

Chapter 2

Managing Data Collection
The HP Operations agent provides you with a data collector to collect and log system performance
data of themonitored system. The data collector program—scope—enables you to store the
collected data on the system. You can view and analyze the stored data using HP Performance
Manager or HP Reporter.

The scope collector enables you to perform the following tasks on the system:

l Gather metric data that indicates health and performance of themonitored system

l Log the collectedmetric data into different log files

You can view the data logged into these log files with the help of the following tools:

l The extract and utility commands

l Data analysis programs (such as HP PerformanceManager)

The configuration parameter file—the parm file—enables you to configure the default data logging
mechanism of the scope collector. By modifying parameters in the parm file, you can control the
following properties of the scope collector:

l Data logging interval

l Types of data

l Size of log files

After installing the HP Operations agent on the node, youmust configure the data collection
mechanism of scope by modifying the parm file.

Using the Log File-Based Data Store
Older versions of the HP Operations agent (older than the version 11.00) used to store data into the
embedded performance component (EPC). The HP Operations agent 11.00 (or higher) stores the
system performance data into the log file-based data store. However, the EPC data store is still
available for different Smart Plug-ins (SPIs).

When a SPI collector detects the presence of both the EPC and log file-based data store, the data
collected by the SPI automatically gets logged into the log file-based data store.

Collection Log Files
The scope data collector (scopeux on UNIX and Linux nodes; scopent onWindows nodes) collects
and summarizes performancemeasurements of system-resource utilization and records the data
into the following log files, depending on the data classes specified in the log line of the parm file:

logglob

logappl

HP Operations Agent (11.11)Page 25 of 388

User Guide
Chapter 2:

%ovdatadir%

OnHP-UX, Solaris, and Linux:

/opt/perf/newconfig

/var/opt/perf

OnAIX:

/usr/lpp/perf/newconfig

/var/opt/perf

The data collectionmechanism of scope is controlled by the settings in the parm file located into
the%ovdatadir% (forWindows) or /var/opt/perf (for UNIX or Linux) directory.

If you want to modify the default collectionmechanism, youmust modify the settings in the parm
file that is located into the%ovdatadir% (forWindows) or /var/opt/perf (for UNIX or Linux)
directory.

When you upgrade the HP Operations agent on a node (from an older version of the HP
Performance Agent), the upgrade process updates the copy of the parm file available in the
newconfig directory. The parm file that resides into the other directory remains unaffected and
continues to govern the data collectionmechanism on the node. This method, in effect, enables you
to retain the configured data collectionmechanism even after upgrade of the product. You can, any
time after the product upgrade, compare the existing configuration settings of the parm file with the
new version of the parm file available in the newconfig directory, and thenmake necessary
changes.

The parm file is set up to collect an average amount of log file data. Themaximum amount depends
on your system. See the description of the parameter size in Parameter Descriptions.

On all UNIX/Linux systems, them4macro processor utility is used for preprocessing the parm file
and there is only one parm file, irrespective of the different platforms. The Performance Collection
Component preprocesses the generic parm file to create a run-time parm file which is a text file.
You can use the following command to generate a run-time parm file:

#m4 -DPARMOS=<Operatingsystem>/var/opt/perf/parm > parm.m4

Set the appropriate value for <Operatingsystem>.

The parm file is available at the location /var/opt/perf/parm for the new installations. The
pre-existing parm files, without them4 utility, work for the previous versions of HP Operations
agent.

The system checks for m4 at the time of installation. If m4 is not present, make sure that you install
m4 on the system. For more information, see the sectionPrerequisites for Installing HP Operations
agent in theHP Operations Agent and HP Operations Smart Plug-in for Infrastructure Installation
and Configuration Guide.

You can add custom application definitions to the external file and include it to the parm file by
using the command #include(var/opt/perf/parm.apps). Refer theApplication section of the parm file
for more information.

HP Operations Agent (11.11)Page 29 of 388

User Guide
Chapter 2:

Modify the parm File
You canmodify the parm file using any word processor or editor that can save a file in the ASCII
format.

When youmodify the parm file, or create a new one, the following rules and conventions apply:

Any parameter you specify overrides the default values. See the parm file available in the
newconfig directory for the default values.

The order in which the parameters are specified into the parm file is not important.

If you specify a parameter more than once, the last instance of the parameter takes effect.

The file, user, group, cmd, argv1, and or parameters must follow the application statement that they
define.

Application parameters must be listed in order so that a process will be aggregated into the
application when it is first matched.

You can use uppercase letters, lowercase letters, or a combination of both for all commands and
parameter statements.

You can use blank spaces or commas to separate key words in each statement.

You can comment parameters in the parm file. Any line starting with a comment code (/*) or pound
sign (#) is ignored.

After modifying the parm file, youmust restart the Performance Collection Component component
for the changes to take effect. To restart the Performance Collection Component, run the following
command:

On Windows

%ovinstalldir%bin\ovpacmd REFRESH COL

OnHP-UX, Linux, or Solaris

/opt/perf/bin/ovpa -restart scope

OnAIX

/usr/lpp/perf/bin/ovpa -restart scope

If you want to use the Real-TimeMetric Access (RTMA) component, youmust also restart the
perfd process:

On Windows

%ovinstalldir%bin\ovpacmd REFRESH RTMA

OnHP-UX, Linux, or Solaris

/opt/perf/bin/pctl restart

OnAIX

/usr/lpp/perf/bin/pctl restart

HP Operations Agent (11.11)Page 30 of 388

User Guide
Chapter 2:

parm File Parameters

Scope is controlled by specific parameters in the collection parameters (parm) file that do the
following:

Set maximum amount of disk space for the raw scope log files.

Specify data types to be logged.

Specify the interval at which data should be logged.

Specify attributes of processes andmetrics to be logged.

Define types of performance data to be collected and logged.

Specify the user-definable sets of applications that should bemonitored. An application can be one
or more programs that aremonitored as a group.

Specify when scope should perform daily log file maintenance activities so that they do not impact
system availability.

You canmodify these parameters to configure scope to log performance data that match the
requirements of themonitored system (seeModify the parm File)

The parm file parameters listed in the table below are used by scope. Some of these parameters
are for specific systems as indicated in the table. For detailed descriptions of these parameters,
see Parameter Descriptions and Application Definition Parameters.

Parameter Values or Options

id system ID

log global

application [=prm] [=all]
([=prm] on HP-UX only)

process

device=disk,lvm,cpu,filesystem,all(lvm
on HP-UX only,)

transaction=correlator,resource (resource
on HP-UX only)

logicalsystem
(For Solaris, logical system is supported on Solaris 10 operating
environment or later)

In AIX, logical system is supported on LPAR on AIX 5L V5.3ML3 and
later andWPAR on AIX 6.1 TL2Global environment only.

parm File Parameters Used by scope

HP Operations Agent (11.11)Page 31 of 388

User Guide
Chapter 2:

Parameter Values or Options

For enabling lpar logging,
logicalsystems=lpar
logicalsystems

For enabling wpar logging,
logicalsystems=wpar

For enabling both lpar and wpar logging,
logicalsystems=lpar,wpar
logicalsystems=wpar,lpar
logicalsystems=all

mainttime hh:mm (24-hour time format)

scopetransactions onoff

subprocinterval value in seconds (not on HP-UX)

javaarg

NOTE:Only on
UNIX/Linux.

truefalse

procthreshold

(same as threshold)

cpu=percent
disk=rate (not on Linux orWindows)
memory=nn (values in MBs)
nonewnokilledshortlived

appthreshold cpu=percent

diskthreshold util=rate

bynetifthreshold iorate=rate

fsthreshold util=rate

lvthreshold iorate=rate

bycputhreshold cpu=percent

fstypes To include only specific file systems for data logging, use the syntax
<file_system1>, <file_system2>, <file_system3>, ...

To exclude a file system, use the syntax !<file_system>.

HP Operations Agent (11.11)Page 32 of 388

User Guide
Chapter 2:

Parameter Values or Options

wait cpu=percent(HP-UX only)
disk=percent(HP-UX only)
mem=percent(HP-UX only)
sem=percent(HP-UX only)
lan=percent(HP-UX only)

application application name

file file name [, ...]

argv1 first command argument [,]

cmd command line regular expression

user user login name [,]

group groupname [,]

or

priority low value-high value
(range varies by platform)

size (values are in MBs)
process=nn (themaximum value is 4096)

Themaximum value for all the below classes is 2048.

global=nn application=nn
device=nn
transaction=nn

logicalsystem=nn

days global=nn (values are in days)
application=nn
process=nn
device=nn
transaction=nn

logicalsystem=nn

maintweekday Sun|Mon|Tue|Wed|Thu|Fri|Sat

collectioninterval process=ss (values in seconds)

global=ss

gapapp blank

unassignedprocesses

existingapplicationname

other

HP Operations Agent (11.11)Page 33 of 388

User Guide
Chapter 2:

Parameter Values or Options

Flush ss(values in seconds)

0 (disables data flush)

zone_app

NOTE: Only on Solaris

true

false

(only on Solaris 10 and above)

project_app

NOTE: Only on Solaris

true

false

(only on Solaris 10 and above)

proccmd

NOTE:Only on
UNIX/Linux.

0 (disables logging of process commands)

nnnn (refers to the numeric value of the length of a process command.
Maximum value is 1024)

proclist

NOTE: Only on Solaris

all (the Performance Collection Component in the global zone
monitors all the processes that are running in the global and non-global
zones)

local (the Performance Collection Component in the global zone
monitors only the processes that are running in the global zone)

This parameter has no effect in non-global zones.

appproc

NOTE: Only on Solaris

all (configures the Performance Collection Component to calculate
APP_metrics with processes for applications that belong to the global
and non-global zones)

local (configures the Performance Collection Component to calculate
APP_metrics with processes for applications that belong to the global
zone only)

This parameter has no effect in non-global zones.

ignore_mt true(CPU metrics of global class report values normalized against the
active number of cores in the system)

false(CPU metrics of global class report values normalized against
active number of CPU threads in the system)

ineffective(multithreading is turned off)

NOTE: This parameter has no effect on HP-UX. Youmust run the
midaemon -ignore_mt command on HP-UX to switch between the
abovemodes. For more information, see LoggingMetrics Calculated
with the Core-Based Normalization.

cachemem

NOTE: Only on Linux

f or free (The HP Operations agent does not include the buffer cache
size when calculating the value of the GBL_MEM_UTILmetric)

HP Operations Agent (11.11)Page 34 of 388

User Guide
Chapter 2:

Parameter Values or Options

u or user (The HP Operations agent includes the buffer cache size
when calculating the value of the GBL_MEM_UTILmetric)

Parameter Descriptions

Following are descriptions of each of the parm file parameters.

ID

Log

Thresholds

scopetransactions

subprocinterval

gapapp

fstypes

wait

Size

Mainttime

Days

Maintweekday

javaarg

Flush

zone_app

project_app

proclist

appproc

proccmd

ignore_mt

cachemem

ID

The system ID value is a string of characters that identifies your system. The default ID assigned is
the system’s hostname. If you want to modify the default ID assigned, make sure all the systems
have unique ID strings. This identifier is included in the log files to identify the system onwhich the
data was collected. You can specify amaximum of 39 characters.

HP Operations Agent (11.11)Page 35 of 388

User Guide
Chapter 2:

Log

The log parameter specifies data types to be collected by scope.

log global enables scope to record global records to the logglob file. Youmust have global data
records to view and analyze performance data on your system. Global metrics are not affected by
logging options or values of application or process data.

log application enables scope to record active application records to the logappl file. By default,
scope logs only the applications that have active processes during an interval.

log application=all in the parm file enables scope to log all applications to the logappl file at every
interval, regardless of whether the applications are active or not.

The application=all optionmay be desirable in specific circumstances in relation to the use of
application alarms. For example, you can generate alarm when an application becomes inactive
(APP_ALIVE_PROC).

If you enable this option, the log file logappl grows in size at a faster rate since all applications are
logged at every interval. You can use the utility program’s scan function tomonitor the utilization of
the scope log files.

On HP-UX only, you can specify the parameter log application=prm to enable scope to record
active Process ResourceManager (PRM) groups to the logappl file. If you specify this parameter,
scope will not record user-defined application sets listed in the parm file. In addition, all application
metrics collected will reflect a PRM context and will be grouped by the APP_NAME_PRM_
GROUPNAME metric.

Application logging options do not affect global or process data.

log process enables scope to record information about interesting processes to the logproc file. A
process may become interesting when it is first created, when it ends, and when it exceeds a
threshold specified in the parm file for an application. Process threshold logging options have no
effect on global or application data.

log device=disk,lvm,cpu,filesystem enables scope to record information about individual disks,
logical volumes (HP-UX only), CPUs, and file systems to the logdev file.

Note: Do not use lvm if themonitored system does not run with the HP-UX operating system.

By default, only disks, volumes, and interfaces that had I/O generated through them during an
interval are logged. netif (logical LAN device) records and disk records (on HP-UX) are always
logged regardless of the selected log device options.

For example, to request logging of records for individual disks, logical volumes, CPUs, network
interfaces, but not individual file systems, use the following setting:

log device=disk,lvm,cpu.

When filesystem is specified, all mounted local file systems are logged at every interval, regardless
of the activity.

HP Operations Agent (11.11)Page 36 of 388

User Guide
Chapter 2:

log device=all in the parm file enables scope to log all disk, logical volume, CPU, and network
interface devices to the logdev file at every interval, regardless of whether the devices are active or
not.

If you enable this option, the logdev file grows in size at a faster rate since all devices are logged at
every interval. Use the utility program’s scan function tomonitor log file utilization and sizing.

log transaction enables scope to record ARM transaction records to the logtran file. To enable
scope to collect data, a process that is instrumented with the Application ResponseMeasurement
(ARM) API must be running on your system. (For more information, seeWhat is Transaction
Tracking? on page 335.)

The default values for the log transaction parameter are no resource and no correlator.

To enable resource data collection (HP-UX only) or correlator data collection, specify log
transaction=resource or log transaction=correlator. Both can be logged by specifying log
transaction=resource, correlator.

log logicalsystems enables scope to record information about the logical systems to the logls file.
Data for logical systems is summarized periodically at intervals specified in the parm file.

On AIX 6.1 TL2, BYLS logging for LPAR andWPAR can be configured by using the logicalsystems
parameter in the parm file. See "parm File Parameters Used by scope" on page 31.

The log files are created automatically irrespective of logging options. If a particular type of logging
is disabled, the corresponding log file will not removed automatically from themonitored system.

If you specify log without options, scope logs only the global and process data.

Thresholds

The threshold parameters enable scope to record only critical information into the log files and filter
out unnecessary, non-critical details of the system.

The following parameters specify the thresholds for different classes of metrics. When the
threshold value specified is exceeded for a particular instance of a class of data, a record for that
instance is logged by scope.

You can specify lower values for the threshold, to enable scope to logmore data or you can specify
higher values for the threshold, to enable scope to log lesser data so that you have fewer records
logged on average. Listed below are the threshold parameter available:

Procthreshold

appthreshol

diskthreshold

bynetifthreshold

fsthreshold

lvthreshold

bycputhreshold

HP Operations Agent (11.11)Page 37 of 388

User Guide
Chapter 2:

Procthreshold

The procthreshold parameter is used to set activity levels to specify criteria for interesting
processes. To use this parameter, youmust enable process logging. procthreshold affects only
processes that are logged and do not affect other classes of data.

Youmust specify threshold options on the same parameter line (separated by commas).

procthreshold Options for Process Data

cpu Sets the percentage of CPU utilization that a process must exceed to become
“interesting” and be logged.

The value percent is a real number indicating overall CPU use. For example,
cpu=7.5 indicates that a process is logged if it exceeds 7.5 percent of CPU
utilization in a 1-minute sample.

disk (Not available on Linux orWindows.) Sets the rate of physical disk I/O per
second that a process must exceed to become “interesting” and be logged.

The value is a real number. For example, disk=8.0 indicates that a process will
be logged if the average physical disk I/O rate exceeds 8 KBs per second.

memory Sets thememory threshold that a process must exceed to become “interesting”
and be logged.

The value is in megabyte units and is accurate to the nearest 100 KB. If set, the
memory threshold is compared with the value of the PROC_MEM_VIRT metric.
Each process that exceeds thememory threshold will be logged, similarly to the
disk and CPU process logging thresholds.

nonew Disables logging of new processes if they have not exceeded any threshold. If
not specified, all new processes are logged. OnHP-UX, if shortlived is not
specified, then only new processes that lastedmore than one second are
logged.

nokilled Disables logging of exited processes if they did not exceed any threshold. If not
specified, all killed (exited) processes are logged. OnHP-UX, if shortlived is not
specified, then only killed processes greater than one second are logged.

shortlived Enables logging of processes that ran for less than one second in an interval.
(This often significantly increases the number of processes logged.) If scope
finds threshold shortlived in the parm file, it logs shortlived processes,
regardless of the cpu or disk threshold, as long as the nonew and nokilled
options are removed. The default is no shortlived processes will be logged. (Do
not specify shortlived in the threshold parameter if you do not want shortlived
processes logged.)

process procthreshold specifies the thresholds for the PROCESS class. The default
values are as follows:

Processes that usedmore than 10% of a processor's worth of cpu during the last
interval

HP Operations Agent (11.11)Page 38 of 388

User Guide
Chapter 2:

Processes had a virtual memory set size over 900MB

Processes had an average physical disk I/O rate greater than 5 KB per second

appthreshold

The appthreshold parameter is used to specify threshold values for the APPLICATION data class
(APP_CPU_TOTAL_UTILmetric). The threshold criteria is based on the percentage of CPU
utilization that an applicationmust exceed for the application to be recorded in the log files.

The default setting in the parm file enables scope to record applications that usemore than 0% of
CPU.

diskthreshold

The diskthreshold parameter is used to specify the threshold values for DISK class. The threshold
criteria for DISK class is based on the percentage of time duration, a disk performs I/Os (BYDSK_
UTILmetric).

The default setting in the parm file enables scope to record the details of disks that are busy
performing I/Os for more than 10% of the time duration.

bynetifthreshold

The bynetifthreshold parameter specifies the thresholds for the NETIF class. Netif data class
threshold criteria is based on the number of packets transferred by the network interface per second
(BYNETIF_PACKET_RATE metric).

The default setting in the parm file enables scope to record the details of network interfaces that
transfer more than 60 packets per second. If the value for this parameter is not specified or if the
parameter is commented out, scope logs the details of all the network interfaces that are not idle.

fsthreshold

The fsthreshold parameter specifies the thresholds for FILESYSTEM class. The file system data
class threshold criteria is based on the percentage of disk space utilized by the filesystems (FS_
SPACE_UTILmetric).

The default setting in the parm file enables scope to record the details of filesystems that utilize
more than 70% of disk space.

lvthreshold

The lvthreshold specifies the thresholds for the LOGICALVOLUME class. Logical volume data
class threshold values are based on I/Os per second (LV_READ_RATE + LV_WRITE_RATE).

The default setting in the parm file enables scope to record the details of logical volumes that have
more than 35 I/Os per second.

HP Operations Agent (11.11)Page 39 of 388

User Guide
Chapter 2:

bycputhreshold

The bycputhreshold parameter specifies the thresholds for CPU class. CPU data class thresholds
criteria is based on percentage of time the cpu was busy (BYCPU_CPU_TOTAL_UTIL).

The default setting in the parm file enables scope to record the details of CPUs that are busy more
than 90% of the time.

scopetransactions

The scope collector itself is instrumented with ARM (Application ResponseMeasurement) API
calls to log its own transactions. The scopetransactions flag determines whether or not scope
transactions will be logged. The default is scopetransactions=on; scope will log two transactions:
Scope_Get_Process_Metrics and Scope_Get_Global_Metrics. If you do not want these scope
transactions to be logged, specify scopetransactions=off. A third transaction, Scope_Log_
Headers, will always be logged; it is not affected by scopetransactions=off.

subprocinterval

The subprocinterval parameter, if specified, overrides the default that scope uses to sample
process data. Process data and global data are logged periodically at intervals specified in the parm
file. However, scope probes its instrumentation every few seconds to catch short-term activities.
This instrumentation sampling interval is 5 seconds by default. The process data logging interval
must be an evenmultiple of the subprocinterval. For more information, see "Configure Data Logging
Intervals" on page 52.

On some systems with thousands of active threads or processes, the subprocinterval should be
made longer to reduce overall scope overhead. On other systems with many short-lived processes
that youmay wish to log, setting the subprocinterval lower could be considered, although the effect
on scope overhead should bemonitored closely in this case. This settingmust take values that are
factors of the process logging interval as specified in the parm file.

Lower values for the subprocinterval will decrease the gap between global metrics and the sum of
applications on all operating systems other than HP-UX.

gapapp

The gapapp parameter in the parm file controls themodification of application class of data to
account for any difference between the global (system-wide) data and the sum of application data.

Application data is derived from process-level instrumentation. Typically there is difference
between the global metrics and the sum of applications. In systems which have high process
creation rates the difference will be significant. You can choose from the following options:

If gapapp is blank, an application named gapapp will be added to the application list.

If gapapp = UnassignedProcesses, an application by the nameUnassignedProcesses will be
added to the application list.

HP Operations Agent (11.11)Page 40 of 388

User Guide
Chapter 2:

fstypes =

or

fstypes = *

Specifying * or blank character ensures that Operations agent will monitor all the file systems
that are available.

.

wait

You can use the wait parameter (HP-UX only) to capture details of processes which wait for
system resources. You can specify the value of the wait parameter in percentage. When a process
waits for system resources: cpu, disk, mem, sem, and lan for a percentage of interval greater than
the value specified for the wait parameter then the details of that process are logged in the logproc
file.

See "parm File Parameters Used by scope" on page 31 for values and options.

For example, if process logging interval is defined as 60 seconds and the wait parameter for the
CPU is set to 50%, any process waiting for CPU for more than or equal to 30 seconds is captured in
the logproc file.

Size

The size parameter is used to set themaximum size (in megabytes) of any raw log file. You cannot
set the size to be less than onemegabyte.

The scope collector reads these specifications when it is initiated. If any of these log files achieve
their maximum size during collection, they will continue to grow until mainttime, when they will be
rolled back automatically. During a roll back, the oldest 25 percent of the data is removed from the
log file. Raw log files are designed to only hold amaximum of one year's worth of data if not limited
by the sizeparameter. See Log File Contents Summary and Log File Empty Space Summary in
the Utility Scan Report Details .

If the size specification in the parm file is changed, scope detects it during startup. If themaximum
log file size is decreased to the point where existing data does not fit, an automatic resize will take
place during the scope startup. If the existing data fits within the new maximum size specified, no
action is taken.

The resize command creates the new file scopelog in the directory set by TMPDIR environment
variable before deleting the original log file. See How to Use it section in the Resize.

Any changes youmake to themaximum size of a log file take effect at the time specified in the
mainttime parameter.

Note: Regardless of the size parameters, themaximum size of the scope log files will be
limited also by the amount of data stored over one year. Raw scope log files cannot contain

HP Operations Agent (11.11)Page 42 of 388

User Guide
Chapter 2:

more than one year of data, so if logs extend back that long, the data older than one year will be
overwritten. See extract for information about how to create archival log files if more than a
year of data is desired.

Mainttime

Log files are rolled back if necessary by scope only at a specific time each day. The default time
can be changed using themainttime parameter. For example, settingmainttime=8:30, causes log
file maintenance to be done at 8:30 am each day.

We suggest settingmainttime to a time when the system is at its lowest utilization.

Note: Log file maintenance only rolls out data older than one day, so if a log file such as
logproc grows very quickly and reaches its limit within 24 hours, its size can exceed the
configured size limit.

Days

The days parameter specifies themaximum number of days of data, any raw data log file can store
at a given point of time. The value for this parameter must be in the range of 1 to 365. This
parameter enables scope data collector to maintain log files.

During data collection, if the number of days of data in the log file reaches the days specified in the
days parameter, data collection will continue till the day specified in themaintweekday parameter is
met. Oncemaintweekday is reached, the log file will be rolled back automatically at maintime.
During the roll back, data collected after days parameter reached its maximum value will be
removed from the log file.

Note:When the log files are rolled back during data collection, if the value specified in the size
parameter is reached on a specific day before the days parameter, then the size parameter
overrides the days parameter.

Example, if "size global=20" and "days global=40" is used in parm file, and if the log files reaches
maximum size 20MB before 40 days of data being logged in log file, then the log file roll back is
done based on the size parameter.

Maintweekday

Themaintweekday parameter specifies the day of the week when the log file roll back happens if
the days parameter is met. The roll back will happen at maintime.

Example, if “maintweekday=Mon” is used in parm file, the log file roll back is done once the value
specified in the days parameter is met on “Monday” at maintime. It is recommended that the value
for maintweekday should be set to a day in the week when the system utilization is low.

Note: Themaintweekday parameter is an optional parameter. If maintweekday parameter is

HP Operations Agent (11.11)Page 43 of 388

User Guide
Chapter 2:

specified in the parm file, it should be used along with the days parameter. This parameter will
not be considered, if it is not used with days parameter in the parm file. If maintweekday is not
specified in the parm file though days parameter is specified, then the default value is
“maintweekday=Sun”

Example, if “daysglobal=30”, “application=20”, “process=30”, “device=20”, “transaction=10”,
“maintweekday=Wed” and if the log file reaches the number of days specified in the days
parameter, data collection will continue till the day specified in themaintweekday. Once
maintweekday is reached, log file roll back will happen removing the exceeded number of days of
data from the start of the log file. This maintenance will be done at maintime.

javaarg

Note: This parameter is valid only on UNIX/Linux.

The javaarg parameter is a flag that can be set to true or false. It ONLY affects the value of the
proc_proc_argv1metric.

When javaarg is set to false or is not defined in the parm file, the proc_proc_argv1metric is
always set to the value of the first argument in the command string for the process.

When javaarg is set to true, the proc_proc_argv1metric is overridden, for Java processes only, with
the class or jar specification if that can be found in the command string. In other words, for
processes whose file names are java or jre, the proc_proc_argv1metric is overridden with the first
argument without a leading dash not following a -classpath or a -cp, assuming the data can be found
in the argument list provided by theOS.

While this sounds complex, it is very plain when you have Java processes running on your system:
set javaarg=true and the proc_proc_argv1metric is logged with the class or jar name. This can be
very useful if you want to define applications specific to Java. When the class name is in proc_
proc_argv1, then you can use the argv1= application qualifier to define your application by class
name.

Flush

The flush parameter specifies the data logging intervals (in seconds) at which all instances of
application and device data will be logged. The flush intervals must be in the range 300-32700 and
be an evenmultiple of 300.

The default value of flush interval is 3600 seconds for all instances of application and device data.

You can disable the flush parameter by specifying the value as 0 (zero). If the flush parameter is set
to 0, scope will not log application and the device data which does not meet the thresholds specified
in the parm file.

zone_app

The zone_app flag allows Performance Collection Component to collect Solaris zones specific
data. The zone_app flag, when set to true, will affect the collection of all application class (APP_*)

HP Operations Agent (11.11)Page 44 of 388

User Guide
Chapter 2:

metrics. All the user-defined application sets listed in parm file will be ignored and the application
metrics will be collected based on zones running on the Performance Collection Component
installedmachines.

For example, consider a Solaris machine running with two non-global zones: “zone1” and “zone2”.
Performance Collection Component will ignore parm file application sets and will create three
applications, named "global", "zone1", and "zone2". The performancemeasurement for each
application will be based on themeasurement values obtained from the processes running under
respective zones. Example, APP_CPU_TOTAL_UTILmetric for zone "zone1" will be calculated
based on the cpu utilization values for all the processes running in zone1.

When zone_app flag is not enabled or when the Performance Collection Component is running on
Solaris 9 or lower version, APP_LS_ID metric will report a Not Available (na) value. Application
grouping will be done based on the user-defined application sets listed in parm file.

Note: Zones are supported only on Solaris 10 and above versions.

project_app

If you set this parameter to true, the Performance Collection Component deems each Solaris
project as an application (and the project ID as the application ID). To ignore Solaris projects, set
this parameter to false.

This parameter is supported only for Solaris 10 and above.

proclist

You can use this parameter only in Solaris global zones; it has no effect on the agent that is running
in a non-global zone.

In a global zone, if you set this parameter to all, the Performance Collection Component monitors all
global and non-global zone processes. Tomonitor only the processes that belong to the global
zone, set this parameter to local.

appproc

This parameter is available only on Solaris. You can use this parameter only in a global zone; it has
no effect on the agent that is running in a non-global zone.

In a global zone, if you set this parameter to all, the Performance Collection Component includes
the processes for global and non-global zone applications while calculating values of all APP_
metrics. To include only the global zone applications for the calculation of APP_metrics, set this
parameter to local.

proccmd

HP Operations Agent (11.11)Page 45 of 388

User Guide
Chapter 2:

Note: This parameter is valid only on UNIX/Linux.

The proccmd parameter enables logging of process commands into HP Operations agent data
store. You can specify the length of the process command as a numeric value in this parameter.
Themaximum numeric value is 1024. By default, the value for this parameter is set to 0 and the
logging of process commands is disabled.

ignore_mt

If you set this parameter to true, the Performance Collection Component logs all the CPU-related
metrics of the Global class after normalizing themetric values against the number of active cores
on themonitored system.

When this parameter is set to false, the Performance Collection Component logs all the CPU-
relatedmetrics of the Global class after normalizing themetric values against the number of threads
on themonitored system.

This parameter has no effect on HP-UX. Youmust run themidaemon -ignore_mt command on
HP-UX to switch between the abovemodes. For more information, see "LoggingMetrics
Calculated with the Core-Based Normalization" on page 54.

The Performance Collection Component ignores this parameter if themultithreading property is
disabled on the system. As a result, the value of the GBL_IGNORE_MTmetric is logged as true.

Note: If you enable or disable Simultaneous Multi-Threading (SMT) on aWindows, Linux, or
Solaris system, youmust restart the system.

cachemem

The cachemem parameter in the parm file enables you to configure the agent to include the buffer
cache size while reporting the total memory utilization data (that is, the value of the GBL_MEM_
UTILmetric). This parameter is applicable for Linux only.

By default, the parameter is set to free (f), which indicates the agent does not include the buffer
cache size in the GBL_MEM_UTILmetric value.

To include the buffer cache size in the GBL_MEM_UTILmetric value, youmust set this parameter
to user (u).

Application Definition Parameters

The following parameters pertain to application definitions: application, file, user, group, cmd,
argv1, and or.

The Performance Collection Component groups logically related processes together into an
application to log the combined effect of the processes on computing resources such as memory
and CPU.

HP Operations Agent (11.11)Page 46 of 388

User Guide
Chapter 2:

Note: In PRMmode (for HP-UX only), active PRM groups are logged and the user-defined
application sets listed in the parm file are ignored.

An application can be a list of files (base program names), a list of commands, or a combination of
these also qualified by user names, group names, or argument selections. All these application
qualifiers can be used individually or in conjunction with each other. If, for example, cmd and user
qualifiers are both used then a process must meet the specification of both the command string and
the user name in order to belong to that application. Each qualifier is discussed in detail below.

Note: Any process on the system belongs to only one application. No process is counted into
two or more applications.

Application

The application name defines an application or class that groups together multiple processes and
reports on their combined activities.

The application name is a string of up to 19 characters used to identify the application.

Application names can be lowercase or uppercase and can contain letters, numbers, underscores,
and embedded blanks. Do not use the same application namemore than once in the parm file.

An equal sign (=) is optional between the application keyword and the application name.

The application parameter must precede any combination of file, user, group, cmd, argv1, and or
parameters that refer to it, with all such parameters applying against the last application workload
definition.

Each parameter can be up to 170 characters long including the carriage return character, with no
continuation characters permitted. If your list of files is longer than 170 characters, continue the list
on the next line after another file, user, group, cmd or argv1 statement.

You can define up to 998 applications. Performance Collection Component predefines an
application named other. The other application collects all processes not captured by
application statements in the parm file.

For example:

application Prog_Dev
file vi,cc,ccom,pc,pascomp,dbx,xdb

application xyz
file xyz*,startxyz

You can have amaximum of 4096 file, user, group, argv1, and cmd specifications for all
applications combined. The previous example includes nine file specifications. (xyz* counts as only
one specification even though it canmatchmore than one program file.)

If a program file is included inmore than one application, it is logged in the first application that
contains it.

HP Operations Agent (11.11)Page 47 of 388

User Guide
Chapter 2:

The default parm file contains some sample applications that you canmodify. The examples
directory also contains other samples (in a file called parm_apps) you can copy into your parm file
andmodify as needed.

File

The file parameter specifies the program files that belong to an application. All interactive or
background executions of these programs are included. It applies to the last application statement
issued. An error is generated if no application statement is found.

The file name can be any of the following:

l For UNIX/Linux:

n A single UNIX program file such as vi.

n A group of UNIX program files (indicated with a wild card) such as xyz*. In this case, any
program name that starts with the letters xyz is included. A file specification with wild cards
counts as only one specification toward themaximum allowed.

l ForWindows:

n A single program file such as winword.

n A group of program files (indicated with a wild card) such as xyz*. In this case, any program
name that starts with the letters xyz is included. A file specification with wild cards counts as
only one specification toward themaximum of 1000 for all file specifications.

Note: ForWindows, when you define executable files for an application in the parm file, no
file extensions are required. For example, you can define winword in the parm file without its
.exe extension.

The name in the file parameter is limited to 15 characters in length. An equal sign (=) is optional
between the file parameter and the file name.

You can enter multiple file names on the same parameter line (separated by commas) or in separate
file statements. File names cannot be qualified by a path name. The file specifications are
compared to the specific metric PROC_PROC_NAME, which is set to a process’s argv[0] value
(typically its base name). For example:

For UNIX/Linux:

application = prog_dev
file = vi,vim,gvim,make,gmake,lint*,cc*,gcc,ccom*,cfront
file = cpp*,CC,cpass*,c++*
file = xdb*,adb,pxdb*,dbx,xlC,ld,as,gprof,lex,yacc,are,nm,gencat
file = javac,java,jre,aCC,ctcom*,awk,gawk

application Mail
file = sendmail,mail*,*mail,elm,xmh

For Windows:

application payroll
file account1,basepay,endreport

HP Operations Agent (11.11)Page 48 of 388

User Guide
Chapter 2:

application Office
file winword* excel*
file 123* msaccess*

If you do not specify a file parameter, all programs that satisfy the other parameters qualify.

Note: The asterisk (*) is the only wild card character supported for parm file application
qualifiers except for the cmd qualifier (see below).

argv1

The argv1 parameter specifies the processes that are selected for the application by the value of
the PROC_PROC_ARGV1metric. This is normally the first argument of the command line, except
when javaarg=true, when this is the class or jar name for Java processes. This parameter uses the
same patternmatching syntax used by parm parameters like file= and user=. Each selection
criteria can have asterisks as a wildcardmatch character, and you can havemore than one
selection on one line separated by commas.

For example, the following application definition buckets all processes whose first argument in the
command line is either -title, -fn, or -display:

application = xapps
argv1 = -title,-fn,-display

The following application definition buckets a specific Java application (when javaarg=true):

application = JavaCollector
argv1 = com.*Collector

The following shows how the argv1 parameter can be combined with the file parameter:

application = sun-java
file = java
argv1 = com.sun*

cmd

The cmd parameter specifies processes for inclusion in an application by their command strings,
which consists of the program executed and its arguments (parameters). Unlike other selection
parameters, this parameter allows extensive use of wildcard characters besides the use of the
asterisk character.

Similar to regular expressions, extensive patternmatching is allowed. For a complete description of
the pattern criteria, see the UNIX man page for fnmatch. Unlike other parameters, you can have
only one selection per line, however you can havemultiple lines.

The following shows use of the cmd parameter:

application = newbie
cmd = *java *[Hh]ello[Ww]orld*

HP Operations Agent (11.11)Page 49 of 388

User Guide
Chapter 2:

User

The user parameter specifies which users (login names) belong to the application. The format is as
below:

application <application_name>

file <file_name>

user [<Domain_Name>]\<User_Name

The domain name in the user parameter is optional. Youmust specify the domain name to specify
the user names of a non-local system.

For example:

application test_app

file test

user TestDomain\TestUser

If you specify the user namewithout the domain name in the user parameter, the user names will be
considered to be the user names of the local system.

For example:

application Prog_Dev

file vi,xb,abb,ld,lint

user ted,rebecca,test*

You can only use the wild card asterisk (*) to ensure the user names with a similar string of
characters prefixed before the asterisk (*) and suffixed after the asterisk (*) belong to the
application.If you do not specify a user parameter, all programs that satisfy the other parameters
qualify.

The name in the user parameter is limited to 15 characters in length.

Group

The group parameter specifies which user group names belong to an application.

For example:

application Prog_Dev_Group2
file vi,xb,abb,ld,lint
user ted,rebecca,test*
group lab, test

If you do not specify a group parameter, all programs that satisfy the other parameters qualify.

The name in the group parameter is limited to 15 characters in length.

HP Operations Agent (11.11)Page 50 of 388

User Guide
Chapter 2:

Or

Use the or parameter to allow more than one application definition to apply to the same application.
Within a single application definition, a process must match at least one of each category of
parameters. Parameters separated by the or parameter are treated as independent definitions. If a
process matches the conditions for any definition, it will belong to the application.

For example:

application = Prog_Dev_Group2
user julie
or
user mark
file vi, store, dmp

This defines the application (Prog_Dev_Group2) that consists of any programs run by the user julie
plus other programs (vi, store, dmp) if they are executed by the user mark.

Priority

You can restrict processes in an application to those belonging to a specified range by specifying
values in the priority parameter.

For example:

application = swapping
priority 128-131

Processes can range in priority from -511 to 255, depending on which platform the HP Operations
agent is running. The priority can be changed over the life of a process. The scheduler adjusts the
priority of time-share processes. You can also change priorities programmatically or while
executing.

Note: The parm file is processed in the order entered and the first match of the qualifier will
define the application to which a particular process belongs. Therefore, it is normal to have
more specific application definitions prior to more general definitions.

Application Definition Examples

The following examples show application definitions.

application firstthreesvrs
cmd = *appserver* *-option[123]*

application oursvrs
cmd = *appserver*
user = xyz,abc

application othersvrs
cmd = *appserver*
cmd = *appsvr*

HP Operations Agent (11.11)Page 51 of 388

User Guide
Chapter 2:

or
argv1 = -xyz

The following is an example of how several of the programs would be logged using the preceding
parm file.

Command String User Login Application

/opt/local/bin/appserver -xyz -
option1

xyz firstthreesvrs

./appserver -option5 root othersvrs

./appserver -xyz -option2 -abc root firstthreesvrs

./appsvr -xyz -option2 -abc xyz othersvrs

./appclient -abc root other

./appserver -mno -option4 xyz oursvrs

appserver -option3 -jkl xyz firstthreesvrs

/tmp/bleh -xyz -option1 xyz othersvrs

Configure Data Logging Intervals

The default collection intervals used by scope are 60 seconds for process data and 300 seconds for
global and all other classes of data. You can override this using the collectioninterval parameter in
the parm file. The values must satisfy the following conditions:

The collection intervals for process data can be configured between 5 to 60 seconds in steps of 5
seconds. The collection intervals for process datamust be amultiple of the subproc interval (see
subprocinterval) and it must divide evenly into the global collection interval.

The collection interval for global data can be configured to one of the following values: 15, 30, 60
and 300 seconds. The global collection interval must be greater than or equal to process interval,
and amultiple of the process collection interval. The global collection interval applies to the global
metrics and all non-process metric classes such as filesystem and application.

Configuring Data Collection on vMA Nodes
The HP Operations agent uses the viserver daemon to log data on the vMA system. You can
configure viserver settings in the following configuration files available at /var/opt/perf:

viserver.properties

VILog4j.xml

HP Operations Agent (11.11)Page 52 of 388

User Guide
Chapter 2:

Configuring Data Collection for AIX Frames
You can configure the HP Operations agent on an AIX LPAR to collect performance data from the
AIX frame that hosts themonitored LPAR.

You can have the following advantages if you enable themonitoring of AIX frames:

l Collect configuration information:
n Name and UUID of the frame that hosts themonitored LPAR

n Model, serial number, and type of the frame

n CPU configuration andmemory capacity of the frame

l With the additional information, you can analyze resource utilization of the frame

l Use data analysis tools (like HP PerformanceManager) to analyze the CPU consumption ratio
of the frame and all the LPARs hosted on the frame

Task 1: Configure Passwordless SSH Access
Configure passwordless SSH access to the frame for a HardwareManagement Console (HMC)
user. Also, make sure that the user can remotely run commands on the frame from amonitored
LPAR.

Task 2: Enable Frame Utilization Monitoring on the HMC
1. Log on to the HMC host as root.

2. Run the following command:

chlparutil -r config -s 60

3. Go to the /var/opt/perf directory.

4. Open the hmc file with a text editor, and then add the following content to the file:

<hmc_username>@<hmc_fqdn>

In this instance:

<hmc_username> is the HMC user that was granted passwordless SSH access to the frame
in "Task 1: Configure Passwordless SSH Access" above.

<hmc_fqdn> is the fully qualified domain name of the HMC host.

For example:

hmcuser@hmchost.example.domain.com

5. Save the file.

6. Configure the parm file and start the collection process.

HP Operations Agent (11.11)Page 53 of 388

User Guide
Chapter 2:

Normalizing CPU Metrics on Hyper-
Threading/Simultaneous Multi-Threading-Enabled
Systems

On a system where hyper-threading/simultaneous multi-threading (HT/SMT) is enabled, the
physical CPU supports two or more hardware threads. As a result, multiple software processes or
threads can run on the hardware threads simultaneously. On a system with amulti-core processor,
multiple threads can run simultaneously on individual cores.

The Performance Collection Component provides you with several CPU-relatedmetrics, which
help you analyze and understand the CPU utilization of themonitored system. By default, on all
HT/SMT-enabled systems, the Performance Collection Component calculates the values of all
CPU-relatedmetrics by normalizing the gathered data against the number of available threads on
themonitored system. When a single thread completely utilizes the entire CPU core, values
calculated using the thread-based normalization do not always represent the true picture of the
CPU utilization.

This version of the HP Operations agent introduces a new configuration parameter, ignore_mt,
which enables you to configure the Performance Collection Component to log the CPU-related data
that has been calculated using the core-based normalization. Metric values that are calculated
with the core-based normalization present amore accurate status of the CPU utilization, and
therefore, help youmakemore effective decisions while analyzing the system's performance.

Logging Metrics Calculated with the Core-Based
Normalization

OnHP-UX, you can configure the Performance Collection Component to log all CPU-related
metrics with core-based normalization. On other platforms, you can configure the Performance
Collection Component to calculate the CPU-relatedmetrics of the GLOBAL class using the core-
based normalization before logging.

To configure the Performance Collection Component to use the core-based normalization for CPU-
relatedmetrics, follow these steps:

On HP-UX

1. Log on to the system with the root privileges.

2. Configure the parm file based on your requirement. Do not set the ignore_mt flag in the parm
file.

Note: The value of the ignore_mt flag in the parm file on HP-UX has no effect on the
operation of the Performance Collection Component.

3. Define alarm rules as necessary.

4. Run the following command:

/opt/perf/bin/midaemon –ignore_mt

HP Operations Agent (11.11)Page 54 of 388

User Guide
Chapter 2:

5. Start the HP Operations agent by running the following command:

/opt/OV/bin/opcagt –start

The Performance Collection Component starts logging all CPU-relatedmetrics (for all classes)
using the core-based normalization.

If you restart the HP Operations agent, the Performance Collection Component starts logging the
CPU data with the thread-based normalization again and youmust configure the Performance
Collection Component once again by using the above steps. To enable the agent to always use the
core-based normalization, follow these steps:

1. On the agent node, go to the following location:

/var/opt/perf

2. Open the following file with a text editor:

vppa.env

3. Set theMIPARMS parameter to ignore_mt.

4. Save the file.

5. Restart the agent by running the following command:

/opt/OV/bin/opcagt –start

On other platforms

1. Log on to the system with the root or administrative privileges.

2. Configure the parm file based on your requirement. Set the ignore_mt flag in the parm file to
true.

3. Define alarm rules as necessary.

4. Start the HP Operations agent using the following command:

OnWindows

%ovinstalldir%bin\opcagt -start

OnHP-UX, Linux, or Solaris

/opt/OV/bin/opcagt -start

OnAIX

/usr/lpp/OV/bin/opcagt -start

The Performance Collection Component starts logging CPU-relatedmetrics for the GLOBAL class
using the core-based normalization.

Stopping and Restarting Data Collection
The scope collector and the other associated processes are designed to run continuously. The only
time you should stop them are when any of the following occurs:

You are updating Performance Collection Component software to a new release.

HP Operations Agent (11.11)Page 55 of 388

User Guide
Chapter 2:

You are adding or deleting transactions in the transaction configuration file, ttd.conf. (For more
information, seeWhat is Transaction Tracking?)

You aremodifying distribution ranges or service level objectives (SLOs) in the transaction
configuration file, ttd.conf. (For more information, seeWhat is Transaction Tracking?)

You are changing the parm file and want the changes to take effect. Changes made to the parm file
take effect only when scope is started.

You are using the utility program's resize command to resize a Performance Collection Component
log file.

You are shutting down the system.

You are adding the hardware or modifying the configuration changes. Changes made will take effect
only when scope is started.

Stopping Data Collection
The ovpa andmwa script's stop option ensures that no data is lost when scope and other
Performance Collection Component processes are stopped.

Tomanually stop data collection, type the following command:

OnWindows:

%ovinstalldir%bin\ovpacmd -stop

OnHP-UX, Linux, and Solaris:

/opt/perf/bin/ovpa -stop

OnAIX:

/usr/lpp/perf/bin/ovpa -stop

Note: scope does not log NFS data but you can view the NFS data throughGlancePlus on the
local file system.

Restarting Data Collection
You have different options for restarting data collection after the Performance Collection
Component processes have stopped or configuration files have been changed and you want these
changes to take effect.

To start scope and the other Performance Collection Component processes after the system has
been down, or after you have stopped them, use <InstallDir>/ovpa start if you are using coda.
Here, InstallDir is the directory where Performance Collection Component is installed.

To restart scope and the other processes while they are running, use <InstallDir>/ovpa restart if
you are using coda. Here, InstallDir is the directory where Performance Collection Component is
installed. This stops the currently running processes and starts them again.

When you restart scope, the Performance Collection Component continues to use the same log
files (logglob, logappl, logproc, logdev, logtran, logls, and logindx) used before stopping the

HP Operations Agent (11.11)Page 56 of 388

User Guide
Chapter 2:

program. New records are appended to the end of the existing files. If you want to collect data to a
new set of files, and not retain any historical information, you should rename or archive, and remove
all the scope log files together before you restart, because data is synchronized among the files.

Note: The SEM_KEY_PATH entry in the ttd.conf configuration file is used for generating IPC
keys for the semaphores used in ttd and themidaemon process on UNIX platforms. The
default value used is /var/opt/perf/datafiles. You can change the value of SEM_KEY_PATH if
midaemon or ttd does not respond because of sem id collisions.

Daylight Savings
During daylight savings, the system time is set back by one hour in relevant time zones. At this
point, data collection stops for an hour until the system time synchronizes with the timestamp of the
last logged record.

When daylight savings is turned off, the system time advances by one hour, and therefore, the
timestamp of the next logged record advances by an hour. This introduces a one-hour gap after the
last logged record even though data collection does not stop.

Changing System Time Manually
When the system time is set back manually, data collection stops and commands (like perfstat) do
not work. These utilities hang when the system time is set back. To continue logging data and to
get responses from all commands, perform the following steps:

Run the following command:

ovc -stop coda

Back up the coda.* files in the <DataDir>\datafiles\ directory and remove them.

Run the following command:

ovc -start coda

Effective Data Collection Management
Efficient analysis of performance depends on how easy it is to access the performance data you
collect. This section discusses effective strategies for activities such as managing log files, data
archiving, and system analysis to make the data collection process easier, more effective, and
more useful.

Controlling Disk Space Used by Log Files
Performance Collection Component provides for automatic management of the log files it creates.
You can configure this automatic process or use alternatemanual processes for special purposes.
The automatic log file management process works as follows:

HP Operations Agent (11.11)Page 57 of 388

User Guide
Chapter 2:

Each log file has a configuredmaximum size. Default maximum sizes are provided when the
Performance Collection Component is first installed. However, you can reconfigure these values.

As each log file reaches its maximum size, a “roll back” is performed at mainttime by the scope data
collector. During this roll back, the oldest 25 percent of the data in the log file is removed tomake
room for new data to be added.

Automatic log file maintenance is similar, but not identical, for data collected by scope and by the
DSI logging process. For more information on DSI log file maintenance, seeOverview of Data
Source Integration.

Setting mainttime

Normally, scopewill only perform log file roll backs at a specific time each day. This is to ensure
that the operation is performed at off peak hours and does not impact normal system usage. The
time the log files are examined for roll back is set by the mainttimeparameter in the parm file.

Setting the Maximum Log File Size

Choosing amaximum log file size should be a balance between how much disk space is used and
how much historical data is available for immediate analysis. Smaller log file sizes save disk
space, but limit how much time can be graphed by tools such as PerformanceManager. Some
ways to reconfigure the scope log file sizes are discussed below.

scope logs different types of data into their own log files. This is to allow you to choose how much
disk space you want to dedicate to each type independently. For example, global data is fairly
compact, but you will often want to go back and graph data for amonth at a time. This allows a good
statistical base for trending and capacity planning exercises.

Process data can consumemore disk space than global data because it is possible to havemany
interesting processes every minute. Also, the time-value of process data is not as high as for global
data. It may be very important to know details about which process was running today and
yesterday. Youmight occasionally need to know which processes were running last week.
However, it is unlikely that knowing exactly which processes were run last month would be helpful.

A typical user might decide to keep the following data online:

Threemonths of global data for trending purposes

Onemonth of process data for troubleshooting

Threemonths of application data for trending and load balancing

Twomonths of device data for disk load balancing

You can edit the parm file to set the size parameters for each different log file. The sizes are
specified in megabytes. For example:

SIZE GLOBAL=10.0 PROCESS=30.0 APPLICATION=20.0 DEVICE=5.0

The number of megabytes required to hold a given number of days of data can vary by data type,
system configuration, and system activity. The best way to determine how big tomake the log files
on your system is to collect data for a week or so, then use the utility program's resize command to
change your log file size. The resize command scans the log files and determines how much data is

HP Operations Agent (11.11)Page 58 of 388

User Guide
Chapter 2:

being logged each day. It then converts from days tomegabytes for you. This function also updates
the parm file.

Managing Your Resizing Processes

No additional activities are required once automatic log file maintenance is set up. As log files reach
their configuredmaximum sizes, they will automatically be resized by scope.

scope rolls back log files at themainttime specified in the parm file. If you edit the parm file and
restart scope, the log files will not be rolled to the new sizes until themainttime occurs. It is
important to have scope running at the specifiedmainttime time or log files may never be rolled
back.

Log files may exceed their configuredmaximum size during the time betweenmaintenance times
without causing an immediate roll back.

A log file will never be resized so that it holds less than one full day’s data. That means that the log
file will be allowed to grow to hold at least one day's worth of data before it is rolled back. Normally
this is not an issue, but if you set the parm file parameters to collect a large volume of process or
application data or set the size to be too small, this can result in a log file significantly exceeding its
configuredmaximum size before it is rolled back.

The scope checks the available disk space on the file system where the log files reside, periodically
at intervals specified in the parm file for global data collection. If the available disk space falls
below onemegabyte, scope takes steps to ensure that it does not use any more available space by
doing the following:

Immediately performs the log file maintenance without waiting for the regular log file maintenance
time. If any log files exceed their maximum sizes (and havemore than one day's worth of data in
them), they will be rolled back.

If, following the log file maintenance, the available disk space is still not greater than onemegabyte,
scope writes an appropriate error message to its status.scope file and stops collecting data.

Data Archiving
Automatic log file management keeps the latest log file data available for analysis. Data from the
raw log files are archived. Process data and global data are logged periodically at intervals specified
in the parm file. For more information, see Configure Data Logging Intervals. Tomake room for new
data, older data is removed when the log files reach their maximum sizes. If you want to maintain
log file data for longer periods of time, you should institute a data archiving process. The exact
process you choose depends on your needs. Here are a few possibilities:

Size the raw log files to be very large and let automatic log file maintenance do the rest. This is the
easiest archivingmethod, but it can consume large amounts of disk space after several months.

Extract the data from the raw log files into extracted archive files before it is removed from the raw
log files. Formulate a procedure for copying the archive files to long term storage such as tape until
needed.

Extract only a subset of the raw log files into extracted archive files. For example, youmay not
want to archive process data due to its high volume and low time-value.

Some combination of the preceding techniques can be used.

HP Operations Agent (11.11)Page 59 of 388

User Guide
Chapter 2:

We recommend the following procedures for data archiving:

Size the raw log files to accommodate the amount of detail data you want to keep online.

Once a week, copy the detailed raw data into files that will bemoved to offline storage.

Managing Your Archiving Processes

Resize your raw log files as described in the preceding section. Choose log file sizes that will hold
at least two week’s worth of data (assuming the archival processing will only be done once a week).

Once a week, schedule a process that runs the extract program. The following example shows a
script that would perform the weekly processing:

#extract -gapdt -xm

Each week during themonth the data will be appended to the prior week's data. When a new month
starts, extract creates a new archive log file and splits that week's data into the appropriate monthly
archive log file. The log files are named rxmo followed by four digits for the year and twomore digits
for themonth. (For example, data for December 1999 would be available in a file named
rxmo199912.)

At the beginning of eachmonth the previous month’s log file is completed and a new log file is
started. Therefore, whenever more than one rxmo log file is present, it is safe to copy all but the
latest one to offline storage until it is needed. When you need to access archived data, restore the
desired archival file and access it using the extract or utility programs.

Depending on your system configuration and activity levels, the amount of disk space accumulated
in onemonthmay be large. If this is the case, you can break the detail archive file into smaller files
by substituting the weekly command -xw in place of -xm as shown in the example.

Another alternative is to choose not to archive the detailed process data.

The detailed extraction discussed in the previous example preserves all of your collected
performance data. If ever you need to investigate a situation in depth, these files can be restored to
disk and analyzed.

Tip: You can use the extract program to combine data frommultiple extracted files or to make
a subset of the data for easier transport and analysis. For example, you can combine data from
several yearly extracted files in order to domultiple-year trending analysis.

Note: Moving log files that were created on an HP Operations agent node to a system using an
older version of the HP Performance Agent is not supported.

HP Operations Agent (11.11)Page 60 of 388

User Guide
Chapter 4:

l Type of log file to be resized.

l Size of the new file.

l Amount of empty space to be left in the file.

l An action specifying whether or not the resize is to be performed.

This example of the resize command resizes the global log file so that it contains amaximum of
120 days of data with empty space equal to 45 days. The command and its parameters are:

resize global days=120 empty=45 yes

The results are the samewhether you enter this command interactively or from a batch job.

The first parameter–global–indicates the log file to be resized. If you do not supply this
parameter, the consequent action for interactive and batch users would be the following:

l Batch users — the batch job would terminate because the logfile parameter has no default.

l Interactive users — you would be prompted to choose which type of log file to resize to complete
the command.

The last parameter–yes–indicates that resizing will be performed unconditionally.

If you do not supply the yes parameter, the consequent action for interactive and batch users would
be the following:

l Batch users — resizing would continue since yes is the default action.

l Interactive users — you would be prompted to supply the action before resizing takes place.

Before using the resize command in either batchmode or interactivemode, youmust first
stop data collection. For details, see Stopping and Restarting Data Collection in Chapter 2.

Utility Command Line Interface
In addition to the interactive and batchmode command syntax, command options and their
associated arguments can be passed to the utility program through the command line interface.
The command line interface fits into the typical UNIX environment by allowing the utility
program to be easily invoked by shell scripts and allowing its input and output to be redirected to
UNIX pipes.

For example, to use the command line equivalent of the example shown in the previous section
"Using InteractiveMode" enter:

utility -xr global days=120 empty=45 yes

Command line options and arguments are listed in the following table. The referenced command
descriptions can be found in Chapter 5, Utility Commands.

Table 2: Command Line Arguments

Command
Option Argument Description

HP Operations Agent (11.11)Page 91 of 388

User Guide
Chapter 4:

-b date time Specifies the starting date and time of an analyze or
scan function. (See start command in Chapter 5.)

-e date time Specifies the ending date and time of an analyze or scan
function. (See stop command in Chapter 5.)

-l logfile Specifies which log file to open. (See logfile command in
Chapter 5.)

-f listfile Specifies an output listing file. (See list command in
Chapter 5.)

-D Enables details for analyze, scan and parm file
checking. (See detail command in Chapter 5.)

-d Disables details for analyze and parm file for
checking. (See detail command in Chapter 5.)

-v Echoes command line commands as they are executed.

-xp parmfile Syntax checks a parm file. (See parmfile command in
Chapter 5.)

-xc alarmdef Syntax checks and sets the alarmdef file name to use
with -xa (or analyze command). (See checkdef
command in Chapter 5.)

-xa Analyzes log files against the alarmdef file. (See
analyze command in Chapter 5.)

-xs logfile Scans a log file and produces a report. (See scan
command in Chapter 5.)

-xr global

application

process

device

transaction

ls

EMPTY=nnn

SPACE=nnn

SIZE=nnn

DAYS=nnn

YES

NO

MAYBE

Resizes a log file. (See resize command in Chapter 5.)

-? or ? Displays command line syntax.

Example of Using the Command Line Interface
The following situation applies when you enter command options and arguments on the command
line:

HP Operations Agent (11.11)Page 92 of 388

User Guide
Chapter 4:

Errors andmissing data are handled exactly as in the corresponding batchmode command. That is,
missing data is defaulted if possible and all errors cause the program to terminate immediately.

Echoing of commands and command results is disabled. Utility does not read from its stdin
file. It terminates following the actions in the command line.

utility -xp -d -xs

Which translates into:

-xp Syntax checks the default parm file.

-d Disables details in the scan report.

-xs Performs the scan operation. No log file was
specified so the default log file is scanned.

Utility Scan Report Details
The utility program's scan command reads a log file and writes a report on its contents. The
report's contents depend on the commands issued prior to issuing the scan command. (For more
information, see the description of the scan command in Chapter 5, Utility Commands)

The following table summarizes the information contained in all scan reports and in reports that are
produced only when the detail on command is used (the default) with the scan command

Table 3: Information Contained in Scan Report

Initial Values

Initial parm file global information and system
configuration information

Printed only if detail on is specified.

Initial parm file application definitions Printed only if detail on is specified.

Chronological Detail

parm file global changes Printed only if detail on is specified.

parm file application changes Printed only if detail on is specified.

Collector off-time notifications Printed only if detail on is specified.

Application-specific summary reports Printed only if detail on is specified.

Summaries

Process summary report Always printed if process data was
scanned.

Collector coverage summary Always printed.

Log file contents summary Always printed. Includes space and
dates covered.

Log file empty space summary Always printed.

HP Operations Agent (11.11)Page 93 of 388

User Guide
Chapter 4:

Scan Report Information
The information in a utility scan report is divided into three types:

l Initial values

l Chronological details

l Summaries

Initial Values
This section describes the following initial values:

l Initial parm file global information

l Initial parm file application definitions

Initial Parm File Global Information

To obtain this report, use the scan commandwith its default detail on.

This report lists the configuration settings of the parm file at the time of the earliest global record in
the log file. Later global information change notifications are based on the values in this report. If no
change notification exists for a particular parameter, it means that the parameter kept its original
setting for the duration of the scan.

The following example shows a portion of a report listing the contents of the parm file.

06/03/99 15:28 System ID="Homer"

scopeux/UX A.10.00 SAMPLE INTERVAL = 300,300,60 Seconds, Log version=D

Configuration: 9000/855, O/S A.10.00 CPUs=1

Logging Global Process records

Device= Disk FileSys records

Thresholds: CPU= 10.00%, Disk=10.0/sec, First=5.0 sec, Resp=30.0 sec,

Trans=100 Nonew=FALSE, Nokilled=FALSE, Shortlived=FALSE
(<1 sec)

HP-UX Parms: Buffer Cache Size = 16384KB, NPROC = 532

Wait Thresholds: CPU=100.00%, Memory=100.00%

Impede=100.00%

Memory: Physical = 84.0 MB, Swap = 124304.0 MB, Available to users =
66.5 MB. There are 2 LAN interfaces: 0, 1.

06/03/99 15:28 There are 2 disk devices:
Disk #1976 = "/dev/hdisk0"
Disk #1987 = "/dev/hdisk1"

HP Operations Agent (11.11)Page 94 of 388

User Guide
Chapter 4:

The date and time listed on the first line correspond to the first date and time in the global log file and
indicate when scope was started. Data records may have been rolled out of the global log file so
the date and time on this report do not necessarily indicate the first global record in the log file.

Initial Parm File Application Definitions
To obtain this report, use the scan commandwith its default detail on and have application
data in the log file.

This report lists the name and definition of each application at the time the first application record is
listed in the log file. Any application addition or deletion notifications you receive are based on this
initial list of applications. For example:

06/01/99 08:39 Application(1) = "other"

Comment=all processes not in user-defined applications

06/01/99 08:39 Application(2) = "Real_TimeSystem"

Priority range = 0-127

06/01/99 08:39 Application(3) = "Prog_Development"

File=vi,ed,sed,xdb,ld,lint,cc,ccom,pc,pascomp

During the scan, you are notified of applications that were added or deleted. Additions and
deletions are determined by comparing the spelling and case of the old application names to
the new set of logged application names. No attempt is made to detect a change in the
definition of an application. If an application with a new name is detected, it is listed along with
its new definition.
The date and time on this record is the last time scope was started before logging the first
application record currently in the log file.

Chronological Detail
This section describes the following chronological details:

l parm file global change notifications

l parm file application addition and deletion notifications

l scope off-time notifications

l Application-specific summary report

Parm File Global Change Notifications

To obtain this report, use the scan commandwith its default detail on.

This report is generated any time a record is found that scope started.

The following example shows the change notifications that occur when two new disk drives are
added to the system.

HP Operations Agent (11.11)Page 95 of 388

User Guide
Chapter 4:

03/13/99 17:30 The number of disk drives changed from 9 to 11
03/13/99 17:30 New disk device scsi-4 = "c4d0s*"
03/13/99 17:30 New disk device scsi-3 = "c3d0s*"

Parm File Application Addition/Deletion Notifications

To obtain this report, use the scan commandwith its default detail on and have application
data in the log file.

User-defined applications can be added or deleted each time scope is started. If an application
name is found that does not match the last set of applications, an application addition, deletion, or
change notification is printed. If the name of an application has not changed, it is not printed.

The following example shows that a new application was started.

03/13/99 17:30 Application 4 "Accounting_Users_1" was added
User=ted,rebecca,test*,mark,gene

Application definitions are not checked for changes. They are listed when an application name
is changed, but any change to an existing application's definition without an accompanying
name change is not detected.

scope Off-Time Notifications

To obtain this report, use the scan commandwith its default detail on.

If an extracted file contains only summary information, times are rounded to the nearest hour. For
example:

06/03/99 11:00 - 06/03/99 12:34 collector off (01:34:04)

The first date and time (06/03/99 11:00) indicates the last valid data record in the log file before
scope was restarted. The second date and time (06/03/99 12:34) indicates when scope was
restarted.

The last field (in parentheses) shows how long scope was not running. The format is
ddd/hh:mm:ss, where ddd are days and hh:mm:ss are hours, minutes, and seconds. Zeros to the
left are deleted.

In this example, scope was off on June 3, 1999 between 11:00 am and 12:34 pm. The summary
information shows that data was not collected for one hour, 34minutes, and four seconds.

Application-Specific Summary Report

To obtain this report, use the scan commandwith its default detail on and have application
data in the log file.

This report can help you define applications. Use the report to identify applications that are
accumulating either toomany or too few system resources and those that could be consolidated
with other applications. Applications that accumulate toomany system resources might benefit by
being split into multiple applications.

HP Operations Agent (11.11)Page 96 of 388

User Guide
Chapter 4:

You should define applications in ways that help youmake decisions about system performance
tuning. It is unlikely that system resources will accumulate evenly across applications.

The application-specific summary report is generated whenever the application definitions change
to allow you to access the data of the application definitions before and after the change.

A final report is generated for all applications. This report covers only the time since the last report
and not the entire time covered by the log file. For example:

PERCENT OF TOTAL
Application Records CPU DISK TRANS
------------------- --------- ------ ------- ------
OTHER 22385 45.7% 20.9% 63.0%
Resource_Sharing 7531 6.0% 2.2% 17.1%
SPOOLING 13813 2.4% 0.3% 0.0%
ON_LINE_COMPILES 13119 2.9% 1.7% 0.1%
BATCH_COMPILES 8429 2.9% 0.1% 2.2%
ORDER_ENTRY 387 0.1% 0.0% 0.0%
ELECTRONIC_MAIL 6251 3.8% 1.3% 9.6%
PROGRAM_DEVELOPMENT 3141 9.1% 2.4% 0.6%
RESEARCH_DEPARMENT 3968 8.7% 2.0% 6.0%
BILL_OF_MATERIALS 336 0.6% 1.5% 0.1%
FINANCIALS 1080 5.0% 1.5% 0.5%
MARKETING_DEPT 2712 12.9% 67.3% 0.0%
GAMES 103 0.1% 0.0% 0.0%
-------------------- --------- ------ ------ ------
All user applications 73.1% 54.3% 79.1% 37.0%

Summaries
This section describes the following summaries:

l Process log reason summary

l Scan start and stop actual dates and times

l Application overall summary

l scope coverage summary

l Log file contents summary

l Log file empty space summary

Process Log Reason Summary

To obtain this report, youmust have process data in the log file.

This report helps you set the interesting process thresholds for scope. The report lists every
reason a process might be considered interesting and thus get logged, along with the total number
of processes logged that satisfied each condition.

The following example shows a process log reason summary report:

Process Summary Report: 04/13/99 3:32 PM to 05/04/99 6:36 PM

HP Operations Agent (11.11)Page 97 of 388

User Guide
Chapter 4:

There were 93.8 hours of process data

Process records were logged for the following reasons:

Log Reason Records Percent Recs/hr

--------------- ------- ------- -------

New Processes 17619 53.9% 44.7

Killed Processes 16047 49.1% 40.7

CPU Threshold 3169 9.7% 8.0

Disk Threshold 1093 3.3% 2.8

NOTE: A process can be logged for more than one reason at a time.
Record counts and percentages will not add up to 100% of the process
records.

If the detail on command is issued, this report is generated each time a threshold value is
changed so you can evaluate the effects of that change. Each report covers the period since the
last report. A final report, generated when the scan is finished, covers the time since the last report.

If the detail off command is issued, only one report is generated covering the entire scanned
period.

You can reduce the amount of process data logged by scope by modifying the parm file's
threshold parameter and raising the thresholds of the interest reasons that generate themost
process log records. To increase the amount of data logged, lower the threshold for the area of
interest.

In the previous example, you could decrease the amount of disk space used for the process data (at
the expense of having less information logged) by raising the CPU threshold or setting the nonew
threshold.

Scan Start and Stop

This summary report is printed if any valid data was scanned. It gives actual dates and times that
the scan was started and stopped. For example:

Scan started on 03/03/99 12:40 PM

Scan stopped on 03/11/99 1:25 PM

Application Overall Summary

To obtain this report, youmust have application data in the log file.

This report is an overall indicator of how much system activity is accumulated in user-defined
applications, rather than in the other application. If a significant amount of a critical resource is not
being captured by user applications, youmight consider scanning the process data for processes
that can be included in user applications.

For example:

OVERALL, USER DEFINED APPLICATIONS ACCOUNT FOR

HP Operations Agent (11.11)Page 98 of 388

User Guide
Chapter 4:

82534 OUT OF 112355 RECORDS (73.5%)

218.2 OUT OF 619.4 CPU HOURS (35.2%)

24.4 OUT OF 31.8 M DISC IOS (76.8%)

0.2 OUT OF 0.6 M TRANS (27.3%)

Collector Coverage Summary

This report is printed if any valid global or application data was scanned. It indicates how well
scope is being used to collect system activity. If the percentage of time scope was off is high, as
in the example below, you should review your operational procedures for starting and stopping
scope.

The total time covered was 108/16:14:51 out of 128/00:45:02

Time lost when collector was off 19/08:30:11 15.12%

The scopeux collector was started 45 times

This report will bemore complete if global detail data is included in the scan. If only summary data
is available, you determine the time scope was stopped and started only to the nearest hour. (An
appropriate warningmessage is printed with the report if this is the case.)

The total time covered is determined by accumulating all the interval times from the logged
data.The "out of" time value is calculated by subtracting the starting date and time from the ending
date and time. This should represent the total time that could have been logged. The "Time lost
when collector was off" value is the total time less the covered time.

The formats for the three times mentioned are:

ddd/hh:mm:ss

where ddd are days and hh:mm:ss are hours, minutes, and seconds.

In the previous example, the total time collected was 108 days, 16 hours, 14minutes, and 51
seconds.

Log File Contents Summary

The log file contents summary is printed if any valid data was scanned. It includes the log file space
and the dates covered. This summary is helpful when you are resizing your log files with the
resize command.

--------Total------- -----Each Full Day----- -------Dates--------
Full

Type Records MBytes Records MBytes Start Finish
Days

Global 1376 0.27 288.9 0.057 05/23/99 to 05/28/99
4.8

Application 6931 0.72 1455.0 0.152 05/23/99 to 05/28/99
4.8

HP Operations Agent (11.11)Page 99 of 388

User Guide
Chapter 4:

Process 7318 1.14 1533.6 0.239 05/23/99 to 05/28/99
4.8

Disk 2748 0.07 567.6 0.014 05/23/99 to 05/28/99
4.8

Transaction no data found

Overhead 0.29

----- ------ ------ -----

TOTAL 18373 2.49 3845.0 0.461

The columns are described as follows:

Column Explanation

Type The general type of data being logged. One special type, Overhead, exists:
Overhead is the amount of disk space occupied (or reserved) by the log file versus
the amount actually used by the scanned data records.
If less than the entire log file was scanned, Overhead includes the data records that
were not scanned. If the entire file was scanned, Overhead accounts for any
inefficiencies in blocking the data into the file plus any file-access support structures.
It is normal for extracted log files to have a higher overhead than raw log files since
they have additional support structures for quicker positioning.

Total The total record count and disk space scanned for each type of data.

Each
Full
Day

The number of records and amount of disk space used for each 24-hour period that
scope runs.

Dates The first and last valid dates for the data records of each data type scanned.

Full
Day

The number of full (24-hour) days of data scanned for this data type.
Full Daysmay not be equal to the difference between the start and stop dates if
scope coverage did not equal 100 percent of the scanned time.

The TOTAL line (at the bottom of the listed data) gives you an idea of how much disk space is being
used and how much data you can expect to accumulate each day.

Log File Empty Space Summary

This summary is printed for each log file scanned. For example:

The Global file is now 13.9% full with room for 61 more full
days

The Application file is now 15.1% full with room for 56 more full
days

The Process file is now 23.5% full with room for 32 more full
days

HP Operations Agent (11.11)Page 100 of 388

User Guide
Chapter 5:

analyze
Use the analyze command to analyze the data in a log file against alarm definitions in an alarm
definitions (alarmdef) file and report resulting alarm status and activity. Before issuing the analyze
command, you should run the checkdef command to check the alarm definitions syntax. Checkdef
also sets and saves the alarm definitions file name to be used with analyze. If you do not run
checkdef before analyze, you are prompted for an alarm definitions file name.

If you are using command linemode, the default alarm definitions file /var/opt/perf/alarmdef is
used.

For detailed information about alarm definitions, see Performance Alarms.

Syntax

analyze

How to Use It

When you issue the analyze command, it analyzes the log files specified in the data sources
configuration file, datasources, against the alarm definitions in the alarmdef file.

The analyze command allows you to evaluate whether or not your alarm definitions are a good
match against the historical data collected on your system. It also lets you decide if your alarm
definitions will generate toomany or too few alarms on your analysis workstation.

Also, you can perform data analysis with definitions (IF statements) set in the alarm definitions file
because you can get information output by PRINT statements when conditions aremet. For
explanations of how to use the IF and PRINT statements in an alarm definition, see Chapter 9,
Performance Alarms.

You can optionally run the start, stop, and detail commands with analyze to customize the
analyze process. You specify these commands in the following order:

checkdef
start
stop
detail
analyze

Use the start and stop commands if you want to analyze log file data that was collected during a
specific period of time. (Descriptions of the start and stop commands appear later in this chapter.)

While the analyze command is executing, it lists alarm events such as alarm start, end, and repeat
status plus any text in associated print statements. Also, any text in PRINT statements is listed as
conditions (in IF statements) become true. EXEC statements are not executed but are listed so you
can see what would have been executed. An alarm summary report shows a count of the number of
alarms and the amount of time each alarm was active (on). The count includes alarm starts and
repeats, but not alarm ends.

If you want to see the alarm summary report only, issue the detail off command. However, if you
are using command linemode, detail off is the default so you need to specify -D to see the alarm
events as well as the alarm summary.

Example

HP Operations Agent (11.11)Page 103 of 388

User Guide
Chapter 5:

The checkdef command checks the alarm definitions syntax in the alarmdef file and saves the
name of the alarmdef file for later use with the analyze command. The start today command
specifies that only data logged today is to be analyzed. Lastly, the analyze command analyzes the
log file in the default SCOPE data source specified in the datasources file against the alarm
definitions in the alarmdef file.

utility>
checkdef /var/opt/perf/alarmdef
start today
analyze

To perform the above task using command line arguments, enter:

utility -xc -D -b today -xa

checkdef
Use the checkdef command to check the syntax of the alarm definitions in an alarm definitions file
and report any warnings or errors that are found. This command also sets and saves the alarm
definitions file name for use with the analyze command.

For descriptions of the alarm definitions syntax and how to specify alarm definitions, see Chapter 9,
Performance Alarms.

Syntax

checkdef [/directorypath/alarmdef]

Parameters

alarmdef The name of any alarm definitions file. This can be a user-specified file or the default
alarmdef file. If no directory path is specified, the current directory will be searched.

How to Use It

When you have determined that the alarm definitions are correct, you can process them against the
data in a log file using the analyze command.

In batchmode, if no alarm definitions file is specified, the default alarmdef file is used.

In interactivemode, if no alarm definitions file is specified, you are prompted to specify one.

Example

The checkdef command checks the alarm definitions syntax in the alarmdef file and then saves the
name of the alarmdef file for later use with the analyze command.

utility>
checkdef /var/opt/perf/alarmdef

To perform the above task using command line arguments, enter:

utility -xc

HP Operations Agent (11.11)Page 104 of 388

User Guide
Chapter 5:

detail
Use the detail command to control the level of detail printed in the analyze, parmfile, and scan
reports.

The default is detail on in interactive and batchmodes and detail off in command linemode.

Syntax

detail [on]

[off]

Parameters

on Prints the effective contents of the parm file as well as parm file errors. Prints complete
analyze and scan reports.

off In the parm file report, application definitions are not printed. In the scan report, scope
collection times, initial parm file global information, and application definitions are not
printed. In the analyze report, alarm events and alarm actions are not printed.

How to Use It

For explanations of how to use the detail commandwith the analyze, scan, and parmfile
commands, see the analyze, parmfile and scan command descriptions in this chapter.

Examples

For examples of using the detail command, see the descriptions of the analyze, parmfile and scan
commands in this chapter.

exit
Use the exit command to terminate the utility program. The exit command is equivalent to the
utility program’s quit command.

Syntax

exit

e

guide
Use the guide command to enter guided commands mode. The guided command interface leads
you through the various utility commands and prompts you to perform themost common tasks that
are available.

Syntax

HP Operations Agent (11.11)Page 105 of 388

User Guide
Chapter 5:

guide

How to Use It

l To enter guided commands mode from utility’s interactivemode, type guide and press
Return.

l To accept the default value for a parameter, press Return.

l To terminate guided commands mode and return to interactivemode, type q at the guide>
prompt.

This command does not provide all possible combinations of parameter settings. It selects settings
that should produce useful results for themajority of users.

help
Use the help command to access the utility program's online help facility.

Syntax

help [keyword]

How to Use It

You can enter parameters to obtain information on utility commands and tasks, or on help itself.
You can navigate to different topics by entering a key word. If more than one page of information is
available, the display pauses and waits for you to press Return before continuing. Type q or quit to
exit the help system and return to the utility program.

You can also request help on a specific topic. For example,

help tasks

or

help resize parmfile

When you use this form of the help command, you receive the help text for the specified topic and
remain in the utility command entry context. Because you do not enter the help subsystem
interactively, you do not have to type quit before entering the next utility command.

list
Use the list command to specify the output file for all utility reports. The contents of the report
depend on which other commands are issued after the list command. For example, using the list
command before the logfile, detail on, and scan commands produces the list file for a detailed
summary report of a log file.

Syntax

list [filename] |*

where * sets the output back to stdout.

How to Use It

There are two ways to specify the list file for reports:

HP Operations Agent (11.11)Page 106 of 388

User Guide
Chapter 5:

l Redirect stdout when invoking the utility program by typing:

utility > utilrept

l Or, use the list commandwhen utility is running by typing:

list utilrept

In either case, user interactions and errors are printed to stderr, and reports go to the file specified.

The filename parameter in the list commandmust represent a valid filename to which you have
write access. Existing files have the new output appended to the end of existing contents. If the file
does not exist, it will be created.

To determine the current output file, issue the list commandwithout parameters:

If the output file is not stdout, most commands are echoed to the output file as they are entered.

Example

The list command produces a summary report on the extracted log file rxlog. The list utilrept
command directs the scan report listing to a disk file. Detail off specifies less than full detail in the
report. The scan command reads rxlog and produces the report.

The list * command sets the list device back to the default stdout. !lp utilrept sends the disk file to
the system printer.

utility>

logfile rxlog

list utilrept

detail off

scan

list *

!lp utilrept

To perform the above task using command line arguments, enter:

utility -l rxlog -f utilrept -d -xs print utilrept

logfile
Use the logfile command to open a log file. For many utility program functions, a log file must be
opened. You do this explicitly by issuing the logfile command or implicitly by issuing some other
command. If you are in batch or command linemode and do not specify a log file name, the default
/var/opt/perf/datafiles/logglob file is used. If you are in interactivemode and do not specify a log
file name, you are prompted to provide one or accept the default /var/opt/perf/datafiles/logglob
file.

Syntax

logfile [logfile]

HP Operations Agent (11.11)Page 107 of 388

User Guide
Chapter 5:

How to Use It

You can specify the name of either a raw or extracted log file. If you specify an extracted log file
name, all information is obtained from this single file. You do not need to specify any of the raw log
files other than the global log file, logglob. Opening logglob gives you access to all of the data in
the other logfiles.

Raw log files have the following names:

logglob global log file

logappl application log file

logproc process log file

logdev device log file

logtran transaction log file

logls logical systems log file

logindx index log file

Once a log file is opened successfully, a report is printed or displayed showing the general content
of the log file (or log files), as shown in the example below.

Global file: /var/opt/perf/datafiles/logglob version DApplication file:
/var/opt/perf/datafiles/logapplProcess file: /var/opt/perf/datafiles/logprocDevice file:
/var/opt/perf/datafiles/logdevTransaction file: /var/opt/perf/datafiles/logtranIndex file:
/var/opt/perf/datafiles/logindxSystem ID: homerSystem Type 9000/715 S/N 6667778899O/S HP-
UX B.10.20. AData Collector: SCOPE/UX C.02.30File Created: 06/14/99Data Covers: 27 days to
7/10/99Shift is: All DayData records available are: Global Application Process Disk Volume
TransactionMaximum file sizes: Global=10.0 Application=10.0 Process=20.0 Device=10.0
Transaction=10.0MB

The first GLOBAL record is on 06/14/99 at 12:00 AMThe first APPLICATION
record is on 06/25/99 at 12:00 AMThe first PROCESS record is on 07/06/99
at 12:01 AMThe first DEVICE record is on 05/01/99 at 11:50 AMThe first
TRANSACTION record is on 05/01/99 at 11:55 AM The default starting date &
time = 05/01/99 11:50 AM (FIRST + 0)The default stopping date & time =
07/10/99 11:59 PM (LAST - 0)

You can verify the log file you opened with the show command, as described
later.

You can open another log file at any time by entering another logfile command. Any currently
opened log file is closed before the new log file is opened.

The resize and scan commands require a log file to be open. If no log file is currently open, an
implicit logfile command is executed.

HP Operations Agent (11.11)Page 108 of 388

User Guide
Chapter 5:

Note:Do not rename raw log files. Access to these files assumes that the standard log file
names are in effect.

Note: If youmust havemore than one set of raw log files on the same system, create a
separate directory for each set of files. Although the log file names cannot be changed,
different directories may be used. If you want to resize the log files in any way, youmust have
read/write access to all the log files.

menu
Use themenu command to print a list of the available utility commands.

Syntax

menu

Example

utility> menu

Command Parameters Function

HELP topic] Get information on commands and options

GUIDE Enter guided commands mode for novice users

LOGFILE [logname] Specify a log file to be processed

LIST [filename|*] Specify the listing file

START [startdate time] Set starting date & time for SCAN or ANALYZE

STOP [stopdate time] Set ending date & time for SCAN or ANALYZE

DETAIL [ON|OFF] Set report detail for SCAN, PARMFILE, or
ANALYZE

SHOW [ALL] Show the current program settings

PARMFILE [parmfile] Check parsing of a parameter file

SCAN [logname] Read the log file and produce a summary
report

RESIZE [GLOB|APPL|PROC|DEV|TRAN]
[DAYS=][EMPTY=] Resize raw log files

CHECKDEF [alarmdef] Check parsing and set the alarmdef file

ANALYZE Analyze the log file using the alarmdef file

! or Sh [command] Execute a system command

MENU or ? List the commands menu (This listing)

EXIT or Q Terminate the program

utility>

HP Operations Agent (11.11)Page 109 of 388

User Guide
Chapter 5:

parmfile
Use the parmfile command to view and syntax check the Performance Collection Componentparm
file settings that are used for data collection.

Syntax

parmfile [/directorypath/parmfile]

How to Use It

You can use the parmfile command to do any of the following:

l Examine the parm file for syntax warnings and review the resulting settings. All parameters are
checked for correct syntax and errors are reported. After the syntax check is completed, only the
applicable settings are reported.

l Find out how much room is left for defining applications.

l If detail on is specified, print the effective contents of the parm file plus any default settings that
were not overridden, and print application definitions.

In batchmode, if no parm file name is specified, the default parm file is used.

In interactivemode, if no parm file name is supplied, you are prompted to supply one.

Example

The parmfile command checks the syntax of the current parm file and reports any warnings or
errors. Detail on lists the logging parameter settings.

utility>
detail on
parmfile parm

To perform the above task using command line arguments, enter:

utility -xp -D

quit
Use the quit command to terminate the utility program. The quit command is equivalent to the
utility program’s exit command.

Syntax

quit

q

resize
Use the resize command tomanage the space in your raw log file set. This is the only program you
should use to resize the raw log files in order to preserve coordination between the files and their
internal control structures. If you use other tools youmight remove or destroy the validity of these
control structures.

HP Operations Agent (11.11)Page 110 of 388

User Guide
Chapter 5:

The utility program cannot be used to resize extracted files. If you want to resize an extracted file,
use the extract program to create a new extracted log file.

Syntax

resize [global]

[application]

[process]

[device]

[transaction]

[days=maxdays]

[size=maxMB]

[empty=days]

[space=MB]

[yes]

[no]

[maybe]

Parameters

log file type Specifies the type of raw data you want to resize: global, application,
process, device, or transaction, which correspond to the raw log files
logglob, logappl, logproc, logdev, and logtran. If you do not specify a
data type and are running utility in batchmode, the batch job terminates. If
you are running utility interactively, you are prompted to supply the data type
based on those log files that currently exist.

days & size Specify themaximum size of the log file. The actual size depends on the
amount of data in the file.

empty & space Specify theminimum amount of room required in the file after the resizing
operation is complete. This value is used to determine if any of the data
currently in the log file must be removed in the resizing process.

Youmight expect that a log file would not fill up until the specified number of days after a resizing
operation. Youmay want to use this feature of the resize command tominimize the number of times
a log file must be resized by the scope collector because resizing can occur any time the file is
filled. Using resize to force a certain amount of empty space in a log file causes the log file to be
resized when you want it to be.

The days and empty values are entered in units of days; the size and space values are entered in
units of megabytes. Days are converted tomegabytes by using an averagemegabytes-per-day
value for the log file. This conversion factor varies depending on the type of data being logged and
the particular characteristics of your system.

More accurate average-megabytes-per-day conversion factors can be obtained if you issue the
scan command on the existing log file before you issue the resize command. A scanmeasures the
accumulation rates for your system. If no scan is done or if themeasured conversion factor seems
unreasonable, the resize command uses a default conversion factor for each type of data.

yes Specifies that resizing should be unconditionally performed. This is the default
action if utility is not running interactively. If no action is specified when utility is
running interactively, you are prompted to supply the action.

HP Operations Agent (11.11)Page 111 of 388

User Guide
Chapter 5:

no Specifies that resizing should not be performed. This parameter can be specified
as an action if you want to see the resizing report but do not want to perform the
resizing at that time.

maybe Specifies that utility should decide whether or not to resize the file. This
parameter forces utility to make this decision based on the current amount of
empty space in the log file (before any resizing) and the amount of space specified
in the resize command. If the current log file contains at least as much empty
space as specified, resizing does not occur. If the current log file contains less
than the specified empty space, resizing occurs.

maybe
(continued)

If the resizing can bemade without removing any data from the log file (for
example, increasing themaximum log file size, or reducing themaximum log file
size without having to remove any existing data), resizing occurs.
Themaybe parameter is intended primarily for use by periodic batch executions.
See the “Examples” subsection below for an explanation of how to use the resize
command in this manner.

Default resizing parameters are shown in the following table.

Parameter If Executed Interactively If Executed in Batch

log file
type

You are prompted for each available log file
type.

No default. This is a required
parameter.

dayssize The current file size. The current file size.

empty space The current amount of empty space or enough
empty space to retain all data currently in the
file, whichever is smaller.

The current amount of empty
space or enough empty
space to retain all data
currently in the file,
whichever is smaller.

yesnomaybe You are prompted following the reported disk
space results.

Yes. Resizing will occur.

Table 5 Default Resizing Parameters

How to Use It

Before you resize a log file, youmust stop Performance Collection Component using the steps
under Stopping and Restarting Data Collection in Chapter 2.

A raw log file must be opened before resizing can be performed. Open the raw log file with the logfile
command before issuing the resize command. The files cannot be opened by any other process.

The resize command creates the new file scopelog in the directory set by TMPDIR environment
variable before deleting the original log file. If the environment variable TMPDIR is not set, then the
/var/tmp directory (/tmp on IBM AIX 4.1 and later) will be used as temporary location. Make sure
there is sufficient disk space in the directory specified by the TMPDIR or in the /var/tmp directory
(/tmp on IBM AIX 4.1 and later) to hold the original log file before doing the resizing procedure.

HP Operations Agent (11.11)Page 112 of 388

User Guide
Chapter 5:

After resizing, a log file consists of data plus empty space. The data retained is calculated as the
maximum file sizeminus the required empty space. Any data removed during the resizing operation
is lost. To save log file data for longer periods, use extract to copy this data to an extracted file
before doing the resize operation.

Resize Command Reports

One standard report is produced when you resize a raw log file. It shows the three interrelated disk
space categories of maximum file size, data records, and empty space, before and after resizing.
For example:

resize global days=120;empty=10

empty space raised to match file size and data records

final resizing parameters:

file: logglob megabytes / day: 0.101199

---currently----- --after resizing---

maximum size: 65 days (6.6 mb) 120 days (12.1 mb) 83% increase

data records: 61 days (6.2 mb) 61 days (6.2 mb) no data
removed

empty space: 4 days (0.5 mb) 59 days (6.0 mb) 1225%
increase

Themegabytes per day value is used to convert between days andmegabytes. It is either the value
obtained during the scan function or a default for the type of data being resized.

The far right-hand column is a summary of the net change in each category of log file space.
Maximum size and empty space can increase, decrease, or remain unchanged. Data records have
either no data removed or a specified amount of data removed during resizing.

If the resize is done interactively and one or more parameters are defaults, you can get a preliminary
resizing report. This report summarizes the current log file contents and any parameters that were
provided. The report is provided to aid in answering questions on the unspecified parameters. For
example:

resize global days=20

file resizing parameters (based on average daily

space estimates and user resizing parameters)

file: logglob megabytes / day: 0.101199

-----currently---- --after resizing--

maximum size: 65 days (6.6 mb) 20 days (2.0 mb)

data records: 61 days (6.2 mb) ??

empty space: 4 days (0.5 mb) ??

HP Operations Agent (11.11)Page 113 of 388

User Guide
Chapter 5:

In this example, you are prompted to supply the amount of empty space for the file before the final
resizing report is given. If no action parameter is given for interactive resizing, you are prompted for
whether or not to resize the log file immediately following the final resizing report.

Examples

The following commands are used to resize a raw process log file. The scan is performed before the
resize to increase the accuracy of the number-of-days calculations.

logfile /var/opt/perf/datafiles/logglob
detail off
scan
resize process days=60 empty=30 yes

days=60 specifies holding amaximum of 60 days of data. empty=30 specifies that 30 days of this
file are currently empty. That is, the file is resized with nomore than 30 days of data in the file to
leave room for 30more days out of a total of 60 days of space. yes specifies that the resizing
operation should take place regardless of current empty space.

The next example shows how youmight use the resize command in batchmode to ensure that log
files do not fill up during the upcoming week (forcing scope to resize them). You could schedule a
cron script using the at command that specifies aminimum amount of space such as 7 days - or
perhaps 10 days, just to be safe.

The following shell script accomplishes this:

echo detail off > utilin

echo scan >> utilin

echo resize global empty=10 maybe >> utilin

echo resize application empty=10 maybe >> utilin

echo resize process empty=10 maybe >> utilin

echo resize device empty=10 maybe >> utilin

echo quit >> utilin

utility < utilin > utilout 2> utilerr

Specifyingmaybe instead of yes avoids any resizing operations if 10 or more days of empty space
currently exist in any log files. Note that themaximum file size defaults to the current maximum file
size for each file. This allows the files to be resized to new maximum sizes without affecting this
script.

scan
Use the scan command to read a log file and write a report on its contents. (For a detailed
description of the report, see Utility Scan Report Details in Chapter 3.

Syntax

scan

How to Use It

HP Operations Agent (11.11)Page 114 of 388

User Guide
Chapter 5:

The scan command requires a log file to be opened. The log file scanned is the first of one of the
following:

l The log file named in the scan command itself.

l The last log file opened by any previous command.

l The default log file.

In this case, interactive users are prompted to override the default log file name if desired.

The following commands affect the operation of the scan function:

detail Specifies the amount of detail in the report. The default, detail on, specifies full
detail.

list Redirects the output to another file. The default is to list to the standard list device.

start Specifies the date and time of the first log file record you want to scan. The default
is the beginning of the log file.

stop Specifies the date and time of the last log file record you want to scan. The default
is the end of the log file.

For more information about the detail, list, start, and stop commands, see their descriptions in this
chapter.

The scan command report consists of 12 sections. You can control which sections are included in
the report by issuing the detail command prior to issuing scan.

The following four sections are always printed (even if detail off is specified):

l Scan start and stop actual dates and times

l Collector coverage summary

l Log file contents summary

l Log file empty space summary

The following sections are printed if detail on (the default) is specified:

l Initial parm file global information and system configuration information

l Initial parm file application definitions

l parm file global changes

l parm file application addition/deletion notifications

l Collector off-time notifications

l Application-specific summary reports

The following section is always printed if application data was scanned (even if detail off is
specified):

l Application overall summary

The following section is always printed if process data was scanned (even if detail off is specified):

HP Operations Agent (11.11)Page 115 of 388

User Guide
Chapter 5:

l Process log reason summary

Example

The scan of the current default global log file starts with records logged from June 1, 1999 at 7:00
AM until the present date and time.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 6/1/99 7:00 am
scan

To perform the above task using command line arguments, enter:

utility -D -b 6/1/99 7:00 am -xs

sh
Use sh to enter a shell commandwithout exiting utility by typing sh or an exclamation point (!)
followed by a shell command.

Syntax

sh or ! [shell command]

Parameters

sh ls Executes the ls command and returns to utility.

!ls Same as above.

How to Use It

Following the execution of the single command, you automatically return to utility. If you want to
issuemultiple shell commands without returning to utility after each one, you can start a new shell.
For example,

sh ksh

or

!ksh

show
Use the show command to list the names of the files that are open and the status of the utility
parameters that can be set.

Syntax

show [all]

Examples

Use show to produce a list that may look like this:

HP Operations Agent (11.11)Page 116 of 388

User Guide
Chapter 5:

Logfile: /var/opt/perf/datafiles/logglob List: "stdout"Detail:
ON for ANALYZE, PARMFILE and SCAN functions

The default starting date & time = 10/08/99 08:17 AM (FIRST + 0)The
default stopping date & time = 11/20/99 11:59 PM (LAST - 0)The
default shift = 12:00 AM - 12:00 AM

Note: The default shift time is shown for information only. Shift time cannot be changed in
utility.

Use show all to produce amore detailed list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob

Global file: /var/opt/perf/datafiles/logglob
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logtran
Index file: /var/opt/perf/datafiles/logindx
System ID: homer
System Type 9000/715 S/N 66677789 OS/ HP-UX B.10.20 A
Data Collector: SCOPE/UX C.02.30
File created: 10/08/99
Data Covers: 44 days to 11/20/99
Shift is: All Day

Data records available are:
Global Application Process Disk Volume Transaction

Maximum file sizes:
Global=10.0 Application=10.0 Process=20.0 Device=10.0 Transaction

10.0 MB

List "stdout"
Detail ON for ANALYZE, PARMFILE and SCAN functions

The default starting date & time = 10/08/99 11:50 AM (FIRST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12:00 AM

start
Use the start command to specify the beginning of the subset of a log file that you want to scan or
analyze. Start lets you start the scan or analyze process at data that was logged at a specific date
and time.

The default starting date and time is set to the date and time of the first record of any type in a log
file that has been currently opened with the logfile command.

Syntax

HP Operations Agent (11.11)Page 117 of 388

User Guide
Chapter 5:

start

[date
[today

[last

[first

[time]]

[-days]

[-days

][+days]

[time]]

[time]]

[time]]

Parameters

date The date format depends on the native language configured on the system being
used. If you do not use native languages or have the default language set to C, the
date format ismm/dd/yy (month/day/year) or 06/30/99 for June 30, 1999.

time The time format also depends on the native language being used. For C, the format is
hh:mm am or hh:mm pm (hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in themorning. Twenty-four hour time is accepted in all
languages. For example, 23:30 would be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an example in the correct
format is shown.
If no start time is given, amidnight (12 am) is assumed. A starting time of midnight for
a given day starts at the beginning of that day (00:00 on a 24-hour clock).

today Specifies the current day. The parameter today-days specifies the number of days
prior to today’s date. For example, today-1 indicates yesterday’s date and today-2
indicates the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter last-
days specifies the number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.

How to Use It

The start command is useful if you have a very large log file and do not want to scan or analyze the
entire file. You can also use it to specify a specific time period for which data is scanned. For
example, you can scan a log file for data that was logged for a period beginning 14 days before the
present date by specifying today-14.

You can use the stop command to further limit the log file records you want to scan.

If you are not sure whether native language support is installed on your system, you can force
utility to use the C date and time formats by issuing the following statement before running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of the default global log file starts with records logged from August 5, 1999 at 8:00 AM
until the present date and time.

HP Operations Agent (11.11)Page 118 of 388

User Guide
Chapter 5:

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 8/5/99 8:00 AM
scan

To perform the above task using command line arguments, enter:

utility -D -b 8/5/99 8:00 am -xs

stop
Use the stop command to specify the end of a subset of a log file that you want to scan or analyze.
Stop lets you terminate the scan or analyze process at data that was logged at a specific date and
time.

The default stopping date and time is set to the date and time of the last record of any type in a log
file that has been currently opened with the logfile command.

Syntax

stop
[date
[today

[last

[first

[time]]

[-days]

[-days]

[+days]

[time]]

[time]]

[time]]

Parameters

date The date format depends on the native language configured on the system being
used. If you do not use native languages or have the default language set to C, the
date format ismm/dd/yy (month/day/year) or 06/30/99 for June 30, 1999.

time The time format also depends on the native language being used. For C, the format is
hh:mm am or hh:mm pm (hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in themorning. Twenty-four hour time is accepted in all
languages. For example, 23:30 would be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an example in the correct
format is shown.
If no stop time is given, oneminute beforemidnight (11:59 pm) is assumed. A
stopping time of midnight (12 am) for a given day stops at the end of that day (23:59
on a 24-hour clock).

today Specifies the current day. The parameter today-days specifies the number of days
prior to today’s date. For example, today-1 indicates yesterday’s date and today-2,
the day before yesterday.

last Can be used to represent the last date contained in the log file. The parameter last-
days specifies the number of days prior to the last date in the log file.

HP Operations Agent (11.11)Page 119 of 388

User Guide
Chapter 5:

first Can be used to represent the first date contained in the log file. The parameter
first+days specifies the number of days after the first date in the log file.

How to Use It

The stop command is useful if you have a very large log file and do not want to scan the entire file.
You can also use it to specify a specific time period for which data is scanned. For example, you
can scan a log file for seven-days worth of data that was logged starting amonth before the present
date.

If you are not sure whether native language support is installed on your system, you can force
utility to use the C date and time formats by issuing the following statement before running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of 14 days worth of data starts with records logged from July 5, 1999 at 8:00 AM and
stops at the last record logged July 18, 1999 at 11:59 pm.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 7/5/99 8:00 am
stop 7/18/99 11:59 pm
scan

To perform the above task using command line arguments, enter:

utility -D -b 7/5/99 8:00 am -e 7/18/99 11:59pm -xs

HP Operations Agent (11.11)Page 120 of 388

User Guide
Chapter 9:

RED and YELLOW, are synonymous with CRITICAL andWARNING.

ALIAS Statement

Use the ALIAS statement to assign a variable to an application name that contains special
characters or imbedded blanks.

Syntax:

ALIAS variable = "alias name"

ALIAS Example

Because you cannot use special characters or embedded blanks in the syntax, using the
application name "other user root" in the PRINT statement below would have caused an error.
Using ALIAS, you can still use "other user root" or other strings with blanks and special characters
within the syntax.

ALIAS otherapp = "other user root"

PRINT "CPU for other root login processes is: ",

otherapp:app_cpu_total_util

ASSIGNMENT Statement

Use the ASSIGNMENT statement to assign a numeric or alphanumeric value, expression, to the
user variable.

Syntax:

[VAR] variable = expression

[VAR] variable = alphaitem

[VAR] variable = alphaitem

COMPOUND Statement

Use the COMPOUND statement with the IF statement, the LOOP statement, and the START,
REPEAT, and END clauses of the ALARM statement. By using a COMPOUND statement, a list
of statements can be executed.

Syntax

{

statement

statement

}

Construct compound statements by grouping a list of statements inside braces ({}). The compound
statement can then be treated as a single statement within the syntax.

HP Operations Agent (11.11)Page 191 of 388

User Guide
Chapter 9:

Compound statements cannot include ALARM and SYMPTOM statements. (Compound is a type
of statement and not a keyword.)

EXEC Statement

Use the EXEC statement to execute a UNIX command from within your Adviser syntax. You could
use the EXEC command, for example, if you wanted to send amail message to theMIS staff each
time a certain condition is met.

Syntax

EXEC printlist

The resulting printlist is submitted to your operating system for execution.

Because the EXEC command you specify may execute once every update interval, be careful
when using the EXEC statement with operating system commands or scripts that have high
overhead.

IF Statement

Use the IF statement to test conditions you define in the adviser script syntax.

Syntax:

IF condition THEN statement [ELSE statement]

The IF statement tests the condition. If true, the statement after the THEN is executed. If the
condition is false, then the action depends on the optional ELSE clause.

If an ELSE clause has been specified, the statement following it is executed. Otherwise, the IF
statement does nothing. The statement can be a COMPOUND statement which tells the adviser
script to executemultiple statements.

LOOP Statement

Use LOOP statements to find information about your system. For example, you can find the
process that uses the highest percentage of CPU or the swap area that is being utilizedmost. You
find this information with the LOOP statement and with corresponding statements that usemetric
names for the system conditions on which you are gathering information.

Syntax:

{APPLICATION, APP, CPU, DISK, DISK_DETAIL, FILESYSTEM, FS, FS_DETAIL,
LAN,

LOGICALVOLUME, LV, LV_DETAIL, NETIF, NFS, NFS_BYSYS_OPS, NFS_OP, PRM,

PRM_BYVG, PROCESS, PROC, PROC_FILE, PROC_REGION, PROC_SYSCALL, SWAP,

SYSTEMCALL, SC, THREAD, TRANSACTION, TT, TTBIN, TT_CLIENT, TT_
INSTANCE,

HP Operations Agent (11.11)Page 192 of 388

User Guide
Chapter 9:

TT_UDM, TT_RESOURCE, TT_INSTANCE_CLIENT, TT_INSTANCE_UDM, TT_CLIENT_
UDM,

LDOM, PROC_LDOM}

LOOP statement

A LOOP can be nested within other syntax statements, but you can only nest up to five levels. The
statement may be a COMPOUND statement which contains a block of statements to be executed
on each iteration of the loop. A BREAK statement allows the escape from a LOOP statement.

If you have a LOOP statement in your syntax for collecting specific data and there is no
correspondingmetric data on your system, the adviser script skips that LOOP and continues to the
next syntax statement or instruction. For example, if you have defined a LOGICAL VOLUME
LOOP, but have no logical volumes on your system, the adviser script skips that LOGICAL
VOLUME LOOP and continues to the next syntax statement.

Loops that do not exist on your platform generate a syntax error.

As LOOP statement iterates through each interval, the values for themetric used in the statement
change. For example, the following LOOP statement executes the PRINT statement once for each
active application on the system, causing the name of each application to be printed.

PRINT Statement

Use the PRINT statement to print to stdout (the padv command console) the data you are
collecting. Youmay want to use the PRINT statement to logmetrics or calculated variables.

Syntax:

PRINT printlist

PRINT Example

PRINT "The Application OTHER has a total CPU of ",

other:app_cpu_total_util, "%"

When started, this statement prints amessage to the padv command console as follows:

The Application OTHER has a total CPU of 89%

SYMPTOM Statement

Syntax:

SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]

RULE measurement {>, <, >=, <=, ==, !=} value PROB probability

[RULE measurement {>, <, >=, <=, ==, !=} value PROB probability]

.

.

.

HP Operations Agent (11.11)Page 193 of 388

User Guide
Chapter 9:

The keywords SYMPTOM andRULE are exclusive for the SYMPTOM statement and cannot be
used in other syntax statements. The SYMPTOM statement must be a top-level statement and
cannot be nested within any other statement.

variable is a variable name that will be the name of this symptom. Variable names defined in the
SYMPTOM statement can be used in other syntax statements, but the variable value should not be
changed in those statements.

RULE is an option of the SYMPTOM statement and cannot be used independently. You can use as
many RULE options within the SYMPTOM statement as you need.

The SYMPTOM variable is evaluated according to the RULEs at each interval.

Measurement is the name of a variable or metric that is evaluated as part of the RULE

Value is a constant, variable, or metric that is compared to themeasurement

Probability is a numeric constant, variable, or metric

The probabilities for all true SYMPTOMRULEs are added together to create a SYMPTOM value.
The SYMPTOM value then appears in themessage in the padv command console.

The sum of all probabilities where the condition betweenmeasurement and value is true is the
probability that the symptom is occurring.

HP Operations Agent (11.11)Page 194 of 388

User Guide
Chapter 9:

HP Operations Agent (11.11)Page 195 of 388

Chapter 10

Performance Alarms
You can use the Performance Collection Component to define alarms. These alarms notify you
when scope or DSI metrics meet or exceed conditions that you have defined.

To define alarms, youmust specify conditions on eachmonitored system that, whenmet, trigger an
alert or action. You can define alarms in the alarm definitions text file, alarmdef.

As data is logged by scope or other collectors, it is compared to the alarm definitions to determine
if a condition is met. When this occurs, an alert or action is triggered.

With the real-time alarm generator, you can perform the following tasks:

l Send alert notifications to the HPOM console

l Create an SNMP trap when an alert notification is generated

l Forward the SNMP trap to an SNMP trap listener

l Perform local actions on themonitored systems

You can analyze historical log file data against the alarm definitions and report the results using the
utility program's analyze command.

Processing Alarms
As performance data is collected by the Performance Collection Component, the collected data is
compared to the alarm conditions defined in the alarmdef file to determine whether the conditions
weremet. When a condition is met, an alarm is generated and the actions defined for alarms
(ALERTs, PRINTs, and EXECs) are performed.

As data is collected in the log files, it is compared to the alarm definitions in the alarmdef file.
When an alarm condition is met, the actions defined in the alarm definition are carried out. However,
if data is not logged into the log files (for instance, when the threshold parameters are set to a high
value), alarms are not generated even if the alarm conditions in the alarmdef file aremet. See
Thresholds for the thresholds of different classes of metrics.

Actions defined in the alarm definition can include:

l local actions performed by using operating system commands

l messages sent to Network NodeManager (NNM) and HPOM

Alarm Generator
The Performance Collection Component alarm generator handles the communication of alarm
notifications. The alarm generator consists of the alarm generator server (perfalarm), the alarm
generator database (agdb), and the utility program agsysdb.

HP Operations Agent (11.11)Page 196 of 388

User Guide
Chapter 10:

The agdb contains a list of SNMP nodes. The agsysdb program is used for displaying and
changing the actions taken by alarm events.

When you start up Performance Collection Component, perfalarm starts and reads the agdb at
startup to determine where and whether to send alarm notifications.

Use the following command line option to see a list showing where alert notifications are being sent:

agsysdb -l

Sending SNMP Traps to Network Node Manager
To send SNMP traps to Network NodeManager, youmust add your system name to agdb in
Performance Collection Component using the command:

agsysdb -addsystemname

Every ALERT generated will cause an SNMP trap to be sent to the system you defined. The trap
text will contain the samemessage as the ALERT.

To stop sending SNMP traps to a system, youmust delete the system name from agdb using the
command:

agsysdb -deletesystemname

Sending Messages to HPOM
You can have alert notifications sent to HPOM. By default, the alarm generator does not execute
local actions that are defined in any alarms in the EXEC statement. Instead, it sends amessage to
HPOM’s event browser.

You can change the default to stop sending information to HPOM using the following command:

agsysdb -ovo OFF

To send Performance Collection Component traps to another node, add the following entries to
/etc/services file.

snmp-trap 162/tcp # SNMPTRAP

snmp-trap 162/udp # SNMPTRAP

In this instance, 162 specifies port number. If you want Performance Collection Component to send
traps to another node, it checks the /etc/services file for the snmp-trap string. If this entry is not
available, the traps will not be sent to another node.

Executing Local Actions
By default, the Performance Collection Component does not run the local commands specified in
the EXEC statements.

You can change the default to enable local actions as follows:

agsysdb -actions always

HP Operations Agent (11.11)Page 197 of 388

User Guide
Chapter 10:

The following table lists the settings for sending information to HP Operations Manager (HPOM)
and for executing local actions:

Table 9: Settings for sending information to HPOM and executing local actions

Flags

Operations
Monitoring
Component Running

Operations
Monitoring
Component
Not Running

HPOM Flag

off No alert notifications
sent to HPOM.

No alert
notifications
sent to HPOM.

on Alert notifications sent
to HPOM.

No alert
notifications
sent to HPOM.

Local Actions Flag

off No local actions
executed.

No local
actions
executed.

always Local actions executed
even if the Operations
Monitoring Component
is running.

Local actions
executed.

on Local actions sent to
HPOM.

Local actions
executed.

Errors in Processing Alarms
The last error that occurred when sending an alarm is logged in agdb. To view the contents of
agdb, type:

agsysdb -l

The following information is displayed:

PA alarming status:

OVO messages : on Last Error : none

Exec Actions : on

Analysis system: <hostname>, Key=<ip address>

PerfView : no Last Error : <error number>

SNMP : yes Last Error : <error number>

HP Operations Agent (11.11)Page 198 of 388

User Guide
Chapter 10:

Analyzing Historical Data for Alarms
You can use the utility program's analyze command to find alarm conditions in log file data
(see Chapter 5, Utility Commands). This is different from the processing of real-time alarms
explained earlier because you are comparing historical data in the log file to the alarm definitions in
the alarmdef file to determine what alarm conditions would have been triggered.

Examples of Alarm Information in Historical Data

The following examples show what is reported when you analyze alarm conditions in historical
data.

For the first example, START, END, and REPEAT statements have been defined in the alarm
definition. An alarm-start event is listed every time an alarm has met all of its conditions for the
specified duration. When these conditions are no longer satisfied, an alarm-end event is listed. If an
alarm condition is satisfied for a period long enough to generate another alarm without having first
ended, a repeat event is listed.

Each event listed shows the date and time, alarm number, and the alarm event. EXEC actions are
not performed, but they are listed with any requested parameter substitutions in place.

05/10/99 11:15 ALARM [1] START
CRITICAL: CPU test 99.97%

05/10/99 11:20 ALARM [1] REPEAT
WARNING: CPU test 99.997%

05/10/99 11:25 ALARM [1] END
RESET: CPU test 22.86%
EXEC: end.script

If you are using a color workstation, the following output is highlighted:

CRITICAL statements are RED

MAJOR statements are MAGENTA

MINOR statements are YELLOW

WARNING statements are CYAN

NORMAL statements are GREEN

The next example shows an alarm summary that is displayed after alarm events are listed. The first
column lists the alarm number, the second column lists the number of times the alarm condition
occurred, and the third column lists the total duration of the alarm condition.

Performance Alarm Summary:

Alarm Count Minutes
1 574 2865
2 0 0

Analysis coverage using "alarmdef":

Start: 05/04/99 08:00 Stop: 05/06/99 23:59

HP Operations Agent (11.11)Page 199 of 388

User Guide
Chapter 10:

Total time analyzed: Days: 2 Hours: 15 Minutes: 59

Alarm Definition Components
An alarm occurs when one or more of the conditions you define continues over a specified duration.
The alarm definition can include an action to be performed at the start or end of the alarm.

A condition is a comparison between two or more items. The compared items can bemetric names,
constants, or variables. For example:

ALARM gbl_cpu_total_util > 95 FOR 5 MINUTES

An action can be specified to be performed when the alarm starts, ends, or repeats. The action can
be one of the following:

l an ALERT, which sends amessage to HPOM or an SNMP trap to NNM

l an EXEC, which performs an operating system command, or

l a PRINT, which sends amessage to stdout when processed using the utilityprogram.

For example:

ALARM gbl_swap_space_util > 95 FOR 5 MINUTES
START

RED ALERT "Global swap space is nearly full"
END

RESET ALERT "End of global swap space full condition"

You can createmore complex actions using Boolean logic, loops throughmultiple-instance data
such as applications, and variables. (For more information, see the next section, Alarm Syntax
Reference).

You can also use the INCLUDE statement to identify additional alarm definition files you want
used. For example, youmay want to break up your alarm definitions into smaller files.

Alarm Syntax Reference
This section describes the statements that are available in the alarm syntax. Youmay want to look
at the alarmdef file for examples of how the syntax is used to create useful alarm definitions.

Alarm Syntax
ALARM condition [[AND,OR]condition]

FOR duration [SECONDS, MINUTES]

[TYPE="string"]
[SERVICE="string"]
[SEVERITY=integer]
[START action]
[REPEAT EVERY duration [SECONDS, MINUTES] action]
[END action]

[RED, CRITICAL, ORANGE, MAJOR, YELLOW, MINOR, CYAN, WARNING,
GREEN, NORMAL, RESET] ALERT message

HP Operations Agent (11.11)Page 200 of 388

Chapter 11

Using the Performance Collection Component
on Windows

To access the Performance Collection Component graphical user interface click the HP Operations
Agent Software icon in the following folder:

Start®Programs®HP®Operations Agent® Performance Collection Component

Performance Collection Component MainWindow

This chapter describes the following tasks that you perform using the Performance Collection
Component graphical interface:

Data Types and Classes

Summarization Levels

Ranges of Data to Extract or Export

Extracting Log File Data and Exporting Log File Data

Archiving Log File Data

Resizing of Log File

Scanning a Log File

Analyzing a Log File

Configuring Export Templates

Configuring User Options

Configuring Collection Parameters

Configuring Alarm Definitions

HP Operations Agent (11.11)Page 222 of 388

User Guide
Chapter 11:

3. Click the Test button tomake sure that the editor you selected is configured and then click OK.

4. To configure which agent status information you want to view, select one or more of the option
boxes shown under Agent Status Contents, and then click OK.

5. For step-by-step instructions for configuring user options, chooseHelp Topics from the Help
menu, select "How Do I…?," and then select "Configure user options."

Configuring Collection Parameters
Use theCollection Parameters command from the Configuremenu to check the syntax of the
parm file that is used by scopent for data collection. You can examine the parm file’s settings for
syntax errors and warnings and to see how much room is available for defining applications.

If any warnings or errors are found and you want to correct them, or if you want to change or add
parm file parameters, you can easily modify the parm file using the Edit Parm File function.

A detailed description of the parm file and its parameters can be found in Managing Data
Collection.

To check the syntax, follow these steps:

1. Click Collection Parameters from the Configurationmenu on the Performance Collection
Component main window. The Configure Collection Parameters dialog box appears showing
the name of the currently open parm.mwc file in the Parm File box.

2. To check a different parm file, click theSelect Parm File button.

3. To check the syntax of the parm file, click theCheck Syntax button. Any resulting warnings or
errors are displayed in the Performance Collection Component Report Viewer window.

HP Operations Agent (11.11)Page 240 of 388

User Guide
Chapter 11:

1. Click Persistent DSI Collections from the Configuremenu on the Performance Collection
Component main window and then click theEdit DSIconf File button in the Configure
Persistent DSI Collections dialog box. The contents of the currently open dsiconf.mwc file are
displayed in a previously specified editor or word processor. (To specify an editor or word
processor, see Configuring User Options)

2. Before youmake any changes to the file, see Using the Performance Collection Component on
Windows for rules and conventions to follow.

3. Modify the file as necessary and save the file in text format.

Before proceeding with another task, youmust activate any changes youmade to the
dsiconf.mwc file. Perform the following steps:

1. Click Start/Stop from the Agent menu on the Performance Collection Component main
window to open theMeasureWare Services window.

2. Select thePersistent DSI Collections check box.

3. Click theRefresh button.

4. Click theClose button to return to themain window.

For step-by-step instructions for modifying a DSI configuration file, chooseHelp Topics from the
Helpmenu, select "How Do I…?," and then select "Modify a DSI configuration file."

Note: If you useWordPad, Notepad, or Microsoft Word tomodify your dsiconf.mwc file and
then use theSave As command to save the file, the default .txt extension will automatically
be added to the file name. You will then have a file named dsiconf.mwc.txt. To retain the
dsiconf.mwc file name, use theSave As command to save your file as a text file and enclose
the file name in double quotes ("). For example: "dsiconf.mwc"

Checking Performance Collection Component
Status

Use theStatus command from the Agent menu to review the current status of Performance
Collection Component processes. The information is generated by the perfstat program.

You can designate which specific information to include in the status report by choosing the
Options command from the Configuremenu display and selecting any of the following options in
the Configure Options dialog box.

Running Processes
Background and foreground processes that are currently running for Performance Collection
Component are listed. Any background processes that should be running but are not running are
listed.

HP Operations Agent (11.11)Page 246 of 388

User Guide
Chapter 11:

Datacomm Services
Datacomm services locate and communicate with the Performance Collection Component
datacomm services. They show whether or not the alarm generator database server (agdbserver)
process is running and responsive. If data communications are not enabled , this informationmay
takemore than 30 seconds to generate while it waits for datacomm services to respond.

System Services
The current status of Performance Collection Component System Services such as the Scope
Collector, TransactionManager, andMeasurement Interface is shown.

System Configuration
System name, operating system version, and processor type.

File Version Numbers
Version numbers of Performance Collection Component files. Any critical files that aremissing are
noted.

Status File Latest Entries
The latest few entries from each performance tool status file.

Status File Warnings and Errors
Any lines from the performance tool status files that contain "Error" or "Warning" are listed. A very
large listing can be produced in cases where warnings have been ignored for long periods of time.

To list the current status, click Status from the Agent menu on the Performance Collection
Component main window. The Performance Collection Component Report Viewer displays the
information you selected from the Configure Options dialog box.

To get a complete report of all status information, click Report from the Agent menu. The
Performance Collection Component Report Viewer displays a complete list of all status
information.

For step-by-step instructions for checking Performance Collection Component status, chooseHelp
Topics from the Helpmenu, select "How Do I…?," and then select "Check status of
Performance Collection Component processes."

You can also run the perfstat program from theWindows Command Prompt.

Building Collections of Performance Counters
Performance Collection Component provides access toWindows performance counters that are
used tomeasure system, application, or device performance on your system. You use the

HP Operations Agent (11.11)Page 247 of 388

User Guide
Chapter 11:

Extended Collection Builder andManager (ECBM) to select specific performance counters to build
data collections.

Building a Performance Counter Collection
To build a collection, chooseExtended Collections from the Agent menu on the Performance
Collection Component main window. The Extended Collection Builder andManager window
appears, showing a list of Windows objects in the left pane. For instructions on building collections,
chooseHelp Topics from the Helpmenu in the Extended Collection Builder andManager window.

After you build your collections of Windows performance counters, use the Extended Collection
Manager pane at the bottom to register, start, and stop new and existing collections.

Managing a Performance Counter Collection
Tomanage your data collections, use the Extended CollectionManager pane at the bottom of the
Extended Collection Builder andManager. Initially, no collections appear because youmust
register a collection before you can start collecting data.

After you register or store the collection you created, the Extended CollectionManager pane shows
a list of current collections. The Extended CollectionManager pane also displays the state of every
collection and enables you to view information (properties) about the collection itself. For
instructions onmanaging your collections, chooseHelp Topics from theHelpmenu in the
Extended Collection Builder andManager window.

Tips for Using Extended Collection Builder and Manager

The <Installdir>\paperdocs\mwa\C\monxref.txt file contains a cross-reference of Performance
Collection Component metrics toWindows performance counters and commands. Logging data
through the Extended Collection Builder andManager for metrics already collected by Performance
Collection Component incurs additional system overhead.

When you use the Extended Collection Builder to create collections, default metric names are
assigned toWindows performance counters for internal use with the Performance Collection
Component. These default names are generally not meaningful or easy to decipher. Tomakemetric
names moremeaningful or match them to themetric names supplied by their source application,
modify metric attributes by right-clicking or double clicking themetric name after you drag it from
left to right pane in the Extended Collection Builder andManager window. (See the Extended
Collection Builder andManager online help for detailed instructions.)

If you start 61 or more collections, the collections beyond 60 go into error states. This may cause
problems with other collections.

If you collect logical disk metrics from a system configured withWolfpack, youmust restart the
collection in order to collect data for any new disk instances not present when the collection was
registered.

Successful deletion of collections requires restarting Performance Collection Component after
deleting the collection. If Performance Collection Component is not restarted, youmight get an error
during the delete operation. This error typically means that some files were not successfully
deleted. Youmay need tomanually delete any files and directories that remain after you restart
Performance Collection Component.

HP Operations Agent (11.11)Page 248 of 388

User Guide
Chapter 11:

Extended Collection Builder andManager may report missing values for somemetrics with cache
counters. The problemmay occur under some circumstances when ametric value gets an
overflow. A message is also sent to the ECBM status file. You can resolve the problem by
restarting the collection.

Explanations of Extended Collection Builder andManager concepts, and instructions on creating
and viewing data collections are available in the Extended Collection Builder andManager online
help. To view online help, from your desktop select Start® Programs® HP ® Operations
Agent® Performance Collection Component® ECB-ECM Online Help. You can select
Extended Collections from the Agent menu in the Performance Collection Component main
window and select Help Topics from the Helpmenu in the Extended Collection Builder and
Manager window. Online help is available by selecting theHelp button in the dialog boxes that
appear in the Extended Collection Builder andManager.

Administering ECBM from the Command line
You can run the ECBM program from the <rpmtools>\bin directory using theWindows Command
prompt.

l Collections can bemanaged from the command line using the following command:

\rpmtools\bin\mwcmcmd.exe

l To display various options, type the following command:

\rpmtools\bin\mwcmcmd /?

l To start the stopped collections, type the following command:

mwcmcmd start <collection_name(s)>

l To start a new collection from a variable-instance policy, type the following command:

mwcmcmd start <policy_name> <collect_name> <instance(s)> [options]

The following options are available:

-i <sampling_interval>- change sampling interval (seconds)

-l <logfile_path_name> - change default log location

-a <alarm_file> - change the alarm definitions file

l To stop the active collections, type the following command:

mwcmcmd stop <collection_name(s)>

l To register a policy file, type the following command:

mwcmcmd register <policy_file> <collection/policy_name> [options]

The following options are available only when registering a fixed-instance policy file:

-i <sampling_interval> - change sampling interval (seconds)

-l <logfile_path_name> - change default log location

-a <alarm_file> - change the alarm definitions file

l To delete a single collection:

HP Operations Agent (11.11)Page 249 of 388

User Guide
Chapter 11:

mwcmcmd delete <collection/policy_name> [options]

The following options are only available when deleting a collection:

-p <archive_path> - archives logfiles to specified path

-r - restarts Performance agent

l To delete multiple collections or policies:

mwcmcmd delete { <collection/policy_name(s)> | -c | -all }

-c - deletes ALL collections

-a - deletes ALL collections and policies

Note:When deletingmore than one policy/collection at a time, Performance Collection
Component will be automatically restarted, and all associated logfiles will be deleted.

l To list all registered collections and policies, type the following command:

mwcmcmd list

l To list the properties of a collection or policy, type the following command:

mwcmcmd properties <collection/policy_name>

l To list the variable-instance objects in a policy, type:

mwcmcmd objects <policy_name>

HP Operations Agent (11.11)Page 250 of 388

Chapter 12

Overview of Data Source Integration
The Data Source Integration (DSI) technology allows you to use the HP Operations agent to log
data, define alarms, and access metrics from new sources of data beyond themetrics logged by
the Performance Collection Component’s scope collector. Metrics can be acquired from data
sources such as databases, LAN monitors, and end-user applications.

The data you log using DSI can be displayed in HP PerformanceManager along with the standard
performancemetrics logged by the scope collector. DSI logged data can also be exported, using
the Performance Collection Component extract program, for display in spreadsheets or similar
analysis packages.

How DSI Works
The following diagram shows how DSI log files are created and used to log andmanage data. DSI
log files contain self-describing data that is collected outside of the Performance Collection
Componentscope collector. DSI processes are described inmore detail on the next page.

Figure 17 Data Source Integration Process

HP Operations Agent (11.11)Page 251 of 388

User Guide
Chapter 12:

Using DSI to log data consists of the following tasks:

Creating the Class Specification
You first create and compile a specification for each class of data you want to log. The specification
describes the class of data as well as the individual metrics to be logged within the class. When
you compile the specification using the DSI compiler, sdlcomp, a set of empty log files are created
to accept data from the dsilog program. This process creates the log file set that contains a root
file, a description file, and one or more data files.

Collecting and Logging the Data
Then you collect the data to be logged by starting up the process of interest. You can either pipe the
output of the collection process to the dsilog program directly or from a file where the data was
stored. dsilog processes the data according to the specification and writes it to the appropriate log
file. dsilog allows you to specify the form and format of the incoming data.

The data that you feed into the DSI process should contain multiple data records. A record consists
of themetric values contained in a single line. If you send data to DSI one record at a time, stop the
process, and then send another record, dsilog can append but cannot summarize the data.

HP Operations Agent (11.11)Page 252 of 388

User Guide
Chapter 12:

Using the Data
You can use PerformanceManager to display DSI log file data. Or you can use the Performance
Collection Component extract program to export the data for use with other analysis tools. You can
also configure alarms to occur when DSI metrics exceed defined conditions.

HP Operations Agent (11.11)Page 253 of 388

User Guide
Chapter 12:

HP Operations Agent (11.11)Page 254 of 388

Chapter 13

Using Data Source Integration
This chapter is an overview of how you use DSI and contains the following information:

l Planning data collection

l Defining the log file format in the class specification file

l Creating the empty log file set

l Logging data to the log file set

l Using the logged data

For detailed reference information on DSI class specifications and DSI programs, see Chapter 14,
DSI Class Specification Reference and Chapter 15, DSI Program Reference.

Planning Data Collection
Before creating the DSI class specification files and starting the logging process, you need to
address the following topics:

l Understand your environment well enough to know what kinds of data would be useful in
managing your computing resources.

l What data is available?

l Where is the data?

l How can you collect the data?

l What are the delimiters between data items? For proper processing by dsilog, metric values in
the input streammust be separated by blanks (the default) or a user-defined delimiter.

l What is the frequency of collection

l How much space is required tomaintain logs?

l What is the output of the program or process that you use to access the data?

l Which alarms do you want generated and under what conditions?

l What options do you have for logging with the class specification and the dsilog process?

Defining the Log File Format
Once you have a clear understanding of what kind of data you want to collect, create a class
specification to define the data to be logged and to define the log file set that will contain the logged
data. You enter the following information in the class specification:

HP Operations Agent (11.11)Page 255 of 388

User Guide
Chapter 13:

l Data class name and ID number

l Label name (optional) that is a substitute for the class name. (For example, if a label name is
present, it can be used in PerformanceManager.)

l What you want to happen when old data is rolled out to make room for new data. See How Log
Files are Organized for more information.

l Metric names and other descriptive information, such as how many decimals to allow for metric
values.

l How you want the data summarized if you want to log a limited number of records per hour.

Here is an example of a class specification:

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

PRECISION 0;

BLOCKED_PROCS = 107

LABEL "Blocked Processes"

PRECISION 0;

You can include one class or multiple classes in a class specification file. When you have
completed the class specification file, name the file and then save it. When you run the DSI
compiler, sdlcomp, you use this file to create the log file set. For more information about class
specification andmetric description syntax, see Chapter 14, DSI, Class Specification Reference.

How Log Files Are Organized
Log files are organized into classes. Each class, which represents one source of incoming data,
consists of a group of data items, or metrics, that are logged together. Each record, or row, of data
in a class represents one sample of the values for that group of metrics.

HP Operations Agent (11.11)Page 256 of 388

User Guide
Chapter 13:

The data for classes is stored on disk in log files that are part of the log file set. The log file set
contains a root file, a description file, and one or more log files. All the data from a class is always
kept in a single data file. However, when you provide a log file set name to the sdlcomp compiler,
you can storemultiple classes together in a single log file set or in separate log file sets. The figure
below illustrates how two classes can be stored in a single log file set.

Because each class is created as a circular log file, you can set the storage capacity for each class
separately, even if you have specified that multiple classes should be stored in a single log file set.
When the storage capacity is reached, the class is “rolled”, whichmeans the oldest records in the
class are deleted tomake room for new data.

You can specify actions, such as exporting the old data to an archive file, to be performed whenever
the class is rolled.

Creating the Log File Set
The DSI compiler, sdlcomp, uses the class specification file to create or update an empty log file
set. The log file set is then used to receive logged data from the dsilog program.

To create a log file set, complete the following tasks:

1. Run sdlcompwith the appropriate variables and options. For example,

 sdlcomp [-maxclass value] specification_file
[logfile_set[log file]] [options]

2. Check the output for errors andmake changes as needed.

For more information about sdlcomp, see the Compiler Syntax in Chapter 15.

HP Operations Agent (11.11)Page 257 of 388

User Guide
Chapter 13:

Testing the Class Specification File and the Logging
Process (Optional)

DSI uses a program, sdlgendata, that allows you to test your class specification file against an
incoming source of generated data. You can then examine the output of this process to verify that
DSI can log the data according to your specifications. For more information about sdlgendata, see
Testing the Logging Process with Sdlgendata in Chapter 15.

To test your class specification file for the logging process:

1. Feed the data that is generated by sdlgendata to the dsilog program. The syntax is:

sdlgendata logfile_set class | dsilog logfile_set class -vo

2. Check the output to see if your class specification file matches the format of your data
collection process. If the sdlgendata program outputs something different from your program,
you have either an error in your output format or an error in the class specification file.

3. Before you begin collecting real data, delete all log files from the testing process.

Logging Data to the Log File Set
After you have created the log file set, and optionally tested it, update Performance Collection
Component configuration files as needed, and then run the dsilog program to log incoming data.

1. Update the data source configuration file, datasources, to add the DSI log files as data
sources for generating alarms.

2. Modify the alarm definitions file, alarmdef, if you want to alarm on specific DSI metrics. For
more information, see Defining Alarms for DSI Metrics in Chapter 15.

3. Optionally, test the logging process by piping data (whichmay be generated by sdlgendata to
match your class specification) to the dsilog program with the -vi option set.

4. Check the data to be sure it is being correctly logged.

5. After testing, remove the data that was tested.

6. Start the collection process from the command line.

7. Pipe the data from the collection process to dsilog (or some other way to get it to stdin) with
the appropriate variables and options set. For example:

 <program or process with variables>| dsilog logfile_set class

Note: The dsilog program is designed to receive a continuous stream of data. Therefore, it is
important to structure scripts so that dsilog receives continuous input data. Do not write
scripts that create a new dsilog process for new input data points. This can cause duplicate
timestamps to be written to the dsilog file, and can cause problems for PerformanceManager
and perfalarm when reading the file.

See Chapter 16, Examples of Data Source Integration, for examples of problematic and
recommended scripts

For more information about dsilog options, see dsilog Logging Process in Chapter 15.

HP Operations Agent (11.11)Page 258 of 388

User Guide
Chapter 13:

Using the Logged Data
Once you have created the DSI log files, you can export the data using the Performance Collection
Component's extract program. You can also configure alarms to occur when DSI metrics exceed
defined conditions.

Here are ways to use logged DSI data:

l Export the data for use in reporting tools such as spreadsheets.

l Display exported DSI data using analysis tools such as in PerformanceManager.

l Monitor alarms using HP Operations Manager or HP Network NodeManager.

Note: You cannot create extracted log files from DSI log files.

HP Operations Agent (11.11)Page 259 of 388

User Guide
Chapter 14:

DSI Class Specification Reference
This chapter provides detailed reference information about:

l Class specifications

l Class specifications syntax

l Metrics descriptions in the class specifications

Class Specifications
For each source of incoming data, youmust create a class specification file to describe the format
for storing incoming data. To create the file, use the class specification language described in the
next section, Class Specification Syntax. The class specification file contains:

l a class description, which assigns a name and numeric ID to the incoming data set, determines
how much data will be stored, and specifies when to roll data tomake room for new data.

l metric descriptions for each individual data item. A metric description names and describes a
data item. It also specifies the summary level to apply to data (RECORDS PER HOUR) if more
than one record arrives in the time interval that is configured for the class.

To generate the class specification file, use any editor or word processor that lets you save the file
as an ASCII text file. You specify the name of the class specification file when you run sdlcomp to
compile it. When the class specification is compiled, it automatically creates or updates a log file
set for storage of the data.

The class specification allows you to determine how many records per hour will be stored for the
class, and to specify a summarizationmethod to be used if more records arrive than you want to
store. For instance, if you have requested that 12 records per hour be stored (a record every five
minutes) and records arrive every minute, you could have some of the data items averaged and
others totaled tomaintain a running count.

Note: The DSI compiler, sdlcomp, creates files with the following names for a log file set
(named logfile_set_name):

logfile_set_name and logfile_set_name.desc

sldcomp creates a file with the following default name for a class (named class_name):

logfile_set_name.class_name

Avoid the use of class specification file names that conflict with these naming conventions, or
sdlcomp will fail.

Class Specification Syntax
Syntax statements shown in brackets [] are optional. Multiple statements shown in braces { }
indicate that one of the statements must be chosen. Italicized words indicate a variable name or
number you enter. Commas can be used to separate syntax statements for clarity anywhere except

HP Operations Agent (11.11)Page 260 of 388

User Guide
Chapter 14:

directly preceding the semicolon, whichmarks the end of the class specification and the end of
eachmetric specification. Statements are not case-sensitive.

Note: User-defined descriptions, such asmetric_label_name or class_label_name, cannot be
the same as any of the keyword elements of the DSI class specification syntax.

Comments start with # or //. Everything following a # or // on a line is ignored. Note the required
semicolon after the class description and after eachmetric description. Detailed information about
each part of the class specification and examples follow.

CLASS class_name = class_id_number

[LABEL "class_label_name"]

[INDEX BY {HOUR | DAY | MONTH} MAX INDEXES number

[[ROLL BY {HOUR | DAY | MONTH} [ACTION "action"]

[CAPACITY {maximum_record_number}]

[RECORDS PER HOUR number]

;

METRICS

metric_name = metric_id_number

[LABEL "metric_label_name"]

[TOTALED | AVERAGED | SUMMARIZED BY metric_name]

[MAXIMUM metric_maximum_number]

[PRECISION {0 | 1 | 2 | 3 | 4 | 5}]

[TYPE TEXT LENGTH "length"]

;

CLASS Description
To create a class description, assign a name to a group of metrics from a specific data source,
specify the capacity of the class, and designate how data in the class will be rolled when the
capacity is exceeded.

Youmust begin the class description with the CLASS keyword. The final parameter in the class
specificationmust be followed by a semicolon.

Syntax

CLASS class_name = class_id_number
[LABEL"class_label_name"

[INDEX BY { HOUR | DAY | MONTH } MAX INDEXES number
[[ROLL BY { HOUR | DAY | MONTH } [ACTION "action"]

HP Operations Agent (11.11)Page 261 of 388

User Guide
Chapter 14:

[CAPACITY {maximum_record_number}]
[RECORDS PER HOUR number]

;

Default Settings

The default settings for the class description are:

LABEL (class_name)

INDEX BY DAY

MAX INDEXES 9

RECORDS PER HOUR 12
To use the defaults, enter only the CLASS keyword with a class_name and numeric class_id_
number.

CLASS

The class name and class ID identify a group of metrics from a specific data source.

Syntax

CLASS class_name = class_id_number

How to Use It

The class_name and class_ID_numbermust meet the following requirements:

l class_name is alphanumeric and can be up to 20 characters long. The namemust start with an
alphabetic character and can contain underscores (but no special characters).

l class_ID_numbermust be numeric and can be up to six digits long.

l Neither the class_name or the class_ID_numberare case-sensitive.

l The class_name and class_ID_numbermust each be unique among all the classes you define
and cannot be the same as any applications defined in the Performance Collection
Componentparm file. (For information about the parm file, see Chapter 2 of thePerformance
Collection Component for UNIX User's Manual.).

Example

CLASS VMSTAT_STATS = 10001;

LABEL

The class label identifies the class as a whole. It is used instead of the class name in Performance
Manager.

Syntax

[LABEL "class_label_name"]

How To Use It

HP Operations Agent (11.11)Page 262 of 388

User Guide
Chapter 14:

The class_label_namemust meet the following requirements:

l It must be enclosed in double quotationmarks.

l It can be up to 48 characters long.

l It cannot be the same as any of the keyword elements of the DSI class specification syntax,
such as CAPACITY, ACTION and so on.

l If it contains a double quotationmark, precede it with a backslash (\). For example, you would
enter "\"my\" data" if the label is "my" data.

l If no label is specified, the class_name is used as the default.

Example

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data";

INDEX BY, MAX INDEXES, AND ROLL BY

INDEX BY, MAX INDEXES, and ROLL BY settings allow you to specify how to store data and
when to discard it. With these settings you designate the blocks of data to store, themaximum
number of blocks to store, and the size of the block of data to discard when data reaches its
maximum index value.

Syntax

[INDEX BY {HOUR | DAY | MONTH} MAX INDEXES number]

[[ROLL BY {HOUR | DAY | MONTH} [ACTION "action"]]

How To Use It

INDEX BY settings allow blocks of data to be rolled out of the class when the class capacity is
reached. The INDEX BY and RECORDS PER HOUR options can be used to indirectly set the
capacity of the class as described later in Controlling Log File Size.

The INDEX BY setting cannot exceed the ROLL BY setting. For example, INDEX BY DAY does
not work with ROLL BY HOUR, but INDEX BY HOUR does work with ROLL BY DAY.

If ROLL BY is not specified, the INDEX BY setting is used. When the capacity is reached, all the
records logged in the oldest roll interval are freed for reuse.

Any specified ACTION is performed before the data is discarded (rolled). This optional ACTION can
be used to export the data to another location before it is removed from the class. For information
about exporting data, see Chapter 15, DSI Program Reference.

Notes on Roll Actions

The UNIX command specified in the ACTION statement cannot be run in the background. Also, do
not specify a command in the ACTION statement that will cause a long delay, because new data
won’t be logged during the delay.

If the command is more than one line long, mark the start and end of each line with double quotation
marks. Be sure to include spaces where necessary inside the quotationmarks to ensure that the
various command line options will remain separated when the lines are concatenated.

HP Operations Agent (11.11)Page 263 of 388

User Guide
Chapter 14:

If the command contains a double quotationmark, precede it with a backslash (\).

The ACTION statement is limited to 199 characters or less.

Within the ACTION statement, you can usemacros to define the time window of the data to be
rolled out of the log file. Thesemacros are expanded by dsilog. You can use PT_START to
specify the beginning of the block of data to be rolled out in UNIX time (seconds since 1/1/70
00:00:00) and PT_END to specify the end of the data in UNIX time. These are particularly useful
when combined with the extract program to export the data before it is overwritten.

If a macro is used, its expanded length is used against the 199-character limit.

Examples

The following examples may help to clarify the relationship between the INDEX BY, MAX
INDEXES, and the ROLL BY clauses.

The following example indirectly sets the CAPACITY to 144 records (1*12*12).

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

RECORDS PER HOUR 12;

The following example indirectly sets the CAPACITY to 1440 records (1*12*120).

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

RECORDS PER HOUR 120;

The following example shows ROLL BY HOUR.

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

The following example causes all the data currently identified for rolling (excluding weekends) to be
exported to a file called sys.sdl before the data is overwritten. Note that the last lines of the last
example are enclosed in double quotationmarks to indicate that they form a single command.

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

HP Operations Agent (11.11)Page 264 of 388

User Guide
Chapter 14:

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

ACTION "extract -xp -l sdl_new -C SYS_STATS "

"-B PT_START -E PT_END -f sys.sdl, purge -we 17 "

RECORDS PER HOUR 120;

Other Examples

The suggested index settings below may help you to consider how much data you want to store.

INDEX BY MAX INDEXES Amount of Data Stored

HOUR 72 3 days

HOUR 168 7 days

HOUR 744 31 days

DAY 365 1 year

MONTH 12 1 year

The following table provides a detailed explanation of settings using ROLL BY

INDEX
BY

MAX
INDEXES

ROLL
BY Meaning

DAY 9 DAY Nine days of data will be stored in the log file. Before logging day
10, day 1 is rolled out. These are the default values for index and
max indexes.

HOUR 72 HOUR 72 hours (three days) of data will be stored in the log file. Before
logging hour 73, hour 1 is rolled out. Thereafter, at the start of each
succeeding hour, the “oldest” hour is rolled out.

HOUR 168 DAY 168 hours (seven days) of data will be stored in the log file. Before
logging hour 169 (day 8), day 1 is rolled out. Thereafter, at the start
of each succeeding day, the “oldest” day is rolled out.

HOUR 744 MONTH 744 hours (31 days) of data will be stored in the log file. Before
logging hour 745 (day 32), month 1 is rolled out. Thereafter, before
logging hour 745, the “oldest” month is rolled out.

For example, dsilog is started on April 15 and logs data through
May 16 (744 hours). Before logging hour 745 (the first hour of May
17), dsilog will roll out the data for themonth of April (April 15 -
30).

DAY 30 DAY 30 days of data will be stored in the log file. Before logging day 31,

HP Operations Agent (11.11)Page 265 of 388

User Guide
Chapter 14:

day 1 is rolled out. Thereafter, at the start of each succeeding day,
the “oldest” month is rolled out.

For example, dsilog is started on April 1 and logs data all month,
then the April 1st will be rolled out whenMay 1st (day 31) data is to
be logged.

DAY 62 MONTH 62 days of data will be stored in the log file. Before logging day 63,
month 1 is rolled out. Thereafter, before logging day 63 the “oldest”
month is rolled out.

For example, if dsilog is started onMarch 1 and logs data for the
months of March and April, there will be 61 days of data in the log
file. Once dsilog logs May 1st data (the 62nd day), the log file will
be full. Before dsilog can log the data for May 2nd, it will roll out
the entire month of March.

MONTH 2 MONTH Twomonths of data will be stored in the log file. Before logging the
third month, month 1 is rolled out. Thereafter, at the start of each
succeedingmonth, the “oldest” month is rolled out.

For example, dsilog is started on January 1 and logs data for the
months of January and February. Before dsilog can log the data
for March, it will roll out themonth of January.

Controlling Log File Size
You determine how much data is to be stored in each class and how much data to discard tomake
room for new data.

Class capacity is calculated from INDEX BY (hour, day, or month), RECORDS PER HOUR, and
MAX INDEXES. The following examples show the results of different settings.

In this example, the class capacity is 288 (24 indexes * 12 records per hour).

INDEX BY HOUR

MAX INDEXES 24

RECORDS PER HOUR 12

In this example, the class capacity is 504 (7 days * 24 hours per day * 3 records per hour).

INDEX BY DAY

MAX INDEXES 7

RECORDS PER HOUR 3

In this example, the class capacity is 14,880 (2months * 31 days per month * 24 hours per day * 10
records per hour).

INDEX BY MONTH

HP Operations Agent (11.11)Page 266 of 388

User Guide
Chapter 14:

MAX INDEXES 2

RECORDS PER HOUR 10

If you do not specify values for INDEX BY, RECORDS PER HOUR, and MAX INDEXES, DSI uses
the defaults for the class descriptions. See “Default Settings” under CLASS Description earlier in
this chapter.

The ROLL BYoption lets you determine how much data to discard each time the class record
capacity is reached. The setting for ROLL BY is constrained by the INDEX BY setting in that the
ROLL BY unit (hour, day, month) cannot be smaller than the INDEX BY unit.

The following example illustrates how rolling occurs given the sample

INDEX BY DAY

MAX INDEXES 6

ROLL BY DAY

In the above example, the class capacity is limited to six days of data by the setting:

MAX INDEXES 6.

The deletion of data is set for a day's worth by the setting:

ROLL BY DAY.

When the seventh day's worth of data arrives, the oldest day's worth of data is discarded. Note that
in the beginning of the logging process, no data is discarded. After the class fills up for the first time
at the end of 7 days, the roll takes place once a day.

RECORDS PER HOUR
The RECORDS PER HOUR setting determines how many records are written to the log file every
hour. The default number for RECORDS PER HOUR is 12 tomatch Performance Collection
Component's measurement interval of data sampling once every fiveminutes (60minutes/12
records = logging every fiveminutes).

HP Operations Agent (11.11)Page 267 of 388

User Guide
Chapter 14:

The default number or the number you enter could require the logging process to summarize data
before it becomes part of the log file. Themethod used for summarizing each data item is specified
in themetric description. For more information, see SummarizationMethod later in this chapter.

Syntax

[RECORDS PER HOUR number]

How To Use It

The logging process uses this value to summarize incoming data to produce the number of records
specified. For example, if data arrives every minute and you have set RECORDS PER HOUR to 6
(every 10minutes), 10 data points are summarized to write each record to the class. Some
common RECORDS PER HOUR settings are shown below:

RECORDS PER HOUR 6 --> 1 record/10 minutes

RECORDS PER HOUR 12 --> 1 record/5 minutes

RECORDS PER HOUR 60 --> 1 record/minute

RECORDS PER HOUR 120 --> 1 record/30 seconds

Notes
RECORDS PER HOUR can be overridden by the -s seconds option in dsilog. However,
overriding the original setting could cause problems when PerformanceManager graphs the data.

If dsilog receives nometric data for an entire logging interval, a missing data indicator is logged
for that metric. DSI can be forced to use the last value logged with the -asyn option in dsilog.
For a description of the -asyn option, see dsilog Logging Process in Chapter 15.

Example

In this example, a record will be written every 10minutes.

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

RECORDS PER HOUR 6;

CAPACITY
CAPACITY is the number of records to be stored in the class.

Syntax

[CAPACITY {maximum_record_number}]

How To Use It

Class capacity is derived from the setting in RECORDS PER HOUR, INDEX BY, and MAX
INDEXES. The CAPACITY setting is ignored unless a capacity larger than the derived values of
these other settings is specified. If this situation occurs, the MAX INDEXES setting is increased to
provide the specified capacity.

Example

INDEX BY DAY

HP Operations Agent (11.11)Page 268 of 388

User Guide
Chapter 14:

MAX INDEXES 9

RECORDS PER HOUR 12

CAPACITY 3000

In the above example, the derived class capacity is 2,592 records (9 days * 24 hours per day * 12
records per hour).

Because 3000 is greater than 2592, sdlcomp increases MAX INDEXES to 11, resulting in the class
capacity of 3168. After compilation, you can see the resulting MAX INDEXES and CAPACITY
values by running sdlutil with the -decomp option.

Metrics Descriptions
Themetrics descriptions in the class specification file are used to define the individual data items
for the class. Themetrics description equates ametric namewith a numeric identifier and specifies
themethod to be used when datamust be summarized becausemore records per hour are arriving
than you have specified with the RECORDS PER HOUR setting.

Note: User-defined descriptions, such as themetric_label_name, cannot be the same as any
of the keyword elements of the DSI class specification syntax.

Note that there is amaximum limit of 100metrics in the dsilog format file.

METRICS

metric_name = metric_id_number

[LABEL "metric_label_name"]

[TOTALED | AVERAGED | SUMMARIZED BY metric_name]

[MAXIMUM metric_maximum_number]

[PRECISION { 0 | 1 | 2 | 3 | 4 | 5 }]

TYPE TEXT LENGTH "length"

Note: For numeric metrics, you can specify the summarizationmethod (TOTALED,
AVERAGED, SUMMARIZED BY) and PRECISION. For text metrics, you can only specify the
TYPE TEXT LENGTH.

METRICS

Themetric name and id number identify themetric being collected.

Syntax

METRICS
metric_name = metric_id_number

How To Use It

HP Operations Agent (11.11)Page 269 of 388

User Guide
Chapter 14:

Themetrics sectionmust start with the METRICS keyword before the first metric definition. Each
metric must have ametric name that meets the following requirements:

l Must not be longer than 20 characters.

l Must begin with an alphabetic character.

l Can contain only alphanumeric characters and underscores.

l Is not case-sensitive.

Themetric also has ametric ID number that must not be longer than 6 characters.

Themetric-_name andmetric_id_numbermust each be unique among all themetrics you define in
the class. The combination class_name:metric_namemust be unique for this system, and it cannot
be the same as any application_name:metric_name.

Eachmetric description is separated from the next by a semicolon (;).

You can reusemetric names from any other class whose data is stored in the same log file set if the
definitions are identical as well (see How Log Files Are Organized in Chapter 13). To reuse ametric
definition that has already been defined in another class in the same log file set, specify just the
metric_namewithout themetric_id_number or any other specifications. If any of the options are to
be set differently than the previously definedmetric, themetric must be given a unique name and
numeric identifier and redefined.

The order of themetric names in this section of the class specification determines the order of the
fields when you export the logged data. If the order of incoming data is different than the order you
list in this specification or if you do not want to log all the data in the incoming data stream, see
Chapter 15, DSI Program Reference for information about how tomap themetrics to the correct
location.

A timestampmetric is automatically inserted as the first metric in each class. If you want the
timestamp to appear in a different position in exported data, include the short form of the internally
definedmetric definition (DATE_TIME;) in the position you want it to appear. To omit the timestamp
and use a UNIX timestamp (seconds since 1/1/70 00:00:00) that is part of the incoming data,
choose the -timestamp option when starting the dsilog process.

The simplest metric description, which uses themetric name as the label and the defaults of
AVERAGED, MAXIMUM 100, and PRECISION3 decimal places, requires the following description:

METRICS

metric_name = metric_id_number

Note: Youmust compile each class using sdlcomp and then start logging the data for that
class using the dsilog process, regardless of whether you have reusedmetric names.

Example

VM;

VM is an example of reusing ametric definition that has already been defined in another class in the
same log file set.

HP Operations Agent (11.11)Page 270 of 388

User Guide
Chapter 14:

LABEL

Themetric label identifies themetric in PerformanceManager graphs and exported data.

Syntax

[LABEL "metric_label_name"]

How To Use It

Specify a text string, surrounded by double quotationmarks, to label themetric in graphs and
exported data. Up to 48 characters are allowed. If no label is specified, themetric name is used to
identify themetric.

Notes

If the label contains a double quotationmark, precede it with a backslash (\). For example, you
would enter "\"my\" data" if the label is “my” data.

Themetric_label_name cannot be the same as any of the keyword elements of the DSI class
specification syntax such as CAPACITY, ACTION and so on.

Example

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q";

Summarization Method

The summarizationmethod determines how to summarize data if the number of records exceeds
the number set in the RECORDS PER HOUR option of the CLASS section. For example, you would
want to total a count of occurrences, but you would want to average a rate. The summarization
method is only valid for numeric metrics.

Syntax

[{TOTALED | AVERAGED | SUMMARIZED BY metric_name}]

How To Use It

SUMMARIZED BY should be used when ametric is not being averaged over time, but over another
metric in the class. For example, assume you have definedmetrics TOTAL_ORDERS and LINES_
PER_ORDER. If thesemetrics are given to the logging process every fiveminutes but records are
being written only once each hour, to correctly summarize LINES_PER_ORDER to be (total lines /
total orders), the logging process must perform the following calculation every fiveminutes:

l Multiply LINES_PER_ORDER * TOTAL_ORDERS at the end of each five-minute interval and
maintain the result in an internal running count of total lines.

l Maintain the running count of TOTAL_ORDERS.

l At the end of the hour, divide total lines by TOTAL_ORDERS.

HP Operations Agent (11.11)Page 271 of 388

User Guide
Chapter 14:

To specify this kind of calculation, you would specify LINES_PER_ORDER as SUMMARIZED BY
TOTAL_ORDERS.

If no summarizationmethod is specified, themetric defaults to AVERAGED.

Example

METRICS

ITEM_1_3 = 11203

LABEL "TOTAL_ORDERS"

TOTALED;

ITEM_1_5 = 11205

LABEL "LINES_PER_ORDER"

SUMMARIZED BY ITEM_1_3;

PRECISION

PRECISION identifies the number of decimal places to be used for metric values. If PRECISION is
not specified, it is calculated based on the MAXIMUM specified. If neither is specified, the default
PRECISION value is 3. This setting is valid only for numeric metrics.

Syntax

[PRECISION{0|1|2|3|4|5}]

How To Use It

The PRECISION setting determines the largest value that can be logged. Use PRECISION 0 for
whole numbers.

PRECISION # of Decimal Places Largest Acceptable Numbers MAXIMUM

0 0 2,147,483,647 > 10,000

1 1 214,748,364.7 1001 to 10,000

2 2 21,474,836.47 101 to 1,000

3 3 2,147,483.647 11 to 1,000

4 4 214,748.3647 2 to 10

5 5 21,474.83647 1

Example

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

PRECISION 1;

HP Operations Agent (11.11)Page 272 of 388

User Guide
Chapter 14:

TYPE TEXT LENGTH

The three keywords TYPE TEXT LENGTH specify that themetric is textual rather than numeric.
Text is defined as any character other than ^d, \n, or the separator, if any.

Because the default delimiter between data items for dsilog input is blank space, you will need to
change the delimiter if the text contains embedded spaces. Use the dsilog -c char option to
specify a different separator as described in Chapter 15, DSI Program Reference.

Syntax

[TYPE TEXT LENGTH length]

How To Use It

The lengthmust be greater than zero and less than 4096.

Notes

Summarizationmethod, MAXIMUM, and PRECISION cannot be specified with text metrics. Text
cannot be summarized, whichmeans that dsilog will take the first logged value in an interval and
ignore the rest.

Example

METRICS

text_1 = 16

LABEL "first text metric"

TYPE TEXT LENGTH 20

;

Sample Class Specification
CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

HP Operations Agent (11.11)Page 273 of 388

User Guide
Chapter 14:

PRECISION 0;

BLOCKED_PROCS = 107

LABEL "Blocked Processes"

PRECISION 0;

SWAPPED_PROCS = 108

LABEL "Swapped Processes"

PRECISION 0;

AVG_VIRT_PAGES = 201

LABEL "Avg Virt Mem Pages"

PRECISION 0;

FREE_LIST_SIZE = 202

LABEL "Mem Free List Size"

PRECISION 0;

PAGE_RECLAIMS = 303

LABEL "Page Reclaims"

PRECISION 0;

ADDR_TRANS_FAULTS = 304

LABEL "Addr Trans Faults"

PRECISION 0;

PAGES_PAGED_IN = 305

LABEL "Pages Paged In"

PRECISION 0;

PAGES_PAGED_OUT = 306

LABEL "Pages Paged Out"

PRECISION 0;

HP Operations Agent (11.11)Page 274 of 388

User Guide
Chapter 14:

PAGES_FREED = 307

LABEL "Pages Freed/Sec"

PRECISION 0;

MEM_SHORTFALL = 308

LABEL "Exp Mem Shortfall"

PRECISION 0;

CLOCKED_PAGES = 309

LABEL "Pages Scanned/Sec"

PRECISION 0;

DEVICE_INTERRUPTS = 401

LABEL "Device Interrupts"

PRECISION 0;

SYSTEM_CALLS = 402

LABEL "System Calls"

PRECISION 0;

CONTEXT_SWITCHES = 403

LABEL "Context Switches/Sec"

PRECISION 0;

USER_CPU = 501

LABEL "User CPU"

PRECISION 0;

SYSTEM_CPU = 502

LABEL "System CPU"

PRECISION 0;

IDLE_CPU = 503

HP Operations Agent (11.11)Page 275 of 388

User Guide
Chapter 14:

LABEL "Idle CPU"

PRECISION 0;

HP Operations Agent (11.11)Page 276 of 388

User Guide
Chapter 14:

HP Operations Agent (11.11)Page 277 of 388

User Guide
Chapter 15:

DSI Program Reference
This chapter provides detailed reference information about:

l the sdlcomp compiler

l configuration files datasources and alarmdef

l the dsilog logging process

l exporting DSI data using the Performance Collection Component extract program

l the sdlutil data sourcemanagement utility

sdlcomp Compiler
Thesdlcomp compiler checks the class specification file for errors. If no errors are found, it adds
the class andmetric descriptions to the description file in the log file set you name. It also sets up
the pointers in the log file set's root file to the log file to be used for data storage. If either the log file
set or the log file does not exist, it is created by the compiler.

Note: You can put the DSI files anywhere on your system by specifying a full path in the
compiler command. However, once the path has been specified, DSI log files cannot be
moved to different directories. (SDL62 is the associated class specification error message,
described in SDL Error Messages in Chapter 17. The format used by DSI for the class
specification error messages is the prefix SDL (Self Describing Logfile), followed by the
message number.

Compiler Syntax

sdlcomp [-maxclass value] specification_file

[logfile_set[log file]] [options]

Variables and
Options Definitions

-maxclass value allows you to specify themaximum number of classes to be provided for
when creating a new log file set. This option is ignored if it is used with the
name of an existing log file set. Each additional class consumes about 500
bytes of disk space in overhead, whether the class is used or not. The
default is 10 if -maxclass is not specified.

specification_
file

is the name of the file that contains the class specification. If it is not in the
current directory, it must be fully qualified.

logfile_set is the name of the log file set this class should

log file is the log file in the set that will contain the data for this class. If no log file is
named, a new log file is created for the class and is named automatically.

-verbose prints a detailed description of the compiler output to stdout.

HP Operations Agent (11.11)Page 278 of 388

User Guide
Chapter 15:

-vers displays version information.

-? displays the syntax description.

-u allows you to logmore than one record per second. Use this option to log
unsummarized data only.

Sample Compiler Output

Given the following command line:

->sdlcomp vmstat.spec sdl_new

the following code is sample output for a successful compile. Note that vmstat.spec is the
sample specification file presented in the previous chapter.

sdlcomp

Check class specification syntax.

CLASS VMSTAT_STATS = 10001

LABEL "VMSTAT data"

INDEX BY HOUR

MAX INDEXES 12

ROLL BY HOUR

RECORDS PER HOUR 120;

METRICS

RUN_Q_PROCS = 106

LABEL "Procs in run q"

PRECISION 0;

BLOCKED_PROCS = 107

LABEL "Blocked Processes"

PRECISION 0;

SWAPPED_PROCS = 108

LABEL "Swapped Processes"

HP Operations Agent (11.11)Page 279 of 388

User Guide
Chapter 15:

PRECISION 0;

AVG_VIRT_PAGES = 201

LABEL "Avg Virt Mem Pages"

PRECISION 0;

FREE_LIST_SIZE = 202

LABEL "Mem Free List Size"

PRECISION 0;

PAGE_RECLAIMS = 303

LABEL "Page Reclaims"

PRECISION 0;

ADDR_TRANS_FAULTS = 304

LABEL "Addr Trans Faults"

PRECISION 0;

PAGES_PAGED_IN = 305

LABEL "Pages Paged In"

PRECISION 0;

PAGES_PAGED_OUT = 306

LABEL "Pages Paged Out"

PRECISION 0;

PAGES_FREED = 307

LABEL "Pages Freed/Sec"

PRECISION 0;

MEM_SHORTFALL = 308

LABEL "Exp Mem Shortfall"

PRECISION 0;

HP Operations Agent (11.11)Page 280 of 388

User Guide
Chapter 15:

CLOCKED_PAGES = 309

LABEL "Pages Scanned/Sec"

PRECISION 0;

DEVICE_INTERRUPTS = 401

LABEL "Device Interrupts"

PRECISION 0;

SYSTEM_CALLS = 402

LABEL "System Calls"

PRECISION 0;

CONTEXT_SWITCHES = 403

LABEL "Context Switches/Sec"

PRECISION 0;

USER_CPU = 501

LABEL "User CPU"

PRECISION 0;

SYSTEM_CPU = 502

LABEL "System CPU"

PRECISION 0;

IDLE_CPU = 503

LABEL "Idle CPU"

PRECISION 0;

Note: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL sdl_new.

HP Operations Agent (11.11)Page 281 of 388

User Guide
Chapter 15:

Open SDL sdl_new

Add class VMSTAT_STATS.

Check class VMSTAT_STATS.

Class VMSTAT_STATS successfully added to log file set.

For explanations of error messages and recovery, see Chapter 17, Error Message.

Configuration Files
Before you start logging data, youmay need to update two Performance Collection Component
configuration files:

l /var/opt/OV/conf/perf/datasources

l /var/opt/perf/alarmdef—see the section below, for information about using the
alarmdef configuration file.

Defining Alarms for DSI Metrics

You can use Performance Collection Component to define alarms on DSI metrics. These alarms
notify you when DSI metrics meet or exceed conditions that you have defined. To define alarms,
you specify conditions that, whenmet or exceeded, trigger an alert notification or action. You define
alarms for data logged through DSI the sameway as for other Performance Collection Component
metrics — in the alarmdef file on the Performance Collection Component system. The
alarmdef file is located in the var/opt/perf/ configuration directory of Performance Collection
Component.

Whenever you specify a DSI metric name in an alarm definition, it should be fully qualified; that is,
preceded by the datasource_name, and the class_name as shown below:

datasource_name:class_name:metric_name

l datasource_name is the name you have used to configure the data source in the datasources
file.

l class_name is the name you have used to identify the class in the class specification for the
data source. You do not need to enter the class_name if themetric name is unique (not reused)
in the class specification.

l metric_name is the data item from the class specification for the data source.

However, if you choose not to fully qualify ametric name, you need to include the USE statement in
the alarmdef file to identify which data source to use. For more information about the USE
statement, see Chapter 7, “Performance Alarms,” in theHP Operations Agent for UNIX User's
Manual.

To activate the changes youmade to the alarmdef file so that it can be read by the alarm
generator, enter the ovpa restart alarm command in the command line.

For detailed information on the alarm definition syntax, how alarms are processed, and customizing
alarm definitions, see Chapter 7 in theHP Operations Agent for UNIX User's Manual.

HP Operations Agent (11.11)Page 282 of 388

User Guide
Chapter 15:

Alarm Processing

As data is logged by dsilog it is compared to the alarm definitions in the alarmdef file to
determine if a condition is met or exceeded. When this occurs, an alert notification or action is
triggered.

You can configure where you want alarm notifications sent and whether you want local actions
performed. Alarm notifications can be sent to the central PerformanceManager analysis system
where you can draw graphs of metrics that characterize your system performance. SNMP traps
can be sent to HP Network NodeManager. Local actions can be performed on the Performance
Collection Component system. Alarm information can also be sent to Operations Manager.

dsilog Logging Process
The dsilog process requires that either devise your own program or use one that is already in
existence for you to gain access to the data. You can then pipe this data into dsilog, which logs
the data into the log file set. A separate logging process must be used for each class you define.

dsilog expects to receive data from stdin. To start the logging process, you could pipe the
output of the process you are using to collect data to dsilog as shown in the following example.

vmstat 60 | dsilog logfile_set class

You can only have one pipe (|) in the command line. This is because with two pipes, UNIX
buffering will hold up the output from the first command until 8000 characters have been written
before continuing to the second command and piping out to the log file.

You could also use a fifo (named pipe). For example,

mkfifo -m 777 myfifo

dsilog logfile_set class -i myfifo &

vmstat 60 > myfifo &

The & causes the process to run in the background.

Note that youmay need to increase the values of the UNIX kernel parameters shmmni and
nflocks if you are planning to run a large number of dsilog processes. Shmmni specifies the
maximum number of sharedmemory segments; nflocks specifies themaximum number of file
locks on a system. The default value for each is 200. Each active DSI log file set uses a shared
memory segment (shmmni) and one or more file locks (nflocks). On HP-UX, you can change the
settings for shmmni and nflocks using the System Administration andMaintenance utility
(SAM).

Syntax

dsilog logfile_set class [options]

The dsilog parameters and options are described on the following pages.

Table 1: dsilog parameters and options

HP Operations Agent (11.11)Page 283 of 388

User Guide
Chapter 15:

Variables
and
Options Definitions

logfile_
set

is the name of the log file set where the data is to be stored. If it is not in the current
directory, the namemust be fully qualified.

class is the name of the class to be logged.

-asyn specifies that the data will arrive asynchronously with the RECORDS PER HOUR
rate. If no data arrives during a logging interval, the data for the last logging interval
is repeated. However, if dsilog has logged no data yet, themetric value logged is
treated as missing data. This causes a flat line to be drawn in a graphical display of
the data and causes data to be repeated in each record if the data is exported.

-c char uses the specified character as a string delimiter/separator. Youmay not use the
following as separators: decimal, minus sign, ^z, \n. If there are embedded
spaces in any text metrics then youmust specify a unique separator using this
option.

-f format
file

names a file that describes the data that will be input to the logging process. If this
option is not specified, dsilog derives the format of the input from the class
specification with the following assumptions. See Creating a Format File later in
this chapter for more information.

Each data item in an input record corresponds to ametric that has been defined in
the class specification.

Themetrics are defined in the class specification in the order in which they appear
as data items in the input record.

If there aremore data items in an input record than there aremetric definitions,
dsilog ignores all additional data items.

-fformat
file
(continued)

If the class specification lists moremetric definitions than there are input data
items, the field will show “missing” data when the data is exported, and no data will
be available for that metric when graphing data in the analysis software.

The number of fields in the format file is limited to 100.

-ififo
or ASCII file

indicates that the input should come from the fifo or ASCII file named. If this
option is not used, input comes from stdin. If you use this method, start dsilog
before starting your collection process. Seeman page mkfifo for more
information about using a fifo. Also see Chapter 16, Examples of Data Source
Integration for examples.

-s
seconds

is the number of seconds by which to summarize the data. The -s option overrides
the summarization interval and the summarization rate defaults to RECORDS PER
HOUR in the class specification. If present, this option overrides the value of
RECORDS PER HOUR.

A zero (0) turns off summarization, whichmeans that all incoming data is logged.
Caution should be used with the -s 0option because dsilog will timestamp the
log data at the time the point arrived. This can cause problems for Performance

HP Operations Agent (11.11)Page 284 of 388

User Guide
Chapter 15:

Manager and perfalarm, which work best with timestamps at regular intervals. If
the log file will be accessed by PerformanceManager, use of the -s 0 option is
discouraged.

-t prints everything that is logged to stdout in ASCII format.

-
timestamp

indicates that the logging process should not provide the timestamp, but use the
one already provided in the input data. The timestamp in the incoming datamust be
in UNIX timestamp format (seconds since 1/1/70 00:00:00) and represent the local
time.

-vi filters the input through dsilog and writes errors to stdout instead of the log file.
It does not write the actual data logged to stdout (see the -vo option below).
This can be used to check the validity of the input.

-vo filters the input through dsilog and writes the actual data logged and errors to
stdout instead of the log file. This can be used to check the validity of the data
summarization.

-vers displays version information

-? displays the syntax description.

How dsilog Processes Data

The dsilog program scans each input data string, parsing delimited fields into individual numeric
or text metrics. A key rule for predicting how the data will be processed is the validity of the input
string. A valid input string requires that a delimiter be present between any specifiedmetric types
(numeric or text). A blank is the default delimiter, but a different delimiter can be specified with the
dsilog -c char command line option.

Youmust include a new line character at the end of any record fed to DSI in order for DSI to
interpret it properly.

Testing the Logging Process with Sdlgendata

Before you begin logging data, you can test the compiled log file set and the logging process using
the sdlgendata program. sdlgendata discovers themetrics for a class (as described in the
class specification) and generates data for eachmetric in a class.

Syntax

sdlgendata logfile_set class [options]

Sdlgendata parameters and options are explained below.

Table 2: Sdlgendata parameters and options

HP Operations Agent (11.11)Page 285 of 388

User Guide
Chapter 15:

Variables
and
Options Definitions

logfile_
set

is the name of the log file set to generate data for.

class is the data class to generate data for.

-
timestamp
[number]

provides a timestampwith the data. If a negative number or no number is supplied,
the current time is used for the timestamp. If a positive number is used, the time
starts at 0 and is incremented by number for each new data record.

-
wait
number

causes a wait of number seconds between records generated.

-cycle
number

recycles data after number cycles.

-vers displays version information.

-? displays the syntax description.

By piping sdlgendata output to dsilog with either the -vi or -vo options, you can verify the
input (-vi) and verify the output (-vo) before you begin logging with your own process or program.

Note: After you are finished testing, delete all log files created from the test. Otherwise, these
files remain as part of the log file test.

Use the following command to pipe data from sdlgendata to the logging process. The -vi option
specifies that data is discarded and errors are written to stdout. Press CTRL+C or other interrupt
control character to stop data generation.

sdlgendata logfile_set class -wait 5 | dsilog

\logfile_set class -s 10 -vi

The previous command generates data that looks like this:

dsilog

I: 744996402 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

I: 744996407 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

I: 744996412 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000

I: 744996417 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

I: 744996422 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000

I: 744996427 6.0000 7.0000 8.0000 9.0000 10.0000 11.0000 12.0000

I: 744996432 7.0000 8.0000 9.0000 10.000 11.000 12.0000 13.0000

HP Operations Agent (11.11)Page 286 of 388

User Guide
Chapter 15:

I: 744996437 8.0000 9.0000 10.0000 11.0000 12.0000 13.0000 14.0000

You can also use the -vo option of dsilog to examine input and summarized output for your real
data without actually logging it. The following command pipes vmstat at 5-second intervals to
dsilog where it is summarized to 10 seconds.

->vmstat 5 | dsilog logfile_set class -s 10 -vo

dsilog

I: 744997230 0.0000 0.0000 21.0000 2158.0000 1603.0000 2.0000 2.0000

I: 744997235 0.0000 0.0000 24.0000 2341.0000 1514.0000 0.0000 0.0000

interval marker

L: 744997230 0.0000 0.0000 22.5000 2249.5000 1558.5000 1.0000 1.0000

I: 744997240 0.0000 0.0000 23.0000 2330.0000 1513.0000 0.0000 0.0000

I: 744997245 0.0000 0.0000 20.0000 2326.0000 1513.0000 0.0000 0.0000

interval marker

L: 744997240 0.0000 0.0000 21.5000 2328.0000 1513.0000 0.0000 0.0000

I: 744997250 0.0000 0.0000 22.0000 2326.0000 1513.0000 0.0000 0.0000

I: 744997255 0.0000 0.0000 22.0000 2303.0000 1513.0000 0.0000 0.0000

interval marker

L: 744997250 0.0000 0.0000 22.0000 2314.5000 1513.0000 0.0000 0.0000

I: 744997260 0.0000 0.0000 22.0000 2303.0000 1512.0000 0.0000 0.0000

I: 744997265 0.0000 0.0000 28.0000 2917.0000 1089.0000 9.0000 33.0000

interval marker

L: 744997260 0.0000 0.0000 25.0000 2610.0000 1300.5000 4.5000 16.5000

I: 744997270 0.0000 0.0000 28.0000 2887.0000 1011.0000 3.0000 9.0000

I: 744997275 0.0000 0.0000 27.0000 3128.0000 763.0000 8.0000 6.0000

interval marker

L: 744997270 0.0000 0.0000 27.5000 3007.5000 887.0000 5.5000 12.5000

You can also use the dsilog-vo option to use a file of old data for testing, as long as the data

HP Operations Agent (11.11)Page 287 of 388

User Guide
Chapter 15:

contains its ownUNIX timestamp (seconds since 1/1/70 00:00:00). To use a file of old data, enter a
command like this:

dsilog -timestamp -vo <oldfile>

Creating a Format File
Create a format file to map the data input to the class specification if:

l the data input contains data that is not included in the class specification.

l incoming data has metrics in a different order than you have specified in the class specification.

A format file is an ASCII text file that you can create with vi or any text editor. Use the -f option in
dsilog to specify the fully qualified name of the format file.

Because the logging process works by searching for the first valid character after a delimiter (either
a space by default or user-defined with the dsilog -c option) to start the next metric, the format
file simply tells the logging process which fields to skip and what metric names to associate with
fields not skipped.

$numeric tells the logging process to skip one numeric metric field and go to the next. $any tells
the logging process to skip one text metric field and go to the next. Note that the format file is
limited to 100 fields.

For example, if the incoming data stream contains this information:

ABC 987 654 123 456

and you want to log only the first numeric field into ametric named metric_1, the format file would
look like this:

$any metric_1

This tells the logging process to log only the information in the first numeric field and discard the rest
of the data. To log only the information in the third numeric field, the format file would look like this:

$any $numeric $numeric metric_1

To log all four numeric data items, in reverse order, the format file would look like this:

$any metric_4 metric_3 metric_2 metric_1

If the incoming data stream contains the following information:

/users 15.9 3295 56.79% xdisk1 /dev/dsk/c0d0s*

and you want to log only the first text metric and the first two numeric fields into metric fields you
name text_1, num_1, and num_2, respectively, the format file would look like this:

text_1 num_1 num_2

This tells the logging process to log only the information in the first three fields and discard the rest
of the data.

To log all of the data, but discard the “%” following the third metric, the format file would look like
this:

HP Operations Agent (11.11)Page 288 of 388

User Guide
Chapter 15:

text_1 num_1 num_2 num_3 $any text_2 text_3

Since you are logging numeric fields and the “%” is considered to be a text field, you need to skip it
to correctly log the text field that follows it.

To log the data items in a different order the format file would look like this:

text_3 num_2 num_1 num_3 $any text_2 text_1

Note that this will result in only the first six characters of text_3 being logged if text_1 is declared to
be six characters long in the class specification. To log all of text_3 as the first value, change the
class specification and alter the data stream to allow extra space.

Changing a Class Specification
To change a class specification file, youmust recreate the whole log file set as follows:

1. Stop the dsilog process.

2. Export the data from the existing log file using the UNIX timestamp option if you want to save it
or integrate the old data with the new data you will be logging. See Exporting DSI Data later in
this chapter for information on how to do this.

3. Run sdlutil to remove the log file set. SeeManaging DataWith sdlutil later in this chapter
for information on how to do this.

4. Update the class specification file.

5. Run sdlcomp to recompile the class specification.

6. Optionally, use the -i option in dsilog to integrate in the old data you exported in step 2. You
may need tomanipulate the data to line up with the new data using the -f format_file option

7. Run dsilog to start logging based on the new class specification.

8. As long as you have not changed the log file set name or location, you do not need to update
the datasources file.

Exporting DSI Data
To export the data from aDSI log file, use the Performance Collection Component extract
program's export function. See Chapters 5 and 6 of theHP Operations Agent for UNIX User's
Manual for details on how to use extract to export data. An example of exporting DSI data using
command line arguments is provided on the following page.

There are several ways to find out what classes andmetrics can be exported from the DSI log file.
You can use sdlutil to list this information as described in Managing Data with sdlutil later in this
chapter. Or you can use the extract guidecommand to create an export template file that lists
the classes andmetrics in the DSI log file. You can then use vi to edit, name, and save the file.
The export template file is used to specify the export format, as described in Chapters 5 and 6 of the
HP Operations Agent for UNIX User's Manual.

Note: Youmust be root or the creator of the log file to export DSI log file data.

HP Operations Agent (11.11)Page 289 of 388

User Guide
Chapter 15:

Example of Using Extract to Export DSI Log File Data

extract -xp -l logfile_set -C class [options]

You can use extract command line options to do the following:

l Specify an export output file.

l Set begin and end dates and times for the first and last intervals to export.

l Export data only between certain times (shifts).

l Exclude data for certain days of the week (such as weekends).

l Specify a separation character to put betweenmetrics on reports.

l Choose whether or not to display headings and blank records for intervals when no data arrives
and what the value displayed should be for missing or null data.

l Display exported date/time in UNIX format or date and time format.

l Set additional summarization levels.

Viewing Data in Performance Manager

In order to display data from aDSI log file in PerformanceManager, you need to configure the DSI
log file as an Performance Collection Component data source. Before you start logging data,
configure the data source by adding it to the datasources file on the Performance Collection
Component system.

You can centrally view, monitor, analyze, compare, and forecast trends in DSI data using
PerformanceManager. PerformanceManager helps you identify current and potential problems. It
provides the information you need to resolve problems before user productivity is affected.

Managing Data With sdlutil
Tomanage the data from aDSI log file, use the sdlutil program to do any of the following tasks:

l list currently defined class andmetric information to stdout. You can redirect output to a file.

l list complete statistics for classes to stdout.

l show metric descriptions for all metrics listed.

l list the files in a log file set.

l remove classes and data from a log file set.

l recreate a class specification from the information in the log file set.

l display version information.

Syntax

sdlutil logfile_set [option]

HP Operations Agent (11.11)Page 290 of 388

User Guide
Chapter 15:

Variables
and
Options Definitions

logfile_
set

is the name of a log file set created by compiling a class specification.

-classes
classlist

provides a class description of all classes listed. If none are listed, all are provided.
Separate the Items in the classlist with spaces.

-stats
classlist

provides complete statistics for all classes listed. If none are listed, all are provided.
Separate the Items in the classlist with spaces.

-metrics
metriclist

provides metric descriptions for all metrics in themetriclist. If none are listed, all are
provided. Separate the Items in themetriclist with spaces.

-id displays the sharedmemory segment ID used by the log file.

-files lists all the files in the log file set.

-rm all removes all classes and data as well as their data and sharedmemory ID from the
log file.

-decomp
classlist

recreates a class specification from the information in the log file set. The results
are written to stdout and should be redirected to a file if you plan tomake changes
to the file and reuse it. Separate the Items in the classlist with spaces.

-vers displays version information.

-? displays the syntax description.

HP Operations Agent (11.11)Page 291 of 388

User Guide
Chapter 16:

Examples of Data Source Integration
Data source integration is a very powerful and very flexible technology. Implementation of DSI can
range from simple and straightforward to very complex.

This chapter contains examples of using DSI for the following tasks:

l writing a dsilog script

l logging vmstat data

l logging sar data

l logging who word count

Writing a dsilog Script
The dsilog code is designed to receive a continuous stream of data rows as input. This stream of
input is summarized by dsilog according to the specification directives for each class, and one
summarized data row is logged per requested summarization interval. PerformanceManager and
perfalarm work best when the timestamps written in the log conform to the expected summarization
rate (records per hour). This happens automatically when dsilog is allowed to do the
summarization.

dsilog process for each arriving input row, whichmay cause problems with PerformanceManager
and perfalarm. This method is not recommended.

l Problematic dsilog script

l Recommended dsilog script

Example 1 - Problematic dsilog Script

In the following script, a new dsilog process is executed for each arriving input row.

while :

do

feed_one_data_row | dsilog sdlname classname

sleep 50

done

Example 2 - Recommended dsilog Script

In the following script, one dsilog process receives a continuous stream of input data. feed_one_
data_row is written as a function, which provides a continuous data stream to a single dsilog
process.

Begin data feed function

feed_one_data_row()

HP Operations Agent (11.11)Page 292 of 388

User Guide
Chapter 16:

{

while :

do

Perform whatever operations necessary to produce one row

of data for feed to a dsilog process

sleep 50

done

}

End data feed function

Script mainline code

feed_one_data_row | dsilog sdlname classname

Logging vmstat Data
This example shows you how to set up data source integration using default settings to log the first
two values reported by vmstat. You can either read this section as an overview of how the data
source integration process works, or perform each task to create an equivalent DSI log file on your
system.

The procedures needed to implement data source integration are:

l Creating a class specification file.

l Compiling the class specification file.

l Starting the dsilog logging process.

Creating a Class Specification File

The class specification file is a text file that you create to describe the class, or set of incoming
data, as well as each individual number you intend to log as ametric within the class. The file can
be created with the text editor of your choice. The file for this example of data source integration
should be created in the /tmp/ directory.

The following example shows the class specification file required to describe the first two vmstat
numbers for logging in a class called VMSTAT_STATS. Because only twometrics are defined in
this class, the logging process ignores the remainder of each vmstat output record. Each line in the
file is explained in the comment lines that follow it.

CLASS VMSTAT_STATS = 10001;

Assigns a unique name and number to vmstat class data

The semicolon is required to terminate the class section

HP Operations Agent (11.11)Page 293 of 388

User Guide
Chapter 16:

of the file.

METRICS

Indicates that everything that follows is a description

of a number (metric) to be logged.

RUN_Q_PROCS = 106;

Assigns a unique name and number to a single metric.

The semicolon is required to terminate each metric.

BLOCKED_PROCS = 107;

Assigns a unique name and number to another metric.

The semicolon is required to terminate each metric.

Compiling the Class Specification File

When you compile the class specification file using sdlcomp, the file is checked for syntax errors. If
none are found, sdlcomp creates or updates a set of log files to hold the data for the class.

Use the file name you gave to the class specification file and then specify a name for logfile_set_
name that makes it easy to remember what kind of data the log file contains. In the command and
compiler output example below, /tmp/vmstat.spec is used as the file name and /tmp/VMSTAT_
DATA is used for the log file set.

-> sdlcomp /tmp/vmstat.spec /tmp/VMSTAT_DATA

sdlcomp X.01.04

Check class specification syntax.

CLASS VMSTAT_STATS = 10001;

HP Operations Agent (11.11)Page 294 of 388

User Guide
Chapter 16:

METRICS

RUN_Q_PROCS = 106;

BLOCKED_PROCS = 107;

NOTE: Time stamp inserted as first metric by default.

Syntax check successful.

Update SDL VMSTAT_DATA.

Shared memory ID used by vmstat_data=219

Class VMSTAT_STATS successfully added to log file set.

This example creates a log file set called VMSTAT_DATA in the /tmp/
directory, which includes a root file and description file in addition to
the data file. The log file set is ready to accept logged data. If there
are syntax errors in the class specification file, messages indicating the
problems are displayed and the log file set is not created.

Starting the dsilog Logging Process

Now you can pipe the output of vmstat directly to the dsilog logging process. Use the following
command:

vmstat 60 | dsilog /tmp/VMSTAT_DATA VMSTAT_STATS &

This command runs vmstatevery 60 seconds and sends the output directly to the VMSTAT_
STATS class in the VMSTAT_DATA log file set. The command runs in the background. You could
also use remsh to feed vmstat in from a remote system.

Note that the followingmessage is generated at the start of the logging process:

Metric null has invalid dataIgnore to end of line, metric value exceeds
maximum

This message is a result of the header line in the vmstat output that dsilog cannot log. Although the
message appears on the screen, dsilog continues to run and begins logging data with the first valid
input line.

Accessing the Data

You can use the sdlutil program to report on the contents of the class:

sdlutil /tmp/VMSTAT_DATA -stats VMSTAT_STATS

HP Operations Agent (11.11)Page 295 of 388

User Guide
Chapter 16:

Note: By default, data will be summarized and logged once every fiveminutes.

You can use extract program command line arguments to export data from the class. For example:

extract -xp -l /tmp/VMSTAT_DATA -C VMSTAT_STATS -ut -f stdout

Note that to export DSI data, youmust be root or the creator of the log file.

Logging sar Data from One File
This example shows you how to set up several DSI data collections using the standard sar (system
activity report) utility to provide the data.

When you use a system utility, it is important to understand exactly how that utility reports the data.
For example, note the difference between the following two sar commands:

sar -u 1 1

HP-UX hpptc99 A.11.00 E 9000/855 04/10/99

10:53:15 %usr %sys %wio %idle

10:53:16 2 7 6 85

sar -u 5 2

HP-UX hpptc99 A.11.00 E 9000/855 04/10/99

10:53:31 %usr %sys %wio %idle

10:53:36 4 5 0 91 10:53:41 0 0 0 99

Average 2 2 0 95

As you can see, specifying an iteration value greater than 1 causes sar to
display an average across the interval. This average may or may not be of
interest but can affect your DSI class specification file and data
conversion. You should be aware that the output of sar, or other system
utilities, may be different when executed on different UNIX platforms. You
should become very familiar with the utility you are planning to use
before creating your DSI class specification file.

Our first example uses sar to monitor CPU utilization via the -u option of sar. If you look at theman
page for sar, you will see that the -u option reports the portion of time running in user mode (%usr),
running in systemmode (%sys), idle with some process waiting for block I/O (%wio), and otherwise
idle (%idle). Because we aremore interested inmonitoring CPU activity over a long period of time,
we use the form of sar that does not show the average.

HP Operations Agent (11.11)Page 296 of 388

User Guide
Chapter 16:

Creating a Class Specification File

The first task to complete is the creation of a DSI class specification file. The following is an
example of a class specification that can be used to describe the incoming data:

sar_u.spec

#

sar -u class definition for HP systems.

#

==> 1 minute data; max 24 hours; indexed by hour; roll by day

#

CLASS sar_u = 1000

LABEL "sar -u data"

INDEX BY hour

MAX INDEXES 24

ROLL BY day

ACTION "./sar_u_roll PT_START PT_END"

RECORDS PER HOUR 60

;

METRICS

hours_1 = 1001

LABEL "Collection Hour"

PRECISION 0

;

minutes_1 = 1002

LABEL "CollectionMinute"

PRECISION 0

;

HP Operations Agent (11.11)Page 297 of 388

User Guide
Chapter 16:

seconds_1 = 1003

LABEL "Collection Second"

PRECISION 0

;

user_cpu = 1004

LABEL "%user"

AVERAGED

MAXIMUM 100

PRECISION 0

;

sys_cpu = 1005

LABEL "%sys"

AVERAGED

MAXIMUM 100

PRECISION 0

;

wait_IO_cpu = 1006

LABEL "%wio"

AVERAGED

MAXIMUM 100

PRECISION 0

;

idle_cpu = 1007

LABEL "%idle"

AVERAGED

MAXIMUM 100

PRECISION 0
;

HP Operations Agent (11.11)Page 298 of 388

User Guide
Chapter 16:

;

Compiling the Class Specification File

The next task is to compile the class specification file using the following command.

HP Operations Agent (11.11)Page 299 of 388

User Guide
Chapter 16:

sdlcomp sar_u.spec sar_u_log

The output of the sar -u command is a system header line, a blank line, an option header line, and a
data line consisting of a time stamp followed by the data wewant to capture. The last line is the
only line that is interesting. So, from the sar -u command, we need amechanism to save only the
last line of output and feed that data to DSI.

dsilog expects to receive data from stdin. To start the logging process, you could pipe output from
the process you are using to dsilog. However, you can only have one pipe (|) in the command line.
When two pipes are used, UNIX buffering retains the output from the first command until 8000
characters have been written before continuing to the second command and piping out to the log
file. As a result, doing something like the following does not work:

sar -u 60 1 | tail -1 | dsilog

Therefore, we use a fifoas the input source for DSI. However, this is not without its problems.

Assumewewere to use the following script:

#!/bin/ksh sar_u_feed

sar_u_feed script that provides sar -u data to DSI via

a fifo(sar_u.fifo)

while : # (infinite loop)

do

specify a oneminute interval using tail to extract the

last sar output record(contains the time stamp and data),

saving the data to a file./usr/bin/sar -u 60 1 2>/tmp/dsierr | tail -1 >

/usr/tmp/sar_u_data

Copy the sar data to the fifo that the dsilog process is

reading.

cat /usr/tmp/sar_u_data > ./sar_u.fifo

done

Unfortunately, this script will not produce the desired results if run as is. This is because the cat
command opens the fifo, writes the data record, and then closes the fifo. The close indicates to
dsilog that there is nomore data to be written to the log, so dsilogwrites this one data record and
terminates. What is needed is a dummy process to “hold” the fifo open. Therefore, we need a
dummy fifo and a process that opens the dummy fifo for input and the sar_u.fifo for output. This will
hold the sar_u.fifo open, thereby preventing dsilog from terminating.

Starting the DSI Logging Process

Now let's take a step by step approach to getting the sar -u data to dsilog.

HP Operations Agent (11.11)Page 300 of 388

User Guide
Chapter 16:

1. Create two fifos; one is the dummy fifo used to “hold open” the real input fifo.

Dummy fifo.

mkfifo ./hold_open.fifo

Real input fifo for dsilog

mkfifo ./sar_u.fifo

2. Start dsilog using the -i option to specify the input coming from a
fifo. It is important to start dsilog before starting the sar data
feed (sar_u_feed).

dsilog ./sar_u_log sar_u \

-i ./sar_u.fifo &

3. Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \

> ./sar_u.fifo &

4. Start the sar data feed script (sar_u_feed).

./sar_u_feed &

5. The sar_u_feed script will feed data to dsilog until it is killed or the cat that holds the fifo open
is killed. Our class specification file states that sar_u_log will be indexed by hour, contain a
maximum of 24 hours, and at the start of the next day (roll by day), the script sar_u_roll will be
executed.

!/bin/ksh sar_u_rol

l#

Save parameters and current date in sar_u_log_roll_file.

(Example of adding comments/other data to the roll file).

mydate=`date`

echo "$# $0 $1 $2" >> ./sar_u_log_roll_file

echo $mydate >> ./sar_u_log_roll_file

extract -l ./sar_u_log -C sar_u -B $1 -E $2 -1 -f \

stdout -xp >> ./sar_u_log_roll_file

6. The roll script saves the data being rolled out in an ASCII text file that can be examined with a
text editor or printed to a printer.

Logging sar Data from Several Files
If you are interested inmore than just CPU utilization, you can either have one class specification
file that describes the data, or have a class specification file for each option and compile these into

HP Operations Agent (11.11)Page 301 of 388

User Guide
Chapter 16:

one log file set. The first example shows separate class specification files compiled into a single log
file set.

In this example, we will monitor CPU utilization, buffer activity
(sar -b), and system calls (sar -c). Logging data in this manner requires three class specification
files, three dsilog processes, three dsilog input fifos, and three scripts to provide the sar data.

Creating Class Specification Files

The following are the class specification files for each of these options.

sar_u_mc.spec

#

sar -u class definition for log files on HP systems.

#

==> 1 minute data; max 24 hours; indexed by hour; roll by day

#

CLASS sar_u = 1000

LABEL "sar -u data"

INDEX BY hour

MAX INDEXES 24

ROLL BY day

ACTION "./sar_u_mc_roll PT_START PT_END"

RECORDS PER HOUR 60

;

METRICS

hours_1 = 1001

LABEL "Collection Hour"

PRECISION 0

;

minutes_1 = 1002

LABEL "Collection Minute"

PRECISION 0

;

HP Operations Agent (11.11)Page 302 of 388

User Guide
Chapter 16:

seconds_1 = 1003

LABEL "Collection Second"

PRECISION 0

;

user_cpu = 1004

LABEL "%user"

AVERAGED

MAXIMUM 100

PRECISION 0

;

sys_cpu = 1005

LABEL "%sys"

AVERAGED

MAXIMUM 100

PRECISION 0

;

wait_IO_cpu = 1006

LABEL "%wio"

AVERAGED

MAXIMUM 100

PRECISION 0

;

idle_cpu = 1007

LABEL "%idle"

AVERAGED

MAXIMUM 100

PRECISION 0

;

HP Operations Agent (11.11)Page 303 of 388

User Guide
Chapter 16:

sar_b_mc.spec

#

sar -b class definition for log files on HP systems.

#

==> 1 minute data; max 24 hours; indexed by hour; roll by day

#

CLASS sar_b = 2000

LABEL "sar -b data"

INDEX BY hour

MAX INDEXES 24

ROLL BY day

ACTION "./sar_b_mc_roll PT_START PT_END"

RECORDS PER HOUR 60

;

METRICS

hours_2 = 2001

LABEL "Collection Hour"

PRECISION 0

;

minutes_2 = 2002

LABEL "Collection Minute"

PRECISION 0

;

seconds_2 = 2003

LABEL "Collection Second"

PRECISION 0

;

bread_per_sec = 2004

HP Operations Agent (11.11)Page 304 of 388

User Guide
Chapter 16:

LABEL "bread/s"

PRECISION 0

;

lread_per_sec = 2005

LABEL "lread/s"

PRECISION 0

;

read_cache = 2006

LABEL "%rcache"

MAXIMUM 100

PRECISION 0

;

bwrit_per_sec = 2007

LABEL "bwrit/s"

PRECISION 0

;

lwrit_per_sec = 2008

LABEL "lwrit/s"

PRECISION 0

;

write_cache = 2009

LABEL "%wcache"

MAXIMUM 100

PRECISION 0

;

pread_per_sec = 2010

LABEL "pread/s"

HP Operations Agent (11.11)Page 305 of 388

User Guide
Chapter 16:

PRECISION 0

;

pwrit_per_sec = 2011

LABEL "pwrit/s"

PRECISION 0

;

sar_c_mc.spec

#

sar -c class definition for log files on HP systems.

#

==> 1 minute data; max 24 hours; indexed by hour; roll by day

#

CLASS sar_c = 5000

LABEL "sar -c data"

INDEX BY hour

MAX INDEXES 24

ROLL BY day

ACTION "./sar_c_mc_roll PT_START PT_END"

RECORDS PER HOUR 60

;

METRICS

hours_5 = 5001

LABEL "Collection Hour"

PRECISION 0

;

minutes_5 = 5002

LABEL "Collection Minute"

PRECISION 0

HP Operations Agent (11.11)Page 306 of 388

User Guide
Chapter 16:

;

seconds_5 = 5003

LABEL "Collection Second"

PRECISION 0

;

scall_per_sec = 5004

LABEL "scall/s"

PRECISION 0

;

sread_per_sec = 5005

LABEL "sread/s"

PRECISION 0

;

swrit_per_sec = 5006

LABEL "swrit/s"

PRECISION 0

;

fork_per_sec = 5007

LABEL "fork/s"

PRECISION 2

;

exec_per_sec = 5008

LABEL "exec/s"

PRECISION 2

;

rchar_per_sec = 5009

HP Operations Agent (11.11)Page 307 of 388

User Guide
Chapter 16:

LABEL "rchar"

PRECISION 0

;

wchar_per_sec = 5010

LABEL "wchar/s"

PRECISION 0

;

The following are the two additional scripts that are needed to supply the
sar data.

#!/bin/ksh

sar_b_feed script that provides sar -b data to DSI via

a fifo (sar_b.fifo)

while : # (infinite loop)

do

specify a one minute interval using tail to extract the

last sar output record(contains the time stamp and data),

saving the data to a file.

/usr/bin/sar -b 60 1 2>/tmp/dsierr | tail -1 &> \

/usr/tmp/sar_b_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_b_data > ./sar_b.fifo

done

#!/bin/ksh sar_c_feed

sar_c_feed script that provides sar -c data to DSI via

a fifo(sar_c.fifo)

while : # (infinite loop)

do

HP Operations Agent (11.11)Page 308 of 388

User Guide
Chapter 16:

specify a one minute interval using tail to extract the

last sar output record(contains the time stamp and data),

saving the data to a file.

/usr/bin/sar -c 60 1 2>/tmp/dsierr | tail -1 > /usr/tmp/sar_c_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_c_data > ./sar_c.fifo

done

Compiling the Class Specification Files

Compile the three specification files into one log file set:

sdlcomp ./sar_u_mc.spec sar_mc_log

sdlcomp ./sar_b_mc.spec sar_mc_log

sdlcomp ./sar_c_mc.spec sar_mc_log

Starting the DSI Logging Process

Returning to the step by step approach for the sar data:

1. Create four fifos; one will be the dummy fifo used to “hold open” the three real input fifos.

Dummy fifo.mkfifo ./hold_open.fifo

sar -u input fifo for dsilog.mkfifo ./sar_u.fifo

sar -b input fifo for dsilog.mkfifo ./sar_b.fifo

sar -c input fifo for dsilog.mkfifo ./sar_c.fifo

2. Start dsilog using the -i option to specify the input coming from a
fifo. It is important to start dsilog before starting the sar data
feeds.

dsilog ./sar_mc_log sar_u \

-i ./sar_u.fifo &

HP Operations Agent (11.11)Page 309 of 388

User Guide
Chapter 16:

dsilog ./sar_mc_log sar_b \

-i ./sar_b.fifo &

dsilog ./sar_mc_log sar_c \

-i ./sar_c.fifo &

3. Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \

> ./sar_u.fifo &

cat ./hold_open.fifo \

> ./sar_b.fifo &

cat ./hold_open.fifo \

> ./sar_c.fifo &

4. Start the sar data feed scripts.

./sar_u_feed &

./sar_b_feed &

./sar_c_feed &

Logging sar Data for Several Options
The last example for using sar to supply data to DSI uses one specification file to define the data
from several sar options (ubycwavm).

sar_ubycwavm.spec

#

sar -ubycwavm class definition for HP systems.

#

==> 1 minute data; max 24 hours; indexed by hour; roll by day#

CLASS sar_ubycwavm = 1000

LABEL "sar -ubycwavm data"

INDEX BY hour

MAX INDEXES 24ROLL BY day

ACTION "./sar_ubycwavm_roll PT_START PT_END"

HP Operations Agent (11.11)Page 310 of 388

User Guide
Chapter 16:

RECORDS PER HOUR 60

;

METRICShours = 1001

LABEL "Collection Hour"

PRECISION 0

;

minutes = 1002

LABEL "Collection Minute"

PRECISION 0

;

seconds = 1003

LABEL "Collection Second"

PRECISION 0

;

user_cpu = 1004

LABEL "%user"

AVERAGED

MAXIMUM 100

PRECISION 0

;

sys_cpu = 1005

LABEL "%sys"

AVERAGED

MAXIMUM 100

PRECISION 0

;

wait_IO_cpu = 1006

HP Operations Agent (11.11)Page 311 of 388

User Guide
Chapter 16:

LABEL "%wio"

AVERAGED

MAXIMUM 100

PRECISION 0

;

idle_cpu = 1007

LABEL "%idle"

AVERAGED

MAXIMUM 100

PRECISION 0

;

bread_per_sec = 1008

LABEL "bread/s"

PRECISION 0

;

lread_per_sec = 1009

LABEL "lread/s"

PRECISION 0

;

read_cache = 1010

LABEL "%rcache"

MAXIMUM 100

PRECISION 0

;

bwrit_per_sec = 1011

LABEL "bwrit/s"

PRECISION 0

;

HP Operations Agent (11.11)Page 312 of 388

User Guide
Chapter 16:

lwrit_per_sec = 1012

LABEL "lwrit/s"

PRECISION 0

;

write_cache = 1013

LABEL "%wcache"

MAXIMUM 100

PRECISION 0

;

pread_per_sec = 1014

LABEL "pread/s"

PRECISION 0

;

pwrit_per_sec = 1015

LABEL "pwrit/s"

PRECISION 0

;

rawch = 1016

LABEL "rawch/s"

PRECISION 0

;

canch = 1017

LABEL "canch/s"

PRECISION 0

;

outch = 1018

HP Operations Agent (11.11)Page 313 of 388

User Guide
Chapter 16:

LABEL "outch/s"

PRECISION 0

;

rcvin = 1019

LABEL "rcvin/s"

PRECISION 0

;

xmtin = 1020

LABEL "xmtin/s"

PRECISION 0

;

mdmin = 1021

LABEL "mdmin/s"

PRECISION 0

;

scall_per_sec = 1022

LABEL "scall/s"

PRECISION 0

;

sread_per_sec = 1023

LABEL "sread/s"

PRECISION 0

;

swrit_per_sec = 1024

LABEL "swrit/s"

PRECISION 0

;

HP Operations Agent (11.11)Page 314 of 388

User Guide
Chapter 16:

fork_per_sec = 1025

LABEL "fork/s"

PRECISION 2

;

exec_per_sec = 1026

LABEL "exec/s"

PRECISION 2

;

rchar_per_sec = 1027

LABEL "rchar/s"

PRECISION 0

;

wchar_per_sec = 1028

LABEL "wchar/s"

PRECISION 0

;

swpin = 1029

LABEL "swpin/s"

PRECISION 2

;

bswin = 1030

LABEL "bswin/s"

PRECISION 1

;

swpot = 1031

LABEL "swpot/s"

HP Operations Agent (11.11)Page 315 of 388

User Guide
Chapter 16:

PRECISION 2

;

bswot = 1032

LABEL "bswot/s"

PRECISION 1

;

blks = 1033

LABEL "pswch/s"

PRECISION 0

;

iget_per_sec = 1034

LABEL "iget/s"

PRECISION 0

;

namei_per_sec = 103

5LABEL "namei/s"

PRECISION 0

;

dirbk_per_sec = 1036

LABEL "dirbk/s"

PRECISION 0

;

num_proc = 1037

LABEL "num proc"

PRECISION 0

;

HP Operations Agent (11.11)Page 316 of 388

User Guide
Chapter 16:

proc_tbl_size = 1038

LABEL "proc tbl size"

PRECISION 0

;

proc_ov = 1039

LABEL "proc ov"

PRECISION 0

;

num_inode = 1040

LABEL "num inode"

PRECISION 0

;

inode_tbl_sz = 1041

LABEL "inode tbl sz"

PRECISION 0

;

inode_ov = 1042

LABEL "inode ov"

PRECISION 0

;

num_file = 1043

LABEL "num file"

PRECISION 0

;

file_tbl_sz = 1044

LABEL "file tbl sz"

PRECISION 0

HP Operations Agent (11.11)Page 317 of 388

User Guide
Chapter 16:

;

file_ov = 1045

LABEL "file ov"

PRECISION 0

;

msg_per_sec = 1046

LABEL "msg/s"

PRECISION 2

;

LABEL "sema/s"

PRECISION 2

;

At this point, we need to look at the output generated from

sar -ubycwavm 1 1:

HP-UX hpptc16 A.09.00 E 9000/855 04/11/95

12:01:41%usr%sys %wio%idle

bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s

pwrit/s

 rawch/s canch/s outch/s cvin/s xmtin/s mdmin/s

scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s

swpin/s bswin/s swpot/s bswot/s pswch/s

iget/s namei/s dirbk/s

text-sz ov proc-sz ov inod-sz ov file-sz ov

msg/s sema/s

12:01:42 22 48 30 0 0

342 100 33 81 59 0 0

 0 0 470 0 0 0

HP Operations Agent (11.11)Page 318 of 388

User Guide
Chapter 16:

 801 127 71 1.00 1.00 975872 272384

 0.00 0.0 0.00 0.0 251

 28 215 107

 N/A N/A 131/532 0 639/644 0 358/1141 0

 40.00 0.00

This output looks similar to the sar -u output with several additional lines of headers and data. We
will again use tail to extract the lines of data, but we need to present this as “one” data record to
dsilog. The following script captures the data and uses the tr (translate character) utility to “strip”
the line feeds so dsilogwill see it as one single line of input data.

#!/bin/ksh Sar_ubycwavm_feed#

Script that provides sar data to DSI via a fifo(sar_data.fifo)

while : # (infinite loop)

do

specify a one minute interval using tail to extract the

last sar output records (contains the time stamp and data)

and pipe that data to tr to strip the new lines converting

the eight lines of output to one line of output.

/usr/bin/sar -ubycwavm 60 1 2>/tmp/dsierr | tail -8 | \

tr "\012" " " > /usr/tmp/sar_data

Copy the sar data to the fifo that the dsilog process is reading.

cat /usr/tmp/sar_data > ./sar_data.fifo

Print a newline on the fifo so that DSI knows that this is

the end of the input record.

print "\012" > ./sar_data.fifo

done

The step-by-step process follows that for the earlier sar -u example with the exception of log file set
names, class names, fifo name (sar_ubycwavm.fifo), and the script listed above to provide the sar
data.

HP Operations Agent (11.11)Page 319 of 388

User Guide
Chapter 16:

Logging the Number of System Users
The next example uses who tomonitor the number of system users. Again, we start with a class
specification file.

who_wc.spec

#

who word count DSI spec file

#

CLASS who_metrics = 150

LABEL "who wc data"

INDEX BY hour

MAX INDEXES 120

ROLL BY hour

RECORDS PER HOUR 60

;

METRICSwho_wc = 151

label "who wc"averaged

maximum 1000

precision 0

;

Compile the specification file to create a log file:

sdlcomp ./who_wc.spec ./who_wc_log.

Unlike sar, you cannot specify an interval or iteration value with who, so we create a script that
provides, at aminimum, interval control.

#!/bin/ksh who_data_feed

while :

do

sleep for one minute (this should correspond with the

RECORDS PER HOUR clause in the specification file).

HP Operations Agent (11.11)Page 320 of 388

User Guide
Chapter 16:

sleep 60

Pipe the output of who into wc to count

the number of users on the system.

who | wc -l > /usr/tmp/who_data

copy the data record to the pipe being read by dsilog.

cat /usr/tmp/who_data > ./who.fifo

done

Again we need a fifo and a script to supply the data to dsilog, so we return to the step by step
process.

1. Create two fifos; one will be the dummy fifo used to “hold open” the real input fifo

.# Dummy fifo.

mkfifo ./hold_open.fifo

Real input fifo for dsilog.

mkfifo ./who.fifo

2. Start dsilog using the -i option to specify the input coming from a fifo. It is important to start
dsilog before starting the whodata feed.

dsilog ./who_wc_log who_metrics \-i ./who.fifo &

3. Start the dummy process to hold open the input fifo.

cat ./hold_open.fifo \> ./who.fifo &

4. Start the whodata feed script (who_data_feed).

./who_data_feed &

HP Operations Agent (11.11)Page 321 of 388

User Guide
Chapter 17:

Error Message
There are three types of DSI error messages: class specification, dsilog logging process, and
general.

l Class specification error messages format consists of the prefix SDL, followed by themessage
number.

l dsilog logging process messages format consists of the prefix DSILOG, followed by the
message number.

l General error messages can be generated by either of the above as well as other tasks. These
messages have aminus sign (-) prefix and themessage number.

DSI error messages are listed in this chapter. SDL and DSILOG error messages are listed in
numeric order, along with the actions you take to recover from the error condition. General error
messages are self-explanatory, so no recovery actions are given.

SDL Error Messages
SDL error messages are Self Describing Logfile class specification error messages, with the
format, SDL<message number>.

DSILOG Error Messages
DSILOG error messages are dsilog logging process messages with the format,

DSILOG<message number>.

HP Operations Agent (11.11)Page 322 of 388

User Guide
Chapter 17:

General Error Messages

Error Explanation

-3 Attempt was made to addmore classes than allowed by max-class.

-5 Could not open file containing class data.

-6 Could not read file.

-7 Could not write to file.

-9 Attempt was made to write to log file when write access was not requested.

-11 Could not find the pointer to the class.

-13 File or data structure not initialized.

-14 Class description file could not be read.

-15 Class description file could not be written to.

-16 Not all metrics needed to define a class were found in themetric description class.

-17 The path name of a file in the log file set is more than 1024 characters long.

-18 Class name is more then 20 characters long.

-19 File is not log file set root file.

-20 File is not part of a lod file set.

-21 The current software cannot access the log file set.

-22 Could not get sharedmemory segment or id.

-23 Could not attach to sharedmemory segment.

-24 Unable to open log file set.

-25 Could not determine current working directory.

-26 Could not read class header from class data file.

-27 Open of file in log file set failed.

-28 Could not open data class.

-29 Lseek failed.

-30 Could not read from log file.

-31 Could not write on log file.

-32 Remove failed.

HP Operations Agent (11.11)Page 323 of 388

User Guide
Chapter 17:

-33 shmctl (REM_ID) failed.

-34 Log file set is incomplete: root or description file is missing.

-35 The target log file for adding a class is not in the current log file set.

HP Operations Agent (11.11)Page 324 of 388

User Guide
Chapter 17:

HP Operations Agent (11.11)Page 325 of 388

User Guide
Chapter 18:

What is Transaction Tracking?
This chapter describes:

l Improving PerformanceManagement

l A Scenario: Real TimeOrder Processing

l Monitoring Transaction Data

Improving Performance Management
You can improve your ability to manage system performance with the transaction tracking
capability of HP Operations Agent and HP GlancePlus.

As the number of distributedmission-critical business applications increases, application and
systemmanagers needmore information to tell them how their distributed information technology
(IT) is performing.

l Has your application stopped responding?

l Is the application response time unacceptable?

l Are your service level objectives (SLOs) beingmet?

The transaction tracking capabilities of Performance Collection Component andGlancePlus allow
IT managers to build in end-to-endmanageability of their client/server IT environment in business
transaction terms. With Performance Collection Component, you can define what a business
transaction is and capture transaction data that makes sense in the context of your business.

When your applications are instrumented with the standard Application ResponseMeasurement
(ARM) API calls, these products provide extensive transaction tracking and end-to-end
management capabilities across multi-vendor platforms.

Benefits of Transaction Tracking
l Provides a client view of elapsed time from the beginning to the end of a transaction.

l Provides transaction data.

l Helps youmanage service level agreements (SLAs).

These topics are discussed inmore detail in the remainder of this section.

Client View of Transaction Times
Transaction tracking provides you with a client view of elapsed time from the beginning to the end of
a transaction. When you use transaction tracking in your Information Technology (IT) environment,
you see the following benefits:

HP Operations Agent (11.11)Page 326 of 388

User Guide
Chapter 18:

l You can accurately track the number of times each transaction executes.

l You can see how long it takes for a transaction to complete, rather than approximating the time
as happens now.

l You can correlate transaction times with system resource utilization.

l You can use your own business deliverable production data in systemmanagement
applications, such as data used for capacity planning, performancemanagement, accounting,
and charge-back.

l You can accomplish application optimization and detailed performance troubleshooting based on
a real unit of work (your transaction), rather than representing actual work with abstract
definitions of system and network resources.

Transaction Data
When Application ResponseMeasurement (ARM) API calls have been inserted in an application to
mark the beginning and end of each business transaction, you can then use the following resource
and performancemonitoring tools to monitor transaction data:

l Performance Collection Component provides the registration functionality needed to log, report,
and detect alarms on transaction data. Transaction data can be viewed in Performance
Manager, Glance, or by exporting the data from Performance Collection Component log files into
files that can be accessed by spreadsheet and other reporting tools.

l PerformanceManager graphs performance data for short-term troubleshooting and for examining
trends and long-term analysis.

l Glance displays detailed real time data for monitoring your systems and transactions moment by
moment.

l PerformanceManager, Glance, or the HP Operations Manager message browser allow you to
monitor alarms on service level compliance.

Individual transactionmetrics are described in Chapter 22, TransactionMetrics.

Service Level Objectives
Service level objectives (SLOs) are derived from the stated service levels required by business
application users. SLOs are typically based on the development of the service level agreement
(SLA). From SLOs come the actual metrics that Information Technology resourcemanagers need
to collect, monitor, store, and report on to determine if they aremeeting the agreed upon service
levels for the business application user.

An SLO can be as simple as monitoring the response time of a simple transaction or as complex as
tracking system availability.

A Scenario: Real Time Order Processing
Imagine a successful television shopping channel that employs hundreds of telephone operators
who take orders from viewers for various types of merchandise. Assume that this enterprise uses a
computer program to enter the order information, check merchandise availability, and update the

HP Operations Agent (11.11)Page 327 of 388

User Guide
Chapter 18:

stock inventory. We can use this fictitious enterprise to illustrate how transaction tracking can help
an organizationmeet customer commitments and SLOs.

Based upon the critical tasks, the customer satisfaction factor, the productivity factor, and the
maximum response time, resourcemanagers can determine the level of service they want to
provide to their customers.

Chapter 23, Transaction Tracking Examples contains a pseudocode example of how ARM API
calls can be inserted in a sample order processing application so that transaction data can be
monitored with Performance Collection Component andGlance.

Requirements for Real Time Order Processing
Tomeet SLOs in the real time order processing example described above, resourcemanagers must
keep track of the length of time required to complete the following critical tasks:

l Enter order information

l Query merchandise availability

l Update stock inventory

The key customer satisfaction factor for customers is how quickly the operators can take their
order.

The key productivity factor for the enterprise is the number of orders that operators can complete
each hour.

Tomeet the customer satisfaction and productivity factors, the response times of the transactions
that access the inventory database, adjust the inventory, and write the record back must be
monitored for compliance to established SLOs. For example, resourcemanagers may have
established an SLO for this application that 90 percent of the transactions must be completed in five
seconds or less.

Preparing the Order Processing Application
ARM API calls can be inserted into the order processing application to create transactions for
inventory response and update inventory. Note that the ARM API calls must be
inserted by application programmers prior to compiling the application. See Chapter 23, Transaction
Tracking Examples for an example order processing program (written in pseudocode) that includes
ARM API calls that define various transactions.

For more information on instrumenting applications with ARM API calls, see theApplication
ResponseMeasurement 2.0 API Guide.

Monitoring Transaction Data
When an application that is instrumented with ARM API calls is installed and running on your
system, you canmonitor transaction data with Performance Collection Component, GlancePlus, or
PerformanceManager.

... with Performance Collection Component

HP Operations Agent (11.11)Page 328 of 388

User Guide
Chapter 18:

Using Performance Collection Component, you can collect and log data for named transactions,
monitor trends in your SLOs over time, and generate alarms when SLOs are exceeded. Once these
trends have been identified, Information Technology costs can be allocated based on transaction
volumes. Performance Collection Component alarms can be configured to activate a technician's
pager, so that problems can be investigated and resolved immediately. For more information, see
Chapter 24, Advanced Features.

Performance Collection Component is required for transaction data to be viewed in Performance
Manager.

... with Performance Manager

PerformanceManagerreceives alarms and transaction data from Performance Collection
Component. For example, you can configure Performance Collection Component so that when an
order processing application takes too long to check stock, PerformanceManager receives an
alarm and sends a warning to the resourcemanager's console as an alert of potential trouble.

In PerformanceManager, you can select TRANSACTION from the Class List window for a data
source, then graph transaction metrics for various transactions. For more information, see
PerformanceManager online help.

... with GlancePlus

UseGlancePlus tomonitor up-to-the-second transaction response time and whether or not your
transactions are performing within your established SLOs. GlancePlus helps you identify and
resolve resource bottlenecks that may be impacting transaction performance. For more information,
see theGlancePlus online help, which is accessible through theGlancePlus Helpmenu.

Guidelines for Using ARM
Instrumenting applications with the ARM API requires some careful planning. In addition, managing
the environment that has ARMed applications in it is easier if the features and limitations of ARM
data collection are understood. Here is a list of areas that could cause some confusion if they are
not fully understood.

1. In order to capture ARMmetrics, ttd and midaemonmust be running. For Performance
Collection Component, the scope collector must be running to log ARMmetrics. The ovpa
start script starts all required processes. Likewise, Glance starts ttd and midaemon if they
are not already active. (See Transaction Tracking Daemon (ttd) in Chapter 19)

2. Re-read the transaction configuration file, ttd.conf, to capture any newly-defined
transaction names. (See Transaction Configuration File (ttd.conf) in Chapter 19)

3. Performance Collection Component, user applications, and ttdmust be restarted to capture
any new or modified transaction ranges and service level objectives (SLOs). (See Adding New
Applications in Chapter 19)

4. Strings in user-definedmetrics are ignored by Performance Collection Component. Only the
first six non-string user-definedmetrics are logged. (See How Data Types Are Used in Chapter
24)

5. Using dashes in the transaction name has limitations if you are specifying an alarm condition
for that transaction. (See “... with Performance Collection Component” in the section Alarms in
Chapter 20)

HP Operations Agent (11.11)Page 329 of 388

User Guide
Chapter 18:

6. Performance Collection Component will only show the first 60 characters in the application
name and transaction name. (See Specifying Application and Transaction Names in Chapter
19)

7. Limit the number of unique transaction names that are instrumented. (See Limits on Unique
Transaction in Chapter 20)

8. Do not allow ARM API function calls to affect the execution of an application from an end-user
perspective. (See ARM API Call Status Returns in Chapter 19)

9. Use shared libraries for linking. (See the section C Compiler Option Examples by Platform on
page 378)

HP Operations Agent (11.11)Page 330 of 388

Chapter 19

How Transaction Tracking Works
The following components of Performance Collection Component andGlancePlus work together to
help you define and track transaction data from applications instrumented with Application
ResponseMeasurement (ARM) calls.

l TheMeasurement Interface daemon, midaemon, is a daemon process that monitors and
reports transaction data to its sharedmemory segment where the information can be accessed
and reported by Performance Collection Component, PerformanceManager, andGlancePlus.
On HP-UX systems, the midaemon alsomonitors system performance data.

l The transaction configuration file, /var/opt/perf/ttd.conf, is used to define transactions
and identify the information tomonitor for each transaction.

l The Transaction Tracking daemon, ttd, reads, registers, and synchronizes transaction
definitions from the transaction configuration file, ttd.conf, with the midaemon.

Support of ARM 2.0
ARM 2.0 is a superset of the previous version of Application ResponseMeasurement. The new
features that ARM 2.0 provides are user-definedmetrics, transaction correlation, and a logging
agent. Performance Collection Component andGlancePlus support user-definedmetrics and
transaction correlation but do not support the logging agent.

However, youmay want to use the logging agent to test the instrumentation in your application. The
source code for the logging agent, logagent.c, is included in the ARM 2.0 Software Developers
Kit (SDK) that is available from the following web site:

http://regions.cmg.org/regions/cmgarmw

For information about using the logging agent, see theApplication ResponseMeasurement 2.0 API
Guide.

Note: TheApplication ResponseMeasurement 2.0 API Guide uses the term “application-
definedmetrics” instead of “user-definedmetrics”.

Support of ARM API Calls
The Application ResponseMeasurement (ARM) API calls listed below are supported in
Performance Collection Component andGlancePlus.

arm_init() Names and registers the application and
(optionally) the user.

HP Operations Agent (11.11)Page 331 of 388

User Guide
Chapter 19:

arm_getid() Names and registers a transaction class, and
provides related transaction information.
Defines the context for user-definedmetrics.

arm_start() Signals the start of a unique transaction
instance.

arm_update() Updates the values of a unique transaction
instance.

arm_stop() Signals the end of a unique transaction
instance.

arm_end() Signals the end of the application.

See your current Application ResponseMeasurement 2.0 API Guide and the arm (3)man page for
information on instrumenting applications with ARM API calls as well as complete descriptions of
the calls and their parameters. For commercial applications, check the product documentation to
see if the application has been instrumented with ARM API calls.

For important information about required libraries, see the Transaction Libraries on page 373 later in
this manual.

arm_complete_transaction Call
In addition to the ARM 2.0 API standard, the HP ARM agent supports the arm_complete_
transaction call. This call, which is an HP-specific extension to the ARM standard, can be used
tomark the end of a transaction that has completed when the start of the transaction could not be
delimited by an arm_start call. The arm_complete_transaction call takes as a parameter
the response time of the completed transaction instance.

In addition to signaling the end of a transaction instance, additional information about the
transaction can be provided in the optional data buffer. See the arm (3)man page for more
information on this optional data as well a complete description of this call and its parameters.

Sample ARM-Instrumented Applications
For examples of how ARM API calls are implemented, see the sample ARM-instrumented
applications, armsample1.c, armsample2.c, armsample3.c, and armsample4.c, and their
build script, Make.armsample, in the /<InstallDir>/examples/arm/ directory.

l armsample1.c shows the use of simple standard ARM API calls.

l armsample2.c also shows the use of simple standard ARM API calls. It is similar in structure
to armsample1.c, but is interactive.

l armsample3.c provides examples of how to use the user-definedmetrics and the transaction
correlator, provided by version 2.0 of the ARM API. This example simulates a client/server
application where both server and client perform a number of transactions. (Normally application
client and server components would exist in separate programs, but they are put together for
simplicity.)

HP Operations Agent (11.11)Page 332 of 388

User Guide
Chapter 19:

The client procedure starts a transaction and requests an ARM correlator from its arm_start
call. This correlator is saved by the client and passed to the server so that the server can use it
when it calls arm_start. The performance tools running on the server can then use this
correlator information to distinguish the different clients making use of the server.

Also shown in this program is themechanism for passing user-definedmetric values into the
ARM API. This allows you to not only see the response times and service-level information in
the performance tools, but also data whichmay be important to the application itself. For
example, a transactionmay be processing different size requests, and the size of the request
could be a user-definedmetric. When the response times are high, this user-definedmetric could
be used to see if long response times correspond to bigger size transaction instances.

l armsample4.c provides an example of using user-definedmetrics in ARM calls. Different
metric values can be passed through arm_start, arm_update, and arm_stop calls.
Alternatively, arm_complete_transaction can be used where a tran cannot be delimited
by start/stop calls.

Specifying Application and Transaction Names
Although ARM allows amaximum of 128 characters each for application and transaction names in
the arm_init and arm_getid API calls, Performance Collection Component shows only a
maximum of 60 characters. All characters beyond the first 60 will not be visible. However,
GlancePlus allows you to view up to 128 characters.

Performance Collection Component applies certain limitations to how application and transaction
names are shown in extracted or exported transaction data. These rules also apply to viewing
application and transaction names in PerformanceManager.

The application name always takes precedence over the transaction name. For example, if you are
exporting transaction data that has a 65-character application name and a 40-character transaction
name, only the application name is shown. The last five characters of the application name are not
visible.

For another example, if an application name contains 32 characters and the transaction name has
40 characters, Performance Collection Component shows the entire application name but the
transaction name appears truncated. A total of 60 characters are shown. Fifty-nine characters are
allocated to the application and transaction names and one character is allocated to the underscore
(_) that separates the two names. This is how the application name
“WarehouseInventoryApplication” and the transaction name
“CallFromWestCoastElectronicSupplier” would appear in Performance Collection
Component or PerformanceManager:

WarehouseInventoryApplication_CallFromWestCoastElectronicSup

Note: The 60-character combination of application name and transaction namemust be unique
if the data is to be viewed with PerformanceManager.

Transaction Tracking Daemon (ttd)
The Transaction Tracking daemon, ttd, reads, registers, and synchronizes transaction definitions
from ttd.conf with midaemon.

HP Operations Agent (11.11)Page 333 of 388

User Guide
Chapter 19:

ttd is started when you start up Performance Collection Component's scope data collector with
the ovpa start command. ttd runs in backgroundmode when dispatched, and errors are written
to the file /var/opt/perf/status.ttd.

midaemonmust also be running to process the transactions and to collect performancemetrics
associated with these transactions (see next page).

Caution:We strongly recommend that you do not stop ttd.

If youmust stop ttd, any ARM-instrumented applications that are runningmust also be
stopped before you restart ttd and Performance Collection Component processes. ttdmust
be running to capture all arm_init and arm_getid calls beingmade on the system. If ttd is
stopped and restarted, transaction IDs returned by these calls will be repeated, thus
invalidating the ARMmetrics

Use the ovpa script to start Performance Collection Component processes to ensure that the
processes are started in the correct order. ovpa stop will not shut down ttd. If ttdmust be shut
down for a reinstall of any performance software, use the command /<InstallDir>/bin/ttd
-k. However, we do not recommend that you stop ttd, except when reinstalling Performance
Collection Component.

If Performance Collection Component is not on your system, GlancePlus starts midaemon.
midaemon then starts ttd if it is not running before midaemon starts processing any
measurement data.

See the ttdman page for complete program options.

ARM API Call Status Returns
The ttd process must always be running in order to register transactions. If ttd is killed for any
reason, while it is not running, arm_init or arm_getid calls will return a “failed” return code. If
ttd is subsequently restarted, new arm_getid calls may re-register the same transaction IDs
that are already being used by other programs, thus causing invalid data to be recorded.

When ttd is killed and restarted, ARM-instrumented applications may start getting a return value
of -2 (TT_TTDNOTRUNNING) and an EPIPEerrno error on ARM API calls. When your
application initially starts, a client connection handle is created on any initial ARM API calls. This
client handle allows your application to communicate with the ttd process. When ttd is killed,
this connection is no longer valid and the next time your application attempts to use an ARM API
call, youmay get a return value of TT_TTDNOTRUNNING. This error reflects that the previousttd
process is no longer running even though there is another ttd process running. (Some of the ARM
API call returns are explained in the arm (3)man page.)

To get around this error, youmust restart your ARM-instrumented applications if ttd is killed. First,
stop your ARMed applications. Next, restart ttd (using /<InstallDir>/bin/ovpa start or
/<InstallDir>/bin/ttd), and then restart your applications. The restart of your application
causes the creation of a new client connection handle between your application and the ttd
process.

Some ARM API calls will not return an error if themidaemon has an error. For example, this would
occur if the midaemon has run out of room in its sharedmemory segment. The performancemetric
GBL_TT_OVERFLOW_COUNT will be > 0. If an overflow condition occurs, youmay want to shut
down any performance tools that are running (except ttd) and restart the midaemon using the -

HP Operations Agent (11.11)Page 334 of 388

User Guide
Chapter 19:

smdvss option to specify more room in the sharedmemory segment. (For more information, see
themidaemonman page.)

We recommend that your applications be written so that they continue to execute even if ARM
errors occur. ARM status should not affect program execution.

The number of active client processes that can register transactions with ttd via the arm_getid
call is limited to the maxfiles kernel parameter. This parameter controls the number of open files
per process. Each client registration request results in ttd opening a socket (an open file) for the
RPC connection. The socket is closed when the client application terminates. Therefore, this limit
affects only the number of active clients that have registered a transaction via the arm_getid call.
Once this limit is reached, ttd will return TT_TTDNOTRUNNING to a client's arm_getid request.
The maxfiles kernel parameter can be increased to raise this limit above the number of active
applications that will register transactions with ttd.

Measurement Interface Daemon (midaemon)
TheMeasurement Interface daemon, midaemon, is a low-overhead process that continuously
collects system performance information. The midaemonmust be running for Performance
Collection Component to collect transaction data or for GlancePlus to report transaction data. It
starts running when you run the scope or perfd process or when starting GlancePlus.

Performance Collection Component andGlancePlus require both themidaemon and ttd to be
running so that transactions can be registered and tracked. The ovpa script starts and stops
Performance Collection Component processing, including the mideamon, in the correct order.
GlancePlus starts the mideamon, if it is not already running. The midaemon starts ttd, if it is not
already running.

See the "CPU Overhead " on page 341 section later in this manual for information on the midaemon
CPU overhead.

See themidaemonman page for complete program options.

Transaction Configuration File (ttd.conf)
The transaction configuration file, /var/opt/perf/ttd.conf, allows you to define the
application name, transaction name, the performance distribution ranges, and the service level
objective you want to meet for each transaction. The ttd reads ttd.conf to determine how to
register each transaction.

Customization of ttd.conf is optional. The default configuration file that ships with Performance
Collection Component causes all transactions instrumented in any application to bemonitored.

If you are using a commercial application and don't know which transactions have been
instrumented in the application, collect some data using the default ttd.conf file. Then look at the
data to see which transactions are available. You can then customize the transaction data
collection for that application by modifying ttd.conf.

Adding New Applications
If you add new ARMed applications to your system that use the default slo and range values
from the tran=* line in your ttd.conf file, you don't need to do anything to incorporate these new
transactions. (See the Configuration File Keywords section for descriptions of tran, range, and

HP Operations Agent (11.11)Page 335 of 388

User Guide
Chapter 19:

slo.) The new transactions will be picked up automatically. The slo and range values from the
tran line in your ttd.conf file will be applied to the new transactions.

Adding New Transactions
After making additions to the ttd.conf file, youmust perform the following steps tomake the
additions effective:

l Stop all applications.

l Execute the ttd -hup -mi command as root.

The above actions cause the ttd.conf file to be re-read and registers the new transactions,
along with their slo and range values, with ttd and the midaemon. The re-read will not change
the slo or range values for any transactions that were in the ttd.conf file prior to the re-read.

Changing the Range or SLO Values
If you need to change the SLO or range values of existing transactions in the ttd.conf file, you
must do the following:

l Stop all ARMed applications.

l Stop the scope collector using ovpa stop.

l Stop any usage of Glance.

l Stop the ttd by issuing the command ttd -k.

l Once you havemade your changes to the ttd.conf file:

l Restart scope using ovpa start.

l Restart your ARMed applications.

Configuration File Keywords
The /var/opt/perf/ttd.conf configuration file associates transaction names with
transaction attributes that are defined by the keywords in "Configuration File Keywords" above.

Table 1: Configuration File Keywords

Keyword Syntax Usage

tran tran=transaction_name Required

slo slo=sec Optional

range range=sec [,sec,...] Optional

These keywords are described inmore detail below.

HP Operations Agent (11.11)Page 336 of 388

User Guide
Chapter 19:

tran

Use tran to define your transaction name. This namemust correspond to a transaction that is
defined in the arm_getid API call in your instrumented application. Youmust use the tran
keyword before you can specify the optional attributes range or slo. tran is the only required
keyword within the configuration file. A trailing asterisk (*) in the transaction name causes a wild
card patternmatch to be performed when registration requests aremade against this entry. Dashes
can be used in a transaction name. However, spaces cannot be used in a transaction name.

The transaction name can contain amaximum of 128 characters. However, only the first 60
characters are visible in Performance Collection Component. GlancePlus can display 128
characters in specific screens.

The default ttd.conf file contains several entries. The first entries define transactions used by
the Performance Collection Component data collector scope, which is instrumented with ARM
API calls. The file also contains the entry tran=*, which registers all other transactions in
applications instrumented with ARM API or Transaction Tracker API calls.

range

Use range to specify the transaction performance distribution ranges. Performance distribution
ranges allow you to distinguish between transactions that take different lengths of time to complete
and to see how many successful transactions of each length occurred. The ranges that you define
appear in the GlancePlus Transaction Tracking window.

Each value entered for sec represents the upper limit in seconds for the transaction time for the
range. The valuemay be an integer or real number with amaximum of six digits to the right of the
decimal point. On HP-UX, this allows for a precision of onemicrosecond (.000001 seconds). On
other platforms, however, the precision is tenmilliseconds (0.01 seconds), so only the first two
digits to the right of the decimal point are recognized.

A maximum of ten ranges are supported for each transaction you define.
You can specify up to nine ranges. One range is reserved for an overflow range, which collects
data for transactions that take longer than the largest user-defined range. If you specify more than
nine ranges, the first nine ranges are used and the others are ignored.

If you specify fewer than nine ranges, the first unspecified range becomes the overflow range. Any
remaining unspecified ranges are not used. The unspecified rangemetrics are reported as 0.000.
The first corresponding unspecified count metric becomes the overflow count. Remaining
unspecified count metrics are always zero (0).

Ranges must be defined in ascending order (see examples later in this chapter).

slo

Use slo to specify the service level objective (SLO) in seconds that you want to use tomonitor
your performance service level agreement (SLA).

As with the range keyword, the valuemay be an integer or real number, with amaximum of six
digits to the right of the decimal point. On HP-UX, this allows for a precision of onemicrosecond

HP Operations Agent (11.11)Page 337 of 388

User Guide
Chapter 19:

(.000001 seconds). On other platforms, however, the precision is tenmilliseconds (0.01 seconds),
so only the first two digits to the right of the decimal point are recognized.

Note that even though transactions can be sorted with onemicrosecond precision on HP-UX,
transaction times are displayed with 100microsecond precision.

Configuration File Format
The ttd.conf file can contain two types of entries: general transactions and application-specific
transactions.

General transactions should be defined in the ttd.conf file before any application is defined.
These transactions will be associated with all the applications that are defined. The default
ttd.conf file contains one general transaction entry and entries for the scope collector that is
instrumented with ARM API calls.

tran=* range=0.5, 1, 2, 3, 5, 10, 30, 120, 300 slo=5.0

Optionally, each application can have its own set of transaction names. These transactions will be
associated only with that application. The application name you specify must correspond to an
application name defined in the arm_init API call in your instrumented application. Each group of
application-specific entries must begin with the name of the application enclosed in brackets. For
example:

[AccountRec]

tran=acctOne range=0.01, 0.03, 0.05

The application name can contain amaximum of 128 characters. However, only the first 60
characters are visible in Performance Collection Component. Glance can display 128 characters in
specific screens.

If there are transactions that have the same name as a “general” transaction, the transaction listed
under the application will be used.

For example:

tran=abc range=0.01, 0.03, 0.05 slo=0.10

tran=xyz range=0.02, 0.04, 0.06 slo=0.08

tran=t* range=0.01, 0.02, 0.03

[AccountRec}

tran=acctOne range=0.04, 0.06, 0.08

tran=acctTwo range=0.1, 0.2

tran=t* range=0.03, 0.5

[AccountPay]

[GenLedg]

HP Operations Agent (11.11)Page 338 of 388

User Guide
Chapter 19:

tran=GenLedgOne range=0.01

In the example above, the first three transactions apply to all of the three applications specified.

The application [AccountRec] has the following transactions: acctOne, acctTwo, abc, xyz,
and t*. One of the entries in the general transaction set also has a wild card transaction named
"t*". In this case, the "t*" transaction name for the AccountRec application will be used; the one
in the general transaction set is ignored.

The application [AccountPay] has only transactions from the general transactions set.

The application [GenLedg] has transactions GenLedgOne, abc, xyz, and t*.

The ordering of transactions names makes no difference within the application.

For additional information about application and transaction names, see the section "Specifying
Application and Transaction Names" on page 333 in this chapter.

Configuration File Examples
Example 1

tran=* range=0.5,1,2,3,5,10,30,12,30 slo=5.0

The "*" entry is used as the default if none of the entries match a registered transaction name.
These defaults can be changed on each system by modifying the "*" entry. If the "*" entry is
missing, a default set of registration parameters are used that match the initial parameters assigned
to the "*" entry above.

Example 2

[MANufactr]

tran=MFG01 range=1,2,3,4,5,10 slo=3.0

tran=MFG02 range=1,2.2,3.3,4.0,5.5,10 slo=4.5

tran=MFG03

tran=MFG04 range=1,2.2,3.3,4.0,5.5,10

Transactions for the MANufctr application, MFG01, MFG02, and MFG04, each use their own
unique parameters. The MFG03 transaction does not need to track time distributions or service level
objectives so it does not specify these parameters.

Example 3

[Financial]

tran=FIN01

tran=FIN02 range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0

tran=FIN03 range=0.1,0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the Financial application, FIN02 and FIN03, each use their own unique
parameters. The FIN01 transaction does not need to track time distributions or service level
objectives so it does not specify these parameters.

Example 4

HP Operations Agent (11.11)Page 339 of 388

User Guide
Chapter 19:

[PERSONL]

tran=PERS* range=0.1,0.5,1,2,3,4,5,10,20 slo=1.0

tran=PERS03 range=0.1,0.2,0.5,1,2,3,4,5,10,20 slo=0.8

The PERS03 transaction for the PERSONL application uses its own unique parameters while the
remainder of the personnel transactions use a default set of parameters unique to the PERSONL
application.

Example 5

[ACCOUNTS]

tran=ACCT_* slo=1.0

tran=ACCT_REC range=0.5,1,2,3,4,5,10,20 slo=2.0

tran=ACCT_PAY range=0.5,1,2,3,4,5,10,20 slo=2.0

Transactions for the ACCOUNTS application, ACCT_REC and ACCT_PAY, each use their own unique
parameters while the remainder of the accounting transactions use a default set of parameters
unique to the accounting application. Only the accounts payable and receivable transactions need
to track time distributions. The order of transaction names makes no difference within the
application.

Overhead Considerations for Using ARM
The current versions of Performance Collection Component andGlancePlus contain modifications
to their measurement interface that support additional data required for ARM 2.0. These
modifications can result in increased overhead for performancemanagement. You should be aware
of overhead considerations when planning ARM instrumentation for your applications.

The overhead areas are discussed in the remainder of this chapter.

Guidelines
Here are some guidelines to follow when instrumenting your applications with the ARM API:

l The total number of separate transaction IDs should be limited to not more than 4,000.
Generally, it is cheaper to havemultiple instances of the same transaction than it is to have
single instances of different transactions. Register only those transactions that will be actively
monitored.

l Although the overhead for the arm_start and arm_stop API calls is very small, it can
increase when there is a large volume of transaction instances. More than a few thousand arm_
start and arm_stop calls per second onmost systems can significantly impact overall
performance.

l Request ARM correlators only when using ARM 2.0 functionality. (For more information about
ARM correlators, see the “Advanced Topics” section in theApplication ResponseMeasurement
2.0 API Guide. The overhead for producing, moving, andmonitoring correlator information is
significantly higher than for monitoring transactions that are not instrumented to use the ARM
2.0 correlator functionality.

HP Operations Agent (11.11)Page 340 of 388

User Guide
Chapter 19:

l Larger string sizes (applications registering lengthy transaction names, application names, and
user-defined stringmetrics) will impose additional overhead.

Disk I/O Overhead
The performancemanagement software does not impose a large disk overhead on the system.
Glance generally does not log its data to disk. Performance Collection Component's collector
daemon, scope, generates disk log files, but their size is not significantly impacted by ARM 2.0.
The logtran scope log file is used to store ARM data.

CPU Overhead
A program instrumented with ARM calls will generally not run slower because of the ARM calls.
This assumes that the rate of arm_getid calls is lower than one call per second, and the rate of
arm_start and arm_stop calls is lower than a few thousand per second. More frequent calls to
the ARM API should be avoided.

Most of the additional CPU overhead for supporting ARM is incurred inside of the performance tool
programs and daemons themselves. The midaemon CPU overhead rises slightly but not more than
two percent more than it was with ARM 1.0. If the midaemon has been requested to track per-
transaction resourcemetrics, the overhead per transaction instancemay be twice as high as it
would be without tracking per-transaction resourcemetrics. (You can enable the tracking of per-
transaction resourcemetrics by setting the log transaction=resource flag in the parm file.)
In addition, Glance and scope CPU overhead will be slightly higher on a system with applications
instrumented with ARM 2.0 calls. Only those applications that are instrumented with ARM 2.0 calls
that make extensive use of correlators and/or user-definedmetrics will have a significant
performance impact on the midaemon, scope, or Glance.

An midaemon overflow condition can occur when usage exceeds the available default shared
memory. This results in:

l No return codes from the ARM calls once the overflow condition occurs.

l Display of incorrect metrics, including blank process names.

l Errors being logged in status.mi (for example, “out of space”).

Memory Overhead
Programs that aremaking ARM API calls will not have a significant impact in their memory virtual
set size, except for the space used to pass ARM 2.0 correlator and user-definedmetric information.
These buffers, which are explained in theApplication ResponseMeasurement 2.0 API Guide,
should not be a significant portion of a process's memory requirements.

There is additional virtual set size overhead in the performance tools to support ARM 2.0. The
midaemon process creates a sharedmemory segment where ARM data is kept internally for use
by Performance Collection Component andGlancePlus. The size of this sharedmemory segment
has grown, relative to the size on releases with ARM 1.0, to accommodate the potential for use by
ARM 2.0. By default onmost systems, this sharedmemory segment is approximately 11
megabytes in size. This segment is not all resident in physical memory unless it is required.
Therefore, this should not be a significant impact onmost systems that are not already memory-

HP Operations Agent (11.11)Page 341 of 388

User Guide
Chapter 19:

constrained. Thememory overhead of midaemon can be tuned using special startup parameters
(see themidaemonman page).

HP Operations Agent (11.11)Page 342 of 388

Chapter 20

Getting Started with Transactions
This chapter gives you the information you need to begin tracking transactions and your service
level objectives. For detailed reference information, see Chapter 19, How Transaction Tracking
Works. See Chapter 23, Transaction Tracking Examples for examples.

Before you start
Performance Collection Component provides the libarm.* shared library in the following
locations:

Platform Path

IBM RS/6000 /usr/lpp/perf/lib/

Other UNIX platforms /opt/perf/lib/

If you do not have Performance Collection Component installed on your system and if libarm.*
doesn’t exist in the path indicated above for your platform, see C Compiler Option Examples by
Platform on page 378 at the end of this manual. See also “The ARM Shared Library (libarm)”
section in theApplication ResponseMeasurement 2.0 API Guide for information on how to obtain it.
For a description of libarm, see ARM Library (libarm) on page 373 at the end of this manual.

Setting Up Transaction Tracking
Follow the procedure below to set up transaction tracking for your application. These steps are
described inmore detail in the remainder of this section.

1. Define SLOs by determining what key transactions you want to monitor and the response level
you expect (optional).

2. Tomonitor transactions in Performance Collection Component and PerformanceManager,
make sure that the Performance Collection Componentparm file has transaction logging
turned on. Then start or restart Performance Collection Component to read the updated parm
file.

Editing the parm file is not required to see transactions in GlancePlus. However, ttdmust be
running in order to see transactions in GlancePlus. Starting GlancePlus will automatically start
ttd.

3. Run the application that has been instrumented with ARM API calls that are described in this
manual and theApplication ResponseMeasurement 2.0 API Guide.

4. Use Performance Collection Component or PerformanceManager to look at the collected
transaction data, or useGlancePlus to view current data. If the data isn’t visible in
PerformanceManager, close the data source and then reconnect to it.

HP Operations Agent (11.11)Page 343 of 388

User Guide
Chapter 20:

5. Customize the configuration file, ttd.conf, to modify the way transaction data for the
application is collected (optional).

6. After making additions to the ttd.conf file, youmust perform the following steps tomake the
additions effective:
a. Stop all ARMed applications.

b. Execute the ttd -hup -mi command as root.

These actions re-read the ttd.conf file and registers new transactions along with their slo
and range values with ttd and the midaemon. The re-read will not change the slo or range
values for any transactions that were in the ttd.conf file prior to the re-read.

7. If you need to change the slo or range values of existing transactions in the ttd.conf file,
do the following:
a. Stop all ARMed applications.

b. Stop the scope collector using ovpa stop.

c. Stop all usage of Glance.

d. Stop ttd using ttd -k.

Once you havemade your changes:
a. Restart scope using ovpa start.

b. Start your ARMed applications.

Defining Service Level Objectives
Your first step in implementing transaction tracking is to determine the key transactions that are
required tomeet customer expectations and what level of transaction responsiveness is required.
The level of responsiveness that is required becomes your service level objective (SLO). You
define the service level objective in the configuration file, ttd.conf.

Defining service level objectives can be as simple as reviewing your Information Technology
department's service level agreement (SLA) to see what transactions you need tomonitor to meet
your SLA. If you don't have an SLA, youmay want to implement one. However, creating an SLA is
not required in order to track transactions.

Modifying the Parm File
If necessary, modify the Performance Collection Componentparm file to add transactions to the list
of items to be logged for use with PerformanceManager and Performance Collection Component.
Include the transaction option in the parm file's log parameter as shown in the following
example:

log global application process transaction device=disk

The default for the log transaction parameter is no resource and no correlator. To
turn on resource data collection or correlator data collection, specify log
transaction=resource or log transaction=correlator. Both can be logged by
specifying log transaction=resource, correlator.

Before you can collect transaction data for use with Performance Collection Component and
PerformanceManager, the updated parm file must be activated as described below:

HP Operations Agent (11.11)Page 344 of 388

User Guide
Chapter 20:

Performance Collection Component status Command to activate transaction tracking

Running ovpa restart

Not running ovpa start

Collecting Transaction Data
Start up your application. The Transaction Tracking daemon, ttd, and theMeasurement Interface
daemon, midaemon, collect and synchronize the transaction data for your application as it runs.
The data is stored in the midaemon's sharedmemory segment where it can be used by
Performance Collection Component or GlancePlus. See "Monitoring Performance Data " on page
347 for information on using each of these tools to view transaction data for your application.

Error Handling

Due to performance considerations, not all problematic ARM or Transaction Tracker API calls
return errors in real time. Some examples of when errors are not returned as expected are:

l calling arm_start with a bad id parameter such as an uninitialized variable

l calling arm_stop without a previously successful arm_start call

Performance Collection Component — To debug these situations when instrumenting applications
with ARM calls, run the application long enough to generate and collect a sufficient amount of
transaction data. Collect this data with Performance Collection Component, then use the extract
program's export command to export data from the logtran file. Examine the data to see if all
transactions were logged as expected. Also, check the /var/opt/perf/status.ttd file for
possible errors.

GlancePlus —To debug these situations when instrumenting applications with ARM calls, run the
application long enough to generate a sufficient amount of transaction data, then useGlancePlus to
see if all transactions appear as expected.

Limits on Unique Transactions

Depending on your particular system resources and kernel configuration, a limit may exist on the
number of unique transactions allowed in your application. This limit is normally several thousand
unique arm_getid calls.

The number of unique transactions may exceed the limit when the sharedmemory segment used
by midaemon is full. If this happens, an overflow message appears in GlancePlus. Although no
message appears in Performance Collection Component, data for subsequent new transactions
won't be logged. (However, check /var/opt/perf/status.scope for an overflow message.)
Data for subsequent new transactions won't be visible in GlancePlus. Transactions that have
already been registered will continue to be logged and reported. The GBL_TT_OVERFLOW_COUNT
metric in GlancePlus reports the number of new transactions that could not bemeasured.

This situation can be remedied by stopping and restarting the midaemon process using the -
smdvss option to specify a larger sharedmemory segment size. The current sharedmemory

HP Operations Agent (11.11)Page 345 of 388

User Guide
Chapter 20:

segment size can be checked using the midaemon -sizes command. For more information on
optimizing themidaemon for your system, see themidaemonman page.

Customizing the Configuration File (optional)
After viewing the transaction data from your application, youmay want to customize the transaction
configuration file, /var/opt/perf/ttd.conf, to modify the way transaction data for the
application is collected. This is optional because the default configuration file, ttd.conf, will work
with all transactions defined in the application. If you do decide to customize the ttd.conf file,
complete this task on the same systems where you run your application. Youmust be logged on as
root to modify ttd.conf.

See Chapter 19, How Transaction TrackingWorks for information on the configuration file
keywords – tran, range, and slo. Some examples of how each keyword is used are shown
below:

tran=Example: tran=answerid

tran=answerid*

tran=*

range=Example: range=2.5,4.2,5.0,10.009

slo=Example: slo=4.2

Customize your configuration file to include all of your transactions and each associated attribute.
Note that the use of the range or slo keywordmust be preceded by the tran keyword. An
example of a ttd.conf file is shown below.

tran=*

tran=my_first_transaction slo=5.5

[answerid]

tran=answerid1 range=2.5, 4.2, 5.0, 10.009 slo=4.2

[orderid]

tran=orderid1 range=1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

If you need tomake additions to the ttd.conf file:

l Stop all ARMed applications.

l Execute the ttd -hup -mi command as root.

The above actions re-read the ttd.conf file and registers new transactions along with their slo
and range values with ttd and the midaemon. The re-read will not change the slo or range
value for any transactions that were in the ttd.conf file prior to the re-read,

If you need to change the slo or range values of existing transactions in the ttd.conf file, do
the following:

1. Stop all ARMed applications.

2. Stop the scope collector using ovpa stop.

HP Operations Agent (11.11)Page 346 of 388

User Guide
Chapter 20:

3. Stop all usage of Glance.

4. Stop ttd using ttd -k.

Once you havemade your changes:

1. Restart scope using ovpa start.

2. Start your ARMed applications.

Monitoring Performance Data
You can use the following resource and performancemanagement products to monitor transaction
data – Performance Collection Component, PerformanceManager, andGlancePlus.

... with Performance Collection Component

By collecting and logging data for long periods of time, Performance Collection Component gives
you the ability to analyze your system's performance over time and to perform detailed trend
analysis. Data from Performance Collection Component can be viewed with PerformanceManager
Agent or exported for use with a variety of other performancemonitoring, accounting, modeling, and
planning tools.

With Performance Collection Component's extract program, data can be exported for use with
spreadsheets and analysis programs. Data can also be extracted for archiving and analysis.

Performance Collection Component and ttd must be running in order to monitor transaction data in
Performance Collection Component. Starting Performance Collection Component using the ovpa
script ensures that the ttd and midaemon processes that are required to view transaction data in
GlancePlus are started in the right order.

... with Performance Manager

PerformanceManager imports Performance Collection Component data and gives you the ability to
translate that data into a customized graphical or numerical format. Using PerformanceManager,
you can perform analysis of historical trends of transaction data and you can perform more accurate
forecasting.

You can select TRANSACTION from the Class List window for a data source in Performance
Manager, then graph transactionmetrics for various transactions. For more information, see
PerformanceManager online help, which is accessible from the PerformanceManager Helpmenu.
If you don’t see the transactions you expect in PerformanceManager, close the current data source
and then reconnect to it.

... with GlancePlus

Monitoring systems with GlancePlus helps you identify resource bottlenecks and provides
immediate performance information about the computer system. GlancePlus has a Transaction
Tracking window that displays information about all transactions that you have defined and a
Transaction Graph window that displays specific information about a single transaction. For
example, you can see how each transaction is performing against the SLO that you have defined.
For more information about how to useGlancePlus, see the online help that is accessible from the
Helpmenu.

HP Operations Agent (11.11)Page 347 of 388

User Guide
Chapter 20:

Alarms
You can alarm on transaction data with the following resource and performancemanagement
products —Performance Collection Component, PerformanceManager, andGlancePlus.

... with Performance Collection Component

In order to generate alarms with Performance Collection Component, youmust define alarm
conditions in its alarm definitions file, alarmdef. You can set up Performance Collection
Component to notify you of an alarm condition in various ways, such as sending an email message
or initiating a call to your pager.

To pass a syntax check for the alarmdef file, youmust have data logged for that application name
and transaction name in the log files, or have the names registered in the ttd.conf file.

There is a limitation when you define an alarm condition on a transaction that has a dash (–) in its
name. To get around this limitation, use the ALIAS command in the alarmdef file to redefine the
transaction name.

... with GlancePlus

You can configure the Adviser Syntax to alarm on transaction performance. For example, when an
alarm condition is met, you can instruct GlancePlus to display information to stdout, execute a
UNIX command (such as mailx), or turn the Alarm button on themain GlancePlus window yellow
or red. For more information about alarms in GlancePlus, chooseOn This Window from the Help
menu in the Edit Adviser Syntax window.

HP Operations Agent (11.11)Page 348 of 388

Chapter 21

Transaction Tracking Messages
The error codes listed in Table 2 are returned and can be used by the application developer when
instrumenting an application with Application ResponseMeasurement (ARM) or Transaction
Tracker API calls:

Table 2: Error codes

Error Code Errno Value Meaning

-1 EINVAL Invalid arguments

-2 EPIPE ttd (registration daemon) not running

-3 ESRCH Transaction name not found in the ttd.conf file

-4 EOPNOTSUPP Operating system version not supported

When an application instrumented with ARM or Transaction Tracker API calls is running, return
codes from any errors that occur will probably be from the Transaction Tracking daemon, ttd. The
Measurement Interface daemon, midaemon, does not produce any error return codes.

If an midaemon error occurs, see the /var/opt/perf/status.mi file for more information.

HP Operations Agent (11.11)Page 349 of 388

Chapter 22

Transaction Metrics
The ARM agent provided as a shared component of both the GlancePlus and Performance
Collection Component, produces many different transactionmetrics. To see a complete list of the
metrics and their descriptions:

l For installed GlancePlus metrics, use theGlancePlus online help or see theGlancePlus for HP-
UX Dictionary of PerformanceMetrics located:

On UNIX/Linux under /<InstallDir>/paperdocs/gp/C/ as gp-metrics.txt.

InstallDir is the directory in which Performance Collection Component is installed.

l For installed Performance Collection Component metrics for specific platforms, see the
platform’s HP Operations Agent Dictionary of Operating System PerformanceMetrics files
located:

OnUNIX/Linux under /<InstallDir>/paperdocs/ovpa/C/ as met<platform>.txt.

OnWindows under%ovinstalldir%paperdocs\ovpa\C as met<platform>.txt.

HP Operations Agent (11.11)Page 350 of 388

Chapter 23

Transaction Tracking Examples
This chapter contains a pseudocode example of how an applicationmight be instrumented with
ARM API calls, so that the transactions defined in the application can bemonitored with
Performance Collection Component or GlancePlus. This pseudocode example corresponds with
the real time order processing scenario described in Chapter 18, What is Transaction Tracking?

Several example transaction configuration files are included in this chapter, including one that
corresponds with the real time order processing scenario.

Pseudocode for Real Time Order Processing
This pseudocode example includes the ARM API calls used to define transactions for the real time
order processing scenario described in
Chapter 18, What is Transaction Tracking? This routine would be processed each time an operator
answered the phone to handle a customer order. The lines containing the ARM API calls are
highlighted with bold text in this example.

routine answer calls()

{

* Register the transactions if first time in *

if (transactions not registered)

{

appl_id = arm_init("Order Processing Application","*",
0,0,0)

answer_phone_id = arm_getid(appl_id,"answer_phone","1st
tran",0,0,0)

if (answer_phone_id < 0)

REGISTER OF ANSWER_PHONE FAILED - TAKE APPROPRIATE
ACTION

order_id = arm_getid(appl_id,"order","2nd tran",0,0,0)

if (order_id < 0)

REGISTER OF ORDER FAILED - TAKE APPROPRIATE ACTION

check_id = arm_getid(appl_id,"check_db","3rd tran",0,0,0)

if (check_id < 0)

HP Operations Agent (11.11)Page 351 of 388

User Guide
Chapter 23:

REGISTER OF CHECK DB FAILED - TAKE APPROPRIATE ACTION

update_id = arm_getid(appl_id,"update","4th tran",0,0,0)

if (update_id < 0)

REGISTER OF UPDATE FAILED - TAKE APPROPRIATE ACTION

} if transactions not registered

* Main transaction processing loop

while (answering calls)

{

if (answer_phone_handle = arm_start(answer_phone_id,0,0,0) < -1)

TRANSACTION START FOR ANSWER_PHONE NOT REGISTERED

**

* At this point the answer_phone transaction has *

* started. If the customer does not want to order, *

* end the call; otherwise, proceed with order. *

**

if (don't want to order)

arm_stop(answer_phone_handle,ARM_FAILED,0,0,0)

GOOD-BYE - call complete

else

{

* They want to place an order - start an order now *

if (order_handle = arm_start(order_id,0,0,0) < -1)

TRANSACTION START FOR ORDER FAILED

take order information: name, address, item, etc.

**

* Order is complete - end the order transaction *

**

HP Operations Agent (11.11)Page 352 of 388

User Guide
Chapter 23:

if (arm_stop(order_handle,ARM_GOOD,0,0,0) < -1)

TRANSACTION END FOR ORDER FAILED

**

* order taken - query database for availability *

**

if (query_handle = arm_start(query_id,0,0,0) < -1)

TRANSACTION QUERY DB FOR ORDER NOT REGISTERED

query the database for availability

**

* database query complete - end query transaction *

**

if (arm_stop(query_handle,ARM_GOOD,0,0,0) < -1)

TRANSACTION END FOR QUERY DB FAILED

**

* If the item is in stock, process order, and *

* update inventory. *

**

if (item in stock)

if (update_handle = arm_start(update_id,0,0,0) < -1)

TRANSACTION START FOR UPDATE NOT REGISTERED

update stock

**

* update complete - end the update transaction *

**

if (arm_stop(update_handle,ARM_GOOD,0,0,0) < -1)

TRANSACTION END FOR ORDER FAILED

**

* Order complete - end the call transaction *

**

if (arm_stop(answer_phone_handle,ARM_GOOD,0,0,0) < -1)

TRANSACTION END FOR ANSWER_PHONE FAILED

} placing the order

GOOD-BYE - call complete

HP Operations Agent (11.11)Page 353 of 388

User Guide
Chapter 23:

sleep("waiting for next phone call...zzz...")

} while answering calls

arm_end(appl_id, 0,0,0)

} routine answer calls

Configuration File Examples
This section contains some examples of the transaction configuration file,
/var/opt/perf/ttd.conf. For more information on the ttd.conf file and the configuration
file keywords, see Chapter 19, How Transaction TrackingWorks

Example 1 (for Order Processing Pseudocode Example)
The "*" entry below is used as the default if none of the

entries match a registered transaction name.

tran=* range=0.5,1,1.5,2,3,4,5,6,7 slo=1

tran=answer_phone* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

tran=order* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

tran=query_db* range=0.5,1,1.5,2,3,4,5,6,7 slo=5

Example 2
The "*" entry below is used as the default if none of the

entries match a registered transaction name.

tran=* range=1,2,3,4,5,6,7,8 slo=5

The entry below is for the only transaction being

tracked in this application. The "*" has been inserted

at the end of the tran name to catch any possible numbered

transactions. For example "First_Transaction1",

"First_Transaction2", etc.

tran=First_Transaction* range=1,2.2,3.3,4.0,5.5,10 slo=5.5

Example 3
The "*" entry below is used as the default if none of the

HP Operations Agent (11.11)Page 354 of 388

User Guide
Chapter 23:

entries match a registered transaction name.

tran=*

tran=Transaction_One range=1,10,20,30,40,50,60 slo=30

Example 4
tran=FactoryStor* range=0.05, 0.10, 0.15 slo=3

The entries below shows the use of an application name.

Transactions are grouped under the application name. This

example also shows the use of less than 10 ranges and

optional use of "slo."

[Inventory]

tran=In_Stock range=0.001, 0.004, 0.008

tran=Out_Stock range=0.001, 0.005

tran=Returns range=0.1, 0.3, 0.7

[Pers]

tran=Acctg range=0.5, 0.10, slo=5

tran=Time_Cards range=0.010, 0.020

HP Operations Agent (11.11)Page 355 of 388

Chapter 24

Advanced Features
This chapter describes how Performance Collection Component uses the following ARM 2.0 API
features:

l data types

l user-definedmetrics

l scope instrumentation

How Data Types Are Used
The table below describes how data types are used in Performance Collection Component. It is a
supplement to “Data Type Definitions” in the “Advanced Topics” section of theApplication
ResponseMeasurement 2.0 API Guide.

Table 3: Data type usage in Performance Collection Component

ARM_Counter32 Data is logged as a 32-bit integer.

ARM_Counter64 Data is logged as a 32-bit integer with type casting.

ARM_CntrDivr32 Makes the calculation and logs the result as a 32-bit integer.

ARM_Gauge32 Data is logged as a 32-bit integer.

ARM_Gauge64 Data is logged as a 32-bit integer with type casting.

ARM_GaugeDivr32 Makes the calculation and logs the result as a 32-bit integer.

ARM_NumericID32 Data is logged as a 32-bit integer.

ARM_NumericID64 Data is logged as a 32 bit integer with type casting.

ARM_String8 Ignored.

ARM_String32 Ignored.

Performance Collection Component does not log string data. Because Performance Collection
Component logs data every fiveminutes, and what is logged is the summary of the activity for that
interval, it cannot summarize the strings provided by the application.

Performance Collection Component logs theMinimum, Maximum, and Average for the first six
usable user-definedmetrics. If your ARM-instrumented application passes a Counter32, a
String8, a NumericID 32, a Gauge32, a Gauge64, a Counter64, a NumericID64, a
String32, and a GaugeDivr32, Performance Collection Component logs the Min, Max, and
Average over the five-minute interval for the Counter32, NumericID32, Gauge32, Gauge64,
NumericID32 and NumericID64 as 32-bit integers. The String8 and String32 are ignored
because strings cannot be summarized in Performance Collection Component. The GaugeDivr32

HP Operations Agent (11.11)Page 356 of 388

User Guide
Chapter 24:

is also ignored because only the first six usable user-definedmetrics are logged. (For more
examples, see the next section, User-DefinedMetrics)

User-Defined Metrics
This section is a supplement to “Application-DefinedMetrics” under “Advanced Topics” in the
Application ResponseMeasurement 2.0 API Guide. It contains some examples about how
Performance Collection Component handles user-definedmetrics (referred to as application-
definedmetrics in ARM). The examples in Table 4 show what is logged if your program passes the
following data types.

Table 4: Examples of What is Logged with Specific Program Data Types

…what your program passes in …what is logged

EXAMPLE 1

String8

Counter32

Gauge32

CntrDivr32

Counter32

Gauge32

CntrDivr32

EXAMPLE 2

String32

NumericID32

NumericID64

NumericID32

NumericID64

EXAMPLE 3

NumericID32

String8

NumericID64

Gauge32

String32

Gauge64

NumericID32

NumericID64

Gauge32

Gauge64

EXAMPLE 4

String8

String32

(nothing)

EXAMPLE 5

Counter32

Counter64

Counter32

Counter64

HP Operations Agent (11.11)Page 357 of 388

User Guide
Chapter 24:

CntrDivr32

Gauge32

Gauge64

NumericID32

NumericID64

CntrDivr32

Gauge32

Gauge64

NumericID32

Because Performance Collection Component cannot summarize strings, no strings are logged.

In example 1, only the counter, gauge, and counter divisor are logged.

In example 2, only the numerics are logged.

In example 3, only the numerics and gauges are logged.

In example 4, nothing is logged.

In example 5, because only the first six user-definedmetrics are logged, NumericID64 is not
logged.

scope Instrumentation
The scope data collector has been instrumented with ARM API calls. When Performance
Collection Component starts, scope automatically starts logging two transactions, Scope_Get_
Process_Metrics and Scope_Get_Global_Metrics. Both transactions will be in the HP
Performance Tools application.

Transaction data is logged every fiveminutes so you will find that five Get Process transactions
(one transaction per minute) have completed during each interval. The Scope_Get_Process_
Metrics transaction is instrumented around the processing of process data. If there are 200
processes on your system, the Scope_Get_Process_Metrics transaction should take longer
than if there are only 30 processes on your system.

The Scope_Get_Global_Metrics transaction is instrumented around the gathering of all five-
minute data, including global data. This includes global, application, disk, transaction,
and other data types.

To stop the logging of process and global transactions data, remove or comment out the entries for
the scope transactions in the ttd.conf file.

HP Operations Agent (11.11)Page 358 of 388

Chapter 25

Transaction Libraries
This appendix discusses:

l the Application ResponseMeasurement library (libarm)

l C compiler option examples by platform

l the Application ResponseMeasurement NOP library (libarmNOP)

l using Java wrappers

ARM Library (libarm)
With Performance Collection Component andGlancePlus, the environment is set up tomake it
easy to compile and use the ARM facility. The libraries needed for development are located in
/opt/perf/lib/. See the next section in this appendix for specific information about compiling.

The library files listed in Table 5 exist on an HP-UX 11.11 and beyond Performance Collection
Component andGlancePlus installation:

Table 5: HP-UX 11.11 and Beyond Performance Collection Component and GlancePlus
Library Files

HP Operations Agent (11.11)Page 359 of 388

User Guide
Chapter 25:

/opt/perf/lib/ libarm.0 HP-UX 10.X compatible shared library
for ARM (not thread safe). If you
execute a program onHP-UX 11 that
was linked on 10.20 with -larm, the
11.0 loader will automatically reference
this library.

libarm.1 HP-UX 11 compatible shared library
(thread safe). This will be referenced by
programs that were linked with -larm
on HP-UX releases. If a program linked
on 10.20 references this library, (for
example, if it was not linked with -L
/opt/perf/lib, it may abort with an
error such as "/usr/lib/dld.sl:
Unresolved symbol: _thread_
once (code) from libtt.sl".

libarm.sl A symbolic link to libarm.1

libarmNOP.sl “No-operation” shared library for ARM
(the API calls succeed but do nothing;
used for testing and on systems that do
not have Performance Collection
Component installed.

/opt/perf/examples/arm libarmjava.sl 32-bit shared library for ARM.

/opt/perf/examples/arm/arm64 libarmjava.sl 64-bit shared library for ARM.

/opt/perf/lib/pa20_64/ Note that these files will be referenced automatically by
programs compiled on HP-UX 11with the +DD64 compiler
option.

libarm.sl 64-bit shared library for ARM.

libarmNOP.sl 64-bit “no-operation” shared library for
ARM (the API calls succeed but do
nothing; used for testing and on
systems that do not have Performance
Collection Component installed.

The additional library files listed in Table 6 exist on an IA64 HP-UX installation:

Table 6: HP-UX IA64 Library Files

/opt/perf/lib/hpux32/ libarm.so.1 IA64/32-bit shared library for ARM.

/opt/perf/lib/hpux64/ libarm.so.1 IA64/64-bit shared library for ARM.

/opt/perf/examples/arm libarmjava.so 32-bit shared library for ARM.

/opt/perf/examples/arm/arm64 libarmjava.so 64-bit shared library for ARM.

HP Operations Agent (11.11)Page 360 of 388

User Guide
Chapter 25:

Because the ARM library makes calls to HP-UX that may change from one version of the operating
system to the next, programs should link with the shared library version, using -larm. Compiling
an application that has been instrumented with ARM API calls and linking with the archived version
of the ARM library (-Wl, -a archive) is not supported. (For additional information, see Transaction
Tracking Daemon (ttd) on page 345 in Chapter 2.

The library files that exist on an AIX operating system with Performance Collection Component and
GlancePlus installation are as follows.

Table 7: AIX Library Files

/usr/lpp/perf/lib/ libarm.a 32-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

/usr/lpp/perf/lib libarmNOP.a 32-bit shared library for ARM. This
library is used for testing on systems
that do not have Performance
Agent/Performance Collection
Component installed.

/usr/lpp/perf/lib64/ libarm.a 64-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

/usr/lpp/perf/lib64 libarmNOP.a 64-bit shared library for ARM. This
library is used for testing on systems
that do not have Performance
Agent/Performance Collection
Component installed.

/usr/lpp/perf/examples/arm libarmjava.a 32-bit shared library for ARM

/usr/lpp/perf/examples/arm/arm64 libarmjava.a 64-bit shared library for ARM.

/usr/lpp/perf/lib/ libarmns.a 32-bit archived ARM library.
Functionality wise this is same as 32 bit
libarm.a.

/usr/lpp/perf/lib64/ libarmns.a 64-bit archived ARM library.
Functionality wise this is same as 64 bit
libarm.a.

The library files that exist on a Solaris operating system with Performance Collection Component
andGlancePlus installation are as follows.

Table 8: Solaris Library Files for 32-bit programs

/opt/perf/lib/ libarm.so 32-bit shared ARM library (thread safe). This library is
referenced by programs linked with -larm.

libarmNOP.so 32-bit shared library for ARM. This library is used for testing
on systems that do not have Performance Collection
Component installed.

HP Operations Agent (11.11)Page 361 of 388

User Guide
Chapter 25:

Table 9: Solaris Library Files for Sparc 64-bit programs

/opt/perf/lib/sparc_64/ libarm.so 64-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

libarmNOP.so 64-bit shared library for ARM This library is
used for testing on systems that do not
have Performance agent/Performance
Collection Component installed.

/opt/perf/examples/arm libarmjava.so 32-bit shared library for ARM.

/opt/perf/examples/arm/arm64 libarmjava.so 64-bit shared library for ARM.

Table 10: Solaris Library Files for x86 64-bit programs

/opt/perf/lib/x86_64/ libarm.so 64-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

libarmNOP.so 64-bit shared library for ARM This library is
used for testing on systems that do not
have Performance agent installed.

/opt/perf/examples/arm/arm64 libarmjava.so 32-bit shared library for ARM.

/opt/perf/examples/arm/arm64 libarmjava.so 64-bit shared library for ARM.

Note: Youmust compile 64-bit programs using -xarch=generic64 command-line
parameter along with the other parameters provided for 32-bit programs.

The library files that exist on a Linux operating system with Performance Collection Component and
GlancePlus installation are as follows.

Table 11: Linux Library Files

/opt/perf/lib/ libarm.so 32-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

libarmNOP.so 32-bit shared library for ARM. This library
is used for testing on systems that do not
have Performance Collection Component
installed.

HP Operations Agent (11.11)Page 362 of 388

User Guide
Chapter 25:

/opt/perf/lib/ libarm.so 64-bit shared ARM library (thread safe).
This library is referenced by programs
linked with -larm.

libarmNOP.so 64-bit shared library for ARM. This library
is used for testing on systems that do not
have Performance Collection Component
installed.

/opt/perf/examples/arm libarmjava.so 32-bit shared library for ARM.

/opt/perf/examples/arm/arm64 libarmjava.so 64-bit shared library for ARM.

Note: For Linux 2.6 IA 64 bit 32 bit libarm.so and libarmjava.so are not implemented.

C Compiler Option Examples by Platform
The arm.h include file is located in /opt/perf/include/. For convenience, this file is
accessible via a symbolic link from /usr/include/ as well. This means that you do not need to
use “-I/opt/perf/include/” (although youmay). Likewise, libarm resides in
/opt/perf/lib/ but is linked from /usr/lib/. You should always use “-L/opt/perf/lib/”
when building ARMed applications.

l For Linux:
The following example shows a compile command for a C program using the ARM API.

cc myfile.c -o myfile -I /opt/perf/include -L -Xlinker -rpath -
Xlinker /opt/perf/lib

l For 64-bit programs on Linux:

cc –m64 myfile.c -o myfile -I /opt/perf/include –L -Xlinker -rpath -
Xlinker /opt/perf/lib64

l For HP-UX:
For HP-UX releases 11.2x on IA64 platforms, change the -L parameter from -
L/opt/perf/lib to -L/opt/perf/lib/hpux32 for 32-bit IA ARMed program compiles,
and to -L/opt/perf/lib/hpux64 for 64-bit IA program compiles using ARM.

The following example shows a compile command for a C program using the ARM API.

cc myfile.c -o myfile -I /opt/perf/include -L /opt/perf/lib -larm

l For Sun Solaris:
The following example works for Performance Collection Component andGlancePlus on Sun
Solaris:

cc myfile.c -o myfile -I /opt/perf/include -L /opt/perf/lib -larm -
lnsl

l For 64-bit Sparc programs on Sun Solaris:
The following example works for Performance Collection Component and 64-bit programs on
Sun Solaris:

HP Operations Agent (11.11)Page 363 of 388

User Guide
Chapter 25:

cc -xarch=generic64 myfile.c -o myfile -I /opt/perf/include -L
/opt/perf/lib/sparc_64 -larm -lnsl

l For 64-bit x86 programs on Sun Solaris:
The following example works for Performance agent and 64-bit programs on Sun Solaris:

cc -xarch=generic64 myfile.c -o myfile -I /opt/perf/include -L
/opt/perf/lib/x86_64 -larm -lnsl

l For IBM AIX:
The file placement on IBM AIX differs from the other platforms (/usr/lpp/perf/ is used
instead of /opt/perf/), therefore the example for IBM AIX is different from the examples of
other platforms:

cc myfile.c -o myfile -I /usr/lpp/perf/include -L /usr/lpp/perf/lib
-larm

l For 64-bit programs on IBM AIX:
The following example works for Performance agent and 64-bit programs on IBM AIX:

cc –q64 myfile.c -o myfile -I /usr/lpp/perf/include -L
/usr/lpp/perf/lib64 –larm

Note: For C++ compilers, the -D_PROTOTYPES flagmay need to be added to the compile
command in order to reference the proper declarations in the arm.h file.

ARM NOP Library
The “no-operation” library (named libarmNOP.* where * is sl, so, or a, depending on theOS
platform) is shipped with Performance Collection Component andGlance. This shared library does
nothing except return valid status for every ARM API call. This allows an application that has been
instrumented with ARM to run on a system where Performance Collection Component or
GlancePlus is not installed.

To run your ARM-instrumented application on a system where Performance Collection Component
or GlancePlus is not installed, copy the NOP library and name it libarm.sl (libarm.so, or
libarm.a depending on the platform) in the appropriate directory (typically,
/<InstallDir>/lib/). When Performance Collection Component or GlancePlus is installed, it
will overwrite this NOP library with the correct functional library (which is not removed as the other
files are). This ensures that instrumented programs will not abort when Performance Collection
Component or GlancePlus is removed from the system.

Using the Java Wrappers
The Java Native Interface (JNI) wrappers are functions created for your convenience to allow the
Java applications to call the HP ARM2.0 API. These wrappers (armapi.jar) are included with
the ARM sample programs located in the /<InstallDir>/examples/arm/ directory.
InstallDir is the directory in which Performance Collection Component is installed.

HP Operations Agent (11.11)Page 364 of 388

User Guide
Chapter 25:

Examples
Examples of the Java wrappers are located in the /<InstallDir>/examples/arm/ directory.
This location also contains a README file, which explains the function of each wrapper.

Setting Up an Application (arm_init)
To set up a new application, make a new instance of ARMApplication and pass the name and the
description for this API. Each application needs to be identified by a unique name. The
ARMApplication class uses the C – function arm_init.

Syntax:

ARMApplication myApplication =new ARMApplication(“name”,”description”)

Setting Up a Transaction (arm_getid)
To set up a new transaction, you can choose whether or not you want to use user-definedmetrics
(UDMs). The Java wrappers use the C – function arm_getid.

Setting Up a Transaction With UDMs
If you want to use UDMs, youmust first define a new ARMTranDescription. ARMTranDescription
builds the Data Buffer for arm_getid. (See also the jprimeudm.java example.)

Syntax:

ARMTranDescription myDescription =

new ARMTranDescription(“transactionName”,”details”);

If you don’t want to use details, you can use another constructor:

Syntax:

ARMTranDescription myDescription =

new ARMTranDescription(“transactionName”);

Adding the Metrics
Metric 1-6:

Syntax:

myDescription.addMetric(metricPosition, metricType,
metricDescription);

Parameters:

metricPosition: 1-6

metricType: ARMConstants.ARM_Counter32

HP Operations Agent (11.11)Page 365 of 388

User Guide
Chapter 25:

ARMConstants.ARM_Counter64 ARMConstants.ARM_CntrDivr32

ARMConstants.ARM_Gauge32 ARMConstants.ARM_Gauge64

ARMConstants.ARM_GaugeDivr32 ARMConstants.ARM_NumericID32

ARMConstants.ARM_NumericID64 ARMConstants.ARM_String8

Metric 7:

Syntax:

myDescription.addStringMetric(“description”);

Then you can create the Transaction:

Syntax:

myApplication.createTransaction(myDescription);

Setting the Metric Data

Metric 1-6:

Syntax:

myTransaction.setMetricData(metricPosition, metric);

Examples for “Metric”

ARMGauge32Metric metric = new ARMGauge32Metric(start);

ARMCounter32Metric metric = new ARMCounter32Metric(start);

ARMCntrDivr32Metric metric = new ARMCntrDivr32Metric(start, 1000);

Metric 7:

Syntax:

myTransaction.setStringMetricData(text);

Setting Up a Transaction Without UDMs
When you set up a transaction without UDMs, you can immediately create the new transaction.
You can choose whether or not to specify details.

With Details

Syntax:

ARMTransaction myTransaction =

myApplication.createTransaction(“Transactionname”,”details”;

Without Details

Syntax:

HP Operations Agent (11.11)Page 366 of 388

User Guide
Chapter 25:

ARMTransaction myTransaction =

myApplication.createTransaction(“Transactionname”);

Setting Up a Transaction Instance
To set up a new transaction instance, make a new instance of ARMTransactionInstance with the
method createTransactionInstance() of ARMTransaction.

Syntax:

ARMTransactionInstance myTranInstance =

myTransaction.createTransactionInstance();

Starting a Transaction Instance (arm_start)
To start a transaction instance, you can choose whether or not to use correlators. The following
methods call the C – function arm_start with the relevant parameters.

Starting the Transaction Instance Using Correlators
When you use correlators, youmust distinguish between getting and delivering a correlator.

Requesting a Correlator

If your transaction instance wants to request a correlator, the call is as follows (see also the
jcorrelators.java example).

Syntax:

int status = myTranInstance.startTranWithCorrelator();

Passing the Parent Correlator

If you already have a correlator from a previous transaction and you want to deliver it to your
transaction, the syntax is as follows:

Syntax

int status = startTran(parent);

Parameter

parent is the delivered correlator. In the previous transaction, you can get the transaction instance
correlator with themethod getCorrelator().

HP Operations Agent (11.11)Page 367 of 388

User Guide
Chapter 25:

Requesting and Passing the Parent Correlator

If you already have a correlator from a previous transaction and you want to deliver it to your
transaction and request a correlator, the syntax is as follows:

Syntax:

int status = myTranInstance.startTranWithCorrelator(parent);

Parameter:

parent is the delivered correlator. In the previous transaction, you can get the transaction instance
correlator with themethod getCorrelator().

Retrieving the Correlator Information

You can retrieve the transaction instance correlator using the getCorrelator()method as
follows:

Syntax:

ARMTranCorrelator parent = myTranInstance.getCorrelator();

Starting the Transaction Instance Without Using
Correlators

When you do not use correlators, you can start your transaction instance as follows:

Syntax:

int status = myTranInstance.startTran();

startTran returns a unique handle to status, which is used for the update and stop.

Updating Transaction Instance Data
You can update the UDMs of your transaction instance any number of times between the start and
stop. This part of the wrappers calls the C – function arm_update with the relevant parameters.

Updating Transaction Instance Data With UDMs
When you update the data of your transaction instance with UDMs, first, youmust set the new data
for themetric. For example,

metric.setData(value) for ARM_Counter32 ARM_Counter64, ARM_
Gauge32, ARM_Gauge64, ARM_NumericID32, ARM_NumericID64

metric.setData(value,value) for ARM_CntrDivr32 and , ARM_
GaugeDivr32

metric.setData(string) for ARM_String8 and ARM_String32

HP Operations Agent (11.11)Page 368 of 388

User Guide
Chapter 25:

Then you can set themetric data to new (like the examples in the "Setting theMetric Data" on page
366 section) and call the update:

Syntax:

myTranInstance.updateTranInstance();

Updating Transaction Instance Data Without UDMs
When you update the data of your transaction instance without UDMs, you just call the update.
This sends a “heartbeat” indicating that the transaction instance is still running.

Syntax:

myTranInstance.updateTranInstance();

Providing a Larger Opaque Application Private
Buffer

If you want to use the second buffer format, youmust pass the byte array to the updatemethod.
(See theApplication ResponseMeasurement 2.0 API Guide.

Syntax:

myTranInstance.updateTranInstance(byteArray);

Stopping the Transaction Instance (arm_stop)
To stop the transaction instance, you can choose whether or not to stop it with or without ametric
update.

Stopping the Transaction Instance With a Metric Update
To stop the transaction instance with ametric update, call themethod
stopTranInstanceWithMetricUpdate.

Syntax:

myTranInstance.stopTranInstanceWithMetricUpdate

transactionCompletionCode);

Parameter:

The transaction Completion Code can be:

ARMConstants.
ARM_GOOD.

Use this value when the operation ran normally and
as expected.

ARMConstants.
ARM_GOOD.

ARMConstants.ARM_
ABORT.

Use this value when there is a fundamental failure in
the system.

ARMConstants.ARM_
ABORT.

HP Operations Agent (11.11)Page 369 of 388

User Guide
Chapter 25:

ARMConstants.ARM_
FAILED.

Use this value in applications where the transaction
worked properly, but no result was generated.

ARMConstants.ARM_
FAILED.

Thesemethods use the C – function arm_stop with the requested parameters.

Stopping the Transaction Instance Without a Metric
Update

To stop the transaction instance without ametric update, you can use themethod
stopTranInstance.

Syntax:

myTranInstance.stopTranInstance(transactionCompletionCode);

Using Complete Transaction
The Java wrappers can use the arm_complete_transaction call. This call can be used to
mark the end of a transaction that has lasted for a specified number of nanoseconds. This enables
the real time integration of transaction response times measured outside of the ARM agent.

In addition to signaling the end of a transaction instance, additional information about the
transaction (UDMs) can be provided in the optional data buffer.

(See also the jcomplete.java example.)

Using Complete Transaction With UDMs:
Syntax:

myTranInstance.completeTranWithUserData(status,responseTime;

Parameters:

status l ARMConstants. ARM_GOOD
Use this value when the operation ran normally and as expected.

l ARMConstants.ARM_ABORT
Use this value when there was a fundamental failure in the system.

l ARMConstants.ARM_FAILED
Use this value in applications where the transaction worked properly, but
no result was generated.

responseTime This is the response time of the transaction in nanoseconds.

Using Complete Transaction Without UDMs:
Syntax:

myTranInstance.completeTran(status,responseTime);

HP Operations Agent (11.11)Page 370 of 388

User Guide
Chapter 25:

Further Documentation
For further information about the Java classes, see the doc folder in the
/<InstallDir>/examples/arm/ directory, which includes html-documentation for every Java
class. Start with index.htm.

HP Operations Agent (11.11)Page 371 of 388

Chapter 26

Logging and Tracing
You can diagnose and troubleshoot problems in the HP Operations agent by using the logging and
tracingmechanisms. The HP Operations agent stores error, warning, and general messages in log
files for easy analysis.

The tracingmechanism helps you trace specific problems in the agent’s operation; you can transfer
the trace files generated by the tracingmechanism to HP Support for further analysis.

Logging
The HP Operations agent writes warning and error messages and informational notifications in the
System.txt file on the node. The contents of the System.txt file reveal if the agent is
functioning as expected. You can find the System.txt file in the following location:

OnWindows

%ovdatadir%log

OnUNIX/Linux

/var/opt/OV/log

In addition, the HP Operations agent adds the status details of the Performance Collection
Component and coda in the following files:

OnWindows

l %ovdatadir%\status.scope

l %ovdatadir%\status.perfalarm

l %ovdatadir%\status.ttd

l %ovdatadir%\status.mi

l %ovdatadir%\status.perfd-<port>

Tip: In this instance, <port> is the port used by perfd. By default, perfd uses the port 5227.
To change the default port of perfd, see Configuring the RTMA Component on page 48.

%ovdatadir%\log\coda.txt

OnUNIX/Linux

l /var/opt/perf/status.scope

l /var/opt/perf/status.perfalarm

l /var/opt/perf/status.ttd

l /var/opt/perf/status.mi

HP Operations Agent (11.11)Page 372 of 388

User Guide
Chapter 26:

l /var/opt/perf/status.perfd

l Only on vMA./var/opt/perf/status.viserver

l /var/opt/OV/log/coda.txt

Configure the Logging Policy
The System.txt file can grow up to 1MB in size, and then the agent starts loggingmessages in a
new version of the System.txt file. You can configure themessage logging policy of the HP
Operations agent to restrict the size of the System.txt file.

Tomodify the default logging policy, follow these steps:

1. Log on to the node.

2. Go to the following location:
OnWindows

%ovdatadir%conf\xpl\log

OnUNIX/Linux

/var/opt/OV/conf/xpl/log

3. Open the log.cfg file with a text editor.

4. The BinSizeLimit and TextSizeLimit parameters control the byte size and number of
characters of the System.txt file. By default, both the parameters are set to 1000000 (1MB
and 1000000 characters). Change the default values to the desired values.

5. Save the file.

6. Restart the Operations Monitoring Component with the following commands:
a. ovc -kill

b. ovc -start

Tracing
Before you start tracing an HP Operations agent application, youmust perform a set of prerequisite
tasks, which includes identifying the correct application to be traced, setting the type of tracing, and
generating a trace configuration file (if necessary).

Before you begin tracing an HP Operations agent process, perform the following tasks:

1. Identify the Application

2. Set the Tracing Type

3. Optional. Create the Configuration File

Identify the Application
On themanaged system, identify the HP Software applications that you want to trace. Use the
ovtrccfg -vc option to view the names of all trace-enabled applications and the components and
categories defined for each trace-enabled application.

HP Operations Agent (11.11)Page 373 of 388

User Guide
Chapter 26:

Alternatively, you can use the ovtrcgui utility to view the list of trace-enabled applications. To use
the ovtrcgui utility to view the list of trace-enabled applications, follow these steps:

1. Run the ovtrcgui.exe file from the%OvInstallDir%\support directory. The ovtrcgui
window opens.

2. In the ovtrcgui window, click File → New → Trace Configuration. A new trace configuration
editor opens.

3. In the ovtrcgui window, click Edit → Add Application. Alternatively, right-click on the editor,

HP Operations Agent (11.11)Page 374 of 388

User Guide
Chapter 26:

and then click Add Application. The Add Application window opens.

The Add Application window presents a list of available trace-enabled applications.

Set the Tracing Type
Before you enable the tracingmechanism, decide and set the type of tracing that you want to
configure with an application. To set the type of tracing, follow these steps:

Determine the type of tracing (static or dynamic) you want to configure, and then follow these
steps:

1. Go to the location <data_dir>/conf/xpl/trc/

2. Locate the <application_name>.ini file. If the file is present, go to step 3 below. If the
<application_name>.ini file is not present, follow these steps:
n Create a new file with a text editor.

n Add the following properties to the file in the given order: DoTrace, UpdateTemplate, and
DynamicTracing.

Tip: Do not list the properties in a single line. List every property in a new line. For
example:

DoTrace=

UpDateTemplate=

DynamicTracing=

n Save the file.

3. Open the <application_name>.ini file with a text editor.

HP Operations Agent (11.11)Page 375 of 388

User Guide
Chapter 26:

4. To enable the static tracing, make sure that the DoTrace property is set to ON and the
DynamicTracing property is set to OFF.

5. To enable the dynamic tracing, make sure that the DoTrace and DynamicTracing
properties are set to ON.

6. Make sure that the UpdateTemplate property is set to ON.

7. Save the file.

For the dynamic trace configuration, you can enable the tracingmechanism even after the
application starts. For the static trace configuration, youmust enable the tracingmechanism before
the application starts.

Introduction to the Trace Configuration File

Syntax
TCF Version <version_number>

APP: "<application_name>"

SINK: File "<file_name>" "maxfiles=[1..100];maxsize=[0..1000];"

TRACE: "<component_name>" "<category_name>" <keyword_list>

Each line of the syntax is described in detail in the following sections.

Create the Configuration File
If you want to enable the tracingmechanism without the help of a configuration file, skip this section
and go to the sectionEnabling Tracing and Viewing TraceMessages with the Command-Line Tools
below.

You can create the trace configuration file with the command-line tool ovtrccfg, with a text editor, or
with the ovtrcgui utility (only onWindows nodes).

Enabling Tracing and Viewing Trace Messages
with the Command-Line Tools

The procedure outlined below covers the general sequence of steps required to enable tracing. To
enable the tracingmechanism, follow these steps:

1. Make a trace configuration request using ovtrccfg.
ovtrccfg -cf <configuration_file_name>

where <configuration_file_name> is the name of the trace configuration file created in the
section aboveCreate the Configuration File.

Note: If you do not want to use a trace configuration file, you can enable tracing with the

HP Operations Agent (11.11)Page 376 of 388

User Guide
Chapter 26:

following command:

ovtrccfg -app <application>[-cm <component>]

2. If you configure the static tracingmechanism, start the application that you want to trace.

3. Run the application specific commands necessary to duplicate the problem that you want to
trace. When the desired behavior has been duplicated, tracing can be stopped.

4. Make a tracemonitor request using ovtrcmon.
Tomonitor tracemessages, run one of the following commands or a similar command using
additional ovtrcmon command options:

n Tomonitor tracemessages from /opt/OV/bin/trace1.trc and direct tracemessages
to a file in the text format:
ovtrcmon -fromfile /opt/OV/bin/trace1.trc -tofile
/tmp/traceout.txt

n To view tracemessages from /opt/OV/bin/trace1.trc in the verbose format:
ovtrcmon -fromfile /opt/OV/bin/trace1.trc -verbose

n To view tracemessages from /opt/OV/bin/trace1.trc in the verbose format and
direct the tracemessage to a file:
ovtrcmon -fromfile /opt/OV/bin/trace1.trc -short >
/tmp/traces.trc

5. To stop or disable tracing using ovtrccfg, run the following command:
ovtrccfg -off

6. Collect the trace configuration file and the trace output files. Evaluate the tracemessages or
package the files for transfer to HP Software Support Online for evaluation. Theremay be
multiple versions of the trace output files on the system. The Maxfiles option allows the
tracingmechanism to generatemultiple trace output files. These files have the extension .trc
and the suffix n (where n is an integer between 1 and 99999).

Enabling Tracing and Viewing Trace Messages
with the Tracing GUI

On theWindows nodes, you can use the ovtrcgui utility to configure tracing and view the trace
messages.

Enable the Tracing Mechanism
To enable the tracingmechanism with the ovtrcgui utility and without the help of a trace
configuration file, follow these steps:

1. Follow Step 1 through Step 6 in Using the Tracing GUI.

2. Close the trace configuration editor.

3. Click Nowhen prompted to save changes to Untitled.
The followingmessage appears:

HP Operations Agent (11.11)Page 377 of 388

User Guide
Chapter 26:

4. Click No. If you click Yes, the ovtrcgui utility immediately disables the tracingmechanism.

To enable the tracingmechanism with the ovtrcgui utility using a trace configuration file, go to
the location on the local system where the trace configuration file is available, and then double-click
on the trace configuration file. Alternatively, open the ovtrcgui utility, click File → Open, select
the trace configuration file, and then click Open.

View Trace Messages
To view the trace output files with the ovtrcgui utility, follow these steps:

1. Run the ovtrcgui.exe file from the%OvInstallDir%\support directory. The ovtrcgui
window opens.

2. Click File → Open. TheOpen dialog box opens.

3. Navigate to the location where the trace output file is placed, select the .trc file, and then
click Open. The ovtrcgui utility shows the contents of the .trc file.

HP Operations Agent (11.11)Page 378 of 388

User Guide
Chapter 26:

Every new line in the .trc file represents a new tracemessage.

4. Double-click a tracemessage to view the details. The Trace Properties window opens.

The Trace Properties window presents the following details:

HP Operations Agent (11.11)Page 379 of 388

User Guide
Chapter 26:

n Trace Info:
o Severity: The severity of the tracemessage.

o Count: The serial number for themessage.

o Attributes: The attribute of the tracemessage.

o Component: Name of the component that issues the tracemessage.

o Category: An arbitrary name assigned by the traced application.

n Process Info:
o Machine: Hostname of the node.

o Application: Name of the traced application.

o PID: Process ID of the traced application.

o TID: Thread ID of the traced application.

n Time Info:
o Time: The local-equivalent time and date of the tracemessage.

o Tic count: A high-resolution elapsed time.

o Tic difference:

n Location
o Source: Line number and file name of the source generating the trace.

o Stack: A description of the calling stack in the traced application.

5. Click Next to view the next tracemessage.

6. After viewing all the tracemessages, click Cancel.

Use the Trace List View

By default, the ovtrcgui utility displays the tracemessages for a trace file in the trace list view.
The trace list view presents the tracemessages in a tabular format.

The trace list view presents every tracemessage with the help of the following columns:

Table 13: Trace List View

Column Description

Severity Indicates the severity of the tracemessage. The view uses the following icons to
display the severity of themessages:

Info

Warning

Error

Application Displays the name of the traced application.

HP Operations Agent (11.11)Page 380 of 388

User Guide
Chapter 26:

Component Displays the name of the component of the traced application that generated the
tracemessage.

Category Displays the category of the tracemessage.

Trace Displays the tracemessage text.

Use the Procedure Tree View

You can view the tracemessages in a structured format in the procedure tree view. The procedure
tree view sorts themessages based on the process IDs and thread IDs and presents the data in the
form of a tree view.

You can expand the process IDs and thread IDs to view tracemessages. To go back to the trace

list view, click .

Filter Traces
The ovtrcgui utility displays all the tracemessages that are logged into the trace output files based
on the configuration set in the trace configuration file. You can filter the available messages to
display only themessages of your choice in the ovtrcgui console. To filter the available trace
messages, follow these steps:

HP Operations Agent (11.11)Page 381 of 388

User Guide
Chapter 26:

1. In the ovtrcgui console, click View → Filter. The Filter dialog box opens.

2. ExpandAll Traces. The dialog box lists all filtering parameters in the form of a tree.

HP Operations Agent (11.11)Page 382 of 388

User Guide
Chapter 26:

3. Expand the parameters tomake selections to filter the tracemessages.

4. Click OK. You can see only the filteredmessages in the ovtrcgui console.

HP Operations Agent (11.11)Page 383 of 388

Chapter 27

Troubleshooting
This section describes the solutions or workarounds for the common problems encountered while
working with the HP Operations agent. Areas covered in this section include:

l Operations Monitoring Component

l Performance Collection Component

l RTMA

Operations Monitoring Component
l Problem: If HPOMmanages a large number of nodes (more than 1024), youmay experience

communication problems between HPOM andmanaged nodes. You can also see this problem
when the HP Operations agent is installed on the HP PerformanceManager server that
communicates with a large number of managed nodes (more than 1024).

Solution:

To avoid this problem, go to themanagement server (if HPOMmanages more than 1024 nodes)
or the HP PerformanceManager server (if the agent is installed on an HP PerformanceManager
server that communicates with more than 1024 nodes), and then perform the following
configuration steps:

Log on as root or administrator.

Run the following command:

OnWindows

%ovinstalldir%bin\ovconfchg -ns xpl.net -set SocketPoll true

OnUNIX/Linux

/opt/OV/bin/ovconfchg -ns xpl.net -set SocketPoll true

Restart the agent:

OnWindows

%ovinstalldir%bin\opcagt -stop

%ovinstalldir%bin\opcagt -start

OnHP-UX, Linux, or Solaris:

/opt/OV/bin/opcagt -stop

/opt/OV/bin/opcagt -start

l Problem: On theWindows Server 2008 node, the opcmsga process does not function, and the
ovc command shows the status of the opcmsga process as aborted.

HP Operations Agent (11.11)Page 384 of 388

User Guide
Chapter 27:

Solution:

Set the OPC_RPC_ONLY variable to TRUE by running the following command:

ovconfchg -ns eaagt -set OPC_RPC_ONLY TRUE

l Problem: OnWindows nodes, Perl scripts do not work from the policies.
Cause: Perl scripts available within the policies require the PATH configuration variable to
include the directory where Perl (supplied with the HP Operations agent) is available.

Solution:

a. Run the following command to set the PATH configuration variable to the Perl directory:
ovconfchg -ns ctrl.env -set PATH "%ovinstalldir%nonOV\perl\a\bin"

b. Restart the agent by running the following commands:
i. ovc -kill

ii. ovc -start

l Problem: Changes do not take effect after changing the variable values through the ovconfchg
command.
Cause 1:

The variable requires the agent to be restarted.

Solution 1:

Restart the agent by running the following commands:

a. ovc -kill

b. ovc -start

Cause 2:

ConfigFile policies deployed on the node sets the variable to a certain value.

Solution 2:

If the deployed ConfigFile policies include commands to set the configuration variables to
certain values, your changes through the ovconfchg commandwill not take effect. Youmust
either remove the ConfigFile policies from the node, or modify the policies to include the
commands that set the variables to the desired values.

Cause 3:

The profile or job file available on the node override your changes.

Solution 3: Open the profile or job file on the node andmake sure they do not include conflicting
settings for the variables.

l Problem: After changing the value of the configuration variable SNMP_SESSION_MODE, the
status of the opctrapi process is shown as Aborted by ovc.
Cause:

After you change the value of the configuration variable SNMP_SESSION_MODE, the HP
Operations agent attempts to restart opctrapi. Occasionally, the process of restarting
opctrapi fails.

Solution:

HP Operations Agent (11.11)Page 385 of 388

User Guide
Chapter 27:

Restart opctrapi by running the following command:

ovc -start opctrapi

l Problem: The opcmona process is automatically restarted after you run a schedule task policy
with an embedded perl script on the node and the followingmessage appears in the HPOM
console:

(ctrl-208) Component 'opcmona' with pid 6976 exited with exit value
'-1073741819'. Restarting component.

Cause:

References of exit (o) in the embedded perl script cause opcmona to restart.

Solution:

Do not use exit (o) in the embedded perl script.

Performance Collection Component
l Problem: The following error appears in the status.midaemon file on the HP-UX 11.11

system:
mi_shared - MI initialization failed (status 28)

Cause: Large page size of the midaemon binary.

Solution: To resolve this, follow these steps:

a. Log on to the system as the root user.

b. Run the following command to stop the HP Operations agent:

/opt/OV/bin/opcagt -stop

c. Run the following command to take a backup of midaemon:
cp /opt/perf/bin/midaemon /opt/perf/bin/midaemon.backup

d. Run the following command to reduce the page size to 4K for the midaemon binary:
chatr +pi 4K /opt/perf/bin/midaemon

e. Run the following command to start the HP Operations agent:\
/opt/OV/bin/opcagt -start

l Problem: After installing the HP Operations agent, the following error message appears in the
System.txt file if the tracingmechanism is enabled:
Scope data source initialization failed

Solution: Ignore this error.

l Problem: The following error message appears in the HPOM console:

CODA: GetDataMatrix returned 76='Method
ScopeDataView::CreateViewEntity failed

Cause: This message appears if you use the PROCESS object with the SCOPE data source in
Measurement Threshold policies where the source is set to Embedded Performance
Component.

Solution: Use the service/process monitoring policy instead.

HP Operations Agent (11.11)Page 386 of 388

User Guide
Chapter 27:

l Problem: Data analysis products, such as HP PerformanceManager or HP Service Health
Reporter, fail to retrieve data from agent’s data store and show the following error:

Error occurred while retrieving data from the data source

Cause: The data access utility of the agent reads all the records of a data class against a single
query from a client program. Queries are sent to the agent by data analysis clients like HP
PerformanceManager. When a data class contains a high volume of records, the data access
utility fails to process the query.

Solution: To avoid this issue, configure the data access utility to transfer data records to the
client in multiple chunks. Follow these steps:

a. Log on to the agent node with as root or administrator.

b. Run the following command:
OnWindows:

%ovinstalldir%bin\ovconfchg -ns coda -set DATAMATRIX_VERSION 1

OnHP-UX, Solaris, or Linux:

/opt/OV/bin/ovconfchg -ns coda -set DATAMATRIX_VERSION 1

OnAIX:

/usr/lpp/OV/bin/ovconfchg -ns coda -set DATAMATRIX_VERSION 1

For each query, the agent’s data access utility now breaks the data into chunks of five
records, and then sends the data to the client program. Breaking the data into chunks
enhances the performance of data transfer process.

You can control the number of records that the agent can send to the client with every chunk.
The DATAMATRIX_ROWCOUNT variable (available under the coda namespace) enables you
to control this number (the default value is five).

Decreasing the value of the DATAMATRIX_ROWCOUNT variable may marginally increase the
data transfer rate when you have very large volumes of data into the data store.

When the DATAMATRIX_ROWCOUNT variable is set to 0, the HP Operations agent reverts to
its default behavior of sending data records without chunking.

However, it is recommended that you do not change the default setting of the
DATAMATRIX_ROWCOUNT variable.

c. Restart the agent for the changes to take effect.
ovc -restart coda

RTMA
l Problem: On the vSphereManagement Assistant (vMA) node, the rtmd process does not

function, and the ovc command shows the status of the rtmd process as aborted.
Cause: The rtmd process cannot resolve the hostname of the system to the IP address.

Solution:

a. Log on to the node with the root privileges.

b. From the /etc directory, open the hosts file with a text editor.

HP Operations Agent (11.11)Page 387 of 388

User Guide
Chapter 27:

c. Locate the line where the term localhost appears.

d. Remove the # character from the beginning of the line.

e. Save the file.

f. Start all processes by running the following command:

ovc -restart

l Problem: The Diagnostic view of HP PerformanceManager cannot access data.
Cause: The rtmd process is not running.

Solution: To check if the rtmd process is running on the HP Operations agent node, run ovc -
status rtmd. To start the rtmd process, run ovc -start rtmd.

l Problem: The following error appears in the status.perfd file on the HP-UX 11.11 system:
mi_shared - MI initialization failed (status 28)

Cause: Large page size of the perfd binary.

Solution: To resolve this, follow these steps:

a. Log on to the system as the root user.

b. Run the following command to stop the HP Operations agent:
/opt/OV/bin/opcagt -stop

c. Run the following command to take a backup of perfd:
cp /opt/perf/bin/perfd /opt/perf/bin/perfd.backup

d. Run the following command to reduce the page size to 4K for the perfd binary:
chatr +pi 4K /opt/perf/bin/perfd

e. Run the following command to start the HP Operations agent:
/opt/OV/bin/opcagt -start

HP GlancePlus
Problem: HP GlancePlus does not show all LPAR instances hosted on an AIX frame.

Cause: The LPAR where you installed the HP Operations agent cannot communicate with other
LPARs hosted on the AIX frame.

Solution:Make sure that the LPAR where you installed the HP Operations agent can communicate
with all other LPARs hosted on the AIX frame.

Run the following command on the LPAR that hosts the HP Operations agent to check its
connectivity with other LPARs:

xmpeek -l <hostname>

In this instance, <hostname> is the host name of an LPAR.

HP Operations Agent (11.11)Page 388 of 388

We appreciate your feedback!

If an email client is configured on this system, by default an email window opens when you
click on the bookmark “Comments”.

In case you do not have the email client configured, copy the information below to a web mail
client, and send this email to docfeedback@hp.com

Product name:

Document title:

Version number:

Feedback:

