
HP Operations Manager

Custom Process Management
Software Version: 9.10

for the UNIX and Linux operating systems
Manufacturing Part Number: None

March, 2013

© Copyright 2013 Hewlett-Packard Development Company, L.P.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.

©Copyright 2005-2013 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Adobe® is a trademark of Adobe Systems Incorporated.

Intel®, Itanium®, and Pentium® are trademarks of Intel Corporation in
the U.S. and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft
Corporation.
 2

Oracle® is a registered trademark of Oracle Corporation and/or its
affiliates.

UNIX® is a registered trademark of the Open Group.
 3

 4

Conventions
The following typographical conventions are used in this manual:

Table 1 Typographical Conventions

Font Meaning Example

Italic Book titles and manual page names For more information, see the
HPOM Administrator’s Reference
and the opc(1m) manual page.

Emphasis You must follow these steps.

Variable that you must supply when
entering a command (in angle
brackets)

At the prompt, enter rlogin
<username>.

Parameters to a function The oper_name parameter returns
an integer response.

Computer Text and other items on the
computer screen

The following system message
displays:

Are you sure you want to
remove current group?

Command names Use the grep command...

Function names Use the opc_connect() function to
connect...

File and directory names Edit the itooprc file...

/opt/OV/bin/OpC/

Process names Check to see if opcmona is running.

Computer
Bold

Text that you enter At the prompt, enter ls -l.
 5

Keycap Keyboard keys Press Return.

Menu name followed by a colon (:)
means that you select the menu, and
then the item. When the item is
followed by an arrow (->), a
cascading menu follows.

From the menu bar, select Actions:
Filtering -> All Active Messages.

Buttons in the user interface Click OK.

Table 1 Typographical Conventions (Continued)

Font Meaning Example
 6

In This Document
This document describes how to manage custom processes by adding
them to a list of managed components and registering them with the
HPOM control daemon. The HPOM process control component (ovcd)
controls all HPOM management server processes and ensures they are
started and stopped in the order that is defined by the Dependency
element1. For details, see the description of Dependency on page 12.

Each server process is registered with the process control component
with one XML registration file. The default registration files can be
found at the following locations:

❏ For server components:

/etc/opt/OV/share/ovc

❏ For agent components:

/opt/OV/misc/eaagt

All HPOM processes are automatically registered with the HPOM
control daemon, ovcd, and can be controlled by using the ovc command
with the -start, -stop, and -status options respectively. Each HPOM
server process has its own XML registration file that defines how the
HPOM processes are handled.

The configuration files that define the registration process for each
process are stored at the following location on the management server
and the managed node:

<OvDataDir>/conf/ctrl

On the management server, the ctrl directory contains registration files
for all HPOM processes—both management server processes and
managed node processes if the management server is also configured as
a managed node. On the managed node, the directory contains
registration files only for the managed node processes.

1. The order in which MSI applications receive messages is not defined by
this order.
 7

The information in this document covers the following topics:

❏ “Sample XML Registration File” on page 10

❏ “Examples of XML Registration File Configuration” on page 17

❏ “Adding a Custom Component to HPOM Control” on page 17

For detailed information about HPOM processes, see the HPOM
Administrator’s Reference.
 8

1 Custom Process Management
Chapter 1 9

Custom Process Management
Custom Process Management
Custom Process Management
HPOM enables you to manage custom processes by adding them to a list
of managed components and registering them with the HPOM control
daemon, ovcd. In this way, additional custom processes can be managed
in the same way as any other HPOM process.

To add a custom component to HPOM control, create an XML
registration file for this component. You can use the opccustproc1.xml
sample file that is provided with HPOM as a template for your XML
registration file.

Sample XML Registration File

The opccustproc1.xml sample file that is provided with HPOM as a
template for your XML registration file can be found at the following
location:

/opt/OV/contrib/OpC/opccustproc

The syntax of this file is the following (with the default values):

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<ovc:OvCtrl
xmlns:ovc="http://openview.hp.com/xmlns/ctrl/registration/1.5">

 <ovc:Component>

 <ovc:Name>ComponentName</ovc:Name>

 <ovc:Label>

 <ovc:String>ComponentLabel</ovc:String>

 </ovc:Label>

 <ovc:Category>Category</ovc:Category>

 <ovc:Options>

 <ovc:AllowAttach>false</ovc:AllowAttach>

 <ovc:AutoRestart>false</ovc:AutoRestart>

<ovc:AutoRestartLimit>5</ovc:AutoRestartLimit>

<ovc:AutoRestartMinRuntime>60</ovc:AutoRestartMinRuntime>

<ovc:AutoRestartDelay>5</ovc:AutoRestartDelay>

 <ovc:MentionInStatus>true</ovc:MentionInStatus>
Chapter 1 10

Custom Process Management
Custom Process Management
 <ovc:Monitored>true</ovc:Monitored>

 <ovc:StartAtBootTime>true</ovc:StartAtBootTime>

 <ovc:CoreProcess>false</ovc:CoreProcess>

 <ovc:IsContainer>false</ovc:IsContainer>

 <ovc:AutoShutdown>false</ovc:AutoShutdown>

 <ovc:AutoShutdownTimer>1</ovc:AutoShutdownTimer>

 <ovc:PollingInterval>30</ovc:PollingInterval>

 </ovc:Options>

 <ovc:ProcessDescription>ProcessDescription</ovc:
ProcessDescription>

<ovc:CommandLine>CommandLine</ovc:CommandLine>

<ovc:OnHook>

 <ovc:Name>OnHookName</ovc:Name>

 <ovc:Actions>Actions</ovc:Actions>

 </ovc:OnHook>

 <ovc:OnEvent>

 <ovc:Name>OnEventName</ovc:Name>

<ovc:EventOptions>EventOptions</ovc:EventOptions>

<ovc:Actions>Actions</ovc:Actions>

 </ovc:OnEvent>

</ovc:Component>

</ovc:OvCtrl>

In the context of HPOM control, a component is an entity that can be
started, stopped, or notified (performing an action in response to an
event). The component consists of the following elements:

Name (required): Each component has a unique name that is used to
address it. The name is an ASCII identifier and it is not
localized.

Label (required): Each component has a label that is used when printing
the status of a component. For example, the opcle
component would have a label “Logfile Encapsulator”.
The label can be localized.

Description (optional): Each component can have a text description.
The description can be localized.
Chapter 1 11

Custom Process Management
Custom Process Management
Dependency (optional): Each component can have dependencies to other
components. Dependencies are used when the start or
stop command is issued. For example, when the logfile
encapsulator has a dependency on the opcapm
component, this component must be started before the
logfile encapsulator. If a component is stopped, which is
defined elsewhere as a dependency, the affected
dependant is stopped first.

Category (optional): Each component can belong to none, one, or more
categories. A category is a way to group components
together to make operations easier (interfaces of
HPOM control allow operations on components directly
or on category grouping). The category is not localized.

Options (optional): Each component can have the following options:

AllowAttach (TRUE/FALSE): Instructs HPOM control
not to kill the component if it is already started, but
just to attach to it (meaning that the component does
not have to be stopped first). The default is FALSE.

AutoRestart (TRUE/FALSE): Restarts the component if
it terminates unexpectedly. The default is FALSE.

If you set this option to TRUE, you enable the following
options:

• AutoRestartLimit: Specifies the maximum
number of component automatic restarts. The
default is 5.

• AutoRestartMinRuntime: Specifies how long in
seconds the component must run before it can be
restarted automatically. The default is 60.

• AutoRestartDelay: Specifies after how long in
seconds the component is restarted automatically.
The default is 5 seconds.

MentionInStatus (TRUE/FALSE): Specifies whether the
status of the component is included in the status
report. The default is TRUE.

Monitored (TRUE/FALSE): Specifies whether the errors
are reported when a component terminates
unexpectedly. The default is TRUE.
Chapter 1 12

Custom Process Management
Custom Process Management
StartAtBootTime (TRUE/FALSE): Specifies whether the
component should be started at a boot time. Evaluated
only when -boot is specified. The default is TRUE.

CoreProcess (TRUE/FALSE): Specifies that the
component should be stopped only if the –kill option
is used. The default is FALSE.

IsContainer (TRUE/FALSE)1: Specifies whether the
component should be treated as a container for other
components. The default is FALSE.

AutoShutdown (TRUE/FALSE): Specifies whether the
container should be stopped when all its contained
components are stopped. The default is FALSE.

AutoShutdownTimer: Specifies after how long in
seconds the container component is stopped when all of
its contained components are stopped. The default is
30.

Container: Defines a name of the container for the
contained component.

PollingInterval: Defines how often in seconds the
container is polled to obtain the run status of the
contained component. The default is 30.

WorkingDirectory: Specifies the working directory for
the component (that is, the directory in which the
component operates by default). Keep in mind,
however, that depending on the internal operation of
the component, the location of the actual working
directory may differ from the specified one.

ProcessDescription (required): Each component has a process
description that is used as follows: the process name,
which is part of the operating system process table, is
used to connect to the component in OvCtrl by
comparing the string from the process table (that is,
the process name) with the string value from the
ProcessDescription element.

1. For HP internal use only. Leave the default value.
Chapter 1 13

Custom Process Management
Custom Process Management
HP-UX PA-RISC only: Because of system limitation,
the length of the process string is limited to 14
characters.

CommandLine (optional): Allows matching components against their
command lines, not just against the process
description. It makes it possible to distinguish between
different Java virtual machines running on a system.
Matching is done by using regular expressions.

OnHook (optional): A component is usually a process and has a lifetime.
Within its lifetime, the component can be in the
following states that are known to HPOM control:
stopped, starting, initializing, running, or stopping.
Several hooks allow the component to register actions
that are executed and affect the state changes of a
process. A hook is defined by Name (required and
predefined) and ActionType (required).

The following hooks are available:

NOTE For very simple components, define only the START
action.

START_CHECK: Allows defining a sequence of actions
that must complete successfully before starting the
component. Can be used to conditionally start the
component.

START: Specifies the start sequence of the component.

INITIALIZE: Allows specifying additional actions that
must complete successfully before the component is
considered running.

STOP: Specifies the way in which the component is
stopped. If it is not specified, HPOM control tries to
stop the component in the way that is the default for
the operating system.
Chapter 1 14

Custom Process Management
Custom Process Management
IMPORTANT It is not recommended to use the Execute action in a
STOP hook on Windows. On Windows, during the
shutdown process, it is not allowed to start a new
process and as a result the action will fail.

CHECK_STATUS: Specifies the status check sequence of a
contained component.

OnEvent (optional): Specifies what must be done when an event is
received. The event is defined by the following
elements:

• Name (required): A name of the event to register for.
It can be also an arbitrary string (the “:” is used to
specialize the string into event:subevent).

• EventOptions (optional): Triggers additional
processing when the event is received. Currently,
the following two options are defined:

ReevaluateStart: Starts the component if it is not
running in the START_CHECK sequence of actions.
This is necessary if the event potentially impacts
the startup condition of the component.

ReevaluateStop: Stops the component if it is
running and the START_CHECK sequence of actions
fails. This is necessary if the event potentially
impacts the startup condition of the component.

• ActionType (required): Specifies one or more
actions to be executed when an event is received.
Different types of actions are supported (not all
actions are relevant for each event).

The following predefined events are available:

• CHECK_POLICY: This event is sent when a policy is
changed (added or modified).

• REMOVE_POLICY: This event is sent when a policy is
removed.
Chapter 1 15

Custom Process Management
Custom Process Management
• FIRST_POLICY: <policy_type>: The first policy of
a given type is installed for the first time.

• LAST_POLICY: <policy_type>: The last policy of a
given type is removed.

• ENABLE_POLICY: A policy is enabled.

• DISABLE_POLICY: A policy is disabled.

Example:

<ovc:OnEvent>
<ovc:Name>DISABLE_POLICY:mgrconf</ovc:Name>
<ovc:EventOptions>
<ovc:ReevaluateStart>false</ovc:ReevaluateStart>
<ovc:ReevaluateStop>false</ovc:ReevaluateStop>
</ovc:EventOptions>

ActionType (required): You can specify more than one ActionType for
OnHook and OnEvent. The actions are processed one
after another and all must complete successfully for the
event or hook to be considered successful. The following
actions are available:

Execute: Runs a command and waits for it to complete.
This action is meant for processes that daemonize
themselves. You can also specify environment. On
Windows, the EXE extension for the command is not
required.

Start: Runs a command similarly to Execute except
that it returns as soon as the process is spawned. Use it
in actions to start processes that do not daemonize
themselves. With the Start action, it is possible to put
a process in the background. On Windows, the EXE
extension for the command is not required.

UXSignal (Unix only): Sends a signal to the component.
The signal name can be specified. Keep in mind that
different operating systems use different signals. For
details, see the relevant operating system
documentation.

WinEvent (Windows only): Sends events on Windows.
Windows does not have the signal mechanism but uses
events for IPC.
Chapter 1 16

Custom Process Management
Custom Process Management
Examples of XML Registration File Configuration

The following are examples of XML registration file configuration:

Example 1-1 OnHook Component

<ovc:OnHook>
<ovc:Name>START</ovc:Name>

<ovc:Actions>
<ovc:Start>

<ovc:CommandLine>START-CommandLine</ovc:CommandLine>
</ovc:Start>

</ovc:Actions>
</ovc:OnHook>

Example 1-2 OnEvent Component

<ovc:OnEvent>
<ovc:Name>RECONFIGURE</ovc:Name>
<ovc:EventOptions>

<ovc:ReevaluateStart>false</ovc:ReevaluateStart>
<ovc:ReevaluateStop>false</ovc:ReevaluateStop>

</ovc:EventOptions>
<ovc:Actions>

<ovc:UXSignal>
<ovc:Name>SIGUSR1</ovc:Name>

</ovc:UXSignal>
</ovc:Actions>

</ovc:OnEvent>

Adding a Custom Component to HPOM Control

To register a custom process with the HPOM control daemon, ovcd,
follow these steps:

1. Create an XML registration file to register the custom process.

You can use the opccustproc1.xml sample file that is provided with
HPOM as a template for your XML registration file, as follows:

a. Copy and rename the template configuration file
/opt/OV/contrib/OpC/opccustproc/opccustproc1.xml
according to your needs. For example:

cp /opt/OV/contrib/OpC/opccustproc/opccustproc1.xml
/opt/OV/contrib/OpC/opccustproc/<my_process>.xml
Chapter 1 17

Custom Process Management
Custom Process Management
Note that you must replace <my_process> with the name of the
process you want to register.

b. Modify the following tags in the <my_process>.xml file
according to your needs. For further help, see the example for the
opccustproc1.xml file:

<ovc:Name>opccustproc1</ovc:Name>
<ovc:Label>
<ovc:String>OMU Custproc 1</ovc:String>
</ovc:Label>
<ovc:AllowAttach>false</ovc:AllowAttach>
<ovc:AutoRestart>true</ovc:AutoRestart>
<ovc:AutoRestartLimit>5</ovc:AutoRestartLimit>
<ovc:AutoRestartMinRuntime>60</ovc:AutoRestartMinRuntime>
<ovc:AutoRestartDelay>5</ovc:AutoRestartDelay>
<ovc:MentionInStatus>true</ovc:MentionInStatus>
<ovc:Monitored>true</ovc:Monitored>
<ovc:StartAtBootTime>false</ovc:StartAtBootTime>
<ovc:WorkingDirectory>/var/opt/OV/share/tmp/OpC/mgmt_sv</ov
c:WorkingDirectory>
<ovc:ProcessDescription>opccustproc1</ovc:ProcessDescriptio
n>

Under the <ovc:Name>START</ovc:Name> tag of the OnHook
element, replace the CommandLine tag with the program that you
want to start. For example:

<ovc:OnHook>
<ovc:Name>START</ovc:Name>

<ovc:Actions>
<ovc:Start>

<ovc:CommandLine>/opt/OV/bin/OpC/opccustproc1</
ovc:CommandLine>

</ovc:Start>
</ovc:Actions>

</ovc:OnHook>

You can delete the <ovc:Name>START_CHECK</ovc:Name> tag of
the OnHook element, along with its subtags:

<ovc:OnHook>
<ovc:Name>START_CHECK</ovc:Name>

<ovc:Actions>
<ovc:Execute>
<ovc:CommandLine>/opt/OV/bin/OpC/opcsv \
-startable</ovc:CommandLine>

</ovc:Execute>
Chapter 1 18

Custom Process Management
Custom Process Management
<ovc:Execute>
<ovc:CommandLine>/opt/OV/bin/OpC/opcsv \
-available opccustproc1</ovc:CommandLine>

</ovc:Execute>
</ovc:Actions>

</ovc:OnHook>

2. Check the syntax of the new <my_process>.xml file by using the
ovcreg(1) command with the -check parameter. Run the following
command:

ovcreg -check \
/opt/OV/contrib/OpC/opccustproc/<my_process>.xml

The location of the ovcreg registration tool is the following:

<OvInstallDir>/bin

3. Register the new <my_process>.xml file by using the ovcreg
command with the -add parameter. Run the following command:

ovcreg -add \
/opt/OV/contrib/OpC/opccustproc/<my_process>.xml

4. Start, stop, and check the status of the new custom process by using
the ovc command with the -start, -stop, and -status parameters
respectively.

For example, to start the custom process, run the following
command:

ovc -start <my_process>

5. To cancel the registration of the custom process, use the ovcreg
command with the -del(ete) parameter.

For example, run the following command:

ovcreg -del opccustproc1
Chapter 1 19

Custom Process Management
Custom Process Management
Chapter 1 20

	HP Operations Manager
	Legal Notices
	Conventions
	In This Document

	1 Custom Process Management
	Custom Process Management
	Sample XML Registration File
	Examples of XML Registration File Configuration
	Adding a Custom Component to HPOM Control

