Storage Policies in the Administrator's Guide

-648-

SQL Reference Manual

Moving Data Storage Locations in the Administrator's Guide

Tuple Mover Functions

This section contains tuple mover functions specific to HP Vertica.

DO_TM_TASK

Runs a Tuple Mover operation on one or more projections defined on the specified table.

Tip: You do not need to stop the Tuple Mover to run this function.

Syntax
DO_TM_TASK ('task' [, '[[db-name.]schema.]table' |

'[[db-name.]schema.]projection'])

Parameters

task Is one of the following tuple mover operations:

 'moveout' — Moves out all projections on the

specified table (i f a particular projection is not
specified) from WOS to ROS.

 'mergeout' — Consolidates ROS containers and

purges deleted records.

 'analyze_row_count' — Automatically collects

the number of rows in a projection every 60 seconds
and aggregates row counts calculated during loads.

[[db-name.]schema.

]
[Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current
search path (see Setting Schema Search Paths).

You can optionally precede a schema with a database

name, but you must be connected to the database you
specify. You cannot make changes to objects in other
databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For

example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification,

a database, schema, table, and column
(mydb.myschema.mytable.column1).

table Runs a tuple mover operation for all projections within the
specified table. When using more than one schema, specify

-649-

 SQL Functions

the schema that contains the table with the projections you

want to affect, as noted above.

projection If projection is not passed as an argument, all projections in
the system are used. If projection is specified,

DO_TM_TASK looks for a projection of that name and, if
found, uses it; if a named projection is not found, the function
looks for a table with that name and, if found, moves out all

projections on that table.

Privileges

 Any INSERT/UPDATE/DELETE privilege on table

 USAGE privileges on schema

Notes

DO_TM_TASK() is useful for moving out all projections from a table or database without having to
name each projection individually.

Examples

The following example performs a moveout of all projections for table t1:

=> SELECT DO_TM_TASK('moveout', 't1');

The following example performs a moveout for projection t1_proj:

=> SELECT DO_TM_TASK('moveout', 't1_proj')

See Also

COLUMN_STORAGE (page 992)

DROP_PARTITION (page 473)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

Partitioning Tables in the Administrator's Guide

Collecting Statistics in the Administrator's Guide

Workload Management Functions

This section contains workload management functions specific to HP Vertica.

-650-

SQL Reference Manual

ANALYZE_WORKLOAD

Runs the Workload Analyzer (WLA), a utility that analyzes system information held in system
tables (page 933).

The Workload Analyzer intelligently monitors the performance of SQL queries and workload
history, resources, and configurations to identify the root causes for poor query performance.
Calling the ANALYZE_WORKLOAD function returns tuning recommendations for all events within
the scope and time that you specify.

Tuning recommendations are based on a combination of statistics, system and data collector
events, and database-table-projection design. WLA's recommendations let database
administrators quickly and easily tune query performance without needing sophisticated skills.

See Understanding WLA Triggering Conditions in the Administrator's Guide for the most
common triggering conditions and recommendations.

Syntax 1
ANALYZE_WORKLOAD ('scope' , 'since_time');

Syntax 2
ANALYZE_WORKLOAD ('scope' , [true]);

Parameters

scope Specifies which HP Vertica catalog objects to analyze.

Can be one of:

 An empty string ('') returns recommendations for all database objects

 'table_name' returns all recommendations related to the specified table

 'schema_name' returns recommendations on all database objects in the
specified schema

since_time Limits the recommendations from all events that you specified in 'scope' since the

specified time in this argument, up to the current system status. If you omit the
since_time parameter, ANALYZE_WORKLOAD returns recommendations on events
since the last recorded time that you called this function.

Note: You must explicitly cast strings that you use for the since_time parameter to

TIMESTAMP or TIMESTAMPTZ. For example:

SELECT ANALYZE_WORKLOAD('T1', '2010-10-04 11:18:15'::TIMESTAMPTZ);

SELECT ANALYZE_WORKLOAD('T1', TIMESTAMPTZ '2010-10-04 11:18:15');

true [Optional] Tells HP Vertica to record this particular call of WORKLOAD_ANALYZER()
in the system. The default value is false (do not record). If recorded, subsequent calls

to ANALYZE_WORKLOAD analyze only the events that have occurred since this
recorded time, ignoring all prior events.

Return value

ANALYZE_WORKLOAD() returns aggregated tuning recommendations, as described in the
following table.

-651-

 SQL Functions

Column Data type Description

observation_count INTEGER Integer for the total number of events observed

for this tuning recommendation. For example, if
you see a return value of 1, WLA is making its
first tuning recommendation for the event in

'scope'.

first_observation_time TIMESTAMPT
Z

Timestamp when the event first occurred. If this
column returns a null value, the tuning
recommendation is from the current status of

the system instead of from any prior event.

last_observation_time TIMESTAMPT
Z

Timestamp when the event last occurred. If this
column returns a null value, the tuning
recommendation is from the current status of

the system instead of from any prior event.

tuning_parameter VARCHAR Objects on which you should perform a tuning
action. For example, a return value of:

 public.t informs the DBA to run

Database Designer on table t in the
public schema

 bsmith notifies a DBA to set a

password for user bsmith

tuning_description VARCHAR Textual description of the tuning

recommendation from the Workload Analyzer to
perform on the tuning_parameter object.
Examples of some of the returned values

include, but are not limited to:

 Run database designer on table
schema.table

 Create replicated projection for table
schema.table

 Consider query-specific design on
query

 Reset configuration parameter with
SELECT

set_config_parameter('parame

ter', 'new_value')

 Re-segment projection
projection-name on high-cardinality

column(s)

 Drop the projection
projection-name

 Alter a table's partition expression

 Reorganize data in partitioned table

 Decrease the MoveOutInterval
configuration parameter setting

-652-

SQL Reference Manual

tuning_command VARCHAR Command string if tuning action is a SQL
command. For example, the following example

statements recommend that the DBA:

Update statistics on a particular schema's
table.column:

SELECT

 ANALYZE_STATISTICS('public.table.column');

Resolve mismatched configuration parameter
'LockTimeout':

SELECT * FROM CONFIGURATION_PARAMETERS

WHERE parameter_name = 'LockTimeout';

Set the password for user bsmith:

ALTER USER (user) IDENTIFIED BY

 ('new_password');

tuning_cost VARCHAR Cost is based on the type of tuning
recommendation and is one of:

 LOW—minimal impact on resources
from running the tuning command

 MEDIUM—moderate impact on
resources from running the tuning
command

 HIGH—maximum impact on resources
from running the tuning command

Depending on the size of your database or
table, consider running high-cost operations

after hours instead of during peak load times.

Privileges

Must be a superuser

Examples

See Analyzing Workloads through an API in the Administrator's Guide for examples.

See also

V_MONITOR.TUNING_RECOMMENDATIONS (page 1120) in this guide

Analyzing Workloads in the Administrator's Guide

Understanding WLA Triggering Conditions in the Administrator's Guide

CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY

Changes the run-time priority of a query that is actively running.

Syntax
CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY(TRANSACTION_ID, 'value')

-653-

 SQL Functions

Parameters

TRANSACTION_ID An identifier for the transaction within the session.

TRANSACTION_ID cannot be NULL.

You can find the transaction ID in the Sessions
table.

'value' The RUNTIMEPRIORITY value. Can be HIGH,

MEDIUM, or LOW.

Privileges

No special privileges required. However, non-super users can change the run-time priority of their
own queries only. In addition, non-superusers can never raise the run-time priority of a query to a
level higher than that of the resource pool.

Example
VMart => SELECT CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY(45035996273705748,

'low')

CHANGE_RUNTIME_PRIORITY

Changes the run-time priority of a query that is actively running. Note that, while this function is still

valid, you should instead use CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY to change
run-time priority. CHANGE_RUNTIME_PRIORITY will be deprecated in a future release of Vertica.

Syntax
CHANGE_RUNTIME_PRIORITY(TRANSACTION_ID,STATEMENT_ID, 'value')

Parameters

TRANSACTION_ID An identifier for the transaction within the session.

TRANSACTION_ID cannot be NULL.

You can find the transaction ID in the Sessions
table.

STATEMENT_ID A unique numeric ID assigned by the HP Vertica

catalog, which identifies the currently executing
statement.

You can find the statement ID in the Sessions

table.

You can specify NULL to change the run-time
priority of the currently running query within the

transaction.

'value' The RUNTIMEPRIORITY value. Can be HIGH,

MEDIUM, or LOW.

-654-

SQL Reference Manual

Privileges

No special privileges required. However, non-super users can change the run-time priority of their
own queries only. In addition, non-superusers can never raise the run-time priority of a query to a
level higher than that of the resource pool.

Example
VMart => SELECT CHANGE_RUNTIME_PRIORITY(45035996273705748, NULL, 'low')

CLEAR_CACHES

Clears the HP Vertica internal cache files.

Syntax
CLEAR_CACHES ()

Privileges

Must be a superuser

Notes

If you want to run benchmark tests for your queries, in addition to clearing the internal HP Vertica
cache files, clear the Linux file system cache. The kernel uses unallocated memory as a cache to
hold clean disk blocks. If you are running version 2.6.16 or later of Linux and you have root access,
you can clear the kernel filesystem cache as follows:

1 Make sure that all data is the cache is written to disk:

sync

2 Writing to the drop_caches file causes the kernel to drop clean caches, dentries, and inodes
from memory, causing that memory to become free, as follows:

 To clear the page cache:

echo 1 > /proc/sys/vm/drop_caches

 To clear the dentries and inodes:

echo 2 > /proc/sys/vm/drop_caches

 To clear the page cache, dentries, and inodes:

echo 3 > /proc/sys/vm/drop_caches

Example

The following example clears the HP Vertica internal cache files:

=> CLEAR_CACHES();

 CLEAR_CACHES

 Cleared

(1 row)

-655-

 SQL Functions

SLEEP

Waits a specified number of seconds before executing another statement or command.

Syntax
SLEEP(seconds)

Parameters

seconds The wait time, specified in one or more seconds (0 or higher) expressed as
a positive integer. Single quotes are optional; fo r example, SLEEP(3) is

the same as SLEEP('3').

Notes

 This function returns value 0 when successful; otherwise it returns an error message due to
syntax errors.

 You cannot cancel a sleep operation.

 Be cautious when using SLEEP() in an environment with shared resources, such as in
combination with transactions that take exclusive locks.

Example

The following command suspends execution for 100 seconds:

=> SELECT SLEEP(100);

 sleep

 0

(1 row)

-656-

SQL Statements

The primary structure of a SQL query is its statement. Multiple statements are separated by
semicolons; for example:

CREATE TABLE fact (..., date_col date NOT NULL, ...);

CREATE TABLE fact(..., state VARCHAR NOT NULL, ...);

ALTER FUNCTION

Alters a user-defined SQL function or user defined function (UDF) by providing a new function or
different schema name or my modifying its fenced mode setting.

Syntax 1
ALTER FUNCTION

... [[db-name.]schema.]function-name ([[argname] argtype [, ...]])

... RENAME TO new_name

... SET FENCED bool_val

Syntax 2
ALTER FUNCTION

... [[db-name.]schema.]function-name ([[argname] argtype [, ...]])

... SET SCHEMA new_schema

... SET FENCED bool_val

Syntax 3
ALTER FUNCTION

... [[db-name.]schema.]function-name ([[argname] argtype [, ...]])

... SET FENCED bool_val

Parameters

[[db-name.]schema-name.] [Optional] Specifies the schema name. Using a schema identifies

objects that are not unique within the current search path (see
Setting Schema Search Paths).

You can optionally precede a schema with a database name, but

you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

function-name The name of the user-defined SQL Function (function body) to
alter. If the function name is schema-qualified (as described

above), the function is altered in the specified schema.

argname Specifies the name of the argument.

-657-

 SQL Statements

argtype Specifies the data type for argument that is passed to the function.

Argument types must match HP Vertica type names. See SQL
Data Types (page 71).

RENAME TO new_name Specifies the new name of the function

SET SCHEMA new_schema Specifies the new schema name where the function resides.

SET FENCED bool_val A boolean value that specifies if Fenced Mode is enabled for this
function. Fenced Mode is not available for User Defined

Aggregates or User Defined Load.

Permissions

Only a superuser or owner can alter a function.

To rename a function (ALTER FUNCTION RENAME TO) the user must have USAGE and
CREATE privilege on schema that contains the function.

To specify a new schema (ALTER FUNCTION SET SCHEMA), the user must have USAGE
privilege on schema that currently contains the function (old schema) and CREATE privilege on
the schema to which the function will be moved (new schema).

Notes

When you alter a function you must specify the argument type, because there could be several
functions that share the same name with different argument types.

Example

This example creates a SQL function called zerowhennull that accepts an INTEGER argument

and returns an INTEGER result.

=> CREATE FUNCTION zerowhennull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

This next command renames the zerowhennull function to zeronull:

=> ALTER FUNCTION zerowhennull(x INT) RENAME TO zeronull;

ALTER FUNCTION

This command moves the renamed function to a new schema called macros:

=> ALTER FUNCTION zeronull(x INT) SET SCHEMA macros;

ALTER FUNCTION

This command disables Fenced Mode for the Add2Ints function:

=> ALTER FUNCTION Add2Ints(INT, INT) SET FENCED false;

ALTER FUNCTION

See Also

CREATE FUNCTION (page 722)

-658-

SQL Reference Manual

DROP FUNCTION (page 811)

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Using SQL Macros in the Programmer's Guide

ALTER LIBRARY
Replaces the Linux shared object library file (.so) or R file for an already-defined library with a new
file. The new file is automatically distributed throughout the HP Vertica cluster. See Developing
and Using User Defined Functions in the Programmer's Guide for details. All of the functions that
reference the library automatically begin using the new library file after it is loaded.

Note: The new library must be developed in the same language as the library file being

replaced. For example, you cannot use this statement to replace a C++ library file with an R
library file.

Syntax
ALTER LIBRARY [[db-name.]schema.]library_name AS 'library_path';

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and

optional schema name. Using a database name
identifies objects that are not unique within the
current search path (see Setting Search Paths).

You must be connected to the database you
specify, and you cannot change objects in other
databases.

Specifying different database objects lets you
qualify database objects as explicitly as required.
For example, you can use a database and a

schema name (mydb.myschema).

library_name The name of the library being altered. This library

must have already been created using CREATE
LIBRARY (page 735).

library_path The absolute path to the replacement library file.

The file must be the same type as the library file
used by the current library definition.

Permissions

Must be a superuser to alter a library.

-659-

 SQL Statements

Notes

 All of the UDFs that reference the library begin calling the code in the updated library file once
it has been distributed to all of the nodes in the HP Vertica cluster.

 Any nodes that are down or that are added to the cluster later automatically receive a copy of
the updated library file when they join the cluster.

 HP Vertica does not compare the functions defined in the new library to ensure they match any
currently-defined functions in the catalog. If you change the signature of a function in the
library (for example, if you change the number and data types accepted by a UDSF defined in
the library), calls to that function will likely generate errors. If your new library file changes the
definition of a function, you must remove the function using DROP FUNCTION (page 811)
before using ALTER LIBRARY to load the new library. You can then recreate the function
using its new signature.

ALTER PROJECTION RENAME
Initiates a rename operation on the specified projection.

Syntax
ALTER PROJECTION [[db-name.]schema.]projection-name RENAME TO

new-projection-name

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search Paths).
You must be connected to the database you specify, and you
cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

projection-name Specifies the projection to change. You must include the base
table name prefix that is added automatically when you create a

projection.

new-projection-name Specifies the new projection name.

Permissions

To rename a projection, the user must own the anchor table for which the projection was created
and have USAGE and CREATE privileges on the schema that contains the projection.

Notes

The projection must exist before it can be renamed.

See Also

CREATE PROJECTION (page 742)

-660-

SQL Reference Manual

ALTER NETWORK INTERFACE
Lets you rename a network interface.

Syntax
ALTER NETWORK INTERFACE network-interface-name RENAME TO

new-network-interface-name

The parameters are defined as follows:

network-interface-name The name of the existing network interface.

new-network-interface-name The new name for the network interface.

Permissions

Must be a superuser to alter a network interface.

ALTER PROFILE
Changes a profile. Only a database superuser can alter a profile.

Syntax
ALTER PROFILE name LIMIT

... [PASSWORD_LIFE_TIME {life-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_GRACE_TIME {grace_period | DEFAULT | UNLIMITED}]

... [FAILED_LOGIN_ATTEMPTS {login-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_LOCK_TIME {lock-period | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_MAX {reuse-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_TIME {reuse-period | DEFAULT | UNLIMITED}]

... [PASSWORD_MAX_LENGTH {max-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LENGTH {min-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LETTERS {min-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_UPPERCASE_LETTERS {min-cap-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LOWERCASE_LETTERS {min-lower-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_DIGITS {min-digits | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_SYMBOLS {min-symbols | DEFAULT | UNLIMITED}]

Note: For all parameters, the special value DEFAULT means the parameter is inherited from
the DEFAULT profile.

Parameters

Name Description Meaning of UNLIMITED value

name The name of the profile to create N/A

-661-

 SQL Statements

PASSWORD_LIFE_TIME life-limit Integer number of days a

password remains valid. After
the time elapses, the user must
change the password (or will be

warned that their password has
expired if
PASSWORD_GRACE_TIME is

set to a value other than zero or
UNLIMITED).

 Passwords never expire.

PASSWORD_GRACE_TIME

grace-period

Integer number of days the

users are allowed to login (while
being issued a warning
message) after their passwords

are older than the
PASSWORD_LIFE_TIME. After
this period expires, users are

forced to change their
passwords on login if they have
not done so after their password

expired.

No grace period (the same as

zero)

FAILED_LOGIN_ATTEMPTS

login-limit

The number of consecutive
failed login attempts that result

in a user's account being locked.

Accounts are never locked, no
matter how many failed login

attempts are made.

PASSWORD_LOCK_TIME lock-period Integer value setting the number
of days an account is locked

after the user's account was
locked by having too many failed
login attempts. After the
PASSWORD_LOCK_TIME has

expired, the account is
automatically unlocked.

Accounts locked because of too
many failed login attempts are

never automatically unlocked.
They must be manually
unlocked by the database
superuser.

PASSWORD_REUSE_MAX reuse-limit The number of password

changes that need to occur
before the current password can
be reused.

Users are not required to

change passwords a certain
number of times before reusing
an old password.

PASSWORD_REUSE_TIME

reuse-period

The integer number of days that
must pass after a password has
been set before the before it can

be reused.

Password reuse is not limited by
time.

PASSWORD_MAX_LENGTH max-length The maximum number of
characters allowed in a

password. Value must be in the
range of 8 to 100.

Passwords are limited to 100
characters.

PASSWORD_MIN_LENGTH min-length The minimum number of

characters required in a
password. Valid range is 0 to
max-length.

Equal to max-length.

-662-

SQL Reference Manual

PASSWORD_MIN_LETTERS

min-of-letters

Minimum number of letters (a-z

and A-Z) that must be in a
password. Valid ranged is 0 to
max-length.

0 (no minimum).

PASSWORD_MIN_UPPERCASE_LETTERS

min-cap-letters

Minimum number of capital
letters (A-Z) that must be in a
password. Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_LOWERCASE_LETTERS

min-lower-letters

Minimum number of lowercase

letters (a-z) that must be in a
password. Valid range is is 0 to
max-length.

0 (no minimum).

PASSWORD_MIN_DIGITS min-digits Minimum number of digits (0-9)
that must be in a password.
Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_SYMBOLS

min-symbols

Minimum number of symbols

(any printable non-letter and
non-digit character, such as $, #,
@, and so on) that must be in a

password. Valid range is is 0 to
max-length.

0 (no minimum).

Permissions

Must be a superuser to alter a profile.

Note: Only the profile settings for how many failed login attempts trigger account locking and

how long accounts are locked have an effect on external password authentication methods
such as LDAP or Kerberos. All password complexity, reuse, and lifetime settings have an effect
on passwords managed by HP Vertica only.

See Also

CREATE PROFILE (page 739)

DROP PROFILE (page 817)

ALTER PROFILE RENAME
Rename an existing profile.

Syntax
ALTER PROFILE name RENAME TO newname;

-663-

 SQL Statements

Parameters

name The current name of the profile.

newname The new name for the profile.

Permissions

Must be a superuser to alter a profile.

See Also

ALTER PROFILE (page 660)

CREATE PROFILE (page 739)

DROP PROFILE (page 817)

ALTER RESOURCE POOL

Modifies a resource pool. The resource pool must exist before you can issue the ALTER
RESOURCE POOL command.

Syntax
ALTER RESOURCE POOL pool-name MEMORYSIZE 'sizeUnits'

... [MAXMEMORYSIZE 'sizeUnits']

... [PRIORITY {integer | DEFAULT }]

... [EXECUTIONPARALLELISM {integer | AUTO | DEFAULT}]

... [RUNTIMEPRIORITY (HIGH | MEDIUM | LOW | DEFAULT)]

... [RUNTIMEPRIORITYTHRESHOLD {integer |DEFAULT }]

... [QUEUETIMEOUT {integer | NONE |DEFAULT }]

... [PLANNEDCONCURRENCY {integer | DEFAULT | AUTO}]

... [RUNTIMECAP {interval | NONE |DEFAULT}]

... [MAXCONCURRENCY {integer | NONE | DEFAULT }]

... [SINGLEINITIATOR { bool | DEFAULT}]

Parameters

Note: If you set any of these parameters to DEFAULT, HP Vertica sets the parameter to the

value stored in RESOURCE_POOL_DEFAULTS.

pool-name Specifies the name of the resource pool to alter. Resource pool names
are subject to the same rules as HP Vertica identifiers (page 22).

Built-in pool (page 757) names cannot be used for user-defined
pools.

-664-

SQL Reference Manual

MEMORYSIZE 'sizeUnits' [Default 0%] The amount of memory allocated to this pool per node

and not across the whole cluster. The default of 0% means that the
pool has no memory allocated to it and must exclusively borrow from
the GENERAL pool (page 757).

Units can be one of the following:

 Percentage (%) of total memory available to the Resource
Manager. (In this case size must be 0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

See also MAXMEMORYSIZE parameter.

MAXMEMORYSIZE

'sizeUnits' | NONE

[Default unlimited] Maximum size the resource pool could grow by

borrowing memory from the GENERAL pool. See Built-in Pools (page

757) for a discussion on how resource pools interact with the GENERAL

pool.

Units can be one of the following:

 % percentage of total memory available to the Resource

Manager. (In this case, size must be 0-100). This notation has
special meaning for the GENERAL pool, described in Notes
below.

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If MAXMEMORYSIZE NONE is specified, there is no upper limit.

Notes:

The MAXMEMORYSIZE parameter refers to the maximum memory

borrowed by this pool per node and not across the whole cluster.

The default of unlimited means that the pool can borrow as much
memory from GENERAL pool as is available.

The MAXMEMORYSIZE of the WOSDATA and SYSDATA pools cannot be

changed as long as any of their memory is in use. For example, in

order to change the MAXMEMORYSIZE of the WOSDATA pool, you need

to disable any trickle loading jobs and wait until the WOS is empty
before you can change the MAXMEMORYSIZE.

EXECUTIONPARALLELISM [Default: AUTO] Limits the number of threads used to process any

single query issued in this resource pool.

When set to AUTO, HP Vertica sets this value based on the number of

cores, available memory, and amount of data in the system. Unless

data is limited, or the amount of data is very small, HP Vertica sets this
value to the number of cores on the node.

Reducing this value increases the throughput of short queries issued in

the pool, especially if the queries are executed concurrently.

If you choose to set this parameter manually, set it to a value between

-665-

 SQL Statements

1 and the number of cores.

RUNTIMEPRORITY [Default: MEDIUM]

Determines the amount of run-time resources (CPU, I/O bandwidth)
the Resource Manager should dedicate to queries already running in

the resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Queries with a HIGH run-time priority are given more CPU and I/O

resources than those with a MEDIUM or LOW run-time priority.

RUNTIMEPRIORITYTHRESHOLD [Default 2] Specifies a time limit (in seconds) by which a query must

finish before the Resource Manager assigns to it the
RUNTIMEPRIORITY of the resource pool. All queries begin runnng at

a HIGH priority. When a query's duration exceeds this threshold, it is

assigned the RUNTIMEPRIORITY of the resource pool.

PRIORITY [Default 0] An integer that represents priority of queries in this pool,

when they compete for resources in the GENERAL pool. Higher

numbers denote higher priority. Administrator-created resource pools

can have a priority of -100 to 100. The built-in resource pools
SYSQUERY, RECOVERY, and TM can have a range of -110 to 110.

QUEUETIMEOUT [Default 300 seconds] An integer, in seconds, that represents the

maximum amount of time the request is allowed to wait for resources
to become available before being rejected.

If set to NONE, the request can be queued for an unlimited amount of

time.

RUNTIMECAP [Default: NONE] Sets the maximum amount of time any query on the
pool can execute. Set RUNTIMECAP using interval, such as '1 minute'
or '100 seconds' (see Interval Values (page 37) for details). This value

cannot exceed one year. Setting this value to NONE specifies that
there is no time limit on queries running on the pool. If the user or
session also has a RUNTIMECAP, the shorter limit applies.

PLANNEDCONCURRENCY [Default: AUTO] When set to AUTO, this value is calculated
automatically at query runtime. HP Vertica sets this parameter to the
lower of these two calculations:

 Number of cores

 Memory/2GB

When this parameter is set to AUTO, HP Vertica will not choose a

value lower than 4.

HP Vertica advises changing this value only after evaluating
performance over a period of time.

Notes:

 The PLANNEDCONCURRENCY setting for the GENERAL pool

defaults to a too-small value for machines with large numbers
of cores. To adjust to a more appropriate value:

-666-

SQL Reference Manual

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

<#cores>;

 This is a cluster-wide maximum and not a per-node limit.

 For clusters where the number of cores differs on different
nodes, AUTO can apply differently on each

node. Distributed queries run like the minimal effective
planned concurrency. Single node queries run with the
planned concurrency of the initiator.

 If you created or upgraded your database in 4.0 or 4.1, the

PLANNEDCONCURRENCY setting on the GENERAL pool

defaults to a too-small value for machines with large numbers
of cores. To adjust to a more appropriate value:

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

 <#cores>;

 You need to set this parameter only if you created a database
before 4.1, patchset 1.

See Guidelines for Setting Pool Parameters in the Administrator's

Guide

SINGLEINITIATOR [Default false] This parameter is included for backwards compatibility
only. Do not change the value.

MAXCONCURRENCY [Default unlimited] An integer that represents the maximum number of
concurrent execution slots available to the resource pool. If
MAXCONCURRENCY NONE is specified, there is no limit.

Note: This is a cluster wide maximum and NOT a per-node limit.

Permissions

Must be a superuser on the resource pool for the following parameters:

 MAXMEMORYSIZE

 PRIORITY

 QUEUETIMEOUT

The following parameters require UPDATE privileges:

 PLANNEDCONCURRENCY

 SINGLEINITIATOR

 MAXCONCURRENCY

Notes

 New resource pools can be created or altered without shutting down the system. The only

exception is that changes to GENERAL.MAXMEMORYSIZE take effect only on a node restart.

When a new pool is created (or its size altered), MEMORYSIZE amount of memory is taken out

of the GENERAL pool. If the GENERAL pool does not currently have sufficient memory to create
the pool due to existing queries being processed, a request is made to the system to create a
pool as soon as resources become available. The pool is in operation as soon as the specified
amount of memory becomes available. You can monitor whether the ALTER has been
completed in the V_MONITOR.RESOURCE_POOL_STATUS (page 965) system table.

-667-

 SQL Statements

 If the GENERAL.MAXMEMORYSIZE parameter is modified while a node is down, and that node
is restarted, the restarted node sees the new setting whereas other nodes continue to see the
old setting until they are restarted. HP Vertica recommends that you do not change this
parameter unless absolutely necessary.

 Under normal operation, MEMORYSIZE is required to be less than MAXMEMORYSIZE and an

error is returned during CREATE/ALTER operations if this size limit is violated. However, under
some circumstances where the node specification changes by addition/removal of memory, or
if the database is moved to a different cluster, this invariant could be violated. In this case,
MAXMEMORYSIZE is reduced to MEMORYSIZE.

 If two pools have the same PRIORITY, their requests are allowed to borrow from the GENERAL

pool in order of arrival.

See Guidelines for Setting Pool Parameters in the Administrator's Guide for details about setting
these parameters.

See Also

CREATE RESOURCE POOL (page 753)

CREATE USER (page 801)

DROP RESOURCE POOL (page 819)

RESOURCE_POOL_STATUS (page 1083)

SET SESSION RESOURCE POOL (page 916)

SET SESSION MEMORYCAP (page 915)

Managing Workloads in the Administrator's Guide

ALTER ROLE RENAME
Rename an existing role.

Syntax
ALTER ROLE name RENAME [TO] new_name;

Parameters

name The current name of the role that you want
to rename.

new_name The new name for the role.

Permissions

Must be a superuser to rename a role.

Example
=> ALTER ROLE applicationadministrator RENAME TO appadmin;

-668-

SQL Reference Manual

ALTER ROLE

See Also

CREATE ROLE (page 764)

DROP ROLE (page 820)

ALTER SCHEMA
Renames one or more existing schemas.

Syntax
ALTER SCHEMA [db-name.]schema-name [, ...]

... RENAME TO new-schema-name [, ...]

Parameters

[db-name.] [Optional] Specifies the current database name. Using a database name prefix is

optional, and does not affect the command in any way. You must be connected to
the specified database.

schema-name Specifies the name of one or more schemas to rename.

RENAME TO Specifies one or more new schema names.

The lists of schemas to rename and the new schema names are parsed from left to
right and matched accordingly using one-to-one correspondence.

When renaming schemas, be sure to follow these standards:

 The number of schemas to rename must match the number of new schema
names supplied.

 The new schema names must not already exist.

The RENAME TO parameter is applied atomically. Either all the schemas are

renamed or none of the schemas are renamed. If, for example, the number of
schemas to rename does not match the number of new names supplied, none of

the schemas are renamed.

Note: Renaming a schema that is referenced by a view will cause the view to fail

unless another schema is created to replace it.

Privileges

Schema owner or user requires CREATE privilege on the database

Notes

Renaming schemas does not affect existing pre-join projections because pre-join projections refer
to schemas by the schemas' unique numeric IDs (OIDs), and the OIDs for schemas are not
changed by ALTER SCHEMA.

-669-

 SQL Statements

Tip

Renaming schemas is useful for swapping schemas without actually moving data. To facilitate the
swap, enter a non-existent, temporary placeholder schema. The following example uses the
temporary schema temps to facilitate swapping schema S1 with schema S2. In this example, S1 is
renamed to temps. Then S2 is renamed to S1. Finally, temps is renamed to S2.

ALTER SCHEMA S1, S2, temps

 RENAME TO temps, S1, S2;

Examples

The following example renames schema S1 to S3 and schema S2 to S4:

ALTER SCHEMA S1, S2

 RENAME TO S3, S4;

See Also

CREATE SCHEMA (page 764) and DROP SCHEMA (page 821)

ALTER SEQUENCE

Changes the attributes of an existing sequence. All changes take effect in the next database
session. Any parameters not set during an ALTER SEQUENCE statement retain their prior
settings. You must be a sequence owner or a superuser to use this statement.

Note: You can rename an existing sequence, or the schema of a sequence, but neither of

these changes can be combined with any other optional parameters.

Syntax
ALTER SEQUENCE [[db-name.]schema.]sequence-name

... [RENAME TO new-name | SET SCHEMA new-schema-name]

... [OWNER TO new-owner-name]

... |

... [INCREMENT [BY] increment-value]

... [MINVALUE minvalue | NO MINVALUE]

... [MAXVALUE maxvalue | NO MAXVALUE]

... [RESTART [WITH] restart]

... [CACHE cache]

... [CYCLE | NO CYCLE]

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search

path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot

make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database

-670-

SQL Reference Manual

objects as explicitly as required. For example, you can specify a

table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

sequence-name The name of the sequence to alter. The name must be unique

among sequences, tables, projections, and views.

RENAME TO new-name Renames a sequence within the same schema. To move a
sequence, see SET SCHEMA below.

OWNER TO new-owner-name Reassigns the current sequence owner to the specified owner.

Only the sequence owner or a superuser can change ownership,
and reassignment does not transfer grants from the original

owner to the new owner (grants made by the original owner are
dropped).

SET SCHEMA new-schema-name Moves a sequence between schemas.

INCREMENT [BY]

 increment-value

Modifies how much to increment or decrement the current
sequence to create a new value. A positive value increments an
ascending sequence, and a negative value decrements the

sequence.

MINVALUE minvalue | NO

 MINVALUE

Modifies the minimum value a sequence can generate. If you
change this value and the current value exceeds the range, the

current value is changed to the minimum value if increment is
greater than zero, or to the maximum value if increment is less
than zero.

MAXVALUE maxvalue | NO

 MAXVALUE

Modifies the maximum value for the sequence. If you change
this value and the current value exceeds the range, the current
value is changed to the minimum value if increment is greater

than zero, or to the maximum value if increment is less than
zero.

RESTART [WITH] restart Changes the current value of the sequence to restart. The

subsequent call to NEXTVAL will return the restart value.

CACHE [value | NO CACHE] Modifies how many sequence numbers are preallocated and
stored in memory for faster access. The default is 250,000 with a

minimum value of 1. Specifying a value of 1 indicates that only
one value can be generated at a time, since no cache is
assigned. Alternatively, you can specify NO CACHE.

CYCLE | NO CYCLE Allows you you to switch between CYCLE and NO CYCLE.

The CYCLE option allows the sequence to wrap around when
the maxvalue or minvalue is reached by an ascending or

descending sequence respectively. If the limit is reached, the
next number generated is the minvalue or maxvalue,
respectively.

If NO CYCLE is specified, any calls to NEXTVAL after the
sequence has reached its maximum/minimum value, return an
error. The default is NO CYCLE.

-671-

 SQL Statements

Permissions

 To rename a schema, the user must be the sequence owner and have USAGE and CREATE
privileges on the schema.

 To move a sequence between schemas, the user must be the sequence owner and have
USAGE privilege on the schema that currently contains the sequence (old schema) and
CREATE privilege on new schema to contain the sequence.

Examples

The following example modifies an ascending sequence called sequential to restart at 105:

ALTER SEQUENCE sequential RESTART WITH 105;

The following example moves a sequence from one schema to another:

ALTER SEQUENCE public.sequence SET SCHEMA vmart;

The following example renames a sequence in the Vmart schema:

ALTER SEQUENCE vmart.sequence RENAME TO serial;

The following example reassigns sequence ownership from the current owner to user Bob:

ALTER SEQUENCE sequential OWNER TO Bob;

See Also

CREATE SEQUENCE (page 765)

CURRVAL (page 353)

DROP SEQUENCE (page 822)

GRANT (Sequence) (page 838)

NEXTVAL (page 351)

Using Named Sequences, Sequence Privileges, and Changing a sequence owner in the
Administrator's Guide

ALTER SUBNET
Renames an existing subnet.

Syntax
ALTER SUBNET subnet-name RENAME TO 'new-subnet-name'

Parameters

The parameters are defined as follows:

subnet-name The name of the existing subnet.

-672-

SQL Reference Manual

new-subnet-name The new name for the subnet.

Permissions

Must be a superuser to alter a subnet.

ALTER TABLE
Modifies an existing table with a new table definition.

Syntax1
ALTER TABLE [[db-name.]schema.]table-name {

... ADD COLUMN column-definition (table) (page 779)

... | ADD table-constraint (page 678)

... | ALTER COLUMN column-name

 | [SET DEFAULT default-expression]

 | [DROP DEFAULT]

 | [{ SET | DROP } NOT NULL]

 | [SET DATA TYPE data-type]

... | DROP CONSTRAINT constraint-name [CASCADE | RESTRICT]

... | [DROP [COLUMN] column-name [CASCADE | RESTRICT]]

... | RENAME [COLUMN] column TO new-column

... | SET SCHEMA new-schema-name [CASCADE | RESTRICT]

... | PARTITION BY partition-clause [REORGANIZE]

... | REORGANIZE

... | REMOVE PARTITIONING

... | OWNER TO new-owner-name }

Syntax 2
ALTER TABLE [[db-name.]schema.]table-name [, ...]

... RENAME [TO] new-table-name [, ...]

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see Setting

Schema Search Paths).

You can optionally precede a schema with a database name, but you
must be connected to the database you specify. You cannot make

changes to objects in other databases.

The ability to specify different database objects (from database and
schemas to tables and columns) lets you qualify database objects as

explicitly as required. For example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full quali fication, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

-673-

 SQL Statements

table-name Specifies the name of the table to alter. When using more than one

schema, specify the schema that contains the table.

You can use ALTER TABLE in conjunction with SET SCHEMA to move

only one table between schemas at a time.

When using ALTER TABLE to rename one or more tables, you can

specify a comma-delimited list of table names to rename.

ADD COLUMN

 column-definition

Adds a new column to table as defined by column-definition

(page 779) and automatically adds the new column with a unique
projection column name to all superprojections of the table.

column-definition is any valid SQL function that does not contain
volatile functions. For example, a constant or a function of other
columns in the same table.

ADD COLUMN operations take an O lock (page 1037) on the table
until the operation completes, in order to prevent DELETE, UPDATE,
INSERT, and COPY statements from affecting the table. One

consequence of the O lock is that SELECT statements issued at
SERIALIZABLE isolation level are blocked until the operation
completes.

You can add a column when nodes are down.

For more information, see Altering Tables in the Administrator's Guide.

ADD table-constraint Adds a table-constraint (page 678) to a table that does not have any

associated projections. Adding a table constraint has no effect on
views that reference the table.

See About Constraints in the Administrator's Guide.

ALTER COLUMN column-name

 [SET DEFAULT default-exp]

 [DROP DEFAULT]

 [{SET | DROP} NOT NULL]

Alters an existing table column to change, drop, or establish a
DEFAULT expression for the column or set or drop a NOT NULL

constraint. (You can also use DROP DEFAULT to remove the default
expression.) You can specify a volatile function as the default
expression for a column as part of an ALTER COLUMN SET

DEFAULT statement.

SET DATA TYPE data-type Changes the column's data type to any type whose conversion does
not require storage reorganization.

The following types are the conversions that HP Vertica supports:

 Binary types–expansion and contraction (cannot convert
between BINARY and VARBINARY types).

 Character types–all conversions allowed, even between
CHAR and VARCHAR

 Exact numeric types–INTEGER, INT, BIGINT, TINYINT, INT8,
SMALLINT, and all NUMERIC values of scale <=18 and
precision 0 are interchangeable. For NUMERIC data types,

you cannot alter precision, but you can change the scale in the
ranges (0-18), (19-37), and so on.

Restrictions

You also cannot alter a column that is used in the CREATE
PROJECTION .. SEGMENTED BY clause. To resize a segmented

column, you must either create new superprojections and omit the
column in the segmentation clause, or you can create a new table and

-674-

SQL Reference Manual

projections with the column size that specifies the new size.

The following type conversions are not allowed:

 Boolean to other types

 DATE/TIME type conversion

 Approximate numeric type conversions

 Conversions between BINARY and VARBINARY

DROP CONSTRAINT name

[CASCADE | RESTRICT]

Drops the specified table-constraint from the table.

Use the CASCADE keyword to drop a constraint upon which something

else depends. For example, a FOREIGN KEY constraint depends on a
UNIQUE or PRIMARY KEY constraint on the referenced columns.

Use the RESTRICT keyword to drop the constraint only from the given

table.

Note: Dropping a table constraint has no effect on views that

reference the table.

DROP COLUMN column-name

 [CASCADE | RESTRICT]

Drops both the specified column from the table and the ROS

containers that correspond to the dropped column.

Because drop operations physically purge object storage and catalog
definitions (table history) from the table, AT EPOCH (historical) queries

return nothing for the dropped column.

Restrictions

 At the table level, you cannot drop or alter a primary key
column or a column participating in the table's partitioning
clause.

 At the projection level, you cannot drop the first column in a
projection's sort order or columns that participate in the
segmentation expression of a projection.

 All nodes must be up for the drop operation to succeed.

Using CASCADE to force a drop

You can use the CASCADE keyword to drop a column if that column:

 Has a constraint of any kind on it.

 Participates in the projection's sort order.

 Participates in a pre-join projection or participates in the
projection's segmentation expression. Note that when a

pre-join projection contains a column to be dropped with
CASCADE, HP Vertica tries to drop the projection.

In all cases, CASCADE tries to drop the projection(s) and will roll back

if K-safety is compromised. See the Dropping a table column in the
Administrator's Guide for additional details about CASCADE behavior
and examples.

Use the RESTRICT keyword to drop the column only from the given

table.

RENAME [TO] Renames one or more tables. In either case, the keyword changes the

name of the table or tables to the specified name or names. For more
information, see Altering Tables in the Administrator's Guide.

Renaming a table requires USAGE and CREATE privilege on the

schema that contains the table.

-675-

 SQL Statements

RENAME [COLUMN] Renames the specified column within the table.

Note: If a column that is referenced by a view is renamed, the column

does not appear in the result set of the view even if the view uses the

wild card (*) to represent all columns in the table. Recreate the view to
incorporate the column's new name.

SET SCHEMA

 new-schema-name

[RESTRICT | CASCADE]

Moves a table to the specified schema. You must have USAGE

privilege on the old schema and CREATE privilege on new schema.

SET SCHEMA supports moving only one table between schemas at a

time. You cannot move temporary tables between schemas. For more
information, see Altering Tables in the Administrator's Guide.

PARTITION BY

partition-clause

[REORGANIZE]

Partitions or re-partitions a table according to the partition-clause that
you define. Existing partition keys are immediately dropped when you
run the command.

You can use the PARTITION BY and REORGANIZE keywords

separately or together. However, you cannot use these keywords with
any other clauses.

Partition-clause expressions are limited in the following ways:

 Your partition-clause must calculate a single non-null value for
each row. You can reference multiple columns, but each row
must return a single value.

 You can specify leaf expressions, functions, and operators in
the partition clause expression.

 All leaf expressions in the partition clause must be either
constants or columns of the table.

 Aggregate functions and queries are not permitted in the
partition-clause expression.

 SQL functions used in the partition-clause expression must be
immutable.

Partitioning or re-partitioning tables requires USAGE privilege on the

schema that contains the table.

See Partitioning, repartitioning, and reorganizing tables in the
Administrator's Guide for details and best practices on repartitioning

and reorganizing data, as well as how to monitor REORGANIZE
operations.

Note: It is not recommended to ALTER table partitioning when nodes

are down because doing so prevents those nodes down from assisting

in database recovery.

REMOVE PARTITIONING Immediately removes partitioning on a table. The ROS containers are
not immediately altered, but are later cleaned by the Tuple Mover.

-676-

SQL Reference Manual

OWNER TO new-owner-name Changes the table owner. Only the table owner or a superuser can

change ownership, and reassignment does not transfer grants from
the original owner to the new owner (grants made by the original owner
are dropped).

Note: Changing the table owner transfers ownership of the associated

IDENTITY/AUTO_INCREMENT sequences (defined in CREATE

TABLE column-constraint (page 783) syntax) but not other
REFERENCES sequences. See How to change a table owner and
How to change a sequence owner in the Administrator's Guide.

Permissions

You must be a table owner or a superuser and have USAGE privileges on schema that contains
the table in order to:

 Add, drop, rename, or alter column

 Add or drop a constraint

 Partition or re-partition the table

To rename a table, you must have USAGE and CREATE privilege on the schema that contains
the table.

Moving a table to a new schema requires:

 USAGE privilege on the old schema

 CREATE privilege on new schema

Table Behavior After Alteration

After you modify a column, any new data that you load will conform to the modified table definition.

If you restore the database to an epoch other than the current epoch, the restore operation will
overwrite the changes with the prior table schema. For example, if you change a column's data
type from CHAR(8) to CHAR(16) in epoch 10 and you restore the database from epoch 5, the
column will be CHAR(8) again.

Changing a Data Type for a Column Specified in a SEGMENTED BY Clause

If you create a table and do not create a superprojection for it, HP Vertica automatically creates a
superprojection when you first load data into the table. By default, superprojections are
segmented by all columns to ensure that all of the data is available for queries. If you try to alter a
column used in the superprojection's segmentation clause, HP Vertica returns an error message
like in the following example:

=> CREATE TABLE colmod (c1 VARCHAR(13), c2 VARCHAR (8), c3 INT);

CREATE TABLE

=> CREATE PROJECTION colmod_c1seg AS SELECT c1 FROM colmod

 SEGMENTED BY HASH(c1) ALL NODES;

WARNING 4116: No super projections created for table public.colmod.

HINT: Default super projections will be automatically created with the next DML

CREATE PROJECTION

=> ALTER TABLE colmod ALTER COLUMN c1 SET DATA TYPE VARCHAR(30);

-677-

 SQL Statements

ROLLBACK 2353: Cannot alter type of column "c1" since it is referenced in the

segmentation expression of projection "colmod_c1seg"

To resize a segmented column, you must either create new superprojections and omit the column
in the segmentation clause or create a new table (with new column size) and projections.

Locked tables

If the operation cannot obtain an O Lock (page 1037) on the table(s), HP Vertica attempts to close
any internal Tuple Mover (TM) sessions running on the same table(s) so that the operation can
proceed. Explicit TM operations that are running in user sessions are not closed. If an explicit TM
operation is running on the table, then the operation cannot proceed until the explicit TM operation
completes.

Examples

The following example drops the default expression specified for the Discontinued_flag
column:

=> ALTER TABLE Retail.Product_Dimension

 ALTER COLUMN Discontinued_flag DROP DEFAULT;

The following example renames a column in the Retail.Product_Dimension table from

Product_description to Item_description:

=> ALTER TABLE Retail.Product_Dimension

 RENAME COLUMN Product_description TO Item_description;

The following example moves table T1 from schema S1 to schema S2. SET SCHEMA defaults to

CASCADE, so all the projections that are anchored on table T1 are automatically moved to
schema S2 regardless of the schema in which they reside:

=> ALTER TABLE S1.T1 SET SCHEMA S2;

The following example adds partitioning to the Sales table based on state and reorganizes the

data into partitions:

=> ALTER TABLE Sales PARTITION BY state REORGANIZE;

Adding and Changing Constraints on Columns Using ALTER TABLE

The following example uses ALTER TABLE to add a column (b) with not NULL and default 5

constraints to a table (test6):

CREATE TABLE test6 (a INT);

ALTER TABLE test6 ADD COLUMN b INT DEFAULT 5 NOT NULL;

Use ALTER TABLE with the ALTER COLUMN and SET NOT NULL clauses to add the constraint
on column a in table test6:

ALTER TABLE test6 ALTER COLUMN a SET NOT NULL;

Adding and Dropping NOT NULL Column Constraints

Use the SET NOT NULL or DROP NOT NULL clause to add or remove a not NULL column
constraint. Use these clauses to ensure that the column has the proper constraints when you have
added or removed a primary key constraint on a column, or any time you want to add or remove
the not NULL constraint.

-678-

SQL Reference Manual

Note: A PRIMARY KEY constraint includes a not NULL constraint, but if you drop the

PRIMARY KEY constraint on a column, the not NULL constraint remains on that column.

Examples
ALTER TABLE T1 ALTER COLUMN x SET NOT NULL;

ALTER TABLE T1 ALTER COLUMN x DROP NOT NULL;

For more information, see Altering Table Definitions.

See Also

For additional examples, see Working with Tables in the Administrator's Guide

table-constraint
Adds a constraint to the metadata of a table. See Adding Constraints in the Administrator's Guide.

Syntax
[CONSTRAINT constraint_name]

... { PRIMARY KEY (column [, ...])

... | FOREIGN KEY (column [, ...]) REFERENCES table [(column [, ...])]

... | UNIQUE (column [, ...])

... }

Parameters

CONSTRAINT constraint-name Assigns a name to the constraint. HP recommends that
you name all constraints.

PRIMARY KEY (column [, ...]) Adds a referential integrity constraint defining one or more

NOT NULL columns as the primary key.

FOREIGN KEY (column [, ...]) Adds a referential integrity constraint defining one or more
columns as a foreign key.

REFERENCES table [(column [, ...])] Specifies the table to which the FOREIGN KEY constraint

applies. If you omit the optional column definition of the

referenced table, the default is the primary key of table.

UNIQUE (column [, ...]) Specifies that the data contained in a column or a group of
columns is unique with respect to all the rows in the table.

Permissions

Table owner or user WITH GRANT OPTION is grantor.

 REFERENCES privilege on table to create foreign key constraints that reference this table

 USAGE privilege on schema that contains the table

Specifying Primary and Foreign Keys

You must define PRIMARY KEY and FOREIGN KEY constraints in all tables that participate in
inner joins.

-679-

 SQL Statements

You can specify a foreign key table constraint either explicitly (with the FOREIGN KEY
parameter), or implicitly using the REFERENCES parameter to reference the table with the
primary key. You do not have to explicitly specify the columns in the referenced table, for example:

CREATE TABLE fact(c1 INTEGER PRIMARY KEY);

CREATE TABLE dim (c1 INTEGER REFERENCES fact);

Adding Constraints to Views

Adding a constraint to a table that is referenced in a view does not affect the view.

Examples

The Retail Sales Example Database described in the Getting Started Guide contains a table
Product_Dimension in which products have descriptions and categories. For example, the
description "Seafood Product 1" exists only in the "Seafood" category. You can define several
similar correlations between columns in the Product Dimension table.

ALTER USER
Changes a database user account. Only a superuser can alter another user's database account.
Making changes to a database user account with the ALTER USER function does not affect
current sessions.

Database Account Changes Users Can Make

Users can change their own user accounts with these options:

 IDENTIFIED BY. . .

 RESOURCE POOL . . .

 SEARCH_PATH . . .

Users can change their own passwords using the IDENTIFIED BY option and supplying the
current password with the REPLACE clause. Users can set the default RESOURCE POOL to
any pool to which they have been granted usage privileges.

Syntax
ALTER USER name

... [ACCOUNT { LOCK | UNLOCK }]

... [DEFAULT ROLE {role [, ...] | NONE}]

... [IDENTIFIED BY 'password' [REPLACE 'old-password']]

... [MEMORYCAP { 'memory-limit' | NONE }]

... [PASSWORD EXPIRE]

... [PROFILE { profile-name | DEFAULT }]

... [RESOURCE POOL pool-name]

... [RUNTIMECAP { 'time-limit' | NONE }]

... [TEMPSPACECAP { 'space-limit' | NONE }]

... [SEARCH_PATH { schema[,schema2,...] | DEFAULT }]

Parameters

-680-

SQL Reference Manual

name Specifies the name of the user to alter. You must double quote

names that contain special characters.

ACCOUNT LOCK | UNLOCK Locks or unlocks the named user's access to the database.
Users cannot log in i f their account is locked. A superuser can

manually lock and unlock accounts using ALTER USER syntax
or automate account locking by setting a maximum number of
failed login attempts through the CREATE PROFILE (page 739)

statement. See also Profiles in the Administrator's Guide.

DEFAULT ROLE {role [, ...]

 | NONE}

One or more roles that should be active when the user's
session starts. The user must have already been granted

access to the roles (see GRANT (Role) (page 835)). The role
or roles specified in this command replace any existing default
roles. Use the NONE keyword to eliminate all default roles for

the user.

IDENTIFIED BY 'password'

[REPLACE 'old_password']

Sets a user's password to password. Supplying an empty

string for password removes the user's password.

The use of this clause differs between superusers and
non-superusers.

A non-superuser can alter only his or her own password, and
must supply the existing password using the REPLACE
parameter.

Superusers can change any user's password and do not need
to supply the REPLACE parameter.

See Password Guidelines and Creating a Database Name and

Password for password policies.

PASSWORD EXPIRE Expires the user's password. HP Vertica will force the user to
change passwords during his or her next login.

Note: PASSWORD EXPIRE has no effect when using external

password authentication methods such as LDAP or Kerberos.

PROFILE profile-name |

 DEFAULT

Sets the user's profile to profile-name. Using the value
DEFAULT sets the user's profile to the default profile.

MEMORYCAP 'memory-limit'

 | NONE

Limits the amount of memory that the user's requests can use.
This value is a number representing the amount of space,

followed by a unit (for example, '10G'). The unit can be one of
the following:

 % percentage of total memory available to the

Resource Manager. (In this case value of the size size
must be 0-100)

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Setting this value to NONE means the user has no limits on

memory use.

RESOURCE POOL pool-name Sets the name of the default resource pool for the user.

Attempting to alter a database user account to associate the

-681-

 SQL Statements

account with a particular resource pool will result in an error i f

the user has not already been granted access to the resource
pool. particular resource pool on which they have not been
granted access results in an error (even for a superuser).

RUNTIMECAP 'time-limit'

 | NONE

Sets the maximum amount of time any of the user 's queries can
execute. time-limit is an interval, such as '1 minute' or '100
seconds' (see Interval Values (page 37) for details). This value

cannot exceed one year. Setting this value to NONE means
there is no time limit on the user's queries.

If RUNTIMECAP is also set for the resource pool or the session,

HP Vertica always uses the shortest limit.

TEMPSPACECAP 'space-limit'

|

 NONE

Limits the amount of temporary file storage the user's requests
can use. This parameter's value has the same format as the

MEMORYCAP value.

SEARCH_PATH

schema[,schema2,...] |

DEFAULT

Sets the user's default search path that tells HP Vertica which

schemas to search for unqualified references to tables and
UDFs. See Setting Search Paths in the Administrator's Guide
for an explanation of the schema search path. The DEFAULT

keyword sets the search path to:

"$user", public, v_catalog, v_monitor, v_internal

Permissions

Must be a superuser to alter a user.

See Also

CREATE USER (page 801)

DROP USER (page 826)

Managing Workloads in the Administrator's Guide

Setting a Run-Time Limit for Queries

ALTER VIEW
Renames a view.

Syntax
ALTER VIEW [[db-name.]schema.] current-view-name

... RENAME TO new-view-name

Parameters

viewname Specifies the name of the view you want to rename.

RENAME TO

new-view-name

Specifies the new name of the view. The view name must be unique. Do
not use the same name as any table, view, or projection within the
database.

-682-

SQL Reference Manual

Notes

Views are read only. You cannot perform insert, update, delete, or copy operations on a view.

Permissions

To create a view, the user must be a superuser or have CREATE privileges on the schema in
which the view is renamed.

Example

The following command renames view1 to view2:

=> CREATE VIEW view1 AS SELECT * FROM t;

CREATE VIEW

=> ALTER VIEW view1 RENAME TO view2;

ALTER VIEW

BEGIN
Starts a transaction block.

Syntax
BEGIN [WORK | TRANSACTION] [isolation_level] [transaction_mode]

where isolation_level is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED

}

and where transaction_mode is one of:

READ { ONLY | WRITE }

Parameters

WORK | TRANSACTION Have no effect; they are optional keywords for readability.

ISOLATION LEVEL

{

 SERIALIZABLE |

 REPEATABLE READ |

 READ COMMITTED |

 READ UNCOMMITTED

}

Isolation level determines what data the transaction can
access when other transactions are running concurrently.
The isolation level cannot be changed after the first query

(SELECT) or DML statement (INSERT, DELETE, UPDATE)
has run. A transaction retains its isolation level until it
completes, even if the session's transaction isolation level

changes mid-transaction. HP Vertica internal processes
(such as the Tuple Mover and refresh operations) and DDL
operations are always run at SERIALIZABLE isolation level

to ensure consistency.

-683-

 SQL Statements

isolation_level can one of the following values:

 SERIALIZABLE—Sets the strictest level of SQL

transaction isolation. This level emulates
transactions serially, rather than concurrently. It

holds locks and blocks write operations until the
transaction completes. Not recommended for normal
query operations.

 REPEATABLE READ—Automatically converted to

SERIALIZABLE by HP Vertica.

 READ COMMITTED (Default)—Allows concurrent

transactions. Use READ COMMITTED isolation or

Snapshot Isolation for normal query operations, but
be aware that there is a subtle difference between
them. (See section below this table.)

 READ UNCOMMITTED—Automatically converted to

READ COMMITTED by HP Vertica.

READ { ONLY | WRITE }

Transaction mode can be one of the following:

 READ WRITE—(default)The transaction is read/write.

 READ ONLY—The transaction is read-only.

Setting the transaction session mode to read-only disallows

the following SQL commands, but does not prevent all disk
write operations:

 INSERT, UPDATE, DELETE, and COPY if the table
they would write to is not a temporary table

 All CREATE, ALTER, and DROP commands

 GRANT, REVOKE, and EXPLAIN if the command it
would run is among those listed.

Permissions

No special permissions required.

Notes

START TRANSACTION (page 926) performs the same function as BEGIN.

See Also

 Transactions

 Creating and Rolling Back Transactions

 COMMIT (page 697)

 END (page 827)

 ROLLBACK (page 867)

-684-

SQL Reference Manual

COMMENT ON Statements

COMMENT ON COLUMN

Adds, revises, or removes a projection column comment. You can only add comments to
projection columns, not to table columns. Each object can have a maximum of 1 comment (1 or
0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON COLUMN [[db-name.]schema.]proj_name.column_name IS {'comment' | NULL}

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current

search path (see Setting Schema Search Paths).

You can optionally precede a schema with a database
name, but you must be connected to the database you

specify. You cannot make changes to objects in other
databases.

The ability to specify different database objects (from

database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For
example, you can specify a table and column

(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification,

a database, schema, table, and column
(mydb.myschema.mytable.column1).

proj_name.column_name Specifies the name of the projection and column with which

to associate the comment.

comment Specifies the comment text to add. Enclose the text of the
comment within single-quotes. If a comment already exists

for this column, the comment you enter here overwrites the
previous comment.

Comments can be up to 8192 characters in length. If a

comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to

remove an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

-685-

 SQL Statements

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the customer_name column in the

customer_dimension projection:

=> COMMENT ON COLUMN customer_dimension_vmart_node01.customer_name IS 'Last name

only';

The following examples remove a comment from the customer_name column in the
customer_dimension projection in two ways, using the NULL option, or specifying a blank string:

=> COMMENT ON COLUMN customer_dimension_vmart_node01.customer_name IS NULL;

=> COMMENT ON COLUMN customer_dimension_vmart_node01.customer_name IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON CONSTRAINT
Adds, revises, or removes a comment on a constraint. Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON CONSTRAINT constraint_name ON [[db-name.]schema.]table_name IS

... {'comment' | NULL };

Parameters

constraint_name The name of the constraint associated with the comment.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,

but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from

database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For
example, you can specify a table and column

(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

table_name Specifies the name of the table constraint with which to
associate a comment.

-686-

SQL Reference Manual

comment Specifies the comment text to add. Enclose the text of the

comment within single-quotes. If a comment already exists
for this constraint, the comment you enter here overwrites the
previous comment.

Comments can be up to 8192 characters in length. If a
comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove
an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the constraint_x constraint on the
promotion_dimension table:

=> COMMENT ON CONSTRAINT constraint_x ON promotion_dimension IS 'Primary key';

The following examples remove a comment from the constraint_x constraint on the

promotion_dimension table:

=> COMMENT ON CONSTRAINT constraint_x ON promotion_dimension IS NULL;

=> COMMENT ON CONSTRAINT constraint_x ON promotion_dimension IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON FUNCTION
Adds, revises, or removes a comment on a function. Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON FUNCTION [[db-name.]schema.]function_name function_arg IS { 'comment'

| NULL };

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see

Setting Schema Search Paths).

-687-

 SQL Statements

You can optionally precede a schema with a database name, but

you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

function_name Specifies the name of the function with which to associate the
comment.

function_arg Indicates the function arguments.

comment Specifies the comment text to add. Enclose the comment text
within single-quotes. If a comment already exists for this function,

the comment you enter overwrites the previous comment.

Comments can be up to 8192 characters in length. If a comment
exceeds that limitation, HP Vertica truncates the comment and

alerts the user with a message.

You can enclose a blank value within single quotes to remove an
existing comment.

NULL Removes an existing comment.

Notes

 A superuser can view and add comments to all objects.

 A user must own an object to be able to add or edit comments for the object.

 A user must have viewing privileges on an object to view its comments.

 If you drop an object, all comments associated with the object are dropped as well.

Example

The following example adds a comment to the macros.zerowhennull (x INT) function:

=> COMMENT ON FUNCTION macros.zerowhennull(x INT) IS 'Returns a 0 if not NULL';

The following examples remove a comment from the macros.zerowhennull (x INT) function

in two ways by using the NULL option, or specifying a blank string:

=> COMMENT ON FUNCTION macros.zerowhennull(x INT) IS NULL;

=> COMMENT ON FUNCTION macros.zerowhennull(x INT) IS '';

See Also

V_CATALOG.COMMENTS (page 937)

-688-

SQL Reference Manual

COMMENT ON LIBRARY

Adds, revises, or removes a comment on a library . Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON LIBRARY [[db-name.]schema.]library_name IS {'comment' | NULL}

Parameters

[[db-name.]schema.

]
[Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you qualify
database objects as explicitly as required. For example, you

can specify a table and column (mytable.column1), a

schema, table, and column
(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

library_name The name of the library associated with the comment.

comment Specifies the comment text to add. Enclose the text of the
comment within single-quotes. If a comment already exists for

this library, the comment you enter here overwrites the
previous comment.

Comments can be up to 8192 characters in length. If a

comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove

an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the library MyFunctions:

-689-

 SQL Statements

=> COMMENT ON LIBRARY MyFunctions IS 'In development';

The following examples remove a comment from the library MyFunctions:

=> COMMENT ON LIBRARY MyFunctions IS NULL;

=> COMMENT ON LIBRARY MyFunctions IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON NODE

Adds, revises, or removes a comment on a node. Each object can have a maximum of 1 comment
(1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON NODE node_name IS { 'comment' | NULL }

Parameters

node_name The name of the node associated with the comment.

comment Specifies the comment text to add. Enclose the text of the
comment within single-quotes. If a comment already exists for
this node, the comment you enter here overwrites the previous

comment.

Comments can be up to 8192 characters in length. If a comment
exceeds that limitation, HP Vertica truncates the comment and

alerts the user with a message.

You can enclose a blank value within single quotes to remove an
existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment for the initiator node:

=> COMMENT ON NODE initiator IS 'Initiator node';

The following examples removes a comment from the initiator node.

=> COMMENT ON NODE initiator IS NULL;

-690-

SQL Reference Manual

=> COMMENT ON NODE initiator IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON PROJECTION
Adds, revises, or removes a comment on a projection. Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON PROJECTION [[db-name.]schema.]proj_name IS { 'comment' | NULL }

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

projection_name The name of the projection associated with the comment.

comment Specifies the text of the comment to add. Enclose the text of

the comment within single-quotes. If a comment already exists
for this projection, the comment you enter here overwrites the
previous comment.

Comments can be up to 8192 characters in length. If a
comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove
an existing comment.

Null Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

-691-

 SQL Statements

Example

The following example adds a comment to the customer_dimension_vmart_node01

projection:

=> COMMENT ON PROJECTION customer_dimension_vmart_node01 IS 'Test data';

The following examples remove a comment from the customer_dimension_vmart_node01
projection:

=> COMMENT ON PROJECTION customer_dimension_vmart_node01 IS NULL;

=> COMMENT ON PROJECTION customer_dimension_vmart_node01 IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON SCHEMA

Adds, revises, or removes a comment on a schema. Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON SCHEMA [db-name.]schema_name IS {'comment' | NULL}

Parameters

[db-name.] [Optional] Specifies the database name. You must be

connected to the database you specify. You cannot make
changes to objects in other databases.

schema_name Indicates the schema associated with the comment.

comment Text of the comment you want to add. Enclose the text of the
comment in single-quotes. If a comment already exists for this
schema, the comment you enter here overwrites the previous

comment.

Comments can be up to 8192 characters in length. If a comment
exceeds that limitation, HP Vertica truncates the comment and

alerts the user with a message.

You can enclose a blank value within single quotes to remove an
existing comment.

NULL Allows you to remove an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

-692-

SQL Reference Manual

Example

The following example adds a comment to the public schema:

=> COMMENT ON SCHEMA public IS 'All users can access this schema';

The following examples remove a comment from the public schema.

=> COMMENT ON SCHEMA public IS NULL;

=> COMMENT ON SCHEMA public IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON SEQUENCE

Adds, revises, or removes a comment on a sequence. Each object can have a maximum of 1
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON SEQUENCE [[db-name.]schema.]sequence_name IS { 'comment' | NULL }

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For

example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

sequence_name The name of the sequence associated with the comment.

comment Specifies the text of the comment to add. Enclose the text of

the comment within single-quotes. If a comment already
exists for this sequence, the comment you enter here
overwrites the previous comment.

Comments can be up to 8192 characters in length. If a
comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove

-693-

 SQL Statements

an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the sequence called prom_seq.

=> COMMENT ON SEQUENCE prom_seq IS 'Promotion codes';

The following examples remove a comment from the prom_seq sequence.

=> COMMENT ON SEQUENCE prom_seq IS NULL;

=> COMMENT ON SEQUENCE prom_seq IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON TABLE

Adds, revises, or removes a comment on a table. Each object can have a maximum of one
comment (1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

Syntax
COMMENT ON TABLE [[db-name.]schema.]table_name IS { 'comment' | NULL }

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search

Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

table_name Specifies the name of the table with which to associate the
comment.

comment Specifies the text of the comment to add. Enclose the text of

the comment within single-quotes. If a comment already exists

-694-

SQL Reference Manual

for this table, the comment you enter here overwrites the

previous comment.

Comments can be up to 8192 characters in length. If a
comment exceeds that limitation, HP Vertica truncates the

comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove
an existing comment.

Null Removes a previously added comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the promotion_dimension table:

=> COMMENT ON TABLE promotion_dimension IS '2011 Promotions';

The following examples remove a comment from the promotion_dimension table:

=> COMMENT ON TABLE promotion_dimension IS NULL;

=> COMMENT ON TABLE promotion_dimension IS '';

See Also

V_CATALOG.COMMENTS (page 937)

COMMENT ON TRANSFORM FUNCTION
Adds, revises, or removes a comment on a user-defined transform function. Each object can have

a maximum of 1 comment (1 or 0). Comments are stored in the v_catalog.comments system
table.

Syntax
COMMENT ON TRANSFORM FUNCTION [[db-name.]schema.]t_function_name

...([t_function_arg_name t_function_arg_type] [,...]) IS {'comment' | NULL}

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database

-695-

 SQL Statements

objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

t_function_name Specifies name of the transform function with which to
associate the comment.

t_function_arg_name

t_function_arg_type
[Optional] Indicates the names and data types of one or more
transform function arguments. If you supply argument names
and types, each type must match the type specified in the

library used to create the original transform function.

comment Specifies the comment text to add. Enclose the text of the
comment within single-quotes. If a comment already exists for

this transform function, the comment you enter overwrites the
previous comment.

Comments can be up to 8192 characters in length. If a

comment exceeds that limitation, HP Vertica truncates the
comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove

an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to the macros.zerowhennull (x INT) UTF function:

=> COMMENT ON TRANSFORM FUNCTION macros.zerowhennull(x INT) IS 'Returns a 0 if not

NULL';

The following example removes a comment from the acros.zerowhennull (x INT) function

by using the NULL option:

=> COMMENT ON TRANSFORM FUNCTION macros.zerowhennull(x INT) IS NULL;

COMMENT ON VIEW

Adds, revises, or removes a comment on a view. Each object can have a maximum of 1 comment
(1 or 0). Comments are stored in the V_CATALOG.COMMENTS system table.

-696-

SQL Reference Manual

Syntax
COMMENT ON VIEW [[db-name.]schema.]view_name IS { 'comment' | NULL }

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,

and you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

view_name The name of the view with which to associate the comment.

comment Specifies the text of the comment to add. If a comment already
exists for this view, the comment you enter here overwrites the

previous comment.

Comments can be up to 8192 characters in length. If a
comment exceeds that limitation, HP Vertica truncates the

comment and alerts the user with a message.

You can enclose a blank value within single quotes to remove
an existing comment.

NULL Removes an existing comment.

Permissions

 A superuser can view and add comments to all objects.

 The object owner can add or edit comments for the object.

 A user must have VIEW privileges on an object to view its comments.

Notes

Dropping an object drops all comments associated with the object.

Example

The following example adds a comment to a view called curr_month_ship:

=> COMMENT ON VIEW curr_month_ship IS 'Shipping data for the current month';

The following example removes a comment from the curr_month_ship view:

=> COMMENT ON VIEW curr_month_ship IS NULL;

See Also

V_CATALOG.COMMENTS (page 937)

-697-

 697

COMMIT

Ends the current transaction and makes all changes that occurred during the transaction
permanent and visible to other users.

Syntax
COMMIT [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION Have no effect; they are optional keywords for readability.

Permissions

No special permissions required.

Notes

END (page 827) is a synonym for COMMIT.

See Also

 Transactions

 Creating and Rolling Back Transactions

 BEGIN (page 682)

 ROLLBACK (page 867)

 START TRANSACTION (page 926)

CONNECT
Connects to another HP Vertica database to enable data import (using the COPY FROM
VERTICA (page 711) statement) or export (using the EXPORT (page 829) statement). By default,
invoking CONNECT occurs over the HP Vertica private network. Creating a connection over a
public network requires some configuration. For information about using CONNECT to export data
to or import data over a public network, see Export/Import from a Public Network.

Note: When importing from or exporting to an HP Vertica database, you can connect only to a

database that uses trusted- (username-only) or password-based authentication, as described
in Implementing Security. Neither LDAP nor SSL authentication is supported.

Syntax
CONNECT TO VERTICA database USER username PASSWORD 'password' ON 'host',port

-698-

SQL Reference Manual

Parameters

database The connection target database name.

username The username to use when connecting to the other database.

password A string containing the password to use to connect to the other

database.

host A string containing the hostname of one of the nodes in the other
database.

port The port number of the other database as an integer.

Permissions

No special permissions required.

Connection Details

Once you successfully establish a connection to another database, the connection remains open
for the current session. To disconnect a connection, use the DISCONNECT (page 809) statement.

You can have only one connection to another database at a time, though you can create
connections to multiple different databases in the same session.

If the target database does not have a password, and you specify a password in the CONNECT
statement, the connection succeeds, but does not give any indication that you supplied an
incorrect password.

Example

=> CONNECT TO VERTICA ExampleDB USER dbadmin PASSWORD 'Password123' ON 'VerticaHost01',5433;

CONNECT

See Also

COPY FROM VERTICA (page 711)

DISCONNECT (page 809)

EXPORT TO VERTICA (page 829)

-699-

 699

COPY

Bulk loads data into an HP Vertica database. You can initiate loading one or more files or pipes on
a cluster host, or on a client system (using the COPY LOCAL option).

Permissions

You must connect to the HP Vertica database as a superuser, or, as a non-superuser, have a
USER-accessible storage location, and applicable READ or WRITE privileges granted to the

storage location from which files are read or written to. COPY LOCAL users must have INSERT
privileges to copy data from the STDIN pipe, as well as USAGE privileges on the schema.

To COPY from STDIN:

 INSERT privilege on table

 USAGE privilege on schema

Syntax
COPY [[db-name.]schema-name.]table

... [({ column-as-expression | column }

...... [FILLER datatype]

...... [FORMAT 'format']

...... [ENCLOSED BY 'char']

...... [ESCAPE AS 'char' | NO ESCAPE]

...... [NULL [AS] 'string']

...... [TRIM 'byte']

...... [DELIMITER [AS] 'char']

... [, ...])]

... [COLUMN OPTION (column

...... [FORMAT 'format']

...... [ENCLOSED BY 'char']

...... [ESCAPE AS 'char' | NO ESCAPE]

...... [NULL [AS] 'string']

...... [DELIMITER [AS] 'char']

... [, ...])]

FROM { STDIN

...... [BZIP | GZIP | UNCOMPRESSED]

...| 'pathToData' [ON nodename | ON ANY NODE]

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

...| LOCAL STDIN | 'pathToData'

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

}

...[NATIVE | NATIVE VARCHAR | FIXEDWIDTH COLSIZES (integer [,])]

...[WITH]

...[WITH [SOURCE source(arg='value')] [FILTER filter(arg='value')] [PARSER

parser([arg='value'])]]

...[DELIMITER [AS] 'char']

...[TRAILING NULLCOLS]

...[NULL [AS] 'string']

...[ESCAPE AS 'char' | NO ESCAPE]

...[ENCLOSED BY 'char']

...[RECORD TERMINATOR 'string']

-700-

SQL Reference Manual

...[SKIP records]

...[SKIP BYTES integer]

...[TRIM 'byte']

...[REJECTMAX integer]

...[EXCEPTIONS 'path' [ON nodename] [, ...]]

...[REJECTED DATA 'path' [ON nodename] [, ...]]

...[ENFORCELENGTH]

...[ABORT ON ERROR]

...[AUTO | DIRECT | TRICKLE]

...[STREAM NAME 'streamName']

...[NO COMMIT]

Parameters

table The table containing the data to load into the HP Vertica
database.

[[db-name.]schema-name.]table [Optional] Specifies the name of a schema table (not a
projection), optionally preceded by a database name. HP
Vertica loads the data into all projections that include columns

from the schema table.

When using more than one schema, specify the schema that
contains the table.

Note: COPY ignores db-name or schema-name options when

used as part of a CREATE EXTERNAL TABLE statement.

column-as-expression Specifies the expression used to compute values for the target
column. For example:

COPY t(year AS TO_CHAR(k, 'YYYY'),

.

.

Use this option to transform data when it is loaded into the

target database. For more information about using
expressions with COPY, see Transforming Data During Loads
in the Administrator's Guide. See Ignoring Columns and Fields

in the Load File in the Administrator's Guide for information
about using fillers.

-701-

 SQL Statements

column Restricts the load to one or more specified columns in the

table. If you do not specify any columns, COPY loads all
columns by default.

Table columns that are not in the column list are given their

default values. If no default value is defined for a column,
COPY inserts NULL.

If you leave the column parameter blank to load all columns in

the table, you can use the optional parameter COLUMN

OPTION to specify parsing options for specific columns.

Note: The data file must contain the same number of columns

as the COPY command's column list. For example, in a table

T1 with nine columns (C1 through C9), the following command

loads the three columns of data in each record to columns C1,

C6, and C9, respectively:

=> COPY T1 (C1, C6, C9);

FILLER Specifies not to load the column and its fields into the
destination table. Use this option to omit columns that you do

not want to transfer into a table.

This parameter also transforms data from a source column
and loads the transformed data to the destination table, rather

than loading the original, untransformed source column
(parsed column). (See Ignoring Columns and Fields in the
Load File in the Administrator's Guide.)

FORMAT Specifies the input formats to use when loading date/time
(page 78) and binary (page 72) columns.

These are the valid input formats when loading binary

columns:

 'octal'

 'hex '

 'bitstream'

See Loading Binary Data to learn more about using these

formats.

When loading date/time (page 78) columns, using FORMAT
significantly improves load performance. COPY supports the

same formats as the TO_DATE (page 259) function.

See the following topics for additional information:

 Template Patterns for Date/Time Formatting (page
265)

 Template Pattern Modifiers for Date/Time
Formatting (page 267)

If you specify invalid format strings, the COPY operation

returns an error.

pathToData Specifies the absolute path of the file containing the data,
which can be from multiple input sources.

If path resolves to a storage location, and the user invoking
COPY is not a superuser, these are the required privileges:

-702-

SQL Reference Manual

 The storage location must have been created with the
USER option (see ADD_LOCATION (page 426))

 The user must already have been granted READ
access to the storage location where the file(s) exist,
as described in GRANT (Storage Location) (page
839)

Further, if a non-superuser invokes COPY from a storage
location to which she has privileges, HP Vertica also checks

any symbolic links (symlinks) the user has to ensure no
symlink can access an area to which the user has not been
granted privileges.

The pathToData can optionally contain wildcards to match
more than one file. The file or files must be accessible to the
local client or the host on which the COPY statement runs.

You can use variables to construct the pathname as described
in Using Load Scripts.

The supported patterns for wildcards are specified in the

Linux Manual Page for Glob (7)
http://linux.die.net/man/7/glob, and for ADO.net plat forms,
through the .NET Directory.getFiles Method

http://msdn.microsoft.com/en-us/library/wz42302f.aspx.

nodename [Optional] Specifies the node on which the data to copy
resides and the node that should parse the load file. You can

use nodename to COPY and parse a load file from a node
other than the initiator node of the COPY statement. If you omit
nodename, the location of the input file defaults to the initiator
node for the COPY statement.

Note: You cannot specify nodename with either STDIN or

LOCAL, because STDIN is read on the initiator node only and

LOCAL indicates a client node.

ON ANY NODE [Optional] Specifies that the source file to load is on all of the
nodes, so COPY opens the file and parses it from any node in
the cluster. Make sure that the source file is available and

accessible on each cluster node.

You can use a wildcard or glob (such as *.dat) to load multiple
input files, combined with the ON ANY NODE clause. Using a

glob results in COPY distributing the list of files to all cluster
nodes and spreading the workload.

Note: You cannot specify ON ANY NODE with either STDIN or

LOCAL, because STDIN is read on the initiator node only and

LOCAL indicates a client node.

STDIN Reads from the client a standard input instead of a file. STDIN

takes one input source only and is read on the initiator node.
To load multiple input sources, use pathToData.

User must have INSERT privilege on table and USAGE

privilege on schema/

LOCAL Specifies that all paths for the COPY statement are on the
client system and that all COPY variants are initiated from a

http://linux.die.net/man/7/glob
http://msdn.microsoft.com/en-us/library/wz42302f.aspx

-703-

 SQL Statements

client. You can use the LOCAL and STDIN parameters

together. See Using the COPY and LCOPY Statements in the
Administrator's Guide.

BZIP|GZIP|UNCOMPRESSED Specifies the input file format. The default value is

UNCOMPRESSED, and input files can be of any format. If using

wildcards, all qualifying input files must be in the same format.

Notes:

 When using concatenated BZIP or GZIP files, be sure

that each source file is terminated with a record
terminator before concatenating them.

 Concatenated BZIP and GZIP files are not supported
for NATIVE (binary) and NATIVE VARCHAR formats.

WITH, AS Improve readability of the statement. These parameters have

no effect on the actions performed by the statement.

[WITH

[SOURCE source(arg='value')]

[FILTER filter(arg='value')]

 [PARSER parser(arg='value')

]]

Specifies COPY to optionally use one or more User Defined
Load functions. You can specify up to one source, zero or

more filters, and up to one parser.

NATIVE |

NATIVE VARCHAR |

FIXEDWIDTH

Specifies the parser to use when bulk loading data. By default,
COPY uses the DELIMITER parser for UTF-8 format,

delimited text input data. Do not specify DELIMITER. COPY
always uses the default parser unless you specify another. For
more information about using these options, see Loading

Different Formats in the Administrator's Guide.

NOTE: COPY LOCAL does not support the NATIVE and

NATIVE VARCHAR parsers

COLUMN OPTION Specifies load metadata for one or more columns declared in

the table column list. For example, you can specify that a
column has its own DELIMITER, ENCLOSED BY, NULL as

'NULL' expression, and so on. You do not have to specify

every column name explicitly in the COLUMN OPTION list, but

each column you specify must correspond to a column in the

table column list.

COLSIZES (integer [,...]) Required specification when loading fixed-width data using the
FIXEDWIDTH parser. COLSIZES and the list of integers must

correspond to the columns listed in the table column list. For
more information, see Loading Fixed-Width Format Data in the
Administrator's Guide.

DELIMITER A single ASCII character that separates columns within each
record of a file. The default in HP Vertica is a vertical bar (|).

You can use any ASCII value in the range E'\000' to

E'\177' inclusive. You cannot use the same character for

both the DELIMITER and NULL options. For more information,
see Loading UTF-8 Format Data in the Administrator's Guide.

-704-

SQL Reference Manual

TRAILING NULLCOLS Specifies that if HP Vertica encounters a record with

insufficient data to match the columns in the table column list,
COPY inserts the missing columns with NULLs. For other

information and examples, see Loading Fixed-Width Format

Data in the Administrator's Guide.

ESCAPE AS Sets the escape character to indicate that the following
character should be interpreted literally, rather than as a

special character. You can define an escape character using
any ASCII value in the range E'\001' to E'\177' inclusive

(any ASCII character except NULL: E'\000').

Note: The COPY statement does not interpret the data it

reads in as string literals (page 26), and does not follow the
same escape rules as other SQL statements (including the

COPY parameters). When reading in data, COPY interprets
only characters defined by these options as special values:

 ESCAPE AS

 DELIMITER

 ENCLOSED BY

 RECORD TERMINATOR

NO ESCAPE Eliminates escape character handling. Use this option if you
do not need any escape character and you want to prevent
characters in your data from being interpreted as escape

sequences.

ENCLOSED BY Sets the quote character within which to enclose data, allowing
delimiter characters to be embedded in string values. You can

choose any ASCII value in the range E'\001' to E'\177'

inclusive (any ASCII character except NULL: E'\000'). By

default, ENCLOSED BY has no value, meaning data is not

enclosed by any sort of quote character.

NULL The string representing a null value. The default is an empty

string (''). You can specify a null value as any ASCII value in

the range E'\001' to E'\177' inclusive (any ASCII

character except NULL: E'\000'). You cannot use the same

character for both the DELIMITER and NULL options. Fo r

more information, see Loading UTF-8 Format Data.

RECORD TERMINATOR Specifies the literal character string that indicates the end of a
data file record. For more information about using this

parameter, see Loading UTF-8 Format Data.

SKIP records Skips a number (integer) of records in a load file. For

example, you can use the SKIP option to omit table header

information.

SKIP BYTES total Skips the total number (integer) of bytes in a record. This

option is only available when loading fixed-width data.

TRIM Trims the number of bytes you specify from a column. This
option is only available when loading fixed-width data.

-705-

 SQL Statements

REJECTMAX Specifies a maximum number of logical records to be rejected

before a load fails. For more details about using this option,
see Tracking Load Exceptions and Rejections Status in the
Administrator's Guide.

EXCEPTIONS 'path'

[ON nodename] [, ...]
Specifies the filename or absolute path for the file containing
load exceptions.

If path resolves to a storage location, and the user invoking

COPY is not a superuser, these are the required privileges:

 The storage location must have been created with the
USER option (see ADD_LOCATION (page 426))

 The user must already have been granted READ

access to the storage location where the file(s) exist,
as described in GRANT (Storage Location) (page
839)

The optional ON nodename clause moves any existing

exceptions files on nodename to the indicated path on the
same node. For more details about using this option, see

Tracking Load Exceptions and Rejections Status in the
Administrator's Guide.

REJECTED DATA 'path'

[ON nodename] [, ...]
Specifies the filename or absolute path in which to write

rejected rows.

If path resolves to a storage location, and the user invoking
COPY is not a superuser, these are the required privileges:

 The storage location must have been created with the
USER option (see ADD_LOCATION (page 426))

 The user must already have been granted READ
access to the storage location where the file(s) exist,

as described in GRANT (Storage Location) (page
839)

The optional ON nodename clause moves any existing

rejected data files on nodename to path on the same node. For
more details, see Tracking Load Exceptions and Rejections

Status in the Administrator's Guide.

ENFORCELENGTH Determines whether COPY truncates or rejects data rows of
type char, varchar, binary, and varbinary if they do not fit the

target table. By default, COPY truncates offending rows of
these data types, but does not reject them. For more details,
see Tracking Load Exceptions and Rejections Status in the

Administrator's Guide.

ABORT ON ERROR Stops the COPY command if a row is rejected and rolls back

the command. No data is loaded.

AUTO | DIRECT | TRICKLE Specifies the method COPY uses to load data into the
database. The default load method is AUTO, in which COPY
loads data into the WOS (Write Optimized Store) in memory.

When the WOS is full, the load continues directly into ROS
(Read Optimized Store) on disk. For more information, see
Choosing a Load Method in the Administrator's Guide.

Note: COPY ignores these options when used as part of a

-706-

SQL Reference Manual

CREATE EXTERNAL TABLE statement.

STREAM NAME [Optional] Supplies a COPY load stream identifier. Using a
stream name helps to quickly identify a particular load. The

STREAM NAME value that you supply in the load statement

appears in the stream column of the LOAD_STREAMS (page

1031) system table.

By default, HP Vertica names streams by table and file name.
For example, if you have two files (f1, f2) in Table A, their

stream names are A-f1, A-f2, respectively.

To name a stream:

=> COPY mytable FROM myfile DELIMITER '|' DIRECT

 STREAM NAME 'My stream name';

NO COMMIT Prevents the COPY statement from committing its transaction
automatically when it finishes copying data. For more
information about using this parameter, see Choosing a Load

Method in the Administrator's Guide.

Note: COPY ignores this option when used as part of a

CREATE EXTERNAL TABLE statement.

NOTE: Always use the COPY statement EXCEPTIONS and REJECTED DATA parameters to

save load exceptions. Using the RETURNREJECTED parameter is supported only for internal
use by the JDBC and ODBC drivers. HP Vertica's internal-use options can change without
notice.

COPY Option Summary

The following table summarizes which COPY options are available when loading from delimited
text, NATIVE (binary), and NATIVE VARCHAR, and FIXEDWIDTH data:

COPY Option Delimited Text NATIVE
(BINARY)

NATIVE
(VARCHAR)

FIXEDWIDTH

COLUMN OPTION
X X X X

AUTO
X X X X

DIRECT
X X X X

TRICKLE
X X X X

ENFORCELENGTH
X X X X

EXCEPTIONS
X X X X

FILLER
X X X X

REJECTED DATA
X X X X

-707-

 SQL Statements

ABORT ON ERROR
X X X X

STREAM NAME
X X X X

SKIP
X X X X

SKIP BYTES X

REJECTMAX
X X X X

STDIN
X X X X

UNCOMPRESSED
X X X X

BZIP | GZIP
X X X X

CONCATENATED BZIP or GZIP
X X

NO COMMIT
X X X X

FORMAT
X X X X

NULL
X X X X

DELIMITED
X

ENCLOSED BY
X

ESCAPE AS
X

TRAILING NULLCOLS
X

RECORD TERMINATOR
X X

TRIM X

Notes

When loading data with the COPY statement, COPY considers the following data invalid:

 Missing columns (too few columns in an input line).

 Extra columns (too many columns in an input line).

 Empty columns for INTEGER or DATE/TIME data types. COPY does not use the default data
values defined by the CREATE TABLE (page 770) command, unless you do not supply a
column option as part of the COPY statement.

 Incorrect representation of data type. For example, non-numeric data in an INTEGER column
is invalid.

When COPY encounters an empty line during load, it is neither inserted nor rejected, but COPY
increments the record number. Keep this fact in mind when you evaluate rejected records lists. If
you return a list of rejected records and one empty row was encountered during load, the position
of rejected records is incremented by one.

-708-

SQL Reference Manual

Examples

The following examples load data with the COPY statement using the FORMAT, DELIMITER, NULL
and ENCLOSED BY string options, as well as a DIRECT option.

 => COPY public.customer_dimension (customer_since FORMAT 'YYYY')

 FROM STDIN

 DELIMITER ','

 NULL AS 'null'

 ENCLOSED BY '"'

=> COPY a

 FROM STDIN

 DELIMITER ','

 NULL E'\\\N'

 DIRECT;

=> COPY store.store_dimension

 FROM :input_file

 DELIMITER '|'

 NULL ''

 RECORD TERMINATOR E'\f'

Setting vsql Variables

The first two examples load data from STDIN. The last example uses a vsql variable
(input_file) . You can set a vsql variable as follows:

\set input_file ../myCopyFromLocal/large_table.gzip

Using Compressed Data and Named Pipes

COPY supports named pipes that follow the same naming conventions as file names on the given
file system. Permissions are open, write, and close.

This command creates the named pipe, pipe1, and sets two vsql variables, dir and file:

\! mkfifo pipe1

\set dir `pwd`/

\set file '''':dir'pipe1'''

The following sequence copies an uncompressed file from the named pipe:

\! cat pf1.dat > pipe1 &

COPY large_tbl FROM :file delimiter '|';

SELECT * FROM large_tbl;

COMMIT;

The following statement copies a GZIP file from named pipe and uncompresses it:

\! gzip pf1.dat

\! cat pf1.dat.gz > pipe1 &

COPY large_tbl FROM :file ON site01 GZIP delimiter '|';

SELECT * FROM large_tbl;

COMMIT;

\!gunzip pf1.dat.gz

-709-

 SQL Statements

The following COPY command copies a BZIP file from named pipe and then uncompresses it:

\!bzip2 pf1.dat

\! cat pf1.dat.bz2 > pipe1 &

COPY large_tbl FROM :file ON site01 BZIP delimiter '|';

SELECT * FROM large_tbl;

COMMIT;

bunzip2 pf1.dat.bz2

See Also

SQL Data Types (page 71)

ANALYZE_CONSTRAINTS (page 432)

Choosing a Load Method in the Administrator's Guide

CREATE EXTERNAL TABLE AS COPY (page 714)

Directory.getFiles Method http://msdn.microsoft.com/en-us/library/wz42302f.aspx

Bulk Loading Data in the Administrator's Guide

Loading Fixed-Width Format Data in the Administrator's Guide

Loading Binary (Native) Data in the Administrator's Guide

Ignoring Columns and Fields in the Load File in the Administrator's Guide

Linux Manual Page for Glob (7) http://linux.die.net/man/7/glob

Tracking Load Exceptions and Rejections Status in the Administrator's Guide

Transforming Data During Loads in the Administrator's Guide

COPY LOCAL

Using the COPY statement with its LOCAL option lets you load a data file on a client system, rather

than on a cluster host. COPY LOCAL supports the STDIN and 'pathToData' parameters, but

not the [ON nodename] clause. COPY LOCAL does not support NATIVE or NATIVE VARCHAR
formats.

The COPY LOCAL option is platform independent. The statement works in the same way across
all supported HP Vertica platforms and drivers. For more details about using COPY LOCAL with
supported drivers, see the Programmer's Guide section for your platform.

Note: On Windows clients, the path you supply for the COPY LOCAL file is limited to 216

characters due to limitations in the Windows API.

http://msdn.microsoft.com/en-us/library/wz42302f.aspx
http://linux.die.net/man/7/glob

-710-

SQL Reference Manual

Invoking COPY LOCAL does not automatically create exceptions and rejections files, even if one
or both occur. For information about saving such files, see Capturing Load Exceptions and
Rejections in the Administrator's Guide.

Permissions

User must have INSERT privilege on the table and USAGE privilege on the schema.

How Copy Local Works

COPY LOCAL loads data in a platform-neutral way. The COPY LOCAL statement loads all files
from a local client system to the HP Vertica host, where the server processes the files. You can
copy files in various formats: uncompressed, compressed, fixed-width format, in bzip or gzip
format, or specified as a bash glob. Files of a single format (such as all bzip, or gzip) can be
comma-separated in the list of input files. You can also use any of the applicable COPY statement
options (as long as the data format supports the option). For instance, you can define a specific
delimiter character, or how to handle NULLs, and so forth.

NOTE: The Linux glob command returns files that match the pattern you enter, as specified in
the Linux Manual Page for Glob (7) http://linux.die.net/man/7/glob. For ADO.net platforms,
specify patterns and wildcards as described in the .NET Directory.getFiles Method
http://msdn.microsoft.com/en-us/library/wz42302f.aspx.

For examples of using the COPY LOCAL option to load data, see COPY (page 699) for syntactical
descriptions, and the Bulk Loading Data section in the Administrator's Guide.

The HP Vertica host uncompresses and processes the files as necessary, regardless of file format
or the client platform from which you load the files. Once the server has the copied files, HP
Vertica maintains performance by distributing file parsing tasks, such as encoding, compressing,
uncompressing, across nodes.

Viewing Copy Local Operations in a Query Plan

When you use the COPY LOCAL option, the GraphViz Explain plan includes a label for

Load-Client-File, rather than Load-File. Following is a section from a sample Explain
plan:

 PLAN: BASE BULKLOAD PLAN (GraphViz Format)

 digraph G {

 graph [rankdir=BT, label = " BASE BULKLOAD PLAN \nAll Nodes Vector: \n\n

node[0]=initiator (initiator) Up\n", labelloc=t, labeljust=l ordering=out]

.

.

.

10[label = "Load-Client-File(/tmp/diff) \nOutBlk=[UncTuple]", color = "green",

shape = "ellipse"];

http://linux.die.net/man/7/glob
http://msdn.microsoft.com/en-us/library/wz42302f.aspx

-711-

 SQL Statements

COPY FROM VERTICA

Copies data from another HP Vertica database once you have established a connection to the
other HP Vertica database with the CONNECT (page 697) statement. See Importing Data for
more setup information. The COPY FROM VERTICA statement works similarly to the COPY
(page 699) statement, but accepts only a subset of COPY parameters. You can import data from
an earlier HP Vertica release, as long as the earlier release is a version of the last major release.
For instance, for Version 6.x, you can import data from any version of 5.x, but not from 4.x.

By default, using COPY FROM VERTICA to copy or import data from another database occurs
over the HP Vertica private network. Connecting to a public network requires some configuration.
For information about using this statement to copy data across a public network, see
Importing/Exporting From Public Networks.

Syntax
COPY [target_schema.]target_table

... [(target_column_name[, target_column_name2,...])]

... FROM VERTICA database.[source_schema.]source_table

... [(source_column_name[, source_column_name2,...])]

... [AUTO | DIRECT | TRICKLE]

... [STREAM NAME 'stream name']

... [NO COMMIT]

Parameters

[target_schema.]target_table The table to store the copied data. This table must be in
your local database, and must already exist.

(target_column_name[,

 target_column_name2,...])

A list of columns in the target table to store the copied data.

NOTE: You cannot use column fillers as part of the column

definition.

database The name of the database that is the source of the copied
data. You must have already created a connection to this

database in the current session.

[source_schema.]source_table The table in the source database that is the source of the
copied data.

(source_column_name[,

 source_column_name2,...])

A list of columns in the source table to be copied. If this list
is supplied, only these columns are copied from the source
table.

AUTO | DIRECT | TRICKLE Specifies the method COPY uses to load data into the
database. The default load method is AUTO, in which
COPY loads data into the WOS (Write Optimized Store) in

memory. When the WOS is full, the load continues directly
into ROS (Read Optimized Store) on disk. For more
information, see Choosing a Load Method in the

Administrator's Guide.

Note: COPY ignores these options when used as part of a

CREATE EXTERNAL TABLE statement.

-712-

SQL Reference Manual

STREAM NAME [Optional] Supplies a COPY load stream identifier. Using a

stream name helps to quickly identify a particular load. The
STREAM NAME value that you supply in the load statement

appears in the stream column of the LOAD_STREAMS

(page 1031) system table.

By default, HP Vertica names streams by table and file

name. For example, if you have two files (f1, f2) in Table A,
their stream names are A-f1, A-f2, respectively.

To name a stream:

=> COPY mytable FROM myfile DELIMITER '|' DIRECT

 STREAM NAME 'My stream name';

NO COMMIT Prevents the COPY statement from committing its
transaction automatically when it finishes copying data. For
more information about using this parameter, see Choosing

a Load Method in the Administrator's Guide.

Permissions

 SELECT privileges on the source table

 USAGE privilege on source table schema

 INSERT privileges for the destination table in target database

 USAGE privilege on destination table schema

Notes

 Importing and exporting data fails if either side of the connection is a single-node cluster
installed to localhost, or you do not specify a host name or IP address.

 If you do not supply a list of source and destination columns, COPY FROM VERTICA attempts
to match columns in the source table with corresponding columns in the destination table. See
the following section for details.

Source and Destination Column Mapping

The COPY FROM VERTICA statement needs to map columns in the source table to columns in
the destination table. You can optionally supply lists of either source columns to be copied,
columns in the destination table where data should be stored, or both. Specifying the lists lets you
select a subset of source table columns to copy to the destination table. Since source and
destination lists are not required, results differ depending on which list is present. The following
table presents the results of supplying one or more lists:

Omit Source Column List Supply Source Column List

-713-

 SQL Statements

Omit Destination Column List
Matches all columns in the source
table to columns in the destination

table. The number of columns in the
two tables need not match, but the
destination table must not have fewer

columns than the source.

Copies content only from the
supplied list of source table columns.

Matches columns in the destination
table to columns in the source list.
The number of columns in the two

tables need not match, but the
destination table must not have fewer
columns than the source.

Supply Destination Column List
Matches columns in the destination

column list to columns in the source.
The number of columns in the
destination list must match the

number of columns in the source
table.

Matches columns from the source

table column lists to those in the
destination table. The lists must have
the same number of columns.

Example

This example demonstrates connecting to another database, copying the contents of an entire
table from the source database to an identically-defined table in the current database directly into
ROS, and then closing the connection.

=> CONNECT TO VERTICA vmart USER dbadmin PASSWORD '' ON 'VertTest01',5433;

CONNECT

=> COPY customer_dimension FROM VERTICA vmart.customer_dimension DIRECT;

 Rows Loaded

 500000

(1 row)

=> DISCONNECT vmart;

DISCONNECT

This example demonstrates copying several columns from a table in the source database into a
table in the local database.

=> CONNECT TO VERTICA vmart USER dbadmin PASSWORD '' ON 'VertTest01',5433;

CONNECT

=> COPY people (name, gender, age) FROM VERTICA

-> vmart.customer_dimension (customer_name, customer_gender,

-> customer_age);

 Rows Loaded

 500000

(1 row)

=> DISCONNECT vmart;

DISCONNECT

You can copy tables (or columns) containing Identity and Auto-increment values, but the
sequence values are not incremented automatically at their destination.

See Also

CONNECT (page 697)

DISCONNECT (page 809)

EXPORT TO VERTICA (page 829)

-714-

SQL Reference Manual

CREATE EXTERNAL TABLE AS COPY
Creates an external table. This statement is a combination of the CREATE TABLE (page 770)
and COPY (page 699) statements, supporting a subset of each statement's parameters, as noted
below. You can also use user-defined load extension functions (UDLs) to create external tables.
For more information about UDL syntax, see User Defined Load (UDL) and COPY (page 699).

Note: HP Vertica does not create a superprojection for an external table when you create it.

Permissions

Must be a database superuser to create external tables, unless the superuser has created a
user-accessible storage location to which the COPY refers, as described in ADD_LOCATION
(page 426). Once external tables exist, you must also be a database superuser to access them
through a select statement.

NOTE: Permission requirements for external tables differ from other tables. To gain full access

(including SELECT) to an external table that a user has privileges to create, the database
superuser must also grant READ access to the USER-accessible storage location, see
GRANT (Storage Location) (page 839).

Syntax
CREATE EXTERNAL TABLE [IF NOT EXISTS] [schema.]table-name

{

... (column-definition (table) (page 779) [, ...])

... | [column-name-list (create table) (page 780)]

} AS COPY [[db-name.]schema-name.]table

... [({ column-as-expression | column }

...... [FILLER datatype]

...... [FORMAT 'format']

...... [ENCLOSED BY 'char']

...... [ESCAPE AS 'char' | NO ESCAPE]

...... [NULL [AS] 'string']

...... [TRIM 'byte']

...... [DELIMITER [AS] 'char']

... [, ...])]

... [COLUMN OPTION (column

...... [FORMAT 'format']

...... [ENCLOSED BY 'char']

...... [ESCAPE AS 'char' | NO ESCAPE]

...... [NULL [AS] 'string']

...... [DELIMITER [AS] 'char']

... [, ...])]

FROM {

...| 'pathToData' [ON nodename]

...... [BZIP | GZIP | UNCOMPRESSED] [, ...]

}

...[NATIVE

...| NATIVE VARCHAR

...| FIXEDWIDTH { COLSIZES (integer [,]) }

...]

-715-

 SQL Statements

...[WITH]

...[DELIMITER [AS] 'char']

...[TRAILING NULLCOLS]

...[NULL [AS] 'string']

...[ESCAPE AS 'char' | NO ESCAPE]

...[ENCLOSED BY 'char' [AND 'char']]

...[RECORD TERMINATOR 'string']

...[SKIP integer]

...[SKIP BYTES integer]

...[TRIM 'byte']

...[REJECTMAX integer]

...[EXCEPTIONS 'path' [ON nodename] [, ...]]

...[REJECTED DATA 'path' [ON nodename] [, ...]]

...[ENFORCELENGTH]

...[ABORT ON ERROR]

Parameters

The following parameters from the parent statements are not supported in the CREATE EXTERNAL
TABLE AS COPY statement:

CREATE TABLE COPY

AS AT EPOCH LAST FROM STDIN

AT TIME 'timestamp' FROM LOCAL

ORDER BY table-column [,...] DIRECT

ENCODED BY TRICKLE

hash-segmentation-clause NO COMMIT

range-segmentation-clause STREAM NAME

UNSEGMENTED {node | node all}

KSAFE [k_num]

PARTITION BY partition-clause

For all supported parameters, see the CREATE TABLE (page 770) and COPY (page 699)
statements.

Notes

Canceling a CREATE EXTERNAL TABLE AS COPY statement can cause unpredictable results.
HP recommends that you allow the statement to finish, then use DROP TABLE (page 823) once
the table exists.

Examples

Examples of external table definitions:

CREATE EXTERNAL TABLE ext1 (x integer) AS COPY FROM '/tmp/ext1.dat' DELIMITER ',';

CREATE EXTERNAL TABLE ext1 (x integer) AS COPY FROM '/tmp/ext1.dat.bz2' BZIP

DELIMITER ',';

CREATE EXTERNAL TABLE ext1 (x integer, y integer) AS COPY (x as '5', y) FROM
'/tmp/ext1.dat.bz2' BZIP DELIMITER ',';

-716-

SQL Reference Manual

See Also

Physical Schema in the Concepts Guide

COPY (page 714)

CREATE TABLE (page 770)

SELECT (page 870)

Using External Tables in the Administrator's Guide

CREATE FUNCTION Statements
You can use the Create Function statement to create two different kinds of functions:

 User-Defined SQL functions--User defined SQL functions let you define and store
commonly-used SQL expressions as a function. User defined SQL functions are useful for
executing complex queries and combining HP Vertica built-in functions. You simply call the
function name you assigned in your query.

 User-Defined Scalar functions--User defined scalar functions (UDSFs) take in a single row of
data and return a single value. These functions can be used anywhere a native HP Vertica
function or statement can be used, except CREATE TABLE with its PARTITION BY or any
segmentation clause.

While you use CREATE FUNCTION to create both SQL and scalar functions, you use a different
syntax for each function type. For more information, see:

 CREATE FUNCTION (SQL Functions) (page 722)

 CREATE FUNCTION (UDF) (page 725)

About Creating User Defined Transform Functions (UDTFs)

You can use a similar SQL statement to create user-defined transform functions. User Defined
Transform Functions (UDTFs) operate on table segments and return zero or more rows of data.
The data they return can be an entirely new table, unrelated to the schema of the input table,
including having its own ordering and segmentation expressions. They can only be used in the
SELECT list of a query. For details see Using User Defined Transforms. To create a UDTF, see
CREATE TRANSFORM FUNCTION (page 734).

CREATE AGGREGATE FUNCTION

Adds a User Defined Aggregate Function (UDAF) stored in a shared Linux library to the catalog.
You must have already loaded this library using the CREATE LIBRARY (page 735) statement.
When you call the SQL function, HP Vertica passes data values to the code in the library to
process it.

Syntax
CREATE [OR REPLACE] AGGREGATE FUNCTION [[db-name.]schema.]function-name

-717-

 SQL Statements

... AS LANGUAGE 'language' NAME 'factory' LIBRARY library_name;

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE

AGGREGATE FUNCTION statement fails if an existing
function matches the name and parameters of the function
you are trying to define. If you do supply this parameter, the

new function definition overwrites the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Schema
Search Paths). You must be connected to the database you
specify. You cannot make changes to objects in other

databases.

Specifying different database objects lets you qualify
database objects as explicitly as required. For example, you

can use a database and a schema name (mydb.myschema).

function-name The name of the function to create. If the function name is
schema-qualified (as above), the function is created in the

specified schema. This name does not need to match the
name of the factory, but it is less confusing if they are the
same or similar.

LANGUAGE 'language' The programming language used to develop the function.
Currently only 'C++' is supported for UDAF.

NAME 'factory' The name of the factory class in the shared library that
generates the object to handle the function's processing.

LIBRARY library_name The name of the shared library that contains the C++ object

to perform the processing for this function. This library must
have been previously loaded using the CREATE LIBRARY
(page 735) statement.

Notes

 The parameters and return value for the function are automatically determined by the
CREATE AGGREGATE FUNCTION statement, based on data supplied by the factory class.

 When a User Defined Aggregate function that is defined multiple times with arguments of
different data types is called, HP Vertica selects the function whose input parameters match
the parameters in the function call to perform the processing.

 You can return a list of all SQL functions and User Defined Functions (including aggregates)

by querying the system table V_CATALOG.USER_FUNCTIONS (page 982) or executing the

vsql meta-command \df. Users see only the functions on which they have EXECUTE
privileges.

Permissions

 Only a superuser can create or drop a User Defined Aggregate library.

 To create a User Defined Aggregate function, the user must have CREATE and USAGE
privileges on the schema and USAGE privileges on the library.

-718-

SQL Reference Manual

 To use a User Defined Aggregate, the user must have USAGE privileges on the schema and
EXECUTE privileges on the defined function. See GRANT (Function) (page 843) and
REVOKE (Function) (page 864).

Example

The following example demonstrates loading a library named AggregateFunctions then defining a
function named ag_avg and ag_cat that are mapped to the ag_cat AverageFactory and
ConcatenateFactory classes in the library:

=> CREATE LIBRARY AggregateFunctions AS

'/opt/vertica/sdk/examples/build/AggregateFunctions.so';

CREATE LIBRARY

=> create aggregate function ag_avg as LANGUAGE 'C++' name 'AverageFactory' library

AggregateFunctions;

CREATE AGGREGATE FUNCTION

=> create aggregate function ag_cat as LANGUAGE 'C++' name 'ConcatenateFactory'

library AggregateFunctions;

CREATE AGGREGATE FUNCTION

=> \x

Expanded display is on.

select * from user_functions;

-[RECORD 1

]----------+--

schema_name | public

function_name | ag_avg

procedure_type | User Defined Aggregate

function_return_type | Numeric

function_argument_type | Numeric

function_definition | Class 'AverageFactory' in Library

'public.AggregateFunctions'

volatility |

is_strict | f

is_fenced | f

comment |

-[RECORD 2

]----------+--

schema_name | public

function_name | ag_cat

procedure_type | User Defined Aggregate

function_return_type | Varchar

function_argument_type | Varchar

function_definition | Class 'ConcatenateFactory' in Library

'public.AggregateFunctions'

volatility |

is_strict | f

is_fenced | f

comment |

-719-

 SQL Statements

See Also

CREATE LIBRARY (page 735)

DROP AGGREGATE FUNCTION

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing and Using User Defined Functions and Developing a User Defined Aggregate
Function in the Programmer's Guide

CREATE ANALYTIC FUNCTION
Associates a User Defined Analytic Function (UDAnF) stored in a shared Linux library with a SQL
function name. You must have already loaded the library containing the UDAnF using the
CREATE LIBRARY (page 735) statement. When you call the SQL function, HP Vertica passes
the arguments to the analytic function in the library to process.

Syntax
CREATE [OR REPLACE] ANALYTIC FUNCTION function-name

... AS [LANGUAGE 'language'] NAME 'factory'

... LIBRARY library_name

... [FENCED | NOT FENCED];

Parameters

function-name The name to assign to the UDAnF. This is the name you

use in your SQL statements to call the function.

LANGUAGE 'language' The programming language used to write the UDAnF.
Currently, 'C++' is supported. If not supplied, C++ is

assumed.

NAME 'factory' The name of the C++ factory class in the shared library
that generates the object to handle the function's

processing.

LIBRARY library_name The name of the shared library that contains the C++
object to perform the processing for this function. This

library must have been previously loaded using the
CREATE LIBRARY (page 735) statement.

[FENCED | NOT FENCED] Enables or disables Fenced Mode for this function.

Fenced mode is enabled by default.

-720-

SQL Reference Manual

Permissions

 To CREATE a function, the user must have CREATE privilege on the schema to contain the
function and USAGE privilege on the library containing the function.

 To use a function, the user must have USAGE privilege on the schema that contains the
function and EXECUTE privileges on the function.

 To DROP a function, the user must either be a superuser, the owner of the function, or the
owner of the schema which contains the function.

Notes

 The parameters and return value for the function are automatically determined by the
CREATE ANALYTIC FUNCTION statement, based on data supplied by the factory class.

 You can assign multiple functions the same name if they accept different sets of arguments.
See User Defined Function Overloading in the Programmer's Guide for more information.

 You can return a list of all UDFs by querying the system table
V_CATALOG.USER_FUNCTIONS. Users see only the functions on which they have
EXECUTE privileges.

See Also

 Developing a User Defined Analytic Function in the Programmer's Guide.

CREATE FILTER

Adds a User Defined Load FILTER function. You must have already loaded this library using the
CREATE LIBRARY (page 735) statement. When you call the SQL function, HP Vertica passes
the parameters to the function in the library to process it.

Syntax
CREATE [OR REPLACE] FILTER [[db-name.]schema.]function-name

... AS LANGUAGE 'language' NAME 'factory' LIBRARY library_name

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE FILTER
statement fails if an existing function matches the name and
parameters of the filter function you are trying to define. If you

do supply this parameter, the new filter function definition
overwrites the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Schema
Search Paths). You must be connected to the database you

specify. You cannot make changes to objects in other
databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example, you

-721-

 SQL Statements

can use a database and a schema name (mydb.myschema).

function-name The name of the filter function to create. If the filter function
name is schema-qualified (as above), the function is created
in the specified schema. This name does not need to match

the name of the factory, but it is less confusing if they are the
same or similar.

LANGUAGE 'language' The programming language used to develop the function.

'C++' is the only language supported by User Defined Load

functions.

NAME 'factory' The name of the factory class in the shared library that

generates the object to handle the filter function's processing.

This is the same name used by the RegisterFactory class.

LIBRARY library_name The name of the shared library that contains the C++ object

to perform the processing for this filter function. This library
must have been previously loaded using the CREATE
LIBRARY (page 735) statement.

Notes

 The parameters and return value for the filter function are automatically determined by the
CREATE FILTER statement, based on data supplied by the factory class.

 You can return a list of all SQL functions and User Defined Functions by querying the system
table V_CATALOG.USER_FUNCTIONS (page 982) or executing the vsql meta-command \df.

Users see only the functions on which they have EXECUTE privileges.

Permissions

 Only a superuser can create or drop a function that uses a UDx library.

 To use a User Defined Filter, the user must have USAGE privileges on the schema and
EXECUTE privileges on the defined filter function. See GRANT (Function) (page 843) and
REVOKE (Function) (page 864).

IMPORTANT! Installing an untrusted UDL function can compromise the security of the server.

UDx's can contain arbitrary code. In particular, UD Source functions can read data from any
arbitrary location. It is up to the developer of the function to enforce proper security limitations.
Superusers must not grant access to UDx's to untrusted users.

Example

The following example demonstrates loading a library named iConverterLib, then defining a
function named Iconverter that is mapped to the iConverterFactory factory class in the library:

=> CREATE LIBRARY iConverterLib as

'/opt/vertica/sdk/examples/build/IconverterLib.so';

CREATE LIBRARY

=> CREATE FILTER Iconverter AS LANGUAGE 'C++' NAME 'IconverterFactory' LIBRARY

IconverterLib;

CREATE FILTER FUNCTION

-722-

SQL Reference Manual

=> \x

Expanded display is on.

=> SELECT * FROM user_functions;

-[RECORD 1]----------+--------------------

schema_name | public

function_name | Iconverter

procedure_type | User Defined Filter

function_return_type |

function_argument_type |

function_definition |

volatility |

is_strict | f

is_fenced | f

comment |

See Also

CREATE LIBRARY (page 735)

DROP FILTER

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

CREATE FUNCTION (SQL Functions)

Lets you store SQL expressions as functions in HP Vertica for use in queries. These functions are
useful for executing complex queries or combining HP Vertica built-in functions. You simply call
the function name you assigned.

This topic describes how to use CREATE FUNCTION to create a SQL function. If you want to
create a user-defined scalar function (UDSF), see CREATE FUNCTION (UDF) (page 725).

In addition, if you want to see how to create a user-defined transform function (UDTF), see
CREATE TRANSFORM FUNCTION. (page 734)

Syntax
CREATE [OR REPLACE] FUNCTION

... [[db-name.]schema.]function-name ([argname argtype [, ...]])

-723-

 SQL Statements

... RETURN rettype

... AS

... BEGIN

...... RETURN expression;

... END;

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search

path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You

cannot make changes to objects in other databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you

qualify database objects as explicitly as required. For
example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column

(mydb.myschema.mytable.column1).

function-name Specifies a name for the SQL function to create. When using
more than one schema, specify the schema that contains the

function, as noted above.

argname Specifies the name of the argument.

argtype Specifies the data type for argument that is passed to the

function. Argument types must match HP Vertica type
names. See SQL Data Types (page 71).

rettype Specifies the data type to be returned by the function.

RETURN expression; Specifies the SQL function (function body), which must be in
the form of ‗RETURN expression.‘ expression can contain
built-in functions, operators, and argument names specified

in the CREATE FUNCTION statement.

A semicolon at the end of the expression is required.

Note: Only one RETURN expression is allowed in the

CREATE FUNCTION definition. FROM, WHERE, GROUP BY,

ORDER BY, LIMIT, aggregation, analytics and meta function

are not allowed.

Permissions

 To CREATE a function, the user must have CREATE privilege on the schema to contain the
function and USAGE privilege on the library containing the function.

 To use a function, the user must have USAGE privilege on the schema that contains the
function and EXECUTE privileges on the function.

 To DROP a function, the user must either be a superuser, the owner of the function, or the
owner of the schema which contains the function.

-724-

SQL Reference Manual

See GRANT (Function) (page 843) and REVOKE (Function) (page 864).

Notes

 A SQL function can be used anywhere in a query where an ordinary SQL expression can be
used, except in the table partition clause or the projection segmentation clause.

 SQL Macros are flattened in all cases, including DDL.

 You can create views (page 804) on the queries that use SQL functions and then query the
views. When you create a view, a SQL function replaces a call to the user-defined function with
the function body in a view definition. Therefore, when the body of the user-defined function is
replaced, the view should also be replaced.

 If you want to change the body of a SQL function, use the CREATE OR REPLACE syntax. The
command replaces the function with the new definition. If you change only the argument name
or argument type, the system maintains both versions under the same function name. See
Examples section below.

 If multiple SQL functions with same name and argument type are in the search path, the first
match is used when the function is called.

 The strictness and volatility (stable, immutable, or volatile) of a SQL Macro are automatically
inferred from the function's definition. HP Vertica then performs constant folding optimization,
when possible, and determines the correctness of usage, such as where an immutable
function is expected but a volatile function is provided.

 You can return a list of all SQL functions by querying the system table

V_CATALOG.USER_FUNCTIONS (page 982) and executing the vsql meta-command \df.
Users see only the functions on which they have EXECUTE privileges.

Example

This following statement creates a SQL function called myzeroifnull that accepts an INTEGER

argument and returns an INTEGER result.

=> CREATE FUNCTION myzeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

You can use the new SQL function (myzeroifnull) anywhere you use an ordinary SQL
expression. For example, create a simple table:

=> CREATE TABLE tabwnulls(col1 INT);

=> INSERT INTO tabwnulls VALUES(1);

=> INSERT INTO tabwnulls VALUES(NULL);

=> INSERT INTO tabwnulls VALUES(0);

=> SELECT * FROM tabwnulls;

 a

 1

 0

(3 rows)

-725-

 SQL Statements

Use the myzeroifnull function in a SELECT statement, where the function calls col1 from

table tabwnulls:

=> SELECT myzeroifnull(col1) FROM tabwnulls;

 myzeroifnull

 1

 0

 0

(3 rows)

Use the myzeroifnull function in the GROUP BY clause:

=> SELECT COUNT(*) FROM tabwnulls GROUP BY myzeroifnull(col1);

 count

 2

 1

(2 rows)

If you want to change a SQL function's body, use the CREATE OR REPLACE syntax. The following
command modifies the CASE expression:

=> CREATE OR REPLACE FUNCTION zerowhennull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NULL) THEN 0 ELSE x END);

 END;

To see how this information is stored in the HP Vertica catalog, see Viewing Information About
SQL Functions in the <SQL_PROGRAMMERS_GUIDE>.

See Also

ALTER FUNCTION (page 656)

DROP FUNCTION (page 811)

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Using SQL Macros in the Programmer's Guide

CREATE FUNCTION (UDF)

Adds a User Defined Function (UDF) to the catalog. You must have already loaded this library
using the CREATE LIBRARY (page 735) statement. When you call the SQL function, HP Vertica
passes the parameters to the function in the library to process it.

-726-

SQL Reference Manual

This topic describes how to use CREATE FUNCTION to create a User Defined Function. If you
want to create a SQL function, see CREATE FUNCTION (SQL Function) (page 722).

In addition, if you want to see how to create a user-defined transform function (UDTF), see
CREATE TRANSFORM FUNCTION. (page 734)

Syntax
CREATE [OR REPLACE] FUNCTION [[db-name.]schema.]function-name

... AS LANGUAGE 'language' NAME 'factory' LIBRARY library_name

... [IMMUTABLE | STABLE | VOLATILE]

... [CALLED ON NULL INPUT | RETURN NULL ON NULL INPUT | STRICT]

... [FENCED | NOT FENCED];

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE FUNCTION
statement fails if an existing function matches the name and

parameters of the function you are trying to define. If you do
supply this parameter, the new function definition overwrites
the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search

Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example, you
can use a database and a schema name (mydb.myschema).

function-name The name of the function to create. If the function name is
schema-qualified (as above), the function is created in the
specified schema. This name does not need to match the

name of the factory, but it is less confusing if they are the
same or similar.

LANGUAGE 'language' The programming language used to develop the function.

'C++' and 'R ' is supported.

NAME 'factory' The name of the factory class in the shared library that
generates the object to handle the function's processing.

LIBRARY library_name The name of the shared library/R functions that contains the
C++ object or R functions to perform the processing for this
function. This library must have been previously loaded using

the CREATE LIBRARY (page 735) statement.

-727-

 SQL Statements

[IMMUTABLE | STABLE |

VOLATILE]

Sets the volatility of the function:

 IMMUTABLE means that repeated calls to the
function with the same input always returns the same
output.

 STABLE means that repeated calls to the function

with the same input within the same statement
returns the same output. For example, a function that
returns the current user name would be stable since

the user cannot change within a statement, but could
change between statements.

 VOLATILE means that repeated calls to the function
with the same input can result in different output.

If not supplied, HP Vertica assumes that the function is

VOLATILE, and needs to be called for each invocation.

Setting the volatility of the function helps HP Vertica optimize

expressions. For example, if a function is IMMUTABLE, its
results can be cached.

Caution: specifying IMMUTABLE or STABLE when the

function is actually VOLATILE can result in incorrect or
inconsistent answers.

Note: This parameter is deprecated in HP Vertica Version

6.0 and will be removed in a future release. Instead, your
UDSF should declare its own volatility using the SDK API
calls. For details, see Setting Null Input and Volatility

Behavior in the Programmer's Guide.

[CALLED ON NULL INPUT |

RETURN NULL ON NULL INPUT |

STRICT]

Sets the null behavior of the function:

 CALLED ON NULL INPUT means that even if all

parameters passed to the function are NULL, the
function can return a non-null value.

 RETURN NULL ON NULL INPUT and STRICT mean
that the function returns NULL if any of its input is
NULL.

If not specified, HP Vertica assumes that the function is
CALLED ON NULL INPUT and must be called even if its input

values are NULL.

Setting the NULL behavior of a function allows HP Vertica to
optimize expressions. For example, if the function is set to

STRICT, it does not need to be called if one of the input
parameters is NULL.

Note: This parameter is deprecated in HP Vertica Version

6.0 and will be removed in a future release. Instead, your
UDSF should declare its own strictness. For details, see

Setting Null Input and Volatility Behavior in the Programmer's
Guide.

[FENCED | NOT FENCED] Enables or disables Fenced Mode for this function. Fenced

mode is enabled by default. Functions written in R always run
in fenced mode.

-728-

SQL Reference Manual

Permissions

 To CREATE a function, the user must have CREATE privilege on the schema to contain the
function and USAGE privilege on the library containing the function.

 To use a function, the user must have USAGE privilege on the schema that contains the
function and EXECUTE privileges on the function.

 To DROP a function, the user must either be a superuser, the owner of the function, or the
owner of the schema which contains the function.

Notes

 The parameters and return value for the function are automatically determined by the
CREATE FUNCTION statement, based on data supplied by the factory class.

 Multiple functions can share the same name if they have different parameters. When you call a
multiply-defined function, HP Vertica selects the UDF function whose input parameters match
the parameters in the function call to perform the processing. This behavior is similar to having
multiple signatures for a method or function in other programming languages.

 You can return a list of all SQL functions and UDFs by querying the system table

V_CATALOG.USER_FUNCTIONS (page 982) or executing the vsql meta-command \df. Users
see only the functions on which they have EXECUTE privileges.

Example

The following example demonstrates loading a library named scalarfunctions, then defining a
function named Add2ints that is mapped to the Add2intsInfo factory class in the library:

=> CREATE LIBRARY ScalarFunctions AS

'/opt/vertica/sdk/examples/build/ScalarFunctions.so';

CREATE LIBRARY

=> CREATE FUNCTION Add2Ints AS LANGUAGE 'C++' NAME 'Add2IntsFactory' LIBRARY

ScalarFunctions;

CREATE FUNCTION

=> \x

Expanded display is on.

=> SELECT * FROM USER_FUNCTIONS;

-[RECORD 1]----------+--

schema_name | public

function_name | Add2Ints

procedure_type | User Defined Function

function_return_type | Integer

function_argument_type | Integer, Integer

function_definition | Class 'Add2IntsFactory' in Library

'public.ScalarFunctions'

volatility | volatile

is_strict | f

is_fenced | t

comment |

=> \x

Expanded display is off.

=> -- Try a simple call to the function

-729-

 SQL Statements

=> SELECT Add2Ints(23,19);

 Add2Ints

 42

(1 row)

The Add2Ints function adds two numbers together. Adding always returns the same output for a
specific input, so its results are immutable. The following example shows recreating the function
with the volatility set to IMMUTABLE.

=> CREATE FUNCTION Add2Ints AS LANGUAGE 'C++' NAME 'Add2IntsFactory' LIBRARY

ScalarFunctions IMMUTABLE;

ROLLBACK: Function with same name and number of parameters already exists:

Add2ints

=> -- Oops. Need to replace the old function.

=> CREATE OR REPLACE FUNCTION Add2ints AS LANGUAGE 'C++' NAME 'Add2IntsFactory'

LIBRARY ScalarFunctions IMMUTABLE;

CREATE FUNCTION

Note: Using the IMMUTABLE parameter in CREATE FUNCTION is deprecated in HP Vertica

Version 6.0 and will be removed in a future release. Instead, your UDSF should declare its own
volatility. For details, see Setting Null Input and Volatility Behavior in the Programmer's Guide.

See Also

 CREATE LIBRARY (page 735)

 DROP FUNCTION (page 811)

 GRANT (Function) (page 843)

 REVOKE (Function) (page 864)

 V_CATALOG.USER_FUNCTIONS (page 982)

 Developing and Using User Defined Functions in the Programmer's Guide

CREATE PARSER
Adds a User Defined Load PARSER function. You must have already loaded this library using the
CREATE LIBRARY (page 735) statement. When you call the SQL function, HP Vertica passes
the parameters to the function in the library to process it.

Syntax
CREATE [OR REPLACE] PARSER [[db-name.]schema.]function-name

... AS LANGUAGE 'language' NAME 'factory' LIBRARY library_name

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE PARSER

statement fails if an existing function matches the name and
parameters of the parser function you are trying to define. If
you do supply this parameter, the new parser function

-730-

SQL Reference Manual

definition overwrites the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Schema
Search Paths). You must be connected to the database you

specify. You cannot make changes to objects in other
databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example, you
can use a database and a schema name (mydb.myschema).

function-name The name of the parser function to create. If the parser

function name is schema-qualified (as above), the function is
created in the specified schema. This name does not need to
match the name of the factory, but it is less confusing if they

are the same or similar.

LANGUAGE 'language' The programming language used to develop the function.
'C++' is the only language supported by User Defined Load

functions.

NAME 'factory' The name of the factory class in the shared library that
generates the object to handle the parser function's

processing.

This is the same name used by the RegisterFactory class.

LIBRARY library_name The name of the shared library that contains the C++ object

to perform the processing for this parser function. This library
must have been previously loaded using the CREATE
LIBRARY (page 735) statement.

Notes

 The parameters and return value for the parser function are automatically determined by the
CREATE PARSER statement, based on data supplied by the factory class.

 You can return a list of all SQL functions and User Defined Functions by querying the system

table V_CATALOG.USER_FUNCTIONS (page 982) or executing the vsql meta-command \df.
Users see only the functions on which they have EXECUTE privileges.

Permissions

 Only a superuser can create or drop a function that uses a UDx library.

 To use a User Defined Parser, the user must have USAGE privileges on the schema and
EXECUTE privileges on the defined parser function. See GRANT (Function) (page 843) and
REVOKE (Function) (page 864).

IMPORTANT! Installing an untrusted UDL function can compromise the security of the server.

UDx's can contain arbitrary code. In particular, UD Source functions can read data from any
arbitrary location. It is up to the developer of the function to enforce proper security limitations.
Superusers must not grant access to UDx's to untrusted users.

-731-

 SQL Statements

Example

The following example demonstrates loading a library named BasicIntegrerParserLib, then
defining a function named BasicIntegerParser that is mapped to the BasicIntegerParserFactory
factory class in the library:

=> CREATE LIBRARY BasicIntegerParserLib as

'/opt/vertica/sdk/examples/build/BasicIntegerParser.so';

CREATE LIBRARY

=> CREATE PARSER BasicIntegerParser AS LANGUAGE 'C++' NAME

'BasicIntegerParserFactory' LIBRARY BasicIntegerParserLib;

CREATE PARSER FUNCTION

=> \x

Expanded display is on.

=> SELECT * FROM user_functions;

-[RECORD 1]----------+--------------------

schema_name | public

function_name | BasicIntegerParser

procedure_type | User Defined Parser

function_return_type |

function_argument_type |

function_definition |

volatility |

is_strict | f

is_fenced | f

comment |

See Also

CREATE LIBRARY (page 735)

DROP PARSER

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

CREATE SOURCE

Adds a User Defined Load SOURCE function. You must have already loaded this library using the
CREATE LIBRARY (page 735) statement. When you call the SQL function, HP Vertica passes
the parameters to the function in the library to process it.

-732-

SQL Reference Manual

Syntax
CREATE [OR REPLACE] SOURCE [[db-name.]schema.]function-name

... AS LANGUAGE 'language' NAME 'factory' LIBRARY library_name

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE SOURCE
statement fails if an existing function matches the name and
parameters of the source function you are trying to define. If

you do supply this parameter, the new source function
definition overwrites the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Schema
Search Paths). You must be connected to the database you

specify. You cannot make changes to objects in other
databases.

Specifying different database objects lets you qualify

database objects as explicitly as required. For example, you
can use a database and a schema name (mydb.myschema).

function-name The name of the source function to create. If the source

function name is schema-qualified (as above), the function is
created in the specified schema. This name does not need to
match the name of the factory, but it is less confusing if they

are the same or similar.

LANGUAGE 'language' The programming language used to develop the function.
'C++' is the only language supported by User Defined Load

functions.

NAME 'factory' The name of the factory class in the shared library that

generates the object to handle the source function's
processing.

This is the same name used by the RegisterFactory class.

LIBRARY library_name The name of the shared library that contains the C++ object
to perform the processing for this source function. This library
must have been previously loaded using the CREATE

LIBRARY (page 735) statement.

Notes

 The parameters and return value for the source function are automatically determined by the
CREATE SOURCE statement, based on data supplied by the factory class.

 You can return a list of all SQL functions and User Defined Functions by querying the system

table V_CATALOG.USER_FUNCTIONS (page 982) or executing the vsql meta-command \df.
Users see only the functions on which they have EXECUTE privileges.

Permissions

 Only a superuser can create or drop a function that uses a UDx library.

-733-

 SQL Statements

 To use a User Defined Source, the user must have USAGE privileges on the schema and
EXECUTE privileges on the defined source function. See GRANT (Function) (page 843) and
REVOKE (Function) (page 864).

IMPORTANT! Installing an untrusted UDL function can compromise the security of the server.

UDx's can contain arbitrary code. In particular, UD Source functions can read data from any
arbitrary location. It is up to the developer of the function to enforce proper security limitations.
Superusers must not grant access to UDx's to untrusted users.

Example

The following example demonstrates loading a library named curllib, then defining a function
named curl that is mapped to the CurlSourceFactory factory class in the library:

=> CREATE LIBRARY curllib as '/opt/vertica/sdk/examples/build/cURLLib.so';

CREATE LIBRARY

=> CREATE SOURCE curl AS LANGUAGE 'C++' NAME 'CurlSourceFactory' LIBRARY curllib;

CREATE SOURCE

=> \x

Expanded display is on.

=> SELECT * FROM user_functions;

-[RECORD 1]----------+--------------------

schema_name | public

function_name | curl

procedure_type | User Defined Source

function_return_type |

function_argument_type |

function_definition |

volatility |

is_strict | f

is_fenced | f

comment |

See Also

CREATE LIBRARY (page 735)

DROP SOURCE

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

-734-

SQL Reference Manual

CREATE TRANSFORM FUNCTION

Adds a User Defined Transform Function (UDTF) stored in a shared Linux library to the catalog.
You must have already loaded this library using the CREATE LIBRARY (page 735) statement.
When you call the SQL function, HP Vertica passes the input table to the transform function in the
library to process.

This topic describes how to create a UDTF. If you want to create a user-defined function (UDF),
see CREATE FUNCTION (UDF) (page 725). If you want to create a SQL function, see
CREATE FUNCTION (SQL) (page 722).

Syntax
CREATE TRANSFORM FUNCTION function-name

... [AS LANGUAGE 'language'] NAME 'factory'

... LIBRARY library_name

... [FENCED | NOT FENCED];

Parameters

function-name The name to assign to the UDTF. This is the name you
use in your SQL statements to call the function.

LANGUAGE 'language' The programming language used to write the UDTF.
Currently, 'C++' and 'R' is supported. If not supplied,

C++ is assumed.

NAME 'factory' The name of the C++ factory class or R factory function
in the shared library that generates the object to handle

the function's processing.

LIBRARY library_name The name of the shared library that contains the C++
object to perform the processing for this function. This

library must have been previously loaded using the
CREATE LIBRARY (page 735) statement.

[FENCED | NOT FENCED] Enables or disables Fenced Mode for this function.

Fenced mode is enabled by default. Functions written
in R always run in fenced mode.

Permissions

 To CREATE a function, the user must have CREATE privilege on the schema to contain the
function and USAGE privilege on the library containing the function.

 To use a function, the user must have USAGE privilege on the schema that contains the
function and EXECUTE privileges on the function.

 To DROP a function, the user must either be a superuser, the owner of the function, or the
owner of the schema which contains the function.

See GRANT (Transform Function) and REVOKE (Transform Function).

UDTF Query Restrictions

A query that includes a UDTF cannot contain:

-735-

 SQL Statements

 any statements other than the SELECT (page 870) statement containing the call to the UDTF
and a PARTITION BY expression.

 any other analytic function (page 141).

 a call to another UDTF.

 a TIMESERIES (page 894) clause.

 a pattern matching (page 331) clause.

 a gap filling and interpolation clause.

Notes

 The parameters and return values for the function are automatically determined by the
CREATE TRANSFORM FUNCTION statement, based on data supplied by the factory class.

 You can assign multiple functions the same name if they have different parameters. When you
call a multiply-defined function, HP Vertica selects the UDF function whose input parameters
match the parameters in the function call to perform the processing. This behavior is similar to
having multiple signatures for a method or function in other programming languages.

 You can return a list of all UDFs by querying the system table
V_CATALOG.USER_FUNCTIONS. Users see only the functions on which they have
EXECUTE privileges.

CREATE LIBRARY
Loads a C++ shared library or R file containing user defined functions (UDFs). You supply the
absolute path to a Linux shared library (.so) file or R file (.R) that contains the functions you want to
access. See Developing and Using User Defined Functions in the Programmer's Guide for details.
If you supply the optional OR REPLACE argument, the library will replace any existing library with
the same name.

Warning: User defined libraries are directly loaded by HP Vertica and may be run within the

database process. By default, most UDF's developed in C++ run in fenced mode so that the
function process runs outside of HP Vertica. However, if you choose not to run your code in
fenced mode, or the type of UDF cannot be run in fenced mode (for example, User Defined
Load), then your custom code can negatively impact database. Poorly-coded UDFs can cause
instability or even database crashes.

Syntax
CREATE [OR REPLACE] LIBRARY [[db-name.]schema.]library_name AS 'library_path' [

LANGUAGE 'language']

Parameters

[OR REPLACE] If you do not supply this parameter, the CREATE LIBRARY
statement fails if an existing library matches the name the library
you are trying to define. If you do supply this parameter, the new

library replaces the old.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

-736-

SQL Reference Manual

unique within the current search path (see Setting Search

Paths). You must be connected to the database you specify, and
you cannot change objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

library_name A name to assign to this library. This is the name you use in a

CREATE FUNCTION statement to enable user defined
functions stored in the library. Note that this name is arbitrary. It
does not need to reflect the name of the library file, although it

would be less confusing if did.

'library_path' The absolute path and filename of the library to load located on
the initiator node.

'language' The programming language used to develop the function. 'R'

and 'C++' are supported. Default is 'C++'.

Permissions

Must be a superuser to create or drop a library.

Notes

 As part of the loading process, HP Vertica distributes the library file to other nodes in the
database. Any nodes that are down or that are added to the cluster later automatically receive
a copy of the library file when they join the cluster. Subsequent modification (or deletion) of
the file/path provided in the CREATE LIBRARY statement has no effect.

 The CREATE LIBRARY statement performs some basic checks on the library file to ensure it
is compatible with HP Vertica. The statement fails if it detects that the library was not correctly
compiled or it finds other basic incompatibilities. However, there are many issues in shared
libraries that CREATE LIBRARY cannot detect. Simply loading the library is no guarantee that
it functions correctly.

 Libraries are added to the database catalog, and therefore persist across database restarts.

Examples

To load a library in the home directory of the dbadmin account with the name MyFunctions:

=> CREATE LIBRARY MyFunctions AS 'home/dbadmin/my_functions.so';

To load a library located in the directory where you started vsql:

=> \set libfile '\''`pwd`'/MyOtherFunctions.so\'';

=> CREATE LIBRARY MyOtherFunctions AS :libfile;

See Also

DROP LIBRARY (page 815)

ALTER LIBRARY (page 658)

CREATE FUNCTION (UDF) (page 725)

-737-

 SQL Statements

CREATE NETWORK INTERFACE

Identifies a network interface to which the node belongs. Use this statement when you want to
configure import/export from individual nodes to other HP Vertica clusters.

Syntax
CREATE NETWORK INTERFACE network-interface-name ON node-name with 'ip address of

node'

Parameters

network-interface-name The name you assign to the network interface.

node-name The name of the node.

IP address of node The IP address of the node.

You can then configure a HP Vertica database node to use the network interface for
import/export. (See Identify the Database or Node(s) used for Import/Export for more information.)

Permissions

Must be a superuser to create a network interface.

CREATE PROCEDURE

Adds an external procedure to HP Vertica. See Implementing External Procedures in the
Programmer's Guide for more information about external procedures.

Syntax
CREATE PROCEDURE [[db-name.]schema.]procedure-name (

... [argname] [argtype [,...]])

... AS 'exec-name'

... LANGUAGE 'language-name'

... USER 'OS-user'

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies

objects that are not unique within the current search path (see Setting
Schema Search Paths).

You can optionally precede a schema with a database name, but you

must be connected to the database you specify. You cannot make
changes to objects in other databases.

The ability to specify different database objects (from database and

schemas to tables and columns) lets you qualify database objects as
explicitly as required. For example, you can specify a table and
column (mytable.column1), a schema, table, and column

-738-

SQL Reference Manual

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

procedure-name Specifies a name for the external procedure. If the procedure -name is
schema-qualified, the procedure is created in the specified schema.

argname [Optional] Presents a descriptive argument name to provide a cue to

procedure callers.

argtype [Optional] Specifies the data type for argument(s) that will be passed
to the procedure. Argument types must match HP Vertica type

names. See SQL Data Types (page 71).

AS Specifies the executable program in the procedures directory.

LANGUAGE Specifies the procedure language. This parameter must be set to

EXTERNAL.

USER Specifies the user executed as. The user is the owner of the file. The
user cannot be root.

Note: The external program must allow execute privileges for this

user.

Permissions

To create a procedure a superuser must have CREATE privilege on schema to contain procedure.

Notes

 A procedure file must be owned by the database administrator (OS account) or by a user in the
same group as the administrator. (The procedure file owner cannot be root.) The procedure file
must also have the set UID attribute enabled, and allow read and execute permission for the
group.

 By default, only a database superuser can execute procedures. However, a superuser can
grant the right to execute procedures to other users. See GRANT (Procedure) (page 833).

Example

This example illustrates how to create a procedure named helloplanet for the helloplanet.sh
external procedure file. This file accepts one varchar argument.

Sample file:

#!/bin/bash

echo "hello planet argument: $1" >> /tmp/myprocedure.log

exit 0

Issue the following SQL to create the procedure:

CREATE PROCEDURE helloplanet(arg1 varchar) as 'helloplanet.sh' language

'external' USER 'release';

See Also

DROP PROCEDURE (page 816)

-739-

 SQL Statements

Installing External Procedure Executables in the Programmer's Guide

CREATE PROFILE
Creates a profile that controls password requirements for users.

Syntax
CREATE PROFILE name LIMIT

... [PASSWORD_LIFE_TIME {life-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_GRACE_TIME {grace_period | DEFAULT | UNLIMITED}]

... [FAILED_LOGIN_ATTEMPTS {login-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_LOCK_TIME {lock-period | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_MAX {reuse-limit | DEFAULT | UNLIMITED}]

... [PASSWORD_REUSE_TIME {reuse-period | DEFAULT | UNLIMITED}]

... [PASSWORD_MAX_LENGTH {max-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LENGTH {min-length | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LETTERS {min-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_UPPERCASE_LETTERS {min-cap-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_LOWERCASE_LETTERS {min-lower-letters | DEFAULT | UNLIMITED}]

... [PASSWORD_MIN_DIGITS {min-digits | DEFAULT | UNLIMITED}]

Note: For all parameters, the special DEFAULT value means that the parameter's value is

inherited from the DEFAULT profile. Any changes to the parameter in the DEFAULT profile is
reflected by all of the profiles that inherit that parameter. Any parameter not specified in the
CREATE PROFILE command is set to DEFAULT.

Parameters

Name Description Meaning of UNLIMITED value

name The name of the profile to create N/A

PASSWORD_LIFE_TIME life-limit Integer number of days a
password remains valid. After

the time elapses, the user must
change the password (or will be
warned that their password has

expired if
PASSWORD_GRACE_TIME is
set to a value other than zero or

UNLIMITED).

 Passwords never expire.

-740-

SQL Reference Manual

PASSWORD_GRACE_TIME

grace-period

Integer number of days the

users are allowed to login (while
being issued a warning
message) after their passwords

are older than the
PASSWORD_LIFE_TIME. After
this period expires, users are

forced to change their
passwords on login if they have
not done so after their password

expired.

No grace period (the same as

zero)

FAILED_LOGIN_ATTEMPTS

login-limit

The number of consecutive
failed login attempts that result

in a user's account being locked.

Accounts are never locked, no
matter how many failed login

attempts are made.

PASSWORD_LOCK_TIME lock-period Integer value setting the number
of days an account is locked

after the user's account was
locked by having too many failed
login attempts. After the

PASSWORD_LOCK_TIME has
expired, the account is
automatically unlocked.

Accounts locked because of too
many failed login attempts are

never automatically unlocked.
They must be manually
unlocked by the database

superuser.

PASSWORD_REUSE_MAX reuse-limit The number of password
changes that need to occur
before the current password can

be reused.

Users are not required to
change passwords a certain
number of times before reusing

an old password.

PASSWORD_REUSE_TIME

reuse-period

The integer number of days that
must pass after a password has
been set before the before it can

be reused.

Password reuse is not limited by
time.

PASSWORD_MAX_LENGTH max-length The maximum number of
characters allowed in a

password. Value must be in the
range of 8 to 100.

Passwords are limited to 100
characters.

PASSWORD_MIN_LENGTH min-length The minimum number of

characters required in a
password. Valid range is 0 to
max-length.

Equal to max-length.

PASSWORD_MIN_LETTERS

min-of-letters

Minimum number of letters (a-z
and A-Z) that must be in a

password. Valid ranged is 0 to
max-length.

0 (no minimum).

PASSWORD_MIN_UPPERCASE_LETTERS

min-cap-letters

Minimum number of capital
letters (A-Z) that must be in a
password. Valid range is is 0 to
max-length.

0 (no minimum).

-741-

 SQL Statements

PASSWORD_MIN_LOWERCASE_LETTERS

min-lower-letters

Minimum number of lowercase

letters (a-z) that must be in a
password. Valid range is is 0 to
max-length.

0 (no minimum).

PASSWORD_MIN_DIGITS min-digits Minimum number of digits (0-9)
that must be in a password.
Valid range is is 0 to

max-length.

0 (no minimum).

PASSWORD_MIN_SYMBOLS

min-symbols

Minimum number of symbols

(any printable non-letter and
non-digit character, such as $, #,
@, and so on) that must be in a

password. Valid range is is 0 to
max-length.

0 (no minimum).

Permissions

Must be a superuser to create a profile.

Note: Only the profile settings for how many failed login attempts trigger account locking and

how long accounts are locked have an effect on external password authentication methods
such as LDAP or Kerberos. All password complexity, reuse, and lifetime settings have an effect
on passwords managed by HP Vertica only.

See Also

ALTER PROFILE (page 660)

DROP PROFILE (page 817)

-742-

SQL Reference Manual

CREATE PROJECTION

Creates metadata for a projection in the HP Vertica catalog. You can create a segmented
projection, recommended for large tables. Unsegmented projections are recommended only for
small tables, which are then replicated across all cluster nodes. You can also create projections
using a combination of individual columns and grouped columns. You can optionally apply a
specific access rank to one or more columns, and encoding for an individual column or group of
columns.

Syntax
CREATE PROJECTION [IF NOT EXISTS]

...[[db-name.]schema.]projection-name

...[({ projection-column

...| { GROUPED (column-reference1, column-reference2 [,...])}

......... [ACCESSRANK integer]

......... [ENCODING encoding-type (page 747)] } [,...])

...]

AS SELECT table-column [, ...] FROM table-reference [, ...]

... [WHERE join-predicate (page 64) [AND join-predicate] ...

... [ORDER BY table-column [, ...]]

... [hash-segmentation-clause (page 750)

... | range-segmentation-clause (page 790)

... | UNSEGMENTED { NODE node | ALL NODES }]

... [KSAFE [k-num]]

Parameters

[IF NOT EXISTS] [Optional] Determines whether the statement generates a NOTICE
message or an ERROR if <object>-name exists. Using IF NOT

EXISTS generates a NOTICE if the specified object exists. Omitting

the clause generates an error i f <object>-name exists. Regardless of
whether you use IF NOT EXISTS, HP Vertica does not create a new

object if <object>-name exists. For more information, see also
ON_ERROR_STOP.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be

connected to the database you specify, and you cannot change
objects in other databases.

Specifying different database objects lets you qualify database objects

as explicitly as required. For example, you can use a database and a
schema name (mydb.myschema).

projection-name Specifies the name of the projection to create. If the projection -name is
schema-qualified, the projection is created in the specified schema.
Otherwise, the projection is created in the same schema as the anchor

table. If the projection-name you supply results in a naming conflict
with existing catalog objects (projections), the CREATE PROJECTION
statement fails. All projections include a base table name added

-743-

 SQL Statements

automatically. You refer to the base table name to drop or alter a

projection.

projection-column [Optional] Specifies the name of one or more columns in the projection.
The column data type is that of the corresponding column in the

schema table (based on ordinal position).

If you do not explicitly provide projection column names, the column
names for the table specified in the SELECT statement are used. The

following example automatically uses store and transaction as the
projection column names for sales_p:

=> CREATE TABLE sales(store INTEGER, transaction INTEGER);

=> CREATE PROJECTION sales_p AS SELECT * FROM sales KSAFE 1;

Note that you cannot use specific encodings on projection columns

using the CREATE PROJECTION function this way.

You can use different projection-column names to distinguish multiple
columns with the same name in different tables so that no aliases are

needed.

[ENCODING encoding-type] [Optional] Specifies the type of encoding (page 747) to use on the
column. By default, the encoding type is auto.

Caution: The NONE keyword is obsolete.

[ACCESSRANK integer] [Optional] Overrides the default access rank for a column. This is
useful if you want to increase or decrease the speed at which a column
is accessed. See Creating and Configuring Storage Locations and

Prioritizing Column Access Speed in the Administrator's Guide.

To use this option correctly, you must specify ACCESSRANK n directly

with the column to which it applies. For instance, this statement

correctly assigns an access rank to two of the three named columns
col_night, and col_day:

CREATE PROJECTION PJ(col_night, accessrank 2, col_evening,

 col_day, accessrank 1)AS SELECT * FROM test

The following statement will fail, because the second access rank is
not associated directly with a column:

CREATE PROJECTION PJ(col_night, col_evening, col_day,

accessrank 2, accessrank 1) AS SELECT * FROM test

[GROUPED (column-reference1,

 column-reference2 [,...])]

[Optional] Groups the specified projection column references into a
single disk file. Using the GROUPED parameter requires a minimum of
two column-reference elements. You can specify more than one

set of grouped columns, and intersperse them with non-grouped
column references.

Grouping projection columns minimizes file I/O for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have columns of data that are always accessed together, and
not used in predicates, grouping the columns can increase query

performance. However, once grouped, queries can no longer retrieve
from disk all records for any individual columns within the group.

Note: RLE compression is reduced when a RLE column is grouped

-744-

SQL Reference Manual

with one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns: (a, GROUPED(b, c), d)

 Group all of the columns: (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:
(GROUPED(a, b), GROUPED(c, d))

Note: HP Vertica performs dynamic column grouping. For example, to

provide better read and write efficiency for small loads, HP Vertica
ignores any projection-defined column grouping (or lack thereof) and
groups all columns together by default.

SELECT table-column Specifies a list of schema table columns corresponding (in ordinal
position) to the projection columns.

Note: When creating a projection, the total number of projection

column references, including those noted in the GROUPED statement,
must equal the number of columns specified in the Select statement

(unless the Select statement indicates select *).

table-reference Specifies a list of schema tables containing the columns to include in

the projection in the form:
table-name [AS] alias [(column-alias [, ...])] [, ...]]

[WHERE join-predicate] [Optional] Specifies foreign-key = primary-key equijoins between the
large and smaller tables. No other predicates are allowed.

[ORDER BY table-column] [Optional] Specifies the columns to sort the projection on. You cannot
specify an ascending or descending clause. HP Vertica always uses

an ascending sort order in physical storage.

Note: If you do not specify the ORDER BY table-column parameter, HP

Vertica uses the order in which columns are specified in the column list
as the sort order for the projection.

hash-segmentation-clause [Optional] Segments a projection evenly and distributes the data
across nodes using a built-in hash function. Creating a projection with
hash segmentation results in optimal query execution. See

hash-segmentation-clause (page 750).

Note: An elastic projection (a segmented projection created when

Elastic Cluster is enabled) created with a modularhash segm entation
expression uses hash instead.

range-segmentation-clause [Optional] Allows you to segment a projection based on a known range

of values stored in a specific column chosen to provide even
distribution of data across a set of nodes, resulting in opt imal query
execution. See range-segmentation-clause (page 790).

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Lets you specify an unsegmented projection. The default for
this parameter is to create an UNSEGMENTED projection on the
initiator node. You can optionally use either of the following node

specifications:

 NODE node—Creates an unsegmented projection only on the
specified node. Projections for small tables must be
UNSEGMENTED.

 ALL NODES—Automatically replicates the unsegmented

-745-

 SQL Statements

projection on each node. To perform distributed query

execution, HP Vertica requires an unsegmented copy of each
small table superprojection on each node.

KSAFE [k-num] [Optional] Specifies the K-safety level of the projection. The k-num
integer determines how many replicated or segmented buddy

projections are created. The value must be greater than or equal to the
current K-safety level of the database and less than the total number of
nodes. HP recommends that you use multiple projection syntax for

K-safe clusters.

If the KSAFE parameter is omitted, or specified without an integer
value, the projection is created at the current system K-safety level.

Unless you are creating a projection on a single-node database, the
default KSAFE value is at least one. For instance, this example
creates a superprojection for a database with a K-safety of one (1):

KSAFE 1

Note: KSAFE cannot be used with range segmentation.

Permissions

Projections get implicitly created when you insert data into a table, an operation that automatically
creates a superprojection for the table.

Implicitly-created projections do not require any additional privileges to create or drop, other than
privileges for table creation. Users who can create a table or drop a table can also create and drop
the associated superprojection.

To explicitly create a projection using the CREATE PROJECTION (page 742) statement, a user
must be a superuser or owner of the anchor table or have the following privileges:

 CREATE privilege on the schema in which the projection is created

 SELECT on all the base tables referenced by the projection

 USAGE on all the schemas that contain the base tables referenced by the projection

Explicitly-created projections can only be dropped by the table owner on which the projection is
based for a single-table projection, or the owner of the anchor table for pre-join projections.

Projections and Super Projections

If you attempt to create a projection or a pre-join projection before a super-projection exists, HP
Vertica displays a warning.

This example attempts to create a projection before a super-projection:

VMart=> create table tar (x integer, y integer);

CREATE TABLE

VMart=> create projection tar_p as select x from tar;

WARNING 4130: No super projections created for table public.tar.

HINT: Default super projections will be automatically created with the next DML

CREATE PROJECTION

This example attempts to create a pre-join projection when no super-projection exists:

-746-

SQL Reference Manual

VMart=> create projection foo_p as select near.x, far.x from near join far on near.x

= far.x unsegmented all nodes;

WARNING 4130: No super projections created for table public.far.

HINT: Default super projections will be automatically created with the next DML

CREATE PROJECTION

Checking Column Constraints

When you create a projection, HP Vertica checks column constraints during the process. For
instance, if a join predicate includes a column with a FOREIGN_KEY constraint but without a
NOT_NULL constraint, the CREATE PROJECTION statement fails.

Updating the Projection Using Refresh

Invoking the CREATE PROJECTION command does not load data into physical storage. If the
tables over which the projection is defined already contain data, you must issue
START_REFRESH (page 538) to update the projection. Depending on how much data is in the
tables, updating a projection can be time-consuming. Once a projection is up-to-date, however, it
is updated automatically as part of COPY, DELETE, INSERT, MERGE, or UPDATE statements.

Monitoring Projecting Refresh on Buddy Projects

A projection is not refreshed until after a buddy projection is created. After the CREATE
PROJECTION is run, if you run SELECT START_REFRESH() the following message displays:

Starting refresh background process

However, the refresh does not begin until after a buddy projection is created. You can monitor the
refresh operation by examining the vertica.log file or view the final status of the projection
refresh by using SELECT get_projections('table-name;). For example:

=> SELECT get_projections('customer_dimension');

 get_projections

--

Current system K is 1.

of Nodes: 4.

Table public.customer_dimension has 4 projections.

Projection Name: [Segmented] [Seg Cols] [# of Buddies] [Buddy

Projections] [Safe] [UptoDate]

--

public.customer_dimension_node0004 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0003,

public.customer_dimension_node0002,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

public.customer_dimension_node0003 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0002,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

-747-

 SQL Statements

public.customer_dimension_node0002 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0003,

public.customer_dimension_node0001] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

public.customer_dimension_node0001 [Segmented: No] [Seg Cols:] [K: 3]

[public.customer_dimension_node0004,

public.customer_dimension_node0003,

public.customer_dimension_node0002] [Safe: Yes] [UptoDate: Yes][Stats:

Yes]

(1 row)

Creating Unsegmented Projections with the ALL NODES Option

Using the UNSEGMENTED option to create a projection takes a snapshot of the nodes defined at
execution time to generate a predictable node list order. Creating unsegmented projections results
in each replicated projection having the following naming convention, with an appended
node-name suffix:

projection-name_node-name

For example, if the cluster node names are NODE01, NODE02, and NODE03, creating an

unsegmented projection with the following command, creates projections named ABC_NODE01,
ABC_NODE02, and ABC_NODE03:

=> CREATE PROJECTION ABC ... UNSEGMENTED ALL NODES;

Creating unsegmented projections (with a node-name suffix), affects the projection name
argument value for functions such as GET_PROJECTIONS (page 499) or
GET_PROJECTION_STATUS (page 498). For these functions, you must provide the entire

projection name, including the node-name suffix (ABC_NODE01), rather than the projection name
alone (ABC).

To view a list of the nodes in a database, use the View Database command in the Administration
Tools.

Example

The following example groups the highly correlated columns bid and ask. However, the stock
column is stored separately.

=> CREATE TABLE trades (stock CHAR(5), bid INT, ask INT);

=> CREATE PROJECTION tradeproj (stock ENCODING RLE, GROUPED(bid ENCODING DELTAVAL,

ask))

 AS (SELECT * FROM trades) KSAFE 1;

encoding-type

HP Vertica supports the following encoding and compression types:

ENCODING AUTO (default)

For CHAR/VARCHAR, BOOLEAN, BINARY/VARBINARY, and FLOAT columns,
Lempel-Ziv-Oberhumer-based (LZO) compression is used.

-748-

SQL Reference Manual

For INTEGER, DATE/TIME/TIMESTAMP, and INTERVAL types, the compression scheme is
based on the delta between consecutive column values.

AUTO encoding is ideal for sorted, many-valued columns such as primary keys. It is also suitable
for general purpose applications for which no other encoding or compression scheme is
applicable. Therefore, it serves as the default if no encoding/compression is specified.

The CPU requirements for this type are relatively small. In the worst case, data might expand by
eight percent (8%) for LZO and twenty percent (20%) for integer data.

ENCODING BLOCK_DICT

For each block of storage, HP Vertica compiles distinct column values into a dictionary and then
stores the dictionary and a list of indexes to represent the data block.

BLOCK_DICT is ideal for few-valued, unsorted columns in which saving space is more important
than encoding speed. Certain kinds of data, such as stock prices, are typically few-valued within a
localized area once the data is sorted, such as by stock symbol and timestamp, and are good
candidates for BLOCK_DICT. Long CHAR/VARCHAR columns are not good candidates for
BLOCK_DICT encoding.

CHAR and VARCHAR columns that contain 0x00 or 0xFF characters should not be encoded with
BLOCK_DICT. Also, BINARY/VARBINARY columns do not support BLOCK_DICT encoding.

The encoding CPU for BLOCK_DICT is significantly higher than for default encoding schemes.
The maximum data expansion is eight percent (8%).

ENCODING BLOCKDICT_COMP

This encoding type is similar to BLOCK_DICT except that dictionary indexes are entropy coded.
This encoding type requires significantly more CPU time to encode and decode and has a poorer
worst-case performance. However, if the distribution of values is extremely skewed, using
BLOCKDICT_COMP encoding can lead to space savings.

ENCODING COMMONDELTA_COMP

This compression scheme builds a dictionary of all the deltas in the block and then stores indexes
into the delta dictionary using entropy coding.

This scheme is ideal for sorted FLOAT and INTEGER-based
(DATE/TIME/TIMESTAMP/INTERVAL) data columns with predictable sequences and only the
occasional sequence breaks, such as timestamps recorded at periodic intervals or primary keys.
For example, the following sequence compresses well: 300, 600, 900, 1200, 1500, 600, 1200,
1800, 2400. The following sequence does not compress well: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55.

If the delta distribution is excellent, columns can be stored in less than one bit per row. However,
this scheme is very CPU intensive. If you use this scheme on data with arbitrary deltas, it can lead
to significant data expansion.

ENCODING DELTARANGE_COMP

This compression scheme is primarily used for floating-point data, and it stores each value as a
delta from the previous one.

-749-

 SQL Statements

This scheme is ideal for many-valued FLOAT columns that are either sorted or confined to a
range. Do not use this scheme for unsorted columns that contain NULL values, as the storage cost
for representing a NULL value is high. This scheme has a high cost for both compression and
decompression.

To determine if DELTARANGE_COMP is suitable for a particular set of data, compare it to other
schemes. Be sure to use the same sort order as the projection, and select sample data that will be
stored consecutively in the database.

ENCODING DELTAVAL

For INTEGER and DATE/TIME/TIMESTAMP/INTERVAL columns, data is recorded as a
difference from the smallest value in the data block. This encoding has no effect on other data
types.

DELTAVAL is best used for many-valued, unsorted integer or integer-based columns. The CPU
requirements for this encoding type are minimal, and the data never expands.

ENCODING GCDDELTA

For INTEGER and DATE/TIME/TIMESTAMP/INTERVAL columns, and NUMERIC columns with
18 or fewer digits, data is recorded as the difference from the smallest value in the data block
divided by the greatest common divisor (GCD) of all entries in the block. This encoding has no
effect on other data types.

ENCODING GCDDELTA is best used for many-valued, unsorted, integer columns or
integer-based columns, when the values are a multiple of a common factor. For example,
timestamps are stored internally in microseconds, so data that is only precise to the millisecond
are all multiples of 1000. The CPU requirements for decoding GCDDELTA encoding are minimal,
and the data never expands, but GCDDELTA may take more encoding time than DELTAVAL.

ENCODING RLE

Run Length Encoding (RLE) replaces sequences (runs) of identical values with a single pair that
contains the value and number of occurrences. Therefore, it is best used for low cardinality
columns that are present in the ORDER BY clause of a projection.

The HP Vertica execution engine processes RLE encoding run-by-run and the HP Vertica
optimizer gives it preference. Use it only when the run length is large, such as when low-cardinality
columns are sorted.

The storage for RLE and AUTO encoding of CHAR/VARCHAR and BINARY/VARBINARY is
always the same.

ENCODING NONE

Do not specify this value. It is obsolete and exists only for backwards compatibility. The result of
ENCODING NONE is the same as ENCODING AUTO except when applied to CHAR and
VARCHAR columns. Using ENCODING NONE on these columns increases space usage,
increases processing time, and leads to problems if 0x00 or 0xFF characters are present in the
data.

-750-

SQL Reference Manual

hash-segmentation-clause

Allows you to segment a projection based on a built-in hash function. The built-in hash function
provides even data distribution across some or all nodes in a cluster, resulting in optimal query
execution.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer

uses hash segmentation by default.

Syntax
SEGMENTED BY expression

 { ALL NODES [OFFSET offset] | NODES node [,...] }

Parameters

SEGMENTED BY expression Can be a general SQL expression. However, HP recommends using the

built-in HASH (page 308) or MODULARHASH (page 311) functions,
specifying table columns as arguments. If you specify only a column name,
HP Vertica gives a warning.

Choose columns that have a large number of unique data values and
acceptable skew in their data distribution. Primary key columns that meet
the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes data evenly across all nodes at the time the
CREATE PROJECTION statement is run. The ordering of the nodes is fixed.

OFFSET offset [Optional.] An offset value indicating the node on which to start the

segmentation distribution. Omitting the OFFSET clause is equivalent to
OFFSET 0. The offset is an integer value, relative to 0, based on all
available nodes when using the ALL NODES parameter. See example

below.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of

the nodes in a database, use the View Database command in the
Administration Tools.

Notes

 CREATE PROJECTION accepts the deprecated syntax SITES node for compatibility with

previous releases.

 You must use the table column names in the expression, not the new projection column
names.

 An elastic projection (a segmented projection created when Elastic Cluster is enabled) created
with a modularhash segmentation expression uses hash instead.

 To use a SEGMENTED BY expression other than HASH or MODULARHASH, the following
restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 54) to a column in the SELECT list of the CREATE PROJECTION
command.

-751-

 SQL Statements

 Aggregate functions are not allowed.

 The expression must return the same value over the life of the database.

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside of the expected range (a negative value for
example), no error occurs, and the row is added to the first segment of the projection.

Examples
=> CREATE PROJECTION ... SEGMENTED BY HASH(C1,C2) ALL NODES;

=> CREATE PROJECTION ... SEGMENTED BY HASH(C1,C2) ALL NODES OFFSET 1;

The example produces two hash-segmented buddy projections that form part of a K-Safe design.
The projections can use different sort orders.

=> CREATE PROJECTION fact_ts_2 (

 f_price,

 f_cid,

 f_tid,

 f_cost,

 f_date) AS (

 SELECT price, cid, tid, cost, dwdate FROM fact)

SEGMENTED BY MODULARHASH(dwdate) ALL NODES OFFSET 2;

See Also

HASH (page 308) and MODULARHASH (page 311)

range-segmentation-clause

Allows you to segment a projection based on a known range of values stored in a specific column.
Choosing a range of values from a specific column provides even distribution of data across a set
of nodes, resulting in optimal query execution.

Note: HP recommends that you use hash segmentation, rather than range segmentation.

Syntax
SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 ...

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 54) to a

column in the SELECT list of the CREATE PROJECTION statement.
Choose a column that has:

 INTEGER or FLOAT data type

 A known range of data values

 An even distribution of data values

-752-

SQL Reference Manual

 A large number of unique data values

Avoid columns that:

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If

you choose this option, do not use TIME or TIMETZ because their range is
only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in any

projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that the segment can contain only a range of data values less than
value. The segments cannot overlap so the minimum value of the range is
determined by the value of the previous segment (if any).

VALUES LESS THAN MAXVALUE Specifies a sub-range containing data values with no upper limit.
MAXVALUE is the maximum value represented by the data type of the
segmentation column.

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no
reason to use anything other than a single column reference (see "Column References" on
page 54) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 54) to a column in the SELECT list of the CREATE PROJECTION
command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

 CREATE PROJECTION with range segmentation accepts the deprecated syntax SITE node
for compatibility with previous releases.

 CREATE PROJECTION with range segmentation allows the SEGMENTED BY expression to be
a single column-reference to a column in the projection-column list for compatibility with
previous releases. This syntax is considered to be a deprecated feature and causes a warning
message. See DEPRECATED syntax in the Troubleshooting Guide.

See Also

NODE_RESOURCES (page 1047)

-753-

 SQL Statements

CREATE RESOURCE POOL
Creates a resource pool.

Syntax
CREATE RESOURCE POOL pool-name

... [MEMORYSIZE {'sizeUnits' |DEFAULT }]

... [MAXMEMORYSIZE {'sizeUnits' | NONE |DEFAULT }]

... [EXECUTIONPARALLELISM {int | AUTO | DEFAULT}]

... [PRIORITY {integer |DEFAULT}]

... [RUNTIMEPRIORITY { HIGH | MEDIUM | LOW |DEFAULT}]

... [RUNTIMEPRIORITYTHRESHOLD { integer |DEFAULT }]

... [QUEUETIMEOUT {integer | NONE |DEFAULT}]

... [PLANNEDCONCURRENCY {integer | NONE | DEFAULT |AUTO }]

... [MAXCONCURRENCY {integer| NONE |DEFAULT }]

... [RUNTIMECAP {interval | NONE | DEFAULT}]

... [SINGLEINITIATOR { bool | DEFAULT }]

Parameters

Note: If you specify DEFAULT for any parameter when creating a resource pool, HP Vertica
uses the default value for the user-defined pool, stored in the
RESOURCE_POOL_DEFAULTS (page 964) table.

pool-name Specifies the name of the resource pool to create.

MEMORYSIZE 'sizeUnits' [Default 0%] Amount of memory allocated to the resource pool.
See also MAXMEMORYSIZE parameter.

Units can be one of the following:

 % percentage of total memory available to the
Resource Manager. (In this case, size must be 0-100.).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Note: This parameter refers to memory allocated to this pool

per node and not across the whole cluster.

The default of 0% means that the pool has no memory allocated
to it and must exclusively borrow from the GENERAL pool.

MAXMEMORYSIZE

'sizeUnits' | NONE

[Default unlimited] Maximum size the resource pool could grow
by borrowing memory from the GENERAL pool. See Built-in

Pools (page 757) for a discussion on how resource pools
interact with the GENERAL pool.

Units can be one of the following:

 % percentage of total memory available to the
Resource Manager. (In this case, size must be 0-100).
This notation has special meaning for the GENERAL

-754-

SQL Reference Manual

pool, described in Notes below.

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If MAXMEMORYSIZE NONE is specified, there is no upper limit.

Notes:

The MAXMEMORYSIZE parameter refers to the maximum

memory borrowed by this pool per node and not across the

whole cluster.

The default of unlimited means that the pool can borrow as
much memory from GENERAL pool as is available.

EXECUTIONPARALLELISM [Default: AUTO] Limits the number of threads used to process

any single query issued in this resource pool.

When set to AUTO, HP Vertica sets this value based on the

number of cores, available memory, and amount of data in the

system. Unless data is limited, or the amount of data is very
small, HP Vertica sets this value to the number of cores on the
node.

Reducing this value increases the throughput of short queries
issued in the pool, especially if the queries are executed
concurrently.

If you choose to set this parameter manually, set it to a value
between 1 and the number of cores.

PRIORITY [Default 0] An integer that represents priority of queries in this

pool, when they compete for resources in the GENERAL pool.

Higher numbers denote higher priority.

RUNTIMEPRIORITY [Default: Medium] Determines the amount of run-time

resources (CPU, I/O bandwidth) the Resource Manager should
dedicate to queries already running in the resource pool. Valid
values are:

 HIGH

 MEDIUM

 LOW

Queries with a HIGH run-time priority are given more CPU and

I/O resources than those with a MEDIUM or LOW run-time

priority.

RUNTIMEPRIORITYTHRESHOLD [Default 2]

Specifies a time limit (in seconds) by which a query must finish
before the Resource Manager assigns to it the
RUNTIMEPRIORITY of the resource pool. All queries begin

runnng at a HIGH priority. When a query's duration exceeds
this threshold, it is assigned the RUNTIMEPRIORITY of the

resource pool.

-755-

 SQL Statements

QUEUETIMEOUT [Default 300 seconds] An integer, in seconds, that represents

the maximum amount of time the request is allowed to wait for
resources to become available before being rejected. If set to
NONE, the request can be queued for an unlimited amount of

time.

PLANNEDCONCURRENCY [Default: AUTO] Integer that represents the typical number of
queries running concurrently in the system. When set to AUTO,

this value is calculated automatically at query runtime. HP
Vertica sets this parameter to the lower of these two
calculations:

 Number of cores

 Memory/2GB

When this parameter is set to AUTO, HP Vertica will never set it
to a value less than 4.

HP Vertica advises changing this value only after evaluating
performance over a period of time.

Notes:

 This is a cluster-wide maximum and not a per-node
limit.

 For clusters where the number of cores differs on

different nodes, AUTO can apply differently on each
node. Distributed queries run like the minimal effective
planned concurrency. Single node queries run with
the planned concurrency of the initiator.

 If you created or upgraded your database in 4.0 or 4.1,
the PLANNEDCONCURRENCY setting on the GENERAL

pool defaults to a too-small value for machines with
large numbers of cores. To adjust to a more
appropriate value:

 => ALTER RESOURCE POOL general

PLANNEDCONCURRENCY

 <#cores>;

 You need to set this parameter only if you created a
database before 4.1, patchset 1.

MAXCONCURRENCY [Default unlimited] An integer that represents the maximum
number of concurrent execution slots available to the resource

pool. If MAXCONCURRENCY NONE is specified, there is no limit.

Note: This is a cluster-wide maximum and not a per-node limit.

RUNTIMECAP [Default: NONE] Sets the maximum amount of time any query on

the pool can execute. Set RUNTIMECAP using interval, such as

'1 minute' or '100 seconds' (see Interval Values (page 37) for
details). This value cannot exceed one year. Setting this value

to NONE specifies that there is no time limit on queries running

on the pool. If the user or session also has a RUNTIMECAP, the

shorter limit applies.

SINGLEINITIATOR [Default false] This parameter is included for backwards
compatibility only. Do not change the value.

-756-

SQL Reference Manual

Permissions

Must be a superuser to create a resource pool.

Notes

 Resource pool names are subject to the same rules as HP Vertica identifiers (page 22).
Built-in pool (page 757) names cannot be used for user-defined pools.

 New resource pools can be created or altered without shutting down the system.

 When a new pool is created (or its size altered), MEMORYSIZE amount of memory is taken out

of the GENERAL pool (page 757). If the GENERAL pool does not currently have sufficient
memory to create the pool due to existing queries being processed, a request is made to the
system to create a pool as soon as resources become available. The pool is created
immediately and memory is moved to the pool as it becomes available. Such memory
movement has higher priority than any query.

The pool is in operation as soon as the specified amount of memory becomes available. You
can monitor whether the ALTER has been completed in the

V_MONITOR.RESOURCE_POOL_STATUS (page 965) system table.

 Under normal operation, MEMORYSIZE is required to be less than MAXMEMORYSIZE and an
error is returned during CREATE/ALTER operations if this size limit is violated. However,
under some circumstances where the node specification changes by addition/removal of
memory, or if the database is moved to a different cluster, this invariant could be violated. In
this case, MAXMEMORYSIZE is increased to MEMORYSIZE.

 If two pools have the same PRIORITY, their requests are allowed to borrow from the GENERAL
pool in order of arrival.

See Guidelines for Setting Pool Parameters in the Administrator's Guide for details about setting
these parameters.

Example

The following command creates a resource pool with MEMORYSIZE of 1800MB to ensure that the
CEO query has adequate memory reserved for it:

=> CREATE RESOURCE POOL ceo_pool MEMORYSIZE '1800M' PRIORITY 10;

\pset expanded

Expanded display is on.

SELECT * FROM resource_pools WHERE name = 'ceo_pool';

-[RECORD 1]-------+-------------

name | ceo_pool

is_internal | f

memorysize | 1800M

maxmemorysize |

priority | 10

queuetimeout | 300

plannedconcurrency | 4

maxconcurrency |

singleinitiator | f

-757-

 SQL Statements

Assuming the CEO report user already exists, associate this user with the above resource pool
using ALTER USER statement.

=> ALTER USER ceo_user RESOURCE POOL ceo_pool;

Issue the following command to confirm that the ceo_user is associated with the ceo_pool:

=> SELECT * FROM users WHERE user_name ='ceo_user';

-[RECORD 1]-+------------------

user_id | 45035996273713548

user_name | ceo_user

is_super_user | f

resource_pool | ceo_pool

memory_cap_kb | unlimited

See Also

ALTER RESOURCE POOL (page 663)

CREATE USER (page 801)

DROP RESOURCE POOL (page 819)

SET SESSION RESOURCE POOL (page 916)

SET SESSION MEMORYCAP (page 915)

Managing Workloads in the Administrator's Guide

Built-in Pools

HP Vertica is preconfigured with built-in pools for various system tasks. The built-in pools can be
reconfigured to suit your usage. The following sections describe the purpose of built-in pools and
the default settings.

Built-in Pool Settings

GENERAL A special, catch-all pool used to answer requests that have no specific resource pool
associated with them. Any memory left over after memory has been allocated to all
other pools is automatically allocated to the GENERAL pool. The MEMORYSIZE

parameter of the GENERAL pool is undefined (variable), however, the GENERAL pool

must be at least 1GB in size and cannot be smaller than 25% of the memory in the

system.

The MAXMEMORYSIZE parameter of the GENERAL pool has special meaning; when set

as a % value it represents the percent of total physical RAM on the machine that the
Resource Manager can use for queries. By default, it is set to 95%. The
GENERAL.MAXMEMORYSIZE governs the total amount of RAM that the Resource

Manager can use for queries, regardless of whether it is set to a percent or to a specific
value (for example, '10GB')

Any user-defined pool can ―borrow‖ memory from the GENERAL pool to satisfy requests

that need extra memory until the MAXMEMORYSIZE parameter of that pool is reached. If

the pool is configured to have MEMORYSIZE equal to MAXMEMORYSIZE, it cannot

-758-

SQL Reference Manual

borrow any memory from the GENERAL pool and is said to be a standalone resource

pool. When multiple pools request memory from the GENERAL pool, they are granted

access to general pool memory according to their priority setting. In this manner, the

GENERAL pool provides some elasticity to account for point-in-time deviations from

normal usage of individual resource pools.

SYSQUERY The pool that runs queries against system monitoring and catalog tables (page

933). The SYSQUERY pool reserves resources for system table queries so that they are

never blocked by contention for available resources.

SYSDATA The pool reserved for temporary storage of intermediate results of queries against
system monitoring and catalog tables (page 933). If the SYSDATA pool size is too

low, HP Vertica cannot execute queries for large system tables or during high

concurrent access to system tables.

WOSDATA The Write Optimized Store (WOS) resource pool. Data loads to the WOS automatically
spill to the ROS once it exceeds a certain amount of WOS usage; the

PLANNEDCONCURRENCY parameter of the WOS is used to determine this spill

threshold. For instance, if PLANNEDCONCURRENCY of the WOSDATA pool is set to 4,

once a load has occupied one quarter of the WOS, it spills to the ROS.

See Scenario: Tuning for Continuous Load and Query in the Administrator's Guide.

TM The Tuple Mover (TM) pool. You can use the MAXCONCURRENCY parameter for the TM

pool to allow more than one concurrent TM operation to occur.

See Scenario: Tuning Tuple Mover Pool Settings in the Administrator's Guide.

RECOVERY The pool used by queries issued when recovering another node of the database. The
MAXCONCURRENCY parameter is used to determine how many concurrent recovery

threads to use. You can use the PLANNEDCONCURRENCY parameter (by default, set to

twice the MAXCONCURRENCY) to tune how to apportion memory to recovery queries.

See Scenario: Tuning for Recovery in the Administrator's Guide.

REFRESH The pool used by queries issued by the PROJECTION_REFRESHES (page 1056)
operations. Refresh does not currently use multiple concurrent threads; thus, changes
to the MAXCONCURRENCY values have no effect.

See Scenario: Tuning for Refresh in the Administrator's Guide.

DBD The Database Designer pool, used to control resource usage for the DBD internal

processing. Since the Database Designer is such a resource -intensive process, the
DBD pool is configured with a zero (0) second QUEUETIMEOUT value. Whenever

resources are under pressure, this timeout setting causes the DBD to time out

immediately, and not be queued to run later. The Database Designer then requests the
user to run the designer later, when resources are more available. HP recommends
that you do not reconfigure this pool.

Upgrade from Earlier Versions of HP Vertica

For a database being upgraded from earlier versions of, HP Vertica automatically translates most
existing parameter values into the new resource pool settings.

The PLANNEDCONCURRENCY and MAXCONCURRENCY parameters of the resource pools must be

manually tuned per Guidelines for Setting Pool Parameters in the Administrator's Guide.

-759-

 SQL Statements

See Also

RESOURCE_AQUISITIONS (page 1081)

Built-in Pool Configuration

The following tables list the default configuration setting values of built-in resource pools for a new
database and for a database upgraded from prior versions of HP Vertica.

Note: Some of the built-in resource pool parameter values have restrictions, which are noted in

the tables.

GENERAL

Setting Value

MEMORYSIZE N/A (cannot be set)

MAXMEMORYSIZE Default: 95% of Total RAM on the node. Setting this value to 100%
generates warnings that swapping could result. MAXMEMORYSIZE

has the following restrictions:

 Must be 1GB or greater.

 Must not be less than 25% of total system RAM.

PRIORITY 0

RUNTIMEPRIORITY Medium

RUNTIMEPRIORITYTHRESHOLD 2

QUEUETIMEOUT 300

RUNTIMECAP NONE

-760-

SQL Reference Manual

PLANNEDCONCURRENCY [Default: Auto] An integer that represents the number of concurrent

queries that are normally expected to be running against the resource
pool. When set to the default value of AUTO, HP Vertica automatically
sets PLANNEDCONCURRENCY at query runtime, choosing the

lower of these two values:

 # of cores

 Memory/2BG

The value 4 is the minimum value for PLANNEDCONCURRENCY.

HP Vertica advises changing this value only after evaluating
performance over a period of time.

Notes:

 See Best Practices For Workload Management in the
Administrator's Guide for guidance on how to tune.

 The PLANNEDCONCURRENCY setting for the GENERAL pool

defaults to a too-small value for machines with large numbers
of cores. To adjust to a more appropriate value:

 => ALTER RESOURCE POOL general PLANNEDCONCURRENCY

<#cores>;

See Guidelines for Setting Pool Parameters in the Administrator's

Guide

MAXCONCURRENCY Unlimited

Restrictions: Setting to 0 generates warnings that no system queries

may be able to run in the system.

SINGLEINITIATOR False. This parameter is included for backwards compatibility only.

Do not change the value.

SYSQUERY

Setting Value

MEMORYSIZE 64M

Restrictions: Setting to <20M generates warnings because it could
prevent system queries from running and make problem diagnosis

difficult.

MAXMEMORYSIZE Unlimited

EXECUTIONPARALLELISM AUTO

PRIORITY 110

RUNTIMEPRIORITY HIGH

RUNTIMEPRIORITYTHRESHOLD 0

QUEUETIMEOUT 300

RUNTIMECAP NONE.

PLANNEDCONCURRENCY See GENERAL

-761-

 SQL Statements

MAXCONCURRENCY Unlimited

Restrictions: Setting to 0 generates warnings that no system queries may
be able to run in the system.

SINGLEINITIATOR False. This parameter is included for backwards compatibility only. Do

not change the value.

SYSDATA

Setting Value

MEMORYSIZE 100m

MAXMEMORYSIZE 10%

Restriction: Setting To <4m generates warnings that no system

queries may be able to run in the system.

EXECUTIONPARALLELISM N/A (cannot be set)

PRIORITY N/A (cannot be set)

RUNTIMEPRIORITY N/A (cannot be set)

RUNTIMEPRIORITYTHRESHOLD N/A (cannot be set)

QUEUETIMEOUT N/A (cannot be set)

RUNTIMECAP N/A (cannot be set)

PLANNEDCONCURRENCY N/A (cannot be set)

MAXCONCURRENCY N/A (cannot be set)

SINGLEINITIATOR N/A (cannot be set)

WOSDATA

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE 25% or 2GB, whichever is less.

EXECUTIONPARALLELISM N/A (cannot be set)

PRIORITY N/A (cannot be set)

RUNTIMEPRIORITY N/A (cannot be set)

RUNTIMEPRIORITYTHRESHOLD N/A (cannot be set)

QUEUETIMEOUT N/A (cannot be set)

RUNTIMECAP NONE

PLANNEDCONCURRENCY 2*# nodes

MAXCONCURRENCY N/A (cannot be set)

SINGLEINITIATOR N/A (cannot be set)

-762-

SQL Reference Manual

TM

Setting Value

MEMORYSIZE 100M

MAXMEMORYSIZE Unlimited

EXECUTIONPARALLELISM AUTO

PRIORITY 105

RUNTIMEPRIORITY MEDIUM

RUNTIMEPRIORITYTHRESHOLD 60

QUEUETIMEOUT 300

RUNTIMECAP NONE

PLANNEDCONCURRENCY 1

MAXCONCURRENCY 2

Restrictions: Cannot set to 0 or NONE (unlimited)

SINGLEINITIATOR True. This parameter is included for backwards compatibility. Do not

change the value.

REFRESH

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

EXECUTIONPARALLELISM AUTO

PRIORITY -10

RUNTIMEPRIORITY MEDIUM

RUNTIMEPRIORITYTHRESHOLD 60

QUEUETIMEOUT 300

RUNTIMECAP NONE

PLANNEDCONCURRENCY 4

MAXCONCURRENCY Unlimited

Restrictions: cannot set to 0

SINGLEINITIATOR True. This parameter is included for backwards compatibility. Do not
change the value.

-763-

 SQL Statements

RECOVERY

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

Restrictions: cannot set to < 25%.

EXECUTIONPARALLELISM AUTO

PRIORITY 107

RUNTIMEPRIORITY MEDIUM

RUNTIMEPRIORITYTHRESHOLD 60

QUEUETIMEOUT 300

RUNTIMECAP NONE

PLANNEDCONCURRENCY Twice MAXCONCURRENCY

MAXCONCURRENCY (# of cores / 2) + 1

Restrictions: Cannot set to 0 or NONE (unlimited)

SINGLEINITIATOR True. This parameter is included for backwards compatibility. Do not
change the value.

DBD

Setting Value

MEMORYSIZE 0%

MAXMEMORYSIZE Unlimited

EXECUTIONPARALLELISM AUTO

PRIORITY 0

RUNTIMEPRIORITY MEDIUM

RUNTIMEPRIORITYTHRESHOLD 0

QUEUETIMEOUT 0

RUNTIMECAP NONE

PLANNEDCONCURRENCY See GENERAL

MAXCONCURRENCY Unlimited

SINGLEINITIATOR False. This parameter is included for backwards compatibility. Do not

change the value.

-764-

SQL Reference Manual

CREATE ROLE

Creates a new, empty role. You must then add permissions to the role using one of the GRANT
statements.

Syntax
CREATE ROLE role;

Parameters

role The name for the new role.

Permissions

Must be a superuser to create a role.

See Also

ALTER ROLE RENAME (page 667)

DROP ROLE (page 820)

CREATE SCHEMA
Defines a new schema.

Syntax
CREATE SCHEMA [IF NOT EXISTS] [db-name.]schema [AUTHORIZATION user-name]

Parameters

[IF NOT EXISTS] [Optional] Determines whether the statement generates a NOTICE

message or an ERROR if <object>-name exists. Using IF NOT

EXISTS generates a NOTICE if the specified object exists. Omitting

the clause generates an error i f <object>-name exists. Regardless of
whether you use IF NOT EXISTS, HP Vertica does not create a new

object if <object>-name exists. For more information, see also

ON_ERROR_STOP.

[db-name.] [Optional] Specifies the current database name. Using a database
name prefix is optional, and does not affect the command in any way.

You must be connected to the specified database.

schema Specifies the name of the schema to create.

AUTHORIZATION user-name Assigns ownership of the schema to a user. If a user name is not

provided, the user who creates the schema is assigned ownership.
Only a Superuser is allowed to create a schema that is owned by a
different user.

-765-

 SQL Statements

Privileges

To create a schema, the user must either be a superuser or have CREATE privilege for the
database. See GRANT (Database) (page 832).

Optionally, CREATE SCHEMA could include the following sub-statements to create tables within
the schema:

 CREATE TABLE (page 770)

 GRANT

With the following exceptions, these sub-statements are treated as if they have been entered as
individual commands after the CREATE SCHEMA statement has completed:

 If the AUTHORIZATION statement is used, all tables are owned by the specified user.

 The CREATE SCHEMA statement and all its associated sub-statements are completed as
one transaction. If any of the statements fail, the entire CREATE SCHEMA statement is rolled
back.

Examples

The following example creates a schema named s1 with no objects.

=> CREATE SCHEMA s1;

The following command creates schema s2 if it does not already exist:

=> CREATE SCHEMA IF NOT EXISTS schema2;

If the schema already exists, HP Vertica returns a rollback message:

=> CREATE SCHEMA IF NOT EXISTS schema2;

NOTICE 4214: Object "schema2" already exists; nothing was done

The following series of commands create a schema named s1 with a table named t1 and grants
Fred and Aniket access to all existing tables and ALL privileges on table t1:

=> CREATE SCHEMA s1;

=> CREATE TABLE t1 (c INT);

=> GRANT USAGE ON SCHEMA s1 TO Fred, Aniket;

=> GRANT ALL ON TABLE t1 TO Fred, Aniket;

See Also

ALTER SCHEMA (page 668)

SET SEARCH_PATH (page 912)

DROP SCHEMA (page 821)

CREATE SEQUENCE
Defines a new named sequence number generator object.

-766-

SQL Reference Manual

Use sequences or auto-incrementing columns for primary key columns. For example, to
generate only even numbers in a sequence, specify a start value of 2, and increment the
sequence by 2. For more information see Using Sequences in the Administrator's Guide.
Sequences guarantee uniqueness and avoid constraint enforcement problems and their
associated overhead.

Syntax
CREATE SEQUENCE [[db-name.]schema.]sequence_name

... [INCREMENT [BY] positive_or_negative]

... [MINVALUE minvalue | NO MINVALUE]

... [MAXVALUE maxvalue | NO MAXVALUE]

... [START [WITH] start]

... [CACHE cache]

... [CYCLE | NO CYCLE]

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name. Using a

database name identifies objects that are not unique within the current
search path (see Setting Search Paths). You must be connected to the
database you specify, and you cannot change objects in other databases.

Specifying different database objects lets you qualify database objects as
explicitly as required. For example, you can use a database and a schema
name (mydb.myschema).

sequence_name The name (optionally schema-qualified) of the sequence to create. The
name must be unique among sequences, tables, projections, and views. If
you do not specify a sequence_name, HP Vertica assigns an

internally-generated name in the current schema.

INCREMENT [BY]

 positive_or_negative

Specifies how much to increment (or decrement) the current sequence
value. A positive value creates an ascending sequence; a negative value

makes a descending sequence. The default value is 1.

MINVALUE minvalue |

NO MINVALUE

Determines the minimum value a sequence can generate. If you do not
specify this clause, or you specify NO MINVALUE, default values are used.

The defaults are 1 and -263-1 for ascending and descending sequences,
respectively.

MAXVALUE maxvalue |

NO MAXVALUE

Determines the maximum value for the sequence. If this clause is not

supplied or you specify NO MAXVALUE, default values are used. The
defaults are 263-1 and -1 for ascending and descending sequences,
respectively.

START [WITH] startvalue Specifies a specific start value of the sequence (startvalue). The default
values are minvalue for ascending sequences and maxvalue for
descending sequences.

Note: The [WITH] option is ignored and has no effect.

CACHE cache Specifies how many sequence numbers are preallocated and stored in
memory for faster access. The default is 250,000 with a minimum value of 1.
Specifying a cache value of 1 indicates that only one value can be

generated at a time, since no cache is assigned.

Notes:

-767-

 SQL Statements

 If you use the CACHE clause when creating a sequence, each
session has its own cache on each HP Vertica node.

 Sequences that specify a cache size that is insufficient for the
number of sequence values could cause a performance
degradation.

CYCLE | NO CYCLE Allows the sequence to restart when an ascending or descending sequence

reaches the maxvalue or minvalue. If the sequence reaches a limit, the next
number generated is the minvalue or maxvalue, respectively.

If you specify NO CYCLE when creating a sequence, any calls to NEXTVAL

(page 351) after the sequence reaches its maximum/minimum value

return an error. NO CYCLE is the default.

Permissions

To create a sequence, the user must have CREATE privilege on the schema to contain the
sequence. Only the owner and superusers can initially access the sequence. All other users must
be granted access to the sequence by a superuser or the owner.

To create a table with a sequence, the user must have SELECT privilege on the sequence and
USAGE privilege on the schema that contains the sequence.

Note: Referencing a named sequence in a CREATE TABLE (page 770) statement requires

SELECT privilege on the sequence object and USAGE privilege on the schema of the named
sequence.

Incrementing and Obtaining Sequence Values

After creating a sequence, use the NEXTVAL (page 351) function to create a cache in which the
sequence value is stored. Use the CURRVAL (page 353) function to get the current sequence
value.

You cannot use NEXTVAL or CURRVAL to act on a sequence in a SELECT statement:

 in a WHERE clause

 in a GROUP BY or ORDER BY clause

 in a DISTINCT clause

 along with a UNION

 in a subquery

Additionally, you cannot use NEXTVAL or CURRVAL to act on a sequence in:

 a subquery of UPDATE or DELETE

 a view

You can use subqueries to work around some of these restrictions. For example, to use
sequences with a DISTINCT clause:

=> SELECT t.col1, shift_allocation_seq.nextval

 FROM (

 SELECT DISTINCT col1 FROM av_temp1) t;

-768-

SQL Reference Manual

Removing a Sequence

Use the DROP SEQUENCE (page 822) function to remove a sequence. You cannot drop a
sequence upon which other objects depend. Sequences used in a default expression of a column
cannot be dropped until all references to the sequence are removed from the default expression.

DROP SEQUENCE ... CASCADE is not supported.

Examples

The following example creates an ascending sequence called my_seq, starting at 100:

=> CREATE SEQUENCE my_seq START 100;

After creating a sequence, you must call the NEXTVAL (page 351) function at least once in a
session to create a cache for the sequence and its initial value. Subsequently, use NEXTVAL to
increment the sequence. Use the CURRVAL (page 353) function to get the current value.

The following NEXTVAL function instantiates the newly-created my_seq sequence and sets its
first number:

=> SELECT NEXTVAL('my_seq');

 nextval

 100

(1 row)

If you call CURRVAL before NEXTVAL, the system returns an error:

ERROR: Sequence my_seq has not been accessed in the session

The following command returns the current value of this sequence. Since no other operations
have been performed on the newly-created sequence, the function returns the expected value of
100:

=> SELECT CURRVAL('my_seq');

 currval

 100

(1 row)

The following command increments the sequence value:

=> SELECT NEXTVAL('my_seq');

 nextval

 101

(1 row)

Calling the CURRVAL again function returns only the current value:

=> SELECT CURRVAL('my_seq');

 currval

 101

(1 row)

-769-

 SQL Statements

The following example shows how to use the my_seq sequence in an INSERT statement.

=> CREATE TABLE customer (

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER,

 id INTEGER

);

=> INSERT INTO customer VALUES ('Hawkins' ,'John', 072753, NEXTVAL('my_seq'));

Now query the table you just created to confirm that the ID column has been incremented to 102:

=> SELECT * FROM customer;

 lname | fname | membership_card | id

---------+-------+-----------------+-----

 Hawkins | John | 72753 | 102

(1 row)

The following example shows how to use a sequence as the default value for an INSERT
command:

=> CREATE TABLE customer2(

 id INTEGER DEFAULT NEXTVAL('my_seq'),

 lname VARCHAR(25),

 fname VARCHAR(25),

 membership_card INTEGER

);

=> INSERT INTO customer2 VALUES (default,'Carr', 'Mary', 87432);

Now query the table you just created. The ID column has been incremented again to 103:

=> SELECT * FROM customer2;

 id | lname | fname | membership_card

-----+-------+-------+-----------------

 103 | Carr | Mary | 87432

(1 row)

The following example shows how to use NEXTVAL in a SELECT statement:

=> SELECT NEXTVAL('my_seq'), lname FROM customer2;

 NEXTVAL | lname

---------+-------

 104 | Carr

(1 row)

As you can see, each time you call NEXTVAL(), the value increments.

The CURRVAL() function returns the current value.

See Also

ALTER SEQUENCE (page 669)

CREATE TABLE column-constraint (page 783)

CURRVAL (page 353)

-770-

SQL Reference Manual

DROP SEQUENCE (page 822)

GRANT (Sequence) (page 838)

NEXTVAL (page 351)

Using Sequences and Sequence Privileges in the Administrator's Guide

CREATE SUBNET
Identifies the subnet to which the nodes of an HP Vertica database belong. Use this statement
when you want to configure import/export from a database to other HP Vertica clusters.

Syntax
CREATE SUBNET subnet-name with 'subnet prefix'

Parameters

subnet-name The name you assign to the subnet.

subnet prefix The routing prefix expressed in quad-dotted

decimal representation. Refer to
v_monitor.network_interfaces system

table to get the prefix for all available IP networks.

You can then configure the database to use the subnet for import/export. (See Identify the
Database or Node(s) used for Import/Export for more information.)

Permissions

Must be a superuser to create a subnet.

CREATE TABLE
Creates a table in the logical schema or an external table definition.

Syntax
CREATE TABLE [IF NOT EXISTS] [[db-name.]schema.]table-name

{

... (column-definition (table) (page 779) [, ...])

... | [table-constraint (column_name, ...)]

... | [column-name-list (create table) (page 780)] AS [COPY] [[AT EPOCH LATEST

]

... | [AT TIME 'timestamp']] [/*+ direct */] query

... | [LIKE [[db-name.]schema.]existing-table [INCLUDING PROJECTIONS | EXCLUDING

PROJECTIONS]]

}

... [ORDER BY table-column [, ...]]

... [ENCODED BY column-definition [, ...]

... [hash-segmentation-clause (page 750)

-771-

 SQL Statements

... | range-segmentation-clause (page 790)

... | UNSEGMENTED { NODE node | ALL NODES }]

... [KSAFE [k_num]]

... [PARTITION BY partition-clause]

Parameters

[IF NOT EXISTS] [Optional] Determines whether the statement generates a
NOTICE message or an ERROR if <object>-name exists. Using
IF NOT EXISTS generates a NOTICE if the specified object

exists. Omitting the clause generates an error i f <object>-name
exists. Regardless of whether you use IF NOT EXISTS, HP

Vertica does not create a new object if <object>-name exists.
For more information, see also ON_ERROR_STOP.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema

name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify, and

you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a

database and a schema name (mydb.myschema).

If you do not specify a schema, the table is created in the default

schema.

table-name Identifies the name of the table to create. Schema-name
specifies the schema where the table is created. I f you omit

schema-name, the new table is created in the first schema listed
in the current search_path. (page 912)

column-definition Defines one or more columns. See column-definition (table)

(page 779).

column-name-list Renames columns when creating a table from a query (CREATE
TABLE AS SELECT). See column-name-list (page 780).

AT EPOCH LATEST | AT TIME

'timestamp'

Used with AS query to query historical data. You can specify AT
EPOCH LATEST to include data from the latest committed DML
transaction or specify a specific epoch based on its time stamp.

Note: You cannot use either of these options when creating

external tables.

-772-

SQL Reference Manual

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory

(WOS).

HP Vertica accepts optional spaces before and after the plus (+)

sign and the direct hint. Space characters between the

opening /* or the closing */ are not permitted. The following

directives are all acceptable:

/*+direct*/

/* + direct*/

/*+ direct*/

/*+direct */

AS query Creates a new table from the results of a query and fills it with

data from the query. For example:

CREATE TABLE promo AS SELECT ... ;

Column renaming is supported as part of the process:

CREATE TABLE promo (name, address, ...) AS SELECT

customer_name, customer_address ... ;

The query table-column must be followed by the FROM clause
to identify the table from which to copy the columns. See the
example at the bottom of this topic as well as the SELECT (page

870) statement.

If the query output has expressions other than simple columns
(for example, constants, functions, etc) then you must either

specify an alias for that expression, or list all columns in the
column name list.

Note: If any of the columns returned by query would result in a

zero-width column, the column is automatically converted to a

VARCHAR(80) column. For example, the following statement:

CREATE TABLE example AS SELECT '' AS X;

would attempt to create a table containing column X as a
zero-width VARCHAR. Instead, HP Vertica automatically
converts this column to a VARCHAR(80) to prevent the creation

of a zero-width VARCHAR column. HP Vertica requires
variable-width data type columns to be at least 1 character wide.

[LIKE existing-table

[INCLUDING | EXCLUDING

PROJECTIONS]]

Replicates an existing table to create a new table.

The optional INCLUDING PROJECTIONS clause creates the

current and non-pre-join projections of the original table when
you populate the new table. If the table has an associated

storage policy, the associated policy is also replicated. As a DDL
statement, EXCLUDING PROJECTIONS is the default value.

NOTE: HP Vertica does not support using CREATE TABLE

new_table LIKE table_exist INCLUDING PROJECTIONS if

table_exist is a temporary table.

For more information about using this option, see Creating a
Table Like Another in the Administrator's Guide.

-773-

 SQL Statements

[ORDER BY table-column] [Optional] Specifies the sort order for the superprojection that is

automatically created for the table. Data is in ascending order
only. If you do not specify the sort order, HP Vertica uses the
order in which columns are specified in the column definition as

the sort order for the projection. For example:

ORDER BY col2, col1, col5

Note: You cannot use this option when creating external tables.

ENCODED BY column-definition [CREATE TABLE AS query Only]

This parameter is useful to specify the column encoding and/ or
the access rank for specific columns in the query when a

column-definition is not used to rename columns for the table to
be created. See column-definition (table) (page 779) for
examples.

If you rename table columns when creating a table from a query,
you can supply the encoding type and access rank in the column
name list instead.

Note: You cannot use this option when creating external tables.

hash-segmentation-clause [Optional] Lets you segment the superprojection based on a

built-in hash function that provides even distribution o f data
across nodes, resulting in optimal query execution. See
hash-segmentation-clause (page 750).

Note: You cannot use this option when creating external tables.

Note: An elastic projection (a segmented projection created

when Elastic Cluster is enabled) created with a modular hash
segmentation expression uses hash instead.

range-segmentation-clause [Optional] Lets you segment the superprojection based on a

known range of values stored in a specific column chosen to
provide even distribution of data across a set of nodes, resulting
in optimal query execution. See range-segmentation-clause

(page 790).

Note: You cannot use this option when creating external tables.

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Lets you specify an unsegmented projection. The
default for this parameter is to create an UNSEGMENTED
projection on the initiator node. You can optionally use either of

the following node specifications:

 NODE node—Creates an unsegmented projection only
on the specified node. Projections for small tables must
be UNSEGMENTED.

 ALL NODES—Automatically replicates the
unsegmented projection on each node. To perform
distributed query execution, HP Vertica requires an

unsegmented copy of each small table superprojection
on each node.

Note: You cannot use this option when creating external tables.

KSAFE [k] [Optional] Specifies the K-safety level of the automatic projection

created for the table.

-774-

SQL Reference Manual

Note: You cannot use this option when creating external tables.

The integer k determines how many unsegmented or segmented
buddy projections are created. The value must be greater than

or equal to the current K-safety level of the database and less
than the total number of nodes. If KSAFE or its value are not
specified, the superprojection is created at the current system

K-safety level.

For example:

K-SAFE 1

Note: When a hash-segmentation-clause is used with KSAFE,

HP Vertica automatically creates k_num+1 buddy projections to

meet the K-safety requirement.

PARTITION BY partition-clause [Not supported for queries (CREATE TABLE AS SELECT)]

 The partition clause must calculate a single non-null
value for each row. Multiple columns can be referenced,
but a single value must be returned for each row.

 All leaf expressions must be either constants or columns
of the table.

 All other expressions must be functions and operators;
aggregate functions and queries are not permitted in the
expression.

 SQL functions used in the partitioning expression must
be immutable.

Note: You cannot use this option when creating external tables.

Permissions

 To create a table, you must have CREATE privilege on the table schema.

 To create a table with a named sequence, you must have SELECT privilege on the sequence
object and USAGE privilege on the schema associated with the sequence.

 Referencing a named sequence in a CREATE TABLE statement requires the following
privileges:

 SELECT privilege on sequence object

 USAGE privilege on sequence schema

 To create a table with the LIKE clause, you must have owner permissions on the source table

Automatic projection creation

To get your database up and running quickly, HP Vertica automatically creates a default projection
for each table created through the CREATE TABLE (page 770) and CREATE TEMPORARY
TABLE (page 791) statements. Each projection created automatically (or manually) includes a
base projection name prefix. You must use the projection prefix when altering or dropping a
projection (ALTER PROJECTION RENAME (page 659), DROP PROJECTION (page 818)).

How you use the CREATE TABLE statement determines when the projection is created:

-775-

 SQL Statements

 If you create a table without providing the projection-related clauses, HP Vertica automatically
creates a superprojection for the table when you use an INSERT INTO or COPY statement to
load data into the table for the first time. The projection is created in the same schema as the
table. Once HP Vertica has created the projection, it loads the data.

 If you use CREATE TABLE AS SELECT to create a table from the results of a query, the table
is created first and a projection is created immediately after, using some of the properties of
the underlying SELECT query.

 (Advanced users only) If you use any of the following parameters, the default projection is
created immediately upon table creation using the specified properties:

 column-definition (page 779) (ENCODING encoding-type and ACCESSRANK integer)

 ORDER BY table-column

 hash-segmentation-clause (page 788)

 range-segmentation-clause (page 790)

 UNSEGMENTED { NODE node | ALL NODES }

 KSAFE

Note: Before you define a superprojection in the above manner, read Creating Custom

Designs in the Administrator's Guide.

Characteristics of default automatic projections

A default auto-projection has the following characteristics:

 It is a superprojection.

 It uses the default encoding-type (page 747) AUTO.

 If created as a result of a CREATE TABLE AS SELECT statement, uses the encoding
specified in the query table.

 Auto-projections use hash segmentation.

 The number of table columns used in the segmentation expression can be configured, using

the MaxAutoSegColumns configuration parameter. See General Parameters in the
Administrator's Guide. Columns are segmented in this order:

 Short (<8 bytes) data type columns first

 Larger (> 8 byte) data type columns

 Up to 32 columns (default for MaxAutoSegColumns configuration parameter)

 If segmenting more than 32 columns, use nested hash function

Auto-projections are defined by the table properties and creation methods, as follows:

I f table... Sort order is... Segmentation is...

Is created from input stream
(COPY or INSERT INTO)

Same as input stream, if
sorted.

On PK column (if any), on all FK
columns (if any), on the first 31

configurable columns of the table

Is created from CREATE
TABLE AS SELECT query

Same as input stream, if
sorted.

If not sorted, sorted using
following rules.

Same segmentation columns f query
output is segmented

The same as the load, if output of
query is unsegmented or unknown

-776-

SQL Reference Manual

Has FK and PK constraints FK first, then PK columns PK columns

Has FK constraints only (no
PK)

FK first, then remaining
columns

Small data type (< 8 byte) columns
first, then large data type columns

Has PK constraints only (no

FK)

PK columns PK columns

Has no FK or PK constraints On all columns Small data type (< 8 byte) columns
first, then large data type columns

Default automatic projections and segmentation get your database up and running quickly. HP
recommends that you start with these projections and then use the Database Designer to optimize
your database further. The Database Designer creates projections that optimize your database
based on the characteristics of the data and, optionally, the queries you use.

Partition clauses

Creating a table with a partition clause causes all projections anchored on that table to be
partitioned according to the clause. For each partitioned projection, logically, there are as many
partitions as the number of unique values returned by the partitioned expression applied over the
rows of the projection.

All projections include a base projection name prefix, which HP Vertica adds automatically. To
ensure a unique projection name, HP Vertica adds a version number within the name if necessary.
You use projection names to drop or rename a projection.

Note: Due to the impact on the number of ROS containers, explicit and implicit upper limits are

imposed on the number of partitions a projection can have; these limits, however, are detected
during the course of operation, such as during COPY.

Creating a partitioned table does not necessarily force all data feeding into a table‘s projection to
be segmented immediately. Logically, the partition clause is applied after the segmented by
clause.

Partitioning specifies how data is organized at individual nodes in a cluster and after projection
data is segmented; only then is the data partitioned at each node based on the criteria in the
partitioning clause.

SQL functions used in the partitioning expression must be immutable, which means they return
the exact same value whenever they are invoked and independently of session or environment
settings, such as LOCALE. For example, the TO_CHAR function is dependent on locale settings
and cannot be used. The RANDOM function also produces different values on each invocation, so
cannot be used.

Data loaded with the COPY command is automatically partitioned according to the table's
PARTITION BY clause.

For more information, see "Restrictions on Partitioning Expressions" in Defining Partitions in the
Administrator's Guide

Examples

The following example creates a table named Product_Dimension in the Retail schema. HP
Vertica creates a default superprojection when data is loaded into the table:

-777-

 SQL Statements

=> CREATE TABLE Retail.Product_Dimension (

 Product_Key integer NOT NULL,

 Product_Description varchar(128),

 SKU_Number char(32) NOT NULL,

 Category_Description char(32),

 Department_Description char(32) NOT NULL,

 Package_Type_Description char(32),

 Package_Size char(32),

 Fat_Content integer,

 Diet_Type char(32),

 Weight integer,

 Weight_Units_of_Measure char(32),

 Shelf_Width integer,

 Shelf_Height integer,

 Shelf_Depth integer

);

The following example creates a table named Employee_Dimension. HP Vertica creates its

associated superprojection in the Public schema when data is loaded into the table. Instead of

using the sort order from the column definition, the superprojection uses the sort order specified by
the ORDER BY clause:

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),)

ORDER BY Employee_gender, Employee_last_name, Employee_first_name;

The following example creates a table called time and partitions the data by year. HP Vertica
creates a default superprojection when data is loaded into the table:

=> CREATE TABLE time(..., date_col date NOT NULL, ...)

=> PARTITION BY extract('year' FROM date_col);

The following example creates a table named location and partitions the data by state. HP
Vertica creates a default superprojection when data is loaded into the table:

=> CREATE TABLE location(..., state VARCHAR NOT NULL, ...)

=> PARTITION BY state;

The following statement uses SELECT AS to create a table called promo and load data from

columns in the existing customer_dimension table in which the customer's annual_income
is greater than $1,000,000. The data is ordered by state and annual income.

=> CREATE TABLE promo

 AS SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

 FROM customer_dimension

 WHERE annual_income>1000000

-778-

SQL Reference Manual

 ORDER BY customer_state, annual_income;

The following table uses SELECT AS to create a table called promo and load data from the latest
committed DML transaction (AT EPOCH LATEST).

=> CREATE TABLE promo

 AS AT EPOCH LATEST SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

FROM customer_dimension;

The next example creates a new table (date_dimcopy) based on the VMart database
date_dimension table, and including projections.

VMart=> create table date_dimcopy like date_dimension including projections;

CREATE TABLE

Selecting all from the new table, date_dimcopy, lists the same definitions as the original

date_dimension table.

VMart=> select * from date_dimcopy;

 date_key | date | full_date_description | day_of_week | day_number_in_calendar_month |

day_number_in_calendar_year | day_number_in_fiscal_month | day_number_in_fiscal_year |

last_day_in_week_indicator | last_day_in_month_indicator | calendar_week_number_in_year |

calendar_month_name | calendar_month_number_in_year | calendar_year_month | calendar_quarter |

calendar_year_quarter | calendar_half_year | calendar_year | holiday_indicator | weekday_indicator

| selling_season

----------+------+-----------------------+-------------+------------------------------+----------

-------------------+----------------------------+---------------------------+--------------------

--------+-----------------------------+------------------------------+---------------------+-----

--------------------------+---------------------+------------------+-----------------------+-----

---------------+---------------+-------------------+-------------------+----------------

(0 rows)

The following examples illustrate creating a table, and then attempting to create the same table,
with and without the IF NOT EXISTS argument, to show the results.

1 Create a simple table:

=> CREATE TABLE t (a INT);

CREATE TABLE

2 Try to create the same table, without IF NOT EXISTS, so a rollback occurs:

=> CREATE TABLE t (a INT, b VARCHAR(256));

ROLLBACK: object "t" already exists

3 Try again to create the table, using the IF NOT EXISTS clause, so a notice occurs:

=> CREATE TABLE IF NOT EXISTS t (a INT, b VARCHAR(256));

NOTICE: object "t" already exists; nothing was done

CREATE TABLE

The IF NOT EXISTS argument is useful for SQL scripts where you want to create a table if it does
not already exist, and reuse the existing table if it does.

-779-

 SQL Statements

See Also

Physical Schema in the Concepts Guide

COPY (page 699)

CREATE EXTERNAL TABLE AS COPY (page 714)

CREATE TEMPORARY TABLE (page 791)

DROP_PARTITION (page 473)

DROP PROJECTION (page 818)

DUMP_PARTITION_KEYS (page 479)

DUMP_PROJECTION_PARTITION_KEYS (page 480)

DUMP_TABLE_PARTITION_KEYS (page 481)

PARTITION_PROJECTION (page 515)

PARTITION_TABLE (page 516)

SELECT (page 870)

Partitioning Tables and Auto Partitioning in the Administrator's Guide

Using External Tables in the Administrator's Guide

column-definition (table)

A column definition specifies the name, data type, and constraints to be applied to a column.

Syntax
column-name data-type {

... [column-constraint (page 783)]

... [ENCODING encoding-type]

... [ACCESSRANK integer] }

Parameters

column-name Specifies the name of a column to be created or added.

data-type Specifies one of the following data types:

BINARY (page 72)

BOOLEAN (page 76)

CHARACTER (page 76)

DATE/TIME (page 78)

NUMERIC (page 103)

DOUBLE PRECISION (FLOAT) (page 105)

Tip: When specifying the maximum column width in a CREATE TABLE

statement, use the width in bytes (octets) for any of the string types. Each

-780-

SQL Reference Manual

UTF-8 character may require four bytes, but European languages

generally require a little over one byte per character, while Oriental
language generally require a little under three bytes per character.

column-constraint Specifies a column-constraint (page 783) to add on the column.

ENCODING encoding-type [Optional] Specifies the type of encoding (page 747) to use on the
column. By default, the encoding type is auto.

Caution: The NONE keyword is obsolete.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if
you want to increase or decrease the speed at which a column is

accessed. See Creating and Configuring Storage Locations and
Prioritizing Column Access Speed in the Administrator's Guide.

Example

The following example creates a table named Employee_Dimension and its associated

superprojection in the Public schema. The Employee_key column is designated as a primary

key, and RLE encoding is specified for the Employee_gender column definition:

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),

);

column-name-list (table)

Is used to rename columns when creating a table from a query (CREATE TABLE AS SELECT). It
can also be used to specify the encoding-type (page 747) and access rank of the column.

Syntax
column-name-list

... [ENCODING encoding-type]

... [ACCESSRANK integer] [, ...]

... [GROUPED (projection-column-reference [,...])]

Parameters

column-name Specifies the new name for the column.

ENCODING

encoding-type

Specifies the type of encoding to use on the column. By default, the

encoding-type is auto. See encoding-type (page 747) for a complete list.

Caution: Using the NONE keyword for strings could negatively affect the

behavior of string columns.

-781-

 SQL Statements

ACCESSRANK integer Overrides the default access rank for a column. This is useful i f you want to

increase or decrease the speed at which a column is accessed. See
Creating and Configuring Storage Locations and Prioritizing Column
Access Speed in the Administrator's Guide.

GROUPED Groups two or more columns into a single disk file. This minimizes file I/O
for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have data that is always accessed together and it is not used in

predicates, you can increase query performance by grouping these
columns. Once grouped, queries can no longer independently retrieve from

disk all records for an individual column independent of the other columns
within the group.

Note: RLE compression is reduced when a RLE column is grouped with

one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns:

 (a, GROUPED(b, c), d)

 Group all of the columns:

 (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:

 (GROUPED(a, b), GROUPED(c, d))

Note: HP Vertica performs dynamic column grouping. For example, to

provide better read and write efficiency for small loads, HP Vertica ignores
any projection-defined column grouping (or lack thereof) and groups all

columns together by default.

Notes if you are using a query:

Neither the data type nor column constraint can be specified for a column in the column-name-list.
These are derived by the columns in the query table identified in the FROM clause. If the query
output has expressions other than simple columns (for example, constants, functions, etc) then
either an alias must be specified for that expression, or all columns must be listed in the column
name list.

You can supply the encoding type and access rank in either the column-name-list or the column
list in the query, but not both.

The following statements are both allowed:

=> CREATE TABLE promo (state ENCODING RLE ACCESSRANK 1, zip ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state, ... ;

=> CREATE TABLE promo

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

-782-

SQL Reference Manual

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING RLE

...;

The following statement is not allowed because encoding is specified in both column-name-list
and ENCODED BY clause:

=> CREATE TABLE promo (state ENCODING RLE ACCESSRANK 1, zip ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING RLE

...;

Example

The following example creates a table named employee_dimension and its associated
superprojection in the public schema. Note that encoding-type RLE is specified for the
employee_gender column definition:

=> CREATE TABLE public.employee_dimension (

 employee_key INTEGER PRIMARY KEY NOT NULL,

 employee_gender VARCHAR(8) ENCODING RLE,

 employee_title VARCHAR(8),

 employee_first_name VARCHAR(64),

 employee_middle_initial VARCHAR(8),

 employee_last_name VARCHAR(64)

);

Using the Vmart schema, the following example creates a table named promo from a query that

selects data from columns in the customer_dimension table. RLE encoding is specified for the
state column in the column name list.

=> CREATE TABLE promo (

 name,

 address,

 city,

 state ENCODING RLE, income)

 AS SELECT customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

FROM customer_dimension

WHERE annual_income > 1000000

ORDER BY customer_state, annual_income;

-783-

 783

column-constraint

Adds a referential integrity constraint to the metadata of a column. See Adding Constraints in the
Administrator's Guide.

Syntax
[CONSTRAINT constraint-name] {

...[NULL | NOT NULL]

...| PRIMARY KEY

...| REFERENCES table-name [(column [, ...])]

...| UNIQUE

...[DEFAULT default]

...[AUTO_INCREMENT]

...[IDENTITY [(cache) | (start, increment[, cache])]]

}

Parameters

CONSTRAINT constraint-name [Optional] Assigns a name to the constraint. HP recommends that
you name all constraints.

[NULL | NOT NULL] Specifies that the column can contain null values (NULL, the

default), or cannot (NOT NULL).

Using NOT NULL specifies that the column must receive a value
during INSERT and UPDATE operations. If no DEFAULT value is

specified and no value is provided, the INSERT or UPDATE
statement returns an error, since no default value exists.

PRIMARY KEY Adds a referential integrity constraint defining the column as the

primary key.

REFERENCES table-name

[column]
Specifies the table to which the FOREIGN KEY column constraint
applies. You can specify a FOREIGN KEY constraint explicitly or just

by a reference to the table and column with the PRIMARY KEY. If
you omit the column, the default value is the primary key of the
referenced table.

UNIQUE Constrains the data that a column (or group of columns) contains to
be unique with respect to all the rows in the table. If you insert or
update the column with a duplicate value, HP Vertica does not give

an error. To ensure that the column has unique values, run
ANALYZE_STATISTICS (page 440).

DEFAULT default Specifies a default value for a column if the column is used in an

INSERT operation and no value is specified for the column. If no
value is specified for the column and there is no default, the default is
NULL.

Default value usage:

 A default value can be set for a column of any data type.

 The default value can be any variable-free expression, as
long as it matches the data type of the column.

 Variable-free expressions can contain constants, SQL

-784-

SQL Reference Manual

functions, null-handling functions, system information

functions, string functions, numeric functions, formatting
functions, nested functions, and all HP Vertica-supported
operators

Default value restrictions:

 Expressions can contain only constant arguments.

 Subqueries and cross-references to other columns in the
table are not permitted in the expression.

 The return value of a default expression cannot be NULL.

 The return data type of the default expression after

evaluation either matches that of the column for which it is
defined, or an implicit cast between the two data types is
possible. For example, a character value cannot be cast to a

numeric data type implicitly, but a number data type can be
cast to character data type implicitly.

 Default expressions, when evaluated, conform to the
bounds for the column.

 Volatile functions are not supported when adding columns to
existing tables. See ALTER TABLE (page 672).

Note: HP Vertica attempts to check the validity of default

expressions, but some errors might not be caught until run time.

AUTO_INCREMENT Creates a table column whose values are automatically generated
by the database. The initial value of an AUTO_INCREMENT column

is always 1. You cannot specify a different initial value.

Each time you add a row to the table, HP Vertica increments the
column value by 1. You cannot change the value of an

AUTO_INCREMENT column.

IDENTITY [(cache) | (start,

increment[, cache])]

Specifies a column whose values are automatically generated by the
database. You can use IDENTITY columns as primary keys.

IDENTITY column parameters are evaluated in order as follows:

 One parameter: Evaluated as cache, indicates the number
of unique numbers each node allocates per session. cache
must be a positive integer. Default: 250,000. Minimum: 1.

 Two parameters: Evaluated as start, increment.

 start specifies the number at which to start the IDENTITY
column. Default: 1.

 increment specifies how much to increment the value from the
previous row's value. Default: 1.

 Three parameters: Evaluated as start, increment, cache.

Note: You cannot change the value of an IDENTITY column once

the table exists.

Permissions

Table owner or user WITH GRANT OPTION is grantor.

 REFERENCES privilege on table to create foreign key constraints that reference this table

-785-

 SQL Statements

 USAGE privilege on schema that contains the table

Notes

 HP Vertica supports only one IDENTITY or one AUTO_INCREMENT column per table.

 When you use ALTER TABLE (page 672) to change the table owner, HP Vertica transfers
ownership of the associated IDENTITY/AUTO_INCREMENT sequences but not other
REFERENCES sequences.

 You can specify a FOREIGN KEY constraint explicitly by using the FOREIGN KEY parameter,
or implicitly, using a REFERENCES parameter to the table with the PRIMARY KEY. If you omit
the column in the referenced table, HP Vertica uses the primary key:

=> CREATE TABLE fact(c1 INTEGER PRIMARY KEY NOT NULL);

=> CREATE TABLE dim (c1 INTEGER REFERENCES fact NOT NULL);

 Columns that are given a PRIMARY constraint must also be set NOT NULL. HP Vertica
automatically sets these columns to be NOT NULL if you do not do so explicitly.

 HP Vertica supports variable-free expressions in the column DEFAULT clause. See COPY
(page 699) [Column as Expression].

 If you are using a CREATE TABLE AS SELECT statement, the column-constraint parameter
does not apply. Constraints are set by the columns in the query table identified in the FROM
clause.

 An AUTO-INCREMENT or IDENTITY value is never rolled back, even if a transaction that tries
to insert a value into a table is not committed.

Example

The following command creates the store_dimension table and sets the default column value

for store_state to MA:

=> CREATE TABLE store_dimension (store_state CHAR (2) DEFAULT MA);

The following command creates the public.employee_dimension table and sets the default
column value for hire_date to current_date():

=> CREATE TABLE public.employee_dimension (hire_date DATE DEFAULT

current_date());

The following example uses the IDENTITY column-constraint to create a table with an ID column
that has an initial value of 1. It is incremented by 1 every time a row is inserted.

=> CREATE TABLE Premium_Customer(

 ID IDENTITY(1,1),

 lname VARCHAR(25),

 fname VARCHAR(25),

 store_membership_card INTEGER

);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Confirm the row you added and see the ID value:

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

-786-

SQL Reference Manual

 1 | Gupta | Saleem | 475987

(1 row)

Now add another row:

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Lee', 'Chen', 598742);

Calling the LAST_INSERT_ID function returns value 2 because you previously inserted a new
customer (Chen Lee), and this value is incremented each time a row is inserted:

=> SELECT LAST_INSERT_ID();

last_insert_id

 2

(1 row)

View all the ID values in the Premium_Customer table:

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

 2 | Lee | Chen | 598742

(2 rows)

The following example uses the AUTO_INCREMENT column-constraint to create a table with an
ID column that automatically increments every time a row is inserted.

=> CREATE TABLE Premium_Customer(

 ID AUTO_INCREMENT,

 lname VARCHAR(25),

 fname VARCHAR(25),

 store_membership_card INTEGER

);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Gupta', 'Saleem', 475987);

Confirm the row you added and see the ID value:

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

(1 row)

Now add two rows:

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Lee', 'Chen', 598742);

=> INSERT INTO Premium_Customer (lname, fname, store_membership_card)

 VALUES ('Brown', 'John', 642159);

=> SELECT * FROM Premium_Customer;

 ID | lname | fname | store_membership_card

----+-------+--------+-----------------------

 1 | Gupta | Saleem | 475987

 2 | Lee | Chen | 598742

 3 | Brown | John | 642159

-787-

 SQL Statements

(3 rows)

This time the LAST_INSERT_ID returns a value of 3:

=> SELECT LAST_INSERT_ID();

 LAST_INSERT_ID

 3

(1 row)

The next examples illustrate the three valid ways to use IDENTITY arguments. The first example
uses a cache of 100, and the defaults for start value (1) and increment value (1):

=> CREATE TABLE t1(x IDENTITY(100), y INT);

The second example specifies the start and increment values as 1, and defaults to a cache value
of 250,000:

=> CREATE TABLE t2(y IDENTITY(1,1), x INT);

The third example specifies start and increment values of 1, and a cache value of 100:

=> CREATE TABLE t3(z IDENTITY(1,1,100), zx INT);

For additional examples, see CREATE SEQUENCE (page 765).

table-constraint

Adds a constraint to the metadata of a table. See Adding Constraints in the Administrator's Guide.

Syntax
[CONSTRAINT constraint_name]

... { PRIMARY KEY (column [, ...])

... | FOREIGN KEY (column [, ...]) REFERENCES table [(column [, ...])]

... | UNIQUE (column [, ...])

... }

Parameters

CONSTRAINT constraint-name Assigns a name to the constraint. HP recommends that
you name all constraints.

PRIMARY KEY (column [, ...]) Adds a referential integrity constraint defining one or more
NOT NULL columns as the primary key.

FOREIGN KEY (column [, ...]) Adds a referential integrity constraint defining one or more

columns as a foreign key.

REFERENCES table [(column [, ...])] Specifies the table to which the FOREIGN KEY constraint

applies. If you omit the optional column definition of the

referenced table, the default is the primary key of table.

UNIQUE (column [, ...]) Specifies that the data contained in a column or a group of
columns is unique with respect to all the rows in the table.

-788-

SQL Reference Manual

Permissions

Table owner or user WITH GRANT OPTION is grantor.

 REFERENCES privilege on table to create foreign key constraints that reference this table

 USAGE privilege on schema that contains the table

Specifying Primary and Foreign Keys

You must define PRIMARY KEY and FOREIGN KEY constraints in all tables that participate in
inner joins.

You can specify a foreign key table constraint either explicitly (with the FOREIGN KEY
parameter), or implicitly using the REFERENCES parameter to reference the table with the
primary key. You do not have to explicitly specify the columns in the referenced table, for example:

CREATE TABLE fact(c1 INTEGER PRIMARY KEY);

CREATE TABLE dim (c1 INTEGER REFERENCES fact);

Adding Constraints to Views

Adding a constraint to a table that is referenced in a view does not affect the view.

Examples

The Retail Sales Example Database described in the Getting Started Guide contains a table
Product_Dimension in which products have descriptions and categories. For example, the
description "Seafood Product 1" exists only in the "Seafood" category. You can define several
similar correlations between columns in the Product Dimension table.

hash-segmentation-clause (table)

Hash segmentation allows you to segment a projection based on a built-in hash function that
provides even distribution of data across some or all of the nodes in a cluster, resulting in optimal
query execution.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer

uses hash segmentation by default.

Syntax
SEGMENTED BY expression

 [ALL NODES | NODES node [,...]]

Parameters

SEGMENTED BY expression Can be a general SQL expression. However, HP recommends using the

built-in HASH (page 308) or MODULARHASH (page 311) functions,
specifying table columns as arguments. If you specify only a column
name, HP Vertica gives a warning.

Choose columns that have a large number of unique data values and
acceptable skew in their data distribution. Primary key columns that meet

-789-

 SQL Statements

the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes the data evenly across all nodes at the time the
projection is created. The ordering of the nodes is fixed.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of
the nodes in a database, use the View Database command in the

Administration Tools.

Notes

 Table column names must be used in the expression, not the projection column names.

 To use a SEGMENTED BY expression other than HASH or MODULARHASH, the following
restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 54) to a column in the SELECT list of the CREATE PROJECTION
command.

 Aggregate functions are not allowed.

 The expression must return the same value over the life of the database.

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside of the expected range (a negative value for
example), no error occurs, and the row is added to the first segment of the projection.

 The hash-segmentation-clause within the CREATE TABLE or CREATE TEMP TABLE
statement does not support the OFFSET keyword, which is available in the CREATE
PROJECTION command. The OFFSET is set to zero (0).

 When a hash-segmentation-clause is used with KSAFE [k_num], HP Vertica automatically
creates k_num+1 buddy projections to meet the K-safety requirement.

Example

This example segments the default superprojection and its buddies for the
Public.Employee_Dimension table using HASH segmentation across all nodes based on the
Employee_key column:

=> CREATE TABLE Public.Employee_Dimension (

 Employee_key integer PRIMARY KEY NOT NULL,

 Employee_gender varchar(8) ENCODING RLE,

 Employee_title varchar(8),

 Employee_first_name varchar(64),

 Employee_middle_initial varchar(8),

 Employee_last_name varchar(64),

)

SEGMENTED BY HASH(Employee_key) ALL NODES;

See Also

HASH (page 308) and MODULARHASH (page 311)

-790-

SQL Reference Manual

range-segmentation-clause (table)

Allows you to segment a projection based on a known range of values stored in a specific column.
Choosing a range of values from a specific column provides even distribution of data across a set
of nodes, resulting in optimal query execution.

Note: HP recommends that you use hash segmentation, instead of range segmentation.

Syntax
SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 ...

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 54) to
a column in the column definition of the CREATE TABLE statement.
Choose a column that has:

 INTEGER or FLOAT data type

 A known range of data values

 An even distribution of data values

 A large number of unique data values

Avoid columns that:

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If
you choose this option, do not use TIME or TIMETZ because their range
is only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in
any projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that the segment can contain only a range of data values less
than value. The segments cannot overlap so the minimum value of the

range is determined by the value of the previous segment (if any).

VALUES LESS THAN MAXVALUE Specifies a sub-range containing data values with no upper limit.
MAXVALUE is the maximum value represented by the data type of the

segmentation column.

-791-

 SQL Statements

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no

reason to use anything other than a single column reference (see "Column References" on
page 54) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references to a column in the
SELECT list of the CREATE PROJECTION command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

See Also

NODE_RESOURCES (page 1047)

CREATE TEMPORARY TABLE
Creates a temporary table.

Syntax
CREATE [GLOBAL | LOCAL] TEMPORARY | TEMP

... TABLE [IF NOT EXISTS] [[db-name.]schema.].table-name {

... (column-definition (temp table) (page 795) [, ...])

... | [column-name-list (create table) (page 780)] }

... [ON COMMIT { DELETE | PRESERVE } ROWS]

... [AS [{ AT EPOCH { integer | LATEST } | AT TIME 'timestamp'}]

... [/*+ direct */] query]

... [ORDER BY table-column [, ...]]

... [ENCODED BY column-definition [, ...]]

....[hash-segmentation-clause (page 750)

......| range-segmentation-clause (page 790)

......| UNSEGMENTED { NODE node

......| ALL NODES }]

....[KSAFE [k-num]]

....| [NO PROJECTION]]

Parameters

GLOBAL [Optional] Specifies that the table definition is visible to all sessions.
This is the default value when creating a temporary table. Temporary

table data is visible only to the session that inserts the data into the
table.

LOCAL [Optional] Specifies that the table definition is visible only to the session

in which it is created.

-792-

SQL Reference Manual

TEMPORARY | TEMP Specifies that the table is a temporary table.

[IF NOT EXISTS] [Optional] Determines whether the statement generates a NOTICE
message or an ERROR if <object>-name exists. Using IF NOT EXISTS

generates a NOTICE if the specified object exists. Omitting the clause
generates an error if <object>-name exists. Regardless of whether you
use IF NOT EXISTS, HP Vertica does not create a new object if

<object>-name exists. For more information, see also
ON_ERROR_STOP.

[[db-name.]schema.] Specifies the schema in which to create the table. If you do not specify a

schema-name, the statement creates the table in the first schema listed
in the current search_path (page 912). You can specify a schema (and
optional database name) only for a global temporary table.

Schema-name is not supported for local temporary tables, which are
always created in a special schema.

table-name Specifies the name of the temporary table to create.

column-definition Defines one or more columns. See column-definition (temp table)
(page 795).

column-name-list Renames columns when creating a temporary table from a query, such

as:

CREATE TEMPORARY TABLE as select...

See column-name-list (see "column-name-list (table)" on page 780).

ON COMMIT { PRESERVE |

 DELETE } ROWS

[Optional] Specifies whether data is transaction- or session-scoped:

 DELETE marks the temporary table for transaction-scoped

data. HP Vertica truncates the table (delete all its rows) after
each commit. DELETE ROWS is the default.

 PRESERVE marks the temporary table for session-scoped
data, which is preserved beyond the lifetime of a single

transaction. HP Vertica truncates the table (delete all its rows)
when you terminate a session.

AS [{ AT EPOCH

{ integer | LATEST }

| AT TIME 'timestamp'}]

Specifies the epoch to use with an AS clause to query historical:

 AT EPOCH LATEST -- data from the latest committed DML
transaction

 AT EPOCH integer -- an epoch specified as an integer

 AT TIME 'timestamp' -- an epoch based on its timestamp

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

HP Vertica accepts optional spaces before and after the plus (+) sign

and the direct hint. Space characters between the opening /* or

the closing */ are not permitted. The following directives are all

acceptable:

/*+direct*/

/* + direct*/

/*+ direct*/

/*+direct */

Note: If you create a temporary table using the direct hint, you still

need to use the ON COMMIT PRESERVE ROWS option for the rows.

-793-

 SQL Statements

AS query [Optional.] Creates a new table from the results of a query and

populates it with data from the query as long as you also specify ON

COMMIT PRESERVE ROWS:

CREATE GLOBAL TEMP TABLE temp_table1 ON COMMIT PRESERVE

ROWS AS SELECT ...;

If you specify ON COMMIT DELETE ROWS, the temporary table is

created, but no data is inserted from the query:

CREATE GLOBAL TEMP TABLE temp_table1 ON COMMIT DELETE

ROWS AS SELECT ...;

Column renaming is supported as part of the process:

CREATE TEMP TABLE temp-table1 (name, address, ...) AS

SELECT customer_name, customer_address ... ;

ORDER BY table-column [Optional] Specifies the superprojection sort order. HP Vertica creates a

superprojection automatically for the table when you load data into the
table. If you do not use this option to indicate the sort order, such as:

ORDER BY col2, col1, col5

the projection is created with the column order specified in the column

definition.

Note: Data is in ascending order only.

ENCODED BY column-definition [Applicable only with CREATE TEMPORARY TABLE AS query]

Specifies the column encoding and/or the access rank for specific

columns in the query when you do not use a column-definition to
rename columns for the table being created. See column-definition
(temp table) (page 795) for examples.

If you rename table columns when creating a temporary table from a
query, you can supply the encoding type and access rank in the column
name list instead.

hash-segmentation-clause [Optional] Segments the superprojection based on a built -in hash
function that provides even data distribution across nodes, resulting in
optimal query execution. See hash-segmentation-clause (page 750).

Note: An elastic projection (a segmented projection created when

Elastic Cluster is enabled) created with a modularhash segmentation
expression uses hash instead.

range-segmentation-clause [Optional] Segments the superprojection based on a range of values

stored in a specific column and chosen to provide even distribution of
data across a set of nodes, resulting in optimal query execution. See
range-segmentation-clause (see "range-segmentation-clause

(temp table)" on page 800).

UNSEGMENTED

{ NODE node | ALL NODES }

[Optional] Lets you specify an unsegmented projection. The default for
this parameter is to create an UNSEGMENTED projection on the

initiator node. You can optionally use either of the following node
specifications:

 NODE node—Creates an unsegmented projection only on the

specified node. Projections for small tables must be
UNSEGMENTED.

 ALL NODES—Automatically replicates the unsegmented
projection on each node. To perform distributed query

-794-

SQL Reference Manual

execution, HP Vertica requires an unsegmented copy of each
small table superprojection on each node.

KSAFE [k-num] [Optional] Specifies the K-safety level of the automatic projection
created for the table. The integer K determines how many unsegmented
or segmented buddy projections to create. The value must be greater

than or equal to the current K-safety level of the database, and less than
the total number of nodes. If you do not specify a KSAFE value, the
superprojection is created at the current system K-safety level.

For example: K-SAFE 1

Note: When a hash-segmentation-clause is used with KSAFE, HP

Vertica automatically creates k_num+1 buddy projections to meet the
K-safety requirement.

NO PROJECTION [Optional] Prevents automatically creating a default superprojection for

the temporary table until data is loaded.

You cannot use the NO PROJECTION option with queries (CREATE

TEMPORARY TABLE AS SELECT), ORDER BY, ENCODED BY, KSAFE ,

hash-segmentation-clause (page 750), or
range-segmentation-clause (page 790).

Notes

 You cannot add projections to non-empty, session-scoped temporary tables (ON COMMIT
PRESERVE ROWS). Make sure that projections exist before you load data. See the
"Automatic Projection Creation" in the CREATE TABLE (page 770) statement.

 Although adding projections is allowed for tables with ON COMMIT DELETE ROWS specified, be
aware that you could lose all the data.

 The V_TEMP_SCHEMA namespace is automatically part of the search path. Thus, temporary
table names do not need to be preceded with the schema.

 Queries that involve temporary tables have the same restrictions on SQL support as queries
that do not use temporary tables.

 Single-node (pinned to the initiator node only) projections are supported.

 AT EPOCH LATEST queries that refer to session-scoped temporary tables work the same as
those for transaction-scoped temporary tables. Both return all committed and uncommitted
data regardless of epoch. For example, you can commit data from a temporary table in one
epoch, advance the epoch, and then commit data in a new epoch.

 Moveout and mergeout operations cannot be used on session-scoped temporary data.

 If you issue the TRUNCATE TABLE (page 927) statement on a temporary table, only
session-specific data is truncated with no affect on data in other sessions.

 The DELETE ... FROM TEMP TABLE syntax does not truncate data when the table was

created with PRESERVE; it marks rows for deletion. See DELETE (page 807) for additional
details.

 In general, session-scoped temporary table data is not visible using system (virtual) tables.

 Views are supported for temporary tables.

 ANALYZE_STATISTICS (page 440) is supported on local temporary tables, but not on
global temporary tables.

 Table partitions are not supported for temporary tables.

-795-

 SQL Statements

 Temporary tables do not recover. If a node fails, queries that use the temporary table also fail.
Restart the session and populate the temporary table.

 Pre-join projections that refer to both temporary and non-temporary tables are not supported.

 You cannot use temporary tables as dimensions when the fact table is non-temporary in
pre-join projections. All small tables in a pre-join projection must be at least as persistent as
the large table and other small tables. The persistence scale is: Normal > session-scoped
temporary table > transaction-scoped temporary table.

 If the the anchor table of a pre-join projection is a transaction-scoped temp table, you can
use any type of table (temp or normal) in the pre-join.

 If the anchor table of a pre-join is a normal table, you can use only normal tables as
dimension tables.

 If there is a snowflake dimension session-scoped temporary table, its dimension tables
may not be a transaction-scoped temporary tables.

See Also

ALTER TABLE (page 672), CREATE TABLE (page 770), DELETE (page 807), DROP TABLE
(page 823)

Creating Temporary Tables in the Administrator's Guide

Subqueries in the Programmer's Guide

Transactions in the Concepts Guide

column-definition (temp table)

A column definition specifies the name, data type, default, and other characteristics to be applied
to a column.

Syntax
column-name data-type [DEFAULT] [NULL | NOT NULL]

 [ENCODING encoding-type] [ACCESSRANK integer]]

Parameters

column-name Specifies the name of the temporary table to be created.

data-type Specifies one of the following data types:

 BINARY

 BOOLEAN

 CHARACTER

 DATE/TIME

 NUMERIC

-796-

SQL Reference Manual

DEFAULT default Specifies a default value for a column if the column is used in an INSERT

operation and no value is specified for the column. If no value is specified
for the column and there is no default, the default is NULL.

Default value usage:

 A default value can be set for a column of any data type.

 The default value can be any variable-free expression, as long as it
matches the data type of the column.

 Variable-free expressions can contain constants, SQL functions,
null-handling functions, system information functions, string

functions, numeric functions, formatting functions, nested
functions, and all HP Vertica-supported operators

Default value restrictions:

 Expressions can contain only constant arguments.

 Subqueries and cross-references to other columns in the table are
not permitted in the expression.

 The return value of a default expression cannot be NULL.

 The return data type of the default expression after evaluation
either matches that of the column for which it is defined, or an

implicit cast between the two data types is possible. For example,
a character value cannot be cast to a numeric data type implicitly,
but a number data type can be cast to character data type
implicitly.

 Default expressions, when evaluated, conform to the bounds for
the column.

 Volatile functions are not supported when adding columns to
existing tables. See ALTER TABLE (page 672).

Note: HP Vertica attempts to check the validity of default expressions, but

some errors might not be caught until run time.

NULL [Default] Specifies that the column is allowed to contain null values.

NOT NULL Specifies that the column must receive a value during INSERT and
UPDATE operations. If no DEFAULT value is specified and no value is

provided, the INSERT or UPDATE statement returns an error because no
default value exists.

ENCODING encoding-type [Optional] Specifies the type of encoding (page 747) to use on the

column. By default, the encoding type is auto.

Caution: The NONE keyword is obsolete.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if

you want to increase or decrease the speed at which a column is
accessed. See Creating and Configuring Storage Locations and
Prioritizing Column Access Speed in the Administrator's Guide.

-797-

 SQL Statements

column-name-list (temp table)

A column name list is used to rename columns when creating a temporary table from a query
(CREATE TEMPORARY TABLE AS SELECT). It can also be used to specify the encoding type
(see "encoding-type" on page 747) and access rank of the column.

Syntax
column-name-list [ENCODING encoding-type] [ACCESSRANK integer] [, ...]

 [GROUPED(projection-column-reference [,...])]

Parameters

column-name-list Specifies the new name for the column.

ENCODING encoding-type [Optional] Specifies the type of encoding to use on the column. By default,
the encoding-type is auto. See encoding type (see "encoding-type" on

page 747) for a complete list.

Caution: Using the NONE keyword for strings could negatively affect the
behavior of string columns.

ACCESSRANK integer [Optional] Overrides the default access rank for a column. This is useful if
you want to increase or decrease the speed at which a column is
accessed. See Creating and Configuring Storage Locations and

Prioritizing Column Access Speed in the Administrator's Guide.

GROUPED Groups two or more columns into a single disk file. This minimizes file I/O
for work loads that:

 Read a large percentage of the columns in a table.

 Perform single row look-ups.

 Query against many small columns.

 Frequently update data in these columns.

If you have data that is always accessed together and it is not used in
predicates, you can increase query performance by grouping these

columns. Once grouped, queries can no longer independently retrieve from
disk all records for an individual column independent of the other columns
within the group.

Note: RLE compression is reduced when a RLE column is grouped with

one or more non-RLE columns.

When grouping columns you can:

 Group some of the columns:

 (a, GROUPED(b, c), d)

 Group all of the columns:

 (GROUPED(a, b, c, d))

 Create multiple groupings in the same projection:

 (GROUPED(a, b), GROUPED(c, d))

Note: HP Vertica performs dynamic column-grouping. For example, to

provide better read and write efficiency for small loads, HP Vertica ignores

any projection-defined column grouping (or lack thereof) and groups all

-798-

SQL Reference Manual

columns together by default.

Notes:

If you are using a CREATE TEMPORARY TABLE AS SELECT statement:

 The data-type cannot be specified for a column in the column name list. It is derived by the
column in the query table identified in the FROM clause

 You can supply the encoding type and access rank in either the column name list or the
column list in the query, but not both.

The following statements are both allowed:

=> CREATE TEMPORARY TABLE temp_table1 (state ENCODING RLE ACCESSRANK 1, zip

ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state, ... ;

=> CREATE TEMPORARY TABLE temp_table1

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING

RLE ...;

The following statement is not allowed:

=> CREATE TEMPORARY TABLE temp_table1 (state ENCODING RLE ACCESSRANK 1, zip

ENCODING RLE, ...)

 AS SELECT * FROM customer_dimension

 ORDER BY customer_state

 ENCODED BY customer_state ENCODING RLE ACCESSRANK 1, customer_zip ENCODING

RLE ...;

Example

The following example creates a temporary table named temp_table2 and its associated
superprojection. Note that encoding-type RLE is specified for the y column definition:

=> CREATE GLOBAL TEMP TABLE temp_table2 (

 x NUMERIC,

 y NUMERIC ENCODING RLE,

 b VARCHAR(8),

 z VARCHAR(8));

The following example creates a table named temp_table3 from a query that selects data from
columns in the customer_dimension table. RLE encoding is specified for the state column in the
column name list.

=> CREATE TABLE temp_table3 (name, address, city, state ENCODING RLE, income)

 AS SELECT

 customer_name,

 customer_address,

 customer_city,

 customer_state,

 annual_income

 FROM customer_dimension

 WHERE annual_income > 1000000

-799-

 SQL Statements

 ORDER BY customer_state, annual_income;

hash-segmentation-clause (temp table)

By default, a superprojection for a temp table is segmented and not pinned. You can choose either
hash-segmentation (preferred) or range-segmentation, if you have more than one node.

Hash segmentation allows you to segment a table based on a built-in hash function. The built-in
hash function provides even distribution of data across some or all nodes in a cluster, resulting in
optimal query execution. Projections created in this manner are not pinned.

Note: Hash segmentation is the preferred method of segmentation. The Database Designer

uses hash segmentation by default.

Syntax
SEGMENTED BY expression

 [ALL NODES | NODES node [,...]]

Parameters

SEGMENTED BY expression Can be a general SQL expression. However, HP recommends using the
built-in HASH (page 308) or MODULARHASH (page 311) functions,

specifying table columns as arguments. If you specify only a column
name, HP Vertica gives a warning.

Choose columns that have a large number of unique data values and

acceptable skew in their data distribution. Primary key columns that meet
the criteria could be an excellent choice for hash segmentation.

ALL NODES Automatically distributes the data evenly across all nodes at the time the

projection is created. The ordering of the nodes is fixed.

NODES node [,...] Specifies a subset of the nodes in the cluster over which to distribute the
data. You can use a specific node only once in any projection. For a list of

the nodes in a database, use the View Database command in the
Administration Tools.

Notes

 You must use the table column names in the expression, not the projection column names.

 To use a SEGMENTED BY expression other than HASH or MODULARHASH, the following

restrictions apply:

 All leaf expressions must be either constants or column-references (see "Column
References" on page 54) to a column in the SELECT list of the CREATE PROJECTION
command.

 Aggregate functions are not allowed.

 The expression must return the same value over the life of the database.

-800-

SQL Reference Manual

 The expression must return non-negative INTEGER values in the range 0 <= x < 263 (two to
the sixty-third power or 2^63), and values are generally distributed uniformly over that
range.

 If expression produces a value outside of the expected range (a negative value for
example), no error occurs, and the row is added to the first segment of the projection.

 The hash-segmentation-clause within the CREATE TABLE or CREATE TEMP TABLE
statement does not support the OFFSET keyword, which is available in the CREATE
PROJECTION command. The OFFSET is set to zero (0).

Example

This example segments the default superprojection and its buddies using HASH segmentation
based on column 1 (C1).

=> CREATE TEMPORARY TABLE ... SEGMENTED BY HASH(C1) ALL NODES;

See Also

HASH (page 308) and MODULARHASH (page 311)

range-segmentation-clause (temp table)

By default, a superprojection for a temp table is segmented and not pinned. If you have more than
one node, you can segment the table using either hash-segmentation (preferred), or
range-segmentation.

Allows you to segment a projection based on a known range of values stored in a specific column.
Choosing a range of values from a specific column provides even distribution of data across a set
of nodes, resulting in optimal query execution.

Projections created in this manner are not pinned.

Note: HP recommends that you use hash segmentation, instead of range segmentation.

Syntax
SEGMENTED BY expression

 NODE node VALUES LESS THAN value

 NODE node VALUES LESS THAN MAXVALUE

Parameters (Range Segmentation)

SEGMENTED BY expression Is a single column reference (see "Column References" on page 54) to a

column in the SELECT list of the CREATE PROJECTION statement.
Choose a column that has:

 INTEGER or FLOAT data type

 A known range of data values

 An even distribution of data values

 A large number of unique data values

Avoid columns that:

-801-

 SQL Statements

 Are foreign keys

 Are used in query predicates

 Have a date/time data type

 Have correlations with other columns due to functional
dependencies.

Note: Segmenting on DATE/TIME data types is valid but guaranteed to

produce temporal skew in the data distribution and is not recommended. If
you choose this option, do not use TIME or TIMETZ because their range is
only 24 hours.

NODE node Is a symbolic name for a node. You can use a specific node only once in any
projection. For a list of the nodes in a database, use SELECT * FROM

NODE_RESOURCES.

VALUES LESS THAN value Specifies that the segment can contain only a range of data values less than
value. The segments cannot overlap so the minimum value of the range is

determined by the value of the previous segment (if any).

VALUES LESS THAN MAXVALUE Specifies a sub-range containing data values with no upper limit.
MAXVALUE is the maximum value represented by the data type of the

segmentation column.

Notes

 The SEGMENTED BY expression syntax allows a general SQL expression but there is no

reason to use anything other than a single column reference (see "Column References" on
page 54) for range segmentation. If you want to use a different expression, the following
restrictions apply:

 All leaf expressions must be either constants or column-references to a column in the
SELECT list of the CREATE PROJECTION command

 Aggregate functions are not allowed

 The expression must return the same value over the life of the database.

 During INSERT or COPY to a segmented projection, if expression produces a value outside
the expected range (a negative value for example), no error occurs, and the row is added to a
segment of the projection.

See Also

NODE_RESOURCES (page 1047)

CREATE USER
Adds a name to the list of authorized database users.

Syntax
CREATE USER name

... [ACCOUNT {LOCK | UNLOCK}]

... [IDENTIFIED BY 'password']

... [MEMORYCAP {'memory-limit' | NONE}]

... [PASSWORD EXPIRE]

-802-

SQL Reference Manual

... [PROFILE {profile | DEFAULT}]

... [RESOURCE POOL pool-name]

... [RUNTIMECAP {'time-limit' | NONE}]

... [TEMPSPACECAP {'space-limit' | NONE}]

... [SEARCH_PATH {schema[,schema2,...]} | DEFAULT]

Parameters

name Specifies the name of the user to create; names that contain
special characters must be double-quoted.

Tip: HP Vertica database user names are logically separate from

user names of the operating system in which the server runs. If all

the users of a particular server also have accounts on the server's
machine, it makes sense to assign database user names that
match their operating system user names. However, a server that

accepts remote connections could have m any database users
who have no local operating system account, and in such cases
there need be no connection between database user names and

OS user names.

ACCOUNT LOCK | UNLOCK Locks or unlocks the a user's access to the database. UNLOCK is

the default for new users, so the keyword is optional. You'll most
commonly use UNLOCK with the ALTER USER command.

Specifying LOCK prevents a new user from logging in, which

might be useful if you want to create an account for users who
don't need access yet.

Tip: A superuser can automate account locking by setting a

maximum number of failed login attempts through the CREATE

PROFILE (page 739) statement. See also Profiles in the

Administrator's Guide.

IDENTIFIED BY 'password' Sets the new user's password. Supplying an empty string for
password creates a user without a password, as does omitting

the IDENTIFIED BY 'password' clause. If a user does not

have a password, he or she will not be prompted for one when
connecting.

Providing a password using the IDENTIFIED BY clause requires

that the given password conform to the password complexity

policy set by the user's profile. User profiles are either specified
with the PROFILE parameter, or associated with a default profile
if a superuser omits the PROFILE parameter.

See Password Guidelines and Creating a Database Name and
Password for password policies.

PASSWORD EXPIRE Expires the user's password immediately. The user will be forced

to change the password when he or she next logs in. The grace
period setting (if any) in the user's profile is overridden.

Note: PASSWORD EXPIRE has no effect when using external

password authentication methods such as LDAP or Kerberos.

MEMORYCAP 'memory-limit' | NONE Limits the amount of memory that the user's requests can use.

This value is a number representing the amount of space,
followed by a unit (for example, '10G'). The unit can be one of the

-803-

 SQL Statements

following:

 % percentage of total memory available to the Resource
Manager. (In this case value for the size must be 0-100)

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Setting this value to NONE means the user's sessions have no

limits on memory use. This is the default value.

PROFILE profile | DEFAULT Assigns the user to the profile named profile. Profiles set the

user's password policy. See Profiles in the Administrator's Guide
for details. Using the value DEFAULT here assigns the user to the
default profile. If this parameter is omitted, the user is assigned to

the default profile.

RESOURCE POOL pool-name Sets the name of the resource pool from which to request the
user's resources. This command creates a usage grant for the

user on the resource pool unless the resource pool is publicly
usable.

RUNTIMECAP 'time-limit' | NONE Sets the maximum amount of time any of the user's queries can

execute. time-limit is an interval, such as '1 minute' or '100
seconds' (see Interval Values (page 37) for details). The
maximum duration allowed is one year. Setting this value to

NONE means there is no time limit on the user's queries.

If RUNTIMECAP is also set for the resource pool or session, HP

Vertica always uses the shortest limit.

TEMPSPACECAP 'space-limit' |

 NONE

Limits the amount of temporary file storage the user's requests
can use. This parameter's value has the same format as the
MEMORYCAP value.

SEARCH_PATH schema[,schema2,...]

 | DEFAULT

Sets the user's default search path that tells HP Vertica which
schemas to search for unqualified references to tables and UDFs.

See Setting Search Paths in the Administrator's Guide for an
explanation of the schema search path. The DEFAULT keyword
sets the search path to:

"$user", public, v_catalog, v_monitor, v_internal

Permissions

Must be a superuser to create a user.

Notes

 User names created with double-quotes are case sensitive. For example:

=> CREATE USER "FrEd1";

In the above example, the login name must be an exact match. If the user name was created
without double-quotes (for example, FRED1), then the user can log in as FRED1, FrEd1,
fred1, and so on.

Note: ALTER USER (page 679) and DROP USER (page 826) are case-insensitive.

-804-

SQL Reference Manual

 Newly-created users do not have access to schema PUBLIC by default. Make sure to GRANT
USAGE ON SCHEMA PUBLIC to all users you create.

 You can change a user password by using the ALTER USER statement. If you want to
configure a user to not have any password authentication, you can set the empty password ‗‘ in
CREATE or ALTER USER statements, or omit the IDENTIFIED BY parameter in CREATE
USER.

 By default, users have the right to create temporary tables in the database.

Examples
=> CREATE USER Fred;

=> GRANT USAGE ON SCHEMA PUBLIC to Fred;

See Also

ALTER USER (page 679)

DROP USER (page 826)

Managing Workloads in the Administrator's Guide

Setting a Run-Time Limit for Queries

CREATE VIEW

Defines a new view. Views are read only. You cannot perform insert, update, delete, or copy
operations on a view.

Syntax
CREATE [OR REPLACE] VIEW viewname [(column-name [, ...])] AS query]

Parameters

[OR REPLACE] When you supply this option, HP Vertica overwrites any existing view with the name

viewname. If you do not supply this option and a view with that name already exists,
CREATE VIEW returns an error.

viewname Specifies the name of the view to create. The view name must be unique. Do not
use the same name as any table, view, or projection within the database. If the view
name is not provided, the user name is used as the view name.

column-name [Optional] Specifies the list of names to be used as column names for the view.
Columns are presented from left to right in the order given. If not specified, HP
Vertica automatically deduces the column names from the query.

query Specifies the query that the view executes. HP Vertica also uses the query to
deduce the list of names to be used as columns names for the view if they are not
specified.

Use a SELECT (page 870) statement to specify the query.The SELECT statement
can refer to tables, temp tables, and other views.

-805-

 SQL Statements

Permissions

To create a view, the user must be a superuser or have CREATE privileges on the schema in
which the view is created.

Privileges required on base objects for the view owner must be directly granted, not through roles:

 If a non-owner runs a SELECT query on the view, the view owner must also have SELECT ...
WITH GRANT OPTION privileges on the view's base tables or views. This privilege must be
directly granted to the owner, rather than through a role.

 If a view owner runs a SELECT query on the view, the owner must also have SELECT
privilege directly granted (not through a role) on a view's base objects (table or view).

Transforming a SELECT Query to Use a View

When HP Vertica processes a query that contains a view, the view is treated as a subquery
because the view name is replaced by the view's defining query. The following example defines a
view (ship) and illustrates how a query that refers to the view is transformed.

Create a new view, called ship:

CREATE VIEW ship AS SELECT * FROM public.shipping_dimension;

Review the original query, and then the transformed subquery version:

SELECT * FROM ship;

SELECT * FROM (SELECT * FROM public.shipping_dimension) AS ship;

Dropping a view

Use the DROP VIEW (page 827) statement to drop a view. Only the specified view is dropped. HP
Vertica does not support CASCADE functionality for views, and it does not check for
dependencies. Dropping a view causes any view that references it to fail.

Renaming a view

Use the ALTER VIEW (page 681) statement to rename a view.

Example

=> CREATE VIEW myview AS

 SELECT SUM(annual_income), customer_state

 FROM public.customer_dimension

 WHERE customer_key IN

 (SELECT customer_key

 FROM store.store_sales_fact)

 GROUP BY customer_state

 ORDER BY customer_state ASC;

The following example uses the myview view with a WHERE clause that limits the results to
combined salaries of greater than 2,000,000,000.

=> SELECT * FROM myview WHERE SUM > 2000000000;

-806-

SQL Reference Manual

 SUM | customer_state

-------------+----------------

 2723441590 | AZ

 29253817091 | CA

 4907216137 | CO

 3769455689 | CT

 3330524215 | FL

 4581840709 | IL

 3310667307 | IN

 2793284639 | MA

 5225333668 | MI

 2128169759 | NV

 2806150503 | PA

 2832710696 | TN

 14215397659 | TX

 2642551509 | UT

(14 rows)

See Also

ALTER VIEW (page 681)

SELECT (page 870)

DROP VIEW (page 827), GRANT (View) (page 845)

REVOKE (View) (page 866)

-807-

 807

DELETE

Marks tuples as no longer valid in the current epoch, marking the records for deletion in the WOS,
rather than deleting data from disk storage. By default, delete uses the WOS and if the WOS fills
up, overflows to the ROS. You cannot delete records from a projection.

Syntax

DELETE [/*+ direct */] [/*+ label(label-name)*/]

... FROM [[db-name.]schema.]table

... WHERE clause (page 901)

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory

(WOS).

Note: If you delete using the direct hint, you still need to

issue a COMMIT or ROLLBACK command to finish the
transaction.

/*+ label

(label-name)*/

Passes a user-defined label to a query as a hint, letting you

quickly identify labeled queries for profiling and debugging. See
Query Labeling in the Administrator's Guide.

[[db-name.]schema.

]

[Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name, but

you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column

(mydb.myschema.mytable.column1).

When using more than one schema, specify the schema
that contains the table in your DELETE statement.

table Specifies the name of a base table or temporary table.

Permissions

Table owner or user with GRANT OPTION is grantor.

 DELETE privilege on table

 USAGE privilege on schema that contains the table

-808-

SQL Reference Manual

 SELECT privilege on the referenced table when executing a DELETE statement that
references table column values in a WHERE or SET clause

Using the DELETE Statement

DELETE statements support subqueries and joins, which is useful for deleting values in a table
based on values that are stored in other tables. See the Examples section below.

The delete operation deletes rows that satisfy the WHERE clause from the specified table. On
completing successfully, the DELETE statement returns a count of the number of deleted rows. A

count of 0 is not an error, but indicates that no rows matched the condition. If no WHERE clause
exists, the statement deletes all table rows, resulting in an empty table.

To remove all rows from a temporary table, use a DELETE statement with no WHERE clause. In this

case, the rows are not stored in the system, which improves performance. The DELETE statement

removes all rows, but preserves the columns, projections, and constraints, thus making it easy to
re-populate the table.

If you include a WHERE clause with a DELETE statement on a temporary table, DELETE behaves
the same as for base tables, marking all delete vectors for storage, and you lose any performance
benefits. If the delete operation succeeds on temporary tables, you cannot roll back to a prior
savepoint.

To truncate a temporary table, without ending the transaction, use DELETE FROM temp_table .

Examples

To use the DELETE or UPDATE (page 929) statements with a WHERE Clause (page 901), the user must

have both SELECT (page 870) and DELETE privileges on the table.

The following command truncates a temporary table called temp1:

=> DELETE FROM temp1;

The following command deletes all records from base table T where C1 = C2 - C1.

=> DELETE FROM T WHERE C1=C2-C1;

The following command deletes all records from the customer table in the retail schema where the
state attribute is in MA or NH:

=> DELETE FROM retail.customer WHERE state IN ('MA', 'NH');

For examples on how to nest a subquery within a DELETE statement, see Subqueries in UPDATE
and DELETE in the Programmer's Guide.

See Also

DROP TABLE (page 823) and TRUNCATE TABLE (page 927)

Deleting Data and Best Practices for DELETE and UPDATE in the Administrator's Guide

-809-

 SQL Statements

DISCONNECT

Closes a previously-established connection to another HP Vertica database. You must have
previously used the CONNECT statement to perform a COPY FROM VERTICA or EXPORT TO
VERTICA statement.

Syntax
DISCONNECT database-name

Parameters

database-name The name of the database whose connection to close.

Permissions

No special permissions required.

Example

=> DISCONNECT ExampleDB;

DISCONNECT

See Also

CONNECT (page 697)

COPY FROM VERTICA (page 711)

EXPORT TO VERTICA (page 829)

DROP AGGREGATE FUNCTION
Drops a User Defined Aggregate Function (UDAF) from the HP Vert ica catalog.

Syntax
DROP AGGREGATE FUNCTION [[db-name.]schema.]function-name [, ...]

... ([[argname] argtype [, ...]])

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,

but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from database

and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, use a table and

-810-

SQL Reference Manual

column (mytable.column1), a schema, table, and column

(myschema.mytable.column1), and, as full qualification, a
database, schema, table, and column
(mydb.myschema.mytable.column1).

function-name Specifies a name of the SQL function to drop. If the function
name is schema-qualified, the function is dropped from the
specified schema (as noted above).

argname Specifies the name of the argument, typically a column name.

argtype Specifies the data type for argument(s) that are passed to the
function. Argument types must match HP Vertica type names.

See SQL Data Types (page 71).

Notes

 To drop a function, you must specify the argument types because there could be several
functions that share the same name with different parameters.

 HP Vertica does not check for dependencies, so if you drop a SQL function where other
objects reference it (such as views or other SQL functions), HP Vertica returns an error when
those objects are used and not when the function is dropped.

Permissions

Only the superuser or owner can drop the function.

Example

The following command drops the ag_avg function:

=> DROP AGGREGATE FUNCTION ag_avg(numeric);

DROP AGGREGATE FUNCTION

See Also

ALTER FUNCTION (page 656)

CREATE AGGREGATE FUNCTION

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Using SQL Macros, Using User Defined Functions and Developing a User Defined Aggregate
Function in the Programmer's Guide

-811-

 SQL Statements

DROP FUNCTION
Drops a SQL function or User Defined Function (UDF) from the HP Vertica catalog.

Syntax
DROP FUNCTION [[db-name.]schema.]function-name [, ...]

... ([[argname] argtype [, ...]])

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search

path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You

cannot make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database

objects as explicitly as required. For example, you can specify a
table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

function-name Specifies a name of the SQL function to drop. If the function
name is schema-qualified, the function is dropped from the

specified schema (as noted above).

argname Specifies the name of the argument, typically a column name.

argtype Specifies the data type for argument(s) that are passed to the

function. Argument types must match HP Vertica type names.
See SQL Data Types (page 71).

Permissions

Must be a superuser, function owner, or schema owner to drop a function.

Notes

 To drop a function, you must specify the argument types because there could be several
functions that share the same name with different parameters.

 HP Vertica does not check for dependencies, so if you drop a SQL function where other
objects reference it (such as views or other SQL functions), HP Vertica returns an error when
those objects are used and not when the function is dropped.

Example

The following command drops the zerowhennull function in the macros schema:

=> DROP FUNCTION macros.zerowhennull(x INT);

-812-

SQL Reference Manual

DROP FUNCTION

See Also

ALTER FUNCTION (page 656)

CREATE FUNCTION (page 722)

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Using SQL Macros in the Programmer's Guide

DROP SOURCE

Drops a User Defined Load Source function from the HP Vertica catalog.

Syntax
DROP SOURCE [[db-name.]schema.]source-name();

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, use a table and

column (mytable.column1), a schema, table, and column
(myschema.mytable.column1), and, as full qualification, a
database, schema, table, and column

(mydb.myschema.mytable.column1).

source-name Specifies the name of the source function to drop. If the function
name is schema-qualified, the function is dropped from the

specified schema (as noted above). You must include empty
parenthesis after the function name.

Permissions

Only the superuser or owner can drop the source function.

Example

The following command drops the curl source function:

-813-

 SQL Statements

=> drop source curl();

DROP SOURCE

See Also

ALTER FUNCTION (page 656)

CREATE SOURCE

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

DROP FILTER

Drops a User Defined Load Filter function from the HP Vertica catalog.

Syntax
DROP FILTER [[db-name.]schema.]filter-name();

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, use a table and

column (mytable.column1), a schema, table, and column
(myschema.mytable.column1), and, as full qualification, a
database, schema, table, and column

(mydb.myschema.mytable.column1).

filter-name Specifies the name of the filter function to drop. If the function
name is schema-qualified, the function is dropped from the

specified schema (as noted above). You must include empty
parenthesis after the function name.

Permissions

Only the superuser or owner can drop the filter function.

-814-

SQL Reference Manual

Example

The following command drops the Iconverter filter function::

=> drop filter Iconverter();

DROP FILTER

See Also

ALTER FUNCTION (page 656)

CREATE FILTER

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

DROP PARSER

Drops a User Defined Load Parserfunction from the HP Vertica catalog.

Syntax
DROP PARSER[[db-name.]schema.]parser-name();

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search

path (see Setting Schema Search Pat hs).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You

cannot make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database

objects as explicitly as required. For example, use a table and
column (mytable.column1), a schema, table, and column
(myschema.mytable.column1), and, as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

parser-name Specifies the name of the parser function to drop. If the function

name is schema-qualified, the function is dropped from the
specified schema (as noted above). You must include empty
parenthesis after the function name.

-815-

 SQL Statements

Permissions

Only the superuser or owner can drop the parser function.

Example

The following command drops the BasicIntegerParser parser function:

=> DROP PARSER BasicIntegerParser();

DROP PARSER

See Also

ALTER FUNCTION (page 656)

CREATE PARSER

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

V_CATALOG.USER_FUNCTIONS (page 982)

Developing User Defined Load (UDL) Functions in the Programmer's Guide

DROP LIBRARY
Removes a shared library from the database. The user defined function s(UDFs) in the library are
no longer available. See Using User Defined Functions in the Programmer's Guide for details.

Syntax
DROP LIBRARY [[db-name.]schema.]library_name [CASCADE]

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a

schema identifies objects that are not unique within
the current search path (see Setting Schema
Search Paths).

You can optionally precede a schema with a
database name, but you must be connected to the
database you specify. You cannot make changes

to objects in other databases.

The ability to specify different database objects
(from database and schemas to tables and

columns) lets you qualify database objects as
explicitly as required. For example, you can specify
a table and column (mytable.column1), a

schema, table, and column
(myschema.mytable.column1), and as full

-816-

SQL Reference Manual

qualification, a database, schema, table, and

column (mydb.myschema.mytable.column1).

library_name The name of the library to drop. This must be the
same name given to CREATE LIBRARY (page

735) to load the library.

[CASCADE] Drops any functions that have been defined using
the library. This statement fails if CASCADE is not

specified and there is one or more UDFs that have
been defined using the library.

Permissions

Must be a superuser to drop a library.

Notes

The library file is deleted from the managed directories on the HP Vertica nodes.

Example

To drop the library named MyFunctions:

=> DROP LIBRARY MyFunctions CASCADE;

DROP NETWORK INTERFACE

Removes a network interface from HP Vertica. You can use the CASCADE option to also remove
the network interface from any node definition. (See Identify the Database or Node(s) used for
Import/Export for more information.)

Syntax
DROP NETWORK INTERFACE network-interface-name [CASCADE]

Parameters

The parameters are defined as follows:

network-interface-name The network interface you want to remove.

Permissions

Must be a superuser to drop a network interface.

DROP PROCEDURE
Removes an external procedure from HP Vertica.

-817-

 SQL Statements

Syntax
DROP PROCEDURE [[db-name.]schema.]name ([argname] [argtype] [,...])

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be

connected to the database you specify, and you cannot change objects
in other databases.

Specifying different database objects lets you qualify database objects

as explicitly as required. For example, you can use a database and a
schema name (mydb.myschema).

name Specifies the name of the procedure to be dropped.

argname [Optional] The argument name or names used when creating the
procedure.

argtype Optional unless an argument type was specified when the procedure

was created. The argument type or types used when creating the
procedure.

Permissions

Must be a superuser or procedure owner and have USAGE privilege on schema that contain
procedure or be the schema owner.

Note

 Only the database superuser can drop procedures.

 Only the reference to the procedure is removed. The external file remains in the
<database>/procedures directory on each node in the database.

Example
=> DROP PROCEDURE helloplanet(arg1 varchar);

See Also

CREATE PROCEDURE (page 737)

DROP PROFILE
Removes a profile from the database. Only the superuser can drop a profile.

Syntax
DROP PROFILE name [, ...] [CASCADE]

Parameters

name The name of one or more profiles (separated by commas) to be removed.

-818-

SQL Reference Manual

CASCADE Moves all users assigned to the profile or profiles being dropped to the DEFAULT

profile. If you do not include CASCADE in the DROP PROFILE command and a

targeted profile has users assigned to it, the command returns an error.

Permissions

Must be a superuser to drop a profile.

Notes

You cannot drop the DEFAULT profile.

See Also

ALTER PROFILE (page 660)

CREATE PROFILE (page 739)

DROP PROJECTION
Marks a projection to be dropped from the catalog so it is unavailable to user queries.

Syntax
DROP PROJECTION { base-projname | projname-node [, ...] }

... [RESTRICT | CASCADE]

Parameters

base-projname Specifies the base projection to drop, along with all replicated buddies on all nodes
simultaneously. When using more than one schema, specify the schema
containing the base projection.

projname can be 'projname' or 'schema.projname'.

projname-node Drops only the specified projection on the specified node.When using more than

one schema, specify the schema that contains the projection to drop.

projname can be 'projname' or 'schema.projname'.

RESTRICT Drops the projection only if it does not contain any objects. RESTRICT is the

default.

CASCADE Drops the projection even if it contains one or more objects.

Permissions

To drop a projection, the user must own the anchor table for which the projection was created and
have USAGE privilege on schema that contains the projection OR be the schema owner.

-819-

 SQL Statements

Notes

To prevent data loss and inconsistencies, tables must contain one superprojection, so DROP
PROJECTION fails if a projection is the table's only superprojection. In such cases, use the DROP
TABLE command.

To a drop all projections:

=> DROP PROJECTION prejoin_p;

To drop the projection on node 2:

=> DROP PROJECTION prejoin_p_site02;

Alternatively, you can issue a command like the following, which drops projections on a particular
schema:

=> DROP PROJECTION schema1.fact_proj_a, schema1.fact_proj_b;

If you want to drop a set of buddy projections, you could be prevented from dropping them
individually using a sequence of DROP PROJECTION statements due to K-safety violations. See
MARK_DESIGN_KSAFE (page 510) for details.

See Also

CREATE PROJECTION (page 742), DROP TABLE (page 823), GET_PROJECTIONS (page
499), GET_PROJECTION_STATUS (page 498), and MARK_DESIGN_KSAFE (page 510)

Adding Nodes in the Administrator's Guide

DROP RESOURCE POOL

Drops a user-created resource pool. All memory allocated to the pool is returned back to the
GENERAL pool (page 757).

Syntax
DROP RESOURCE POOL pool-name

Parameters

pool-name Specifies the name of the resource pool to be dropped.

Permissions

Must be a superuser to drop a resource pool.

Transferring Resource Requests

Any requests queued against the pool are transferred to the GENERAL pool according to the

priority of the pool compared to the GENERAL pool. If the pool‘s priority is higher than the GENERAL

pool, the requests are placed at the head of the queue; otherwise the requests are placed at the
end of the queue.

Any users who are using the pool are switched to use the GENERAL pool with a NOTICE:

-820-

SQL Reference Manual

NOTICE: Switched the following users to the General pool: username

DROP RESOURCE POOL returns an error if the user does not have permission to use the

GENERAL pool. Existing sessions are transferred to the GENERAL pool regardless of whether the

session's user has permission to use the GENERAL pool. This can result in additional user

privileges if the pool being dropped is more restrictive than the GENERAL pool. To prevent giving
users additional privileges, follow this procedure to drop restrictive pools:

1 Revoke the permissions on the pool (page 857) for all users.

2 Close any sessions that had permissions on the pool.

3 Drop the resource pool.

Example

The following command drops the resource pool that was created for the CEO:

=> DROP RESOURCE POOL ceo_pool;

See Also

ALTER RESOURCE POOL (page 663)

CREATE RESOURCE POOL (page 753)

Managing Workloads in the Administrator's Guide

DROP ROLE
Removes a role from the database. Only the database superuser can drop a role.

Use the CASCADE option to drop a role that is assigned to one or more users or roles.

Syntax
DROP ROLE role [CASCADE];

Parameters

role The name of the role to drop

CASCADE Revoke the role from users and other roles before
dropping the role

Permissions

Must be a superuser to drop a role.

Example
=> DROP ROLE appadmin;

NOTICE: User bob depends on Role appadmin

ROLLBACK: DROP ROLE failed due to dependencies

DETAIL: Cannot drop Role appadmin because other objects depend on it

-821-

 SQL Statements

HINT: Use DROP ROLE ... CASCADE to remove granted roles from the dependent

users/roles

=> DROP ROLE appadmin CASCADE;

DROP ROLE

See Also

ALTER ROLE RENAME (page 667)

CREATE ROLE (page 764)

DROP SCHEMA
Permanently removes a schema from the database. Be sure that you want to remove the schema
before you drop it, because DROP SCHEMA is an irreversible process. Use the CASCADE
parameter to drop a schema containing one or more objects.

Syntax
DROP SCHEMA [db-name.]schema [, ...] [CASCADE | RESTRICT]

Parameters

[db-name.] [Optional] Specifies the current database name. Using a
database name prefix is optional, and does not affect the

command in any way. You must be connected to the specified
database.

schema Specifies the name of the schema to drop.

CASCADE Drops the schema even if it contains one or more objects.

RESTRICT Drops the schema only if it does not contain any objects (the
default).

Privileges

Schema owner

Restrictions

You cannot drop the PUBLIC schema.

Notes

 A schema owner can drop a schema even if the owner does not own all the objects within the
schema. All the objects within the schema are also dropped.

 If a user is accessing an object within a schema that is in the process of being dropped, the
schema is not deleted until the transaction completes.

 Canceling a DROP SCHEMA statement can cause unpredictable results.

-822-

SQL Reference Manual

Examples

The following example drops schema S1 only if it doesn't contain any objects:

=> DROP SCHEMA S1;

The following example drops schema S1 whether or not it contains objects:

=> DROP SCHEMA S1 CASCADE;

DROP SEQUENCE
Removes the specified sequence number generator.

Syntax
DROP SEQUENCE [[db-name.]schema.]name [, ...]

Parameters

[[db-name.]schema.

]
[Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within
the current search path (see Setting Search Paths). You must be

connected to the database you specify, and you cannot change
objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

When using more than one schema, specify the schema that contains

the sequence to drop.

name Specifies the name of the sequence to drop.

Permissions

To drop a sequence, the user must be the sequence owner or schema owner.

Notes

 For sequences specified in a table's default expression, the default expression fails the next
time you try to load data. HP Vertica does not check for these instances.

 The CASCADE keyword is not supported. Sequences used in a default expression of a
column cannot be dropped until all references to the sequence are removed from the default
expression.

Example

The following command drops the sequence named sequential.

=> DROP SEQUENCE sequential;

-823-

 SQL Statements

See Also

ALTER SEQUENCE (page 669)

CREATE SEQUENCE (page 765)

CURRVAL (page 353)

GRANT (Sequence) (page 838)

NEXTVAL (page 351)

Using Sequences and Sequence Privileges in the Administrator's Guide

DROP SUBNET

Removes a subnet from HP Vertica. You can use the CASCADE option to also remove the subnet
from any database definition. (See Identify the Database or Node(s) used for Import/Export for
more information.)

Syntax
DROP SUBNET subnet-name [CASCADE]

Parameters

The parameters are defined as follows:

subnet-name The subnet you want to remove.

If you remove a subnet, be sure your database is not configured to allow export on the public
subnet. (See Identify the Database or Node(s) used for Import/Export for more information.)

Permissions

Must be a superuser to drop a subnet.

DROP TABLE
Removes a table and, optionally, its associated projections.

Syntax
DROP TABLE [IF EXISTS] [[db-name.]schema.]table [, ...] [CASCADE]

Parameters

[IF EXISTS] If specified, DROP TABLE does not report an error if one or of the tables

to be dropped does not exist. This clause is useful in SQL scripts where
you want to drop a table if it exists before recreating it.

-824-

SQL Reference Manual

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies objects

that are not unique within the current search path (see Setting Schema
Search Paths).

You can optionally precede a schema with a database name, but you

must be connected to the database you specify. You cannot make
changes to objects in other databases.

The ability to specify different database objects (from database and

schemas to tables and columns) lets you qualify database objects as
explicitly as required. For example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a database,

schema, table, and column (mydb.myschema.mytable.column1).

table Specifies the table name. When using more than one schema, specify the
schema that contains the table in the DROP TABLE statement.

CASCADE [Optional] Drops all projections that include the table.

NOTE: You cannot use the CASCADE option when dropping external

tables. For more information, see External Table Support in the
Administrator's Guide.

Permissions

Table owner with USAGE privilege on schema that contains the table or schema owner

Note: The schema owner can drop a table but cannot truncate a table.

Notes

 Canceling a DROP TABLE statement can cause unpredictable results.

 Make sure that all other users have disconnected before using DROP TABLE.

 Views that reference a table that is dropped and then replaced by another table with the same
name continue to function and use the contents of the new table, as long as the new table
contains the same columns and column names.

 Use the multiple projection syntax in K-safe clusters.

Examples

If you try to drop a table with associated projections, a message listing the projections displays.
For example:

=> DROP TABLE d1;

NOTICE: Constraint - depends on Table d1

NOTICE: Projection d1p1 depends on Table d1

NOTICE: Projection d1p2 depends on Table d1

NOTICE: Projection d1p3 depends on Table d1

NOTICE: Projection f1d1p1 depends on Table d1

NOTICE: Projection f1d1p2 depends on Table d1

NOTICE: Projection f1d1p3 depends on Table d1

ERROR: DROP failed due to dependencies: Cannot drop Table d1 because other objects

depend on it

HINT: Use DROP ... CASCADE to drop the dependent objects too.

=> DROP TABLE d1 CASCADE;

-825-

 SQL Statements

DROP TABLE

=> CREATE TABLE mytable (a INT, b VARCHAR(256));

CREATE TABLE

=> DROP TABLE IF EXISTS mytable;

DROP TABLE

=> DROP TABLE IF EXISTS mytable; -- Doesn't exist

NOTICE: Nothing was dropped

DROP TABLE

See Also

DELETE (page 807)

DROP PROJECTION (page 818)

TRUNCATE TABLE (page 927)

Adding Nodes and Deleting Data in the Administrator's Guide

DROP TRANSFORM FUNCTION
Drops a User Defined Transform Function (UDTF) from the HP Vertica catalog.

Syntax
DROP TRANSFORM FUNCTION [[db-name.]schema.]name [, ...]

... ([[argname] argtype [, ...]])

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema name.
Using a database name identifies objects that are not unique within the
current search path (see Setting Search Paths). You must be

connected to the database you specify, and you cannot change
objects in other databases.

Specifying different database objects lets you qualify database objects

as explicitly as required. For example, you can use a database and a
schema name (mydb.myschema).

name Specifies the name of the transform function to drop.

argname Specifies the name of the argument, typically a column name.

argtype Specifies the data type for argument(s) that are passed to the function.

Argument types must match HP Vertica type names. See SQL Data
Types (page 71).

Permissions

Must be a superuser, function owner, or schema owner to drop a function.

Notes

To drop a transform function, you must specify the argument types because there could be several
functions that share the same name with different parameters.

-826-

SQL Reference Manual

Example

The following command drops the tokenize UDTF in the macros schema:

=> DROP TRANSFORM FUNCTION macros.tokenize(varchar);

DROP TRANSFORM FUNCTION

See Also

CREATE TRANSFORM FUNCTION (page 734)

Using User Defined Transforms in the Programmer's Guide

DROP USER
Removes a name from the list of authorized database users.

Syntax
DROP USER name [, ...] [CASCADE]

Parameters

name Specifies the name or names of the user to drop.

CASCADE [Optional] Drops all user-defined objects created by the user dropped,

including schema, table and all views that reference the table, and the
table's associated projections.

Permissions

Must be a superuser to drop a user.

Examples

DROP USER <name> fails if objects exist that were created by the user, such as schemas, tables

and their associated projections:

=> DROP USER user1;

 NOTICE: Table T_tbd1 depends on User user1

 ROLLBACK: DROP failed due to dependencies

 DETAIL: Cannot drop User user1 because other objects depend on it

 HINT: Use DROP ... CASCADE to drop the dependent objects too

DROP USER <name> CASCADE succeeds regardless of any pre-existing user-defined objects. The
statement forcibly drops all user-defined objects, such as schemas, tables and their associated
projections:

=> DROP USER user1 CASCADE;

-827-

 SQL Statements

Caution: Tables owned by the user being dropped cannot be recovered after you issue DROP

USER CASCADE.

DROP USER <username> succeeds if no user-defined objects exist (no schemas, tables or
projections defined by the user):

=> CREATE USER user2;

=> DROP USER user2;

See Also

ALTER USER (page 679)

CREATE USER (page 801)

DROP VIEW

Removes the specified view. This statement drops only the specified view. HP Vertica does not
support a cascade parameter for views, nor does it check for dependencies on the dropped view.
Any other views that reference the dropped view will fail.

If you drop a view and replace it with another view or table with the same name and column
names, any views dependent on the dropped view continue to function using the new view. If you
change the column data type in the new view, the server coerces the old data type to the new one
if possible. Otherwise, it returns an error.

Syntax
DROP VIEW name [, ...]

Parameters

name Specifies the name of the view to drop.

Permissions

To drop a view, the user must be the view owner and have USAGE privileges on the schema or be
the schema owner.

Examples

=> DROP VIEW myview;

END
Ends the current transaction and makes all changes that occurred during the transaction
permanent and visible to other users.

-828-

SQL Reference Manual

Syntax
COMMIT [WORK | TRANSACTION]

Parameters

WORK | TRANSACTION Have no effect; they are optional keywords for readability.

Permissions

No special permissions required.

Notes

COMMIT (page 697) is a synonym for END.

See Also

 Transactions

 Creating and Rolling Back Transactions

 BEGIN (page 682)

 ROLLBACK (page 867)

 START TRANSACTION (page 926)

EXPLAIN
Returns the query plan execution strategy to standard output.

Syntax
EXPLAIN { SELECT... | INSERT... | UPDATE... }

Returns

A compact representation of the query plan, laid out hierarchically. For example:

 => EXPLAIN SELECT * FROM hTicks h FULL OUTER JOIN aTicks a ON (h.time = a.time);

 QUERY PLAN DESCRIPTION:

 Access Path:

 +-JOIN HASH [FullOuter] [Cost: 31, Rows: 4 (NO STATISTICS)] (PATH ID: 1) Outer (FILTER) Inner (FILTER)

 | Join Cond: (h."time" = a."time")

 | Execute on: All Nodes

 | +-- Outer -> STORAGE ACCESS for h [Cost: 15, Rows: 4 (NO STATISTICS)] (PATH ID: 2)

 | | Projection: public.HTicks_node0001

 | | Materialize: h.stock, h."time", h.price

 | | Execute on: All Nodes

 | +-- Inner -> STORAGE ACCESS for a [Cost: 15, Rows: 4 (NO STATISTICS)] (PATH ID: 3)

 | | Projection: public.ATicks_node0001

 | | Materialize: a.stock, a."time", a.price

 | | Execute on: All Nodes

-829-

 SQL Statements

Permissions

Privileges required to run this command are the same privileges required to run the query you
preface with the EXPLAIN keyword.

Notes

 Information about understanding the EXPLAIN command's output is described in
Understanding Query Plans in the Administrator's Guide.

 Query plans rely on reasonably representative statistics of your data. See Collecting Statistics
in the Administrator's Guide for details.

EXPORT TO VERTICA

Exports an entire table, columns from a table, or the results of a SELECT (page 870) statement to
another HP Vertica database. Exported data is written to the target database using AUTO mode.
Exporting data to another database requires first establishing a connection to the target database
using the CONNECT (page 697) statement. See Exporting Data for more setup information.

You can export data from an earlier HP Vertica release, as long as the earlier release is a version
of the last major release. For instance, for Version 6.x, you can export data from any version of 5.x,
but not from 4.x.

By default, using EXPORT TO VERTICA to copy data to another database occurs over the HP
Vertica private network. Connecting to a public network requires some configuration. For
information about using this statement to copy data across a public network, see
Importing/Exporting From Public Networks.

Syntax
EXPORT TO VERTICA database.[dest-schema.]dest-table

... [(dest-column [,dest-column2,...])]

... { AS SELECT (page 870) select-expression

... | FROM [source-schema.]source-table

... [(source-column [,source-column2,...])]};

Parameters

database A string containing the name of the database to

receive the exported data. There must be an active
connection to this database for the export to
succeed.

.[dest-schema.]

dest-table
The table to store the exported data (schema
specification is optional). This table must already
exist.

dest-column

 [,dest-column2,...]
A list of columns in the target table to store the
exported data.

-830-

SQL Reference Manual

AS SELECT select-expression A standard SELECT expression that selects the

data to be exported. See SELECT (page 870) for
the syntax.

FROM [source-schema.]

source-table
The table that contains the data to be exported

(schema optional)

source-column

[,source-column2,...]
A list of the columns in the source table to export. If
present, only these columns are exported.

Notes

Importing and exporting data fails if either side of the connection is a single-node cluster installed
to localhost, or you do not specify a host name or IP address.

Permissions

 SELECT privileges on the source table

 USAGE privilege on source table schema

 INSERT privileges for the destination table in target database

 USAGE privilege on destination table schema

Source and Destination Column Mapping

To complete a successful export, the EXPORT TO statement maps source table columns to
destination table columns. If you do not supply a list of source and destination columns, EXPORT
attempts to match columns in the source table with corresponding columns in the destination
table. Auto-projections for the target table are similar to the projections for the source table.

You can optionally supply lists of either source columns to be copied, columns in the destination
table where data should be stored, or both. Specifying the lists lets you select a subset of source
table columns to copy to the destination table. Since source and destination lists are not required,
results differ depending on which list is present. The following table presents the results of
supplying one or more lists:

Omit Source Column List Supply Source Column List

-831-

 SQL Statements

Omit Destination Column List
Matches all columns in the source
table to columns in the destination

table. The number of columns in the
two tables need not match, but the
destination table must not have fewer

columns than the source.

Copies content only from the
supplied list of source table columns.

Matches columns in the destination
table to columns in the source list.
The number of columns in the two

tables need not match, but the
destination table must not have fewer
columns than the source.

Supply Destination Column List
Matches columns in the destination

column list to columns in the source.
The number of columns in the
destination list must match the

number of columns in the source
table.

Matches columns from the source

table column lists to those in the
destination table. The lists must have
the same number of columns.

Examples

First, open the connection to the other database, then perform a simple export of an entire table to
an identical table in the target database.

=> CONNECT TO VERTICA testdb USER dbadmin PASSWORD '' ON 'VertTest01',5433;

CONNECT

=> EXPORT TO VERTICA testdb.customer_dimension FROM customer_dimension;

Rows Exported

 23416

(1 row)

The following statement demonstrates exporting a portion of a table using a simple SELECT
(page 870) statement.

=> EXPORT TO VERTICA testdb.ma_customers AS SELECT customer_key, customer_name,

annual_income

-> FROM customer_dimension WHERE customer_state = 'MA';

Rows Exported

 3429

(1 row)

This statement exports several columns from one table to several different columns in the target
database table using column lists. Remember that when supplying both a source and destination
column list, the number of columns must match.

=> EXPORT TO VERTICA testdb.people (name, gender, age) FROM customer_dimension

-> (customer_name, customer_gender, customer_age);

Rows Exported

 23416

(1 row)

You can export tables (or columns) containing Identity and Auto-increment values, but the
sequence values are not incremented automatically at their destination.

-832-

SQL Reference Manual

You can also use the EXPORT TO VERTICA statement with a SELECT (page 870) AT EPOCH
LATEST expression to include data from the latest committed DML transaction.

See Also

CONNECT (page 697)

COPY FROM VERTICA (page 711)

DISCONNECT (page 809)

GRANT Statements

GRANT (Database)

Grants the right to create schemas within the database to a user or role. By default, only the
superuser has the right to create a database schema.

Syntax
GRANT {

... { CREATE [, ...]

... | { TEMPORARY | TEMP }

... | ALL [PRIVILEGES]

... | CONNECT } }

... ON DATABASE database-name [, ...]

... TO { username | rolename } [, ...]

... [WITH GRANT OPTION]

Parameters

CREATE Allows the user to create schemas within the specified
database.

TEMPORARY | TEMP Allows the user to create temp tables in the database.

Note: This privilege is provided by default with CREATE

USER (page 801).

CONNECT Allows the user to connect to a database.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

database-name Identifies the database in which to grant the privilege.

username | rolename Grants the privilege to the specified user or role.

WITH GRANT OPTION Allows the recipient of the privilege to grant it to other users.

Example

The following example grants Fred the right to create schemas on vmartdb.

-833-

 SQL Statements

=> GRANT CREATE ON DATABASE vmartdb TO Fred;

See Also

REVOKE (Database) (page 855)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Procedure)

Grants privileges on a procedure to a database user or role. Only the superuser can grant
privileges to a procedure. To grant privileges to a schema containing the procedure, users must
have USAGE privileges. See GRANT (Schema) (page 837).

Syntax
GRANT { EXECUTE | ALL }

 ON PROCEDURE [[db-name.]schema.]procedure-name [, ...]

 ([argname] argtype [,...])

 TO { username | role | PUBLIC } [, ...]

Parameters

{ EXECUTE | ALL } The type of privilege to grant the procedure. Either
EXECUTE or ALL are applicable privileges to

grant. When using more than one schema,
specify the schema that contains the procedure.

[[db-name.]schema-name.] [Optional] Specifies the database name and

optional schema name. Using a database name
identifies objects that are not unique within the
current search path (see Setting Search Paths).

You must be connected to the database you
specify, and you cannot change objects in other
databases.

Specifying different database objects lets you
qualify database objects as explicitly as required.
For example, you can use a database and a

schema name (mydb.myschema).

procedure-name The SQL or User Defined procedure on which to

grant the privilege. If using more than one schema,
you must specify the schema that contains the
procedure.

argname The optional argument name for the procedure.

argtype The required argument data type or types of the
procedure.

-834-

SQL Reference Manual

{ username | role | PUBLIC }

[,...]

The recipient of the procedure privileges, which

can be one or more users, one or more roles, or all
users and roles (PUBLIC).

 username - Indicates a specific user

 role - Specifies a particular role

 PUBLIC - Indicates that all users and

roles have granted privileges to the
procedure.

Example

The following command grants EXECUTE privileges on the tokenize procedure to users Bob

and Jules, and to the Operator role:

=> GRANT EXECUTE ON PROCEDURE tokenize(varchar) TO Bob, Jules, Operator;

See Also

REVOKE (procedure) (page 856)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Resource Pool)

Grants privileges on one or more resource pools to a database user or role. Once granted usage
rights, users can switch to using the resource pool with ALTER USER (page 679) (username) or
with SET SESSION RESOURCE POOL (page 916).

Syntax
GRANT USAGE

 ON RESOURCE POOL resource-pool [, ...]

 TO { username | role | PUBLIC } [, ...]

Parameters

resource-pool The resource pools on which to grant the privilege.

{ username | role | PUBLIC }

[,...]
The recipient of the procedure privileges, which can be
one or more users, one or more roles, or all users and
roles (PUBLIC).

 username - Indicates one or more user
names.

 role - Indicates one or more roles.

 PUBLIC - Indicates that all users and roles

have granted privileges to the procedure.

See Also

REVOKE (Resource Pool) (page 857)

-835-

 SQL Statements

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Role)

Adds a predefined role to users or other roles. Granting a role does not activate the role
automatically; the user must enable it using the SET ROLE (page 910) command.

Granting a privilege to a role immediately affects active user sessions. When you grant a new
privilege, it becomes immediately available to every user with the role active.

Syntax
GRANT role [,...]

... TO { user | role | PUBLIC } [, ...]

... [WITH ADMIN OPTION];

Parameters

role [,...] The name of one or more roles to be
granted to users or roles

user | role | PUBLIC The name of a user or other role to be

granted the role. If the keyword PUBLIC is
supplied, then all users have access to the
role.

WITH ADMIN OPTION Grants users and roles administrative
privileges for the role. They are able to
grant the role to and revoke the role from

other users or roles.

Notes

HP Vertica will return a NOTICE if you grant a role with or without admin option, to a grantee who
has already been granted that role. For example:

=> GRANT commentor to Bob;

NOTICE 4622: Role "commentor" was already granted to user "Bob"

Creating Roles

These examples create three roles, appdata, applogs, and appadmin, and grant the role to a
user, bob:

=> CREATE ROLE appdata;

CREATE ROLE

=> CREATE ROLE applogs;

CREATE ROLE

=> CREATE ROLE appadmin;

CREATE ROLE

-836-

SQL Reference Manual

=> GRANT appdata TO bob;

GRANT ROLE

Activating a Role

After granting a role to a user, the role must be activated. You can activate a role on a session
basis, or as part of the user's login.

To activate a role for a user's session:

=> CREATE ROLE appdata;

CREATE ROLE

=> GRANT appdata TO bob;

GRANT ROLE

=> SET ROLE appdata

To activate a role as part of the the user's login:

=> CREATE ROLE appdata;

CREATE ROLE

=> GRANT appdata TO bob;

GRANT ROLE

=> ALTER USER bob DEFAULT ROLE appdata;

Granting One Role To Another

Grant two roles to another role:

=> GRANT appdata, applogs TO appadmin; -- grant to other roles

GRANT ROLE

Now, any privileges assigned to either appdata or applogs are automatically assigned to
appadmin as well.

Checking for Circular References

When you grant one role to another role, HP Vertica combines the newly granted role's
permissions with the existing role's permissions. HP Vertica also checks for circular references
when you grant one role to another. The GRANT ROLE function fails with an error if a circular
reference is found.

=> GRANT appadmin TO appdata;

WARNING: Circular assignation of roles is not allowed

HINT: Cannot grant appadmin to appdata

GRANT ROLE

Granting Administrative Privileges

A superuser can assign a user or role administrative access to a role by supplying the optional
WITH ADMIN OPTION argument to the GRANT (page 835) statement. Administrative access
allows the user to grant and revoke access to the role for other users (including granting them
administrative access). Giving users the ability to grant roles lets a superuser delegate role
administration to other users.

-837-

 SQL Statements

As with all user privilege models, database superusers should be cautious when granting any user
a role with administrative privileges. For example, if the database superuser grants two users a
role with administrative privileges, both users can revoke the role of the other user. This example

shows granting the appadmin role (with administrative privileges) to users bob and alice.

After each user has been granted the appadmin role, either use can connect as the other will full
privileges.

=> GRANT appadmin TO bob, alice WITH ADMIN OPTION;

GRANT ROLE

=> \connect - bob

You are now connected as user "bob".

=> REVOKE appadmin FROM alice;

REVOKE ROLE

See Also

REVOKE (Role) (page 858)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Schema)
Grants privileges on a schema to a database user or role.

Syntax
GRANT {

... { CREATE | USAGE } [, ...]

... | ALL [PRIVILEGES] }

... ON SCHEMA [db-name.]schema [, ...]

... TO { username | role | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

CREATE Allows the user read access to the schema and the right to
create tables and views within the schema.

USAGE Allows the user access to the objects contained within the
schema. This allows the user to look up objects within the
schema. Note that the user must also be granted access to the

individual objects. See the GRANT TABLE (page 842) and
GRANT VIEW (page 845) statements.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[db-name.] [Optional] Specifies the current database name. Using a
database name prefix is optional, and does not affect the

command in any way. You must be connected to the specified
database.

-838-

SQL Reference Manual

schema Identifies the schema to which you are granting privileges.

username Grants the privilege to a specific user.

role Grants the privilege to a specific role.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the recipient of the privilege to grant it to other users.

Notes

Newly-created users do not have access to schema PUBLIC by default. Make sure to grant
USAGE on schema PUBLIC to all users you create.

See Also

REVOKE (Schema) (page 859)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Sequence)

Grants privileges on a sequence generator to a user or role. Optionally grants privileges on all
sequences within one or more schemas.

Syntax
GRANT { SELECT | ALL [PRIVILEGES] }

... ON SEQUENCE [[db-name.]schema.]sequence-name [, ...]

... | ON ALL SEQUENCES IN SCHEMA schema-name [, ...]

... TO { username | role | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

SELECT Allows the right to use both the CURRVAL() (page 353) and
NEXTVAL() (page 351) functions on the specified sequence.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[[db-name.]schema.]

[Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify,
and you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

sequence-name Specifies the sequence on which to grant the privileges. When
using more than one schema, specify the schema that

contains the sequence on which to grant privileges.

-839-

 SQL Statements

ON ALL SEQUENCES IN SCHEMA Grants privileges on all sequences within one or more

schemas to a user and/or role.

username Grants the privilege to the specified user.

role Grants the privilege to the specified role.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the user to grant the same privileges to other users.

Notes

The user must also be granted USAGE on the schema that contains the sequence. See GRANT
(Schema) (page 837).

See Also

REVOKE (Sequence) (page 860)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (Storage Location)

Grants privileges to non-superusers or roles to read from or write to an HP Vertica storage
location. First, a superuser creates (page 426) a special class of storage location with the USER

keyword through the usage parameter. Creating a storage location with a USER type specifies that
the the location can be made accessible to non-dbadmin users. The superuser must then grant
users or roles the appropriate privileges through the GRANT (Storage Location) statement.

Note: GRANT/REVOKE (Storage Location) statements are applicable only to 'USER' storage

locations. If the storage location is dropped, all privileges are revoked automatically.

Syntax
GRANT { READ | WRITE | ALL [PRIVILEGES] }

... ON LOCATION 'path' [, ON 'node']

... TO { username | role | PUBLIC } [, ...]

... ... [WITH GRANT OPTION]

Parameters

READ Lets users or roles copy data from files in the
storage location into a table.

WRITE Lets users or roles export data from a table

to a storage location. WRITE privileges also
lets users export COPY statement
exceptions and rejected data files from HP

Vertica to the specified storage location.

ALL Applies to all privileges.

-840-

SQL Reference Manual

PRIVILEGES [Optional] For SQL standard compatibility

and is ignored.

ON LOCATION 'path'

 [, ON 'node']

 path—[Required] Specifies where
the storage location is mounted

 node—[Optional] The node on which
the location is available. If this

parameter is omitted, node defaults
to the initiator.

{ username | role | PUBLIC }

[,...]

[Required] The recipient of the privileges,
which can be one or more users, one or

more roles, or all users (PUBLIC).

 username—Indicates a specific user

 role-Specifies a particular role

 PUBLIC-Indicates that all users

have READ and/or WRITE
permissions.

WITH GRANT OPTION [Optional] Allows the grantee to grant the

same READ/WRITE privileges to others.

Notes

Only a superuser can add, alter, retire, drop, and restore a location, as well as set and measure
location performance. All other users or roles must be granted READ and/or WRITE privileges on
storage locations.

Example

In the following series of commands, a superuser creates a new storage location and grants it to
user Bob:

dbadmin=> SELECT ADD_LOCATION('/home/dbadmin/UserStorage/BobStore',

 'v_mcdb_node0007', 'USER');

 ADD_LOCATION

 /home/dbadmin/UserStorage/BobStore' added.

(1 row)

Now the superuser grants Bob READ/WRITE permissions on the /BobStore location:

dbadmin=> GRANT ALL ON LOCATION '/home/dbadmin/UserStorage/BobStore' TO Bob;

GRANT PRIVILEGE

Revoke all storage location privileges from Bob:

dbadmin=> REVOKE ALL ON LOCATION '/home/dbadmin/UserStorage/BobStore' FROM Bob;

REVOKE PRIVILEGE

Grant privileges to Bob on the BobStore location again, this time specifying the node:

dbadmin=> GRANT ALL ON LOCATION '/home/dbadmin/UserStorage/BobStore'

 ON v_mcdb_node0007 TO Bob;

GRANT PRIVILEGE

Revoke all storage location privileges from Bob:

-841-

 SQL Statements

dbadmin=> REVOKE ALL ON LOCATION '/home/dbadmin/UserStorage/BobStore'

 ON v_mcdb_node0007 FROM Bob;

REVOKE PRIVILEGE

See Also

Storage Management Functions (page 636)

REVOKE (Storage Location) (page 861)

Granting and Revoking Privileges in the Administrator's Guide

-842-

 842

GRANT (Table)

Grants privileges on a table to a user or role. Optionally grants privileges on all tables within one or
more schemas.

Note: Granting privileges on all tables within a schema includes all views in the same schema.

Syntax
GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES } [,...]

... | ALL [PRIVILEGES] }

... ON [TABLE] [[db-name.]schema.]tablename [, ...]

... | ON ALL TABLES IN SCHEMA schema-name [, ...]

... TO { username | role | PUBLIC } [, ...]

... [WITH GRANT OPTION]

Parameters

SELECT Allows the user to SELECT from any column of the specified table.

INSERT Allows the user to INSERT tuples into the specified table and to

use the COPY (page 699) command to load the table.

Note: COPY FROM STDIN is allowed to any user granted the

INSERT privilege, while COPY FROM <file> is an admin-only
operation.

UPDATE Allows the user to UPDATE tuples in the specified table.

DELETE Allows DELETE of a row from the specified table.

REFERENCES Is necessary to have this privilege on both the referencing and
referenced tables in order to create a foreign key constraint. Also

need USAGE on schema that contains the table.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see
Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot
make changes to objects in other databases.

The ability to specify different database objects (from database
and schemas to tables and columns) lets you qualify database
objects as explicitly as required. For example, you can specify a

table and column (mytable.column1), a schema, table, and

column (myschema.mytable.column1), and as full

qualification, a database, schema, table, and column
(mydb.myschema.mytable.column1).

tablename Specifies the table on which to grant the privileges. When using
more than one schema, specify the schema that contains the table

-843-

 SQL Statements

on which to grant privileges.

ON ALL TABLES IN SCHEMA Grants privileges on all tables (and by default all views) within one
or more schemas to a user and/or role.

username Grants the privilege to the specified user.

role Grants the privilege to the specified role.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Allows the user to grant the same privileges to other users.

Notes

 The user must also be granted USAGE on the schema that contains the table. See GRANT
(Schema) (page 837).

 To use the DELETE (page 807) or UPDATE (page 929) commands with a WHERE clause
(page 901), a user must have both SELECT and UPDATE and DELETE privileges on the
table.

 The user can be granted privileges on a global temporary table, but not a local temporary
table.

See Also

REVOKE (Table) (page 863)

Granting and Revoking Privileges in the Administrator's Guide

GRANT (User Defined Extension)

Grants privileges on a user-defined extension (UDx) to a database user or role. Optionally grants
all privileges on the user-defined extension within one or more schemas. You can grant privileges
on the following user-defined extension types:

 User Defined Functions (UDF)

 User Defined SQL Functions

 User Defined Scalar Functions (UDSF)

 User Defined Transform Functions (UDTF)

 User Defined Aggregate Functions (UDAF)

 User Defined Analytic Functions (UDAnF)

 User Defined Load Functions (UDL)

 UDL Filter

 UDL Parser

 UDL Source

Syntax
GRANT { EXECUTE | ALL }

-844-

SQL Reference Manual

... ON FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON AGGREGATE FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON ANALYTIC FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON TRANSFORM FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON FILTER [[db-name.]schema.]filter-name [, ...]

... | ON PARSER [[db-name.]schema.]parser-name [, ...]

... | ON SOURCE [[db-name.]schema.]source-name [, ...]

... | ON ALL FUNCTIONS IN SCHEMA schema-name [, ...]

... ([argname] argtype [, ...])

... TO { username | role | PUBLIC } [, ...]

Parameters

{ EXECUTE | ALL } The type of privilege to grant the function:

 EXECUTE grants permission to call a
user-defined function/extension

 ALL applies to all privileges on the

user-defined function/extension

[[db-name.]schema-name.] [Optional] Specifies the database name and
optional schema name. Using a database name
identifies objects that are not unique within the

current search path (see Setting Search Paths).
You must be connected to the database you
specify, and you cannot change objects in other

databases.

Specifying different database objects lets you
qualify database objects as explicitly as required.

For example, you can use a database and a
schema name (mydb.myschema).

function-name

filter-name

parser-name

source-name

The name of the user-defined extension on which
to grant the privilege. If you use more than one
schema, you must specify the schema that

contains the UDx, as noted in the previous row.

ON ALL FUNCTIONS IN SCHEMA Grants privileges on all UDx's within one or more
schemas to a user and/or role.

argname The optional argument name for the user-defined
extension.

argtype The argument data type of the function.

{ username | role | PUBLIC }

 [,...]

The recipient of the function privileges, which can
be one or more users, one or more roles, or all
users and roles (PUBLIC).

 username - Indicates a specific user

 role - Specifies a particular role

 PUBLIC - Indicates that all users and roles
have granted privileges to the function.

-845-

 SQL Statements

Permissions

Only a superuser and owner can grant privileges on a user-defined extension. To grant privileges
to a specific schema UDx or to all UDx's within one or more schemas, grantees must have USAGE
privileges on the schema. See GRANT (Schema) (page 837).

Examples

The following command grants EXECUTE privileges on the myzeroifnull SQL function to users

Bob and Jules, and to the Operator role. The function takes one integer argument:

=> GRANT EXECUTE ON FUNCTION myzeroifnull (x INT) TO Bob, Jules, Operator;

The following command grants EXECUTE privileges on all functions in the zero-schema schema

to user Bob:

=> GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA zero-schema TO Bob;

The following command grants EXECUTE privileges on the tokenize transform function to user

Bob and to the Operator role:

=> GRANT EXECUTE ON TRANSFORM FUNCTION tokenize(VARCHAR) TO Bob, Operator;

The following command grants EXECUTE privileges on the HCatalogSource() source to user
Alice.

=> CREATE USER Alice;

=> GRANT USAGE ON SCHEMA hdfs TO Alice;

=> GRANT EXECUTE ON SOURCE HCatalogSource() TO Alice;

The next command grants all privileges on the HCatalogSource() source to user Alice:

=> GRANT ALL ON SOURCE HCatalogSource() TO Alice;

See Also

REVOKE (User Defined Extension) (page 864)

Granting and Revoking Privileges in the Administrator's Guide

Developing and Using User Defined Functions in the Programmer's Guide

GRANT (View)

Grants privileges on a view to a database user or role.

Syntax
GRANT

... { SELECT | ALL [PRIVILEGES] }

... ON [[db-name.]schema.]viewname [, ...]

... TO { username | role | PUBLIC } [, ...]

... [WITH GRANT OPTION]

-846-

SQL Reference Manual

Parameters

SELECT Grants a user or role SELECT operations to a view, and any

resources referenced within it.

ALL Grants a user or role all privileges to a view, and any resources
referenced within it.

PRIVILEGES [Optional] For SQL standard compatibility and is ignored.

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not

unique within the current search path (see Setting Search
Paths). You must be connected to the database you specify, and
you cannot change objects in other databases.

Specifying different database objects lets you qualify database
objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

viewname Specifies the view on which to grant the privileges. When using
more than one schema, specify the schema that contains the
view, as noted above.

username Grants the privilege to the specified user.

role Grants the privilege to the specified role.

PUBLIC Grants the privilege to all users.

WITH GRANT OPTION Permits the user to grant the same privileges to other users.

Note: If userA wants to grant userB access to a view, userA must specify WITH GRANT

OPTION on the base table, in addition to the view, regardless of whether userB (grantee) has
access to the base table.

See Also

REVOKE (View) (page 866)

Granting and Revoking Privileges in the Administrator's Guide

INSERT

Inserts values into all projections of a table. You must insert one complete tuple at a time. By
default, Insert first uses the WOS. When the WOS is full, the INSERT overflows to the ROS.

Note: If a table has no associated projections, HP Vertica creates a default superprojection for
the table in which to insert the data.

HP Vertica does not support subqueries as the target of an INSERT statement.

-847-

 SQL Statements

Syntax
INSERT [/*+ direct */] [/*+ label(label-name)*/]

... INTO [[db-name.]schema.]table

... [(column [, ...])]

... { DEFAULT VALUES

... | VALUES ({ expression | DEFAULT } [, ...])

... | SELECT... (page 870) }

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

HP Vertica accepts optional spaces before and after the plus (+) sign and

the direct hint. Space characters between the opening /* or the

closing */ are not permitted. The following directives are all acceptable:

/*+direct*/

/* + direct*/

/*+ direct*/

/*+direct */

Note: If you insert using the direct hint, you still need to issue a COMMIT

or ROLLBACK command to finish the transaction.

/*+ label

(label-name)*/

Passes a user-defined label to a query as a hint, letting you quickly identify
labeled queries for profiling and debugging. See Query Labeling in the
Administrator's Guide.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies objects
that are not unique within the current search path (see Setting Schema
Search Paths).

You can optionally precede a schema with a database name, but you must
be connected to the database you specify. You cannot make changes to
objects in other databases.

The ability to specify different database objects (from database and
schemas to tables and columns) lets you qualify database objects as
explicitly as required. For example, you can specify a table and column

(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a database,

schema, table, and column (mydb.myschema.mytable.column1).

table Specifies the name of a table in the schema. You cannot INSERT tuples

into a projection. When using more than one schema, specify the schema
that contains the table, as noted above.

column Specifies one or more table columns. You can list the target columns in any

order. If no list of column names is given at all, the default is all the columns
of the table in their declared order; or the first N column names, if there are
only N columns supplied by the VALUES clause or query. The values

supplied by the VALUES clause or query are associated with the explicit or
implicit column list left-to-right.

DEFAULT VALUES Fills all columns with their default values as specified in CREATE TABLE

(page 770).

-848-

SQL Reference Manual

VALUES Specifies a list of values to store in the corresponding columns. If no value

is supplied for a column, HP Vertica implicitly adds a DEFAULT value, if
present. Otherwise HP Vertica inserts a NULL value. If the column is
defined as NOT NULL, INSERT returns an error.

expression Specifies a value to store in the corresponding column. Do not use
meta-functions in INSERT statements.

DEFAULT Stores the default value in the corresponding column.

SELECT... Specifies a query (SELECT (page 870) statement) that supplies the rows

to insert. An INSERT ... SELECT statement refers to tables in both its
INSERT and SELECT clauses. Isolation level applies only to the SELECT
clauses and work just like an normal query.

Permissions

Table owner or user with GRANT OPTION is grantor.

 INSERT privilege on table

 USAGE privilege on schema that contains the table

Examples
=> INSERT INTO t1 VALUES (101, 102, 103, 104);

=> INSERT INTO customer VALUES (10, 'male', 'DPR', 'MA', 35);

=> INSERT INTO retail.t1 (C0, C1) VALUES (1, 1001);

=> INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < '2004-05-07';

HP Vertica does not support subqueries as the target of an INSERT statement, and the following
query returns an error message:

INSERT INTO t1 (col1, col2) VALUES ('abc', (SELECT mycolumn FROM mytable));

ERROR 4821: Subqueries not allowed in target of insert

You can rewrite the above query as follows:

INSERT INTO t1 (col1, col2) (SELECT 'abc', mycolumn FROM mytable);

 OUTPUT

 0

(1 row)

When doing an INSERT /*+ direct */ HP Vertica takes optional spaces before and after the plus
sign (e.g., between the /* and the +). Both of the following commands, for example, load data into
the ROS:

=> CREATE TABLE rostab(x TIMESTAMP);

=> INSERT /*+ direct */ INTO rostab VALUES ('2011-02-10 12:01:00');

=> INSERT /*+ direct */ INTO rostab VALUES ('2011-02-15 12:01:00');

=> SELECT wos_row_count, ros_row_count FROM column_storage

 WHERE anchor_table_name = 'rostab';

 wos_row_count | ros_row_count

---------------+---------------

 0 | 2

 0 | 2

-849-

 SQL Statements

(2 rows)

MERGE
Lets you load a batch of new records while simultaneously updating existing records by internally
combining INSERT (page 846) and UPDATE (page 929) SQL operations in one statement. In a
MERGE operation, HP Vertica replaces the values of the specified columns in all rows of the
target table for which a specific condition is true. All other columns and rows in the table are
unchanged. By default MERGE uses the WOS, and if the WOS fills up, data overflows to the ROS.

When you write a MERGE statement, you specify a target and source table. You also provide a

search condition through the ON clause, which HP Vertica uses to evaluate each row in the source
table in order to update or insert its records into the target table.

You can also use optional WHEN MATCHED and WHEN NOT MATCHED clauses to further refine
results. For example, if you use one or both of:

 WHEN MATCHED THEN UPDATE: HP Vertica updates (replaces) the values of the specified

columns in all rows when it finds more than one matching row in the target table for a row in the
source table. All other columns and rows in the table are unchanged. If HP Vertica finds more
than one matching row in the source table for a row in the target table, it returns a run-time
error.

 WHEN NOT MATCHED THEN INSERT: HP Vertica inserts into the target table all rows from the

source table that do not match any rows in the target table.

You can help improve the performance of MERGE operations by ensuring projections are
designed for optimal use. See Projection Design for Merge Operations in the Administrator's
Guide.

Syntax
MERGE [/*+ direct */] INTO [[db-name.]schema.]target-table-name [alias]

... USING [[db-name.]schema.]source-table-name [alias] ON (condition)

... [WHEN MATCHED THEN UPDATE SET column1 = value1 [, column2 = value2 ...]]

... [WHEN NOT MATCHED THEN INSERT (column1 [, column2 ...])

 VALUES (value1 [, value2 ...])]

Returns

The returned value at the end of a MERGE operation is the number of rows updated plus the
number of rows inserted.

Parameters

-850-

SQL Reference Manual

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

HP Vertica accepts optional spaces before and afte r the plus (+)

sign and the direct hint. Space characters between the opening

/* or the closing */ are not permitted. The following directives are

all acceptable:

/*+direct*/

/* + direct*/

/*+ direct*/

/*+direct */

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies
objects that are not unique within the current search path (see

Setting Schema Search Paths).

You can optionally precede a schema with a database name, but
you must be connected to the database you specify. You cannot

make changes to objects in other databases.

The ability to specify different database objects (from database and
schemas to tables and columns) lets you qualify database objects

as explicitly as required. For example, you can specify a table and
column (mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

INTO target-table-name Specifies the target table (with optional alias) that you want to
update with records from the source table. You can merge records

only into the target table and not, for example, into a projection.

MERGE takes an X lock on the target table.

USING source-table-name Specifies the source table (with optional alias) that contains the

data to update or insert into the target table. Source data can come
from a table reference only. Subqueries or joins are not allowed.

ON condition Specifies the search condition that HP Vertica uses to evaluate

each row of source table for matching rows in target table.

WHEN MATCHED THEN UPDATE SET

column1 = value1

[Optional] Specifies what to update in the target table when the
search condition matches. Use this clause when you want to ensure

that HP Vertica updates existing rows in the target table with data
from the source table. You can use only one WHEN MATCHED
clause per statement.

HP Vertica updates the target table when it finds more than one
matching row in the target table for a row in the source table. If HP
Vertica finds more than one matching row in the source table for a

row in the target table, you'll see a run-time error.

-851-

 SQL Statements

WHEN NOT MATCHED THEN INSERT

(column1,, columnn)

VALUES (value1, ..., valuen)

[Optional] Specifies what to update in the target table when the

search condition does not match. HP Vertica will insert into the
target table all rows from the source table that do not match any
rows in the target table.

You can use only one WHEN NOT MATCHED clause per
statement.

The columns specified must be columns from the target table.

The VALUES clause specifies a list of values to store in the
corresponding columns. If you do not supply a column value, do not
list that column in the WHEN NOT MATCHED clause. For example,

in the following syntax, column 2 (c2) is excluded from both the
WHEN NOT MATCHED and VALUES clauses:

WHEN NOT MATCHED THEN INSERT (c1, c3, c4)

VALUES (c1_value, c3_value, c4_value)

HP Vertica inserts a NULL value or uses the DEFAULT value

(specified through the CREATE TABLE (page 770) statement) for
column 2 in the above example.

You cannot qualify table name or alias with the columns; for

example, the following is not allowed:

WHEN NOT MATCHED THEN INSERT source.x

If column names are not listed, MERGE behaves like
INSERT-SELECT by assuming that the columns are in the exact
same table definition order.

Using named sequences

If you are using named sequences, HP Vertica can perform a MERGE operation if you omit the

sequence from the query. For example, if you define column c1 as follows, HP Vertica can do a
merge:

CREATE TABLE t (c1 INT DEFAULT s.nextval, c2 INT);

HP Vertica can perform the following merge because it omits the sequence:

MERGE INTO t USING s ON t.c1 = s.c1

WHEN NOT MATCHED THEN INSERT (c1, c2) VALUES (s.c1, s.c2);

However, HP Vertica cannot perform a merge if you use a sequence to update or insert into the
query, such as in the following statement, which uses the implicit/default s.nextval for c1:

MERGE INTO t USING s ON t.c1 = s.c1

WHEN NOT MATCHED THEN INSERT (c2) VALUES (s.c2);

HP Vertica cannot perform the following merge because it contains an explicit s.nextval

condition:

MERGE INTO t USING s ON t.c1 = s.c1

WHEN MATCHED THEN UPDATE SET c2 = s.nextval;

-852-

SQL Reference Manual

Restrictions

You cannot run a MERGE operation on identity/auto-increment columns or on columns that have
primary key or foreign key referential integrity constraints (as defined in CREATE TABLE
column-constraint (page 783) syntax).

Examples

For examples, see Updating Tables with the MERGE Statement in the Administrator's Guide.

PROFILE
Profiles a single SQL statement.

Syntax
PROFILE { SELECT ... }

Output

Writes a hint to stderr, as described in the example below.

Permissions

Privileges required to run this command are the same privileges required to run the query being
profiled.

Notes

To profile a single statement add the PROFILE (page 852) keyword to the beginning of the SQL
statement, a command that saves profiling information for future analysis:

=> PROFILE SELECT customer_name, annual_income

 FROM public.customer_dimension

 WHERE (customer_gender, annual_income) IN (

 SELECT customer_gender, MAX(annual_income)

 FROM public.customer_dimension

 GROUP BY customer_gender);

A notice and hint display in the terminal window while the statement is executing. For example, the
above query returns the following:

NOTICE: Statement is being profiled.

HINT: select * from v_monitor.execution_engine_profiles where

transaction_id=45035996273740886 and statement_id=10;

NOTICE: Initiator memory estimate for query:

[on pool general: 1418047 KB, minimum: 192290 KB]

NOTICE: Total memory required by query: [1418047 KB]

 customer_name | annual_income

--------------------+---------------

 Meghan U. Miller | 999960

 Michael T. Jackson | 999981

(2 rows)

-853-

 SQL Statements

Tip: Use the statement returned by the hint as a starting point for reviewing the query's profiling
data, such as to see what counters are available.

Real-time profiling example

The following sample statement requests the operators with the largest execution time on each
node:

=> SELECT node_name, operator_name, counter_valueexecution_time_us

 FROM v_monitor.execution_engine_profiles

 WHERE counter_name='execution time (us)'

 ORDER BY node_name, counter_value DESC;

How to use the Linux 'watch' command

You can use the Linux 'watch' command to monitor long-running queries with one-second
updates; for example:

WATCH -n 1 -d "vsql-c \"select node_name, operator_name,

counter_valueexecution_time_us... \""

How to find out which counters are available

To see what counters are available, issue the following command:

=> SELECT DISTINCT(counter_name) FROM EXECUTION_ENGINE_PROFILES;

 counter_name

 estimated rows produced

 bytes spilled

 rle rows produced

 join inner current size of temp files (bytes)

 request wait (us)

 start time

 intermediate rows to process

 producer wait (us)

 rows segmented

 consumer stall (us)

 bytes sent

 rows sent

 join inner completed merge phases

 encoded bytes received

 cumulative size of raw temp data (bytes)

 end time

 bytes read from cache

 total merge phases

 rows pruned by valindex

 cumulative size of temp files (bytes)

 output queue wait (us)

 rows to process

 input queue wait (us)

 rows processed

 memory allocated (bytes)

 join inner cumulative size of temp files (bytes)

 current size of temp files (bytes)

-854-

SQL Reference Manual

 join inner cumulative size of raw temp data (bytes)

 bytes received

 file handles

 bytes read from disk

 join inner total merge phases

 completed merge phases

 memory reserved (bytes)

 clock time (us)

 response wait (us)

 network wait (us)

 rows received

 encoded bytes sent

 execution time (us)

 producer stall (us)

 buffers spilled

 rows produced

(43 rows)

See also

Profiling Query Plan Profiles

RELEASE SAVEPOINT

Destroys a savepoint without undoing the effects of commands executed after the savepoint was
established.

Syntax
RELEASE [SAVEPOINT] savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to
destroy.

Permissions

No special permissions required.

Notes

Once destroyed, the savepoint is unavailable as a rollback point.

Example

The following example establishes and then destroys a savepoint called my_savepoint. The
values 101 and 102 are both inserted at commit.

=> INSERT INTO product_key VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (102);

=> RELEASE SAVEPOINT my_savepoint;

=> COMMIT;

-855-

 SQL Statements

See Also

SAVEPOINT (page 868) and ROLLBACK TO SAVEPOINT (page 869)

REVOKE Statements

REVOKE (Database)
Revokes the right for the specified user or role to create schemas in the specified database.

Syntax
REVOKE [GRANT OPTION FOR]

... { CREATE | { TEMPORARY | TEMP } [,...] }

... | CONNECT

... | ALL [PRIVILEGES] }

... ON DATABASE database-name [, ...]

... FROM { username | role }[, ...]

... [CASCADE]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege itself.
If omitted, revokes both the privilege and the grant option.

CREATE Revokes the right to create schemas in the specified database.

TEMPORARY | TEMP Revokes the right to create temp tables in the database.

Note: This privilege is provided by default with CREATE USER

(page 801).

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

database-name Identifies the database from which to revoke the privilege.

username Identifies the user from whom to revoke the privilege.

role Identifies the role from which to revoke the privilege.

CASCADE Revokes the privilege from the specified user or role and then

from others. After a user or role has been granted a privilege, the
user can grant that privilege to other users and roles. The
CASCADE keyword first revokes the privilege from the initial user

or role, and then from other grantees extended the privilege.

Example

The following example revokes Fred's right to create schemas on vmartdb:

-856-

SQL Reference Manual

=> REVOKE CREATE ON DATABASE vmartdb FROM Fred;

The following revokes Fred's right to create temporary tables in vmartdb:

=> REVOKE TEMPORARY ON DATABASE vmartdb FROM Fred;

See Also

GRANT (Database) (page 832)

Granting and Revoking Privileges

REVOKE (Procedure)

Revokes the execute privilege on a procedure from a user or role.

Syntax
REVOKE EXECUTE

... ON [[db-name.]schema.]procedure-name [, ...]

... ([argname] argtype [,...]])

... FROM { username | PUBLIC | role } [, ...]

...[CASCADE]

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current
search path (see Setting Schema Search Paths).

You can optionally precede a schema with a database

name, but you must be connected to the database you
specify. You cannot make changes to objects in other
databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For

example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification,

a database, schema, table, and column
(mydb.myschema.mytable.column1).

procedure-name Specifies the procedure on which to revoke the execute
privilege. When using more than one schema, specify the
schema that contains the procedure, as noted above.

argname Specifies the argument names used when creating the
procedure.

argtype Specifies the argtypes used when creating the procedure.

username Specifies the user from whom to revoke the privilege.

PUBLIC Revokes the privilege from all users.

-857-

 SQL Statements

role Specifies the role from whom to revoke the privilege.

CASCADE Revokes the privilege from the specified user or role and
then from others. After a user or role has been granted a
privilege, the user can grant that privilege to other users and

roles. The CASCADE keyword first revokes the privilege from

the initial user or role, and then from other grantees
extended the privilege.

Notes

Only a superuser can revoke USAGE on a procedure.

See Also

GRANT (Procedure) (page 833)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (Resource Pool)

Revokes a user's or role's access privilege to a resource pool.

Syntax
REVOKE USAGE

... ON RESOURCE POOL resource-pool

... FROM { username | PUBLIC | role } [, ...]

...[CASCADE]

Parameters

resource-pool Specifies the resource pool from which to revoke the usage privilege.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

role Revokes the privilege from the specified role.

CASCADE Revokes the privilege from the specified user or role and then from

others. After a user or role has been granted a privilege, the user can
grant that privilege to other users and roles. The CASCADE keyword first

revokes the privilege from the initial user or role, and then from other
grantees extended the privilege.

Notes

 HP Vertica checks resource pool permissions when a user initially switches to the pool, rather
than on each access. Revoking a user's permission to use a resource pool does not affect
existing sessions. You need to close the user's open sessions that are accessing the resource
pool if you want to prevent them from continuing to use the pool's resources.

-858-

SQL Reference Manual

 It is an error to revoke a user's access permissions for the resource pool to which they are
assigned (their default pool). You must first change the pool they are assigned to using ALTER
USER ... RESOURCE POOL (page 679) (potentially using GRANT USAGE ON RESOURCE
POOL (page 834) first to allow them to access the new pool) before revoking their access.

See Also

GRANT (Resource Pool) (page 834)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (Role)

Revokes a role (and administrative access, applicable) from a grantee. A user that has
administrator access to a role can revoke the role for other users.

If you REVOKE role WITH ADMIN OPTION, HP Vertica revokes only the ADMIN OPTION from
the grantee, not the role itself.

You can also remove a role's access to another role.

Syntax
REVOKE [ADMIN OPTION FOR] role [, ...]

... FROM { user | role | PUBLIC } [, ...]

...[CASCADE];

Parameters

ADMIN OPTION FOR Revokes just the user's or role's administration access
to the role.

role The name of one or more roles from which you want to

revoke access.

user | role | PUBLIC The name of a user or role whose permission you want
to revoke. You can use the PUBLIC option to revoke

access to a role that was previously made public.

CASCADE Revokes the privilege from the specified user or role and
then from others. After a user or role has been granted a

privilege, the user can grant that privilege to other users
and roles. The CASCADE keyword first revokes the

privilege from the initial user or role, and then from other
grantees extended the privilege.

Notes

If the role you are trying to revoke was not already granted to the grantee, HP Vertica returns a
NOTICE:

=> REVOKE commentor FROM Sue;

-859-

 SQL Statements

NOTICE 2022: Role "commentor" was not already granted to user "Sue"

REVOKE ROLE

See Also

GRANT (Role) (page 835)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (Schema)

Revokes privileges on a schema from a user or role.

Note: In a database with trust authentication, the GRANT and REVOKE statements appear to

work as expected but have no actual effect on the security of the database.

Syntax
REVOKE [GRANT OPTION FOR] {

... { CREATE | USAGE } [,...]

... | ALL [PRIVILEGES] }

... ON SCHEMA [db-name.] schema [, ...]

... FROM { username | PUBLIC | role } [, ...]

...[CASCADE]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege

itself. If omitted, revokes both the privilege and the grant
option.

CREATE Revokes the user read access to the schema and the right

to create tables and views within the schema.

USAGE Revokes user access to the objects contained within the
schema. Note that the user can also have access to the

individual objects revoked. See the GRANT TABLE (page
842) and GRANT VIEW (page 845) statements.

ALL Revokes all privileges previously granted.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[db-name.] [Optional] Specifies the current database name. Using a
database name prefix is optional, and does not affect the

command in any way. You must be connected to the
specified database.

schema Identifies the schema from which to revoke privileges.

username Revokes the privilege to a specific user.

PUBLIC Revokes the privilege to all users.

role Revokes the privilege to a specific role.

-860-

SQL Reference Manual

CASCADE Revokes the privilege from the specified user or role and

then from others. After a user or role has been granted a
privilege, the user can grant that privilege to other users
and roles. The CASCADE keyword first revokes the privilege

from the initial user or role, and then from other grantees
extended the privilege.

See Also

GRANT (Schema) (page 837)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (Sequence)

Revokes privileges on a sequence generator from a user or role. Optionally revokes privileges on
all sequences within one or more schemas.

Syntax
REVOKE [GRANT OPTION FOR]

... { SELECT | ALL [PRIVILEGES] }

... ON SEQUENCE [[db-name.]schema.]sequence-name [, ...]

... | ON ALL SEQUENCES IN SCHEMA schema-name [, ...]

... FROM { username | PUBLIC | role } [, ...]

...[CASCADE]

Parameters

SELECT Revokes the right to use both the CURRVAL() (page 353) and
NEXTVAL() (page 351) functions on the specified sequence.

ALL Applies to all privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,

but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from

database and schemas to tables and columns) lets you qualify
database objects as explicitly as required. For example, you
can specify a table and column (mytable.column1), a

schema, table, and column
(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

-861-

 SQL Statements

sequence-name Specifies the sequence from which to revoke privileges. When

using more than one schema, specify the schema that
contains the sequence from which to revoke privileges.

ON ALL SEQUENCES IN SCHEMA Revokes privileges on all sequences within one or more

schemas from a user and/or role.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

role Revokes the privilege from the specified role.

CASCADE Revokes the privilege from the specified user or role and then
from others. After a user or role has been granted a privilege,

the user can grant that privilege to other users and roles. The
CASCADE keyword first revokes the privilege from the initial

user or role, and then from other grantees extended the
privilege.

See Also

GRANT (Sequence) (page 838)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (Storage Location)
Revokes privileges from a user or role to read from or write to a storage location.

Note: The REVOKE (Storage Location) statement is applicable only to 'USER' storage

locations. See GRANT (Storage Location) (page 839) for more information. If the storage
location is dropped, all user privileges are removed as part of that.

Syntax
REVOKE [GRANT OPTION FOR]

... { READ | WRITE | ALL [PRIVILEGES] }

... ON LOCATION ['path' , [ON 'node']]

... FROM { username | role | PUBLIC } [, ...]

... [CASCADE]

Parameters

GRANT OPTION FOR Revokes GRANT privileges from the grantee.

READ Revokes privileges to copy data from files in a

storage locations into a table.

-862-

SQL Reference Manual

WRITE Revokes privileges to export HP Vertica data from

a table to a storage location. Also revokes
permissions to export the COPY statement's
exceptions/rejections files HP Vertica to a storage

location.

ALL Applies to all privileges.

PRIVILEGES For SQL standard compatibility and is ignored.

{ username | role | PUBLIC }

[,...]

The recipient of the privileges, which can be one or
more users, one or more roles, or all users
(PUBLIC).

 username-Indicates a specific user

 role-Specifies a particular role

 PUBLIC-Indicates that all users have

READ and/or WRITE permissions.

ON LOCATION ('path' ,

 [ON 'node'])

 path—specifies where the storage location
is mounted

 node—the HP Vertica node where the
location is available. If this parameter is
omitted, node defaults to the initiator.

CASCADE Revokes the privilege from the specified user or

role and then from others. After a user or role has
been granted a privilege, the user can grant that
privilege to other users and roles; the CASCADE

keyword first revokes the privilege from the initial
user or role, and then from other grantees
extended the privilege.

Examples

For examples, see GRANT (Storage Location) (page 839)

See Also

Granting and Revoking Privileges in the Administrator's Guide

-863-

 863

REVOKE (Table)

Revokes privileges on a table from a user or role. Optionally revokes privileges on all tables within
one or more schemas.

Note: Revoking privileges on all tables within a schema includes all views in the same schema.

In a database with trust authentication, the GRANT and REVOKE statements appear to work as
expected but have no actual effect on the security of the database.

Syntax
REVOKE [GRANT OPTION FOR]

... {

......{ SELECT | INSERT | UPDATE | DELETE | REFERENCES } [,...]

......| ALL [PRIVILEGES]

... }

... ON [TABLE] [[db-name.]schema.]tablename [, ...]

... | ON ALL TABLES IN SCHEMA schema-name [, ...]

... FROM { username | PUBLIC | role } [, ...]

... [CASCADE]

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege
itself. If omitted, revokes both the privilege and the grant
option.

SELECT Revokes the user's ability to SELECT from any column of the
specified table.

INSERT Revokes the user from being able to INSERT tuples into the

specified table and to use the COPY (page 699) command to
load the table.

Note: COPY FROM STDIN is allowed to any user granted

the INSERT privilege, while COPY FROM <file> is an
admin-only operation.

UPDATE Revokes user from being allowed to UPDATE tuples in the
specified table.

DELETE Revokes user from being able to DELETE a row from the

specified table.

REFERENCES Revokes the user's privilege on both the referencing and
referenced tables for creating a foreign key constraint.

ALL Revokes all previously granted privileges.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,

-864-

SQL Reference Manual

but you must be connected to the database you specify. You

cannot make changes to objects in other databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you

qualify database objects as explicitly as required. For
example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column

(mydb.myschema.mytable.column1).

tablename Specifies the table from which to remove privileges. When
using more than one schema, specify the schema that

contains the table on which to revoke privileges, as noted
above.

ON ALL TABLES IN SCHEMA Revokes privileges on all tables (and by default views) within

one or more schemas from a user and/or role.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

role Revokes the privilege from the specified role.

CASCADE Revokes the privilege from the specified user or role and then
from others. After a user or role has been granted a privilege,

the user can grant that privilege to other users and roles. The
CASCADE keyword first revokes the privilege from the initial

user or role, and then from other grantees extended the
privilege.

See Also

GRANT (Table) (page 842)

Granting and Revoking Privileges in the Administrator's Guide

REVOKE (User Defined Extension)

Revokes the EXECUTE privilege on a user-defined extension (UDx) from a database user or role.

Optionally revokes privileges on all user-defined extensions within one or more schemas. You can
revoke privileges on the following user-defined extension types:

 User Defined Functions (UDF)

 User Defined SQL Functions

 User Defined Scalar Functions (UDSF)

 User Defined Transform Functions (UDTF)

 User Defined Aggregate Functions (UDAF)

-865-

 SQL Statements

 User Defined Analytic Functions (UDAnF)

 User Defined Load Functions (UDL)

 UDL Filter

 UDL Parser

 UDL Source

Syntax
REVOKE EXECUTE

... ON FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON AGGREGATE FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON ANALYTIC FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON TRANSFORM FUNCTION [[db-name.]schema.]function-name [, ...]

... | ON FILTER [[db-name.]schema.]filter-name [, ...]

... | ON PARSER [[db-name.]schema.]parser-name [, ...]

... | ON SOURCE [[db-name.]schema.]source-name [, ...]

... | ON ALL FUNCTIONS IN SCHEMA schema-name [, ...]

... FROM { username | PUBLIC | role } [, ...]

... [CASCADE]

Parameters

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema
identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,
but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from
database and schemas to tables and columns) lets you
qualify database objects as explicitly as required. For

example, you can specify a table and column
(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

function-name

filter-name

parser-name

source-name

Specifies the name of the user-defined extension (UDx) from
which to revoke the EXECUTE privilege. If you use more than

one schema, you must specify the schema that contains the
user-defined function/extension, as noted in the previous
row.

ON ALL FUNCTIONS IN SCHEMA Revokes EXECUTE privileges on all UDx 's within one or more

schemas from a user and/or role.

argname Specifies the optional argument name or names for the UDx.

argtype Specifies the argument data type or types for the UDx.

{ username | role | PUBLIC }

 [,...]

Revokes the privilege from the specified user, role or from all

users and roles that had been granted privileges.

-866-

SQL Reference Manual

CASCADE Revokes the privilege from the specified user or role and then

from others. After a user or role has been granted a privilege,
the user can grant that privilege to other users and roles. The
CASCADE keyword first revokes the privilege from the initial

user or role, and then from other grantees extended the
privilege.

Permissions

Only a superuser and owner can revoke EXECUTE privilege on a user defined extension.

Example

The following command revokes EXECUTE privileges from user Bob on the myzeroifnull
function:

=> REVOKE EXECUTE ON FUNCTION myzeroifnull (x INT) FROM Bob;

The following command revokes EXECUTE privileges on all functions in the zero-schema
schema from user Bob:

=> REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA zero-schema FROM Bob;

The following command revokes EXECUTE privileges from user Bob on the tokenize function:

=> REVOKE EXECUTE ON TRANSFORM FUNCTION tokenize(VARCHAR) FROM Bob;

The following command revokes all privileges on the HCatalogSource() source from user

Alice:

=> REVOKE ALL ON SOURCE HCatalogSource() FROM Alice;

See Also

GRANT (User Defined Extension) (page 843)

Granting and Revoking Privileges in the Administrator's Guide

Developing and Using User Defined Functions in the Programmer's Guide

REVOKE (View)

Revokes user privileges on a view.

Note: In a database with trust authentication, the GRANT and REVOKE statements appear to

work as expected but have no actual effect on the security of the database.

Syntax
REVOKE [GRANT OPTION FOR]

... { SELECT | ALL [PRIVILEGES] }

... ON [VIEW] [[db-name.]schema.]viewname [, ...]

... FROM { username | PUBLIC } [, ...]

... [CASCADE]

-867-

 SQL Statements

Parameters

GRANT OPTION FOR Revokes the grant option for the privilege, not the privilege

itself. If omitted, revokes both the privilege and the grant
option.

SELECT Allows the user to perform SELECT operations on a view and

the resources referenced within it.

PRIVILEGES Is for SQL standard compatibility and is ignored.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema

identifies objects that are not unique within the current search
path (see Setting Schema Search Paths).

You can optionally precede a schema with a database name,

but you must be connected to the database you specify. You
cannot make changes to objects in other databases.

The ability to specify different database objects (from

database and schemas to tables and columns) lets you qualify
database objects as explicitly as required. For example, you
can specify a table and column (mytable.column1), a

schema, table, and column
(myschema.mytable.column1), and as full qualification, a

database, schema, table, and column
(mydb.myschema.mytable.column1).

viewname Specifies the view on which to revoke the privileges. When
using more than one schema, specify the schema that
contains the view, as noted above.

username Revokes the privilege from the specified user.

PUBLIC Revokes the privilege from all users.

CASCADE Revokes the privilege from the specified user or role and then
from others. After a user or role has been granted a privilege,

the user can grant that privilege to other users and roles. The
CASCADE keyword first revokes the privilege from the initial

user or role, and then from other grantees extended the
privilege.

See Also

GRANT (View) (page 845)

Granting and Revoking Privileges

ROLLBACK
Ends the current transaction and discards all changes that occurred during the transaction.

Syntax
ROLLBACK [WORK | TRANSACTION]

-868-

SQL Reference Manual

Parameters

WORK

TRANSACTION

Have no effect; they are optional keywords for readability.

Permissions

No special permissions required.

Notes

When an operation is rolled back, any locks that are acquired by the operation are also rolled
back.

ABORT is a synonym for ROLLBACK.

See Also

 Transactions

 Creating and Rolling Back Transactions

 BEGIN (page 682)

 COMMIT (page 697)

 END (page 827)

 START TRANSACTION (page 926)

SAVEPOINT

Creates a special mark, called a savepoint, inside a transaction. A savepoint allows all commands
that are executed after it was established to be rolled back, restoring the transaction to the state it
was in at the point in which the savepoint was established.

Tip: Savepoints are useful when creating nested transactions. For example, a savepoint could

be created at the beginning of a subroutine. That way, the result of the subroutine could be
rolled back if necessary.

Syntax
SAVEPOINT savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to create.

Permissions

No special permissions required.

Notes

 Savepoints are local to a transaction and can only be established when inside a transaction
block.

-869-

 SQL Statements

 Multiple savepoints can be defined within a transaction.

 If a savepoint with the same name already exists, it is replaced with the new savepoint.

Example

The following example illustrates how a savepoint determines which values within a transaction
can be rolled back. The values 102 and 103 that were entered after the savepoint, my_savepoint,
was established are rolled back. Only the values 101 and 104 are inserted at commit.

=> INSERT INTO T1 (product_key) VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO T1 (product_key) VALUES (102);

=> INSERT INTO T1 (product_key) VALUES (103);

=> ROLLBACK TO SAVEPOINT my_savepoint;

=> INSERT INTO T1 (product_key) VALUES (104);

=> COMMIT;

=> SELECT product_key FROM T1;

--

101

104

(2 rows)

See Also

RELEASE SAVEPOINT (page 854) and ROLLBACK TO SAVEPOINT (page 869)

ROLLBACK TO SAVEPOINT

Rolls back all commands that have been entered within the transaction since the given savepoint
was established.

Syntax
ROLLBACK TO [SAVEPOINT] savepoint_name

Parameters

savepoint_name Specifies the name of the savepoint to roll back to.

Permissions

No special permissions required.

Notes

 The savepoint remains valid and can be rolled back to again later if needed.

 When an operation is rolled back, any locks that are acquired by the operation are also rolled
back.

 ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the
named savepoint.

-870-

SQL Reference Manual

Example

The following example rolls back the values 102 and 103 that were entered after the savepoint,
my_savepoint, was established. Only the values 101 and 104 are inserted at commit.

=> INSERT INTO product_key VALUES (101);

=> SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (102);

=> INSERT INTO product_key VALUES (103);

=> ROLLBACK TO SAVEPOINT my_savepoint;

=> INSERT INTO product_key VALUES (104);

=> COMMIT;

See Also

RELEASE SAVEPOINT (page 854) and SAVEPOINT (page 868)

SELECT
Retrieves a result set from one or more tables.

Syntax
[AT EPOCH LATEST] | [AT TIME 'timestamp']

SELECT [/*+ label(label-name)*/] [ALL | DISTINCT]

... (expression [, ...])]]

... *

... | expression [AS] output_name] [, ...]

... [INTO (page 884)]

... [FROM (page 876) [, ...]]

... [WHERE (page 901) condition]

... [TIMESERIES (page 894) slice_time]

... [GROUP BY (page 878) expression [, ...]]

... [HAVING (page 880) condition [, ...]]

... [WINDOW (page 902) window_name AS (window_definition_clause) [,...]]

... [MATCH (page 887)]

... [UNION (page 896) { ALL | DISTINCT }]

... [EXCEPT (page 872)]

... [INTERSECT (page 880)]

... [ORDER BY (page 893) expression { ASC | DESC } [,...]]

... [LIMIT (page 886) { count | ALL }]

... [OFFSET (page 891) start]

... [FOR UPDATE [OF table_name [, ...]]]

Parameters

AT EPOCH LATEST

Queries all data in the database up to but not including the current
epoch without holding a lock or blocking write operations. See

Snapshot Isolation for more information. AT EPOCH LATEST is

ignored when applied to temporary tables (all rows are returned).

By default, queries run under the READ COMMITTED isolation level,

which means:

-871-

 SQL Statements

 AT EPOCH LATEST includes data from the latest committed

DML transaction.

 Each epoch contains exactly one transaction—the one that
modified the data.

 The Tuple Mover can perform moveout and mergeout
operations on committed data immediately.

AT TIME 'timestamp' Queries all data in the database up to and including the epoch

representing the specified date and time without holding a lock or
blocking write operations. This is called a historical query. AT TIME is
ignored when applied to temporary tables (all rows are returned).

/*+ label

(label-name)*/

Passes a user-defined label to a query as a hint, letting you quickly
identify labeled queries for profiling and debugging. See Query
Labeling in the Administrator's Guide.

* Is equivalent to listing all columns of the tables in the FROM Clause.

HP recommends that you avoid using SELECT * for performance
reasons. An extremely large and wide result set can cause swapping.

DISTINCT Removes duplicate rows from the result set (or group).The DISTINCT

set quantifier must immediately follow the SELECT keyword. Only one

DISTINCT keyword can appear in the select list.

expression Forms the output rows of the SELECT statement. The expression can

contain:

 Column references (page 54) to columns computed in the
FROM clause

 Literals (page 24) (constants)

 Mathematical operators (page 47)

 String concatenation operators (page 49)

 Aggregate expressions (page 51)

 CASE expressions (page 52)

 SQL functions (page 117)

output_name Specifies a different name for an output column. This name is
primarily used to label the column for display. It can also be used to
refer to the column's value in ORDER BY and GROUP BY clauses, but

not in the WHERE or HAVING clauses.

FOR UPDATE Is most often used from READ COMMITTED isolation. When specified,

the SELECT statement takes an X lock on all tables specified in the

query.

The FOR UPDATE keywords require update/delete permissions on the

tables involved and cannot be issued from a read-only transaction.

Permissions

Table owner or user with GRANT OPTION is grantor.

 SELECT privilege on table

 USAGE privilege on schema that contains the table

Privileges required on base objects for the view owner must be directly granted, not through roles:

-872-

SQL Reference Manual

 If a non-owner runs a SELECT query on the view, the view owner must also have SELECT ...
WITH GRANT OPTION privileges on the view's base tables or views. This privilege must be
directly granted to the owner, rather than through a role.

 If a view owner runs a SELECT query on the view, the owner must also have SELECT
privilege directly granted (not through a role) on a view's base objects (table or view).

Example

When multiple clients run transactions like in the following example query, deadlocks can occur if
FOR UPDATE is not used. Two transactions acquire an S lock, and when both attempt to upgrade
to an X lock, they encounter deadlocks:

=> SELECT balance FROM accounts WHERE account_id=3476 FOR UPDATE; ...

=> UPDATE accounts SET balance = balance+10 WHERE account_id=3476;

=> COMMIT;

See Also

LOCKS (page 1037)

Analytic Functions (page 141)

Using SQL Analytics, Using Time Series Analytics, and Event Series Pattern Matching in the
Programmer's Guide

Subqueries and Joins in the Programmer's Guide

EXCEPT Clause

Combines two or more SELECT queries, returning the results of the left-hand query that are not
returned by the right-hand SELECT query.

Note: MINUS is an alias for EXCEPT.

Syntax
SELECT

... EXCEPT select

... [EXCEPT select]...

... [ORDER BY { column-name

... | ordinal-number }

... [ASC | DESC] [, ...]]

... [LIMIT { integer | ALL }]

... [OFFSET integer]

Notes

 Use the EXCEPT clause to filter out specific results from a SELECT statement. The EXCEPT
query operates on the results of two or more SELECT queries; it returns only those rows in the
left-hand query that are not returned by the right-hand query.

 HP Vertica evaluates multiple EXCEPT clauses in the same SELECT query from left to right,
unless parentheses indicate otherwise.

 You cannot use the ALL keyword with an EXCEPT query.

-873-

 SQL Statements

 The results of each SELECT statement must be union compatible; they must return the same
number of columns, and the corresponding columns must have compatible data types. For
example, you cannot use the EXCEPT clause on a column of type INTEGER and a column of
type VARCHAR. If they do not meet these criteria, HP Vertica returns an error.

Note: The data type coercion chart (page 115) lists the data types that can be cast to other

data types. If one data type can be cast to the other, those two data types are compatible.

 You can use EXCEPT in FROM, WHERE, and HAVING clauses.

 You can order the results of an EXCEPT operation by adding an ORDER BY operation. In the
ORDER BY list, specify the column names from the leftmost SELECT statement or specify
integers that indicate the position of the columns by which to sort.

 The rightmost ORDER BY, LIMIT, or OFFSET clauses in an EXCEPT query do not need to be
enclosed in parentheses because the rightmost query specifies that HP Vertica perform the
operation on the results of the EXCEPT operation. Any ORDER BY, LIMIT, or OFFSET
clauses contained in SELECT queries that appear earlier in the EXCEPT query must be
enclosed in parentheses.

 HP Vertica supports EXCEPT noncorrelated subquery predicates:

=> SELECT * FROM T1

 WHERE T1.x IN

 (SELECT MAX(c1) FROM T2

 EXCEPT

 SELECT MAX(cc1) FROM T3

 EXCEPT

 SELECT MAX(d1) FROM T4);

Examples

Consider the following three tables:

Company_A

 Id | emp_lname | dept | sales

------+-----------+----------------+-------

 1234 | Vincent | auto parts | 1000

 5678 | Butch | auto parts | 2500

 9012 | Marcellus | floral | 500

 3214 | Smithson | sporting goods | 1500

(4 rows)

Company_B

 Id | emp_lname | dept | sales

------+-----------+-------------+-------

 4321 | Marvin | home goods | 250

 8765 | Zed | electronics | 20000

 9012 | Marcellus | home goods | 500

 3214 | Smithson | home goods | 1500

(4 rows)

Company_C

 Id | emp_lname | dept | sales

------+-----------+----------------+-------

 3214 | Smithson | sporting goods | 1500

-874-

SQL Reference Manual

 5432 | Madison | sporting goods | 400

 7865 | Jefferson | outdoor | 1500

 1234 | Vincent | floral | 1000

(4 rows)

The following query returns the IDs and last names of employees that exist in Company_A, but not
in Company_B:

=> SELECT id, emp_lname FROM Company_A

 EXCEPT

 SELECT id, emp_lname FROM Company_B;

 id | emp_lname

------+-----------

 1234 | Vincent

 5678 | Butch

(2 rows)

The following query sorts the results of the previous query by employee last name:

=> SELECT id, emp_lname FROM Company_A

 EXCEPT

 SELECT id, emp_lname FROM Company_B

 ORDER BY emp_lname ASC;

 id | emp_lname

------+-----------

 5678 | Butch

 1234 | Vincent

(2 rows)

If you order by the column position, the query returns the same results:

=> SELECT id, emp_lname FROM Company_A

 EXCEPT

 SELECT id, emp_lname FROM Company_B

 ORDER BY 2 ASC;

 id | emp_lname

------+-----------

 5678 | Butch

 1234 | Vincent

(2 rows)

The following query returns the IDs and last names of employees that exist in Company_A, but not
in Company_B or Company_C:

=> SELECT id, emp_lname FROM Company_A

 EXCEPT

 SELECT id, emp_lname FROM Company_B

 EXCEPT

-875-

 SQL Statements

 SELECT id, emp_lname FROM Company_C;

 id | emp_lname

------+-----------

 5678 | Butch

(1 row)

The following query shows the results of mismatched data types:

=> SELECT id, emp_lname FROM Company_A

 EXCEPT

 SELECT emp_lname, id FROM Company_B;

ERROR 3429: For 'EXCEPT', types int and varchar are inconsistent

DETAIL: Columns: id and emp_lname

Using the VMart example database, the following query returns information about all
Connecticut-based customers who bought items through stores and whose purchases amounted
to more than $500, except for those customers who paid cash:

=> SELECT customer_key, customer_name FROM public.customer_dimension

 WHERE customer_key IN (SELECT customer_key FROM store.store_sales_fact

 WHERE sales_dollar_amount > 500

 EXCEPT

 SELECT customer_key FROM store.store_sales_fact

 WHERE tender_type = 'Cash')

 AND customer_state = 'CT';

 customer_key | customer_name

--------------+----------------------

 15084 | Doug V. Lampert

 21730 | Juanita F. Peterson

 24412 | Mary U. Garnett

 25840 | Ben Z. Taylor

 29940 | Brian B. Dobisz

 32225 | Ruth T. McNulty

 33127 | Darlene Y. Rodriguez

 40000 | Steve L. Lewis

 44383 | Amy G. Jones

 46495 | Kevin H. Taylor

(10 rows)

See Also

INTERSECT Clause (page 880)

SELECT (page 870)

Subqueries in the Programmer's Guide

UNION Clause (page 896)

-876-

 876

FROM Clause

Specifies one or more source tables from which to retrieve rows.

Syntax
FROM table-reference (on page 876) [, ...]

... [subquery] [AS] name ...

Parameters

table-reference Is a table-primary (on page 876) or a joined-table (on page
877).

Example

The following example returns all records from the customer_dimension table:

=> SELECT * FROM customer_dimension

table-reference

Syntax
table-primary (on page 876) | joined-table (on page 877)

Parameters

table-primary Specifies an optionally qualified table name with optional table
aliases, column aliases, and outer joins.

joined-table Specifies an outer join.

table-primary

Syntax
{ table-name [AS] alias

 [(column-alias [, ...])] [, ...]]

 | (joined-table (on page 877)) }

Parameters

table-name Specifies a table in the logical schema. HP Vertica selects a
suitable projection to use.

alias Specifies a temporary name to be used for references to the table.

column-alias Specifies a temporary name to be used for references to the
column.

-877-

 SQL Statements

joined-table Specifies an outer join.

joined-table

Syntax
table-reference join-type table-reference

ON join-predicate (on page 64)

Parameters

table-reference Is a table-primary (page 876) or another joined-table.

join-type Is one of the following:

INNER JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

join-predicate An equi-join based on one or more columns in the joined

tables.

Notes

A query that uses INNER JOIN syntax in the FROM clause produces the same result set as a
query that uses the WHERE clause to state the join-predicate. See Joins in the Programmer's
Guide for more information.

-878-

 878

GROUP BY Clause

Divides a query result set into sets of rows that match an expression.

Syntax
GROUP BY expression [,...]

Parameters

expression Is any expression including constants and references to columns
(see "Column References" on page 54) in the tables specified in the

FROM clause. For example:

column1, ..., column_n, aggregate_function

(expression)

Notes

 The expression cannot include aggregate functions (page 118); however, the GROUP BY
clause is often used with aggregate functions (page 118) to return summary values for each
group.

 The GROUP BY clause without aggregates is similar to using SELECT DISTINCT. For
example, the following two queries are equal:

SELECT DISTINCT household_id from customer_dimension;

 SELECT household_id from customer_dimension GROUP BY household_id;

 All non-aggregated columns in the SELECT list must be included in the GROUP BY clause.

 Using the WHERE clause with the GROUP BY clause is useful in that all rows that do not
satisfy the WHERE clause conditions are eliminated before any grouping operations are
computed.

 The GROUP BY clause does not order data. If you want to sort data a particular way, place the
ORDER BY clause (page 893) after the GROUP BY clause.

Examples

In the following example, the WHERE clause filters out all employees whose last name does not
begin with S. The GROUP BY clause returns the groups of last names that begin with S, and the
SUM aggregate function computes the total vacation days for each group.

=> SELECT employee_last_name, SUM(vacation_days)

 FROM employee_dimension

 WHERE employee_last_name ILIKE 'S%'

 GROUP BY employee_last_name;

 employee_last_name | SUM

--------------------+------

 Sanchez | 2892

 Smith | 2672

 Stein | 2660

(3 rows)

=> SELECT vendor_region, MAX(deal_size) as "Biggest Deal"

-879-

 SQL Statements

 FROM vendor_dimension

 GROUP BY vendor_region;

 vendor_region | Biggest Deal

---------------+--------------

 East | 990889

 MidWest | 699163

 NorthWest | 76101

 South | 854136

 SouthWest | 609807

 West | 964005

(6 rows)

The only difference between the following query and the one before it is the HAVING clause filters
the groups to deal sizes greater than $900,000:

=> SELECT vendor_region, MAX(deal_size) as "Biggest Deal"

 FROM vendor_dimension

 GROUP BY vendor_region

 HAVING MAX(deal_size) > 900000;

 vendor_region | Biggest Deal

---------------+--------------

 East | 990889

 West | 964005

(2 rows)

-880-

 880

HAVING Clause

Restricts the results of a GROUP BY clause (page 878).

Syntax
HAVING condition [, ...]

Parameters

condition Must unambiguously reference a grouping column, unless
the reference appears within an aggregate function

Notes

 Semantically the having clause occurs after the group by operation.

 You can use expressions in the HAVING clause.

 The HAVING clause was added to the SQL standard because you cannot use WHERE with
aggregate functions (page 118).

Example

The following example returns the employees with salaries greater than $50,000:

=> SELECT employee_last_name, MAX(annual_salary) as "highest_salary"

 FROM employee_dimension

 GROUP BY employee_last_name

 HAVING MAX(annual_salary) > 50000;

 employee_last_name | highest_salary

--------------------+----------------

 Bauer | 920149

 Brown | 569079

 Campbell | 649998

 Carcetti | 195175

 Dobisz | 840902

 Farmer | 804890

 Fortin | 481490

 Garcia | 811231

 Garnett | 963104

 Gauthier | 927335

(10 rows)

INTERSECT Clause

Calculates the intersection of the results of two or more SELECT queries; returns all elements that
exist in all the results.

Syntax
SELECT

... INTERSECT select

-881-

 SQL Statements

... [INTERSECT select]...

... [ORDER BY { column-name

... | ordinal-number }

... [ASC | DESC] [, ...]]

... [LIMIT { integer | ALL }]

... [OFFSET integer]

Notes

 Use the INTERSECT clause to return all elements that are common to the results of all the
SELECT queries. The INTERSECT query operates on the results of two or more SELECT
queries; it returns only the rows that are returned by all the specified queries. You cannot use
the ALL keyword with an INTERSECT query.

 The results of each SELECT query must be union compatible; they must return the same
number of columns, and the corresponding columns must have compatible data types. For
example, you cannot use the INTERSECT clause on a column of type INTEGER and a
column of type VARCHAR. If the SELECT queries do not meet these criteria, HP Vertica
returns an error.

Note: The data type coercion chart (page 115) lists the data types that can be cast to other

data types. If one data type can be cast to the other, those two data types are compatible.

 You can order the results of an INTERSECT operation with an ORDER BY clause. In the
ORDER BY list, specify the column names from the leftmost SELECT statement or specify
integers that indicate the position of the columns by which to sort.

 You can use INTERSECT in FROM, WHERE, and HAVING clauses.

 The rightmost ORDER BY, LIMIT, or OFFSET clauses in an INTERSECT query do not need to
be enclosed in parentheses because the rightmost query specifies that HP Vertica perform the
operation on the results of the INTERSECT operation. Any ORDER BY, LIMIT, or OFFSET
clauses contained in SELECT queries that appear earlier in the INTERSECT query must be
enclosed in parentheses.

 HP Vertica supports INTERSECT noncorrelated subquery predicates:

=> SELECT * FROM T1

 WHERE T1.x IN

 (SELECT MAX(c1) FROM T2

 INTERSECT

 SELECT MAX(cc1) FROM T3

 INTERSECT

 SELECT MAX(d1) FROM T4);

Examples

Consider the following three tables:

Company_A

id emp_lname dept sales

------+------------+----------------+-------

1234 | Vincent | auto parts | 1000

5678 | Butch | auto parts | 2500

9012 | Marcellus | floral | 500

3214 | Smithson | sporting goods | 1500

-882-

SQL Reference Manual

Company_B

id emp_lname dept sales

------+------------+-------------+-------

4321 | Marvin | home goods | 250

9012 | Marcellus | home goods | 500

8765 | Zed | electronics | 20000

3214 | Smithson | home goods | 1500

Company_C

 id | emp_lname | dept | sales

------+-----------+----------------+-------

 3214 | Smithson | sporting goods | 1500

 5432 | Madison | sporting goods | 400

 7865 | Jefferson | outdoor | 1500

 1234 | Vincent | floral | 1000

The following query returns the IDs and last names of employees that exist in both Company_A
and Company_B:

=> SELECT id, emp_lname FROM Company_A

 INTERSECT

 SELECT id, emp_lname FROM Company_B;

 id | emp_lname

------+-----------

 3214 | Smithson

 9012 | Marcellus

(2 rows)

The following query returns the same two employees in descending order of sales:

=> SELECT id, emp_lname, sales FROM Company_A

 INTERSECT

 SELECT id, emp_lname, sales FROM Company_B

 ORDER BY sales DESC;

 id | emp_lname | sales

------+-----------+-------

 3214 | Smithson | 1500

 9012 | Marcellus | 500

(2 rows)

You can also use the integer that represents the position of the sales column (3) to return the
same result:

=> SELECT id, emp_lname, sales FROM Company_A

-883-

 SQL Statements

 INTERSECT

 SELECT id, emp_lname, sales FROM Company_B

 ORDER BY 3 DESC;

 id | emp_lname | sales

------+-----------+-------

 3214 | Smithson | 1500

 9012 | Marcellus | 500

(2 rows)

The following query returns the employee who works for both companies whose sales in
Company_B are greater than 1000:

=> SELECT id, emp_lname, sales FROM Company_A

 INTERSECT

 (SELECT id, emp_lname, sales FROM company_B WHERE sales > 1000)

 ORDER BY sales DESC;

 id | emp_lname | sales

------+-----------+-------

 3214 | Smithson | 1500

(1 row)

In the following query returns the ID and last name of the employee who works for all three
companies:

=> SELECT id, emp_lname FROM Company_A

 INTERSECT

 SELECT id, emp_lname FROM Company_B

 INTERSECT

 SELECT id, emp_lname FROM Company_C;

 id | emp_lname

------+-----------

 3214 | Smithson

(1 row)

The following query shows the results of a mismatched data types; these two queries are not
union compatible:

=> SELECT id, emp_lname FROM Company_A

 INTERSECT

 SELECT emp_lname, id FROM Company_B;

ERROR 3429: For 'INTERSECT', types int and varchar are inconsistent

DETAIL: Columns: id and emp_lname

Using the VMart example database, the following query returns information about all
Connecticut-based customers who bought items online and whose purchase amounts were
between $400 and $500:

=> SELECT customer_key, customer_name from public.customer_dimension

-884-

SQL Reference Manual

 WHERE customer_key IN (SELECT customer_key

 FROM online_sales.online_sales_fact

 WHERE sales_dollar_amount > 400

 INTERSECT

 SELECT customer_key FROM online_sales.online_sales_fact

 WHERE sales_dollar_amount < 500)

 AND customer_state = 'CT';

 customer_key | customer_name

--------------+------------------------

 39 | Sarah S. Winkler

 44 | Meghan H. Overstreet

 70 | Jack X. Jefferson

 103 | Alexandra I. Vu

 110 | Matt . Farmer

 173 | Mary R. Reyes

 188 | Steve G. Williams

 233 | Theodore V. McNulty

 250 | Marcus E. Williams

 294 | Samantha V. Young

 313 | Meghan P. Pavlov

 375 | Sally N. Vu

 384 | Emily R. Smith

 387 | Emily L. Garcia

...

The previous query returns the same data as:

=> SELECT customer_key,customer_name FROM public.customer_dimension

 WHERE customer_key IN (SELECT customer_key

 FROM online_sales.online_sales_fact

 WHERE sales_dollar_amount > 400

 AND sales_dollar_amount < 500)

 AND customer_state = 'CT';

See Also

EXCEPT Clause (page 872)

SELECT (page 870)

Subqueries in the Programmer's Guide

UNION Clause (page 896)

INTO Clause

Creates a new table from the results of a query and fills it with data from the query.

Syntax
INTO [{ GLOBAL | LOCAL } { TEMPORARY | TEMP }]

... [TABLE] table-name

... [ON COMMIT { PRESERVE | DELETE } ROWS]

-885-

 SQL Statements

Parameters

GLOBAL [Optional] Specifies that the table definition is visible to

all sessions.

LOCAL [Optional] Specifies that the table is visible only to the

user who creates it for the duration of the session. When
the session ends, the table definition is automatically
dropped from the database catalogs.

TABLE [Optional] Specifies that a table is to be created.

table-name Specifies the name of the table to be created.

ON COMMIT { PRESERVE | DELETE } ROWS [Optional] Specifies whether data is transaction- or

session-scoped:

 DELETE marks a temporary table for
transaction-scoped data. HP Vertica truncates

the table (delete all its rows) after each commit.
DELETE ROWS is the default.

 PRESERVE marks a temporary table for
session-scoped data, which is preserved

beyond the lifetime of a single transaction. HP
Vertica truncates the table (delete all its rows)
when you terminate a session.

Example

The following statement creates a table called newtable and fills it with the data from
customer_dimension:

=> SELECT * INTO newtable FROM customer_dimension;

The following statement creates a temporary table called newtable and fills it with the data from
customer_dimension:

=> SELECT * INTO temp TABLE newtable FROM customer_dimension;

The following example creates a local temporary table and inserts the contents from mytable into
it:

=> SELECT * INTO LOCAL TEMP TABLE ltt FROM mytable;

 WARNING: No rows are inserted into table "v_temp_schema"."ltt" because ON

COMMIT DELETE ROWS

 is the default for create temporary table

 HINT: Use "ON COMMIT PRESERVE ROWS" to preserve the data in temporary table

 CREATE TABLE

See Also

Creating Temporary Tables in the Administrator's Guide

-886-

 886

LIMIT Clause

Specifies the maximum number of result set rows to return.

Syntax
LIMIT { rows | ALL }

Parameters

rows Specifies the maximum number of rows to return

ALL Returns all rows (same as omitting LIMIT)

Notes

When both LIMIT and OFFSET (page 891) are used, HP Vertica skips the specified number of
rows before it starts to count the rows to be returned.

You can use LIMIT without an ORDER BY clause (page 893) that includes all columns in the
select list, but the query could produce nondeterministic results.

Nondeterministic: Omits the ORDER
BY clause and returns any five records
from the customer_dimension table:

Deterministic: Specifies the ORDER BY
clause:

=> SELECT customer_city

 FROM customer_dimension

 LIMIT 5;

 customer_city

 Baltimore

 Nashville

 Allentown

 Clarksville

 Baltimore

(5 rows)

=> SELECT customer_city

 FROM customer_dimension

 ORDER BY customer_city

 LIMIT 5;

 customer_city

 Abilene

 Abilene

 Abilene

 Abilene

 Abilene

(5 rows)

Examples

The following examples illustrate the LIMIT clause queries that HP Vertica supports:

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x) alias LIMIT 3;

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 5) alias LIMIT 3;

=> SELECT * FROM (SELECT * FROM t1 ORDER BY x) alias LIMIT 4 OFFSET 3;

=> SELECT * FROM t1 UNION SELECT * FROM t2 LIMIT 3;

=> SELECT * FROM fact JOIN dim using (x) LIMIT 3;

=> SELECT * FROM t1 JOIN t2 USING (x) LIMIT 3;

-887-

 SQL Statements

MATCH Clause

A SQL extension that lets you screen large amounts of historical data in search of event patterns,
the MATCH clause provides subclasses for analytic partitioning and ordering and matches rows
from the result table based on a pattern you define.

You specify a pattern as a regular expression, which is composed of event types defined in the
DEFINE subclause, where each event corresponds to a row in the input table. Then you can
search for the pattern within a sequence of input events. Pattern matching returns the contiguous

sequence of rows that conforms to PATTERN subclause. For example, pattern P (A B* C) consist
of three event types: A, B, and C. When HP Vertica finds a match in the input table, the associated
pattern instance must be an event of type A followed by 0 or more events of type B, and an event
of type C.

Pattern matching is particularly useful for clickstream analysis where you might want to identify
users' actions based on their Web browsing behavior (page clicks). A typical online clickstream
funnel is:

Company home page -> product home page -> search -> results -> purchase online

Using the above clickstream funnel, you can search for a match on the user's sequence of web
clicks and identify that the user:

 landed on the company home page

 navigated to the product page

 ran a search

 clicked a link from the search results

 made a purchase

For examples that use this clickstream model, see Event Series Pattern Matching in the
Programmer's Guide.

Syntax
MATCH ([PARTITION BY table_column] ORDER BY table_column

... DEFINE event_name AS boolean_expr [, ...]

... PATTERN pattern_name AS (regexp)

... [ROWS MATCH (ALL EVENTS | FIRST EVENT)])

Parameters

PARTITION BY [Optional] Defines the window data scope in which the pattern, defined in the
PATTERN subclause, is matched. The partition clause partitions the data by

matched patterns defined in the PATTERN subclause. For each partition, data is
sorted by the ORDER BY clause. If the partition clause is omitted, the entire data
set is considered a single partition.

ORDER BY Defines the window data scope in which the pattern, defined in the PATTERN
subclause, is matched. For each partition, the order clause specifies how the
input data is ordered for pattern matching.

Note: The ORDER BY clause is mandatory.

-888-

SQL Reference Manual

DEFINE Defines the boolean (page 60) expressions that make up the event types in the

regular expressions. For example:

DEFINE

 Entry AS RefURL NOT ILIKE '%website2.com%' AND PageURL ILIKE

 '%website2.com%',

 Onsite AS PageURL ILIKE '%website2.com%' AND Action='V',

 Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

The DEFINE subclause accepts a maximum of 52 events. See Event Series

Pattern Matching in the Programmer's Guide for examples.

event_name Is the name of the event to evaluate for each row; for example, Entry, Onsite,

Purchase.

Note: Event names are case insensitive and follow the same naming

conventions as those used for tables and columns.

boolean_expr Is an expression that returns true or false. boolean_expr can include Boolean
operators (on page 44) and relational (comparison) (see "Comparison

Operators" on page 44) operators. For example:

Purchase AS PageURL ILIKE '%website2.com%' AND Action = 'P'

PATTERN pattern_name Is the name of the pattern, which you define in the PATTERN subclause; for

example, P is the pattern name defined below:

 PATTERN P AS (...)

PATTERN defines the regular expression composed of event types that you
specify in the DEFINE subclause.

Note: HP Vertica supports one pattern per query.

regexp Is the pattern that is composed of the event types defined in the DEFINE
subclause and which returns the contiguous sequence of rows that conforms to
the PATTERN subclause.

 * Match 0 or more times

 *? Match 0 or more times, not greedily

 + Match 1 or more times

 +? Match 1 or more times, not greedily

 ? Match 0 or 1 time

 ?? Match 0 or 1 time, not greedily

 *+ Match 0 or more times, possessive

 ++ Match 1 or more times, possessive

 ?+ Match 0 or 1 time, possessive

Note: Syntax for regular expressions is compatible with the Perl 5 regula r

expression syntax. See the Perl Regular Expressions Documentation

(http://perldoc.perl.org/perlre.html) for details.

http://perldoc.perl.org/perlre.html

-889-

 SQL Statements

ROWS MATCH [Optional] Defines how to resolve more than one event evaluating to true for a

single row.

 If you use ROWS MATCH ALL EVENTS (default), HP Vertica returns the
following run-time error i f more than one event evaluates to true for a
single row:

 ERROR: pattern events must be mutually exclusive

 HINT: try using ROWS MATCH FIRST EVENT

 For ROWS MATCH FIRST EVENT, if more than one event evaluates to
true for a single row, HP Vertica chooses the event defined first in the
SQL statement to be the event it uses for the row.

Pattern Semantic Evaluation

 The semantic evaluating ordering of the SQL clauses is: FROM -> WHERE -> PATTERN
MATCH -> SELECT.

 Data is partitioned as specified in the the PARTITION BY clause. If the partition clause is
omitted, the entire data set is considered a single partition.

 For each partition, the order clause specifies how the input data is ordered for pattern
matching.

 Events are evaluated for each row. A row could have 0, 1, or N events evaluate to true. If more
than one event evaluates to true for the same row, HP Vertica returns a run-time error unless
you specify ROWS MATCH FIRST EVENT. If you specify ROWS MATCH FIRST EVENT and
more than one event evaluates to TRUE for a single row, HP Vertica chooses the event that
was defined first in the SQL statement to be the event it uses for the row.

 HP Vertica performs pattern matching by finding the contiguous sequence of rows that
conforms to the pattern defined in the PATTERN subclause.

For each match, HP Vertica outputs the rows that contribute to the match. Rows not part of the
match (do not satisfy one or more predicates) are not output.

 HP Vertica reports only non-overlapping matches. If an overlap occurs, HP Vertica chooses
the first match found in the input stream. After finding the match, HP Vertica looks for the next
match, starting at the end of the previous match.

 HP Vertica reports the longest possible match, not a subset of a match. For example, consider
pattern: A*B with input: AAAB. Because A uses the greedy regular expression quantifier (*),
HP Vertica reports all A inputs (AAAB), not AAB, AB, or B.

Notes and Restrictions

 DISTINCT and GROUP BY/HAVING clauses are not allowed in pattern match queries.

 The following expressions are not allowed in the DEFINE subclause:

 Subqueries, such as DEFINE X AS c IN (SELECT c FROM table1)

 Analytic functions, such as DEFINE X AS c < LEAD(1) OVER (ORDER BY 1)

 Aggregate functions, such as DEFINE X AS c < MAX(1)

 You cannot use the same pattern name to define a different event; for example, the following is
not allowed for X:

DEFINE

 X AS c1 < 3

 X AS c1 >= 3

-890-

SQL Reference Manual

 Used with MATCH clause, HP Vertica pattern matching functions (page 331) provide
additional data about the patterns it finds. For example, you can use the functions to return
values representing the name of the event that matched the input row, the sequential number
of the match, or a partition-wide unique identifier for the instance of the pattern that matched.

Example

See Event Series Pattern Matching in the Programmer's Guide.

See Also

Pattern matching functions (page 331): EVENT_NAME (page 331), MATCH_ID (page 332),
and PATTERN_ID (page 334)

Perl Regular Expressions Documentation (http://perldoc.perl.org/perlre.html)

MINUS Clause

MINUS is an alias for EXCEPT (page 872).

http://perldoc.perl.org/perlre.html

-891-

 891

OFFSET Clause

Omits a specified number of rows from the beginning of the result set.

Syntax
OFFSET rows

Parameters

rows specifies the number of result set rows to omit.

Notes

 When both LIMIT (page 886) and OFFSET are specified, specified number of rows are
skipped before starting to count the rows to be returned.

 When using OFFSET, use an ORDER BY clause (page 893). Otherwise the query returns an
undefined subset of the result set.

Example

The following example is similar to the the example used in the LIMIT clause (page 886). If you
want to see just records 6-10, however, use the OFFSET clause to skip over the first five cities:

=> SELECT customer_city

 FROM customer_dimension

 WHERE customer_name = 'Metamedia'

 ORDER BY customer_city

 OFFSET 5;

 customer_city

 El Monte

 Fontana

 Hartford

 Joliet

 Peoria

 Rancho Cucamonga

 Ventura

 Waco

 Wichita Falls

(9 rows)

The following are the results without the OFFSET clause:

 customer_city

 Arvada

 Arvada

 Athens

 Beaumont

 Coral Springs

 El Monte

 Fontana

 Hartford

-892-

SQL Reference Manual

 Joliet

 Peoria

 Rancho Cucamonga

 Ventura

 Waco

 Wichita Falls

(14 rows)

-893-

 893

ORDER BY Clause

Sorts a query result set on one or more columns.

Syntax
ORDER BY expression [ASC | DESC] [, ...]

Parameters

expression Can be:

 The name or ordinal number

(http://en.wikipedia.org/wiki/Ordinal_number) of a
SELECT list item

 An arbitrary expression formed from columns that do not
appear in the SELECT list

 A CASE (page 52) expression

Notes

 The ordinal number refers to the position of the result column, counting from the left beginning
at one. This makes it possible to order by a column that does not have a unique name. (You
can assign a name to a result column using the AS clause.)

 While the user's current locale and collation sequence are used to compare strings and
determine the results of the ORDER BY clause of a query, data in HP Vertica projections is
always stored sorted by the ASCII (binary) collating sequence.

 For INTEGER, INT, and DATE/TIME data types, NULL appears first (smallest) in ascending
order.

 For FLOAT, BOOLEAN, CHAR, and VARCHAR, NULL appears last (largest) in ascending
order.

Example

The follow example returns all the city and deal size for customer Metamedia, sorted by deal size
in descending order.

=> SELECT customer_city, deal_size

 FROM customer_dimension

 WHERE customer_name = 'Metamedia'

 ORDER BY deal_size DESC;

 customer_city | deal_size

------------------+-----------

 El Monte | 4479561

 Athens | 3815416

 Ventura | 3792937

 Peoria | 3227765

 Arvada | 2671849

 Coral Springs | 2643674

 Fontana | 2374465

 Rancho Cucamonga | 2214002

 Wichita Falls | 2117962

http://en.wikipedia.org/wiki/Ordinal_number

-894-

SQL Reference Manual

 Beaumont | 1898295

 Arvada | 1321897

 Waco | 1026854

 Joliet | 945404

 Hartford | 445795

(14 rows)

TIMESERIES Clause

Provides gap-filling and interpolation (GFI) computation, an important component of time series
analytics computation. See Using Time Series Analytics in the Programmer's Guide for details and
examples.

Syntax
TIMESERIES slice_time AS 'length_and_time_unit_expression' OVER (

... [window_partition_clause (page 143) [, ...]]

... ORDER BY time_expression)

... [ORDER BY table_column [, ...]]

Parameters

slice_time A time column produced by the TIMESERIES clause, which stores
the time slice start times generated from gap filling.

Note: This parameter is an alias, so you can use any name that an

alias would take.

'length_and_time_unit_

expression'

Is INTERVAL (DAY TO SECOND) that represents the length of time
unit of time slice computation; for example, TIMESERIES

slice_time AS '3 seconds' ...

OVER() Specifies partitioning and ordering for the function. OVER() also
specifies that the time series function operates on a query result set

(the rows that are returned after the FROM, WHERE, GROUP BY,
and HAVING clauses have been evaluated).

PARTITION BY Partitions the data by expressions (column1 ..., column_n,

slice_time).

expression Expressions on which to partition the data, where each partition is
sorted by time_expression. Gap filling and interpolation is performed

on each partition separately.

ORDER BY Sorts the data by time_expression.

Note: The TIMESERIES clause requires an ORDER BY operation

on the timestamp column.

time_expression An expression that computes the time information o f the time series

data. The time_expression can be TIMESTAMP data type only.

Notes

If the window_partition_clause is not specified in TIMESERIES OVER(), for each defined

time slice, exactly one output record is produced; otherwise, one output record is produced per
partition per time slice. Interpolation is computed there.

-895-

 SQL Statements

Given a query block that contains a TIMESERIES clause, the following are the semantic phases of
execution (after evaluating the FROM and the optional WHERE clauses):

1 Compute time_expression.

2 Perform the same computation as the TIME_SLICE() function on each input record based on
the result of time_expression and 'length_and_time_unit_expression'.

1. Perform gap filling to generate time slices missing from the input.

2. Name the result of this computation as slice_time, which represents the generated ―time
series‖ column (alias) after gap filling.

3 Partition the data by expression, slice_time. For each partition, do step 4.

4 Sort the data by time_expression. Interpolation is computed here.

There is semantic overlap between the TIMESERIES clause and the TIME_SLICE (page 240)
function with the following key differences:

 TIMESERIES only supports the DAY TO SECOND interval-qualifier (on page 40) (does not
allow YEAR TO MONTH).

 Unlike TIME_SLICE, the time slice length and time unit expressed in
length_and_time_unit_expr must be constants so gaps in the time slices are well-defined.

 TIMESERIES performs gap filling; the TIME_SLICE function does not.

 TIME_SLICE can return the start or end time of a time slice, depending on the value of its
fourth input parameter (start_or_end). TIMESERIES, on the other hand, always returns the
start time of each time slice. To output the end time of each time slice, you can write a SELECT
statement like the following:

SELECT slice_time + <slice_length>;

Restrictions

 When the TIMESERIES clause occurs in a SQL query block, only SELECT, FROM, WHERE,
and ORDER BY clauses can be used in that same query block. GROUP BY and HAVING
clauses are not allowed.

If a GROUP BY operation is needed before or after gap-filling and interpolation (GFI), use a
subquery and place the GROUP BY In the outer query. For example:

=> SELECT symbol, AVG(first_bid) as avg_bid FROM (

 SELECT symbol, slice_time, TS_FIRST_VALUE(bid1) AS first_bid

 FROM Tickstore

 WHERE symbol IN ('MSFT', 'IBM')

 TIMESERIES slice_time AS '5 seconds' OVER (PARTITION BY symbol

ORDER BY ts)

) AS resultOfGFI

GROUP BY symbol;

 When the TIMESERIES clause is present in the SQL query block, only time series aggregate
functions (such as TS_FIRST_VALUE (page 421) and TS_LAST_VALUE (page 422)), the
slice_time column, PARTITION BY expressions, and TIME_SLICE (page 240) are allowed in
the SELECT list. For example, the following two queries would return a syntax error because
bid1 was not a PARTITION BY or GROUP BY column:

=> SELECT bid, symbol, TS_FIRST_VALUE(bid) FROM Tickstore

-896-

SQL Reference Manual

 TIMESERIES slice_time AS '5 seconds' OVER (PARTITION BY symbol ORDER

BY ts);

 ERROR: column "Tickstore.bid" must appear in the PARTITION BY list

of Timeseries clause or be used in a Timeseries Output function

=> SELECT bid, symbol, AVG(bid) FROM Tickstore

 GROUP BY symbol;

 ERROR: column "Tickstore.bid" must appear in the GROUP BY clause or

be used in an aggregate function

Examples

See Gap Filling and Interpolation (GFI) in the Programmer's Guide.

See Also

TIME_SLICE (page 240), TS_FIRST_VALUE (page 421), and TS_LAST_VALUE (page 422)

Using Time Series Analytics in the Programmer's Guide

UNION Clause

Combines the results of two or more SELECT statements.

Syntax
SELECT

... UNION { ALL | DISTINCT } select

... [UNION { ALL | DISTINCT } select]...

... [ORDER BY { column-name | ordinal-number }

... [ASC | DESC] [, ...]]

... [LIMIT { integer | ALL }]

... [OFFSET integer]

Notes

 The UNION operation combines the results of several SELECT statements into a single result.
Specifically, all rows in the result of a UNION operation must exist in the results of at least one
of the SELECT statements.

 The results of each SELECT statement must be union compatible; they must return the same
number of columns, and the corresponding columns must have compatible data types. For
example, you cannot use the UNION clause on a column of type INTEGER and a column of
type VARCHAR. If they do not meet these criteria, HP Vertica returns an error.

Note: The data type coercion chart (page 115) lists the data types that can be cast to other
data types. If one data type can be cast to the other, those two data types are compatible.

 The results of a UNION contain only distinct rows. UNION ALL keeps all duplicate rows, and
so results in better performance than UNION. Therefore, unless you must eliminate duplicates,
use UNION ALL for best performance.

 You can use UNION [ALL] in FROM, WHERE, and HAVING clauses.

 You can order the results of an UNION operation with an ORDER BY clause. In the ORDER
BY list, specify the column names from the leftmost SELECT statement or specify integers that
indicate the position of the columns by which to sort.

-897-

 SQL Statements

 The rightmost ORDER BY, LIMIT, or OFFSET clauses in a UNION query do not need to be
enclosed in parentheses because the rightmost query specifies that HP Vertica perform the
operation on the results of the UNION operation. Any ORDER BY, LIMIT, or OFFSET clauses
contained in SELECT queries that appear earlier in the UNION query must be enclosed in
parentheses.

 HP Vertica supports UNION noncorrelated subquery predicates:

=> SELECT * FROM T1

 WHERE T1.x IN

 (SELECT MAX(c1) FROM T2

 UNION { ALL | DISTINCT }

 SELECT MAX(cc1) FROM T3

 UNION { ALL | DISTINCT }

 SELECT MAX(d1) FROM T4);

Examples

Consider the following two tables:

Company_A

Id emp_lname dept sales

------+------------+-------------+-------

1234 | Vincent | auto parts | 1000

5678 | Butch | auto parts | 2500

9012 | Marcellus | floral | 500

Company_B

Id emp_lname dept sales

------+------------+-------------+-------

4321 | Marvin | home goods | 250

9012 | Marcellus | home goods | 500

8765 | Zed | electronics | 20000

The following query lists all distinct IDs and last names of employees; Marcellus works for both
companies, so he only appears once in the results. The DISTINCT keyword is the default; if you
omit the DISTINCT keyword, the query returns the same results:

=> SELECT id, emp_lname FROM Company_A

 UNION DISTINCT

 SELECT id, emp_lname FROM Company_B;

 id | emp_lname

------+-----------

 1234 | Vincent

 4321 | Marvin

 5678 | Butch

 8765 | Zed

 9012 | Marcellus

(5 rows)

-898-

SQL Reference Manual

The following query lists all IDs and surnames of employees. Marcellus works for both companies,
so both his records appear in the results:

=> SELECT id, emp_lname FROM Company_A

 UNION ALL

 SELECT id, emp_lname FROM Company_B;

 id | emp_lname

------+-----------

 1234 | Vincent

 5678 | Butch

 9012 | Marcellus

 4321 | Marvin

 9012 | Marcellus

 8765 | Zed

(6 rows)

The next example returns the top two performing salespeople in each company and orders the full
results in descending order of sales:

=> (SELECT id, emp_lname, sales FROM Company_A

 ORDER BY sales DESC LIMIT 2)

 UNION ALL

 (SELECT id, emp_lname, sales FROM Company_b

 ORDER BY sales DESC LIMIT 2)

 ORDER BY sales DESC;

 id | emp_lname | sales

------+-----------+-------

 8765 | Zed | 20000

 5678 | Butch | 2500

 1234 | Vincent | 1000

 9012 | Marcellus | 500

(4 rows)

The following query returns all employee orders by sales. The rightmost clause (ORDER BY) is
applied to the entire result, listing the sales in ascending order:

=> SELECT id, emp_lname, sales FROM Company_A

 UNION

 SELECT id, emp_lname, sales FROM Company_B

 ORDER BY sales;

 id | emp_lname | sales

------+-----------+-------

 4321 | Marvin | 250

 9012 | Marcellus | 500

 1234 | Vincent | 1000

 5678 | Butch | 2500

 8765 | Zed | 20000

(5 rows)

-899-

 SQL Statements

To calculate the sum of the sales for each company, grouped by department, use this query:

=> (SELECT 'Company A' as company, dept, SUM(sales) FROM Company_A

 GROUP BY dept)

 UNION

 (SELECT 'Company B' as company, dept, SUM(sales) FROM Company_B

 GROUP BY dept)

 ORDER BY 1;

 company | dept | sum

-----------+-------------+-------

 Company A | auto parts | 3500

 Company A | floral | 500

 Company B | electronics | 20000

 Company B | home goods | 750

(4 rows)

The following query shows the results of mismatched data types:

=> SELECT id, emp_lname FROM Company_A

 UNION

 SELECT emp_lname, id FROM Company_B;

ERROR 3429: For 'UNION', types int and varchar are inconsistent

DETAIL: Columns: id and emp_lname

Using the VMart example database, the following query returns information about all
Connecticut-based customers who bought items through either stores or online sales channels
and whose purchases totaled more than $500:

=> SELECT DISTINCT customer_key, customer_name FROM public.customer_dimension

 WHERE customer_key IN (SELECT customer_key FROM store.store_sales_fact

 WHERE sales_dollar_amount > 500

 UNION ALL

 SELECT customer_key FROM online_sales.online_sales_fact

 WHERE sales_dollar_amount > 500)

 AND customer_state = 'CT';

 customer_key | customer_name

--------------+------------------------

 955 | Darlene N. Vu

 48916 | Tanya H. Wilson

 43123 | Luigi I. Fortin

 33780 | Ben T. Nielson

 24827 | Luigi . Kramer

 21631 | Jack R. Perkins

 31493 | Matt E. Miller

 12438 | Samantha Q. Campbell

 7021 | Luigi T. Dobisz

 5229 | Julie V. Garcia

 1971 | Betty V. Dobisz

...

-900-

SQL Reference Manual

See Also

EXCEPT Clause (page 872)

INTERSECT Clause (page 880)

SELECT (page 870)

Subqueries in the Programmer's Guide

-901-

 901

WHERE Clause

Eliminates rows from the result table that do not satisfy one or more predicates.

Syntax
WHERE boolean-expression

 [subquery] ...

Parameters

boolean-expression Is an expression that returns true or false. Only rows for which the
expression is true become part of the result set.

The boolean-expression can include Boolean operators (on page 44) and the following
elements:

 BETWEEN-predicate (on page 58)

 Boolean-predicate (on page 60)

 Column-value-predicate (on page 60)

 IN-predicate (on page 61)

 Join-predicate (on page 64)

 LIKE-predicate (on page 66)

 NULL-predicate (on page 69)

Notes

You can use parentheses to group expressions, predicates, and boolean operators. For example:

=> ... WHERE NOT (A=1 AND B=2) OR C=3;

Example

The following example returns the names of all customers in the Eastern region whose name
starts with 'Amer'. Without the WHERE clause filter, the query returns all customer names in the
customer_dimension table.

=> SELECT DISTINCT customer_name

 FROM customer_dimension

 WHERE customer_region = 'East'

 AND customer_name ILIKE 'Amer%';

 customer_name

 Americare

 Americom

 Americore

 Americorp

 Ameridata

 Amerigen

 Amerihope

 Amerimedia

 Amerishop

-902-

SQL Reference Manual

 Ameristar

 Ameritech

(11 rows)

WINDOW Clause

Creates a named window for an analytics query so you can avoid typing long OVER() clause
syntax.

Syntax
WINDOW window_name AS (window_definition_clause);

Parameters

WINDOW window_name Specifies that window name.

AS window_definition_clause Defines the window_partition_clause (on
page 143) and window_order_clause (on

page 144)

See Also

Analytic Functions (page 141)

Named Windows in the Programmer's Guide

WITH Clause
WITH clauses are individually-evaluated SELECT statements for use in a larger, container query.
Each WITH clause is evaluated once while processing the main query, though it can be used in
subsequent WITH clauses to create combinatorial results. HP Vertica maintains the results of
each concomitant WITH statement as if it were a temporary table, stored only for the duration of
the container query's execution. Each WITH clause query must have a unique name. Attempting
to use same-name aliases for WITH clause query names causes an error.

Syntax

This syntax statement is illustrative, rather than syntactically exact, to show the possibility of
numerous successive WITH queries in use with others:

WITH

... with_query_1 [(col_name[,...])]AS (SELECT ...),

... with_query_2 [(col_name[,...])]AS (SELECT ...[with_query_1]),

.

.

.

... with_query_n [(col_name[,...])]AS (SELECT ...[with_query1, with_query_2,

with_query_n [,...]])

SELECT

.

-903-

 SQL Statements

.

.

Restrictions for WITH Clauses

There are two restrictions when using WITH clauses:

 Do not support INSERT, UPDATE, or DELETE statements.

 Cannot be used recursively, only in succession.

Examples

Consider the following example:

-- Begin WITH clauses,

-- First WITH clause,regional_sales

WITH

 regional_sales AS (

 SELECT region, SUM(amount) AS total_sales

 FROM orders

 GROUP BY region),

-- Second WITH clause top_regions

 top_regions AS (

 SELECT region

 FROM regional_sales

 WHERE total_sales > (SELECT SUM (total_sales)/10 FROM regional_sales))

-- End defining WITH clause statement

-- Begin main primary query

SELECT region,

 product,

 SUM(quantity) AS product_units,

 SUM(amount) AS product_sales

FROM orders

WHERE region IN (SELECT region FROM top_regions)

GROUP BY region, product;

See Also

SELECT (page 870)

Subqueries and WITH Clauses in SELECT in the Programmer's Guide

SET DATESTYLE
Specifies the format of date/time output for the current session.

Syntax
SET DATESTYLE TO { value | 'value' } [,...]

-904-

SQL Reference Manual

Parameters

The DATESTYLE parameter can have multiple, non-conflicting values:

Value Interpretation Example

MDY month-day-year 12/16/2011

DMY day-month-year 16/12/2011

YMD year-month-day 2011-12-16

ISO ISO 8601/SQL standard
(default)

2011-12-16 07:37:16-08

POSTGRES verbose style Fri Dec 16 07:37:16 2012 PST

SQL traditional style 12/16/2011 07:37:16.00 PST

GERMAN regional style 16.12.2011 07:37:16.00 PST

In the SQL style, if DMY field ordering has been specified, the day appears before the month.

Otherwise, the month appears before the day. (To see how this setting also affects interpretation
of input values, see Date/Time Literals (page 35).) The following table shows an example.

DATESTYLE Input Ordering Example Output

SQL, DMY day/month/year 17/12/2007 15:37:16.00 CET

SQL, MDY month/day/year 12/17/2007 07:37:16.00 PST

Permissions

No special permissions required.

Notes

 HP Vertica ISO output for DATESTYLE is ISO long form, but several input styles are accepted.

If the year appears first in the input, YMD is used for input and output, regardless of the
DATESTYLE value.

 The SQL standard requires the use of the ISO 8601 format.

 INTERVAL output looks like the input format, except that units like CENTURY or WEEK are

converted to years and days, and AGO is converted to the appropriate sign. In ISO mode, the
output looks like
[quantity unit [...]] [days] [hours:minutes:seconds]

 The SHOW (page 923) command displays the run-time parameters.

Example

The following examples show how the DATESTYLE parameter affects the output of the SELECT
INTERVAL command:

-905-

 SQL Statements

=>SHOW DATESTYLE;

 name | setting

-----------+----------

 datestyle | ISO, MDY

=> SELECT INTERVALYM '-12-11', INTERVAL '-10 15:05:1.234567';

 ?column? | ?column?

----------+---------------------

 -12-11 | -10 15:05:01.234567

=> SET INTERVALSTYLE TO UNITS;

SET

=> SELECT INTERVALYM '-12-11', INTERVAL '-10 15:05:1.234567';

 ?column? | ?column?

---------------------+--------------------------

 -12 years 11 months | -10 days 15:05:01.234567

=> SET DATESTYLE TO SQL;;

SET

=> SELECT INTERVALYM '-12-11', INTERVAL '-10 15:05:1.234567';

 ?column? | ?column?

----------+---------------------

 -12-11 | -10 15:05:01.234567

=> SET DATESTYLE TO POSTGRES;

SET

=> SELECT INTERVALYM '-12-11', INTERVAL '-10 15:05:1.234567';

 ?column? | ?column?

--------------------------+---

 @ 12 years 11 months ago | @ 10 days 15 hours 5 mins 1.234567 secs ago

=> SET DATESTYLE TO GERMAN;

SET

=> SELECT INTERVALYM '-12-11', INTERVAL '-10 15:05:1.234567';

 ?column? | ?column?

---------------------+--------------------------

 -12 years 11 months | -10 days 15:05:01.234567

SET ESCAPE_STRING_WARNING
Issues a warning when a backslash is used in a string literal during the current session.

Syntax
SET ESCAPE_STRING_WARNING TO { ON | OFF }

Parameters

-906-

SQL Reference Manual

ON [Default] Issues a warning when a back slash is used in a string literal.

Tip: Organizations that have upgraded from earlier versions of HP Vertica can use this

as a debugging tool for locating backslashes that used to be treated as escape

characters, but are now treated as literals.

OFF Ignores back slashes within string literals.

Permissions

No special permissions required.

Notes

 This statement works under vsql only.

 Turn off standard conforming strings before you turn on this parameter.

Tip: To set escape string warnings across all sessions, use the EscapeStringWarnings

configuration parameter. See the Internationalization Parameters in the Administrator's Guide.

Examples

The following example shows how to turn OFF escape string warnings for the session.

=> SET ESCAPE_STRING_WARNING TO OFF;

See Also

STANDARD_CONFORMING_STRINGS (page 920)

SET INTERVALSTYLE
Specifies whether to include units in interval output for the current session.

Syntax
SET INTERVALSTYLE TO [plain | units (see "interval-literal" on page 38)]

Parameters

plain Sets the default interval output to omit units. PLAIN is the default

value.

units Enables interval output to include units. When you enable interval units,
the DATESTYLE (page 903) parameter controls the output. If you
enable units and they do not display in the output, check the

DATESTYLE (page 903) parameter value, which must be set to ISO or

POSTGRES for interval units to display.

Permissions

No special permissions required.

-907-

 SQL Statements

Output Intervals with Units

The following statement sets the INTERVALSTYLE output to show units:

=> SET INTERVALSTYLE TO UNITS;

 SET

=> SELECT INTERVAL '3 2' DAY TO HOUR;

 ?column?

 3 days 2 hours

(1 row)

Output Intervals Without Units

This statement sets the INTERVALSTYLE to plain (no units) on output:

=> SET INTERVALSTYLE TO PLAIN;

 SET

=> SELECT INTERVAL '3 2' DAY TO HOUR;

 ?column?

 3 2

(1 row)

Displaying the Current Interval OUTPUT Style

Use the SHOW (page 923) command to display the INTERVALSTYLE runtime parameter:

=> SHOW INTERVALSTYLE;

 name | setting

---------------+---------

 intervalstyle | plain

(1 row)

See Also

INTERVAL (page 81)

SET LOCALE
Specifies the locale for the current session.

Syntax
SET LOCALE TO < ICU-locale-identifier >

Parameters

< ICU-locale-identifier > Specifies the ICU locale identifier to use.

By default, the locale for the database is en_US@collation=binary
(English as in the United States of America).

ICU Locales were developed by the ICU Project. See the ICU User
Guide (http://userguide.icu-project.org/locale) for a complete list of

-908-

SQL Reference Manual

parameters that can be used to specify a locale.

Note: The only keyword HP Vertica supports is the COLLATION

keyword.

Note: Single quotes are mandatory to specify the collation.

Permissions

No special permissions required.

Notes

Though not inclusive, the following are some commonly-used locales:

 German (Germany) de_DE

 English (Great Britain) en_GB

 Spanish (Spain) es_ES

 French (France) fr_FR

 Portuguese (Brazil) pt_BR

 Portuguese (Portugal) pt_PT

 Russian (Russia) ru_RU

 Japanese (Japan) ja_JP

 Chinese (China, simplified Han) zh_CN

 Chinese (Taiwan, traditional Han) zh_Hant_TW

Session related:

 The locale setting is session scoped and applies to queries only (no DML/DDL) run in that
session. You cannot specify a locale for an individual query.

 The default locale for new sessions can be set using a configuration parameter

Query related:

The following restrictions apply when queries are run with locale other than the default
en_US@collation=binary:

 Multicolumn NOT IN subqueries are not supported when one or more of the left-side NOT IN
columns is of CHAR or VARCHAR data type. For example:

=> CREATE TABLE test (x VARCHAR(10), y INT);

=> SELECT ... FROM test WHERE (x,y) NOT IN (SELECT ...);

 ERROR: Multi-expression NOT IN subquery is not supported because a

left hand expression could be NULL

Note: An error is reported even if columns test.x and test.y have a "NOT NULL"
constraint.

 Correlated HAVING clause subqueries are not supported if the outer query contains a GROUP

BY on a CHAR or a VARCHAR column. In the following example, the GROUP BY x in the outer
query causes the error:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

-909-

 SQL Statements

=> SELECT COUNT(*) FROM test t GROUP BY x HAVING x

 IN (SELECT x FROM test WHERE t.x||'a' = test.x||'a');

 ERROR: subquery uses ungrouped column "t.x" from outer query

 Subqueries that use analytic functions in the HAVING clause are not supported. For example:

=> DROP TABLE test CASCADE;

=> CREATE TABLE test (x VARCHAR(10));

=> SELECT MAX(x)OVER(PARTITION BY 1 ORDER BY 1)

 FROM test GROUP BY x HAVING x IN (

 SELECT MAX(x) FROM test);

 ERROR: Analytics query with having clause expression that involves

aggregates

 and subquery is not supported

DML/DDL related:

 SQL identifiers (such as table names, column names, and so on) can use UTF-8 Unicode
characters. For example, the following CREATE TABLE statement uses the ß (German eszett)
in the table name:

=> CREATE TABLE straße(x int, y int);

 CREATE TABLE

 Projection sort orders are made according to the default en_US@collation=binary collation.
Thus, regardless of the session setting, issuing the following command creates a projection
sorted by col1 according to the binary collation:

=> CREATE PROJECTION p1 AS SELECT * FROM table1 ORDER BY col1;

Note that in such cases, straße and strasse would not be near each other on disk.

Sorting by binary collation also means that sort optimizations do not work in locales other than
binary. HP Vertica returns the following warning if you create tables or projections in a
non-binary locale:

WARNING: Projections are always created and persisted in the default

HP Vertica locale. The current locale is de_DE

 When creating pre-join projections, the projection definition query does not respect the locale
or collation setting. This means that when you insert data into the fact table of a pre-join
projection, referential integrity checks are not locale or collation aware.

For example:

\locale LDE_S1 -- German

=> CREATE TABLE dim (col1 varchar(20) primary key);

=> CREATE TABLE fact (col1 varchar(20) references dim(col1));

=> CREATE PROJECTION pj AS SELECT * FROM fact JOIN dim

 ON fact.col1 = dim.col1 UNSEGMENTED ALL NODES;

=> INSERT INTO dim VALUES('ß');

=> COMMIT;

The following INSERT statement fails with a "nonexistent FK" error even though 'ß' is in the
dim table, and in the German locale 'SS' and 'ß' refer to the same character.

=> INSERT INTO fact VALUES('SS');

 ERROR: Nonexistent foreign key value detected in FK-PK join (fact

x dim)

 using subquery and dim_node0001; value SS

-910-

SQL Reference Manual

=> => ROLLBACK;

=> DROP TABLE dim, fact CASCADE;

 When the locale is non-binary, the collation function is used to transform the input to a binary
string which sorts in the proper order.

This transformation increases the number of bytes required for the input according to this
formula:

result_column_width = input_octet_width * CollationExpansion + 4

CollationExpansion defaults to 5.

 CHAR fields are displayed as fixed length, including any trailing spaces. When CHAR fields
are processed internally, they are first stripped of trailing spaces. For VARCHAR fields, trailing
spaces are usually treated as significant characters; however, trailing spaces are ignored
when sorting or comparing either type of character string field using a non-BINARY locale.

Examples

This example sets the locale for the session to en_GB (English as in Great Britain).

SET LOCALE TO en_GB;

INFO: Locale: 'en_GB'

INFO: English (United Kingdom)

INFO: Short form: 'LEN'

You can also use the short form of a locale in this command:

SET LOCALE TO LEN;

INFO: Locale: 'en'

INFO: English

INFO: Short form: 'LEN'

Single quotes are mandatory to specify the collation:

SET LOCALE TO 'tr_tr@collation=standard';

INFO: Locale: 'tr_TR@collation=standard'

Standard collation: 'LTR'

Turkish (Turkey, collation=standard) Türkçe (Türkiye, Sıralama=standard)

SET

See Also

Implement Locales for International Data Sets and Appendix: Locales in the Administrator's Guide

SET ROLE

Enables a role for the current user's current session. The user will gain the permissions that have
been granted to the role.

Syntax
SET ROLE { role [, ...] | NONE | ALL | DEFAULT }

-911-

 SQL Statements

Parameters

role [, ...] | NONE | ALL |

DEFAULT
The name of one or more roles to set as the

current role, or one of the following
keywords:

 NONE disables all roles for the
current session.

 ALL enables all of the roles to which
the user has access.

 DEFAULT sets the current role to
the user's default role.

Permissions

You can only set a role that has been granted to you. Run the SHOW AVAILABLE_ROLES
command to get a list of the roles available to the user.

Notes

 The default role is the first role that was assigned to the user or set by the superuser via the
ALTER USER (page 679) statement's DEFAULT ROLE argument.

 Enabling a role does not affect any other roles that are currently enabled. A user session can
have more than one role enabled at a time. The user's permissions are the union of all the
roles that are currently active, plus any permissions granted directly to the user.

Example
=> SHOW ENABLED_ROLES; -- Which roles are active now.

 name | setting

---------------+----------------------------

 enabled roles |

(1 row)

=> SHOW AVAILABLE_ROLES; -- All roles the user can access

 name | setting

-----------------+----------------------------

 available roles | applogs, appadmin, appuser

(1 row)

=> SET ROLE applogs;

SET

=> SHOW ENABLED_ROLES;

 name | setting

---------------+---------

 enabled roles | applogs

(1 row)

=> SET ROLE appuser;

SET

=> SHOW ENABLED_ROLES;

 name | setting

---------------+------------------

 enabled roles | applogs, appuser

-912-

SQL Reference Manual

(1 row)

=> SET ROLE NONE; -- disable all roles

SET

dbadmin=> SHOW ENABLED_ROLES;

 name | setting

---------------+---------

 enabled roles |

(1 row)

SET SEARCH_PATH
Specifies the order in which HP Vertica searches schemas when a SQL statement contains an
unqualified table name.

HP Vertica provides the SET search_path statement instead of the CURRENT_SCHEMA
statement found in some other databases.

Syntax 1
SET SEARCH_PATH [TO | =] schemaname [, ...]

Syntax 2
SET SEARCH_PATH [TO | =] default

Parameters

schemaname A comma-delimited list of schemas that indicates the order in which HP Vertica
searches schemas when a SQL statement contains an unqualified table name.

The default value for this parameter is '"$user", public'

Where:

 $user is the schema with the same name as the current user. If the schema
does not exist, $user is ignored.

 public is the public database. Public is ignored if there is no schema named
'public'.

default Returns the search path to the default value of '"$user", public '.

Permissions

No special permissions required.

Notes

The first schema named in the search path is called the current schema. The current schema is
the first schema that HP Vertica searches. It is also the schema in which HP Vertica creates new
tables if the CREATE TABLE (page 770) command does not specify a schema name.

Examples

The following example shows the current search path settings:

-913-

 SQL Statements

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

This command sets the order in which HP Vertica searches schemas to T1, U1, and V1:

=> SET SEARCH_PATH TO T1, U1, V1;

This command returns the search path to the default of '"$user", public':

=> SET SEARCH_PATH = default;

SET SESSION AUTOCOMMIT

Sets whether statements automatically commit their transactions on completion. This statement is
primarily used by the client drivers to enable and disable autocommit, you should never have to
directly call it.

Syntax
SET SESSION AUTOCOMMIT TO { ON | OFF }

Parameters

ON Enable autocommit. Statements automatically commit their transactions when
they complete. This is the default setting for connections made using the HP
Vertica client libraries.

OFF Disable autocommit. Transactions are not automatically committed. This is the
default for interactive sessions (connections made through vsql).

Permissions

No special permissions required.

See Also

HP Vertica Client Library Overview in the Programmer's Guide.

-914-

 914

SET SESSION CHARACTERISTICS

Sets the transaction characteristics for the isolation level and access mode (read/write or
read-only). Setting the transaction mode affects subsequent transactions of a user session.

Syntax
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ

UNCOMMITTED }

 READ { ONLY | WRITE }

Parameters

Isolation level, described in the following table, determines what data the transaction can access
when other transactions are running concurrently. The isolation level cannot be changed after the

first query (SELECT) or DML statement (INSERT, DELETE, UPDATE) if a transaction has run. A
transaction retains its isolation level until it completes, even if the session's transaction isolation
level changes mid-transaction. HP Vertica internal processes (such as the Tuple Mover and

refresh operations) and DDL operations are always run at SERIALIZABLE isolation level to
ensure consistency.

SERIALIZABLE Sets the strictest level of SQL transaction isolation. This level emulates
transactions serially, rather than concurrently. It holds locks and blocks

write operations until the transaction completes. Not recommended for
normal query operations.

REPEATABLE READ Automatically converted to SERIALIZABLE by HP Vertica.

READ COMMITTED (Default) Allows concurrent transactions. Use READ COMMITTED
isolation or Snapshot Isolation for normal query operations, but be aware
that there is a subtle difference between them. (See section below this

table.)

READ UNCOMMITTED Automatically converted to READ COMMITTED by HP Vertica.

READ {WRITE | ONLY} Determines whether the transaction is read/write or read-only.

Read/write is the default.

Setting the t ransaction session mode to read-only disallows the following
SQL commands, but does not prevent all disk write operations:

 INSERT, UPDATE, DELETE, and COPY if the table they would
write to is not a temporary table

 All CREATE, ALTER, and DROP commands

 GRANT, REVOKE, and EXPLAIN if the command it would run is
among those listed.

Permissions

No special permissions required.

-915-

 SQL Statements

Understanding READ COMMITTED and Snapshot Isolation

By itself, AT EPOCH LATEST produces purely historical query behavior. However, with READ
COMMITTED, SELECT queries return the same result set as AT EPOCH LATEST, plus any
changes made by the current transaction.

This is standard ANSI SQL semantics for ACID transactions. Any select query within a transaction
sees the transaction's own changes regardless of isolation level.

Using SERIALIZABLE Transaction Isolation

Setting the transaction isolation level to SERIALIZABLE does not apply to temporary tables.
Temporary tables are isolated by their transaction scope.

Applications using SERIALIZABLE must be prepared to retry transactions due to serialization
failures.

Setting READ ONLY Transaction Mode

This example sets a Read-only transaction level:

=> SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED READ

ONLY;

SET

SET SESSION MEMORYCAP
Specifies a limit on the amount of memory that any request issued by the session can consume.

Syntax
SET SESSION MEMORYCAP 'memory-limit' | = default

Parameters

memory-limit | = default The maximum amount of memory the session can use. To set a
value, supply number followed by a unit. Units can be one of the
following:

 % percentage of total memory available to the Resource
Manager. (In this case, size must be 0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

If you use the value = default the session's MEMORYCAP is set to

the user's MEMORYCAP value.

Permissions

 This command requires superuser privileges if the MEMORYCAP is being increased over the
user's MEMORYCAP limit (see CREATE USER (page 801) for details).

-916-

SQL Reference Manual

 Non-superusers can change this value to anything below or equal to their MEMORYCAP limit.

Notes

The MEMORYCAP limit is per user session, not an overall cap on the user's memory usage. A
user could spawn multiple sessions, each of which could use up to the limit set by the
MEMORYCAP.

Example

The following command sets a memorycap of 4 gigabytes on the session:

=> SET SESSION MEMORYCAP '4G';

To return the memorycap to the previous setting:

=> SET SESSION MEMORYCAP NONE;

=> SHOW MEMORYCAP;

 name | setting

-----------+-----------

 memorycap | UNLIMITED

(1 row)

See Also

ALTER RESOURCE POOL (page 663)

CREATE RESOURCE POOL (page 753)

CREATE USER (page 801)

DROP RESOURCE POOL (page 819)

SET SESSION RESOURCE POOL (page 916)

Managing Workloads in the Administrator's Guide

SET SESSION RESOURCE_POOL
Associates the user session with the specified resource pool.

Syntax
SET SESSION RESOURCE_POOL = { pool-name | default }

Parameters

pool-name | default Specifies the name of the resource pool to be associated with
session. If you use the value default, then the session's

resource pool is set to the default resource pool for the user.

Permissions

 This command requires non-superusers to have USAGE privileges for the resource pool.

 Superusers can assign their session to any resource pool they want.

-917-

 SQL Statements

 To set the resource pool session, the user needs USAGE privilege on the resource pool.

Notes

The resource pool must exist.

See Also

ALTER RESOURCE POOL (page 663)

CREATE RESOURCE POOL (page 753)

CREATE USER (page 801)

DROP RESOURCE POOL (page 819)

GRANT (Resource Pool) (page 834)

SET SESSION MEMORYCAP (page 915)

Managing Workloads in the Administrator's Guide

SET SESSION RUNTIMECAP
Sets the maximum amount of time a session's query can run.

Syntax
SET SESSION RUNTIMECAP ['duration' | NONE | = default]

Parameters

'duration' | NONE | DEFAULT One of three values:

 An interval such as '1 minute' or '100

seconds' (see Interval Values (page 37) for a

full explanation) setting the maximum amount of
time this session's queries should be allowed to
run.

 NONE which eliminates any limit on the amount of

time the session's queries can run (the default
value).

 = default which sets the session's

RUNTIMECAP to the user's RUNTIMECAP value.
You must include the equals (=) sign before the
default keyword.

Notes

 The largest allowable RUNTIMECAP value is 1 year (365 days).

 If RUNTIMECAP is also set for the user or the resource pool, HP Vertica uses the shortest
limit.

-918-

SQL Reference Manual

 This command requires superuser privileges if the RUNTIMECAP is being increased over the
user's RUNTIMECAP limit.

 Normal users can change the RUNTIMECAP of their own sessions to any value below their
own RUNTIMECAP. They cannot increase the RUNTIMECAP beyond any limit set for them by
the superuser.

 The timeout is not precise, so a query may run a little longer than the value set in
RUNTIMECAP.

 Queries that violate the RUNTIMECAP are terminated with the error message Execution
time exceeded run time cap of <cap_duraation>.

 SHOW RUNTIMECAP (below) shows only the session RUNTIMECAP; it does not show the user
or resource pool RUNTIMECAP.

Example

The following command sets the session's RUNTIMECAP to 10 minutes:

=> SET SESSION RUNTIMECAP '10 minutes';

To return the RUNTIMECAP to the user's default setting:

=> SET SESSION RUNTIMECAP =DEFAULT;

SET

=> SHOW RUNTIMECAP;

 name | setting

------------+-----------

 runtimecap | UNLIMITED

(1 row)

See Also

CREATE USER (page 801)

ALTER USER (page 679)

Managing Workloads in the Administrator's Guide

SET SESSION TEMPSPACECAP
Sets the maximum amount of temporary file storage space that any request issued by the session
can consume.

Syntax
SET SESSION TEMPSPACECAP 'space-limit' | = default | NONE

Parameters

'space-limit' The maximum amount of temporary file space the session can

use. To set a limit, use a numeric value followed by a unit (for
example: '10G'). The unit can be one of the following:

 % percentage of total temporary storage space

-919-

 SQL Statements

available. (In this case, the numeric value must be
0-100).

 K Kilobytes

 M Megabytes

 G Gigabytes

 T Terabytes

Setting this value to = default sets the session's

TEMPSPACECAP to the user's TEMPSPACECAP value.

Setting this value to NONE results in the session having unlimited

temporary storage space. This is the default value.

Permissions

 This command requires superuser privileges to increase the TEMPSPACECAP over the
user's TEMPSPACECAP limit.

 Regular users can change the TEMPSPACECAP associated with their own sessions to any
value less than or equal to their own TEMPSPACECAP. They cannot increase its value
beyond their own TEMPSPACECAP value.

Notes

 This limit is per session, not per user. A user could open multiple sessions, each of which could
use up to the TEMPSPACECAP.

 Any execution plan that exceeds its TEMPSPACECAP usage results in the error:

ERROR: Exceeded temp space cap.

Example

The following command sets a TEMPSPACECAP of 20gigabytes on the session:

=> SET SESSION TEMPSPACECAP '20G';

SET

=> SHOW TEMPSPACECAP;

 name | setting

--------------+----------

 tempspacecap | 20971520

(1 row)

Note: SHOW displays the TEMPSPACECAP in kilobytes.

To return the memorycap to the previous setting:

=> SET SESSION TEMPSPACECAP NONE;

SET

=> SHOW TEMPSPACECAP;

 name | setting

--------------+-----------

 tempspacecap | UNLIMITED

(1 row)

See Also

ALTER USER (page 679)

-920-

SQL Reference Manual

CREATE USER (page 801)

Managing Workloads in the Administrator's Guide

SET STANDARD_CONFORMING_STRINGS
Treats backslashes as escape characters for the current session.

Syntax
SET STANDARD_CONFORMING_STRINGS TO { ON | OFF }

Parameters

ON Makes ordinary string literals ('...') treat back slashes (\) literally. This
means that back slashes are treated as string literals, not escape
characters. (This is the default.)

OFF Treats back slashes as escape characters.

Permissions

No special permissions required.

Notes

 This statement works under vsql only.

 When standard conforming strings are on, HP Vertica supports SQL:2008 string literals within
Unicode escapes.

 Standard conforming strings must be ON to use Unicode-style string literals (U&'\nnnn').

TIP: To set conforming strings across all sessions (permanently), use the

StandardConformingStrings as described in Internationalization Parameters in the
Administrator's Guide.

Examples

The following example shows how to turn off conforming strings for the session.

=> SET STANDARD_CONFORMING_STRINGS TO OFF;

The following command lets you verify the settings:

=> SHOW STANDARD_CONFORMING_STRINGS;

 name | setting

-----------------------------+---------

 standard_conforming_strings | off

(1 row)

The following example shows how to turn on conforming strings for the session.

=> SET STANDARD_CONFORMING_STRINGS TO ON;

-921-

 SQL Statements

See Also

ESCAPE_STRING_WARNING (page 905)

SET TIME ZONE
Changes the TIME ZONE run-time parameter for the current session.

Syntax
SET TIME ZONE TO { value | 'value' }

Parameters

value Is one of the following:

 One of the time zone names specified in the tz database, as
described in Sources for Time Zone and Daylight Saving Time

Data http://www.twinsun.com/tz/tz-link.htm. Time Zone Names
for Setting TIME ZONE (page 922) listed in the next section are for
convenience only and could be out of date.

 A signed integer representing an offset from UTC in hours

 An interval value (page 37)

Permissions

No special permissions required.

Notes

 TIME ZONE is a synonym for TIMEZONE. Both are allowed in HP Vertica syntax.

 The built-in constants LOCAL and DEFAULT, which set the time zone to the one specified in
the TZ environment variable or, if TZ is undefined, from the operating system time zone. See
Set the Default Time Zone and Using Time Zones with HP Vertica in the Installation Guide.

 When using a Country/City name, do not omit the country or the city. For example:

SET TIME ZONE TO 'Africa/Cairo'; -- valid

SET TIME ZONE TO 'Cairo'; -- invalid

 Include the required keyword TO.

 Positive integer values represent an offset east from UTC.

 The SHOW (page 923) command displays the run-time parameters.

 If you set the timezone using POSIX format, the timezone abbreviation you use overrides the
default timezone abbreviation. If the DATESTYLE is set to POSTGRES, the timezone
abbreviation you use is also used when converting a timestamp to a string.

Examples

=> SET TIME ZONE TO DEFAULT;

=> SET TIME ZONE TO 'PST8PDT'; -- Berkeley, California

http://www.twinsun.com/tz/tz-link.htm

-922-

SQL Reference Manual

=> SET TIME ZONE TO 'Europe/Rome'; -- Italy

=> SET TIME ZONE TO '-7'; -- UDT offset equivalent to PDT

=> SET TIME ZONE TO INTERVAL '-08:00 HOURS';

See Also

Using Time Zones with HP Vertica in the Installation Guide

Time Zone Names for Setting TIME ZONE

The following time zone names are recognized by HP Vertica as valid settings for the SQL time
zone (the TIME ZONE run-time parameter).

Note: The names listed here are for convenience only and could be out of date. Refer to the

Sources for Time Zone and Daylight Saving Time Data
http://www.twinsun.com/tz/tz-link.htm page for precise information.

These names are not the same as the names shown in

/opt/vertica/share/timezonesets, which are recognized by HP Vertica in date/time input
values. The TIME ZONE names shown below imply a local daylight-savings time rule, where
date/time input names represent a fixed offset from UTC.

In many cases there are several equivalent names for the same zone. These are listed on the
same line. The table is primarily sorted by the name of the principal city of the zone.

In addition to the names listed in the table, HP Vertica accepts time zone names of the form
STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset is a numeric offset in hours
west from UTC, and DST is an optional daylight-savings zone abbreviation, assumed to stand for

one hour ahead of the given offset. For example, if EST5EDT were not already a recognized zone
name, it would be accepted and would be functionally equivalent to USA East Coast time. When a
daylight-savings zone name is present, it is assumed to be used according to USA time zone
rules, so this feature is of limited use outside North America. Be wary that this provision can lead to
silently accepting bogus input, since there is no check on the reasonableness of the zone

abbreviations. For example, SET TIME ZONE TO FOOBANKO works, leaving the system effectively
using a rather peculiar abbreviation for GMT.

Time Zone

Africa

America

Antarctica

Asia

Atlantic

http://www.twinsun.com/tz/tz-link.htm

-923-

 SQL Statements

Australia

CET

EET

Etc/GMT

Europe

Factory

GMT GMT+0 GMT-0 GMT0 Greenwich
Etc/GMT Etc/GMT+0 Etc/GMT-0 Etc/GMT0
Etc/Greenwich

Indian

MET

Pacific

UCT Etc/UCT

UTC Universal Zulu Etc/UTC Etc/Universal
Etc/Zulu

WET

SHOW
Displays run-time parameters for the current session.

Syntax
SHOW { name | ALL }

Parameters

name AUTOCOMMIT Displays whether statements automatically commit their
transactions when they complete.

 AVAILABLE_ROLES Lists all roles available to the user.

 DATESTYLE Displays the current style of date values. See SET
DATESTYLE (page 903).

-924-

SQL Reference Manual

 ENABLED_ROLES Displays the roles enabled for the current session. See

SET ROLE (page 910).

 ESCAPE_STRING_WARNING Displays whether warnings are issued when backslash
escapes are found in strings. See SET

ESCAPE_STRING_WARNING (page 905).

 INTERVALSTYLE Displays whether units are output when printing intervals.
See SET INTERVALSTYLE (page 906).

 LOCALE Displays the current locale. See SET LOCALE.

 MEMORYCAP Displays the maximum amount of memory that any
request use. See SET MEMORYCAP (page 915).

 RESOURCE_POOL Displays the resource pool that the session is using. See
SET RESOURCE POOL (page 916).

 RUNTIMECAP Displays the maximum amount of time that queries can

run in the session. See SET RUNTIMECAP (page 917)

 SEARCH_PATH Displays the order in which HP Vertica searches schemas.
See SET SEARCH_PATH (page 912).

 SESSION_CHARACTERISTICS Displays the transaction characteristics. See SET
SESSION CHARACTERISTICS (page 914).

 STANDARD_CONFORMING_STRINGS Displays whether backslash escapes are enabled for the

session. See SET
STANDARD_CONFORMING_STRINGS (page 920).

 TEMPSPACECAP Displays the maximum amount of temporary file space

that queries can use in the session. See SET
TEMPSPACECAP (page 918).

 TIMEZONE Displays the timezone set in the current session. See SET

TIMEZONE (page 921).

 TRANSACTION_ISOLATION Displays the current transaction isolation setting, as
described in SET SESSION CHARACTERISTICS (page
914).

 TRANSACTION_READ_ONLY Displays the current setting, as described in SET
SESSION CHARACTERISTICS (page 914).

ALL Shows all run-time parameters.

Permissions

No special permissions required.

Displaying all current run-time parameter settings

The following command returns all the run-time parameter settings:

=> SHOW ALL;

 name | setting

-----------------------------+---

 locale | en_US@collation=binary (LEN_KBINARY)

 autocommit | off

 standard_conforming_strings | on

-925-

 SQL Statements

 escape_string_warning | on

 datestyle | ISO, MDY

 intervalstyle | plain

 timezone | US/Eastern

 search_path | "$user", public, v_catalog, v_monitor, v_internal

 transaction_isolation | READ COMMITTED

 transaction_read_only | false

 resource_pool | general

 memorycap | UNLIMITED

 tempspacecap | UNLIMITED

 runtimecap | UNLIMITED

 enabled roles |

 available roles | applogs, appadmin

(15 rows)

Displaying current search path settings

The following command returns the search path settings:

=> SHOW SEARCH_PATH;

 name | setting

-------------+---

 search_path | "$user", public, v_catalog, v_monitor, v_internal

(1 row)

Displaying the Transaction Isolation Level

The following command shows the session transaction isolation level:

=> SHOW TRANSACTION ISOLATION LEVEL;

 name | setting

-----------------------+----------------

 transaction_isolation | READ COMMITTED

(1 row)

The next command returns the setting for SESSION CHARACTERISTICS AS TRANSACTION.
False indicates that the default read/write is the current setting:

=> SHOW transaction_read_only;

 name | setting

-----------------------+---------

 transaction_read_only | false

(1 row)

To change to read only, you'd need to enter:

=> SET SESSION CHARACTERISTICS AS TRANSACTION READ ONLY;

Now the same SHOW command returns true:

=> SHOW transaction_read_only;

 name | setting

-----------------------+---------

 transaction_read_only | true

(1 row)

-926-

SQL Reference Manual

START TRANSACTION
Starts a transaction block.

Syntax
START TRANSACTION [isolation_level]

where isolation_level is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED

}

READ { ONLY | WRITE }

Parameters

Isolation level, described in the following table, determines what data the transaction can access
when other transactions are running concurrently. The isolation level cannot be changed after the

first query (SELECT) or DML statement (INSERT, DELETE, UPDATE) has run. A transaction retains
its isolation level until it completes, even if the session's transaction isolation level changes
mid-transaction. HP Vertica internal processes (such as the Tuple Mover and refresh operations)
and DDL operations are always run at SERIALIZABLE isolation level to ensure consistency.

WORK | TRANSACTION Have no effect; they are optional keywords for readability.

ISOLATION LEVEL

{

 SERIALIZABLE |

 REPEATABLE READ |

 READ COMMITTED |

 READ UNCOMMITTED

}

 SERIALIZABLE—Sets the strictest level of SQL

transaction isolation. This level emulates transactions
serially, rather than concurrently. It holds locks and

blocks write operations until the transaction completes.
Not recommended for normal query operations.

 REPEATABLE READ—Automatically converted to
SERIALIZABLE by HP Vertica.

 READ COMMITTED (Default)—Allows concurrent

transactions. Use READ COMMITTED isolation or
Snapshot Isolation for normal query operations, but be
aware that there is a subtle difference between them.
(See section below this table.)

 READ UNCOMMITTED—Automatically converted to
READ COMMITTED by HP Vertica.

READ {WRITE | ONLY} Determines whether the transaction is read/write or read-only.
Read/write is the default.

Setting the transaction session mode to read-only disallows the
following SQL commands, but does not prevent all disk write
operations:

 INSERT, UPDATE, DELETE, and COPY if the table
they would write to is not a temporary table

 All CREATE, ALTER, and DROP commands

 GRANT, REVOKE, and EXPLAIN if the command it
would run is among those listed.

-927-

 SQL Statements

Permissions

No special permissions required.

Notes

BEGIN (page 682) performs the same function as START TRANSACTION.

See Also

 Transactions

 Creating and Rolling Back Transactions

 COMMIT (page 697)

 END (page 827)

 ROLLBACK (page 867)

TRUNCATE TABLE

Removes all storage associated with a table, while preserving the table definitions. TRUNCATE
TABLE auto-commits the current transaction after statement execution and cannot be rolled back.

Syntax
TRUNCATE TABLE [[db-name.]schema.]table

Parameters

[[db-name.]schema.] [Optional] Specifies the database name and optional schema
name. Using a database name identifies objects that are not
unique within the current search path (see Setting Search Paths).

You must be connected to the database you specify, and you
cannot change objects in other databases.

Specifying different database objects lets you qualify database

objects as explicitly as required. For example, you can use a
database and a schema name (mydb.myschema).

table Specifies the name of a base table or temporary table. Cannot
truncate an external table.

Permissions

Superuser or table owner. A schema owner can drop a table but cannot truncate a table.

Notes

 To truncate an ON COMMIT DELETE ROWS temporary table without ending the transaction, use

DELETE FROM temp_table (page 807) syntax.

Note: The effect of DELETE FROM depends on the table type. If the table is specified as ON
COMMIT DELETE ROWS, then DELETE FROM works like TRUNCATE TABLE; otherwise it
behaves like a normal delete in that it does not truncate the table.

-928-

SQL Reference Manual

 After truncate operations complete, the data recovers from that current epoch onward.
Because TRUNCATE TABLE removes table history, AT EPOCH queries return nothing.
TRUNCATE TABLE behaves the same when you have data in WOS, ROS, or both, as well as
for unsegmented/segmented projections.

 If the operation cannot obtain an O Lock (page 1037) on the table(s), HP Vertica attempts to
close any internal Tuple Mover (TM) sessions running on the same table(s) so that the
operation can proceed. Explicit TM operations that are running in user sessions are not closed.
If an explicit TM operation is running on the table, then the operation cannot proceed until the
explicit TM operation completes.

Examples

For examples about how to use TRUNCATE, see Dropping and Truncating Tables in the
Administrator's Guide.

See Also

DELETE (page 807), DROP TABLE (page 823), and LOCKS (page 1037)

Transactions in the Concepts Guide

Deleting Data and Best Practices for DELETE and UPDATE in the Administrator's Guide

-929-

 929

UPDATE

Replaces the values of the specified columns in all rows for which a specific condition is true. All
other columns and rows in the table are unchanged. By default, UPDATE uses the WOS and if the
WOS fills up, overflows to the ROS.

Syntax
UPDATE [/*+ direct */] [/*+ label(label-name)*/]

... [[db-name.]schema.]table-reference (on page 876) [AS] alias

... SET column =

... { expression | DEFAULT } [, ...]

... [FROM from-list]

... [WHERE clause (page 901)]

Parameters

/*+ direct */ Writes the data directly to disk (ROS) bypassing memory (WOS).

HP Vertica accepts optional spaces before and after the plus (+) sign and

the direct hint. Space characters between the opening /* or the closing

*/ are not permitted. The following directives are all acceptable:

/*+direct*/

/* + direct*/

/*+ direct*/

/*+direct */

Note: If you update using the direct hint, you still need to issue a COMMIT

or ROLLBACK command to finish the transaction.

/*+ label

(label-name)*/

Passes a user-defined label to a query as a hint, letting you quickly identify
labeled queries for profiling and debugging. See Query Labeling in the
Administrator's Guide.

[[db-name.]schema.] [Optional] Specifies the schema name. Using a schema identifies objects
that are not unique within the current search path (see Setting Schema
Search Paths).

You can optionally precede a schema with a database name, but you must
be connected to the database you specify. You cannot make changes to
objects in other databases.

The ability to specify different database objects (from database and
schemas to tables and columns) lets you qualify database objects as
explicitly as required. For example, you can specify a table and column

(mytable.column1), a schema, table, and column

(myschema.mytable.column1), and as full qualification, a database,

schema, table, and column (mydb.myschema.mytable.column1).

-930-

SQL Reference Manual

table-reference table-primary or joined-table:

table-primary Specifies an optionally qualified table name

with optional table aliases, column aliases,
and outer joins.

joined-table Specifies an outer join.

You cannot update a projection.

alias Specifies a temporary name to be used for references to the table.

column Specifies the name of a non-key column in the table.

expression Specifies a value to assign to the column. The expression can use the
current values of this and other columns in the table. For example:

UPDATE T1 SET C1 = C1+1;

from-list A list of table expressions, allowing columns from other tables to appear in

the WHERE condition and the UPDATE expressions. This is similar to the list

of tables that can be specified in the FROM clause (page 876) of a SELECT

command. Note that the target table must not appear in the from-list.

Permissions

Table owner or user with GRANT OPTION is grantor.

 UPDATE privilege on table

 USAGE privilege on schema that contains the table

 SELECT privilege on the table when executing an UPDATE statement that references table
column values in a WHERE or SET clause

Notes

 Subqueries and joins are permitted in UPDATE statements, which is useful for updating values
in a table based on values that are stored in other tables. UPDATE changes the values of the
specified columns in all rows that satisfy the condition. Only the columns to be modified need
to be specified in the SET clause. Columns that are not explicitly modified retain their previous
values. On successful completion, an UPDATE operation returns a count, which represents
the number of rows updated. A count of 0 is not an error; it means that no rows matched the
condition.

See Subqueries in UPDATE and DELETE Statements in the Programmer's Guide.

 The table you specify in the UPDATE list cannot also appear in the FROM list (no self joins);
for example, the following UPDATE statement is not allowed:

=> BEGIN;

=> UPDATE result_table

 SET address='new' || r2.address

 FROM result_table r2

 WHERE r2.cust_id = result_table.cust_id + 10;

 ERROR: Self joins in UPDATE statements are not allowed

 DETAIL: Target relation result_table also appears in the FROM list

-931-

 SQL Statements

 If the joins specified in the WHERE predicate produce more than one copy of the row in the
table to be updated, the new value of the row in the table is chosen arbitrarily.

 UPDATE inserts new records into the WOS and marks the old records for deletion.

 You cannot UPDATE columns that have primary key or foreign key referential integrity
constraints.

 To use the DELETE (page 807) or UPDATE commands with a WHERE clause (page 901),
you must have both SELECT and DELETE privileges on the table.

Examples

In the FACT table, modify the PRICE column value for all rows where the COST column value is
greater than 100:

=> UPDATE FACT SET PRICE = PRICE - COST * 80 WHERE COST > 100;

In the Retail.CUSTOMER table, set the STATE column to 'NH' when the CID column value is
greater than 100:

=> UPDATE Retail.CUSTOMER SET STATE = 'NH' WHERE CID > 100;

To use table aliases in UPDATE queries, consider the following two tables:

=> SELECT * FROM Result_Table;

 cust_id | address

---------+--------------------

 20 | Lincoln Street

 30 | Beach Avenue

 30 | Booth Hill Road

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

=> SELECT * FROM New_Addresses;

 new_cust_id | new_address

-------------+---------------

 20 | Infinite Loop

 30 | Loop Infinite

 60 | New Addresses

(3 rows)

The following query and subquery use table aliases to update the address column in

Result_Table (alias r) with the new address from the corresponding column in the
New_Addresses table (alias n):

=> UPDATE Result_Table r

 SET address=n.new_address

 FROM New_Addresses n

 WHERE r.cust_id = n.new_cust_id;

The Result_Table table reflects the address field updates made for customer IDs 20 and 30:

=> SELECT * FROM Result_Table ORDER BY cust_id;

 cust_id | address

---------+------------------

 20 | Infinite Loop

 30 | Loop Infinite

-932-

SQL Reference Manual

 30 | Loop Infinite

 40 | Mt. Vernon Street

 50 | Hillside Avenue

(5 rows)

For more information about nesting subqueries within an UPDATE statement, see Subqueries in
UPDATE and DELETE in the Programmer's Guide.

-933-

HP Vertica System Tables

HP Vertica provides system tables that let you monitor your database. Query these tables the
same way you perform query operations on base or temporary tables—by using SELECT
statements.

For more information, see the following sections in the Administrator's Guide:

 Using System Tables

 Monitoring Vertica

V_CATALOG Schema

The system tables in this section reside in the v_catalog schema. These tables provide
information (metadata) about the objects in a database; for example, tables, constraints, users,
projections, and so on.

ALL_TABLES

Provides summary information about the tables in HP Vertica.

Column Name Data Type Description

SCHEMA_NAME VARCHAR The name of the schema that contains the table.

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog that identifies the table.

TABLE_NAME VARCHAR The table name.

TABLE_TYPE VARCHAR The type of table, which can be one of the
following:

 TABLE

 SYSTEM TABLE

 VIEW

 GLOBAL TEMPORARY

 LOCAL TEMPORARY

REMARKS VARCHAR A brief comment about the table. You define this
field by using the COMMENT ON TABLE (page

693) and COMMENT ON VIEW (page 695)
commands.

Example
onenode=> SELECT DISTINCT table_name, table_type FROM all_tables

 WHERE table_name ILIKE 't%';

-934-

SQL Reference Manual

 table_name | table_type

------------------------+--------------

 types | SYSTEM TABLE

 trades | TABLE

 tuple_mover_operations | SYSTEM TABLE

 tables | SYSTEM TABLE

 tuning_recommendations | SYSTEM TABLE

 testid | TABLE

 table_constraints | SYSTEM TABLE

 transactions | SYSTEM TABLE

(8 rows)

onenode=> SELECT table_name, table_type FROM all_tables

 WHERE table_name ILIKE 'my%';

 table_name | table_type

------------+------------

 mystocks | VIEW

(1 row)

=> SELECT * FROM all_tables LIMIT 4;

-[RECORD 1]---

schema_name | v_catalog

table_id | 10206

table_name | all_tables

table_type | SYSTEM TABLE

remarks | A complete listing of all tables and views

-[RECORD 2]---

schema_name | v_catalog

table_id | 10000

table_name | columns

table_type | SYSTEM TABLE

remarks | Table column information

-[RECORD 3]---

schema_name | v_catalog

table_id | 10054

table_name | comments

table_type | SYSTEM TABLE

remarks | User comments on catalog objects

-[RECORD 4]---

schema_name | v_catalog

table_id | 10134

table_name | constraint_columns

table_type | SYSTEM TABLE

remarks | Table column constraint information

-935-

 HP Vertica System Tables

COLUMNS

Provides table column information.

Column Name Data Type Description

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog that identifies the table.

TABLE_SCHEMA VARCHAR The schema name for which information is listed in
the database.

TABLE_NAME VARCHAR The table name for which information is listed in the
database.

IS_SYSTEM_TABLE BOOLEAN Indicates if the table is a system table, where t is

true and f is false.

COLUMN_ID VARCHAR A unique VARCHAR ID, assigned by the HP Vertica
catalog, that identifies a column in a table.

COLUMN_NAME VARCHAR The column name for which information is listed in
the database.

DATA_TYPE VARCHAR The data type assigned to the column; for example

VARCHAR(16), INT, FLOAT.

DATA_TYPE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the data type.

DATA_TYPE_LENGTH INTEGER The maximum allowable length of the data type.

CHARACTER_MAXIMUM_LENGTH VARCHAR The maximum allowable length of the column.

NUMERIC_PRECISION INTEGER The number of significant decimal digits.

NUMERIC_SCALE INTEGER The number of fractional digits.

DATETIME_PRECISION INTEGER For TIMESTAMP data type, returns the declared

precision; returns NULL if no precision was
declared.

INTERVAL_PRECISION INTEGER The number of fractional digits retained in the

seconds field.

ORDINAL_POSITION INTEGER The position of the column respective to other
columns in the table.

IS_NULLABLE BOOLEAN Indicates whether the column can contain NULL
values, where t is true and f is false.

COLUMN_DEFAULT VARCHAR The default value of a column, such as empty or

expression.

IS_IDENTITY BOOLEAN True if the column is an identity column. See
column-constraint (page 783).

-936-

SQL Reference Manual

Example

Retrieve table and column information from the COLUMNS table:

=> SELECT table_schema, table_name, column_name, data_type, is_nullable

 FROM columns WHERE table_schema = 'store' AND data_type = 'Date';

 table_schema | table_name | column_name | data_type |

is_nullable

--------------+-------------------+------------------------+-----------+------

 store | store_dimension | first_open_date | Date | f

 store | store_dimension | last_remodel_date | Date | f

 store | store_orders_fact | date_ordered | Date | f

 store | store_orders_fact | date_shipped | Date | f

 store | store_orders_fact | expected_delivery_date | Date | f

 store | store_orders_fact | date_delivered | Date | f

6 rows)

NULL results indicate that those columns were not defined. For example, given the following table,
the result for the DATETIME_PRECISION column is NULL because no precision was declared:

=> CREATE TABLE c (c TIMESTAMP);

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c |

(1 row)

In this example, the DATETIME_PRECISION column returns 4 because the precision was
declared as 4 in the CREATE TABLE statement:

=> DROP TABLE c;

=> CREATE TABLE c (c TIMESTAMP(4));

CREATE TABLE

=> SELECT table_name, column_name, datetime_precision FROM columns WHERE

table_name = 'c';

 table_name | column_name | datetime_precision

------------+-------------+--------------------

 c | c | 4

An identity column is a sequence available only for numeric column types. To identify what column
in a table, if any, is an identity column, search the COLUMNS table to find the identity column in a
table testid:

=> CREATE TABLE testid (c1 IDENTITY(1, 1, 1000), c2 INT);

=> \x

Expanded display is on.

=> SELECT * FROM COLUMNS WHERE is_identity='t' AND table_name='testid';

-[RECORD 1]------------+--------------------

table_id | 45035996273719486

table_schema | public

table_name | testid

is_system_table | f

-937-

 HP Vertica System Tables

column_id | 45035996273719486-1

column_name | c1

data_type | int

data_type_id | 6

data_type_length | 8

character_maximum_length |

numeric_precision |

numeric_scale |

datetime_precision |

interval_precision |

ordinal_position | 1

is_nullable | f

column_default |

is_identity | t

Use the SEQUENCES table to get detailed information about the sequence in testid:

=> SELECT * FROM sequences WHERE identity_table_name='testid';

-[RECORD 1]-------+--------------------

sequence_schema | public

sequence_name | testid_c1_seq

owner_name | dbadmin

identity_table_name | testid

session_cache_count | 1000

allow_cycle | f

output_ordered | f

increment_by | 1

minimum | 1

maximum | 9223372036854775807

current_value | 0

sequence_schema_id | 45035996273704976

sequence_id | 45035996273719488

owner_id | 45035996273704962

identity_table_id | 45035996273719486

For more information about sequences and identity columns, see Using Named Sequences.

COMMENTS

Returns information about comments associated with objects in the database.

Column Name Data Type Description

COMMENT_ID INTEGER The comment's internal ID number

OBJECT_ID INTEGER The internal ID number of the object
associated with the comment

-938-

SQL Reference Manual

OBJECT_TYPE VARCHAR The type of object associated with
the comment. Possible values are:

 COLUMN

 CONSTRAINT

 FUNCTION

 LIBRARY

 NODE

 PROJECTION

 SCHEMA

 SEQUENCE

 TABLE

 VIEW

OBJECT_SCHEMA VARCHAR The schema containing the object.

OBJECT_NAME VARCHAR The name of the object associated

with the comment.

OWNER_ID VARCHAR The internal ID of the owner of the
object.

OWNER_NAME VARCHAR The object owner's name.

CREATION_TIME TIMESTAMPTZ When the comment was created.

LAST_MODIFIED_TIME TIMESTAMPTZ When the comment was last
modified.

COMMENT VARCHAR The text of the comments.

CONSTRAINT_COLUMNS

Records information about table column constraints.

Column Name Data Type Description

CONSTRAINT_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the constraint.

TABLE_SCHEMA VARCHAR Name of the schema that contains this table.

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog that identifies the table.

TABLE_NAME VARCHAR Name of the table in which the column resides.

COLUMN_NAME VARCHAR Name of the column that is constrained.

CONSTRAINT_NAME VARCHAR Constraint name for which information is listed.

-939-

 HP Vertica System Tables

CONSTRAINT_TYPE CHAR Is one of:

 c — check is reserved, but not supported

 f — foreign

 n — not null

 p — primary

 u — unique

 d — determines

REFERENCE_TABLE_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the referenced table

REFERENCE_TABLE_SCHEMA VARCHAR Schema name for which information is listed.

REFERENCE_TABLE_NAME VARCHAR References the TABLE_NAME column in the

PRIMARY_KEY table.

REFERENCE_COLUMN_NAME VARCHAR References the COLUMN_NAME column in the
PRIMARY_KEY table.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

DATABASES
Provides information about the databases in this HP Vertica installation.

Column Name Data Type Description

DATABASE_ID INTEGER The database's internal ID number

DATABASE_NAME VARCHAR The database's name

OWNER_ID INTEGER The database owner's ID

OWNER_NAME INTEGER The database owner's name

START_TIME TIMESTAMP
TZ

The date and time the database last started

COMPLIANCE_MESSAGE VARCHAR Message describing the current state of the
database's license compliance.

EXPORT_SUBNET VARCHAR The subnet (on the public network) used by the
database for import/export.

DUAL

DUAL is a single-column "dummy" table with one record whose value is X; for example:

-940-

SQL Reference Manual

=> SELECT * FROM DUAL;

 dummy

 X

(1 row)

You can now write the following types of queries:

=> SELECT 1 FROM dual;

 ?column?

 1

(1 row)

=> SELECT current_timestamp, current_user FROM dual;

 ?column? | current_user

-------------------------------+--------------

 2010-03-08 12:57:32.065841-05 | release

(1 row)

=> CREATE TABLE t1(col1 VARCHAR(20), col2 VARCHAR(2));

=> INSERT INTO T1(SELECT 'hello' AS col1, 1 AS col2 FROM dual);)

=> SELECT * FROM t1;

 col1 | col2

-------+------

 hello | 1

(1 row

Because DUAL is a system table, you cannot create projections for it. You also cannot use it in
pre-join projections for table objects. For example, assuming the following table schema (CREATE

TABLE t1 (col1 varchar(20), col2 varchar(2));) both of the following statements are

not permitted and will return errors:

=> CREATE PROJECTION t1_prejoin AS SELECT * FROM t1 JOIN dual

 ON t1.col1 = dual.dummy;

 ERROR: Virtual tables are not allowed in FROM clause of projection

=> CREATE PROJECTION dual_proj AS SELECT * FROM dual;

 ERROR: Virtual tables are not allowed in FROM clause of projection

ELASTIC_CLUSTER

Returns information about cluster elasticity, such as whether Elastic Cluster is running.

Column Name Data Type Description

SCALING_FACTOR INTEGER This value is only meaningful when you enable

local segments. SCALING_FACTOR influences

-941-

 HP Vertica System Tables

the number of local segments on each node.
Initially—before a rebalance runs—there are

scaling_factor number of local segments per
node. A large SCALING_FACTOR is good for
rebalancing a potentially wide range of cluster

configurations quickly. However, too large a
value could lead to ROS pushback, particularly in
a database with a table with a large number of

partitions. See SET_SCALING_FACTOR (page
533) for more details.

MAXIMUM_SKEW_PERCENT INTEGER This value is only meaningful when you enable
local segments. MAXIMUM_SKEW_PERCENT

is the maximum amount of skew a rebalance
operation tolerates, which preferentially
redistributes local segments; however, if after

doing so the segment ranges of any two nodes
differs by more than this amount, rebalance will
separate and distribute storage to even the

distribution.

SEGMENT_LAYOUT VARCHAR Current, offset=0, segment layout. New
segmented projections will be created with this
layout, with segments rotated by the

corresponding offset. Existing segmented
projections will be rebalanced into an offset of
this layout.

LOCAL_SEGMENT_LAYOUT VARCHAR Similar to SEGMENT_LAYOUT but includes
details that indicate the number of local

segments, their relative size and node
assignment.

VERSION INTEGER Number that gets incremented each time the
cluster topology changes (nodes added, marked

ephemeral, marked permanent, etc). Useful for
monitoring active and past rebalance operations.

IS_ENABLED BOOLEAN True if Elastic Cluster is enabled, otherwise
false.

IS_LOCAL_SEGMENT_ENABLED BOOLEAN True if local segments are enabled, otherwise

false.

IS_REBALANCE_RUNNING BOOLEAN True if rebalance is currently running, otherwise
false.

Permissions

Must be a superuser.

Example
=> SELECT * FROM elastic_cluster;

-[RECORD 1]------------+---

scaling_factor | 4

maximum_skew_percent | 15

-942-

SQL Reference Manual

segment_layout | v_myvdb_node0004[33.3%] v_myvdb_node0005[33.3%]

 | v_myvdb_node0006[33.3%]

local_segment_layout | v_myvdb_node0004[8.3%] v_myvdb_node0004[8.3%]

 | v_myvdb_node0004[8.3%] v_myvdb_node0004[8.3%]

 | v_myvdb_node0005[8.3%] v_myvdb_node0005[8.3%]

 | v_myvdb_node0005[8.3%] v_myvdb_node0005[8.3%]

 | v_myvdb_node0006[8.3%] v_myvdb_node0006[8.3%]

 | v_myvdb_node0006[8.3%] v_myvdb_node0006[8.3%]

version | 1

is_enabled | t

is_local_segment_enabled | f

is_rebalance_running | f

See Also

ENABLE_ELASTIC_CLUSTER (page 482)

DISABLE_ELASTIC_CLUSTER (page 468)

Elastic Cluster in the Administrator's Guide

EPOCHS

For all epochs, provides the date and time of the close and the corresponding epoch number of the
closed epoch. This information lets you determine which time periods pertain to which epochs.

Column Name Data Type Description

EPOCH_CLOSE_TIME DATETIME The date and time of the close of the epoch.

EPOCH_NUMBER INTEGER The corresponding epoch number of the closed
epoch.

Example
=> SELECT * FROM epochs;

 epoch_close_time | epoch_number

-------------------------------+--------------

 2012-11-14 09:26:10.696296-05 | 0

 2012-11-14 10:04:55.668457-05 | 1

 2012-11-14 10:08:05.963606-05 | 2

(3 rows)

See Also

Epoch Management Parameters

Epoch Management Functions (page 574)

FOREIGN_KEYS

Provides foreign key information.

-943-

 HP Vertica System Tables

Column Name Data Type Description

CONSTRAINT_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the constraint.

CONSTRAINT_NAME VARCHAR The constraint name for which information is
listed.

COLUMN_NAME VARCHAR The name of the column that is constrained.

ORDINAL_POSITION VARCHAR The position of the column respective to other
columns in the table.

TABLE_NAME VARCHAR The table name for which information is listed.

REFERENCE_TABLE_NAME VARCHAR References the TABLE_NAME column in the

PRIMARY_KEY table.

CONSTRAINT_TYPE VARCHAR The constraint type, f, for foreign key.

REFERENCE_COLUMN_NAME VARCHAR References the COLUMN_NAME column in the
PRIMARY_KEY table.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

REFERENCE_TABLE_SCHEMA VARCHAR References the TABLE_SCHEMA column in the
PRIMARY_KEY table.

Example
mydb=> SELECT constraint_name, table_name, ordinal_position, reference_table_name

 FROM foreign_keys ORDER BY 3;

 constraint_name | table_name | ordinal_position | reference_table_name

---------------------------+-------------------+------------------+-----------------------

 fk_store_sales_date | store_sales_fact | 1 | date_dimension

 fk_online_sales_saledate | online_sales_fact | 1 | date_dimension

 fk_store_orders_product | store_orders_fact | 1 | product_dimension

 fk_inventory_date | inventory_fact | 1 | date_dimension

 fk_inventory_product | inventory_fact | 2 | product_dimension

 fk_store_sales_product | store_sales_fact | 2 | product_dimension

 fk_online_sales_shipdate | online_sales_fact | 2 | date_dimension

 fk_store_orders_product | store_orders_fact | 2 | product_dimension

 fk_inventory_product | inventory_fact | 3 | product_dimension

 fk_store_sales_product | store_sales_fact | 3 | product_dimension

 fk_online_sales_product | online_sales_fact | 3 | product_dimension

 fk_store_orders_store | store_orders_fact | 3 | store_dimension

 fk_online_sales_product | online_sales_fact | 4 | product_dimension

 fk_inventory_warehouse | inventory_fact | 4 | warehouse_dimension

 fk_store_orders_vendor | store_orders_fact | 4 | vendor_dimension

 fk_store_sales_store | store_sales_fact | 4 | store_dimension

 fk_store_orders_employee | store_orders_fact | 5 | employee_dimension

 fk_store_sales_promotion | store_sales_fact | 5 | promotion_dimension

 fk_online_sales_customer | online_sales_fact | 5 | customer_dimension

 fk_store_sales_customer | store_sales_fact | 6 | customer_dimension

 fk_online_sales_cc | online_sales_fact | 6 | call_center_dimension

 fk_store_sales_employee | store_sales_fact | 7 | employee_dimension

 fk_online_sales_op | online_sales_fact | 7 | online_page_dimension

 fk_online_sales_shipping | online_sales_fact | 8 | shipping_dimension

 fk_online_sales_warehouse | online_sales_fact | 9 | warehouse_dimension

 fk_online_sales_promotion | online_sales_fact | 10 | promotion_dimension

(26 rows)

-944-

SQL Reference Manual

GRANTS

Provides information about privileges granted on various objects, the granting user, and grantee
user. The order of columns in the table corresponds to the order in which they appear in the
GRANT command. The GRANTS table does not retain the role grantor.

Column Name Data Type Description

GRANT_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the grant.

GRANTOR_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the user who performed

the grant operation.

GRANTOR VARCHAR The user granting the permission.

PRIVILEGES_DESCRIPTION VARCHAR A readable description of the privileges being
granted; for example INSERT, SELECT. An
asterisk in PRIVILEGES_DESCRIPTION output

indicates a privilege WITH GRANT OPTION.

OBJECT_SCHEMA VARCHAR The name of the schema that is being granted
privileges.

OBJECT_NAME VARCHAR The name of the object that is being granted

privileges. Note that for schema privileges, the
schemaname appears in the OBJECT_NAME

column instead of the OBJECT_SCHEMA column.

OBJECT_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the object granted.

OBJECT_TYPE VARCHAR The object type on which the grant was applied;
for example, ROLE, SCHEMA, DATABASE,

RESOURCEPOOL. Output from this column is
useful in cases where a schema, resource pool,
or user share the same name.

GRANTEE_ID INTEGER A unique numeric ID, assigned by the HP Vertica

catalog, which identifies the user granted
permissions.

GRANTEE VARCHAR The user being granted permission.

Notes

The vsql commands \dp and \z both include the schema name in the output; for example:

=> \dp

 Access privileges for database "vmartdb"

-945-

 HP Vertica System Tables

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+------------+--------+-----------------

 | dbadmin | USAGE | | public

 | dbadmin | USAGE | | v_internal

 | dbadmin | USAGE | | v_catalog

 | dbadmin | USAGE | | v_monitor

 | dbadmin | USAGE | | v_internal

 | dbadmin | USAGE | | v_catalog

 | dbadmin | USAGE | | v_monitor

 | dbadmin | USAGE | | v_internal

 | dbadmin | USAGE | | designer_system

(9 rows)

The vsql command \dp *.tablename displays table names in all schemas. This command lets
you distinguish grants for same-named tables in different schemas:

=> \dp *.events;
 Access privileges for database "dbadmin"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+--+---------+--------

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema1 | events

 user1 | dbadmin | SELECT | schema1 | events

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema2 | events

 user1 | dbadmin | INSERT, SELECT | schema2 | events

(4 rows)

The vsql command \dp schemaname.* displays all tables in the named schema:

=> \dp schema1.*
 Access privileges for database "dbadmin"

 Grantee | Grantor | Privileges | Schema | Name

---------+---------+--+--------------+------------

 user2 | dbadmin | INSERT, SELECT, UPDATE, DELETE, REFERENCES | schema1 | events

 user1 | dbadmin | SELECT | schema1 | events

(2 rows)

Examples

This example shows CREATE and USAGE privileges granted to Bob in the fictitious apps
database:

=> SELECT grantor, privileges_description, object_schema, object_name, grantee

 FROM grants;

 grantor | privileges_description | object_schema | object_name | grantee

---------+------------------------+---------------+-------------+---------

 dbadmin | USAGE | | general | Bob

 dbadmin | CREATE | | schema2 | Bob

(2 rows)

This next query looks for privileges granted to a particular set of grantees. The asterisk in
privileges_description column for User1 means that user has WITH GRANT OPTION privileges.

=> SELECT grantor, privileges_description, object_schema, object_name, grantee

 FROM grants WHERE grantee ILIKE 'User%';

 grantor | privileges_description | object_schema | object_name | grantee

---------+---+---------------+-------------+-------

--

-946-

SQL Reference Manual

 release | USAGE | | general | User1

 release | USAGE | | general | User2

 release | USAGE | | general | User3

 release | USAGE | | s1 | User1

 release | USAGE | | s1 | User2

 release | USAGE | | s1 | User3

 User1 | INSERT*, SELECT*, UPDATE*, DELETE*, REFERENCES* | s1 | t1 | User1

(7 rows)

In the following example, online_sales is the schema that first gets privileges, and then inside that
schema the anchor table gets SELECT privileges:

=> SELECT grantee, grantor, privileges_description, object_schema, object_name

 FROM grants WHERE grantee='u1' ORDER BY object_name;

 grantee | grantor | privileges_description | object_schema | object_name

---------+---------+------------------------+-------- ------+------------------

 u1 | dbadmin | CREATE | | online_sales

 u1 | dbadmin | SELECT | online_sales | online_sales_fact

The following statement shows all grants for user Bob:

-[RECORD 1]----------+--------------------

grant_id | 45035996273749244

grantor_id | 45035996273704962

grantor | dbadmin

privileges_description | USAGE

object_schema |

object_name | general

object_id | 45035996273718666

object_type | RESOURCEPOOL

grantee_id | 45035996273749242

grantee | Bob

-[RECORD 2]----------+--------------------

grant_id | 45035996273749598

grantor_id | 45035996273704962

grantor | dbadmin

privileges_description |

object_schema |

object_name | dbadmin

object_id | 45035996273704968

object_type | ROLE

grantee_id | 45035996273749242

grantee | Bob

-[RECORD 3]----------+--------------------

grant_id | 45035996273749716

grantor_id | 45035996273704962

grantor | dbadmin

privileges_description |

object_schema |

object_name | dbadmin

object_id | 45035996273704968

object_type | ROLE

grantee_id | 45035996273749242

grantee | Bob

-[RECORD 4]----------+--------------------

grant_id | 45035996273755986

grantor_id | 45035996273704962

-947-

 HP Vertica System Tables

grantor | dbadmin

privileges_description |

object_schema |

object_name | pseudosuperuser

object_id | 45035996273704970

object_type | ROLE

grantee_id | 45035996273749242

grantee | Bob

-[RECORD 5]----------+--------------------

grant_id | 45035996273756986

grantor_id | 45035996273704962

grantor | dbadmin

privileges_description | CREATE, CREATE TEMP

object_schema |

object_name | mcdb

object_id | 45035996273704974

object_type | DATABASE

grantee_id | 45035996273749242

grantee | Bob

-[RECORD 5]----------+--------------------

...

See also

HAS_ROLE (page 501)

ROLES (page 967)

USERS (page 985)

Managing Users and Privileges in the Administrator's Guide

LICENSE_AUDITS

Lists the results of HP Vertica's license automatic compliance audits. See How HP Vertica
Calculates Database Size in the Administrator's Guide.

Column Name Data Type Description

DATABASE_SIZE_BYTES INTEGER The estimated raw data size of the database

LICENSE_SIZE_BYTES INTEGER The licensed data allowance

USAGE_PERCENT FLOAT Percentage of the licensed allowance used

AUDIT_START_TIMESTAMP TIMESTAMPT

Z

When the audit started

AUDIT_END_TIMESTAMP TIMESTAMPT
Z

When the audit finished

CONFIDENCE_LEVEL_PERCENT FLOAT The confidence level of the size estimate

ERROR_TOLERANCE_PERCENT FLOAT The error tolerance used for the size estimate

-948-

SQL Reference Manual

USED_SAMPLING BOOLEAN Whether data was randomly sampled (if false,
all of the data was analyzed)

CONFIDENCE_INTERVAL_LOWER

_BOUND_BYTES

INTEGER The lower bound of the data size estimate

within the confidence level

CONFIDENCE_INTERVAL_UPPER

_BOUND_BYTES

INTEGER The upper bound of the data size estimate
within the confidence level

SAMPLE_COUNT INTEGER The number of data samples used to generate
the estimate

CELL_COUNT INTEGER The number of cells in the database

NODES

Lists details about the nodes in the database.

Column Name Date Type Description

NODE_NAME VARCHAR(128) The name of the node.

NODE_ID INT A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the node.

NODE_STATE VARCHAR(128) The node's current state (up, down,
recovering, etc.).

NODE_ADDRESS VARCHAR(80) The host address of the node.

EXPORT_ADDRESS VARCHAR The IP address of the node (on the public

network) used for import/export operations.

CATALOG_PATH VARCHAR(8192
)

The absolute path to the catalog on the node.

IS_EPHEMERAL BOOLEAN True if this node has been marked as
ephemeral (in preparation of removing it from

the cluster).

Example
dbadmin=> \x

Expanded display is on.

-[RECORD 1]--+--

node_name | v_mcdb_node0001

node_id | 45035996273704980

node_state | UP

node_address | XX.XX.XXX.X2

export_address | XX.XX.XXX.X2

catalog_path | /home/dbadmin/mcdb/v_vmart_node0001_catalog/Catalog

is_ephemeral | f

-[RECORD 2]--+--

node_name | v_mcdb_node0002

-949-

 HP Vertica System Tables

node_id | 45035996273718764

node_state | UP

node_address | XX.XX.XXX.X3

export_address | XX.XX.XXX.X3

catalog_path | /home/dbadmin/mcdb/v_vmart_node0002_catalog/Catalog

is_ephemeral | f

-[RECORD 3]--+--

node_name | v_mcdb_node0003

node_id | 45035996273718768

node_state | UP

node_address | XX.XX.XXX.X4

export_address | XX.XX.XXX.X4

catalog_path | /home/dbadmin/mcdb/v_vmart_node0003_catalog/Catalog

is_ephemeral | f

ODBC_COLUMNS

Provides table column information. The format is defined by the ODBC standard for the ODBC
SQLColumns metadata. Details on the ODBC SQLColumns format are available in the ODBC
specification:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms711683%28v=vs.85%29.asp
x http://www..

Column Name Data Type Description

SCHEMA_NAME VARCHAR The name of the schema in which the column
resides. If the column does not reside in a schema,

this field is empty.

TABLE_NAME VARCHAR The name of the table in which the column resides.

COLUMN_NAME VARCHAR The name of the column.

DATA_TYPE INTEGER The data type of the column. This can be an ODBC
SQL data type or a driver-specific SQL data type.
This column corresponds to the ODBC_TYPE

column in the TYPES (page 980) table.

DATA_TYPE_NAME VARCHAR The driver-specific data type name.

COLUMN_SIZE INTEGER The ODBC-defined data size of the column.

BUFFER_LENGTH INTEGER The transfer octet length of a column is the maximum

number of bytes returned to the application when
data is transferred to its default C data type. See
http://msdn.microsoft.com/en-us/library/window

s/desktop/ms713979%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/window
s/desktop/ms713979%28v=vs.85%29.aspx

DECIMAL_DIGITS INTEGER The total number of significant digits to the right of the

decimal point. This value has no meaning for

http://www./
http://msdn.microsoft.com/en-us/library/windows/desktop/ms713979%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms713979%28v=vs.85%29.aspx

-950-

SQL Reference Manual

non-decimal data types.

NUM_PREC_RADIX INTEGER The radix HP Vertica reports decimal_digits and

columns_size as. This value is always 10, because it
refers to a number of decimal digits, rather than a
number of bits.

NULLABLE BOOLEAN Indicates whether the column can contain null

values. Values are 0 or 1.

REMARKS VARCHAR The textual remarks for the column.

COLUMN_DEFAULT VARCHAR The default value of the column.

SQL_TYPE_ID INTEGER The SQL data type of the column.

SQL_DATETIME_SUB VARCHAR The subtype for a datetime data type. This value has
no meaning for non-datetime data types.

CHAR_OCTET_LENGTH INTEGER The maximum length of a string or binary data

column.

ORDINAL_POSITION INTEGER Indicates the position of the column in the table
definition.

IS_NULLABLE VARCHAR Values can be YES or NO, determined by the value
of the NULLABLE column.

IS_IDENTITY BOOLEAN Indicates whether the column is a sequence, for

example, an auto increment column.

Example
dbadmin=> select schema_name, table_name, data_type_name from odbc_columns limit

2;

 schema_name | table_name | data_type_name

-------------+---------------------------+----------------

 v_monitor | execution_engine_profiles | Boolean

 v_monitor | query_profiles | Boolean

(2 rows)

PASSWORDS

Contains user passwords information. This table stores not only current passwords, but also past

passwords if any profiles have PASSWORD_REUSE_TIME or PASSWORD_REUSE_MAX parameters
set. See CREATE PROFILE (page 739) for details.

Column Name Data Type Description

USER_ID INTEGER The ID of the user who owns the password.

USER_NAME VARCHAR The name of the user who owns the password.

PASSWORD VARCHAR The encrypted password.

-951-

 HP Vertica System Tables

PASSWORD_CREATE_TIME DATETIME The date and time when the password was

created.

IS_CURRENT_PASSWORD BOOLEAN Denotes whether this is the user's current
password. Non-current passwords are retained

to enforce password reuse limitations.

PROFILE_ID INTEGER The ID number of the profile to which the user is
assigned.

PROFILE_NAME VARCHAR The name of the profile to which the user is
assigned.

PASSWORD_REUSE_MAX VARCHAR The number password changes that must take

place before an old password can be reused.

PASSWORD_REUSE_TIME VARCHAR The amount of time that must pass before an
old password can be reused.

PRIMARY_KEYS

Provides primary key information.

Column Name Data Type Description

CONSTRAINT_ID INTEGER A unique numeric ID assigned by the HP Vertica catalog,
which identifies the constraint.

CONSTRAINT_NAME VARCHAR The constraint name for which information is listed.

COLUMN_NAME VARCHAR The column name for which information is listed.

ORDINAL_POSITION VARCHAR The position of the column respective to other columns in
the table.

TABLE_NAME VARCHAR The table name for which information is listed.

CONSTRAINT_TYPE VARCHAR The constraint type, p, for primary key.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

Example

Request specific columns from the PRIMARY_KEYS table:

=> SELECT constraint_name, table_name, ordinal_position, table_schema

 FROM primary_keys ORDER BY 3;

 constraint_name | table_name | ordinal_position | table_schema

-----------------+-----------------------+------------------+--------------

 C_PRIMARY | customer_dimension | 1 | public

 C_PRIMARY | product_dimension | 1 | public

 C_PRIMARY | store_dimension | 1 | store

 C_PRIMARY | promotion_dimension | 1 | public

 C_PRIMARY | date_dimension | 1 | public

 C_PRIMARY | vendor_dimension | 1 | public

 C_PRIMARY | employee_dimension | 1 | public

-952-

SQL Reference Manual

 C_PRIMARY | shipping_dimension | 1 | public

 C_PRIMARY | warehouse_dimension | 1 | public

 C_PRIMARY | online_page_dimension | 1 | online_sales

 C_PRIMARY | call_center_dimension | 1 | online_sales

 C_PRIMARY | product_dimension | 2 | public

(12 rows)

PROFILE_PARAMETERS

Defines what information is stored in profiles.

Column Name Data Type Description

PROFILE_ID INTEGER The ID of the profile to which this parameter belongs.

PROFILE_NAME VARCHAR The name of the profile to which this parameter belongs.

PARAMETER_TYPE VARCHAR The policy type of this parameter (password_complexity,

password_security, etc.)

PARAMETER_NAME VARCHAR The name of the parameter.

PARAMETER_LIMIT VARCHAR The parameter's value.

PROFILES

Provides information about password policies that you set using the CREATE PROFILE (page
739) statement.

Column Name Data Type Description

PROFILE_ID INTEGER The unique identifier for the profile.

PROFILE_NAME VARCHAR The profile's name.

PASSWORD_LIFE_TIME VARCHAR The number of days before the user's

password expires. After expiration, the user
is forced to change passwords during login
or warned that their password has expired if

password_grace_time is set to a value other
than zero or unlimited.

PASSWORD_GRACE_TIME VARCHAR The number of days users are allowed to log

in after their passwords expire. During the
grace time, users are warned about their
expired passwords when they log in. After

the grace period, the user is forced to
change passwords if he or she hasn't
already.

PASSWORD_REUSE_MAX VARCHAR The number of password changes that must
occur before the current password can be
reused.

-953-

 HP Vertica System Tables

PASSWORD_REUSE_TIME VARCHAR The number of days that must pass after

setting a password before it can be used
again.

FAILED_LOGIN_ATTEMPTS VARCHAR The number of consecutive failed login

attempts that triggers HP Vertica to lock the
account.

PASSWORD_LOCK_TIME VARCHAR The number of days an account is locked

after being locked due to too many failed
login attempts.

PASSWORD_MAX_LENGTH VARCHAR The maximum number of characters allowed

in a password.

PASSWORD_MIN_LENGTH VARCHAR The minimum number of characters required
in a password.

PASSWORD_MIN_LETTERS VARCHAR The minimum number of letters (either
uppercase or lowercase) required in a
password.

PASSWORD_MIN_LOWERCASE_LETTERS VARCHAR The minimum number of lowercase.

PASSWORD_MIN_UPPERCASE_LETTERS VARCHAR The minimum number of uppercase letters
required in a password.

PASSWORD_MIN_DIGITS VARCHAR The minimum number of digits required in a
password.

PASSWORD_MIN_SYMBOLS VARCHAR The minimum of symbols (for example, !, #,

$, etc.) required in a password.

Notes

Non-superusers querying this table see only the information for the profile to which they are
assigned.

See Also

CREATE PROFILE (page 739)

ALTER PROFILE (page 660)

Profiles in the Administrator's Guide

PROJECTION_CHECKPOINT_EPOCHS

Records when each projection checkpoint epoch changes.

Column Name Data Type Description

NODE_ID INTEGER Unique numeric ID assigned by the Vertica catalog,

-954-

SQL Reference Manual

which identifies the node for which information is listed

NODE_NAME VARCHAR Node name for which information is listed.

PROJECTION_SCHEMA_ID INTEGER Unique numeric ID assigned by the HP Vertica catalog,

which identifies the specific schema that contains the
projection.

PROJECTION_SCHEMA VARCHAR Schema containing the projection.

PROJECTION_ID INTEGER Unique numeric ID assigned by the HP Vertica catalog,
which identifies the projection.

PROJECTION_NAME VARCHAR Projection name for which information is listed.

IS_UP_TO_DATE BOOLEAN Indicates whether the projection is up to date, where t is

true and f is false. Projections must be up to date for
queries to use them.

CHECKPOINT_EPOCH INTEGER Checkpoint epoch of the projection on the
corresponding node. Data up to and including this epoch

is in persistent storage. If the node were to fail, without
moving more data out of the WOS, data after this epoch
would need to be recovered.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT epoch FROM t;

 epoch

 52

 52

 53

(3 rows)

=> SELECT * FROM projection_checkpoint_epochs;

 node_id | node_name | projection_schema_id | projection_schema | projection_id |

projection_name | is_up_to_date | checkpoint_epoch

-------------------+-----------+----------------------+-------------------+-------------------+--

---------------+---------------+------------------

 45035996273704970 | node01 | 45035996273704966 | public | 45035996273724430 |

t_super | t | 51

 45035996273704970 | node01 | 45035996273704966 | public | 45035996273724452 |

p_super | t | 51

(2 rows)

=> SELECT DO_TM_TASK('moveout','');

 do_tm_task

 Task: moveout

(Table: public.t) (Projection: public.t_super)

(Table: public.p) (Projection: public.p_super)

-955-

 HP Vertica System Tables

(1 row)

=> SELECT * FROM projection_checkpoint_epochs;

 node_id | node_name | projection_schema_id | projection_schema | projection_id |

projection_name | is_up_to_date | checkpoint_epoch

-------------------+-----------+----------------------+-------------------+-------------------+--

---------------+---------------+------------------

 45035996273704970 | node01 | 45035996273704966 | public | 45035996273724430 |

t_super | t | 53

 45035996273704970 | node01 | 45035996273704966 | public | 45035996273724452 |

p_super | t | 53

(2 rows)

PROJECTION_COLUMNS

Provides information about projection columns, such as encoding type, sort order, type of
statistics, and the time at which columns statistics were last updated.

Column Name Data Type Description

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP
Vertica catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The projection name for which information is

listed.

PROJECTION_COLUMN_NAME VARCHAR The projection column name.

COLUMN_POSITION INTEGER The ordinal position of a projection's column
used in the CREATE PROJECTION (page 742)

statement.

SORT_POSITION INTEGER The projection's column sort specification, as

specified in CREATE PROJECTION .. ORDER

BY clause. SORT_POSITION output is NULL if

the column is not included in the projection's
sort order.

COLUMN_ID INTEGER A unique numeric object ID (OID) assigned by
the HP Vertica catalog, COLUMN_ID is the OID

of the associated projection column object.
This field is helpful as a key to other system

tables.

DATA_TYPE VARCHAR Matches the corresponding table column data
type (see V_CATALOG.COLUMNS (page
935)). DATA_TYPE is provided as a

complement to ENCODING_TYPE.

ENCODING_TYPE VARCHAR The encoding type defined on the projection
column.

ACCESS_RANK INTEGER The access rank of the projection column. See

the ACCESSRANK parameter in the CREATE

-956-

SQL Reference Manual

PROJECTION (page 742) statement for more
information.

GROUP_ID INTEGER A unique numeric ID (OID) assigned by the HP

Vertica catalog that identifies the group.

TABLE_SCHEMA VARCHAR The schema name in which the projection
resides.

TABLE_ID INTEGER A unique numeric ID assigned by the HP
Vertica catalog that identifies the table.

TABLE_NAME VARCHAR The table name that contains the projection.

TABLE_COLUMN_ID VARCHAR A unique VARCHAR ID, assigned by the HP

Vertica catalog, that identifies a column in a
table.

TABLE_COLUMN_NAME VARCHAR The projection's corresponding table column
name.

STATISTICS_TYPE VARCHAR The type of statistics the column has, which

can be one of:

 NONE—No statistics

 ROWCOUNT—Created from existing
catalog metadata, which HP Vertica
automatically and periodically updates

 FULL—Created by running
ANALYZE_STATISTICS() (page 440)

STATISTICS_UPDATED_TIMESTAM

P
TIMESTAMP
TZ

The time at which the columns statistics were
last updated. Querying this column, along with

STATISTICS_TYPE and

PROJECTION_COLUMN_NAME, lets you quickly

identify projection columns whose statistics
need updating. See also
V_CATALOG.PROJECTIONS.HAS_STATIS

TICS (page 961).

Example

On a single-node cluster, the following sample schema defines a table named trades, which
groups the highly-correlated columns bid and ask and stores the stock column separately:

=> CREATE TABLE trades (stock CHAR(5), bid INT, ask INT);

=> CREATE PROJECTION trades_p (stock ENCODING RLE, GROUPED(bid ENCODING

 DELTAVAL, ask)) AS (SELECT * FROM trades) ORDER BY stock, bid;

=> INSERT INTO trades VALUES('acme', 10, 20);

=> COMMIT;

Query the PROJECTION_COLUMNS table for table trades:

=> \x

Expanded display is on.

-957-

 HP Vertica System Tables

=> SELECT * FROM PROJECTION_COLUMNS WHERE table_name = 'trades';

Notice that the statistics_type column returns NONE for all three columns in the trades

table. Also, there is no value in the statistics_updated_timestamp field because statistics
have not yet been run on this table.

-[RECORD 1]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | NONE

statistics_updated_timestamp |

-[RECORD 2]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | NONE

statistics_updated_timestamp |

-[RECORD 3]----------------+--------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

-958-

SQL Reference Manual

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | NONE

statistics_updated_timestamp |

Now run statistics on the stock column:

=> SELECT ANALYZE_STATISTICS('trades.stock');

The system returns 0 for success:

-[RECORD 1]------+--

ANALYZE_STATISTICS | 0

Now query PROJECTION_COLUMNS again:

=> SELECT * FROM PROJECTION_COLUMNS where table_name = 'trades';

This time, statistics_type changes to FULL for the trades.stock column (representing full

statistics were run), and the statistics_updated_timestamp column returns the time the

stock columns statistics were updated. Note that the timestamp for the bid and ask columns

have not changed because statistics were not run on those columns. Also, the bid and ask
columns changed from NONE to ROWCOUNT. This is because HP Vertica automatically updates
ROWCOUNT statistics from time to time. The statistics are created by looking at existing catalog
metadata.

-[RECORD 1]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:52:04.178294-05

-[RECORD 2]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

-959-

 HP Vertica System Tables

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016465-05

-[RECORD 3]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016475-05

If you run statistics on the bid column and then query this system table again, only RECORD 2 is
updated:

=> SELECT ANALYZE_STATISTICS('trades.bid');

-[RECORD 1]------+--

ANALYZE_STATISTICS | 0

=> SELECT * FROM PROJECTION_COLUMNS where table_name = 'trades';

-[RECORD 1]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | stock

column_position | 0

sort_position | 0

column_id | 45035996273718840

data_type | char(5)

encoding_type | RLE

access_rank | 0

group_id | 0

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-1

table_column_name | stock

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:52:04.178294-05

-[RECORD 2]----------------+------------------------------

-960-

SQL Reference Manual

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | bid

column_position | 1

sort_position | 1

column_id | 45035996273718842

data_type | int

encoding_type | DELTAVAL

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-2

table_column_name | bid

statistics_type | FULL

statistics_updated_timestamp | 2012-12-08 13:53:23.438447-05

-[RECORD 3]----------------+------------------------------

projection_id | 45035996273718838

projection_name | trades_p

projection_column_name | ask

column_position | 2

sort_position |

column_id | 45035996273718846

data_type | int

encoding_type | AUTO

access_rank | 0

group_id | 45035996273718844

table_schema | public

table_id | 45035996273718836

table_name | trades

table_column_id | 45035996273718836-3

table_column_name | ask

statistics_type | ROWCOUNT

statistics_updated_timestamp | 2012-12-08 13:51:20.016475-05

You can quickly query just the timestamp column to see when the columns were updated:

=> \x

Expanded display is off.

=> SELECT ANALYZE_STATISTICS('trades');

 ANALYZE_STATISTICS

 0

(1 row)

=> SELECT projection_column_name, statistics_type,

 statistics_updated_timestamp

 FROM PROJECTION_COLUMNS where table_name = 'trades';

 projection_column_name | statistics_type | statistics_updated_timestamp

------------------------+-----------------+-------------------------------

-961-

 HP Vertica System Tables

 stock | FULL | 2012-12-08 13:54:27.428622-05

 bid | FULL | 2012-12-08 13:54:27.428632-05

 ask | FULL | 2012-12-08 13:54:27.428639-05

(3 rows)

See Also

V_CATALOG.PROJECTIONS (page 961)

ANALYZE_STATISTICS (page 440)

CREATE PROJECTION (page 742)

Collecting Statistics in the Administrator's Guide

PROJECTION_DELETE_CONCERNS
Lists projections whose design may cause performance issues when deleting data. This table is
generated by calling the EVALUATE_DELETE_PERFORMANCE (page 484) function. See
Optimizing Deletes and Updates for Performance in the Administrator's Guide for more
information.

Column Name Data Type Description

PROJECTION_ID INTEGER The ID number of the projection

PROJECTION_SCHEMA VARCHAR The schema containing the projection

PROJECTION_NAME VARCHAR The projection's name

CREATION_TIME TIMESTAMPTZ When the projection was created

LAST_MODIFIED_TIME TIMESTAMPTZ When the projection was last modified

COMMENT VARCHAR A comment describing the potential delete
performance issue.

PROJECTIONS

Provides information about projections.

Column Name Data Type Description

PROJECTION_SCHEMA_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the specific schema that
contains the projection.

PROJECTION_SCHEMA VARCHAR The name of the schema that contains the

projection.

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP Vertica

-962-

SQL Reference Manual

catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The projection name for which information is
listed.

OWNER_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the projection owner.

OWNER_NAME VARCHAR The name of the projection's owner.

ANCHOR_TABLE_ID INTEGER The unique numeric identification (OID) of the
anchor table for pre-join projections, or the OID of
the table from which the projection was created if

it is not a pre-join projection.

Note: A projection has only one anchor (fact)

table.

ANCHOR_TABLE_NAME VARCHAR The name of the anchor table for pre-join
projections, or the name of the table from which
the projection was created if it is not a pre-join

projection.

NODE_ID INTEGER A unique numeric ID (OID) that identifies the
node(s) that contain the projection.

NODE_NAME VARCHAR The name of the node(s) that contain the
projection.

Note: this column returns information for

unsegmented projections only, not for segmented
and pinned projections.

IS_PREJOIN BOOLEAN Indicates whether the projection is a pre-join
projection, where t is true and f is false.

IS_SUPER_PROJECTION BOOLEAN Indicates t (true) i f a projection is a

super-projection or f (false) i f it is not.

CREATED_EPOCH INTEGER The epoch in which the projection was created.

CREATE_TYPE VARCHAR The method in which the projection was created:

 CREATE PROJECTION—A custom
projection created using a CREATE
PROJECTION statement.

 CREATE TABLE—A superprojection that
was automatically created when its
associated table was created using a
CREATE TABLE statement.

 CREATE TABLE WITH PROJ
CLAUSE—A superprojection created
using a CREATE TABLE statement.

 DELAYED_CREATION—A

superprojection that was automatically
created when data was loaded into its
associated table.

 DESIGNER—A new projection created
by the Database Designer.

-963-

 HP Vertica System Tables

 SYSTEM TABLE—A projection that was
automatically created for a system table.

Rebalancing does not change the

CREATE_TYPE value for a projection.

VERIFIED_FAULT_TOLERANCE INTEGER The projection K-safe value. This value can be
greater than the database K-safety value (if more

replications of a projection exist than are required
to meet the database K-safety). This value cannot
be less than the database K-safe setting.

IS_UP_TO_DATE BOOLEAN Indicates whether the projection is up to date,

where t is true and f is false. Projections must be
up to date to be used in queries.

HAS_STATISTICS BOOLEAN Indicates whether there are statistics for any
column in the projection, where t is true and f is

false.

Notes:

 This column returns true only when all
non-epoch columns for a table have full

statistics. Otherwise the column returns
false. See ANALYZE_STATISTICS()
(page 440).

 Projections that have no data never have

full statistics. Use the
PROJECTION_STORAGE (page 1059)
system table to see if your projection
contains data.

Example

The following example queries the PROJECTION_COLUMNS table to see if the projections are
up to date and are pre-join projections.

=> SELECT projection_name, anchor_table_name, is_prejoin, is_up_to_date

 FROM projections;

 projection_name | anchor_table_name | is_prejoin | is_up_to_date

------------------------------+-----------------------+------------+---------------

 customer_dimension_site01 | customer_dimension | f | t

 customer_dimension_site02 | customer_dimension | f | t

 customer_dimension_site03 | customer_dimension | f | t

 customer_dimension_site04 | customer_dimension | f | t

 product_dimension_site01 | product_dimension | f | t

 product_dimension_site02 | product_dimension | f | t

 product_dimension_site03 | product_dimension | f | t

 product_dimension_site04 | product_dimension | f | t

 store_sales_fact_p1 | store_sales_fact | t | t

 store_sales_fact_p1_b1 | store_sales_fact | t | t

 store_orders_fact_p1 | store_orders_fact | t | t

 store_orders_fact_p1_b1 | store_orders_fact | t | t

 online_sales_fact_p1 | online_sales_fact | t | t

 online_sales_fact_p1_b1 | online_sales_fact | t | t

-964-

SQL Reference Manual

 promotion_dimension_site01 | promotion_dimension | f | t

 promotion_dimension_site02 | promotion_dimension | f | t

 promotion_dimension_site03 | promotion_dimension | f | t

 promotion_dimension_site04 | promotion_dimension | f | t

 date_dimension_site01 | date_dimension | f | t

 date_dimension_site02 | date_dimension | f | t

 date_dimension_site03 | date_dimension | f | t

 date_dimension_site04 | date_dimension | f | t

 vendor_dimension_site01 | vendor_dimension | f | t

 vendor_dimension_site02 | vendor_dimension | f | t

 vendor_dimension_site03 | vendor_dimension | f | t

 vendor_dimension_site04 | vendor_dimension | f | t

 employee_dimension_site01 | employee_dimension | f | t

 employee_dimension_site02 | employee_dimension | f | t

 employee_dimension_site03 | employee_dimension | f | t

 employee_dimension_site04 | employee_dimension | f | t

 shipping_dimension_site01 | shipping_dimension | f | t

 shipping_dimension_site02 | shipping_dimension | f | t

 shipping_dimension_site03 | shipping_dimension | f | t

 shipping_dimension_site04 | shipping_dimension | f | t

 warehouse_dimension_site01 | warehouse_dimension | f | t

 warehouse_dimension_site02 | warehouse_dimension | f | t

 warehouse_dimension_site03 | warehouse_dimension | f | t

 warehouse_dimension_site04 | warehouse_dimension | f | t

 inventory_fact_p1 | inventory_fact | f | t

 inventory_fact_p1_b1 | inventory_fact | f | t

 store_dimension_site01 | store_dimension | f | t

 store_dimension_site02 | store_dimension | f | t

 store_dimension_site03 | store_dimension | f | t

 store_dimension_site04 | store_dimension | f | t

 online_page_dimension_site01 | online_page_dimension | f | t

 online_page_dimension_site02 | online_page_dimension | f | t

 online_page_dimension_site03 | online_page_dimension | f | t

 online_page_dimension_site04 | online_page_dimension | f | t

 call_center_dimension_site01 | call_center_dimension | f | t

 call_center_dimension_site02 | call_center_dimension | f | t

 call_center_dimension_site03 | call_center_dimension | f | t

 call_center_dimension_site04 | call_center_dimension | f | t

(52 rows)

See Also

ANALYZE_STATISTICS() (page 440)

PROJECTION_COLUMNS (page 955)

PROJECTION_STORAGE (page 1059)

RESOURCE_POOL_DEFAULTS

Provides information about the default values for resource pools. Information is for both HP
Vertica-internal and DBA-created pools.

For any resource pool, you can restore default values contained in this table by simply using the
DEFAULT keyword in the ALTER_RESOURCE_POOL statement.

To see default values for resource pools:

VMart= > SELECT * FROM V_CATALOG.RESOURCE_POOL_DEFAULTS;

-965-

 HP Vertica System Tables

Permissions

No explicit permissions are required.

See Also

Built-in Pool Configuration (page 759)

RESOURCE_POOLS (page 965)

CREATE RESOURCE POOL (page 753)

ALTER RESOURCE POOL (page 663)

SET SESSION RESOURCE_POOL (page 916)

DROP RESOURCE POOL (page 819)

Managing Workloads and Guidelines for Setting Pool Parameters in the Administrator's Guide

RESOURCE_POOLS

Displays information about the parameters specified for the resource pool in the CREATE
RESOURCE POOL (page 753) statement.

Column Name Data Type Description

NAME VARCHAR The name of the resource pool.

IS_INTERNAL BOOLEAN Denotes whether a pool is one of the
built-in pools (page 757).

MEMORYSIZE VARCHAR Value of the amount of memory allocated to

the resource pool.

MAXMEMORYSIZE VARCHAR Value assigned as the maximum size the
resource pool could grow by borrowing
memory from the GENERAL pool.

EXECUTIONPARALLELISM INTEGER [Default: AUTO] Limits the number of

threads used to process any single query
issued in this resource pool.

When set to AUTO, HP Vertica sets this

value based on the number of cores,

available memory, and amount of data in
the system. Unless data is limited, or the
amount of data is very small, HP Vertica

sets this value to the number of cores on the
node.

Reducing this value increases the

throughput of short queries issued in the
pool, especially if the queries are executed
concurrently.

-966-

SQL Reference Manual

If you choose to set this parameter
manually, set it to a value between 1 and

the number of cores.

PRIORITY INTEGER Value of PRIORITY parameter specified

when defining the pool.

RUNTIMEPRIORITY VARCHAR Value that indicates the amount of run-time
resources (CPU, I/O bandwidth) the

Resource Manager should dedicate to
running queries in the resource pool. Valid
values are:

 HIGH

 MEDIUM (Default)

 LOW

These values are relative to each other.
Queries with a HIGH run-time priority are

given more CPU and I/O resources than
those with a MEDIUM or LOW run-time
priority.

RUNTIMEPRIORITYTHRESHOLD INTEGER Value that specifies the time limit (in

seconds) by which a query must finish
before the Resource Manager assigns to it
the RUNTIMEPRIORITY of the resource

pool. All queries begin running at a HIGH
priority. When a query's duration exceeds

this threshold, it is assigned the
RUNTIMEPRIORITY of the resource pool.

Default is 2.

QUEUETIMEOUT INTEGER Value in seconds of QUEUETIMEOUT

parameter specified when defining the pool.
Represents the maximum amount of time

the request is allowed to wait for resources
to become available before being rejected.

PLANNEDCONCURRENCY INTEGER Value of PLANNEDCONCURRENCY

parameter specified when defining the pool,

which represents the number of concurrent
queries that are normally expected to be
running against the resource pool.

MAXCONCURRENCY INTEGER Value of MAXCONCURRENCY parameter

specified when defining the pool, which
represents the maximum number of

concurrent execution slots available to the
resource pool.

RUNTIMECAP INTERVAL [Default: NONE] Sets the maximum amount

of time any query on the pool can execute.

Set RUNTIMECAP using interval, such as '1

minute' or '100 seconds ' (see Interval

Values (page 37) for details). This value
cannot exceed one year. Setting this value

-967-

 HP Vertica System Tables

to NONE specifies that there is no time limit

on queries running on the pool. If the user

or session also has a RUNTIMECAP, the

shorter limit applies.

SINGLEINITIATOR BOOLEAN Value that indicates whether all requests

using this pool are issued against the same
initiator node or whether multiple initiator
nodes can be used; for instance in a

round-robin configuration.

Notes

Column names in the RESOURCE_POOL table mirror syntax in the CREATE RESOURCE POOL
(page 753) statement; therefore, column names do not use underscores.

Example

To see values set for your resource pools:

SELECT * FROM V_CATALOG.RESOURCE_POOLS;

See also

CREATE RESOURCE POOL (page 753)

Managing Workloads and Monitoring Resource Pools and Resource Usage by Queries in the
Administrator's Guide for usage and examples.

ROLES

Contains the names of all roles the user can access, along with any roles that have been assigned
to those roles.

Column Name Data Type Description

ROLE_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the role.

NAME VARCHAR The name of a role that the user can access.

ASSIGNED_ROLES VARCHAR The names of any roles that have been
granted to this role. By enabling the role, the

user also has access to the privileges of these
additional roles.

Note: If you see an asterisk in the

ASSIGNED_ROLES column output, it means

the user has roles WITH ADMIN OPTION.

-968-

SQL Reference Manual

Tip: You can also use the HAS_ROLE() (page 501) function to see if a role is available to a

user.

Example
=> SELECT * FROM roles;

 role_id | name | assigned_roles

-------------------+-----------------+----------------

 45035996273704964 | public |

 45035996273704966 | dbduser |

 45035996273704968 | dbadmin | dbduser*

 45035996273704972 | pseudosuperuser | dbadmin*

 45035996273704974 | logreader |

 45035996273704976 | logwriter |

 45035996273704978 | logadmin | logreader, logwriter

(7 rows)

See Also

GRANTS (page 944)

HAS_ROLE (page 501)

USERS (page 985)

Managing Users and Privileges and Viewing a user's role in the Administrator's Guide

SCHEMATA

Provides information about schemas in the database.

Column Name Data Type Description

SCHEMA_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the specific schema.

SCHEMA_NAME VARCHAR Schema name for which information is listed.

SCHEMA_OWNER_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the owner who created

the schema.

SCHEMA_OWNER VARCHAR Name of the owner who created the schema.

SYSTEM_SCHEMA_CREATOR VARCHAR Creator information for system schema or NULL

for non-system schema

CREATE_TIME TIMESTAMPT

Z

Time when the schema was created.

IS_SYSTEM_SCHEMA BOOLEAN Indicates whether the schema was created for
system use, where t is true and f is false.

-969-

 HP Vertica System Tables

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM schemata;

-[RECORD 1]---------+------------------------------

schema_id | 8300

schema_name | v_internal

schema_owner_id | 45035996273704962

schema_owner | dbadmin

system_schema_creator | dbadmin

create_time | 2012-03-22 11:19:46.311825-04

is_system_schema | t

-[RECORD 2]---------+------------------------------

schema_id | 8301

schema_name | v_catalog

schema_owner_id | 45035996273704962

schema_owner | dbadmin

system_schema_creator | dbadmin

create_time | 2012-03-22 11:19:46.311905-04

is_system_schema | t

-[RECORD 3]---------+------------------------------

schema_id | 8302

schema_name | v_monitor

schema_owner_id | 45035996273704962

schema_owner | dbadmin

system_schema_creator | dbadmin

create_time | 2012-03-22 11:19:46.31193-04

is_system_schema | t

-[RECORD 4]---------+------------------------------

schema_id | 45035996273704968

schema_name | public

schema_owner_id | 45035996273704962

schema_owner | dbadmin

system_schema_creator |

create_time | 2012-03-22 11:19:40.75002-04

is_system_schema | f

SEQUENCES

Displays information about the parameters specified for a sequence using the CREATE
SEQUENCE (page 765) statement.

Column Name Data Type Description

SEQUENCE_SCHEMA VARCHAR Schema in which the sequence was created.

-970-

SQL Reference Manual

SEQUENCE_NAME VARCHAR Name of the sequence defined in the CREATE
SEQUENCE statement.

OWNER_NAME VARCHAR Name of the owner; for example, dbadmin.

IDENTITY_TABLE_NAME VARCHAR If created by an identity column, the name of the

table to which it belongs. See column
constraints (page 783) in the CREATE TABLE
(page 770) statement.

SESSION_CACHE_COUNT INTEGER Count of values cached in a session.

ALLOW_CYCLE BOOLEAN Values allowed to cycle when max/min is

reached. See CYCLE | NO CYCLE parameter i n

CREATE SEQUENCE (page 765).

OUTPUT_ORDERED BOOLEAN Values guaranteed to be ordered (always false).

INCREMENT_BY INTEGER Sequence values are incremented by this
number (negative for reverse sequences).

MINIMUM INTEGER Minimum value the sequence can generate.

MAXIMUM INTEGER Maximum value the sequence can generate.

CURRENT_VALUE INTEGER Current value of the sequence.

SEQUENCE_SCHEMA_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the schema.

SEQUENCE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the sequence.

OWNER_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the user who created

the sequence.

IDENTITY_TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the table to which the
column belongs (if created by an identity

column).

Example

Create a simple sequence:

=> CREATE SEQUENCE my_seq MAXVALUE 5000 START 150;

CREATE SEQUENCE

Return information about the sequence you just created:

=> \x

Expanded display is on.

=> SELECT * FROM sequences;

-[RECORD 1]-------+------------------

sequence_schema | public

sequence_name | my_seq

owner_name | dbadmin

identity_table_name |

session_cache_count | 250000

-971-

 HP Vertica System Tables

allow_cycle | f

output_ordered | f

increment_by | 1

minimum | 1

maximum | 5000

current_value | 149

sequence_schema_id | 45035996273704966

sequence_id | 45035996273844996

owner_id | 45035996273704962

identity_table_id | 0

An identity column is a sequence available only for numeric column types. To identify what column
in a table, if any, is an identity column, search the COLUMNS table to find the identity column in a

table:

=> CREATE TABLE testid (c1 IDENTITY(1, 1, 1000), c2 INT)

=> \x

Expanded display is on.

=> SELECT * FROM COLUMNS WHERE is_identity='t' AND table_name='testid';

-[RECORD 1]------------+------------------

table_id | 45035996274150730

table_schema | public

table_name | testid

is_system_table | f

column_name | c1

data_type | int

data_type_id | 6

data_type_length | 8

character_maximum_length |

numeric_precision |

numeric_scale |

datetime_precision |

interval_precision |

ordinal_position | 1

is_nullable | f

column_default |

is_identity | t

Use the SEQUENCES table to get detailed information about the sequence in testid:

=> SELECT * FROM sequences WHERE identity_table_name='testid';

-[RECORD 1]-------+--------------------

sequence_schema | public

sequence_name | testid_c1_seq

owner_name | dbadmin

identity_table_name | testid

session_cache_count | 1000

allow_cycle | f

output_ordered | f

increment_by | 1

minimum | 1

maximum | 9223372036854775807

current_value | 0

sequence_schema_id | 45035996273704976

sequence_id | 45035996274150770

owner_id | 45035996273704962

-972-

SQL Reference Manual

identity_table_id | 45035996274150768

Use the vsql command \ds to return a list of sequences. The following results show the two

sequences created in the preceding examples. If more sequences existed, the table would list
them.

The CurrentValue of the new sequence is one less than the start number you specified in the

CREATE SEQUENCE and IDENTITY commands, because you have not yet used NEXTVAL (page
351) to instantiate the sequences to assign their cache or supply their first start values.

=> \ds

 List of Sequences

-[RECORD 1]+--------------------

Schema | public

Sequence | my_seq

CurrentValue | 149

IncrementBy | 1

Minimum | 1

Maximum | 5000

AllowCycle | f

Comment |

-[RECORD 2]+--------------------

Schema | public

Sequence | testid_c1_seq

CurrentValue | 0

IncrementBy | 1

Minimum | 1

Maximum | 9223372036854775807

AllowCycle | f

Comment |

See Also

CREATE SEQUENCE (page 765)

The \d [PATTERN] meta-commands in the Programmer's Guide

Using Named Sequences in the Administrator's Guide

STORAGE_LOCATIONS

Provides information about storage locations, their IDs labels, and status.

Column Name Data Type Description

LOCATION_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the storage location.

NODE_NAME VARCHAR The node name on which the storage location

exists.

LOCATION_PATH VARCHAR The path where the storage location is mounted.

-973-

 HP Vertica System Tables

LOCATION_USAGE VARCHAR The type of information stored in the location:

 DATA: Only data is stored in the
location.

 TEMP: Only temporary files that are
created during loads or queries are
stored in the location.

 DATA,TEMP: Both types of files are
stored in the location.

 USER: The storage location can be used
by non-dbadmin users, who are granted
access to the storage location

 CATALOG: The area is used for the HP

Vertica catalog. This usage is set
internally and cannot be removed or
changed.

IS_RETIRED BOOLEAN Whether the storage location has been retired.
This column has a value of t (true) if the

location is retired, or f (false) i f it is not.

LOCATION_LABEL VARCHAR The label associated with a specific storage
location, added with the

ALTER_LOCATION_LABEL (page 430)
function.

RANK INTEGER The Access Rank value either assigned or
supplied to the storage location, as described in

Prioritizing Column Access Speed.

THROUGHPUT INTEGER The throughput performance of the storage
location, measured in MB/sec. You can get
location performance values using

MEASURE_LOCATION_PERFORMANCE
(page 511), and set them with the
SET_LOCATION_PERFORMANCE (page 532)

function.

LATENCY INTEGER The measured latency of the storage location as
number of data seeks per second. You can get
location performance values using

MEASURE_LOCATION_PERFORMANCE
(page 511), and set them with the
SET_LOCATION_PERFORMANCE (page 532)

function.

Permissions

Must be a superuser

Example

Query the STORAGE_LOCATIONS on a one-node cluster database:

onenode=> SELECT * FROM storage_locations;

-974-

SQL Reference Manual

-[RECORD 1]--+--

location_id | 45035996273704982

node_name | v_onenode_node0001

location_path | /home/dbadmin/onenode/v_onenode_node0001_data

location_usage | DATA,TEMP

is_retired | f

location_label |

rank | 0

throughput | 0

latency | 0

The next example uses the Vmart example database.

VMart=> select * from storage_locations;

 location_id | node_name | location_path | location_usage

| is_retired | location_label | rank | throughput | latency

-------------------+------------------+---+--------------

--+------------+----------------+------+------------+---------

 45035996273704982 | v_vmart_node0001 | /home/dbadmin/VMart/v_vmart_node0001_data | DATA,TEMP |

f | | 1 | 24 | 38

 45035996273721840 | v_vmart_node0001 | home/dbadmin/SSD/schemas | DATA |

f | | 0 | 46 | 42

 45035996273770760 | v_vmart_node0001 | /home/dbadmin/SSD/tables | DATA |

f | SSD | 2 | 0 | 0

 45035996273770762 | v_vmart_node0001 | /home/dbadmin/SSD/schemas | DATA |

f | Schema | 2 | 0 | 0

 45035996273789564 | v_vmart_node0002 | /home/dbadmin/VMart/v_vmart_node0002_data | DATA,TEMP |

f | | 0 | 0 | 0

 45035996273828402 | v_vmart_node0002 | /home/dbadmin/SSD/tables | DATA |

f | | 0 | 0 | 0

 45035996273828406 | v_vmart_node0002 | /home/dbadmin/SSD/schemas | DATA |

f | | 0 | 0 | 0

 45035996273789596 | v_vmart_node0003 | /home/dbadmin/VMart/v_vmart_node0003_data | DATA,TEMP |

f | | 0 | 0 | 0

 45035996273828404 | v_vmart_node0003 | /home/dbadmin/SSD/tables | DATA |

f | | 0 | 0 | 0

 45035996273828408 | v_vmart_node0003 | /home/dbadmin/SSD/schemas | DATA |

f | | 0 | 0 | 0

(10 rows)

See Also

DISK_STORAGE (page 1014)

MEASURE_LOCATION_PERFORMANCE (page 511)

SET_LOCATION_PERFORMANCE (page 532)

STORAGE_POLICIES (page 1101)

STORAGE_USAGE (page 1104)

Storage Management Functions (page 636)

Creating and Configuring Storage Locations in the Administrator's Guide

-975-

 HP Vertica System Tables

SYSTEM_COLUMNS

Provides table column information for SYSTEM_TABLES (page 976).

Column Name Data Type Description

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the table.

TABLE_SCHEMA VARCHAR The schema name for which information is
listed.

TABLE_NAME VARCHAR The table name for which information is listed.

IS_SYSTEM_TABLE BOOLEAN Indicates whether the table is a system table,

where t is true and f is false.

COLUMN_ID VARCHAR A unique VARCHAR ID, assigned by the HP
Vertica catalog, that identifies a column in a
table.

COLUMN_NAME VARCHAR The column name for which information is listed

in the database.

DATA_TYPE VARCHAR The data type assigned to the column; for
example VARCHAR(16).

DATA_TYPE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the data type.

DATA_TYPE_LENGTH INTEGER The maximum allowable length of the data type.

CHARACTER_MAXIMUM_LENGTH INTEGER The maximum allowable length of the column.

NUMERIC_PRECISION INTEGER The number of significant decimal digits.

NUMERIC_SCALE INTEGER The number of fractional digits.

DATETIME_PRECISION INTEGER For TIMESTAMP data type, returns the
declared precision; returns null if no precision
was declared.

INTERVAL_PRECISION INTEGER The number of fractional digits retained in the

seconds field.

ORDINAL_POSITION INTEGER The position of the column respective to other
columns in the table.

IS_NULLABLE BOOLEAN Indicates whether the column can contain null
values, where t is true and f is false.

COLUMN_DEFAULT VARCHAR The default value of a column, such as empty or

expression.

Example
=> SELECT table_schema, table_name, column_name, column_id, data_type

-976-

SQL Reference Manual

 FROM system_columns

 WHERE table_name = 'projection_columns' ORDER BY 1,2;

 table_schema | table_name | column_name | column_id | data_type

--------------+--------------------+------------------------------+-------------+---------------

 v_catalog | projection_columns | statistics_updated_timestamp | 10038-17 | timestamptz

 v_catalog | projection_columns | statistics_type | 10038-16 | varchar(8192)

 v_catalog | projection_columns | table_column_name | 10038-15 | varchar(128)

 v_catalog | projection_columns | table_column_id | 10038-14 | varchar(41)

 v_catalog | projection_columns | table_name | 10038-13 | varchar(128)

 v_catalog | projection_columns | table_id | 10038-12 | int

 v_catalog | projection_columns | table_schema | 10038-11 | varchar(128)

 v_catalog | projection_columns | group_id | 10038-10 | int

 v_catalog | projection_columns | access_rank | 10038-9 | int

 v_catalog | projection_columns | encoding_type | 10038-8 | varchar(18)

 v_catalog | projection_columns | data_type | 10038-7 | varchar(128)

 v_catalog | projection_columns | column_id | 10038-6 | int

 v_catalog | projection_columns | sort_position | 10038-5 | int

 v_catalog | projection_columns | column_position | 10038-4 | int

 v_catalog | projection_columns | projection_column_name | 10038-3 | varchar(128)

 v_catalog | projection_columns | projection_name | 10038-2 | varchar(128)

 v_catalog | projection_columns | projection_id | 10038-1 | int

(17 rows)

SYSTEM_TABLES
Returns a list of all system table names.

Column Name Data Type Description

TABLE_SCHEMA_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the schema.

TABLE_SCHEMA VARCHAR The schema name in which the system table
resides; for example, V_CATALOG (page 933)

or V_MONITOR (page 989).

TABLE_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the table.

TABLE_NAME VARCHAR The name of the system table.

TABLE_DESCRIPTION VARCHAR A description of the system table's purpose.

Example

Call all the system tables and order them by schema:

=> SELECT * FROM system_tables ORDER BY 1, 2;

Ask for tables related to column information:

=> SELECT * FROM system_tables WHERE table_name ILIKE '%col%';

-977-

 HP Vertica System Tables

 table_schema_id | table_schema | table_id | table_name | table_description

-----------------+--------------+----------+--------------------+--------------------------------

 8301 | v_catalog | 10038 | projection_columns | Projection columns ...

 8301 | v_catalog | 10212 | system_columns | System column ...

 8301 | v_catalog | 10208 | odbc_columns | An ODBC compliant ...

 8301 | v_catalog | 10134 | constraint_columns | Table column constraint ...

 8301 | v_catalog | 10000 | columns | Table column information ...

 8301 | v_catalog | 10024 | view_columns | View column information ...

 8302 | v_monitor | 10200 | column_storage | Information on amount of disk ...

 8302 | v_monitor | 10058 | data_collector | Statistics on usage Data Col...

(8 rows)

TABLE_CONSTRAINTS

Provides information about table constraints.

Column Name Data Type Description

CONSTRAINT_ID VARCHAR A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the constraint.

CONSTRAINT_NAME VARCHAR The name of the constraint, if specified as UNIQUE,
FOREIGN KEY, NOT NULL, or PRIMARY KEY.

CONSTRAINT_SCHEMA_ID INTEGER A unique numeric ID, assigned by the HP Vertica

catalog, which identifies the schema containing the
constraint.

CONSTRAINT_KEY_COUNT INTEGER The number of constraint keys.

FOREIGN_KEY_COUNT INTEGER The number of foreign keys.

TABLE_ID INTEGER A unique numeric ID, assigned by the HP Vertica
catalog, which identifies the table.

FOREIGN_TABLE_ID INTEGER The unique object ID of the foreign table referenced in a

foreign key constraint (zero if not a foreign key
constraint).

CONSTRAINT_TYPE INTEGER Is one of 'c ', 'f', 'p ', 'U' or 'd,' which refer to 'check',

'foreign', 'primary', 'unique' and 'determines',
respectively.

Example

The following command returns constraint column names and types against the VMart schema.

vmartdb=> SELECT constraint_name, constraint_type FROM table_constraints

 ORDER BY constraint_type;

 constraint_name | constraint_type

---------------------------+-----------------

 fk_online_sales_promotion | f

-978-

SQL Reference Manual

 fk_online_sales_warehouse | f

 fk_online_sales_shipping | f

 fk_online_sales_op | f

 fk_online_sales_cc | f

 fk_online_sales_customer | f

 fk_online_sales_product | f

 fk_online_sales_shipdate | f

 fk_online_sales_saledate | f

 fk_store_orders_employee | f

 fk_store_orders_vendor | f

 fk_store_orders_store | f

 fk_store_orders_product | f

 fk_store_sales_employee | f

 fk_store_sales_customer | f

 fk_store_sales_promotion | f

 fk_store_sales_store | f

 fk_store_sales_product | f

 fk_store_sales_date | f

 fk_inventory_warehouse | f

 fk_inventory_product | f

 fk_inventory_date | f

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

 - | p

(33 rows)

See Also

ANALYZE_CONSTRAINTS (page 432)

Adding Constraints in the Administrator's Guide

TABLES

Provides information about all tables in the database.

Column Name Data Type Description

TABLE_SCHEMA_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the schema.

TABLE_SCHEMA VARCHAR The schema name for which information is
listed.

-979-

 HP Vertica System Tables

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the table.

TABLE_NAME VARCHAR The table name for which information is listed.

OWNER_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the owner.

OWNER_NAME VARCHAR The name of the user who created the table.

IS_TEMP_TABLE BOOLEAN Indicates whether table is a system table, where
t is true and f is false.

IS_SYSTEM_TABLE BOOLEAN Indicates whether table is a temporary table,
where t is true and f is false.

SYSTEM_TABLE_CREATOR VARCHAR The name of the process that created the table,

such as Designer.

PARTITION_EXPRESSION VARCHAR The partition expression for the table.

CREATE_TIME TIMESTAMP Returns the timestamp for when the table was
created.

TABLE_DEFINITION VARCHAR The COPY statement table definition. This
column is applicable only to external tables.

Notes

The TABLE_SCHEMA and TABLE_NAME columns are case sensitive when you run queries that

contain the equality (=) predicate. Use the ILIKE predicate instead:

=> SELECT table_schema, table_name FROM v_catalog.tables

 WHERE table_schema ILIKE 'schema1';

Example

To return information on all tables in the Vmart schema:

vmartdb=> SELECT table_schema, table_name, owner_name, is_system_table

 FROM tables;

 table_schema | table_name | owner_name | is_system_table

--------------+-----------------------+------------+-----------------

 public | customer_dimension | release | f

 public | product_dimension | release | f

 public | promotion_dimension | release | f

 public | date_dimension | release | f

 public | vendor_dimension | release | f

 public | employee_dimension | release | f

 public | shipping_dimension | release | f

 public | warehouse_dimension | release | f

 public | inventory_fact | release | f

 store | store_dimension | release | f

 store | store_sales_fact | release | f

 store | store_orders_fact | release | f

 online_sales | online_page_dimension | release | f

 online_sales | call_center_dimension | release | f

 online_sales | online_sales_fact | release | f

-980-

SQL Reference Manual

(15 rows)

To return the timestamp for when the tables were created:

vmartdb=> SELECT table_schema, table_name, create_time FROM tables;

 table_schema | table_name | create_time

--------------+-----------------------+-------------------------------

 public | customer_dimension | 2011-08-15 11:18:25.784203-04

 public | product_dimension | 2011-08-15 11:18:25.815653-04

 public | promotion_dimension | 2011-08-15 11:18:25.850592-04

 public | date_dimension | 2011-08-15 11:18:25.892347-04

 public | vendor_dimension | 2011-08-15 11:18:25.942805-04

 public | employee_dimension | 2011-08-15 11:18:25.966985-04

 public | shipping_dimension | 2011-08-15 11:18:25.999394-04

 public | warehouse_dimension | 2011-08-15 11:18:26.461297-04

 public | inventory_fact | 2011-08-15 11:18:26.513525-04

 store | store_dimension | 2011-08-15 11:18:26.657409-04

 store | store_sales_fact | 2011-08-15 11:18:26.737535-04

 store | store_orders_fact | 2011-08-15 11:18:26.825801-04

 online_sales | online_page_dimension | 2011-08-15 11:18:27.007329-04

 online_sales | call_center_dimension | 2011-08-15 11:18:27.476844-04

 online_sales | online_sales_fact | 2011-08-15 11:18:27.49749-04

(15 rows)

TYPES

Provides information about supported data types.

Note: This table was updated with new columns in Release 5.1.

Column Name Data Type Description

TYPE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the specific data type.

ODBC_TYPE INTEGER The numerical ODBC type.

ODBC_SUBTYPE INTEGER The numerical ODBC subtype, used to differentiate
types such as time and interval that have multiple
subtypes.

MIN_SCALE INTEGER The minimum number of digits supported to the right of

the decimal point for the data type.

MAX_SCALE INTEGER The maximum number of digits supported to the right of
the decimal point for the data type. A value of 0 is used
for types that do not use decimal points.

COLUMN_SIZE INTEGER The number of characters required to display the type.

See:
http://msdn.microsoft.com/en-us/library/windows/
desktop/ms711786%28v=VS.85%29.aspx

http://www. for the details on COLUMN_SIZE for each
type.

http://www./

-981-

 HP Vertica System Tables

INTERVAL_MASK INTEGER For data types that are intervals, the bitmask to
determine the range of the interval from the HP Vertica

TYPE_ID. Details are available in the HP Vertica SDK.

TYPE_NAME VARCHAR The data type name associated with a particular data
type ID.

CREATION_PARAMETERS VARCHAR A list of keywords, separated by commas,
corresponding to each parameter that the application

may specify in parentheses when using the name that
is returned in the TYPE_NAME field. The keywords in
the list can be any of the following: length, precision, or

scale. They appear in the order that the syntax requires
them to be used.

Example
dbadmin=> \x

Expanded display is on.

dbadmin=> select * from types limit 3;

-[RECORD 1]-------+--------------------------

type_id | 5

odbc_type | -7

odbc_subtype | 0

min_scale | 0

max_scale | 0

column_size | 1

interval_mask | 0

type_name | Boolean

creation_parameters |

-[RECORD 2]-------+--------------------------

type_id | 6

odbc_type | -5

odbc_subtype | 0

min_scale | 0

max_scale | 0

column_size | 20

interval_mask | 0

type_name | Integer

creation_parameters |

-[RECORD 3]-------+--------------------------

type_id | 7

odbc_type | 8

odbc_subtype | 0

min_scale | 0

max_scale | 0

column_size | 15

interval_mask | 0

type_name | Float

creation_parameters | precision

-982-

SQL Reference Manual

USER_AUDITS

Lists the results of database and object size audits generated by users calling the AUDIT (page
446) function. See Monitoring Database Size for License Compliance in the Administrator's
Guide for more information.

Column Name Data Type Description

SIZE_BYTES INTEGER The estimated raw data size of the database

USER_ID INTEGER The ID of the user who generated the audit

USER_NAME VARCHAR The name of the user who generated the audit

OBJECT_ID INTEGER The ID of the object being audited

OBJECT_TYPE VARCHAR The type of object being audited (table,
schema, etc.)

OBJECT_SCHEMA VARCHAR The schema containing the object being
audited

OBJECT_NAME VARCHAR The name of the object being audited

AUDIT_START_TIMESTAMP TIMESTAMPT

Z

When the audit started

AUDIT_END_TIMESTAMP TIMESTAMPT
Z

When the audit finished

CONFIDENCE_LEVEL_PERCENT FLOAT The confidence level of the size estimate

ERROR_TOLERANCE_PERCENT FLOAT The error tolerance used for the size estimate

USED_SAMPLING BOOLEAN Whether data was randomly sampled (if false,
all of the data was analyzed)

CONFIDENCE_INTERVAL_LOWER

_BOUND_BYTES

INTEGER The lower bound of the data size estimate

within the confidence level

CONFIDENCE_INTERVAL_UPPER

_BOUND_BYTES

INTEGER The upper bound of the data size estimate

within the confidence level

SAMPLE_COUNT INTEGER The number of data samples used to generate
the estimate

CELL_COUNT INTEGER The number of cells in the database

USER_FUNCTIONS

Returns metadata about user-defined SQL functions (which store commonly used SQL
expressions as a function in the HP Vertica catalog) and User Defined functions (UDx).

-983-

 HP Vertica System Tables

Column Name Data Type Description

SCHEMA_NAME VARCHAR The name of the schema in which this function

exists.

FUNCTION_NAME VARCHAR The name assigned by the user to the SQL
function or User Defined Function.

PROCEDURE_TYPE VARCHAR The type of user defined function. For example,
'User Defined Function'.

FUNCTION_RETURN_TYPE VARCHAR The data type name that the SQL function

returns.

FUNCTION_ARGUMENT_TYPE VARCHAR The number and data types of parameters for
the function.

FUNCTION_DEFINITION VARCHAR The SQL expression that the user defined in the
SQL function's function body.

VOLATILITY VARCHAR The SQL function's volatility (whether a function

returns the same output given the same input).
Can be immutable, volatile, or stable.

IS_STRICT BOOLEAN Indicates whether the SQL function is strict,
where t is true and f is false.

IS_FENCED BOOLEAN Indicates whether the function runs in Fenced

Mode or not.

COMMENT VARCHAR A comment about this function provided by the
function creator.

Notes

 The volatility and strictness of a SQL function are automatically inferred from the function
definition in order that HP Vertica perform constant folding optimization, when possible, and
determine the correctness of usage, such as where an immutable function is expected but a
volatile function is provided.

 The volatility and strictness of UDx is set by the superuser when creating the function. See
CREATE FUNCTION (UDF) (page 725) and CREATE TRANSFORM FUNCTION (page 734)
for details.

Example

Create a SQL function called myzeroifnull in the public schema:

=> CREATE FUNCTION myzeroifnull(x INT) RETURN INT

 AS BEGIN

 RETURN (CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END);

 END;

Now query the USER_FUNCTIONS table. The query returns just the myzeroifnull macro
because it is the only one created in this schema:

=> SELECT * FROM user_functions;

-[RECORD 1]----------+---

schema_name | public

-984-

SQL Reference Manual

function_name | myzeroifnull

procedure_type | User Defined Function

function_return_type | Integer

function_argument_type | x Integer

function_definition | RETURN CASE WHEN (x IS NOT NULL) THEN x ELSE 0 END

volatility | immutable

is_strict | f

is_fenced | f

comment |

See Also

CREATE FUNCTION (page 722)

ALTER FUNCTION (page 656)

DROP FUNCTION (page 811)

GRANT (Function) (page 843)

REVOKE (Function) (page 864)

See also Using SQL Functions in the Programmer's Guide

USER_PROCEDURES

Provides information about external procedures that have been defined for HP Vertica. User see
only the procedures they can execute.

Column Name Data Type Description

PROCEDURE_NAME VARCHAR The name given to the external procedure
through the CREATE PROCEDURE statement.

PROCEDURE_ARGUMENTS VARCHAR Lists arguments for the external procedure.

SCHEMA_NAME VARCHAR Indicates the schema in which the external
procedure is defined.

Example

=> SELECT * FROM user_procedures;

 procedure_name | procedure_arguments | schema_name

----------------+---------------------+-------------

 helloplanet | arg1 Varchar | public

(1 row)

-985-

 HP Vertica System Tables

USERS

Provides information about all users in the database.

Column Name Data Type Description

USER_ID INTEGER A unique numeric ID assigned by the HP
Vertica catalog, which identifies the user.

USER_NAME VARCHAR The user name for which information is listed.

IS_SUPER_USER BOOLEAN Indicates whether the current user is

superuser, where t is true and f is false.

PROFILE_NAME VARCHAR The name of the profile to which the user is
assigned. The profile controls the user's
password policy.

IS_LOCKED BOOLEAN Whether the user's account is locked. A locked

user cannot log into the system.

LOCK_TIME DATETIME When the user's account was locked. Used to
determine when to automatically unlock the
account, if the user's profile has a

PASSWORD_LOCK_TIME parameter set.

RESOURCE_POOL VARCHAR The resource pool to which the user is
assigned.

MEMORY_CAP_KB VARCHAR The maximum amount of memory a query run

by the user can consume, in kilobytes.

TEMP_SPACE_CAP_KB VARCHAR The maximum amount of temporary disk space
a query run by the user can consume, in
kilobytes.

RUN_TIME_CAP VARCHAR The maximum amount of time any of the user's

queries is allowed to run.

ALL_ROLES VARCHAR Roles assigned to the user. An asterisk in
ALL_ROLES output means role granted WITH
ADMIN OPTION. See Database Roles in the

Administrator's Guide.

DEFAULT_ROLES VARCHAR Default role(s) assigned to the user. An
asterisk in DEFAULT_ROLES output means
role granted WITH ADMIN OPTION. See

Default roles for database users in the
Administrator's Guide.

SEARCH_PATH VARCHAR Sets the default schema search path for the
user. See Setting Schema Search Paths in the
Administrator's Guide.

-986-

SQL Reference Manual

Notes

You can call the HAS_ROLE() (page 501) function to see if a role has been assigned to a user.

Example
=> \x

Expanded display is on.

=> SELECT * FROM users;

-[RECORD 1]-----+---------------------------

user_id | 45035996273704962

user_name | dbadmin

is_super_user | t

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

all_roles | dbadmin*, pseudosuperuser*

default_roles | dbadmin*, pseudosuperuser*

search_path | "$user", public, v_catalog, v_monitor, v_internal

-[RECORD 2]-----+---------------------------

user_id | 45035996273713664

user_name | Alice

is_super_user | f

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

all_roles | logadmin

default_roles |

search_path | "$user", public, v_catalog, v_monitor, v_internal

-[RECORD 3]-----+---------------------------

user_id | 45035996273714428

user_name | Bob

is_super_user | f

profile_name | default

is_locked | f

lock_time |

resource_pool | general

memory_cap_kb | unlimited

temp_space_cap_kb | unlimited

run_time_cap | unlimited

all_roles | logadmin, commentor*

default_roles |

search_path | "$user", public, v_catalog, v_monitor, v_internal

Note: An asterisk in the output means role WITH ADMIN OPTION.

-987-

 HP Vertica System Tables

See Also

GRANTS (page 944)

HAS_ROLE (page 501)

ROLES (page 967)

Managing Users and Privileges in the Administrator's Guide

VIEW_COLUMNS

Provides view attribute information.

Column Name Data Type Description

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the view of the table.

TABLE_SCHEMA VARCHAR The schema name for which information is listed.

TABLE_NAME VARCHAR The table name for which information is listed.

COLUMN_ID VARCHAR A unique VARCHAR ID, assigned by the HP
Vertica catalog, that identifies a column in a table.

COLUMN_NAME VARCHAR The column name for which information is listed.

DATA_TYPE VARCHAR The data type of the column for which information
is listed; for example, VARCHAR(128).

DATA_TYPE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the data type.

DATA_TYPE_LENGTH INTEGER The maximum allowable length for the data type.

CHARACTER_MAXIMUM_LENGTH INTEGER The maximum allowable length for the column,
valid for character types.

NUMERIC_PRECISION INTEGER The number of significant decimal digits.

NUMERIC_SCALE INTEGER The number of fractional digits.

DATETIME_PRECISION INTEGER For TIMESTAMP data type, returns the declared
precision; returns null if no precision was

declared.

INTERVAL_PRECISION INTEGER The number of fractional digits retained in the
seconds field.

ORDINAL_POSITION INTEGER The position of the column respective to other
columns.

-988-

SQL Reference Manual

Notes

A warning like the following means only that view <t> had its associated table dropped. The view

is not returned by the SELECT * FROM view_columns command, and the warning is returned
merely to notify users about an orphaned view.

WARNING: invalid view v: relation "public.t" does not exist

Example

NULL fields in the results indicate that those columns were not defined. For example, given the
following table, the result for the datetime_precision column is NULL because no precision

was declared:

=> CREATE TABLE c (c TIMESTAMP);

CREATE TABLE

=> SELECT table_name, column_id, column_name, datetime_precision

 FROM columns WHERE table_name = 'c';

 table_name | column_id | column_name | datetime_precision

------------+---------------------+-------------+--------------------

 c | 45035996273720664-1 | c |

(1 row)

In the next statement, the datetime_precision column returns 4 because the precision was

declared as 4 in the CREATE TABLE statement:

=> DROP TABLE c;

=> CREATE TABLE c (c TIMESTAMP(4));

CREATE TABLE

=> SELECT table_name, column_id, column_name, datetime_precision

 FROM columns WHERE table_name = 'c';

 table_name | column_id | column_name | datetime_precision

------------+---------------------+-------------+--------------------

 c | 45035996273720700-1 | c | 4

(1 row)

See Also

VIEWS (page 988)

VIEWS
Provides information about all views within the system. See Implementing Views for more
information.

-989-

 HP Vertica System Tables

Column Name Data Type Description

TABLE_SCHEMA_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the schema of the table
that the view references.

TABLE_SCHEMA VARCHAR The name of the schema that contains the view.

TABLE_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the view.

TABLE_NAME VARCHAR The view name for which information is listed.

OWNER_ID INTEGER A unique numeric ID, assigned by the HP

Vertica catalog, which identifies the view owner.

OWNER_NAME VARCHAR The name of the view owner.

VIEW_DEFINITION VARCHAR The query that defines the view.

IS_SYSTEM_VIEW BOOLEAN Indicates whether the table is a system view,
where t is true and f is false.

SYSTEM_VIEW_CREATOR VARCHAR The user name who created the view.

CREATE_TIME TIMESTAMP The date/time the view was created.

Example

Query the VIEWS table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM VIEWS;
-[RECORD 1]-------+------------------------------

table_schema_id | 45035996273704976

table_schema | public

table_id | 45035996273951536

table_name | testview

owner_id | 45035996273704962

owner_name | dbadmin

view_definition | SELECT bar.x FROM public.bar

is_system_view | f

system_view_creator |

create_time | 2013-01-14 12:02:03.244809-05

See Also

Implementing Views

VIEW_COLUMNS (page 987)

V_MONITOR Schema

The system tables in this section reside in the v_monitor schema. These tables provide
information about the health of the HP Vertica database.

-990-

SQL Reference Manual

ACTIVE_EVENTS

Returns all active events in the cluster. See Monitoring Events.

Column Name Data Type Description

NODE_NAME VARCHAR The node name where the event occurred.

EVENT_CODE INTEGER A numeric ID that indicates the type of event.
See Event Types for a list of event type codes.

EVENT_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the specific event.

EVENT_SEVERITY VARCHAR The severity of the event from highest to lowest.

These events are based on standard syslog
severity types.

 0—Emergency

 1—Alert

 2—Critical

 3—Error

 4—Warning

 5—Notice

 6—Informational

 7—Debug

EVENT_POSTED_TIMESTAMP TIMESTAM
P

The year, month, day, and time the event was
reported. The time is posted in military time.

EVENT_EXPIRATION VARCHAR The year, month, day, and time the event

expire. The time is posted in military time. If the
cause of the event is still active, the event is
posted again.

EVENT_CODE_DESCRIPTION VARCHAR A brief description of the event and details

pertinent to the specific situation.

EVENT_PROBLEM_DESCRIPTION VARCHAR A generic description of the event.

REPORTING_NODE VARCHAR The name of the node within the cluster that
reported the event.

EVENT_SENT_TO_CHANNELS VARCHAR The event logging mechanisms that are
configured for HP Vertica. These can include

vertica.log, (configured by default) syslog,

and SNMP.

EVENT_POSTED_COUNT INTEGER Tracks the number of times an event occurs.
Rather than posting the same event multiple

times, HP Vertica posts the event once and then
counts the number of additional instances in
which the event occurs.

-991-

 HP Vertica System Tables

Example

Query the ACTIVE_EVENTS table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM active_events;

-[RECORD 1]-------------+---

node_name | site01

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.008458

event_expiration | 2077-08-29 11:52:46.008458

event_code_description | Node State Change

event_problem_description | Changing node site01 startup state to UP

reporting_node | site01

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 2]-------------+---

node_name | site02

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.018172

event_expiration | 2077-08-29 11:52:46.018172

event_code_description | Node State Change

event_problem_description | Changing node site02 startup state to UP

reporting_node | site02

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 3]-------------+---

current_timestamp | 2009-08-11 14:38:48.859987

node_name | site03

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.027258

event_expiration | 2077-08-29 11:52:46.027258

event_code_description | Node State Change

event_problem_description | Changing node site03 startup state to UP

reporting_node | site03

event_sent_to_channels | Vertica Log

event_posted_count | 1

-[RECORD 4]-------------+---

node_name | site04

event_code | 6

event_id | 6

event_severity | Informational

is_event_posted | 2009-08-11 09:38:39.008288

event_expiration | 2077-08-29 11:52:46.008288

event_code_description | Node State Change

event_problem_description | Changing node site04 startup state to UP

-992-

SQL Reference Manual

reporting_node | site04

event_sent_to_channels | Vertica Log

event_posted_count | 1

...

COLUMN_STORAGE

Returns the amount of disk storage used by each column of each projection on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

COLUMN_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the column.

COLUMN_NAME VARCHAR The column name for which information is

listed.

ROW_COUNT INTEGER The number of rows in the column.

USED_BYTES INTEGER The disk storage allocation of the column in
bytes.

ENCODINGS VARCHAR The encoding type for the column.

COMPRESSION VARCHAR The compression type for the column.

WOS_ROW_COUNT INTEGER The number of WOS rows in the column.

ROS_ROW_COUNT INTEGER The number of ROS rows in the column.

ROS_USED_BYTES INTEGER The number of ROS bytes in the column.

ROS_COUNT INTEGER The number of ROS containers.

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The associated projection name for the column.

PROJECTION_SCHEMA VARCHAR The name of the schema associated with the

projection.

ANCHOR_TABLE_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the anchor
table.

ANCHOR_TABLE_NAME VARCHAR The associated table name.

ANCHOR_TABLE_SCHEMA VARCHAR The associated table's schema name.

ANCHOR_TABLE_COLUMN_ID VARCHAR A unique VARCHAR ID, assigned by the HP

Vertica catalog, that identifies a column in a
table.

ANCHOR_TABLE_COLUMN_NAME VARCHAR The name of the anchor table.

-993-

 HP Vertica System Tables

Notes

 WOS data is stored by row, so per-column byte counts are not available.

 The ENCODINGS and COMPRESSION columns let you compare how different encoding types
affect column storage, when optimizing for compression.

Example

Query the COLUMN_STORAGE table:

=> \pset expanded

Expanded display is on.

=> SELECT * FROM column_storage;

-[RECORD 1]------------+--------------------

node_name | v_onenode_node0001

column_id | 45035996273718840

column_name | stock

row_count | 1

used_bytes | 31

encodings | String

compressions | lzo

wos_row_count | 0

ros_row_count | 1

ros_used_bytes | 31

ros_count | 1

projection_id | 45035996273718838

projection_name | trades_p

projection_schema | public

anchor_table_id | 45035996273718836

anchor_table_name | trades

anchor_table_schema | public

anchor_table_column_id | 45035996273718836-1

anchor_table_column_name | stock

-[RECORD 2]------------+--------------------

node_name | v_onenode_node0001

column_id | 45035996273718842

column_name | bid

row_count | 1

used_bytes | 68

encodings | Int_Delta

compressions | lzo

wos_row_count | 0

ros_row_count | 1

ros_used_bytes | 68

ros_count | 1

projection_id | 45035996273718838

projection_name | trades_p

projection_schema | public

anchor_table_id | 45035996273718836

anchor_table_name | trades

anchor_table_schema | public

anchor_table_column_id | 45035996273718836-2

-994-

SQL Reference Manual

anchor_table_column_name | bid

-[RECORD 3]------------+--------------------

node_name | v_onenode_node0001

column_id | 45035996273718846

column_name | ask

row_count | 1

used_bytes | 0

encodings | Uncompressed

compressions | lzo

wos_row_count | 0

ros_row_count | 1

ros_used_bytes | 0

ros_count | 1

projection_id | 45035996273718838

projection_name | trades_p

projection_schema | public

anchor_table_id | 45035996273718836

anchor_table_name | trades

anchor_table_schema | public

anchor_table_column_id | 45035996273718836-3

anchor_table_column_name | ask

-[RECORD 4]------------+--------------------

node_name | v_onenode_node0001

column_id | 45035996273718848

column_name | epoch

row_count | 1

used_bytes | 48

encodings | Int_Delta

compressions | none

wos_row_count | 0

ros_row_count | 1

ros_used_bytes | 48

ros_count | 1

projection_id | 45035996273718838

projection_name | trades_p

projection_schema | public

anchor_table_id | 45035996273718836

anchor_table_name | trades

anchor_table_schema | public

anchor_table_column_id | 45035996273718836-4

anchor_table_column_name |

Call specific columns from the COLUMN_STORAGE table:

SELECT column_name, row_count, projection_name, anchor_table_name

FROM column_storage WHERE node_name = 'site02' AND row_count = 1000;

 column_name | row_count | projection_name | anchor_table_name

----------------------+-----------+------------------------------+-----------------------

 end_date | 1000 | online_page_dimension_site02 | online_page_dimension

 epoch | 1000 | online_page_dimension_site02 | online_page_dimension

 online_page_key | 1000 | online_page_dimension_site02 | online_page_dimension

 page_description | 1000 | online_page_dimension_site02 | online_page_dimension

 page_number | 1000 | online_page_dimension_site02 | online_page_dimension

 page_type | 1000 | online_page_dimension_site02 | online_page_dimension

 start_date | 1000 | online_page_dimension_site02 | online_page_dimension

 ad_media_name | 1000 | promotion_dimension_site02 | promotion_dimension

 ad_type | 1000 | promotion_dimension_site02 | promotion_dimension

-995-

 HP Vertica System Tables

 coupon_type | 1000 | promotion_dimension_site02 | promotion_dimension

 display_provider | 1000 | promotion_dimension_site02 | promotion_dimension

 display_type | 1000 | promotion_dimension_site02 | promotion_dimension

 epoch | 1000 | promotion_dimension_site02 | promotion_dimension

 price_reduction_type | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_begin_date | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_cost | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_end_date | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_key | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_media_type | 1000 | promotion_dimension_site02 | promotion_dimension

 promotion_name | 1000 | promotion_dimension_site02 | promotion_dimension

20 rows)

CONFIGURATION_CHANGES

Records the change history of system configuration parameters
(V_MONITOR.CONFIGURATION_PARAMETERS (page 996)). This information is useful for
identifying:

 Who changed the configuration parameter value

 When the configuration parameter was changed

 Whether nonstandard settings were in effect in the past

Column Name Data Type Description

EVENT_TIMESTAMP TIMESTAMPT
Z

Time when the row was recorded.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

USER_ID INTEGER Identifier of the user who changed configuration

parameters.

USER_NAME VARCHAR Name of the user who changed configuration
parameters at the time HP Vertica recorded the
session.

SESSION_ID VARCHAR Identifier for this session. This identifier is

unique within the cluster at any point in time but
can be reused when the session closes.

PARAMETER VARCHAR Name of the changed parameter. See
Configuration Parameters in the Administrator's

Guide for a detailed list of supported
parameters.

VALUE VARCHAR New value of the configuration parameter.

Permissions

Must be a superuser.

Example
=> SELECT * FROM configuration_changes;

 event_timestamp | node_name | user_id | user_name | session_id |

parameter | value

-996-

SQL Reference Manual

-------------------------------+-----------+-------------------+-----------+-------------------+-

-------------------------------+-------

 2011-09-16 14:40:31.575335-04 | e1 | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:40:31.576015-04 | initiator | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:40:31.576106-04 | e0 | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:40:33.103278-04 | e0 | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 1

 2011-09-16 14:40:33.10332-04 | e1 | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 1

 2011-09-16 14:40:33.104521-04 | initiator | 45035996273704962 | smith | smthl-9010:0xb2e |

UseOnlyResilientRedistribution | 1

 2011-09-16 14:51:59.884112-04 | e0 | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:51:59.884519-04 | e1 | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:51:59.884695-04 | initiator | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 0

 2011-09-16 14:52:00.580423-04 | initiator | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 1

 2011-09-16 14:52:00.580673-04 | e0 | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 1

 2011-09-16 14:52:00.581464-04 | e1 | 45035996273704962 | smith | smthl-9010:0x109d |

UseOnlyResilientRedistribution | 1

(12 rows)

See Also

CONFIGURATION_PARAMETERS (page 996)

Configuration Parameters in the Administrator's Guide

CONFIGURATION_PARAMETERS

Provides information about configuration parameters currently in use by the system.

Column Name Data Type Description

NODE_NAME VARCHAR The node names on the cluster for which
information is listed.

PARAMETER_NAME VARCHAR The name of the configurable parameter.

See Configuration Parameters in the
Administrator's Guide for a detailed list of
supported parameters.

CURRENT_VALUE INTEGER The value of the current setting for the

parameter.

DEFAULT_VALUE INTEGER The default value for the parameter.

CHANGE_UNDER_SUPPORT_

GUIDANCE

BOOLEAN A t (true) setting indicates parameters
intended for Vertica's use only.

CHANGE_REQUIRES_RESTART BOOLEAN Indicates whether the configuration change
requires a restart, where t is true and f is false.

-997-

 HP Vertica System Tables

DESCRIPTION VARCHAR A description of the parameter's purpose.

Notes

The CONFIGURATION_PARAMETERS table returns the following error in non-default locales:

ERROR: ORDER BY is not supported with UNION/INTERSECT/EXCEPT in non-default

locales

HINT: Please move the UNION to a FROM clause subquery.

See the SET LOCALE command for details.

Example

The following command returns all current configuration parameters in HP Vertica:

=> SELECT * FROM CONFIGURATION_PARAMETERS;

See also

Configuration Parameters in the Administrator's Guide.

CPU_USAGE
Records CPU usage history on the system.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the

requested information.

START_TIME TIMESTAMP Beginning of history interval.

END_TIME TIMESTAMP End of history interval.

AVERAGE_CPU_USAGE_PERCENT FLOAT Average CPU usage in percent of total CPU
time (0-100) during history interval

Permissions

Must be a superuser

Example
=> SELECT * FROM cpu_usage;

 node_name | start_time | end_time | cpu_usage_percent

-----------+-------------------------------+-------------------------------+-------------------

 initiator | 2011-09-16 15:23:38.000703-04 | 2011-09-16 15:24:00.005645-04 | 34.49

 initiator | 2011-09-16 15:24:00.005645-04 | 2011-09-16 15:25:00.002346-04 | 12.37

 e0 | 2011-09-16 15:23:37.002957-04 | 2011-09-16 15:24:00.003022-04 | 35.35

 e0 | 2011-09-16 15:24:00.003022-04 | 2011-09-16 15:25:00.004471-04 | 12.38

 e1 | 2011-09-16 15:23:37.000871-04 | 2011-09-16 15:24:00.002474-04 | 35.37

 e1 | 2011-09-16 15:24:00.002474-04 | 2011-09-16 15:25:00.002049-04 | 12.38

(6 rows)

-998-

SQL Reference Manual

CRITICAL_HOSTS

Lists the critical hosts whose failure would cause the database to become unsafe and force a
shutdown.

Column Name Data Type Description

HOST_NAME VARCHAR Name of a critical host.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM critical_hosts;

 host_name

 Host1

 Host3

(2 rows)

CRITICAL_NODES

Lists the critical nodes whose failure would cause the database to become unsafe and force a
shutdown.

Column Name Date Type Description

NODE_ID INTEGER A unique numeric ID, assigned by the HP

Vertica catalog, which identifies the node.

NODE_NAME VARCHAR The name of a critical node.

Example
=> SELECT * FROM v_monitor.critical_nodes;

 node_id | node_name

-------------------+--------------------

 45035996273704980 | v_onenode_node0001

(1 row)

-999-

 HP Vertica System Tables

CURRENT_SESSION

Returns information about the current active session. You can use this table to find out the current
session's sessionID and get the duration of the previously-run query.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

USER_NAME VARCHAR The name used to log into the database or
NULL if the session is internal.

CLIENT_HOSTNAME VARCHAR The host name and port of the TCP socket

from which the client connection was made;
NULL if the session is internal

CLIENT_PID INTEGER The process identifier of the client process that
issued this connection.

Note: Remember that the client process could

be on a different machine than the server.

LOGIN_TIMESTAMP TIMESTAMP The date and time the user logged into the

database or when the internal session was
created. This column can be useful for
identifying sessions that have been left open

and could be idle.

SESSION_ID VARCHAR The identifier required to close or interrupt a
session. This identifier is unique within the
cluster at any point in time but can be reused

when the session closes.

CLIENT_LABEL VARCHAR A user-specified label for the client connection
that can be set when using ODBC. See Label

in DSN Parameters in Programmer's Guide.

TRANSACTION_START TIMESTAMP The date/time the current transaction started or
NULL if no transaction is running.

TRANSACTION_ID VARCHAR A string containing the hexadecimal
representation of the transaction ID, if any;

otherwise NULL.

TRANSACTION_DESCRIPTION VARCHAR A description of the current transaction.

STATEMENT_START TIMESTAMP The date/time the current statement started
execution, or NULL if no statement is running.

STATEMENT_ID VARCHAR Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID
uniquely identifies a statement within a

session.

-1000-

SQL Reference Manual

LAST_STATEMENT_DURATION_US INTEGER The duration of the last completed statement in
microseconds.

CURRENT_STATEMENT VARCHAR The currently-running statement, if any. NULL

indicates that no statement is currently being
processed.

LAST_STATEMENT VARCHAR NULL if the user has just logged in; otherwise
the currently running statement or the most

recently completed statement.

EXECUTION_ENGINE_PROFILING

_CONFIGURATION

VARCHAR Returns a value that indicates whether profiling
is turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this

session

 'Global' when on by default for all
sessions

 'Local, Global' when on by default

for all sessions and on for current
session

QUERY_PROFILING_

CONFIGURATION

VARCHAR Returns a value that indicates whether profiling
is turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this

session

 'Global' when on by default for all
sessions

 'Local, Global' when on by default

for all sessions and on for current
session

SESSION_PROFILING_

CONFIGURATION

VARCHAR Returns a value that indicates whether profiling
is turned on. Results are:

 Empty when no profiling

 'Local' when profiling on for this
session

 'Global' when on by default for all

sessions

 'Local, Global' when on by default

for all sessions and on for current
session

Notes

 The default for profiling is ON ('1') for all sessions. Each session can turn profiling ON or OFF.

 Profiling parameters (such as GlobalEEProfiling in the examples below) are set in the HP

Vertica configuration file (vertica.conf). To turn profiling off, set the parameter to '0'. To
turn profiling on, set the parameter to '1'.

-1001-

 HP Vertica System Tables

Examples

Query the CURRENT_SESSION table:

=> SELECT * FROM CURRENT_SESSION;

-[RECORD 1]----------------------------+--

node_name | v_vmartdb_node01

user_name | release

client_hostname | xxx.x.x.x:xxxxx

client_pid | 18082

login_timestamp | 2010-10-07 10:10:03.114863-04

session_id | myhost-17956:0x1d

client_label |

transaction_start | 2010-10-07 11:52:32.43386

transaction_id | 45035996273727909

transaction_description | user release (select * from passwords;)

statement_start | 2010-10-07 12:30:42.444459

statement_id | 11

last_statement_duration_us | 85241

current_statement | SELECT * FROM CURRENT_SESSION;

last_statement | SELECT * FROM CONFIGURATION_PARAMETERS;

execution_engine_profiling_configuration | Local

query_profiling_configuration |

session_profiling_configuration |

Request specific columns from the table:

=> SELECT node_name, session_id, execution_engine_profiling_configuration

 FROM CURRENT_SESSION;

 node_name | session_id | execution_engine_profiling_configuration

-----------+---------------------+--

 site01 | myhost-17956:0x1d | Global

(1 row)

The sequence of commands in this example shows the use of disabling and enabling profiling for
local and global sessions.

This command disables EE profiling for query execution runs:

=> SELECT disable_profiling('EE');

disable_profiling

EE Profiling Disabled

(1 row)

The following command sets the GlobalEEProfiling configuration parameter to 0, which turns

off profiling:

=> SELECT set_config_parameter('GlobalEEProfiling', '0');

set_config_parameter

Parameter set successfully

(1 row)

The following command tells you whether profiling is set to 'Local' or 'Global' or none:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

-1002-

SQL Reference Manual

(1 row)

Note: The result set is empty because profiling was turned off in the preceding example.

This command now enables EE profiling for query execution runs:

=> SELECT enable_profiling('EE');

enable_profiling

EE Profiling Enabled

(1 row)

Now when you run a select on the CURRENT_SESSION table, you can see profiling is ON for the
local session:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

Local

(1 row)

Now turn profiling on for all sessions by setting the GlobalEEProfiling configuration parameter to 1:

=> SELECT set_config_parameter('GlobalEEProfiling', '1');

set_config_parameter

Parameter set successfully

(1 row)

Now when you run a select on the CURRENT_SESSION table, you can see profiling is ON for the
local sessions, as well as for all sessions:

=> SELECT execution_engine_profiling_configuration FROM CURRENT_SESSION;

ee_profiling_config

Local, Global

(1 row)

See Also

CLOSE_SESSION (page 458), CLOSE_ALL_SESSIONS (page 461),
EXECUTION_ENGINE_PROFILES (page 1021), QUERY_PROFILES (page 1071),
SESSION_PROFILES (page 1093), and SESSIONS (page 1095)

Managing Sessions and Configuration Parameters in the Administrator's Guide

DATA_COLLECTOR

Shows the Data Collector components, their current retention policies, and statistics about how
much data is retained and how much has been discarded for various reasons. The
DATA_COLLECTOR system table also calculates approximate collection rate, to aid in sizing
calculations.

-1003-

 HP Vertica System Tables

Column Name Data Type Description

NODE_NAME VARCHAR The node name on which information is

retained.

COMPONENT VARCHAR The name of the component and its policy.

TABLE_NAME VARCHAR The data collector (dc) table name for which
information is listed.

DESCRIPTION VARCHAR A short description about the component.

IN_DB_LOG BOOLEAN Denotes if monitoring information is retained in
the db.log file.

IN_VERTICA_LOG BOOLEAN Denotes if monitoring information is retained in

the vertica.log file.

MEMORY_BUFFER_SIZE_KB INTEGER The size of the memory buffer in kilobytes.

DISK_SIZE_KB INTEGER The on-disk size of the table in kilobytes.

RECORD_TOO_BIG_ERRORS INTEGER A number that increments by one each time an
error is thrown because data did not fit in

memory (based on the data collector retention
policy).

LOST_BUFFERS INTEGER The number of buffers lost.

LOST_RECORDS INTEGER The number of records lost.

RETIRED_FILES INTEGER The number of retired files.

RETIRED_RECORDS INTEGER The number of retired records.

CURRENT_MEMORY_RECORDS INTEGER The current number of rows in memory.

CURRENT_DISK_RECORDS INTEGER The current number of rows stored on disk.

CURRENT_MEMORY_BYTES INTEGER Total current memory used in kilobytes.

CURRENT_DISK_BYTES INTEGER Total current disk space used in kilobytes.

FIRST_TIME TIMESTAMP Timestamp of the first record.

LAST_TIME TIMESTAMP Timestamp of the last record

KB_PER_DAY INTEGER Total kilobytes used per day.

Notes

 Data Collector is on by default, but you can turn it off if you need to. See Enabling and
Disabling Data Collector in the Administrator's Guide.

 You can configure monitoring information retention policies. See Data Collector Functions
(page 560) in this guide and Configuring Data Retention Policies in the Administrator's Guide.

 Query the DATA_COLLECTOR system table for a list of all current component names; for
example:

=> SELECT DISTINCT component, description FROM data_collector ORDER BY

1 ASC;

-1004-

SQL Reference Manual

Examples

The following command, which queries all columns in the DATA_COLLECTOR system table, is
truncated for brevity:

=> \x

=> SELECT * FROM data_collector;

-[RECORD 1]----------+--

node_name | v_vmartdb_node0003

component | AllocationPoolStatistics

table_name | dc_allocation_pool_statistics

description | Information about global memory pools, ...

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 150

retired_records | 66318

current_memory_records | 0

current_disk_records | 1582

current_memory_bytes | 0

current_disk_bytes | 234536

first_time | 2011-05-26 13:19:01.006121-04

last_time | 2011-05-26 13:25:36.004994-04

kb_per_day | 50014.1761771333

-[RECORD 2]----------+--

node_name | v_vmartdb_node0003

component | AllocationPoolStatisticsBySecond

table_name | dc_allocation_pool_statistics_by_second

description | Information about global memory pools, ...

in_db_log | f

in_vertica_log | f

memory_buffer_size_kb | 64

disk_size_kb | 256

record_too_big_errors | 0

lost_buffers | 0

lost_records | 0

retired_files | 648

retired_records | 66180

current_memory_records | 0

current_disk_records | 349

current_memory_bytes | 0

current_disk_bytes | 222742

first_time | 2011-05-26 13:24:09.002271-04

last_time | 2011-05-26 13:25:36.005041-04

kb_per_day | 214367.571703045

-[RECORD 3]----------+--

...

The following command returns all component names and their descriptions. This is a useful query
if you want to change the retention policy for a particular component and don't remember its name:

=> SELECT DISTINCT component, description FROM data_collector ORDER BY 1 ASC;

 component | description

----------------------------------+--

 AllocationPoolStatistics | Information about global memory pools ...

 AllocationPoolStatisticsByDay | Information about global memory pools, ... (historical, by day)

 AllocationPoolStatisticsByHour | Information about global memory pools, ... (historical, by hour)

 AllocationPoolStatisticsByMinute | Information about global memory pools, ... (historical, by minute)

-1005-

 HP Vertica System Tables

 AllocationPoolStatisticsBySecond | Information about global memory pools, ... (historical, by second)

 AnalyzeStatistics | History of statistics collection

 Backups | Monitoring successful backups

 CatalogInfo | Catalog statistics and history

 CatalogInfoByDay | Catalog statistics and history (historical, by day)

 CatalogInfoByHour | Catalog statistics and history (historical, by hour)

 CatalogInfoByMinute | Catalog statistics and history (historical, by minute)

 CatalogInfoBySecond | Catalog statistics and history (historical, by second)

 ClientServerMessages | Client-Server Messages (Front End to Back End Protocol) sent

 ConfigurationChanges | Changes to configuration parameters (vertica.conf)

 CpuAggregate | Aggregate CPU information

 CpuAggregateByDay | Aggregate CPU information (historical, by day)

 CpuAggregateByHour | Aggregate CPU information (historical, by hour)

 CpuAggregateByMinute | Aggregate CPU information (historical, by minute)

 CpuAggregateBySecond | Aggregate CPU information (historical, by second)

 CpuInfo | CPU information

 CpuInfoByDay | CPU information (historical, by day)

 CpuInfoByHour | CPU information (historical, by hour)

 CpuInfoByMinute | CPU information (historical, by minute)

 CpuInfoBySecond | CPU information (historical, by second)

 DeploymentsCompleted | History of designs deployed

 DesignsCompleted | History of designs executed

 DiskResourceRejections | Disk Resource Rejection Records

 Errors | History of all errors+warnings encountered

 ExecutionEngineEvents | History of important events during local planning and execution

 ExecutionEngineProfiles | History of EE profiles

 IoInfo | Information about device IOs

 IoInfoByDay | Information about device IOs (historical, by day)

 IoInfoByHour | Information about device IOs (historical, by hour)

 IoInfoByMinute | Information about device IOs (historical, by minute)

 IoInfoBySecond | Information about device IOs (historical, by second)

 LockAttempts | History of lock attempts (resolved requests)

 LockReleases | History of lock releases

 LockRequests | History of lock requests

 LoginFailures | Failed login attempts

 MemoryInfo | Information about node memory allocation, at the OS level

 MemoryInfoByDay | Information about node memory allocation, ... (historical, by day)

 MemoryInfoByHour | Information about node memory allocation, ... (historical, by

hour)

 MemoryInfoByMinute | Information about node memory allocation, ... (historical, by

minute)

 MemoryInfoBySecond | Information about node memory allocation, ... (historical, by

second)

 MonitoringEventsCleared | Monitoring events cleared

 MonitoringEventsPosted | Monitoring events posted

 NetworkInfo | Network interface information and statistics

 NetworkInfoByDay | Network interface information and statistics (historical, by day)

 NetworkInfoByHour | Network interface information and statistics (historical, by

hour)

 NetworkInfoByMinute | Network interface information and statistics (historical, by

minute)

 NetworkInfoBySecond | Network interface information and statistics (historical, by

second)

 NodeState | History of all node state changes

 OptimizerEvents | History of important events during optimizer planning

 OptimizerStats | History of optimizer runtime statistics

 ProcessInfo | Information about vertica process memory, handles and system

limits

 ProcessInfoByDay | Information about vertica process memory, ... (historical, by day)

 ProcessInfoByHour | Information about vertica process memory, ... (historical, by

hour)

 ProcessInfoByMinute | Information about vertica process memory, ... (historical, by

minute)

 ProcessInfoBySecond | Information about vertica process memory, ... (historical, by

second)

 ProjectionRecoveries | Monitoring completed projection recoveries

 ProjectionRefreshesCompleted | History of refreshed projections

 ProjectionsUsed | Projections used in each SQL request issued

-1006-

SQL Reference Manual

 RebalancedSegments | History of all segments rebalanced (EC)

 RequestsCompleted | History of all SQL requests completed

 RequestsIssued | History of all SQL requests issued

 RequestsRetried | History of all SQL requests issued that were retried

 ResourceAcquisitions | History of all resource acquisitions

 ResourceRejections | Resource Rejection Records

 ResourceReleases | History of all resource acquisition releases

 RosesCreated | History of all ROS and DVROS created

 RosesDestroyed | History of all ROS destroyed

 SessionEnds | Sessions ended

 SessionStarts | Sessions started

 Signals | History of process signals received

 Startups | History of all node startup events

 StorageInfo | Storage information (Used and Free space)

 StorageInfoByDay | Storage information (Used and Free space) (historical, by day)

 StorageInfoByHour | Storage information (Used and Free space) (historical, by hour)

 StorageInfoByMinute | Storage information (Used and Free space) (historical, by minute)

 StorageInfoBySecond | Storage information (Used and Free space) (historical, by second)

 StorageLayerStatistics | Statistics and history of storage and caching layer

 StorageLayerStatisticsByDay | Statistics and history of storage and caching layer (historical,

by day)

 StorageLayerStatisticsByHour | Statistics and history of storage and caching layer (historical,

by hour)

 StorageLayerStatisticsByMinute | Statistics and history of storage and caching layer (historical,

by minute)

 StorageLayerStatisticsBySecond | Statistics and history of storage and caching layer (historical,

by second)

 Test | For data collector infrastructure testing

 TransactionEnds | History of end transactions (commit or rollback)

 TransactionStarts | History of begin transactions

 TuningAnalysis | Tuning analysis history in Workload Analyzer

 TuningRecommendations | Tuning Recommendations in Workload Analyzer

 TupleMoverEvents | History of Tuple Mover activities

 Upgrades | Monitoring catalog upgrades

 UserAudits | History of user audits

(93 rows)

Related Topics

Data Collector Functions (page 560)

Retaining Monitoring Information and How HP Vertica Calculates Database Size in the
Administrator's Guide

DATABASE_BACKUPS

Lists historical information for each backup that successfully completed after running the vbr.py
utility. This information is useful for determining whether to create a new backup before you
advance the AHM. Because this system table displays historical information, its contents do not
always reflect the current state of a backup repository. For example, if you delete a backup from a
repository, the DATABASE_BACKUPS system table continues to display information about it.

To monitor snapshot information while vbr.py is running, query the DATABASE_SNAPSHOTS

(page 1008) system table. To list existing backups, run vbr.py as described in Viewing Backups
in the Administrator's Guide.

-1007-

 HP Vertica System Tables

Column Name Data Type Description

BACKUP_TIMESTAMP TIMESTAMP The timestamp of the backup.

NODE_NAME VARCHAR The name local or remote backup host, as

specified in the backupHost parameter of the

vbr.py configuration file.

SNAPSHOT_NAME VARCHAR The name of the backup, as specified in the
snapshotName parameter of the vbr.py

configuration file.

BACKUP_EPOCH INTEGER The database epoch at which the backup was

saved.

NODE_COUNT INTEGER The number of nodes backed up in the
completed backup, and as listed in the
[Mappingn] sections of the configuration file.

OBJECTS VARCHAR The name of the object(s) contained in an
object-level backup. This column is empty if the
record is for a full cluster backup.

Permissions

Must be a superuser.

Example

VMart=> select * from v_monitor.database_backups;

-[RECORD 1]----+------------------------------

backup_timestamp | 2013-05-10 14:41:12.673381-04

node_name | v_vmart_node0003

snapshot_name | schemabak

backup_epoch | 174

node_count | 3

objects | public, store, online_sales

-[RECORD 2]----+------------------------------

backup_timestamp | 2013-05-13 11:17:30.913176-04

node_name | v_vmart_node0003

snapshot_name | kantibak

backup_epoch | 175

node_count | 3

objects |

.

.

.

-[RECORD 15]---+------------------------------

backup_timestamp | 2013-05-16 07:20:18.585076-04

node_name | v_vmart_node0003

snapshot_name | table2bak

backup_epoch | 180

node_count | 3

objects | test2

-[RECORD 16]---+------------------------------

-1008-

SQL Reference Manual

backup_timestamp | 2013-05-28 14:06:03.027673-04

node_name | v_vmart_node0003

snapshot_name | kantibak

backup_epoch | 182

node_count | 3

objects |

See Also

DATABASE_SNAPSHOTS (page 1008)

DATABASE_CONNECTIONS

Lists the connections that have been established to other databases for importing and exporting
data. See Moving Data Between HP Vertica Databases in the Administrator's Guide.

Column Name Data Type Description

DATABASE VARCHAR The name of the connected database

USERNAME VARCHAR The username used to create the connection

HOST VARCHAR The host name used to create the connection

PORT VARCHAR The port number used to create the connection

ISVALID BOOLEAN Whether the connection is still open and
usable or not

Example
=> CONNECT TO VERTICA vmart USER dbadmin PASSWORD '' ON '10.10.20.150',5433;

CONNECT

=> SELECT * FROM DATABASE_CONNECTIONS;

 database | username | host | port | isvalid

----------+----------+--------------+------+---------

 vmart | dbadmin | 10.10.20.150 | 5433 | t

(1 row)

DATABASE_SNAPSHOTS
Displays information about database snapshots. A snapshot is a special temporary image of the

database, which vbr.py uses internally as part of creating a full or object-level backup. When

vbr.py completes a backup, it deletes the associated snapshot and its entry in the

database_snapshots system table.

-1009-

 HP Vertica System Tables

To see historical data about successfully created backups, query the DATABASE_BACKUPS

(page 1006) system table. To see existing backups, run vbr.py as described in Viewing and
Deleting Backups in the Administrator's Guide.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node where the snapshot will
be stored, as specified in the backupHost

parameter of the vbr.py configuration file.

SNAPSHOT_NAME VARCHAR The name of the snapshot you specify in the
vbr.py configuration file snapshotName

parameter.

IS_DURABLE_SNAPSHOT BOOLEAN Indicates the snapshot durability. This value is
always set to t (true).

TOTAL_SIZE_BYTES INTEGER The total size (in bytes) of the data being

backed up. This value differs from the data
storage size (STORAGE_COST_BYTES),

described next.

STORAGE_COST_BYTES INTEGER The amount of disk space used for a snapshot,
and which will be freed when vbr.py deletes it.

This value can change over time. For example,

the storage_cost_bytes increases when

storage is discarded from the database.

ACQUISITION_TIMESTAMP TIMESTAMP The recorded time at which vbr.py will create

the snapshot.

Example

To monitor snapshot information during vbr.py execution:

=> SELECT * FROM database_snapshots;

vmartdb=> SELECT * FROM database_snapshots;

 node_name | snapshot_name | is_durable_snapshot | total_size_bytes | storage_cost_bytes |

acquisition_timestamp

--------------------+---------------+---------------------+------------------+-------------------

-+------------------------

 v_vmartdb_node0001 | mysnapshot | t | 116108615 | 5054638 |

2010-10-07 12:39:22-04

 v_vmartdb_node0002 | mysnapshot | t | 116385001 | 5066175 |

2010-10-07 12:39:35-04

 v_vmartdb_node0003 | mysnapshot | t | 116379703 | 5054692 |

2010-10-07 12:38:00-04

 v_vmartdb_node0004 | mysnapshot | t | 116354638 | 5043155 |

2010-10-07 12:36:10-04

(4 rows)

See Also

DATABASE_BACKUPS (page 1006)

-1010-

SQL Reference Manual

DELETE_VECTORS

Holds information on deleted rows to speed up the delete process.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node storing the deleted rows.

SCHEMA_NAME VARCHAR The name of the schema where the deleted

rows are located.

PROJECTION_NAME VARCHAR The name of the projection where the deleted
rows are located.

STORAGE_TYPE VARCHAR The type of storage containing the delete vector
(WOS or ROS).

DV_OID INTEGER The unique numeric ID (OID) that identifies this

delete vector.

STORAGE_OID INTEGER The unique numeric ID (OID) that identifies the
storage container that holds the delete vector.

DELETED_ROW_COUNT INTEGER The number of rows deleted.

USED_BYTES INTEGER The number of bytes used to store the deletion.

START_EPOCH INTEGER The start epoch of the data in the delete vector.

END_EPOCH INTEGER The end epoch of the data in the delete vector.

DEPLOY_STATUS
Records the history of the Database Designer designs that have been deployed and their
deployment steps.

Column Name Data Type Description

EVENT_TIME TIMESTAMP Time when the row recorded the event.

USER_NAME VARCHAR Name of the user who deployed a design at the

time HP Vertica recorded the session.

DEPLOY_NAME VARCHAR Name the deployment, same as the
user-specified design name.

DEPLOY_STEP VARCHAR Steps in the design deployment.

DEPLOY_STEP_STATUS VARCHAR Textual status description of the current step in
the deploy process.

-1011-

 HP Vertica System Tables

DEPLOY_STEP_COMPLETE_

PERCENT

FLOAT Progress of current step in percentage (0–100).

DEPLOY_COMPLETE_PERCENT FLOAT Progress of overall deployment in percentage
(0–100).

ERROR_MESSAGE VARCHAR Error or warning message during deployment.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example

The following example shows the content of the DEPLOY_STATUS for a Database Designer
deployment executed by the DBADMIN user:

=> select * from v_monitor.deploy_status;

 event_time | user_name | deploy_name | deploy_step | deploy_step_status |

deploy_step_complete_percent | deploy_complete_percent | error_message

---------------------+-----------+-------------+-------------------------------------+-----------

---------+------------------------------+-------------------------+---------------

 2012-02-14 10:33:14 | dbadmin | design1 | create_deployment | success | | | N/A

 2012-02-14 10:33:14 | dbadmin | design1 | populate_deployment | started | | | N/A

 2012-02-14 10:33:21 | dbadmin | design1 | populate_deployment | success | | | N/A

 2012-02-14 10:33:21 | dbadmin | design1 | deployment_script | started | | | N/A

 2012-02-14 10:33:23 | dbadmin | design1 | run_deployment | success | | | N/A

 2012-02-14 10:33:23 | dbadmin | design1 | deployment_script | success | | | N/A

 2012-02-14 10:33:24 | dbadmin | design1 | execute_deployment | started | | | N/A

 2012-02-14 10:33:26 | dbadmin | design1 | add: Dim_DBD_3_rep_ctx_design1 | complete | 100 | 0 | N/A

 2012-02-14 10:33:27 | dbadmin | design1 | drop: Dim_b0 | complete | 100 | 0 | N/A

 2012-02-14 10:33:27 | dbadmin | design1 | drop: Dim_b1 | complete | 100 | 0 | N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_11_seg_ctx_design1 | complete | 100 | 11.11

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_12_seg_1_ctx_design1 | complete | 100 | 22.22

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_1_seg_ctx_design1 | complete | 100 | 33.33

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_4_rep_ctx_design1 | complete | 100 | 37.04

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_5_seg_ctx_design1 | complete | 100 | 38.89

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_6_seg_ctx_design1 | complete | 100 | 40.74

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_7_seg_ctx_design1 | complete | 100 | 51.85

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_8_seg_ctx_design1 | complete | 100 | 53.7

| N/A

 2012-02-14 10:33:43 | dbadmin | design1 | add: Fact1_DBD_9_seg_ctx_design1 | complete | 100 | 55.56

| N/A

 2012-02-14 10:33:44 | dbadmin | design1 | drop: Fact1_b0 | complete | 100 | 55.56 | N/A

 2012-02-14 10:33:44 | dbadmin | design1 | drop: Fact1_b1 | complete | 100 | 55.56 | N/A

 2012-02-14 10:33:56 | dbadmin | design1 | add: Fact2_DBD_10_seg_ctx_design1 | complete | 100 | 77.78

| N/A

 2012-02-14 10:33:56 | dbadmin | design1 | add: Fact2_DBD_2_seg_ctx_design1 | complete | 100 | 100

| N/A

 2012-02-14 10:33:56 | dbadmin | design1 | drop: Fact2_b0 | complete | 100 | 100 | N/A

 2012-02-14 10:33:56 | dbadmin | design1 | drop: Fact2_b1 | complete | 100 | 100 | N/A

 2012-02-14 10:33:57 | dbadmin | design1 | run_deployment | success | | | N/A

 2012-02-14 10:33:57 | dbadmin | design1 | execute_deployment | success | | | N/A

 2012-02-14 10:33:57 | dbadmin | design1 | deployment | completed | | | N/A

...

-1012-

SQL Reference Manual

DESIGN_STATUS

Records the progress of a running Database Designer design or history of the last Database
Designer design executed by the current user.

Column Name Data Type Description

EVENT_TIME TIMESTAMP Time when the row recorded the event.

USER_NAME VARCHAR Name of the user who ran a design at the time
HP Vertica recorded the session.

DESIGN_NAME VARCHAR Name of the user-specified design.

DESIGN_PHASE VARCHAR Phase of the design.

PHASE_STEP VARCHAR Substep in each design phase

PHASE_STEP_COMPLETE_

PERCENT

FLOAT Progress of current substep in percentage

(0–100).

PHASE_COMPLETE_PERCENT FLOAT Progress of current design phase in percentage
(0–100).

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example

The following example shows the content of the DESIGN_STATUS table of a complete Database

Designer run:

=> select * from v_monitor.design_status;

 event_time | user_name | design_name | design_phase | phase_step | phase_step_complete_percent

| phase_complete_percent

---------------------+-----------+-------------+--+

---+-----------------------------+---------------------

 2012-02-14 10:31:20 | dbadmin | design1 | Design started | ================ | |

 2012-02-14 10:31:21 | dbadmin | design1 | Design in progress: Analyze statistics phase |

================ | |

 2012-02-14 10:31:21 | dbadmin | design1 | Analyzing data statistics | public.Fact1 | 100 | 33.33

 2012-02-14 10:31:22 | dbadmin | design1 | Analyzing data statistics | public.Fact2 | 100 | 66.67

 2012-02-14 10:31:24 | dbadmin | design1 | Analyzing data statistics | public.Dim | 100 | 100

 2012-02-14 10:31:25 | dbadmin | design1 | Design in progress: Query optimization phase |

================ | |

 2012-02-14 10:31:25 | dbadmin | design1 | Optimizing query performance | iteration 1: Complete | 100

| 37.5

 2012-02-14 10:31:31 | dbadmin | design1 | Optimizing query performance | iteration 2: Complete | 100

| 62.5

 2012-02-14 10:31:36 | dbadmin | design1 | Optimizing query performance | iteration 3: Complete | 100

| 75

 2012-02-14 10:31:39 | dbadmin | design1 | Optimizing query performance | iteration 4: Complete | 100

| 87.5

 2012-02-14 10:31:41 | dbadmin | design1 | Optimizing query performance | iteration 5: Complete | 100

| 87.5

 2012-02-14 10:31:42 | dbadmin | design1 | Design in progress: Storage optimization phase |

-1013-

 HP Vertica System Tables

================ | |

 2012-02-14 10:31:44 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_4_rep_ctx_design1

| 100 | 4.17

 2012-02-14 10:31:44 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_1_seg_ctx_design1

| 100 | 16.67

 2012-02-14 10:32:04 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_7_seg_ctx_design1

| 100 | 29.17

 2012-02-14 10:32:04 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_5_seg_ctx_design1

| 100 | 31.25

 2012-02-14 10:32:05 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_8_seg_ctx_design1

| 100 | 33.33

 2012-02-14 10:32:05 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_6_seg_ctx_design1

| 100 | 35.42

 2012-02-14 10:32:05 | dbadmin | design1 | Optimizing storage footprint | Fact1_DBD_9_seg_ctx_design1

| 100 | 37.5

 2012-02-14 10:32:05 | dbadmin | design1 | Optimizing storage footprint | Fact2_DBD_2_seg_ctx_design1

| 100 | 62.5

 2012-02-14 10:32:39 | dbadmin | design1 | Optimizing storage footprint | Fact2_DBD_10_seg_ctx_design1

| 100 | 87.5

 2012-02-14 10:32:39 | dbadmin | design1 | Optimizing storage footprint | Dim_DBD_3_rep_ctx_design1

| 100 | 87.5

 2012-02-14 10:32:41 | dbadmin | design1 | Optimizing storage footprint |

Fact1_DBD_45035996273720238_seg_ctx_design1 | 100 | 100

 2012-02-14 10:33:12 | dbadmin | design1 | Design completed successfully | ================ | |

(24 rows)

DISK_RESOURCE_REJECTIONS

Returns requests for resources that are rejected due to disk space shortages.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

RESOURCE_TYPE VARCHAR The resource request requester (example: Temp

files).

REJECTED_REASON VARCHAR One of 'Insufficient disk space ' or 'Failed

volume'.

REJECTED_COUNT INTEGER Number of times this REJECTED_REASON has

been given for this RESOURCE_TYPE.

FIRST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the first rejection for this
REJECTED_REASON and RESOURCE_TYPE.

LAST_REJECTED_TIMESTAMP TIMESTAM
P

The time of the most recent rejection for this
REJECTED_REASON and RESOURCE_TYPE.

LAST_REJECTED_VALUE INTEGER The value of the most recent rejection for this

REJECTED_REASON and RESOURCE_TYPE.

Notes

Output is aggregated by both RESOURCE_TYPE and REJECTED_REASON to provide more
comprehensive information.

Example
=>\pset expanded

-1014-

SQL Reference Manual

Expanded display on.

=> SELECT * FROM disk_resource_rejections;

-[RECORD 1]------------+---------------------------

node_name | e0

resource_type | Table Data

rejected_reason | Insufficient disk space

rejected_count | 2

first_rejected_timestamp | 2009-10-16 15:55:16.336246

last_rejected_timestamp | 2009-10-16 15:55:16.336391

last_rejected_value | 1048576

-[RECORD 2]------------+---------------------------

node_name | e1

resource_type | Table Data

rejected_reason | Insufficient disk space

rejected_count | 2

first_rejected_timestamp | 2009-10-16 15:55:16.37908

last_rejected_timestamp | 2009-10-16 15:55:16.379207

last_rejected_value | 1048576

See Also

RESOURCE_REJECTIONS (page 1089)

CLEAR_RESOURCE_REJECTIONS (page 456)

Managing Workloads and Managing System Resource Usage in the Administrator's Guide

DISK_STORAGE
Returns the amount of disk storage used by the database on each node.

Column Name Date Type Description

NODE_NAME VARCHAR The node name for which information is listed.

STORAGE_PATH VARCHAR The path where the storage location is mounted.

STORAGE_USAGE VARCHAR The type of information stored in the location:

 DATA: Only data is stored in the location.

 TEMP: Only temporary files that are
created during loads or queries are stored
in the location.

 DATA,TEMP: Both types of files are
stored in the location.

 USER: The storage location can be used
by non-dbadmin users, who are granted
access to the storage location

 CATALOG: The area is used for the HP
Vertica catalog. This usage is set
internally and cannot be removed or

-1015-

 HP Vertica System Tables

changed.

RANK INTEGER The rank assigned to the storage location based
on its performance. Ranks are used to create a
storage locations on which projections, columns,

and partitions are stored on different disks based
on predicted or measured access patterns. See
Creating and Configuring Storage Locations in the

Administrator's Guide.

THROUGHPUT INTEGER The measure of a storage location's performance
in MB/sec. 1/throughput is the time taken to read
1MB of data.

LATENCY INTEGER The measure of a storage location's performance

in seeks/sec. 1/latency is the time taken to seek to
the data.

STORAGE_STATUS VARCHAR The status of the storage location: active or
retired.

DISK_BLOCK_SIZE_BYTES INTEGER The block size of the disk in bytes.

DISK_SPACE_USED_BLOCKS INTEGER The number of disk blocks in use.

DISK_SPACE_USED_MB INTEGER The number of megabytes of disk storage in use.

DISK_SPACE_FREE_BLOCKS INTEGER The number of free disk blocks available.

DISK_SPACE_FREE_MB INTEGER The number of megabytes of free storage

available.

DISK_SPACE_FREE_PERCENT INTEGER The percentage of free disk space remaining.

Notes

 All values returned are in the context of the operating system's filesystems and are not specific
to HP Vertica-specific space.

 The storage usage annotation called CATALOG indicates the location is used to store the
catalog. However, CATALOG location can only be specified when creating a new database
and no new locations can be added as CATALOG locations using ADD_LOCATION (page
426). Existing CATALOG annotations cannot be removed.

 A storage location's performance is measured in throughput in MB/sec and latency in
seeks/sec. These two values are converted to single number(Speed) with the following
formula:

ReadTime (time to read 1MB) = 1/throughput + 1 / latency

 1/throughput is the time taken to read 1MB of data

 1/latency is the time taken to seek to the data.

 ReadTime is the time taken to read 1MB of data.

 A disk is faster than another disk if its ReadTime is less.

 There can be multiple storage locations per node, and these locations can be on different disks
with different free/used space, block size, etc. This information is useful in letting you know
where the data files reside.

-1016-

SQL Reference Manual

Example

Query the DISK_STORAGE table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM DISK_STORAGE;

-[RECORD 1]-----------+-----------------------------

current_timestamp | 2009-08-11 14:48:35.932541

node_name | site01

storage_path | /mydb/node01_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 34708721

disk_space_used_mb | 135581

disk_space_free_blocks | 178816678

disk_space_free_mb | 698502

disk_space_free_percent | 83%

-[RECORD 2]-----------+-----------------------------

current_timestamp | 2009-08-11 14:48:53.884255

node_name | site01

storage_path | /mydb/node01_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 34708721

disk_space_used_mb | 135581

disk_space_free_blocks | 178816678

disk_space_free_mb | 698502

disk_space_free_percent | 83%

-[RECORD 3]-----------+-----------------------------

current_timestamp | 2009-08-11 14:49:08.299012

node_name | site02

storage_path | /mydb/node02_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19968349

disk_space_used_mb | 78001

disk_space_free_blocks | 193557050

disk_space_free_mb | 756082

disk_space_free_percent | 90%

-[RECORD 4]-----------+-----------------------------

-1017-

 HP Vertica System Tables

current_timestamp | 2009-08-11 14:49:22.696772

node_name | site02

storage_path | /mydb/node02_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19968349

disk_space_used_mb | 78001

disk_space_free_blocks | 193557050

disk_space_free_mb | 756082

disk_space_free_percent | 90%

-[RECORD 5]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:03.960157

node_name | site03

storage_path | /mydb/node03_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19902595

disk_space_used_mb | 77744

disk_space_free_blocks | 193622804

disk_space_free_mb | 756339

disk_space_free_percent | 90%

-[RECORD 6]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:27.415735

node_name | site03

storage_path | /mydb/node03_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19902595

disk_space_used_mb | 77744

disk_space_free_blocks | 193622804

disk_space_free_mb | 756339

disk_space_free_percent | 90%

-[RECORD 7]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:39.398879

node_name | site04

storage_path | /mydb/node04_catalog/Catalog

storage_usage | CATALOG

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

-1018-

SQL Reference Manual

disk_space_used_blocks | 19972309

disk_space_used_mb | 78017

disk_space_free_blocks | 193553090

disk_space_free_mb | 756066

disk_space_free_percent | 90%

-[RECORD 8]-----------+-----------------------------

current_timestamp | 2009-08-11 14:50:57.879302

node_name | site04

storage_path | /mydb/node04_data

storage_usage | DATA,TEMP

rank | 0

throughput | 0

latency | 0

storage_status | Active

disk_block_size_bytes | 4096

disk_space_used_blocks | 19972309

disk_space_used_mb | 78017

disk_space_free_blocks | 193553090

disk_space_free_mb | 756066

disk_space_free_percent | 90%

Request only specific columns from the table:

=> SELECT node_name, storage_path, storage_status, disk_space_free_percent FROM disk_storage;

 node_name | storage_path | storage_status | disk_space_free_percent

-----------+------------------------------+----------------+-------------------------

 site01 | /mydb/node01_catalog/Catalog | Active | 83%

 site01 | /mydb/node01_data | Active | 83%

 site02 | /mydb/node02_catalog/Catalog | Active | 90%

 site02 | /mydb/node02_data | Active | 90%

 site03 | /mydb/node03_catalog/Catalog | Active | 90%

 site03 | /mydb/node03_data | Active | 90%

 site04 | /mydb/node04_catalog/Catalog | Active | 90%

 site04 | /mydb/node04_data | Active | 90%

(8 rows)

ERROR_MESSAGES

Lists system error messages and warnings HP Vertica encounters while processing queries.

Column Name Data Type Description

EVENT_TIMESTAMP TIMESTAMPT
Z

Time when the row recorded the event.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

USER_ID INTEGER Identifier of the user who received the error

message.

USER_NAME VARCHAR Name of the user who received the error
message at the time HP Vertica recorded the
session.

-1019-

 HP Vertica System Tables

SESSION_ID VARCHAR Identifier for this session. This identifier is
unique within the cluster at any point in time but

can be reused when the session closes.

REQUEST_ID INTEGER Unique identifier of the query request in the user
session.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, i f
any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running

statement. NULL indicates that no statement is
currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID, and

REQUEST_ID uniquely identifies a statement
within a session.

ERROR_LEVEL VARCHAR Severity of the error, can be one of:

 LOG

 INFO

 NOTICE

 WARNING

 ERROR

 ROLLBACK

 INTERNAL

 FATAL

 PANIC

ERROR_CODE INTEGER Error code that HP Vertica reports.

MESSAGE VARCHAR Textual output of the error message.

DETAIL VARCHAR Additional information about the error message,
in greater detail.

HINT VARCHAR Actionable hint about the error. For example:

HINT: Set the locale in this session

to en_US@collation=binary using the

command "\locale

en_US@collation=binary"

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Notes

Some errors occur when no transaction is in progress, so the transaction identifier or statement
identifier columns could return NULL.

Example
=> SELECT event_timestamp, statement_id, error_level, message FROM

error_messages;

-1020-

SQL Reference Manual

 event_timestamp | statement_id | error_level | message

-------------------------------+--------------+-------------+------------------------------------

 2012-03-30 17:52:12.326927-04 | -1 | FATAL | Client canceled session

raster-s1-10295:0x225b

 2012-03-30 17:42:12.249989-04 | 20 | ERROR | Syntax error at or near "name"

 2012-03-30 17:42:07.018451-04 | -1 | FATAL | Client canceled session

raster-s1-10295:0x225b

 2012-03-30 17:40:22.665446-04 | 17 | ERROR | Execution canceled by operator

 2012-03-30 16:32:38.784384-04 | 11 | ERROR | Relation "systm_tables" does not exist

 2012-03-30 16:26:51.072655-04 | 98 | ERROR | Relation "rebalance_projections" does

not exist

 2012-03-30 14:31:09.953241-04 | -1 | FATAL | Client canceled session

raster-s1-10295:0x70

 2012-03-30 14:26:06.655026-04 | 42 | ERROR | Syntax error at or near "constraint"

 2012-03-30 11:48:22.30045-04 | 31 | ERROR | Column "UDX" does not exist

 2012-03-30 11:21:14.659128-04 | 20 | ERROR | Invalid attnum 1 for rangetable entry

t

...

EVENT_CONFIGURATIONS

Monitors the configuration of events.

Column Name Date Type Description

EVENT_ID VARCHAR The name of the event.

EVENT_DELIVERY_CHANNELS VARCHAR The delivery channel on which the event occurred.

Example
=> SELECT * FROM event_configurations;

 event_id | event_delivery_channels

---+-------------------------

 Low Disk Space | Vertica Log, SNMP Trap

 Read Only File System | Vertica Log, SNMP Trap

 Loss Of K Safety | Vertica Log, SNMP Trap

 Current Fault Tolerance at Critical Level | Vertica Log, SNMP Trap

 Too Many ROS Containers | Vertica Log, SNMP Trap

 WOS Over Flow | Vertica Log, SNMP Trap

 Node State Change | Vertica Log, SNMP Trap

 Recovery Failure | Vertica Log, SNMP Trap

 Recovery Error | Vertica Log

 Recovery Lock Error | Vertica Log

 Recovery Projection Retrieval Error | Vertica Log

 Refresh Error | Vertica Log

 Refresh Lock Error | Vertica Log

 Tuple Mover Error | Vertica Log

 Timer Service Task Error | Vertica Log

 Stale Checkpoint | Vertica Log, SNMP Trap

(16 rows)

-1021-

 HP Vertica System Tables

EXECUTION_ENGINE_PROFILES

Provides profiling information about query execution runs. The hierarchy of IDs, from highest level
to actual execution is:

 PATH_ID

 BASEPLAN_ID

 LOCALPLAN_ID

 OPERATOR_ID

Counters (output from the COUNTER_NAME column) are collected for each actual Execution
Engine (EE) operator instance.

The following columns form a unique key for rows in the Data Collector table
DC_EXECUTION_ENGINE_EVENTS:

 TRANSACTION_ID

 STATEMENT_ID

 NODE_NAME

 OPERATOR_ID

 COUNTER_NAME

 COUNTER_TAG

For additional details about profiling and debugging, see Profiling Database Performance in the
Administrator's Guide.

Column Name Data Type Description

NODE_NAME VARCHAR Node name for which information is listed.

USER_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the user.

USER_NAME VARCHAR User name for which query profile information is
listed.

SESSION_ID VARCHAR Identifier of the session for which profiling

information is captured. This identifier is unique
within the cluster at any point in time but can be
reused when the session closes.

TRANSACTION_ID INTEGER Identifier for the transaction within the session if

any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed.

OPERATOR_NAME VARCHAR Name of the Execution Engine (EE) component;
for example, NetworkSend.

-1022-

SQL Reference Manual

OPERATOR_ID INTEGER Identifier assigned by the EE operator instance
that performs the work. OPERATOR_ID is

different from LOCALPLAN_ID because each

logical operator, such as Scan, may be

executed by multiple threads concurrently.
Each thread operates on a different operator
instance, which has its own ID.

BASEPLAN_ID INTEGER Assigned by the optimizer on the initiator to EE

operators in the original base (EXPLAIN) plan.
Each EE operator in the base plan gets a
unique ID.

PATH_ID INTEGER Identifier that HP Vertica assigns to a query

operation or path; for example to a logical
grouping operation that might be performed by
multiple execution engine operators.

For each path, the same PATH ID is shared
between the query plan (using EXPLAIN output)
and in error messages that refer to joins.

LOCALPLAN_ID INTEGER Identifier assigned by each local executor while

preparing for plan execution (local planning).
Some operators in the base plan, such as the
Root operator, which is connected to the client,

do not run on all nodes. Similarly, certain
operators, such as ExprEval, are added and

removed during local planning due to
implementation details.

ACTIVITY_ID INTEGER Identifier of the plan activity.

RESOURCE_ID INTEGER Identifier of the plan resource.

COUNTER_NAME VARCHAR Name of the counter. See the
"COUNTER_NAME Values" section below this

table.

COUNTER_TAG VARCHAR String that uniquely identifies the counter for
operators that might need to distinguish
between different instances. For example,

COUNTER_TAG is used to identify to which of the

node bytes are being sent to or received from

for the NetworkSend operator.

COUNTER_VALUE INTEGER Value of the counter.

IS_EXECUTING BOOLEAN Indicates whether the profile is active or
completed, where t is active and f is completed.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

-1023-

 HP Vertica System Tables

COUNTER_NAME Values

The value of COUNTER_NAME can be any of the following:

COUNTER_NAME Description

buffers spilled [NetworkSend] Buffers spilled to disk by NetworkSend.

bytes received [NetworkRecv] The number of bytes received over the network

for query execution.

bytes read from cache [DataSource] The number of bytes read from HP Vertica cache

when an EE DataSource operator is reading from ROS
containers.

bytes read from disk [DataSource] The number of bytes read from disk when an EE

DataSource operator is reading from ROS containers.

bytes sent [NetworkSend] Size of data after encoding and compression

sent over the network (actual network bytes).

bytes spilled [NetworkSend] Bytes spilled to disk by NetworkSend.

bytes total Only relevant to SendFiles operator (that is,

recover-by-container plan) total number of bytes to send /
receive.

clock time (us) Real-time clock time spent processing the query, in

microseconds.

completed merge phases Number of merge phases already completed by an LSort or

DataTarget operator. Compare to the total merge phases .

Variants on this value include join inner completed merge

phases.

cumulative size of raw

temp data (bytes)

Total amount of temporary data the operator has written to files.

Compare to cumulative size of temp files (bytes) to

understand impact of encoding and compression in an

externalizing operator. Variants on this value include join

inner cumulative size of raw temp files (bytes).

cumulative size of temp

files (bytes)

For externalizing operators only, the total number of encoded and

compressed temp data the operator has written to files. A sort
operator might go through multiple merge phases, where at each
pass sorted chunks of data are merged into fewer chunks. This

counter remembers the cumulative size of all temp files past and
present. Variants on this value include join inner

cumulative size of temp files (bytes).

current size of temp

files (bytes)

For externalizing operators only, the current size of the encoded
and compressed temp data that the operator has written to files.
Variants on this value include join inner current size of

temp files (bytes).

distinct value estimation

time (µs)
[Analyze Statistics] Time spent estimating the number of distinct
values from the sample after data has been read off disk and into

the statistical sample.

-1024-

SQL Reference Manual

encoded bytes received [NetworkRecv] Size of received data after decompressed (but

still encoded) received over the network.

encoded bytes sent [NetworkSend] Size of data sent over the network after

encoding.

end time Time (timestamp) when HP Vertica stopped processing the
operation

estimated rows produced Number of rows that the optimizer estimated would be produced.

See rows produced for the actual number of rows that are

produced.

execution time (us) CPU clock time spent processing the query, in microseconds.

Exceptions cumulative size

of raw temp data (bytes)

Counters that store total or current size of exception data.

Exceptions rows cumulative

size of temp files (bytes)

Exceptions rows current

size of temp files (bytes)

files completed Relevant only to SendFiles/RecvFiles operators (that is,

recover-by-container plan) number of files sent / received.

file handles Number of file handles used by the operator.

files total Relevant only to SendFiles/RecvFiles operators (that is,

recover-by-container plan) total number of files to send / receive.

histogram creation time

(µs)

[Analyze Statistics] Time spent estimating the number of distinct
values from the sample after data has been read off disk and into
the statistical sample.

input queue wait (µs) Time in microseconds that an operator spends waiting for
upstream operators.

input rows Actual number of rows that were read into the operator.

input size (bytes) Total number of bytes of the Load operator's input source, where

NULL is unknown (read from FIFO).

join inner completed merge

phases

See the completed merge phases counter.

join inner cumulative size

of raw temp data (bytes)

join inner cumulative size

of temp files (bytes)

join inner current size of

temp files (bytes)

join inner total merge

phases

max sample size (rows) [Analyze Statistics] Maximum number of rows that will be stored

in the statistical sample.

-1025-

 HP Vertica System Tables

memory allocated (bytes) Actual memory in bytes that the operator allocated at run time.

memory reserved (bytes) Memory reserved by the operator in the ResourceManager

operator.

Note: An allocation slightly more than the reservation (a few MB)

is not a cause for concern and is built into ResourceManager

calculations.

network wait (µs) [NetworkSend, NetworkRecv] Time in microseconds spent

waiting on the network.

output queue wait (µs) Time in microseconds that an operator spends waiting for the
output buffer to be consumed by a downstream operator.

producer stall (µs) [NetworkSend] Time in microseconds spent by NetworkSend

when stalled waiting for network buffers to clear.

producer wait (µs) [NetworkSend] Time in microseconds spent by the input

operator making rows to send.

read (bytes) Number of bytes read from the input source by the Load operator.

receive time (µs) Time in microseconds that a Recv operator spends reading data

from its socket.

rejected data cumulative

size of raw temp data

(bytes)

Counters that store total or current size of rejected row numbers.
Are variants of:

 cumulative size of raw temp data (bytes)

 cumulative size of temp files (bytes)

 current size of temp files (bytes)

rejected data cumulative

size of temp files (bytes)

rejected data current size

of temp files (bytes)

rejected rows cumulative

size of raw temp data

(bytes)

rejected rows cumulative

size of temp files (bytes)

rejected rows current size

of temp files (bytes)

rle rows produced Number of physical tuples produced by an operator.
Complements the rows produced counter, which shows the

number of logical rows produced by an operator. For example, if a
value occurs 1000 rows consecutively and is RLE encoded, it
counts as 1000 rows produced not only 1 rle rows

produced.

ROS blocks bounded [DataTarget] Number of ROS blocks created, due to

boundary alignment with RLE prefix columns, when an EE
DataTarget operator is writing to ROS containers.

ROS blocks encoded [DataTarget] Number of ros blocks created when an EE

DataTarget operator is writing to ROS containers.

-1026-

SQL Reference Manual

ROS bytes written [DataTarget] Number of bytes written to disk when an EE

DataTarget operator is writing to ROS containers.

rows in sample [Analyze Statistics] Actual number of rows that will be stored in

the statistical sample.

rows output by sort [DataTarget] Number of rows sorted when an EE DataTarget

operator is writing to ROS containers.

rows processed [DataSource] Number of rows processed when an EE

DataSource operator is writing to ROS containers

rows produced Number of logical rows produced by an operator. See also the
rle rows produced counter.

rows pruned by valindex [DataSource] Number of rows it skips direct scanning with help

of valindex when an EE DataSource operator is writing to ROS
containers. This counter's value is not greater than "rows
processed" counter.

rows received [NetworkRecv] Number of received sent over the network.

rows rejected The number of rows rejected by the Load operator.

rows sent [NetworkSend] Number of rows sent over the network.

send time (µs) Time in microseconds that a Send operator spends writing data to

its socket.

start time Time (timestamp) when HP Vertica started to process the
operation.

total merge phases Number of merge phases an LSort or DataTarget operator

must complete to finish sorting its data. NULL until the operator
can compute this value (all data must first be ingested by the
operator). Variants on this value include join inner total

merge phases.

wait clock time (µs) StorageUnion wait time in microseconds.

WOS bytes acquired Number of bytes acquired from the WOS by a DataTarget

operator.

Note: This is usually more but can be less than WOS bytes

written if an earlier statement in the transaction acquired some

WOS memory.

WOS bytes written Number of bytes written to the WOS by a DataTarget operator.

written rows [DataTarget] Number of rows written when an EE DataTarget

operator writes to ROS containers

Examples

The next two examples show the contents of the EXECUTION_ENGINE_PROFILES table:

=> SELECT operator_name, operator_id, counter_name, counter_value

 FROM EXECUTION_ENGINE_PROFILES WHERE operator_name = 'Scan'

-1027-

 HP Vertica System Tables

 ORDER BY counter_value DESC;

 operator_name | operator_id | counter_name | counter_value

---------------+-------------+--------------------------+-----------------

 Scan | 12 | end time | 397916465478595

 Scan | 9 | end time | 397916465478510

 Scan | 12 | start time | 397916465462098

 Scan | 9 | start time | 397916465447998

 Scan | 14 | bytes read from disk | 28044535

 Scan | 14 | bytes read from disk | 28030212

 Scan | 12 | rows processed | 5000000

 Scan | 12 | estimated rows produced | 4999999

 Scan | 18 | rows produced | 1074828

 Scan | 18 | rle rows produced | 1074828

 Scan | 3 | memory allocated (bytes) | 1074568

 Scan | 7 | rows produced | 799526

 Scan | 7 | rle rows produced | 799526

 Scan | 7 | memory allocated (bytes) | 682592

 Scan | 12 | clock time (us) | 673806

 Scan | 7 | execution time (us) | 545717

 Scan | 3 | memory allocated (bytes) | 537400

 Scan | 12 | clock time (us) | 505315

 Scan | 14 | execution time (us) | 495176

 Scan | 3 | bytes read from disk | 452403

 Scan | 14 | execution time (us) | 420189

 Scan | 12 | execution time (us) | 404184

 Scan | 18 | clock time (us) | 398751

 Scan | 18 | execution time (us) | 339321

(24 rows)

=> SELECT DISTINCT counter_name FROM execution_engine_profiles;

 counter_name

 end time

 clock time (us)

 rle rows produced

 bytes read from disk

 start time

 rows processed

 memory allocated (bytes)

 estimated rows produced

 rows produced

 execution time (us)

(10 rows)

The notable thing about the following query is the path_id column, which links the path that the
query optimizer takes (via the EXPLAIN command's textual output) with join error messages.

=> SELECT operator_name, path_id, counter_name,

 counter_value FROM execution_engine_profiles;

 operator_name | path_id | counter_name | counter_value

---------------+---------+---------------------------+---------------

-1028-

SQL Reference Manual

 Join | 1 | estimated rows produced | 10000

 Join | 1 | file handles | 0

 Join | 1 | memory allocated (bytes) | 2405824

 Join | 1 | memory reserved (bytes) | 1769472

 Join | 1 | rle rows produced | 3

 Join | 1 | rows produced | 3

 Join | 1 | clock time (us) | 24105

 Join | 1 | execution time (us) | 235

See Also

Profiling Database Performance in the Troubleshooting Guide, particularly Viewing Profiling Data

Linking EXPLAIN Plan Output to Error Messages in the Troubleshooting Guide

HOST_RESOURCES

Provides a snapshot of the node. This is useful for regularly polling the node with automated tools
or scripts.

Column Name Data Type Description

HOST_NAME VARCHAR The host name for which information is listed.

OPEN_FILES_LIMIT INTEGER The maximum number of files that can be open
at one time on the node.

THREADS_LIMIT INTEGER The maximum number of threads that can
coexist on the node.

CORE_FILE_LIMIT_MAX_SIZE_

BYTES

INTEGER The maximum core file size allowed on the

node.

PROCESSOR_COUNT INTEGER The number of system processors.

PROCESSOR_CORE_COUNT INTEGER The number of processor cores in the system.

PROCESSOR_DESCRIPTION VARCHAR A description of the processor. For example:

Inter(R) Core(TM)2 Duo CPU T8100
@2.10GHz (1 row)

OPENED_FILE_COUNT INTEGER The total number of open files on the node.

OPENED_SOCKET_COUNT INTEGER The total number of open sockets on the node.

OPENED_NONFILE_NONSOCKET_

COUNT

INTEGER The total number of other file descriptions open
in which 'other' could be a directory or FIFO. It is

not an open file or socket.

TOTAL_MEMORY_BYTES INTEGER The total amount of physical RAM, in bytes,
available on the system.

TOTAL_MEMORY_FREE_BYTES INTEGER The amount of physical RAM, in bytes, left
unused by the system.

-1029-

 HP Vertica System Tables

TOTAL_BUFFER_MEMORY_BYTES INTEGER The amount of physical RAM, in bytes, used for
file buffers on the system

TOTAL_MEMORY_CACHE_BYTES INTEGER The amount of physical RAM, in bytes, used as

cache memory on the system.

TOTAL_SWAP_MEMORY_BYTES INTEGER The total amount of swap memory available, in
bytes, on the system.

TOTAL_SWAP_MEMORY_FREE_BYTE

S
INTEGER The total amount of swap memory free, in bytes,

on the system.

DISK_SPACE_FREE_MB INTEGER The free disk space available, in megabytes, for

all storage location file systems (data
directories).

DISK_SPACE_USED_MB INTEGER The disk space used, in megabytes, for all
storage location file systems.

DISK_SPACE_TOTAL_MB INTEGER The total free disk space available, in

megabytes, for all storage location file systems.

Examples

Query the HOST_RESOURCES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM HOST_RESOURCES;

-[RECORD 1]------------------+--------------------------------------

host_name | myhost-s1

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 1649680384

processor_count | 2

processor_core_count | 8

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 4

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 4492627968

total_buffer_memory_bytes | 1613922304

total_memory_cache_bytes | 9349111808

total_swap_memory_bytes | 36502126592

total_swap_memory_free_bytes | 36411580416

disk_space_free_mb | 121972

disk_space_used_mb | 329235

disk_space_total_mb | 451207

-[RECORD 2]------------------+--------------------------------------

host_name | myhost-s2

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3772891136

processor_count | 2

processor_core_count | 4

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 9525706752

-1030-

SQL Reference Manual

total_buffer_memory_bytes | 2840420352

total_memory_cache_bytes | 3060588544

total_swap_memory_bytes | 34330370048

total_swap_memory_free_bytes | 34184642560

disk_space_free_mb | 822190

disk_space_used_mb | 84255

disk_space_total_mb | 906445

-[RECORD 3]------------------+--------------------------------------

host_name | myhost-s3

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3758211072

processor_count | 2

processor_core_count | 4

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 9718706176

total_buffer_memory_bytes | 2928369664

total_memory_cache_bytes | 2757115904

total_swap_memory_bytes | 34315689984

total_swap_memory_free_bytes | 34205523968

disk_space_free_mb | 820789

disk_space_used_mb | 85640

disk_space_total_mb | 906429

-[RECORD 4]------------------+--------------------------------------

host_name | myhost-s4

open_files_limit | 65536

threads_limit | 15914

core_file_limit_max_size_bytes | 3799433216

processor_count | 2

processor_core_count | 8

processor_description | Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

opened_file_count | 5

opened_socket_count | 3

opened_nonfile_nonsocket_count | 3

total_memory_bytes | 16687161344

total_memory_free_bytes | 8772620288

total_buffer_memory_bytes | 3792273408

total_memory_cache_bytes | 2831040512

total_swap_memory_bytes | 34356912128

total_swap_memory_free_bytes | 34282590208

disk_space_free_mb | 818896

disk_space_used_mb | 55291

disk_space_total_mb | 874187

IO_USAGE
Provides disk I/O bandwidth usage history for the system.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

START_TIME TIMESTAM
P

Beginning of history interval.

-1031-

 HP Vertica System Tables

END_TIME TIMESTAM
P

End of history interval.

READ_KBYTES_PER_SEC FLOAT Counter history of the number of bytes read

measured in kilobytes per second.

WRITTEN_KBYTES_PER_SEC FLOAT Counter history of the number of bytes written
measured in kilobytes per second.

Permissions

Must be a superuser

Example
=> SELECT * FROM io_usage;

 node_name | start_time | end_time | read_kbytes_per_sec |

written_kbytes_per_sec

-----------++------------------------------+-------------------------------+---------------------

+------------------------

 initiator | 2011-09-16 15:23:38.003714-04 | 2011-09-16 15:24:00.015769-04 | 11.63 |

620.03

 e0 | 2011-09-16 15:23:37.005431-04 | 2011-09-16 15:24:00.011519-04 | 11.13 |

593.24

 initiator | 2011-09-16 15:24:00.015728-04 | 2011-09-16 15:25:00.015439-04 | 18.67 |

473.87

 e1 | 2011-09-16 15:24:00.014491-04 | 2011-09-16 15:25:00.010432-04 | 18.67 |

473.9

 e1 | 2011-09-16 15:23:37.006595-04 | 2011-09-16 15:24:00.014533-04 | 11.13 |

593.18

 e0 | 2011-09-16 15:24:00.011478-04 | 2011-09-16 15:25:00.017536-04 | 18.66 |

473.82

(6 rows)

LOAD_STREAMS

Monitors active and historical load metrics for load streams on each node. This is useful for
obtaining statistics about how many records got loaded and rejected from the previous load. HP
Vertica maintains system table metrics until they reach a designated size quota (in kilobytes). The
quota is set through internal processes and cannot be set or viewed directly.

Column Name Date Type Description

SESSION_ID VARCHAR Identifier of the session for which HP Vertica

captures load stream information. This identifier
is unique within the cluster for the current
session, but can be reused in a subsequent

session.

TRANSACTION_ID INTEGER Identifier for the transaction within a session. If a
session is active but no transaction has begun,
this is NULL.

-1032-

SQL Reference Manual

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID uniquely
identifies a statement within a session.

STREAM_NAME VARCHAR Load stream identifier. If the user does not

supply a specific name, the STREAM_NAME
default value is:
tablename-ID

where tablename is the table into which data is
being loaded, and ID is an integer value,
guaranteed to be unique with the current

session on a node.

The LOAD_STREAMS system table includes
stream names for every COPY statement that

takes more than 1-second to run. The
1-second duration includes the time to plan and
execute the statement.

SCHEMA_NAME VARCHAR Schema name for which load stream

information is listed. Lets you identify two
streams that are targeted at tables with the
same name in different schemas

TABLE_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog that identifies the table.

TABLE_NAME VARCHAR Name of the table being loaded.

LOAD_START VARCHAR Linux system time when the load started.

LOAD_DURATION_MS NUMERIC(54,

0)

Duration of the load stream in milliseconds.

IS_EXECUTING BOOLEAN Indicates whether the load is executing, where t
is true and f is false.

ACCEPTED_ROW_COUNT INTEGER Number of rows loaded.

REJECTED_ROW_COUNT INTEGER Number of rows rejected.

READ_BYTES INTEGER Number of bytes read from the input file.

INPUT_FILE_SIZE_BYTES INTEGER Size of the input file in bytes.

Note: When using STDIN as input, the input file

size is zero (0).

PARSE_COMPLETE_PERCENT INTEGER Percent of rows from the input file that have

been loaded.

UNSORTED_ROW_COUNT INTEGER Cumulative number rows not sorted across all
projections.

Note: UNSORTED_ROW_COUNT could be

greater than ACCEPTED_ROW_COUNT because

data is copied and sorted for every projection in
the target table.

-1033-

 HP Vertica System Tables

SORTED_ROW_COUNT INTEGER Cumulative number of rows sorted across all
projections.

SORT_COMPLETE_PERCENT INTEGER Percent of rows from the input file that have

been sorted.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

See also

Checking Load Stream Metrics and Using System Tables In the Administrator's Guide

LOCK_USAGE

Provides aggregate information about lock requests, releases, and attempts, such as wait
time/count and hold time/count. HP Vertica records:

 Lock attempts at the end of the locking process

 Lock releases after locks attempts are released

See also system table LOCKS (page 1037).

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the
requested information on which lock interaction
occurs.

SESSION_ID VARCHAR Identifier for this session. This identifier is

unique within the cluster at any point in time but
can be reused when the session closes.

OBJECT_NAME VARCHAR Name of object being locked; can be a table or
an internal structure (projection, global catalog,

or local catalog).

-1034-

SQL Reference Manual

MODE VARCHAR Intended operations of the transaction:

 S — Share lock needed for select
operations.

 I — Insert lock needed for insert
operations.

 SI — Share+Insert lock needed for
operations that read and query the

table. Distinguished from X because SI
mode disallows delete/update
operations. SI is also the result of lock
promotion (see Table 2).

 X — Exclusive lock is always needed
for delete operations. X lock is also the
result of lock promotion (see Table 2).

 T — Tuple Mover lock used by the

Tuple Mover and also used for COPY
into pre-join projections.

 U — Usage lock needed for moveout
and mergeout operations in the first

phase; they then upgrade their U lock to
a T lock for the second phase. U locks
conflicts with no other locks but O.

 O — Owner lock needed for

DROP_PARTITION, TRUNCATE
TABLE, and ADD COLUMN. O locks
conflict with all locks. O locks never
promote.

 NONE

AVG_HOLD_TIME INTERVAL Average time (measured in intervals) that HP
Vertica holds a lock.

MAX_HOLD_TIME INTERVAL Maximum time (measured in intervals) that HP

Vertica holds a lock.

HOLD_COUNT INTEGER Total number of times lock was taken in the
given mode.

AVG_WAIT_TIME INTERVAL Average time (measured in intervals) that HP
Vertica waits on the lock

MAX_WAIT_TIME INTERVAL Maximum time (measured in intervals) that HP

Vertica waits on a lock

WAIT_COUNT INTEGER Total number of times lock was unavailable at
the time it was first requested.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

-1035-

 HP Vertica System Tables

Notes

The following two tables are adapted from Transaction Processing: Concepts and Techniques
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si
1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_
t=101&pf_rd_p=463383351&pf_rd_i=507846 by Jim Gray (Figure 7.11, p. 408 and Figure 8.6, p.
467).

Table 1: Lock compatibility matrix

This table is for compatibility with other users. The table is symmetric.

 Granted Mode

Requested Mode S I SI X T U O

S Yes No No No Yes Yes No

I No YES No No Yes Yes No

SI No No No No Yes Yes No

X No No No No No Yes No

T Yes Yes Yes No Yes Yes No

U Yes Yes Yes Yes Yes Yes No

O No No No No No No No

The following two examples refer to Table 1 above:

 Example 1: If someone else has an S lock, you cannot get an I lock.

 EXAMPLE 2: If someone has an I lock, you can get an I lock.

Table 2: Lock conversion matrix

This table is used for upgrading locks you already have. For example, If you have an S lock and
you want an I lock, you request an X lock. If you have an S lock and you want an S lock, no lock

requests is required.

 Granted Mode

Requested Mode S I SI X T U O

S S X SI X S S O

I X I SI X I I O

SI SI SI SI X SI SI O

X X X X X X X O

T S I SI X T T O

U S I SI X T U O

http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846

-1036-

SQL Reference Manual

O O O O O O O O

Example
=> SELECT * FROM lock_usage;

-[RECORD 1]-+----------------------------------

node_name | v_myvdb_node0004

session_id | raster-f1.verticaco-13199:0x100

object_name | Global Catalog

mode | S

avg_hold_time | 00:00:00.032718

max_hold_time | 00:00:00.251213

hold_count | 34

avg_wait_time | 00:00:00.000048

max_wait_time | 00:00:00.000119

wait_count | 0

-[RECORD 2]-+----------------------------------

node_name | v_myvdb_node0004

session_id | raster-f1.verticaco-13199:0x102

object_name | Global Catalog

mode | S

avg_hold_time | 00:00:00.038148

max_hold_time | 00:00:00.185088

hold_count | 34

avg_wait_time | 00:00:00.000049

max_wait_time | 00:00:00.000124

wait_count | 0

-[RECORD 3]-+----------------------------------

node_name | v_myvdb_node0004

session_id | raster-f1.verticaco-13199:0x119

object_name | Table:public.dwdate

mode | T

avg_hold_time | 00:00:04.269108

max_hold_time | 00:00:04.269108

hold_count | 1

avg_wait_time | 00:00:00.000019

max_wait_time | 00:00:00.000019

wait_count | 0

-[RECORD 4]-+----------------------------------

node_name | v_myvdb_node0004

session_id | raster-f1.verticaco-13199:0x11d

object_name | Global Catalog

mode | X

avg_hold_time | 00:00:00.027261

max_hold_time | 00:00:00.027261

hold_count | 1

avg_wait_time | 00:00:00.000038

max_wait_time | 00:00:00.000038

wait_count | 0

...

This example shows an INSERT lock in use:

=>\pset expanded

-1037-

 HP Vertica System Tables

Expanded display is on.

=> SELECT * FROM LOCKS;

-[RECORD 1

]-----------+---

node_names | node01,node02,node03,node04

object_name | Table:fact

object_id | 45035996273772278

transaction_description | Txn: a000000000112b 'COPY fact FROM '/data_dg/fact.dat'

 DELIMITER '|' NULL '\\N';'

lock_mode | I

lock_scope | TRANSACTION

request_timestamp | 2011-04-17 14:01:07.662325-04

grant_timestamp | 2011-04-17 14:01:07.662325-04

See Also

DUMP_LOCKTABLE (page 478)

LOCKS (page 1037)

PROJECTION_REFRESHES (page 1056)

SELECT (page 870) FOR UPDATE clause

SESSION_PROFILES (page 1093)

LOCKS

Monitors lock grants and requests for all nodes.

See also LOCK_USAGE (page 1033) for aggregate information about lock requests, releases,
and attempts, such as wait time/count and hold time/count.

Column Name Date Type Description

NODE_NAMES VARCHAR Nodes on which lock interaction occurs.

Note on node rollup: If a transaction has the

same lock in the same mode in the same scope
on multiple nodes, it gets one (1) line in the
table. NODE_NAMES are separated by commas.

OBJECT_NAME VARCHAR Name of object being locked; can be a table or

an internal structure (projection, global catalog,
or local catalog).

OBJECT_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the object being

locked.

TRANSACTION_ID VARCHAR Identifier for the transaction within the session, i f
any; otherwise NULL. Useful for c reating joins to

-1038-

SQL Reference Manual

other system tables.

TRANSACTION_DESCRIPTION VARCHAR Identification of transaction and associated
description, typically the query that caused the
transaction's creation.

LOCK_MODE VARCHAR Intended operation of the transaction:

 S — Share lock needed for select
operations. Select operations in READ
COMMITTED transaction mode do not

require share (S) table locks. See
Transactions in the Concepts Guide.

 I — Insert lock needed for insert
operations.

 SI — Share+Insert lock needed for

operations that read and query the
table. Distinguished from X because SI
mode disallows delete/update

operations. SI is also the result of lock
promotion (see Table 2).

 X — Exclusive lock is always needed
for delete operations. X lock is also the
result of lock promotion (see Table 2).

 T — Tuple Mover lock used by the
Tuple Mover and also used for COPY
into pre-join projections

 U — Usage lock needed for moveout

and mergeout operations in the first
phase; they then upgrade their U lock to
a T lock for the second phase. U locks
conflicts with no other locks but O.

 O — Owner lock needed for

DROP_PARTITION, TRUNCATE
TABLE, and ADD COLUMN. O locks
conflict with all locks. O locks never
promote.

LOCK_SCOPE VARCHAR Expected duration of the lock once it is granted.

Before the lock is granted, the scope is listed as
REQUESTED.

Once a lock has been granted, the following
scopes are possible:

 STATEMENT_LOCALPLAN

 STATEMENT_COMPILE

 STATEMENT_EXECUTE

 TRANSACTION_POSTCOMMIT

 TRANSACTION

All scopes, other than TRANSACTION, are

transient and are used only as part of normal

query processing.

-1039-

 HP Vertica System Tables

REQUEST_TIMESTAMP TIMESTAMP Time when the transaction started waiting on
the lock.

GRANT_TIMESTAMP TIMESTAMP Time the transaction acquired or upgraded the

lock.

Notes:

 Return values are NULL until the grant
occurs.

 Values could be the same as
REQUEST_TIMESTAMP if the grant
occurs immediately.

Notes

 Lock acquisition and wait times are collected and exposed via the START_TIMESTAMP
column.

 Locks acquired on tables that were subsequently dropped by another transaction can result in
the message, Unknown or deleted object, appearing in the output's OBJECT column.

 If a SELECT..FROM LOCKS query times out after five minutes, it is possible the cluster has
failed. Run the Diagnostics Utility.

 A table call with no results indicates that no locks are in use.

The following two tables are adapted from Transaction Processing: Concepts and Techniques
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si
1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_
t=101&pf_rd_p=463383351&pf_rd_i=507846 by Jim Gray (Figure 7.11, p. 408 and Figure 8.6, p.
467).

Table 1: Lock compatibility matrix

This table is for compatibility with other users. The table is symmetric.

 Granted Mode

Requested Mode S I SI X T U O

S Yes No No No Yes Yes No

I No YES No No Yes Yes No

SI No No No No Yes Yes No

X No No No No No Yes No

T Yes Yes Yes No Yes Yes No

U Yes Yes Yes Yes Yes Yes No

O No No No No No No No

The following two examples refer to Table 1 above:

http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846
http://www.amazon.com/gp/product/1558601902/ref=s9sdps_c1_14_at1-rfc_p-frt_p-3237_g1_si1?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-1&pf_rd_r=1QHH6V589JEV0DR3DQ1D&pf_rd_t=101&pf_rd_p=463383351&pf_rd_i=507846

-1040-

SQL Reference Manual

 Example 1: If someone else has an S lock, you cannot get an I lock.

 EXAMPLE 2: If someone has an I lock, you can get an I lock.

Table 2: Lock conversion matrix

This table is used for upgrading locks you already have. For example, If you have an S lock and
you want an I lock, you request an X lock. If you have an S lock and you want an S lock, no lock

requests is required.

 Granted Mode

Requested Mode S I SI X T U O

S S X SI X S S O

I X I SI X I I O

SI SI SI SI X SI SI O

X X X X X X X O

T S I SI X T T O

U S I SI X T U O

O O O O O O O O

Example

This example shows an INSERT lock in use:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM LOCKS;

-[RECORD 1

]-----------+---

node_names | node01,node02,node03,node04

object_name | Table:fact

object_id | 45035996273772278

transaction_description | Txn: a000000000112b 'COPY fact FROM '/data_dg/fact.dat'

 DELIMITER '|' NULL '\\N';'

lock_mode | I

lock_scope | TRANSACTION

request_timestamp | 2011-04-17 14:01:07.662325-04

grant_timestamp | 2011-04-17 14:01:07.662325-04

See Also

Transactions in the Concepts Guide

DUMP_LOCKTABLE (page 478)

LOCK_USAGE (page 1033)

PROJECTION_REFRESHES (page 1056)

-1041-

 HP Vertica System Tables

SELECT (page 870) FOR UPDATE clause

SESSION_PROFILES (page 1093)

LOGIN_FAILURES

Lists failures for each user failed login attempt. This information is useful for determining if a user
is having trouble getting into the database, as well as identifying a possible intrusion attempt.

Column Name Data Type Description

LOGIN_TIMESTAMP TIMESTAMPT
Z

Time when HP Vertica recorded the login.

DATABASE_NAME VARCHAR The name of the database for the login attempt.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

USER_NAME VARCHAR Name of the user whose login failed at the time

HP Vertica recorded the session.

CLIENT_HOSTNAME VARCHAR Host name and port of the TCP socket from
which the client connection was made; NULL if
the session is internal.

CLIENT_PID INTEGER Identifier of the client process that issued this

connection.

Note: The client process could be on a different

machine from the server.

CLIENT_VERSION VARCHAR Unused

AUTHENTICATION_METHOD VARCHAR Determines whether the client application (or
the user who is running the client application) is
permitted to connect to the server using the

database user name provided. HP Vertica
supports the following client authentication
methods:

 Trust

 Reject

 Kerberos 5

 GSS

 LDAP

 Ident

 Password

See Implementing Client Authentication in the
Administrator's Guide for details.

-1042-

SQL Reference Manual

REASON VARCHAR Description of login failure reason:

 "INVALID USER"

 "ACCOUNT LOCKED"

 "REJECT"

 "FAILED"

 "INVALID AUTH METHOD"

 "INVALID DATABASE"

Permissions

Must be a superuser.

Example
=> SELECT * FROM login_failures;

 login_timestamp | database_name | node_name | user_name | client_hostname | client_pid

| client_version | authentication_method | reason

-------------------------------+---------------+-----------+-----------+-----------------+-------

-----+----------------+-----------------------+--------------

 2012-03-25 13:38:56.54813-04 | smith | node01 | u1 | 127.0.0.1 |

32061 | | Password | FAILED

 2012-03-25 13:38:56.543396-04 | smith | node01 | bad_user | 127.0.0.1 |

32059 | | Password | FAILED

 2012-03-25 13:38:56.543225-04 | bad_user | node01 | bad_user | 127.0.0.1 |

32059 | | Reject | INVALID USER

(3 rows)

MEMORY_USAGE
Records system resource history for memory usage. This is useful for comparing memory that HP
Vertica uses versus memory in use by the entire system.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

START_TIME TIMESTAMP Beginning of history interval.

END_TIME TIMESTAMP End of history interval.

AVERAGE_MEMORY_USAGE_

PERCENT

FLOAT Records the average memory usage in percent
of total memory (0-100) during the history
interval.

Permissions

Must be a superuser.

Example
=> SELECT * FROM memory_usage;

-1043-

 HP Vertica System Tables

 node_name | start_time | end_time |

average_memory_usage_percent

-----------+-------------------------------+-------------------------------+---------------------

 initiator | 2012-03-25 15:23:38.001952-04 | 2012-03-25 15:24:00.011432-04 |

50.39

 initiator | 2012-03-25 15:24:00.011432-04 | 2012-03-25 15:25:00.008539-04 |

51.08

 e0 | 2012-03-25 15:23:37.00339-04 | 2012-03-25 15:24:00.006837-04 |

50.3

 e0 | 2012-03-25 15:24:00.006837-04 | 2012-03-25 15:25:00.011629-04 |

51.08

 e1 | 2012-03-25 15:23:37.001344-04 | 2012-03-25 15:24:00.009634-04 |

50.3

 e1 | 2012-03-25 15:24:00.009634-04 | 2012-03-25 15:25:00.005176-04 |

51.08

(6 rows)

MONITORING_EVENTS

Reports significant events that can affect database performance and functionality if you do not
address their root causes.

See Monitoring Events in the Administrator's Guide for details.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the

requested information.

EVENT_CODE INTEGER Numeric identifier that indicates the type of
event. See Event Types in Monitoring Events in
the Administrator's Guide for a list of event type

codes.

EVENT_ID INTEGER Unique numeric ID that identifies the specific
event.

EVENT_SEVERITY VARCHAR Severity of the event from highest to lowest.
These events are based on standard syslog

severity types:

0 – Emergency

1 – Alert

2 – Critical

3 – Error

4 – Warning

5 – Notice

6 – Info

7 – Debug

EVENT_POSTED_TIMESTAMP TIMESTAMPT
Z

When this event was posted.

-1044-

SQL Reference Manual

EVENT_CLEARED_TIMESTAMP TIMESTAMPT
Z

When this event was cleared.

Note: You can also query the

ACTIVE_EVENTS (page 990) system table to
see events that have not been cleared.

EVENT_EXPIRATION TIMESTAMPT

Z

Time at which this event expires. If the same

event is posted again prior to its expiration time,
this field gets updated to a new expiration time.

EVENT_CODE_DESCRIPTION VARCHAR Brief description of the event and details
pertinent to the specific situation.

EVENT_PROBLEM_DESCRIPTION VARCHAR Generic description of the event.

Permissions

Must be a superuser.

Notes

For details about where HP Vertica posts events, see Monitoring Vertica in the Administrator's
Guide

Example
-[RECORD 1]-------------+--

node_name | v_myvdb_node0001

event_code | 0

event_id | 0

event_severity | Warning

event_posted_timestamp | 2012-03-22 11:05:32.002682-04

event_cleared_timestamp |

event_expiration | 2012-03-22 17:07:32.002681-04

event_code_description | Low Disk Space

event_problem_description | Warning: Low disk space detected (80% in use)

-[RECORD 2]-------------+--

node_name | v_myvdb_node0001

event_code | 6

event_id | 6

event_severity | Informational

event_posted_timestamp | 2012-03-22 11:03:49.055705-04

event_cleared_timestamp |

event_expiration | 2080-04-09 13:17:56.055704-05

event_code_description | Node State Change

event_problem_description | Changing node v_myvdb_node0001 startup state to UP

-[RECORD 3]-------------+--

node_name | v_myvdb_node0001

event_code | 6

event_id | 7

event_severity | Informational

event_posted_timestamp | 2012-03-22 11:03:49.03912-04

event_cleared_timestamp | 2012-03-22 11:03:49.05626-04

event_expiration | 2080-04-09 13:17:56.039117-05

event_code_description | Node State Change

event_problem_description | Changing node v_myvdb_node0001 startup state to REA

DY

-[RECORD 4]-------------+--

node_name | v_myvdb_node0001

-1045-

 HP Vertica System Tables

event_code | 6

event_id | 8

event_severity | Informational

event_posted_timestamp | 2012-03-12 10:26:16.731482-04

event_cleared_timestamp |

event_expiration | 2080-03-30 12:40:23.731482-05

event_code_description | Node State Change

event_problem_description | Changing node v_myvdb_node0001 startup state to SHU

TDOWN

-[RECORD 5]-------------+-------------------------------------

See Also

ACTIVE_EVENTS (page 990)

Monitoring Vertica in the Administrator's Guide

NETWORK_INTERFACES

Provides information about network interfaces on all HP Vertica nodes.

Column Name Data Type Description

NODE_ID INTEGER Unique identifier for the node that recorded the
row.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

INTERFACE VARCHAR Network interface name.

IP_ADDRESS VARCHAR IP address for this interface.

SUBNET VARCHAR IP subnet for this interface.

MASK VARCHAR IP network mask for this interface.

BROADCAST_ADDRESS VARCHAR IP broadcast address for this interface.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM network_interfaces;

 node_id | node_name | interface | ip_address | subnet | mask

| broadcast_address

-------------------+------------------+-----------+----------------+--------------+--------------

-+-------------------

 45035996273704972 | v_gry22_node0001 | lo | 127.0.0.1 | 127.0.0.0 | 255.0.0.X |

127.0.0.1

 45035996273704972 | v_gry22_node0001 | eth0 | 10.20.XX.XXX | 10.20.XX.X | 255.255.255.X |

10.20.XX.XXX

 45035996273704972 | v_gry22_node0001 | eth1 | 192.168.XX.XXX | 192.168.XX.0 | 255.255.255.X |

192.168.XX.XXX

-1046-

SQL Reference Manual

 45035996273713380 | v_gry22_node0002 | lo | 127.0.0.1 | 127.0.0.0 | 255.0.0.0 |

127.0.0.1

 45035996273713380 | v_gry22_node0002 | eth1 | 10.20.XX.XXX | 10.20.XX.X | 255.255.255.X |

10.20.XX.XXX

 45035996273713380 | v_gry22_node0002 | eth2 | 192.168.XX.XXX | 192.168.XX.0 | 255.255.255.X |

192.168.XX.XXX

 45035996273713442 | v_gry22_node0003 | lo | 127.0.0.1 | 127.0.0.0 | 255.0.0.X |

127.0.0.1

 45035996273713442 | v_gry22_node0003 | eth1 | 10.20.XX.XXX | 10.20.XX.X | 255.255.255.X |

10.20.XX.XXX

 45035996273713442 | v_gry22_node0003 | eth2 | 192.168.XX.XXX | 192.168.XX.0 | 255.255.255.X |

192.168.XX.XXX

 45035996273713504 | v_gry22_node0004 | lo | 127.0.0.1 | 127.0.0.0 | 255.0.0.X |

127.0.0.1

 45035996273713504 | v_gry22_node0004 | eth1 | 10.20.XX.XXX | 10.20.XX.X | 255.255.255.X |

10.20.XX.XXX

 45035996273713504 | v_gry22_node0004 | eth2 | 192.168.XX.XXX | 192.168.XX.0 | 255.255.255.0 |

192.168.XX.XXX

(12 rows)

NETWORK_USAGE

Provides network bandwidth usage history on the system. This is useful for determining if HP
Vertica is using a large percentage of its available network bandwidth.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

START_TIME TIMESTAMP Beginning of history interval.

END_TIME TIMESTAMP End of history interval.

TX_KBYTES_PER_SEC FLOAT Counter history of outgoing (transmitting) usage

in kilobytes per second.

RX_KBYTES_PER_SEC FLOAT Counter history of incoming (receiving) usage in
kilobytes per second.

Permissions

Must be a superuser.

Example
=> SELECT * FROM network_usage;

 node_name | start_time | end_time | tx_kbytes_per_sec |

rx_kbytes_per_sec

-----------+-+-----------------------------+-------------------------------+-------------------+-

 initiator | 2012-03-25 15:23:38.000834-04 | 2012-03-25 15:24:00.006087-04 | 0.22 |

0.86

 e0 | 2012-03-25 15:23:37.003062-04 | 2012-03-25 15:24:00.003448-04 | 0.21 |

0.83

 e1 | 2012-03-25 15:24:00.002963-04 | 2012-03-25 15:25:00.002497-04 | 0.81 |

0.45

-1047-

 HP Vertica System Tables

 e1 | 2012-03-25 15:23:37.000989-04 | 2012-03-25 15:24:00.002963-04 | 0.21 |

0.83

 e0 | 2012-03-25 15:24:00.003448-04 | 2012-03-25 15:25:00.004897-04 | 0.81 |

0.45

 initiator | 2012-03-25 15:24:00.006087-04 | 2012-03-25 15:25:00.007525-04 | 0.81 |

0.45

(6 rows)

NODE_RESOURCES

Provides a snapshot of the node. This is useful for regularly polling the node with automated tools
or scripts.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

HOST_NAME VARCHAR The hostname associated with a particular

node.

PROCESS_SIZE_BYTES INTEGER The total size of the program.

PROCESS_RESIDENT_SET_SIZE_

BYTES

INTEGER The total number of pages that the process has
in memory.

PROCESS_SHARED_MEMORY_SIZE_

BYTES

INTEGER The amount of shared memory used.

PROCESS_TEXT_MEMORY_SIZE_

BYTES

INTEGER The total number of text pages that the process

has in physical memory. This does not include
any shared libraries.

PROCESS_DATA_MEMORY_SIZE_

BYTES

INTEGER The amount of physical memory, in pages, used
for performing processes. This does not include

the executable code.

PROCESS_LIBRARY_MEMORY_SIZE

_BYTES

INTEGER The total number of library pages that the
process has in physical memory.

PROCESS_DIRTY_MEMORY_SIZE_

BYTES

INTEGER The number of pages that have been modified
since they were last written to disk.

Example

Query the NODE_RESOURCES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM NODE_RESOURCES;

-[RECORD 1]---------------------+-------------------

node_name | v_vmartdb_node01

host_name | myhost-s1

process_size_bytes | 2001829888

process_resident_set_size_bytes | 40964096

process_shared_memory_size_bytes | 16543744

-1048-

SQL Reference Manual

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 1885351936

process_dirty_memory_size_bytes | 0

-[RECORD 2]---------------------+-------------------

node_name | v_vmartdb_node02

host_name | myhost-s2

process_size_bytes | 399822848

process_resident_set_size_bytes | 31453184

process_shared_memory_size_bytes | 10862592

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 299356160

process_dirty_memory_size_bytes | 0

-[RECORD 3]---------------------+-------------------

node_name | v_vmartdb_node03

host_name | myhost-s3

process_size_bytes | 399822848

process_resident_set_size_bytes | 31100928

process_shared_memory_size_bytes | 10735616

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 299356160

process_dirty_memory_size_bytes | 0

-[RECORD 4]---------------------+-------------------

node_name | v_vmartdb_node04

host_name | myhost-s4

process_size_bytes | 466923520

process_resident_set_size_bytes | 31309824

process_shared_memory_size_bytes | 10735616

process_text_memory_size_bytes | 46649344

process_data_memory_size_bytes | 0

process_library_memory_size_bytes | 366456832

process_dirty_memory_size_bytes | 0

NODE_STATES

Monitors node recovery state-change history on the system.

Column Name Data Type Description

EVENT_TIMESTAMP TIMESTAMPT

Z

Time when HP Vertica recorded the event.

NODE_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the node.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

-1049-

 HP Vertica System Tables

NODE_STATE VARCHAR Shows the node's state. Can be one of:

 UP

 READY

 UNSAFE

 SHUTDOWN

 RECOVERING

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example

Query the NODE_STATES table:

=> SELECT * FROM node_states;

 event_timestamp | node_id | node_name | node_state

-------------------------------+-------------------+--------------------+--------------

 2012-12-09 06:36:22.10059-05 | 45035996273704980 | v_onenode_node0001 | UP

 2012-12-09 06:36:22.10044-05 | 45035996273704980 | v_onenode_node0001 | READY

 2012-12-09 06:36:22.081961-05 | 45035996273704980 | v_onenode_node0001 | INITIALIZING

 2012-12-09 05:29:13.637828-05 | 45035996273704980 | v_onenode_node0001 | DOWN

 2012-12-09 05:29:12.739187-05 | 45035996273704980 | v_onenode_node0001 | SHUTDOWN

 2012-12-08 13:50:21.074688-05 | 45035996273704980 | v_onenode_node0001 | UP

 2012-12-08 13:50:21.074544-05 | 45035996273704980 | v_onenode_node0001 | READY

 2012-12-08 13:50:21.073529-05 | 45035996273704980 | v_onenode_node0001 | INITIALIZING

(8 rows)

PARTITION_REORGANIZE_ERRORS

Monitors all background partitioning tasks, and if HP Vertica encounters an error, creates an entry
in this table with the appropriate information. Does not log repartitioning tasks that complete
successfully.

Column Name Data Type Description

SESSION_ID VARCHAR Identifier for this session. This identifier is unique

within the cluster at any point in time but can be
reused when the session closes.

USER_NAME VARCHAR Name of the user who received the error at the
time HP Vertica recorded the session.

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

TABLE_NAME VARCHAR Name of the partitioned table.

-1050-

SQL Reference Manual

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR Projection name for which information is listed.

MESSAGE VARCHAR Textual output of the error message.

HINT VARCHAR Actionable hint about the error.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

PARTITION_STATUS

Shows, for each projection of each partitioned table, the fraction of its data that is actually
partitioned according to the current partition expression. When the partitioning of a table is altered,
the value in partition_reorganize_percent for each of its projections drops to zero and goes back
up to 100 when all the data is repartitioned.

Column Name Data Type Description

PROJECTION_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

TABLE_SCHEMA VARCHAR Name of the schema that contains the
partitioned table.

TABLE_NAME VARCHAR Table name that is partitioned.

TABLE_ID INTEGER Unique numeric ID assigned by the HP Vertica,

which identifies the table.

PROJECTION_SCHEMA VARCHAR Schema containing the projection.

PROJECTION_NAME VARCHAR Projection name for which information is listed.

PARTITION_REORGANIZE_

PERCENT

INTEGER For each projection, drops to zero and goes
back up to 100 when all the data is repartitioned
after the partitioning of a table has been altered.

Ideally all rows will show 100 (%).

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM partition_status;

-1051-

 HP Vertica System Tables

-[RECORD 1]----------------+-----------------------

projection_id | 45035996281788238

table_schema | public

table_name | lineorder

table_id | 45035996281787664

projection_schema | public

projection_name | VLINEORDER

partition_reorganize_percent | 100

-[RECORD 2]----------------+-----------------------

projection_id | 45035996281788312

table_schema | public

table_name | lineorder

table_id | 45035996281787664

projection_schema | public

projection_name | VLINEORDER1

partition_reorganize_percent | 100

-[RECORD 3]----------------+-----------------------

projection_id | 45035996281788752

table_schema | public

table_name | lineorder

table_id | 45035996281787664

projection_schema | public

projection_name | VLINEORDER2

partition_reorganize_percent | 100

-[RECORD 4]----------------+-----------------------

projection_id | 45035996281788822

table_schema | public

table_name | lineorder

table_id | 45035996281787664

projection_schema | public

projection_name | VLINEORDER1_BUD

partition_reorganize_percent | 100

-[RECORD 5]----------------+-----------------------

PARTITIONS

Displays partition metadata, one row per partition key, per ROS container.

Column Name Data Type Description

PARTITION_KEY VARCHAR The partition value(s).

PROJECTION_ID INTEGER Unique numeric ID assigned by the Vertica

catalog, which identifies the projection.

TABLE_SCHEMA VARCHAR The schema name for which information is
listed.

PROJECTION_NAME VARCHAR The projection name for which information is
listed.

-1052-

SQL Reference Manual

ROS_ID VARCHAR A unique numeric ID assigned by the HP
Vertica catalog, which identifies the ROS

container.

ROS_SIZE_BYTES INTEGER The ROS container size in bytes.

ROS_ROW_COUNT INTEGER Number of rows in the ROS container.

NODE_NAME VARCHAR Node where the ROS container resides.

DELETED_ROW_COUNT INTEGER The number of rows in the partition.

LOCATION_LABEL VARCHAR The location label of the default storage
location.

Notes

 A many-to-many relationship exists between partitions and ROS containers. PARTITIONS
displays information in a denormalized fashion.

 To find the number of ROS containers having data of a specific partition, aggregate
PARTITIONS over the partition_key column.

 To find the number of partitions stored in a ROS container, aggregate PARTITIONS over the
ros_id column.

Example

Given a projection named p1, with three ROS containers, the PARTITIONS function returns
three rows:

=> SELECT PARTITION_KEY, PROJECTION_NAME, ROS_ID, ROS_SIZE_BYTES, ROS_ROW_COUNT, NODE_NAME FROM

partitions;

 PARTITION_KEY | PROJECTION_NAME | ROS_ID | ROS_SIZE_BYTES | ROS_ROW_COUNT |

NODE_NAME

---------------+------------------+-------------------+----------------+---------------+---------

 2008 | trade_p_node0001 | 45035996273740461 | 90 | 1 | node0001

 2007 | trade_p_node0001 | 45035996273740477 | 99 | 2 | node0001

 2006 | trade_p_node0001 | 45035996273740493 | 99 | 2 | node0001

(3 rows)

PROCESS_SIGNALS

Returns a history of signals that were received and handled by the HP Vertica process.

Column Name Data Type Description

SIGNAL_TIMESTAMP TIMESTAMPT
Z

Time when HP Vertica recorded the signal.

NODE_NAME VARCHAR Name of the node that is reporting the requested
information.

-1053-

 HP Vertica System Tables

SIGNAL_NUMBER INTEGER Signal number.

SIGNAL_CODE INTEGER Signal code.

SIGNAL_PID INTEGER Linux process identifier of the signal.

SIGNAL_UID INTEGER Process ID of sending process.

SIGNAL_ADDRESS INTEGER Address at which fault occurred.

Permissions

Must be a superuser

Example
=> SELECT * FROM process_signals;

 signal_timestamp | node_name | signal_number | signal_code | signal_pid | signal_uid

| signal_address

-------------------------------+-----------+---------------+-------------+------------+----------

--+----------------

 2012-02-14 13:15:23.608359-04 | initiator | 15 | 0 | 31721 | 500

| 2147483679721

(1 row)

PROJECTION_RECOVERIES

Retains history about projection recoveries. Since HP Vertica adds an entry per recovery plan, a
projection/node pair could appear multiple times in the output.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is recovering or has
recovered the corresponding projection.

PROJECTION_ID INTEGER Unique numeric ID assigned by the HP Vertica

catalog, which identifies the projection.

PROJECTION_NAME VARCHAR Name of the projection that is being or has been
recovered on the corresponding node.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, i f
any. TRANSACTION_ID initializes as

NO_TRANSACTION with a value of 0. HP
Vertica will ignore the recovery query and keep
(0) i f there's no action to take (no data in the

table, etc). When no recovery transaction starts,
ignored value appears in this table's STATUS

column.

-1054-

SQL Reference Manual

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID uniquely
identifies a statement within a session.

METHOD VARCHAR Recovery method that HP Vertica chooses.

Possible values are:

 incremental

 incremental-replay-delete

 split

 recovery-by-container

STATUS VARCHAR Current projection-recovery status on the
corresponding node. STATUS can be

"queued," which indicates a brief period
between the time the query is prepared and
when it runs. Possible values are:

 queued

 running

 finished

 ignored

 error-retry

 error-fatal

PROGRESS INTEGER An estimate (value in the range [0,100]) of

percent complete for the recovery task
described by this information.

Note: The actual amount of time it takes to

complete a recovery task depends on a number

of factors, including concurrent workloads and
characteristics of the data; therefore, accuracy
of this estimate can vary.

The PROGRESS column value is NULL after

the task completes.

-1055-

 HP Vertica System Tables

DETAIL VARCHAR More detailed information about PROGRESS.
The values returned for this column depend on

the type of recovery plan:

 General recovery plans – value
displays the estimated progress, as a

percent, of the three primary parts of
the plan: Scan, Sort, and Write.

 Recovery-by-container plans – value
begins with CopyStorage: and is

followed by the number of bytes copied
over the total number of bytes to copy.

 Replay delete plans – value begins with

Delete: and is followed by the

number of deletes replayed over an
estimate of the total number of deletes
to replay.

The DETAIL column value becomes NULL after

the recovery plan completes.

START_TIME TIMESTAMPT
Z

Time the recovery task described by this
information started.

END_TIME TIMESTAMPT
Z

Time the recovery task described by this
information ended.

RUNTIME_PRIORITY VARCHAR Determines the amount of runtime resources

(CPU, I/O bandwidth) the Resource Manager
should dedicate to running queries in the
resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Notes

If you are interested in monitoring recovery progress when recovery seems to be taking a while,
note that you cannot query system tables table during cluster recovery; the cluster must be UP to
accept connections.

Example
=> SELECT * FROM recovery_status;

 node_name | recover_epoch | recovery_phase | splits_completed | splits_total |

historical_completed | historical_total | current_completed | current_total | is_running

-----------+---------------+-------------------+------------------+--------------+---------------

-------+------------------+-------------------+---------------+------------

 node01 | | | 0 | 0 | 0

| 0 | 0 | 0 | f

-1056-

SQL Reference Manual

 node02 | 0 | historical pass 1 | 0 | 0 | 0

| 0 | 0 | 0 | t

 node03 | 1 | current | 0 | 0 | 0

| 0 | 0 | 0 | f

=> SELECT * FROM projection_recoveries;

 node_name | projection_id | projection_name | transaction_id | statement_id | method

| status | progress | detail | start_time | ...

-----------+-------------------+-----------------+-------------------+--------------+------------

---------------+---------+----------+-------------------------------+----------------------------

---+----------

 node02 | 45035996273736792 | public.t_p1 | 49539595901075489 | 1 | incremental

| running | 69 | Scan:100% Sort:100% Write:87% | 2011-10-04 14:41:51.354757-04 | ...

 node02 | 45035996273736768 | public.t_p0 | 49539595901075490 | 1 |

incremental-replay-delete | running | 71 | Delete:0/6563442 | 2011-10-04

14:41:51.353797-04 | ...

 node02 | 45035996273736852 | public.tt_p0 | 49539595901075598 | 1 |

recovery-by-container | running | 76 | CopyStorage:27427070/35938922 | 2011-10-04

14:44:50.525465-04 | ...

See Also

RECOVERY_STATUS (page 1079)

PROJECTION_REFRESHES

Provides information about refresh operations for projections.

Column Name Data Type Description

NODE_NAME VARCHAR Node where the refresh was initiated.

PROJECTION_SCHEMA VARCHAR Name of the schema associated with the
projection.

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP

Vertica catalog, which identifies the projection.

PROJECTION_NAME VARCHAR Name of the projection that is targeted for
refresh.

ANCHOR_TABLE_NAME VARCHAR Name of the projection's associated anchor
table.

REFRESH_STATUS VARCHAR Status of the projection:

 Queued — Indicates that a projection
is queued for refresh.

 Refreshing — Indicates that a refresh
for a projection is in process.

 Refreshed — Indicates that a refresh

for a projection has successfully
completed.

 Failed — Indicates that a refresh for a

-1057-

 HP Vertica System Tables

projection did not successfully
complete.

REFRESH_PHASE VARCHAR Indicates how far the refresh has progressed:

 Historical – Indicates that the refresh

has reached the first phase and is
refreshing data from historical data.
This refresh phase requires the most
amount of time.

 Current – Indicates that the refresh
has reached the final phase and is
attempting to refresh data from the

current epoch. To complete this
phase, refresh must be able to obtain
a lock on the table. If the table is

locked by some other transaction,
refresh is put on hold until that
transaction completes.

The LOCKS (page 1037) system table is

useful for determining if a refresh has been
blocked on a table lock. To determine if a

refresh has been blocked, locate the term
"refresh" in the transaction description. A
refresh has been blocked when the scope for

the refresh is REQUESTED and one or more
other transactions have acquired a lock on the
table.

Note: The REFRESH_PHASE field is NULL

until the projection starts to refresh and is

NULL after the refresh completes.

REFRESH_METHOD VARCHAR Method used to refresh the projection:

 Buddy – Uses the contents of a buddy
to refresh the projection. This method

maintains historical data. This enables
the projection to be used for historical
queries.

 Scratch – Refreshes the projection

without using a buddy. This method
does not generate historical data. This
means that the projection cannot

participate in historical queries from
any point before the projection was
refreshed.

 Rebalance – If the projection is

segmented it is refreshed from
scratch; if unsegmented it is refreshed
from buddy.

REFRESH_FAILURE_COUNT INTEGER Number of times a refresh failed for the
projection. FAILURE_COUNT does not

indicate whether the projection was eventually

-1058-

SQL Reference Manual

refreshed. See REFRESH_STATUS to
determine how the refresh operation is

progressing.

SESSION_ID VARCHAR Unique numeric ID assigned by the HP Vertica

catalog, which identifies the refresh session.

REFRESH_START TIMESTAMPT
Z

Time the projection refresh started (provided
as a timestamp).

REFRESH_DURATION_SEC INTERVAL

SECOND (0)

Length of time that the projection refresh ran in
seconds.

IS_EXECUTING BOOLEAN Distinguishes between active (t) and

completed (f) refresh operations.

RUNTIME_PRIORITY VARCHAR Determines the amount of run-time resources
(CPU, I/O bandwidth) the Resource Manager
should dedicate to running queries in the

resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Notes

 Information about a refresh operation—whether successful or unsuccessful—is maintained in
the PROJECTION_REFRESHES system table until either the
CLEAR_PROJECTION_REFRESHES() (page 455) function is executed or the storage quota
for the table is exceeded.

 Tables and projections can be dropped while a query runs against them. The query continues
to run, even after the drop occurs. Only when the query finishes does it notice the drop, which
could cause a rollback. The same is true for refresh queries. PROJECTION_REFRESHES,
therefore, could report that a projection failed to be refreshed before the refresh query
completes. In this case, the REFRESH_DURATION_SEC column continues to increase until
the refresh query completes.

Example

The following command purges projection refresh history from the PROJECTION_REFRESHES
table:

=> SELECT clear_projection_refreshes();

 clear_projection_refreshes

 CLEAR

(1 row)

Only the rows where the IS_EXECUTING column equals false are cleared.

-1059-

 HP Vertica System Tables

See Also

CLEAR_PROJECTION_REFRESHES (page 455)

Clearing PROJECTION_REFRESHES History in the Administrator's Guide

PROJECTION_STORAGE

Monitors the amount of disk storage used by each projection on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

PROJECTION_ID VARCHAR A unique numeric ID assigned by the HP Vertica

catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The projection name for which information is
listed.

PROJECTION_SCHEMA VARCHAR The name of the schema associated with the
projection.

PROJECTION_COLUMN_COUNT INTEGER The number of columns in the projection.

ROW_COUNT INTEGER The number of rows in the table's projections,

including any rows marked for deletion.

USED_BYTES INTEGER The number of bytes of disk storage used by the
projection.

WOS_ROW_COUNT INTEGER The number of WOS rows in the projection.

WOS_USED_BYTES INTEGER The number of WOS bytes in the projection.

ROS_ROW_COUNT INTEGER The number of ROS rows in the projection.

ROS_USED_BYTES INTEGER The number of ROS bytes in the projection.

ROS_COUNT INTEGER The number of ROS containers in the projection.

ANCHOR_TABLE_NAME VARCHAR The associated table name for which information
is listed.

ANCHOR_TABLE_SCHEMA VARCHAR The associated table schema for which

information is listed.

Notes

Projections that have no data never have full statistics. Querying this system table lets you see if
your projection contains data.

Example

Query the system table:

=> SELECT * FROM projection_storage;

-1060-

SQL Reference Manual

-[RECORD 1]-----------+-------------------

node_name | v_onenode_node0001

projection_id | 45035996273718838

projection_name | trades_p

projection_schema | public

projection_column_count | 4

row_count | 1

used_bytes | 147

wos_row_count | 0

wos_used_bytes | 0

ros_row_count | 1

ros_used_bytes | 147

ros_count | 1

anchor_table_name | trades

anchor_table_schema | public

anchor_table_id | 45035996273718836

=> SELECT projection_name, row_count, ros_used_bytes, used_bytes

 FROM PROJECTION_STORAGE WHERE projection_schema = 'store' ORDER BY used_bytes;

 projection_name | row_count | ros_used_bytes |

used_bytes

--+-----------+----------------+-------

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 53 | 2791 |

2791

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 53 | 2791 |

2791

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 56 | 2936 |

2936

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 56 | 2936 |

2936

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 68 | 3360 |

3360

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 68 | 3360 |

3360

 store_dimension_DBD_29_seg_vmartdb_design_vmartdb_design | 73 | 3579 |

3579

 store_dimension_DBD_4_seg_vmartdb_design_vmartdb_design | 73 | 3579 |

3579

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 53974 | 1047782 |

1047782

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 53974 | 1047782 |

1047782

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 66246 | 1285786 |

1285786

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 66246 | 1285786 |

1285786

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 71909 | 1395258 |

1395258

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 71909 | 1395258 |

1395258

 store_orders_fact_DBD_6_seg_vmartdb_design_vmartdb_design | 107871 | 2090941 |

2090941

 store_orders_fact_DBD_31_seg_vmartdb_design_vmartdb_design | 107871 | 2090941 |

2090941

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1235825 | 24285740 |

24285740

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1235825 | 24285740 |

24285740

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1245865 | 24480819 |

24480819

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1245865 | 24480819 |

24480819

-1061-

 HP Vertica System Tables

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1249547 | 24551817 |

24551817

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1249547 | 24551817 |

24551817

 store_sales_fact_DBD_30_seg_vmartdb_design_vmartdb_design | 1268763 | 24930549 |

24930549

 store_sales_fact_DBD_5_seg_vmartdb_design_vmartdb_design | 1268763 | 24930549 |

24930549

(24 rows)

The following command returns the per-node storage used by a segmented table:

SELECT anchor_table_name, node_name,

 SUM(ros_used_bytes)/1024/1024 AS MB,

 SUM(ros_row_count) AS Rows

FROM projection_storage GROUP BY 1,2 ORDER BY 1,2;

 anchor_table_name | node_name | MB | Rows

-----------------------+--------------------+----+---------

 call_center_dimension | v_vmartdb_node0001 | 0 | 98

 call_center_dimension | v_vmartdb_node0002 | 0 | 101

 call_center_dimension | v_vmartdb_node0003 | 0 | 102

 call_center_dimension | v_vmartdb_node0004 | 0 | 99

 customer_dimension | v_vmartdb_node0001 | 0 | 24030

 customer_dimension | v_vmartdb_node0002 | 0 | 1648

 customer_dimension | v_vmartdb_node0003 | 0 | 25970

 customer_dimension | v_vmartdb_node0004 | 1 | 48352

 date_dimension | v_vmartdb_node0001 | 0 | 910

 date_dimension | v_vmartdb_node0002 | 0 | 913

 date_dimension | v_vmartdb_node0003 | 0 | 916

 date_dimension | v_vmartdb_node0004 | 0 | 913

 employee_dimension | v_vmartdb_node0001 | 0 | 4998

 employee_dimension | v_vmartdb_node0002 | 0 | 4999

 employee_dimension | v_vmartdb_node0003 | 0 | 5002

 employee_dimension | v_vmartdb_node0004 | 0 | 5001

 inventory_fact | v_vmartdb_node0001 | 0 | 150414

 inventory_fact | v_vmartdb_node0002 | 0 | 149736

 inventory_fact | v_vmartdb_node0003 | 0 | 149586

 inventory_fact | v_vmartdb_node0004 | 0 | 150264

 online_page_dimension | v_vmartdb_node0001 | 0 | 499

 online_page_dimension | v_vmartdb_node0002 | 0 | 500

 online_page_dimension | v_vmartdb_node0003 | 0 | 501

 online_page_dimension | v_vmartdb_node0004 | 0 | 500

 online_sales_fact | v_vmartdb_node0001 | 59 | 4941898

 online_sales_fact | v_vmartdb_node0002 | 59 | 5024898

 online_sales_fact | v_vmartdb_node0003 | 59 | 5058102

 online_sales_fact | v_vmartdb_node0004 | 59 | 4975102

 product_dimension | v_vmartdb_node0001 | 1 | 103185

 product_dimension | v_vmartdb_node0002 | 1 | 100428

 product_dimension | v_vmartdb_node0003 | 1 | 76815

 product_dimension | v_vmartdb_node0004 | 1 | 79572

 promotion_dimension | v_vmartdb_node0001 | 0 | 499

 promotion_dimension | v_vmartdb_node0002 | 0 | 500

 promotion_dimension | v_vmartdb_node0003 | 0 | 501

 promotion_dimension | v_vmartdb_node0004 | 0 | 500

 rostab | v_vmartdb_node0001 | 0 | 0

 rostab | v_vmartdb_node0002 | 0 | 0

 rostab | v_vmartdb_node0003 | 0 | 0

 rostab | v_vmartdb_node0004 | 0 | 0

 shipping_dimension | v_vmartdb_node0001 | 0 | 49

 shipping_dimension | v_vmartdb_node0002 | 0 | 50

 shipping_dimension | v_vmartdb_node0003 | 0 | 51

 shipping_dimension | v_vmartdb_node0004 | 0 | 50

 store_dimension | v_vmartdb_node0001 | 0 | 123

 store_dimension | v_vmartdb_node0002 | 0 | 125

 store_dimension | v_vmartdb_node0003 | 0 | 127

 store_dimension | v_vmartdb_node0004 | 0 | 125

 store_orders_fact | v_vmartdb_node0001 | 2 | 147768

-1062-

SQL Reference Manual

 store_orders_fact | v_vmartdb_node0002 | 2 | 149759

 store_orders_fact | v_vmartdb_node0003 | 2 | 152232

 store_orders_fact | v_vmartdb_node0004 | 2 | 150241

 store_sales_fact | v_vmartdb_node0001 | 46 | 2501318

 store_sales_fact | v_vmartdb_node0002 | 47 | 2512691

 store_sales_fact | v_vmartdb_node0003 | 46 | 2498682

 store_sales_fact | v_vmartdb_node0004 | 46 | 2487309

 vendor_dimension | v_vmartdb_node0001 | 0 | 48

 vendor_dimension | v_vmartdb_node0002 | 0 | 48

 vendor_dimension | v_vmartdb_node0003 | 0 | 52

 vendor_dimension | v_vmartdb_node0004 | 0 | 52

 warehouse_dimension | v_vmartdb_node0001 | 0 | 49

 warehouse_dimension | v_vmartdb_node0002 | 0 | 50

 warehouse_dimension | v_vmartdb_node0003 | 0 | 51

 warehouse_dimension | v_vmartdb_node0004 | 0 | 50

(64 rows)

See Also

PROJECTIONS (page 961)

ANALYZE_STATISTICS (page 440)

PROJECTION_USAGE

Records information about projections HP Vertica uses in each processed query.

Column Name Data Type Description

QUERY_START_TIMESTAMP TIMESTAMPT

Z

Value of query at beginning of history interval.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

USER_NAME VARCHAR Name of the user at the time HP Vertica
recorded the session.

SESSION_ID VARCHAR Identifier for this session. This identifier is

unique within the cluster at any point in time but
can be reused when the session closes.

REQUEST_ID INTEGER Unique identifier of the query request in the user
session.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, i f

any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID, STATEMENT_ID, and
REQUEST_ID uniquely identifies a statement
within a session.

IO_TYPE VARCHAR Input/output.

-1063-

 HP Vertica System Tables

PROJECTION_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR Projection name for which information is listed.

ANCHOR_TABLE_ID INTEGER Unique numeric ID assigned by the HP Vertica,

which identifies the anchor table.

ANCHOR_TABLE_SCHEMA VARCHAR Name of the schema that contains the anchor
table.

ANCHOR_TABLE_NAME VARCHAR Name of the projection's associated anchor
table.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Examples
select * from projection_usage;

 query_start_timestamp | node_name | user_name | session_id | request_id |

transaction_id | io_type | projection_id | projection_name | anchor_table_id |

anchor_table_name

-------------------------------+-----------+-----------+------------------+------------+---------

----------+---------+-------------------+-----------------+-------------------+------------------

-

 2011-09-16 13:38:47.00034-04 | node01 | kelly | keprl-15875:0x76 | 16 |

45035996273705736 | 1 | 45035996273737044 | t_super | 45035996273737042 | t

 2011-09-16 13:38:52.920688-04 | node01 | kelly | keprl-15875:0x76 | 18 |

45035996273705739 | 2 | 45035996273737044 | t_super | 45035996273737042 | t

 2011-09-16 13:38:52.987128-04 | node01 | kelly | keprl-15875:0x76 | 20 |

45035996273705743 | 1 | 45035996273737044 | t_super | 45035996273737042 | t

(3 rows)

QUERY_EVENTS

Returns information about query planning, optimization, and execution events.

Column Name Data Type Description

EVENT_TIMESTAMP TIMESTAMPT
Z

Time when HP Vertica recorded the event.

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

USER_ID INTEGER Identifier of the user for the query event.

USER_NAME VARCHAR Name of the user for which HP Vertica lists

query information at the time it recorded the
session.

-1064-

SQL Reference Manual

SESSION_ID VARCHAR Identifier for this session. This identifier is
unique within the cluster at any point in time but

can be reused when the session closes.

REQUEST_ID INTEGER Unique identifier of the query request in the user
session.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, i f
any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running

statement. NULL indicates that no statement is
currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID, and

REQUEST_ID uniquely identifies a statement
within a session.

EVENT_CATEGORY VARCHAR Category of event: OPTIMIZATION or
EXECUTION.

EVENT_TYPE VARCHAR Type of event. Examples include but are not

limited to:

 PREDICATE OUTSIDE HISTOGRAM

 NO HISTOGRAM

 MEMORY LIMIT HIT

 GROUP_BY_SPILLED

 JOIN_SPILLED

 PARTITIONS_ELIMINATED

 MERGE_CONVERTED_TO_UNION

EVENT_DESCRIPTION VARCHAR Generic description of the event.

OPERATOR_NAME VARCHAR Name of the Execution Engine component that
generated the event, if applicable; for example,
NetworkSend. Values from the

OPERATOR_NAME and PATH_ID columns let

you tie a query event back to a particular

operator in the EXPLAIN plan. If the event did
not come from a specific operator, the
OPERATOR_NAME column is NULL.

PATH_ID INTEGER Unique identifier that HP Vertica assigns to a

query operation or path in a query plan. If the
event did not come from a specific operator, the
PATH_ID column is NULL.

See EXECUTION_ENGINE_PROFILES (page
1021) for more information.

OBJECT_ID INTEGER Object identifier (such as projection or table) to
which the event refers.

EVENT_DETAILS VARCHAR Free-form text describing the specific event.

SUGGESTED_ACTION VARCHAR Suggested user action, if any is available.

-1065-

 HP Vertica System Tables

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Examples
=> \x

Expanded display is on.

=> SELECT * FROM query_events;

-[RECORD 1]-----+---

event_timestamp | 2012-12-09 23:59:00.174464-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-31427:0x82fb

request_id | 1

transaction_id | 45035996273711993

statement_id | 1

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE

.

suggested_action |

-[RECORD 2]-----+---

event_timestamp | 2012-12-09 06:37:01.518944-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-31427:0x19

request_id | 2

transaction_id | 45035996273708310

statement_id | 2

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 1

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE

.

suggested_action |

-[RECORD 3]-----+---

event_timestamp | 2012-12-08 23:59:00.08586-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x4c7c

request_id | 1

transaction_id | 45035996273707118

statement_id | 1

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

-1066-

SQL Reference Manual

suggested_action |

-[RECORD 4]-----+--

event_timestamp | 2012-12-08 13:55:20.047935-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0xb0

request_id | 0

transaction_id | 45035996273705015

statement_id | 1

event_category | EXECUTION

event_type | SMALL_MERGE_REPLACED

event_description | Small StorageMerge replaced with StorageUnion for efficiency

operator_name | StorageMerge

path_id |

object_id | 45035996273718838

event_details | Projection: public.trades_p

suggested_action |

-[RECORD 5]-----+--

event_timestamp | 2012-12-08 13:54:27.394169-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 10

transaction_id | 45035996273705005

statement_id | 1

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

suggested_action |

-[RECORD 6]-----+--

event_timestamp | 2012-12-08 13:54:27.39424-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 10

transaction_id | 45035996273705005

statement_id | 1

event_category | EXECUTION

event_type | SMALL_MERGE_REPLACED

event_description | Small StorageMerge replaced with StorageUnion for efficiency

operator_name | StorageMerge

path_id | 2

object_id | 45035996273718838

event_details | Projection: public.trades_p

suggested_action |

-[RECORD 7]-----+--

event_timestamp | 2012-12-08 13:54:27.403897-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 10

transaction_id | 45035996273705005

statement_id | 2

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

-1067-

 HP Vertica System Tables

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

suggested_action |

-[RECORD 8]-----+--

event_timestamp | 2012-12-08 13:54:27.415003-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 10

transaction_id | 45035996273705005

statement_id | 3

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

suggested_action |

-[RECORD 9]-----+--

event_timestamp | 2012-12-08 13:53:23.425399-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 8

transaction_id | 45035996273704996

statement_id | 1

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

suggested_action |

-[RECORD 10]----+--

event_timestamp | 2012-12-08 13:52:04.122981-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 6

transaction_id | 45035996273704983

statement_id | 1

event_category | EXECUTION

event_type | RLE_OVERRIDDEN

event_description | Compressed execution will not be used on some columns,

 because the average run counts are not large enough.

operator_name | Scan

path_id | 2

object_id | 45035996273718840

event_details | Column public.trades_p.stock will not be processed using RLE.

suggested_action |

-[RECORD 11]----+--

event_timestamp | 2012-12-08 13:52:04.123235-05

node_name | v_onenode_node0001

user_id | 45035996273704962

user_name | dbadmin

session_id | doca01.verticacorp.-19852:0x14

request_id | 6

transaction_id | 45035996273704983

statement_id | 1

event_category | EXECUTION

event_type | SMALL_MERGE_REPLACED

-1068-

SQL Reference Manual

event_description | Small StorageMerge replaced with StorageUnion for efficiency

operator_name | StorageMerge

path_id | 2

object_id | 45035996273718838

event_details | Projection: public.trades_p

suggested_action |

See also

EXECUTION_ENGINE_PROFILES (page 1021)

QUERY_PLAN_PROFILES (page 1069)

QUERY_METRICS
Monitors the sessions and queries running on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

ACTIVE_USER_SESSION_COUNT INTEGER The number of active user sessions

(connections).

ACTIVE_SYSTEM_SESSION_COUNT INTEGER The number of active system sessions.

TOTAL_USER_SESSION_COUNT INTEGER The total number of user sessions.

TOTAL_SYSTEM_SESSION_COUNT INTEGER The total number of system sessions.

TOTAL_ACTIVE_SESSION_COUNT INTEGER The total number of active user and system
sessions.

TOTAL_SESSION_COUNT INTEGER The total number of user and system sessions.

RUNNING_QUERY_COUNT INTEGER The number of queries currently running.

EXECUTED_QUERY_COUNT INTEGER The total number of queries that ran.

Notes

Totals get reset each time you restart the database.

Example
=>\pset expanded

Expanded display is on.

=> SELECT * FROM QUERY_METRICS;

-[RECORD 1]---------------+-------------------

node_name | v_vmartdb_node01

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6248

total_active_session_count | 3

-1069-

 HP Vertica System Tables

total_session_count | 6250

running_query_count | 1

executed_query_count | 42

-[RECORD 2]---------------+-------------------

node_name | v_vmartdb_node02

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6487

total_active_session_count | 3

total_session_count | 6489

running_query_count | 0

executed_query_count | 0

-[RECORD 3]---------------+-------------------

node_name | v_vmartdb_node03

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6489

total_active_session_count | 3

total_session_count | 6491

running_query_count | 0

executed_query_count | 0

-[RECORD 4]---------------+-------------------

node_name | v_vmartdb_node04

active_user_session_count | 1

active_system_session_count | 2

total_user_session_count | 2

total_system_session_count | 6489

total_active_session_count | 3

total_session_count | 6491

running_query_count | 0

executed_query_count | 0

QUERY_PLAN_PROFILES

Provides detailed execution status for queries that are currently running in the system. Output
from the table shows the real-time flow of data and the time and resources consumed for each
path in each query plan.

Column Name Data Type Description

TRANSACTION_ID INTEGER An identifier for the transaction within the
session if any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID and STATEMENT_ID
uniquely identifies a statement within a session;

-1070-

SQL Reference Manual

these columns are useful for creating joins with
other system tables.

PATH_ID INTEGER Unique identifier that HP Vertica assigns to a
query operation or path in a query plan. Textual

representation for this path is output in the
PATH_LINE column.

PATH_LINE_INDEX INTEGER Each plan path in QUERY_PLAN_PROFILES
could be represented with multiple rows.

PATH_LINE_INDEX returns the relative line
order. You should include the
PATH_LINE_INDEX column in the

QUERY_PLAN_PROFILES ... ORDER BY
clause so rows in the result set appear as they
do in EXPLAIN plan output.

PATH_IS_EXECUTING BOOLEAN Status of a path in the query plan. True (t) if the

path has started running, otherwise false.

PATH_IS_COMPLETE BOOLEAN Status of a path in the query plan. True (t) if the
path has finished running, otherwise false.

IS_EXECUTING BOOLEAN Status of a running query. True if the query is
currently active (t), otherwise false (f).

RUNNING_TIME INTERVAL The amount of elapsed time the query path took

to execute.

MEMORY_ALLOCATED_BYTES INTEGER The amount of memory the path used, in bytes.

READ_FROM_DISK_BYTES INTEGER The number of bytes the path read from disk (or
the disk cache).

RECEIVED_BYTES INTEGER The number of bytes received over the network.

SENT_BYTES INTEGER Size of data sent over the network by the path.

PATH_LINE VARCHAR The EXPLAIN plan text string for the path,

associated with the PATH ID and
PATH_LINE_INDEX columns.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Best practice

Table results can be very wide. For best results when you query the QUERY_PLAN_PROFILES
table, sort on these columns:

 TRANSACTION_ID

 STATEMENT_ID

 PATH_ID

 PATH_LINE_INDEX

-1071-

 HP Vertica System Tables

For example:

=> SELECT ... FROM query_plan_profiles

 WHERE ...

 ORDER BY transaction_id, statement_id, path_id, path_line_index;

Example

For examples and additional information, see Profiling query plan profiles in the Administrator's
Guide

See also

EXECUTION_ENGINE_PROFILES (page 1021)

EXPLAIN (page 828)

PROFILE (page 852)

QUERY_EVENTS (page 1063)

Understanding query plans and Profiling query plan profiles in the Administrator's Guide

QUERY_PROFILES

Provides information about queries that have run.

Column Name Data Type Description

SESSION_ID VARCHAR The identification of the session for which
profiling information is captured. This identifier
is unique within the cluster at any point in time

but can be reused when the session closes.

TRANSACTION_ID INTEGER An identifier for the transaction within the
session if any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID uniquely
identifies a statement within a session.

IDENTIFIER VARCHAR A string to identify the query in system tables.

Note: You can query the IDENTIFIER column

to quickly identify queries you have labeled for

profiling and debugging. See How to label
queries for profiling in the Administrator's Guide
for details.

NODE_NAME VARCHAR The node name for which information is listed.

QUERY VARCHAR The query string used for the query.

-1072-

SQL Reference Manual

QUERY_SEARCH_PATH VARCHAR A list of schemas in which to look for tables.

SCHEMA_NAME VARCHAR The schema name in which the query is being
profiled.

TABLE_NAME VARCHAR The table name in the query being profiled.

PROJECTIONS_USED VARCHAR The projections used in the query.

QUERY_DURATION_US NUMERIC(18

,0)

The duration of the query in microseconds.

QUERY_START_EPOCH INTEGER The epoch number at the start of the given
query.

QUERY_START VARCHAR The Linux system time of query execution in a
format that can be used as a DATE/TIME

expression.

QUERY_TYPE VARCHAR Is one of INSERT, SELECT, UPDATE, DELETE,

UTILITY, or UNKNOWN.

ERROR_CODE INTEGER The return error code for the query.

USER_NAME VARCHAR The name of the user who ran the query.

PROCESSED_ROW_COUNT INTEGER The number of rows returned by the query.

RESERVED_EXTRA_MEMORY INTEGER The amount of extra memory, in bytes, reserved

for the query. Extra memory is the amount of
memory reserved for the plan but not assigned
to a particular operator. This is the memory from

which unbounded operators pull first. If
operators acquire all of the extra memory, then
the plan must go back to the Resource Manager

for more memory.

See Notes section below this table.

IS_EXECUTING BOOLEAN Displays information about actively running
queries, regardless of whether profiling is
enabled.

Notes

 The total memory reserved by the query is available in
RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB (page 1081). The difference between
RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB and QUERY_PROFILES.EXTRA_MEMORY

is the "essential memory."

 RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB is the total memory acquired.

 QUERY_PROFILES.RESERVED_EXTRA_MEMORY is the unused portion of the acquired
memory.

 The difference gives you the memory in use.

 If the query has finished executing, query the RESOURCE_ACQUISITIONS (page 1081)
table.

-1073-

 HP Vertica System Tables

Example

Query the QUERY_PROFILES table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM QUERY_PROFILES;

-[RECORD 1]-------+---

...

-[RECORD 18]------+---

node_name | v_vmartdb_node0001

session_id | raster-s1-17956:0x1d

transaction_id | 45035996273728061

statement_id | 6

identifier |

query | SELECT * FROM event_configurations;

query_search_path | "$user", public, v_catalog, v_monitor, v_internal

schema_name |

table_name |

projections_used | v_monitor.event_configurations_p

query_duration_us | 9647

query_start_epoch | 429

query_start | 2010-10-07 12:46:24.370044-04

query_type | SELECT

error_code | 0

user_name | release

processed_row_count | 16

reserved_extra_memory | 0

is_executing | f

-[RECORD ...]------+---

...

See Also

QUERY_REQUESTS (page 1073)

RESOURCE_ACQUISITIONS (page 1081)

The following topics in the Administrator's Guide:

 Profiling Database Performance

 Collecting Query Information

 Managing Workloads

 How to label queries for profiling

QUERY_REQUESTS

Returns information about user-issued query requests.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested
information.

-1074-

SQL Reference Manual

USER_NAME VARCHAR Name of the user who issued the query at the
time HP Vertica recorded the session.

SESSION_ID VARCHAR Identifier for this session. This identifier is unique

within the cluster at any point in time but can be
reused when the session closes.

REQUEST_ID INTEGER Unique identifier of the query request in the user
session.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, if

any; otherwise NULL.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID, STATEMENT_ID, and
REQUEST_ID uniquely identifies a statement
within a session.

REQUEST_TYPE VARCHAR Type of the query request. Examples include, but

are not limited to:

 QUERY

 DDL

 LOAD

 UTILITY

 TRANSACTION

 PREPARE

 EXECUTE

 SET

 SHOW

REQUEST VARCHAR Query statement.

REQUEST_LABEL VARCHAR Label of the query, if available/

SEARCH_PATH VARCHAR Contents of the search path.

MEMORY_ACQUIRED_MB FLOAT Memory acquired by this query request in
megabytes.

SUCCESS BOOLEAN Value returned if the query successfully
executed.

ERROR_COUNT INTEGER Number of errors encountered in this query

request (logged in ERROR_MESSAGES (page
1018) table).

START_TIMESTAMP TIMESTAMPT
Z

Beginning of history interval.

END_TIMESTAMP TIMESTAMPT

Z

End of history interval.

REQUEST_DURATION_MS INTEGER Length of time the query ran in milliseconds.

IS_EXECUTING BOOLEAN Distinguishes between actively-running (t) and
completed (f) queries.

-1075-

 HP Vertica System Tables

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Examples
select * from query_requests;

 node_name | user_name | session_id | request_id | transaction_id | statement_id |

request_type |

request

| request_label | search_path | memory_acquired_mb | success

| error_count | start_timestamp | end_timestamp | request_duration_ms

| is_executing

-----------+-----------+------------------+------------+-------------------+--------------+------

--------+--

---+---------------+---------------------------

------------------------+--------------------+---------+-------------+---------------------------

----+-------------------------------+---------------------+--------------

 node01 | kelly | keprl-15875:0x76 | 22 | 45035996273705743 | 3 | QUERY

| select * from query_requests;

| | "$user", public, v_catalog, v_monitor, v_internal | 100 | |

| 2011-09-16 13:38:53.918111-04 | | | t

 node01 | kelly | keprl-15875:0x76 | 21 | 45035996273705743 | 2 | QUERY

| select * from query_events order by node_name;

| | "$user", public, v_catalog, v_monitor, v_internal | 103.71 | t |

| 2011-09-16 13:38:53.052501-04 | 2011-09-16 13:38:53.505158-04 | 453 | f

 node01 | kelly | keprl-15875:0x76 | 20 | 45035996273705743 | 1 | QUERY

| select * from t where a = 200;

| | "$user", public, v_catalog, v_monitor, v_internal | 100 | t |

| 2011-09-16 13:38:52.98436-04 | 2011-09-16 13:38:53.047512-04 | 63 | f

 node01 | kelly | keprl-15875:0x76 | 19 | 45035996273705742 | 1 | DDL

| grant select on t to u;

| | "$user", public, v_catalog, v_monitor, v_internal | | f |

1 | 2011-09-16 13:38:52.979343-04 | 2011-09-16 13:38:52.97951-04 | 0 | f

 node01 | kelly | keprl-15875:0x76 | 18 | 45035996273705739 | 2 | QUERY

| select * from t where a = 100;

| | "$user", public, v_catalog, v_monitor, v_internal | 100 | t |

| 2011-09-16 13:38:52.915772-04 | 2011-09-16 13:38:52.970562-04 | 55 | f

 node01 | kelly | keprl-15875:0x76 | 17 | 45035996273705739 | 1 | QUERY

| select stream_name, schema_name, table_name, is_executing, accepted_row_count, rejected_row_count,

read_bytes, input_file_size_bytes, parse_complete_percent, unsorted_row_count, sorted_row_count,

sort_complete_percent from load_streams; | | "$user", public, v_catalog, v_monitor,

v_internal | 103.55 | t | | 2011-09-16 13:38:47.119222-04 | 2011-09-16

13:38:49.784388-04 | 2665 | f

 node01 | kelly | keprl-15875:0x76 | 16 | 45035996273705736 | 1 | LOAD

| profile copy t from stdin delimiter ',' direct stream name 'dcv_test';

| | "$user", public, v_catalog, v_monitor, v_internal | 200 | t |

| 2011-09-16 13:38:46.997683-04 | 2011-09-16 13:38:47.104502-04 | 107 | f

 node01 | kelly | keprl-15875:0x76 | 15 | 45035996273705737 | 1 | DDL

| CREATE PROJECTION public.t AS SELECT * FROM public.t ORDER BY a SEGMENTED BY hash(a) ALL NODES

KSAFE;

| | "$user", public, v_catalog, v_monitor, v_internal | 200 | t |

| 2011-09-16 13:38:46.96377-04 | 2011-09-16 13:38:46.994311-04 | 31 | f

 node01 | kelly | keprl-15875:0x76 | 14 | 45035996273705735 | 1 | DDL

| create table t (a int);

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.939075-04 | 2011-09-16 13:38:46.953036-04 | 14 | f

 node01 | kelly | keprl-15875:0x76 | 13 | 45035996273705734 | 11 | UTILITY

| select clear_data_collector('Errors');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.927015-04 | 2011-09-16 13:38:46.933721-04 | 6 | f

 node01 | kelly | keprl-15875:0x76 | 12 | 45035996273705734 | 10 | UTILITY

| select clear_data_collector('OptimizerEvents');

-1076-

SQL Reference Manual

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.923711-04 | 2011-09-16 13:38:46.925269-04 | 2 | f

 node01 | kelly | keprl-15875:0x76 | 11 | 45035996273705734 | 9 | UTILITY

| select clear_data_collector('ExecutionEngineEvents');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.9202-04 | 2011-09-16 13:38:46.921827-04 | 1 | f

 node01 | kelly | keprl-15875:0x76 | 10 | 45035996273705734 | 8 | UTILITY

| select clear_data_collector('TransactionEnds');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.916656-04 | 2011-09-16 13:38:46.918302-04 | 2 | f

 node01 | kelly | keprl-15875:0x76 | 9 | 45035996273705734 | 7 | UTILITY

| select clear_data_collector('TransactionStarts');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.912786-04 | 2011-09-16 13:38:46.914793-04 | 2 | f

 node01 | kelly | keprl-15875:0x76 | 8 | 45035996273705734 | 6 | UTILITY

| select clear_data_collector('ExecutionEngineProfiles');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.906784-04 | 2011-09-16 13:38:46.910309-04 | 4 | f

 node01 | kelly | keprl-15875:0x76 | 7 | 45035996273705734 | 5 | UTILITY

| select clear_data_collector('ProjectionsUsed');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.902882-04 | 2011-09-16 13:38:46.904731-04 | 2 | f

 node01 | kelly | keprl-15875:0x76 | 6 | 45035996273705734 | 4 | UTILITY

| select clear_data_collector('RequestsCompleted');

| | "$user", public, v_catalog, v_monitor, v_internal | | t |

| 2011-09-16 13:38:46.899131-04 | 2011-09-16 13:38:46.900843-04 | 1 | f

 node01 | u1 | keprl-15875:0x7a | 1 | 45035996273705741 | 1 | QUERY

| select * from load_streams

| | "$user", public, v_catalog, v_monitor, v_internal | 103.54 | t |

| 2011-09-16 13:38:49.820262-04 | 2011-09-16 13:38:52.904827-04 | 3084 | f

 node01 | u1 | keprl-15875:0x7d | 1 | 45035996273705745 | 1 | QUERY

| select node_name, event_category, event_type, event_description, event_details, suggested_action

from query_events order by node_name

| | "$user", public, v_catalog, v_monitor, v_internal | 103.71 | t |

| 2011-09-16 13:38:53.520167-04 | 2011-09-16 13:38:53.906266-04 | 386 | f

(19 rows)

See Also

QUERY_PROFILES (page 1071)

REBALANCE_PROJECTION_STATUS

Maintain history on rebalance progress for relevant projections.

Column Name Data Type Description

PROJECTION_ID INTEGER Identifier of the projection that will be, was, or is
being rebalanced.

PROJECTION_SCHEMA VARCHAR Schema of the projection that will be, was, or is

being rebalanced.

PROJECTION_NAME VARCHAR Name of the projection that will be, was, or is
being rebalanced.

ANCHOR_TABLE_ID INTEGER Anchor table identifier of the projection that will
be, was, or is being rebalanced.

-1077-

 HP Vertica System Tables

ANCHOR_TABLE_NAME VARCHAR Anchor table name of the projection that will be,
was, or is being rebalanced.

REBALANCE_METHOD VARCHAR Method that will be, is, or was used to rebalance

the projection. Possible values are:

 REFRESH

 REPLICATE

 ELASTIC_CLUSTER

DURATION_SEC INTERVAL

SEC

Length of time (seconds) rebalance has been

working on this projection, including time to
separate storage, if that work is required.

SEPARATED_PERCENT NUMERIC(5,2
)

Percent of storage that has been separated for
this projection.

TRANSFERRED_PERCENT NUMERIC(5,2

)

Percent of storage that has been transferred, for

this projection.

SEPARATED_BYTES INTEGER Number of bytes, separated by the
corresponding rebalance operation, for this
projection.

TO_SEPARATE_BYTES INTEGER Number of bytes that remain to be separated by

the corresponding rebalance operation for this
projection.

TRANSFERRED_BYTES INTEGER Number of bytes transferred by the
corresponding rebalance operation for this

projection.

TO_TRANSFER_BYTES INTEGER Number of bytes that remain to be transferred
by the corresponding rebalance operation for
this projection.

IS_LATEST BOOLEAN True if this row pertains to the most recent

rebalance activity, where
elastic_cluster_version = (SELECT

version FROM

v_catalog.elastic_cluster;)

ELASTIC_CLUSTER_VERSION INTEGER The Elastic Cluster has a version, and each
time the cluster topology changes, this version

is incremented. This column reflects the version
to which this row of information pertains. The
TO_* fields (TO_SEPARATE_* and

TO_TRANSFER_*) are only valid for the current
version.

To view only rows from the current, latest or
upcoming rebalance operation, use:

WHERE elastic_cluster_version =

(SELECT version FROM

v_catalog.elastic_cluster;)

-1078-

SQL Reference Manual

Permissions

Must be a superuser.

See Also

ELASTIC_CLUSTER (page 940)

REBALANCE_TABLE_STATUS (page 1078)

REBALANCE_TABLE_STATUS
Maintain history on rebalance progress for relevant tables.

Column Name Data Type Description

TABLE_ID INTEGER Identifier of the table that will be, was, or is

being rebalanced.

TABLE_SCHEMA VARCHAR Schema of the table that will be, was, or is being
rebalanced.

TABLE_NAME VARCHAR Name of the table that will be, was, or is being
rebalanced.

REBALANCE_METHOD VARCHAR Method that will be, is, or was used to rebalance

the projections of this table. Possible values
are:

 REFRESH

 REPLICATE

 ELASTIC_CLUSTER

DURATION_SEC INTERVAL
SEC

Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in

REBALANCE_PROJECTION_STATUS (page
1076).

SEPARATED_PERCENT NUMERIC(5,2
)

Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in

REBALANCE_PROJECTION_STATUS.

TRANSFERRED_PERCENT NUMERIC(5,2
)

Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in
REBALANCE_PROJECTION_STATUS.

SEPARATED_BYTES INTEGER Aggregate, by table_id, rebalance_method, and

elastic_cluster_version, of the same in
REBALANCE_PROJECTION_STATUS.

TO_SEPARATE_BYTES INTEGER Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in

REBALANCE_PROJECTION_STATUS.

-1079-

 HP Vertica System Tables

TRANSFERRED_BYTES INTEGER Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in

REBALANCE_PROJECTION_STATUS.

TO_TRANSFER_BYTES INTEGER Aggregate, by table_id, rebalance_method, and
elastic_cluster_version, of the same in
REBALANCE_PROJECTION_STATUS.

IS_LATEST BOOLEAN True if this row pertains to the most recent

rebalance activity, where
elastic_cluster_version = (SELECT

version FROM

v_catalog.elastic_cluster;)

ELASTIC_CLUSTER_VERSION INTEGER The Elastic Cluster has a version, and each
time the cluster topology changes, this version
is incremented. This column reflects the version

to which this row of information pertains. The
TO_* fields (TO_SEPARATE_* and

TO_TRANSFER_*) are only valid for the current
version.

To view only rows from the current, latest or

upcoming rebalance operation, use:

WHERE elastic_cluster_version =

(SELECT version FROM

v_catalog.elastic_cluster;)

Permissions

Must be superuser.

See Also

ELASTIC_CLUSTER (page 940)

REBALANCE_PROJECTION_STATUS (page 1076)

RECOVERY_STATUS

Provides the status of recovery operations, returning one row for each node.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

RECOVER_EPOCH INTEGER Epoch the recovery operation is trying to catch
up to.

-1080-

SQL Reference Manual

RECOVERY_PHASE VARCHAR Current stage in the recovery process. Can be
one of the following:

 NULL

 current

 historical pass X, where X is the
iteration count

SPLITS_COMPLETED INTEGER Number of independent recovery SPLITS
queries that have run and need to run.

SPLITS_TOTAL INTEGER Total number of SPLITS queries that ran. Each

query corresponds to one row in the
PROJECTION_RECOVERIES (page 1053)
table. If SPLITS_TOTAL = 2, then there should

be 2 rows added to
PROJECTION_RECOVERIES, showing query
details.

HISTORICAL_COMPLETED INTEGER Number of independent recovery HISTORICAL

queries that have run and need to run.

HISTORICAL_TOTAL INTEGER Total number of HISTORICAL queries that ran.
Each query corresponds to one row in the
PROJECTION_RECOVERIES table. If

HISTORICAL_TOTAL = 2, then there should be
2 rows added to
PROJECTION_RECOVERIES, showing query

details.

CURRENT_COMPLETED INTEGER Number of independent recovery CURRENT
queries that have run and need to run.

CURRENT_TOTAL INTEGER Total number of CURRENT queries that ran.
Each query corresponds to one row in the

PROJECTION_RECOVERIES table. If
CURRENT_TOTAL = 2, then there should be 2
rows added to PROJECTION_RECOVERIES,

showing query details.

IS_RUNNING BOOLEAN True (t) if the node is still running recovery;
otherwise false (f).

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Note

If you are interested in monitoring recovery progress when recovery seems to be taking a while,
note that you cannot query system tables table during cluster recovery; the cluster must be UP to
accept connections.

-1081-

 HP Vertica System Tables

Example
=> SELECT * FROM recovery_status;

 node_name | recover_epoch | recovery_phase | splits_completed | splits_total |

historical_completed | historical_total | current_completed | current_total | is_running

-----------+---------------+-------------------+------------------+--------------+---------------

-------+------------------+-------------------+---------------+------------

 node01 | | | 0 | 0 | 0

| 0 | 0 | 0 | f

 node02 | 0 | historical pass 1 | 0 | 0 | 0

| 0 | 0 | 0 | t

 node03 | 1 | current | 0 | 0 | 0

| 0 | 0 | 0 | f

See Also

PROJECTION_RECOVERIES (page 1053)

RESOURCE_ACQUISITIONS
Retains information about resources (memory, open file handles, threads) acquired by each
running request for each resource pool in the system.

Column Name Data Type Description

NODE_NAME VARCHAR Node name for which information is listed.

TRANSACTION_ID INTEGER Transaction identifier for this request.

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID, STATEMENT_ID uniquely
identifies a statement within a session.

REQUEST_TYPE VARCHAR Type of request issued to a resource pool.
Request type can be one of:

 Reserve—related to queries

 Acquire—[Internal] related to the

optimizer and other internal services,
such as the Database Designer

 Acquire additional—[Internal] related to
size adjustment of acquisitions

obtained through the first two methods;
unusual, outside the WOS

POOL_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the resource
pool.

POOL_NAME VARCHAR Name of the resource pool.

THREAD_COUNT INTEGER Number of threads in use by this request.

OPEN_FILE_HANDLE_COUNT INTEGER Number of open file handles in use by this

-1082-

SQL Reference Manual

request.

MEMORY_INUSE_KB INTEGER Amount of memory in kilobytes acquired by this
request. See Notes section below this table.

QUEUE_ENTRY_TIMESTAMP TIMESTAMP

TZ

Timestamp when the request was queued at the

Resource Manager.

ACQUISITION_TIMESTAMP TIMESTAMP
TZ

Timestamp when the request was admitted to
run. See the Notes section below for the
difference between these two timestamps.

RELEASE_TIMESTAMP TIMESTAMP

TZ

Time when HP Vertica released this resource

acquisition.

DURATION_MS INTEGER Duration of the resource request in
milliseconds.

IS_EXECUTING BOOLEAN Denotes if the query holding the resource is still
executing (t).

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Notes

 The total memory reserved by the query is available in
RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB. The difference between

RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB and QUERY_PROFILES.EXTRA_MEMORY
(page 1071) is the "essential memory."

 RESOURCE_ACQUISITIONS.MEMORY_INUSE_KB is the total memory acquired.

 QUERY_PROFILES.EXTRA_MEMORY is the unused portion of the acquired memory.

 The difference gives you the memory in use.

 When monitoring resource pools and resource usage by queries, the ―queue wait‖ time is the
difference between acquisition_timestamp and queue_entry_timestamp. For example, to
determine how long a query waits in the queue before it is admitted to run, you can get the
difference between the acquisition_timestamp and the queue_entry_timestamp using a query
like the following:

 => SELECT pool_name, queue_entry_timestamp, acquisition_timestamp,

 (acquisition_timestamp-queue_entry_timestamp) AS 'queue wait'

 FROM V_MONITOR.RESOURCE_ACQUISITIONS WHERE node_name ILIKE

'%node0001';

 For the WOSDATA built-in pool (page 757), the queue_entry_timestamp column shows the
time when data was first loaded into the WOS. The acquisition_timestamp reflects the last
time the amount of data in the WOS changed. There is always a delay between when the
data in WOS shrinks in size and when the resource system tables reflect the new size.

Example
vmartdb=> \x

Expanded display is on.

-1083-

 HP Vertica System Tables

=> SELECT * FROM resource_acquisitions;

-[RECORD 1]----------+------------------------------

node_name | v_onenode_node0001

transaction_id | 45035996273708628

statement_id | 1

request_type | Reserve

pool_id | 45035996273718740

pool_name | sysquery

thread_count | 4

open_file_handle_count | 2

memory_inuse_kb | 16384

queue_entry_timestamp | 2012-12-09 07:56:41.297533-05

acquisition_timestamp | 2012-12-09 07:56:41.297536-05

release_timestamp | 2012-12-09 07:56:41.303201-05

duration_ms | 6

is_executing | f

-[RECORD 2]----------+------------------------------

..

See Also

QUERY_PROFILES (page 1071)

RESOURCE_POOL_STATUS (page 1083)

RESOURCE_POOLS (page 965)

RESOURCE_QUEUES (page 1086)

RESOURCE_REJECTIONS (page 1089)

Managing Workloads and the following scenarios in the Administrator's Guide:

 Setting a Hard Limit on Concurrency For An Application

 Monitoring Resource Pools and Resource Usage by Queries

RESOURCE_POOL_STATUS

Provides configuration settings of the various resource pools in the system, including internal
pools.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node for which information is

provided.

POOL_OID INTEGER A unique numeric ID assigned by the HP
Vertica catalog that identifies the pool.

-1084-

SQL Reference Manual

POOL_NAME VARCHAR The name of the resource pool.

IS_INTERNAL BOOLEAN Denotes whether a pool is one of the built-in
pools (page 757).

MEMORY_SIZE_KB INTEGER Value of MEMORYSIZE setting of the pool in

kilobytes

MEMORY_SIZE_ACTUAL_KB INTEGER Current amount of memory in kilobytes
allocated to the pool by the resource manager.
Note that the actual size can be less than

specified in the DDL, if the pool has been
recently altered in a running system and the
request to shuffle memory is pending. See

ALTER RESOURCE POOL (page 663).

MEMORY_INUSE_KB INTEGER Amount of memory in kilobytes acquired by
requests running against this pool.

GENERAL_MEMORY_BORROWED_KB INTEGER Amount of memory in kilobytes borrowed from
the General pool by requests running against

this pool. The sum of MEMORY_INUSE_KB and

GENERAL_MEMORY_BORROWED_KB should be

less than MAX_MEMORY_SIZE_KB (see

below).

QUEUEING_THRESHOLD_KB INTEGER Calculated as MAX_MEMORY_SIZE_KB * 95%.

When the amount of memory used by all
requests against this queue exceed the
QUEUEING_THRESHOLD_KB (but less than

MAX_MEMORY_SIZE_KB), new requests

against the pool will be queued until memory

becomes available.

MAX_MEMORY_SIZE_KB INTEGER Value of MAXMEMORYSIZE size parameter

specified when defining the pool. Provides an

upper limit on the amount of memory that can
be taken up by requests running against this
pool. Once this threshold is reached, new

requests against this pool are rejected until
memory becomes available.

RUNNING_QUERY_COUNT INTEGER Number of queries actually running using this
pool.

PLANNED_CONCURRENCY INTEGER Value of PLANNEDCONCURRENCY parameter

specified when defining the pool.

MAX_CONCURRENCY INTEGER Value of MAXCONCURRENCY parameter

specified when defining the pool.

IS_STANDALONE BOOLEAN If the pool is configured to have MEMORYSIZE

equal to MAXMEMORYSIZE, it does not borrow

any memory from the General pool and hence

said to be standalone.

QUEUE_TIMEOUT_IN_SECONDS INTEGER Value of QUEUETIMEOUT parameter that was

-1085-

 HP Vertica System Tables

specified when defining the pool.

EXECUTION_PARALLELISM INTEGER [Default: AUTO] Limits the number of threads

used to process any single query issued in this

resource pool.

When set to AUTO, HP Vertica sets this value

based on the number of cores, available
memory, and amount of data in the system.
Unless data is limited, or the amount of data is

very small, HP Vertica sets this value to the
number of cores on the node.

Reducing this value increases the throughput

of short queries issued in the pool, especially if
the queries are executed concurrently.

If you choose to set this parameter manually,

set it to a value between 1 and the number of
cores.

PRIORITY INTEGER Value of PRIORITY parameter speci fied when

defining the pool.

RUNTIME_PRIORITY VARCHAR Value of RUNTIME_PRIORITY specified when

defining the pool.

RUNTIME_PRIORITY_THRESHOLD INTEGER Value of RUNTIME_PRIORITY_THRESHOLD

specified when defining the pool.

SINGLE_INITIATOR BOOL Value of SINGLEINITIATOR parameter

specified when defining the pool.

QUERY_BUDGET_KB INTEGER The current amount of memory that queries
are tuned to use.

Example

The following command finds all the configuration settings of the various resource pools on
node02:

=> SELECT * FROM RESOURCE_POOL_STATUS WHERE node_name ILIKE '%node0002' limit 2;

-[RECORD 1]--------------+-----------------------

node_name | v_clickstream_node0002

pool_oid | 45035996273719428

pool_name | general

is_internal | t

memory_size_kb | 596928

memory_size_actual_kb | 596928

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 447696

max_memory_size_kb | 596928

running_query_count | 0

planned_concurrency | 4

max_concurrency |

-1086-

SQL Reference Manual

is_standalone | t

queue_timeout_in_seconds | 300

priority | 0

single_initiator | false

query_budget_kb | 111924

-[RECORD 2]--------------+-----------------------

node_name | v_clickstream_node0002

pool_oid | 45035996273719430

pool_name | sysquery

is_internal | t

memory_size_kb | 65536

memory_size_actual_kb | 65536

memory_inuse_kb | 0

general_memory_borrowed_kb | 0

queueing_threshold_kb | 496848

max_memory_size_kb | 662464

running_query_count | 0

planned_concurrency | 4

max_concurrency |

is_standalone | f

queue_timeout_in_seconds | 300

priority | 110

single_initiator | false

query_budget_kb | 16384

See Also

RESOURCE_ACQUISITIONS (page 1081)

RESOURCE_POOLS (page 965)

RESOURCE_QUEUES (page 1086)

RESOURCE_REJECTIONS (page 1089)

Managing Workloads, Monitoring Resource Pools and Resource Usage by Queries, Scenario:
Restricting Resource Usage of Ad-hoc Query Application in the Administrator's Guide

RESOURCE_QUEUES

Provides information about requests pending for various resource pools.

Column Name Data Type Description

NODE_NAME VARCHAR The name of the node for which information is

listed.

TRANSACTION_ID INTEGER Transaction identifier for this request

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

-1087-

 HP Vertica System Tables

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID uniquely

identifies a statement within a session.

POOL_NAME VARCHAR The name of the resource pool

MEMORY_REQUESTED_KB INTEGER Amount of memory in kilobytes requested by
this request

PRIORITY INTEGER Value of PRIORITY parameter specified when
defining the pool.

POSITION_IN_QUEUE INTEGER Position of this request within the pool‘s queue

QUEUE_ENTRY_TIMESTAMP TIMESTAMP Timestamp when the request was queued

See Also

RESOURCE_ACQUISITIONS (page 1081)

RESOURCE_POOLS (page 965)

RESOURCE_REJECTIONS (page 1089)

Managing Workloads in the Administrator's Guide

RESOURCE_REJECTION_DETAILS

Records an entry for each resource request that HP Vertica denies. This is useful for determining
if there are resource space issues, as well as which users/pools encounter problems.

Column Name Data Type Description

REJECTED_TIMESTAMP TIMESTAMPT
Z

Time when HP Vertica rejected the resource.

NODE_NAME VARCHAR Name of the node that is reporting the

requested information.

USER_NAME VARCHAR Name of the user at the time HP Vertica
recorded the session.

SESSION_ID VARCHAR Identifier for this session. This identifier is
unique within the cluster at any point in time

but can be reused when the session closes.

REQUEST_ID INTEGER Unique identifier of the query request in the
user session.

TRANSACTION_ID INTEGER Identifier for the transaction within the session,
if any; otherwise NULL.

-1088-

SQL Reference Manual

STATEMENT_ID INTEGER Unique numeric ID for the currently-running
statement. NULL indicates that no statement is

currently being processed. The combination of
TRANSACTION_ID, STATEMENT_ID, and
REQUEST_ID uniquely identifies a statement

within a session.

POOL_ID INTEGER A unique numeric ID, assigned by the HP
Vertica catalog, which identifies the resource
pool.

POOL_NAME VARCHAR Name of the resource pool

REASON VARCHAR Reason for rejecting this request; for example:

 Usage of single request exceeds high
limit

 Timed out waiting for resource
reservation

 Canceled waiting for resource
reservation

RESOURCE_TYPE VARCHAR Memory, threads, file handles or execution

slots.

The following list shows the resources that are
limited by the resource manager. A query

might need some amount of each resource,
and if the amount needed is not available, the
query is queued and could eventually time out

of the queue and be rejected.

 Number of running plans

 Number of running plans on initiator
node (local)

 Number of requested threads

 Number of requested file handles

 Number of requested KB of memory

 Number of requested KB of address
space

Note: Execution slots are determined by

MAXCONCURRENCY parameter.

REJECTED_VALUE INTEGER Amount of the specific resource requested by
the last rejection

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

See Also

RESOURCE_REJECTIONS (page 1089)

-1089-

 HP Vertica System Tables

RESOURCE_REJECTIONS

Monitors requests for resources that are rejected by the Resource Manager.

 Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

POOL_ID INTEGER A unique numeric ID, assigned by the HP

Vertica catalog, which identifies the resource
pool.

POOL_NAME VARCHAR The name of the resource pool.

REASON VARCHAR The reason for rejecting this request; for
example:

 Usage of single request exceeds high
limit

 Timed out waiting for resource
reservation

 Canceled waiting for resource
reservation

RESOURCE_TYPE VARCHAR Memory, threads, file handles or execution

slots.

The following list shows the resources that are
limited by the resource manager. A query might

need some amount of each resource, and if the
amount needed is not available, the query is
queued and could eventually time out of the

queue and be rejected.

 Number of running plans

 Number of running plans on initiator
node (local)

 Number of requested threads

 Number of requested file handles

 Number of requested KB of memory

 Number of requested KB of address
space

Note: Execution slots are determined by

MAXCONCURRENCY parameter.

REJECTION_COUNT INTEGER Number of requests rejected due to specified
reason and RESOURCE_TYPE.

FIRST_REJECTED_TIMESTAMP TIMESTAMPT

Z

The time of the first rejection for this pool

LAST_REJECTED_TIMESTAMP TIMESTAMPT
Z

The time of the last rejection for this pool

-1090-

SQL Reference Manual

LAST_REJECTED_VALUE INTEGER The amount of the specific resource requested
by the last rejection

Notes

Information is valid only as long as the node is up and the counters reset to 0 upon node restart.

Example
=> SELECT node_name, pool_name, reason, resource_type, rejection_count AS count,

 last_rejected_timestamp AS time, last_rejected_value AS value

 FROM resource_rejections;

 node_name | pool_name | reason | resource_type | count |

time | value

-----------+-------------+---------------------------------------+-------------------+-----------

----------------------------+--------------------

 initiator | alsohassome | Request exceeded high limit | Memory(KB) | 1 |

2011-09-20 17:06:35.549686-04 | 102400

 initiator | ceo | Timedout waiting for resource request | Memory(KB) | 1 |

2011-09-20 17:06:35.233777-04 | 102400

 initiator | empty | Request exceeded high limit | Queries | 1 |

2011-09-20 17:06:40.788562-04 | 1

 initiator | general | Request exceeded high limit | Address space(KB) | 2 |

2011-09-20 17:06:40.233878-04 | 45035996273704970

 initiator | general | Request exceeded high limit | Memory(KB) | 24 |

2011-09-20 17:06:49.6701-04 | 8395584

 initiator | sa | Request exceeded high limit | Memory(KB) | 3 |

2011-09-20 17:06:37.070787-04 | 102400

 initiator | sa | Timedout waiting for resource request | Memory(KB) | 1 |

2011-09-20 17:06:37.12109-04 | 10

 initiator | small | Request exceeded high limit | Memory(KB) | 26 |

2011-09-20 17:06:32.410326-04 | 102400

 initiator | small | Timedout waiting for resource request | Memory(KB) | 2 |

2011-09-20 17:06:33.3467-04 | 122880

 initiator | sysdata | Request exceeded high limit | Memory(KB) | 5 |

2011-09-20 17:06:41.751985-04 | 102400

(10 rows)

The following command returns the type of resources currently running on the node:

=> SELECT resource_type FROM resource_rejections;

 resource_type

 UPDATE_QUERY

 UPDATE_QUERY

 UPDATE_QUERY

(3 rows)

See Also

CLEAR_RESOURCE_REJECTIONS (page 456)

DISK_RESOURCE_REJECTIONS (page 1013)

Managing Workloads and Managing System Resource Usage in the Administrator's Guide

-1091-

 HP Vertica System Tables

RESOURCE_USAGE

Monitors system resource management on each node.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is
listed.

REQUEST_COUNT INTEGER The cumulative number of requests for

threads, file handles, and memory (in
kilobytes).

LOCAL_REQUEST_COUNT INTEGER The cumulative number of local requests.

REQUEST_QUEUE_DEPTH INTEGER The current request queue depth.

ACTIVE_THREAD_COUNT INTEGER The current number of active threads.

OPEN_FILE_HANDLE_COUNT INTEGER The current number of open file handles.

MEMORY_REQUESTED_KB INTEGER The memory requested in kilobytes.

ADDRESS_SPACE_REQUESTED_KB INTEGER The address space requested in kilobytes.

WOS_USED_BYTES INTEGER The size of the WOS in bytes.

WOS_ROW_COUNT INTEGER The number of rows in the WOS.

ROS_USED_BYTES INTEGER The size of the ROS in bytes.

ROS_ROW_COUNT INTEGER The number of rows in the ROS.

TOTAL_USED_BYTES INTEGER The total size of storage (WOS + ROS) in
bytes.

TOTAL_ROW_COUNT INTEGER The total number of rows in storage (WOS +

ROS).

RESOURCE_REQUEST_REJECT_

COUNT

INTEGER The number of rejected plan requests.

RESOURCE_REQUEST_TIMEOUT_

COUNT

INTEGER The number of resource request timeouts.

RESOURCE_REQUEST_CANCEL_

COUNT

INTEGER The number of resource request

cancelations.

DISK_SPACE_REQUEST_REJECT_

COUNT

INTEGER The number of rejected disk write requests.

FAILED_VOLUME_REJECT_COUNT INTEGER The number of rejections due to a failed
volume.

TOKENS_USED INTEGER For internal use only.

TOKENS_AVAILABLE INTEGER For internal use only.

-1092-

SQL Reference Manual

Example
=>\pset expanded

Expanded display is on.

=> SELECT * FROM RESOURCE_USAGE;

-[RECORD 1]-------------------+---------------------------

node_name | node01

request_count | 1

local_request_count | 1

request_queue_depth | 0

active_thread_count | 4

open_file_handle_count | 2

memory_requested_kb | 4352

address_space_requested_kb | 106752

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10390319

ros_row_count | 324699

total_used_bytes | 10390319

total_row_count | 324699

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 1

tokens_available | 7999999

-[RECORD 2]-------------------+---------------------------

node_name | node02

request_count | 0

local_request_count | 0

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10359489

ros_row_count | 324182

total_used_bytes | 10359489

total_row_count | 324182

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

-[RECORD 3]-------------------+---------------------------

node_name | node03

request_count | 0

local_request_count | 0

-1093-

 HP Vertica System Tables

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10355231

ros_row_count | 324353

total_used_bytes | 10355231

total_row_count | 324353

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

-[RECORD 4]-------------------+---------------------------

node_name | node04

request_count | 0

local_request_count | 0

request_queue_depth | 0

active_thread_count | 0

open_file_handle_count | 0

memory_requested_kb | 0

address_space_requested_kb | 0

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 10385744

ros_row_count | 324870

total_used_bytes | 10385744

total_row_count | 324870

resource_request_reject_count | 0

resource_request_timeout_count | 0

resource_request_cancel_count | 0

disk_space_request_reject_count | 0

failed_volume_reject_count | 0

tokens_used | 0

tokens_available | 8000000

SESSION_PROFILES

Provides basic session parameters and lock time out data. To obtain information about sessions,
see Profiling Database Performance.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is

listed.

USER_NAME VARCHAR The name used to log in to the database or

-1094-

SQL Reference Manual

NULL if the session is internal.

CLIENT_HOSTNAME VARCHAR The host name and port of the TCP socket
from which the client connection was

made; NULL if the session is internal.

LOGIN_TIMESTAMP TIMESTAMP The date and time the user logged into the
database or when the internal session was
created. This field is useful for identifying

sessions that have been left open for a
period of time and could be idle.

LOGOUT_TIMESTAMP TIMESTAMP The date and time the user logged out of
the database or when the internal session

was closed.

SESSION_ID VARCHAR A unique numeric ID assigned by the HP
Vertica catalog, which identifies the
session for which profiling information is

captured. This identifier is unique within
the cluster at any point in time but can be
reused when the session closes.

EXECUTED_STATEMENT_SUCCESS_

COUNT

INTEGER The number of successfully run

statements.

EXECUTED_STATEMENT_FAILURE_

COUNT

INTEGER The number of unsuccessfully run
statements.

LOCK_GRANT_COUNT INTEGER The number of locks granted during the
session.

DEADLOCK_COUNT INTEGER The number of deadlocks encountered

during the session.

LOCK_TIMEOUT_COUNT INTEGER The number of times a lock timed out
during the session.

LOCK_CANCELLATION_COUNT INTEGER The number of times a lock was canceled
during the session.

LOCK_REJECTION_COUNT INTEGER The number of times a lock was rejected

during a session.

LOCK_ERROR_COUNT INTEGER The number of lock errors encountered
during the session.

Example

Query the SESSION_PROFILES table:

=>\pset expanded

Expanded display on.

=> SELECT * FROM SESSION_PROFILES;

-[RECORD 1]-------------------+---------------------------------

node_name | node04

user_name | dbadmin

client_hostname | 192.168.1.1:46816

login_timestamp | 2009-09-28 11:40:34.01518

-1095-

 HP Vertica System Tables

logout_timestamp | 2009-09-28 11:41:01.811484

session_id | myhost.verticacorp-20790:0x32f

executed_statement_success_count | 51

executed_statement_failure_count | 1

lock_grant_count | 579

deadlock_count | 0

lock_timeout_count | 0

lock_cancellation_count | 0

lock_rejection_count | 0

lock_error_count | 0

See Also

LOCKS (page 1037)

SESSIONS
Monitors external sessions. You can use this table to:

 Identify users who are running long queries

 Identify users who are holding locks due to an idle but uncommitted transaction

 Disconnect users in order to shut down the database

 Determine the details behind the type of database security (Secure Socket Layer (SSL) or
client authentication) used for a particular session.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

USER_NAME VARCHAR The name used to log into the database or

NULL if the session is internal.

CLIENT_HOSTNAME VARCHAR The host name and port of the TCP socket from
which the client connection was made; NULL if
the session is internal.

CLIENT_PID INTEGER The process identifier of the client process that

issued this connection. Remember that the
client process could be on a different machine
than the server.

LOGIN_TIMESTAMP TIMESTAM

P

The date and time the user logged into the

database or when the internal session was
created. This can be useful for identifying
sessions that have been left open for a period of

time and could be idle.

SESSION_ID VARCHAR The identifier required to close or interrupt a
session. This identifier is unique within the
cluster at any point in time but can be reused

when the session closes.

-1096-

SQL Reference Manual

CLIENT_LABEL VARCHAR A user-specified label for the client connection
that can be set when using ODBC. See Label

in DSN Parameters in Programmer's Guide. An
MC output value means there are is a client

connection to an MC-managed database for
that USER_NAME.

TRANSACTION_START DATE The date/time the current transaction started or
NULL if no transaction is running.

TRANSACTION_ID INTEGER A string containing the hexadecimal

representation of the transaction ID, if any;
otherwise NULL.

TRANSACTION_DESCRIPTION VARCHAR A description of the current transaction.

STATEMENT_START TIMESTAM
P

The timestamp the current statement started
execution, or NULL if no statement is running.

STATEMENT_ID INTEGER A unique numeric ID assigned by the HP Vertica

catalog, which identifies the currently-executing
statement.

Note: NULL indicates that no statement is

currently being processed.

LAST_STATEMENT_DURATION_US INTEGER The duration of the last completed statement in

microseconds.

RUNTIME_PRIORITY VARCHAR Determines the amount of run-time resources
(CPU, I/O bandwidth) the Resource Manager
should dedicate to queries already running in

the resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Queries with a HIGH run-time priority are given

more CPU and I/O resources than those with a
MEDIUM or LOW run-time priority.

CURRENT_STATEMENT VARCHAR The currently executing statement, if any. NULL

indicates that no statement is currently being
processed.

LAST_STATEMENT VARCHAR NULL if the user has just logged in; otherwise
the currently running statement or the most

recently completed statement.

SSL_STATE VARCHAR Indicates if HP Vertica used Secure Socket
Layer (SSL) for a particular session. Possible
values are:

 None – HP Vertica did not use SSL.

 Server – Sever authentication was
used, so the client could authenticate
the server.

 Mutual – Both the server and the client

-1097-

 HP Vertica System Tables

authenticated one another through
mutual authentication.

See Implementing Security and Implementing

SSL.

AUTHENTICATION_METHOD VARCHAR The type of client authentication used for a
particular session, if known. Possible values
are:

 Unknown

 Trust

 Reject

 Kerberos

 Password

 MD5

 LDAP

 Kerberos-GSS

See Implementing Security and Implementing
Client Authentication.

Notes

 A superuser has unrestricted access to all session information, but users can only view
information about their own, current sessions.

 During session initialization and termination, you might see sessions running only on nodes
other than the node on which you ran the virtual table query. This is a temporary situation that
corrects itself as soon as session initialization and termination completes.

Example
=>\pset expanded

Expanded display is on.

=> SELECT * FROM SESSIONS;

-[RECORD 1]--------------+---------------------------------------

node_name | v_mcdb_node0001

user_name | dbadmin

client_hostname | 00.00.000.00:xxxxx

client_pid | 12345

login_timestamp | 2013-05-09 07:18:11.161721-04

session_id | myhost.verticacorp.-7695:0x4f337

client_label | MC

transaction_start | 2013-05-09 07:18:16.051058-04

transaction_id | 49539595901174387

transaction_description | user dbadmin (select * from sessions;)

statement_start | 2013-05-09 07:18:19.54812-04

statement_id | 2

-1098-

SQL Reference Manual

last_statement_duration_us | 16508

runtime_priority |

current_statement | select * from sessions;

last_statement | select * from sessions;

ssl_state | None

authentication_method | Password

See Also

CLOSE_SESSION (page 458) and CLOSE_ALL_SESSIONS (page 461)

Managing Sessions and Configuration Parameters in the Administrator's Guide

STORAGE_CONTAINERS

Monitors information about WOS and ROS storage containers in the database.

Column Name Data Type Description

NODE_NAME VARCHAR Node name for which information is listed.

SCHEMA_NAME VARCHAR Schema name for which information is listed.

PROJECTION_ID INTEGER Unique numeric ID assigned by the Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR Projection name for which information is listed on
that node.

STORAGE_TYPE VARCHAR Type of storage container: ROS or WOS.

STORAGE_OID INTEGER Unique numeric ID assigned by the HP Vertica

catalog, which identifies the storage.

TOTAL_ROW_COUNT VARCHAR Total rows in the storage container listed for that
projection.

DELETED_ROW_COUNT INTEGER Total rows in the storage container deleted for
that projection.

USED_BYTES INTEGER Total bytes in the storage container listed for that

projection.

START_EPOCH INTEGER Number of the start epoch in the storage
container for which information is listed.

END_EPOCH INTEGER Number of the end epoch in the storage
container for which information is listed.

GROUPING VARCHAR The group by which columns are stored:

 ALL – All columns are grouped

 PROJECTION – Columns grouped
according to projection definition

 NONE – No columns grouped, despite

-1099-

 HP Vertica System Tables

grouping in the projection definition

 OTHER – Some grouping but neither all
nor according to projection (e.g., results
from add column)

SEGMENT_LOWER_BOUND INTEGER Lower bound of the segment range spanned by

the storage container or NULL if the

corresponding projection is not elastic.

SEGMENT_UPPER_BOUND INTEGER Upper bound of the segment range spanned by
the storage container or NULL if the

corresponding projection is not elastic.

IS_SORTED BOOLEAN Whether the storage container's data is sorted
(WOS containers only).

LOCATION_LABEL VARCHAR

(128)

The location label (if any) for the storage

container is stored.

DELETE_VECTOR_COUNT INTEGER The number of delete vectors in the storage
container.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example

The following command returns all the nodes on which a segmented projection has data on the
TickStore database:

TickStore=> SELECT node_name, projection_name, total_row_count

FROM storage_containers ORDER BY projection_name;

 node_name | projection_name | total_row_count

-----------------+--------------------------+-----------------

 v_tick_node0001 | Quotes_Fact_tmp_node0001 | 512

 v_tick_node0001 | Quotes_Fact_tmp_node0001 | 480176

 v_tick_node0002 | Quotes_Fact_tmp_node0002 | 512

 v_tick_node0002 | Quotes_Fact_tmp_node0002 | 480176

 v_tick_node0003 | Quotes_Fact_tmp_node0003 | 480176

 v_tick_node0003 | Quotes_Fact_tmp_node0003 | 512

 v_tick_node0004 | Quotes_Fact_tmp_node0004 | 480176

 v_tick_node0004 | Quotes_Fact_tmp_node0004 | 512

 v_tick_node0001 | Trades_Fact_tmp_node0001 | 512

 v_tick_node0001 | Trades_Fact_tmp_node0001 | 500334

 v_tick_node0002 | Trades_Fact_tmp_node0002 | 500334

 v_tick_node0002 | Trades_Fact_tmp_node0002 | 512

 v_tick_node0003 | Trades_Fact_tmp_node0003 | 500334

 v_tick_node0003 | Trades_Fact_tmp_node0003 | 512

 v_tick_node0004 | Trades_Fact_tmp_node0004 | 500334

 v_tick_node0004 | Trades_Fact_tmp_node0004 | 512

(16 rows)

The following command returns information on inventory_fact projections on all nodes on the
Vmart schema:

=> SELECT * FROM storage_containers WHERE projection_name LIKE

'inventory_fact_p%';

-[RECORD 1]-----+--------------------------

-1100-

SQL Reference Manual

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | WOS

storage_oid | 45035996273720173

total_row_count | 3000

deleted_row_count | 100

used_bytes | 196608

start_epoch | 1

end_epoch | 2

grouping | ALL

-[RECORD 2]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273722211

total_row_count | 500

deleted_row_count | 25

used_bytes | 5838

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 3]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273722283

total_row_count | 500

deleted_row_count | 25

used_bytes | 5794

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 4]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273723379

total_row_count | 500

deleted_row_count | 25

used_bytes | 5838

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 5]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273723451

total_row_count | 500

-1101-

 HP Vertica System Tables

deleted_row_count | 25

used_bytes | 5794

start_epoch | 1

end_epoch | 1

grouping | ALL

-[RECORD 6]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273724547

total_row_count | 500

deleted_row_count | 0

used_bytes | 5838

start_epoch | 2

end_epoch | 2

grouping | ALL

-[RECORD 7]-----+--------------------------

node_name | node01

schema_name | public

projection_name | inventory_fact_p_node0001

storage_type | ROS

storage_oid | 45035996273724619

total_row_count | 500

deleted_row_count | 0

used_bytes | 5794

start_epoch | 2

end_epoch | 2

grouping | ALL

-[RECORD 8]-----+--------------------------

...

See Also

Column Store Architecture with FlexStore in the Concepts Guide

STORAGE_POLICIES

Monitors the current storage policies in effect for one or more database objects.

Column Name Data Type Description

SCHEMA_NAME VARCHAR Schema name for which information is listed.

OBJECT_NAME VARCHAR The name of the database object associated
through the storage policy.

POLICY_DETAILS VARCHAR The object type of the storage policy.

LOCATION_LABEL VARCHAR
(128)

The label for this storage location.

-1102-

SQL Reference Manual

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example

The following query returns the current storage polices:

VMART=> select * from v_monitor.storage_policies;

 schema_name | object_name | policy_details | location_label

-------------+-------------+----------------+----------------

 public | states | Table | LEVEL3

 public | newstates | Table | LEVEL3

(2 rows)

See Also

PARTITIONS (page 1051)

STORAGE_CONTAINERS (page 1098)

STORAGE_USAGE (page 1104)

Creating Storage Policies and Clearing a Storage Policy in the Administrator's Guide

STORAGE_TIERS

Provides information about all storage locations with the same label across all cluster nodes. This
table lists data totals for all same-name labeled locations.

The system table shows what labeled locations exist on the cluster, as well as other cluster-wide
data about the locations.

Column Name Data Type Description

LOCATION_LABEL VARCHAR The label associated with a specific storage
location. The storage_tiers system table

includes data totals for unlabeled locations,

which are considered labeled with empty strings
('').

NODE_COUNT INTEGER The total number of nodes that include a storage

location named location_label.

-1103-

 HP Vertica System Tables

LOCATION_COUNT INTEGER The total number of storage locations named
location_label.

This value can differ from node_count if you

create labeled locations with the same name at

different paths on different nodes. For example:

node01: Create one labeled location, FAST

node02: Create two labeled locations, FAST, at

different directory paths

In this case, node_count value = 2, while

location_count value = 3.

ROS_CONTAINER_COUNT INTEGER The total number of ROS containers stored

across all cluster nodes for location_label.

TOTAL_OCCUPIED_SIZE INTEGER The total number of bytes that all ROS
containers for location_label occupy across

all cluster nodes.

Permissions

Must be a superuser

Example

VMart=> select * from v_monitor.storage_tiers;

 location_label | node_count | location_count | ros_container_count |

total_occupied_size

----------------+------------+----------------+---------------------+---------

 | 1 | 2 | 17 |

297039391

 SSD | 1 | 1 | 9 |

1506

 Schema | 1 | 1 | 0 |

0

(3 rows)

See Also

DISK_STORAGE (page 1014)

STORAGE_POLICIES (page 1101)

STORAGE_USAGE (page 1104)

Storage Management Functions (page 636)

Creating and Configuring Storage Locations in the Administrator's Guide

-1104-

SQL Reference Manual

STORAGE_USAGE

Provides information about file system storage usage. This is useful for determining disk space
usage trends.

Column Name Data Type Description

POLL_TIMESTAMP TIMESTAMPT
Z

Time when HP Vertica recorded the row.

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

PATH VARCHAR Path where the storage location is mounted.

DEVICE VARCHAR Device on which the storage location is mounted.

FILESYSTEM VARCHAR Filesystem on which the storage location is
mounted.

USED_BYTES INTEGER Counter history of number of used bytes.

FREE_BYTES INTEGER Counter history of number of free bytes.

USAGE_PERCENT FLOAT Percent of storage in use.

Permissions

Must be a superuser

Example
=> SELECT * FROM storage_usage;

 poll_timestamp | node_name | path | device | filesystem | used_bytes |

free_bytes | usage_percent

-------------------------------+-----------+-------+-----------+------------+--------------+-----

--------+---------------

 2011-09-16 15:25:57.017042-04 | e0 | /dev | udev | devtmpfs | 319488 |

2017337344 | 0.02

 2011-09-16 15:25:57.017044-04 | e0 | /var | /dev/sda3 | ext4 | 2377822208 |

2906607616 | 45

 2011-09-16 15:25:57.016812-04 | e1 | | | vertica | 118600830976 |

25081253888 | 82.54

 2011-09-16 15:25:57.016795-04 | e1 | / | /dev/sda5 | ext4 | 118600830976 |

25081253888 | 82.54

 2011-09-16 15:25:57.016806-04 | e1 | /dev | udev | devtmpfs | 319488 |

2017337344 | 0.02

 2011-09-16 15:25:57.011443-04 | initiator | | | vertica | 118600830976 |

25081253888 | 82.54

 2011-09-16 15:25:57.017037-04 | e0 | / | /dev/sda5 | ext4 | 118600839168 |

25081245696 | 82.54

 2011-09-16 15:25:57.01704-04 | e0 | /boot | /dev/sda1 | ext4 | 64685056 |

36844544 | 63.71

 2011-09-16 15:25:57.011425-04 | initiator | / | /dev/sda5 | ext4 | 118600830976 |

25081253888 | 82.54

 2011-09-16 15:25:57.01144-04 | initiator | /var | /dev/sda3 | ext4 | 2377822208 |

2906607616 | 45

 2011-09-16 15:25:57.017045-04 | e0 | | | vertica | 118600830976 |

-1105-

 HP Vertica System Tables

25081253888 | 82.54

 2011-09-16 15:25:57.016801-04 | e1 | /boot | /dev/sda1 | ext4 | 64685056 |

36844544 | 63.71

 2011-09-16 15:25:57.016809-04 | e1 | /var | /dev/sda3 | ext4 | 2377822208 |

2906607616 | 45

 2011-09-16 15:25:57.011432-04 | initiator | /boot | /dev/sda1 | ext4 | 64685056 |

36844544 | 63.71

 2011-09-16 15:25:57.011436-04 | initiator | /dev | udev | devtmpfs | 319488 |

2017337344 | 0.02

(15 rows)

See Also

DISK_STORAGE (page 1014)

STORAGE_CONTAINERS (page 1098)

STORAGE_POLICIES (page 1101)

STORAGE_TIERS (page 1102)

Storage Management Functions (page 636)

Creating and Configuring Storage Locations in the Administrator's Guide

STRATA

Contains internal details of how the Tuple Mover combines ROS containers in each projection,
broken down by stratum and classifies the ROS containers by size and partition. The related
STRATA_STRUCTURES (page 1108) table provides a summary of the strata values.

The STRATA table contains detailed information on

For a brief overview of how the Tuple Mover combines ROS containers, see Tuple Mover in the
Administrator's Guide.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed

SCHEMA_NAME VARCHAR The schema name for which information is

listed

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

PROJECTION_NAME VARCHAR The projection name for which information is
listed on that node

PARTITION_KEY VARCHAR The data partition for which information is listed

STRATA_COUNT INTEGER The total number of strata for this projection

partition

-1106-

SQL Reference Manual

MERGING_STRATA_COUNT INTEGER The number of strata the Tuple Mover can
merge out.

STRATUM_CAPACITY INTEGER The maximum number of ROS containers for

the stratum before they must be merged.

STRATUM_HEIGHT FLOAT The size ratio between the smallest and largest
ROS container in this stratum

STRATUM_NO INTEGER The stratum number. Strata are numbered
starting at 0, for the stratum containing the

smallest ROS containers

STRATUM_LOWER_SIZE VARCHAR The smallest ROS container size allowed in this
stratum

STRATUM_UPPER_SIZE VARCHAR The largest ROS container size allowed in this
stratum

ROS_CONTAINER_COUNT INTEGER The current number of ROS containers in the

projection partition

Example
onenode=> SELECT * FROM strata;

-[RECORD 1]--------+-------------------

node_name | v_onenode_node0001

schema_name | public

projection_id | 45035996273718838

projection_name | trades_p

partition_key |

strata_count | 11

merging_strata_count | 4

stratum_capacity | 32

stratum_height | 28.8

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 4MB

ROS_container_count | 1

vmartdb=> \pset expanded

Expanded display is on.

vmartdb=> SELECT node_name, schema_name, projection_name, strata_count,

 stratum_capacity, stratum_height, stratum_no, stratum_lower_size,

 stratum_upper_size, ros_container_count

 FROM strata WHERE node_name ILIKE 'node01' AND stratum_upper_size <

'15MB';

-[RECORD 1

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name |

call_center_dimension_DBD_32_seg_vmart_design_vmart_design

strata_count | 5

-1107-

 HP Vertica System Tables

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 2

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name |

call_center_dimension_DBD_8_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 3

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name | online_sales_fact_DBD_33_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 13

stratum_height | 8.16338338718601

stratum_no | 1

stratum_lower_size | 19MB

stratum_upper_size | 155.104MB

ROS_container_count | 1

-[RECORD 4

]-------+---

node_name | v_vmartdb_node01

schema_name | online_sales

projection_name | online_sales_fact_DBD_9_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 13

stratum_height | 8.16338338718601

stratum_no | 1

stratum_lower_size | 19MB

stratum_upper_size | 155.104MB

ROS_container_count | 1

-[RECORD 5

]-------+---

node_name | v_vmartdb_node01

schema_name | public

projection_name | promotion_dimension_DBD_16_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

-1108-

SQL Reference Manual

ROS_container_count | 1

-[RECORD 6

]-------+---

node_name | v_vmartdb_node01

schema_name | public

projection_name | promotion_dimension_DBD_17_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 19

stratum_height | 8.97589786696783

stratum_no | 0

stratum_lower_size | 0B

stratum_upper_size | 13MB

ROS_container_count | 1

-[RECORD 7

]-------+---

node_name | v_vmartdb_node01

schema_name | store

projection_name | store_sales_fact_DBD_29_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 16

stratum_height | 8.52187248329035

stratum_no | 1

stratum_lower_size | 16MB

stratum_upper_size | 136.35MB

ROS_container_count | 1

-[RECORD 8

]-------+---

node_name | v_vmartdb_node01

schema_name | store

projection_name | store_sales_fact_DBD_5_seg_vmart_design_vmart_design

strata_count | 5

stratum_capacity | 16

stratum_height | 8.52187248329035

stratum_no | 1

stratum_lower_size | 16MB

stratum_upper_size | 136.35MB

ROS_container_count | 1

STRATA_STRUCTURES
This table provides an overview of Tuple Mover internal details. It summarizes how the ROS
containers are classified by size. A more detailed view can be found in the STRATA (page 1105)
virtual table.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed

SCHEMA_NAME VARCHAR The schema name for which information is listed

PROJECTION_NAME VARCHAR The projection name for which information is listed
on that node

PROJECTION_ID INTEGER A unique numeric ID assigned by the HP Vertica

-1109-

 HP Vertica System Tables

catalog, which identifies the projection.

PARTITION_KEY VARCHAR The data partition for which the information is
listed

STRATA_COUNT INTEGER The total number of strata for this projection

partition

MERGING_STRATA_COUNT INTEGER In certain hardware configurations, a high strata
could contain more ROS containers than the
Tuple Mover can merge out; output from this

column denotes the number of strata the Tuple
Mover can merge out.

STRATUM_CAPACITY INTEGER The maximum number of ROS containers that the
strata can contained before it must merge them

STRATUM_HEIGHT FLOAT The size ratio between the smallest and largest

ROS container in a stratum.

ACTIVE_STRATA_COUNT INTEGER The total number of strata that have ROS
containers in them

Example
onenode=> SELECT * FROM strata_structures;

-[RECORD 1]--------+-------------------

node_name | v_onenode_node0001

schema_name | public

projection_name | trades_p

projection_id | 45035996273718838

partition_key |

strata_count | 11

merging_strata_count | 4

stratum_capacity | 32

stratum_height | 28.8

active_strata_count | 1

vmartdb=> \pset expanded

Expanded display is on.

vmartdb=> SELECT node_name, schema_name, projection_name, strata_count,

 stratum_capacity, stratum_height, stratum_no, stratum_lower_size,

 stratum_upper_size, ros_container_count

 WHERE stratum_capacity > 60;

-[RECORD 1]-------+--

node_name | v_vmartdb_node01

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-1110-

SQL Reference Manual

-[RECORD 2]-------+--

node_name | v_vmartdb_node01

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 3]-------+--

node_name | v_vmartdb_node02

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 4]-------+--

node_name | v_vmartdb_node02

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 5]-------+--

node_name | v_vmartdb_node03

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 6]-------+--

node_name | v_vmartdb_node03

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-[RECORD 7]-------+--

node_name | v_vmartdb_node04

schema_name | public

projection_name | shipping_dimension_DBD_22_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

-1111-

 HP Vertica System Tables

-[RECORD 8]-------+--

node_name | v_vmartdb_node04

schema_name | public

projection_name | shipping_dimension_DBD_23_seg_vmart_design_vmart_design

partition_key |

strata_count | 4

stratum_capacity | 62

stratum_height | 25.6511590887058

active_strata_count | 1

See Also

STRATA (page 1105)

SYSTEM

Monitors the overall state of the database.

Column Name Data Type Description

CURRENT_EPOCH INTEGER The current epoch number.

AHM_EPOCH INTEGER The AHM epoch number.

LAST_GOOD_EPOCH INTEGER The smallest (min) of all the checkpoint epochs

on the cluster.

REFRESH_EPOCH INTEGER The oldest of the refresh epochs of all the nodes
in the cluster

DESIGNED_FAULT_TOLERANCE INTEGER The designed or intended K-safety level.

NODE_COUNT INTEGER The number of nodes in the cluster.

NODE_DOWN_COUNT INTEGER The number of nodes in the cluster that are
currently down.

CURRENT_FAULT_TOLERANCE INTEGER The number of node failures the cluster can

tolerate before it shuts down automatically.

CATALOG_REVISION_NUMBER INTEGER The catalog version number.

WOS_USED_BYTES INTEGER The WOS size in bytes (cluster-wide).

WOS_ROW_COUNT INTEGER The number of rows in WOS (cluster-wide).

ROS_USED_BYTES INTEGER The ROS size in bytes (cluster-wide).

ROS_ROW_COUNT INTEGER The number of rows in ROS (cluster-wide).

TOTAL_USED_BYTES INTEGER The total storage in bytes (WOS + ROS)
(cluster-wide).

TOTAL_ROW_COUNT INTEGER The total number of rows (WOS + ROS)
(cluster-wide).

-1112-

SQL Reference Manual

Example

Query the SYSTEM table:

=>\pset expanded

Expanded display is on.

=> SELECT * FROM SYSTEM;

-[RECORD 1]------------+----------

current_epoch | 429

ahm_epoch | 428

last_good_epoch | 428

refresh_epoch | -1

designed_fault_tolerance | 1

node_count | 4

node_down_count | 0

current_fault_tolerance | 1

catalog_revision_number | 1590

wos_used_bytes | 0

wos_row_count | 0

ros_used_bytes | 443131537

ros_row_count | 21809072

total_used_bytes | 443131537

total_row_count | 21809072

If there are no projections in the system, LAST_GOOD_EPOCH returns the following:

=> SELECT get_last_good_epoch();

ERROR: Last good epoch not set

And if there are projections in the system:

=> SELECT get_last_good_epoch();

 get_last_good_epoch

 428

(1 row)

SYSTEM_RESOURCE_USAGE

Provides history about system resources, such as memory, CPU, network, disk, I/O.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the
requested information.

END_TIME TIMESTAMP End time of the history interval.

AVERAGE_MEMORY_USAGE_

PERCENT

FLOAT Average memory usage in percent of total

memory (0-100) during the history interval.

-1113-

 HP Vertica System Tables

AVERAGE_CPU_USAGE_PERCENT FLOAT Average CPU usage in percent of total CPU
time (0-100) during the history interval.

NET_RX_KBYTES_PER_SECOND FLOAT Average number of kilobytes received from

network (incoming) per second during the
history interval.

NET_TX_KBYTES_PER_SECOND FLOAT Average number of kilobytes transmitting to
network (outgoing) per second during the

history interval.

IO_READ_KBYTES_PER_SECOND FLOAT Disk I/O average number of kilobytes read from
disk per second during the history interval.

IO_WRITTEN_KBYTES_PER_

SECOND

FLOAT Average number of kilobytes written to disk per
second during the history interval.

Permissions

Must be a superuser.

Example
=> SELECT * FROM system_resource_usage WHERE node_name = 'v_myvdb_node04';

-[RECORD 1]----------------+--------------------

node_name | v_myvdb_node04

end_time | 2012-03-30 17:43:00

average_memory_usage_percent | 3.6

average_cpu_usage_percent | 9.1

net_rx_kbytes_per_second | 12.75

net_tx_kbytes_per_second | 5.77

io_read_kbytes_per_second | 0

io_written_kbytes_per_second | 643.92

-[RECORD 2]----------------+--------------------

node_name | v_myvdb_node04

end_time | 2012-03-30 17:38:00

average_memory_usage_percent | 3.59

average_cpu_usage_percent | 10.4

net_rx_kbytes_per_second | 5.78

net_tx_kbytes_per_second | 0.88

io_read_kbytes_per_second | 0

io_written_kbytes_per_second | 650.28

-[RECORD 3]----------------+--------------------

node_name | v_myvdb_node04

end_time | 2012-03-30 17:37:00

average_memory_usage_percent | 3.59

average_cpu_usage_percent | 8.47

net_rx_kbytes_per_second | 5.41

net_tx_kbytes_per_second | 0.77

io_read_kbytes_per_second | 0

io_written_kbytes_per_second | 621.39

-[RECORD 4]----------------+--------------------

node_name | v_myvdb_node04

end_time | 2012-03-30 17:31:00

average_memory_usage_percent | 3.59

-1114-

SQL Reference Manual

average_cpu_usage_percent | 12.35

net_rx_kbytes_per_second | 5.71

net_tx_kbytes_per_second | 0.87

io_read_kbytes_per_second | 0

io_written_kbytes_per_second | 647.06

-[RECORD 5]----------------+--------------------

node_name | v_myvdb_node04

end_time | 2012-03-30 17:29:00

average_memory_usage_percent | 3.59

average_cpu_usage_percent | 8.52

net_rx_kbytes_per_second | 5.56

net_tx_kbytes_per_second | 0.81

io_read_kbytes_per_second | 0

io_written_kbytes_per_second | 631.21

...

SYSTEM_SERVICES

Provides information about background system services that the Workload Analyzer monitors.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the

requested information.

SERVICE_TYPE VARCHAR Type of service; can be one of:

 SYSTEM

 TUPLE MOVER

SERVICE_GROUP VARCHAR Group name, if there are multiple services of the
same type.

SERVICE_NAME VARCHAR Name of the service.

SERVICE_INTERVAL_SEC INTEGER How often the service is executed (in seconds)
during the history interval.

IS_ENABLED BOOLEAN Denotes if the service is enabled.

LAST_RUN_START TIMESTAMPT

Z

Denotes when the service was started last time.

LAST_RUN_END TIMESTAMPT
Z

Denotes when the service was completed last
time.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM system_services;

-[RECORD 1]--------+------------------------------

-1115-

 HP Vertica System Tables

node_name | v_myvdb_node0004

service_type | System

service_group |

service_name | Ageout Session Profiling Data

service_interval_sec | 86400

is_enabled | t

last_run_start | 2012-04-03 11:36:54.001782-04

last_run_end | 2012-04-03 11:36:54.001793-04

-[RECORD 2]--------+------------------------------

node_name | v_myvdb_node0004

service_type | System

service_group |

service_name | AgeOutEvents

service_interval_sec | 3

is_enabled | t

last_run_start | 2012-04-03 14:41:24.001538-04

last_run_end | 2012-04-03 14:41:24.001544-04

-[RECORD 3]--------+------------------------------

node_name | v_myvdb_node0004

service_type | System

service_group |

service_name | CatalogCheckpointer

service_interval_sec | 86400

is_enabled | t

last_run_start | 2012-04-03 11:36:54.001788-04

last_run_end | 2012-04-03 11:36:54.002721-04

-[RECORD 4]--------+------------------------------

node_name | v_myvdb_node0004

service_type | System

service_group |

service_name | Cluster Inviter

service_interval_sec | 2

is_enabled | t

last_run_start | 2012-04-03 14:41:25.002031-04

last_run_end | 2012-04-03 14:41:25.002671-04

-[RECORD 5]--------+------------------------------

...

=> SELECT service_type, last_run_start, last_run_end FROM system_services;

 service_type | last_run_start | last_run_end

--------------+-------------------------------+-------------------------------

 System | |

 System | 2012-03-01 08:10:05.010077-05 | 2012-03-01 08:10:05.010081-05

 System | |

 System | 2012-03-01 08:10:06.003775-05 | 2012-03-01 08:10:06.00499-05

 System | 2012-03-01 07:27:05.004958-05 | 2012-03-01 07:27:05.005376-05

 System | 2012-03-01 06:32:45.001812-05 | 2012-03-01 06:32:45.002249-05

 System | |

 System | 2012-03-01 08:10:05.006397-05 | 2012-03-01 08:10:05.006399-05

 System | 2012-03-01 06:29:05.000905-05 | 2012-03-01 06:29:05.001517-05

 System | 2012-03-01 08:10:05.006213-05 | 2012-03-01 08:10:05.006215-05

 System | 2012-03-01 08:10:05.006379-05 | 2012-03-01 08:10:05.007055-05

 System | 2012-03-01 08:10:05.009981-05 | 2012-03-01 08:10:05.009983-05

 System | 2012-03-01 08:10:05.00988-05 | 2012-03-01 08:10:05.009882-05

 Tuple Mover | 2012-03-01 08:10:05.006673-05 | 2012-03-01 08:10:05.006675-05

 Tuple Mover | 2012-03-01 08:07:05.006837-05 | 2012-03-01 08:07:05.009541-05

-1116-

SQL Reference Manual

 Tuple Mover | 2012-03-01 08:09:05.001376-05 | 2012-03-01 08:09:05.001378-05

 Tuple Mover | 2012-03-01 07:17:05.000908-05 | 2012-03-01 07:17:05.015156-05

 Tuple Mover | 2012-03-01 08:07:05.00679-05 | 2012-03-01 08:07:05.007486-05

 Tuple Mover | 2012-03-01 08:07:05.006673-05 | 2012-03-01 08:07:05.010128-05

 Tuple Mover | 2012-03-01 08:07:05.002946-05 | 2012-03-01 08:07:05.010192-05

 Tuple Mover | 2012-03-01 08:07:05.002946-05 | 2012-03-01 08:07:05.010192-05

 Tuple Mover | 2012-03-01 08:07:05.002962-05 | 2012-03-01 08:07:05.007198-05

SYSTEM_SESSIONS
Provides information about system internal session history by system task.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

USER_NAME VARCHAR Name of the user at the time HP Vertica recorded
the session.

SESSION_ID INTEGER Identifier for this session. This identifier is unique
within the cluster at any point in time but can be

reused when the session closes.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, if
any. If a session is active but no transaction has
begun, TRANSACTION_ID returns NULL.

STATEMENT_ID VARCHAR Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID and STATEMENT_ID

uniquely identifies a statement within a session.

SESSION_TYPE VARCHAR Session type. Can be one of:

 LICENSE_AUDIT

 STARTUP

 SHUTDOWN

 VSPREAD

RUNTIME_PRIORITY VARCHAR Determines the amount of run-time resources
(CPU, I/O bandwidth) the Resource Manager

should dedicate to queries already running in the
resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Queries with a HIGH run-time priority are given

more CPU and I/O resources than those with a

MEDIUM or LOW run-time priority.

DESCRIPTION VARCHAR Transaction description in this session.

-1117-

 HP Vertica System Tables

SESSION_START_TIMESTAMP TIMESTAMPT
Z

Value of session at beginning of history interval.

SESSION_END_TIMESTAMP TIMESTAMPT

Z

Value of session at end of history interval.

IS_ACTIVE BOOLEAN Denotes if the session is still running.

SESSION_DURATION_MS INTEGER Duration of the session in milliseconds.

Permissions

Must be a superuser.

Example
=> SELECT * FROM system_sessions;

-[RECORD 1]-----------+---

node_name | v_vmart_node0002

user_name | dbadmin

session_id | xxxx02.verticacorp.-23295:0x2b7

transaction_id | 49539595901220372

statement_id |

session_type | MERGEOUT

runtime_priority |

description | Txn: b0000000023614 'Mergeout: Tuple Mover'

session_start_timestamp | 2012-12-10 06:41:03.025615-05

session_end_timestamp | 2012-12-10 06:41:03.030063-05

is_active | f

session_duration_ms | 1

-[RECORD 2]-----------+---

node_name | v_vmart_node0003

user_name | dbadmin

session_id | xxxx03.verticacorp.-22620:0x2bd

transaction_id | 54043195528590868

statement_id |

session_type | MOVEOUT

runtime_priority |

description | Txn: c0000000023614 'Moveout: Tuple Mover'

session_start_timestamp | 2012-12-10 06:41:03.007496-05

session_end_timestamp | 2012-12-10 06:41:03.00844-05

is_active | f

session_duration_ms | 1

-[RECORD 3]-----------+---

node_name | v_vmart_node0001

user_name | dbadmin

session_id | xxxx01.verticacorp.-30972:0x1f3

transaction_id | 45035996273960317

statement_id |

session_type | REBALANCE_CLUSTER

runtime_priority |

description | Txn: a000000003e57d 'rebalance_cluster(background)'

session_start_timestamp | 2012-12-10 06:37:26.015479-05

session_end_timestamp | 2012-12-10 06:37:26.033779-05

is_active | f

session_duration_ms | 13

-[RECORD 4]-----------+---

...

-1118-

SQL Reference Manual

See also

CURRENT_SESSION (page 999)

SESSION_PROFILES (page 1093)

SESSIONS (page 1095)

USER_SESSIONS (page 1126)

TRANSACTIONS

Records the details of each transaction.

Column Name Data Type Description

START_TIMESTAMP TIMESTAMPT
Z

Beginning of history interval.

END_TIMESTAMP TIMESTAMPT

Z

End of history interval.

NODE_NAME VARCHAR Name of the node that is reporting the requested
information.

USER_ID INTEGER Unique numeric ID assigned by the Vertica
catalog, which identifies the user.

USER_NAME VARCHAR Name of the user for which transaction

information is listed.

SESSION_ID VARCHAR Identifier for this session. This identifier is unique
within the cluster at any point in time but can be
reused when the session closes.

TRANSACTION_ID INTEGER Identifier for the transaction within the session, if

any; otherwise NULL.

DESCRIPTION VARCHAR Textual description of the transaction.

START_EPOCH INTEGER Number of the start epoch for the transaction.

END_EPOCH INTEGER Number of the end epoch for the transaction

NUMBER_OF_STATEMENTS INTEGER Number of query statements executed in this
transaction.

ISOLATION VARCHAR Denotes the transaction mode as "READ
COMMITTED" or "SERIALIZABLE".

IS_READ_ONLY BOOLEAN Denotes "READ ONLY" transaction mode.

IS_COMMITTED BOOLEAN Determines if the transaction was committed.

False means ROLLBACK.

IS_LOCAL BOOLEAN Denotes transaction is local (non-distributed).

-1119-

 HP Vertica System Tables

IS_INITIATOR BOOLEAN Denotes if the transaction occurred on this node
(t).

IS_DDL BOOLEAN Distinguishes between a DDL transaction (t) and

non-DDL transaction (f).

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM transactions LIMIT 4;

-[RECORD 1]--------+---

start_timestamp | 2012-03-30 17:25:16.025136-04

end_timestamp | 2012-03-30 17:25:16.029179-04

node_name | v_myvdb_node0004

user_id | 45035996273704962

user_name | dbadmin

session_id | raster-s1-10295:0x389d

transaction_id | 58546795155820007

description | Txn: d0000000000de7 'RemoteNodeLocalState_RowCounts'

start_epoch | 4

end_epoch | 4

number_of_statements | 1

isolation | SERIALIZABLE

is_read_only | f

is_committed | f

is_local | t

is_initiator | t

is_ddl | f

-[RECORD 2]--------+---

start_timestamp | 2012-03-30 17:25:14.001833-04

end_timestamp | 2012-03-30 17:25:14.001915-04

node_name | v_myvdb_node0004

user_id | 45035996273704962

user_name | dbadmin

session_id | raster-s4-22870:0x3b4b

transaction_id | 58546795155820006

description | Txn: d0000000000de6 'Check LGE'

start_epoch | 4

end_epoch | 4

number_of_statements | 1

isolation | SERIALIZABLE

is_read_only | f

is_committed | f

is_local | t

is_initiator | t

is_ddl | f

-[RECORD 3]--------+---

start_timestamp | 2012-03-30 17:22:16.0105-04

end_timestamp | 2012-03-30 17:22:16.014883-04

node_name | v_myvdb_node0004

user_id | 45035996273704962

user_name | dbadmin

session_id | raster-s1-10295:0x3839

transaction_id | 58546795155819998

description | Txn: d0000000000dde 'RemoteNodeLocalState_RowCounts'

start_epoch | 4

end_epoch | 4

number_of_statements | 1

-1120-

SQL Reference Manual

isolation | SERIALIZABLE

is_read_only | f

is_committed | f

is_local | t

is_initiator | t

is_ddl | f

-[RECORD 4]--------+---

start_timestamp | 2012-03-30 17:22:10.0063-04

end_timestamp | 2012-03-30 17:22:10.006571-04

node_name | v_myvdb_node0004

user_id | 45035996273704962

user_name | dbadmin

session_id | raster-s1-10295:0x3835

transaction_id | 58546795155819997

description | Txn: d0000000000ddd 'ProjUtil::getLocalNodeLGE'

start_epoch | 4

end_epoch | 4

number_of_statements | 1

isolation | SERIALIZABLE

is_read_only | f

is_committed | f

is_local | t

is_initiator | t

is_ddl | f

See Also

Transactions in the Concepts Guide

TUNING_RECOMMENDATIONS
Returns the tuning recommendation results from the last ANALYZE_WORKLOAD() (page 443)
call. This information is useful for letting you build filters on the Workload Analyzer result set.

Column Data type Description

observation_count INTEGER Integer for the total number of events observed
for this tuning recommendation. For example, if
you see a return value of 1, WLA is making its

first tuning recommendation for the event in
'scope'.

first_observation_time TIMESTAMPT
Z

Timestamp when the event first occurred. If this
column returns a null value, the tuning

recommendation is from the current status of
the system instead of from any prior event.

last_observation_time TIMESTAMPT
Z

Timestamp when the event last occurred. If this
column returns a null value, the tuning

recommendation is from the current status of
the system instead of from any prior event.

-1121-

 HP Vertica System Tables

tuning_parameter VARCHAR Objects on which you should perform a tuning
action. For example, a return value of:

 public.t informs the DBA to run

Database Designer on table t in the
public schema

 bsmith notifies a DBA to set a

password for user bsmith

tuning_description VARCHAR Textual description of the tuning
recommendation from the Workload Analyzer to
perform on the tuning_parameter object.

Examples of some of the returned values
include, but are not limited to:

 Run database designer on table
schema.table

 Create replicated projection for table
schema.table

 Consider query-specific design on
query

 Reset configuration parameter with
SELECT

set_config_parameter('parame

ter', 'new_value')

 Re-segment projection
projection-name on high-cardinality

column(s)

 Drop the projection
projection-name

 Alter a table's partition expression

 Reorganize data in partitioned table

 Decrease the MoveOutInterval
configuration parameter setting

tuning_command VARCHAR Command string if tuning action is a SQL
command. For example, the following example

statements recommend that the DBA:

Update statistics on a particular schema's
table.column:

SELECT

 ANALYZE_STATISTICS('public.table.column');

Resolve mismatched configuration parameter
'LockTimeout':

SELECT * FROM CONFIGURATION_PARAMETERS

WHERE parameter_name = 'LockTimeout';

Set the password for user bsmith:

ALTER USER (user) IDENTIFIED BY

 ('new_password');

-1122-

SQL Reference Manual

tuning_cost VARCHAR Cost is based on the type of tuning
recommendation and is one of:

 LOW—minimal impact on resources
from running the tuning command

 MEDIUM—moderate impact on
resources from running the tuning
command

 HIGH—maximum impact on resources
from running the tuning command

Depending on the size of your database or

table, consider running high-cost operations
after hours instead of during peak load times.

Permissions

Must be a superuser.

Examples

For examples, see ANALYZE_WORKLOAD() (page 443)

See Also

Monitoring and analyzing workloads and WLA's triggering conditions and recommendations in the
Administrator's Guide

TUPLE_MOVER_OPERATIONS

Monitors the status of the Tuple Mover (TM) on each node.

Column Name Data Type Description

OPERATION_START_TIMESTAMP TIMESTAMP Start time of a Tuple Mover operation.

NODE_NAME VARCHAR Node name for which information is listed.

OPERATION_NAME VARCHAR One of the following operations:

Moveout

Mergeout

Analyze Statistics

OPERATION_STATUS VARCHAR Returns Running or an empty string to

indicate 'not running.'

TABLE_SCHEMA VARCHAR Schema name for the specified projection.

TABLE_NAME VARCHAR Table name for the specified projection

PROJECTION_NAME VARCHAR Name of the projection being processed.

PROJECTION_ID INTEGER Unique numeric ID assigned by the HP Vertica
catalog, which identifies the projection.

COLUMN_ID INTEGER Identifier for the column for the associated

-1123-

 HP Vertica System Tables

projection being processed.

EARLIEST_CONTAINER_START_

EPOCH

INTEGER Populated for mergeout, purge and
merge_partitions operations only. For an

ATM-invoked mergeout, for example, the
returned value represents the lowest epoch of
containers involved in the mergeout.

LATEST_CONTAINER_END_EPOCH INTEGER Populated for mergeout, purge and

merge_partitions operations only. For an
ATM-invoked mergeout, for example, the
returned value represents the highest epoch of

containers involved in the mergeout.

ROS_COUNT INTEGER Number of ROS containers.

TOTAL_ROS_USED_BYTES INTEGER Size in bytes of all ROS containers in the
mergeout operation. (Not applicable for other
operations.)

PLAN_TYPE VARCHAR One of the following values:

Moveout

Mergeout

Analyze

Replay Delete

SESSION_ID VARCHAR Identifier for this session. This identifier is
unique within the cluster at any point in time
but can be reused when the session closes.

IS_EXECUTING BOOLEAN Distinguishes between actively-running (t) and

completed (f) tuple mover operations.

RUNTIME_PRIORITY VARCHAR Determines the amount of run-time resources
(CPU, I/O bandwidth) the Resource Manager
should dedicate to running queries in the

resource pool. Valid values are:

 HIGH

 MEDIUM

 LOW

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Notes

Manual mergeouts are invoked using one of the following APIs:

 DO_TM_TASK (page 471)()

 PURGE (page 517)

 MERGE_PARTITIONS (page 513)

Example
=> SELECT node_name, operation_status, projection_name, plan_type

-1124-

SQL Reference Manual

 FROM TUPLE_MOVER_OPERATIONS;

 node_name | operation_status | projection_name | plan_type

-----------+------------------+------------------+-----------

 node0001 | Running | p1_b2 | Mergeout

 node0002 | Running | p1 | Mergeout

 node0001 | Running | p1_b2 | Replay Delete

 node0001 | Running | p1_b2 | Mergeout

 node0002 | Running | p1_b2 | Mergeout

 node0001 | Running | p1_b2 | Replay Delete

 node0002 | Running | p1 | Mergeout

 node0003 | Running | p1_b2 | Replay Delete

 node0001 | Running | p1 | Mergeout

 node0002 | Running | p1_b1 | Mergeout

See Also

DO_TM_TASK (page 471), MERGE_PARTITIONS (page 513), and PURGE (page 517)

Understanding the Tuple Mover and Partitioning Tables in the Administrator's Guide

UDX_FENCED_PROCESSES

Provides information about processes HP Vertica uses to run user-defined extensions in fenced
mode.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested

information.

PROCESS_TYPE VARCHAR Indicates what kind of side process this row is for
and can be one of the following values:

 UDxZygoteProcess — Master process

that creates worker side processes, as
needed, for queries. There will be, at
most, 1 UP UDxZygoteProcess for each
HP Vertica instance.

 UDxSideProcess — Indicates that the

process is a worker side process. There

could be many UDxSideProcesses,
depending on how many sessions there
are, how many queries, and so on.

SESSION_ID VARCHAR Identifier for this session. This identifier is unique
within the cluster at any point in time but can be

reused when the session closes.

LANGUAGE VARCHAR The language of the UDx. For example 'R ' or

'C++';

-1125-

 HP Vertica System Tables

PID INTEGER Linux process identifier of the side process
(UDxSideProcess).

PORT VARCHAR For HP Vertica internal use. The TCP port that

the side process is listening on.

STATUS VARCHAR Can be one of "UP" or "DOWN", depending on
whether the process is alive or not.

Note: If a process fails, HP Vertica will reap it

some time in the future, but not necessarily

immediately, so the status could appear as
"DOWN." Also, once a process fails, HP Vertica
restarts it only on demand. So after a process

failure, there could be periods of time when no
side processes are running.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> select * from udx_fenced_processes;

 node_name | process_type | session_id |

language | pid | port | status

---------------+------------------+----------------------------------+--------

--+-------+-------+--------

 v_db_node0001 | UDxZygoteProcess | |

| 3137 | 56667 | UP

 v_db_node0001 | UDxSideProcess | localhost.localdoma-3117:0x15746 | R

| 41821 | 34040 | UP

(2 rows)

USER_LIBRARIES

Lists the user libraries that are currently loaded.

Column Name Data Type Description

SCHEMA_NAME VARCHAR The name of the schema containing the library

LIB_NAME VARCHAR The name of the library

LIB_OID INTEGER The object ID of the library

OWNER_ID INTEGER The object ID of the library's owner

LIB_FILE_NAME VARCHAR The name of the shared library file

MD5_SUM VARCHAR The MD5 checksum of the library file, used to
ensure that the file was correctly copied to
each node

-1126-

SQL Reference Manual

SDK_VERSION VARCHAR The version of the HP Vertica SDK used to
compile the library.

REVISION VARCHAR The revision of the HP Vertica SDK used to

compile the library.

USER_LIBRARY_MANIFEST

Lists the User Defined Functions contained in all of the loaded user libraries.

Column Name Data Type Description

SCHEMA_NAME VARCHAR The name of the schema containing the
function.

LIB_NAME VARCHAR The name of the library containing the UDF.

LIB_OID INTEGER The object ID of the library containing the
function.

OBJ_NAME VARCHAR The name of the constructor class in the library

for a function.

OBJ_TYPE VARCHAR The type of user defined function (scalar
function, transform function)

ARG_TYPES VARCHAR A comma-delimited list of data types of the
function's parameters.

RETURN_TYPE VARCHAR A comma-delimited list of data types of the

function's return values.

USER_SESSIONS

Returns user session history on the system.

Column Name Data Type Description

NODE_NAME VARCHAR Name of the node that is reporting the requested
information.

USER_NAME VARCHAR Name of the user at the time HP Vertica recorded
the session.

SESSION_ID VARCHAR Identifier for this session. This identifier is unique

within the cluster at any point in time but can be
reused when the session closes.

-1127-

 HP Vertica System Tables

TRANSACTION_ID VARCHAR Identifier for the transaction within the session, if
any. If a session is active but no transaction has

begun, TRANSACTION_ID returns NULL.

STATEMENT_ID VARCHAR Unique numeric ID for the currently-running
statement. NULL indicates that no statement is
currently being processed. The combination of

TRANSACTION_ID and STATEMENT_ID

uniquely identifies a statement within a session.

SESSION_START_TIMESTAMP TIMESTAMPT

Z

Value of session at beginning of history interval.

SESSION_END_TIMESTAMP TIMESTAMPT
Z

Value of session at end of history interval.

IS_ACTIVE BOOLEAN Denotes if the operation is executing.

CLIENT_HOSTNAME VARCHAR IP address of the client system

CLIENT_PID INTEGER Linux process identifier of the client process that
issued this connection.

Note: The client process could be on a different

machine from the server.

CLIENT_LABEL VARCHAR User-specified label for the client connection that

can be set when using ODBC. See Label in DSN
Parameters in Programmer's Guide.

SSL_STATE VARCHAR Indicates if HP Vertica used Secure Socket
Layer (SSL) for a particular session. Possible

values are:

 None – Vertica did not use SSL.

 Server – Sever authentication was used,
so the client could authenticate the
server.

 Mutual – Both the server and the client
authenticated one another through
mutual authentication.

See Implementing Security and Implementing

SSL in the Administrator's Guide.

-1128-

SQL Reference Manual

AUTHENTICATION_METHOD VARCHAR Type of client authentication used for a particular
session, if known. Possible values are:

 Unknown

 Trust

 Reject

 Kerberos

 Password

 MD5

 LDAP

 Kerberos-GSS

 Ident

See Implementing Security and Implementing
Client Authentication.

Permissions

No explicit permissions are required; however, users see only the records that correspond to
tables they have permissions to view.

Example
=> SELECT * FROM USER_SESSIONS;

-[RECORD 2]-----------+----------------------------------

node_name | v_vmart_node0001

user_name | dbadmin

session_id | 000000.verticacorp.-30972:0x15

transaction_id |

statement_id |

session_start_timestamp | 2012-12-10 06:22:39.539826-05

session_end_timestamp | 2012-12-10 06:22:39.844873-05

is_active | f

client_hostname | 10.20.100.62:41307

client_pid | 31517

client_label |

ssl_state | None

authentication_method | Password

See also

CURRENT_SESSION (page 999)

SESSION_PROFILES (page 1093)

SESSIONS (page 1095)

SYSTEM_SESSIONS (page 1116)

Implementing Security in the Administrator's Guide

-1129-

 HP Vertica System Tables

WOS_CONTAINER_STORAGE

Monitors information about WOS storage, which is divided into regions. Each region allocates
blocks of a specific size to store rows.

Column Name Data Type Description

NODE_NAME VARCHAR The node name for which information is listed.

WOS_TYPE VARCHAR Returns one of the following:

 system – for system table queries

 user – for other user queries

WOS_ALLOCATION_REGION VARCHAR The block size allocated by region in KB. The

summary line sums the amount of memory used
by all regions.

REGION_VIRTUAL_SIZE_KB INTEGER The amount of virtual memory in use by region
in KB. Virtual size is greater than or equal to

allocated size, which is greater than or equal to
in-use size.

REGION_ALLOCATED_SIZE_KB INTEGER The amount of physical memory in use by a
particular region in KB.

REGION_IN_USE_SIZE_KB INTEGER The actual number of bytes of data stored by

the region in KB.

REGION_SMALL_RELEASE_COUNT INTEGER Internal use only.

REGION_BIG_RELEASE_COUNT INTEGER Internal use only.

EXTRA_RESERVED_BYTES INTEGER The amount of extra memory allocated to
maintain WOS sort information.

EXTRA_USED_BYTES INTEGER The amount of memory in use currently to
maintain the WOS sort information.

Notes

 The WOS allocator can use large amounts of virtual memory without assigning physical
memory.

 To see the difference between virtual size and allocated size, look at the

REGION_IN_USE_SIZE column to see if the WOS is full. The summary line tells you the
amount of memory used by the WOS, which is typically capped at one quarter of physical
memory per node.

Examples
=>\pset expanded

Expanded display is on.

=> SELECT * FROM WOS_CONTAINER_STORAGE;

-1130-

SQL Reference Manual

-[RECORD 1]--------------+---------------------------

node_name | host01

wos_type | user

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 656

region_big_release_count | 124

-[RECORD 2]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 960

region_in_use_size_kb | 0

region_small_release_count | 78

region_big_release_count | 9

-[RECORD 3]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | 64 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 64

region_in_use_size_kb | 0

region_small_release_count | 19

region_big_release_count | 0

-[RECORD 4]--------------+---------------------------

node_name | host01

wos_type | system

wos_allocation_region | Summary

region_virtual_size_kb | 2048

region_allocated_size_kb | 1024

region_in_use_size_kb | 0

region_small_release_count | 97

region_big_release_count | 9

-[RECORD 5]--------------+---------------------------

node_name | host01

wos_type | user

wos_allocation_region | Summary

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 656

region_big_release_count | 124

-[RECORD 6]--------------+---------------------------

node_name | host02

wos_type | user

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 2045408

region_allocated_size_kb | 0

region_in_use_size_kb | 0

region_small_release_count | 666

region_big_release_count | 121

-1131-

 HP Vertica System Tables

-[RECORD 7]--------------+---------------------------

node_name | host02

wos_type | system

wos_allocation_region | 16 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 960

region_in_use_size_kb | 0

region_small_release_count | 38

region_big_release_count | 2

-[RECORD 8]--------------+---------------------------

node_name | host02

wos_type | system

wos_allocation_region | 64 KB Region

region_virtual_size_kb | 1024

region_allocated_size_kb | 64

region_in_use_size_kb | 0

region_small_release_count | 10

region_big_release_count | 0

-[RECORD 9]--------------+---------------------------

...

-1132-

Appendix: Compatibility with Other RDBMS

This section describes compatibility of HP Vertica with other relational database management
systems.

Information in this appendix is intended to simplify database migration to HP Vertica.

Data Type Mappings Between Vertica and Oracle
Oracle uses proprietary data types for all main data types (for example, VARCHAR, INTEGER,
FLOAT, DATE), if you plan to migrate your database from Oracle to HP Vertica, HP strongly
recommends that you convert the schema—a simple and important exercise that can minimize
errors and time lost spent fixing erroneous data issues.

The following table compares the behavior of Oracle data types to HP Vertica data types.

Oracle Vertica Notes

NUMBER

(no explicit
precision)

INT, NUMERIC

or FLOAT
In Oracle, the NUMBER data type with no explicit precision stores
each number N as an integer M, together with a scale S. The scale
can range from -84 to 127, while the precision of M is limited to 38

digits. So N = M * 10^S.

When precision is specified, precision/scale applies to all entries in
the column. If omitted, the scale defaults to 0.

For the common case where Oracle‘s NUMBER with no explicit
precision data type is used to store only integer values, INT is the
best suited and the fastest Vertica data type. However, INT (the

same as BIGINT) is limited to a little less than 19 digits, with a scale
of 0; if the Oracle column contains integer values outside of the
range [-9223372036854775807, +9223372036854775807], use

the Vertica data type NUMERIC(p,0) where p is the maximum
number of digits required to represent the values of N.

Even though no explicit scale is specified for an Oracle NUMBER

column, Oracle allows non-integer values, each with its own scale.
If the data stored in the column is approximate, Vertica
recommends using the Vertica data type FLOAT, which is standard

IEEE floating point, like ORACLE BINARY_DOUBLE. If the data is
exact with fractional places, for example dollar amounts, Vertica
recommends NUMERIC(p,s) where p is the precision (total

number of digits) and s is the maximum scale (number of decimal

places).

Vertica conforms to standard SQL, which requires that p >= s and s
>= 0. Vertica's NUMERIC data type is most effective for p=18,
and increasingly expensive for p=37, 58, 67, etc., where p <= 1024.

Vertica recommends against using the data type NUMERIC(38,s)
as a default "failsafe" mapping to guarantee no loss of precision.

-1133-

 Appendix: Compatibility with Other RDBMS

NUMERIC(18,s) is better, and INT or FLOAT are better yet, if one
of these data types will do the job.

NUMBER (P,0),

P <= 18

INT In Oracle, when precision is specified the precision/scale applies to

all entries in the column. If omitted the scale defaults to 0. For the
Oracle NUMBER data type with 0 scale, and a precision less than
or equal to 18, use INT in Vertica.

NUMBER (P,0),

P > 18

NUMERIC (p,0) An Oracle column precision greater than 18 is often more than an

application really needs.

If all values in the Oracle column are within the INT range

[-9223372036854775807,+9223372036854775807], use INT for

best performance. Otherwise, use the Vertica data type
NUMERIC(p, 0), where p = P.

NUMBER (P,S)

all cases other
than previous 3

rows

NUMERIC (p,s)

or FLOAT

When P >= S and S >= 0, use p = P and s = S, unless the data
allows reducing P or using FLOAT as discussed above.

If S > P, use p = S, s = S. If S < 0, use p = P – S, s = 0.

NUMERIC (P,S) See notes --> Rarely used in Oracle. See notes for the NUMBER type.

DECIMAL (P,S) See notes --> DECIMAL is a synonym for NUMERIC. See notes for the NUMBER
type.

BINARY_FLOAT FLOAT Same as FLOAT(53) or DOUBLE PRECISION.

BINARY_DOUBLE FLOAT Same as FLOAT(53) or DOUBLE PRECISION.

RAW VARBINARY(RAW

)
The maximum size of RAW in Oracle is 2,000 bytes.

The maximum size of CHAR/BINARY in Vertica is 65000 bytes.

In Vertica, RAW is a synonym for VARBINARY.

LONG RAW VARBINARY(RAW

)
The maximum size of Oracle‘s LONG RAW is 2GB.

The maximum size of Vertica‘s VARBINARY is 65000 bytes.
Vertica user should exercise caution to avoid truncation during

data migration from Oracle.

CHAR(n) CHAR(n) The maximum size of CHAR in Oracle is 2,000 bytes.

The maximum size of CHAR in Vertica is 65000 bytes.

NCHAR(n) CHAR(n*3) Vertica supports national characters with CHAR(n) as
variable-length UTF8-encoded UNICODE character string. UTF-8

represents ASCII in 1 byte, most European characters in 2 bytes,
and most oriental and Middle Eastern characters in 3 bytes.

VARCHAR2(n) VARCHAR(n) The maximum size of VARCHAR2 in Oracle is 4,000 bytes.

The maximum size of VARCHAR in Vertica is 65000 .

Note: The behavior of Oracle‘s VARCHAR2 and Vertica‘s

VARCHAR is semantically different. Vertica‘s VARCHAR exhibits

standard SQL behavior, whereas Oracle‘s VARCHAR2 is not
completely consistent with standard behavior – it treats an empty
string as NULL value and uses non-padded comparison if one

operand is VARCHAR2.

NVARCHAR2 (n) VARCHAR(n*3) See notes for NCHAR().

-1134-

SQL Reference Manual

DATE TIMESTAMP or

possibly DATE

Oracle‘s DATE is different from the SQL standard DATE data type
implemented by Vertica. Oracle‘s DATE includes the time (no

fractional seconds), while Vertica DATE type includes only date
per SQL specification.

TIMESTAMP TIMESTAMP TIMESTAMP defaults to six places, that is, to microseconds

TIMESTAMP WITH

TIME ZONE

TIMESTAMP

WITH

TIME ZONE

TIME ZONE defaults to the currently SET or system time zone.

INTERVAL YEAR

TO MONTH

INTERVAL YEAR

TO MONTH

Per the SQL standard, INTERVAL can be qualified with YEAR TO
MONTH sub-type in Vertica.

INTERVAL DAY

TO SECOND

INTERVAL DAY

TO SECOND

In Vertica, DAY TO SECOND is the default sub-type for
INTERVAL.

-1135-

Copyright Notice

Copyright© 2006-2013 Hewlett-Packard, and its licensors. All rights reserved.

Hewlett-Packard

150 CambridgePark Drive

Cambridge, MA 02140

Phone: +1 617 386 4400

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Hewlett-Packard software contains
proprietary information, as well as trade secrets of Hewlett-Packard, and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

HP Vertica™, the HP Vertica Analytics Platform™, and FlexStore™ are tra demarks of Hewlett-Packard.

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

http://www.vertica.com/

-1136-

SQL Reference Manual

Information on third-party software used in HP Vertica, including details on open-source software,
is available in the guide Third-Party Software Acknowledgements.

	Syntax Conventions
	SQL Overview
	System Limits
	SQL Language Elements
	Keywords and Reserved Words
	Keywords
	Reserved Words

	Identifiers
	Literals
	Number-type Literals
	String Literals
	Character String Literals
	Dollar-quoted String Literals
	Unicode String Literals
	VARBINARY String Literals
	Extended String Literals

	Date/Time Literals
	Time Zone Values
	Day of the Week Names
	Month Names
	Interval Values
	interval-literal
	interval-qualifier

	Operators
	Binary Operators
	Boolean Operators
	Comparison Operators
	Data Type Coercion Operators (CAST)
	Date/Time Operators
	Mathematical Operators
	NULL Operators
	String Concatenation Operators

	Expressions
	Aggregate Expressions
	CASE Expressions
	Column References
	Comments
	Date/Time Expressions
	NULL Value
	Numeric Expressions

	Predicates
	BETWEEN-predicate
	Boolean-predicate
	column-value-predicate
	IN-predicate
	INTERPOLATE
	join-predicate
	LIKE-predicate
	NULL-predicate

	SQL Data Types
	Binary Data Types
	Boolean Data Type
	Character Data Types
	Date/Time Data Types
	DATE
	DATETIME
	INTERVAL
	Displaying or omitting interval units in output
	Specifying units on input
	How the interval-qualifier affects output units
	Specifying precision
	Casting with intervals
	Processing signed intervals
	Processing interval-literals without units
	Using INTERVALYM for INTERVAL YEAR TO MONTH
	Operations with intervals
	Fractional seconds in interval units
	interval-literal
	interval-qualifier

	SMALLDATETIME
	TIME
	TIME AT TIME ZONE

	TIMESTAMP
	TIMESTAMP AT TIME ZONE

	Numeric Data Types
	DOUBLE PRECISION (FLOAT)
	INTEGER
	NUMERIC
	Numeric data type overflow

	Data Type Coercion
	Data Type Coercion Chart

	SQL Functions
	Aggregate Functions
	AVG [Aggregate]
	BIT_AND
	BIT_OR
	BIT_XOR
	CORR
	COUNT [Aggregate]
	COVAR_POP
	COVAR_SAMP
	MAX [Aggregate]
	MIN [Aggregate]
	REGR_AVGX
	REGR_AVGY
	REGR_COUNT
	REGR_INTERCEPT
	REGR_R2
	REGR_SLOPE
	REGR_SXX
	REGR_SXY
	REGR_SYY
	STDDEV [Aggregate]
	STDDEV_POP [Aggregate]
	STDDEV_SAMP [Aggregate]
	SUM [Aggregate]
	SUM_FLOAT [Aggregate]
	VAR_POP [Aggregate]
	VAR_SAMP [Aggregate]
	VARIANCE [Aggregate]

	Analytic Functions
	window_partition_clause
	window_order_clause
	window_frame_clause
	named_windows
	AVG [Analytic]
	CONDITIONAL_CHANGE_EVENT [Analytic]
	CONDITIONAL_TRUE_EVENT [Analytic]
	COUNT [Analytic]
	CUME_DIST [Analytic]
	DENSE_RANK [Analytic]
	EXPONENTIAL_MOVING_AVERAGE [Analytic]
	FIRST_VALUE [Analytic]
	LAG [Analytic]
	LAST_VALUE [Analytic]
	LEAD [Analytic]
	MAX [Analytic]
	MEDIAN [Analytic]
	MIN [Analytic]
	NTILE [Analytic]
	PERCENT_RANK [Analytic]
	PERCENTILE_CONT [Analytic]
	PERCENTILE_DISC [Analytic]
	RANK [Analytic]
	ROW_NUMBER [Analytic]
	STDDEV [Analytic]
	STDDEV_POP [Analytic]
	STDDEV_SAMP [Analytic]
	SUM [Analytic]
	VAR_POP [Analytic]
	VAR_SAMP [Analytic]
	VARIANCE [Analytic]

	Date/Time Functions
	ADD_MONTHS
	AGE_IN_MONTHS
	AGE_IN_YEARS
	CLOCK_TIMESTAMP
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DATE_PART
	DATE
	DATE_TRUNC
	DATEDIFF
	DAY
	DAYOFMONTH
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	EXTRACT
	GETDATE
	GETUTCDATE
	HOUR
	ISFINITE
	JULIAN_DAY
	LAST_DAY
	LOCALTIME
	LOCALTIMESTAMP
	MICROSECOND
	MIDNIGHT_SECONDS
	MINUTE
	MONTH
	MONTHS_BETWEEN
	NEW_TIME
	NEXT_DAY
	NOW [Date/Time]
	OVERLAPS
	QUARTER
	ROUND [Date/Time]
	SECOND
	STATEMENT_TIMESTAMP
	SYSDATE
	TIME_SLICE
	TIMEOFDAY
	TIMESTAMPADD
	TIMESTAMPDIFF
	TIMESTAMP_ROUND
	TIMESTAMP_TRUNC
	TRANSACTION_TIMESTAMP
	TRUNC [Date/Time]
	WEEK
	WEEK_ISO
	YEAR
	YEAR_ISO

	Formatting Functions
	TO_BITSTRING
	TO_CHAR
	TO_DATE
	TO_HEX
	TO_TIMESTAMP
	TO_TIMESTAMP_TZ
	TO_NUMBER
	Template Patterns for Date/Time Formatting
	Template Pattern Modifiers for Date/Time Formatting

	Template Patterns for Numeric Formatting

	Geospatial Package SQL Functions
	Geospatial SQL Functions
	BB_WITHIN
	BEARING
	CHORD_TO_ARC
	DWITHIN
	ECEF_CHORD
	ECEF_x
	ECEF_y
	ECEF_z
	ISLEFT
	KM2MILES
	LAT_WITHIN
	LL_WITHIN
	LLD_WITHIN
	LON_WITHIN
	MILES2KM
	RADIUS_LON
	RADIUS_M
	RADIUS_N
	RADIUS_R
	RADIUS_Ra
	RADIUS_Rc
	RADIUS_Rv
	RADIUS_SI
	RAYCROSSING
	WGS84_a
	WGS84_b
	WGS84_e2
	WGS84_f
	WGS84_if
	WGS84_r1

	IP Conversion Functions
	INET_ATON
	INET_NTOA
	V6_ATON
	V6_NTOA
	V6_SUBNETA
	V6_SUBNETN
	V6_TYPE

	Mathematical Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CBRT
	CEILING (CEIL)
	COS
	COT
	DEGREES
	DISTANCE
	DISTANCEV
	EXP
	FLOOR
	HASH
	LN
	LOG
	MOD
	MODULARHASH
	PI
	POWER (or POW)
	RADIANS
	RANDOM
	RANDOMINT
	ROUND
	SIGN
	SIN
	SQRT
	TAN
	TRUNC
	WIDTH_BUCKET

	NULL-handling Functions
	COALESCE
	IFNULL
	ISNULL
	NULLIF
	NULLIFZERO
	NVL
	NVL2
	ZEROIFNULL

	Pattern Matching Functions
	EVENT_NAME
	MATCH_ID
	PATTERN_ID

	Regular Expression Functions
	ISUTF8
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_REPLACE
	REGEXP_SUBSTR

	Sequence Functions
	NEXTVAL
	CURRVAL
	LAST_INSERT_ID

	String Functions
	ASCII
	BIT_LENGTH
	BITCOUNT
	BITSTRING_TO_BINARY
	BTRIM
	CHARACTER_LENGTH
	CHR
	CONCAT
	DECODE
	GREATEST
	GREATESTB
	HEX_TO_BINARY
	HEX_TO_INTEGER
	INET_ATON
	INET_NTOA
	INITCAP
	INITCAPB
	INSERT
	INSTR
	INSTRB
	ISUTF8
	LEAST
	LEASTB
	LEFT
	LENGTH
	LOWER
	LOWERB
	LPAD
	LTRIM
	MD5
	OCTET_LENGTH
	OVERLAY
	OVERLAYB
	POSITION
	POSITIONB
	QUOTE_IDENT
	QUOTE_LITERAL
	REPEAT
	REPLACE
	RIGHT
	RPAD
	RTRIM
	SPACE
	SPLIT_PART
	SPLIT_PARTB
	STRPOS
	STRPOSB
	SUBSTR
	SUBSTRB
	SUBSTRING
	TO_BITSTRING
	TO_HEX
	TRANSLATE
	TRIM
	UPPER
	UPPERB
	V6_ATON
	V6_NTOA
	V6_SUBNETA
	V6_SUBNETN
	V6_TYPE

	System Information Functions
	CURRENT_DATABASE
	CURRENT_SCHEMA
	CURRENT_USER
	DBNAME (function)
	HAS_TABLE_PRIVILEGE
	SESSION_USER
	USER
	USERNAME
	VERSION

	Timeseries Functions
	TS_FIRST_VALUE
	TS_LAST_VALUE

	URI Encode/Decode Functions
	URI_PERCENT_DECODE
	URI_PERCENT_ENCODE

	HP Vertica Meta-functions
	Alphabetical List of HP Vertica Meta-functions
	ADD_LOCATION
	ADVANCE_EPOCH
	ALTER_LOCATION_USE
	ALTER_LOCATION_LABEL
	ANALYZE_CONSTRAINTS
	ANALYZE_HISTOGRAM
	ANALYZE_STATISTICS
	ANALYZE_WORKLOAD
	AUDIT
	AUDIT_LICENSE_SIZE
	AUDIT_LICENSE_TERM
	CANCEL_REBALANCE_CLUSTER
	CANCEL_REFRESH
	CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY
	CHANGE_RUNTIME_PRIORITY
	CLEAR_CACHES
	CLEAR_DATA_COLLECTOR
	CLEAR_PROFILING
	CLEAR_PROJECTION_REFRESHES
	CLEAR_RESOURCE_REJECTIONS
	CLEAR_OBJECT_STORAGE_POLICY
	CLOSE_SESSION
	CLOSE_ALL_SESSIONS
	CURRENT_SCHEMA
	DATA_COLLECTOR_HELP
	DISABLE_DUPLICATE_KEY_ERROR
	DISABLE_ELASTIC_CLUSTER
	DISABLE_LOCAL_SEGMENTS
	DISABLE_PROFILING
	DISPLAY_LICENSE
	DO_TM_TASK
	DROP_LOCATION
	DROP_PARTITION
	DROP_STATISTICS
	DUMP_CATALOG
	DUMP_LOCKTABLE
	DUMP_PARTITION_KEYS
	DUMP_PROJECTION_PARTITION_KEYS
	DUMP_TABLE_PARTITION_KEYS
	ENABLE_ELASTIC_CLUSTER
	ENABLE_LOCAL_SEGMENTS
	ENABLE_PROFILING
	EVALUATE_DELETE_PERFORMANCE
	EXPORT_CATALOG
	EXPORT_OBJECTS
	EXPORT_STATISTICS
	EXPORT_TABLES
	FLUSH_DATA_COLLECTOR
	GET_AHM_EPOCH
	GET_AHM_TIME
	GET_COMPLIANCE_STATUS
	GET_AUDIT_TIME
	GET_CURRENT_EPOCH
	GET_DATA_COLLECTOR_POLICY
	GET_LAST_GOOD_EPOCH
	GET_NUM_ACCEPTED_ROWS
	GET_NUM_REJECTED_ROWS
	GET_PROJECTION_STATUS
	GET_PROJECTIONS, GET_TABLE_PROJECTIONS
	HAS_ROLE
	IMPORT_STATISTICS
	INTERRUPT_STATEMENT
	INSTALL_LICENSE
	LAST_INSERT_ID
	MAKE_AHM_NOW
	MARK_DESIGN_KSAFE
	MEASURE_LOCATION_PERFORMANCE
	MERGE_PARTITIONS
	MOVE_PARTITIONS_TO_TABLE
	PARTITION_PROJECTION
	PARTITION_TABLE
	PURGE
	PURGE_PARTITION
	PURGE_PROJECTION
	PURGE_TABLE
	REBALANCE_CLUSTER
	REENABLE_DUPLICATE_KEY_ERROR
	REFRESH
	RESTORE_LOCATION
	RETIRE_LOCATION
	SET_AHM_EPOCH
	SET_AHM_TIME
	SET_AUDIT_TIME
	SET_DATA_COLLECTOR_POLICY
	SET_LOCATION_PERFORMANCE
	SET_LOGLEVEL
	SET_SCALING_FACTOR
	SET_OBJECT_STORAGE_POLICY
	SHUTDOWN
	SLEEP
	START_REBALANCE_CLUSTER
	START_REFRESH

	Catalog Management Functions
	DUMP_CATALOG
	EXPORT_CATALOG
	EXPORT_OBJECTS
	INSTALL_LICENSE
	MARK_DESIGN_KSAFE

	Cluster Scaling Functions
	CANCEL_REBALANCE_CLUSTER
	DISABLE_ELASTIC_CLUSTER
	DISABLE_LOCAL_SEGMENTS
	ENABLE_ELASTIC_CLUSTER
	ENABLE_LOCAL_SEGMENTS
	REBALANCE_CLUSTER
	SET_SCALING_FACTOR
	START_REBALANCE_CLUSTER

	Constraint Management Functions
	ANALYZE_CONSTRAINTS
	DISABLE_DUPLICATE_KEY_ERROR
	LAST_INSERT_ID
	REENABLE_DUPLICATE_KEY_ERROR

	Data Collector Functions
	CLEAR_DATA_COLLECTOR
	DATA_COLLECTOR_HELP
	FLUSH_DATA_COLLECTOR
	GET_DATA_COLLECTOR_POLICY
	SET_DATA_COLLECTOR_POLICY

	Database Management Functions
	CLEAR_RESOURCE_REJECTIONS
	DUMP_LOCKTABLE
	DUMP_PARTITION_KEYS
	EXPORT_TABLES
	HAS_ROLE
	SET_CONFIG_PARAMETER
	SET_LOGLEVEL
	SHUTDOWN

	Epoch Management Functions
	ADVANCE_EPOCH
	GET_AHM_EPOCH
	GET_AHM_TIME
	GET_CURRENT_EPOCH
	GET_LAST_GOOD_EPOCH
	MAKE_AHM_NOW
	SET_AHM_EPOCH
	SET_AHM_TIME

	License Management Functions
	AUDIT
	AUDIT_LICENSE_SIZE
	AUDIT_LICENSE_TERM
	GET_AUDIT_TIME
	GET_COMPLIANCE_STATUS
	DISPLAY_LICENSE
	SET_AUDIT_TIME

	Partition Management Functions
	DROP_PARTITION
	DUMP_PROJECTION_PARTITION_KEYS
	DUMP_TABLE_PARTITION_KEYS
	MERGE_PARTITIONS
	MOVE_PARTITIONS_TO_TABLE
	PARTITION_PROJECTION
	PARTITION_TABLE
	PURGE_PARTITION

	Profiling Functions
	CLEAR_PROFILING
	DISABLE_PROFILING
	ENABLE_PROFILING

	Projection Management Functions
	EVALUATE_DELETE_PERFORMANCE
	GET_PROJECTION_STATUS
	GET_PROJECTIONS, GET_TABLE_PROJECTIONS
	REFRESH
	START_REFRESH

	Purge Functions
	PURGE
	PURGE_PARTITION
	PURGE_PROJECTION
	PURGE_TABLE

	Session Management Functions
	CANCEL_REFRESH
	CLOSE_ALL_SESSIONS
	CLOSE_SESSION
	GET_NUM_ACCEPTED_ROWS
	GET_NUM_REJECTED_ROWS
	INTERRUPT_STATEMENT

	Statistic Management Functions
	ANALYZE_HISTOGRAM
	ANALYZE_STATISTICS
	DROP_STATISTICS
	EXPORT_STATISTICS
	IMPORT_STATISTICS

	Storage Management Functions
	ADD_LOCATION
	ALTER_LOCATION_USE
	ALTER_LOCATION_LABEL
	CLEAR_OBJECT_STORAGE_POLICY
	DROP_LOCATION
	MEASURE_LOCATION_PERFORMANCE
	RESTORE_LOCATION
	RETIRE_LOCATION
	SET_LOCATION_PERFORMANCE
	SET_OBJECT_STORAGE_POLICY

	Tuple Mover Functions
	DO_TM_TASK

	Workload Management Functions
	ANALYZE_WORKLOAD
	CHANGE_CURRENT_STATEMENT_RUNTIME_PRIORITY
	CHANGE_RUNTIME_PRIORITY
	CLEAR_CACHES
	SLEEP

	SQL Statements
	ALTER FUNCTION
	ALTER LIBRARY
	ALTER PROJECTION RENAME
	ALTER NETWORK INTERFACE
	ALTER PROFILE
	ALTER PROFILE RENAME
	ALTER RESOURCE POOL
	ALTER ROLE RENAME
	ALTER SCHEMA
	ALTER SEQUENCE
	ALTER SUBNET
	ALTER TABLE
	table-constraint

	ALTER USER
	ALTER VIEW
	BEGIN
	COMMENT ON Statements
	COMMENT ON COLUMN
	COMMENT ON CONSTRAINT
	COMMENT ON FUNCTION
	COMMENT ON LIBRARY
	COMMENT ON NODE
	COMMENT ON PROJECTION
	COMMENT ON SCHEMA
	COMMENT ON SEQUENCE
	COMMENT ON TABLE
	COMMENT ON TRANSFORM FUNCTION
	COMMENT ON VIEW

	COMMIT
	CONNECT
	COPY
	Parameters
	COPY Option Summary
	Notes
	Examples
	See Also

	COPY LOCAL
	COPY FROM VERTICA
	CREATE EXTERNAL TABLE AS COPY
	CREATE FUNCTION Statements
	CREATE AGGREGATE FUNCTION
	CREATE ANALYTIC FUNCTION
	CREATE FILTER
	CREATE FUNCTION (SQL Functions)
	CREATE FUNCTION (UDF)
	CREATE PARSER
	CREATE SOURCE
	CREATE TRANSFORM FUNCTION

	CREATE LIBRARY
	CREATE NETWORK INTERFACE
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE PROJECTION
	encoding-type
	hash-segmentation-clause
	range-segmentation-clause

	CREATE RESOURCE POOL
	Built-in Pools
	Built-in Pool Configuration

	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE SUBNET
	CREATE TABLE
	column-definition (table)
	column-name-list (table)
	column-constraint
	table-constraint
	hash-segmentation-clause (table)
	range-segmentation-clause (table)

	CREATE TEMPORARY TABLE
	column-definition (temp table)
	column-name-list (temp table)
	hash-segmentation-clause (temp table)
	range-segmentation-clause (temp table)

	CREATE USER
	CREATE VIEW
	DELETE
	DISCONNECT
	DROP AGGREGATE FUNCTION
	DROP FUNCTION
	DROP SOURCE
	DROP FILTER
	DROP PARSER

	DROP LIBRARY
	DROP NETWORK INTERFACE
	DROP PROCEDURE
	DROP PROFILE
	DROP PROJECTION
	DROP RESOURCE POOL
	DROP ROLE
	DROP SCHEMA
	DROP SEQUENCE
	DROP SUBNET
	DROP TABLE
	DROP TRANSFORM FUNCTION
	DROP USER
	DROP VIEW
	END
	EXPLAIN
	EXPORT TO VERTICA
	GRANT Statements
	GRANT (Database)
	GRANT (Procedure)
	GRANT (Resource Pool)
	GRANT (Role)
	GRANT (Schema)
	GRANT (Sequence)
	GRANT (Storage Location)
	GRANT (Table)
	GRANT (User Defined Extension)
	GRANT (View)

	INSERT
	MERGE
	PROFILE
	RELEASE SAVEPOINT
	REVOKE Statements
	REVOKE (Database)
	REVOKE (Procedure)
	REVOKE (Resource Pool)
	REVOKE (Role)
	REVOKE (Schema)
	REVOKE (Sequence)
	REVOKE (Storage Location)
	REVOKE (Table)
	REVOKE (User Defined Extension)
	REVOKE (View)

	ROLLBACK
	SAVEPOINT
	ROLLBACK TO SAVEPOINT
	SELECT
	EXCEPT Clause
	FROM Clause
	table-reference
	table-primary
	joined-table

	GROUP BY Clause
	HAVING Clause
	INTERSECT Clause
	INTO Clause
	LIMIT Clause
	MATCH Clause
	MINUS Clause
	OFFSET Clause
	ORDER BY Clause
	TIMESERIES Clause
	UNION Clause
	WHERE Clause
	WINDOW Clause
	WITH Clause

	SET DATESTYLE
	SET ESCAPE_STRING_WARNING
	SET INTERVALSTYLE
	SET LOCALE
	SET ROLE
	SET SEARCH_PATH
	SET SESSION AUTOCOMMIT
	SET SESSION CHARACTERISTICS
	SET SESSION MEMORYCAP
	SET SESSION RESOURCE_POOL
	SET SESSION RUNTIMECAP
	SET SESSION TEMPSPACECAP
	SET STANDARD_CONFORMING_STRINGS
	SET TIME ZONE
	Time Zone Names for Setting TIME ZONE

	SHOW
	START TRANSACTION
	TRUNCATE TABLE
	UPDATE

	HP Vertica System Tables
	V_CATALOG Schema
	ALL_TABLES
	COLUMNS
	COMMENTS
	CONSTRAINT_COLUMNS
	DATABASES
	DUAL
	ELASTIC_CLUSTER
	EPOCHS
	FOREIGN_KEYS
	GRANTS
	LICENSE_AUDITS
	NODES
	ODBC_COLUMNS
	PASSWORDS
	PRIMARY_KEYS
	PROFILE_PARAMETERS
	PROFILES
	PROJECTION_CHECKPOINT_EPOCHS
	PROJECTION_COLUMNS
	PROJECTION_DELETE_CONCERNS
	PROJECTIONS
	RESOURCE_POOL_DEFAULTS
	RESOURCE_POOLS
	ROLES
	SCHEMATA
	SEQUENCES
	STORAGE_LOCATIONS
	SYSTEM_COLUMNS
	SYSTEM_TABLES
	TABLE_CONSTRAINTS
	TABLES
	TYPES
	USER_AUDITS
	USER_FUNCTIONS
	USER_PROCEDURES
	USERS
	VIEW_COLUMNS
	VIEWS

	V_MONITOR Schema
	ACTIVE_EVENTS
	COLUMN_STORAGE
	CONFIGURATION_CHANGES
	CONFIGURATION_PARAMETERS
	CPU_USAGE
	CRITICAL_HOSTS
	CRITICAL_NODES
	CURRENT_SESSION
	DATA_COLLECTOR
	DATABASE_BACKUPS
	DATABASE_CONNECTIONS
	DATABASE_SNAPSHOTS
	DELETE_VECTORS
	DEPLOY_STATUS
	DESIGN_STATUS
	DISK_RESOURCE_REJECTIONS
	DISK_STORAGE
	ERROR_MESSAGES
	EVENT_CONFIGURATIONS
	EXECUTION_ENGINE_PROFILES
	HOST_RESOURCES
	IO_USAGE
	LOAD_STREAMS
	LOCK_USAGE
	LOCKS
	LOGIN_FAILURES
	MEMORY_USAGE
	MONITORING_EVENTS
	NETWORK_INTERFACES
	NETWORK_USAGE
	NODE_RESOURCES
	NODE_STATES
	PARTITION_REORGANIZE_ERRORS
	PARTITION_STATUS
	PARTITIONS
	PROCESS_SIGNALS
	PROJECTION_RECOVERIES
	PROJECTION_REFRESHES
	PROJECTION_STORAGE
	PROJECTION_USAGE
	QUERY_EVENTS
	QUERY_METRICS
	QUERY_PLAN_PROFILES
	QUERY_PROFILES
	QUERY_REQUESTS
	REBALANCE_PROJECTION_STATUS
	REBALANCE_TABLE_STATUS
	RECOVERY_STATUS
	RESOURCE_ACQUISITIONS
	RESOURCE_POOL_STATUS
	RESOURCE_QUEUES
	RESOURCE_REJECTION_DETAILS
	RESOURCE_REJECTIONS
	RESOURCE_USAGE
	SESSION_PROFILES
	SESSIONS
	STORAGE_CONTAINERS
	STORAGE_POLICIES
	STORAGE_TIERS
	STORAGE_USAGE
	STRATA
	STRATA_STRUCTURES
	SYSTEM
	SYSTEM_RESOURCE_USAGE
	SYSTEM_SERVICES
	SYSTEM_SESSIONS
	TRANSACTIONS
	TUNING_RECOMMENDATIONS
	TUPLE_MOVER_OPERATIONS
	UDX_FENCED_PROCESSES
	USER_LIBRARIES
	USER_LIBRARY_MANIFEST
	USER_SESSIONS
	WOS_CONTAINER_STORAGE

	Appendix: Compatibility with Other RDBMS
	Data Type Mappings Between Vertica and Oracle

	Copyright Notice

