

HP Vertica Analytics Platform 6.1.x

Concepts Guide
Doc Revision 3

Copyright© 2006-2013 Hewlett-Packard

Date of Publication: Monday, October 28, 2013

-ii-

Contents

Concepts Guide 4

Syntax Conventions 5

The HP Vertica Approach 6

HP Vertica Components 9

Column Store Architecture with FlexStore ...10
Architecture of the HP Vert ica Cluster..12
Data Encoding and Compression..13
High Availability and Recovery ...14
High Availability Through Pro jections..15
Hybrid Storage Model ..18
Logical Schema..20
Physical Schema ..21

How Pro jections are Created ..21
Anatomy of a Projection ..22
Projection Concepts..23
Projection Performance..23
Projection Segmentation..25
Projection Naming ..25

Database Setup...27
Database Connections...29
The Administration Tools ..30
Management Console ...32

Management Console Architecture ...33
Management Console Security ...34
Management Console Home Page ...36

-iii-

 Contents

The Database Designer ...37
K-Safety ..37
Database Security ..43
Data Loading and Modification ..44
Workload Management ..44

SQL Overview 46

About Query Execution 47

Transactions 49

Automatic Rollback ..50
Savepoints...50
READ COMMITTED Isolation..51
SERIALIZABLE Isolation ..52

International Languages and Character Sets 54

Unicode Character Encoding...54
Locales...54
String Functions...54
Character String Literals ..55

Extending HP Vertica 56

User-Defined SQL Functions ..56
User Defined Extensions and User Defined Functions...56

Get Started 57

Copyright Notice 58

-4-

Concepts Guide

Welcome to the HP Vertica Analytics Platform Concepts Guide. This guide introduces the basic
concepts that get you started in effectively designing, building, operating, and maintaining a
Vertica database.

Prerequisites

The Concepts Guide assumes that you are familiar with the basic concepts and terminology of
relational database management systems and SQL.

-5-

 5

Syntax Conventions

The following are the syntax conventions used in the HP Vertica documentation.

Syntax Convention Description

Text without brackets/braces Indicates content you type, as shown.

< Text inside angle brackets > Represents a placeholder for which you must supply a value. The
variable is usually shown in italics. See Placeholders below.

[Text inside brackets] Indicates optional items; for example, CREATE TABLE
[schema_name.]table_name

The brackets indicate that the schema_name is optional. Do not type

the square brackets.

{ Text inside braces } Indicates a set of options from which you choose one; for example:

QUOTES { ON | OFF } indicates that exactly one of ON or OFF must

be provided. You do not type the braces: QUOTES ON

Backslash \ Represents a continuation character used to indicate text that is too

long to fit on a single line.

Ellipses ... Indicate a repetition of the previous parameter. For example,
option[,...] means that you can enter multiple,

comma-separated options.

Showing ellipses in code examples might also mean that part of the

text has been omitted for readability, such as in multi-row result sets.

 Indentation Is an attempt to maximize readability; SQL is a free-form language.

Placeholders Represent items that must be replaced with appropriate identifiers or
expressions and are usually shown in italics.

Vertical bar | Is a separator for mutually exclusive items. For example: [ASC |

DESC]

Choose one or neither. You do not type the square brackets.

-6-

The HP Vertica Approach

HP Vertica is built from the Ground Up on the 4 C’s:

Column storage

Stores data the way it is typically queried for best performance. Column storage is ideal for
read-intensive workloads because it can dramatically reduce disk I/O.

Compression

Stores more data, provides more views, and uses less hardware, which lets you keep much more
historical data in physical storage.

 When similar data is grouped, you have even more compression options

 HP Vertica applies over twelve compression schemas

-7-

 The HP Vertica Approach

 Dependent on data

 System chooses which to apply

 NULLs take virtually no space

 Typically see 50% - 90% compression

 HP Vertica queries data in encoded form

Clustering

Lets you scale out your database cluster easily by adding more hardware.

 Columns are duplicated across cluster nodes. If one machine goes down, you still have a
copy:

 Data warehouse log based recovery is impractical

 Instead, store enough projections for K-safety

 New cluster node queries existing nodes for the data it needs

 Rebuilds missing objects from other nodes

 Another benefit of multiple sort orders

Continuous performance

Queries and loads data 24x7 with virtually no database administration.

 Concurrent loading and querying means that you get real-time views and eliminate nightly load
windows.

 On-the-fly schema changes mean that you can add columns and projections without database
downtime.

 Automatic data replication, failover, and recovery provides for active redundancy, which
increases performance. Nodes recover automatically by querying the system.

-8-

Concepts Guide

-9-

HP Vertica Components

This section describes the unique components that make up HP Vertica.

-10-

 10

Column Store Architecture with FlexStore

Traditionally databases were designed for OLTP and used a row-store architecture. To process a
query, a row store reads all of the columns in all of the tables named in the query, regardless of
how wide the tables might be or how many columns are actually needed. Often, analytic queries
access only two or three columns from tables containing up to several hundred columns, resulting
in a lot of unnecessary data retrieval.

Unlike other RDBMS, HP Vertica reads the columns from database objects called projections,
which are described in the Physical Schema (page 21) section of this guide. No resources are
wasted by reading large numbers of unused columns. Every byte of data is used by the execution
engine. For example, consider this simple two-table schema:

Suppose you want to run this query:

SELECT A, C, N

FROM Table1 JOIN Table2

ON H = J;

A row store must read 16 columns (A through H and J through Q) from physical storage for each
record in the result set. A column store with a query-specific projection reads only three columns:
A, C, and N.

How FlexStore™ enhances your column-based architecture

FlexStore™ is a combination of physical design, database storage, and query execution
techniques that HP Vertica applies to the database to optimize it for the analytic workload supports
at the time. These techniques include:

 Column grouping. Refers to a technique for storing column data together to optimize I/O

during query processing. Such groupings can be advantageous for correlated columns and for
columns that are always accessed together for projecting, but not for filtering or joining.
Grouped columns also benefit from special compression and retrieval techniques. An example
might be bid and ask prices in a TickStore database. Column grouping is described in the
CREATE PROJECTION statement's GROUPED clause.

 Intelligent disk use. Allows optimizing performance to place frequently-needed disk

resources onto faster media. This includes mixing solid-state and rotating "disk" storage in the
database nodes. You can prioritize disk use for:

 data versus temporary storage

 storage for columns in a projection

-11-

 HP Vertica Components

See Working With Storage Locations in the Administrator's Guide for details.

 Fast deletes. Refers to projection design techniques to speed up delete processing, together

with the function EVALUATE_DELETE_PERFORMANCE() to help identify potential delete
problems. See Optimizing Deletes and Updates for Performance in the Administrator's Guide
for details.

-12-

 12

Architecture of the HP Vertica Cluster

Terminology

In HP Vertica, the physical architecture is designed to distribute physical storage and to allow
parallel query execution over a potentially large collection of computing resources.

The most important terms to understand are host, instance, node, cluster, and database:

Host — A computer system with a 32-bit (non-production use only) or 64-bit Intel or AMD

processor, RAM, hard disk, and TCP/IP network interface (IP address and hostname). Hosts
share neither disk space nor main memory with each other.

Instance — An instance of HP Vertica consists of the running HP Vertica process and disk

storage (catalog and data) on a host. Only one instance of HP Vertica can be running on a host at
any time.

Node — A host configured to run an instance of HP Vertica. It is a member of a database cluster.

For a database to have the ability to recover from the failure of a node requires at least three
nodes. HP recommends that you use a minimum of four nodes.

Cluster — Refers a collection of hosts (nodes) bound to a database. A cluster is not part of a

database definition and does not have a name.

Database — A cluster of nodes that, when active, can perform distributed data storage and SQL

statement execution through administrative, interactive, and programmatic user interfaces.

-13-

 13

Data Encoding and Compression

Encoding

The process of converting data into a standard format. In HP Vertica, encoded data can be
processed directly, which distinguishes it from compression. HP Vertica uses a number of different
encoding strategies, depending on column data type, table cardinality, and sort order.

The query executor in HP Vertica operates on the encoded data representation whenever
possible to avoid the cost of decoding. It also passes encoded values to other operations, saving
memory bandwidth. In contrast, row stores and most other column stores typically decode data
elements before performing any operation.

Compression

The process of transforming data into a compact format. Compressed data cannot be directly
processed; it must first be decompressed. HP Vertica uses integer packing for unencoded
integers and LZO for compressible data. Although compression is generally considered to be a
form of encoding, the terms have different meanings in HP Vertica.

The size of a database is often limited by the availability of storage resources. Typically, when a
database exceeds its size limitations, the administrator archives data that is older than a specific
historical threshold.

The extensive use of compression allows a column store to occupy substantially less storage than
a row store. In a column store, every value stored in a column of a projection has the same data
type. This greatly facilitates compression, particularly in sorted columns. In a row store, each
value of a row can have a different data type, resulting in a much less effective use of
compression.

HP Vertica's efficient storage allows the database administrator to keep much more historical data
in physical storage. In other words, the archiving threshold can be set to a much earlier date than
in a less efficient store.

-14-

 14

High Availability and Recovery

HP Vertica's unique approach to failure recovery is based on the distributed nature of a database.
An HP Vertica database is said to be K-safe if any node can fail at any given time without causing
the database to shut down. When the lost node comes back online and rejoins the database, it
recovers its lost objects by querying the other nodes. See Managing Nodes and Monitoring
Recovery in the Administrator's Guide.

In HP Vertica, the value of K can be 0, 1, or 2. If a database that has a K-safety of one (K=1) loses
a node, the database continues to run normally. Potentially, the database could continue running if
additional nodes fail, as long as at least one other node in the cluster has a copy of the failed
node's data. Increasing K-safety to 2 ensures that HP Vertica can run normally if any two nodes
fail. When the failed node or nodes return and successfully recover, they can participate in
database operations again.

K-Safety Requirements

Your database must have a minimum number of nodes to be able to have a K-safety level greater
than zero, as shown in the following table.:

K-level Number of Nodes Required

0 1+

1 3+

2 5+

K (K+1)/2

Note: HP Vertica does not officially support values of K higher than 2.

The value of K can be 1 or 2 only when the physical schema design meets certain redundancy
requirements. See Physical Schema (page 21). To create designs that are K-safe, HP
recommends that you use the Database Designer.

By default, HP Vertica creates K-safe superprojections when the database has a K-safety greater
than 0 (K>0). When creating projections with the Database Designer, projection definitions that
meet K-safe design requirements are recommended and marked with the K-safety level. Note the
output from running the optimized design script generated by the Database Designer in the
following example:

=> \i VMart_Schema_design_opt_1.sql

CREATE PROJECTION

CREATE PROJECTION

mark_design_ksafe

Marked design 1-safe

(1 row)

Determining K-Safety

To determine the K-safety state of a running database, run the following SQL command:

-15-

 HP Vertica Components

SELECT current_fault_tolerance FROM system;

current_fault_tolerance

 1

(1 row)

Monitoring K-Safety

Monitoring tables can be accessed programmatically to enable external actions, such as alerts.
You monitor the K-safety level by polling the SYSTEM table and checking the value. See SYSTEM
in the SQL Reference Manual.

Loss of K-Safety

When K nodes in your cluster fail, your database continues to run, although performance is
affected. Further node failures could potentially cause the database to shut down if the failed
node's data is not available from another functioning node in the cluster.

High Availability Through Projections
To ensure high availability and recovery for database clusters of three or more nodes, HP Vertica:

 Replicates small, unsegmented projections

 Creates buddy projections for large, segmented projections.

Replication (Unsegmented Projections)

When it creates projections, Database Designer does not segment projections for small tables;
rather it replicates them, creating and storing duplicates of these projections on all nodes within
the database.

Replication ensures:

 Distributed query execution across multiple nodes.

 High availability and recovery. In a K-safe database, replicated projections serve as buddy
projections. This means that a replicated projection on any node can be used for recovery.

We recommend you use Database Designer to create your physical schema. If you choose not
to, be sure to segment all large tables across all database nodes, and replicate small,
unsegmented table projections on all database nodes.

-16-

Concepts Guide

The following illustration shows two projections, B and C, replicated across a three node cluster.

Buddy Projections (Segmented Projections)

HP Vertica creates buddy projections, which are copies of segmented projections that are
distributed across database nodes. (See Projection Segmentation (page 25).) HP Vertica
ensures that segments that contain the same data are distributed to different nodes. This ensures
that if a node goes down, all the data is available on the remaining nodes. HP Vertica distributes
segments to different nodes by using offsets. For example, segments that comprise the first buddy
projection (A_BP1) would be offset from projection A by one node and segments from the second
buddy projection (A_BP2) would be offset from projection A by two nodes.

The following illustration shows the segmentation for a projection called A and its buddy
projections, A_BP1 and A_BP2, for a three node cluster.

-17-

 HP Vertica Components

The following illustration shows how HP Vertica uses offsets to ensure that every node has a full
set of data for the projection.

This example illustrates how one projection and its buddies are segmented across nodes.
However, each node can store a collection of segments from various projections.

-18-

 18

Hybrid Storage Model

To support Data Manipulation Language (DML) commands (INSERT, UPDATE, and DELETE)
and bulk load operations (COPY), intermixed with queries in a typical data warehouse workload,
HP Vertica implements the storage model shown in the illustration below. This model is the same
on each HP Vertica node.

Write Optimized Store (WOS) is a memory-resident data structure for storing INSERT, UPDATE,
DELETE, and COPY (without DIRECT hint) actions. Like the Read Optimized Store (ROS), the
WOS is arranged by projection. To support very fast data load speeds, the WOS stores records
without data compression or indexing. The WOS organizes data by epoch and holds both
committed and uncommitted transaction data.

The Tuple Mover (TM) is the HP Vertica database optimizer component that moves data from
memory (WOS) to disk (ROS). The TM also combines small ROS containers into larger ones, and
purges deleted data. During moveout operations, the TM is also responsible for adhering to any
storage policies that are in effect for the storage location. The Tuple Mover runs in the
background, performing some tasks automatically (ATM) at time intervals determined by its
configuration parameters. For information about changing the TM configuration parameters, see
Tuple Mover Parameters in the Administrator's Guide for further information.

-19-

 HP Vertica Components

The Read Optimized Store (ROS) is a highly optimized, read-oriented, disk storage structure,
organized by projection. The ROS makes heavy use of compression and indexing. You can use
the COPY...DIRECT and INSERT (with /*+direct*/ hint) statements to load data directly into the
ROS.

Note: HP Vertica allows optional spaces before and after the plus sign in direct hints (between

the /* and the +).

A grouped ROS is a highly-optimized, read-oriented physical storage structure organized by
projection. A grouped ROS makes heavy use of compression and indexing. Unlike a ROS,
however, a grouped ROS stores data for two or more grouped columns in one disk file.

The COPY command is designed for bulk load operations and can load data into the WOS or the
ROS.

-20-

 20

Logical Schema

Designing a logical schema for an HP Vertica database is no different than designing for any other
SQL database. A logical schema consists of objects such as Schemas, Tables, Views and
Referential Integrity constraints that are visible to SQL users. HP Vertica supports any relational
schema design of your choice.

For more information, see Designing a Logical Schema in the Administrator's Guide.

-21-

 21

Physical Schema

In traditional database architectures, data is primarily stored in tables. Additionally, secondary
tuning structures such as index and materialized view structures are created for improved query
performance. In contrast, tables do not occupy any physical storage at all in HP Vertica. Instead,
physical storage consists of collections of table columns called projections.

Projections store data in a format that optimizes query execution. They are similar to materialized
views in that they store result sets on disk rather than compute them each time they are used in a
query. The result sets are automatically refreshed whenever data values are inserted or loaded.

Using projections provides the following benefits:

 Projections compress and encode data to greatly reduce the space required for storing data.
Additionally, HP Vertica operates on the encoded data representation whenever possible to
avoid the cost of decoding. This combination of compression and encoding optimizes disk
space while maximizing query performance. See Projection Performance (page 23).

 Projections can be segmented or replicated across database nodes depending on their size.
For instance, projections for large tables can be segmented and distributed across all nodes.
Unsegmented projections for small tables can be replicated across all nodes in the database.
See Projection Performance (page 23).

 Projections are transparent to end-users of SQL. The HP Vertica query optimizer automatically
picks the best projections to use for any query.

 Projections also provide high availability and recovery. To ensure high availability and
recovery, HP Vertica duplicates table columns on at least K+1 nodes within the cluster. Thus,
if one machine fails in a K-Safe environment, the database continues to operate normally
using duplicate data on the remaining nodes. Once the node resumes its normal operation, it
automatically recovers its data and lost objects by querying other nodes. See High
Availability and Recovery (page 14) for an overview of this feature and High Availability
Through Projections (page 15) for an explanation of how HP Vertica uses projections to
ensure high availability and recovery.

How Projections are Created

For each table in the database, HP Vertica requires a minimum of one projection, called a
superprojection. A superprojection is a projection for a single table that contains all the columns in
the table.

To get your database up and running quickly, HP Vertica automatically creates a superprojection
when you load or insert data into an existing table created using the CREATE TABLE or CREATE
TEMPORARY TABLE statement.

-22-

Concepts Guide

By creating a superprojection for each table in the database, HP Vertica ensures that all SQL
queries can be answered. Default superprojections do not exploit the full power of HP Vertica.
Therefore, Vertica recommends loading a sample of your data and then running the Database
Designer to create optimized projections. Database Designer creates new projections that
optimize your database based on its data statistics and the queries you use. The Database
Designer:

1 Analyzes your logical schema, sample data, and sample queries (optional)

2 Creates a physical schema design (projections) in the form of a SQL script that can be
deployed automatically or manually

In most cases, the designs created by the Database Designer provide excellent query
performance within physical constraints. The Database Designer uses sophisticated strategies to
provide excellent ad-hoc query performance while using disk space efficiently. If you prefer, you
can design custom projections.

For more information about creating projections, see Designing a Physical Schema in the
Administrator's Guide.

Anatomy of a Projection

The CREATE PROJECTION statement defines the individual elements of a projection, as the
following graphic shows.

The previous example contains the following significant elements:

Column list and encoding

Lists every column in the projection and defines the encoding for each column. Unlike traditional
database architectures, HP Vertica operates on encoded data representations. Therefore, HP
recommends that you use data encoding because it results in less disk I/O.

-23-

 HP Vertica Components

Base query

Identifies all the columns to incorporate in the projection through column name and table name
references. The base query for large table projections can contain PK/FK joins to smaller tables.

Sort order

The ORDER BY clause specifies a projection's sort order, which localizes logically grouped values
so that a disk read can pick up many results at once. The sort order optimizes for a specific query
or commonalities in a class of queries based on the query predicate. The best sort orders are

determined by the WHERE clauses. For example, if a projection's sort order is (x, y), and the

query's WHERE clause specifies (x=1 AND y=2), all of the needed data is found together in the

sort order, so the query runs almost instantaneously.

You can also optimize a query by matching the projection's sort order to the query's GROUP BY
clause. If you do not specify a sort order, HP Vertica uses the order in which columns are specified
in the column definition as the projection's sort order.

Segmentation

The segmentation clause determines whether a projection is segmented across nodes within the
database. Segmentation distributes contiguous pieces of projections, called segments, for large
and medium tables across database nodes. Segmentation maximizes database performance by
distributing the load. Use SEGMENTED BY HASH to segment large table projections.

For small tables, use the UNSEGMENTED keyword to direct HP Vertica to replicate these tables,
rather than segment them. Replication creates and stores identical copies of projections for small
tables across all nodes in the cluster. Replication ensures high availability and recovery.

Projection Concepts

For each table in the database, HP Vertica requires a projection, called a superprojection. A
superprojection is a projection for a single table that contains all the columns in the table. By
creating a superprojection for each table in the database, HP Vertica ensures that all SQL queries
can be answered.

In addition to superprojections, you can optimize your queries by creating one or more projections
that contain only the subset of table columns required to process the query. These projections are
called query-specific projections.

Projections can contain joins between tables that are connected by PK/FK constraints. These
projections are called pre-join projections. Pre-join projections can have only inner joins between
tables on their primary and foreign key columns. Outer joins are not allowed. Pre-join projections
provide a significant performance advantage over joining tables at query run-time.

Projection Performance

HP Vertica provides the following methods for maximizing the performance of all projections:

-24-

Concepts Guide

Encoding and Compression

HP Vertica operates on encoded data representations. Therefore, HP encourages you to use data
encoding whenever possible because it results in less disk I/O and requires less disk space. For a
description of the available encoding types, see encoding-type in the SQL Reference Manual.

Sort Order

The sort order optimizes for a specific query or commonalities in a class of queries based on the
query predicate. For example, if the WHERE clause of a query is (x=1 AND y=2) and a projection

is sorted on (x, y), the query runs almost instantaneously. It is also useful for sorting a projection
to optimize a group by query. Simply match the sort order for the projection to the query group by
clause.

Segmentation

Segmentation distributes contiguous pieces of projections, called segments, for large tables
across database nodes. This maximizes database performance by distributing the load. See
Projection Segmentation (page 25).

In many cases, the performance gain for superprojections provided through these methods is
sufficient enough that creating additional query-specific projections is unnecessary.

-25-

 25

Projection Segmentation

Projection segmentation splits individual projections into chunks of data of similar size, called
segments. One segment is created for and stored on each node. Projection segmentation
provides high availability and recovery and optimizes query execution. Specifically, it:

 Ensures high availability and recovery through K-Safety.

 Spreads the query execution workload across multiple nodes.

 Allows each node to be optimized for different query workloads.

HP Vertica segments large tables, to spread the query execution workload across multiple nodes.
HP Vertica does not segment small tables; instead, HP Vertica replicates small projections,
creating a duplicate of each unsegmented projection on each node.

Hash Segmentation

HP Vertica uses hash segmentation to segment large projections. Hash segmentation allows you
to segment a projection based on a built-in hash function that provides even distribution of data
across multiple nodes, resulting in optimal query execution. In a projection, the data to be hashed
consists of one or more column values, each having a large number of unique values and an
acceptable amount of skew in the value distribution. Primary key columns that meet the criteria
could be an excellent choice for hash segmentation.

Projection Naming

HP Vertica uses a standard naming convention for projections. The first part of the projection
name is the name of the associated table, followed by characters that HP Vertica appends to the
table name; this string is called the projection's base name. All buddy projections have the same
base name so they can be identified as a group.

HP Vertica then appends a suffix that indicates the projection type. The projection type suffix,
described in the following table, can be:

 _super

 _<node_name>

 _b<offset>

Projection Type Suffix Examples Unique Name Example

Unsegmente
d or
segmented

(when only
one auto
projection

was created
with the table)

_super customer_dimension_vmart_super customer_dimension_vmart_super_v1

-26-

Concepts Guide

Replicated

(unsegmente
d) on all
nodes

_<node_name> customer_dimension_vmart_node01

customer_dimension_vmart_node02

customer_dimension_vmart_node03

customer_dimension_vmart_v1_node01

customer_dimension_vmart_v1_node02

customer_dimension_vmart_v1_node03

Segmented
(when
multiple

buddy
projections
were created

with the table)

_b<offset> customer_dimension_vmart_b0

customer_dimension_vmart_b1

customer_dimension_vmart_v1_b0

customer_dimension_vmart_v2_b1

If the projection-naming convention will result in a duplicate name, HP Vertica automatically
appends v1 or v2 to the projection name. HP Vertica uses this naming convention for projections
created by the CREATE TABLE statement or by the Database Designer.

Note: If the projection name exceeds the maximum length, HP Vertica truncates the projection

name.

-27-

 27

Database Setup

The process of setting up an HP Vertica database is described in detail in the Administrator's
Guide. It involves the following tasks:

Prepare SQL scripts and data files

The first part of the setup procedure can be done well before HP Vertica is installed. It consists of
preparing the following files:

 Logical schema script

 Loadable data files

 Load scripts

 Sample query script (training set)

Create the database

This part requires that HP Vertica be installed on at least one host. The following tasks are not in
sequential order.

 Use the Administration Tools to:

 Create a database

 Connect to the database

 Use the Database Designer to design the physical schema.

 Use the vsql interactive interface to run SQL scripts that:

 Create tables and constraints

 Create projections

Test the empty database

 Test for sufficient projections using the sample query script

 Test the projections for K-safety

Test the partially-loaded database

 Load the dimension tables

 Partially load the fact table

 Check system resource usage

 Check query execution times

 Check projection usage

Complete the fact table load

 Monitor system usage

 Complete the fact table load

Set up security

For security-related tasks, see Implementing Security.

-28-

Concepts Guide

 [Optional] Set up SSL

 [Optional] Set up client authentication

 Set up database users and privileges

Set up incremental loads

Set up periodic ("trickle") loads.

-29-

 29

Database Connections
You can connect to an HP Vertica database in the following ways:

 Interactively using the vsql client, as described in Using vsql in the Administrator's Guide.

vsql is a character-based, interactive, front-end utility that lets you type SQL statements and
see the results. It also provides a number of meta-commands and various shell-like features
that facilitate writing scripts and automating a variety of tasks.

You can run vsql on any node within a database. To start vsql, use the Administration Tools or
the shell command described in Using vsql.

 Programmatically using the JDBC driver provided by HP Vertica, as described in

Programming JDBC Client Applications in the Programmer's Guide.

An abbreviation for Java Database Connectivity, JDBC is a call-level application programming
interface (API) that provides connectivity between Java programs and data sources (SQL
databases and other non-relational data sources, such as spreadsheets or flat files). JDBC is
included in the Java 2 Standard and Enterprise editions.

 Programmatically using the ODBC driver provided by HP Vertica, as described in

Programming ODBC Client Applications in the Programmer's Guide.

An abbreviation for Open DataBase Connectivity, ODBC is a standard application
programming interface (API) for access to database management systems.

 Programmatically using the ADO.NET driver provided by HP Vertica, as described in

Programming ADO.NET Applications in the Programmer's Guide.
The HP Vertica driver for ADO.NET allows applications written in C# and Visual Studio 2008 to
read data from, update, and load data into HP Vertica databases. It provides a data adapter
that facilitates reading data from a database into a data set, and then writing changed data
from the data set back to the database. It also provides a data reader (VerticaDataReader) for
reading data and autocommit functionality for committing transactions automatically.

 Programmatically using Perl and the DBI driver, as described in Programming Perl Client

Applications in the Programmer's Guide.

Perl is a free, stable, open source, cross-platform programming language licensed under its
Artistic License, or the GNU General Public License (GPL).

 Programmatically using Python and the pyodbc driver, as described in Programming Python
Client Applications in the Programmer's Guide.

Python is a free, agile, object-oriented, cross-platform programming language designed to
emphasize rapid development and code readability.

HP recommends that you deploy HP Vertica as the only active process on each machine in the
cluster and connect to it from applications on different machines. HP Vertica expects to use all
available resources on the machine, and to the extent that other applications are also using these
resources, suboptimal performance could result.

-30-

 30

The Administration Tools

HP Vertica provides a set of tools that allows you to perform administrative tasks quickly and
easily. Most of the database administration tasks in HP Vertica can be done using the
Administration Tools.

Always run the Administration Tools using the Database Administrator account on the
Administration host, if possible. Make sure that no other Administration Tools processes are
running.

If the Administration host is unresponsive, run the Administration Tools on a different node in the
cluster. That node permanently takes over the role of Administration host.

A man page is available for admintools. If you are running as the dbadmin user, simply type: man

admintools. If you are running as a different user, type: man -M /opt/vertica/man
admintools.

Running the Administration Tools

At the Linux command line:

$ /opt/vertica/bin/admintools [-t | --tool] toolname [options]

toolname Is one of the tools described in the Administration Tools
Reference.

options

-h

--help

Shows a brief help message and exits.

-a

--help_all

Lists all command-line subcommands and
options as described in Writing Administration

Tools Scripts.

If you omit toolname and options parameters, the Main Menu dialog box appears inside your
console or terminal window with a dark blue background and a title on top. The screen captures
used in this documentation set are cropped down to the dialog box itself.

If you are unfamiliar with this type of interface, read Using the Administration Tools Interface
before you do anything else.

First Time Only

The first time you log in as the Database Administrator and run the Administration Tools, the user
interface displays.

1 In the EULA (end-user license agreement) window, type accept to proceed.

A window displays, requesting the location of the license key file you downloaded from the HP
Web site. The default path is /tmp/vlicense.dat.

2 Type the absolute path to your license key (for example, /tmp/vlicense.dat) and click OK.

-31-

 HP Vertica Components

Between Dialogs

While the Administration Tools are working, you see the command line processing in a window.
Do not interrupt the processing.

-32-

 32

Management Console

Management Console (MC) is a database management tool that provides a unified view of your
HP Vertica cluster. Through a single point of access—a browser connection—you can create,
import, manage, and monitor multiple databases on one or more clusters. You can also create and
manage MC users that you map to an HP Vertica database and then manage on the MC interface.

What you can do with Management Console

 Create a database cluster on hosts that do not have HP Vertica installed

 Create, import, and monitor multiple HP Vertica databases on one or more clusters from a
single point of control

 Create MC users and grant them access to MC and MC-managed databases

 Manage user information and monitor their activity on MC

 Configure database parameters and user settings dynamically

 Access a single message box of alerts for all managed databases

 Export all database messages or log/query details to a file

 View license usage and conformance

 Diagnose and resolve MC-related issues through a browser

 Access a quick link to recent databases and clusters

 View dynamic metrics about your database cluster

Management Console provides some, but not all of the functionality that the Administration Tools
provides. In addition, MC provides extended functionality not available in the Administration Tools,
such as a graphical view of your HP Vertica database and detailed monitoring charts and graphs,
described in Monitoring HP Vertica Using MC. See Administration Tools and Management
Console in the Administrator's Guide.

How to get MC

Download the HP Vertica server rpm and the MC package from myVertica portal
http://my.vertica.com/. You then have two options:

 Install HP Vertica and MC at the command line and import one or more HP Vertica database
clusters into the MC interface

 Install HP Vertica through the MC itself

See the Installation Guide for details.

What you need to know

If you plan to use MC, review the following topics in the Administrator's Guide:

I f you want to ... See ...

Create a new, empty HP Vertica database Create a Database on a Cluster

Import into MC an existing HP Vertica database cluster Managing Database Clusters on MC

Understand how MC users are different from database About MC Users

http://my.vertica.com/

-33-

 HP Vertica Components

users

Read about the MC privilege model About MC privileges and roles

Create new MC users Creating an MC user

Grant MC users privileges on one or more

MC-managed HP Vertica databases

Granting database access to MC users

Use HP Vertica functionality through the MC interface Using Management Console

Monitor MC and MC-managed HP Vertica databases Monitoring HP Vertica Using Management

Console

Management Console Architecture

MC accepts HTTP requests from a client web browser, gathers information from the HP Vertica
database cluster, and returns that information back to the browser for monitoring.

MC components

The primary components that drive Management Console are an application/web server and
agents that get installed on each node in the HP Vertica cluster.

The following diagram is a logical representation of MC, the MC user's interface, and the database
cluster nodes.

Application/web server

The application server hosts MC's web application and uses port 5450 for node-to-MC
communication and to perform the following jobs:

 Manage one or more HP Vertica database clusters

 Send rapid updates from MC to the web browser

-34-

Concepts Guide

 Store and report MC metadata, such as alerts and events, current node state, and MC users,
on a lightweight, embedded (Derby) database

 Retain workload history

MC agents

MC agents are internal daemon process that run on each HP Vertica cluster node. The default
agent port, 5444, must be available for MC-to-node and node-to-node communications. Agents
monitor MC-managed HP Vertica database clusters and communicate with MC to provide the
following functionality:

 Provide local access, command, and control over database instances on a given node, using
functionality similar to Administration Tools

 Report log-level data from the Administration Tools and Vertica log files

 Cache details from long-running jobs—such as create/start/stop database operations—that
you can view through your browser

 Track changes to data-collection and monitoring utilities and communicate updates to MC

 Communicate between all cluster nodes and MC through a webhook subscription, which
automates information sharing and reports on cluster-specific issues like node state, alerts,
events, and so on

See Also

Monitoring HP Vertica Using MC in the Administrator's Guide

Management Console Security

Through a single point of control, the Management Console (MC) platform is designed to manage
multiple HP Vertica clusters, all which might have differing levels and types of security, such as
user names and passwords and LDAP authentication. You can also manage MC users who have
varying levels of access across these components.

OAuth and SSL

MC uses a combination of OAuth (Open Authorization), Secure Socket Layer (SSL), and
locally-encrypted passwords to secure HTTPS requests between a user's browser and MC, as
well as between MC and the agents. Authentication occurs through MC and between agents
within the cluster. Agents also authenticate and authorize jobs.

The MC configuration process sets up SSL automatically, but you must have the openssl package
installed on your Linux environment first.

See the following topics in the in the Administrator's Guide for more information:

 SSL Prerequisites

 Implementing SSL

 Generating certifications and keys for MC

 Importing a new certificate to MC

-35-

 HP Vertica Components

User authentication and access

MC provides two authentication schemes for users: LDAP or MC. You can use only one method at
a time. For example, if you chose LDAP, all MC users will be authenticated against your
organization's LDAP server.

You set LDAP authentication up through MC Settings > Authentication on the MC interface.

Note: MC uses LDAP data for authentication purposes only—it does not modify user
information in the LDAP repository.

The MC authentication method stores MC user information internally and encrypts passwords.
These MC users are not system (Linux) users; they are accounts that have access to MC and,
optionally, to one or more MC-managed HP Vertica databases through the MC interface.

Management Console also has rules for what users can see when they sign in to MC from a client
browser. These rules are governed by access levels, each of which is made up of a set of roles.

See the following topics in the Administrator's Guide for more information:

 About MC users

 About MC privileges and roles

 Creating an MC user

-36-

Concepts Guide

Management Console Home Page

The MC Home page is the entry point to all MC-managed HP Vertica database clusters and MC
users. Information on this page, as well as throughout the MC interface, will appear or be hidden,
based on the signed-on user's permissions (access levels). Layout and navigation are described
in Using Management Console.

-37-

 37

The Database Designer
The HP Vertica Database Designer is a UI-based tool that:

1 Analyzes your logical schema, sample data, and, optionally, your sample queries.

2 Creates a physical schema design (a set of projections) that can be deployed automatically (or
manually).

3 Can be used by anyone without specialized database knowledge (even business users can
run Database Designer).

4 Can be run and re-run anytime for additional optimization without stopping the database.

You can launch the Database Designer by selecting Configuration Menu -> Run Database
Designer from the Admintools menu.

You can use Database Designer to create a comprehensive design, which allows you to create
new projections for all tables in your database. You can also use Database Designer to create a
query-specific design, which creates projections for all tables referenced in the queries you
supply. Here are some of the benefits that the Database Designer provides:

 Accepts up to 100 queries in the query input file for a query-specific design.

 Accepts unlimited queries for a comprehensive design.

 Produces higher quality designs by considering UPDATE and DELETE statements.

In most cases, the designs created by the Database Designer provide excellent query
performance within physical constraints. The Database Designer uses sophisticated strategies to
provide excellent ad-hoc query performance while using disk space efficiently.

See Also

Physical Schema (page 21) in this guide

Designing a Physical Schema in the Administrator's Guide

K-Safety

K-safety is a measure of fault tolerance in the database cluster. The value K represents the
number of replicas of the data in the database that exist in the database cluster. These replicas
allow other nodes to take over for failed nodes, allowing the database to continue running while
still ensuring data integrity. If more than K nodes in the database fail, some of the data in the
database may become unavailable. In that case, the database is considered unsafe and
automatically shuts down.

It is possible for an HP Vertica database to have more than K nodes fail and still continue running
safely, because the database continues to run as long as every data segment is available on at
least one functioning cluster node. Potentially, up to half the nodes in a database with a K-safety
level of 1 could fail without causing the database to shut down. As long as the data on each failed
node is available from another active node, the database continues to run.

-38-

Concepts Guide

Note: If half or more of the nodes in the database cluster fail, the database will automatically

shut down even if all of the data in the database is technically available from replicas. This
behavior prevents issues due to network partitioning.

In HP Vertica, the value of K can be zero (0), one (1), or two (2). The physical schema design must
meet certain requirements. To create designs that are K-safe, HP recommends using the
Database Designer.

K-Safety Example

-39-

 HP Vertica Components

The diagram above shows a 5-node cluster that has a K-safety level of 1. Each of the nodes
contains buddy projections for the data stored in the next higher node (node 1 has buddy
projections for node 2, node 2 has buddy projections for node 3, etc.). Any of the nodes in the
cluster could fail, and the database would still be able to continue running (although with lower
performance, since one of the nodes has to handle its own workload and the workload of the failed
node).

-40-

Concepts Guide

If node 2 fails, node 1 handles requests on its behalf using its replica of node 2's data, in addition
to performing its own role in processing requests. The fault tolerance of the database will fall from
1 to 0, since a single node could cause the database to become unsafe. In this example, if either
node 1 or node 3 fail, the database would become unsafe since not all of its data would be
available. If node 1 fails, then node 2's data will no longer be available. If node 3 fails, its data will
no longer be available, since node 2 is also down and could not fill in for it. In this case, nodes 1
and 3 are considered critical nodes. In a database with a K-safety level of 1, the node that contains
the buddy projection of a failed node and the node whose buddy projections were on the failed
node will always become critical nodes.

-41-

 HP Vertica Components

With node 2 down, either node 4 or 5 in the cluster could fail and the database would still have all
of its data available. For example, if node 4 fails, node 3 is able to use its buddy projections to fill in
for it. In this situation, any further loss of nodes would result in a database shutdown, since all of
the nodes in the cluster are now critical nodes. (In addition, if one more node were to fail, half or
more of the nodes would be down, requiring HP Vertica to automatically shut down, no matter if all
of the data were available or not.)

In a database with a K-safety level of 2, any node in the cluster could fail after node 2 and the
database would be able to continue running. For example, if in the 5-node cluster each node
contained buddy projections for both its neighbors (for example, node 1 contained buddy
projections for both node 5 and node 2), then nodes 2 and 3 could fail and the database could
continue running. Node 1 could fill in for node 2, and node 4 could fill in for node 3. Due to the
requirement that half or more nodes in the cluster be available in order for the database to
continue running, the cluster could not continue running if node 5 were to fail as well, even though
nodes 1 and 4 both have buddy projections for its data.

K-Safety Requirements

When creating projections with the Database Designer, projection definitions that meet K-Safe
design requirements are recommended and marked with the K-safety level. Note the output from
running the optimized design script generated by the Database Designer in the following example:

=> \i VMart_Schema_design_opt_1.sql

CREATE PROJECTION

CREATE PROJECTION

mark_design_ksafe

Marked design 1-safe

(1 row)

Determining K-Safety

To determine the K-safety state of a running database, execute the following SQL command:

=> SELECT current_fault_tolerance FROM system;

-42-

Concepts Guide

current_fault_tolerance

 1

(1 row)

Monitoring K-Safety

Monitoring tables can be accessed programmatically to enable external actions, such as alerts.
You monitor the K-safety level by polling the SYSTEM table column and checking the value. See
SYSTEM in the SQL Reference Manual.

Finding Critical Nodes

You can view a list of critical nodes in your database by querying the v_monitor.critical_nodes
table:

=> SELECT * FROM v_monitor.critical_nodes;

 node_name

 v_exampleDB_node0001

 v_exampleDB_node0003

(2 rows)

-43-

 43

Database Security

HP Vertica secures access to the database and its resources by enabling you to control who has
access to the database and what they are authorized to do with database resources once they
have gained access. See Implementing Security.

-44-

 44

Data Loading and Modification

SQL data manipulation language (DML) commands INSERT, UPDATE, and DELETE perform the
same functions in HP Vertica as they do in row-oriented databases. These commands follow the
SQL-92 transaction model and can be intermixed.

In HP Vertica, the COPY statement is designed for bulk loading data into the database. COPY
reads data from text files or data pipes and inserts it into WOS (memory) or directly into the ROS
(disk). COPY automatically commits itself and any current transaction but is not atomic; some
rows could be rejected. Note that COPY does not automatically commit when copying data into
temporary tables.

Note: You can use the COPY statement's NO COMMIT option to prevent COPY from

committing a transaction when it finishes copying data. You often want to use this option when
sequentially running several COPY statements to ensure the data in the bulk load is either
committed or rolled back at the same time. Also, combining multiple smaller data loads into a
single transaction allows HP Vertica to more efficiently load the data. See the entry for the
COPY statement in the SQL Reference Manual for more information.

You can use multiple, simultaneous database connections to load and/or modify data.

Workload Management

HP Vertica provides a sophisticated resource management scheme that allows diverse,
concurrent workloads to run efficiently on the database. For basic operations, the built-in
GENERAL pool is pre-configured based on RAM and machine cores, but you can customized this
pool to handle specific concurrency requirements.

You can also define new resource pools that you configure to limit memory usage, concurrency,
and query priority. You can then optionally restrict each database user to use a specific resource
pool, which control memory resources used by their requests.

User-defined pools are useful if you have competing resource requirements across different
classes of workloads. Example scenarios include:

 A large batch job takes up all server resources, leaving small jobs that update a web page to
starve, which can degrade user experience.

In this scenario, you can create a resource pool to handle web page requests and ensure
users get resources they need. Another option is to create a limited resource pool for the batch
job, so the job cannot use up all system resources.

 A certain application has lower priority than other applications, and you would like to limit the
amount of memory and number of concurrent users for the low-priority application.

In this scenario, you could create a resource pool with an upper limit on the query's memory
and associate the pool with users of the low-priority application.

-45-

 HP Vertica Components

For more information, best practices, and additional scenarios, see Managing Workload
Resources in the Administrator's Guide.

-46-

SQL Overview

An abbreviation for Structured Query Language, SQL is a widely-used, industry standard data
definition and data manipulation language for relational databases.

Note: In HP Vertica, use a semicolon to end a statement or to combine multiple statements on

one line.

HP Vertica Support for ANSI SQL Standards

HP Vertica SQL supports a subset of ANSI SQL-99.

See BNF Grammar for SQL-99 (http://savage.net.au/SQL/sql-99.bnf.html)

Support for Historical Queries

Unlike most databases, the DELETE command in HP Vertica does not delete data; it marks
records as deleted. The UPDATE command performs an INSERT and a DELETE. This behavior
is necessary for historical queries. See Historical (Snapshot) Queries in the Programmer's Guide.

Joins

HP Vertica supports typical data warehousing query joins. For details, see Joins in the
Programmer's Guide.

HP Vertica also provides the INTERPOLATE predicate, which allows for a special type of join. The
event series join is an HP Vertica SQL extension that lets you analyze two event series when their
measurement intervals don’t align precisely—such as when timestamps don't match. These joins
provide a natural and efficient way to query misaligned event data directly, rather than having to
normalize the series to the same measurement interval. See Event Series Joins in the
Programmer's Guide for details.

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions within a
specific user session. You set them through the SET SESSION CHARACTERISTICS command.
Specifically, they determine what data a transaction can access when other transactions are
running concurrently. See Transactions (page 49) in the Concepts Guide.

http://savage.net.au/SQL/sql-99.bnf.html

-47-

About Query Execution

When you submit a query, the initiator chooses the projections to use, optimizes and plans the
query execution, and logs the SQL statement to its log. Planning and optimization are quick,
requiring at most a few milliseconds.

Based on the tables and projections chosen, the query plan that the optimizer produces is
decomposed into “mini-plans.” These mini-plans are distributed to the other nodes, known as
executors, to handle, for example, other segments of a segmented fact table. (The initiator node
typically does executor work as well.) The nodes process the mini-plans in parallel, interspersed
with data movement operations.

The query execution proceeds in data-flow style, with intermediate result sets (rows) flowing
through network connections between the nodes as needed. Some, but not all, of the tasks
associated with a query are recorded in the executors' log files.

In the final stages of executing a query plan, some wrapup work is done at the initiator, such as:

 Combining results in a grouping operation

 Merging multiple sorted partial result sets from all the executors

 Formatting the results to return to the client

The initiator has a little more work to do than the other nodes, but if the projections are well
designed for the workload, the nodes of the cluster share most of the work of executing expensive
queries.

Some small queries, for example, queries on replicated dimension tables, can be executed locally.
In these types of queries, the query planning avoids unnecessary network communication.

For detailed information about writing and executing queries, see Writing Queries in the
Programmer's Guide.

Snapshot Isolation Mode

HP Vertica can run any SQL query in snapshot isolation mode in order to obtain the fastest
possible execution. To be precise, snapshot isolation mode is actually a form of a historical query.
The syntax is:

AT EPOCH LATEST SELECT...

The command queries all data in the database up to but not including the current epoch without
holding a lock or blocking write operations, which could cause the query to miss rows loaded by
other users up to (but no more than) a specific number of minutes before execution.

Historical Queries

The DELETE command in HP Vertica does not actually delete data; it marks records as deleted.
(The UPDATE command is actually a combined INSERT and a DELETE.) Thus, HP Vertica can
run a query from a snapshot of the database taken at a specific date and time. The syntax is:

 AT TIME 'timestamp' SELECT...

-48-

Concepts Guide

The command queries all data in the database up to and including the epoch representing the
specified date and time, without holding a lock or blocking write operations. The specified
TIMESTAMP value must be greater than or equal to the Ancient History Mark epoch.

You can control how much deleted data is stored on disk. For more information, see Managing
Disk Space in the Administrator's Guide.

-49-

Transactions

Session-scoped isolation levels determine transaction characteristics for transactions within a

specific user session. You set them through the SET SESSION CHARACTERISTICS command.
Specifically, they determine what data a transaction can access when other transactions are
running concurrently.

A transaction retains its isolation level until it completes, even if the session's transaction isolation
level changes mid-transaction. HP Vertica internal processes (such as the Tuple Mover and

refresh operations) and DDL operations are always run at SERIALIZABLE isolation level to
ensure consistency.

Although the HP Vertica query parser understands all four standard SQL isolation levels (READ

UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE) for a user session,

internally HP Vertica uses only READ COMMITTED and SERIALIZABLE. HP Vertica automatically

translates READ UNCOMMITTED to READ COMMITTED and REPEATABLE READ to

SERIALIZABLE. Therefore, the isolation level HP Vertica uses could be more strict than the

isolation level you choose.

By default, HP Vertica uses the READ COMMITTED isolation level. However, you can change the
isolation level for the database or individual transactions. See Change Transaction Isolation
Levels.

The following table highlights the behaviors of transaction isolation. For specific information see,
SERIALIZABLE Isolation (page 52) and READ COMMITTED Isolation (page 51).

Isolation Level Dirty Read Non Repeatable Read Phantom Read

READ COMMITTED Not Possible Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible

Implementation Details

HP Vertica supports conventional SQL transactions with standard ACID properties:

 ANSI SQL 92 style-implicit transactions. You do not need to run a BEGIN or START
TRANSACTION command.

 No redo/undo log or two-phase commits.

 The COPY command automatically commits itself and any current transaction (except when

loading temporary tables). HP recommends that you COMMIT or ROLLBACK the current
transaction before you use COPY.

-50-

Concepts Guide

Automatic Rollback

Reverts data in a database to an earlier state by discarding any changes to the database state that
have been performed by a transaction's statements. In addition, it releases any locks that the
transaction might have held. A rollback can be done automatically in response to an error or
through an explicit ROLLBACK transaction.

HP Vertica supports transaction-level and statement-level rollbacks. A transaction-level rollback
discards all modifications made by a transaction. A statement-level rollback reverses just the
effects made by a particular statement. Most errors caused by a statement result in a

statement-level rollback to undo the effects of the erroneous statement. HP Vertica uses ERROR
messages to indicate this type of error. DDL errors, systemic failures, dead locks, and resource

constraints result in transaction-level rollback. HP Vertica uses ROLLBACK messages to indicate
this type of error.

To implement automatic, statement-level rollbacks in response to errors, HP Vertica automatically
inserts an implicit savepoint after each successful statement one at a time. This marker allows the
next statement, and only the next statement, to be rolled back if it results in an error. If the
statement is successful, the marker automatically rolls forward. Implicit savepoints are available to
HP Vertica only and cannot be referenced directly.

To explicitly roll back an entire transaction, use the ROLLBACK statement. To explicitly roll back
individual statements, use explicit savepoints.

Savepoints
HP Vertica supports using savepoints. A savepoint is a special mark inside a transaction that
allows all commands run after the savepoint was established to be rolled back, restoring the
transaction to its former state in which the savepoint was established.

Savepoints are useful when creating nested transactions. For example, a savepoint could be
created at the beginning of a subroutine. That way, the result of the subroutine could be rolled
back, if necessary.

Use the SAVEPOINT statement to establish a savepoint, the RELEASE SAVEPOINT statement to

destroy it, or the ROLLBACK TO SAVEPOINT statement to roll back all operations that occur within
the transaction after the savepoint was established.

-51-

 Transactions

READ COMMITTED Isolation

A SELECT query sees a snapshot of the committed data at the start of the transaction. It also sees
the results of updates run within its transaction, even if they have not been committed. This is

standard ANSI SQL semantics for ACID transactions. Any SELECT query within a transaction
should see the transactions's own changes regardless of isolation level.

DML statements acquire write locks to prevent other READ COMMITTED transactions from

modifying the same data. SELECT statements do not acquire locks, which prevents read and write
statements from conflicting.

READ COMMITTED is the default isolation level used by HP Vertica. For most general querying

purposes, the READ COMMITTED isolation effectively balances database consistency and
concurrency. However, data can be changed by other transactions between individual statements
within the current transaction. This can result in nonrepeatable and phantom reads. Applications
that require complex queries and updates might need a more consistent view of the database. If
this is the case, use SERIALIZABLE isolation.

The following example illustrates reads and writes using READ COMMITTED isolation.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

The SELECT statement in Session A reads committed data

from T1.

COMMIT;

INSERT INTO T1 (C1)

VALUES (1);
 Session A inserts a row, but does not yet commit.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Session A reads the inserted row because it was inserted
during the same transaction. However, Session B does not
see the inserted value because it can only read committed

data.

COMMIT; Session A commits the INSERT and ends the transaction.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

The SELECT statement in Session B now observes the insert

that session A committed.

This is an example of a non-repeatable read.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

The SELECT statement in Session A begins a new

transaction. It sees the previous inserted value because it

was committed.

COMMIT;

READ COMMITTED isolation uses exclusive (X) write locks that are maintained until the end of the

transaction. The following example illustrates this.

-52-

Concepts Guide

Session A Session B Description

INSERT INTO T1 (C1)

VALUES (2);

(1 rows)

The transaction in session A acquires an insert (I) lock to
insert row 2 into table T1.

DELETE FROM T1

WHERE C1 >1;

The DELETE statement in Session B is blocked because the

transaction cannot acquire an exclusive lock (X lock) until the

entire transaction in Session A is completed and the insert (I)
lock is released.

INSERT INTO T1 (C1)

VALUES (3);

(1 rows)

The transaction in session A inserts row 3. (It already has an

insert (I) lock.)

COMMIT;
The COMMIT statement ends the transaction in Session A

and releases its insert (I) lock.

 (2 rows)
The transaction in Session B obtains its X lock and deletes

rows 2 and 3.

See Also

LOCKS and SET SESSION CHARACTERISTICS in the SQL Reference Manual

Configuration Parameters in the Administrator's Guide

SERIALIZABLE Isolation

SERIALIZABLE is the strictest level of SQL transaction isolation. Although this isolation level
permits transactions to run concurrently, it creates the effect that transactions are running in serial

order. It acquires locks for both read and write operations, which ensures that successive SELECT

commands within a single transaction always produce the same results. SERIALIZABLE isolation

establishes the following locks:

 Table-level read locks are acquired on selected tables and released at the end of the
transaction. This prevents a transaction from modifying rows that are currently being read by
another transaction.

 Table-level write locks are acquired on update and are released at the end of the transaction.
This prevents a transaction from reading uncommitted changes to rows made within another
transaction.

A SELECT sees, in effect, a snapshot of the committed data at the start of the transaction. It also
sees the results of updates run within its transaction, even if they have not been committed.

The following example illustrates locking within concurrent transactions running with
SERIALIZABLE isolation.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Transactions in sessions A and B acquire shared locks. Both

transactions can read from table T1.

-53-

 Transactions

 COMMIT;
The COMMIT statement in Session 2 ends the t ransaction and

releases its read lock.

INSERT INTO T1 (C1)

VALUES (1);

The transaction in Session A acquires an exclusive lock (X
lock) and inserts a new row.

COMMIT;
The COMMIT statement in Session 1 ends the t ransaction and

releases its X lock.

SELECT C1 FROM T1;

C1

--

1

(1 rows)

SELECT C1 FROM T1;

C1

--

1

(1 rows)

New transactions in Sessions A and B use a SELECT

statement to see the new row previously created in Session
A. They acquire shared locks.

INSERT INTO T1 (C1)

VALUES (2);

The transaction in Session A is blocked from inserting

a row because it cannot upgrade to an X lock.

The advantage of SERIALIZABLE isolation is that it provides a consistent view. This is useful for
applications that require complex queries and updates. However, it reduces concurrency. For
example, it is not possible to perform queries during a bulk load.

Additionally, applications using SERIALIZABLE must be prepared to retry transactions due to
serialization failures. Serialization failures can occur due to deadlocks. When a deadlock occurs,
the transaction that is waiting for the lock automatically times out after five (5) minutes. The
following example illustrates a condition that can create a deadlock.

Session A Session B Description

SELECT C1 FROM T1;

C1

--

(0 rows)

SELECT C1 FROM T1;

C1

--

(0 rows)

Transactions in sessions A and B acquire shared locks on
table T1. Both transactions can read from T1.

INSERT INTO T1 (C1)

VALUES (1);

The transaction in Session A is blocked because it cannot
upgrade to an exclusive lock (X lock) on T1 unless the

transaction in Session B releases its lock on T1.

INSERT INTO T1 (C1)

VALUES (2);

The transaction in Session B is blocked because it cannot
acquire an exclusive lock (X lock) unless the transaction in

Session A releases its lock on T1. Neither session can

proceed because each one is waiting for the other.

 ROLLBACK
HP Vertica automatically breaks the deadlock by rolling back

the transaction in Session B and releasing the locks.

(1 rows)

COMMIT;

The transaction in session A is able to upgrade to an X lock
on T1 and insert the row.

Note: SERIALIZABLE isolation does not acquire locks on temporary tables, which are isolated
by their transaction scope.

-54-

International Languages and Character Sets

Unicode Character Encoding
HP Vertica stores character data in UTF-8. UTF-8 is an abbreviation for Unicode Transformation
Format-8 (where 8 equals 8-bit) and is a variable-length character encoding for Unicode created
by Ken Thompson and Rob Pike. UTF-8 can represent any universal character in the Unicode
standard, yet the initial encoding of byte codes and character assignments for UTF-8 is coincident
with ASCII (requiring little or no change for software that handles ASCII but preserves other
values).

All input data received by the database server is expected to be in UTF-8, and all data output by
HP Vertica is in UTF-8. The ODBC API operates on data in UCS-2 on Windows systems, and
normally UTF-8 on Linux systems. (A UTF-16 ODBC driver is available for use with the DataDirect
ODBC manager.) JDBC and ADO.NET APIs operate on data in UTF-16. The client drivers
automatically convert data to and from UTF-8 when sending to and receiving data from HP Vertica
using API calls. The drivers do not transform data loaded by executing a COPY or COPY LOCAL
statement.

See Implement Locales for International Data Sets in the Administrator's Guide for details.

Locales

The locale is a parameter that defines the user's language, country, and any special variant
preferences, such as collation. HP Vertica uses the locale to determine the behavior of various
string functions as well for collation for various SQL commands that require ordering and
comparison; for example, GROUP BY, ORDER BY, joins, the analytic ORDER BY clause, and so
forth.

By default, the locale for the database is en_US@collation=binary (English US). You can
establish a new default locale that is used for all sessions on the database, as well as override
individual sessions with different locales. Additionally the locale can be set through ODBC,
JDBC, and ADO.net.

See the following topics in the Administrator's Guide for details:

 Implement Locales for International Data Sets

 Supported Locales in the Appendix

String Functions

HP Vertica provides string functions to support internationalization. Unless otherwise specified,
these string functions can optionally specify whether VARCHAR arguments should be interpreted
as octet (byte) sequences, or as (locale-aware) sequences of characters. This is accomplished by
adding "USING OCTETS" and "USING CHARACTERS" (default) as a parameter to the function.

-55-

 International Languages and Character Sets

See String Functions in the SQL Reference Manual for details.

Character String Literals

By default, string literals ('...') treat back slashes literally, as specified in the SQL standard.

Tip: If you have used previous releases of HP Vertica and you do not want string literals to treat

back slashes literally (for example, you are using a back slash as part of an escape sequence),

you can turn off the StandardConformingStrings configuration parameter. See
Internationalization Parameters in the Administrator's Guide. You can also use the

EscapeStringWarning parameter to locate back slashes which have been incorporated into
string literals, in order to remove them.

See Character String Literals in the SQL Reference Manual for details.

-56-

Extending HP Vertica

HP Vertica lets you extend its capabilities through several different features:

 User-Defined SQL Functions (page 56) let you define a function using HP Vertica SQL
statements.

 User Defined Extensions and User Defined Functions (page 56) are high-performance
extensions to HP Vertica's capabilities you develop using the HP Vertica Software
Development Kit (SDK).

 External Procedures let you pipe data from HP Vertica through external programs or shell
scripts to perform some form of processing on it.

User-Defined SQL Functions
User-Defined SQL Functions let you define and store commonly-used SQL expressions as a
function. User-Defined SQL Functions are useful for executing complex queries and combining
HP Vertica built-in functions. You simply call the function name you assigned in your query.

A User-Defined SQL Function can be used anywhere in a query where an ordinary SQL
expression can be used, except in the table partition clause or the projection segmentation clause.

User Defined Extensions and User Defined Functions

User Defined Extension (UDx) refers to all extensions to HP Vertica developed using the APIs in
the HP Vertica SDK. UDxs encompass functions such as User Defined Scalar Functions
(UDSFs), and utilities such as the User Defined Load (UDL) feature that let you create custom
data load routines.

Thanks to their tight integration with HP Vertica, UDxs usually have better performance than
User-defined SQL functions or External Procedures.

User Defined Functions (UDFs) are a specific type of UDx. You use them in SQL statements to
process data similarly to HP Vertica's own built-in functions. They give you the power of creating
your own functions that run just slightly slower than HP Vertica's own function.

The HP Vertica SDK uses the term UDx extensively, even for APIs that deal exclusively with
developing UDFs.

-57-

Get Started

To get started using HP Vertica, follow the Tutorial presented in the Getting Started Guide. The
tutorial requires that you install HP Vertica on one or more hosts as described in the Installation
Guide.

-58-

Copyright Notice

Copyright© 2006-2013 Hewlett-Packard, and its licensors. All rights reserved.

Hewlett-Packard

150 CambridgePark Drive

Cambridge, MA 02140

Phone: +1 617 386 4400

E-Mail: info@vertica.com

Web site: http://www.vertica.com
(http://www.vertica.com)

The software described in this copyright notice is furnished under a license and may be used or
copied only in accordance with the terms of such license. Hewlett-Packard software contains
proprietary information, as well as trade secrets of Hewlett-Packard, and is protected under
international copyright law. Reproduction, adaptation, or translation, in whole or in part, by any
means — graphic, electronic or mechanical, including photocopying, recording, taping, or
storage in an information retrieval system — of any part of this work covered by copyright is
prohibited without prior written permission of the copyright owner, except as allowed under the
copyright laws.

This product or products depicted herein may be protected by one or more U.S. or international
patents or pending patents.

Trademarks

HP Vertica™, the HP Vertica Analytics Platform™, and FlexStore™ are trademarks of Hewlett -Packard.

Adobe®, Acrobat®, and Acrobat® Reader® are registered trademarks of Adobe Systems Incorporated.

AMD™ is a trademark of Advanced Micro Devices, Inc., in the United States and other countries.

DataDirect® and DataDirect Connect® are registered trademarks of Progress Software Corporation in the
U.S. and other countries.

Fedora™ is a trademark of Red Hat, Inc.

Intel® is a registered trademark of Intel.

Linux® is a registered trademark of Linus Torvalds.

Microsoft® is a registered trademark of Microsoft Corporation.

Novell® is a registered trademark and SUSE™ is a trademark of Novell, Inc., in the United States and other
countries.

Oracle® is a registered trademark of Oracle Corporation.

Red Hat® is a registered trademark of Red Hat, Inc.

VMware® is a registered trademark or trademark of VMware, Inc., in the United States and/or other
jurisdictions.

Other products mentioned may be trademarks or registered trademarks of their respective
companies.

http://www.vertica.com/

-59-

 Copyright Notice

Information on third-party software used in HP Vertica, including details on open-source software,
is available in the guide Third-Party Software Acknowledgements.

	Concepts Guide
	Syntax Conventions
	The HP Vertica Approach
	HP Vertica Components
	Column Store Architecture with FlexStore
	Architecture of the HP Vertica Cluster
	Data Encoding and Compression
	High Availability and Recovery
	High Availability Through Projections
	Hybrid Storage Model
	Logical Schema
	Physical Schema
	How Projections are Created
	Anatomy of a Projection
	Projection Concepts
	Projection Performance
	Projection Segmentation
	Projection Naming

	Database Setup
	Database Connections
	The Administration Tools
	Management Console
	Management Console Architecture
	Management Console Security
	Management Console Home Page

	The Database Designer
	K-Safety
	Database Security
	Data Loading and Modification
	Workload Management

	SQL Overview
	About Query Execution
	Transactions
	Automatic Rollback
	Savepoints
	READ COMMITTED Isolation
	SERIALIZABLE Isolation

	International Languages and Character Sets
	Unicode Character Encoding
	Locales
	String Functions
	Character String Literals

	Extending HP Vertica
	User-Defined SQL Functions
	User Defined Extensions and User Defined Functions

	Get Started
	Copyright Notice

