HP Diagnostics

for the Windows®, Unix and Linux operating systems

Software Version: 9.21

Installation and Configuration Guide

Document Release Date: November 2012

Software Release Date: November 2012

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices
© 2004 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Nofices

Java is a registered trademark of Oracle and/or its affiliates.
Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Microsoft®, Windows®, Windows® NT, Windows® XP and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product includes software developed by the Spice Group (http:/spice.codehaus.org).

For information about open source and third-party license agreements, see the
Documentation directory on the product installation media.

Documentation Updates

The title page of this document contains the following identifying information:

¢ Software Version number, which indicates the software version.
¢ Document Release Date, which changes each time the document is updated.
e Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http:/h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http:/h20229.www2.hp.com/passport-registration.html
Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

Support

Visit the HP Software Support web site at:
http:/www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

e Search for knowledge documents of interest

¢ Submit and track support cases and enhancement requests
¢ Download software patches

e Manage support contracts

¢ Look up HP support contacts

¢ Review information about available services

¢ Enter into discussions with other software customers

¢ Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http:/h20229.www2.hp.com/passport-registration.html
To find more information about access levels, go to:

http:/h20230.www2.hp.com/new_access_levels.jsp

Table of Contents

Welcome To This GUIdecccciiviiimeiiiiiiiiiieiiieiiieccceneeeeeeees 19
How This Guide Is Organizedceeeeemiiiiieiieennniiieeeee e 19
HP Diagnostics Online Documentation..........ccccceveeiiiieeeiennniiieeeeeennn. 21
Additional Online ReSOUICES......cccevviiriiiiieieiiiiiiieeee e 22
Documentation UPAatescceoerrieeeeeeeiiniiiieeeeeeeeeiiieeeeeeeeiieeeeeeens 23

PART I: PREPARING TO INSTALL

Chapter 1: Preparing to Install HP Diagnostics.............cccccoeecnuunnennnn. 27
HP Diagnostics Components and Data FIOW.........cccccveiiiiininninenenn. 28
Supported Application Servers and Environments.......ccc.cceceuvveeeennn. 30
System Requirements for the Diagnostics Components..................... 31
Information Required for Installationccccceeeeriiiieeieenniiiieeeenn. 40
Pre-installation Considerations.........c.ccccceveeveiiniiieniiiinicceeeeeee 47
Recommended Order of Installation........c.cccccovviieiniiiiiiiniciiniineennns 48
Licensing HP DiagnostiCSccuuuuuiieiiiiiiiiiiiiiiiiiiineiieeiiiiiiieeeeeeeeeees 50
Upgrading from Earlier Versions of Diagnostics..........ccccceevvvueeeeeennn. 50

PART II: INSTALLATION OF THE DIAGNOSTICS SERVER
AND COLLECTORS

Chapter 2: Installing the Diagnostics Serverc.ccccccovvuieininnicennnnee 53
Installing Diagnostics SEIVETSccceiiiiiiiiiiiiiiiiiniiiiiccneecee 54
Verifying the Diagnostics Server Installationccccccccovveeenininenn. 67
Silent Installation of the Diagnostics Servercccecceevriiieernnieeenns 68
Starting and Stopping the Diagnostics Server........ccccccceiiivvinniiinnnn. 70
Licensing Your Diagnostics SOftWarecccceveeeeeeniierinnieecennieeenne 72
More Information on Configuring Diagnostics Servers.........c........... 72
Determining the Version of the Diagnostics Servercccooeuveeennee 72
Uninstalling the Diagnostics SEIver.........ccccccviiiiiiiiiiiiiiiiiiniiininennn, 73
Manual Installation of OM Agent and IAPA Components................. 74

Manual Uninstall of OM Agent and IAPA Components 76

Table of Contents

Chapter 3: Licensing HP Diagnosticscccoevuieiiinuiiinninnccinnnnccninne 79
About HP Diagnostics LiCensingcccccovvvviiiiiiiiniiiiiiiiinniinneeeenn 80
TYPES Of LICEIISES ...veieiiiiiiiiiiii ittt 80
Licensing the Diagnostics Server in Commander Mode..................... 81
View License INformationccooccueeeriiieiiniiiiinniieeeiec e 84
Licensing the Other Diagnostics Components...........cccccoeeeuniieeinnnnn. 88
Chapter 4: Installing Diagnostics Collectors........cc.occccvvvuviriinnncennnne 91
About Installing the Diagnostics Collector.........cccooveiiiiiiiiiniinnniceen. 92
Accessing the Collector Installer..........ccccoovviiiiiiiiiiiiiiiin, 93
Installing the COLLECOTccoiviiiiiiiiiiiiiiiiee e 94
Silent Installation of the Diagnostics Collector.........cccccceeerneeennnnns 103
Installing the Diagnostics Collector Using the Generic Installer104
How to Manually Add Another Collection Type After

Installing the COleCtOr........cccuviiiiiiiiiiiiiie e 105
Configuring the Active System Property Filesccccccoevviiininennnnnns 106
Configuration for SAP NetWeaver—ABAP...........cccoeviiiiniiiiiinnicennnns 106
Configuration for Oracle........cccccceeeviiiiiinieiieieceeceec e 110
Configuration for SQL SeIver........cccooeiiriiiiiiniieiiniieeeiiee e 113
Configuration for MQcocccveeiiiiiiiiiieeiieeeieeceeeee e 117
Configuration for TIBCO EMSccoooiiiimiiiiiiiiiinecieec e, 120
Configuration for webMethods Brokercc.cccccevviieiiniiiiinnicennnns 121
Configuration fOr VMWare........ccccceeriiieeiniiieeniiieeeeeeee e eeieeeeans 123
Password ObfusCationccoovieeirriieieriiiieenieceeee e 125
Verifying the Diagnostics Collector Installationccecccceeruneeen. 127
Starting and Stopping the Diagnostics Collector................ceueeeeeeeeeee 128
Determining the Version of the Diagnostics Collector 130
Uninstalling the Diagnostics Collector.........ccccoovviiiiiiiiiniiiiciinnn. 130

Table of Contents

PART I1I1: INSTALLATION AND SETUP OF THE JAVA, .NET AND PYTHON
AGENTS

Chapter 5: Installing Java Agents...........cccoocuiivvviiiinnniiinnnnccininnncenn. 133
Overview of the Java Agent Installationc.c.ccceevveieniiiiinnicennnns 134
Accessing the Java Agent Installer...........cccoooeeiiiiiinniniiiiiiiinnnnn. 135
Installing the Java Agent........cccooooviiiiiiiiiiiiiiiiiie, 137
Running the Java Agent Setup Module...........cccccoevviiiiiiinnnnnn. 141
About Preparing the Application Server for Monitoring................... 150
Register the Agent with the Diagnostics Servers........ccccoeveeeeeeeeennnees 150
Verifying the Java Agent Installation..........cccccceevveeiniiiiinicinnnnen. 151
About Additional Configuration and Custom Instrumentation...... 152
Installing the Java Agent on a z/OS Mainframe..........cccccccceeeeneeennn. 154
Installing the Java Agent Using the Generic Installer....................... 156
Silent Installation of the Java Agentcccccevevieiiniiiinniicciniieeenans 157
Setting File Permissions (UNIX Only)ccccceeiiiiiiiiiiiiiiiinnnnnenn. 159
Determining the Version of the Java Agent.........cccococeeriiiciinnnncennn, 160
Uninstalling the Java Agentcccccccciiviiiiiiiiiiii 160
Chapter 6: Preparing Application Servers for Monitoring with

the Java Agent........cccooiiiiiiiiiiiniiiiniiciiicecec e 161
About Preparing Application Servers for Monitoring....................... 162
Examples for Configuring Application Servers........c..ccceeveeennuecennns 163
About the JRE Instrumenter and Different Options to Invoke......... 219
Other Configuration OPtionsccccccceereiiiiiinieeeiniieeeneee e 232
Chapter 7: Preparing Application Servers for Client Monitoring

with the Java Agentccocciivviiiiniiiiiinniiinnniieniceienne 245
About Client MONItOringccccovvviviiiiiiiiiiiiini 245
Enabling Client MONitOring.........cccccveiiiiiiiiiiiiiiiininee, 246
Configuring and Disabling Client Monitoring..........ccccoeeveeevnueeennes 248

Manually Instrumenting HTML/JSP Pages for Client Monitoring: ..249

Table of Contents

Chapter 8: Installing .NET Agents........ccccceivvvuieininicinnnnceinnnnnecnnnnns 251
Overview of the .NET Agent Installationcc.ccccceevviveeiniciinnnncennns 252
Accessing the NET Agent Installerccooeooiiiiiiininnn.. 254
Installing the .NET Agent.......ccccciiiiiiiiiiiiiiiiiiiiiiinecce 255
Post INStall TASKS ..cceveeriiiiiiiiiiiiiiiiiiiiieiieieee e 277
Verifying the .NET Agent Installation..........cccoeeeeeeviieiiniiceinnneennns 278
About Configuration of the .NET Agent for Diagnostics.................. 279
About Configuration of the .NET Agent for TransactionVision....... 279
Discovery and Standard Instrumentation...........cccccccceiiniiiinicinnn. 282
Probe Aggregator SeIVICEccovvvuiiiiiiiiiiiiiiiicciiiiniccceeece e 286
Monitoring NET Applications Deployed in Azure Cloud................. 287
Determining the Version of the .NET Agentccccccceeerviieiinnnncenns 288
Enabling and Disabling the Diagnostics Agent for .NET 288
Disabling LOZEING........ccccuiiiiiiiiiiiiiiiiiiiiiiicceencc e 289
Enabling and Disabling Standard Instrumentation for

APPLCAtIONS ..ottt 290
Troubleshooting .NET Web Applications Not Discovered 292
Other .NET Agent Troubleshooting Tipsccccoeeeviiiiiiiniiiiiciinnn. 294
Uninstalling the .NET Agent..........cccccoovviiiiiiiiinii, 294
Chapter 9: Installing and Setting Up Python Agents....................... 295
Diagnostics Python Agent OVeIVIEWccccccevvvrumemeeeeeeiieiieieeeeeeeeeees 296
System Requirements for the Diagnostics Python Agent................. 296
Installing Python Agents.........ccooeviriiiiiiiiieeieceeeeeeeeeeeee 297
Instrumenting a Python Application.........cccooeeiiiniiiiiiiiiiiiiieeeees 300
Configuring the Python Aentccccoeeviiieiiiiiiiiiiieeeiiniiiieeeeeene 309
Description of the Parameters in the Points Filecc.c...cccoeeeeie, 316
Description of Custom Code.........coovveeiriiieiriiieeeniieeeeieeeerieee e 318
Available Out-of-the-box Configurationscccccevevvveieeeernninnneeeen. 328
Reconnect/Reinitialize Event Channel After Server Reboot 333
TroubleSHOOtINGevviiiiiiiiiiiiiiiiii e 333
Removing the Python Agent............ooooiiiiiiiiiiiiiiieeeeeee 334

Table of Contents

PART IV: CUSTOM INSTRUMENTATION FOR MONITORING JAVA AND .NET
APPLICATIONS

Chapter 10: Custom Instrumentation for Java Applications 337
About Instrumentation and Capture Points Files.............cccccoeennnee. 338
Coding Points in the Capture Points Fileccccoccoiiiiinnnnnn. 340
Defining Points With Code Snippets........cccceeveveeiniieeerniecenneeeennns 348
Controlling Class Map Capture..........ccccovvvvmiiiiiiiiiniiiiiiceiiiieneee, 364
Instrumentation Examples.........cccciiiiiiiiiiiiiiiiee, 365
Understanding the Overhead of Custom Instrumentation.............. 381
Instrumentation Control on a Per Layer Basis............ccccccovvnnnieeenn. 382
Advanced Instrumentation Examples.........cccccceiiiniiiiiiiiiiinnnnnn. 383
Configuring Cross VM Correlations for New or Custom

TechnolOgiesccociiiiiiiiiiiiiii 398
Tutorial for Configuring Cross VM Correlation for Custom

TechnolOgiesccoiiiiiiiiiiiiiii 403
Maintaining Instrumentation from the Java Profiler Ul 412
Default Layers Defined for Typical Java Classes and Methods......... 423
Chapter 11: Custom Instrumentation for .NET Applications 427
About Instrumentation and Capture Points Files.............cccccoeeuneee. 428
Locating the .NET Capture Points Files...........cccccovviiiiiiiinnnnnninnn. 429
Coding Points in the Capture Points Filecccccccooiiinnnnn. 430
Instrumentation Examples.........ccccciiiiiiiiiiiiiiii 435
Understanding the Overhead of Custom Instrumentation.............. 461
Default Layers for Typical .NET Applicationscccccccevveveeennnneennes 462

Table of Contents

PART V: ADVANCED CONFIGURATION OF THE DIAGNOSTICS SERVER AND
THE JAVA AND .NET AGENTS

Chapter 12: Advanced Diagnostics Server Configuration................ 465
Synchronizing Time Between Diagnostics Components.................. 466
Configuring the Diagnostics Server for a Large Installation............. 470
Overriding the Default Diagnostics Server Host Name 476
Changing the Default Diagnostics Server Portccccceevvvvieeeeennnn. 476
Migrating Diagnostics Server from One Host to Another 477
Configuring the Diagnostics Server for Multi-Homed

ENVITONMENTSooiiiiiiiiiiiiiiiene et 479
Reducing Diagnostics Server Memory Usagecccceeevvnnnnieeennnnn. 483
Configuring Server Request Name Based Trimming............c..c.cce.... 484
Automating Composite Application Discovery in HP Diagnostics..485
Preparing a High Availability Diagnostics Server.............cccoceeiieein. 488
Configuring Diagnostics for HP ServiceGuard (HA solution)........... 489
Diagnostics Server Assignments (LoadRunner/Performance

Center RUNS) couuuiiiieiiieiiiiiiiiiiee ettt e e ee et e e e e eeeaeees 491
Configuring the Diagnostics Server for LoadRunner

Offline Analysis File SiZe.........cccovriiiiiiiiiiniiiiiiiec e 492
Configuring Business Service Management Sample Queue

Size and Web Services CI FreqQUencycccooeevvviieiiinininnnceennnnn. 495
Configuring Diagnostics Using the Diagnostics Server

Configuration Pages........cccceeveieeiiniieeiniiie e 496
Optimizing the Diagnostics Server in Production to Handle

MOTE PTODES ceiiiiiiiiiiiiiiiiiiiieiie e 496
Configuring a Custom Context ROOt.........cccoveiieirniiiiiniiiiiniieeenanns 497

10

Table of Contents

Chapter 13: Advanced Java Agent and Application

Server Configurationcccouviiiiiiiiiiiiiiiinii 499
Advanced Configuration OVerview..........cccoeceeeeriiieeinniecennneeeenneee. 500
Disabling the Java Diagnostics Profilercccoccceeeviiiinniciinnneennns 501
Controlling Probe LOgging..........ccccviiiiiiiiiiiiiiiiiniiiiiiiieeeeeen 502
Setting the Probe’s Host Machine Name.............ccocoeiiiiiiiiiinnnnnnnees 503
Specifying a Different Probe IP AAdress.......cccoecceeeevcieeerniieeennueeennes 505
Set the Active Products Mode............ccccoovvmiiiiiiiinnniiiiiiiiineeee, 505
Controlling Automatic Method Trimming on the Agent................ 508
Configuring URI Truncation, Mapping and Trimming.................... 510
Configuring an Agent for a Proxy Serverc.occcccoveveeerniiecennneeennns 511
Time Synchronization for Probes Running on VMware................... 512
Limiting Exception Tree Datacccoovvviiiiiiiiiiiiiiiiiiiiiiiiiis 512
Diagnostics Probe Administration Page..........cccccovviiiiiiiiinnnnninnn. 515
Authentication and Authorization for Diagnostics Java Profilers518
Configuring Collection of CPU Time Metrics......ccccccceervcieeennuneennns 521
Configuring Consumer IDS........cccccevriiiiiniiiiinniieceeiee e 524
Configuring SOAP Fault Payload Data.........cccoeeveeeveiieeiniieeennnneennes 535
Configuring REST S@IVICeSccoccvueirriiieiriiiieinieeeeieeceeee e 537
Customizing Grouping JMS Temporary Queue/Topicscccc.eeee.... 537
Configuring SQL Query Parsing.....c..ccccceeeeverernieeennieeenniieeenneeeennns 537
Configuring Display of Application Name for Server Requests........ 538
Maintaining Probe Settings from the Java Profiler Ul 539
Generating Performance Reports for JUnit Testsccccceeeeeeeernnneenn. 547
Chapter 14: Understanding the .NET Agent Configuration File551
Understanding the .NET Agent Configuration File 551
.NET Agent Configuration Elements.........ccccocceereviiiiiniiiinnnicennnne. 552

11

Table of Contents

Chapter 15: Advanced .NET Agent Configurationccccecuceenes 627
Time Synchronization for .NET Agents Running on VMware 628
Customizing the Instrumentation for ASP.NET Applications.......... 628
Discovering the Classes and Methods in an Application 634
Controlling Which HP Software Products the Agent can

WOTK With .o, 637
Configuring Support for MSMQ Based Communication 641
Configuring Latency Trimming and Throttlingcc.ccccceveeeennns 641
Configuring Depth Trimming.......cccccccevviiiiiiiiiiiniiiiceeieee s 646
Configuring URI Truncation and Mappingcccecceeeeeeveeeenneeeennnns 647
Configuring the .NET Agent for Lightweight

Memory Diagnosticscccoevviiviiiiiiiiiniiii 649
Limiting Exception Stack Trace Data..........cccccccvvviiiiiiiiiinniinnnnnnn. 652
Disabling LOZEING........ccccuiiiiiiiiiiiiiiiiiiiiiiienic e 655
Overriding the Default Probe Host Machine Name...........cccc.cccc..... 656
Listing the Probes Running on a HOStccccovvviiiiiiiiinniiinnn, 657
Authentication and Authorization for .NET Profilers....................... 658
Configuring Consumer IDS.......c.cccovviiiiriiieiiiieceniecceeee e 660
Configuring SOAP Fault Data........cocccceeviiieiiiiiiiniiieeiiecceieee e 665

Collecting Additional Probe Metrics or Modifying Probe Metrics ...666

PART VI: CONFIGURING COMMUNICATIONS THROUGH
PROXIES AND FIREWALLS

Chapter 16: Configuring Diagnostics Servers and

Agents for HTTP Proxycccccevvuuieiiiininieecciinnimnneeecennnmmnneeee 671
Enabling HTTP Proxy Communications for the

Diagnostics SEIVETS.........cciiiiiiiiiiiiiiiiiiii e 672
Enabling HTTP Proxy Communications for the Java Agent............. 673
Enabling HTTP Proxy Communications for a .NET Agent............... 674
Chapter 17: Configuring Diagnostics to Work in a

Firewall Environment..........cccccovvviiiinniiiiinniiiinnieiniecnieccns 675
Overview of Configuring Diagnostics for a Firewall........................ 676
Collating Offline Analysis Files over a Firewallccocol 679
Installing and Configuring the MI Listener...........cccccccovviiiiinniinnn, 680
Configuring the Diagnostics mediator server

to Work with a Firewallcccccoiiiiiin 681
Configuring LoadRunner and Performance Center

to Work with Diagnostics Firewalls..........cccccovvvviiiiiiiinnnnnniiennnn. 687

12

Table of Contents

PART VIil: CONFIGURING DIAGNOSTICS METRICS COLLECTORS
Chapter 18: .NET System Metrics Agent - Systems

Metrics CaPtUrecoovvviimiiiiiiiiiiccccrc s 691
About the .NET System Metrics Agent........occcvieiiiiiiiiiiiiiiiinninnne. 691
System Metrics Captured by Default.........cccovieeeiiinniiiiieiiiinniiineeeen. 692
Configuring .NET System Metrics Capture.........cccceeeueeerveeeeernuneene 693
Adding System Metrics Using the Windows Performance

MOTULOT coviiiiiiiiiiiiiiiiiii 696
Default Entries in the .NET Agent metrics.config File...................... 698
Keywords in the metrics.config File.......ccccccccirniiiinniiiniiiinnieeen. 699
Chapter 19: Java Agent Metrics Collectors..........ccceoveevvvniiininnncnnn. 703
About Metrics Captureccceeeiiiiiiiiiiiiiiiiiie 703
What Metrics are Being Collected by the Java Agent 705
Understanding Metric Collector Entriescccccovvviiiiiiiiiniininnnn. 706
About Collecting Additional Probe Metrics.......ccccccceeeeiiiiinninnninnnnnne. 708
Moditying Probe Metrics Already Being Capturedc.ccceeeunneee.. 708
Stopping Capture of @ MetriC......cccuvveeeeiiiniiiiiieeiieiiiiieeeeeeeeeeen 708
Using Customized metrics.config Files for Multiple JVM

Applications on a System..........cccceuiiiiiiiiiiiiiiiiiii 709
Chapter 20: Java Agent - System Metrics Capturecccoeeuuueenne. 711
About System MetTiCS......ooovvuiiiiiiiiiiiiiiiiii s 711
System Metrics Captured by Default........ccccccooviiiiniiiinniiinnnnneen. 712
Configuring the System Metrics COlleCtOr......ccccovvvuviiieieeeinniiieeeee. 713
Capturing Additional Custom System Metricsccccceevvumeeeeeeeennnnes 715
Enabling z/OS System Metrics Capture........cccoocceeeeevieeerniiecenneeeennns 721
Chapter 21: Java Agent - JMX Metrics Capture...........cccevuveernunnenn. 723
ADOUL JMX MEtTICS . eeiviieeiiiiiie e ee et eeeeeee e e e eaae e e e e raneeeeaaees 723
About Configuring JMX Metric Collectorscocceeeveciveiirnneeennnnnen. 724
Additional Custom JMX MetriCS....ccccvuurieieeririieeeeeiiieeeeriieeeeeeiieeeeeens 725
Getting a List of Available JMX or WebSphere PMI Metrics............. 725
Creating New JMX or WebSphere PMI Metrics Entries 728

13

Table of Contents

PART VIII: S

ETTING UP INTEGRATION WITH OTHER

HP SOFTWARE PRODUCTS

14

Chapter 22: Setting Up the Integration Between Business Service

Management and Diagnostics........c..coceevvvuiiiiiiuiciinnnicennnnnecnnnne 737
About Setting Up the Integration Between

Business Service Management and Diagnosticscccccveeeennn. 739
Registering the Diagnostics Server in

Business Service Managementcccoecccviiiiiiiiniiiiiiiininnneee. 740
Removing the Diagnostics Registrationccocccvviiiiiiniiiiciinnn. 747
Understanding the Diagnostics Admin Pagecccccovveniieinnnnn. 747
Assigning Permissions for Diagnostics Users in

Business Service Managementcccoecccviiiiiiiiniiiiciiininnnneee. 748
Password for Data Collectors to Access RTSMccccccccevvvieinnineennnns 750
Accessing the Diagnostics Pages in Windows 2003...........cccceuuueneeee 751
Accessing the Diagnostics Application from

Business Service Managementcccoecccviiiiiiiiiiiiiiiiiinnnneee. 751
Data Samples Sent to Business Service Management........................ 752
Diagnostics Populates Cls and Models in

Business Service Managementcccoecccviiiiiiinniiiiiiiiininnneee. 753
Synchronize CIs Between Diagnostics and

Business Service Managementcccoocccviiiiiiiniiiiiiiiiiinneee. 753
Diagnostics Provides KPI/HI Coloring to

Business Service Managementcccoocccviiiiiiiniiiiiiiiiiinneen. 754
Enabling Diagnostics Integration with BSM’s Service Health

ANALYZET ..oooiiiiiiiiiiiiiii 7355
Integration with BSM'’s Performance Graphing.........ccccccceeveieeennns 756
Diagnostics and OM Server CO-eXiStenceccccoevvuvviiiiiiiniinnnneeenen. 756
Configuration of Separate BSM Servers for DPS and Gateway 761
Additional Information on Integrationcccecccceeveeieeriivcinnnneenn. 763
Chapter 23: Installing the LoadRunner Diagnostics Add-in............. 765
Before Installing the LoadRunner Diagnostics Add-in 766
Installing the LoadRunner Diagnostics Add-in..........cccccoeeeinieiinnn. 766
Chapter 24: Setting Up HP LoadRunner and

HP Diagnostics Integration.............ccccccovvvnniiiiiiniiinnniiiiinniinnnnn, 769
How You Can Use HP Diagnostics with LoadRunner...................... 770
About Setting Up LoadRunner to Integrate with HP Diagnostics....773
Configuring LoadRunner Scenarios to use HP Diagnostics.............. 774
Selecting Probe Metrics to Include in the Offline Analysis File........ 774
Improving Transfer of Large Offline Analysis Files.............cccoeuueeenne. 777

Out of Memory Issue in LoadRunner Controller’s Diagnostics Ul...777

Table of Contents

Chapter 25: Setting Up Performance Center to Use Diagnostics779

How You Can Use HP Diagnostics with Performance Center 780
About Setting Up Performance Center to Use Diagnostics............... 782
Configuring Performance Center Load Tests to Use Diagnostics.....783
Managing Performance Center Offline Files...........cccocceiinninennnne. 784

PART 1X: APPENDIXES

Appendix A: Diagnostics Administration Ulccccccooviiinnnnen. 787
Accessing the Diagnostics Administration Ul..............cccoeiniin. 787
Using the Diagnostics Administration Ul........cccccoeeoiiiiiiinnnnnninnn.n. 790
Appendix B: User Authentication and Authorization....................... 797
About User Authentication and Authorizationccccciniiin. 798
Understanding User Privilegescccccovvveiiiiiiiniiiiiiiiiiiiieeeeen. 799
Understanding ROIESeeiiiiiiiiiiiiiiiiiiietec e, 800
Accessing Diagnostics Using Default User Namescccccoeueee. 801
Understanding the Diagnostics Server Permissions Page 802
Creating, Editing and Deleting Users........cccccccccevvvnniiiicceiininnneeeen. 810
Assigning Privileges Across the Diagnostics Deployment 812
Assigning Privileges for Probe Groupscccccvviiiiiniiiiiniiinnnnnn, 813
Authentication and Authorization for Users of Integrated

HP Software Products...........cccoeviiiiniiiiiiniiiiiiiiiiece, 816
Tracking User Administration Activitycccoeoiiniiiiiininn. 818
List Of ACtive USEIScccuviiiiiiiiiiiiiiiiiiiiiiiiicnccee e 819
Configuring Diagnostics to use JAAS ..ottt 820
Appendix C: Enabling HTTPS Between Components....................... 839
About Configuring HTTPS Communicationscccccccovviiiinnnnnn. 840
Filtering Encryption Cipher Suites..........c.cccccvvviiiiniiiiiiniiii, 840
HTTPS Checklist per Diagnostics Component............ccccceeevvunnneeeee. 841
Enabling Incoming HTTPS Communication for

Diagnostics COmMpONeNts.........cccueeveiiiiiiiiiiiiiiiiiiiii e, 843
Generate Client Certificate............cccovviiiiiiiiiii, 843
Enabling Outgoing HTTPS Communication from

Diagnostics COmMpONEeNts.........ccceeviiiiiiimiiiiiiiiiiiiiiie e, 853
Enabling HTTPS Communications for the

Business Service Management SEIVETccccccvvvivvviiiiiiiiiieneeeennn. 860
Appendix D: Using System Views for Administrators 863
System Views for Diagnostics’ Administrators.........cccccceeeevvinnneeeen. 863
System Health View DesCription........ccccoveviiiiiiininniiiiciiiineeeen. 865
System Capacity View Descriptionccccccceevviviiiininiiiiiiiiiiiiininnee 866

15

Table of Contents

16

Appendix E: Diagnostics Data Management........cccoccccevvniceinnnnenn. 867
About Diagnostics Data.........cccccovviiiiiiiiiniiiiii, 868
CUstom VIeW Dat@.......cooivuiiiiiiiiiieiiiieciieeeee e e e e 868
Performance History Datac.ccccceevviiieiniiieiiiiiiiinieeceiee e 870
Data Retentionc.ooiivniiiiiii e 876
Disk Space Issues on the Server.........ccccoovvviiiiiiiiiniiiiiiiii, 882
Pre-Installation Data Management Considerations.................c........ 882
Backing Up Diagnostics Dataccccceevviiiiiiiiiiiiiiiiiiiininie, 883
Handling Diagnostics Data when Upgrading Diagnostics 888
Appendix F: Diagnostics Technical Diagramscccccceveevnueneeenn. 889
Communications with Business Service Management............ccc...... 890
Communications with LoadRunner and Performance Center......... 891
.NET Probe Aggregator Data FIOWcccccoeeiiiiiiiiinniiiiiiiinnnnn, 892
Appendix G: Upgrade and Patch Install Instructions....................... 893
Before YOU Beginccoovviiiiiiiiiiiiiiiieeeeeeec et 894
Diagnostics Compatibility with Earlier Diagnostics Versions........... 894
Upgrade or Patch Install Instructions for Diagnostics

COIMPOTIEIIES ..eiiiiiiiiiiiiiiiiiiiiiricee e 894
Diagnostics Compatibility with Other HP Software Products.......... 907
Appendix H: Troubleshooting HP Diagnostics...........cccccceveeununnnennn. 909
Component Installation Interrupted on a Solaris Machine.............. 910

Diagnostics Installers Do Not Work on Some 64-bit Linux Systems910
Error During Linux Install - Missing libstdc++.50.5 Shared Library .911

Java Agent Fails to Operate Properly.......ccccociiiiiiiniiiiiiiiiiniinnnn. 911
Error During WAS Startup with Diagnostics Profiler for Java........... 912
Missing Server-Side Transactionsccccoeeevviiiiiiiniiiiiiiinnnnnnee, 913
Event Capture Buffer Full Warning............ccccoeveeiniiiiininiciniieeennns 913
WebSphere Application Server Startup Issueccccceeeiiiniinninenn. 914
Java Agent Support Collector..........ccceeiiiviiiiiiiiiiinii, 915
Event Based Health Indicator Status Troubleshooting Flow............. 915
OM Agent Troubleshootingcccccoeevviiiiiiiiiniiiiiii, 919
Troubleshooting Registration of OMi Between the

BSM Gateway Server and Data Processing Server............ccccceeeen. 922
Appendix I: General Reference Information.........ccceccccevvuiecinnnnncnne. 925
Using UNIX Commandscccccoviiiiiiiiiiiiiiiiiiiiiiceecceeen 925
Using Regular EXPressions..........ccccceveiiviiiiiiiiiiiiiicciinccceeee 926
Multi-Lingual User Interface SUPPOTTcoccveeerreieeiriiieiniieeeiieeenes 934

Table of Contents

Appendix J: Data EXPOrtingc.ccccccevvuviiiiiniiciiniinnnnnccinnnecnnnneee, 937
Task 1: Prepare the target databaseccccccoccciiiiiiiinnniniiiiinnnnn, 938
Task 2: Determine which metrics you want to export 939
Task 3: Determine the frequency and the recovery period 942
Task 4: Modity the data export configuration file..........ccccccceueeen. 943
Task 5: Monitor the data export operation..........cccccoeeeiiiiiiinnnnnnnee. 947
Task 6: Verify the 1eSultsccceovviiiiiniiiiiiiieieeceec e, 949
Task 7: Select the data from the target database.............cccocveeeennee. 950
Sample QUETIESeiiiiiiiiiiiiiiiiiiiiic e 950
INA@X ..oeviiiiiiiiiiiiiiitittc ettt 953

17

Table of Contents

18

Welcome To This Guide

Welcome to the HP Diagnostics Installation and Configuration Guide. This
guide describes how to install and configure the HP Diagnostics
components. This guide also gives an overview of the integrations with
other HP Software products.

How This Guide Is Organized

Part |

Part Il

Part Il

Part IV

This guide contains the following parts:

Preparing to Install

Provides the information and instructions to plan and prepare for the
installation and configuration of the Diagnostics components.

Installation of the Diagnostics Server and Collectors

Describes how to install and configure the HP Diagnostics Servers and the
HP Diagnostics Collectors.

Installation and Setup of the Java, .NET and Python Agents

Describes the processes for installing and configuring the Diagnostics
Agents.

Custom Instrumentation for Monitoring Java and .NET Applications

Describes how to control the instrumentation HP Diagnostics applies to the
classes and methods of monitored applications to enable it to gather
performance metrics.

19

Welcome to This Guide

20

Part V

Part VI

Part VII

Part VIII

Part IX

Advanced Configuration of the Diagnostics Server and the Java and
.NET Agents

Describes advanced configuration of the Diagnostics Server and the
Diagnostics .NET and Java Agents.

Configuring Communications through Proxies and Firewalls

Describes how to set up your Diagnostics deployment using different
communication channels.

Configuring Diagnostics Metrics Collectors

Describes metrics capture and how to configure the metric collectors for the
.NET Agent and the Java Agent.

Setting Up Integration with Other HP Software Products

Gives an overview of how to set up LoadRunner, Performance Center and
Business Service Management for integration with HP Diagnostics.

Appendixes

Describes administrative tasks for the Diagnostics Administrator such as the
following and provides technical data flow diagrams:

Using the Admin UI to configure and manage Diagnostics
Setting up users, permissions, authorization and authentication
Enabling HTTPS secure communications between components
Using System Health Ul

Managing data as well as doing backup and recovery
Upgrading Diagnostics and installing patch updates

Using the Data Export feature

Y Y Y Y Y Y Y Y

Troubleshooting and finding additional reference information

Welcome to This Guide

HP Diagnostics Online Documentation
Your HP Diagnostics application comes with the following documentation:

» Diagnostics User’s Guide and Online Help. Explains how to use HP
Diagnostics to analyze the performance of your enterprise applications. You
access the online help for Using HP Diagnostics from the Help button in the
Diagnostics Ul or from the help menu in the integrated HP Software
product. You access the PDF version of the User’s Guide from the
Diagnostics online help Home page, or from the Windows Start menu (Start
> Programs > HP Diagnostics Server > User Guide), or from the
Documentation directory on the HP Diagnostics installation disk, or from
the Diagnostics Server installation directory.

» Diagnostics Installation and Configuration Guide. Explains how to install
and configure the Diagnostics components and how to configure
Diagnostics for integration with other HP Software products. You access the
PDF of this guide from the Diagnostics online help Home page, or from the
Documentation directory on the Diagnostics installation disk, or from the
Diagnostics Server installation directory, or from the Windows Start menu
(Start > Programs > HP Diagnostics Server > Install Guide).

» Diagnostics Frequently Asked Questions. Gives answers to frequently asked
questions. You can access the pdf from the Diagnostics online help.

» Diagnostics Data Model and Query API. Describes the Diagnostics data
model and the query API you can use to access the data. You can access the
pdf from the Diagnostics online help.

» Readme. Provides last-minute technical and troubleshooting information
about HP Diagnostics. The file is located in the HP Diagnostics installation
disk root directory. There is also an Upgrade and Patch Install Instructions
document with details for installing an upgrade or patch release.

» Diagnostics Java Agent Guide. Describes how to install, configure, and use
the Diagnostics Java Agent and the Diagnostics Profiler for Java. You access
the PDF of this guide on the agent system in the \docs directory, or from the
Java Diagnostics Profiler UI online Help link, or in the Documentation
directory on the HP Diagnostics installation disk.

21

Welcome to This Guide

» Diagnostics .NET Agent Guide. Describes how to install, configure, and use

the Diagnostics .NET Agent and Diagnostics Profiler for .NET. You access the
PDF of this guide on the agent system in the \docs directory, or from the
.NET Diagnostics Profiler UI online Help link, or in the Documentation
directory on the HP Diagnostics installation disk.

Note: The information in the Diagnostics Agent guides is based on
information in the Diagnostics Installation and Configuration Guide and
the Diagnostics User’s Guide.

Additional Online Resources

22

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www?2.hp.com/passport-reqgistration.html

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Welcome to This Guide

Documentation Updates

HP Software is continually updating its product documentation with new
information.

To check for recent updates, or to verify that you are using the most recent
edition of a document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).

23

http://h20230.www2.hp.com/selfsolve/manuals

Welcome to This Guide

24

Part |

Preparing to Install

This section includes:

» Preparing to Install HP Diagnostics

26

1

Preparing to Install HP Diagnostics

Y Y Y Y Y Y Y Y

Before you install HP Diagnostics, read the following information and
instructions that will help you plan and prepare for the installation and
configuration of the Diagnostics components.

This chapter includes:

HP Diagnostics Components and Data Flow on page 28

Supported Application Servers and Environments on page 30

System Requirements for the Diagnostics Components on page 31
Information Required for Installation on page 40

Pre-installation Considerations on page 47

Recommended Order of Installation on page 48

Licensing HP Diagnostics on page 50

Upgrading from Earlier Versions of Diagnostics on page 50

27

Chapter 1 ¢ Preparing to Install HP Diagnostics

HP Diagnostics Components and Data Flow

The following diagram illustrates the data flow among Diagnostics
components and integrations with other HP Software products.

Performance Center

M || Mediator

rofile Server

| Diagnostics
Probe N

e Enterprise Ul

Series

Database H

Hosts running Java Apps/JvVMs
Z 5
L
3
o
4
g8
Z
=

g
E NET AppDomain Cur;r:andmg
o Agent rver
g — Mediator
S Server i -
3 ApnDomak Business Service
n pRLomain 3 Management
E B Time Time
£ 4 robe N Series Series
Database Database BSM Ul
Caollector W
MQ a1 4 { Probe 1 |
o | e
rofile
2]
EMS al || Mediator Samples
ot Sarver i
a2 I (metrics)
Probe 2
me
soL a1 i Probe 2 Serles
Server o | Probe 3 Database
loracle Collector
Instance Probe 1 1
Instance2 Probe 2 1
SAP 1 Frabe 1
[Probe 2 |}
2 Probe 2}
= integrations with
other products
Collector
VLZED o Probe 2 }— = host

HP Diagnostics consists of the following components:

» Diagnostics Agents. Capture events from your J2EE and .NET applications
such as method invocations, the beginning and end of business transactions
and server requests and then aggregates performance metrics to be sent to a
Diagnostics Server. There is also now a Python Agent for monitoring Python
applications.

The Diagnostics Agent software is installed on the systems to be monitored.
With the Java Agent you instrument the application server(s) for
monitoring. With the .NET Agent you instrument the application domains
for monitoring.

28

Chapter 1 ¢ Preparing to Install HP Diagnostics

Each instrumented application server or application domain results in an
agent instance represented by a probe entity. You control the data collection
settings for these probe entities using a number of different configuration
files in the agent installation folder.

Diagnostics Collectors. Responsible for collecting data from external
environments including Oracle Databases, SQL Server systems, IBM
WebSphere MQ messaging systems, TIBCO Enterprise Message Service,
Software AG webMethods Broker, VMware vCenter or VMware ESX servers
and SAP NetWeaver - ABAP systems. You install the Diagnostics Collector
and define specific instances of these systems to be monitored. Each
monitored instance is represented as a probe entity in the Diagnostics user
interface.

Diagnostics Servers. Responsible for working with the agents, collectors and
with other HP Software products to capture, process, and present the
performance metrics for your applications.

The Diagnostics Server processes and further aggregates the data that it
receives, and formats the information so that it can be displayed in the
views of the user interface.

A Diagnostics deployment may consist of one or many Diagnostics servers.
If there is only one Diagnostics server in your deployment, it is configured
as the Diagnostics commander server and must perform both the
commander and mediator roles. If there is more than one Diagnostics server
in a deployment, one must be configured as the Diagnostics commander
server, with all the rest running as (distributed) mediators.

In a typical deployment there is a Diagnostics commander server connected
to a one or more servers running as mediators. Each Diagnostics Mediator
Server is configured to receive data from systems where the agents and
collectors are installed. The Diagnostics Mediator Server then filters and
aggregates the events it receives. This information is sent to the Diagnostics
commander server, which displays the processed metrics in the Ul

The Diagnostics commander server is responsible for the command and
control functions between the various Diagnostics components and the
components of the other products with which Diagnostics is working.

The commander server keeps track of the location and status of the other
Diagnostics components, and is the communication hub between the other
components.

29

Chapter 1 ¢ Preparing to Install HP Diagnostics

The commander server is also responsible for displaying the performance
information for the monitored applications in the Diagnostics user
interfaces.

User Interfaces. The main Diagnostics user interface (Diagnostics Enterprise
UI) displays performance data in charts and graphs for use in monitoring
performance, isolating problems and analyzing causes to solve complex
performance problems.

If you are using Diagnostics with other HP Software products you can also
access the Diagnostics Enterprise Ul from the user interface of the other
products. For example you can access the Diagnostics Enterprise Ul from HP
Business Service Management. And in pre-production, during a load test,
you can access the Diagnostics Enterprise UI from HP LoadRunner or HP
Performance Center.

Diagnostics also provides Java and .NET profilers displayed in separate user
interfaces (Diagnostics Profiler Uls) available directly on the agent systems
or as a drill down from the main Diagnostics user interface.

Integrations. Diagnostics has integrations with the following other HP
Software products. See Part VIII, “Setting Up Integration with Other HP
Software Products” for more information. Also see the Online Help or User’s
Guide section on "Integrations with Other HP Software Products".

» HP Business Service Management
» HP LoadRunner

» HP Performance Center
» HP Sitescope
>

HP Continuous Delivery Automation (CDA)

Supported Application Servers and Environments

30

HP Diagnostics supports the monitoring of:

> Java EE-based application servers. Including WebLogic, WebSphere,
Oracle, Sun Java Enterprise Server, JBoss, and more.

> .NET-based application servers. HP Diagnostics supports the Microsoft I1S
.NET Framework.

Chapter 1 ¢ Preparing to Install HP Diagnostics

Python applications.

SAP NetWeaver-ABAP systems.

Oracle databases.

SQL Server databases.

IBM WebSphere MQ systems.

TIBCO Enterprise Message Service (EMS) systems.

Y Y Y Y Y Y Y

VMware vCenter or VMware ESX servers.
» Software AG webMethods Broker

For the most recent information on supported environments, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

System Requirements for the Diagnostics Components

Y Y Y Y VY Y

The following section describes the recommended system configurations for
hosting the components of HP Diagnostics. See the deployment diagram in
the previous section to understand the component hosts described in this
section.

When you select the machines that will host the Diagnostics components,
make sure that the system configuration of the machines supports the
processing load and the number of applications you will be monitoring.

This section includes the following:

“Supported Environments for the Diagnostics Components” on page 32
“Requirements for the Diagnostics Enterprise Ul” on page 32
“Requirements for the Diagnostics Server Host” on page 32

“Scalability Information” on page 34

“Requirements for the Diagnostics Java Agent Host” on page 36

“Requirements for the Host of the Diagnostics Java Profiler User Interface”
on page 37

31

Chapter 1 ¢ Preparing to Install HP Diagnostics

32

> “Requirements for the Diagnostics .NET Agent Host” on page 38

» “Requirements for the Host of the Diagnostics .NET Profiler User Interface”

on page 39

» “Requirements for the Diagnostics Collector Host” on page 39

> “Requirements for the Python Agent” on page 39

Supported Environments for the Diagnostics Components

For the most recent information on supported environments for the
Diagnostics components, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Diagnostics Servers and Diagnostics Collectors use the Java 1.6 JVM.

Important: For Diagnostics Linux installers (both 32 and 64 bit for servers,
agents and collectors) the 64-bit Linux system must have the patch
libXtst-1.0.1-3.1 installed in order to run the installers in graphical mode.

Requirements for the Diagnostics Enterprise Ul

The Diagnostics Enterprise Ul is presented in a web browser using a Java
applet that requires JRE 1.6, minimally to be installed on the client systems
that access the Ul Supported browsers include Microsoft Internet Explorer
7, 8, 9 and Mozilla Firefox 3.5, 3.6, 5, 6. For the most recent information on
supported browsers, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Requirements for the Diagnostics Server Host

The system configuration requirements for the host of a Diagnostics Server
depend upon the number of probes and mediator servers that are reporting
to it. When a server is designated as the Diagnostics commander server, the
probe data is generally stored on each mediator server that reports to it.

Chapter 1 ¢ Preparing to Install HP Diagnostics

If installing the Diagnostics Server on a SAN storage device the SAN must
have adequate read and write speed comparable with a mid to high end
drive (see “Scalability Information” on page 34).

Note: The requirements in the tables are guidelines that are based on tests
run with probes monitoring applications with an average number of server
requests and server request depths. The actual system requirements that you
need and the actual number of supported probes are affected by several
characteristics of the monitored environment including number of server
requests, server request depth (methods in the call profile), number of
trended methods, and number of out-bound calls. The type of server request
also affects the requirements. For example, Web services require more
resources and trimming does not apply to them.

The following table lists the desired system requirements for the host of a
Diagnostics server (typically a mediator server) receiving data from Java

probes.
Patorm | em | pPta 50U | bpto Joojewa | up o 200
Windows | CPU 2x 2.4 GHz 2x 2.8 GHz 2x 3.4 GHz
Windows | Memory 4 GB 4 GB 4 GB
Solaris CPU 2x Ultra Sparc 3 | 2x Ultra Sparc 4 | 2x Ultra Sparc 4
Solaris RAM 4 GB 4GB 4 GB
Linux CPU 2x 2.0 GHz 2x 2.4 GHz 2x 2.8 GHz
Linux Memory 2GB 4 GB 4 GB
All Heap Size | 512 M 750 M 1280 M

33

Chapter 1 ¢ Preparing to Install HP Diagnostics

34

Up to 50 Java Up to 100 Java Up to 200 Java
Platform Item Probes Probes Probes
All Disk 4 GB per probe

Notes regarding the test environment

» Call profile (depth of method calls) for each Server Request: 5
» Number of unique Server Requests per probe: 23

The following table lists the desired system requirements for the host of a
Diagnostics server (typically a mediator server) receiving data from .NET

probes.

Platform ltemn Up to 10 .NET Up to 20 .NET Up to 50 .NET
Probes Probes Probes

Windows CPU 1x 1.0 GHz 1x 2.0 GHz 2x 2.4 GHz

Windows Memory 768 MB 1GB 3GB

Solaris CPU 1x Ultra Sparc 2 | 2x Ultra Sparc 2 | 2x Ultra Sparc 3

Solaris RAM 1 GB 1.5GB 3GB

Linux CPU 1x 1.0 GHz 1x 2.0 GHz 2x 2.4 GHz

Linux Memory 768 MB 1 GB 3GB

All Heap Size 350 M 700 M 1400 M

All Disk 3 GB per probe

Scalability Information

The following scalability numbers are derived from the following reference

hardware configuration:

Platform:

Operating System:

CPU:

Windows

Windows Server 2008, 64-bit

Intel Xeon 5160 @ 3.00Ghz (quad core)

Chapter 1 ¢ Preparing to Install HP Diagnostics

Memory: 8 GB

Disk 1/0: Smart Array P400i, 2SCSI drives in RAID 0 (136 GB)
[130 MB/S, sequential read and write]

Java Heap: 5.9 GB (-Xmx6096m); 64-bit JVM

Disk Space: 2-4 GB per probe (overall disk space can be adjusted by

changing retention intervals)

Network: 1 Gbps

Note: A 64-bit OS and JVM is recommended for use with Diagnostics for

optimal performance.

Scalability numbers for the previously referenced hardware.

Up to 100 Java probes:

Up to 400 Java probes:

Up to 150 Java probes:

Up to 230 Java probes:

Up to 40 Java probes:

100 Server Requests per probe, 78 methods per
Call Profile pulled every 45s (default)

25 Server Requests per probe, 78 methods per Call
Profile pulled every 45s (default)

150 Server Requests per probe, 25 methods per
Call Profile pulled every 240s

100 Server Requests per probe, 25 methods per
Call Profile pulled every 240s

75 Web Service Operations, 10 unique consumers
per Web Service Operation, 25 methods per Call
Profile pulled every 45s (default)

Note, this load configuration requires 7 GB disk
space per probe.

See also “Configuring the Diagnostics Server for a Large Installation” on

page 470.

35

Chapter 1 ¢ Preparing to Install HP Diagnostics

36

Notes:

» For environments with many probes, better performance can be achieved
by having two or more instances of the Diagnostics server and
distributing the probes among each server instance.

» For configuration considerations related to the Diagnostics performance
data that is stored on the host for the Diagnostics commander server, see
“Pre-Installation Data Management Considerations” on page 882.

» For information on how to optimize a Diagnostics server to handle more
probes, see “Optimizing the Diagnostics Server in Production to Handle
More Probes” on page 496.

Requirements for the Diagnostics Java Agent Host

The overhead that the Diagnostics Java Agent imposes on the system being
monitored is extremely low. The following are the recommendations for
memory and disk space that support the agent’s processing:

Platform: All Platforms
Memory: 50MB Additional RAM
Free Hard Disk Space: 200MB free disk space is required for the intial

Java probe install. More space might be required
during runtime due to the creation of logfiles and
classmap. For large applications, it is
recommended to have an additional 200MB
available per probe for logfiles and classmap data.

Chapter 1 ¢ Preparing to Install HP Diagnostics

Note: The additional memory must be allocated to the max heap for the
JVM by adding -Xmx???m to the java settings in the application’s startup
script.

Adjusting heap size. For information on setting the max heap for the Java
Agent, see “Adjusting the Heap Size for the Java Agent in the Application
Server” on page 237.

Adjusting permgen size. Typically any increase in permgen size as a result of
adding the Diagnostics agent is small. However, in some cases the
application, without the agent, uses almost all its permgen limit. In such
cases you will need to adjust it. For example you could increase it by the
existing limit * 1.05 +5MB. To adjust permgen for Hotspot JVM, use
-XX:MaxPermSize option, for example: -XX:MaxPermSize=240m.

Requirements for the Host of the Diagnostics Java Profiler
User Interface

The user interface for the Diagnostics Profiler for Java is presented in a web
browser using a Java applet that requires JRE 1.6 or above to be installed on
the client system that accesses the UL This machine must be able to access
the Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler. By
default, the probes are assigned to the first available port beginning at
35000. Supported browsers include Microsoft Internet Explorer 7, 8, 9 and
Mozilla Firefox 3.5, 3.6, 5, 6. For the most recent information on supported
browsers, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

37

Chapter 1 ¢ Preparing to Install HP Diagnostics

Requirements for the Diagnostics .NET Agent Host

The overhead that the .NET agent imposes on the system being monitored is
extremely low. The following are the recommendations for memory and
disk space that support the agent’s processing:

Platform All Supported Platforms
Memory 60 MB Additional RAM
Free Hard Disk Space 200 MB Additional Space
.NET Framework 2.0 or later

Important: If you must support .NET Framework 1.1, use an earlier version
of the .NET Agent (8.x) which will continue to be supported and updated via
patches.

WCF Requirements and Limitations: Monitoring .NET Windows
Communication Foundation (WCF) services requires .NET Framework 3.0
SP1 or greater. Only the following bindings are supported:

» BasicHttpBinding
» WSHttpBinding
» NetTcpBinding

38

Chapter 1 ¢ Preparing to Install HP Diagnostics

If your application uses a binding that is not supported, the .NET probe only
creates a generic server request for each WCF method. It will not be a web
Service and there will be no XVM correlation.

Requirements for the Host of the Diagnostics .NET
Profiler User Interface

The user interface for the .NET Diagnostics Profiler is presented using
DHTML/XML/XSLT/]JScript technology that requires Internet Explorer 7 or
later. The machine that is to be used to present the Ul must be able to access
the .NET Diagnostics Profiler URL: http://<probehost>:<probeport>/profiler.
The probes are assigned to the first available port within the range defined
during the Probe installation. The default port range is 35000 - 35100.

Requirements for the Diagnostics Collector Host

The Collector can be installed on supported systems that can interact with
the host machines of the SAP NetWeaver—-ABAP, Oracle, SQL Server, IBM
WebSphere MQ, TIBCO EMS, Software AG webMethods Broker or VMware
application from which it is collecting data.

350MB free disk space is required for the Collector install. More space might
be required during runtime due to the creation of logfiles or for large
environments.

For the most recent information on supported environments for the
Diagnostics components, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Requirements for the Python Agent
See “Installing and Setting Up Python Agents” on page 295.

39

Chapter 1 ¢ Preparing to Install HP Diagnostics

Information Required for Installation

40

Before installing the Diagnostics components, you should carefully plan the
configuration of the Diagnostics components and the machines that host
them. You should also consider the location of the component hosts within

your network topography.

The tables in the following sections can help you gather the information
required during the installation of the Diagnostics components.

Note: When you are installing Business Service Management with
Diagnostics, when entering the names for the hosts of the Diagnostics

components it is strongly recommended that you use fully qualified host

names; that is, the machine name and the domain name.

Diagnostics Server

Information Required

Description

Will you have a commander server
and one or more mediators?

During planning for the Diagnostics
deployment this will be determined
based on the size and complexity of
the monitored environment.

Information Required

Description

For a Diagnostics commander server,
the location of the HP Diagnostics
license that was generated for the
machine that will host the server

Contact your HP Software support

person to request a license and place
it in a folder where it can be accessed
from the Diagnostics Server installer.

For a Diagnostics mediator server,
the URL for the Diagnostics
commander server

After the Diagnostics commander
server has been installed, the URL is
available to open Diagnostics views is
available.

Will Diagnostics by used in a Saa$
environment?

If you are deploying Diagnostics in a
SaaS (HP hosted) environment
different installer options will be
presented.

Will Diagnostics be integrated in a
Business Service Management
environment?

If you are deploying Diagnostics into
a Business Service Management
environment you'll need to select
this option in the installer.

Chapter 1 ¢ Preparing to Install HP Diagnostics

41

Chapter 1 ¢ Preparing to Install HP Diagnostics

42

Java Agent

» HP Software Product and Diagnostics Server Information

Information Required

Where to find it

Value

Mode for installing the
agent

Choose according to
product license.

» Profiler only (no
connection to server)

» Used only with
LoadRunner/
Performance Center
(AD license)

» Enterprise mode (AM
license) for use with
one of the following
or both:

» Diagnostics
» TransactionVision

Diagnostics Server Name

Fully qualified host
name or [P address of the
host of the Diagnostics
Server.

This is not required for
using the Java
Diagnostics Profiler in a
standalone mode.

If there is only one
Diagnostics Server in the
deployment where the
agent will run, this is the
Diagnostics commander
server.

In a distributed
environment with a
commander server and
mediator servers, this is
the Diagnostics mediator
server that is to receive
events from the agent.

Diagnostics Server Port

Use the default 2006 or
the port you configure

for accessing Diagnostics.

This is not required for
using the Java
Diagnostics Profiler in a
standalone mode.

Default value: 2006

Chapter 1 ¢ Preparing to Install HP Diagnostics

» Instrumented Application Server and Agent Information

Information Required

Where to find it

Value

Java agent name

A unique string;
Created by user.

The agent name is
assigned as the default
probe entity name.

The name of the agent
should indicate the
application you plan to
monitor and the type of
probe instrumentation,
to help you distinguish
between the different
applications and types
of probes.

There can be multiple
probes using a single
Java Agent
configuration. In this
case you can later
configure unique probe
names for each
monitored application.

For example:
WebLogic_MedRec_java

Java agent group

This is user-defined at
the time that the agent
is installed.

The agent group name
you enter is used as the
probe group name.

Probe groups are logical
groupings of probes
that report to the same
Diagnostics Server.

Default value:

Default

Type of application server
that will be instrumented
for monitoring

The host system
administrator.

43

Chapter 1 ¢ Preparing to Install HP Diagnostics

44

Information Required

Where to find it

Value

Application Server
configuration properties

The host system
administrator.

The details vary
according to the
application server you
are monitoring.

Location of the JRE
executable

The host system
administrator.

Depends on the type of
application server you
plan to monitor. See
“Preparing Application
Servers for Monitoring
with the Java Agent” on
page 161.

.NET Agent

Chapter 1 ¢ Preparing to Install HP Diagnostics

» Diagnostics Server Information

Information Required

Where to find it

Value

Mode for installing the
agent

Choose according to
product license.

» Profiler only (no
connection to server)

» Used only with
LoadRunner/
Performance Center
(AD license)

» Enterprise mode (AM
license) for use with
one of the following
or both:

» Diagnostics
» TransactionVision

Diagnostics Server Name

Fully qualified host name
or IP address of the host
of the Diagnostics Server.

This is not required for
using the .NET
Diagnostics Profiler in a
standalone mode.

If there is only one
Diagnostics Server in the
deployment where the
agent will run, this is the
Diagnostics commander
server.

In a distributed
environment with a
commander server and
mediator servers, this is
the Diagnostics mediator
server that is to receive
the events from the
agent.

Diagnostics Server Port

Use the default 2006 or
the port you configure
for accessing Diagnostics.

This is not required for
using the.NET
Diagnostics Profiler in a
standalone mode.

Default value: 2612

45

Chapter 1 ¢ Preparing to Install HP Diagnostics

46

» Agent and Port Information

Information Required

Where to find it

Value

agent group

This is user defined at the
time that the agent is
installed.

The agent group name
you enter is used as the
probe group name

Probe groups are logical
groupings of probes that
report to the same
Diagnostics Server.

Default value:

Default

Web Port Min

System Administrator.

The lowest port number

in a range of ports on the
agent system that can be
assigned to the probe.

Default value: 35000

Web Port Max

System Administrator.

The highest port number
in a range of ports on the
agent system that can be
assigned to the probe.

Default value: 35100

Chapter 1 ¢ Preparing to Install HP Diagnostics

Pre-installation Considerations

Note: Before you install any of the Diagnostics components on a Windows
machine, make sure that the Services window, accessible from
Administrative Tools, is not open.

Diagnostics Server

» The performance metrics for HP Diagnostics cannot be displayed until the
Diagnostics commander server has been licensed with a valid license. For
more information on obtaining a license and other licensing issues, see
Chapter 3, “Licensing HP Diagnostics.”

Note: For optimal display of the Diagnostics views, your screen resolution
should be at least 1024x768.

Diagnostics Java Agent

» The Java Agent must be installed on the same system as the Java application
under test.

» The Diagnostics Profiler for Java operates in an unlicensed mode with load
restrictions until it is able to connect to a Diagnostics commander server
that is properly licensed. For more information on obtaining a license and
other licensing issues, see Chapter 3, “Licensing HP Diagnostics.”

» Diagnostics does not support localization of agent names.

47

Chapter 1 ¢ Preparing to Install HP Diagnostics

Diagnostics .NET Agent

The .NET Agent must be installed on the same system as the .NET
application under test.

The Diagnostics Profiler for .NET operates in an unlicensed mode with load
restrictions until it is able to connect to a Diagnostics commander server
that is properly licensed. For more information on obtaining a license and
other licensing issues, see Chapter 3, “Licensing HP Diagnostics.”

Diagnostics does not support localization of agent names.

Diagnostics Python Agent

The Python Agent must be installed on the same system as the Python
application under test.

LoadRunner and Performance Center Host Machines

If LoadRunner is already installed, make sure that the Controller and main
LoadRunner window are closed before you install the LoadRunner
Diagnostics Add-in.

» The LoadRunner Diagnostics Add-in is not required for Performance Center.

» The time and time-zone settings of the host machines for the Diagnostics

components must be consistent. You will encounter time-difference
problems if the time is not properly set.

Recommended Order of Installation

48

Careful planning and preparation for installing the components of HP
Diagnostics can help you to avoid complications and errors, and enable you
to complete the installation and configuration steps quickly.

Note: The following order of the installation is recommended for the
products and components. Deviating from it could increase the complexity
of the installation process and produce unpredictable results.

Chapter 1 ¢ Preparing to Install HP Diagnostics

Before you start, review the following information to get an overview of the
entire installation and configuration process.

Recommended order of installation:

Check the system requirements and installation considerations.

See “System Requirements for the Diagnostics Components” on page 31.
Install the Diagnostics Server.

For more information, see Chapter 2, “Installing the Diagnostics Server” and
Chapter 3, “Licensing HP Diagnostics.”

Install the Diagnostics Agents and Collectors.
For a Java environment, see Chapter 5, “Installing Java Agents.”
For a .NET environment, see Chapter 8, “Installing .NET Agents.”

For a Python environment, see Chapter 9, “Installing and Setting Up Python
Agents”.

For Oracle Database, SAP NetWeaver-ABAP, SQL Server Database, VMware
vCenter or VMware ESX servers, WebSphere MQ, TIBCO EMS and Software
AG webMethods Broker environments, see Chapter 4, “Installing
Diagnostics Collectors.”

For Java agents, instrument the application servers for monitoring by
Diagnostics (this results in agent instances which are represented as probe
entities in Diagnostics).

For more information, see Chapter 6, “Preparing Application Servers for
Monitoring with the Java Agent.”

For more information, see Chapter 7, “Preparing Application Servers for
Client Monitoring with the Java Agent”.

Customize the instrumentation and control the data collection settings
using a number of different configuration files in the agent installation
folder.

For more information, see the sections on “Custom Instrumentation for
Monitoring Java and .NET Applications” and “Advanced Configuration of
the Diagnostics Server and the Java and .NET Agents”

49

Chapter 1 ¢ Preparing to Install HP Diagnostics

6 If HP Diagnostics is integrated with LoadRunner, Performance Center, or

Business Service Management, each of these products requires
configuration in order to use HP Diagnostics.

For Business Service Management, see Chapter 22, “Setting Up the
Integration Between Business Service Management and Diagnostics.”

For LoadRunner integration, install the LoadRunner Diagnostics Add-in (see
Chapter 23, “Installing the LoadRunner Diagnostics Add-in”) and set up
LoadRunner to use Diagnostics (see Chapter 24, “Setting Up HP LoadRunner
and HP Diagnostics Integration”).

For Performance Center, see Chapter 25, “Setting Up Performance Center to
Use Diagnostics.”

Licensing HP Diagnostics

To be able to see the metrics for applications in the Diagnostics views, you
must obtain a valid license for the Diagnostics commander server. For more
information on obtaining a license and other licensing issues, see Chapter 3,
“Licensing HP Diagnostics.”

Upgrading from Earlier Versions of Diagnostics

50

If you are installing HP Diagnostics in an environment where a previous
version of the product was installed, or where other HP Software products
need to be upgraded so that the features of Diagnostics can be accessed,
follow the instructions in Appendix G, “Upgrade and Patch Install
Instructions.” These instructions guide you to the appropriate instructions
for upgrading your current HP Software products and the Diagnostics
components.

Part Il

Installation of the Diagnostics Server
and Collectors

This section includes:

» Installing the Diagnostics Server
» Licensing HP Diagnostics

» Installing Diagnostics Collectors

52

2

Installing the Diagnostics Server

This section explains how to install the Diagnostics Server on Windows and
UNIX machines.
This chapter includes:
» Installing Diagnostics Servers on page 54
» Verifying the Diagnostics Server Installation on page 67
» Silent Installation of the Diagnostics Server on page 68
» Starting and Stopping the Diagnostics Server on page 70
» Licensing Your Diagnostics Software on page 72
» More Information on Configuring Diagnostics Servers on page 72
» Determining the Version of the Diagnostics Server on page 72
» Uninstalling the Diagnostics Server on page 73
» Manual Installation of OM Agent and IAPA Components on page 74
» Manual Uninstall of OM Agent and IAPA Components on page 76

53

Chapter 2 ¢ Installing the Diagnostics Server

Installing Diagnostics Servers

54

This chapter provides detailed instructions for installing the Diagnostics
Server and applies to:

» A Windows environment

» Most UNIX environments using a graphical installer. You can also install
on UNIX using the console mode command line interface.

For the most recent information on supported platforms, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp. Contact HP
Support for installation assistance for additional platforms not listed in the
support matrix.

Note: If an earlier version of the Diagnostics Server is installed on your
machine, see Appendix G, “Upgrade and Patch Install Instructions.”

Root Access Requirement. If the Diagnostics commander server will be
integrated with Business Service Management 9.00 or later, root access is
required during the Diagnostics Server installation. Root access is required
for the installation of the OM Agent and IAPA component.

If you need to install the Diagnostics Server without root access you can
chose to not install the OM Agent and the IAPA component and install
them later manually. When you see the dialog box: OM Agent and IAPA
component installations leave the box unchecked and install later (see
“Manual Installation of OM Agent and IAPA Components” on page 74).

Root privileges are also required on Solaris and Linux systems to setup the
server to auto-start at boot.

Chapter 2 e Installing the Diagnostics Server

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics Java Agents are installed in your company’s IT environment and
the Diagnostics Commander Server and Mediator Servers are installed by HP
on a SaaS system on-premises at HP. So for customers using Diagnostics in a
Saa$ environment you would typically not install any Diagnostics servers on
your company’s systems and can ignore this chapter. In a SaaS deployment,
customers would just be installing Java Agents that connect to the Servers
set up by HP SaaS administrators on HP premises. Contact your SaaS
administrator for more information.

This section includes:

» “Launching the Diagnostics Server Installer” on page 55

> “Running the Installation” on page 58

Launching the Diagnostics Server Installer

Depending on your environment, launch either the Windows installer or
the UNIX installer. See also “Silent Installation of the Diagnostics Server” on
page 68.

Note: Allow approximately 400MB of free space in the temp directory.

To access the Windows installer:

From the Diagnostics DVD (Autorun.exe) the installation menu page is
displayed. From the menu, select Diagnostics Server 32-bit to install the
32-bit Windows version of the Diagnostics Server. And select Diagnostics
Server 64-bit to install the 64-bit version of the Diagnostics Server.

Or you can run the appropriate installer directly by double-clicking the
executable file HPDiagServer_<release number>_win32.exe (32-bit) or
HPDiagServer_<release number>_win64.exe (64-bit that runs with a 64-bit
JVM) in the Diagnostics_Servers directory.

Continue with “Running the Installation” on page 58.

55

Chapter 2 ¢ Installing the Diagnostics Server

To access the UNIX installer:

1 From the Diagnostics installation location access the Diagnostics_Servers
directory. Copy the appropriate installer HPDiagServer_<release
number>_<platform>.bin to the machine where the Diagnostics Server is to
be installed.

2 Change the mode of the installer file to make it executable.
3 Run the installer.

» To run the installer in the graphical mode, enter the installer
HPDiagServer_<release number>_<platform>.bin filename at the UNIX
command prompt; for example:

./HPDiagServer_9.00_linux.bin

» To run the installer in console mode enter the installer
HPDiagServer_<release number>_<platform>.bin filename with the
-console option, at the UNIX command prompt; for example:

./HPDiagServer_9.00_linux.bin -console

Continue with “Running the Installation” on page 58.

To download the installer from the HP Software Download Center:
1 Go to the HP Software web site’s Software Download Center.

2 Locate the Diagnostics information and choose the appropriate link for
downloading the Diagnostics Server software.

3 Follow the download instructions on the web site.

Continue with “Running the Installation” on page 58.

56

Chapter 2 e Installing the Diagnostics Server

To download the installer from the Business Service Management
Diagnostics downloads page:

In Business Service Management select Admin > Diagnostics from the top
menu and click the Downloads tab.

On the Downloads page, click the link to download the appropriate
Diagnostics Server installer.

Note: The Java Agent installers are available in Business Service
Management only if they are placed into a directory that Business Service
Management can access. You can enable this during the installation of the
Diagnostic Server, or you can copy the server installers manually from the
installation disk to the required location.

Continue with “Running the Installation” on page 58

57

Chapter 2 ¢ Installing the Diagnostics Server

Running the Installation

An overview of the Diagnostics Server installation steps is shown in the
diagram below; refer to the rest of this section for details on each step.

Server Installation

Step 1. License

Step 2. Location and Port
of Commander Server

Step 3. Type of Diagnostics Server:
Commander or Mediator

v v
Commander Mediator
Step 4a. Time Sync Step 4b. Location and Port
Method of the Commander

Step 5a. Planning to
Integrate with BSM?

Yis Nf

E!-_S'll'l’s pa.th to Continue to
Diagnostics Step 6
installers

Step 6. SMTP Email Settings

Step 7. Review Install

Summary
If BSM selected «—— Step 8. Install
above
Select whether to

run the OM Agent — > No
installer now

Yes

+

L

OM agentinstall |—* End Installation

Note that additional steps are required by the HP SaaS administrator for a
Saa$ deployment of servers on HP premises (HP internal documentation).

58

Chapter 2 e Installing the Diagnostics Server

Important: If there is a pre-existing installation of the Diagnostics Server on
the host machine, you must follow the instructions for upgrading the server
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

After you launch the installer, the software license agreement opens.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

To begin the installation and select the installation location and mode:
Accept the software license agreement.

The software license agreement is displayed.

Read the agreement and accept the terms of the agreement.

Select Next to continue.

Note: For the UNIX console mode installer, you can press ENTER as you read
to move to the next page of text, or type g to jump to the end of the license
agreement.

Specify the location where the Diagnostics Server is to be installed.

Accept the default installation directory or type the path to a different
location. In the Windows installer (or UNIX graphical mode installer), click
Browse to navigate to another directory.

Select Next to continue.

59

Chapter 2 ¢ Installing the Diagnostics Server

60

Note: In the UNIX console mode installer, press 1 to select Next, 2 for
Previous, 3 to Cancel, or 4 to Re-display the screen.

Indicate the Diagnostics Server mode for the Diagnostics Server that you
are installing.

The Diagnostics deployment you are setting up can consist of one or many
Diagnostics Servers. If there is only one Diagnostics Server in your
deployment, it is installed in Commander mode and can perform both
commander and mediator roles. When there is more than one Diagnostics
Server in a deployment, one is configured in Commander mode and all the
rest in Mediator mode reporting to the Commander Server.

» If this is the only Diagnostics Server in your deployment, select
Commander Mode.

» If there is more than one Diagnostics Server in your deployment, and the
one you are currently installing is to be configured in Commander mode,
select Commander Mode. Otherwise, select Mediator Mode.

Ignore the This Server is to be used in an HP Software-as-a-Service (SaaS)
environment checkbox as this is to be used by an HP SaaS administrator
installing a Diagnostics Server (either Commander or Mediator) on HP
premises.

At this stage, the installation differs according to whether you are installing
the Diagnostics Server in Commander or Mediator mode.

To install the Diagnostics commander server, continue with “Installing the
Diagnostics Server in Commander Mode” on page 61.

To install a Diagnostics mediator server, continue with “Installing the
Diagnostics Server in Mediator Mode” on page 63.

Chapter 2 e Installing the Diagnostics Server

Installing the Diagnostics Server in Commander Mode

If you are installing the Diagnostics Server in Commander Mode, continue
as follows:

Select a time synchronization method.

For diagnostics data to be correlated properly, all the components in the
Diagnostics deployment must be time-synchronized. Select one of the
following time synchronization methods:

> Synchronize with an NTP server. This option applies only if the
Diagnostics Server can access an NTP Server outside the firewall. This is
the default method.

» Synchronize with the registered Business Service Management server. If
the Diagnostics Server is to work in a Business Service Management
environment, select this option to synchronize with the Business Service
Management server.

» Synchronize with system time. Select this option if the Diagnostics Server
is to work in an environment other than Business Service Management
and there is no access to an NTP server.

Select Next to continue.
Select optional configurations for the Diagnostics Server.

This Server is to be used with HP Business Service Management (BSM).
Check this box if the Diagnostics commander server will be integrated with
Business Service Management.

If integrating with Business Service Management 9.00 or later, checking this
option means additional OM agent and IAPA components are installed for
use in sending Health Indicators to Business Service Management. IAPA is
the Integration Adapter Policy Activation component of the OMi agent that
Diagnostics uses to communicate with Business Service Management.

You will be prompted towards the end of this Diagnostics Commander
Server installation to confirm if you want to install these components.

61

Chapter 2 ¢ Installing the Diagnostics Server

62

See “Setting Up the Integration Between Business Service Management and
Diagnostics” on page 737 for additional post install configuration required
to integrate with BSM. Also, if you need to set up reporting to an OM Server
as well as BSM Servers see “Diagnostics and OM Server Co-existence” on
page 756 for instructions.

Select the option that applies to this Diagnostics Server, and then select
Next to continue.

If you selected the HP Business Service Management option then an
additional dialog is displayed where you Provide the path to the directory
on the HP Diagnostics Installation DVD where the Diagnostics installers are
located.

Note: You must have the Diagnostics installation disk available for this step.

To be able to download the Diagnostics Agent and Collector installers from
the Diagnostics Configuration page in Business Service Management, you
must specify the path to the directory on the Diagnostics installation disk
where these installers are located (\Diagnostics_Installers).

Enter the path to the Diagnostics installers on the Diagnostics installation
disk, and select Next to continue.

The installers are automatically copied to the Diagnostics Server installation
directory, which Business Service Management can access. The
\Diagnostics_Installers directory is approximately 1.85 GB, so the copy
operation can take several minutes to complete.

Note: You can skip this step and always access the Agent and Collector
installers directly from the Diagnostics installation disk.

Alternatively, you can perform this step manually at a later stage, by
copying the Agent and Collector installers from the Diagnostics installation
disk (/Diagnostics_Installers) to the Diagnostics Server installation directory
(<diagnostics_server_install_dir>/html/opal/downloads) for Business
Service Management to access.

Chapter 2 e Installing the Diagnostics Server

6 Indicate the SMTP setting for email alerts (optional).

These SMTP settings are optional during the installation. You configure
SMTP settings in order to have email alerts sent when there are problems
with the Diagnostics servers. If you want to configure this later (or modify
these settings later) you can skip this dialog and configure these setting
using the Diagnostics Server’s alert properties page (see the HP Diagnostics
User’s Guide section on Alerts for more information).

» SMTP Server. Host name or IP address of the SMTP server.

» SMTP Port. Port number for the SMTP server.

» From Email Address. The email address to send the email messages from.
>

Admin Alert Email Addresses. If you want the Diagnostics administrator
to receive email alerts when there are problems with this Diagnostics
server then specify a comma-separated list of email addresses for the
administrator. Alerts can be issued for problems such as probes
generating large number of server requests to the server, disk space issues
on the server or from the Commander Server - license checking alerts.

The thresholds that determine these types of alerts for the Diagnostics
administrator are factory configured in the server’s server.properties file.
For more details see the comments in this file for the various watchdog
properties. Also see “Disk Space Issues on the Server” on page 882.

7 Review the pre-installation summary information.

The installation settings you selected are displayed. Review the information
for accuracy.

Note: The estimated total size of the Diagnostics Server in Commander
mode installation does not include the size of the Agent installers, if they
were made available for Business Service Management.

You can change your settings by going back to previous installation steps.
For Windows, click Back. For UNIX, select Previous.

To start the installation of the Diagnostics Server, select Next.

63

Chapter 2 ¢ Installing the Diagnostics Server

64

8 Installation begins.

The server installation is started. When the installation is complete you will
see the post-installation summary information or, if you selected integration
with Business Service Management in step 5a above, an additional dialog is
displayed.

Check the post-installation summary and select Finish to exit the
installation or continue on to the next step if integrating with BSM.

OM Agent and IAPA component installations checkbox.

If you selected that the Diagnostics commander server was to be used with
Business Service Management you will see an additional dialog box for OM
Agent and IAPA component installations. Check the box to install these
components. Note you can leave the box unchecked and install these
components later manually. See “Manual Installation of OM Agent and
IAPA Components” on page 74 for details.

When integrating Diagnostics with Business Service Management 9.00 or
later, the OM Agent and IAPA components must be installed on the
Diagnostics Commander Server. These components are used by Diagnostics
to send Health Indicator status events to the Business Service Management
Gateway Server. If you are integrating with an earlier version of Business
Availability Center you do not need to install these components.

Errors are reported in the <Diagnostics_install_dir>/server/log.txt file. See
“OM Agent Troubleshooting” on page 919 if you have any problems with
the installation.

Root access is required for the installation of the OM Agent and IAPA
component. If you need to install the Diagnostics Server without root access
you can chose to not install these two components and install them later
manually.

If the OM agent is already installed on the system then these installers will
update the OM agent components if they are an older version.

On Windows systems these components take a while to install.

You can leave the box unchecked to skip the installation of the OM Agent
and IAPA component and them install later.

Chapter 2 e Installing the Diagnostics Server

The installer bits are always laid down whether you check this box or not -
so you can install the components later when needed from
<Diagnostics_install_dir>/server/setup/ovo-agent and /ovoiapa. See
“Manual Installation of OM Agent and IAPA Components” on page 74 for
details.

Additional configuration steps are required in Business Service Management
after installing these components. See “Registering the Diagnostics Server in
Business Service Management” on page 740 for more information.

When the installation is complete, review the post-installation summary
information to make sure that the installation completed successtully.

Select Finish to exit the installation.

Note: On Windows machines, the Diagnostics Server attempts to start
automatically. The Diagnostics Server does not start if any other
applications are using the default Diagnostics Server ports. For instructions
on starting the Diagnostics Server manually, see “Starting and Stopping the
Diagnostics Server” on page 70.

Installing the Diagnostics Server in Mediator Mode

If you are installing the Diagnostics mediator server, continue the
installation as follows.

If you are installing the Diagnostics Server in mediator mode, continue as
follows:

Provide the location of the Diagnostics Server in Commander mode.

Provide the information that enables the Diagnostics mediator server to
connect to the Diagnostics commander server.

» Enter the host name or IP address for the Diagnostics commander server.

» Enter the port for the Diagnostics commander server.

65

Chapter 2 ¢ Installing the Diagnostics Server

66

The default port for the Diagnostics commander server is 2006. If you
changed the port since the Diagnostics Server was installed, specify that
port number here instead of the default. For information on changing
the Diagnostics Server port, see “Changing the Default Diagnostics Server
Port” on page 476.

» To allow the installer to check the connectivity to the host and port that
you specified, select Check the Connectivity to the Diagnostics Server.

If you do not want to check for connectivity problems at this stage, clear the
Check the connectivity to the Diagnostics Server option so that the
installation can proceed.

Select Next to continue.

If you instructed the installer to perform the test for connectivity, it tests the
connectivity at this point. If there are negative results, it reports these before
proceeding with the next installation step.

Indicate the SMTP setting for email alerts (optional).

These SMTP settings are optional during the installation. You configure
SMTP settings in order to have email alerts sent when there are problems
with the Diagnostics servers. If you want to configure this later (or modify
these settings later) you can skip this dialog and configure these setting
using the Diagnostics Server’s alert properties page (see the HP Diagnostics
User’s Guide section on Alerts for more information).

» SMTP Server. Host name or IP address of the SMTP server.
SMTP Port. Port number for the SMTP server.

\

\

From Email Address. The email address to send the email messages from.

\

Admin Alert Email Addresses. If you want the Diagnostics administrator
to receive email alerts when there are problems with this Diagnostics
server then specify a comma-separated list of email addresses for the
administrator. Alerts can be issued for problems such as probes
generating large number of server requests to the server, disk space issues
on the server or from the Commander Server - license checking alerts.

The thresholds that determine these types of alerts for the Diagnostics
administrator are factory configured in the server’s server.properties file.
For more details see the comments in this file for the various watchdog
properties. Also see “Disk Space Issues on the Server” on page 882.

Chapter 2 e Installing the Diagnostics Server

6 Review the pre-installation summary information.

The installation settings you selected are displayed. Review the information
for accuracy.

You can change your settings by going back to previous installation steps.
For Windows, click Back. For UNIX, select Previous.

To start the installation of the Diagnostics Server, select Next.

7 Installation begins.

When the installation is complete, review the post-installation summary
information to make sure that the installation completed successtully.

Select Finish to exit the installation.

Note: On Windows machines, the Diagnostics Server attempts to start
automatically. The Diagnostics Server does not start if any other
applications are using the default Diagnostics Server ports. For instructions
on starting the Diagnostics Server manually, see “Starting and Stopping the
Diagnostics Server” on page 70.

Verifying the Diagnostics Server Installation

To verify that a Diagnostics Server was installed correctly you can check the
<Diagnostics_server_install_dir>/log/server.log file for errors and warnings.

You can also launch the Diagnostics Enterprise Ul to verify that the server is
running. Go to http://<Diagnostics_commander_server>:2006/. For now
you can use the default user/password of admin/admin or the login you
were given if a different one has been set up for you. But note that as
Diagnostics is deployed within your enterprise the admin/admin default
login should be changed (see Appendix B, “User Authentication and
Authorization” when you are ready to configure users, roles, permissions
and authentication).

67

Chapter 2 ¢ Installing the Diagnostics Server

Note that in order to see data from agents in the UI you will also need to
install and configure Diagnostics agent and/or collector software to collect
and report performance data to the server for display in the UL

You can also check the System Health view to find information about the
Diagnostics servers and the machines that host them.

To access the System Views:

Open the Diagnostics Ul as the Mercury System customer from
http:/<Diagnostics_Commanding_Server_Name>:2006/query/.

In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Silent Installation of the Diagnostics Server

68

A silent installation is performed automatically, without the need for user
interaction. In place of user input, the silent installation accepts input from
a response file for each install step.

For example, a system administrator who needs to deploy a component on
multiple machines can create a response file that contains all the
prerequisite configuration information, and then perform a silent
installation on multiple machines. This eliminates the need to provide any
manual input during the installation procedure.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Chapter 2 e Installing the Diagnostics Server

Important: With each new release of Diagnostics you should re-record the
Diagnostics Server silent install response files prior to performing silent
installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

To generate a response file:

Perform a regular installation with the following command line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

<installer> -options-record <responseFileName>

This creates a response file that includes all the information submitted
during the installation.

To perform a silent installation:
Perform a silent installation using the relevant response file.

Perform the silent installation with the -silent command line option as
follows. Note that for Windows installers the options must be preceded with
-a. For example: HPDiagServer_9.20_win32.exe -a -silent -options myfile.

<installer> -silent -options <responseFileName>

When performing a silent installation you can specify the following two
additional options after the response file name.

> You can create a log file by specifying the -is:log <logfilepath> option.

> You can change the temp directory to a user-specified directory by

specifying the -is:tempdir <tempDirPath> option.

69

Chapter 2 ¢ Installing the Diagnostics Server

Starting and Stopping the Diagnostics Server

70

Diagnostics servers are started automatically. But if you need to manually
start or stop a Diagnostics server follow the instructions below.

Instructions for a Windows Machine

To start the Diagnostics Server on a Windows machine:

Select Start > All Programs > HP Diagnostics Server >
Start HP Diagnostics Server.

To stop the Diagnostics Server on a Windows machine:

Select Start > All Programs > HP Diagnostics Server >
Stop HP Diagnostics Server.

Instructions for Solaris or Linux Machines (using the
Nanny)

The nanny is a process that runs as a daemon to ensure that the Diagnostics
Server is always running. The nanny also starts a LoadRunner agent to allow
offline data collation for LoadRunner or Performance Center.

The following procedures start and stop the Diagnostics Server using the
nanny.

But note that, the m_daemon_setup script does not configure the server to
restart automatically after a system boot. To support this the startup will
need to be integrated with the boot sequence or manually executed after
each system boot.

To start the Diagnostics Server on a Solaris or Linux machine:

Make sure that the M_LROOT environment variable is defined as the root
directory of the Diagnostics Server nanny. For example, in ksh, you could
enter the following:

export M_LROOT=<diagnostics_server_install_dir>/nanny/<platform>

Chapter 2 e Installing the Diagnostics Server

In the example, <platform> is solaris, linux, or hpux. If the M_LROOT
environment variable is not defined as the root directory, the following
error is displayed:

Warning : MDRYV: cannot find Irun root directory . Please check your M_LROOT
Unable to format message id [-10791]
m_agent_daemon (is down)

Change directories to $M_LROOT/bin.

3 Run m_daemon_setup with the -install option; for example:

cd $M_LROOT/bin
$./m_daemon_setup -install

On some Linux systems, if you encounter an error saying that the
libstdc++.50.5 shared library is missing, you may need to install it. For
example, on CentOS, enter the following command to install the library:

yum install compat-libstdc++-33

To stop the Diagnostics Server on a UNIX or Linux machine:

1 Change directories to $M_LROOT/bin.

Run m_daemon_setup with the -remove option; for example:

cd $M_LROOT/bin
$./m_daemon_setup -remove

Instructions for Solaris or Linux Machines (without using
the Nanny)

The following procedures start and stop the Diagnostics Server without
using the nanny.

To start the Diagnostics Server on a Solaris or Linux machine:

Run <diagnostics_server_install_dir>/bin/server.sh.

To stop the Diagnostics Server on a Solaris or Linux machine:

Terminate the process using a utility such as kill.

71

Chapter 2 ¢ Installing the Diagnostics Server

Licensing Your Diagnostics Software

Your Diagnostics software comes with an instant-on license so you can start
using it right away. But eventually you will need to install your permanent
license key; which is done on the Diagnostics Commander Server. For
instructions on requesting a license file and uploading it, see Chapter 3,
“Licensing HP Diagnostics.”

More Information on Configuring Diagnostics Servers

The Diagnostics Server is installed with a default configuration that enables
it to begin working right away.

However you could encounter situations where changing the configuration
enables better Diagnostics Server performance or allows it to work in
unusual or complex situations. For information about advanced
configuration of the Diagnostics Servers, see Chapter 12, “Advanced
Diagnostics Server Configuration.”

See “Setting Up Integration with Other HP Software Products” on page 735
for additional post install configuration required to integrate with BSM.
Also, if you need to set up reporting to an OM Server as well as BSM Servers
see “Diagnostics and OM Server Co-existence” on page 756 for instructions.

Determining the Version of the Diagnostics Server

72

When you request support, you must know the version of the Diagnostics
Server. In the Diagnostics Enterprise Ul the About dialog box shows you the
version of the Diagnostics server. Access the About dialog box by selecting
About HP Diagnostics from the Help menu in the Diagnostics Enterprise Ul
toolbar.

Chapter 2 e Installing the Diagnostics Server

Uninstalling the Diagnostics Server

The following section contains instructions for uninstalling the Diagnostics
Server.

Important: Note that the OM agent is not uninstalled with the Diagnostics
Server in case it is used by other products. If you want to uninstall the OM
agent and IAPA components they must be uninstalled before you uninstall
the server because the uninstaller for these components is under the server
directory.

To uninstall the Diagnostics Server From a Windows Machine:

1 Uninstall the Diagnostics Server by selecting Start > All Programs >
HP Diagnostics Server > Uninstall HP Diagnostics Server.

Alternatively, you can run uninstaller.exe, which is located in the
<diagnostics_server_install_dir>_uninst directory.

2 During the uninstallation process, a message asks if you want to remove
specific files. Do the following:

» To completely uninstall the Diagnostics Server as well as any property
settings, click Yes or Yes to All.

» If you plan on reinstalling the Diagnostics Server, and want to keep the
custom property settings of the Diagnostics Server you are uninstalling,
back up the property files located in the etc directory to a new location.

If you backed up these files, click Yes or Yes to All.
If you did not back up these files, select No or No to All.

73

Chapter 2 ¢ Installing the Diagnostics Server

To uninstall the Diagnostics Server From a UNIX Machine:

You can uninstall the Diagnostics Server in console mode or graphical
mode.

Stop the Diagnostics Server. For instructions, see “Starting and Stopping the
Diagnostics Server” on page 70.

Change the directory to the root directory.
Enter the following at the UNIX command prompt:

» In console mode:

<diagnostics_server_install_dir>/Server/_uninst/uninstaller.bin -console

» In graphical mode:
Export your display before running in graphical mode.

export DISPLAY=<hostname>.0.0

<diagnostics_server_install_dir>/Server/_uninst/uninstaller.bin

Manual Installation of OM Agent and IAPA Components

74

The installer for the Diagnostics commander server includes installation of
the OM agent and IAPA components used for sending Health Indicator
status events to Business Service Management 9.00 or later. (If you are
integrating with an earlier version of Business Availability Center you do not
need to install these components).

The OM Agent and [APA component installation on Windows can take a
while. You can choose to skip installing these components during the
Diagnostics Server installation and install the components manually on the
Diagnostics commander server at a later time as described below.

See “OM Agent Troubleshooting” on page 919 if you have any problems
with the installation.

Chapter 2 e Installing the Diagnostics Server

Note: The OM agent installer and IAPA installer bits are laid down during
the Diagnostics server installation whether it is a commander server or
mediating server and even if you elect to install these components later.

To manually install OM agent on a Windows systems:

For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-agent/<platform> where <platform> is either win32 or win64.

From the command line in this directory execute

cscript.exe opc_inst.vbs

To manually install OM agent on Linux or Solaris systems:

For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-agent/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

As root user, from the command line in this directory execute

./opc_inst

To manually install the IAPA component on Windows systems:

For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-iapa/<platform> where <platform> is either win32 or win64.

From the command line in the win32 directory execute

cscript.exe <install_dir>/server/bin/install_ovo_iapa.vbs /i
HPOPpriAPA-09.00.111-WinNT4.0-release.msi <log file>

Where <log file> is a file where the results of the install are logged, path is
optional.

Or from the command line in the win64 directory execute

cscript.exe <install_dir>/server/bin/install_ovo_iapa.vbs /i
HPOpriAPA-09.00.111-Win5.2_64-release.msi <log file>

Where <log file> is a file where the results of the install are logged, path is
optional.

75

Chapter 2 ¢ Installing the Diagnostics Server

To manually install the IAPA component on Linux or Solaris systems:

For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-iapa/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

As root user, from the command line in the Linux32 directory execute
rpm -ivh HPOprlAPA-09.00.111-Linux2.6-release.rpm

Or as root user, from the command line in the Linux32 directory execute
rpm -ivh HPOprlAPA-09.00.111-Linux2.6_64-release.rpm

Or as root user, from the command line in the solaris directory executes
pkgadd -a ./noask_pkgadd -d
HPOpriAPA-09.00.111-Sun0S5.10-release.sparc HPOprlAPA

To complete the OM agent installation you must also do the following:

To complete the OM agent configuration you must complete the steps to
register Diagnostics with Business Service Management. See “Registering the
Diagnostics Server in Business Service Management” on page 740 for details
relating to the OM agent.

Manual Uninstall of OM Agent and IAPA Components

76

The OM agent and IAPA components are not uninstalled when you
uninstall the Diagnostics Server. If you want to uninstall the OM agent and
IAPA components they must be uninstalled before you uninstall the server
because the uninstaller for these components is under the server directory.
And the components must be uninstalled in this order: first the IAPA
component and then the OM agent.

To manually uninstall the IAPA component on Windows systems:

For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-iapa/<platform> where <platform> is either win32 or winé64.

From the command line in the win32 directory execute

cscript.exe <install_dir>\server\bin\install_ovo_iapa.vbs /x
HPOpriAPA-09.00.111-WinNT4.0-release.msi uninstall.log

Chapter 2 e Installing the Diagnostics Server

Or from the command line in the win64 directory execute

cscript.exe <install_dir>\server\bin\install_ovo_iapa.vbs /x
HPOPprlAPA-09.00.111-Win5.2_64-release.msi uninstall.log

To manually uninstall the IAPA component on Linux or Solaris systems:

1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-iapa/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

2 Asroot user, from the command line in the Linux32 or Linux 64 directory
execute

rpm -e HPOpriAPA
Or as root user, from the command line in the solaris directory execute

pkgadd HPOpriAPA

To manually uninstall OM agent on a Windows systems:

1 For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-agent/<platform> where <platform> is either win32 or win64.

2 From the command line in this directory execute

cscript.exe opc_inst.vbs -r

To manually uninstall OM agent on Linux or Solaris systems:

1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-agent/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

2 Asroot user, from the command line in this directory execute

.Jopc_inst -r

77

Chapter 2 ¢ Installing the Diagnostics Server

78

3

Licensing HP Diagnostics

HP Diagnostics requires you to upload valid licenses onto the Diagnostics
commander server.
This chapter includes:

» About HP Diagnostics Licensing on page 80

» Types of Licenses on page 80

» Licensing the Diagnostics Server in Commander Mode on page 81

» View License Information on page 84

» Licensing the Other Diagnostics Components on page 88

79

Chapter 3 e Licensing HP Diagnostics

About HP Diagnostics Licensing

Diagnostics is licensed using a file that you upload to the Diagnostics
commander server. You request this license file from your HP Software
Customer Support representative.

When the Diagnostics agents and Diagnostics mediator server first connect
with the Diagnostics commander server they are licensed based on the
license installed on the Diagnostics commander server.

If you want the Diagnostics administrator to receive license checking alerts
then when installing the Commander Server specify a comma-separated list
of Admin Alert Email Addresses in the SMTP Settings installation dialog. Or
the Admin address can be setup after installation using the Commander
Server’s Alert Properties page.

Types of Licenses

80

At installation you are given an Instant-On license which is packaged with
the product. With the Instant-On license you can install Diagnostics
components, begin to monitor applications, and process the performance
metrics. The Instant-On license is valid for a fixed period of time from the
time of installation or first use of the product.

Within this time period you must obtain a Permanent license or request an
Evaluation license to extend the evaluation period. Evaluation licenses are
available for Diagnostics to provide license keys that are meant to extend a
customer’s evaluation of the product. The Evaluation license is valid for a
fixed period of time.

If the Instant-On license (or the extended Evaluation license) expires before
you obtain a permanent license, the Diagnostics Server will issue reminder
messages.

Chapter 3 e Licensing HP Diagnostics

Note: The full Diagnostics product comes with the Instant-On license. The
standalone Diagnostics profilers are load-limited until you provide a valid
license file.

Your permanent license will typically be for a specific capacity (see “License
Information Based on Currently Connected Probes” on page 85). Once you
install the license key, Diagnostics will count usage against this capacity.

For Diagnostics there are two types of LTUs (License to use):

» AM License - For use when using the product in an application
management/enterprise mode, typically in a production environment. AM
licensed agents can also be used with LoadRunner/Performance Center.

» AD License - For use when using the product in Diagnostics mode for
LoadRunner/Performance Center runs in a pre-production load testing
environment.

The Instant-On licenses you receive with Diagnostics have the following
time and capacity limits: AM - 60 days and capacity of 50, AD - 14 days and
capacity of 50.

You will see reminder messages when limits are exceeded. See “License
Information Based on Currently Connected Probes” on page 85 for details
on AD and AM licenses.

Licensing the Diagnostics Server in Commander Mode

Obtain your Diagnostics license from your HP Software Customer Support
representative. The License Management page described below contains
useful information for determining the number of licenses required without
having to manually retrieve the information from each system. This
information is only available for Diagnostics 8.00 or later probes.

81

Chapter 3 e Licensing HP Diagnostics

82

You will receive a license certificate from HP verifying the terms of the
license purchase. License Keys/Passwords are issued after you enter the Sales
Order Number associated with their software product purchase, which is
unique for every order. This number appears on the license redemption
form, as well as on all paperwork associated with the shipment and
packaging of the order.

Store the license file in a directory that can be accessed from the License
Management page for the Diagnostics commander server. Then upload it to
the Diagnostics Commander Server as described in the steps below.

Important: For customers with licenses for versions prior to Diagnostics 9.10
your old licenses will still work with 9.10 or later versions. However the
following section describes how to use the new licensing process for new
purchases of Diagnostics 9.10 or later.

To license your Diagnostics deployment:

Access the License Management page for the Diagnostics commander server
by accessing the Diagnostics Enterprise Ul
(http://<Diagnostics_Server>:2006)

Enter the login and password. Either use the default or whatever has been
created and assigned to you. Default login is admin and default password is
admin.

Select Configure Diagnostics.

Select the license link. The License Management page opens providing the
following:

» Information about current licenses.
> A utility to upload a license received from HP Software Support.

» Information on operating system instance totals as well as application
server/probe instances in your monitored environment. You can also
find information on usage against Diagnostics AD and AM license
capacity.

Chapter 3 e Licensing HP Diagnostics

License Management

Default Client AD License Information

Attribute Value

License: HF Diagnostics AD Implicit Feature
Start Date: Thursday, October 25, 2012
Expiration: Tuesday, January 21, 2014

Days Remaining: 434

Capacity: 100

Default Client AM License Information

Attribute Valua

License: HF Diagnostics AM Implicit Feature
Start Date: Thursday, October 25, 2012
Expiration: Tuesday, January 21, 2014

Days Remaining: 434

Capacity: 100

Autopass License Upload

Note: The uploaded file will be added to "DiagnosticsLicFile.bxt".

License File:

License information based on currently connected probes
Customer Name: Default Client

Attribute Value

Total Operating System Instances: 39

Application Management/Enterprise Made (AM

License) OS5 instances: =
Loaf:l Runner/Performance Center (AD License] 0
0S5 instances:
Total Application Server Instances: 69
A.pplil:ation Man.agementu"Enterprise Mode (AM o
License) probe instances:
Load R.unner_."PerFormam:e Center (AD License) 0
probe instances:
.NET processes: 11
Java probes: 58
Old .NET probes: 0
Unknown probes: 0
Collectar instances: 5
Details

83

Chapter 3 e Licensing HP Diagnostics

5 When you receive the license file for your Diagnostics deployment, upload

the file using the AutoPass License Upload section of the License
Management page.

The Server License Upload (Obsolete) section is obsolete and will only
appear when the type of license key Diagnostics previously used (.lic file) is
installed or only the Instant-On license is installed on the server. This
upload is provided for existing customers who already have a license from a
Diagnostics version prior to 9.10 allowing you to upload your old license.

Note: Do not attempt to copy the license file directly to the Diagnostics
Server installation directory. Always upload the file using the AutoPass
License Upload section of the License Management page.

Type the path to the location where you stored the license file or click
Browse to navigate to the license file location. Click Upload to apply the
license file to the Diagnostics Server.

If successful (the keys in the license file are valid and are not expired), the
licenses are added to DiagnosticsLicFile.txt by the upload process and stored
in the <Diagnostics_Install_Dir>/etc directory of the Diagnostics
Commander Server. With AutoPass licensing you can upload incremental
licenses which are added to the license file (you can’t do this when mixed
with the old licenses).

View License Information

84

Information on your current licenses is reported in the License Management
page. You can see the type of license, expiration date, if any, and the license
capacity.

Chapter 3 e Licensing HP Diagnostics

License Information Based on Currently Connected Probes

In the License information section you will see counts based on currently
connected probes. Counts are shown for operating system instances (see
example below). This is useful in determining the number of licenses
required without having to manually retrieve the information from each
system. This information is only available for Diagnostics 8.00 or later
probes.

License information based on currently connected probes

Customer Name: Default Client

Attribute Value

Total Operating System Instances: 35

Application Management/Enterprise Mode (AM

License) OS5 instances: =

Loaf:l Runner/Performance Center (AD License) 0

05 instances:

Total Application Server Instances: (]

A_ppli:ation Manlagement-"Enterprise Mode (AM &9

License) probe instances:

Load R.unner,."PerFDrmam:e Center (AD License) 0

probe instances:

.MET processes: 11

Java probes: 58

Old .NET probes: o

Unknown probes: a

Collector instances: 5
Dietails

The following counts are based on the number of operating system
instances running an agent:

Total Operating System Instances. Total number of operating system
instances running an agent (not a collector). This is the sum of your AM and
AD Operating System Instances. Your license capacity must cover this total.

Application Management/Enterprise Mode (AM License) OS instances. The
number of OS instances that host Enterprise/AM mode agent instances in
your production environment. These are counted against your HP
Diagnostics AM license capacity.

85

Chapter 3 e Licensing HP Diagnostics

86

When you install an agent, you are prompted to specify if the agent will be
configured in Application Management/Enterprise mode (AM License) to
work with a Diagnostics Server in a production environment. If you select
this mode then the following values are set in Diagnostics:

For a Java agent - the value of the active.products property in the etc/
probe.properties file is set to Enterprise mode at the time you install the
Java Agent (see “Set the Active Products Mode” on page 505). You can
change the mode value after installation by modifying this property.

For a .NET agent - the value of the probe_config.xml <modes> element is set
to enterprise mode at the time you install the .NET Agent (see “<modes>
element” on page 592). You can change the mode value after installation by
modifying this element.

For a Python agent - the mode is always set automatically to AM (cannot be
set to AD mode).

For agents with Enterprise mode set, the agent hosts will be counted against
your HP Diagnostics AM license capacity.

LoadRunner/Performance Center (AD License) OS instances. The number of
OS instances that host active LoadRunner or Performance Center AD mode
application instances (does not include Enterprise/AM mode agent
instances). Only active AD mode agents are counted against your HP
Diagnostics AD license capacity. Those not in a run are not counted.

When you install an agent, you are prompted to specify if the agent will be
configured in AD mode for LoadRunner and Performance Center runs. If
you select the AD license option then the following values are set in
Diagnostics:

For a Java agent - the value of the active.products property in the etc/
probe.properties file is set to AD mode at the time you install the Java Agent
(see “Set the Active Products Mode” on page 505). You can change the mode
value after installation by modifying this property.

For a .NET agent - the value of the probe_config.xml <modes> element is set
to ad mode at the time you install the .NET Agent (see “<modes> element”
on page 592). You can change the mode value after installation by
modifying this element.

Chapter 3 e Licensing HP Diagnostics

The advantage of running a probe in AD mode is that you only need license
capacity for the number of hosts that are currently in a LoadRunner or
Performance Center test run. So for example if you have agents installed on
100 test systems but you will only have probes running on 10 hosts at any
one time then you would only need an AD license capacity of 10 hosts.

The following is for information only (these counts are not used as license
counts) and relates to probe instances rather than OS instances (you can
have more than one probe running on an OS instance).

Total Application Server Instances. An application server instance is a Java
Agent instance (a probe) or a .NET Agent instance (.NET worker process) or a
Python Agent instance. This value is the total of Applicaton Management/
Enterprise Mode (AM License) probe instances and Load Runner/
Performance Center (AD License) probe instances.

.NET processes. Any processes (application domains) instrumented for
monitoring by one or more .NET probes. For example, 1IS worker process or
.NET console application/service/WCEF. In the license report you may see the
number of Old .NET probes which are probes versioned prior to 8.00.

Python processes. Any processes instrumented for monitoring by one or
more Python probes.

Java probes. Monitored java or javaw processes or any other processes
embedding the JVM. This is equivalent to a Java probe.

Collector instances. Collector instances include the following:

» Oracle - An instance in the (executed) Oracle software (Oracle processes)
and the memory they use (SGA). A SID identifies an instance. Instances
configured for monitoring with a <oraclelnstance> entry in
oracle-config.xml are included.

» SQL Server - Instances apply primarily to the database engine and its
supporting components. Instances configured for monitoring with a
<sqlserverInstance> entry in sqlserver-config.xml are included.

» WebSphere MQ - Instances configured for monitoring with a
<mgqlnstance> entry in mq-config.xml are included.

» TIBCO EMS - Instances configured for monitoring with a <emsInstance>
entry in tibco-ems-config.xml are included.

87

Chapter 3 e Licensing HP Diagnostics

» WebMethods Broker - Instances configured for monitoring an
<WmBrokerInstace> entry in wm-broker-config.xml are included.

» SAP/ABAP - Each discovered Dialog instance (SAP ABAP probes) is
included.

» VMware - The number of vSphere servers as specified in the
vmware-config.xml file are included.

Any probes prior to 8.0x will be listed under Old probes.

License Details

Selecting the Details link at the bottom of the License page displays detailed
information for each host with Diagnostics probes or collectors. Details
include HostName, Probe Name, port or PID, Run ID (for probes in a
LoadRunner/Performance Center load testing run), probe version and
product mode.

Following is an example showing part of the License Management Details
page:

License Management

Details for Default Client

.NET Probes

Host Name PID Probe Name Mode Run ID Version

OVRNTT209.0vrtest.adapps.hp.com 112084 L81_1ROOTCallChain2_0_DefaultWebSite .NET_OVRNTT209_W2k3 Enterprise,PRO 1 9.20.116.47C
OVRNTT203.ovrtest.adapps.hp.com 112084 L81_1ROOTlavaTrader2.WebClient_DefaultWebSite .NET_OVRNTT209_WZk3 Enterprise.PRO 1 9.20.116.47C
OVRNTTZ20S.0vrtest.adapps.hp.com 112084 L81_1ROOTTestServiceZ.WebClient_DefaultWebSite.NET_OVRNTTZ05_WZzk3 Enterprise,PRO 1 9.20.116.47C
OVRNTT209.0vrtest.adapps.hp.com 112084 L81_1ROOTTestService2.WebService_DefaultWebSite.NET_OVRNTT209_W2k3 Entarprise,FRO 1 9.20.116.47C

Licensing the Other Diagnostics Components

88

The Diagnostics servers running as mediators and the Diagnostics agents do
not have independent licenses. Their license is based on the license of the
Diagnostics commander server. The first time these components connect to
a licensed Diagnostics commander server, the Diagnostics Agents and
Diagnostics mediator server are automatically licensed.

Chapter 3 e Licensing HP Diagnostics

When you install the Java or .NET Agent, the Diagnostics Profiler is
automatically installed. You view the Diagnostics Profiler in the context of a
probe entity. The Diagnostics Profiler is an independent UI that can be
accessed either directly on the system where the agent is installed or
through the HP Diagnostics Ul

The Diagnostics Profiler operates in an unlicensed mode with load
restrictions until a probe is able to connect to a Diagnostics commander
server that is properly licensed. In unlicensed mode, the Profiler is limited to
capturing data from five concurrent threads.

89

Chapter 3 e Licensing HP Diagnostics

90

4

Installing Diagnostics Collectors

Y Y Y Y VY Y

>
>
>
>
>
>
>
>
>
>

>

You can install Diagnostics Collector on Windows and UNIX machines.

This chapter includes:

About Installing the Diagnostics Collector on page 92

Accessing the Collector Installer on page 93

Installing the Collector on page 94

Silent Installation of the Diagnostics Collector on page 103

Installing the Diagnostics Collector Using the Generic Installer on page 104

How to Manually Add Another Collection Type After Installing the Collector
on page 105

Configuring the Active System Property Files on page 106
Configuration for SAP NetWeaver—-ABAP on page 106
Configuration for Oracle on page 110

Configuration for SQL Server on page 113

Configuration for MQ on page 117

Configuration for TIBCO EMS on page 120

Configuration for webMethods Broker on page 121
Configuration for VMware on page 123

Password Obfuscation on page 125

Verifying the Diagnostics Collector Installation on page 127
Starting and Stopping the Diagnostics Collector on page 128

91

Chapter 4 ¢ Installing Diagnostics Collectors

» Determining the Version of the Diagnostics Collector on page 130

» Uninstalling the Diagnostics Collector on page 130

About Installing the Diagnostics Collector

The Diagnostics Collector gathers data from remote systems. You can
configure the Collector to collect performance data from the following types
of active systems:

» SAP NetWeaver-ABAP

» Oracle Databases (including Oracle RAC)
» IBM WebSphere MQ

» TIBCO Enterprise Message Service (EMS)
» Software AG webMethods Broker

» SQL Server Databases

» VMware vCenter or VMware ESX Servers

During the installation of the Collector, you can choose to monitor any of
these active systems. After the installation, you define instances of Oracle
Databases, SQL Server systems, VMware vCenter or VMware ESX servers,
IBM WebSphere MQ messaging systems, TIBCO EMS systems, Software AG
webMethods Broker and SAP NetWeaver-ABAP systems to be monitored.
Each monitored instance is represented by a probe entity. Multiple probes
can be configured for each Collector.

Note: The Collector can be installed on any machine. It does not necessarily
have to be installed on the host machine of the SAP, Oracle, MQ, Tibco EMS,
webMethods Broker, VMware or SQL Server application. For Collector host
requirements, see “Requirements for the Diagnostics Collector Host” on
page 39.

92

Chapter 4 ¢ Installing Diagnostics Collectors

Accessing the Collector Installer

The installation can be launched from the Diagnostics installation disk, or
copy the executable installation file to another location and run it, or select
it from the Diagnostics Downloads page in Business Service Management.

To access the installer from the Diagnostics installation media:

» For Windows, from the Diagnostics installation DVD (Autorun.exe) the
installation menu page is displayed. From the menu, select Diagnostics
Collector to launch the installer.

» Or you can run the appropriate installer by locating the
HPDiagCollector_<release number>_win.exe file for Windows or the
HPDiagCollector_<release number>_<platform>.bin files for Unix on the
installation media and copying the file to the new installation location.

Continue with “Installing the Collector” on page 94.

To download the installer from the HP Software Download Center:
1 Go to the HP Software web site’s Software Download Center.

2 Locate the Diagnostics downloads and choose the appropriate link for
downloading the Diagnostics Collector software.

3 Follow the download instructions on the web site to download the installer
and save it to a local disk.

Continue with “Installing the Collector” on page 94.

93

Chapter 4 ¢ Installing Diagnostics Collectors

To download the Installer from the Business Service Management
Diagnostics downloads page:

In Business Service Management, select Admin > Diagnostics from the top
menu and click the Downloads tab.

On the Downloads page, click the appropriate link to download the
appropriate Collector installer.

Note: The Collector installer is available in Business Service Management if
you put it into the required directory for Business Service Management to
access. You can enable this during the installation of the Diagnostic Server
by providing the path to the Diagnostics Agent and Collector installers, or
you can manually copy files from the installation disk to the
<diag_server_install_dir>/html/opal/downloads folder of the Diagnostics
Server installation directory. See Step on page 62 of Chapter 2, “Installing
the Diagnostics Server.”

Continue with “Installing the Collector” that follows.

Installing the Collector

94

The following steps provide detailed instructions for installing the Collector
on Windows or Unix systems.

For information on other types of installation see the following:

For instructions on using the generic Unix installer for platforms others
than Linux and Solaris see “Installing the Diagnostics Collector Using the
Generic Installer” on page 104

For information on silent installation see “Silent Installation of the
Diagnostics Collector” on page 103.

Note: Allow approximately 400MB of free space in the temp directory.

Chapter 4 ¢ Installing Diagnostics Collectors

Note: If there is a pre-existing installation of the Collector on the host
machine, you must follow the instructions for upgrading the Collector
instead of these install instruction, see “Upgrade and Patch Install
Instructions” on page 893

The Windows installer and the Unix installers in graphical mode display the
same screens. If you run the Unix installer in console mode, prompts are
displayed instead of screens but the flow is the same as documented in this
section.

For Unix installers, where necessary, change the mode of the installer file to
make it executable.

» To run the Unix installer in graphical mode, enter the <installer>
executable at the UNIX command prompt, where <installer> is, for
example:

HPDiagCollector_<release number>_sol.bin
HPDiagCollector_<release number>_linux.bin

The installer displays the same screens that are displayed for the
Windows installer.

» To run the Unix installer in console mode, enter <installer> -console at
the UNIX command prompt.

The following instructions assume an understanding of UNIX console
screens and commands. For more information about UNIX screens and
commands, see “Using UNIX Commands” on page 925.The installer runs in
console mode displaying a series of prompts.

After you launch the installation, the software license agreement opens.

95

Chapter 4 ¢ Installing Diagnostics Collectors

96

To install the Collector:
Accept the software license agreement.

Read the agreement and select | accept the terms of the license agreement.
In console mode press Enter to continue through the license agreement and
when prompted, enter 1 to accept the agreement.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

Select Next to continue.
Specify the location to install the Collector.

In the Installation Directory Name box, accept the default directory,
C:\MercuryDiagnostics\Collector or type the name of the directory where
you want to install the Collector. Or click Browse to navigate to another
directory. In this documentation this is referred to as the
<collector_install_dir>.

If the directory contains an existing installation of the Collector you want to
upgrade, cancel this installation and follow the upgrade procedure for
Collectors as described in Appendix G, “Upgrade and Patch Install
Instructions.”

Select Next to continue.

3

Chapter 4 ¢ Installing Diagnostics Collectors

Assign a unique name to the Collector.

[HP Diagnostics Collector g =

Enter Collectar Marme

The collector name is used to uniguely identify each collector.

Collector Mame:

collectort

INStAllSHIElH —————

Assign a name to the Collector that uniquely identifies this specific
Collector.

You can use -, _ and all alphanumeric characters in the name.

Select Next to continue.

97

Chapter 4 ¢ Installing Diagnostics Collectors

4 Select the environment to monitor.

£ HP Diagnostics Collector 9.30.00.1112 ==

e 4

Selectthe environments to be monitored.

[sAP Metweaver - ABAP
[] Oracle

Owma

[]s0L Server

[vMware
[TBCOEMS
[JwebMethods Broker

Mote: After installation, you must specify each SAP Metdeaver - ABAF, Oracle, MG,
SaL Server, Whlware, Webhllethads Braker, and Tibco EME instance to be monitored.
Specify the instances in the configuration file that is appropriate for each environment:
r2canfig.xml (SAF), oracle-caonfigxml, ma-canfig.xml, sqlsener-canfig.xml, vimwvare-
configaml, wim_broker-canfig.xml, ortibco-ems-config.xml. These files are located in
CaMercuryDiagnaosticsiCollectonetel

Select the options that apply to this Collector. You can select one or more
options.

» To collect data in an SAP NetWeaver-ABAP environment, select SAP
NetWeaver-ABAP.

To collect data from an Oracle 10g database server, select Oracle.
To collect data in an MQ series environment, select MQ.

To collect data from an SQL Server database, select SQL Server.

Y VY VY Y

To collect data from either a VMware vCenter or a VMware ESX server,
select VMware.

To collect data from a TIBCO EMS environment, select TIBCO EMS.

\

» To collect data from a webMethods Broker system, select WebMethods
Broker.

98

Chapter 4 ¢ Installing Diagnostics Collectors

Important: After installation, specify each of the SAP NetWeaver-ABAP,
Oracle, MQ, TIBCO EMS, SQL Server, webMethods Broker and VMware
instances to be monitored. These instances are manually defined in the
XML files provided with the installation. For more information, see
“Configuring the Active System Property Files” on page 106.

Select Next to continue.
Provide information about the Diagnostics mediator server.

Provide the details that enables communication with the Diagnostics
mediator server.

Provide the location of the Diagnostics Server in Mediator mode.

Ciagnostics Server Mediatar Host (Mame ar IP address):

Ciagnostics Server Mediatar Port:
2006
The defaultvalue is 2006,

Check the connedctivity to the Diagnostics Server
Mediator Host and FPort.

If there is only one Diagnostics Server in the Diagnostics deployment where
the Collector will run, enter the host name of the Diagnostics Server and its

event port information.

99

Chapter 4 ¢ Installing Diagnostics Collectors

100

If there is more than one Diagnostics Server in the deployment, enter the
information for the Diagnostics mediator server that is to receive the events
from the Collector.

a In the Diagnostics Server Mediator Host box, type the host name or IP
address of the host for the Diagnostics mediator server.

Note: You must specify the fully qualified host name. In a mixed OS
environment, where UNIX is one of the systems, this is essential for
proper network routing.

b In the Diagnostics Server Mediator Port box, type the port number
where the Diagnostics Server is listening for Collector communication.
The default port number is 2006. If you changed the port since the
Diagnostics Server was installed, specify that port number instead of the
default.

¢ To make sure that the Diagnostics Server is running and accessible from
the installation host, select Check the connectivity to the Diagnostics
Server Mediator Host and Port.

Select Next to continue.

If you selected Check the connectivity to the Diagnostics Server Mediator
Host and Port and encountered connectivity problems, you will see the
results of the connectivity check, which the installer provides. If you do not
want to address these problems at this stage, clear the Check the
connectivity to the Diagnostics Server Mediator Host and Port check box,
proceed with the installation, and address the problem later.

Chapter 4 ¢ Installing Diagnostics Collectors

6 If you selected SAP NetWeaver-ABAP in step 4, provide the location of the

SAP Java Connector.

=

[23 HP Diagnostics Collector E] O

InstallShield

Provide the location where the SAP Java Connector is installed.

SAP Java Connector install directany:

Browse

Mote: The SAP Java Connectar install directory must contain the files sapjco jar,
librfc32.dll, sapjearfc.dll.

Cancel

In the SAP Java Connector install directory box, enter the path to the
directory where the SAP Java Connector is installed. The installer will copy

the necessary files to the <collector_install_dir>\lib directory on the system
where the collector is installed.

This directory must contain the following files:
> sapjco.jar

» librfc.dll or librfc32.dll or librfccm.so

» sapjcorfc.dll or libsapjcorfc.so

If you do not know the SAP Java Connector directory name or if any of these
files are missing from the directory, contact your SAP representative.

101

Chapter 4 ¢ Installing Diagnostics Collectors

102

7

10

Remember to copy required files after installation to the Collector system.

If you selected Tibco EMS you will see a reminder to copy the following
third party jars after installation: tibjms.jar, tibjmsadmin.jar. The files are
typically found in your TIBCO EMS installation in the <Tibco_EMS>/ems/
<version>/lib directory and you copy them to the <collector_install_dir>\lib
directory on the system where the Collector is installed.

If you selected webMethods Broker you will see a reminder to copy the
following third party jars after installation: wm-brokerclient.jar,
wm-g11nutils.jar. The files are typically found in your Software AG
installation in the <SoftwareAG>/common/lib directory and you copy them
to the <collector_install_dir>\lib directory on the system where the
Collector is installed.

Review the pre-installation summary.

The installation settings you selected are displayed. Review the information
for accuracy.

To select different installation settings, click Back (or in console mode select
Previous).

To begin installation, select Next.
The installation completes.

When the installation completes, a message is displayed confirming that the
Collector is successfully installed. Select Finish to exit the installer.

Configure the XML files for your active systems.

In step 4 you selected the active systems to be monitored. For each of these
active systems, you must configure properties that enable the Collector host
and the active system host to communicate.

For instructions on configuring the relative active system properties, see
“Configuring the Active System Property Files” on page 106.

Chapter 4 ¢ Installing Diagnostics Collectors

11 Verify that the Collector was installed properly and is running.

The Collector starts running automatically when the installation is
complete. You can verify the Collector installation by checking the
collector.log file for errors.For details see, “Verifying the Diagnostics
Collector Installation” on page 127.

In the Diagnostics Ul, each collector instance is represented as a probe entity
of the system type: Oracle probe, SAP probe, MQ probe, EMS probe, WM
probe or SQL Server probe.

Silent Installation of the Diagnostics Collector

A silent installation is performed automatically, without the need for user
interaction. In place of user input, the silent installation accepts input from
a response file for each install step.

For example, a system administrator who needs to deploy a component on
multiple machines can create a response file that contains all the
prerequisite configuration information, and then perform a silent
installation on multiple machines. This eliminates the need to provide any
manual input during the installation procedure.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Important: With each new release of Diagnostics you should re-record the
Diagnostics Collector silent install response files prior to performing silent
installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

103

Chapter 4 ¢ Installing Diagnostics Collectors

To generate a response file:

Perform a regular installation with the following command line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

<installer> -options-record <responseFileName>

This creates a response file that includes all the information submitted
during the installation.

To perform a silent installation:
Perform a silent installation using the relevant response file.

Perform the silent installation with the -silent command line option as
follows. Note that for Windows installers the options must be preceded with
-a. For example: HPDiagServer_9.20_win32.exe -a -silent -options myfile.

<installer> -silent -options <responseFileName>

When performing a silent installation you can specify two additional
options.

You can create a log file by specifying the -is:log <logfilepath> option after
the response file name.

You can change the temp directory to a user-specified directory by
specifying the -is:tempdir <tempDirPath> option after the response file
name.

Installing the Diagnostics Collector Using the Generic

Installer

104

The installers for the Diagnostics Collector support installing the Collector
on Windows, Linux and Solaris systems. A generic Unix installer is provided
on the installation disk to allow you to install the Collector on other
platforms such as HP-UX and AIX.

Chapter 4 ¢ Installing Diagnostics Collectors

To install the Diagnostics Collector using the generic installer:

1 Locate HPDiagCollector_<release version>_unix.zip from the Diagnostics
Installers folder on the HP Diagnostics installation disk.

2 Unzip the file on the system where you want the Collector installed.

3 Then for each of the active systems you want to monitor, you must
configure properties that enable the Collector host and the active system
host to communicate. For instructions on configuring the active system
properties, see “Configuring the Active System Property Files” on page 106.

How to Manually Add Another Collection Type After
Installing the Collector

During the initial installation of the Collector you select the different
collection types or types of active systems you want to monitor such as SAP
or Oracle. After installing the Collector you can add another collection type
or active system type manually.

To manually add another type of active system:

1 Manually copy any required files to the <collector_install_dir>\lib directory.
These files are required for SAP, Tibco EMS and webMethods Broker active
systems. See the installation instructions for details on what files are
required. Other types of collection such as Oracle or SQL Server do not
require this step.

2 On the system where you installed the Collector, in the
<collector_install_dir>\etc\collector.properties file edit the active.systems
property to add the additional collection type. Valid values (case insensitive)
are SAP_R3, Oracle, MQ, SQL_Server, VMWARE, EMS, WM_BROKER.

105

Chapter 4 ¢ Installing Diagnostics Collectors

Configuring the Active System Property Files

Y Y Y Y Y VY Y

When you install the Collector, you are asked to indicate the types of
collection (active systems the Collector will monitor). After installation, you
define instances of the active systems to be monitored. These instances are
manually defined in the XML files provided with the Collector installation.
An instance definition in the XML file is viewed as a probe entity of the
active system. Refer to the following sections for configuration instructions:

“Configuration for SAP NetWeaver-ABAP” on page 106
“Configuration for Oracle” on page 110
“Configuration for SQL Server” on page 113
“Configuration for MQ"” on page 117

“Configuration for TIBCO EMS” on page 120
“Configuration for webMethods Broker” on page 121

“Configuration for VMware” on page 123

Configuration for SAP NetWeaver-ABAP

106

A SAP NetWeaver-ABAP system deployment can include one or more
SAP NetWeaver—-ABAP application instances. These instances together form
an SAP NetWeaver—-ABAP system.

Depending on user permissions, access to the system or application
instances on the system might be direct or might require connection
through the SAP Message Server. For each SAP NetWeaver—-ABAP probe
entity, you must know what connection option is used.

You configure the Collector to collect data for each instance of an active SAP
NetWeaver—-ABAP system to be monitored. You configure SAP
NetWeaver-ABAP for monitoring in the
<collector_install_dir>\etc\r3config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\r3config.xsd.

Chapter 4 ¢ Installing Diagnostics Collectors

To configure SAP NetWeaver-ABAP monitoring:

1 Open Collector\etc\r3config.xml.

3

4

If you are defining an SAP NetWeaver—-ABAP probe entity where access to
the SAP NetWeaver-ABAP instance is through the SAP Message Server, locate
the section of code preceded by the following comment:

<l--

Template to be used with the message server connection option.
-->

If you are defining an SAP NetWeaver—-ABAP probe entity where access to
the SAP NetWeaver—ABAP instance is direct, locate the section of code
preceded by the following comment:

<l--

Template to be used with the direct connection option.
-->

Make a copy of the comment, together with the template code below the
comment, and paste it at the end of the file.

Comment out the original template code by typing <!-- in an empty line
above the template code and --> in an empty line thereafter.

In the copied code at the end of the file, alter the value of each property as
described in the following table and save the file.

Property Description Value

r3system name A logical name for the probe User-defined.
group under which this SAP

NetWeaver—ABAP probe entity
appears in the Diagnostics UL

systemld The ID of the SAP NetWeaver— | Format: [XXX]
ABAP system. Consists of 3
characters only.

Obtainable from the
SAP system
administrator.

107

Chapter 4 ¢ Installing Diagnostics Collectors

108

Property Description Value
client The client name for the SAP Obtainable from the
NetWeaver—ABAP system. SAP system
administrator.
user The name of the user Obtainable from the
connecting to the SAP SAP system
NetWeaver—ABAP system. administrator.
This user needs to have at least
the S_RFC Authorization
Object in order to query the
Dialog info. The user on the
target system must have this
object in their authorization
profile to be able to use RFC to
connect to the target system.
However, for systems R/3 4.7
and earlier this is not sufficient.
The workaround is to install
the Collector on a machine
that is time-synched with the
ABAP host and then disable
time-synching in the Collector
by setting property
timesynch.interval.secs = 0 (in
Collector\etc\13.properties).
password The password (plaintext) of the | Obtainable from the
user connecting to the SAP SAP system
NetWeaver-ABAP system. administrator.
encrypted- The password (encrypted) of Use the
password the user connecting to the SAP | EncryptPassword.jsp
NetWeaver-ABAP system. utility (see “Password
Obfuscation” on
page 1235) to encrypt
the password.
messageServerHost | The name of the SAP Message Obtainable from the

(Message Server
connection only)

Server host machine.

SAP system
administrator.

Chapter 4 ¢ Installing Diagnostics Collectors

Property

Description

Value

r3Name

(Message Server
connection only)

Consists of 3 characters only.

Format: [XXX]

Obtainable from the
SAP system
administrator.

group

(Message Server
connection only)

The group of the SAP
application servers.

Obtainable from the
SAP system
administrator.

dialoginstance

Specify a list of Dialog
Instances to be monitored.

By default all Dialog Instances
within the ABAP system
(cluster) are automatically
discovered and monitored.

However, if the Dialog
Instances are too many (and
too busy) for a single Collector
to handle (it may run out of
memory), you can use this
property to monitor only some
of the Dialog Instances and
monitor the rest by different
Collectors.

SAP Dialog Instances

109

Chapter 4 ¢ Installing Diagnostics Collectors

Configuration for Oracle

110

You configure the Collector to collect data for each instance of an active
Oracle system to be monitored. You configure Oracle monitoring in the
<collector_install_dir>\etc\oracle-config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\oracle-config.xsd.

To configure Oracle monitoring:

1 Open <collector_install_dir>\etc\oracle-config.xml.

Copy the template code enclosed in the comment tags (<!-- and -->) and
paste it at the end of the file.

Use the oraclelnstance element from the template to collect from Oracle 10g
and 11g instances. If you want to collect from multiple instances add
separate entries of the oracleInstance element.

To collect from Oracle RAC (Real Application Clusters) specify the oracleRac
element. The oracleRac configurations must come after the oracleInstance
configurations in the oracle-config.xml file.

In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The name of the Oracle database Obtainable from the
server host machine. You must use | Oracle administrator.
the fully qualified host name.

In an oracleRAC configuration,
this will be the cluster alias.

portNumber Port where the Oracle database Default value: 1521
server listens for requests.

instanceName Use for the oracleInstance element | Default value: Orcl
(does not apply to oracleRAC Obtainable from the

element). The name given to the
Oracle instance during
installation of the Oracle database
server.

Oracle administrator.

Chapter 4 ¢ Installing Diagnostics Collectors

Properties Description Value

serviceName Use for the oracleRac element Obtainable from the
(does not apply to oraclelnstance Oracle administrator.
element). serviceName along with
the cluster alias hostName,
isolates clients from changes in
the RAC installation.

userld The ID of the user connecting to Obtainable from the
the Oracle database server. Oracle administrator.

Note: The user needs at least
CREATE SESSION and SELECT ANY
DICTIONARY to collect
performance metrics.

password The password (plaintext) of the Obtainable from the
user connecting to the Oracle Oracle administrator.
database server.

encrypted- The password (encrypted) of the Use the
password user connecting to the Oracle EncryptPassword.jsp
database server. utility (see “Password

Obfuscation” on
page 125) to encrypt
the password.

111

Chapter 4 ¢ Installing Diagnostics Collectors

112

group under which the probe
appears in the Diagnostics UL It
can be an existing probe group, or
you can define a new one.

Optional for the oracleRac
element, if omitted, probe group
is set to serviceName.

Properties Description Value
probeName For an oraclelnstance. The logical | User-defined. If this
name to represent this Oracle value is not defined,
instance in the Diagnostics UL the same value given
This name must be unique. for instanceName is
used.
In an oracleRac configuration The probe name for
there will be multiple probes so each Oracle instance
you don’t enter a probeName. in an Oracle RAC
configuration is
retrieved at run-time
from the
INSTANCE_NAME
column in the
GVS$INSTANCE view.
probeGroupName | The logical name of the probe User-defined; for

example:
Existing: Default

New: Oracle

To enable collection of additional metrics:

If the Collector encounters a metric it is not configured to collect, a warning
containing the unrecognized metric ID and name is logged. If the metricis a
count, percent, byte, or centisecond metric, you can optionally collect the
metric by adding the metric ID to
<collector_install_dir\etc\oracle.properties.

Locate the property name that corresponds to the type of metric you want
the Collector to collect and add the metric. The property names are:

» oracle.metrics.count

» oracle.metrics.percent

Chapter 4 ¢ Installing Diagnostics Collectors

» oracle.metrics.bytes
» oracle.metrics.centiseconds (the Collector converts to milliseconds)

3 Restart the Collector.

Configuration for SQL Server

You configure the Collector to collect data for each instance of an active SQL
Server system to be monitored. You configure SQL monitoring in the
<collector_install_dir>\etc\sqlserver-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\sqlserver-config.xsd.

To configure SQL Server monitoring:
1 Open <collector_install_dir>\etc\sqlserver-config.xml.

2 Copy the template code and paste it at the end of the file.

3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The name of the SQL Server Obtainable from the
database host machine. You must SQL Server
use the fully qualified host name. | administrator.

portNumber The number of the port where the | Default value: 1433
SQL Server database listens for
requests.

113

Chapter 4 ¢ Installing Diagnostics Collectors

114

Properties

Description

Value

instanceName

The name given to the SQL Server
instance during installation of the
SQL Server database.

When you specify an instance
name, Diagnostics automatically
discovers all SQL Server databases
in the instance. To exclude some
of these databases from collection
(for example, system databases),
specify a comma-separated list in
the exclude.db.list property in the
<collector_install_dir>\etc\sqlserv
er.properties file.

Default value: Default

Obtainable from the
SQL Server
administrator.

Chapter 4 ¢ Installing Diagnostics Collectors

Properties Description Value

integratedSecurity | If set to true, no username/ Default value: false
password should be specified. The
JDBC driver searches the local
computer credential cache for
credentials that have been
provided at the computer or
network logon.

When the Collector is run from
the service HP Diagnostics
Collector, the Windows user
credentials used to connect to SQL
Server must be set as the logon
property for the service. To do
this, run the Windows Services
Manager (services.msc from the
run dialog, or My Computer >
Manage > Services and
Applications > Services). Open the
Properties dialog for service HP
Diagnostics Collector, select the
Log On tab, and set Log on as: to
the user granted access to your
SQL Server instance. This must be
the domain account. Restart the
service.

When using Windows
authentication, a domain account
(not a local one) needs to be used
for making the connection to the
SQL Server instance.

If set to false, the username and
password must be supplied. If this
is not specified, its default value is
false.

115

Chapter 4 ¢ Installing Diagnostics Collectors

116

Properties

Description

Value

userld

The ID of the user connecting to
the SQL Server database.

Note: The user needs at least VIEW
SERVER STATE to collect
performance metrics.

Create the user as follows for
VIEW SERVER STATE:

» CREATE LOGIN diag WITH
PASSWORD = '<pwd>';

» USE master;

» GRANT VIEW SERVER STATE
TO diag;

> GO

From the SQL Server Management

Studio GUI, you can right-click on

the Instance name and select the

properties.

Obtainable from the
SQL Server
administrator.

password

The password (plaintext) of the
user connecting to the SQL Server
database.

Obtainable from the
SQL Server
administrator.

encrypted-
password

The password (encrypted) of the
user connecting to the SQL Server
database.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

Chapter 4 ¢ Installing Diagnostics Collectors

Properties Description Value

probeName The name to be used to represent User-defined.
this instance as a probe in the HP
Diagnostics UL

If this value is not
defined, the same
When you have n databases in value given for
your instance, you actually have instanceName is
n+1 probes: an extra probe for the | used.

totals of the instance that includes
metrics such as wait events.

The extra probe is shown in the Ul
as probeName. The probes for
each database are shown as
probeName_databaseName.

probeGroupName | The logical name of the probe User-defined; for
group under which this probe example:
entity appears in the Diagnostics

Ul Existing: Default
' New: SQL Server
This can be an existing probe

group or you can define a new
one.

Configuration for MQ

You configure the Collector to collect data for each instance of an active MQ
system to be monitored. You configure MQ monitoring in the
<collector_install_dir>\etc\mq-config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\mq-config.xsd.

The MQ probe requires the following permissions:

setmgaut -m <queue_manager_name> -n ** -t queue -g <OS_group_name> +dsp +get

setmqgaut -m <queue_manager_name> -n SYSTEM.ADMIN.COMMAND.QUEUE -t
queue -g <OS_group_name> +dsp +get +put

setmgaut -m <queue_manager_name> -n ** -t channel -g <OS_group_name> +dsp

setmqaut -m <gqueue_manager_name> -t gmgr -g <OS_group_name> +connect +dsp
+inq

117

Chapter 4 ¢ Installing Diagnostics Collectors

118

You can limit the types of queues from which the MQ probe collects metrics
to isolate the most interesting metrics for your application. By default, the
MQ probe collects metrics only from predefined (or non-dynamic) queues.
You specify the queue types to collect or to ignore by setting properties in
the <collector_install_dir>\etc\mq.properties file.

To limit the queues for which metrics are collected:

Open the <collector_install_dir>\etc\mq.properties file.

Locate the property name that corresponds to the MQ Queue definition
type from which you do not want the Collector to collect metrics. The
following table lists the property names and their corresponding MQ Queue
definition types.

Properties MQ Queue Definition Types

collect.predefined.queues MQQDT_PREDEFINED

collect.permanent.dynamic.queues MQQDT_PERMANENT_DYNAMIC

collect.temporary.dynamic.queues MQQDT_TEMPORARY_DYNAMIC

collect.shared.dynamic.queues MQQDT_SHARED_DYNAMIC

The collect.predefined.queues property is set to true by default. The other
three properties are set to false by default. Specity false for any type for
which you do not want the Collector to gather metrics and then save the
mq.properties file.

Note: These properties are supported for MQ 6.x and later versions only.

MQ jar files are included with the Diagnostics Collector but if you must
overwrite these files you can. The MQ jar files provided with the Collector
are located in the <collector_install_dir>\lib directory and can be
overwritten by the MQ jar files provided in your local MQ installation. You
can typically find the jar files in you local WebSphere’s MQ installation’s
\lib directory containing the com.ibm.mq.jar file. If you have difficulty
locating these files contact your WebSphere MQ administrator.

Chapter 4 ¢ Installing Diagnostics Collectors

To configure MQ monitoring:

1 Open <collector_install_dir>\etc\mq-config.xml.

Copy the template code and paste it at the end of the file.

template code and --> in an empty line thereafter.

3 Comment out the template code by typing <!-- in an empty line above the

In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The hostName. Obtainable from the
MQ administrator.

portNumber The number of the port (optional).

queueManagerName | The MQ Manager to connect to. | Obtainable from the

MQ administrator.

channelName

The channel through which to
connect to the Queue Manager.

Obtainable from the
MQ administrator.

securityExit

An IBM term for a pluggable
security provider (a piece of
code that provides a secure
interface to MQ.

If you are using one as a gateway
to MQ, specify the complete
class name as a parameter and
ensure your security Exit class is
available on the classpath.

probeName The name to be used to User-defined. If not
represent this instance as a defined, it defaults to
probe in the HP Diagnostics UL. | the Queue Manager
This name must be unique. name.

probeGroupName The logical name of the probe User-defined; for

group under which this probe
entity appears in the Diagnostics
ULThis can be an existing probe
group, or you can define a new
one.

example:
Existing: Default
New: MQ

119

Chapter 4 ¢ Installing Diagnostics Collectors

Configuration for TIBCO EMS

You configure the Collector to collect data for each instance of an active
TIBCO Enterprise Message Service (EMS) system to be monitored.

You configure TIBCO EMS monitoring in the
<collector_install_dir>\etc\tibco-ems-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\tibco-ems-config.xsd.

In addition to the configuration described below, the following TIBCO EMS
jar files must be copied from your TIBCO EMS installation’s Tibco_EMS>/
ems/<version>/lib directory to the <collector_install_dir>\lib directory on
the system where the Collector is installed:

> tibjms.jar

» tibjmsadmin.jar

To configure TIBCO EMS monitoring:
1 Open <collector_install_dir>\etc\tibco-ems-config.xml.
2 Copy the template code and paste it at the end of the file.

3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

emsServerUrl The EMS Server URL Default is tcp://
localhost:7222

username EMS server username. The user
must have the following
privileges: "view-destination"
and "view-server"

password EMS server password, plain text

120

Y Y Y Y Y

Chapter 4 ¢ Installing Diagnostics Collectors

Properties

Description

Value

obfuscated-password

EMS server password obfuscated
(optional). This property takes
precedence over the plain test
password if both are defined. If
neither are defined blank is
used for the password.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

group under which this probe
entity appears in the
Diagnostics Ul

This can be an existing probe
group, or you can define a new
one.

probeName The name to be used to User-defined.
represent this instance as a
probe in the HP Diagnostics Ul
This name must be unique.

probeGroupName The logical name of the probe User-defined for

example:
Existing: Default
New: TIBCO

You can customize TIBCO data collection by setting properties in the

<collector_install_dir>\etc\tibco-ems.properties file.

How often to collect data

How often to attempt to reconnect when a connection is not established

Enable or disable server-level, queue-level and topic-level metric collection

Include or exclude Global, Static or Temporary Queues and Topics

Select individual metrics

Configuration for webMethods Broker

You can configure the Collector to collect data for the webMethods Broker
system to be monitored.

121

Chapter 4 ¢ Installing Diagnostics Collectors

122

You configure webMethods Broker monitoring in the
<collector_install_dir>\etc\wm-broker-config.xml file. The layout, elements
and attributes of the xml file are described in
<collector_install_dir>\etc\wm-broker-config.xsd.

In addition to the configuration described below, the following webMethods
Broker jar files must be copied from your webMethods Broker installation'’s
<SoftwareAG>/common/lib directory to the <collector_install_dir>\lib
directory on the system where the Collector is installed:

wm-brokerclient.jar

» wm-g11lnutils.jar

To configure webMethods Broker monitoring:

1 Open <collector_install_dir>\etc\wm-broker-config.xml.

Copy the template code and paste it at the end of the file.

3 Comment out the template code by typing <!-- in an empty line above the

template code and --> in an empty line thereafter.

In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostname Broker server hostname. Required. For
example: localhost.

brokerName The name of the broker to Optional
connect to. If omitted, connects to
the default broker as defined
within the broker server.

Chapter 4 ¢ Installing Diagnostics Collectors

Properties Description Value

clientGroup The name of the client group to Optional
use. If omitted, connects to the
‘admin’ client group.

probeGroupName | The logical name of the probe Optional, defaults to
group under which this probe Default.
entity appears in the Diagnostics You can enter a user

UL defined name.

This can be an existing probe
group, or you can define a new
one.

You can customize webMethods data collection by setting properties in the
<collector_install_dir>\etc\wm-broker.properties file.

How often to collect data
How often to attempt to reconnect when a connection is not established

Enable or disable server-level, queue-level metric collection

Y VY VY Y

Select individual metrics

Configuration for VMware

You configure the Collector to collect data for each VMware node to be
monitored. You configure VMware monitoring in the
<collector_install_dir>\etc\vmware-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\vmware-config.xsd. Changes to the
vmware-config.xml file are picked up dynamically.

The Collector requires a patch be installed on the vCenter server: (see
<http://kb.vmware.com/selfservice/microsites/
search.do?cmd=displayKC&docType=kc&externalld=1024596&sliceld=1&d
ocTypelD=DT_KB_1_1&dialogID=139216791&stateld=1 0 139218894> for
more information).

123

Chapter 4 ¢ Installing Diagnostics Collectors

124

You should have the latest VMware Tools installed on the VMware Guest.
These tools can be installed using the vSphere Client. The latest tools are
required for you to drill down from VMware Guest to Hosts in the
Diagnostics Ul because the VMware tools make the Guest's FQDN available
to the VMware Collector via the vCenter.

The VMware Host/Guests associations are created when the Collector is
started. New VMware Hosts and VMware Guests may take up to 15 minutes
to show up in Diagnostics. Deleted or migrating VMware Guests may take
up to five minutes to show up in Diagnostics.

To configure VMware monitoring:

1 Open <collector_install_dir>\etc\vmware-config.xml.

Copy the template code and paste it at the end of the file.

3 Comment out the template code by typing <!-- in an empty line above the

template code and --> in an empty line thereafter.

In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

serverURL The URL used to connect to the
VMware ESX or VCenter server via
the VMware infrastructure
vSphere Web Services APIL.

For example:

https://<myVM.myCo.com>/sdk

userld The VMware ESX or vCenter user
id.

At a minimum the user must have
ReadOnly access and be placed in

the Users group.

Chapter 4 ¢ Installing Diagnostics Collectors

Properties Description Value
encrypted- The encrypted VMware password Optional
password corresponding to userld. First

checks for an encrypted password
and use it if it is non-blank;
otherwise use the plaintext
password. the plaintext password
does not exist or is blank then
uses blank for the password.

password The plaintext VMware password Optional
corresponding to userld.

You can customize VMware data collection by setting properties in the
<collector_install_dir>\etc\vmware.properties file for the following:

> You can limit the query interval and reconnection time. The query interval
is just a hint to the Collector, because the sampling interval must actually be
a multiple of the interval configured on the VMware Server.

» You can also filter by VMware host (ESX Server) and VMware guest (Virtual
Machine). If the VMware Collector is unable to handle the load of an entire
vCenter, then the host and guest filters may allow you to use the VMware
Collector on the part of the vCenter that is most important to you or to
partition the vCenter among multiple VMware Collectors. To use these
filters, modify vmware.properties as described in the property file for
host.filters and guest.filters properties.

Password Obfuscation

Create an obfuscated password using the web application included with
Diagnostics. Access the Security page (http://<host name>:2006/security)
and select Encrypt Password at the bottom of the page. Replace <host
name> with the name of the computer on which the Diagnostics server is
installed.

The obfuscated password you generate can be used in the following xml files
for the different collection types:

125

Chapter 4 ¢ Installing Diagnostics Collectors

126

Y Y Y VY Y

r3config.xml file used to configure the SAP NetWeaver-ABAP collector
oracle-config.xml file used to configure the Oracle collector
vmware-config.xml file used to configure the VMware collector
tibco-ems-config.xml file used to configure the TIBCO EMS collector

sqlserver-config.xml file used to configure the SQL Server collector.

[Diagnostics

Enter Pasword I oooooo
Re-enter Paswaord I oooooo

| Encrypt Password |

Enter the plaintext password, re-enter the password to confirm, and select
the Encrypt Password button. The obfuscated password is displayed. Copy
the entire obfuscated password from this page, including the OBF: at the

beginning, and paste that into the appropriate property file (r3config.xml,

oracle-config.xml, vmware-config.xml, tibco-ems-config.xml or
sqlserver-config.xml).

Note: You can continue to use the plaintext password property.

Chapter 4 ¢ Installing Diagnostics Collectors

A security.encrypted-password property can also be used for the mercury
user password in the following property files: collector.properties,
dispatcher.properties, server.properties. The mercury user is used for
authentication between the various diagnostics components. The following
is a copy of the affected section of these properties files:

HEEHH T R S R S S
Remote Server Authentication Properties
HEHEH T R T T R

#

This user name and password is used for communication between Diagnostics
components (probes, and servers). You may want to change this password

every so often to keep your system secure inside your enterprise. If you

do change this password, you must first use

http://<host name>:2006/security and select Encrypt Password to encrypt the
password.

Plaintext passwords can be used by replacing the security.encrypted-password
with security.password. You must also change the encrypted password in the
<install-dir>/etc/.htaccess file, as well as all the Diagnostics probe, and

servers, that communicate with each other in your enterprise.

#

security.username=mercury
security.encrypted-password=0OBF:1c431jg81hv41k1d11161wu81z0d1pyllwmtln6hly
m71n511wnd1pw11z0h1lwu6lkxwljyllhseljd21c2z

Verifying the Diagnostics Collector Installation

The Collector starts running automatically when the installation is
complete. You can verify the Collector installation by checking the
collector.log file for errors.

Once a collector probe instance is started you can launch the Diagnostics
Enterprise Ul to verify that the probe is working. Go to
http://<Diagnostics_commander_server>:2006/. For now you can use the
default user/password of admin/admin or the login you were given if a
different one has been set up for you.

You can also check the System Health view to find information about the
Collector deployment and the machine that hosts the collector.

127

Chapter 4 ¢ Installing Diagnostics Collectors

To access the System Views:

Open the Diagnostics Ul as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Starting and Stopping the Diagnostics Collector

128

Instructions for a Windows Machine
To start the Collector on a Windows machine:

Select Start > All Programs > HP Diagnostics Collector >
Start HP Diagnostics Collector. Or enter net start "HP Diagnostics Collector"
at the command line.

To stop the Collector on a Windows machine:

Select Start > All Programs > HP Diagnostics Collector >
Stop HP Diagnostics Collector. Or enter net stop "HP Diagnostics Collector"
at the command line.

Instructions for a UNIX Machine (using the Nanny)

The nanny is a process that runs as a daemon to ensure that the Collector is
always running. The following procedures start and stop the Collector using
the nanny.

Chapter 4 ¢ Installing Diagnostics Collectors

To start the Collector on a UNIX machine:

Make sure that the M_LROOT environment variable is defined as the root
directory of the Collector. For example, in ksh, you could enter the
following:

export M_LROOT=<collector_install_dir>/nanny/solaris

If the M_LROOT environment variable is not defined as the root directory,
you will see the following error:

Warning : MDRYV: cannot find Irun root directory . Please check your M_LROOT
Unable to format message id [-10791]
m_agent_daemon (is down)

Change directories to $M_LROOT/bin.

3 Run m_daemon_setup with the -install option, as in the following example:

cd $M_LROOT/bin
./m_daemon_setup -install

To stop the Collector on a UNIX machine:

1 Change directories to $M_LROOT/bin as set in the start procedure above.

Run m_daemon_setup with the -remove option, as in the following
example:

cd $M_LROOT/bin
./m_daemon_setup -remove

Instructions for a UNIX Machine (without using the
Nanny)

The following procedures start and stop the Collector without using the
nanny.

To start the Collector on a UNIX machine:

Run <collector_install_dir>/bin/collector.sh.

129

Chapter 4 ¢ Installing Diagnostics Collectors

To stop the Collector on a UNIX machine:

» Terminate the process using a utility such as kill.

Determining the Version of the Diagnostics Collector

When you request support, it is useful to know the version of the
Diagnostics Collector. The version number of the Collector can be found in
the <collector_install_dir>\version.txt file.

Uninstalling the Diagnostics Collector

To uninstall the Collector:

» On a Windows machine, choose Start > All Programs > HP Diagnostics
Collector > Uninstall Diagnostics Collector.

Or you can run uninstaller.exe, which is located in the
<collector_install_dir>_uninst directory.

» On a Linux or Solaris UNIX machine, run uninstall*, which is located in the
<collector_install_dir>/_uninst directory.

» On other UNIX machines, choose a 1.5 or later JVM and run java -jar
<collector_install_dir>/_uninst/uninstall.jar to uninstall the Collector.

130

Part il

Installation and Setup of the Java, .NET
and Python Agents

This section includes:

> Installing Java Agents

» Preparing Application Servers for Monitoring with the Java Agent

» Preparing Application Servers for Client Monitoring with the Java Agent
» Installing .NET Agents

» Installing and Setting Up Python Agents

132

S5

Installing Java Agents

This section describes how to install a Java Agent and give you information
about the setup and configuration of the Java Agent
This chapter includes:
» Overview of the Java Agent Installation on page 134
» Accessing the Java Agent Installer on page 135
» Installing the Java Agent on page 137
> Running the Java Agent Setup Module on page 141
» About Preparing the Application Server for Monitoring on page 150
» Register the Agent with the Diagnostics Servers on page 150
» Verifying the Java Agent Installation on page 151
» About Additional Configuration and Custom Instrumentation on page 152
» Installing the Java Agent on a z/OS Mainframe on page 154
» Installing the Java Agent Using the Generic Installer on page 156
» Silent Installation of the Java Agent on page 157
» Setting File Permissions (UNIX Only) on page 159
» Determining the Version of the Java Agent on page 160

» Uninstalling the Java Agent on page 160

133

Chapter 5 ¢ Installing Java Agents

Overview of the Java Agent Installation

134

The HP Diagnostics/TransactionVision Java Agent installer installs a Java
Agent to collect data for either Diagnostics or TransactionVision or both.
TransactionVision provides data to the Transaction Management
application in Business Service Management. See the TransactionVision
Deployment Guide in the Business Service Management Documentation
Library for more information about setting up the Java Agent for
TransactionVision.

The agent is installed on the machine hosting the application you want to
monitor.

Before you can use a Java Agent to monitor an application in HP
Diagnostics, you must:

> Install the Java Agent.

» Run the Java Agent setup module which starts automatically after the

installer.

The next steps are to instrument the JRE used by your application server and
configure your application server JVM parameters to invoke the Java Agent.
Depending on your application server, you may use the automatic JRE
instrumentation options instead of manually running the JRE Intrumenter
utility.

Allow approximately 400MB of free space in the temp directory. For
information about the recommended system configurations for hosting the
Java Agent, see “Requirements for the Diagnostics Java Agent Host” on
page 36. Java Agent installers are provided for Windows and for several
UNIX platforms. You can run the installers in graphical mode (which
displays install screens like the Windows installer) or using the console
mode command line interface. If you are not able to use the regular UNIX
installers, you can use the Generic installer as described in “Installing the
Java Agent Using the Generic Installer” on page 156.

Chapter 5 ¢ Installing Java Agents

Important: By default, the <probe_install_dir>/log directory is set to 777.
This ensures that the Java Agent is able to collect metrics from monitored
applications being run by any user.

Depending on your organization’s security requirements, you could further
restrict access to this directory; for example:

chmod 775 /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/log

Note: If there is a pre-existing installation of the Java Agent on the host
machine, see “Upgrade and Patch Install Instructions” on page 893 for
important instructions on how to upgrade the agent systems.

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics Java Agents are installed in your company’s IT environment and
the Diagnostics Commander Server and Mediator Servers are installed by HP
on a Saa$ system on-premise at HP. During the setup of the Java Agent you
select the option for configuring the agent for - Diagnostics with
SaaS-hosted mediator installed on HP premises.

See Accessing the Java Agent Installer to begin.

Accessing the Java Agent Installer

You can install the Java Agent from the Diagnostics installation disk or copy
the executable installation file to another location and run it, or select to
install the Java Agent from the Diagnostics Downloads page in Business
Service Management.

When installing just the Profiler trial software, you launch the installer from
the HP Software Web site.

135

Chapter 5 ¢ Installing Java Agents

136

To access the Installer from a Diagnostics installation media:

For Windows, from the Diagnostics installation DVD (Autorun.exe) the
installation menu page is displayed. From the menu, select Diagnostics
Agent for Java to launch the installer.

OR

You could run the appropriate installer directly by locating the
HPDiagTV]avaAgt_<release number>_<platform>.bin files for Unix or
HPDiagTV]avaAgt_<release number>_win.exe files for Windows on the
installation media and copying the file to the new installation location.

Continue with “Installing the Java Agent” on page 137.

To download the installer from the HP Software Download Center:

1 Go to the HP Software web site’s Software Download Center.

Locate the Diagnostics (or TransactionVision) downloads and choose the
appropriate link for downloading the Diagnostics Agent software. Note that
you could also use the download center to get the Diagnostics profiler trial/
evaluation software.

Follow the download instructions on the web site to download the installer
and save it to a local disk.

Continue with “Installing the Java Agent” on page 137.

To download the installer from the Business Service Management'’s
Diagnostics downloads page:

In Business Service Management select Admin > Diagnostics from the main
menu and click the Downloads tab.

On the Downloads page, click the link to download the appropriate Java
Agent installer.

Chapter 5 ¢ Installing Java Agents

Note: The Java Agent installers are available in Business Service
Management only if they are placed into a directory that Business Service
Management can access. You can enable this during the installation of the
Diagnostic Server, or you can copy the Java Agent installers manually from
the installation disk to the required location.

Continue with Installing the Java Agent.

Installing the Java Agent

This section provides detailed instructions for a first time installation of the
Java Agent on Windows or UNIX systems.

Important: If there is a pre-existing installation of the Java Agent on the
host machine, you must follow the instructions for upgrading the agent
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

Tips for using the installer on UNIX systems:

Where necessary when using the installer, change the mode of the UNIX
installer file to make it executable. For more information about UNIX
commands, see “Using UNIX Commands” on page 925.

To run the installer in console mode, enter the following at the command
prompt:

J<installer> -console

The console mode UNIX installer displays installation prompts rather than a
UL

137

Chapter 5 ¢ Installing Java Agents

To run the installer in graphical mode, enter the following at the command
prompt:

J<installer>

The graphical mode UNIX installer displays the same screens that are
displayed for the Windows installer.

For information on other types of installation see the following:
» For z/OS see “Installing the Java Agent on a z/OS Mainframe” on page 154.

» For information on installation with a generic installer see “Installing the
Java Agent Using the Generic Installer” on page 156.

» For information on silent installation see “Silent Installation of the Java
Agent” on page 157

138

Chapter 5 ¢ Installing Java Agents

An overview of the Java Agent installation steps is shown in the diagram
below; refer to the rest of this section for details on each step.

Java Agent Installation

Step 1. License

Step 2. Install Location

Step 3. Summary Information

Java Agent Setup Module

Step 1. Configuration Options

Profiling Only Diagnostics TransactionVision
with no connection Connect agent to Connect agent to

to Diagnostics or TV Diagnostics Server TransactionVision
Servers (AD mode or Server (Enterprise
Enterprise AM mode) AM mode)

Step 2. Agent name and group

Skip this step if you don't
use Diagnostics Servers

Step 3. Diagnostics Sever Information — TransactionVision Server Information
Enter information if using

Enter information if using
Diagnostics Servers

TransactionVision Servers

Step 4. Setup Summary

Instrument the JRE used by your application servers.
Configure your application server JVM parameters to
invoke the Java Agent.

Verify the Installation and Setup

139

Chapter 5 ¢ Installing Java Agents

140

Begin the Java Agent installation with “Step 1. End User License Agreement”
on page 140.

Step 1. End User License Agreement

Accept the end user license agreement.
Read the agreement and select | accept the terms of the license agreement.

In the console mode interface, press Enter to move to the next page of text
instead of selecting Next, or type g to jump to the end of the license
agreement.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

Select Next (in console mode Enter) to proceed and continue to the next
step.

Step 2. Specify Install Location

Specify the location where you want to install the agent.

Accept the default install directory or specify a different location either by
typing the path to the installation directory into the Installation Directory
Name box, or by clicking Browse to navigate to the installation directory.

In the console mode interface, at the Installation Directory Name prompt,
accept the default installation location shown in brackets, or enter the path
to a different location.

Chapter 5 ¢ Installing Java Agents

Note: This location becomes the <probe_install_dir>. By default, the
location is C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent on
Windows and /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent on
UNIX.

If you encounter an error, check to see if the JavaAgent directory already
exists and remove it. This could happen if you installed and uninstalled the
Java Agent previously without also removing the JavaAgent sub-directory.

Select Next (in console mode Enter) to proceed and continue to the next
step.

Step 3. Review Pre Installation Summary Information

Review the installation summary information.
The installation directory and size requirement are listed.

If these are acceptable, select Next (in console mode Enter) to start the
installation. The installation can take a few minutes.

When the installation is complete the Java Agent Setup Module starts.
Continue on to the next section on Running the Java Agent Setup Module.

Running the Java Agent Setup Module

The Java Agent can be configured as a Profiler without any connection to a
Diagnostics Server (or as an agent that works with a Diagnostics Server and/
or TransactionVision Server). When the agent is initially configured as a
Profiler only, you can, at a later time, configure the agent to work with a
Diagnostics server by re-running the Java Agent Setup Module.

Configure the Java Agent by using the Java Agent Setup Module which starts
automatically at the end of the Java Agent installation or you can start it at
any time by choosing Start > All Programs > HP Java Agent > Setup Module.
Or for UNIX you can start it at any time by running <probe_install_dir>/
bin/setupModule.sh.

141

Chapter 5 ¢ Installing Java Agents

142

Y VY VY Y

The Java Agent Setup Module includes the following steps, select Step 1.
Configuration Options to begin:

“Step 1. Configuration Options” on page 142
“Step 2. Agent Name and Group” on page 144
“Step 3. Diagnostics Server Information” on page 145

“Step 4. Post Setup Summary” on page 149

Step 1. Configuration Options

Indicate if the Java Agent is to be installed as a standalone Profiler without
any connection to a server (for example if you are installing the Diagnostics
Java Profiler trial software), or if you are installing the agent to work with
LoadRunner/Performance Center or to work with a Diagnostics and/or
TransactionVision Server.

HP Diagnostics/TransactionVision Agent for Java E] l

Select the Java Agent Configuration Options

) Diagnostics Profiler Mode

) Diagnostics Mode for Load Runner/Performance Center (AD License)

@ Application Management/Enterprise Mode (AM License)

Diagnostics
[] Diagnostics with SaaS-hosted mediator (installed on HP premise)

[] TransactionVision

Make the selection that is appropriate for the environment where you will
be using the agent.

Application Management/Enterprise Mode (AM License). Select this option
to install the agent for use with a Diagnostics Server and/or a
TransactionVision Server in an enterprise (or production) environment.

Then indicate which of the following the agent will be configured for:

» Either a Diagnostics Server (installed locally) OR a Diagnostics Server
hosted on an HP SaaS system on-premise at HP

Chapter 5 ¢ Installing Java Agents

» A TransactionVision server
» Both a Diagnostics Server installed locally and a TransactionVision Server

If you select HP SaaS mode then an HP SaaS administrator will provide you
with information on connecting the Java agent to an HP SaaS hosted
Diagnostics mediator server.

If you select TransactionVision, see the HP TransactionVision Deployment
Guide in the Business Service Management documentation library for details
on setup options specific to TransactionVision.

With the Application Management/Enterprise Mode (AM License) option,

the value of the active.properties property in the etc/probe.properties file
is set to Enterprise mode if you select the Diagnostics Server. It is set to TV
mode if you select the TransactionVision server at the time you install the

Java Agent (see “Set the Active Products Mode” on page 505).

For those agents with Enterprise mode set, the agent will be counted against
your HP Diagnostics AM license capacity.

Select Diagnostics Profiler Mode to configure the agent as a Diagnostics Java
Profiler without any connection to a Diagnostics server. Diagnostics Profiler
mode is typically used when installing the Diagnostics Java Profiler trial
software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode the value of the active.products
property in the etc/probe.properties file is set to PRO mode at the time you
install the Java Agent (see “Set the Active Products Mode” on page 505).

When you select Diagnostics Profiler Mode there are no other configuration
options so you can select Finish to complete the configuration and the Post
Setup Summary dialog is displayed.

Diagnostics Mode for LoadRunner/Performance Center (AD License). Select
this option to install the agent for use with a Diagnostics Server in a load
testing (or pre-production) environment where probes are used only in
LoadRunner or Performance Center runs.

The agent will be installed in AD license mode which means the agent will
only be counted against your HP Diagnostics AD license capacity when the
agent is in a LoadRunner or Performance Center testing run. See “License
Information Based on Currently Connected Probes” on page 85 for more
information on AD license capacity.

143

Chapter 5 ¢ Installing Java Agents

144

In AD mode the agent will ONLY capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21. When the
agent is in AD mode it will NOT send any data to the server unless the probe
is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the active.properties
property in the etc/probe.properties file is set to AD mode at the time you
install the Java Agent (see “Set the Active Products Mode” on page 505).

The advantage of running a probe in AD mode is that probes in AD mode
are only counted against license capacity if they are in a LoadRunner or
Performance Center test run. For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but only have 5 are in a run at
any one time then you would only need an AD license capacity of 5 probes.

In the console mode interface enter an X to select the mode for installation.
Select Next (in console mode Enter) to proceed and continue to the next

step.

Step 2. Agent Name and Group

Skip this step if the agent won't be reporting to a Diagnostics Server.

Assign a name to the Java Agent and specify the group to which it belongs.

5_HP Diagnostics/TransactionVision Agent for Java o ol x|
A

Id'rfythe Java Agent

Java Agent Mame: |App|icati0nAgent22 |

Java Agent Group: |Defau|t |

Chapter 5 ¢ Installing Java Agents

» For the Java Agent name, enter a name that uniquely identifies the agent
within HP Diagnostics. You can use -, _ and all alphanumeric characters in
the name. The agent name is assigned as the default probe entity name. If
you have a single agent installed on a system and plan to monitor multiple
application servers or application domains you can later configure unique
probe names for each monitored application.

When assigning a name to an agent, choose a name that will help you
recognize the application being monitored and the system the agent is
installed on (for example if installing on the system ovrserver130 with a
WebLogic application server you could use the agent name
WL10_MedRec_ovrserver130).

» For the Java Agent group name, enter a name for an existing group or a new
group to be created. The agent group name is case-sensitive. The agent
group name is used as the probe group name.

Probe groups are logical groupings of probes that report to the same
Diagnostics Server. The performance metrics for a probe group are tracked
and can be displayed on many of the Diagnostics views.

For example, you can assign all of the probes for a particular enterprise
application to a probe group so that you can monitor both the performance
at the group level and the performance based on individual probe entities.

Select Next (in console mode Enter) to proceed and continue with the next
step.

Step 3. Diagnostics Server Information

Skip this step if the agent won't be reporting to a Diagnostics Server.

Enter the configuration information for the Diagnostics Server and
additional options.

145

Chapter 5 ¢ Installing Java Agents

In the console mode interface for each option enter an X for Yes and O for
No.

HP Diagnostics/TransactionVision Agent for Java E] =]
(O |

Configure the Diagnostics Java Agent

Diagnostics Server Connectivity

Diagnostics Server Name: |localhost

Diagnostics Server Port: |2UUB

Additional Options
[] Tune Diagnostics Java Agent for use in an SAP NetWeaver Application Server
[_] Enable gzip compression (Recommended for HP Saa$ deployments)
[] Enable SSL
[] Use Proxy Server to connect to Diagnostics Server
Proxy Server Options
Proxy Server Name:
Proxy Server Port:
Proxy Server Username {optional):

Proxy Server Password (optional):

Local Profiler Password (Recommended to change the default "admin” password)

Password: |ac|min

Notes:

The default server portis 2006. When S5L is enabled, the default server port or 8443, When S5L is enabled AND
the mediator is SaasS hosted, the default server portis 443,

| Back || Next || Finish || Cancel |

|Wed May 09 14:41:37 PDT 2012: This is the last dialog...please click the Finish button to save and exit

In the Diagnostics Server Name box, enter the host name or IP address of
the host of the Diagnostics Server this agent should connect to. You should
specify the fully qualified host name not just the simple host name. In a

mixed OS environment, where UNIX is one of the systems, this is essential
for proper network routing.

146

Chapter 5 ¢ Installing Java Agents

Commander Server. If there is only one Diagnostics Server in the
Diagnostics deployment where the agent will run, enter the Diagnostics
Commander Server host name and port information here.

Mediator Server. In a distributed environment with a commander server
and mediator servers, enter the information for the Diagnostics Mediator
Server that is to receive data from the agent.

If you are using HP Software-as-a-Service (SaaS) then the Diagnostics
Mediator is installed by HP on an HP SaaS$ system on-premise at HP. An HP
Saa$S administrator will provide you with the information on the host name
and port to use. Also note that for an HP SaaS environment the Enable gzip
option will be checked automatically for you and you will not see the
Enable SSL option because it is configured on the Diagnostics Commander/
Mediator on HP premises.

In the Diagnostics Server Port box, enter the port number of the Diagnostics
Server.

The default port for the Diagnostics Server is 2006. For SSL communications
with the server the port is typically set to 8443 for a locally installed server.

The default port if you are installing the agent for a SaaS environment is 443
(the SaaS administrator will provide you with details).

If the port was changed since the Diagnostics Server was installed, you
should specify the new port number here instead of the default.

To allow this agent to support a SAP NetWeaver Application Server, set the
Tune Diagnostics Java Agent for use in an SAP NetWeaver Application
Server check box.

If you need to compress the data between the Java Agent and the mediator,
set the Enable gzip compression check box. This is a tradeoff between
bandwidth and probe performance overhead. In an HP SaaS environment
you are typically asked to enable gzip compression, see your SaaS
administrator for more information.

147

Chapter 5 ¢ Installing Java Agents

148

» The Java Agent connects to the Diagnostics server via SSL when Enable SSL

is checked or the Diagnostics server is SaaS-hosted on HP premises.
Checking the Enable SSL checkbox instructs the agent to connect to the
Diagnostics Server in SSL mode and to attempt to download the required
certificate chain from the server. As a result the server.properties trusted
certificate will then include the certificate. For more information on secure
communications see “Enabling HTTPS Between Components” on page 839.

If a proxy server is used to communicate with the Diagnostics Mediator
Server select Use Proxy Server to connect to Diagnostics Server check box
and enter the appropriate options. In an HP SaaS environment if your
company requires a proxy to communicate to outside servers then you
would select this option. These options can also be set in the
dispatcher.properties file on the agent system by setting proxy.enabled to
true and entering the other options. See “Configuring Diagnostics Servers
and Agents for HTTP Proxy” on page 671.

Proxy Server Options:
> Proxy Server Name. Host name of the proxy server.
> Proxy Server Port. Port of the proxy server.

» Proxy Server Username (optional). The user used to authenticate the
proxy server.

» Proxy Server Password (optional). The password used to authenticate the
proxy server.

It is recommended that you change the Local Profiler Password from the
default (admin) password.

TransactionVision Information

If you selected to configure this agent for TransactionVision then you will
see additional dialog boxes to configure the agent for TransactionVision. See
the HP TransactionVision Deployment Guide for details on these installation
options.

Setup Process Begins

The Java Agent Setup process begins. In graphical mode a progress bar
indicates how the configuration is proceeding.

Chapter 5 ¢ Installing Java Agents

The connectivity to the Diagnostics Server is tested. If any connectivity
problems are encountered, the Set Up Program displays the results of the
connectivity check.

Continue with the next step.

Step 4. Post Setup Summary
Review the Post Setup Summary and click OK.

Post Setup Summary E]@

Setup Validation Assessment

Application Management/Enterprise Mode (AM License) selected...
Success (locathost:2006/) Diagnostics Server registrar connectivity validation

Post Configuration Options
[_] Run the JRE Instrumenter now to manually instrument the JRE used by the application server to be monitored
See the Installation and Configuration Guide for automatic JRE instrumentation options

Client Monitoring

NEW: Remember to deploy HPDiagClM.war to your application server to activate Client Monitoring.

See the Installation and Configuration Guide for more details.

You should use the automatic JRE instrumentation options instead of
manually running the JRE Intrumenter utility. Therefore the checkbox for
running the JRE Instrumenter utility is left blank by default. See the About
Preparing the Application Server for Monitoring below to continue.

149

Chapter 5 ¢ Installing Java Agents

About Preparing the Application Server for Monitoring

The next steps are to instrument the JRE used by your application server and
configure your application server JVM parameters to invoke the Java Agent.

Follow the instructions in “Preparing Application Servers for Monitoring
with the Java Agent” on page 161 for how to instrument the JRE used by
your application server and how to configure the JVM parameters for
specific application servers to invoke the Java Agent.

After you prepare the application server for monitoring by the Java Agent
then you restart the application server and the Java Agent will be invoked to
begin monitoring the application.

For more information on client monitoring see Chapter 7, “Preparing
Application Servers for Client Monitoring with the Java Agent”.

Register the Agent with the Diagnostics Servers

150

Configure the agent to connect to the Diagnostics Commander Server.

One of the functions of the Diagnostics commander server is to keep track
of the Diagnostics components so that it can facilitate communication
between them and keep you informed about the status and health of the
components.

To configure the agent to register with the Diagnostics Server, set the host
name and port using the registrar.url property which can be found in the
property file: <probe_install_dir>\etc\dispatcher.properties.

Below is an excerpt from dispatcher.properties showing the registrar.url
property:

the URL of the registrar
registrar.url=http://host0l.company.com: 2006/ registrar/

Chapter 5 ¢ Installing Java Agents

Verifying the Java Agent Installation

The agent does not register with the Diagnostics Server until a probe is
started. The probe is started when the instrumented application server is
started. Therefore, you cannot check that the agent is working properly
until you instrument the JRE used by your application server and configure
your application server JVM parameters to invoke the Java Agent.

Once a Java probe instance is started you can launch the Diagnostics
Enterprise Ul to verify that the probe is working. Go to
http://<Diagnostics_commander_server>:2006/. For now you can use the
default user/password of admin/admin or the login you were given if a
different one has been set up for you.

You can also check the System Health view to find information about the
Java agent deployments and the machines that host them.

To access the System Views:

1 Open the Diagnostics Ul as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

You can also check for entries in the
<probe_install_dir>\log\<probe_id>\probe.log file. If there are no entries
in the file, you did not instrument the JRE or did not enter the Java
parameter such as Xbootclasspath correctly. In the probe.log file look for
errors and look for an entry that says "Successfully downloaded first
command" which indicates that the communication between the probe and
the server has been established.

Continue on to the next section for post installation/setup tasks.

151

Chapter 5 ¢ Installing Java Agents

About Additional Configuration and Custom
Instrumentation

152

Y Y Y Y Y

There is some additional configuration and optional custom
instrumentation you can do. See the following:

“Configure SOAP Message Handlers” on page 152
“Specify Probe Properties as Java System Properties” on page 153
“Optional Advanced Configurations” on page 153
“Optional Custom Instrumentation” on page 153

For information on configuration for environments with proxies see
“Configuring Diagnostics Servers and Agents for HTTP Proxy” on page 671,
firewalls see “Configuring Diagnostics to Work in a Firewall Environment”
on page 675 and for enabling HTTPS see “Enabling HTTPS Between
Components” on page 839.

Configure SOAP Message Handlers

The Diagnostics SOAP message handler is required to support the following
features:

» Collect payload for SOAP faults.

» Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets
were written to automatically configure the Diagnostics handlers for web
services being monitored.

For WebSphere 5 JAX-RPC and Oracle 10g JAX-RPC, manual steps are
required to configure the SOAP handler. See “Loading the Diagnostics SOAP
Message Handler” on page 239.

Chapter 5 ¢ Installing Java Agents

Specify Probe Properties as Java System Properties

All of the probe properties, except for those defined in the
dynamic.properties property file, can be specified as Java System properties
on the startup command line for the application server. This is very useful
when there is more than one JVM using a single probe installation.

To specify a property as a Java System property, pre-pend the letter D and
the first part of the properties file name to the property name. The following
examples explain this.

To set the id property in probe.properties from the startup command,
concatenate the D and probe from the property file name, and then tack on
the name of the property you are specifying; that is, id, as follows:

-Dprobe.id=Someld

To set the active.products property in probe.properties from the startup
command, concatenate the D and probe from the property file name, and
then tack on the name of the property you are specifying; that is,
active.products, as follows:

-Dprobe.active.products=Enterprise, TV

To set the registrar.url property in dispatcher.properties from the startup
command, concatenate the D and dispatcher from the property file name,
and then tack on the name of the property you are specifying; that is,
registrar.url, as follows:

-Ddispatcher.registrar.url=http:/</host01.company.com>:2006/commander/registrar

Optional Advanced Configurations

Determine which advanced configurations of the probe apply to your
environment. See Chapter 13, “Advanced Java Agent and Application
Server Configuration.”

Optional Custom Instrumentation

You can also configure custom instrumentation if needed. See Chapter 10,
“Custom Instrumentation for Java Applications,” for details.

153

Chapter 5 ¢ Installing Java Agents

Installing the Java Agent on a z/0S Mainframe

154

This section provides instructions for installing the Java Agent from the .tgz
file that is included on the Diagnostics installation disk.

Consider the following before you install a Java Agent and configure it to be
a Java Agent in a z/OS environment:

The Diagnostics Java Agent is installed in and makes extensive use of the
Unix System Services environment (USS) on z/OS.

When installed in a z/OS environment, the Java Agent expects the
Diagnostics property files to be in EBCDIC format rather than in ASCII. Use
an EBCDIC editor to update the property files and store the updates in that
same format.

System metrics are not captured for z/OS. The Diagnostics Java Agent can be
configured to capture a limited number of system level metrics.

For more information on capturing system metrics in z/OS, see
“Enabling z/OS System Metrics Capture” on page 721.

Installing the Java Agent on z/0S from the Diagnostics
Installation Disk

A .tgz file containing the Java Agent files is included on the Diagnostics
installation disk and is used to install the Java Agent on a z/OS mainframe.

To install the Java Agent on a z/OS mainframe:

Upload HPDiagTV)avaAgt_<release number>_zos.tgz from the
Diagnostics_Installers folder on the HP Diagnostics installation disk to the
directory on the z/OS system where you wish to unzip the installer.

Unzip HPDiagTVJ]avaAgt_<release number>_zos.tgz using gzip as shown in
the following example:

gzip -d HPDiagTVJavaAgt 9.10_zos.tgz

This command creates the unzipped file, HPDiagTVJavaAgt_<release
number>_zos.tar.

Chapter 5 ¢ Installing Java Agents

3 To unpack the .tar file, run the tar command as shown in the following
example:

tar -xfp HPDiagTVJavaAgt_9.10_zos.tar

This command creates the unpacked directory, JavaAgent.

4 Ensure that you have a Java executable on your path, and then run the Java
Agent Setup Module to configure the Java Agent as a Profiler only or as a
Java Agent to work with a Diagnostics Server and/or a TransactionVision
Processing Server. Refer to “Running the Java Agent Setup Module” on
page 141 for details. For example (or as appropriate for your shell):

setenv PATH /u/Java6_31/J6.0/bin:/bin

And then:

<probe_install_dir>/bin/setupModule.sh

5 After you install the agent and run the Setup Module you must then
instrument the JRE used by the application server and configure your
application server JVM parameters to invoke the Java Agent see Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent.”

6 Verify the agent installation as described in “Verifying the Java Agent
Installation” on page 151.

7 Complete post installation configuration as required. See “About Additional
Configuration and Custom Instrumentation” on page 152.

Installing Java Agents on Multiple z/0S Machines

If you plan to install Java Agents on more than one z/OS machine, you
might want to create a pax archive of the agent implementation on the first
machine and then use the pax archive to install the agent onto the other
machines. Contact your system administrator for more information.

155

Chapter 5 ¢ Installing Java Agents

Installing the Java Agent Using the Generic Installer

156

The installers for the Java Agent were built to support installing the agent on
all of the platforms for which the component was certified. However, the
agent might work on other platforms that are not yet certified. A generic
installer is provided on the product installation disk to allow you to install
the agent on these uncertified platforms.

To get the agent to work on the platforms that are not supported by the
regular installer, run the generic installer and manually configure the agent
as a Java Probe so that it can communicate with the other Diagnostics
components and monitor the processing of your application.

To install and configure the Java Agent on an uncertified platform:

Locate HPDiagTVJ)avaAgt_<release number>_unix.tgz from the
Diagnostics_Installers folder on the HP Diagnostics installation disk.

Unzip HPDiagTVJavaAgt_<release number>_unix.tgz using gzip as shown in
the following example:

gzip -d HPDiagTVJavaAgt_9.10 unix.tgz
When this command completes, the unzipped file is called
HPDiagTVJavaAgt_<release number>_unix.tar.

To unpack the tar file, run the following tar command:

tar -xfp HPDiagTVJavaAgt_9.10_unix.tar

This command creates the unpacked JavaAgent directory.

Run the Java Agent Setup Module to configure the Java Agent as a Profiler
only or as a Java Agent to work with a Diagnostics Server and/or a
TransactionVision Processing Server. Refer to “Running the Java Agent Setup
Module” on page 141 for details.

<probe_install_dir>/bin/setupModule.sh

Chapter 5 ¢ Installing Java Agents

5 After you install the agent and run the Setup Module then you must
instrument the JRE used by your application servers and configure your
application server JVM parameters to invoke the Java Agent, see Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent.”

6 Verify the agent installation as described in “Verifying the Java Agent
Installation” on page 151.

7 For additional information see “About Additional Configuration and
Custom Instrumentation” on page 152.

Silent Installation of the Java Agent

Silent installation of the Java Agent is supported. A silent installation is
performed automatically, without the need for user interaction. In place of
user input, the silent installation accepts input from a response file for each
install step.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Important: With each new release of Diagnostics you should re-record the
response files prior to performing silent installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

Silent installation uses two response files: one for the Java Agent installation
and one for the Java Agent Setup Module.

157

Chapter 5 ¢ Installing Java Agents

158

To generate a response file for the Agent installation:

Perform a regular installation with the following command-line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

<installer> -options-record <installResponseFileName>

Where <installResponseFileName> is the fully qualified file. This creates a
response file that includes all the information submitted during the
installation.

To generate a response file for the Java Agent Setup Module:

Run the Java Agent Setup Module with the following command-line
options.

On Windows:

<probe_install_dir>\bin\setupModule.cmd -createBackups -console -recordFile
<JASMResponseFileName>

On UNIX:

<probe_install_dir>/bin/setupModule.sh -createBackups -console -recordFile
<JASMResponseFileName>

Where <JASMReponseFileName> is the fully qualified file. Either command
creates a response file that includes all the information submitted during the
setup.

To perform a silent installation of the Java Agent:
Perform a silent installation using the Java agent install response file.

First set an environment variable and then run the installer with the
following -silent command-line option. Note that for Windows installers the
options must be preceded with -a. For example:
HPDiagServer_9.20_win32.exe -a -silent -options myfile.

set HP_JAVA AGENT_SETUP=-DoNotRun
<installer> -silent -options <installResponseFileName>

Chapter 5 ¢ Installing Java Agents

On UNIX systems, use quotes when specifying the environment variable.

set HP_JAVA_AGENT_SETUP="-DoNotRun"

To perform a silent configuration using the Java Agent Setup Module:
» Perform a silent installation using the Java agent setup module response file.

Unset the environment variable and then run the Java Agent Setup Module
with the following -silent command-line option:

set HP_JAVA_AGENT_SETUP=
<setupModule> - silent -createBackups -console -installFile <JASMResponseFileName>

On UNIX systems, use empty quotes to unset the environment variable.

set HP_JAVA_AGENT_SETUP=""

To specify two additional options after the response file name when
preforming a silent installation:

> You can create a log file by specifying the is:log <logfilepath> option.

» You can change the temp directory to a user-specified directory by
specifying the is:tempdir <tempDirPath> option.

Setting File Permissions (UNIX Only)

On UNIX only, after installing the Java Agent, make the agent’s ‘group’ the
same as the application server’s ‘group’. Then assign the following
permissions to files in the probe install directory for the group:

> Read access to the <probe_install_dir> directory and files.
» Execute access to the <probe_install_dir>/bin directory.

» Read/Write access to the <probe_install_dir>/log directory.

Depending on your organization’s security requirements, you might want to
turther restrict access to this directory; for example:

chmod 775 /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/log

159

Chapter 5 ¢ Installing Java Agents

Determining the Version of the Java Agent

When you request support, it is useful to know the version of the
Diagnostics component you have a question about.

You can find the version of the Java Agent in one of the following ways:

» Locate the version file <Probe_install_dir>\version.txt. The file contains the
four-digit version number, as well as the build number.

» The version number is available in the probe log file (<Probe_install_dir>/
log/<probe_id>/probe.log).

» And the version number is available in the System Health view in the
Diagnostics Ul (see Appendix D, “Using System Views for Administrators”).

Uninstalling the Java Agent

To uninstall the Java Agent:

» On a Windows machine, choose Start > All Programs > HP Java Agent >
Uninstaller.

Or run uninstaller.exe, which is located in the <probe_install_dir>_uninst
directory.

» On a Linux or Solaris machine, run uninstaller.bin, which is located in the
<probe_install_dir>/_uninst directory.

» On other UNIX machines, choose a 1.4 or later JVM and run java -jar
<probe_install_dir>/_uninst/uninstall.jar to uninstall the Java Agent.

Also remember to remove the Java Agent parameter you added to your
application server startup.

160

6

Preparing Application Servers for
Monitoring with the Java Agent

This chapter describes how to prepare your application servers to allow the
HP Diagnostics Java Agent to monitor your applications.
This chapter includes:
» About Preparing Application Servers for Monitoring on page 162
» Examples for Configuring Application Servers on page 163
» About the JRE Instrumenter and Different Options to Invoke on page 219
» Other Configuration Options on page 232

161

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

About Preparing Application Servers for Monitoring

162

Once you install the HP Diagnostics Java Agent you must prepare
(instrument) your application servers to allow the Java Agent to monitor
your applications. This preparation usually involves instrumenting the JRE
used by your application servers and configuring your application server
JVM parameters to invoke the Java Agent.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but
rather places copies of instrumented classes under the Java Agent
installation directory. Then with the proper JVM parameters these
instrumented classes will be loaded into the JVM that runs your application
server. The instrumentation is done using the Diagnostics JRE Instrumenter
utility which can be invoked automatically using various options or
manually.

There are two-levels of instrumentation:

Basic instrumentation.

By adding the Java Agent to your application server start up, your
application server will be instrumented and monitored. This is done by
adding the -javaagent option to your application server JVM parameters.

Recommended instrumentation.

In addition to the basic instrumentation, we recommend that you also
instrument the JRE (Java Runtime Environment) used by your application
server using the JRE Instrumenter utility provided by the Java Agent. This
extra instrumentation will enable the Java Agent to provide advanced
features such as the patent-pending Collection Leak Pinpointing (CLP). CLP
automatically detects leaking collections and provides a stack trace of where
the leak occurs. This helps identify issues early, while there is time to
mitigate the issue (such as an eventual out of memory error/server crash), as
well as saves developers time by avoiding the tedious task of analyzing heap
dumps (see “Configuring Collection Leak Pinpointing” on page 377). And
this extra instrumentation also has performance benefits on certain
application servers such as WebSphere 6.1.

For general instructions on using the different JRE instrumentation modes
see “About the JRE Instrumenter and Different Options to Invoke” on
page 219.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

For older application servers that use JRE 1.4, such as WebLogic 8.1 and
WebSphere 5.1/6.0, the basic instrumentation is not available; you must use
the recommended instrumentation on them.

To continue, find your application server in the list below and follow the
instructions for instrumenting and configuring.

Examples for Configuring Application Servers

This section provides examples of how to configure various commonly used
application servers for monitoring. See the section “About the JRE
Instrumenter and Different Options to Invoke” on page 219 for a
description of the different ways you can invoke the JRE Instrumenter.

Important: Make sure that you understand the structure of the startup
scripts, how the property values are set, and the use of environment
variables before you make any application server configuration changes.
Always create a backup copy of any file that you plan to update before
making the changes.

“Example 1: Configuring GlassFish” on page 164

“Example 2: Configuring JBoss” on page 168

“Example 3: Configuring Oracle” on page 172

“Example 4: Configuring SAP NetWeaver” on page 178

“Example 5: Configuring TIBCO ActiveMatrix/BusinessWorks” on page 183
“Example 6: Configuring Tomcat” on page 187

“Example 7: Configuring WebLogic” on page 192

“Example 8: Configuring WebSphere” on page 196

“Example 9: Configuring webMethods” on page 212

163

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

164

For the most recent information on what application server versions are
supported on what platforms, see the HP Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp or contact HP
customer support.

Note:

» The script examples shown in this chapter may have line breaks to make
it easier to read. The actual scripts do not have line breaks. The text of the
commands will wrap on your screen as necessary.

» Use quotes if there are spaces in the path that you specify.

Example 1: Configuring GlassFish

Configuring a GlassFish application server involves modifying its
configuration files to add JVM parameters. Below are the instructions for a
generic GlassFish 3.x or 9.1 application server implementation. Your site
administrator should be able to use these instructions to guide you in
making the changes that are appropriate to your specific environment.

For GlassFish application servers you configure JRE instrumentation using
implicit mode (see “Using the JRE Instrumenter in Automatic Implicit
Mode” on page 224).

To configure a GlassFish application server:

For GlassFish 3.x application servers locate the property
org.osgi.framework.bootdelegation in the GlassFish configuration files and
append com.mercury.opal.capture.proxy to its end (also need a comma as a
separator).

For GlassFish 9.1 skip this step.

In GlassFish 3.1.2, this property is located in <GlassFish_install_dir>/
glassfish/config/osgi.properties.

In an earlier version of GlassFish, this property may reside in the following
two files:

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

< GlassFish_install_dir >/osgi/equinox/configuration/config.ini

< GlassFish_install_dir >/osgi/felix/conf/config.properties

2 Log in to the GlassFish Administration Console and go to the JVM Options
page, by using the following steps:

For GlassFish 3.1.2, in the left-hand tree go to Configurations >
{config_name} > JVM Settings, where {config name} is the name of your
server configuration (such as., server-config). Then select the JVM Options
tab. See the screenshot below as a reference.

in: darnain]

(= Common Tasks

@ Domain
E senver [Admin Sener)
B Clusters
[Standalone Instances
i HTTF Load Balancers
* [Nodes
[Applications
e Lifecycle Modules
@ honitoring Data
* @ Resources
* g JoBC
* @ Connectors
i Resowrce Adapter Configs
* g JMS Resources
= Javahiail Sezsions
® [MO
(& Performance Tuner
v e Configurations
¥ |G default-config

Logger Selings
= Web Container ”
| (|

| General | Path Settings | Profiler

Server: lncalhost

JVYM Options
Manage JyM oplions for the server. Walues containing one
shing”).

Configuration Name: default-config

Options @27)
182 8| | |«CEdd v Option | Delete

J Value +. .
r

- MaxPemnSize=192m
-l ParmSize=6dm

-SEMET

-Dyava. awd headless=true

- #UnlockDiagnostichiO ptions
--Dja'ta.endursed.dirFchm.sun.aas.inslaIIRnD‘IHmUdulasfandclrsadi{pa‘lh.sepalalur}i{cnm.5un.aas.|rr51aIIRU
-Djwva. security, policy=§[com.sun. aas instanceRool feonfigsener. policy |
-Dijava. sacurity. auth. login, config=$ com. sun. aas. instanceRoot foonfighogin.cond

-Deom sun enterprise. securly MpsOutboundkerMias=s1as

-Dijavax net. ssl keyStare=§{com sun aas.instanceRoot fconfigfkaystore. jks

<Dyavax net. g5l trusiSlore=${com. sun. sas.inslanceRoot feonfigicacen s jks

aaonoannononmon

-Dijava, ext, dirs=Hoom. sun, aas, javaRoot)libfed Hpath separator}com. sun. aas. jaaRoot)jredlib/extfpath. sep

-

If you are working with an earlier version of GlassFish, click Application
Server in the left-hand tree and then select the JVM Settings tab at the top.
Then select the JVM Options tab.

165

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

For GlassFish 9.1, in the left-hand tree click Application Server and then
select the JVM Settings tab at the top. Then select the JVM Options tab. See
the screenshot below as a reference.

Usi n Domain: domainl = Server: o ozt

Sun Java™ System Application Server Admin Console

|»
»

Common Tazks Application Server -
e _“‘
-‘ Registration General 'IU.IM Logging Monitor Diagnostics dminictyaton i
CT.| Aeplication Server Sotinas Password
e,

v Applications General Path Settings VM Options Profiler
Enterprise Application T ——
v Wb Applications JVM DpthﬂS .’

Manage J¥M options for the server. &n option value with & space needs to have enclosing double
guates, Click the Save button to save any changes.

@ helloraeorld
EJE Modules
Connector Modules

Options (17)

et |
Lifecycle Modules lg_jJ LE_J | oL Add Jvh Option B Delete |
Application Clisrt Mod | vawe |

. |

@ ‘veb Services [[ox%MeaxPermSize=192m |

3 Click the Add JVM Option button to add two JVM parameters, one at a time.
The first parameter (-javaagent) causes the application server JVM to invoke
the Java Agent at start-up. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the name of the
directory for storing the instrumented classes. In the following examples
you would substitute a name you choose for MyServer.

Below is an example for a Windows environment:

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServenr\instr.jre

Below is an example for a UNIX environment:

-javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/MyServer/instr.jre

166

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Note: In case of cluster setup, also add the following JVM parameter
-Dprobe.id=<ProbelD>_%0

where <ProbelD> is the probe name that you want to assign to this
application server cluster. The "%0" string will be replaced with a unique ID
so that you can differentiate different probe instances.

Restart the GlassFish application server.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

If the GlassFish application server does not start, you can check and change
the JVM parameters in the <GlassFish_install_dir>/glassfish/domains/
<domain_name>/config/domain.xml file to resolve the issue, where
<domain_name> is the name of your domain (such as, domain1).

If GlassFish fails to start with class loader exceptions, then check whether
AS_JAVA is set correctly in <GlassFish_install_dir>/config/asenv.bat.

If the GlassFish application server takes a long time to initialize and fails to
start due to the following error:

Could not load Logmanager "com.sun.enterprise.server.logging.ServerLogManager"

add the following JVM option

-Ddiag.agent.init.delay.ms=<delay_ms>
where <delay_ms> is the number of milliseconds (for example, 6000). You
can increase the <delay_ms> until the error is gone.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the GlassFish server log.

Optionally, restart the application server again so that it will use the
instrumented JRE.

167

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

168

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/MyServer directory (use your directory
name for MyServer) so that the new JRE will be instrumented. Otherwise,
your application server may not start. For details see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

Example 2: Configuring JBoss

JBoss application servers are started by shell or command scripts. Therefore,
we recommend that you modify the startup scripts to configure the JBoss
application server. Because the startup scripts that JBoss provides are
frequently customized by the site administrator, it is not possible to provide
detailed configuration instructions that apply exactly for each situation.
Therefore, the following sections provide instructions with specific
examples for the JBoss application server for a generic implementation. Your
site administrator should be able to use these instructions to guide you to
make these changes in your customized environment.

For JBoss application servers you configure JRE instrumentation using
explicit mode (see “Using the JRE Instrumenter in Automatic Explicit Mode”
on page 221).

To use Automatic Explicit mode, you need to accomplish two tasks:

Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

To configure a JBoss application server:

Locate the startup script that is used to start JBoss for the application. For
example:

» On JBoss versions earlier than 7.0:

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

The startup script file is typically located in a path similar to the
following:

<JBOSS_HOME>\bin\run.[bat|sh]

where <JBOSS_HOME> is the path to your JBoss installation directory,
such as C:\ jboss-4.2.3.GA or C:\jboss-6.0.0.Final.

» On JBoss 7.0 or higher:

The startup script file is typically located in a path similar to one of the
following:

<JBOSS_HOME>\bin\domain.[bat|sh]
<JBOSS_HOME>\bin\standalone.[bat|sh]

where <JBOSS_HOME> is the path to your JBoss installation directory,
such as C:\jboss-as-7.1.0.Final.

Note: If your JBoss application server is started as a Windows service, before
you continue with the following steps, make sure that you can start the
application server using the startup script, as the startup script will be
invoked by the Windows service behind the scene.

Create a backup copy of the startup script and use your editor to open the
startup script.

Locate the java command line (or code block) that starts the application
server.

Below is an example showing the java command line from a .bat file:

"%JAVAY%" %JAVA_OPTS% *
-Djava.endorsed.dirs="%JBOSS_ENDORSED_DIRS%"
-classpath "%JBOSS_CLASSPATH%" ~ org.jboss.Main %*

169

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

Below is an example showing the java command line from a .sh file:

if ["xX$LAUNCH_JBOSS_IN_BACKGROUND" ="x"]; then
Execute the JVM in the foreground
"$JAVA" $JAVA_OPTS\
-Djava.endorsed.dirs="$JBOSS_ENDORSED_DIRS" \
-classpath "$JBOSS CLASSPATH" \
org.jboss.Main "$@"
JBOSS_ STATUS=%$?
else
Execute the JVM in the background
"$JAVA" $JAVA_OPTS\
-Djava.endorsed.dirs="$JBOSS_ENDORSED_DIRS" \
-classpath "$JBOSS_CLASSPATH" \
org.jboss.Main "$@" &
JBOSS_PID=$!

4 Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MyServer.

Below is an example showing the added two lines in a .bat file of a JBoss
application server using JRE 5 or higher:
"%JAVA%" -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer
set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/

p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Below is an example showing the added two lines in a .sh file of a JBoss
application server that uses JRE 5 or higher:

"$JAVA" -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/jreinstrumenter.jar -f MyServer

JAVA_OPTS="$JAVA_OPTS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/
MyServer/instr.jre -javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar"

170

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Below is an example showing the added two lines in a .bat file of a JBoss
application server using JRE 1.4:

"%JAVA%" -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot

Note: If your java command line does not use the JAVA_OPTS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTS shown in these examples to the correct name.

Important:
» For JBoss 6 or higher, add the following JVM parameter to JAVA-OPTS:

-Djava.util.logging.manager=org.jboss.logmanager.LogManager

» For JBoss 7 or higher, add the following JVM parameter to JAVA-OPTS:
-Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal

Save the changes to the startup script and restart the application server
using the modified script.

To help catch errors or typos, execute the starup script, find the output from
the JRE Instrumenter (search for Xbootclasspath). If you have added the
second line (setting JVM parameters) to the startup script in Step 4, compare
it with the JVM parameters from the JRE Instrumenter output. If they are
not the same, update the startup script with the correct JVM parameters
provided by the JRE Instrumenter and restart the application server. If you
have not added the second line (setting JVM parameters) to the startup
script in Step 4, add it now and restart the application server. See Step 4 for
examples.

171

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

172

7 To verify that the probe was configured correctly, check for entries in the

<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not

succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

Example 3: Configuring Oracle

This section provides instructions for configuring an Oracle 9i or 10g
application server.

About configuring an Oracle9i application server:

Oracle9i application servers are configured by adding the JVM parameters
provided by the JRE Instrumenter to the XML file used to start the
application server.

To configure an Oracle9i application server:

Locate the XML file that is used to control the configuration of the
application server when the server is started. The file is typically located at
<Oracle 9iAS_Install_Dir>/opmn/conf/opmn.xml.

Create a backup copy of the opmn.xml file and open the opmn.xml file to be
edited using your editor.

Run the JRE Instrumenter manually to instrument the JRE used by your
Oracle application server. (See “Using the JRE Instrumenter in Manual
Mode” on page 226 for instructions on how to run the JRE Instrumenter
manually.)

Add the Java parameters that you copied from the JRE Instrumenter results
(such as the Xbootclasspath property) to the java-option value property.

The following is an example of the Xbootclasspath parameter:

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\Sun\1.4.2_04\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Note: When modifying the -Xbootclasspath parameter, use quotes if there

are spaces in the path you specify.

The following image is an example of an Oracle 9iAS startup script before

adding the Xbootclasspath parameter:

- dias-mstance smins="httpe fwwe oracle comy/ias-instance®s
- <notification-sarvers
port Iocal="6100" remots="6200" request="6G003" /=
clog-file path="Fopt foracle foradias fopmnflogs fons . Jog® [evel="3" /2
£/notfication=ser
= CPRICERE-Mananer:
zobs gid="HTTP Server” maxk
<start-mode mode="ssl® #
<fohss
- =0oc4 imstanceMdame="homa" numProcs="1" masPstry="3":
coonfig-file path="fopt foracie forafias fj2ee /home fconfig/ serversonl™ /o
<0c4)-option value="-propemias” />
spoet ajo="3000-3100° rmi="3L01-3200" jms="3201-3300" /=
- carwironmants
<prop fame="L0_LIBRARY _PATH" value="/optforacle/oraDias /lib" />
< fenvronment s
</nndjs
zocd] imstancedame="004]_Demos" gid="0
o . o B Foradi

etry="3"

S

41_Demos"=
e/ O0CH]_Demosfeonflig/server sml* S

o [
S-XmKS12M°
reads -properties” -
cport BO01-3100° rroi="3101-3200" jms="3201-3300° /=
= CEMMArOnment

<orop name="0%LIB_PATH_ENY S0 value="0%LIB_PATH_VALUE%:" /=
elanyronmant s

AT
- «custom gpd="dem-dagmaon® numProcs="1" noSdwildeard="true">

=ztart path="fopt/oracie/oradias /docm/bin/domet| daemon -logdir foptforacle/orasias/dom flogs/dasmon_logs® ;

zstop path="fapt foraclefarafias /dom/bin/demct | shutdovndasmon® /=
wfoustoms
<log-file path="/opt/oracle/oradias fopmn/legs/pm log” level="a" /=
= CESS-Managsrs
-irst

=5

=

173

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

The following image is an example of an Oracle 9iAS startup script after
adding the Xbootclasspath parameter:

- iEg-mstance smins="http:/ fvsvevioracle.com,/ias-instance -
- «notification-sarvers
=pert Incal="G100" ramote="6200" request="6003" /-
<log-file path="fopt foracle foraBias fopmnflogs fons og® lews="3"
a/motification=servers
= CPrOCEEE-Manager:
<ohs gid="HTTP Server” ma:Fetry="3">
<start-mode mode="ssl* />

rstancedames"home” numProcs="1" mazfstry="3">

- Fal = T i zremnil” o
ava-option value="-Xmx512m -Xbootclasspath/p:C:hbercuryDiagne stc
Diagnosticsfgent classesySuntl 4207 nstrjre; Cfercony Diagnosticst Bwva,
= Lie="-propeatties” i

grosticsfgentclassestboot /=

oo
=oc4] instanceiane="004I1_Damos’ gid="0C3I_Demos" s
=zconfig-file path="/opt foracle fora%iasfjZes/O0C41_Demos fconfig/server.aml® /=
sacdj-option value="-userThreads -properties” /s
=Pt ap="300L1-3100" ir="3101-3200" |ms="3201-3300" />
- =environments
cprop name="0aLIB_PATH_ENY®" value="0oLIB_PATH_VALLIE®" /v
e onments>
= food=
- zoustom gide"dem-dasmon’ numProcss"1" nocidwildoard="true">
estart path="Jopt foracie foraQias fdocm fbin/ demct] daesmaon -logdic Sopt foracle fora%ias/dom flogs fdaesmon_logs” />
<stop path="Joptforacle foradias fdem S bin/demet] shutdowndaemon® /=
<foustons
=log-fila path="foptforacle/ora%as fopmn/logs/ipmlog” leval="3" /=
= PrOCE S MANAGEr S
<fias-instances

5 Save the changes to the XML file and restart the Oracle application server.

6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, you did not run the JRE Instrumenter or
did not enter the Java parameter such as Xbootclasspath correctly.

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), you must run the JRE
Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.
For details, see “Using the JRE Instrumenter in Manual Mode” on page 226.

174

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

To configure an Oracle 10g application server:

1 Run the JRE Instrumenter manually to instrument the JRE used by your
Oracle application server. (See “Using the JRE Instrumenter in Manual

Mode” on page 226 for details.) The JRE Instrumenter will provide the JVM

parameters (such as the -Xbootclasspath parameter) to be used later.

2 Open Oracle's Application Server Control Console,

Enterprise Manager 10g
vaplication Serer Contral

Logs Topokegy Praterances Hel
— —

Application Server: 102_w2k3.ros59631tst.ovitest adapps hp.com
Moma | JEEAgplications Bods Infrastructus Backun/Pecowry

System Components

General CPU Usage
9 Eop Al Eestan Al _

Status Up {/
Host [0s006311s) ovites] sdapps hp com |

Werzion 101202

[P S2EE and Wieb Cache

orﬂ* B spplication Server (1%)

Hu:ng ChDraHome_1 [igie (5 %)
Omer (1%6)

EnableDisable Componenis

1ed Auig 7, 2007 9:37:42 An [

Memery Usage

o,

B Appiication Sereer (13% J63WE)
D Free (8% 1, 18168)
@ otrer (29% G0IME)

Configure Component | | Create OCA] ingtance

ﬂiﬂ_, E1o| Rastan EQ'B‘QOC‘J Instance

Select Al | Selecl Nong

Salect Name Status Start Time
T [hoes | £ Aug2. 2007 10:41:38 AM
I HIOIP Sener £ Aug2, 2007 BO7 55 AM

Home | J2EE Apglicateons Pods lfrsstructies Backupecovry

CopyTight 1996, 2005, Qrach. AN rights reservnd

F Mansgemert Aug 2, 2007 B:08:17 AM
ETIP This ns onily the erabled compongnts of the application semer. O
tarted or Slopped
Related Links
« Pipcess Management « All Mefrics

535 | Topalegy | Preferences | Help

CPU Usage (%) BMomory Usage (BMB)

016 51.19
003 &05%

00a

15 that have the checkbox enabled car

155 96

3 Click the home (or MyOC4J) System Component.

4 On the OC4J: home page, select Administration.

175

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

5 On the Administration page, select Server Properties.

Enterprise Manager 10g

Application Server Control Lods Topolomy Frefersnces Help

Application Serer 102 wikd ros G961t ovtesl adap0s hp com >
0C4.J: home
Home Agplications | Administration |

Page Refreshed Aug 7, 2000 9:42.38 AM @1
OC4) Inheritance

0OC4) applications have a hierarchical parent-child relationship o
facilitate administration throwgh inheritance. A child application

Instance Properties

ETT i
Wiebsae Propiiies

= & inherits cefain attrbutes fror s parent application such as
ontangr Proges %

principals and JMDI objects including data sources, JMS providers:
and EJBs, When an OC4) application is deployed, you specify the
parent application. The Default Application is the top of the parent
hiararchy,

Related Links

DF siness Components

Homs Applicatigng Administration

Logs | Topology | Preferences | Help

Copyright & 1355, 2005, Orace. Allrights resssved
s 10 Appbention Cortrol

6 In the Server Properties window, under Command Line Options, add the

JVM parameters you copied from the JRE Instrumenter results to the Java
Options box.

Note: It is required to add a (") prior to the /p switch or Oracle will change
the (/) switch option to a (\).

The following is an example of the Xbootclasspath parameter with the (")
inserted.

-Xbootclasspath”/ p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\Sun\1.4.2_07\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

176

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

Enterprise Manager 1lg
Application Server Control Logs Topology Preferences Heip
e
anplication Server 102 wWrkd ros 5963116t ovesladapps hp com > QC4) home >

Server Properties
Page Refrashed Aug 7, 2007 8:22:45 AM[E

General
Wame home
Serer Root ChOraHome_1Y2eethome'config
Configuration File C\DraHome_1%2eethome\conflig'server.xml
Default Application Name default
Default Application Path application.xml

Default Web Module Properties [globakweb-application, ki

Apphcation Dlreclory | Japphications

Deployment Direclory | Japplication-deployments

Multiple ¥M Configuration
@ TIP If OC4.) is runming, newly added OC4J Clusters and associated processes will be automatically started
Clusters{0C4.)
Cluster{DC4.)) Hame Humber of Processes Related Y
[defaut_island 1 Links b4
Add Anolher Riw |
Ports
@ TIP Be sure that the port ranges spacified below are large anough to accommodate the total number of processes in the Clusters
(OC4J) table

BMI Ports [12401-12500
JMS Ports [12601-12700
AJP Ports [12501-12600

RMI-BOF Ports

II0P Ports |
HOP SSL (Server anly) |
IOP SSL (Semver and Client) |

l Command Line Optionsl

Java Executable [
QC4J Cptions [Related Links Tracing Properies
Java Cplions Hrue -¥bootclasspathyp: CMercuryDiagnostics/lAVAProbelclasse

7 Apply the changes and restart the Oracle server.

8 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, you did not run the JRE Instrumenter or
did not enter the Java parameter such as Xbootclasspath correctly.

Some of the Web Services deployed on Oracle OC4]J application server, due
to their non-compliance to the JAX-WS standard, may not be recognized by
Diagnostics. To work around this issue you can try setting
annotation.inheritance.allow=true in inst.properties.

177

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

178

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), you must run the JRE
Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.
For details, see “Using the JRE Instrumenter in Manual Mode” on page 226.

Example 4: Configuring SAP NetWeaver

Depending on the JRE version used by your SAP NetWeaver application
server, the instructions for configuration are different. The following two
sections provide instructions for a generic NetWeaver implementation with
JRE version 5 and higher and a generic NetWeaver implementation with JRE
version 1.4. Your site administrator should be able to use these instructions
to guide you through making the changes that are appropriate to your
specific environment.

For SAP NetWeaver application servers with JRE version S or higher you
configure JRE instrumentation using implicit mode (see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224). For SAP
NetWeaver application servers with JRE version 1.4 you run the JRE
Instrumenter manually (see “Using the JRE Instrumenter in Manual Mode”
on page 226).

To configure a SAP NetWeaver application server that uses JRE version 5 or
higher:

Run the NetWeaver J2EE Engine configuration tool. The script to run this
tool is called configtool.bat and is located in the

usr\sap\CR2\JC00\j2ee\ configtool directory, where CR2 is an example of
the name of your SAP system.

In the configuration tool U], in the left-hand tree, select the server that you
want to monitor. For example in the screenshot below, select cluster-data >
instance_ID39260 > server_ID3926050. Then, at the right-hand side select
the General tab and add two JVM parameters into the Java parameters text
window.

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

The first parameter (-javaagent) causes the application server JVM to invoke
the Java Agent at start-up. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the directory for
storing the instrumented classes. In the example below the name
server_ID3926050 is used. You would substitute a name you choose for
server_ID3926050.

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\server_ID3926050\instr.jre

Below is an example screen for SAP NetWeaver versions 7.1 or earlier of the
JVM parameters.

% SAP JZEE Engine - Config Tool

File Sermr
2|8 ®[= ne |
= & cluster-data :"- Bootstrap | Log Configuration | Debug
- I" Global dispatcher configuralion | - r‘ Fl K r_l-“ I l
OF managers i [TEn b = -
+ 4 Semvices ! : ¥ Execute [+ Show Console
- Glohal server configuralion
+ B managers i Jawa settings
g senices : —
= o instance_|D3E260 : Janva Homes | =
+ B" dizpatcher \D2IZE000 :

S sewer IDFI2E05T || Maxheap size in mbx: | 242
+ O§ manapers :
g sANices : [JM mwsil\jauaagentc Warcunyhagnostics\avasgeniia gnoshicsAgenhlibipraba agant jar N
& secure store : Cbacdtlas spalhip G lereunDiagnostics\ avakg eniDiagno sticsigenic as s estauld serer ID3BIE050Inst irnJ o
& UME LDWP data : Dprobe.id=8AF _MetWeavarbd _EntemrizaFonal_Cover g
: Ciprobe.group=SaR_Growp I
D s urity. palicy=faa policy
Djava e Uiy egd=fle dedurandom
Do, omg. CORBA ORBCIass=com.sap.engine systam OREP oy
Dora.omo. CORBA ORESngletontiass=com sap. enging.system, DR ESingletonF roxy -

Classpath: |JI: rubyeabbiool jar beteolias jar binigyslerbdecode jar,

A R] ¥
Edlit alemant properties

The following is an example screen for SAP NetWeaver verison 7.3. You
enter the JVM parameters in the Custom parameters box and you must enter
each parameter separately (-javaagent and -Xbootclasspath).

179

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

In a clustered environment where a single startup script is used to start
multiple probed application server instances you also enter the Custom
parameter -Dprobe.id=<probeName>%0. This will generate a custom probe
identifier for each probe. On Windows, use %%0. Use the first % to escape
the second %.

42945 Java - Config Tool

ile Wiew Tools Help
@0 (@ |#
& paterata | servers | M Emdronment | VA Parameters | Instance Profile

] a‘ iemplate - Usage_Tyae_All_ :
- B8 g confguration | RRLEIERES

+ 8 applications Inherited Value 1
4 “ managers
4 gl services A custom valie | set

fb instance - IDSEO40 (ealis |
B zeeure store

Memory | Systern | Additional
Calculated Paramelers

Parameter Mame Walue Enahled
~Dprobeld=NW_7_x_callsto_munl_jsm_Lv 2 ka0 | |
-+ DizableEpliciG s
=¥+ DumpDetailedlas s StadisticonduOfMamory
-+ Hean DumpOnoulcmdernor Emor
SO PAMGCDEtalls
SO PG CTimeEamps
- UgaConcMarkSwasp il
-¥-BlinglntamTablalnPermGan

F-TraceClagslinloading

-CHeapDUmp P ath | GO hprof

- WaErrorlusuelenath 00

-egofRefl RUFlicyMSPerhiE 1

SCSUrirR atio |8 -
- Ta rgeﬂﬁur‘wnrpa:lu an

-#bootelasspathipaC il ercuyDiagnosticslavasneniDiagnosticsdnenticlass s siSaP
-javaagent Sl ercuryDiagnostics WavasgeniDiagnostics Agentllibiprobeagent jar
arbosegs

] e e]] 1MEIE\‘1|1II'_-IEI

3 Save your changes and exit the configuration tool.

4 Edit the <JavaAgent_install_dir>\etc\capture.properties file and assign the
following values to these properties:

event_buffer.size = 10000
event_buffer.flush.level = 1000

5 Restart the SAP NetWeaver application server.

180

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, the JRE Instrumentation may have failed or
you did not enter the JVM parameters correctly. Check the NetWeaver
bootstrap log for error messages.

Important: If you update the JRE used by your application server in the
tuture (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/server_ID3926050 directory (use your
directory name for server_ID3926050) so that the new JRE will be
instrumented. Otherwise, your application server may not start. For details,
see “Using the JRE Instrumenter in Automatic Implicit Mode” on page 224.

To configure a SAP NetWeaver application server that uses JRE version 1.4:
1 Locate the JRE that is used to run the NetWeaver application server.

2 Run the JRE Instrumenter to instrument this JRE. The JRE Instrumenter will
provide the JVM parameters (such as the -Xbootclasspath parameter) to be
used later. See “Using the JRE Instrumenter in Manual Mode” on page 226"
for how to run the JRE Instrumenter and copy the resulting JVM parameters
to the clipboard for use in step 4 below.

3 Run the NetWeaver 2EE Engine configuration tool. The script to run this
tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\ configtool directory, where CR2 is an example of
the name of your SAP system.

181

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

#TSAP Y2EE Engine - Conlig Toal

Tala le [wle] [

4 On the configuration tool Ul, in the left-hand tree, select the server that you

want to monitor, for example, cluster-data > instance_ID39260 >
server_ID3926050. In the General tab, you can find the Java parameters text
window. Add the JVM parameter provided by the JRE Instrumenter into the
text window. See the screenshot below as a reference.

T e =
= I"Olnnnal dispatcher configuratian |- - -
P managers £ Wl‘!ﬂ'awsﬂ‘lmﬂ!
g seniies v| Execute Show Consale
= 4 Global server canfiguration & le
@ OF managers v settings
g senices :
Y ingance_ID3sZ60 ; JFanva Home: | 1=l
|| Max hean size (in tE): 10245

ﬁ % SENVCas

g sacure ghore
LIME LDAF data

1 Java parameters:|-<hoolclass pathip:CiMercunDiagnosticsiarasgentiDiagnasticsAgenficlassestSunt 4.2 08unsirire Cl &
Dprabe.id= SAP_Metveavertd_EnterpnsePomal_Cover
Dprobe group=8aF_Group

Ojavasecunty. policy=daea. policy

Djava.secunty egd=fleddedurandom

Dofg. ofmg CORBAORBCIaSS=L0m, Sap engne, system ORBP oy

Diosg, ormg CORBAORBSng elonClass=com sap enging sysiem 0RBSinglelonP rom

R [v]

4 R

Classpath: | i0inmootboct jar /Linboot]aas.|ar, Dinfzystemibyecode Jar

Y|

Edlit glerment propenties

182

5 Save your changes and exit the configuration tool.

6 Edit the <JavaAgent_install_dir>\etc\capture.properties file and assign the

7
8

following values to these properties

event_buffer.size = 10000
event_buffer.flush.level = 1000

Restart the NetWeaver application server.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the NetWeaver bootstrap log.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Example 5: Configuring TIBCO ActiveMatrix/
BusinessWorks

The following sections describe the steps to configure TIBCO ActiveMatrix
and BusinessWorks so that the applications can be monitored.

For TIBCO ActiveMatrix and BusinessWords application servers you
configure JRE instrumentation using implicit mode (see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224).

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/Tibco_Node1 directory (use your directory
name for Tibco_Nodel) so that the new JRE will be instrumented.
Otherwise, your application server may not start.

To instrument TIBCO servers you add two JVM parameters as shown in the
tfollowing procedures for different TIBCO versions. The first parameter
(-javaagent) causes the application server JVM to invoke the Java Agent at
start-up. On the first invocation, the second parameter (-Xbootclasspath)
causes the application server JRE to be instrumented. In the -Xbootclasspath
parameter you enter a name to identify the server. In the following
procedures you substitute a name you choose for the example name shown
in bold.

To configure TIBCO BusinessWorks:

For TIBCO BusinessWorks, append the two JVM parameters like the
following example to the java.extended.properties in one of the following
TIBCO BusinessWorks files depending on how you deployed the application
and which applications you want to monitor. If java.extended.properties is
not present, add it. One way of doing this is shown in the example below:

java.extended.properties=-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/TIBCO_BW1/instr.jre

183

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

184

If you want to monitor a previously deployed application or monitor only
certain applications in TIBCO BusinessWorks, update
<BusinessWorks_install_dir>\tra\domain\<Domain_Name>\application\<A
pplication_Name>\<Application_Name>.tra with the JVM parameters. The
JRE to instrument is specified in the .tra file user property
tibco.env.TIB_JAVA_HOME.

If you deployed the application using TIBCO Administrator. Update
bwengine.tra with the JVM parameters.

If you deployed the application using TIBCO Designer. Update designer.tra
with the JVM parameters.

To configure TIBCO BusinessWorks for JMX Metrics Collection:

For TIBCO BusinessWorks JMX metrics collection, enable JMX access to the
Business Works process. This is done by adding the following property to
the same Business Works .tra file where the Java Agent instrumentation is
configured.

JmxEnabled=true

Additional JMX metrics are exposed by certain components used by TIBCO,
such as Apache Tomcat and Pramati J2EE server. Some of these metrics are
not collected by default (these metrics are commented out in the
metric.config file). These metrics can be activated by uncommenting them
out in the metrics.config file. The reason to make them inactive is that the
metrics represent mainly performance tuning configuration parameters and
should rarely change during the lifetime of an application.

See “Java Agent - JMX Metrics Capture” on page 723 for general information
on JMX metrics collection.

To configure TIBCO ActiveMatrix Service Bus 2.0 and 2.3:

For TIBCO ActiveMatrix Service Bus (AMSB) 2.0 and 2.3 locate the AMSB .tra
file and append JVM parameters to java.extended.properties. If
java.extended.properties does not exist, add it.

Below is an example on Windows that uses TIBCO_Node1 as the name. Note
the use of slash (/) instead of backward slash (\).

java.extended.properties=-javaagent:jarC:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/TIBCO_Node1/instr.jre

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

2 In addition, in order to see outbound JMS web service operations in AMSB,
you may need to update details.conditional.properties in
etc\inst.properties with the correct version. Currently, there are 2 versions
of AMSB supported, 2.0 and 2.3. Make sure only one version is enabled by
setting it to 'true' and setting the other to 'false’. The example below shows
the default version, AMSB version 2.3, enabled:

details.conditional.properties=\
mercury.enable.SOAPHandler=true, \
mercury.enable.autoLoadSOAPHandler=true, \
mercury.enable.resourcemonitor.jdbcConnection=false, \
mercury.enable.resourcemonitor.jdbcStatement=false, \
mercury.enable.resourcemonitor.jdbcResultSet=false, \
mercury.enable.tibco.amsb2.0=false, \
mercury.enable.tibco.amsb2.3=true

To configure TIBCO ActiveMatrix Service Bus 3.1.2 Production Environment:

1 For TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 in a production
environment, locate the following AMSB file:

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_ServerName>\
tools\machinemodel\machine.xmi

2 Update the runtimes section of the file for each node you want to monitor.
For example:

<runtimes xsi:type="machinemodel:OSGiRuntime" name="Node1"

In the runtimes section for each node locate the frameworkProperties key
org.osgi.framework.bootdelegation and append com.mercury.* to the value
of the property.

For example:

<frameworkProperties key="org.osgi.framework.bootdelegation"
value="com.ibm.*,,sun.*,com.mercury.*"/>

3 Then for each node locate the .tra file.

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_ServerName>\
nodes\<NodeName>\bin\tibams_<NodeName>.tra

185

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

Append the two JVM parameters to the java.extended.properties in each
file. Below is an example that uses AMSB_Node1 as the name.

java.extended.properties=-javaagent:C:/ MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/ JavaAgent/DiagnosticsAgent/classes/auto/AMSB_Node1/instr.jre

To configure TIBCO ActiveMatrix Service Bus 3.1.2 Development
Environment:

1 For TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 in a development
environment you would update the boot delegation:

<tibco_amx_configuration_dir>\components\shared\1.0.0\plugins\com.tibco.metadata.h
pa.tibcohost.nodetype.integration_3.1.200.000\META-INF\com.tibco.amf.node.types\co
m.tibco.amf.hpa.tibcohost.node.integration.feature\3.1.200\provisioning.properties

And append com.mercury.* to the end of
org.osgi.framework.bootdelegation.

For example:
OSGi framework properties
org.osgi.framework.bootdelegation=\

org.xml.*\
sun.*\
com.mercury.*

2 Then update the JVM Options in the Advance tab of Run Configuration to
add the two JVM parameters.

@ Applications | Advanced . = Common

Property Value
HTTP Connectors
a MNode
JWM Options -Dprobe.id=TIBCO,
Log File Ch\TempinodeBl6(
Log Level Info
Management Port 5000
05Gi Console Port 5001
Runtime

Substitution Variable Overrides

186

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Following is an example, which uses AMSB_DevNode as the name.

-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/AMSB_DevNode/instr.jre

Example 6: Configuring Tomcat

Apache Tomcat is frequently embedded into other applications or servers. As
a result, the way to instrument it may vary. The following sections provide
instructions on how to configure a Tomcat server in simple scenarios, but it
is generic enough to guide you in your particular situation.

If your Tomcat server is started by a shell or Windows command script, it is
recommended that you modify the startup script to instrument it, see
“Configuring Tomcat Server with a Startup Script” on page 187.

In a Windows environment, if Tomcat is installed as a Windows service and
has no scripts, we recommend that you modify its Java Options to
instrument it. See “Configuring Tomcat Server without a Startup Script” on
page 191.

Configuring Tomcat Server with a Startup Script

Because the startup scripts that Tomcat provides are frequently customized
by other applications or by the site administrator, it is not possible to
provide detailed configuration instructions that apply exactly for each
situation. Therefore, the following sections provide instructions with
specific examples for a generic Tomcat server implementation. Your site
administrator should be able to use these instructions to guide you to make
these changes in your customized environment.

You use Automatic Explicit instrumentation mode to configure Tomcat
server with a startup script (see “Using the JRE Instrumenter in Automatic
Explicit Mode” on page 221). This involves two tasks:

Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

187

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

188

To configure a Tomcat server with a startup script:
Locate the startup script that is used to start Tomcat for your application.

In some scenarios, the startup script will end up calling the following script
to start Tomcat:

<Tomcat_install_dir>/bin/catalina.[bat|sh]

where <Tomcat_install_dir> is the path to your Tomcat installation
directory, such as C:\apache-tomcat-7.0.8.

Create a backup copy of the startup script and use your editor to open the
startup script.

Locate the java command line (or code block) that starts the Tomcat server.

Below is an example from the catalina.bat file:

rem Execute Java with the applicable properties

if not "%JPDA%" == "" goto doJpda

if not "%SECURITY_POLICY_FILE%" == "" goto doSecurity

%_EXECJAVAY% %JAVA_OPTS% %CATALINA_OPTS% %DEBUG_OPTS%
-Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath "% CLASSPATH%"
-Dcatalina.base="%CATALINA BASE%" -Dcatalina.home="%CATALINA HOME%"
-Djava.io.tmpdir="%CATALINA_TMPDIR%" %MAINCLASS% %CMD_LINE_ARGS%
%ACTION%

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Below is an example from the catalina.sh file:

if ["$1" = "-security"] ; then
if [$have_tty -eq 1]; then
echo "Using Security Manager"
fi
shift
eval \"$_RUNJAVA\" \"SLOGGING_CONFIG\" $JAVA_OPTS $CATALINA_OPTS\
-Djava.endorsed.dirs=\"$JAVA_ENDORSED_DIRS\" -classpath \"$CLASSPATH\" \
-Djava.security.manager \
-Djava.security.policy==\"$CATALINA_BASE/conf/catalina.policy\" \
-Dcatalina.base=\"$CATALINA_ BASE\"\
-Dcatalina.home=\"$CATALINA_HOME\" \
-Djava.io.tmpdir=\"$CATALINA_TMPDIR\" \
org.apache.catalina.startup.Bootstrap "$@" start
else
eval \"$_RUNJAVA\" \"$SLOGGING_CONFIG\" $JAVA_OPTS $CATALINA_OPTS \
-Djava.endorsed.dirs=\"$JAVA_ENDORSED_DIRS\" -classpath \"$CLASSPATH\" \
-Dcatalina.base=\"$CATALINA BASE\"\
-Dcatalina.home=\"$CATALINA_HOME\" \
-Djava.io.tmpdir=\"$CATALINA_TMPDIR\" \
org.apache.catalina.startup.Bootstrap "$@" start
fi

4 Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MyServer.

Below is an example showing the added two lines in the catalina.bat file of a
Tomcat server that uses JRE version 5 or higher:

%_EXECJAVAY% -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer
set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/

p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

189

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

190

Below is an example of the catalina.sh file of a Tomcat server that uses JRE
version 5 or higher:
"$_RUNJAVA" -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/ jreinstrumenter.jar -f MyServer

JAVA_OPTS="$JAVA_OPTS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/ DiagnosticsAgent/classes/
MyServer/instr.jre -javaagent:/opt/MercuryDiagnostics/ JavaAgent/DiagnosticsAgent/lib/probeagent.jar”

Below is an example of the catalina.bat file of a Tomcat server that uses JRE
1.4:

%_EXECJAVA% -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\Mercur
yDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Note: If your java command line does not use the JAVA_OPTS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTS shown in these examples to the correct name.

5 Save the changes and restart the application server.

6 In the output from running the startup script, find the output from the JRE

Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 4, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 4, add
it now and restart the application server. See Step 4 for examples.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\log\<probe_id>\probe.log file. If there are no
entries in the file, either the JRE instrumentation did not succeed or you did
not configure the JVM parameters correctly. For details, see “Using the JRE
Instrumenter in Automatic Explicit Mode” on page 221.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Configuring Tomcat Server without a Startup Script

The following instructions describe how to configure a Tomcat server
running as a Windows service:

To configure a Tomcat server without a startup script:

From the Windows Task batr, right-click on the Apache Tomcat service icon
and then select Configure. Alternatively, you can navigate from the Start
menu. For example, Programs > Apache Tomcat 7.0 > Configure Tomcat.

In the Apache Tomcat Properties dialog box, select the Java tab.

3 In the Java Options box, add two JVM parameters like the following. The

first parameter (-javaagent) causes the application server JVM to invoke the
Java Agent at startup. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the name of the
directory for storing the instrumented classes. In the following example you
would substitute a name you’ve chosen instead of MyServer.

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServer\instr.jre

Important: Each JVM parameter must be on its own line.

Restart the Tomcat service.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the <Tomcat_install_dir>/logs/
catalina.<date>.log file, where <date> is today's date.

Optionally, restart the application server again so that it will use the
instrumented JRE.

191

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

192

Important: If you update the JRE used by your Tomcat server in the future,
before you start the Tomcat server again, you must delete the
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/MyServer directory
(use your directory name for MyServer) so that the new JRE will be
instrumented. Otherwise, your application server may not start. For general
information on the instrumentation mode used see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

Example 7: Configuring WebLogic

WebLogic application servers are started by shell or command scripts.
Therefore, we recommend that you modify the startup scripts to instrument
them.

Because the startup scripts that WebLogic provides are frequently
customized by a site administrator, it is not possible to provide detailed
configuration instructions that apply to all situations. Instead, the following
section provides general instructions with specific examples for the
WebLogic application server for a generic implementation. Your site
administrator should be able to use these instructions to show you how to
make these changes in your customized environment.

You use Automatic Explicit instrumentation mode to configure WebLogic
server (see “Using the JRE Instrumenter in Automatic Explicit Mode” on
page 221). This involves two tasks:

Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

To configure a WebLogic application server:

1 Locate the startup script used to start WebLogic for your domain.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

» On WebLogic 9.0 or higher:

The startup script file is typically located in a path similar to the
following:

<DOMAIN_HOME>\bin\startWebLogic.[cmd|sh]

where <DOMAIN_HOME> is the path to your domain directory, such as
C:\bea\user_projects\domains\<Domain_Name>; or
C:\bea\wlserver_10.0\samples\domains\<Domain_Name> where
<Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like
the following:

C:\bea\wlserver_10.0\samples\domains\medrec\bin\startWebLogic.c
md

» On WebLogic 8.1:

The startup script file is typically located in a path similar to one of the
following:

<WLS_HOME>\server\bin\startWLS.[cmd|sh]

where <WLS_HOME> is the path to your WebLogic installation
directory such as C:\bea\weblogic81

<DOMAIN_HOME>\start<Domain_Name>Server.[cmd|sh]

where <DOMAIN_HOME> is the path to your domain directory, such
as C:\bea\user_projects\domains\<Domain_Name> or
C:\bea\weblogic81\samples\domains\<Domain_Name>, where
<Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like
the following:

C:\bea\weblogic81\samples\domains\medrec\startMedRecServer.cmd

2 Create a backup copy of the startup script and use your editor to open the
startup script.

193

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

194

3 Locate the java command line that starts the application server. Below is an

example from a .cmd file:

%JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_ OPTIONS%
-Dweblogic.Name=%SERVER_NAME%
-Djava.security.policy=%WL_HOME%\server\lib\weblogic.policy
%PROXY_SETTINGS% %SERVER_CLASS%

Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MedRec.

Below is an example showing the added two lines in a .cmd file in WebLogic
9.x or higher:

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MedRec

set JAVA_OPTIONS=%JAVA_OPTIONS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MedRec\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Below is an example showing the added two lines in a .sh file in WebLogic
9.x or higher:

${JAVA_HOME}/bin/java -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/jreinstrumenter.jar -f
MedRec

JAVA_OPTIONS="$JAVA_OPTIONS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/
classes/MedRec/instr.jre -javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar”

Below is an example showing the added two lines in a .cmd file for
WebLogic 8.1:

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MedRec

set JAVA_OPTIONS=%JAVA_OPTIONS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MedRec\instr.jre;C:\MercuryDiagnostics\JavaAg
ent\DiagnosticsAgent\classes\boot

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Note:

» If your java command line does not use the JAVA_OPTIONS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTIONS shown in these examples to the correct name.

» On WebLogic 8.1 with the JRockit JRE, add the following JVM parameter
to the end of the second line:
-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement

Save the changes to the startup script and restart the application server
using the modified script.

In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 4, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 4, add
it now and restart the application server. See Step 4 for examples.

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

195

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

196

Example 8: Configuring WebSphere

WebSphere application servers are started by a shell script or by a Node
Agent in a UNIX environment. In a Windows environment, the application
server may be installed as a Window service, but can also be started by a
Windows command script. In either case, we recommend that you modify
the startup script to run the JRE Instrumenter in the Automatic Explicit
mode to instrument the JRE used by the application server.

Note: If you do not modify the startup script, or if your WebSphere
application server is running on z/OS, you have to choose one of the
following choices:

» You manually run the JRE Instrumenter to instrument the WebSphere
JRE and add the JVM parameters (provided by running the JRE
Instrumenter) into the application server JVM configuration. See “Using
the JRE Instrumenter in Manual Mode” on page 226 for details. In
addition, if your WebSphere is version 6.0, which uses a 1.4.2 JRE, you
also need to add the -Xj9 parameter in addition to the JVM parameters
provided by the JRE Instrumenter.

» Alternatively, if your WebSphere version is 7.0 or higher, you can use the
JRE Instrumenter in the Automatic Implicit mode. In this approach, you
only need to add JVM parameters to the application server JVM
configuration. See “Using the JRE Instrumenter in Automatic Implicit
Mode” on page 224 for details.

Because the WebSphere Application Server JVM parameters are not
controlled by the startup scripts, but by configuration files, we recommend
that you use the Integrated Solutions Console (also called WebSphere
Application Server Administrative Console in older versions) to add the JVM
parameters required to invoke the Java Agent and use the instrumented JRE.

The appearance of the Console can differ for different versions of
WebSphere. As a result, the following example might not correspond exactly
to your WebSphere version but does provide the information needed. Enter
the required parameters for monitoring by Diagnostics in the appropriate
location in the Console.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Procedures are provided for WebSphere 5.1/6.0 (shown below) and for
WebSphere 6.1 or higher (see “To configure WebSphere 6.1 or higher:” on
page 2035). Also see “To configure WebSphere 6.1/7.0 server for JMX metrics
collection:” on page 211.

To configure WebSphere 5.1 or 6.0:
Locate the script that is used to start the WebSphere application server.
For example, <WAS _install_dir>\bin\startServer.bat

where <WAS_install_dir> is the path to your WebSphere installation
directory, such as C:\Program Files\IBM\WebSphere\AppServer.

Note: On some systems, you may use the startServer.[bat|sh] script in a
profile's bin directory to start a server. However, this script is usually a
simple wrapper that calls the startServer.[bat|sh] script in the

<WAS _install_dir>/bin directory.

Create a backup copy of the startup script and use your editor to open the
startup script.

For WebSphere 5.1 or 6.0, locate the java command line that runs the
application server launcher. Below is an example from a startServer.bat file:

"%JAVA_HOME%\bin\java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
%WAS_TRACE% %WAS_DEBUG% %CONSOLE_ENCODING% "%CLIENTSAS%"
"%CLIENTSSL%" %USER_INSTALL_PROP% "-Dwas.install.root=%6WAS_HOME%"
com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.management.tools.WsServerLauncher "%CONFIG_ROOT%"
"%WAS_CELL%" "%WAS_NODE%" %* %WORKSPACE_ROOT_PROP%

Above the identified java command line, add a line to invoke the JRE

Instrumenter. In this line, you need to specify the name of the directory for
storing the instrumented classes. Below is an example for WebSphere 6.0 on
Windows. You would substitute a name you’ve chosen instead of MyServer.

"%JAVA_HOME%\bin\java" -jar
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

197

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

198

4 Save the changes and restart the application server using the modified

script.

In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath).

Below is an example JRE Instrumenter output (-Xbootclasspath) for
WebSphere 6.0 (or 5.1) on Windows using -f MyServer to specify the
directory for storing the instrumented classes - see step 3 above. You would
substitute a name you choose for MyServer.

-Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot

If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve issues. For details, see “Using the JRE Instrumenter
in Automatic Explicit Mode” on page 221.

After you get the output from the JRE Instrumenter, you need to add it to
the application server JVM parameters.

Use your Web browser to access the WebSphere Application Server
Administrative Console for the application server instance to be monitored
by the probe:

http://<App_Server_Host>:9090/admin
Replace <App_Server_Host> with the machine name for the application

server host and possibly 9090 with the correct administrative port number
(such as 9060, 9061, and so on).

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

The Websphere Application Server Administrative Console opens.

= i
AD Ad ative Console [e—
e
ol
- al
Home | Save | Preferences | Logout | Help | B
User ID: admin -
Application Servers
BART - -
An application server is a server which provides services required to run enterprise applications.]
Bl Servers
Application Servers
Applications Tatal: 1
Resources Fitter
Securty Preferences
Enwvironmenit New | | Delste
System Administration - =
Troubleshooting [[Hame = oo
[|aerver BART
WebSphere Status [=Previous Mext = October 7, 2005 4:32:55 PM PDT &
WebSphere Configuration Problems
Total Configurstion Problems ;0 (O Dtotal A, Ototal [- Ototal
Freferences lz‘
|:&] pone

7

C T pmemee

In the left panel, select Servers > Application Servers.

8 From the list of application servers in the right panel, select the name of the

server that you want to configure to be monitored by the probe.

199

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

The

Home | Sawe | Preferences

Configuration tab for the selected application server is displayed.

| Logout | Help |

User ID: admin

BART
B Servers

Application Servers
Applications

Resources
Security

Enviranment

System Administeation
Troubleshooting

Application Servers >
serveri

An application server is a server which provides services required to run enterprize spplications. [

Buntime || Configuration

General Properties

Mame servert [Tre display name for the server.

Application classloader policy H] Specifies whether there is a single
classloader for all applications ("Single") or &

classlosder per application ("Multiple").

Application class loading mode [Specifies the class loading mode when the

application classloader policy is "Single"

Parent first |—

Apply | M Reset‘ Cancel |

Additional Properties

Transaction Service Specity settings for the Transaction Service, a5 well a3 manage active transaction
locks

ek Containe: Specity thread pool and dynamic cache settings for the cortainer . Also, specify
session manager settings such as persistence and tuning parameters, and HTTP

transport settings

E.JB Containet Specity cache and datasource information for the container

‘WebSphere Status [=Previgus Mext = October 7, 2005 4:36:53 PM PDT ¢

WebSphere Configuration Problems

Total Configuration Problems 4 (59 1 total ae 3 tatal o 0 total

Preferences

]

200

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

9 Scroll down in the Configuration tab and, in the General Properties
column, look for the Process Definition property.

Home | Save | Preferences

Logout | Help |

EE

User ID: admin

BART
B Servers

Application Servers
Applications
Resources
Security
Erwironment
System Administration
Troubleshooting

Y T A1t it 1 AT 1 i i AR A 1ot 1 A it ey St T
session manager settings such as persistence and tuning parameters, and HTTP
transport settings:

EJB Cartainer

Specify cache and datasource information for the container.

Crynamic Cache Service

Specify settings for the Dynamic Cache service of this server.

Logeing and Tracing

Specify Logoing and Trace settings for this server.

Message Listener Service

Configuration for the Message Listener Service. This service provides the Message
Driven Bean (MDB) listening process, whereby MODBs are deployed against
ListenerPorts that define the JMS destination to listen upon. These Listener Ports are
defined within this service along with settings for its Thread Pool.

ORB Service

Specify settings for the Object Request Broker Service.

Custom Properties

Additional custom properties for this runtime component. Some components may make
use of custom configuration properties vwhich can be defined here

Ldministration Services

Specify various settings for administration facility for this server, such as
administrative communication protocol settings and timeouts

Diagnostic Trace Service

Wiewy and modify the properties of the disgnostic trace service

Dehugiing Service

Specify seftings for the debugging service, to be used in conjunction with & workspace
debugging client application.

IEd Service Lacs

Configure the IBM service log, also knowen a3 the activity [og

Custom Services

Define custom service classes that will run within this server and their configurstion
properties.

Server Components

Additional runtime components which are configurable.

[Pmcess Defintion I

A process defintion defines the command line information necessary to startintialize &
process.

Performance Monitoring Service

specify settings for performance monitoring, including enabling performance monftoring,
selecting the PMI module and setting monitoring levels.

WebSphere Status [i|

‘WebSphere Configuration Problems

=Previous Mext =

October 7, 2005 4:38:58 PM POT g

Preferences

|g'| Dane

10 Click Process Definition.

IE

(=] [

I I I T

201

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

11 Scroll down in the right panel, and look for Java Virtual Machine.

User ID: admin

A& process defintion defines the command line information necessary to startintialize a process 0]
BART

O Servers Configuration

Application Servers

Applications General Properties

Resources Executable name I:| [i] Specifies the executshle name of the
Security process
Environmert Executable argumerts [i] specifies executable commands that run
when the process starts:
System Administration

Troubleshooting

Working directory * [${USER_NSTALL_ROOT} mIII Specifies 1h:|a file system directory in which
& pracess will run.

Applyl QK| Reset Cancel |

c: Java Virtual Maching | Advanced Java | machine seftings.
Process Execution |4 set of properties that control howy the operating system process executes, such as Runds permissions, Umask, process
priority. =
Process Logs A =et of properties that control howe the process native input/output streams are directed

Environment Entries | A list of seftings to be added to the execution environment for the process:

][]

‘WebSphere Status [=Previous Mext = October 7, 2005 4:42:58 PMPDT Q
WebSphere Configuration Problems

Total Configuration Problems ;4 O 1total £ 3total [: Ototal

Preterences

12 Click Java Virtual Machine.

202

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

13 The Configuration tab for the Java Virtual Machine is displayed.

—
hSp d 050 et
—
s
- s e
Home | Save | Preferences | Logout | Help | ==
: i =
User ID: admin ication Servers > server1 > Process Definition >
BART Java Virtual Machine

Bl Servers " 5
Advanced Java virtusl machine settings. [
Application Servers

Applications

B App Configuration
Resources

Security General Properties

Erironmert Classpath [i] Specities the standard class path in which
System Administration the Java virtual machine looks for classes

Troublestiooting

Boot Classpath E:\Mercury[)lagnnsucs\]avaﬂ ent\Diagnosticsagen] Specifies bootstrap classes and resources
ticlasses\MyServeriinstr.jre; C:\MercuryDiagnostics for & J¥M. This option is only available for
“JavaAgent\DiagnosticsAgentclasses\boot Jwhis that support bootstrap classes and
resources. You might separate multiple psths
by & colon () or semi-colon (), depending on
operating system of the node
erbose class loading [@ Specifies whether to use verbose debuy
output for class loading. The default is not to
enable verhose class loading.
Yerbose garbage collection [l] Specifies whether to use verbose debugy
output for garbage collection. The default is not
to enakle verbose garbage collection.

V]

WebSphere Status [=Previous Mext = October 7, 2005 4:45:59 PM PDT &
WebSphere Configuration Problems

Tiotal Configuration Problems 4 (%% 1 total a 3 total B 0 total

Freferences

14 In the Boot Classpath box, enter the boot class path from the JVM
parameters provided by the JRE Instrumenter (that is, the string after the
-Xbootclasspath/p: parameter). The JVM parameters output from the JRE
Instrumenter were generated earlier in step 3.

Below is an example for WebSphere 6.0 (or 5.1) that uses -f MyServer to
specify the name of the directory for storing the instrumented classes:

C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\Mer
curyDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

203

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

15 Scroll to the bottom of the Configuration tab until the command buttons

are visible.

Home | Save | Preferences | Logout | Help |

1

.
ke

User ID: admin
BART
B Servers

Application Servers

the application server process. You can
specifty atguments when HProt profiler support
is enahled

Drebug Mode

O

[Specifies whether to use the J4M debug
output. The default is not to enable debug mode
suppot

Applications Debiug atguments [Djava compiler=NONE -Xdehug ¥ne [i] specifies command-ine debug argumerts to
Resources pass to the Java virtual machine that starts the
. application server process. You can specify
Security atguments when Debug Made is enablad
Environment Generic JWM arguments I:l [i] £aeitional command line: srguments for the
System Administration Sl
Troubleshoating Executable JAR file name I:l [il specifies = full path name for an executable

jar file that the Java vitual machine uses

Disable AT

H] Configure the J¥k such that the Just-n-
Time (JT) compiler is disabled

Operating system name

I

] Specifies JvM settings for a given operating
system. YWhen started, the process will use the
JYM settings for the operating system of the
node:

Apply | % Reset‘ Cancel |

Additional Properties
Custom Properties [Java system propetties to be set in the memary for this v

WebSphere Status [i]

[T

= Previous Mext = Cctober 7, 2005 4:43:59 PM PDT ¢

WebSphere Configuration Problems

Total Configuration Problems :4

204

@ Lital

(- Shotal

Preterences

Click Apply.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

16 A message confirms that your changes were applied. In the Save to Master
Configuration area, click Save.

il

Home | Save | Preferences | Logout | Help | ==

User ID: admin

BART

Bl Servers

Applications
Resources
Security

Envvironment

Application Servers

System Administration Save to Master Configuration

Troubleshooting

&Changes have been made to your local configuration. Click Save to apply changes to the master configuration
G} The server may need to be restarted for these changes to take effect.

Save

Save your workspace changes to the master conficuration

Click the Save button to update the master repository with your changes. Click the Discard button to discard your changes and begin work again
using the master repostory configuration. Click the Cancel button to continue working with your changes.

Total changed documents: 1

“ien tems with changes

M Discard Cancel
WebSphere Status [i = Previous Mext = October 7, 2005 4:52:59 PM POT g
WebSphere Configuration Problems
Total Configuration Problems |4 0 Liotal /4, dtotal [- D botal
Freferences |Z|
(=] T e nemet

17 Click Save to apply the changes to the master configuration. If you are
prompted for confirmation, click Save again.
18 Restart the WebSphere application server.

19 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, the Java Agent was not started correctly or
you did not run the JRE Instrumenter or you did not enter the Java
parameter such as Xbootclasspath correctly. For details, see “About the JRE
Instrumenter and Different Options to Invoke” on page 219.

To configure WebSphere 6.1 or higher:
1 Locate the script that is used to start the WebSphere application server.

For example, <WAS_install_dir>\bin\startServer.bat

205

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

where <WAS_install_dir> is the path to your WebSphere installation
directory, such as C:\Program Files\IBM\WebSphere\AppServer.

Note: On some systems, you may use the startServer.[bat|sh] script in a
profile's bin directory to start a server. However, this script is usually a
simple wrapper that calls the startServer.[bat|sh] script in the
<WAS_install_dir>/bin directory.

2 Create a backup copy of the startup script and use your editor to open the
startup script.

3 For WebSphere 6.1 or higher, locate the code block that defines the
JAVA_EXE variable.

if exist "%JAVA_HOME%\bin\java.exe" (
set JAVA_EXE="%JAVA_HOME%!\bin\java"
) else (
set JAVA_EXE="%JAVA_HOME%)\jre\bin\java"

)

Below the above code block, add a line to invoke the JRE Instrumenter. In
this line, you need to specify the name of the directory for storing the
instrumented classes. Below is an example for WebSphere 6.1 on Windows.
You would substitute a name you’ve chosen instead of MyServer.

%JAVA_EXE% -jar
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

4 Save the changes and restart the application server using the modified
script.

5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath).

206

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

WebSphere 6.1. Below is an example JRE Instrumenter output
(-Xbootclasspath) for WebSphere 6.1 on Windows (using -f MyServer to
specify the directory for storing the instrumented classes - see step 3 above.
You would substitute a name you choose for MyServer.

-Xbootclasspath/

p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot -Xshareclasses:none

WebSphere 7.0 or 8.0. Below is an example JRE Instrumenter output
(-Xbootclasspath) for WebSphere 7.0 (or 8.0) on Windows (using -f
MyServer to specify the directory for storing the instrumented classes - see
step 3 above. You would substitute a name you choose for MyServer.

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve issues. For details, see “Using the JRE Instrumenter
in Automatic Explicit Mode” on page 221.

After you get the output from the JRE Instrumenter, you need to add it to
the application server JVM parameters.

Open the WebSphere Application Server Administrative Console. For
example:

http://<App_Server_Host>:9060/ibm/console

Replace <App_Server_Host> with the machine name for the application
server host and 9060 with the correct administrative port number (such as
9060, 9061, and so on).

Navigate to the Java Virtual Machine page. For example:
For WebSphere 6.1, navigate to: Servers > Application servers

For WebSphere 7.0, navigate to: Servers > Server Types > WebSphere
Application servers

207

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

Then click the application server instance name (such as server1).

Integrated Solutions Console Welcome Help Logout

View: | All tasks

Welcome

Guided Activities Application servers

E Servers Use this page to view a list of the application servers in your environment and
the status of each of these servers. You can also use this page to change the
Bl server Types status of = spacific application sarver.
(wWebSphere application ser‘aers]

WebSphere MQ servers

Preferences

Wweb servers bk | [52)
0
B Applications Name £ Node £ Host Name £ Version £
Services You can administer the following resources:
Resources bsavm57Mod=01 | bsawvmS7.ovrtest.adapps.hp.com | Base
7.0.0.15

Security

Total 1
Enviranment
System administration

Users and Groups

Monitoring and Tuning
[E Troubleshooting
Service integration

upDD1

Close page

Field help

For field help informatic
select a field label or lis
marker when the help
cursor is displayed.

Page help
More information about
this page

Command Assistance
View administrative

scripting command for |
action

Then, under Server Infrastructure > Java and Process Management, click

Process Definition > Java Virtual Machine.

Integrated Solutions Console welcome Help | Logout

View: | All tasks

Walcome
Guided Activities
E servers

B server Types
WebSphere application servers
WebSphere MG servers
Web servers

Applications

Services
Resources
Security

Environment

208

SIB seruvice
Server Infrastructure

B Java and Pracess
Managament

Administration
Communications
Forts

Messaging

inbound transports

=

Class loader

Process
execution

Chapter 6 ¢ Preparing Application Servers for Monitoring with the Java Agent

Then, under Additional Properties, click Java Virtual Machine.

Integrated Solutions Console Welcome Help | Logout

View: | All tasks

Clase page [[2

Welcarme

Guided Activities

B Servers

Bl server Types

WebSphere application servers Configuration
WebSphere MO servers
Web servers

Applications
Services
Resources
Security

Environment

System administration D Process Logs
Users and Groups

[Monitating and Tuning |

8

Application servers WE
Application servers > serverl > Process definition

Use thiz page to configure a process definition, A process definition defines the cornmand line
inforrnation necessary to start or initialize a process.

General Properties

Additional Properties

Executable name

Executable argurnents Environrment

|:| Entries

Process execution

Logging and
Start command tracing

On the Java Virtual Machine page, in the Generic JVM Arguments box, enter
the JVM parameter from the JRE instrumenter. The JVM parameters output
from the JRE Instrumenter were generated earlier in step 3.

Below is an example for WebSphere 6.1 that uses -f MyServer to specify the
name of the directory for storing the instrumented classes:

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot -Xshareclasses:none

Below is an example for WebSphere 6.1 that does not modify the startup
script but manually uses the JRE Instrumenter to instrument the JRE.

-Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\IBM\ 1.5.0\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot -Xshareclasses:none

Below is an example for WebSphere 7 (or 8) that uses -f MyServer as the
command-line option to the JRE Instrumenter in the startup script:

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

209

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

Below is an example for WebSphere 7 (or 8) that does not modify the startup
script or manually run the JRE Instrumenter (using the JRE Instrumenter in
the Automatic Implicit mode):

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\server1\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

9 Apply and save your changes.

Integrated Solutions Console ~ welcome Help | Logout |8
Guided Activities D 1024 ME
E servers

D Run HProf
B server Types HProf & N
WebSphere application sar | rot Argurnents

WebSphere MO servers
Ubese [vebug Hode

Applications Debug arguments

Services |

Feneric WM argurnents
|-Xb00tc|asspath.l"p:C:'\Mercurl,lDiagnostics\JauaAgent\DiagnosticsAgent\classes\IBM

Resources

Security
Executable JAR file name
Enviranment I

System administration
[pisable 217
Users and Groups
operating systern name

Maonitoring and Tuning |"\,“_N:h__,wS
Troubleshooting

Service integration [s1:% Reszet Cancel

uooI E ’T|

10 Restart the WebSphere application server.

11 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, , the Java Agent was not started correctly or
you did not run the JRE Instrumenter or you did not enter the Java
parameter such as Xbootclasspath correctly. For details, see “About the JRE
Instrumenter and Different Options to Invoke” on page 219.

210

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Running the JRE Instrumenter for WebSphere IDE

If you are using WebSphere IDE, you must run the JRE Instrumenter
manually to make sure the correct Java executable for the WSAD IDE was
instrumented.

The WSAD IDE has different java.exe executables to choose from. You must
instrument the one that is used to run WebSphere.

To instrument the correct java.exe:
1 Determine the version of WebSphere you are using.
2 Determine the location of the appropriate java.exe.

3 Run the JRE Instrumenter and add the correct JVM. See “About the JRE
Instrumenter and Different Options to Invoke” on page 219 for details.

Configuring WebSphere for JMX Metric Collection

You might need to configure the Performance Monitoring Infrastructure
(PMI) service on the WebSphere server to start receiving JMX metrics.

Important: If Diagnostics is not able to identify your application server as a
WebSphere server, you must enable PMI and add the Jar files to the
server.policy file.

To configure WebSphere 6.1/7.0 server for JMX metrics collection:
1 Open the WebSphere Administrative Console.

2 In the Console navigation tree, select Servers > Application Servers. The
console displays a table of the application servers.

3 Click the name of the application server you want to configure from the
Application Servers Table. The console displays the Runtime and the
Configuration tabs for the selected application server.

4 Click the Configuration tab.
5 In the Configuration tab:

211

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

212

» Under the Performance heading, click Performance Monitoring
Infrastructure (PMI).

» Under the General Properties heading, select the Enable Performance
Monitoring Infrastructure (PMI) check box.

» Under the Currently monitored statistic set heading select Extended.

Click Apply or OK.

7 If Java 2 Security is enabled on the application server, open the server policy

tile (<WebSphere 6.x Installation Directory>/work/tools/ibm-6.0/
websphere/appserver/profiles/default/properties/server.policy or
<WebSphere 7.0 Installation Directory>/AppServer/profiles/
<your_profile_name>/properties/server.policy) and add the following
security permissions to enable JMX collection:

grant codeBase "file:/<probe_install_dir>/lib/probe-jmx.jar"
{ permission java.security.AllPermission; }

grant codeBase "file:/<probe_install_dir>/lib/probe-jmx-wasé.jar" {
permission java.security.AllPermission;

|5

Restart the application server.

Example 9: Configuring webMethods

There are two types of webMethods servers discussed in this example:

» webMethods Integration Server

> My webMethods Server

Because the startup scripts that webMethods provides are frequently
customized by a site administrator, it is not possible to provide detailed
configuration instructions that apply to all situations. Instead, the following
section provides general instructions with specific examples for
webMethods Integration Server and My webMethods Server. Your site
administrator should be able to use these instructions to show you how to
make these changes in your customized environment.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

To configure a webMethods Integration Server:

The webMethods Integration Server is started by shell or command scripts.
Therefore, we recommend that you modify the startup scripts to instrument
the server.

1 Locate the startup script used to start the webMethods Integration Server.
There are two options based on how the server is started:

...\IntegrationServer\bin \server.bat
...\profiles\IS\bin \runtime.bat

2 Create a backup copy of the startup script and use your editor to open the
startup script.

3 Update the file as described below.

a For the server.bat file locate the following section where the server is
started:

if "1%1"=="1-service" (

if exist LOCKFILE del LOCKFILE

"%JAVA_EXEC%" -classpath %1S_PROXY_JAR%
com.wm.app.server.CustomServiceUpdater -isdir "%IS_DIR%" -wrapperdir
"%IS_DIR%\..\profiles\IS\configuration" -binpath "%PATH%" -jvmargs
"%SERVER_VM_OPT% %JAVA2_MEMSET% %JAVA_OPTS%" -progargs
Y% 3#%4#Y%5#%06#% 7#%08#%9

goto :EOF
)

call "%PROFILES_DIR%\bin\start_runtime.bat" %1 %2 %3 %4 %5 %6 %7 %8 %9

And directly above this section add the following:

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

213

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

214

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step
5. In these two lines, you enter a name to specify the directory for storing
the automatically instrumented JRE classes. In the example above you
would substitute a name you choose for MyServer.

b For the runtime.bat file locate the following section where the server is
started:

%JAVA_RUN% -Xbootclasspath/a:"%0OSGI_CLASSPATH%" %JAVA_OPTS%
%JAVA_SYSPROPS% -cp "%OSGI_FRAMEWORK_JAR%"
org.eclipse.equinox.launcher.Main -configuration %OSGI_CONFIGURATION_AREA%
%CMD_ARGS%

goto end_start_cmd

And directly above this section add the two lines as shown in the
example :

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step
5. In these two lines, you enter a name to specify the directory for storing
the automatically instrumented JRE classes. In the example above you
would substitute a name you choose for MyServer.

4 Save the changes to the startup script and restart the application server
using the modified script.

5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 3, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 3, add
it now and restart the application server.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

To configure the My webMethods Server startup script:

The My webMethods Server is started either by script or by a wrapper
configuration. Therefore you will either modify the startup script, as in this
example, or edit the wrapper configuration file to instrument the server as
described in the next procedure.

Locate the startup script used to start your My webMethods Server. The
script file is: ...\AMWS\server\bin \mws.bat.

Create a backup copy of the file and use your editor to open the file.

3 Update the file as described below.

For the mws.bat file, you locate the definition of RUN_CMD as highlighted
in the following example:

set JAVA_OPTIONS=%JAVA_ OPTIONS% -Dserver.name=%SERVER_NAME%
-Djava.awt.headless=true

set PARAMS=

set MAIN_CLASS=com.webmethods.portal.system.PortalSystem

set RUN_CMD=%JAVA% -cp %CLASSPATH% %JAVA_ARGS% %JAVA_OPTIONS%
%ACTION_PARAMS% -Dmain.class=%MAIN_CLASS%

7 %8 %9

215

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

216

And above this section add the two lines as shown in the following
example:

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step 5.
In these two lines, you enter a name to specify the directory for storing the
automatically instrumented JRE classes. In the example above you would
substitute a name you choose for MyServer.

Save the changes to the startup script and restart the application server
using the modified script.

In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 3, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 3, add
it now and restart the application server.

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

To configure the My webMethods Server configuration wrapper:

The My webMethods Server is started either by script or by a wrapper
configuration. Therefore you will either modity the startup script or edit the
wrapper configuration file, as in this example, to instrument the server.

Locate the configuration wrapper used to start your My webMethods Server.
The configuration file is:
...MWS\server\<server_name>\config\wrapper.conf

Create a backup copy of the file and use your editor to open the file.

3 Update the file as described below.

For the wrapper.conf file add the following (changing the numbers 270 and
280 depending on your configuration file::

wrapper.java.additional.270=-Xbootclasspath/p:
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServer\instr.jre

wrapper.java.additional.280=-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. On the first invocation, the
second parameter (-Xbootclasspath) causes the application server JRE to be
instrumented. In the -Xbootclasspath parameter enter a name to specify the
name of the directory for storing the instrumented classes. In the example
above you would substitute a name you choose for MyServer.

Save the changes to the configuration wrapper and restart the application
server using the modified wrapper.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.logfile. If
there are no entries in the file, you may not set the JVM parameters
correctly.

Optionally, restart the application server again so that it will use the
instrumented JRE.

217

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

218

Important: If you update the JRE used by your My webMethods Server when
started with the configuration wrapper in the future, before you start the My
webMethods Server again, you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/MyServer directory (use your directory
name for MyServer) so that the new JRE will be instrumented. Otherwise,
your application server may not start. For general information on the
instrumentation mode used see “Using the JRE Instrumenter in Automatic
Implicit Mode” on page 224.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

About the JRE Instrumenter and Different Options to

Invoke

The JRE Instrumenter is a utility to instrument a JRE so that the Java Agent
can provid advanced features such as the patent-pending Collection Leak
Pinpointing (CLP). It does not modify the installed JRE in any way, but
rather places copies of instrumented classes somewhere under the
<JavaAgent_install_dir>/DiagnosticsAgent/classes directory. You can use the
JRE Instrumenter to instrument multiple JREs if they are installed on your
system.

The JRE Instrumenter instruments some standard Java classes used by the
application server JVM and applications running on it. It also provides you
with the JVM parameters that must be used when the application server is
started so that the application server uses the instrumented classes.

With different command-line options, the JRE Instrumenter can be invoked
and used in three different ways, each of which has its own advantages and
limitations. You will use one of these methods according to the
characteristics of your application servers (see “Examples for Configuring
Application Servers” on page 163 for examples).

Automatic Explicit Mode. If your application server is or can be started by a
script, it is recommended that you use this mode. To use this mode, you add
a line to your application server startup script to explicitly and
non-interactively run the JRE Instrumenter to instrument the JRE. Your
script will continue to start the application server JVM (with additional
parameters) using the freshly instrumented JRE. See “Using the JRE
Instrumenter in Automatic Explicit Mode” on page 221.

219

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

» Automatic Implicit Mode. With this mode, you do not need to explicitly run

the JRE Instrumenter — you only need to modify your application server
JVM parameters to invoke the Java Agent and ask it to run the JRE
Instrumenter as needed. When the Java Agent is used for the first time, it
implicitly runs the JRE Instrumenter to instrument the JRE. However, the
first time this instrumented JRE will not be used; your application server will
be using an uninstrumented JRE. The next time your application server is
started, it will use the instrumented JRE. Therefore, if you want to use the
tull monitoring features of the Java Agent, you need to restart your
application server twice after you enable the Java Agent. See “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

Manual Mode. With this mode, you need to manually and interactively run
the JRE Instrumenter, either at the end of the Java Agent installation or at a
later time, to instrument the JRE. You then modify your application server
JVM parameters according to the parameters provided by the JRE
Instrumenter. This method is how the JRE Instrumenter works in earlier
versions of HP Diagnostics. See “Using the JRE Instrumenter in Manual
Mode” on page 226.

If your JRE is updated (such as, applying an application server patch) or if
you update the Java Agent, you may need to instrument the JRE again. This
issue will be discussed in each mode.

Below is a table that summarizes the requirements of each of the four
different methods of doing instrumentation:

Recommended Instrumentation
(Using the JRE Instrumenter)

Basic In In
Automatic Automatic In Manual
Instrumen- o iy
tation Explicit Implicit Mode
Mode Mode
Minimum required JRE 1.5 1.4 1.5 1.4
version
Requires the application No Yes No No
server being started by a
script

220

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Recommended Instrumentation
(Using the JRE Instrumenter)
Basic In In
Automatic Automatic In Manual
Instrumen- o .
tation Explicit Implicit Mode
Mode Mode
Requires knowing where No No No Yes
the JRE is installed
Requires manually running | No No No Yes
the JRE Instrumenter
Requires knowing where Yes* Yes* Yes* Yes*
the JVM parameters can be
configured
Requires restarting the Yes, once Yes, once or | Yes, twice Yes, once
application server after twice
enabling Java Agent
Requires maintenance after | No No Yes Yes
JRE upgrade/patch

* If you cannot find where the JRE invocation parameters can be defined,
you may still have the option of using an environment variable such as
JAVA_OPTIONS to do that.

Using the JRE Instrumenter in Automatic Explicit Mode

Using the JRE Instrumenter in the Automatic Explicit Mode is
recommended when an application server is started by a script, such as
WebLogic and JBoss application servers. It is also recommended for
WebSphere application servers if they are or can be started by a script - this
is the case for most platforms except z/OS. It is also recommended for
Tomcat if it is not installed as a Windows service.

221

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

222

To use Automatic Explicit mode, you need to accomplish two tasks:

Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

Note: Make sure you understand the structure of the startup script, how the
property values are set, and how to use environment variables before you
make any configuration changes. Always create a backup copy of any file
you plan to modify before making the changes.

In modifying the application server startup script, you first need to identify
the line (or lines) in which the JRE is invoked to start the application server
JVM. Then, right above this line, you add a line like the following to invoke
the JRE Instrumenter using the same JRE used by your application server:

<java_command> -jar <JavaAgent_install_dir>/DiagnosticsAgent/lib/jreinstrumenter.jar
-f <pathname>

The <java_command> must be exactly the same java command that is used
to start your application server JVM, since it is the JRE that is instrumented
by the JRE Instrumenter. You can usually get this java command by copying
the beginning portion of the line that starts your application server JVM.

Below is a table showing the java command used by the original startup
script of some commonly used application servers. (Note that this table is
provided as helpful tips only; your application server startup script may use
a different java command.)

Windows Command Scripts

Application Server Shell Scripts (.sh) (batior.cmd)

JBoss "$JAVA" "0JAVA%"

Tomcat ${_RUNJAVA} %_RUNJAVA%.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Windows Command Scripts

Application Server | Shell Scripts (.sh) (.bat or .cmd)

WebLogic ${JAVA_HOME}/bin/java | %JAVA_HOME% \bin\java

WebSphere ${JAVA_EXE} %JAVA_EXE%

The <JavaAgent_install_dir> indicates the directory where the Java Agent is
installed.

The <pathname> must be relative. The JRE Instrumenter will put the
instrumented classes in the <JavaAgent_install_dir>/DiagnosticsAgent/
classes/<pathname>/instr.jre directory. If you run multiple application
servers with Diagnostics, you should give each application server a unique
<pathname> (such as the probe name) so that the multiple instances of the
JRE Instrumenter do not interfere each other. See also “Configure
Monitoring of Multiple Java Processes on an Application Server” on

page 233 for details.

After you add the line as described above to the startup script, every time
you start your application server using the startup script, the JRE
Instrumenter is invoked and instruments the current JRE. It also prints out
the JVM parameters that you should use in the next task. You can usually
find the output of the JRE Instrumenter among the output from running the
startup script.

Below is an example output from the JRE Instrumenter that instruments a
typical JRE version 5.0 or higher:

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/<pathname>/instr.jre
-javaagent:<JavaAgent_install_dir>/DiagnosticsAgent/lib/probeagent.jar

Below is an example output from the JRE Instrumenter that instruments a
typical JRE version 1.4.x:

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/<pathname>/instr.jre;
<JavaAgent_install_dir>/DiagnosticsAgent/classes/boot

223

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

224

The second task for using the Automatic Explicit JRE instrumentation is to
modify your application server JVM parameters according to the output of
the JRE Instrumenter. In many cases, you just need to modify the java
command-line options in the startup script to include the JVM parameters
provided by the JRE Instrumenter. However, in some scenarios (such as for
WebSphere application servers), you may need to modify a configuration
file or use an administration console to add these JVM parameters.

Note: To get the output from the JRE Instrumenter, you need to modify the
startup script as described in the first task and restart the application server.
Then, after you make changes to the application server JVM parameters, you
need to restart the application server again (causing you to restart the
application server twice). However, for most of the JREs, the actual JVM
parameters provided by the JRE Instrumenter will be the same as or will
include what is provided in the examples above. Therefore, you can safely
add these "default" JVM parameters even before you run the modified script.
This approach is used in the instructions for specific application servers.
Refer to the example for your application server (JBoss, WebLogic,
WebSphere, Tomcat) to see detailed instructions for how to configure using
automatic explicit mode.

Alternatively, you can redirect (or pipe) the output from the JRE
Instrumenter to the java command-line options, or get the JVM parameters
from a difference source to avoid restarting twice.

Using the JRE Instrumenter in Automatic Implicit Mode

Using the JRE Instrumenter in the Automatic Implicit Mode is
recommended when an application server cannot be started by a script,
such as GlassFish, NetWeaver, Tomcat installed as a Windows service (no
scripts), WebSphere installed on z/OS, and TIBCO ActiveMatrix and
BusinessWorks.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

To use this mode, you do not need to explicitly invoke the JRE Instrumenter;
it is implicitly invoked by the Java Agent. You just configure your
application server JVM parameters to invoke the Java Agent and, when the
Java Agent sees that the JVM boot class path contains a path pointing to a
location matching the following pattern, it enters the automatic
instrumentation mode to create the instrumented classes and populates the
specified directories with copies of the instrumented classes:

<JavaAgent_install_dir>/DiagnosticsAgent /classes/auto/<name>/instr.jre

For example if you add the following JVM parameters:

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
-javaagent: <JavaAgent_install_dir>/DiagnosticsAgent /lib/probeagent.jar

Then during the first execution of the application server, the directory
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
may not even exist. The Java Agent will create and populate the specified
directory with the instrumented classes. And it will use the exact
(uninstrumented) JRE that it runs on.

The first execution of the application server will not benefit from the
instrumented JRE, but all subsequent executions will use the instrumented
classes prepared in the first run.

Important: If you update the JRE used by your application server (such as
applying an application server patch) or if you update the Java Agent, before
you start the application server again you must delete the
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne
directory (use your directory name for ServerOne) so that the new JRE will
be instrumented. Otherwise, your application server may not start. You can
also manually delete this directory when you want the Java Agent to
instrument the JRE again.

225

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

226

Using the JRE Instrumenter in Manual Mode

You can manually run the JRE Instrumenter and copy the provided JVM
parameters into your application server startup settings. Using the JRE
Instrumenter in the Manual Mode is recommended for Oracle application
servers.

The JRE Instrumenter performs the following functions:

» Identifies JREs that are available to be instrumented.
» Searches for additional JREs in directories you specify.

» Instruments the JREs you specify and provides the parameter you must
add to the startup script for the JRE to point to the location of the
instrumented classes.

» When the Instrumenter is run using the graphical interface or console
mode in a Windows or UNIX environment, the Instrumenter places the
instrumented classes in a folder under the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/<JRE_vendor>/<JRE_version> directory.

Important: If you update the JRE used by your application server (such as
applying an application server patch) or if you update the Java Agent, you
must run the JRE Instrumenter again to instrument the new JRE and change
the JVM parameters accordingly. Otherwise, your application server may not
start.

Running the JRE Instrumenter Utility in Ul Mode
When the JRE Instrumenter is run without any options the Instrumenter
displays the dialogs of its graphical user interface.

To start the JRE Instrumenter utility on a Windows system run the
<probe_install_dir>\bin\jreinstrumenter.cmd command.

To start the JRE Instrumenter utility on UNIX or Linux run the
<probe_install_dir>\bin\jreinstrumenter.sh command.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

The Instrumenter lists the JVMs that were discovered by the Instrumenter
and are available for instrumentation. The JVMs that were instrumented are
listed with a green square preceding the name of the JVM.

B3P Diagnostics JRE Instrumenter (9.20.58.1236) [_ O]
~#Available JREs

3un 1.5.0_04 {C:\beatjdk150_04jre)
IBM 1.5.0 {C:\Program Files\IBMwWebspheretappIerver Ljavaljre)

Selack & IRE From the lisk above, or cick "Add JRE(s)" ko ook For more JREs on this machine,

Add JRE(s) | Instrument | oy Parameter | Remove | Exit: |

If the JRE Directory is not listed on the dialog, click the Add JRE(s) button to
browse to the JRE. Navigate to the directory location where you want to
begin searching for JVMs and then select the file where you want to begin
the search and click Search from here. The Instrumenter searches and then
lists the JVMs found in the Available JREs list.

Select the JRE to be instrumented and then click Instrument.

The JRE Instrumenter instruments some of the classes for the selected JVM
and places the instrumented classes in a folder under the
<probe_install_dir> /classes directory. It also displays the JVM parameter
that must be used when the application server is started in the box below
the Available JREs list.

227

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

228

When the JRE Instrumenter instruments a JRE, it also creates the JVM
parameters you must include in the startup script for the application server
to cause your application to use the instrumented classes. When you select
an instrumented JRE from the Available JREs list, the JVM parameters are
displayed in the box below the list.

EAHP Diagnostics JRE Instrumenter {9.20.58.1236) M=l E3
—Available JREs

Sun 1.5.0_04 (Ciibealjdk150_041jre)

M IBM 1.5.0 (C:\Program FilesiIBM) WebSpherel AppServer 1javaljre)

Uge bhe Following JRE paramaters) bo ackivate the Diagnostics Agant:

-Xbootclasspath/p:C:'MercuryDiagnostics', Javafgent' DiagnosticsAgent ', classes’ IBM', 1.5.0% inst
r.jre;ChMercuryDiagnosticsh JavaAgent', DiagnosticsAgent' .classes', boot
-Xshareclasses:none

Add IRE(s) | Inskrument Copy Parameter | Uninstrument | Exit |

Click Copy Parameter to place the corresponding parameter on the
clipboard. The JVM parameter is copied to the clipboard so that you can use

the JVM parameters in configuring your application server to activate
monitoring by the Java Agent.

Important: You will use the clipboard contents later in configuring you
application server, so be careful to not overwrite the clipboard contents.

Click Exit to close the JRE Instrumenter window and continue with
configuring your application server JVM parameters.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

For general instructions for how to insert the JVM parameter into
application server startup scripts see “Including the JVM Parameter in the
Application Server’s Startup Script” on page 230. For specific examples of
how to insert the JVM parameter into startup scripts for different
application servers such as JBoss, WebLogic and Tomcat see “Examples for
Configuring Application Servers” on page 163.

Running the JRE Instrumenter in Console Mode

Open <probe_install_dir>\bin to locate the JRE Instrumenter executable.
Run the following command:

Jjreinstrumenter.sh -console

When the Instrumenter runs, it displays a list of the processing options that
are available. The following table directs you to the documentation for each
of the processing options:

Instrumenter Function Descritpion

jreinstrumenter -1 Display a list of the JVMs that are known to
the JRE Instrumenter. Displays the JVM
vendor, JRE version, and the location where
the JRE is located.

jreinstrumenter -i Select a JRE in a specific directory for
<jre_directory> instrumentation. Replace <jre_directory> with
the path to the folder where the JRE you selected
from the Available JVM list is found.

This command instructs the JRE Instrumenter to
instrument the classes for the selected JVM and
to place the instrumented classes in a folder
under the <probe_install_dir> /classes/
<JVM_vendor>/<JRE_version> directory.

229

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

230

Instrumenter Function Descritpion
jreinstrumenter -a Search for JVMs within a specific directory and
<directory> add any JVMs that are found to the list of the

JVMs known to the JRE Instrumenter. Replace
<directory> with the path to the location where
you would like the Instrumenter to begin
searching.

The Instrumenter searches the directories from
the location specified including the directories
and subdirectories. When it completes its search,
it displays the updated list of Available JVMs.

Copy the JVM parameter from the output of the JRE Instrumenter so that
you can paste it into the location that allows it to be picked up when your
application server starts in order to activate monitoring by the Java Agent.

Exit the JRE Instrumenter and continue with configuring your application
server JVM parameters.

For General instructions for how to insert the JVM parameter into
application server startup scripts see “Including the JVM Parameter in the
Application Server’s Startup Script” on page 230. For specific examples of
how to insert the JVM parameter into startup scripts for different
application servers such as JBoss, WebLogic and Tomcat see “Examples for
Configuring Application Servers” on page 163.

Including the JVM Parameter in the Application Server’s
Startup Script

When the JRE Instrumenter instruments a JVM, it also creates the JVM
parameter you must include in the startup script for the application server
in order to cause your application to use the instrumented classes. When the
Instrumenter finishes instrumenting the JVM, it displays the JVM
parameter.

Copy the JVM parameter to the clipboard and paste it into the location that
allows it to be picked up when your application server starts. General
instructions are provided below.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

See “Examples for Configuring Application Servers” on page 163 for specific
examples of how to insert the JVM parameter for application servers such as
WebLogic, WebSphere, JBoss and others.

To update the application server configuration:

Locate the application server startup script or the file where the JVM
parameters are set.

Create a backup copy of the application server startup script before you
make any changes to the script.

Use an editor or the application server console to open the startup script.

Add the Java parameter from the JRE Instrumenter to the java command
line that starts the application server, for example:

-Xbootclasspath/p:<probe_install_dir>\classes\Sun\1.4.2_04\instr.jre;
<probe_install_dir>\classes\boot

In this instance, <probe_install_dir> is the path to the directory where the
Java Agent was installed.

This connects the probe to the application.

The following is an example of a WebLogic java command line in a startup
script before adding the Java parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

231

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

The following is an example of a WebLogic java command line in a startup
script after adding the Java parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m
-Xbootclasspath/p:<probe_install_dir>\classes\Sun\1.5.0_17\instr.jre;
-javaagent:<probe_install_dir>\lib\probeagent.jar

-classpath "% CLASSPATH%"

-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

5 Save the changes to the startup script.
6 Restart the application server under test.

7 To verify that the probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>\probe.log file. If there are no entries
in the file, you did not instrument the JRE used by the application server or
did not configure your application server JVM parameters to invoke the Java
Agent (see the instructions in this chapter for your application server).

Other Configuration Options

232

The following sections give you other configuration options:

» “Configure Monitoring of Multiple Java Processes on an Application Server”

on page 233

> “Adjusting the Heap Size for the Java Agent in the Application Server” on

page 237

» “Configuring the SOAP Message Handler” on page 237

» “Configuring the Discovery of a New J2EE Server for CI Population” on

page 241

» “Special Considerations for Applications Based on the OSGi Framework” on

page 242

> “Special Considerations for Azul Users” on page 243

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Configure Monitoring of Multiple Java Processes on an
Application Server

When your application server is using multiple Java processes, or when you
want to collect performance data for multiple Java processes, you must
perform additional agent configuration steps. You have two options. You
can configure a separate Java Agent installation for each JVM on a host, or
you can configure a single Java Agent installation to be shared by all of the
JVMs.

This section includes:

“Configure a Single Java Agent Installation to be Shared by Multiple JVMs”
on page 233

“Configure a Separate Java Agent Installation For Each JVM” on page 236

Configure a Single Java Agent Installation to be Shared by
Multiple JVMs

To allow multiple JVMs to share a single Java Agent installation, you must
configure a separate probe instance for each JVM. This configuration enables
the following:

Establishment of communication between the Diagnostics Server and the
probe

» Identification of the probe by the Diagnostics Server

» Instrumentation of the JRE used by the JVM

To configure a single Java Agent installation to be shared by multiple JVMs:

When a single Java Agent installation is used to monitor multiple JVMs, you
must configure application server JVM parameters accordingly to invoke the
Java Agent. Each JVM can use a different JRE instrumenation mode (see
Chapter 6, “Preparing Application Servers for Monitoring with the Java
Agent” for details on JRE instrumentation modes.

If you did not instrument each of the JRE versions used, do so now. See
Chapter 6, “Preparing Application Servers for Monitoring with the Java
Agent.”

233

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

234

2 Specity the range of ports from which the probe can automatically select.

The Java Agent communicates using the mini web server. A separate port is
assigned for communications for each JVM that a probe is monitoring. By
default, the port number range (Min/Max) is set to 35000-35100. You must
increase the port number range when the probe is working with more than
100 JVMs.

Note: If a firewall separates the probe from the other Diagnostics
components, configure the firewall to allow communications using the
ports in the range you specify. For more information, see Appendix ,
“Configuring Diagnostics to Work in a Firewall Environment.”

If you configure the firewall to allow probe communications on a range of
ports that is different than the default, update the port range values
discussed in the following bullets.

a Locate the webserver.properties file in the folder <probe_install_dir>/
etc.

b Set the following properties to adjust the range of ports available for
probe communications.

» The minimum port in the port number range uses the following
property:
jetty.port=35000

» The maximum port in the port number range uses the following
property:
jetty.max.port=35100

3 Assign a unique probe name using one of the following methods.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

The command line properties must be entered on one line, without any line
breaks. The probe ids defined on the Java command line override the probe
names defined in the probe.properties file using the probe’s id property.

a Assign a custom probe Identifier to the probe for each JVM, using the
Java command line or startup script.

-Dprobe.id=<Unique_Probe_Name>

The following example shows a WebLogic startup script before adding
the probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

The following example shows a WebLogic startup script after adding the
probe.id parameter:

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m*

-Xbootclasspath/
p:C:\MercuryDiagnostics\JAVAProbe\classes\Sun\1.4.1_03;C:\MercuryDiagnostics\JA
VAProbe\classes\boot"

-classpath "%CLASSPATH%"

-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer

-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

b When a single Java parameter is specified but multiple probes are started
using the same script, use the %0 string to generate a custom probe
identifier for each probe—for example, in a clustered environment where
a single startup script is used to start multiple probed application server
instances.

-Dprobe.id=<probeName>%0

On Windows, use %%0. Use the first % to escape the second %.

235

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

The %0 is replaced dynamically with a number to create a unique probe
name for each probe; for example, <probeName>0, <probeName>1, and
so on.

4 Specify the points file each probe will use. By default, the points file name is
auto_detect.points. You can specify that a custom points file be used when
you must use more than one custom instrumentation plan, or where you
have several JRE versions on the same machine using a single agent
installation, and one or more of the JREs needs specific methods and classes
included in a layer to support custom instrumentation.

-Dprobe.points.file.name="<Custom_AutoDetect_Points_File>"

Configure a Separate Java Agent Installation For Each JVM

When there are multiple JVMs on a single host, you can configure a separate
Java Agent installation for each JVM instance. You install the agent multiple
times and define an instance of a probe by setting the probe’s id property in
the probe.properties file in each agent’s installation directory.

To configure a separate installed agent for each JVM:

1 If you did not instrument the JRE, do so now see Chapter 6, “Preparing
Application Servers for Monitoring with the Java Agent.”.

2 Locate the probe.properties file in the <probe_install_dir>/etc directory.

Here is an example:
C:\\MercuryDiagnostics\JAVAProbe\etc\probe.properties

3 Assign a name to the id property that is unique on the server and on the
Diagnostics Server, as follows:

id=<uniqueProbeName>

236

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

When the probe is started, a log file is created in the <probe_install_dir>/log
directory where the log messages for the probe are stored.

Adjusting the Heap Size for the Java Agent
in the Application Server

The size of the heap can impact the performance of the Java Agent and the
application server. The default value for the heap size is 64 MB, but an
application server usually increases it to a larger amount. When you add the
Java Agent to an application server, you may need to increase the heap size
to accommodate the memory used by the Java Agent. See “Requirements for
the Diagnostics Java Agent Host” on page 36 for details.

The heap size is set in the application server JVM configuration using the
following JVM argument:

-Xmx<size>

You can increase the heap size by updating the value specified in the
-Xmx<size> option. See your JVM documentation for help on setting this
parameter.

Configuring the SOAP Message Handler

The Diagnostics SOAP message handler is required for Java probes to support
the following features:

» Collect payload for SOAP faults.

» Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets
are written to automatically configure the Diagnostics handlers for web
services being monitored.

237

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

238

Important: For some application servers, special instrumentation is provided
in Diagnostics to automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1
JAX-RPC and Oracle 10g JAX-RPC. See “Loading the Diagnostics SOAP
Message Handler” on page 239.

In addition, the Diagnostics SOAP message handler is not available for all
application servers, nor is custom instrumentation available to capture
SOAP faults or consumer IDs from SOAP payloads. Therefore, this feature is
not available on all versions of all application servers. For the most recent
information on Diagnostics SOAP message handler support, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

This section includes the following:

» “Disabling the SOAP Message Handler” on page 238

“Loading the Diagnostics SOAP Message Handler” on page 239
> “WebSphere 5.1 JAX-RPC” on page 239
» “Oracle 10g JAX-RPC"” on page 240

Disabling the SOAP Message Handler

By default, the SOAP message handler is enabled. You can disable the
handler as follows:

In the <probe_install_dir>/etc/inst.properties file edit the
details.conditional.properties property to include
mercury.enable.autoLoadSOAPHandler = false.

If the SOAP message handler is disabled, you must manually configure
where in the chain the handler gets installed.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Loading the Diagnostics SOAP Message Handler

The SOAP message handler is loaded automatically on most application
servers but requires manual configuration on these application servers:

WebSphere 5.1 JAX-RPC

To configure the SOAP message handler on WebSphere 5.1 JAX-RPC, follow
these steps:

Note: For WebSphere 6.1 JAX-WS web services, Diagnostics handlers are not
supported. You must recompile the application with the Diagnostics SOAP
handler classes.

Locate the Web service deployment descriptor (webservices.xml) for the
application. The directory path should look similar to the following:

<install_root>\config\cell\<Server>\applications\
<WebServiceEAR>\deployments\<WebServiceName>\
<WebServiceJAR|WARName>\WEB-INF

Here is an example:

C:\Program Files\WebSphere\AppServer\config\
cells\MyServerl\application\WebServicesSamples.ear\
deployments\WebServicesSamplea\AddressBookJ2WB.war\ WEB-INF

Edit the webservices.xml and add the Diagnostics handler for each
<port-component>:

<port-component>
<handler>
<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>
</handler>

</port-component>

239

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

240

3 Copy the Diagnostics handler jar

(<probe_install_dir>\lib\probeSOAPHandler.jar) to the WebSphere lib
directory.

Here is an example:

cp C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\ lib\probe SOAPHandler.jar
C:\Program Files\WebSphere\AppServer\lib

These steps were developed with IBM WebSphere 5.1.0 Application Server
on Windows.

Oracle 10g JAX-RPC

To configure the SOAP message handler on Oracle 10g JAX-RPC, follow
these steps.

Locate the Web service deployment descriptor (webservices.xml) for the
application. The directory path should look similar to the following:

<OC4_install_root>\j2ee\home\applications\<app name>\ <deployment
name>\WEB-INF\webservices.xml

Edit the webservices.xml and add the Diagnostics handler for each
<port-component>:

<port-component>
<handler>
<handler-name>Diagnostics RPC Handler</handler-name>
<handler-class>
com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
</handler-class>
</handler>

</port-component>

Copy the Diagnostics handler jar
(<probe_install_dir>\lib\probeSOAPHandler.jar) to the
<0OC4J_install_root>\j2ee\home\applib directory.

These steps were developed with Oracle Containers for J2EE (OC4]J) 10g
Release 3 (10.1.3.3) on Windows.

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Configuring the Discovery of a New J2EE Server for Cl
Population

The agent provides data to populate the J2EE Application Server and J2EE
Application Domain ClIs in Business Service Management.

The probe automatically populates Cls for well known J2EE servers such as
JBoss and WebLogic.

You can also configure application server discovery to populate ClIs for other
J2EE servers. Application server name can be directly specified or configured
to be discovered by JMX or be discovered by a point/code snippet.

You configure application server discovery in the probe etc/metrics.config
file as described below.

The class AppServerDiscoveryCollector is located in the <probe_install_dir>/
lib/probe-jmx.jar file and you can write you own collector class to do both
application server discovery and metrics collection.

The following is the configuration for application server discovery for a
generic application server. Note the collector name is case sensitive and
should be different from any collector name in the metrics.config file.

<user-defined-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.AppServerDiscoveryCollector
<user-defined-collector-name>.class.path = probe-jmx.jar
<user-defined-collector-name>.app_server.configure.discovery = true
<user-defined-collector-name>.app_server.type = <user-defined-type>
<user-defined-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-collector-name>.app_server.domain_name =
<user-defined-domain-name>

And then you should add the following Java system property definition in
the app-server/javaprobe startup script or java command line.

-Dapp_server.discovery.collector=<user-defined-collector-name>

Every 15 minutes the probe refreshes the collectors (including the
AppServerDiscoveryCollector) and makes the discovery based on any new
configuration.

241

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

242

For the advanced user who knows how to use JMX to discover the new
application server name and J2EE domain name, you may add the following
configuration in the probe etc/metrics.config file.

<user-defined-jmx-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.JMXCollector
<user-defined-jmx-collector-name>.class.path = probe-jmx.jar
<user-defined-jmx-collector-name>.depends.on.class =
javax.management.MBeanServer
<user-defined-jmx-collector-name>.app_server.configure.discovery = true
<user-defined-jmx-collector-name>.app_server.type = <user-defined-type>
<user-defined-jmx-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-jmx-collector-name>.app_server.server_name.discovery.by.jmx =
<jmx-ObjectName>.<jmx-AttributeName>
<user-defined-jmx-collector-name>.app_server.domain_name =
<user-defined-domain-name>
<user-defined-jmx-collector-name>.app_server.domain_name.discovery.by.jmx =
<jmx-ObjectName-1>.<jmx-AttributeName-1>@<jmx-ObjectName-2>.<jmx-AttributeNa
me-2>

Special Considerations for Applications Based on the OSGi
Framework

If your application is based on the OSGi framework, you may need to set
some additional properties. If not already the default value, set the
osgi.java.profile.bootdelegation property to the default value "ignore". Then
append com.mercury.* to the end of the
org.osgi.framework.bootdelegation property in your osgi.java.profile. For
example:

org.osgi.framework.bootdelegation= <existing packages>,com.mercury.*

Chapter 6 © Preparing Application Servers for Monitoring with the Java Agent

Special Considerations for Azul Users

Azul provides two highly scalable and highly performing solutions for
enterprise Java users: Vega and Zing. Vega is a special hardware appliance
which connects to the user local network. Zing is a virtual equivalent of
Vega, provided in a form of a guest image for VMware or KVM. A major
advantage of the Azul appliances is its innovative pauseless garbage
collector, which runs continuously and can handle heaps up to tens of
gigabytes. Both appliances are supported by Diagnostics equally, although
we tested only Zing in the lab.

The Java SDK or JRE provided by Azul installs on a traditional system, such
as Linux or Solaris, but when it is invoked, it delegates the execution of any
Java code to the appliance. Thus, although the Java application seems to be
running where it was invoked, it actually runs on a different system. This is
done seamlessly, so the application interacts with its environment just as if
it was running on a local system. If the application makes a JNI call, it is
made across the network to be executed on the originating host.

This execution model creates a number of issues for Diagnostics users. The
JNI calls made by the probe are costly, but what is more important, they do
not provide the results the user might expect.

The CPU timestamps do not work correctly. They measure the CPU time
used on the originating server, and therefore are useless.

» Process metrics are useless, too, because they measure the front-end process.

» In most cases, all system metrics are useless as well. They measure the

originating system and are irrelevant to the application running on the
appliance.

Garbage collection metrics are confusing. Since Azul uses continuous
garbage collector, seeing garbage collection percentages over 100% is
normal.

» Heap Breakdown and Heap Walker do not work.

» VMware special timers do not work (even if using virtual appliance on

VMware)

243

Chapter 6 * Preparing Application Servers for Monitoring with the Java Agent

Configuring Diagnostics for Azul VM

Invoking Azul java command requires adding parameters that properly
identify the appliance to be used for running the application. This creates a
difficulty for JREinstrumenter (unless run in Automatic Implicit mode),
which needs to run the JRE to be instrumented in order to determine its
version and vendor, but is not capable of adding the required parameters.

The solution is to edit the file azul.properties found in the Azul JRE
installation and define the required parameters. The settings are needed
while the JREinstrumenter runs and can be removed for running the
application with Diagnostics.

To eliminate possible confusion and pointless overhead, we recommend to
use the following settings while using Diagnostics Agent:

» In metrics.config, comment out all metrics for "system" and "ProcessMetrics"
collectors, and Garbage Collection metrics for the "Java Platform" collector.

> In capture.properties set use.cpu.timestamps=false.

244

7

Preparing Application Servers for Client
Monitoring with the Java Agent

This section explains how to prepare application servers for client
monitoring with the Java Agent.
This chapter includes:

» About Client Monitoring on page 245

» Enabling Client Monitoring on page 246

» Configuring and Disabling Client Monitoring on page 248

» Manually Instrumenting HTML/JSP Pages for Client Monitoring: on page 249

About Client Monitoring

Client Monitoring measures web page performance as seen by the user's
browser and correlates these measurements with the back end server
request.

Three important metrics are measured: the back-end time, the front-end
time, and the total time.

The back-end time is the amount of time it takes from when a web page
request is sent until the first byte of the response is received.

The front-end time is the amount of time it takes from when the first byte of
the response is received until the page is loaded.

The total-time is the sum of the front and back end times.

245

Chapter 7 ¢ Preparing Application Servers for Client Monitoring with the Java Agent

Client Monitoring aggregates these measures and presents them by URL,
Location, and Browser-OS combination.

By monitoring web page performance, application owners can quickly
identify performance issues, characterizing them by tier (front or back-end),
location, and browser.

When the issue is on the back-end, client monitoring correlates the URL to
the associated server request and its call-profile.

An example showing client monitoring is shown below:

Browser Server

Stant Timea URL
“‘—\‘\ |

[
[
HTTP Request : _ Diagnestics Poin
| [—
I 11—

URL Back-end Time

Time

First Byte ~—__ HTTPReply#l___—— |

-H"""'--.__‘_

I
|
I
I
I
: Server Request
I
|
1
I
I

HTTP Replyfin__—— |

T
URL Front-end Time ‘—)___!__———‘—(—4— :
I
I
I
I
I
I
I
I
I

nLoad done \

Enabling Client Monitoring

Enabling client monitoring requires you to deploy a .war file on the
application server and in some cases to configure the web server. Client
Monitoring views are available in the Diagnostics Enterprise UlI.

246

Chapter 7 « Preparing Application Servers for Client Monitoring with the Java Agent

To enable Client Monitoring:

When client monitoring is enabled, most JSP pages served via JBoss, Tomcat,
WebSphere and WebLogic will be automatically modified to include
additional Java Script calls near the <head> tag. You can see which pages are
instrumented by opening the page in your browser and selecting view
source.

Other application servers may require manual page instrumentation for
client monitoring. See “Manually Instrumenting HTML/JSP Pages for Client
Monitoring:” on page 249.

Client monitoring, including automatic JSP instrumentation, will remain
disabled until this .war file is deployed.

Deploy HPDiagCM.war file.

Use the application server’s Administrative Console to deploy the
<probe_install_dir>\contrib\HPDiagCM.war as an application.

Client monitoring will remain disabled until this .war file is deployed.

For WebSphere application servers, be sure to set the context root to
/HPDiagCM instead of the default (/).

If you have configured a web server as the front-end of your application,
then you also need to add the following context root to your Web Server's
configuration:

/HPDiagCM/*

Tip: You can verify the web server is correctly configured if your browser can
access this link: (it will return a blank page)
http://hostname:port/HPDiagCM/B/.

247

Chapter 7 » Preparing Application Servers for Client Monitoring with the Java Agent

Example - Setting up an Apache HTTP Server Reverse Proxy for Client
Monitoring

Important: These are very basic instructions. These configuration files are
highly customized in each customer's environment. Please consult the
Apache HTTP Server documentation for more details.

In order for client monitoring JavaScript file to be successfully downloaded
by browsers and for client-side metrics to be received by the probe, it is
necessary to configure the web server to correctly forward those requests to
the application server. This is typically achieved by setting up a reverse
proxy or gateway.

1 Update the conf\httpd.conf file by adding the following lines, replacing
<HostName> and <HostPort> with the host name and port of the
application server, and restart the web server.

ProxyPass /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM
ProxyPassReverse /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM

2 Check if your changes are successful by driving traffic to your web
application via the web server and checking the web server's log messages in
the log/access.log file. Error messages will have an http response code in the
400-500 range such as "GET /HPDiagCM/boomerang-min.js HTTP/1.1" 404.
When successful, you should see log messages such as "GET /HPDiagCM/
boomerang-min.js HTTP/1.1" 200.

If you don't see either of these messages, then client monitoring is not
correctly set up in your environment.

Configuring and Disabling Client Monitoring

If desired, Client Monitoring can be dynamically controlled by updating
several properties in <probe_install_dir>\etc\dynamic.properties.

248

Chapter 7 « Preparing Application Servers for Client Monitoring with the Java Agent

The client.monitoring.enable property provides a master switch to
dynamically enable and disable the client monitoring feature. When set to
false, all client monitoring data events received are dropped, JSP page
auto-instrumentation will be disabled, and
client.monitoring.sampling.percent is set to 0.0 (to disable manually
instrumented JSP pages’ client monitoring Java Script code).

You can reduce the client monitoring load on your server by adjusting the
client.monitoring.sampling.percent property in dynamic.propertes.

You can also specify that you want a strict check on the referrer by setting
client.monitoring.strict.referrer to true. This will help ensure that only
events that originate from a web page instrumented with client monitoring
are used. The default value is false but the recommended value is true if this
setting works in your environment.

You can also stop or uninstall/undeploy the HPDiagM.war using your
application server management console.

Manually Instrumenting HTML/JSP Pages for Client
Monitoring:

Add the following code to your HTML/JSP pages immediately after the
<head> tag:

<!l-- HP Client Monitoring -->

<script>

if (window.t_firstbyte === undefined) {
var t_firstbyte = Number(new Date());

}

</script>

<script type="text/javascript' src='/HPDiagCM/boomerang-min.js'>

</script>

<script>

BOOMR.init({beacon_url:"/HPDiagCM/B",
RT:{cookie:"X-HP-CM-RT",cookie_exp:600,expandFrames:true,hashURLs:true},
HP:{cookie:"X-HP-CM-GUID"}});

</script>

249

Chapter 7 » Preparing Application Servers for Client Monitoring with the Java Agent

If you prefer to manually instrument HTML/JSP pages you can permanently
disable auto-instrumentation by setting the following properties in
inst.properties to false. These changes require a restart of the application
server.

<probe_install_dir>\etc\inst.properties:

details.conditional.properties=\
mercury.enable.clientmonitoring.JspWriterImpl.autoinstrumentation=false,\
mercury.enable.clientmonitoring.CoyoteWriter.autoinstrumentation=false,\
mercury.enable.clientmonitoring.BodyContentimpl.autoinstrumentation=false,\

250

8

Installing .NET Agents

Y Y Y Y Y Y Y Y Y Y VY VY VY Y

>

>

This section describes how to install a .NET Agent and gives you
information about the setup and configuration of the .NET Agent.
This chapter includes:

Overview of the .NET Agent Installation on page 252

Accessing the .NET Agent Installer on page 254

Installing the .NET Agent on page 255

Post Install Tasks on page 277

Verifying the .NET Agent Installation on page 278

About Configuration of the .NET Agent for Diagnostics on page 279
About Configuration of the .NET Agent for TransactionVision on page 279
Discovery and Standard Instrumentation on page 282

Probe Aggregator Service on page 286

Monitoring NET Applications Deployed in Azure Cloud on page 287
Determining the Version of the .NET Agent on page 288

Enabling and Disabling the Diagnostics Agent for .NET on page 288
Disabling Logging on page 289

Enabling and Disabling Standard Instrumentation for Applications
on page 290

Troubleshooting .NET Web Applications Not Discovered on page 292
Other .NET Agent Troubleshooting Tips on page 294
Uninstalling the .NET Agent on page 294

251

Chapter 8 ¢ Installing .NET Agents

Overview of the .NET Agent Installation

252

The .NET Agent software is installed on the machine hosting the application
you want to monitor. With the .NET Agent you instrument the application
domains for monitoring.

See Chapter 1, “Preparing to Install HP Diagnostics,” for .NET Agent
requirements.

The .NET Agent (version 9.x) requires .NET Framework 2.0 or later. The .NET
Framework must be installed on the machine before you run the .NET Agent
installation.

Important: If you need to support .NET Framework 1.1, you will need to use
an earlier version of the .NET Agent (8.x).

WCF Requirements and Limitations: Monitoring .NET Windows
Communication Foundation (WCF) services requires .NET Framework 3.0
SP1 or greater. WCF bindings using the following transports are supported:

» Http
» TCP

If your application uses a transport that is not supported, the .NET probe
only creates a generic server request for each WCF method. It will not be a
Web Service and there will be no cross VM correlation.

The HP Diagnostics/TransactionVision .NET Agent installer installs a .NET
Agent to collect data for either Diagnostics or TransactionVision or both.

The .NET Agent installer automatically detects the ASP.NET applications on
the system where the agent is installed. See “Discovery and Standard
Instrumentation” on page 282

The installer configures the agent to capture basic workload and events for
each of the ASP.NET applications detected. The agent configuration is
controlled using the probe_config.xml file. See “Automatic Instrumentation
and Configuration for Discovered ASP.NET Applications” on page 283.

Chapter 8 ¢ Installing .NET Agents

The .NET agent uses points files to provide standard instrumentation to
enable you to start monitoring applications. The points files control the
workload the agent captures for the application. See Chapter 11, “Custom
Instrumentation for .NET Applications”. See “Enabling and Disabling
Standard Instrumentation for Applications” on page 290.

The following points files are installed and enabled to provide
instrumentation for monitoring ASP.NET applications:

ASP.NET.points
ADO.points
WCE.points

Y Y VY Y

The following points files can be used for instrumenting applications
that use other Microsoft technologies:

\

Remoting.points (for .NET remoting environments)
» msmgq.points (for MSMQ environments)

» LWMD.points (for analysis of memory used by collections in
applications)

Separate instrumentation points files are created for each IIS installed
ASP.NET application domain detected (<applicationDomin>.points files).
The probe_config.xml file contains an appdomain reference for each of the
detected ASP.NET applications. And each appdomain section contains an
instrumentation points file reference. The .NET Agent uses this runtime
instrumentation to capture method latency information from specified
applications.

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics .NET Agents are installed in your company’s IT environment
and the Diagnostics Commander Server and Mediator Servers are installed
by HP on a SaaS system on-premise at HP. During the setup of the .NET
Agent you select the following option for configuring the agent: Diagnostics
Mode with SaaS-hosted mediator installed on HP premises.

See Accessing the .NET Agent Installer to begin.

253

Chapter 8 ¢ Installing .NET Agents

Accessing the .NET Agent Installer

254

You can launch the .NET Agent installer a number of different ways. You can
install the .NET Agent from the Diagnostics installation disk or the BSM
installation disk or from the Downloads page in Business Service
Management. You can install the software from the SSO Portal. And if you
want to install a trial version of the HP Diagnostics Profiler for .NET you can
launch the installer from the HP Software Web site download center.

To access the Installer from a Diagnostics installation location:

From the Diagnostics Installation DVD (Autorun.exe) the installation menu
page is displayed. From the menu, select Diagnostics Agent for .NET 32-bit

to launch the install for the 32-bit Windows version of the .NET agent. And
select Diagnostics Agent for .NET 64-bit to launch the install for the 64-bit

version of the .NET agent.

You could run the appropriate installer directly by locating the executable
tile HPDiagTV.NETAgt_<release number>_win32.msi (32-bit) or
HPDiagTV.NETAgt_<release number>_win64.msi (64-bit) in the location
you install from and copying the file to the new installation location and
then double-clicking it to run the installer.

Continue with “Installing the .NET Agent” on page 255.

To download the installer from the HP Software Download Center:

Access the SSO portal at http://support.openview.hp.com/selfsolve using
your HP Passport login.

Locate the Diagnostics (or TransactionVision) downloads and choose the
appropriate link for downloading the Diagnostics .NET Agent software. Note
that you could also use the download center in order to get the Diagnostics
.NET profiler trial/evaluation software.

Follow the download instructions on the web site.

Continue with “Installing the .NET Agent” on page 255.

Chapter 8 ¢ Installing .NET Agents

To download the Installer from Business Service Management’s Diagnostics
downloads page:

1 In Business Service Management, either select Admin > Diagnostics from
the main menu and click the Downloads tab. Or select Admin > Platform
from the main menu and click the Setup and Maintenance tab.

2 On the Downloads page, click the appropriate link to download the .NET
Agent installer for either 32-bit Windows or 64-bit Windows.

Note: The .NET Agent installers are available in Business Service
Management if put into the required directory for Business Service
Management to access. You can enable this during the installation of the
Diagnostic Server, or you can copy the .NET agent installers manually from
the Diagnostics installation disk to the required location.

Continue with “Installing the .NET Agent” on page 2585.
To launch the installer for HP Diagnostics Profiler for .NET trial software
from the HP Software Trial Software Download Web site:

1 Go to the HP Software Web site’s Download Center.

2 In the Quick Search section, in the Products list, click Diagnostics and click
Search.

3 Under Trial Software, select the appropriate link.
4 Follow the download instructions on the web site.

Continue with “Installing the .NET Agent” on page 255.

Installing the .NET Agent

This section provides detailed instructions for a first time installation of the
.NET Agent.

255

Chapter 8 ¢ Installing .NET Agents

Important: If there is a pre-existing installation of the .NET Agent on the
host machine, you must follow the instructions for upgrading the agent
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

256

Chapter 8 ¢ Installing .NET Agents

An overview of the .NET Agent installation steps is shown in the diagram
below, refer to the rest of this section for details on each step:

.NET Agent Installation Process

‘ Step 1. License ‘

‘ Step 2. Install Location ‘

‘ Step 3. Agent Features ‘

Step 4. Install Options
Diagnostics TransactionVision Profiling Only
Connect agent to Connect agent to with no connection to
Diagnostics Server TransactionVision Diagnostics or TV
(AD mode or Server (Enterprise Servers
Enterprise AM mode) AM mode)
Step 5. Agent name and group
Skip this step if you don’t
use Diagnostics Servers
Step 6. Diagnostics Sever Information
Skip this step if you don't
use Diagnostics Servers
Step 7. Port and other Connection Information
Profiling Onl
Diagrfwstic_s Transaction\!isit_m Min/Max IPID,? Ran;e for
Port Information Port and Connection profiling applications on
the agent system

‘ Step 8. Pre Install Summary |

‘ Step 9. Additional Setup for SaaS ‘

Step 10. Post Install Information

Step 11. Restart IIS

257

Chapter 8 ¢ Installing .NET Agents

258

Y Y Y Y Y Y Y Y Y

\/

The .NET Agent installation process includes the following steps, select Step
1. End user license agreement to begin:

“Step 1. End user license agreement” on page 258

“Step 2. Specify install location” on page 258

“Step 4. Select agent features to install” on page 261
“Step 3. Select installation options” on page 259

“Step 5. Agent name and group” on page 262

“Step 6. Diagnostics server information” on page 264
“Step 7. Port and connection information” on page 266
“Step 8. Pre-install summary” on page 272

“Step 9. Additional Setup for Agents Working in an HP SaaS Environment”
on page 273

“Step 10. Post Install Information” on page 275
“Step 11. Restart IIS” on page 276

Step 1. End user license agreement

Accept the end user license agreement.
Read the agreement and select | accept the terms of the License Agreement.

Click Next to proceed and continue to the next step.

Step 2. Specify install location

Provide the location where you want the Agent installed.

By default, the Agent is installed in C:\MercuryDiagnostics\.NET Probe.
This location becomes the <probe_install_dir>.

Accept the default directory or select a different location either by typing in
a different path, or by clicking Browse to navigate to the installation
directory.

Click Next to proceed and continue to the next step.

Chapter 8 ¢ Installing .NET Agents

Step 3. Select installation options

Indicate if the .NET Agent is to be installed as a standalone Profiler without
any connection to a server (for example if you are installing the Diagnostics
.NET Profiler trial software), or if you are installing the agent to work
LoadRunner/Performance or to work with a Diagnostics and/or
TransactionVision Server.

14! HP Diagnostics/TransactionVision Agent for .NET 9.20.58.43418 |- |

Indicate if this Agent is to be installed as the Profiler or if it will be working with a
Diagnostics/TransactionVision Server,

Select the Agent installation option:
() Diagnostics Profiler Mode
() Diagnostics Mode for Load Runner,/Performance Center (AD License)
() Diagnostics Mode with Saa5-hosted mediator on HP premise (AM License)
() Application Management/Enterprise Mode (&AM License)
Diagnostics

[Transactionvision

The Agent installed to work with a Diagnostics Server can work along with multiple other agents
and other HP products to provide performance diagnostics in your production and testing
environments.

The Agent installed as the Profiler works as a standalone diagnostics tool. You may reconfigure
the Agentin the future to wark with a Diagnostics Server.

[Cancel l [< Back l [Mext = l

Make the selection that is appropriate for the environment where you will
be using the agent.

Diagnostics Profiler Mode. Select this option to install the agent as a
Diagnostics .NET Profiler without any connection to a Diagnostics server.
This is typically selected when installing the Diagnostics .NET Profiler trial
software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode option, the value of the
probe_config.xml <modes> element is set to pro mode at the time you
install the .NET Agent (see “<modes> element” on page 592).

259

Chapter 8 ¢ Installing .NET Agents

260

» Diagnostics Mode for LoadRunner/Performance Center (AD License). Select

this option to install the agent for use with a Diagnostics Server in a load
testing (or pre-production) environment where probes are used only in
LoadRunner or Performance Center runs.

The advantage of running a probe in AD mode is that probes in AD mode
are only counted against your HP Diagnostics AD license capacity when in a
LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 in a run,
then only 5 are counted against your AD license capacity. See “License
Information Based on Currently Connected Probes” on page 85 for more
information on AD license capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21. When the
agent is in AD mode it will not use resources or send any data to the server
unless the probe is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the probe_config.xml
<modes> element is set to ad mode at the time you install the .NET Agent
(see “<modes> element” on page 592).

Diagnostics Mode with SaaS-hosted mediator on HP premise (AM License).
Select this option to install the agent to work in a SaaS environment where
the .NET agent will connect to an HP SaaS server on-premise at HP. An HP
SaaS administrator will provide you with information on connecting the
.NET agent to an HP SaaS hosted Diagnostics mediator server.

Application Management/Enterprise Mode (AM License). Select this option
to install the agent for use with a Diagnostics Server and/or a
TransactionVision Server in an enterprise (or production) environment.

Then indicate which of the following the agent will be configured for:

» A Diagnostics Server (installed locally)

» A TransactionVision server

» Both a Diagnostics Server installed locally and a TransactionVision Server

If you select TransactionVision, see the HP TransactionVision Deployment
Guide in the Business Service Management documentation library for details
on setup options specific to TransactionVision.

Chapter 8 ¢ Installing .NET Agents

With this option, the value of the probe_config.xml <modes> element is set
to enterprise mode if you select the Diagnostics Server and tv mode if you
select the TransactionVision server at the time you install the .NET Agent
(see “<modes> element” on page 592).

For those agents with Enterprise mode set, the agent will be counted against
your HP Diagnostics AM license capacity.

Click Next to proceed and continue to the next step.

Step 4. Select agent features to install
Select the .NET Agent features you want to install.

15/ HP Diagnostics/TransactionVision Agent for .NET 9.20.58.43418 |- |
Indicate which features of the .MET Agent should be installed.

Metrics Agent (Recommended)

Collects and reports selected system metrics to the Diagnostics Server.

[IProbe Aggregator Service (Optional)

Provides improved scalability by reducing network communication with the
Diagnostics Server. Consider use if you are monitoring multiple .NET applications on
this system.

For more information about determining usage scenarios, refer to the Installation
and Configuration Guide.

[Disk Cost...] [Cancel] [< Back] [Mext = l

Metrics Agent. It is recommended that you install the Metrics Agent which
is checked by default. See Chapter 18, “.NET System Metrics Agent - Systems
Metrics Capture” for more information. But if you do NOT want to capture
system metrics on the host machine you can uncheck the Metrics Agent
box.

Probe Aggregator. Optionally you can select to install the Probe Aggregator
Service. If you are installing the agent to work in an HP SaaS environment
the Probe Aggregator box will be checked for you since this option is
required for SaaS and cannot be changed.

261

Chapter 8 ¢ Installing .NET Agents

262

This Probe Aggregator service aggregates .NET Agent data to 5 second
intervals before sending the performance data to the Diagnostics mediator
server. This can improve scalability by reducing network communications
with the server but the aggregator will also increase probe system overhead.
See “Probe Aggregator Service” on page 286 for more information on the
performance tradeoffs to installing the Probe Aggregator.

Disk Cost. To check the amount of available disk space on the drives of the
host, click the Disk Cost button. Use this functionality to make sure that
there is enough room for the Agent installation.

Click Next to proceed and continue to the next step.

Step 5. Agent name and group
Skip this step if the agent won't be reporting to a Diagnostics Server.

Enter the Agent Name and Agent Group Name.

15/ HP Diagnostics/TransactionVision Agent for .NET 9.20.58.43569 |- |

The Agent Name uniquely identifies each agent. The default is the name of the application
which loads the agent.

Agent Name (Leave blank to accept default based on application name):

An Agent Group is & logical collection of agents that are monitored by the same Diagnostics
Server, The default value is "Default™

Agent Group Name:
|Default

Enter the admin user password used to connect to the profiler. If left blank, the default
password ("admin”) is set.

Profiler Admin Password:

[Cancel] [< Back] [Mext = l

» Agent Name. The name that identifies the agent within HP Diagnostics. If

you leave this field blank, the .NET Agent will auto-generate an agent name
based on the application domain name of the monitored application. The
agent name is assigned as the probe entity name.

Chapter 8 ¢ Installing .NET Agents

Note: It is recommended that you leave Agent Name blank and allow the
agent to auto-generate the agent name. Read the following information
carefully if you decide to enter your own agent name.

Considerations when entering an agent name:

» Valid characters that can appear in the agent name are: letters, digits,
dashes, underscores, and periods.

» Assign an agent name that will help you recognize the application that is
being monitored, and the type of instrumentation.

For example, the agent name for the .NET Agent installed to monitor the
application named PetWorld can be:

PetWorld_Dotnet_Agent

» When you specify an agent name, all of the agents on the host are forced
to use the same agent name.

The default agent name auto-generated by the agent when the agent
name field is left blank is equivalent to specifying $(APPDOMAIN).NET.

To override the default name, use the following substitution macros to
enhance the name at run time:

> $(MACHINENAME): Machine’s host name

> $(APPDOMAIN): Application’s domain name
» $(PID): Application'’s process ID
>

$(WEBSITENAME): The IIS Web site under which the application is
hosted.

> $(COMMANDLINE:n) Where n is the command line parameter
number.

For example:
<id probeid="ILTEST_$(COMMANDLINE:3)_rest” probegroup="Default”/>

with a command line of iltest “heart and lung” -abc server results in a
probeid of ILTEST_server_rest.

263

Chapter 8 ¢ Installing .NET Agents

264

Note that n=0 indicates the executable/command name.

Note:

» For applications that are not hosted in IIS the agent name will be reverted
to the default, that is, $(APPDOMAIN).NET. An example of this would be
console applications.

» For newly installed IIS applications you may need to run Rescan ASP.NET
Applications from the HP Diagnostics .NET Agent program group in the
Windows Start menu.

Agent Group Name: Enter a name for an existing group or for a new group
to be created. The default value for the agent group name is Default. The
agent group name is case-sensitive. In Diagnostics this name is used as the
probe group name.

Probe groups are logical groupings of probes that report to the same
Diagnostics Server. The performance metrics for a probe group are tracked,
and can be displayed on many of the Diagnostics views.

For example, you could assign all of the probes for a particular enterprise
application to a single probe group so that you can monitor both the
performance at the group level and the performance based on individual
probe entities.

Profiler Admin Password. Enter the admin user password used to connect to
the .NET Diagnostics Profiler. If left blank, the default password (admin) is
set.

Click Next to proceed and continue to the next step.

Step 6. Diagnostics server information

Skip this step if the agent won’t be reporting to a Diagnostics Server or if you
are installing the agent to work in an HP SaaS environment. Your HP SaaS
administrator will provide details for configuring communication between
the agent and the SaaS-hosted Diagnostics Server.

Provide the information needed to enable the .NET Agent to communicate
with the Diagnostics mediator server.

Chapter 8 ¢ Installing .NET Agents

If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Data Port instead of the Diagnostics Server Data Port and Probe
Aggregator Metric Port instead of Diagnostics Server Metric Port.

= Hp Diagnostics/TransactionVision Agent for .NET

BE] %

Provide the location of the Diagnostics Server in Mediator mode.,

Diagnostics Server (Name or IP address):

Port (Default is 2008):

|Io<3|host

Diagnostics Server Data Port (Default is 2612):

|2006

|2612

Diagnostics Server Metric Port (Default is 2008):

|2nns

[Cancel l [

< Back l [Mext =

|

» In the Diagnostics Server (Name or IP address) box, type the host name or
IP address of the host for the Diagnostics mediator server.

» Specify the fully qualified host name, not just the simple host name. In a
mixed OS environment, where UNIX is one of the systems, this is essential

for proper network routing.

> In the Diagnostics Server Data Port box, type the port number where the
Diagnostics Server is listening for Agent communication. The default port
number is 2612. If you changed the port since the Diagnostics Server was
installed, specify that port number here instead of using the default.

» If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Data Port box instead of for the Diagnostics Server data port.
Type in the port number where the Diagnostics mediator server is listening
for the Agent communication when probe aggregation is installed. The
default port number is 2626. If you changed the port since the Diagnostics
Server was installed, specify that port number instead of using the default.

265

Chapter 8 ¢ Installing .NET Agents

266

>

In the Diagnostics Server Metric Port box, type the port number where the
Diagnostics Server is listening for communications from the System Metrics
Agent. The default port number is 2006. If you changed the port since the
Diagnostics Server was installed, specify that port number here instead of
the default.

If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Metric Port box instead of for the Diagnostics Server metric
port. Type in the port number where the Diagnostics mediator server is
listening for the Agent communication when probe aggregation is installed.
The default port number is 45000. If you changed the port since the
Diagnostics Server was installed, specify that port number instead of using
the default.

To perform a connectivity check to make sure that the Diagnostics Server is
running and accessible from the installation host, click Test.

The connectivity check lets you know right away if you made an error in the
information you provided about the Diagnostics mediator server, or if there
is a connection problem between the Diagnostics Server’s host and the
Agent’s host. If the connection to the Diagnostics mediator server host
cannot be resolved, an error message is displayed.

Click Next to proceed and continue to the next step.

Step 7. Port and connection information

You will see different port and connection configuration dialogs depending
on what install options you selected. Select from the following and proceed
with the configuration:

» Port connection information for Diagnostics Servers

» Port and connection information for TransactionVision Server

Profiler mode with no connection to a Diagnostics or TransactionVision
Server

Chapter 8 ¢ Installing .NET Agents

If you are installing the Agent to work with a Diagnostics
Server, you will see the following dialog box.

Provide the Web port range for the .NET Agent to use.

= Hp Diagnostics/TransactionVision Agent for .NET E]

Provide the web paort range for the .MET Agent to use.

The minimum and maximum web port values define the range of ports the agent may use to listen
for incoming requests.

Minimum Web Port:
(35000

Maximum Web Port:
35100

[Cancel] [< Badk] [Mext = l

» Minimum Web Port. Type the lowest port number, in a range of ports on the
Agent host, you want to assign to the Agent.

» Maximum Web Port. Type the highest port number, in a range of ports on
the Agent host, you want to assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of the Web Port Range are defined by the
Minimum Web Port and Maximum Web Port fields. The Web Port Range
contains the ports the Agent can use.

When an Agent is started, it attempts to find an unused port from within
this range, starting from the lowest port number in the range and working
its way up to the highest. Ports within the range could already be in use if
another Agent or application previously claimed them.

267

Chapter 8 ¢ Installing .NET Agents

268

The minimum size for the port range is equal to the maximum number of
Agents that will be concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

» If the Agents are working with ASP.NET applications, double the number
of ports to account for ASP.NET’s appdomain recycling.

» If you have a firewall between the Agent and a component that will be
communicating with the Agent, open the firewall for the ports within
the range. Adjust the range to be just big enough.

Click Next to proceed and continue to the next step. If you also selected the
option to have the agent work in a TransactionVision Environment see the
following section for additional configuration.

If you are installing the Agent to work in a TransactionVision
environment, you will see the following dialog box.

If you selected to install the agent to work with a TransactionVision Server

you will see additional screens in the installation. See the TransactionVision
Deployment Guide for information on using the agent in a TransactionVision
environment.

Chapter 8 ¢ Installing .NET Agents

The Configure the .NET Agent for TransactionVision dialog box appears.

1 Hp Diagnostics/TransactionVision Agent for .NET E]

Configure the .MET Agent for TransactionVision,

Analyzer Communication Transport Type

() Websphere MQ () Sonic MQ
Broker: [
Bort: 21111
Configuration Queue [TVISION. CONFIGLRATION. QUEUE

User (if required): [

Password (if required): [

[Cancel] [< Back] [Mext = l

Choose the Messaging Middleware Provider. Options are: WebSphere MQ
and SonicMQ.

SonicMQ is included with the .NET Agent. If you specify this option, the
Sonic MQ .NET client (Sonic.Client.dll - Progress SonicMQ .NET Client,
version 7.6.0.112) is installed as part of the Agent installation.

A third-party WebSphere MQ installation can be used instead. In this case,
you must install the MQ series .NET client (amqmadnet.dll - WebSphere MQ
Classes for .NET, version 1.0.0.3) on the host being monitored.

By default, SonicMQ is selected.

For SonicMQ, enter the following:

Broker. Host name on which the Sonic broker is running. Typically this will
be the Analyzer hostname.

Port. The port on which the broker communicates. By default, 21111.

Configuration Queue. Name of the configuration queue. By default,
TVISION.CONFIGURATION.QUEUE.

269

Chapter 8 ¢ Installing .NET Agents

270

User. User id if required by SonicMQ installation for connection. By default,
no username is required.

Password. Password if required by SonicMQ installation for connection.
This is in the obfuscated form created by using the PassGen utility. By
default, no password is required. For more information about PassGen, see
"Command-Line Utilities" in Using Transaction Management.

For WebSphere MQ, enter the following:

Host. The host on which the WebSphere MQ queue manager resides.
Port. Port number for WebSphere MQ queue manager.
Configuration Queue. Name of the configuration queue.

User. User id if required by WebSphere installation for connection.

Password. Password if required by the WebSphere MQ installation for
connection. This is in the obfuscated form created by using the PassGen
utility. For more information about PassGen, see "Command-Line Utilities"
in Using Transaction Management.

Websphere MQ channel. Channel name for WebSphere MQ queue manager.
Websphere MQ Q Manager. CCSID for WebSphere.

Click Next to proceed and continue to the next step.

Chapter 8 ¢ Installing .NET Agents

If you are installing the Agent in Profiler mode, you will see the
following dialog box:

Provide the Web port range for the .NET Agent to use.

5 Hp Diagnostics/TransactionVision Agent for .NET g

Provide the web port range for the .NET Agent to use,

The minimum and maximum web port values define the range of ports the agent may use to listen
for incoming requests,

Minimum Web Port:
35000

Mawimum Web Port:
35100

[Cancel] [< Back] I Next =]

» Minimum Web Port. Type the lowest port number, in a range of ports on the
Agent host, you want to assign to the Agent.

» Maximum Web Port. Type the highest port number, in a range of ports on
the Agent host, you want to assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of the Web Port Range are defined by the
Minimum Web Port and Maximum Web Port fields. The Web Port Range
contains the ports that the Agent can use.

When an Agent is started, it attempts to find an unused port from within
this range; starting from the lowest port number in the range and working
its way up to the highest. Ports within the range could already be in use if
another Agent or application previously claimed them.

271

Chapter 8 ¢ Installing .NET Agents

272

The minimum size for the port range is equal to the maximum number of
Agents that will be concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

» If the Agents are working with ASP.NET applications, it is recommended
that you double the number of ports to account for ASP.NET’s
appdomain recycling.

» If you have a firewall between the Agent and a component that will be
communicating with the Agent, you must open the firewall for the ports
within the range. For this reason you might want to adjust the range to
be just big enough.

Click Next to proceed and continue to the next step.

Step 8. Pre-install summary

The pre-installation summary screen opens. Click Back to make any
changes. Click Install to start the .NET Agent installation.
5 Hp Diagnostics/TransactionVision Agent for .NET g

Ready to install HP Diagnostics/Transaction¥ision Agent for NET

Installation Directory: C:\MercuryDiagnostics|, NET Probel
Agent Mode: EMTERPRISE

Agent Mame: (Default)

Agent Group Mame: Default

Mediator Host: localhost

Data Port: 2626

Metric Port: 45000

Minimum Web Part: 35000

Maximum Web Part: 35100

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Cancel] l < Back] I Install

Chapter 8 ¢ Installing .NET Agents

Note: When installing the agent for use as a Profiler only, there is no test for
Metric Port connectivity.

If you are installing the agent to work in an HP SaaS environment continue
to Step 9 otherwise skip the next step and continue to Step 10.

Step 9. Additional Setup for Agents Working in an HP
Saa$ Environment

If you are installing the agent to work in an HP SaaS environment then the
Saa$ Setup module starts automatically or you can run the SaaS Setup
module anytime by selecting Start > All Programs > HP Diagnostics .NET
Probe > Saa$ Setup.

In the SaaS Setup module the following dialog is displayed. If you are not
setting up the agent for an HP SaaS environment then you will not see this
dialog.

273

Chapter 8 ¢ Installing .NET Agents

HP Diagnostics/TransactionVision Agent for Java E] O

Configure the Diagnostics Java Agent

Diagnostics Server Connectivity

Diagnostics Server Name: |l0|:alhost |

Diagnostics Server Port: |443 |

Additional Options
[] Use Proxy Server to connect to Diagnostics Server
Proxy Server Options
Proxy Server Name:
Proxy Server Port:
Proxy Server Username (optional):

Proxy Server Password (optional):

Probe Aggregator Admin password (Used for Support purposes only).

Password: |admin

Notes:

The default server port is 2006. When SSL is enabled, the default server port or 8443, When S5L is enabled AND
the mediator is Saas hosted, the default server port is 443,

|W'ed May 09 15:06:32 PDT 2012

274

Chapter 8 ¢ Installing .NET Agents

» Diagnostics Server Connectivity. In an HP SaaS environment the Diagnostics
Server is setup by HP on an a system on-premise at HP. The default port for a
SaaS environment is 443. An HP SaaS administrator will provide you with
the information on the Diagnostics Server host name and port to use.

» If a proxy server is used to communicate with the Diagnostics Mediator
Server select Use Proxy Server to connect to Diagnostics Server check box
and enter the appropriate options. In an HP SaaS environment if your
company requires a proxy to communicate to outside servers then you
would select this option.

Proxy Server Options:
> Proxy Server Name. Host name of the proxy server.
> Proxy Server Port. Port of the proxy server.

» Proxy Server Username (optional). The user used to authenticate the
proxy server.

> Proxy Server Password (optional). The password used to authenticate the
proxy server.

> Probe Aggregator Admin password. The password is automatically set to
the same password as the .NET Profiler Admin password (entered in step 5),
so for an initial agent setup for SaaS you will not see this field. If you want to
subsequently change the Probe Aggregator Admin password, you can run
the SaaS Setup module again and this field will be displayed.

Continue on to the next step to finish the installation.

Step 10. Post Install Information

On the final installation screen, you can select the Show the Windows
Installer Log checkbox to view the log file and check for errors.

Click Finish to exit the installer.

For information on post installation tasks see “Post Install Tasks” on
page 277.

When you are ready you must restart IIS, see the next step.

275

Chapter 8 ¢ Installing .NET Agents

276

Step 11. Restart 1IS

After you finish installing and setting up the agent you must restart either
the IIS or the Web publishing service before you can use the .NET agent with
ASP.NET applications.

To restart IIS from the command line or from the Start > Run menu, type
iisreset and press Enter.

For Diagnostics this command restarts the Web publishing service but does
not immediately start the .NET Agent. The next time that a Web page in the
application is requested, the agent is started, the applications are
instrumented, and the agent registers with the Diagnostics command server.

For TransactionVision this command restarts the Web publishing service but
does not immediately start the .NET Agent. The next time that a Web page
in the application is requested, the agent is started, the applications are
instrumented, and the agent reads the Configuration Queue Messages from
the Analyzer.

Note: ASP.NET automatically restarts applications under various
circumstances, including when it detects that applications are redeployed,
or when applications exceed the configured resource thresholds.

When ASP.NET restarts an application that is being monitored by a .NET
Agent, the agent is deactivated and a new agent is started. While this is
occurring, there can be a period of overlap where there are multiple agents
simultaneously registered with the Diagnostics command server and
connected to the Diagnostics mediator server. This condition could cause
LoadRunner / Performance Center and Business Service Management to
report errors during the application restart sequence.

Continue with the next section to learn more about post installation tasks.

For information on verifying the installation see “Veritfying the .NET Agent
Installation” on page 278.

Chapter 8 ¢ Installing .NET Agents

Post Install Tasks

See the following topics for information about additional configuration for
the .NET Agent:

» For information on how the .NET Agent automatically discovers
applications and configures standard instrumentation to allow monitoring
see “Discovery and Standard Instrumentation” on page 282.

» For information on configuring the .NET Agent for Diagnostics and for links
to more advanced topics see “About Configuration of the .NET Agent for
Diagnostics” on page 279.

» For information on configuring the .NET Agent for TransactionVision and to
see the types of events TransactionVision can trace with the .NET Agent see
“About Configuration of the .NET Agent for TransactionVision” on
page 279.

» “Enabling and Disabling Standard Instrumentation for Applications” on
page 290 for more information.

» For information on configuration for environments with proxies see
“Configuring Diagnostics Servers and Agents for HTTP Proxy” on page 671,
tirewalls see “Configuring Diagnostics to Work in a Firewall Environment”
on page 675 and for enabling HTTPS see “Enabling HTTPS Between
Components” on page 839.

277

Chapter 8 ¢ Installing .NET Agents

Verifying the .NET Agent Installation

278

On the final installation screen you can select the Show the Windows
Installer Log checkbox to view the log file and check for errors.

The .NET Agent does not register with the Diagnostics Server until the probe
is started. the probe is started and registered with the Server when the
instrumented application is run. For ASP.NET applications this happens the
first time a page is requested for the instrumented application.

Once a .NET probe instance is started you can launch the Diagnostics
Enterprise Ul to verify that the probe is working. Go to http://
<Diagnostics_commander_server>:2006/. For now you can use the default
user/password of admin/admin or the login you were given if a different one
has been set up for you.

You can also check the System Health view to find information about the
.NET agent deployments and the machines that host them.

To access the System Views:

Open the Diagnostics Ul as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Chapter 8 ¢ Installing .NET Agents

About Configuration of the .NET Agent for Diagnostics

You can customize the .NET Agent configuration and add custom
instrumentation to suit your environment and the performance issues you
would like to diagnose.

The installer configures your ASP.NET applications and the .NET Agent to
work together to capture the basic workload of the applications. It is
possible that one or more of your ASP.NET applications was deployed in a
manner that prevents the installer from detecting it. Or, you might want to
enhance the standard instrumentation to capture the performance metrics
for the custom classes in the application.

In Diagnostics, you can do additional configuration using the
probe_config.xml file. For details on this file see Chapter 14,
“Understanding the .NET Agent Configuration File.” For instructions on
advanced .NET Agent configuration, see Chapter 15, “Advanced .NET Agent
Configuration.”

Also in Diagnostics, you can create custom instrumentation points to
handle unique situations in your application environment. For general
information on custom instrumentation see Chapter 11, “Custom
Instrumentation for .NET Applications.”

About Configuration of the .NET Agent for
TransactionVision
When used with TransactionVision the .NET Agent captures events from
.NET applications and sends the events to the TransactionVision Analyzer.

See the Business Service Management Documentation Library for more
information about TransactionVision.

279

Chapter 8 ¢ Installing .NET Agents

280

Y Y VY Y

.NET Agent Configuration for TransactionVision

The default configuration of the .NET Agent allows you to begin tracing
certain .NET events in a monitored application. You can customize the .NET
Agent configuration to control what .NET events are traced and sent to the
TransactionVision Analyzer.

To override the default configuration, access the <agent_install_dir>/etc/
probe_config.xml file. See “Understanding the .NET Agent Configuration
File” on page 551 for details on the elements you can configure for both
Diagnostics and TransactionVision.

The <modes> element in the probe_config.xml file is set at installation for
both Diagnostics and TransactionVision (see “<modes> element” on
page 592).

When you select to install the .NET Agent to work in a TransactionVision
environment the <modes> element in the probe_config.xml file is set to tv.
When this is the only mode selected the agent will work in a TV only mode
where the Profiler and the Diagnostics probe is disabled and only TV events
are generated. When you select to install the .NET Agent to work in other
modes such as with Diagnostics then both TV events and Diagnostics data
collection will be enabled.

In order to specify TransactionVision specific and TransactionVision
transport specific configuration the following elements in the
probe_config.xml file are used exclusively for TransactionVision:

<tv> element (see “<tv> element” on page 619 for details)
<timeskew> element (see “<timeskew> element” on page 614 for details)
<transport> element (see “<transport> element” on page 616 for details)

<gentvhttpeventforwct> element (see “<gentvhttpeventforwcf> element” on
page 570 for details)

If the .NET Agent is using SonicMQ transport to communicate with the
TransactionVision Analyzer, SSL can be enabled. See the HP Business Service
Management Hardening Guide PDF for details.

By default, .NET Events are not correlated. To enable correlation refer to the
HP TransactionVision documentation.

Chapter 8 ¢ Installing .NET Agents

Types of Events TransactionVision Can Trace with the .NET
Agent

When used with TransactionVision the .NET Agent traces the following
types of .NET events:

Web Services
a ASP.NET (*.asmx) - Client and Server
To generate events, use the ASP.NET.points file.
b WCEF (*.svc) - Client and Server
To generate events, use the wcf.points file.
c REST style services - Server

To generate events, use the wcf.points file and set up the instrumentation
of the application as described in “Configure WCF REST Services for
Monitoring” on page 444.

Database calls executed using ADO.NET
To generate events, use the ADO.points file.
.NET Remoting - Client and Server

To generate .NET remoting events, use the Remoting.points file and setup
the application for instrumentation as described in “How to Configure
Instrumentation for .NET Remoting” on page 451.

MSMQ - Send and Receive (asynchronous)

To generate events, use the Msmgq.points file.

HTTP

a Client outbound - includes calls to REST services
To generate events, use the ASP.NET.points file.

b ASP.NET inbound/server (POST, GET, PUT) (*.aspx)
To generate events for HTTP, use ASP.NET.points file.

281

Chapter 8 ¢ Installing .NET Agents

6 User defined events

Use the detail argument tv:user_event (see “Optional Point Entries” on
page 432)

To turn off event generation remove the relevant points file from scope.

Discovery and Standard Instrumentation

282

The .NET Agent installer automatically discovers the ASP.NET applications
you might want to instrument. After you install the .NET Agent, you can
request that the agent rescan your IIS configuration to catch any additions
or changes.

Discovering ASP.NET Applications During Installation

The .NET Agent installer detects ASP.NET applications on the machine when
the agent is installed. The .NET Agent installer discovers applications by
inspecting the IIS configuration and looking for virtual directory entries that
might refer to ASP.NET applications.

In some instances, the ASP.NET applications are installed in a manner that
prevents them from being detected. An example is when an ASP.NET
application is installed as a Web directory instead of a virtual directory.

Discovering ASP.NET Applications After Installation

You can request a rescan of the IIS configuration if you modified an existing
ASP.NET application deployment or installed new ASP.NET applications.

To request that the agent rescan the IIS configuration and update the
probe_config.xml file, select Start > HP Diagnostics .NET Probe > Rescan
ASP.NET Applications.

Chapter 8 ¢ Installing .NET Agents

Automatic Instrumentation and Configuration for
Discovered ASP.NET Applications

The .NET Agent installer configures the agent to capture basic ASP.NET/
ADO/WCF workload for each of the ASP.NET applications detected. The
agent performs the following configuration steps:

» Creates an application-specific capture points file template.

The capture points file defines the instrumentation that controls the
workload that the agent captures for each application. You can modify
the instrumentation in the capture points file to provide instructions
that allow the agent to capture performance data for application-specific
custom methods.

» Creates an appdomain tag in the probe_config.xml file, which is located
in the <probe_install_dir>/etc directory. The attributes of the appdomain
tag direct the behavior of the .NET Agent (points and enabled attributes).
See Chapter 14, “Understanding the .NET Agent Configuration File” for
details.

Note: Diagnostics enables the instrumentation for all discovered
applications by setting the enablealldomains attribute in the process tag to
true, which overrides the appdomain tag’s enabled attribute. For
information on enabling and disabling instrumentation for applications see
“Disabling Logging” on page 289.

Discovery of 1IS Metadata for Cl Population of IS
Deployed ASP.NET Applications

With Diagnostics 9.0x or later, Diagnostics populates Cls and model
relationships in the Business Service Management 9.0 or later Run-time
Service Model (RTSM) for application infrastructure elements and business
transactions.

283

Chapter 8 ¢ Installing .NET Agents

284

For CI population the .NET Agent installer automatically discovers the IIS
configuration metadata for ASP.NET applications that are deployed under IIS
versions 6.x or greater. The discovered IIS configuration metadata is written
to the iis_discovery_data.xml file which is located in the
<probe_install_dir>\etc directory. After you have installed the .NET Agent,
you can request that the agent re-scan your IIS configuration to update for
any additions or changes.

Note: This information is for integrating with Business Service Management
9.0 or later

Runtime Population CIs for IIS Deployed ASP.NET Applications

At runtime the .NET Agent queries the iis_discovery_data.xml file for IIS
configuration metadata associated with the instrumented appdomain. If the
associated metadata is found, the agent forwards the data to its Diagnostic
Server which populates the Business Service Management Run-time Service
Model ClIs for .NET Application. See Chapter 22, “Setting Up the Integration
Between Business Service Management and Diagnostics” for a discussion of
the integration with the Business Service Management 9.0 Run-time Service
Model model for .NET Applications.

Discovery of IIS Metadata of IIS Deployed ASP.NET Applications During
Installation

The .NET Agent installer discovers IIS deployed ASP.NET applications on the
machine when the agent is installed. The .NET Agent installer discovers
applications by querying the WMI (WMEB) Provider for the IIS
configuration metadata. The pertinent metadata is written to the
iis_discovery_data.xml file.

Discovery of IIS Metadata of IIS Deployed ASP.NET Applications After
Installation

Chapter 8 ¢ Installing .NET Agents

You must request a re-scan of the IIS configuration metadata when you have
modified an existing ASP.NET application deployment or installed new
ASP.NET applications. To request that the agent re-scan the IIS configuration
and write a new iis_discovery_data.xml file, run Start > HP Diagnostics .NET
Probe > Rescan ASP.NET Applications shortcut. Note that the new
iis_discovery_data.xml file is not intended for editing by the user; any such
user edits will be overwritten by executing this shortcut.

Privilege Requirements for Discovery of IIS Deployed ASP.NET Applications

The user must have Administrator privileges on the machine that the .NET
Agent is installed on, otherwise the WMI queries will fail and the
iis_discovery_data.xml file will not be created.

Debugging the Discovery of IIS Deployed ASP.NET Applications

If the iis_discovery_data.xml file is not created or there is any reason to
suspect that some of its metadata may be inaccurate, you can enable the
creation of a detailed debug file to examine the results of the WMI queries.
To enable the creation of a detailed debug file. change last parameter of the
Target Property for the Start > HP Diagnostics .NET Probe > Rescan ASP.NET
Applications shortcut from "false" to "true". When the Rescan ASP.NET
Applications shortcut is executed, an <probe_install_dir>/log/
AutoDetect.log is created. Note that you should have Administrator
privileges when executing this shortcut. You can send the AutoDetect.log to
HP Support for analysis.

Non ASP.NET Applications

The .NET Agent installation automatically discovers your ASP.NET
applications, creates settings for the applications in the probe_config.xml,
and creates template points file for them. For each non-ASP.NET
application—for example, NT Service, console application, Ul client—you
must create the appropriate settings in the probe_config.xml settings to
configure the .NET Agent to monitor your applications as well as create
points files indicating which points in your application you want to
monitor.

285

Chapter 8 ¢ Installing .NET Agents

The following is an example of a probe_config.xml setting for an
application called SimpleConsoleHost.exe:

<process name="SimpleConsoleHost">
<points file="SimpleConsoleHost.points"/>
<logging level=""/>

</process>

The following is an example of points file setting for an application called
SimpleConsoleHost.exe:

[SimpleConsoleHost]

class = MyNamespace.SimpleConsoleHost
method = L.*

ignoreMethod = Main

layer = SimpleConsoleHost

See Chapter 11, “Custom Instrumentation for .NET Applications” for more
details.

Probe Aggregator Service

286

The Probe Aggregator Service can optionally be installed as part of the .NET
Agent installation. It runs as a Windows Service, HP Probe Aggregator.

The Probe Aggregator Service aggregates probe data to 5 second intervals
before sending the performance data to the Diagnostics mediator server.
This is useful when the volume of data collected based on instrumentation
of multiple applications is high and networking traffic would be too great if
not aggregated. See “.NET Probe Aggregator Data Flow” on page 892 for a
technical diagram of the data processing.

The basic .NET Agent installation, without the Probe Aggregator Service,
results in performance data being sent to the Diagnostics mediator server as
method starts and stops occur.

Chapter 8 ¢ Installing .NET Agents

There are performance trade-offs to using the Probe Aggregator Service. So
you must assess the requirements in your environment. For example,
consider using the probe aggregator when you have two or more .NET probe
instances running on the same system. Actual network overhead is
dependent on the applications being monitored, so you need to determine
if the potential savings in network bandwidth and mediator load offsets the
increased memory usage on the application system.

When you install the .NET Agent with the Probe Aggregator Service, this
service runs automatically and waits for connections from the .NET probes.
Standard configuration of the probe aggregator is done during the .NET
Agent installation. The
<probe_install_dir>\ProbeAggregator\etc\probeaggregator.properties file
is used to set configuration parameters for the Probe Aggregator (for
example, setting the SQL trending threshold).

If you decide, post installation, to install the Probe Aggregator Service you
can run the .NET Agent installation again, selecting the Change button.
Then select the check box for installing the Probe Aggregator Service.

Performing a remove or uninstalling the .NET Agent also removes the Probe
Aggregator Service. For information on how to disable and enable the Probe
Aggregator Service see “Enabling and Disabling the Diagnostics Agent for
.NET” on page 288.

Monitoring NET Applications Deployed in Azure Cloud

Microsoft provides Windows Azure SDK for developers to create and deploy
Azure applications to the Microsoft Windows Azure Cloud Infrastructure.
The Diagnostics .NET Agent leverages the Azure SDK to provide seamless
deployment of the .NET Agent into the Azure Infrastructure. Once deployed
the .NET Agent monitors applications running in the Azure Cloud,
collecting performance data and reporting to an HP Diagnostics Server for
analysis and problem detection. See the AzurePackReadMe.pdf in the .NET
Agent AzurePack zip file for details on installing and configuring the .NET
Agent for monitoring applications in the Windows Azure Cloud.

287

Chapter 8 ¢ Installing .NET Agents

Determining the Version of the .NET Agent

When you request support, it is useful to know the version of the
Diagnostics components you installed.

To determine the version of the .NET Agent:

Right-click the file <Agent_install_dir>\bin\HP.Profiler.dll and select
Properties from the menu. In the Properties dialog, select the Version tab to
display the component version information.

Or you can use the System Health view in the Diagnostics Ul Appendix D,
“Using System Views for Administrators”).

Enabling and Disabling the Diagnostics Agent for .NET

288

The .NET Agent is enabled when it is installed. After you restart your Web
server and a URL in the application is accessed, the .NET Agent begins to
gather performance information.

You can disable the .NET Agent so that it does not start and does not gather
performance metrics.

To disable a .NET Agent:

Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET
Probe.

To enable a .NET Agent that was disabled:

Select Start > All Programs > HP Diagnostics .NET Probe > Enable HP .NET
Probe.

Chapter 8 ¢ Installing .NET Agents

Note: Disabling the .NET Agent only disables the probe metrics collector
and the active probes. It does not disable the system metrics collector. The
process of enabling or disabling system metrics collection is controlled
through the standard Windows services manager. The effect of enabling or
disabling probes only happens the next time the probed application restarts.
It has no affect on currently running applications.

Once the Probe Aggregator Service is installed and running, you can disable
and enable it from the Start Menu. Select Start > All Programs > HP
Diagnostics .NET Probe > Disable HP .NET Probe or Enable HP .NET Probe.
Selecting Disable HP .NET Probe, in addition to disabling the .NET probes
will mark the Probe Aggregator Service as disabled, but not stop the service
(in case there are running probes remaining). Selecting Enable HP .NET
Probe, in addition to enabling the .NET probes will change the Probe
Aggregator Service back to type automatic and start it if needed.

Disabling Logging

You can disable probe application logging by changing the logging level tag
of the ASP.NET process section of the probe_config.xml file, as shown in the
following example:

<process name="ASP.NET">
<logging level="off"/>
</process>

You can disable probe instrumentation logging by changing the logging
level tag of the instrumentation section, as shown in the following example:

<instrumentation>
<logging level="off" />
</instrumentation>

289

Chapter 8 ¢ Installing .NET Agents

Enabling and Disabling Standard Instrumentation for
Applications

290

When the .NET Agent is first installed, the standard ASP.NET/ADO
instrumentation for all discovered applications is enabled, but no
application specific instrumentation is enabled. You control which
applications have their instrumentation enabled or disabled using the
attributes of the enablealldoamins attribute in the <process> element and
attributes in the <appdomain> element in the probe_config.xml file for the
.NET Agent.

Disabling instrumentation for an application allows you to avoid the
processing overhead and distracting information in the Diagnostics views
for applications that are not relevant to the environment whose
performance you want to monitor.

Enabling instrumentation for all application allows the .NET Agent to
monitor the performance of all detected applications so that you can see the
performance metrics for all of the applications in the views of the
Diagnostics and Profiler user interfaces.

These are the rules for the enablealldomains attribute of the <process>
element:

» enablealldomains = false : If there are no domains in the list of
<appdomain> No domains should be enabled.

» enablealldomains = false : If there are domains in the list of
<appdomain> Domains should be enabled if the "enable" attribute is set
to true or not defined in the enable attribute of the <appdomain>.

» enablealldomains = true : If there are domains in the list of <appdomain>
Only Domains in the list should be enabled disregarding their "enable"
attribute.

» enablealldomains = true : If there are no domains in the list of
<appdomain> All domains should be enabled.

» enablealldomains attribute is not defined: same as if enablealldomains =
true.

Chapter 8 ¢ Installing .NET Agents

To enable or disable the instrumentation for an application:

Set the enablealldomains attribute in the <process> element to false. This
allows the attributes of each appdomain tag to control the state of the
instrumentation for each application. If there are no appdomain entries, no
applications are enabled.

Set the enabled attribute in the <appdomain> element to true for each
application where you want to enable the instrumentation.

Set the enabled attribute in the <appdomain> element to false for each
application that is to have its instrumentation disabled.

The following example shows instrumentation enabled for one application
and disabled for another.

<process hame="ASP.NET" enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/myApplication" website="Default Web Site”
enabled="true">
<points file="DefaultWebsite-myApplication.points" />
</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>
</appdomain>
</process>

To enable the instrumentation for ALL applications:

Set the enablealldomains attribute in the <process> element to true. This
overrides the settings of the attributes in each <appdomain> element so that
the instrumentation can be enabled without having to set numerous
attributes.

291

Chapter 8 ¢ Installing .NET Agents
The following example shows instrumentation enabled for all applications:

<process hame="ASP.NET" enablealldomains="true">

<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/myApplication" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplication.points"/>
</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website="Default Web Site”
enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>
</appdomain>
</process>

Troubleshooting .NET Web Applications Not Discovered

In a Microsoft Windows 2003 server and IIS 6 environment, if your web site
has a virtual directory under a web folder .NET Agent may fail to discover
the virtual directory. This is because of an issue with the Microsoft WMI
provider used by Diagnostics to walk down the web site tree. The WMI
provider does not properly recognize the web folder as an IIS web directory
and so Diagnostics can’t discover the virtual directory under the folder. See
the example described below.

292

Chapter 8 ¢ Installing .NET Agents

The example shows web folder WebFolderTest under the web site abc. Under
this web folder there is a virtual directory WebChain.

'E Internat Information Services (IIS) Manager

¥a Ele Action Wiew Window Help

=~ |AEFRB| @m| 2] > =

?fj Internet Information Services Marme Pz
= o 0 ROSE4238BLD (Jocal computer) __| #bin
=l __I Application Pools __| app_cade
ks l'- DefautApc:Pool | CallChainForm. aspi
gls TWTestPool Form. . :
i Wobsveip | CalliChainl . aspec. designer.cs
el R | Web.config
=l __| Web Sites
* Default Web Site
] TWServices

(-

abc
3| ‘E, abcvirk
s CallChainz_0
[+ _| aspnet_client
F-__J bin
=1 webFolderTest | Web Folder
* Virtual Directory

_ 1 ‘Web Service Extensions

Because of an issue with the WMI provider, the listing in WMI for this web
site would not show the WebFolderTest/WebChain virtual directory. The
.NET Agent uses the listing from the WMI provider to discover web
applications. So in situations like this, the .NET Agent may not be able to
discover virtual directories under a web folder.

Microsoft recommends modifying the metabase directly or using a simple
script like the following to set the folder style using ADSI:

Set objRoot = GetObject("11S://localhost/W3SVC/1/Root/WebFolderTest")
objRoot.KeyType = "llsWebDirectory"
objRoot.Setinfo()

Instead of using a script you can manually configure the web folder as an
application in IIS. Once this is done it can be reverted to a non-application
but the property would now be set and Diagnostics would be able to
discover the web application.

Another option is to manually add the excluded APPDOMAIN in the
ASP.NET appdomain list in the probe_config.xml file.

293

Chapter 8 ¢ Installing .NET Agents

Other .NET Agent Troubleshooting Tips

If you have problems getting the agent started properly here are some things
to check:

» Make sure you restarted the web server and that a URL in the application
was accessed, this triggers the agent to begin collecting data.

» Check if a probe_config.xml file was created and is formatted correctly (that
is, no missing tag closers, etc.). This can be done by opening the file in a web
browser.

» Look for any message in the Windows Event Log named “HP Diagnostics”.
This log is used exclusively by the .NET Agent. There should be a message
for each attempt to instrument an application.

Uninstalling the .NET Agent

To uninstall the .NET Agent:
1 Stop all Web applications that are using SOAP.

2 From the Windows Control Panel, select Add/Remove Programs and then
select HP Diagnostics/TransactionVision Agent for .NET to uninstall.

3 Restart the Web applications.

To remove the Probe Aggregator Service you can uninstall the .NET Agent
which will also remove the Probe Aggregator Service. Or you can run the
.NET Agent installation again, selecting the Change button and then
de-select the check box for installing the Probe Aggregator Service.

294

9

Installing and Setting Up Python Agents

This section describes how to install a Python Agent and gives you
information about the setup and configuration of the Python Agent.
This chapter includes:

» Diagnostics Python Agent Overview on page 296

» System Requirements for the Diagnostics Python Agent on page 296
» Installing Python Agents on page 297

» Instrumenting a Python Application on page 300

» Configuring the Python Agent on page 309

» Description of the Parameters in the Points File on page 316

» Description of Custom Code on page 318

» Available Out-of-the-box Configurations on page 328

» Reconnect/Reinitialize Event Channel After Server Reboot on page 333
» Troubleshooting on page 333

» Removing the Python Agent on page 334

295

Installing and Setting Up Python Agents

Diagnostics Python Agent Overview

The HP Diagnostics Python Agent install package includes the software
necessary to capture events such as method invocations, server requests, and
system metrics from Python applications. The Python Agent package must
be installed on the systems to be monitored that are running Python
applications. Each instrumented application results in a unique probe entity
which can be independently configured for data collection. The Diagnostics
Python Agent is distributed for all platforms in a single zip file named
HPDiagPythonAgt_<release number>.zip.

System Requirements for the Diagnostics Python Agent

296

The following sections describe the system configurations that are
recommended for hosting the Diagnostics Python Agent.

Platform Support

The Python Agent has been tested on the following operating systems:
> Win2008 64-bit, Win7 64-bit

» Ubuntu 11.10, 12.04

> RedHat 6.2

» SuSE 12.1

The Python Agent has been tested under the following environments:

Platform/Technology Versions Certified

Python 2.6.5,2.6.6,2.6.8, and 2.7
OpenStack Diablo, Essex

Django 13,14

Installing and Setting Up Python Agents

The Python Agent may work under additional platform versions as well.
Please review the Diagnostics Support Matrix at http://
support.openview.hp.com/sc/support_matrices.jsp to assess known platform
compatibility, or contact HP Support to determine the feasibility of using
the Python Agent in your environment.

Diagnostics Server Compatibility

The Diagnostics 9.21 Python Agent requires the Diagnostics 9.20 Server as a
prerequisite. Customers running older versions of the server must upgrade
to the 9.20 version in order to use the Python Agent. If you are running a
later version of the Diagnostics Server, please review the Diagnostics Support
Matrix at http://support.openview.hp.com/sc/support_matrices.jsp to assess
potential compatibility.

Installing Python Agents

The Python Agent is installed on the same machine as the Python
application under test.

This section describes how to install a Python Agent and gives you
information about the setup and configuration of the Python Agent.

Overview of the Python Agent Installation

The Python Agent must be installed on all systems running Python
application that you wish to monitor. Installation involves simply
unzipping the install package and running the setup.py script on each
system. After this is completed, it is then necessary to define the points
that you wish to monitor within your applications. If you wish to monitor
OpenStack or Django, configuration files and scripts have been supplied
that will allow you monitor these applications.

Installing the Python Agent
The Python Agent installation process includes the following steps:

1 Unzip the HPDiagPythonAgt_<release number>.zip file.

297

Installing and Setting Up Python Agents

298

2 Execute the probe_setup.py script using the Python interpreter that is
used for the monitored application:

» For Linux
/<path to python>/python probe_setup.py
» For Windows

<path to python>\python.exe probe_setup.py

The probe_setup.py Script

The script probe_setup.py is used to install, upgrade or remove the HP
Diagnostics Python Agent.

Usage:

probe_setup.py [-h|--help] [-u]--update] [-r|--remove] [-d|--dont_ask]

Options:
Option Description
-h, --help Show this help message and exit.
-u, --update Update or upgrade the Python Probe.
-1, --remove Remove the Python Probe.
-d, --dont_ask Install or remove the Python Probe without asking.

The probe_setup.py script accomplishes the following steps during the
installation:

1 Install the hpdiag modules in the site-packages or dist-packages directory
of the Python installation (see "Directory Structure" on page 299 for
details on where files are installed).

2 Install the hpdiag scripts in the Python bin (Linux) or Scripts (Windows)
directory.

3 Install the PythonProbe configuration files to the hpdiag/etc directory.
4 Install the systemmetrics binary to the hpdiag/bin directory.

Installing and Setting Up Python Agents

5 Create the PythonProbe log directory /var/log/hpdiag (Linux) or
%PROGRAMDATA% \Hewlett-Packard\hpdiag\log (Windows).

6 Store a list of installed files in hpdiag/backups/installed_files.

Directory Structure

The Python Agent uses the following directory structure.

Python Modules

The hpdiag Python modules are stored in the Python site-packages or
dist-packages directory as follows:

» On Linux: /path/to/lib/python[python_version]/site-packages/hpdiag

» On Windows:
\path\to\lib\python[python_version]\site-packages\hpdiag

Scripts

» On Linux, the hpdiag Python scripts are copied into the bin directory,
where the Python executable also resides.

» On Windows the scripts are installed into the Scripts directory under the
Python installation directory.

hpdiag Directory

The HP Diagnostics Python Agent requires a dedicated directory for its
configuration and binary files. The location of this directory differs based on
the platform and in the case of Windows, is based on the Windows version
as well.

» On Linux: /opt/hpdiag
» On Windows XP/2k3: C:\ProgramData\Hewlett-Packard\hpdiag
» On Windows Vista/7/2k8: %PROGRAMDATA%\Hewlett-Packard\hpdiag

Binaries
The binaries are stored in: <hpdiag_dir>/bin

Configuration Files
The configuration files are stored in: <hpdiag_dir>/etc

299

Installing and Setting Up Python Agents

Log Files
The HP Diagnostics Python Agent creates the following directories for the
Python Agent to place its log files:

» On Linux: /var/log/hpdiag
» On Windows XP/2k3: C:\ProgramData\Hewlett-Packard\hpdiag\log

» On Windows Vista/7/2k8:
%PROGRAMDATA% \ Hewlett-Packard\hpdiag\log

Instrumenting a Python Application

There are multiple ways to instrument a Python application, and each is
explained below.

» "Using the hpdiag_instrument.py Wrapper Script" on page 300
» "Instrument the Main Script of the Monitored Application" on page 303

» "Decorate the Functions and Classes of the Monitored Application" on
page 305

» "In Code Creation of Capture Points" on page 306

> "Instrumenting a Single Script" on page 308

Using the hpdiag_instrument.py Wrapper Script

The HP Diagnostics Python Agent provides a script to instrument and start
an application: hpdiag_instrument.py.

No source code change is required in the Python application using this
approach. If the main script of the monitored Python application is called
"app_main.py", for example, then the instrumented application is run by
the following command:

hpdiag_instrument.py --config app_main.conf --point app_main.point
app_main.py

300

Installing and Setting Up Python Agents

The script hpdiag_instrument.py initializes the Python probe and reads the
capture points from the given point file. Afterwards, it starts the main script
of the application via Python's execfile function. When the monitored
application exits, this script closes all resources of the running probe.

The modules used by the python application are instrumented at runtime
when they are imported. The probe uses the custom import hook
sys.meta_path as described in the PEP 302 of the Python language. This
might conflict with applications that also use this import hook. See
"Decorate the Functions and Classes of the Monitored Application" on
page 305 for an alternative.

Usage:

hpdiag_instrument.py [--config_dir <config dir>] [--bin_dir <bin_dir>] \
[--config <config_file>] --point <point_file>\
[--single] <target_script> [<target_script_args>]

Options:
Option Description
-h, --help Show this help message and exit.
-d CONFIGDIR, Configuration directory of the Python Agent.

--config_dir=CONFIGDIR

-b BINDIR, --bin_dir=BINDIR Binary directory of the Python Agent.

-c FILE, --config=FILE Python probe configuration file [default =
probe.conf

-p FILE, --point=FILE Configuration of methods to measure.

-s, --single Instrument the target_script as well as any

modules it loads.

By default, only modules referenced in the
target_script are instrumented.

301

Installing and Setting Up Python Agents

302

Parameters:

The parameters --config_dir, --bin_dir and --config are optional and are only
needed when it is desired to use different settings than the defaults.

Environment

Option Default Variable Description

-d, --config dir | /opt/hpdiag/etc; $PYPROBE_CONFIG | Directory
%PROGRAMDAT | _DIR containing the
A% \Hewlett-Pac configuration files.
kard\hpdiag\etc

-b, --bin_dir /opt/hpdiag/bin; | $PYPROBE_BIN_DIR | Directory
%PROGRAMDAT containing the
A% \Hewlett-Pac binary files like
kard\hpdiag\bin 'systemmetrics'

-c, --config probe.conf N/A File containing the

probe
configuration.

Note: The specification of the directories as parameter for
hpdiag_instrument.py has a higher priority than the environment variable
settings. The environment variable settings have a higher priority than the

defaults.

Several examples for starting your application are shown below:

Example 1:

hpdiag_instrument.py --point webapp.point webapp.py

Example 2:

hpdiag_instrument.py --config my_probe.conf --point webapp.point webapp.py

Example 3:

hpdiag_instrument.py -d /path/to/my/config/data \

Installing and Setting Up Python Agents

-p other_weapp.point \

webapp.py

On Windows, the path_to_python\python.exe must be added in front of
hpdiag_instrument.py.

Instrument the Main Script of the Monitored Application

It is also possible to initialize and shutdown the Python probe directly from
the main script of the Python application (similar to what
hpdiag_instrument.py does). The code below shows this approach:

try:
from hpdiag import pyprobe
except ImportError:
class PyProbeDummy(object):
@staticmethod
def init(*args, **kws):
print "Warning: Cannot initialize HP Diagnostics Python Agent. Failed to import
'hpdiag.pyprobe' in file '%s™ % _ file_
@staticmethod
def shutdown():
print "Warning: Cannot shutdown HP Diagnostics Python Agent. Failed to import
'hpdiag.pyprobe' in file '%s™ % __ file_
pyprobe = PyProbeDummy

pyprobe.init(config_file = "app_probe.conf", point_file = "app.point")
try:

def main():
call the application entry point here

if _name__ =='_main__"
main()
finally:
pyprobe.shutdown()

There are only a couple of lines to be added into the main script:

1 The statement to import the module "hpdiag.pyprobe"

303

Installing and Setting Up Python Agents

304

2 The initialize function "pyprobe.init()" at the beginning
3 The shutdown function at the end

4 The try-finally block around the original code. This is optional, but highly
recommended.

Note: In WSGI scripts, only the first two lines are needed. Adding the
shutdown function at the end will cause the probe to not function properly.
See below for more details.

The initialize function takes up to four parameters:

1 config_file: The configuration file for the probe.

2 point_file: The point file containing the capture points for the
instrumented Python application.

3 config_dir: The directory where the configuration files (probe
configuration and point file) are located, if different from the default
location.

4 bin_dir: The directory where the executables (systemmetrics, ...) are
located, if different from the default location.

Note: Please be sure to always specify the parameter for the pyprobe.init()
function using keywords like "point_file = app.point". This allows the
parameters to be listed in any order, and also allows for parameters to
remain unset so that they will get the default values.

All APIs of the python probe are in the module hpdiag.pyprobe. Only the
functions and classes defined in this module should be used to instrument
the monitored application! Functions and classes in all other modules of the
Python probe may change without notice at any time!

Installing and Setting Up Python Agents

Decorate the Functions and Classes of the Monitored
Application

It is also possible to create the capture points in the Python source at
run-time by using the following decorator functions from the module
hpdiag.pyprobe: func_point, method_point, and class_point. They are used
as decorators directly in the Python source above the instrumented
function, method, or class. The supported arguments for these decorators
are exactly the same arguments as those for the capture points in the point
file. For example:

from hpdiag import pyprobe

@pyprobe.class_point(method = "ib$|rfib ", layer = "fiboLayer")
class Fibo(object):
the implementation of the Fibo class

This decorator creates one capture point for the class Fibo. The method’s
argument specifies that the method fib and the method rfib should be
instrumented. Please note that Python regular expressions are used here.
The regular expression *fib$ means that only the method fib is
instrumented whereas the regular expression rfib means that any method
that has a sub-string rfib in its name will be instrumented (for example, also
rfib_seq).

The argument layer defines the layer for all instrumented methods of this
class. The other mandatory arguments class and module are automatically
determined by the decorator.

It is also possible to decorate a single function or method using the
func_point and method_point decorator. For example:

class Fibo(object):
@pyprobe.method_point(clazz = "Fibo", layer = “fiboLayer", args = "0")
def fib_seq2(self, n):
the implementation of the method

Even though the decorator is executed in the context of the method, it is
necessary to specify the name of the class because the class is not yet defined
(and so cannot be automatically determined) at the time the decorator is
executed.

305

Installing and Setting Up Python Agents

Note: Please also note that the argument name is clazz because class is a
Python key word which cannot be used.

If the instrumented function or method already has other decorators (for
example, it is a @staticmethod or @classmethod), then the decorator that
creates the capture point for the probe must be written directly above the
function or method (if not it might cause problems). For example:

@_DecoMemoize
@pyprobe.func_point(layer = "fiboLayer", args = 0)
def mfib(n):

the implementation of the function

Please note that all three decorator functions are executed at import time of
the module and create just the capture point. The automatic
instrumentation of the module via the above described import hook is
performed after the module was loaded. Thus, the decorated functions,
methods, and classes are treated like any capture point read from the point
file.

In Code Creation of Capture Points

If you do not want to add the decorators in all the source files of the
monitored application (or if the sources are not available at all), it is also
possible to create all the capture points in one place within your
application.

from hpdiag import pyprobe

pyprobe.init(config_file = "probe.conf", point_file = "app.point")

pl = pyprobe.PointList()

pl.create_method_point("func_name", "module_name", <point arguments>)
pl.create_method_point("method_name", "module_name", “class_name", <point
arguments>)

pl.create_class_point(<class instance>, <point arguments>)
pl.create_point(<point arguments>)

The point arguments are the same as the options of a point in the point file,
for example, layer="Database", detail="is_sql_statement".

306

Installing and Setting Up Python Agents

Once all points are created, it is possible to trigger the instrumentation by
calling:

pyprobe.instrument(pl)
call the actual application entry point

pyprobe.shutdown()

Passing the point list to the instrument function ensures that only the
newly created points are instrumented. Capture points that were read from
the point file (passed as second parameter to the init function) are, by
default, automatically instrumented at import time of the module (using the
custom import hook describe above).

Please note that the point file that is passed to the init function is optional!
If not specified, only the capture points created by the decorator functions
are used by default, that is, if the automatic instrumentation at import time
is enabled.

It is possible to disable the automatic instrumentation at import time. Use
the following argument in the probe section of the probe config file to do
this:

[Probe]
auto_instrument = True

If this argument is set to False (the default is True), the modules imported by
the monitored application are not automatically instrumented. Instead, it is
possible to trigger the instrumentation any time at runtime by calling:

pyprobe.instrument()

Because no point list is passed as parameter to the function, it will use all
capture points that were created so far at runtime and/or read by the init
function from the point file to instrument the currently loaded modules.

307

Installing and Setting Up Python Agents

308

Instrumenting a Single Script

A single script is characterized by the fact that it is not imported by another
script. Thus it is more difficult to instrument such a script. If a script can be
instrumented or not depends on the availability of classes and methods
inside the script.

Prerequisites

The hpdiag_instrument.py tool allows the execution of instrumented single
scripts by loading it as a module and calling its main() method. This means
that the existence of a main() function in the script is a prerequisite. Simple
Python scripts often have no main() method, but look like this:

if _name__==' main__"
instance = MyClass()

xyz = helper_function()

In most cases this can be easily changed to:
if _name__==' main__"
instance = MyClass()
xyé = helper_function()

In most cases this can be easily changed to:
def main():

instance = MyClass()
xyz = helper_function()
if _name__==' main__"

main()

This allows access to the main() method by the hpdiag instrument.py tool,
and thus to instrument this single script.

Installing and Setting Up Python Agents

Point Definitions

The script is imported with its file name as module name, so that its name is
referenced in the point file as module name to define the instrumentation
points. For example when the script name is myScript.py then this is
imported as 'myScript' and might be referenced in the point file as follows:

[myScript_1]

module = myScript
class = MyClass
method = class_method
layer = myscript

Note: Because single scripts are imported as module, the file name must not
contain any dots ('."). For example myScript-0.2.py does not work because
dots are not allowed in module names. Correct is myScript.py or

my_script.py.

Calling hpdiag_instrument.py

The hpdiag_instrument.py tool has the parameter '-s | --single' to indicate
that the called Python script is a single script:

hpdiag_instrument.py --config myScript.conf --point myScript.point \

--single /path/to/myScript.py --script_parl ...

Configuring the Python Agent

The file <hpdiag_dir>/etc/probe.conf drives the basic agent behavior. The
probe.conf file has section/namespaces. Configuration parameters are
defined within these namespaces.

The following sections give detailed descriptions of the configuration
parameters in the probe.conf file. Also included are two sections that give
details on some specific URI replace pattern configurations in the
probe.conf file.

309

Installing and Setting Up Python Agents

310

Namespace [Mediator]
» hostname: The Diagnostics mediator host name.
» port: The Diagnostics mediator port number.

» channeltype: One of synchronous, threaded, or multiprocess. This value
configures how events are sent to the mediator. Python has a very
peculiar threading behavior, so testing may be necessary to determine the
optimal settings for your application.

» synchronous: The events are sent as part of the business application
thread. This might slow down the business application.

» threaded: The events are sent in a separate thread, but in the same
process as the business application. This is the default.

» multiprocess: The events are sent in a separate process.

» reconnect_timeout: The timeout in seconds before the next reconnect, in
case the connection to the mediator has been lost. Server requests that
complete while the mediator connection is unavailable are dropped
silently.

> keep_alive_interval: Interval in seconds at which the probe will send keep
alive messages to the registrar on the mediator.

Namespace [Logging]
» class: Specifty the logging (handler) type. There are two types supported:

» TimedRotatingFileHandler: It supports rotation of disk log files at
certain timed intervals.

» RotatingFileHandler: It supports rotation of disk log files based on file
size limits.

» file: The absolute path to the log file.

> level: The default logging level: CRITICAL, ERROR, WARNING, INFO or
DEBUG.

Installing and Setting Up Python Agents

> level_exceptions: Specify exceptions to the default logging level of the
Python probe. These exceptions are specified as Python dictionary with a
Python pattern as key and the logging level as value (in the form of a
string). The probe iterates through all keys (patterns) of the dictionary
and will use the first one that matches. The order is not defined, however.

The example below sets the DEBUG level to all loggers in modules that
start with hpdiag.location. Likewise, it sets the INFO level to all loggers in
modules that start with hpdiag.importhook:

level_exceptions = {r'hpdiag\.location.* : 'DEBUG', r'hpdiag\.importhook.*" :
'INFO'}

» backup_count: If nonzero, at most backup_count files will be kept. If
more would be created when roll-over occurs, the oldest one is deleted.

» max_file_size: For RotatingFileHandler: The maximum size of the log file
in MB.

» when: For TimedRotatingFileHandler: Rotating happens based on the
product of when and interval. Possible values are:

'S' Seconds, 'M' Minutes, 'H' Hours, 'D' Days, 'W#' Week day (# = 0 - 6 with
0 = Monday), or 'midnight' Roll over at midnight.

» interval: For TimedRotatingFileHandler: The roll-over interval. Example:
If when is set to '1#' (= Tuesday) and interval is set to '2', then the log file
will be rolled over every second Tuesday.

» utc: Use times in UTC (default is local time).

Namespace [Probe]

> probe_id: The name of the probe instance. Add %0 to the probe_id to get
a unique probe name if several instances of the same probe are running
on the same system.

> registered_hostname: The hostname to be used if DNS/IP lookups don't
work reliably.

> probe_group: Probe Group name (used in the same manner as in the Java
and .NET probes).

» system_group: System Group name (used in the same manner as in the
Java and .NET probes).

311

Installing and Setting Up Python Agents

312

>

>

>

>

auto_instrument: Enable/disable automatic instrumentation at import
time (default: True).

instrument_loaded_modaules: Instrument modules that have been loaded
before pyprobe.init() is called (default: False).

instrument_pyprobe_threads: Instrument points found in the probe
threads, e.g. monitor the probe itself (default: False).

error_on_duplicate_location: An exception is thrown whenever the same
location is instrumented multiple times (default: False).

sql_parsing_mode: Parsing mode of SQL queries.
» 1 =just methods, no SQL queries
>» 2 =main categories for SQL queries (select/update/insert/delete/...)

>» 3 =a measurement per whole SQL query aggregating similar
statements into a single measurements

> 4 =a measurement per whole SQL query aggregating only identical
statements

Agent side trimming:

> maximum_stack_depth: Don't capture any data about methods called
at a depth greater than this. For example, if maximum_stack_depth is
3, and "/login.do" calls a() calls b() calls c(), only login.do, a, and b will
be captured. Setting a low maximum_stack_depth can somewhat
reduce the overhead of capture. Setting this to a very high value
disables depth trimming. This is dangerous if potentially recursive
methods are instrumented as it can lead to nearly infinite call-trees.
This will consume a lot of memory. Setting this value above 100 is
strongly discouraged. The default is 25.

> minimum_method_latency: Latency trimming - never capture any data
about regular methods that execute faster than this number of
milliseconds. Depending upon your platform & whether hi-res time
stamps are being used, it may not be useful to specify this value in
increments of less than 10ms. It defaults to 51 milliseconds.

> minimum_fragment_latency: If an entire server request takes less than
this number of milliseconds, it will not be captured, unless a threshold
has been set on that server request. The default value is 51ms.

Installing and Setting Up Python Agents

> maximum_method_calls: Tree size trimming - never capture more than
this number of methods per instance tree. This is regardless of latency
and depth trimming. It defaults to 1000. Note that this applies to all
methods, including outbound calls.

> minimum_sql_latency: If an SQL statement takes less than this amount
of time, it will not be trended, until it does exceed this time. It defaults
to 1000 milliseconds (one second).

> httpserver_port: Port to use for python probe http server.

» http_client_show_url: Enables/disables the inclusion of the URL as part of
the identity of an outbound call. The value should be set to false for REST
service client applications.

> uri_replace_pattern: A comma-separated list of pattern replacement
operations to attempt on each URI (see "URI Truncation and Mapping" on
page 314).

> uri_pathsegments: Number of URI path segments to allow (see "URI Path
Segment Trimming" on page 316).

» username: User name used to authenticate the mediator with the probe
http server. If it is empty, a default user name will be used.

» password: Password used to authenticate the mediator with the probe
http server. Use the utility hpdiag_encodepassword.py to encode your
password before adding it there. If it is empty, a default password will be
used.

Namespace [SystemMetricsCollector]

> enabled: True or False, decides whether the system metrics collector is
active.

» sampling_rate: How fast should a metric be locally sampled. Uses time
string values, like Ss.

> metrics_group: What group should system metrics be associated with?
This value may be the same as an existing probe group, or completely
independent.

» udp_port: Port to use for system metrics UDP control port. Do NOT
modify this unless there is a conflict with another application. All
Diagnostics agents on a system MUST be configured to use the same port.

313

Installing and Setting Up Python Agents

314

> mediator_port: Port on the mediator used to deliver metrics to.

> udp_retry_interval: How often should the metrics collector try to open
the UDP port in case it is in use by another program. Uses time string
values, like 10min.

> username: User name used to authenticate the system metrics collector
with the mediator.

» password: Password used to authenticate the system metrics collector
with the mediator. Use the utility hpdiag_encodepassword.py to encode
your password before entering it here.

Namespace [SystemMetrics]

This namespace contains the system metrics to collect.

These system metrics collector entries use the same layout as the ones for
the Java Agent (see Chapter 20, "Java Agent - System Metrics Capture") with
the exception that the collector name is not available in the Python agent.

URI Truncation and Mapping

It is possible to truncate or change the URI of a request using Python regular
expressions. This is specified in the probe.conf file in the option
uri_replace_pattern. This is a comma-separated list of pattern replacement
operations to attempt on each URI. This is useful to replace many server
request URIs with one simplified server request URI that aggregates them.
The truncation or mapping of URIs is done using the 's/pattern/replace/'
syntax, which is the only supported syntax for the URI replacement
patterns.

How and Where are the Patterns Used

This functionality is applied after before:code custom functions, args:name
or args:n were applied. The output of before:code or args:x is used as input
for the URI replacement patterns.

If more than one pattern is specified, all patterns will be applied. The
patterns are applied in order. The output of a previous matched pattern will
be used as input for the next pattern. The resulting string is used in the
Diagnostics GUI for the request name.

Installing and Setting Up Python Agents

Characteristics

Because s/pattern/replace is not Python syntax, it is necessary to use '#'
instead of /' in the configuration file

s/pattern/replace/
must be written as
s#pattern#replace#

s/pattern/replace/ is used to be comparable with the syntax in Perl or on the
Unix shell. It is also possible to omit the s and write #pattern#replace#.

Examples

Truncate before a string, match the string and any characters that follow it
and leave replace empty. In this example $ matches end-of-line.

uri_replace_pattern = s#string.*$##

Truncate after a string. Match the string in a grouping and use
\group-number to put the string into the replacement.

uri_replace_pattern = s#(string).*$#\1#

Use a comma separated list to perform multiple operations. The operations
will all be performed in order. This would change every foo to bar and then
change every bar back to foo.

uri_replace_pattern = s#foo#bar#,s#bar#foo#

Truncate before any semicolon.

uri_replace_pattern = s#;.*$##

Truncate before any /! or |. This uses ? to say that the slash is optional.
uri_replace_pattern = s#/?2\l.*$##

Truncate before any ';' or '/!' or '".

uri_replace_pattern = s#(;|/?\!).*$##

Map /django/portal/ and /django/myportal/ to Django Portal.

315

Installing and Setting Up Python Agents

uri_replace_pattern = s#"/django/(my)?portal/#Django Portal#
Other examples:

uri_replace_pattern = s#(;|/
). *$H##,s#. X\, (js|css|jpg|gif|png|pdf|html|jar|class)$#Static Content#

uri_replace_pattern = s#.*/([a-zA-Z0-9_ ")\.py#\1#

URI Path Segment Trimming

The URI path can be trimmed by the definition of uri_pathsegments in the
probe.conf file. uri_pathsegments is set to the number of URI path segments
to allow - everything after this point will be trimmed. For example, with a
setting of 2, URLs like /foo/bar/1, /foo/bar/2 will be trimmed to /foo/bar. A
value of -1 or O will disable the path trimming.

Description of the Parameters in the Points File

316

The points file specifies which Python classes, methods and functions are
monitored.

The syntax of the points file is the same as for the Java probe. Therefore see
the Java probe documentation for details.

The following arguments are supported:

Argument Description Mandatory
module A Python regular expression yes
class A Python regular expression no
method A Python regular expression yes
layer The name of the layer yes

Installing and Setting Up Python Agents

Argument

Description

Mandatory

layer_type

One of the following 4 values:
» method (the default)

» trended_method

» portlet

» sql

no

detail

Specifies more specific capture instructions. It is a
comma-separated list of the following:

» before:code:<name>: execute the custom code with
filename <name> before the instrumented method/
function

» after:code:<name>: execute the custom code with
filename <name> after the instrumented method/
function

» args:name: uses the string representation of the
instance on which the instrumented method was called
as call argument

» args:n: uses the string representation of the argument
on index n' as call argument in the GUI (see more
details below)

» is_sql_statement: marks methods/functions that
execute SQL statements

» inbound: marks a method/function as inbound call
that is used to track cross-VM transactions

» outbound: marks a method/function as outbound call
that is used to track cross-VM transactions

» method_trim: indicates that every invocation of the
method instrumented by this point should be
“trimmed”, that is, not reported. However, side-effects
of the corresponding code-snippets, if any, take place
normally.

» method_no_trim: indicates that no latency-based
trimming should take place when a method
instrumented by this point is executed.

» no_layer_recurse: prohibits recording of any methods
called from the method instrumented by this point,
unless the callee belongs to a different layer.

no

317

Installing and Setting Up Python Agents

For example:

[httplibHTTPConnectionOutbound]

module = httplib

class = HTTPConnection

method = request

layer = Sending

detail = outbound,before:code:httpconnection_outbound

To distinguish a method of a class from a function within a module, the
Python agent introduces the additional argument “module” and considers
the class argument as optional. Thus, a point describes either a set of module
functions or a set of class methods. If both functions as well as class
methods within the same module should be captured, it is necessary to
specify two different points.

Including Points Files

The point file referenced during the instrumentation can include other
point files. This is done by using the special point IncludePoints. The file
references have to be relative to the location of the main point file.

For example:

[IncludePoints]

1 = ../../letc/httprequest.point
2 = httpserver.point

3 = others/database.point

Description of Custom Code

318

Custom code are Python functions that can be executed before or after the
monitored method or function is executed. These functions are stored in
files in the Python agent custom_code directory. The custom code functions
used are defined in the points file and are specified separately for each
monitored function. The custom code functions are referenced by file name.

The following sections gives details about custom code.

» "The Purpose of Custom Code" on page 319

Installing and Setting Up Python Agents

"Custom Functions" on page 320

"Returning HTTP Request Status Codes" on page 324
"Cross VM Server Requests" on page 324

"Argument Extraction" on page 328

"Available Out-of-the-box Configurations" on page 328

Y Y Y Y Y Y

"URI Path Segment Trimming" on page 316

The Purpose of Custom Code

Custom code can be used in the Python Probe to extract data from the
arguments passed into an instrumented function or method. If this data is
returned by the custom code, it will be displayed as an argument of the
method in the Diagnostics GUI (in the call profile). With custom code, it is
even possible to modify the arguments of an instrumented function or
method. Custom code is also used to track calls between multiple probe
installations (cross VM calls).

Custom code can be called two times: before the instrumented method is
called (before:code) and after it was called (after:code).

before:code

The before:code is used to extract data from the argument list of the
instrumented method. If this extracted data (for example, a URI) is returned
by the custom function, it will be displayed in the Diagnostics GUI as call
argument.

The custom code functions are also used to intercept information that is
needed for correct display in the Diagnostics Ul. The custom code function
can return a string (used as the argument of the call, as explained above), a
dictionary, or a tuple of both. In the dictionary, the following entries are
used by the probe to report data to the server:

Key Meaning

uri URI of an incoming http service request.

inbound_coloring Coloring token of an inbound call used to track
cross-VM transactions.

319

Installing and Setting Up Python Agents

320

Key Meaning

remote_ip Caller IP address of an inbound call.

diag_arg The diag argument required for both incoming and
outgoing calls.

Server requests are reported as inbound to the Diagnostics server if a
coloring token has been reported by any method in the call stack.

If any method reported an URI, the server request type is reported as 'HTTP';
otherwise it will show up as "Pseudo”

Check the files in etc/custom_code for syntax and usage examples of
custom code, especially the way the coloring tokens are injected and
retrieved from the calls.

after:code

The after:code can be used to do any processing that might be useful after
the instrumented method was called.

Custom Functions

All custom code needs to be written as a function with the name
custom_fct_before(...) or custom_fct_after(...). The custom function that is
used for before:code takes the following argument list:
custom_fct_before(instance, location, args, kws)

» instance: the class instance on which the instrumented method is called.
It is None for instrumented module functions.

> location: the python probe location object that identifies the
instrumented function/method.

> args: the tuple of positional arguments passed to the instrumented
function/method.

» kws: the dictionary of keyword arguments passed to the instrumented
function/method.

It can return the following values:

Installing and Setting Up Python Agents

» method argument: the argument string for the instrumented method as
displayed by the Diagnostics GUI in the call profile.

» adictionary: a dictionary of key value pairs. This dictionary is passed to
the before:after function after the instrumented method got called. There
are two special keys in this dictionary, however. If custom_fct_before adds
the keys "method_args" and/or "method_kws" to this dictionary, it is
assumed that they represent the modified argument list of the
instrumented function/method being called. The value for key
"method_args" must be of type 'tuple' and the value of key "method_kws"
must be of type 'dict'. If the instrumented method is an outbound call,
then this dictionary has to contain the key "diag_arg". If it is an inbound

call, it has to contain the keys "diag_arg", "inbound_coloring" and
"remote_ip".

> a tuple: both values described above wrapped into a tuple.
» None: the custom code function may also return None.

The custom function for after:code takes the following parameters:
custom_fct_after(instance, location, method_return_value, code_dict).

» instance: the class instance on which the instrumented method is called.
It is None for instrumented module functions.

> location: the python probe location object that identifies the
instrumented function/method.

» return value: the return value of the instrumented function or method.

» a dictionary: the dictionary that was returned by the before:code
function.

321

Installing and Setting Up Python Agents

322

Example for before:code in the file custom_code/cust_example_before.py:

Used by [DiagShop]
from urlparse import urlparse
def custom_fct_before(instance, location, args, kws):

ret_val = None
purl = urlparse(str(args[0]))
if len(purl.scheme) == 0:
ret val ="
else:
ret_val = purl.path

return ret_val

The file name cust_example_before is used as reference of the custom code
to be used in the point file. The function name is always
custom_fct_before(instance, location, args, kws). This code would be
referenced in the point file via the following:

detail = before:code:cust_example_before
Example for after:code in the file custom_code/cust_example_after.py:

def custom_fct_after(instance, location, method_return_value, code_dict):

print "CustomAfter: Custom code executed - does not return anything."

It is possible to define a custom_fct_before(...) function and a
custom_fct_after(...) function in the same file and reference it using the
same name. Which function is be used is defined in the detail section in the
point file.

Note: The Python Probe imports the custom code files as Python modules.
This means that all limitations regarding the file names for Python modules
also apply to the custom code files. For example the characters (<space>) or
(-') are not allowed in file names

Installing and Setting Up Python Agents

Using Sub-directories

Because the custom code files are handled as Python modules by the Python
Probe, it is also possible to categorize custom code files in sub-directories
(modules). If this is desired, each sub-directory needs to have a Python
special file in it - this is the file _init_.py. This file can be empty, but must be
there to be able to import custom code from a sub-directory. Example:

pyapp_code

|- get_http_request.py

|- get_request_2.py

|- pyapp_controller

| |-_init__.py

| |- get_details.py

| |- do_something.py

|- pyapp_scheduler
__init__.py
get_request_from_queue.py
get_service_request.py

With these files in place, the files of this structure can be referenced in the
point file for example via

detail = before:code:get_http_request

from the custom code base directory or for the pyapp controller from the
pyapp_controller sub-directory:

detail = before:code:pyapp_controller.get_details

Note: A _init_.py file is not needed in the custom code base directory,
because the files in this directory are not regarded as Python modules.

323

Installing and Setting Up Python Agents

324

Returning HTTP Request Status Codes

For each HTTP request the HTTP server returns a status code. The custom
code can be used to report this status code to the HP Diagnostics server. To
do this, the location object, passed to the before and after functions,
implements the method add_request_attribute. It takes the attribute name
and the attribute value as parameters. At the moment, only the following
four attributes are supported by the HP Diagnostics server:

» WS_consumer_id
» HTTP_status_code
» HTTP_status_desc
» tcp_server_port

The following example shows how to extract the HTTP status code of
requests to django applications and have it sent to the HP Diagnostics
server:

def custom_fct_after(instance, location, method_return_value, custom_code_dict):
from django.core.handlers import wsgi

try:

status_text = wsgi.STATUS CODE_TEXT[method_return_value.status_code]
except KeyError:

status_text = 'UNKNOWN STATUS CODE'

if method_return_value.status_code >= 500 and method_return_value.status_code
<=699:
location.add_request_attribute("HTTP_status_code",
str(method_return_value.status_code))
location.add_request_attribute("HTTP_status_desc", status_text)

return None

Cross VM Server Requests

Outbound Calls

To enable HP Diagnostics to connect calls made from one instrumented
application to another, a unique identifier (coloring) needs to be added to
the data sent to the called application. This can be done with custom code.

Installing and Setting Up Python Agents

The following example is used to instrument the request method of the
python httplib. HTTPConnectionOutbound class. It shows how to get the
coloring from the probe using the location.get_outbound_coloring call
which takes the called target as parameter. The next step is to add it to the
data which will get sent to the called application.
location.create_diag_envelope will either add it to the data to be sent
(passed as second parameters) or will return an encoded version of the
coloring if no data is passed. In the latter case, you have to add the coloring
to the request yourself. The data to be sent has to be a str for the enveloping
to work! This example adds it as an additional HTTP header called
X-Mercury-Diag-HTTP-Color.

Then a string called diag_arg needs to get constructed which must be passed
back to the Python probe via a dictionary (using the dictionary key
"diag_arg"). In case the arguments of the instrumented methods are
modified within the custom code, they also have to be passed back to the
probe via the returned dictionary (using the keys "method_args" for the
positional arguments and "method_kws" for the keyword arguments).

325

Installing and Setting Up Python Agents

File httpconnection_outbound.py:

Used by [httplibHTTPConnectionOutbound]
import httplib
def custom_fct_before(instance, location, args, kws):

if isinstance(instance, httplib.HTTPSConnection):
url = "https://%s:%s/%s"

elif isinstance(instance, httplib.HTTPConnection):
url = "http://%s:%s/%s"

else:
url = "request://%s:%s/%s"

outbound_coloring = location.get_outbound_coloring(url % (instance.host,
instance.port, args[1]))
outbound_coloring = location.create_diag_envelope(outbound_coloring, ")

if (args[3]):

args|[3]['X-Mercury-Diag-HTTP-Color'] = outbound_coloring
else:

args[3] = {'"X-Mercury-Diag-HTTP-Color' : outbound_coloring}

param_dict = {'name": '{0}:{1}'.format(instance.host, instance.port),
‘target’: {0}:{1}'.format(instance.host, instance.port)}

diag_arg = location.create_diag_arg(‘http', param_dict)

result = {}

result['diag_arg'] = diag_arg

result[method_kws'] = kws
result['method_args'] = args

return result

Inbound Calls

In inbound calls, the custom code is used to remove the coloring from the
request received and pass it to the python probe.

326

Installing and Setting Up Python Agents

The following example is used to instrument the WSGI handler of the
Django framework. It removes the coloring from the request, passed as the
X-Mercury-Diag-HTTP-Color parameter using the

location.get_coloring from_diag_envelope method. The coloring is then
returned to the python probe. In addition to the coloring, a diag_arg string
and the IP address of the calling application and the called URI needs to get
returned.

File basehttprequesthandler_inbound.py:

Used by [BaseHTTPServerBaseHTTPRequestHandlerinbound]
import BaseHTTPServer, socket
def custom_fct_before(instance, location, args, kws):

result = {}
path = None

if 'X-Mercury-Diag-HTTP-Color' in instance.headers:
inbound_coloring =
location.get_coloring_from_diag_envelope(instance.headers['X-Mercury-Diag-HTTP-C
olor'])
del (instance.headers['’X-Mercury-Diag-HTTP-Color')
result['inbound_coloring'] = inbound_coloring

if isinstance(instance, BaseHTTPServer.BaseHTTPRequestHandler):
host, port = instance.client_address[:2]

param_dict = {'name': instance.path, 'target": instance.headers['host"]}
diag_arg = location.create_diag_arg(‘http’, param_dict)

path = instance.path
result['diag_arg'] = diag_arg
result['remote_ip'] = host
result['uri'] = path

return (path, result)

327

Installing and Setting Up Python Agents

Argument Extraction

args:name

args:name uses the string representation of the instance on which the
instrumented method was called as call argument. For class or static
methods or a module function, it returns the doc string of the instrumented
function. If no doc string exists, it returns the module name.

args:n

args:n uses the string representation of the argument on index 'n' as call
argument in the GUL 'n' can be in the range O - 254.

args:name and args:n can be used together with an after:code custom
function, but not together with a before:code custom function. If a
before:code function is referenced and args is used, it is undefined as to
which one will be used.

Available Out-of-the-box Configurations

328

The Python Agent comes with a number of out-of-the-box configurations as
ready-to-use configuration or as starting point for own configurations.
Currently available is instrumentation for:

» OpenStack Diablo and Essex releases

» Django and WSGI

OpenStack Instrumentation

The Python Agent provides configuration for the instrumentation of the
OpenStack cloud computing platform (Diablo and Essex Release).

For OpenStack, the following is provided in addition to the standard python
agent:

» Points files for every component of OpenStack

» Setup scripts and configuration files for OpenStack

Installing and Setting Up Python Agents

Point Files

For every component of OpenStack one or more ready-made point files can

be installed and used.

» common.point

» dashboard.point

» glance.point

> keystone.point
nova-api.point
nova-general-controller.point
nova-queue-send.point
nova-scheduler.point

setup-openstack.conf

>
>

>

>

>

» setup-openstack.txt
» swift-common.point

» swift-account-server.point

» swift-container-server.point
» swift-object-server.point

>

swift-proxy-server.point

Setup of the OpenStack Instrumentation

The startup scripts of the OpenStack components that need to be
instrumented must be changed in order to start the instrumentation
together with a particular configuration. This can be done using a setup
script hpdiag_setup_openstack.py.

hpdiag_setup_openstack.py -i|--install <os_version> |\
-u|--uninstall <os_version>\

[-m|--mediator <hostname_fqdn>] [-h|--help]

329

Installing and Setting Up Python Agents

330

Install OpenStack instrumentation:

-i --install <os_verson> Install the OpenStack instrumentation

-u --uninstall <os_version> Remove the OpenStack instrumentation
-m --mediator <mediator> Hostname of the Diagnostics Server

-h --help Display this message

OpenStack versions:

essex OpenStack 2012.1

diablo OpenStack 2011.3

The setup script uses the information about which component will be
instrumented and where to find its start script that is provided in the
setup_openstack.conf file.

The setup_openstack.conf file has the following syntax:
<probe id>:<absolute path to the start script>:<pyprobe.init call>

For example:

nova-compute:/usr/bin/nova-compute:pyprobe.init(config_dir="/opt/hpdiag/etc/
openstack”, \

bin_dir="/opt/hpdiag/bin”, config_file = "nova-compute.conf", \

point_file = "nova-general-controller.point")

In addition to setting up the instrumentation in the OpenStack start up
scripts, the script hpdiag_setup_openstack.py creates a configuration file for
each component of OpenStack. It uses the default configuration file
probe.conf in /opt/hpdiag/etc as master and creates a copy for each
component. Each configuration file contains the hostname of the
Diagnostics server (mediator) and the probe ID which will be displayed in
Diagnostics' user interface. The hostname and the probe ID are added to the
component's configuration file automatically. The name of the
configuration file is <probe_id>.conf.

The instrumentation steps are:

Installing and Setting Up Python Agents

1 Stop all OpenStack processes
For
Diablo go into /opt/hpdiag/etc/openstack-diablo

Essex go into /opt/hpdiag/etc/openstack-essex

2 Call hpdiag_setup_openstack.py to instrument the OpenStack
components Swift, Nova, Glance, Keystone, and the dashboard. The script
creates various *.conf files for the various Python probes that monitor
OpenStack.

> hpdiag_setup_openstack.py -m <diagnostics_server_name> -i essex|diablo

When -m is omitted, then the hostname will be taken from the file /opt/
hpdiag/etc/probe.conf. You may edit this file to set the HP Diagnostics
server name for the OpenStack instrumentation.

3 Restart the OpenStack services.

For all Swift servers only one Python source file is modified: /usr/share/
pyshared/swift/common/wsgi.py. It is the central entry point for most Swift
processes. The inserted pyprobe.init function call looks as follows:

pyprobe.init(config_dir = "/opt/hpdiag/etc/openstack-essex",
config_file = "swift-" + log_name + ".conf",
point_file = "swift-" + log_name + ".point")

As you can see, the name of the *.conf and *.point files is built based on the
log_name variable. It must be "proxy-server", "account-server",
"container-server", or "object-server" to match the generated files from
hpdiag_setup_openstack.py. To ensure this, check the swift config files in /
etc/swift. For example, the default log_name for the Swift proxy server in
the Essex release is "swift-proxy". This does not match the generated *.conf
files. Thus, edit the file /etc/swift/proxy-server.conf and change the value
for log_name in the section [app:proxy-server] to "proxy-server".
Alternatively, you can also rename the generated Swift *.conf and *.point
files if you do not want to change the files in /etc/swift.

The original OpenStack scripts are preserved in /opt/hpdiag/backup. The
instrumentation can be removed with the command
hpdiag_setup_openstack.py \-u essex\|diablo.

331

Installing and Setting Up Python Agents

332

Django and WSGI Instrumentation

The Python Agent provides configuration for the instrumentation of the
Django and WSGI. The provided point files can be used for that. The Django
point file is:

django.point

This instruments a point in the WSGI handler, that provides the request
information:

[DjangoWSGIHandlerinbound]

module = django.core.handlers.wsgi

class = WSGIHandler

method = __call__

layer = WSGIHandler

detail = inbound,before:code:django_wsgi_call_inbound

Setup of the Django Instrumentation

The Django WSGI script needs to be changed to instrument a Django
application. The Python Probe initialization needs to be done in that script.

Example Script:

import os, sys

---- Start of PyProbe section

Calculate the path based on the location of the WSGI script.
sys.path.append(os.path.dirname(__file_))
sys.path.append('<path_to_the_app>')

Instrument the application

from hpdiag import pyprobe

pyprobe.init(config_dir = ‘/opt/hpdiag/etc/mysite’,
bin_dir = ‘/opt/hpdiag/bin’,
config_file="probe.conf",
point_file="mysite.point")

---- End of PyProbe section

os.environDJANGO_SETTINGS_MODULE'] = 'settings'
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Installing and Setting Up Python Agents

Note: It is recommended to put the original start-up code into a try: /
except: / finally: block where the finally: executes pyprobe.shutdown(). This
is not recommended for WSGI scripts because the WSGI scripts are executed
and terminated for every request. Calling pyprobe.shutdown() would
launch a new probe every time, which strongly reduces the correlation and
presentation quality in the HP Diagnostics UL

Reconnect/Reinitialize Event Channel After Server Reboot

In case the Diagnostics server has been rebooted or shut down for some
reason the python probe gets disconnected from the server. In this case
everytime the probe wants to send data to the server it tries to reconnect
first. In order to avoid that reconnection attempts occur too often, the probe
only tries to reconnect to the server after a timeout. By default this timeout
is set to 5 seconds. The value can be modified in the configuration file. See
"Configuring the Python Agent" on page 309 for more information about
this value. While the probe is disconnected from the server all collected data
will be deleted. After the server is running the probe gets reconnected
automatically and continues to send collected data. The maximum time
needed for a reconnection after the server is up and running again, is the
reconnection timeout mentioned above.

Troubleshooting

Rotating log files are known to result in errors on Windows. The
workaround is to set file size or the rotation interval in the probe.conf file to
large values to ensure that rotation never happens.

333

Installing and Setting Up Python Agents

Removing the Python Agent

334

During the installation of the HP Diagnostics Python Agent, the installation
script was copied into the hpdiag directory with the name
probe_deinstall.py. Executing this script will remove the Python Agent.

Important: Please make sure that no application is instrumented and that
no probe is running when the probe will be removed. If a probe is still
running on Windows, then the rename of the hpdiag directory will fail and
an error is returned.On a Linux system we cannot detect if a probe is still
running during uninstall. This may lead to unpredictable results.

On Linux:

/path/to/python /opt/hpdiag/probe_deinstall.py
On Windows:

cd %PROGRAMDATA%\Hewlett-Packard
\path\to\python hpdiag\probe_deinstall.py

Please note that on Windows it is necessary to call this script from outside of
the hpdiag directory, because the hpdiag directory will be renamed during
the de-installation. This rename fails when the console is opened in the
hpdiag directory.

The deinstallation script will perform the following steps:

1 Remove the probe Python files from the Python site-packages directory.
2 Remove the .egg-info file.
3 Rename the hpdiag directory to hpdiag.<date>-<time>.

Part IV

Custom Instrumentation for Monitoring
Java and .NET Applications

This section includes:

» Custom Instrumentation for Java Applications

» Custom Instrumentation for .NET Applications

336

10

Custom Instrumentation for Java
Applications

Y Y Y Y Y Y Y Y Y

>

>

>

This section explains how to control the instrumentation that Diagnostics
applies to the classes and methods of the applications to enable the Java
Agent to gather the performance metrics.

This chapter includes:

About Instrumentation and Capture Points Files on page 338

Coding Points in the Capture Points File on page 340

Defining Points With Code Snippets on page 348

Controlling Class Map Capture on page 364

Instrumentation Examples on page 365

Understanding the Overhead of Custom Instrumentation on page 381
Instrumentation Control on a Per Layer Basis on page 382

Advanced Instrumentation Examples on page 383

Configuring Cross VM Correlations for New or Custom Technologies
on page 398

Tutorial for Configuring Cross VM Correlation for Custom Technologies
on page 403

Maintaining Instrumentation from the Java Profiler Ul on page 412

Default Layers Defined for Typical Java Classes and Methods on page 423

337

Chapter 10 ¢ Custom Instrumentation for Java Applications

About Instrumentation and Capture Points Files

338

Instrumentation refers to bytecode that the probe inserts into the class files
of the application as they are loaded by the class loader of your virtual
machine. Instrumentation enables a probe to measure execution time,
count invocations, retrieve arguments, catch exceptions, and correlate
method calls and threads. The instrumentation points for each probe
instance are specified in a capture points file.

When you install the Java Agent, a predefined default capture points file is
installed with a set of points for the platform you are using. A default
capture points file containing pre-defined Java points is located at
<probe_install_dir>\etc\auto_detect.points.

The capture points file enables you to control the scope of the
instrumentation so that Diagnostics can give you all the information you
need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The
instrumentation definitions in the capture points files are called points. The
points define which methods to instrument, how they should be
instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so
that they apply to more than one method, class, and package or namespace
specification. For more information about using regular expressions, see
“Using Regular Expressions” on page 926.

To add custom instrumentation, make a copy of the default
auto_detect.points file, give it a different name, and use it to make all your
instrumentation customizations. This precaution prevents you from losing
your custom instrumentation when you upgrade to a new version of the
Java Agent and the installer overlays the auto_detect.points file.

You can customize the points in the capture points files to include methods,
classes, packages, and namespaces for areas of the application that do not
fall within the default points. A common situation that might require
custom points is when a J2EE application contains business logic that is not
derived from the javax.ejb.SessionBean interface. Another situation for
custom points is when you want to override a default point to alter its layer
or to track it from a specific caller method.

Chapter 10 Custom Instrumentation for Java Applications

The points in the capture points file are grouped into layers. Layers organize
the performance metrics into meaningful tiers of information that can be
compared as part of a triage process. They control the collection behavior of
the instrumentation.

The points in the capture points file installed with the Java Agent are
grouped into default layers. You can customize the default layers and create
new layers. For description of the default layers see “Default Layers Defined
for Typical Java Classes and Methods” on page 423.

Notes:

» The default capture points file name is specified in
<probe_install_dir>\etc\probe.properties.

» To override the default file name so that the copy with your custom
points is used instead, use the
-Dprobe.points.file.name=<newPointsFileName_NoExtension> JVM

property.

339

Chapter 10 ¢ Custom Instrumentation for Java Applications

Coding Points in the Capture Points File

The following arguments can be used to define a point in the capture points

file:
[Point-Name] =<unique name for the point>
class = <class name or regular expression>
method = <method name or regular expression>
signature = <method signature or regular expressions>
ignore_cl = <list of class names or regular expressions>
ignore_method = <list of method names or regular expressions>
ignore_tree = <list of class names or regular expressions>
method_access_filter = <list of class names or regular expressions>
deep_mode = <soft or hard mode>
scope = <list of methods or regular expressions>
ignoreScope = <list of methods or regular expressions>
detail = <list of specifiers>
layer = <layer name>
layerType = <layer type>
rootRenameTo = <string>
keyword = <keyword>
priority = <integer number>
active = <true, false>

The following sections describe the arguments.

> “Mandatory Point Arguments” on page 341

» “Optional Point Entries” on page 342

340

Chapter 10 Custom Instrumentation for Java Applications

Mandatory Point Arguments

Every point, except for the points for CLP, LWMD, RMI and SAP RFC,
HttpCorrelation, and JDBC SQL, must contain the following arguments:

Argument

Description

Point-Name

A unique name for the point.

class

Specifies the name of the class or interface to be
instrumented. The name should include the full package/
namespace name using periods between the package
levels. Any valid regular expression can be used.

method

Specifies the name of the method to be instrumented. To
be successful, the method name must match a method
defined in the class or interface specified by the class
argument. Any valid regular expression can be used.

signature

Specifies the signature (parameter and result types) of the
method using javap symbolic encoding for method
signatures (<jdk_install>/bin.javap -s).

layer

Specifies a layer, sublayer, or tier under which the data
from this point is grouped. Layers are a part of the
instrumentation collection control.

Layers in a point can be specified with nested layers or
sublayers by separating the layer names with a / (slash).
The layer specified following the slash is a sublayer of the
layer specified before the slash. A sublayer can have its
own sublayers by coding another slash and layer name
following a sublayer name.

In the UI, the sublayers for a layer are displayed under
their parent layer. For example, the sublayers JSP and
Struts would be displayed under the web layer and a
drilldown would exist from Web to JSP and Struts.

341

Chapter 10 ¢ Custom Instrumentation for Java Applications

342

The following is an example of a custom point that contains the mandatory
arguments:

[MyCustomEntry_1]

; comments here....

class = myPackage.myClass.MyFoo
method = myMethod

signature = 1.*

layer = myCustomStuff

Note: Regular expressions can be used for most of the arguments in a point.
They must be prefaced with an exclamation point. For more information
about using regular expressions, see “Using Regular Expressions” on

page 926.

Optional Point Entries

Point definitions can contain one or more of the following arguments:

Argument Description

keyword The keyword indicates an instrumentation point
handled by a special instrumentation class. The value
of the keyword is looked up as a property in
inst.properties, and the value of the found property is
the instrumentation class name. The special
instrumentation points can use
implementation-specific arguments not documented
here, refer to the comments in the inst.properties file.

ignore_cl Specifies a comma-separated list of class names or
regular expressions to ignore. Any class matching one
of the classes specified with ignore_cl is not
instrumented.

ignore_method Specifies a comma-separated list of methods to ignore.
Any method matching one of the methods specified
with ignore_method is not instrumented.

Chapter 10 Custom Instrumentation for Java Applications

Argument

Description

Ignore_tree

A list of classes or regular expressions. Any subclass of a
class matching one of the list items is excluded from
the instrumentation.

method_access_filter

A list of method specifiers, separated by commas. The
available specifiers are static, private, protected,
package, and public. Any method matching this point
is not instrumented if its access specifier matches any of
the listed values.

deep_mode

Specifies how subclasses are handled. This argument
accepts three values:

» none — A value of “none” is similar to not specifying
a deep_mode argument. It has no effect on how
subclasses are handled.

» soft — A value of “soft” requests that for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces that also
implement the matching method and signature
should also be instrumented.

» hard — A value of “hard” requests that for every class
or interface matching the class, method, and
signature entries, any subclasses or subinterfaces at
any depth should have all their methods
instrumented. Hard mode is typically used for points
for interfaces. Caution: Hard mode can lead to
extensive instrumentation and very high probe
overhead.

scope

Constrains the context in which instrumentation is
performed. If specified, the inserted bytecode will be
caller side. Any valid regular expression can be used for
the value of this argument. Scope values are a
comma-separated list of package, class, and method
names in standard Java notation.

ignoreScope

Lists method names or regular expressions and excludes
certain packages, classes, and methods from those
included in the scope specified in the scope argument.

343

Chapter 10 ¢ Custom Instrumentation for Java Applications

344

Argument

Description

detail

Specifies more specific capture instructions. It is a
comma-separated list of the following:

» caller — causes caller side instrumentation to be
performed. If this keyword is not specified, the
default instrumentation, callee side instrumentation,
is performed.

» args:n — calls the toString() method of the n-th
argument. The string that is returned is displayed in
the method's argument field in the Diagnostics
console. The captured string can be used as the
aggregation parameter in the layer argument. The
value for n can be 1 through 256.

» args:0 — calls the toString() on the current class
instance or callee object. Static methods return the
class name of the callee object.

» before:code:<code-key> — inserts the code-snippet
specified in the key at the start for the bytecode for
methods that comply with the point. The final string
value on the stack when the code-snippet runs is
displayed in the method's argument field in the
Diagnostics console and can also be used as the
aggregation parameter in the layer argument. The
code-key argument specifies the secure code key you
generated for the code snippet you created for the
point. See “Defining Points With Code Snippets” on
page 348 for information about code snippets and
“Securing Code Snippets” on page 362 for
information on code keys.

» after:code:<code-key> — inserts the code-snippet
specified by the key at every exit point from the
bytecode of methods that comply with the point.
The after code-snippets should not leave any values
on the stack after they run.

Chapter 10 Custom Instrumentation for Java Applications

Argument

Description

detail (continued)

» disabled — prevents the instrumentation inserted
into the bytecode from reporting data. A disabled
point can be dynamically enabled using the
Instrumentation control web page so that it will
begin reporting data. This web page can be accessed
using the Profiler URL

http://<probe_install_dir>:<probe_port>/inst/layer.

» outbound — flags the method so it is listed on the
Outbound Calls screen. Also causes the Diagnostics
argument for this instrumentation entry to be parsed
to determine if additional information about the
outbound request can be displayed in the
Diagnostics dashboards.

» no-correlation — used with those “outbound” points
that do not use correlation supporting technologies.

» method-no-trim - indicates that no latency-based
trimming should take place when a method
instrumented by this point is executed.

» method-trim - indicates that every invocation of the
method instrumented by this point should be
“trimmed”, that is, not reported. However,
side-effects of the corresponding code-snippets, if
any, take place normally.

» lifecycle — identifies the instrumentation point as
relevant for object lifecycle monitoring.

» no-layer-recurse — prohibits recording of any
methods called from the method instrumented by
this point, unless the callee belongs to a different
layer.

» is-statement — marks calls into the java.sql.Statement
class.

> is-prepare-statement — marks calls returning
java.sql.Statement objects to capture.

» method-cpu-time — causes the CPU inclusive time to
be collected for this method in addition to latency,
unless CPU collection is completely turned off
(cpu.timestamp.collection.method = 0).

345

Chapter 10 ¢ Custom Instrumentation for Java Applications

346

Argument

Description

detail (continued)

» condition — prohibits instrumentation by this point
unless the specified condition is met. The conditions
are static and are defined by the
details.conditional.properties property in
inst.properties (or on the command line).

» when-root-rename - instructs the probe to rename
the server request whenever the method
instrumented by this point is the first one executed.

» diag — marks the point as relevant for HP Diagnostics
(default).

» tvi<key> — marks the point as relevant for HP
Transaction Vision.

» no-tv — marks the point as conflicting with HP
Transaction Vision. If Transaction Vision is
configured to be active, such points are prohibited
from instrumenting the Java code at all.

» add-field:<access>:<type>:<name> — causes adding
the specified field to the instrumented class.

» gen-instrument-trace — causes printing of the thread
stack trace onto stdout whenever this point is used
for instrumentation.

» gen-runtime-trace — causes printing of the thread
stack trace onto stdout whenever the methods
instrumented by this point are executed.

» trace — causes printing of verbose instrumentation
information into probe.log on each enter or exit
from each method instrumented by this point.

» sub-point:<key> - specifies additional processing
during instrumentation; the key must be present in
inst.properties and must identify a class name used
for the processing.

» store-thread - causes all special fields used in the
corresponding code-snippet to be stored in a
thread-local data structure.

» store-fragment — causes all special fields used in the
corresponding code-snippet to be stored as attributes
of the current server request.

Chapter 10 Custom Instrumentation for Java Applications

Argument Description

detail (continued) » store-method - causes all special fields used in the
corresponding code-snippet to be stored as attributes
of the invocation of the method instrumented by
this point.

» ws-operation — specifies that the instrumentation
entry is for an inbound web services call. Also causes
the Diagnostics argument for this instrumentation
entry to be parsed to determine if additional
information about the web service request can be
displayed in the Diagnostics dashboards.

rootRenameTo Identifies server requests whenever the
when-root-rename detail is in effect.

layerType Specifies special handling for some instrumented
methods and accepts the following values:

» method - no special handling (default).

» trended_method - identifies methods to be
displayed in the Trended Methods view.

» Portlet — identifies portlet lifecycle methods that are
used for the Portal Components views. These are set
by HP Diagnostics and should not be modified.

» sql —identifies methods that are used to capture SQL
for the SQL views. These are set by HP Diagnostics
and should not be modified.

priority Whenever there is more than one instrumentation
point that can be applied to a given method, and the
Diagnostics Agent cannot resolve the conflict on its
own, the point’s priority determines which point to
use. Higher priority wins. The default is zero.

active Activates or deactivates a point. When set to true, the
point is activated. When set to false, the point is
inactive and is ignored by the probe.

347

Chapter 10 ¢ Custom Instrumentation for Java Applications

Defining Points With Code Snippets

348

Custom code arguments specify a snippet of code that is to be inserted into
the bytecode for a point. Code snippets in a point are used when the value
returned by calling an object’s toString() method, as specified in the args:n
argument, is not going to provide useful information for the Diagnostics
console or when there is a requirement to display more than one argument
for an instrumented method.

A code snippet in a point is declared using the keyword
before:code:<code-key> or after:code:<code-key> in the detail argument
of the point. The before and after is used to execute the code snippet before
or after the instrumented method. The code snippet is typically secured
using a code-key argument to prevent unauthorized modifications of the
code snippet. The values for the code-key arguments can be generated using
any running probe's code-key generator page and are valid on any Java
Agent installation. For more information on the code-key see “Securing
Code Snippets” on page 362.

The actual code snippets for a point are entered into the
<probe_install_dir>/etc/code/custom_code.properties file. These snippets
are then associated with the point in the capture points file using the value
of the code-key. Code snippets are created using pseudo Java code that uses
syntax similar to OGNL. Using code snippets, calls can be made from the
instrumented bytecode to methods that can be accessed by the
instrumented method. Objects returned by code snippets can be cast and
can have their methods executed as well. Code snippets must end with a
string or an object where toString() can be left on the stack of statements
being parsed into bytecode. This final string of the code snippet is used for
the returned argument value displayed in the Diagnostics console.

Code snippets can also be used to store values for a particular fragment
directly or that could be used in a later code snippet. These features can be
used through special fields and key word details like store-fragment and
store-thread.

Y Yy VY Y

Chapter 10 Custom Instrumentation for Java Applications

Note: Code snippets are a very powerful tool that should be used carefully
because of the potential impact to the overhead incurred by the probe. For
this reason, Diagnostics requires that a code-key be specified along with the
code snippet before the probe will use the code snippet during
instrumentation.

This section includes:

“Using Code Snippets” on page 349
“Code Snippet Grammar” on page 350
“Code Snippet Helper” on page 354
“Securing Code Snippets” on page 362

Using Code Snippets

To use code snippets when specifying a point in <probe_install_dir>/etc/
auto_detect.points, the following detail:

class = javax.jms.TopicPublisher

method = publish

signature = !\(Ljavax/jms/Topic.*

deep_mode = soft

layer = Messaging/JMS/Producer

detail = outbound,no-correlation,before:code:6d0f3088

The before:code entry in the detail argument indicates that a code snippet

was entered for the point. The code-key value secures the code in the code
snippet and ties the point with the actual code snippet.

349

Chapter 10 ¢ Custom Instrumentation for Java Applications

The code snippet associated with the point must be entered in
<probe_install_dir>/etc/code/custom_code.properties as shown in the

following example:

Used by [JMS-TopicPublisher2]

6d0f3088 = #topic =

@ProbeCodeSnippetHelper@.checkForTempName(#argl.getTopicName()); \
"DIAG_ARG:type=jms&name=topic:"+ #topic + "&target=topic://" + #topic;

The code snippet is associated with the point in the capture points file using

the value of the code-key.

Code Snippet Grammar

The following describes the syntax that must be used to create the code

snippets.

» Literals

Only the following literal types are supported in code snippets.

constant

Literal Type Syntax Example
string "a string"
boolean true, false
integer 42

null constant null

a no-type, no-value void

350

Chapter 10 Custom Instrumentation for Java Applications

» String concatenation

Basic string concatenation is supported in code snippets.

Concatenation Type Syntax Example
Two strings "a string" + "another string"
A string and a literal "a string" + 42

» Local members

Default local members provide a way for code snippets to reference the
current instance or objects that were passed to the instrumented method.
These local members call methods or retrieve values from those references.

Variable Use

#callee References the callee object for an instance method.
Equivalent to the java “this” reference. Must not be
used when referencing a static method.

#argl, #arg2, ..., #argN References the arguments for the callee method call.

#return References the return value of the method end for
after code snippets.

#classloader Reserved for HP Software internal use.

Note: Some instrumentation points support special variable references. For
example, the CLApplicationDiscoveryPoint supports a #classloader variable.

351

Chapter 10 ¢ Custom Instrumentation for Java Applications

352

> DIAG_ARG strings

Code snippets allow concatenation of a series of values building up a single
DIAG_ARG value. This value allows for instrumentation of some common
types of support data like Web Services and JMS by returning all the data for
a particular type in one DIAG_ ARG formatted string.

Type Field (required) Definition
ws &ws_name Web Service name
&ws_op Web Service Operation name
&ws_ns Web Service namespace
&ws_port (inbound only) Web Service Port Name
&target (outbound only) Outbound Web Service Target
jms &name Queue or Topic name
&target Target Queue or Topic name

The format of the DIAG_ARG string includes the type fields and values
(local variables) concatenated into one string as follows:

"DIAG_ARG:type=ws&ws_name="+ #servicename +"&ws_op="+ #operation +\
"&WS_ns="+ #ns +"&ws_port="+ #port;

The DIAG_ARG string must not be used in combination with the
store-fragment special fields for web service inbound data (special fields
starting with #WS_inbound_*). Use ONLY one for collecting web service
inbound data.

Chapter 10 Custom Instrumentation for Java Applications

> Special fields (store-fragment)

Default special fields provide an easy way for code snippets to pass
fragment-related data for common events. This mechanism supplements
the existing events, but is not expected to replace them. Fragment Local
Storage has higher overhead cost than custom events. The following
variables must be used with the store-fragment detail setting.

Variable Use

##WS_consumer_id Stores the consumer Id for a particular fragment.
##WS_SOAP_fault_code Stores the SOAP fault code.
##WS_SOAP_fault_reason Stores the SOAP fault reason.
##WS_SOAP_fault_detail Stores the SOAP fault detail.

##WS_inbound_service_nam | Stores the inbound web service name.
e

##WS_inbound_operation_n | Stores the inbound web service operation name.
ame

##WS_inbound_target_nam Stores the inbound web service target namespace.
espace

##WS_inbound_port_name Stores the inbound web service port name.

> Special fields (store-thread)

Additionally special fields provide an easy way for code snippets to store
related data for the life of the thread. Use these thread local storage variables
with caution because they have overhead associated with them. Use them
only with the store-thread detail setting.

353

Chapter 10 ¢ Custom Instrumentation for Java Applications

354

These variables can be retrieved in later code snippets by making a call to
the probe’s ThreadContextProxy class reference with either the
getThreadContextValue(“string value”) or
getAndRemoveThreadContextValue(“string value”) methods, with “string
value” being the name of the variable without the leading ## signs. The last
retrieval of the value should always call
getAndRemoveThreadContextValue(“string value”) to clear the value from
memory and to remove the value for the next thread.

Variable Use

##SOAPHandler_wsname Stores the web service name for later use by the
SOAP Handler.

##<any_string> Stores any value for later retrieval in a following
code snippet.

Class references and static members

Static members/methods can be accessed by pre-pending the class with an
@ symbol to identify it as a Static, and marking the method being accessed
with an @ symbol as in the examples below:

@java.lang.System@.out ("Hello World");

@com.mercury.diagnostics.capture.metrics.countingCollector@.incrementCounter();
The arguments in the code snippets support Java class syntax when the Java

class is surrounded with a marker that the parser can get hold of. The
following examples show how to use the @ symbol as a marker:

@java.lang.System@
@java.lang.System@out (Static field)
Code Snippet Helper

Some functionality is very hard, or even impossible, to get coded using the
limited syntax available within the code-snippets.

Chapter 10 Custom Instrumentation for Java Applications

Therefore, the code-snippet environment offers two helper classes,
ProbeCodeSnippetHelper and ProbeCodeSnippetHelperV5S. The
CodeSnippetHelperV5 uses some APIs available only with Java 5 or later.

The following shows ProbeCodeSnippetHelper functionality.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*

package com.mercury.opal.capture.proxy;

/**

* Used to help out Code Snippets

*

public class ProbeCodeSnippetHelper {

/**

* When a Special Field holds a reference to the string below,
* it will not be stored in the Fragment Local Storage,

* or Invocation Local Storage

*

public static final String DO_NOT_STORE = ...

/**

* Helper to convert an int to an Integer

* @param i

* @return a new Integer object having the value of i
*

public static Object intTolnteger(int i) {

}

/*

* Mark the current thread, if not marked yet

* @return true, if and only if the thread had been already marked
*

public static boolean testAndSetRecursiveFlag() {

.

/*

* Unmark the current thread

*

public static void clearRecursiveFlag() {

}

/**

* Helper method to call ResourceBundle.getString() and catch any exceptions that

* might be thrown

* @param theBundle the ResourceBundle on which to call getString

* @param key the key to pass getString

* @return the value returned from getString, or null if an exception occurred

*/

public static String getStringFromResourceBundle(ResourceBundle theBundle, String key) {

-

355

Chapter 10 ¢ Custom Instrumentation for Java Applications

356

/*
* Helper methods to allow our cross-vm coloring to piggyback ride across
* the custom outbound calls in which the application passes [only] a String.
* The actual transport technology is irrelevant.
* Instead of sending the original message, a composite message (“envelope")
* will be passed. The composite message includes both the original message
* and Diagnostics Probe ENCODED cross-vm coloring.
* On the receiving end, the composite message will be received, but only
* the original message will be passed to the application, and the coloring
* will be retained by the probe.
*
/**
* Create a composite message, given the coloring and the original message.
* @param coloring - the correlation String obtained via the ENCODED coloring,
* may be null
* @param originalMessage - the original messsage sent by the application
* @return - the composite message, null if and only if the originalMessage is null
*
public static String createDiagEnvelope(String coloring, String originalMessage) {

=

/**

* Extract the coloring from the composite message (envelope).

* @param envelope - the composite message or the original message

* @return the coloring as created on the sender side, or null if not present
*

public static String extractColoringFromDiagEnvelope(String envelope) {

-

/**

* Extract the original message from the composite message (envelope).

* Works properly, even if the sender side has not been instrumented, and

* there's no envelope.

* @param envelope - the composite message or the original message

* @return the original message (before coloring)

*

public static String extractOriginalMessageFromDiagEnvelope(String envelope) {

}

Chapter 10 Custom Instrumentation for Java Applications

The following shows ProbeCodeSnippetHelperVS5 functionality.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*

package com.mercury.opal.capture.jdk15.agent;

/**

* Used to help out Code Snippets using Java 5 or later
*

public class ProbeCodeSnippetHelperV5 {

/**

* Get the annotation of the specified type from the class or its superclass,

* or its implemented interfaces

* @param theClass The class to get the annotation for

* @param annClass The annotation class to look for

* @return

*

public static Object getEndpointClassAnnotation(Class theClass, Class annClass) {

}

/**

* Get the method annotation of the specified type from the class

* or its superclass, or its implemented interfaces

* @param theClass the class

* @param methodName the method name

* @param argCount the argument count

* @param annClass the class annotation type

* @param methodAnnClass the method annotation type

* @return

*

public static Object getEndpointMethodAnnotation(Class theClass, String methodName,
String argCount, Class annClass, Class methodAnnClass) {

}

/**

* Helper method to get an annotation element value. If the annotation

* does not have the element, return null.

* @param annClass The class of the annotation

* @param instance The annotation instance object

* @param elementName The element name

* @return The element value for the annotation instance, or null

*

public static String getAnnotationElementValue(Class annClass, Object instance, String elementName) {

}

/**

* This helper method is used to serialize a DOM document.

* This method uses APIs available in DOM Level 3 or newer, which are
* available with a 1.5 or later JVM.

* @param document

* @return The serialized form (XML) of the input DOM document

*

public static String serializeDOMToString(Document document) {

-

357

Chapter 10 ¢ Custom Instrumentation for Java Applications

» Spanning multiple lines with the stack of method calls

The stack of method calls in a code snippet can span multiple lines. The
parser that builds the bytecode requires a “\” (backslash) before each
carriage return when it must continue parsing the stack of statements. The
final line of the Code Snippet stack of statements should not contain a
backslash and should simply end with carriage return.

@java.lang.System@.out ("Hello World");\
"Callee Name="+#callee.getName().toString();

» Casting

When calling a method that returns an object, casting is typically required
to call members on the returned object. Casting is supported on object
references. To cast an object to another type, place the casting reference
between the symbols “<“ and “>” following the reference to that object. The
following are examples of casting.

#argl<com.myCompany.myFoo>.myMethod();
This is equivalent to the Java statement:

((com.myCompany.myFoo)argl).myMethod();

@some.class.Foo@foo<com.myCompany.myFoo>.myMethod();
Would be equivalent to the java statement:

((com.MyCompany.myFoo)some.class.Foo.foo).doSomething();

#foo = #argl<bar>.b(); #foo.toString();
Creates the following java equivalent:

String foo = ((Bar)arg1l).b(); ((Object)foo).toString();

Note: Casting is not supported for special types such as #classloader.

358

Chapter 10 Custom Instrumentation for Java Applications

» Method calls

Method calls can be included in snippet arguments. The support of method
calls includes calls with or without arguments and method chaining. The
following are examples of method calls that are included in code snippet
arguments:

#argl.toString()

#arg2.getSomething().getSomethingElse()

#callee.getSomething(“foo", #argl).somethingElse()

@some.Class@.staticMethod()

The dot still needs to appear after the static reference for the method call to
be parsed properly.

@java.lang.System@out.printin("Here | am!")

To speed up the generation of bytecode at runtime (by avoiding reflection),
you can specify the type that is returned from a method as shown in the
following example:

#argl.getSomething()<some.class.Here>

This will not help if the method takes arguments, or if a static field is used.
> Multiple statements

Code snippets can include multiple statements in a single code snippet. This
is necessary for instrumentation, such as CLApplicationDiscoveryPoint, that
expect multiple objects to be left on the stack. It can be handy in other
situations as well.

@java.lang.System@out.printin("Look out!");
#arg2.getSomething();

359

Chapter 10 ¢ Custom Instrumentation for Java Applications

» Local Member assignment

In addition to the default supported “local” variables, you can create your
own local members to hold object references returned by called methods.

To create a new Local Member enter, the "#" symbol before the name of the
local member. The parser creates the local member for you.

#myBar = #arg2.getName();\
#myUpperBar = #myBar.toUpper();\
"Target Name=http://"+myUpperBar+"/services";

> Special Field assignment (store-fragment)

You can use a pre-defined special field to store the object references returned
by called methods. Enter the "##" symbols before the name of the special
field along with the store-fragment detail keyword on the instrumentation
point.

##WS_SOAP_fault_code = #arg2;\
##WS_SOAP_fault_reason = #arg3;\
##WS_SOAP_fault_detail = (#arg4 == null ? null : #arg4.toString());"";

> Special Field assignment (store-thread)

You can use a special field to store the object references returned by called
methods. Enter the "##" symbols before the name of the special field along
with the store-thread detail keyword on the instrumentation point.

Used by [SOA_Broker_Payload_Handler]
##SOA_Manager_Inbound_Payload=#callee.getRequestDocument();"";

In a later code snippet you can retrieve the value stored by calling
getThreadContextValue with the special field value above without the
leading ## symbols.

#temp_soam_payload=@com.mercury.opal.capture.proxy. ThreadContextProxy@.get
ThreadContextValue("SOA_Manager_Inbound_Payload");

360

Chapter 10 Custom Instrumentation for Java Applications

In a later code snippet you can retrieve and remove the special field value
stored by calling getAndRemoveThreadContextValue method with the value
same above without the leading ## symbols. It is very important that you
call getAndRemoveThreadContextValue to free memory and clear the way
for the next occurrence.

#temp_soam_payload=@com.mercury.opal.capture.proxy. ThreadContextProxy@.
getAndRemoveThreadContextValue((“"SOA_Manager_Inbound_Payload");

Conditional Logic

Code snippet syntax allows for limited conditional logic that is equivalent
to the Java if-else statement. This syntax enables you to compare object
references of the same type or integer or boolean primitives using both the
== and != operators. Literal value and other primitive comparisons are not
valid using this syntax.

The following is an example of how to compare references:
(valuel == value2 ? <if_True_codeSnippet>:<if_False_codeSnippet>)

The following is an example of how to verify that an object is not null
before calling a method:

(#argl == null ? "Unknown" : #argl.getSomething())
This would be equivalent to the following Java statement:
if (argl==null) return "Unknown" else return argl.getSomething();

Exception Handling

A limited form of exception handling is provided by the following syntax:
{<code-snippet-code>}!

The specified code is executed and the value of the above expression is the

thrown exception, or null if no exception was thrown during the execution
of the code.

361

Chapter 10 ¢ Custom Instrumentation for Java Applications

362

Securing Code Snippets

By default, you must specify a valid code-key along with the code snippet
before the probe will use the code snippet during instrumentation.
Requiring the code-key prevents accidently introducing instrumentation
that could significantly increase the overhead of the probe.

When you generate the code-key, Diagnostics checks the syntax of the code
snippet to make sure it is valid before it generates the key. When Diagnostics
instruments an application, it checks the value entered for the code-key
argument to make sure it matches the code-key it calculates for the code
snippet for the point. If the code-keys do not match, Diagnostics ignores the
code snippet and does not create the instrumentation point.

Generating the Code Snippet Code-Key

The Java Agent is installed with a tool that generates the code-key from the
code snippet you input.

To generate a code-key:
Open the page at the following URL in your browser:

http://<probe-host>:<probe-port>/inst/code-key

Chapter 10 Custom Instrumentation for Java Applications

Diagnostics displays the page where you can validate the code snippet
syntax and generate the code-key as shown in the following example:

[Diagnostics

This page provides you with the ability to validate a snippet of code for use in the probe's
points file, as well as generate the required secure code-key.

If a point's code does not match its key, the probe will refuse to use that code during
instrumentation.

Input your code snippet:

Submit I

Resulting point section:

HF Diagnostics J2EE Probe "WAS6_Plants"

Enter the code snippet you specified in the code argument in the
auto_detect.points file into the Input your code snippet text box and click
Submit.

Note: The code snippet must include all of the text following the code =
argument name.

363

Chapter 10 ¢ Custom Instrumentation for Java Applications

3 Diagnostics presents the results of the code snippet validation and the

code-key generation in the Resulting point section text box.

If the code snippet is valid, Diagnostics displays the value of both the
code-key and code arguments. Enter these values into the capture points
file.

If the code snippet is not valid, Diagnostics displays an error message that
indicates the problem that was detected. Correct the problem and click
Submit again to validate the corrected code.

Disabling the Code-Key Security Check

By default, Diagnostics verifies that the value of the code-key argument
matches the value it generates when it is instrumenting the application. It is
possible to disable this security check by inserting the
require.code.security.key property into the <probe_install_dir>/etc/
inst.properties file with a value of false.

Note: Be very careful when using this property. If you disable this check,
you could experience unexpected processing overhead and unpredictable
performance monitoring results.

Controlling Class Map Capture

364

The class map allows Diagnostics to provide more details about the classes
and methods that are invoked by a server request. This information can help
you to narrow your search for the source of a performance issue and help
you instrument the application code properly. The cost for using class map
comes from the additional overhead that creating the map places upon the
agent’s host system.

By default the property use.class.map=false is set in the probe.properties
file. Changing this to true provides a class map.

Chapter 10 Custom Instrumentation for Java Applications

Instrumentation Examples

Y Y Y Y Y Y Y Y Y Y VY VY VY Y Y Y Y Y VY VY VY Y

The examples in this section illustrate how you can customize the
instrumentation of an application by creating and modifying the points in
the capture points file.

This section includes the following examples:

Custom Layer and Sublayer

Wildcard Method

Ignore Specified Methods

Capture Methods for the Trended Methods View
Capture Only a Specific Method In a Class

Capture a Specific Method That Returns a String
Capture with a Controlled Scope

Hard and Soft deep_mode

Argument Capture

Inbound and Outbound Web Services

Renaming Root Methods

Adding a Field to a Class

Passing Attributes to Instance Trees

Filtering Out Methods by Their Access Flag

Not Recording Direct Recursion

Performing Caller Side Instrumentation
Configuring Allocation Analysis

Configuring Lightweight Memory Diagnostics (LWMD)
Configuring Collection Leak Pinpointing

Enabling Object Lifecycle Monitoring for JDBC Result Set
Adding a Disabled Point and Enabling it at Runtime
Specifying that a Method Should Never be Trimmed

365

Chapter 10 ¢ Custom Instrumentation for Java Applications

Specifying that a Method Should Always be Trimmed
Enabling Collection of CPU Time for a Method
Changing SAP RFC Instrumentation Based on SAP JCO Library Version

Y Yy VY Y

Printing Instrumentation and Runtime Information for a Point (Debugging
Only)

Custom Layer and Sublayer

» The following point creates a custom sublayer called “BAR” within the layer
called “FOO” for the method myMethod in myCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = 1.*

layer = FOO/BAR

Wildcard Method
» The following point captures all methods in the MyCompany.MyFoo class:

[myCompany.myFoo_AllIMethods]
class = myCompany.myFoo
method = 1.*

signature = 1.*

layer = FOO/BAR

Ignore Specified Methods

» The following point captures all methods in the MyCompany.MyFoo class
except for the methods setHomelnterface and getHomelnterface:

[myCompany.myFoo_AllMethodsExcept]

class = myCompany.myFoo

method = 1.*

ignoreMethod = !setHomelnterface.*, !getHomelnterface.*
signature = 1.*

layer = FOO/BAR

366

Chapter 10 Custom Instrumentation for Java Applications

» The following point captures all methods in the MyCompany package/
namespace except for those contained in the MyCompany.logging class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = ImyCompany\..*

method = .*

ignore_cl = MyCompany.logging

signature = 1.*

layer = FOO/BAR

Capture Methods for the Trended Methods View

» The following point captures the required data to populate the Trended
Methods View for the myMethod method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

signature = 1.*

layer = FOO/BAR

layertype = trended_method

Capture Only a Specific Method In a Class

» The following point captures all methods in the constructor for the
MyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = <init>

signature = .*

layer = FOO/BAR

» The following point captures all methods in the singleton constructor for
the MyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = <clinit>

signature = .*

layer = FOO/BAR

367

Chapter 10 ¢ Custom Instrumentation for Java Applications

» The following point captures the setFoo method in the MyCompany.MyFoo
class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo

signature = 1.*

layer = FOO/BAR

» The following point captures all "set" methods in the MyCompany.MyFoo
class:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = Iset.*

signature = 1.*

layer = FOO/BAR

» The following point captures all methods in the MyCompany package/
namespace:

[myCompany_All_Methods]
class = ImyCompany\..*
method = 1.*

signature = 1.*

layer = FOO/BAR

Capture a Specific Method That Returns a String

» The following point captures the getFoo method with no arguments that
returns a java.lang.String in the MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo

method = getFoo

signature = ()Ljavallang\String

layer = FOO/BAR

368

Chapter 10 Custom Instrumentation for Java Applications

Capture with a Controlled Scope

» The following point captures all methods in the MyCompany package/
namespace that are called from the MyCompany.logging class. For more
details see “Using Caller Side Instrumentation” on page 383.

[myCompany_All_Methods_from_MyCompany_Logging]
class = ImyCompany\..*

method = 1.*

signature = .*

scope = MyCompany.logging

layer = FOO/BAR

» The ignoreScope argument is used to exclude certain packages, classes, and
methods from those included in the scope specified in scope argument. The
following point captures all methods in the MyCompany package/
namespace that are called from the MyCompany.logging class except for
those called from the myMethod method. For more details see “Using Caller
Side Instrumentation” on page 383.

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = ImyCompany\..*

method = 1.*

signature = 1.*

scope = MyCompany.logging

ignoreScope = MyCompany.logging\myMethod

layer = FOO/BAR

Hard and Soft deep_mode

» The following interface definition is used for both soft and hard deep_mode
examples:

public interface Interfacel {

public void callerMethod();

369

Chapter 10 ¢ Custom Instrumentation for Java Applications

» The following class is used for both soft and hard deep_mode examples:

public class Classl1 implements Interfacel {
public void callerMethod(){
calleeMethod();
calleeMethod2();

}

public void calleeMethod(){
System.out.printin("hello world");
/Imore code lines here...

}

public void calleeMethod2(){
System.out.println("hello world 2");

}
}

» The following point captures the "callerMethod" in the Class1 class:

[Training-1]
class = Interfacel
method =1*

signature =1.*
deep_mode = soft
layer = Training

» The following point captures all methods in Class 1 (for example,
"callerMethod", "calleeMethod1" and "calleeMethod2):

[Training-1]
class = Interfacel
method =1*

signature =1.*
deep_mode = hard
layer = Training

370

Chapter 10 Custom Instrumentation for Java Applications

Argument Capture

The argument displayed in Diagnostics is the final string left on the stack by
the code snippet. Code snippets must end with a string or an object where
toString() can be left on the stack of statements to be parsed to the bytecode.

Important: Extreme caution has to be exercised when using argument
capture. Unless the set of all possible values of the captured argument is
finite, the agent will run out of Java heap space.

Suppose that you instrument a method called
myCompany.myFoo.myMethod(), and myFoo has another method called
getComponentName() that returns a String. The following example shows
the result of getComponentName() as the argument in Diagnostics (#callee
refers to the callee object for an instance method, in this case).

[myCompany_componentName_as_argument]
class = myCompany.myFoo

method = myMethod

signature = 1.*

detail = before:code: 8d2509eb

layer = FOO/BAR

The code snippet in the custom_code.properties file is entered as follows:

8d2509eb = #callee.getComponentName()

371

Chapter 10 ¢ Custom Instrumentation for Java Applications

372

» The following point captures the first argument to myMethod and shows it

as the captured argument in Diagnostics. It also uses it as the sublayer name.
This is achieved by including ${ARG} in the layer. In this example, if the
captured argument—in this case, the first argument of myMethod—has the
value myArg, the layer is FOO/myArg.

[myCompany_capture_firstArg_and_also_show_as_layer]
class = myCompany.myFoo

method = myMethod

signature = 1.*

detail = before:code: 358f05d6

layer = FOO/${ARG}

The code snippet in the custom_code.properties file is entered as follows. If
you use #arg2, you would capture the second argument instead.

358f05d6 = #argl.toString()

Inbound and Outbound Web Services

When the detail argument in a point contains the "outbound" or
"ws-operation" keyword, Diagnostics attempts to parse the final string on
the Code Snippet stack for additional information to display about the
method call.

For inbound Web Services (“ws-operation” detail must be used), the string
looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op="+
<OperationName>+"&ws_ns="+<TargetNameSpace>+"&wsOport="+<wsPort>

For outbound Web Services (“outbound” detail must be used), the string
looks like the following:

"DIAG_ARG:type=ws&ws_name="+<WebServiceName>+"&ws_op="+
<OperationName>+"&target="+<TargetName>

Chapter 10 Custom Instrumentation for Java Applications

Here is an example:

class = weblogic.wsee.ws.WsStub

method = invoke

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/util/Map;Ljava/util/Map;)Ljava/
lang/Object;

layer = Web Services

detail = outbound,before:code:edd75e36

The code snippet in the custom_code.properties file is entered as follows:

edd75e36 = #service = #callee.getService().getWsdIService();\

#qgname = #service.getName();\

"DIAG_ARG:type=ws&ws_name="+ #gname.getLocalPart() +"&ws_op="+\
#callee.getMethod(#arg1).getOperationName().getLocalPart() +"&target="+\
#callee.getProperty("javax.xml.rpc.service.endpoint.address");

Renaming Root Methods

Consider the following point:

class = Statement

method = execute

layer = Database/JDBC/Execute
detail = when-root-rename

rootRenameTo = mySuffix

If such a method ends up being the root method, the name of such a server
request is Background-mySuffix, and the type of the server request is
RootRename.

Consider the following point instead:

class = Statement

method = execute

layer = Database/JDBC/Execute
detail = when-root-rename

Notice that the rootRenameTo property is skipped. The name of such a
server request is Background-Database (because Database is the first
sublayer) and the server request type is RootRename again.

373

Chapter 10 ¢ Custom Instrumentation for Java Applications

Adding a Field to a Class

» Consider the following point:

class = com.corp.Foo
method = bar
detail = add-field:protected:Object:serviceName

The detail causes the following one field and two public setter/getter
methods to be added to the class com.corp.Foo:

protected transient Object serviceName
public void _diag_set_serviceName(Object arg)
public Object _diag_get_serviceName()

Passing Attributes to Instance Trees

» The following example attaches my_attribute name to every captured
instance of com.corp.Foo.bar().

The name prefixed with display_ and its corresponding value is shown in
the call profile.

class = com.corp.Foo
method = bar
detail = store-method,code:f59f0c5¢c

Code snippet:

f59f0c5c = ##my_attribute="value-of-my-attribute";"";

Filtering Out Methods by Their Access Flag

» The following example instruments all methods in class com.corp.Foo (but
not static methods).

class = com.corp.Foo
method =1*
signature =1*

method_access_filter = static

374

Chapter 10 Custom Instrumentation for Java Applications

Not Recording Direct Recursion

In the following example, if method com.corp.Foo.bar calls itself (or
anything in the same layer), the second call is not recorded. This is caused
by the detail = no-layer-recurse.

This, however, is only for direct recursion. If com.corp.Foo.bar calls an
instrumented method from another layer that calls this method again, all
methods are recorded.

class = com.corp.Foo
method = bar

layer = Example/MyBar
detail = no-layer-recurse

Performing Caller Side Instrumentation

The following point causes caller side instrumentation to be performed (as
opposed to the default callee instrumentation). This is caused by the detail =
caller.

Another way to do caller side instrumentation is to use the “scope” property
as described in “Using Caller Side Instrumentation” on page 383.

class = com.corp.Foo
method = bar
detail = caller

Configuring Allocation Analysis

Both of the following examples track allocations of java.lang.Integer in the
package com.mycompany.mycomponent. There are, however, two
differences:

In the first example (detail = leak), tracking is managed. It starts when the
user clicks start in the profiler and stops when the user clicks stop. In the
second example (detail = deallocation), tracking starts with application
startup.

In the first example, the point is disabled when it comes to regular
instrumentation. This means you will not see “new Integer” show up on an
instance tree. In the second example, you will.

375

Chapter 10 ¢ Custom Instrumentation for Java Applications

Example 1 — Managed. Tracking starts when the user clicks start and stops
when the user clicks stop in the profiler:

[Leak]

scope = lcom\.mycompany\.mycomponent\..*
class =java.lang.Integer

keyword = allocation

detail =leak

active =true

Example 2 - Unmanaged. Tracking starts with application startup:

[Leak]
scope = lcom\.mycompany\.mycomponent\..*
class =java.lang.Integer

keyword = allocation
detail = deallocation
active =true

Neither of these points captures reflected allocation. To enable reflected
allocation capture, simply append the detail “reflection” to the point (detail
= leak,reflection).

Configuring Lightweight Memory Diagnostics (LWMD)

» The following example turns on collection diagnostics for collections that
happened inside of the com.mercury.mycomponent package. You can find
this example in the auto_detect.points file. It is set to active = false by

default.
[Light-Weight Memory Diagnostics]
scope = !com\.mycompany\.mycomponent\..*
class =java.lang.Integer
keyword = lwmd

active =true

You also need to set the property lwm.diagnostics.capture=true in the
dynamic.properties file. For more information, see the HP Diagnostics User’s
Guide chapter on the "Collections and Resources View."

376

Chapter 10 Custom Instrumentation for Java Applications

Configuring Collection Leak Pinpointing

Regardless of JRE version, you must run the JRE Instrumenter using the
appropriate mode for your application server if you want to use the
collection leak pinpointing (CLP) feature in the Java Agent. Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent” for
details on instrumenting the JRE.

By default collection leak pinpointing is enabled in the auto_detect.points
file.

[Collection Leak Pinpointing]
keyword = clp

In the dynamic.properties file you can set the following properties to
configure collection leak reporting. These same values can also be set in the
Java Profiler Configuration tab UI (see “Enabling and Configuring
Collection Leak Reporting” on page 546).

clp.diagnostics.reporting=true

Enable reporting in the Diagnostics Ul You can disable reporting in the Ul
for this feature by unchecking the checkbox.

clp.diagnostics.growth.time.threshold.flag = 60m

The threshold of time duration in which the collection has size growth. If a
collection's size growth period exceeds this threshold, it will be flagged as a
memory leak by the probe. To avoid false positives, this value should be
larger than the time required by your application to fully initialize all its
caches.

clp.diagnostics.nongrowth.time.threshold.unflag = 60m
For an already flagged leaking collection, if its size stops growing

continually for this threshold time period, the probe will unflag it as a leak.

Enabling Object Lifecycle Monitoring for JDBC Result Set

A few preconfigured instrumentation points allow object lifecycle
monitoring but are disabled by default. Two of them are shown in the
following example.

377

Chapter 10 ¢ Custom Instrumentation for Java Applications

378

The example shows how to enable object lifecycle monitoring for JDBC
Result Sets. For a more detailed discussion on object lifecycle monitoring,
see the HP Diagnostics User’s Guide, chapter on "Analyzing Memory and
Obiject Lifecycle" in the section on the Allocation /Lifecycle Analysis Tab.

For this example, two actions are required:

Go to inst.properties and find details.conditional.properties. Set
mercury.enable.resourcemonitor.jdbcResultSet=true

Specify the scope in the corresponding open instrumentation points (shown
below).

In the following, the probe performs object lifecycle monitoring for JDBC
Result Sets inside package com.mycompany.mycomponent.

[Lifecycle-JDBC-ResultSet-Open]

scope = !com\.mycompany\.mycomponent\..*

class = java.sql.Statement

method = !(getResultSet.*)|(executeQuery.*)

signature = !.*\)Ljava/sql/.*ResultSet;

detail = condition:mercury.enable.resourcemonitor.jdbcResultSet,lifecycle,caller

[Lifecycle-JDBC-ResultSet-Close]

class =
I(java\.sgl\.ResultSet)|(weblogic\.jdbc\.wrapper\.ResultSet)|(com\.ibm\.ws\.rsadapter\.jd
bc\.WSJdbcResultSet)

method = I(close)|(closeWrapper)

signature =1.*

deep_mode = soft

detail =
condition:mercury.enable.resourcemonitor.jdbcResultSet,before:code:513a2b36,metho
d-trim

Chapter 10 Custom Instrumentation for Java Applications

Adding a Disabled Point and Enabling it at Runtime

» In the following example, the point is disabled. This does not mean that
instrumentation does not happen. Instrumentation happened but did
collect any data. This significantly lowers the runtime overhead of such a
point.

To enable data collection while the application is running, go to the Layer
page in the (http://<probe-host>:<probe-port>/inst/layer or from the Profiler
select the Configuration tab and then select View instrumentation), look for
layer myLayer, and click Enable.

[My Example]

class = Example
method = .*

layer = myLayer
detail = disabled

If you do not want instrumentation to happen at all, use active=false.
However, such a point cannot be enabled at runtime.

Specifying that a Method Should Never be Trimmed

> In the following example, latency trimming does not apply to
Example.myMethod().

[My Example]

class = Example
method = myMethod
detail = method-no-trim

Specifying that a Method Should Always be Trimmed

» In the following example, the method Example.myMethod() is not
reported. However, any code snippets associated with the point will always
be executed.

[My Example]

class = Example
method = myMethod
detail = method-trim, before:code....

379

Chapter 10 ¢ Custom Instrumentation for Java Applications

380

Enabling Collection of CPU Time for a Method

In the following example, the detail “method-cpu-time” causes the CPU
time to be collected for method Example.myMethod().

[My Example]

class = Example
method = myMethod
detail = method-cpu-time

Changing SAP RFC Instrumentation Based on SAP JCO
Library Version

In the <probe_install_dir>/etc/inst.properties file there are two points
defined depending on the version of SAP JCO used. Comment out the
version you are not using. Starting with version 2.1.10 or later use
com.mercury.opal.capture.inst.SapRfcinstrumentationPoint2_1_10.
Otherwise the default setting will work for version 2.1.9 and earlier.

Printing Instrumentation and Runtime Information for a
Point (Debugging Only)

The following example prints several pieces of debug information in
standard out and probe.log.

The gen-instrument-trace detail causes printing to stdout the thread stack
trace whenever this point is used to instrument a method.

The gen-runtime-trace causes printing to stdout the thread stack trace
whenever Example.myMethod() is run.

The trace detail causes printing in the probe.log verbose instrumentation
information whenever Example.myMethod() is run.

[My Example]

class = Example

method = myMethod

detail = gen-instrument-trace, gen-runtime-trace, trace

Chapter 10 Custom Instrumentation for Java Applications

Understanding the Overhead of Custom Instrumentation

When you are creating custom instrumentation, beware of
over-instrumenting the application because it can introduce excessive
latency into the probed application. Excessive latency arises from an
increase in the classloader latency as more and more classes are
instrumented. The custom instrumentation does not have the same impact
on the method latency or the CPU overhead because the overhead of
instrumentation is nearly fixed for every method because the amount of
bytecode is almost always the same. This means that the physical
percentages of the CPU and latency overhead will vary in direct proportion
to the length of time the method takes to run.

For example, if a method takes 100ms, and instrumentation makes it run in
101ms, overhead is 1%. If a method takes 10ms and instrumentation
changes its response to 11ms, overhead is 10%. If this method is not called
very often, its overall latency effect on the application is minimal. However,
the overall latency effect of an instrumented method that is called more
frequently can affect the latency of the application’s response even though
its overhead percentage is much smaller.

Unlike a traditional profiler, HP Diagnostics uses bytecode instrumentation.
This allows the default instrumentation to be selective to minimize the
overhead caused by instrumentation to an average of 3-5%. Methods with
higher latency overhead introduced by instrumentation are only
instrumented when they are called infrequently in relation to other
components in the application and when the instrumentation provides
specific information needed for triage activities (for example, JNDI lookups).

You should also consider Diagnostics data overhead when you are
customizing the instrumentation for an application. The more methods you
instrument, the more data the probe must serialize and pass over the
network to the Diagnostics Server. You can tune the Java probe’s default
configuration so that it can adjust the volume of Diagnostics data to avoid
any unnecessary effect on the performance of the system being monitored.
Improper tuning of a probe can cause CPU, Memory and Network overhead
on the physical machine where the Java Agent is installed. For more
information about managing Latency, CPU, Memory and Network
overhead, see Chapter 13, “Advanced Java Agent and Application Server
Configuration.”

381

Chapter 10 ¢ Custom Instrumentation for Java Applications

Instrumentation Control on a Per Layer Basis

By default, the layers defined in the capture points file are enabled. If you
include the details=disabled argument in a point, the layer is disabled when
the probe is started.

The classmap in JDK 1.5 provides the capability to dynamically instrument
methods and classes using the JVMTI interface without restarting the JVM
instance. All other virtual machines require that the JVM instance be
restarted to apply changes you make to the capture points files.

Once instrumentation is placed within a method, its data collection and
running CPU and method latency overhead can be controlled on a per layer
basis (see the Instrumented Layers page below).

You can access the Instrumented Layers page from the URL:

http://<probe-host>:<probe-port>/inst/layer.

[Diagnostics = .&
Instrumented layers (no particular sorting)
Layer Hits Active Points Actions
o 2/z2 [Disable] [Clear # Hits]
129707 &/ 6 [Diszble] [Clear £ Hits]
31377106 4159/ 4217 [Enable] [Disable] [Clear # Hits]
o 15/ 15 [Diszble] [Clear # Hits]
[a] 206 / 206
o 2/ 2
289945 63 f 63 [Diszble] [Clear # Hits]
110926 35/ 35 [Diszble] [Clear = H
=/1DBC/ Connection 107755 45 / 49 [Disable] [Clear # H
Database/JDBC/Execute 105821 79/ 79 [Disable] [Clear # Hi
Directory Service/INDT 175 a/a [Diszble] [Clear = H
52877 1/1 [Disable] [Clear # Hits]
Legacy/ICA/ECIConnectionFactory 51926 2/ 2 [Disable] [Clear 2 H
Legacy/ICA/ManagedConnectionFactory 2 2/z [Disable] [Clear # H
Web Tier/Serviet S5198 11/ 11 [Disable] [Clear # Hits]

HP Diagnostics J2EE Probe "WASGS_Plants_T155_W2k3", version 7.0.9.214

To disable a layer from the Instrumented Layers page, click the Disable link
associated with the layer on the page. The layer is disabled and the link
toggles to Enabled so that you can enable the layer again when necessary.

382

Chapter 10 Custom Instrumentation for Java Applications

Advanced Instrumentation Examples

Y Y Y Y Y Y Y Y

This section includes:

“Using Caller Side Instrumentation” on page 383

“URI Aggregation Instrumentation” on page 386

“CORBA Cross VM Instrumentation” on page 387

“Using RMI Instrumentation” on page 387

“Using Thread Local Storage to Store the SOAP Payload” on page 388
“Performing Correlation Across Multiple Threads” on page 389

“Using Fragment Local Storage to Store Web Service Field” on page 392

“Using Annotations for Custom Instrumentation” on page 396

Using Caller Side Instrumentation

By default, all instrumentation in Diagnostics is callee side instrumentation
where the bytecode is placed within the method call. Caller side
instrumentation refers to the process of placing the bytecode for
measurement around the call to the method to be instrumented instead of
within.

Caller side instrumentation allows finer control of instrumentation
placement, but can increase application classloader time because each class
specified in the scope must be checked for references to the class/method
specified in the points.

A common use for caller side instrumentation is to instrument calls to
methods in rt.jar. Classes loaded into the virtual machine using the
bootclassloader and not from a conventional class loader cannot be directly
instrumented. To instrument calls to these methods, you must use caller
side instrumentation.

383

Chapter 10 ¢ Custom Instrumentation for Java Applications

In the following example, the parse methods for the

javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder are
instrumented by placing bytecode around the calls to parse in any (!.*)
method from any class. Caller side instrumentation is required because both
the javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder
classes are contained in the rt.jar and loaded into the virtual machine by the

bootclassloader.

[XML-DOM-JDK14]

R Interface --------------

Class = ljavax\.xml\.parsers\.(SAXParser|DocumentBuilder)
method = parse

signature =1.*

scope = L.*

layer = XML

In the following example, instruments calls to javax.naming.Context's
"lookup" method that are called from the com.myCompany.myFoo classes

and places them in the JNDI sublayer in the FOO layer.

[JNDI-lookup-FOQ]

et Server side JNDI hook --------------
class = javax.naming.Context

method = lookup

signature = (Ljava/lang/String;)Ljava/lang/Object;
scope = lcom\.myCompany\.myFoo\..*
deep_mode = soft

layer = FOO/JNDI

384

Chapter 10 Custom Instrumentation for Java Applications

Notes:

» To verify that the point has caused the bytecode to be properly placed,
check the <probe_lInstall_dir>/log/<probeName>/detailReport.txt file
for the entries Unique Header Name (that is, [[NDI-lookup-FOO]).

» During final triage steps for a performance issue, it can be impractical to
use the classmap and individual build points for every method called by
a suspect area of the application. It is very common to use one or more
levels of caller side instrumentation to identify the time spent within an
individual method or methods that have a suspected bottleneck. This is a
useful way to fill in the next level to a Call Profile in Diagnostics.

The following example instruments any call to a method that is performed
within the com.myCompany.myFoo class by the "myMethod" method:

[MethodsCalledByFoo.myMethod]

class = 1.*

method = 1.*

scope = lcom\.myCompany\.myFoo\.myMethod.*
layer = FOO/other

The following example also captures the arguments to any "set" method
called in com.myCompany.myFoo class by the "myMethod" method:

[SetMethodsCalledByFoo.myMethod]

class = I.*

method = Iset.*

scope = lcom\.myCompany\.myFoo\.myMethod.*
detail = args:1

layer = FOO/other

385

Chapter 10 ¢ Custom Instrumentation for Java Applications

386

URI Aggregation Instrumentation

Applications typically use the same URL to access different workflow. If the
application uses a URI (for example,
http://<myserver>/myApplication?page=home) argument to differentiate the
between the workflow, Diagnostics can be configured to parse and treat the
different URIs as different server requests.

URI aggregation is controlled from the [HttpCorrelation] point. A valid
regular expression entry for args_by_class should be created for each URI
pattern.

The following example allows the ServerRequests to appear uniquely in the
Diagnostics console:

http://<myserver>/myApplication?page=home
http://<myserver>/myApplication?page=openReport

[HttpCorrelation]
args_by_class=!.*&page

The following example shows that more than one URI parameter can be
used for URI parsing:

args_by_class=!.*&page&role

Note: Avoid using a session parameter or highly unique URI value because
of the impact to overhead and data storage.

In a WebLogic environment, set the use.weblogic.get.parameter=true in
<probe_install_dir>/etc/inst.properties when using URI aggregation to
prevent URI aggregation from consuming the ServletRequest's inputstream.

Chapter 10 Custom Instrumentation for Java Applications

CORBA Cross VM Instrumentation

The Common Object Requesting Broker Architecture (CORBA) standard
enables components written in different computer languages and running
on different systems to work together.

Instrumentation for correlating CORBA cross VM instance trees is provided
in the <probe_install_dir>\etc\auto_detect.points file.

Follow these steps in to enable cross-VM instance trees for CORBA:

1 Uncomment the Corba cross-VM points in the auto_detect.points file.

Specify the following JVM argument at Application Server startup:

-Dorg.omg.Portablelnterceptor.ORBInitializerClass.com.mercury.opal.javaprobe.
handler.corba.CorbaORBinitializer

Put the following jar file in the classpath:

<java-agent-install-dir>/lib/probeCorbalnterceptors.jar

Using RMI Instrumentation

The RMI (Cross-VM) point in the capture points file is inactive by default.
You must activate this point to capture the cross-vm processing in the
application. If you have Java probes with this point activated on both sides
of an RMI call, Diagnostics can correlate the call tree data from both virtual
machines.

[RMI]

keyword = rmi
layer = CrossVM
active = false

387

Chapter 10 ¢ Custom Instrumentation for Java Applications

388

RMI Instrumentation In a Clustered Environment

The weblogic.t3.rmi property in the <probe_install_dir>/etc/inst.properties
file controls how the RMI instrumentation captures Cross-VM RMI
performance metrics. By default, weblogic.t3.rmi is set to false, which causes
the performance metrics to be gathered using the generic RMI
instrumentation. In a clustered environment, all servers in a cluster must
have RMI instrumentation turned on to avoid application failure when
weblogic.t3.rmi is set to false.

When weblogic.t3.rmi is set to true, the generic RMI instrumentation is
disabled, and the RMI Cross VM is captured using only WebLogic’s T3
protocol. This allows the Java probe to function with only some of the
servers in a cluster probed with RMI instrumentation enabled.

Using Thread Local Storage to Store the SOAP Payload

The following example demonstrates usage of thread local storage. In
particular, it shows how to store (and clean) the SOAP payload from thread
local storage. SOAP payload is captured by default only for certain
application servers. For more information on the support matrix, see
“Configuring SOAP Fault Payload Data” on page 535.

The following example is applicable only for application servers where
Diagnostics does not capture payload out of the box.

First, it is necessary to identify where to access the payload from. Assume
that the payload is the second argument of a method called
DispatchController.dispatch().

Chapter 10 Custom Instrumentation for Java Applications

The keyword store-thread causes the Java probe to store the special fields in
the corresponding code snippet (in this case, My_Inbound_Payload) into
thread local storage. This can be referenced from a different code snippet
provided both points are hit on the same thread. Looking up the payload is
demonstrated in the next example (“Using Fragment Local Storage to Store
Web Service Field” below).

[MyAppServer-SoapPayload-Capture]

class = com.myCompany.DispatchController
method = dispatch

signature = !\(Ljava/lang/Object;Ljava/lang/Object;\).*
layer =Web Services

detail = before:code: ae7f0a58,store-thread

Used by [MyAppServer-SoapPayload-Capture]
ae7f0a58 = ##My_Inbound_Payload=#arg2;"";

Performing Correlation Across Multiple Threads

Asynchronous Server Requests are server requests that switch threads
between server request start and end events. In the most simple case, one
thread receives the request, partially processes it, and then hands it off to
another thread to complete processing and to send the response back to the
requesting party.

Diagnostics offers two operations, available through code snippets, to allow
the Java agent to perform correlation across multiple threads:

» parkFragment(Object anchor)

389

Chapter 10 ¢ Custom Instrumentation for Java Applications

390

This operation is executed to indicate that the current thread will no longer
run the current server request. All method invocations, as recorded by the
Java Agent, are artificially terminated at this point. This is to indicate that
even though some of these methods will continue execution, their activity
will have nothing to do with the current server request. Furthermore, even if
the current thread will invoke some instrumented methods after calling
parkFragment, these calls will not be reported. The server request is no
longer considered running, and the specified object (anchor) is used by the
application as a unique identification of the server request to be resumed
later (presumably, by another thread).

resumekragment(Object anchor)

This operation is executed to indicate that the current thread resumes
execution of previously parked server request. The argument (anchor) is
used to identify the server request. All active method invocations will have
their start time artificially reset to the current time. This is to indicate that
even though some time may have elapsed while these method were
executing, their execution had nothing to do with the server request being
resumed. If the current thread was already running a server request, it will
be ignored (dropped).

When using these operations, it is essential that the correct anchor object, as
well as the correct thread switching points are identified by the application
specialist.

Beware of race conditions: if the fragment is reported "parked" too late, after
the corresponding resume operation is performed, the fragment will get lost
(and a warning will appear in probe.log). Two useful techniques to avoid the
race condition are: first, calling parkFragment slightly before the current
thread really abandons the server request, and second, try to piggyback the
application built-in synchronization which is often used to hand off an
object from one thread to another.

A "parked" fragment can be seen using the pending-fragment servlet, as
"PARKED SERVER REQUEST" displayed in place of the currently running
method.

Chapter 10 Custom Instrumentation for Java Applications

The feature usually requires you to identify the thread switching points in
the monitored application, and to provide the corresponding
instrumentation points with code snippets. Out of the box support is
provided for BEA Aqualogic.

Examples of two instrumentation points with the corresponding code
snippets are presented below. They are a part of the AquaLogic support.

The first point presented below is executed whenever AqualLogic sends a
sub-request to another server. The instrumented method,
PipelineContextImpl.dispatch(...) returns true if the sub-request was
successfully sent. The thread sending the sub-request does not wait for a
response, but proceeds to pick up the next server request from a pipeline.

Therefore, the code snippet examines the return value, and if it is true,
signals to the probe that the current server request will be suspended. The
server request is identified by a MessageContext object, which AquaLogic
creates for every incoming server request.

[BEA_ALSB_AsyncDispatch]

; instrumentation point for AqualLogic Service Bus asynchronous dispatch
class = com.bea.wli.sb.pipeline.PipelineContextimpl

method = dispatch

signature = !\(Lcom/bea/wli/sb/context/MessageContext;.*

detail = after:code:549b1b59

layer = Service Bus/Aqualogic

Used by [BEA_ALSB_AsyncDispatch]

Asynchronously dispatches a subrequest for a service, the response will be
processed on another thread

549b1b59 = (#return == true ?
@ThreadContextProxy@.parkFragment(#location,#arg1l) : void);

Upon receiving a response from the sub-request, AquaLogic executes
RouterCallback.onReceiveResponse(...), possibly on another thread. The
processing of the original server request resumes, and this is signaled to the
probe by the code snippet.

391

Chapter 10 ¢ Custom Instrumentation for Java Applications

392

In this case, the MessageContext object representing the server request is
not available as an argument of the instrumented method and needs to be
extracted from the RouterCallback object.

[BEA_ALSB_ProxyService_Callback_Response]
; instrumentation point for AqualLogic Service Bus callback function

class = com.bea.wli.sb.pipeline.RouterCallback
method = !(onError)|(onReceiveResponse)
signature =1.*

layer = Service Bus/Aqualogic

detail = before:code:dba72078

Used by [BEA_ALSB_ProxyService_Callback _Response]

Resume processing of a server request when the reply for a subservice comes back
(or when the server request was moved to the response pipeline internally)
dba72078 =
@ThreadContextProxy@.resumeFragment(#location,#callee._context.getMessageCon
text());"";

Using Fragment Local Storage to Store Web Service Field

The following example demonstrates several features of points and code
snippets:

How to use fragment local storage to store web service-specific fields
(ws_name, ws_op, and so on). This is an alternative to specifying the
“DIAG_ARG” string.

How to retrieve (and remove) the stored payload from thread local storage
(which was stored in the previous example).

» How to extract the consumer ID out of the SOAP payload.

» How to use fragment local storage to store the consumer ID.

Because web services are treated in a special way, several fields must be
captured. These fields are described in “Code Snippet Grammar” on
page 350.

Chapter 10 Custom Instrumentation for Java Applications

The first step is to find the instrumentation points that will give access to
the required fields (Web Service name, operation, namespace, port name).
Suppose that there is a single class in the instrumented application that has
access to all these fields. Assume that this class is called
com.myCompany.MyWSContext. We need to access an instance of this
class when all the above fields are set. There can be many options. Suppose
that one such option is when MyWSContext is passed as the first argument
of a method MyWSFactory.create(). This is the method we want to
instrument.

Here is our instrumentation point (each line is explained below):

class = com.myCompany.MyWSFactory

method = create

signature = !\(Lcom/myCompany/MyWSContext;.*

layer = Web Services

detail = ws-operation, before:code: f334f0b4,store-fragment

The first three lines of the point shown above cause the probe to instrument
anything that matches
com.myCompany.MyWSFactory.create(MyWSContext, *).

The fourth line specifies the layer for this point.

The fifth line provides the probe with additional information about this
point (details):

» The first detail (ws-operation) is important because it causes the probe to
treat this as an inbound Web Service.

» The second detail (before:code: £334f0b4) causes the probe to insert the
corresponding code snippet at the start of the methods that comply with
this point. The actual code snippet is shown below. The number £334f0b4
was generated by going to

http://<probe-host>:<probe-port>/inst/code-key and pasting the code
snippet in the text box.

» The third detail (store-fragment) causes the probe to store all special
fields (##) found in the corresponding code snippet as attributes of the
server request.

393

Chapter 10 ¢ Custom Instrumentation for Java Applications

394

Here is the corresponding code snippet (each line of the below code snippet
is explained below).

f334f0b4 = #wsContext=#argl;\
##WS_inbound_service_name=#wsContext.getServiceName();\
##WS_inbound_operation_name=#wsContext.getOperationName();\
##WS_inbound_target _namespace=#wsContext.getNamespaceURI();\
##WS_inbound_port_name=#wsContext.getEndpoint();\

#soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("My
_Inbound_Payload");\

#consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerldFromDo
cument(##WS_inbound_service_name<java.lang.String>,#soap_payload<org.w3c.do
m.Document>));\

##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

First line: f334f0b4 = #wsContext=#arg1;\

As mentioned previously, the number f334f0b4 was generated by going to
http://<probe-host>:<probe-port>/inst/code-key and pasting the code
snippet in the text box. The actual code snippet starts after f334fOb4 =. The
first expression is #wsContext=#argl. It simply assigns the first argument of
the method—in this case, a MyWSContext object—to a local variable
(wsContext).

Second line: ##WS_inbound_service_name=#wsContext.getServiceName();\

This expression uses fragment local storage to store the service name. It is
important to use the exact variable name (WS_inbound_service_name).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Third line: #WS_inbound_operation_name=#wsContext.getOperationName();/

This expression uses fragment local storage to store the ws operation. It is
important to use the exact variable name (WS_inbound_operation_name).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Fourth line: ##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\

Chapter 10 Custom Instrumentation for Java Applications

This expression uses fragment local storage to store the ws namespace. It is
important to use the exact variable name (WS_inbound_target_namespace).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Fifth line: ##WS_inbound_port_name=#wsContext.getEndpoint();\

This expression uses fragment local storage to store the ws port name. It is
important to use the exact variable name (WS_inbound_port_name). These
variable names are documented in the “Special Fields” section of “Code
Snippet Grammar” on page 350.

The above first five lines are sufficient to successfully capture the inbound
Web Service. The remaining of the code snippet deals with capturing the
consumer ID out of the SOAP payload. This is optional and only if the
instrumented application server is not one of the application servers
supported for capturing SOAP payload out of the box. See the previous
example for details. In the followings example, we refer to the SOAP payload
that was captured in the previous example.

Sixth line: #soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getAndRemoveThrea
dContextValue("My_Inbound_Payload");\

This expression retrieves and removes the stored payload from thread local
storage (see the previous example on how this was stored) and stores it on a
local variable (soap_payload).

Seventh line: #consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerld
FromDocument(##WS_inbound_service_name<java.lang.String>,#soap_payloa
d<org.w3c.dom.Document>));\

This expression sets a consumer_id local variable. If the payload is null, the
consumer_id is set to null. Otherwise, we use the service name to perform
consumer ID matching based on the consumer.properties entries. For more
information on consumer ID matching, see “Configuring Consumer IDs” on
page 524.

Eighth line: ##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

395

Chapter 10 ¢ Custom Instrumentation for Java Applications

396

In this final line, this consumer ID local variable becomes the consumer id
for this server request. It is important to use the exact variable name
(WS_consumer_id). These variable names are documented in the “Special
Fields” section of “Code Snippet Grammar” on page 350.

Using Annotations for Custom Instrumentation

Applications that use version 1.5 or greater of the JVM can “force” the
instrumentation of methods by simply using a custom annotation
(InstrumentationPoint) that is contained in the annotation.jar file in the
Diagnostics Java Agent lib directory. Put a copy of this file in your classpath
when compiling your classes using the InstrumentationPoint annotation.
The annotation is defined as follows (InstrumentationPoint.java):

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
*

*/
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = ElementType.METHOD)
public @interface InstrumentationPoint {

String layer();

String keyword() default “”;

String layerType() default “method”;

String detail() default “”;

String code() default “”;

Boolean active() default true;

}

This feature requires that the look.for.annotations property in
inst.properties is set to true (default).
Development

Add the path to the annotation.jar (or copy the jar into your application)
file found in the Diagnostics Java Agent lib directory to your application
build classpath.

Import the classes for any methods that need to be monitored:

import com.mercury.diagnostics.common.api.InstrumentationPoint;

3 Identify methods to be monitored and add the annotation:

Chapter 10 Custom Instrumentation for Java Applications

@InstrumentationPoint(ARGS)

public void launchTest4()

In this instance, ARGS includes the following (refer to points file
documentation for more information about what these arguments mean):

layer="layer name"

keyword= "keyword"

>

>

> layerType="type"
> detail="details"
>

active="true/false"

Example

The following example shows code that uses the InstrumentationPoint
annotation.

/*
* (c) Copyright 2008 Hewlett-Packard Development Company, L.P.

*/

import com.mercury.diagnostics.common.api.InstrumentationPoint;

@InstrumentationPoint(layer="my_app”,detail="diag,method-no-trim,method-cpu-tim
en)
public void myMethod1(Object x, String y) {

}

In the example, myMethod1 will get instrumented and be visible as a node
in all instance trees. It will not get trimmed, even if its latency goes below
the minimum method latency threshold (51 ms by default). The inclusive
(including children) CPU consumption by this method will be measured
and reported.

397

Chapter 10 ¢ Custom Instrumentation for Java Applications

Configuring Cross VM Correlations for New or Custom
Technologies

398

Diagnostics can show call profiles that span multiple Java virtual machines
(JVM). These Cross VM call profiles and topologies are very useful when a
performance issue involves a client and a server. You want to know which
application is the source of the problem but looking at the call profile for
the client or server individually may not help with intermittent issues since
they would not be correlated. The Cross VM call profile will show the client
and the server correlated together in a single call tree.

Out-of-the-box the Java Agent provides support for this feature for many
different technologies: for example, JMS, HTTP/S (Web Services only), RMI,
SAP, TIBCO and Corba. With the latest version of Diagnostics, additional
support was added to help you configure cross VM correlation for new or
custom technologies.

The Cross VM correlation technique is exposed in code snippets, allowing
you to prepare instrumentation points and code snippets to correlate almost
any inter-process communication, including home-grown and legacy
communication techniques. The only requirement for the communication
technique is that its messages be able to carry an additional string, which is
referred to as coloring.

The coloring string is created on the client side by the Java Agent, and
attached to the outgoing message by a user-written code snippet. After the
message is received, a user-written code snippet on the server side extracts
the coloring from the message and passes it to the server side agent for
parsing and processing.

Thus, your responsibility related to the cross-vm communication technique
is primarily limited to embedding the coloring into the outgoing messages,
and extracting the coloring from the received messages. This, of course,
includes identifying the code locations (instrumentation points) for the
client side (the outbound point), and for the server side (the inbound
point). Refer to “Tutorial for Configuring Cross VM Correlation for Custom
Technologies” on page 403 for a detailed example. And refer to “APIs Used
to Facilitate Custom Transport Cross-VM Correlations” on page 401 for
information on the three APIs provided to help you configure custom
cross-vmm correlation.

Y Y VY Y

Chapter 10 Custom Instrumentation for Java Applications

Client Side

For the outbound calls (the client side), use the new
outbound:<coloring-type> detail.

The available coloring types are:
default

sap

none

snippet

For all coloring types except none, there should be an associated code
snippet, which will provide a special argument containing the technology
type, the call target name and identification.

The argument has the following form:
DIAG_ARG:type=<type>&name=<name>&target=<target>

where <type> is the technology type used for the remote call, and <name>
and <target> are technology dependent values. The technology type should
be the same as the one used for the inbound instrumentation point (see
“Server Side” on page 401).

For all coloring types except snippet, the probe will generate the appropriate
coloring and it will report the coloring to the Diagnostics Server for future
correlation. However, the outgoing message remains unmarked at this time.

For all coloring types except none, a code snippet for another
instrumentation point (which is hit after the outbound point, preferably
during the outbound method execution) must attach the generated coloring
to the outgoing message.

The most recently generated coloring can be obtained by calling
ICorrelationColor RemoteCaptureProxy.getCurrentColor(#location).

399

Chapter 10 ¢ Custom Instrumentation for Java Applications

400

In developing support for your own cross-vim communication, you may use
snippet, which means that the coloring will be explicitly created by a direct
call from a code snippet. For the snippet coloring the above order is
reversed, which means the coloring is generated (and, most often,
immediately attached to the message) before the outbound point is hit.
Please note that this includes a case where the before code snippet for the
outbound point creates the coloring, because the code snippet will be
executed before the agent is called.

To create the coloring from code snippets:

Make a call to
ICorrelationColor RemoteCaptureProxy.createColoring(#location, <type>,
<diag-arg>)

For type, use
RemoteCaptureProxy. ENCODED_COLORING for default
RemoteCaptureProxy.SAP_R3_COLORING for sap

If in doubt which type to use, use the default.

Make a call to grabCorrelationString() on the object returned in step 1, and
insert the returned string into the outgoing message (using a
technology-dependent technique). This is where you can use your creativity.

Tip: If using String messages, use the following helper API to accomplish this
step:

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

Hit an instrumented point with the outbound:snippet detail. This will
automatically use the most recently created coloring instead of creating a
new one. Executing the outbound point informs the probe that the coloring
was actually used, and identifies the method which will be considered the
connection point for cross-vm call profiles. For synchronous cross-vm
communication it is recommended to use outbound detail for a method
that is used to both send the message and receive an acknowledgment, so
the latency of the outbound call can be properly captured.

Chapter 10 Custom Instrumentation for Java Applications

Server Side

For the inbound calls (the server side), use the inbound:<technology-type>
detail. Use your own technology type names when supporting new cross-vin
technologies. Check to avoid conflicts with existing technology names
(server request types). Examples of server request types include: ADO, CICS,
Corba, HTTP, JDBC, JMS, MSMQ, RMI, Remoting (.NET), SAP ABAP types,
Web Services. In addition, you may see server request types named Pseudo
and RootRename.

The before code snippet has to perform the following steps:

Extract the correlation string from the incoming message, using the
technology-dependent technique, corresponding to the one used for the
outbound calls.

Tip: If the ProbeCodeSnippetHelper.createDiagEnvelope() was used
previously, use
ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String
envelope) to get the correlation string.

And use
ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String
envelope) to get the original message.

Leave TWO Strings on the stack: the capture argument (as any before code
snippet should), and the extracted correlation string.

APIs Used to Facilitate Custom Transport Cross-VM
Correlations

Three helper APIs were added to facilitate custom transport cross-VM
correlations (see the tips in the sections above and see “Code Snippet
Helper” on page 354 for information on their use. There is also a “Tutorial
for Configuring Cross VM Correlation for Custom Technologies” on

page 403 to walk you through an example.

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

401

Chapter 10 ¢ Custom Instrumentation for Java Applications

» ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String
envelope)

» ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String
envelope)

HTTP/S Support

The support for the server side HTTP/S is built in and is enabled by default.
The Java Agent automatically recognizes standard J2EE implementation of

HttpServlet, as well as Jetty and Apache Catalina implementations. No user
action is required on the server side, if one of these technologies is used.

For the client side, the Java Agent automatically instruments the
openConnection method from the java.net.URL class, to embed the most
recently generated coloring (if it exists) into the outgoing HTTP request.
One of the HTTP request headers is used to carry the coloring. The header
will be recognized by the server side agent.

Therefore, HTTP support on the client side is an exception to the above
rules. You still have to provide the outbound point and the corresponding
DIAG_ARG, but you do not have to worry about embedding the coloring
into the outgoing messages.

For example, Diagnostics mediators use the following point:

[RemoteHttpComponent-Outbound-1]

class = com.mercury.diagnostics.common.net.registrar.RemoteHttpComponent
method = getConnection

signature = (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;Ljava/lang/String;)Ljava/net/HttpURLConnection;

priority =1
detail = method-no-trim,outbound:default,before:code:7b1125e2
layer = Network.RemoteHttpComponent

402

Chapter 10 Custom Instrumentation for Java Applications

The first argument for the getConnection method is a String representing
the connection URL. The referred code snippet extracts from it the
hostname and port and uses them for the target identification. A special
utility method is provided by RemoteCaptureProxy to facilitate this
conversion in a way consistent with the built-in part of the HTTP/S support.

7b1125e2 = #target=@RemoteCaptureProxy@.getTargetFromUri(#argl); \
"DIAG_ARG:type=http&name="+#target+"&target="+#target;

Tutorial for Configuring Cross VM Correlation for Custom
Technologies

This tutorial takes a simplified client-server application that uses a shared
blocking queue as its custom transport solution. The client sends a "String"
message by adding it to the queue. The server receives a "String" message by
removing it from the queue.

Although this example runs in a single JVM (to keep it simple), it uses two
threads to simulate an application running in two JVMs. (If your intention
is to correlate threads running in a single JVM, there is a simpler solution
that will help you do this. See“Performing Correlation Across Multiple
Threads” on page 389 for more details).

The sample code is shown below:
public class SimulatedCrossVM {
private static int INTERVAL =5 * 1000; // 5 seconds
private static BlockingQueue<String> queue = new LinkedBlockingQueue<String>();
private static class ReceiverSide extends Thread {
public ReceiverSide() {

super("Receiver");

}

public void execute(String receivedString) throws InterruptedException {
System.out.printin("Executing message: " + receivedString);
sleep(2 * INTERVALY);

}

403

Chapter 10 ¢ Custom Instrumentation for Java Applications

private void receiveAndHandleMessage() throws InterruptedException {
String message = null;
message = queue.take();
/I Handle it
execute(message);

}

public void run() {
try {
while (true) {
receiveAndHandleMessage();
}

}
catch (Throwable t) {

// oops
t.printStackTrace();
}
}
}

private static class SenderSide extends Thread {

/I For simulated TCP connection
private String destHost;
private int destPort;

public SenderSide(String host, int port) {
super(host + ":" + port);
destHost = host;
destPort = port;

}

public void sendMessage(String origMessage) throws InterruptedException {
queue.put(origMessage);

}

private String generateMessage() {
String message ="T" + System.currentTimeMillis();
return message;

}

private void generateAndSendMessage() throws InterruptedException {
sleep(2 * INTERVAL);
/I generate message
String message = generateMessage();

404

Chapter 10 Custom Instrumentation for Java Applications

System.out.printin("Sender's original message: " + message);
/I And send it (outbound call)

sendMessage(message);

sleep(INTERVAL);

}

public void run() {
try {
while (true) {
generateAndSendMessage();
}

}
catch (Throwable t) {

I/l oops
t.printStackTrace();

}
}
}

public static void main(String[] args) {
SenderSide sender = new SenderSide("fake-host", 12345);
ReceiverSide receiver = new ReceiverSide();

sender.start();
receiver.start();

}
}

Executing this code will have the following output:
Sender's original message: T1313785958127

Executing message: T1313785958127

405

Chapter 10 ¢ Custom Instrumentation for Java Applications

406

Step 1: Instrument Your Methods

By instrumenting your methods, you let Diagnostics know which methods
are important. Since these methods are custom, the out-of-the-box
instrumentation points won't do anything. Edit the etc/autodetect.points
file by adding the following instrumentation points. See “Maintaining
Instrumentation from the Java Profiler UI” on page 412 for guidance on
defining instrumentation points.

[SimCrossVM-Sender]

class = SimulatedCrossVM$SenderSide
method = generateAndSendMessage
signature =1.*

layer = Sending

[SimCrossVM-Outbound]

class = SimulatedCrossVM$SenderSide
method = sendMessage

signature =L.*

layer = Sending

[SimCrossVM-Receiver]

class = SimulatedCrossVM$ReceiverSide
method = receiveAndHandleMessage
signature =1.*

layer = Receiving

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide
method = execute

signature =1.*

layer = Receiving

Chapter 10 » Custom Instrumentation for Java Applications

Result: Running this instrumented test program, you see the following
Server Requests:

1505 T T T T T T T T T
10:59:30 110000 11:00:30 11:01:00 110130 110200 110230 11:03:00 11:0330 110500

Fil G3MQ011 FROBMEMT FA08M9MT1 FIO0SM8M1 FROSMM FrOBHSMT FriOSM9M1 FHO0SMEM1 FROSMaM1 FOBMeM1

2 [Catency (Ang) <showing thisshald>]

Table it
Status | Calor | Chant? | Servel Request | Probe | Latenty | Thioughput | CPU jAvg]
o SimulatedCrossVMERaceiver Side receiv... SimulseCrassvm 1608 228w 0.0 ps
© mmm [SmustedCrossVMSSenderSide.generst... SimuliteCrossVM 150% 240 /e 0.0ps

Here are the call profiles shown for the sender and receiver.

0 23 4s 6s Bs 10s 128 14s 158

Thread.sleep()

SimulatedCrossVM$ReceiverSide.execute()

pckSupport.park

Unsafe.park()

407

Chapter 10 ¢ Custom Instrumentation for Java Applications

408

Step 2: Add “Coloring” to the Sender Logic

In this step, we add "coloring" to the messages sent by the client. When the
instrumented server receives this colored message, HP Diagnostics will
correlate them. This part is trickier, if you're not familiar with the code
snippet syntax, it is described in “Defining Points With Code Snippets” on
page 348.

First, we mark the method as an outbound point that uses a code snippet
(outbound:snippet), and identify the code snippet to execute before
invoking the method (before:code:5ea4753f). Since we're going to use the
first argument, it's a good idea to provide a more specific signature (!\(Ljava/
lang/String;.*).

[SimCrossVM-Outbound]

class = SimulatedCrossVM$SenderSide

method = sendMessage

signature =!\(Ljava/lang/String;.*

layer = Sending

detail =outbound:snippet,before:code:5ea4753f

The corresponding code snippet is shown below. Line 1 creates a string
(#target) that includes the hostname and destination port of the server. Line
2 defines a new string (#diagArg) that follows a special syntax
(DIAG_ARG:type=<type>&name=<name>&target=<target>). The "type" is
the technology type and can be any name you choose; it will be used in the
next step. The "name" and "target" are technology dependent values that
will be shown in the UI; they can also be anything you choose. Line 3
defines a third string (#color) which will be used to identify this specific
invocation of the method call from any other. Line 4 updates the method's
1st argument with the colored String, which will cause sendMessage to send
a modified String. Finally, line 5, places the coloring on the stack for usage
by HP Diagnostics.

Sea4753f = #target=#callee.destHost+":"+#callee.destPort; \

#diagArg =
"DIAG_ARG:type=CB-TCP&name=Senders.sendMessage&target="+#target; \

Chapter 10 » Custom Instrumentation for Java Applications

3 #color = (null == #argl ? null :
@RemoteCaptureProxy@.createAndGrabColor(#location,
@RemoteCaptureProxy@ENCODED_COLORING, #diagArg.toString())); \

4 #argl = @ProbeCodeSnippetHelper@.createDiagEnvelope(#color, #argl); \
5 #diagArg;

Running the example updates the output as follows. Notice the receiving
side did not get the same string message that was sent. This is a result of the
code snippet's Line 4. In many cases, the receiving side may not handle this
well. It's a good idea to note the receiver's behavior as this can happen
"accidentally" if the client and server are not both using the same
instrumentation, and in particular, not both instrumented.

Sender's original message: T1313786970403

Executing message: HP_DIAG1_!Dhf/
ABAABKrh3QfOcy7yalLsAAAAAAAIMYWtILWhvc3Q6MTIZNDUAYTEZMTM3ODYSN
jAzODgmU21tdWxhdGVDcm9zc1ZNJINpbXVsYXRIZENyb3NzVKkOkU2VuZGVyU2lk
7552b21kIGdIbmVyYXRIQWSkU2VuZE11c3NhZ2UoKSZcMCZcMCZcMCY=:T131378
6970403

At this point, the only change you'll see in the Ul is some "Outbound Calls".
Notice the values in the columns "Outbound Call" and "Remote Target",
these are the values you provided in the code snippet "name" and "target".

tran B0
B al= 8
00 g
0 T I [[I
000
o000 e
2000 4 -
0 g
00
2000 4
00 s
a T T T T T T
135700 134T 30 34000 134830 1348 00 12430 132000 A3 5030 A3 S 100 S0
Fri GRUTRAY Fil paA1R Y Fil 0RARA 1 FaQarind g Fs Q3@ 4 Fri GRITR Fal ety Froamw1t FRoaAgry FrogHar e

2 [Latsacy fng) irhoing Hoathcidi

Labsacy ® *1 .
Crenr Thissheld Latency Thisughpat Il

| 3 =N cenders sendMessage fohernst1ZM5 SmustedCr Side Simuiste CrosTVM 1455 85 fhr

Siatwr | Caloa | Charl? Dutkoend Call Fieacon Target riginaticg Seroe e gawrt Criginating Prehs

409

Chapter 10 ¢ Custom Instrumentation for Java Applications

410

Step 3: Remove Coloring from the Receiver Side

The last step is to remove the coloring on the receive side so that the
receiver can get the original "uncolored" message from the sender. First we
mark the point as an inbound point with the technology type used in the
code snippet defined in step 2, and assign a code snippet to run before this
method is called. Again, we also specify a more specify signature since that
argument will be used in the code snippet.

[SimCrossVM-Inbound]

class = SimulatedCrossVM$ReceiverSide

method = execute

signature =!\(Ljava/lang/String;.*

detail =before:code:d2c83d3c,inbound:CB-TCP
layer = Receiving

The corresponding code snippet is shown below. Line 1 extracts the coloring
from the incoming message. Line 2 updates the method's 1st argument,
restoring it to the original message sent by the client. Line 3 puts the
coloring on the stack (and an empty String) for use by HP Diagnostics.

d2¢83d3c =
#coloring=@ProbeCodeSnippetHelper@.extractColoringFromDiagEnvelope(
#argl); \

#argl=@ProbeCodeSnippetHelper@.extractOriginalMessageFromDiagEnvelope(
#argl); \

"".#coloring;

The program's output is now restored to the original:

Sender's original message: T1313789287234
Executing message: T1313789287234

Chapter 10 » Custom Instrumentation for Java Applications

The Server Request view now shows a Cross-VM call profile is available for
the Sender's "generateAndSendMessage". Open this call profile and observe
the client and server call profiles are now stitched together! They're not
doing much in this sample application, but in a real application, you would
be able to see if performance issues occur in the client, server, or both.

0o T T T T T T T T T T
1942800 19:2030 19:20.00 12030 14:27 00 14:27 30 14:28:00 12320 142000 194:20:30
Fri G@Mae11 Fri Cewdd Fri aragnq Fri 08740814 Fri 0874981 Fri QA9 Fri ORAGM1 Fri Gl 4 Fri gaMa11 Fri G@feead

2. [Erteney (Reg) <shorsing thiasheld]

Lateney % w1 | | | |
Etabus I Caler I Chart? | Sarcet Regquesi | Frake Ot Thissh_. Latamcy Theeughput CFU (Avg)
© W Y sinulstedCrozsVMEReceiver Skie receiveAndHendleMessagel SimuloteCrossVid 1608 601k 04 p2
[[SimmatstedCross Vg Sender Side generatesndSendiessage() | Smulate Cross\VM 150s Bty 00 s
@ | B simatatec CroesVIERecavEr Skia sxacite0 Simulpte Crozsvid 1003 [0l 00 p
] 1 4s s B3 04 128 s 158

SimulatedCrossVM3$SenderSide.generate AndSendMessage()

Thread.sleep() Thread.sleep{)

SimulatedCrossVM$ReceiverSide.execute()

Thread.sleep()

41

Chapter 10 ¢ Custom Instrumentation for Java Applications

m

This call profile looks a bit strange but is typical for asynchronous
applications. The client does not wait for a response, but does continue to
do some processing (err sleeping for 5 seconds). During that time the server
is processing the request and completes a few seconds afterwards. You will
see the time durations for the methods in the tree as shown below. Notice
also the diamonds with the number 2 inside, which represent the JVM
depth. If your server made yet another outbound call, you could have 3 or
more! In those cases, cross VM correlation because especially useful. Imagine
trying to find the source of a performance issue across that many JVMs!

Simulated Croas VIS Sendar Skde generaiefndSendMezaage) 163

89z

= 4 0% Cutbound Callo Senders sendiessags on probe Serulste Crossvl on razssind americas hpagcorp net 08 ms
o2 gae% SimulsedCrossVMEReceiver Side execue) 108

2 E59% Thead.slsep() 49s

483

Maintaining Instrumentation from the Java Profiler Ul

412

You can use the Configuration tab in the Java Diagnostics Profiler to
maintain the instrumentation points and edit the probe configuration
without having to manually edit the Java Agent capture points file or
property files. You can access the Configuration tab from the Java
Diagnostics Profiler whether profiling has been started or not.

The Instrumentation section of the Java Diagnostics Profiler gives you
access to view and update the instrumentation for the application the probe
is monitoring. The edit dialogs enable you to view and edit the
instrumentation points as defined in the capture points file that Diagnostics
uses to instrument your applications.

Instrumentation

Currently Used Instrumentation; View, ..
hange Probe Instrumentation Plan

Shared Instrumentation: Edit... [157 poinks] Uzed by all probe instances.

il

Instance Instrumentation; Edit... [0 poirks] Used by probes with Id: T-LC7?

Chapter 10 » Custom Instrumentation for Java Applications

Reviewing the Current Instrumentation

To review the layers, classes, and methods that were instrumented as a result
of the points in the current capture points file, click View... in the
Instrumentation section of the Configuration tab. The Profiler displays the
Instrumented Layers page:

EF Diagnostics mat
Instrumented layers (no particular sorting)
Hits Active Points Actions
97529 1/1 [Cisable] [Clear # Hits]
738356 12 /12 [Cisable] [Clear # s
1004363 2861 / 2861 [Disable] [Clear # Hits
v} 12 /12 [Cisable] [Clear # s
v} 1/1 [Cisable] [Clear # s
Business Tier/EIB/Entity Bean 436449 596 / 596 [Cisable] [Clear # s
Business Tier/EIB/Session Bean 483922 110/ 110 [Cisable] [Clear # s
Database/IDBC/Connection 332032 57 f 57 [Cisable] [Clear # s
Database/1DBC/Execute 45968 64 [54 [Cisable] [Clear # s
Directory Service/INDI 479 5f5 [Cisable] [Clear # s
HttpStatus v} 20/ 20 [Cisable] [Clear # s
Legacy/ICA/Connection 23075 1/1 [Disable] [Clear # =
Legacy/ICA/ECIConnectionFactory 22918 2/2 [Disable] [Clear # =
Legacy/ICA/ManagedConnectionFactory 20 2/z [Disable] [Clear # s
1] i/1 [Disable] [Clear # 5
SoAPHandler o i/1 [Disable] [Clear # 5
Web Services o] i/1 [Disable] [Clear # s
Web Tier/Servlet 24073 23/ 23 [Disable] [Clear # s
Web Tier/Struts o] 2/z [Disable] [Clear # Hits]
HP Diagnostics J2EE Probe "P81_WASS5_Plants_owrntt152_W2k", version 9.00.70.1002

413

Chapter 10 ¢ Custom Instrumentation for Java Applications

The Instrumented Layers page lists the layers that were instrumented, the
number of times the instrumentation points in the layer were triggered, and
the number of points currently active in the layer. The following columns
are provided:

Column Description

Layer Lists the layers that were instrumented. The layer
names in this column are links to a page that
provides details about the processing in the layer
that was monitored by the probe. Note: Only the
layers defined in points that were actually
instrumented are listed.

Hits Contains a count of the number of times that the
classes and methods that are monitored by the
points in the listed layer were invoked. You can
reset the count using the Clear # of Hits link in the
Actions column.

Active Points Contains the count of the number of points that are
currently active as well as the total number of
points that were defined for the particular layer.

Actions Contains links that enable you to manipulate the
information for the listed layers. The available
action are:

» Disable: Disables all of the points in the selected
layer so that they no longer capture data. The
instrumentation stays in place and can be
enabled again. Enabling or disabling points here
is effective only until the next restart of your
application. To change the default enabled state
for a point, see “Coding Points in the Capture
Points File” on page 340.

» Clear # Hits: Resets the hit count displayed in the
Hits column for the selected layer.

414

Chapter 10 Custom Instrumentation for Java Applications

Maintaining the Instrumentation Points

To maintain the points that provide the instrumentation instructions that
tell the probe what to monitor in your application, navigate to the
Configuration tab in the Java Diagnostics Profiler and click Edit... for either
the Shared Instrumentation or the Instance Instrumentation. The
Instrumentation Points dialog opens:

" Instrumentation Points: etc/auto_detect.points
Instrumentation Points || Source
Wigw as: | Layers Tree ‘V‘

0 Application -
3 Axis2

% BEA

%) Business Tier
3 CrossvM

%) Database

23 Directory Service
{3 Felix

7)
U Logging Select a point from the tree on the left.

%3 SOA Broker

i3 S0APHandler

0 Service Bus

i TBCO

3 Test Data

20 \Weh Services

2 Web Tier

T WebAppServistContext_Calls

40} EJB-MessageDriven-al -
{11 r

You can edit the instrumentation in two ways: visually, using a list or tree of
points on the Instrumentation Points tab; or via the source of the capture
points file on the Source tab.

415

Chapter 10 ¢ Custom Instrumentation for Java Applications

416

Selecting and Viewing an Existing Point

The navigation bar in the Instrumentation Points dialog helps locate the
points in the capture points file that you would like to maintain. By making
a selection from the View as dropdown, you can choose the format in which
the points are listed.

When you select Layers Tree from the dropdown, you see a list of the points
in the capture points file in a tree structure according to the layers and
sublayers you assigned to the point:

Instrumentation Points || Source

Wiew as: | Layers Tree |V|

1 Business Tier
{3 CrossYM
i Database
B-1¢1 JDBC

[‘—]—11"3 Connection
@
44 JDBC-Connection-prepare
2 JDBC-Connection-prepare-V
¢ JDBC-Connection-prepare-\
2 JDBC-DataSource-getConne
A4 JDBC-¥ ADataSource-getCol
W JDBC-Driver-connect
44 JDBC-DriverhManager-getCor
F-1{7 Execute
#—1{J Directory Service
#1039 Felix
-1 GX
H—101 Hibernate
f—1 HitpStatus
-7 Legacy
H—1{] Load Balanced Request
H—1 Logging
H-11 Messaging
f—1{J PeopleSoft
H-7 Portal hd
4 [} 3

B e O o oy B B B e O B B e B

Pl

Chapter 10 ¢ Custom Instrumentation for Java Applications

When you select Points List from the dropdown, you see a list of the points
in the capture points file in ascending alphabetical order:

Instrumentation Points || Source
\iew as: | Points List [~]

3

o Remote-Http
Yt SOAP_Faults
Wb tv-JSP-_jspService

4o# JSP-_jspService

Wb Servlet-all

408 Apache-Catalina-valve
4b Spring-View

L0d Spring-YiewResolver
4k Spring-publishEvent
Lk Spring-onEvent

4Ld Spring-refresh

4k Struts-Action

4od Struts-Action-execute
4k Struts-Action-ActionServiet
Lod Strute2-ActionProxy
Wb Struts2-Action

Lok Struts2-Resutt

p-)

b]

48 EJB-MessageDriven-all
44 EJB-Entity-all

44 EJB-Session-all

404 JNDI-lookup

..# JDBC-Connection-create

When you locate the point you want to view or maintain, select the point in
the navigation bar. Then you see the details of the selected point in the
view/edit panel where you can maintain the point.

417

Chapter 10 » Custom Instrumentation for Java Applications

Updating an Existing Point

When you select a layer or sublayer from the navigation bar, the view/edit
panel contains only a prompt to remind you to select a point.

To update an existing point, select the point from the navigation bar so that
the Profiler displays the details for the point in the Instrumentation Points

tab of the view/edit panel:

. Instrumentation Points: etc/auto_detect.points

Instrumentation Points || Source
“iew as: | Layers Tree |V|
11"'3 Axis2 A] Mame: |JDBC-Connecticn-create |
:‘{‘j e _ Lavyer: | Database/DBC/IConnection |
1:3 2:‘:;:?; et Active Initially Enabled Maode: Also match overriding metho .. v|
1) Database A
B JoBC =
[13_11"3 Connection Class: |!(ja'wa1.sqlI.Connedion)|(oracIe1.jdbc't.dl'ive|'1.PhysicaIConnec1ion) |
%, JDBC-Connection-create Methodk: |!(C|'eateStatemerdj|(comm'rtj |
404 JDBC-Connection-prepare Signature: - |
404 JDBC-Connection-prepare-V
£} JDBC-Connection-prepare-V Exclude:
4 JDBC-DataSource-getConne Classes: |oracle.jdbc.OracleConnectionU\ﬂ'apper,oracle.jdbc.driver.Logicﬂ
404 JDBC-¥ADataSource-getCol
404 JDBC-Driver-connect MEthes | |
404 JOBC-Driverianager-getCor Subclasses of: | |

B Execute |

S B
]—11"3 Directory Service CoEg,

F—1{ Felix
A1 G

Comment | Advanced Affributes

[

[

[

B3 Hibernate
BT HitpStatus
B3 Legacy
B Load Balanced Request
BT Logging

[]—11::3 Messaging

4 e r

------------- implemerts Connection -------------------—-

ok @ Cancel)

The arguments that are commonly used when defining a point in the
capture points file are displayed as separate data fields to make it easier for
you to make any necessary updates. More advanced arguments are displayed
in the Advanced Attributes tab at the bottom of the display. Comments for
the point are displayed in the Comment tab. After making changes click OK.
And remember to apply all of the changes made using the Configuration tab

by clicking Apply Changes.

418

Chapter 10 ¢ Custom Instrumentation for Java Applications
The arguments that can be used to define a point in the capture points file
are documented in “Coding Points in the Capture Points File” on page 340.

The following is an example of the Source tab:

o v
o A

Instrumentation Point= || Source

-
[EJBE-Session-all]

e e extends SessionBean --—--------—----—-———-

: tviedh tags this as an ejb method for the TV Plugin module

; Bytecode verification fails for instrumented MediationFlowBean (?) =
class = javax.ejb.SessionBean i
method = l.*

sigmature = !.*

igmore_cl = javax.ejb.SessionBean , !'.*_Impl, com.bea.wlw.runtime,core.bean.Synclispatcher
igmore_method = ejbCreate ()V,ejbhctivate ()V,ejbPassivate ()V,ejbRemove (|V,setSessionCont
igmore_tree = com.ibm.ejs.container EJSHone

deep_mode = hard

layer = Business Tier/EJE/Session Bean

detail = diag, tvieib

priority = -1

[INDT-1lookup]

R e Server side JNDT hook ---------——----

class = javax.naming. Context

method = loockup

signature = (Ljava/lang/String;)Ljava/lang/Object;

igmore_cl = org.apache.naming.resources.FileDirContext,org.apache.naning. resources. ProxyDi
deep_mods = softc

layer = Directory Service/JNDI

detail = before:code: Saf00=df, store-method, when-root-rename, no-layer-recurse
[JDEC-Connection-create] -
4 11 3

hliiﬁiiliihiﬁJ hlllliﬂlllllJ hllliiﬂiilllJ

Deleting an Existing Point or Layer
You could delete a point or layer listed in the navigation bar.
To delete a point or layer:

1 Select the point or layer from the Navigation bar on the Instrumentation
Points tab.

2 Click Delete Point. The Profiler deletes the selected entity from the list in
the navigation bar.

The selected entity is not actually deleted from the capture points file until
you apply all of your instrumentation points updates from the
Configuration tab in the Profiler.

419

Chapter 10 ¢ Custom Instrumentation for Java Applications

420

Close the Instrumentation Points dialog by clicking OK.
Apply all of the changes made using the Configuration tab by clicking Apply
Changes.

Adding a New Point

You could add a point to the instrumentation.

To add a point:

Click New Point. The Profiler displays the Select New Point Type dialog box:

Select instrumentation point type:
[Method Instrumentation [~

Select the appropriate point type from the dropdown and click OK.

The Profiler displays the Instrumentation Points tab with the view/edit
section initialized for creating a new point for the selected point type.

Enter the arguments and comments for the new point into the appropriate
locations on the tab.

When you enter the Layer information, the entry for the new point in the
navigation bar is updated to show the point in the correct existing layer or,
if the layer that you specified does not already exist, with a brand new layer.

The new point is not actually added to the capture points file until you
apply all of your instrumentation points updates from the Configuration
tab in the Profiler.

4 Close the Instrumentation Points dialog by clicking OK.
5 Apply all of the changes made using the Configuration tab by clicking Apply

Changes.

Chapter 10 Custom Instrumentation for Java Applications

Activating OVTA-like Points

Points are included in the Java probe instrumentation for Servlet Filters and
EJB local home methods. These instrumentation points provide additional
functionality similar to the OVTA (OpenView Transaction Analyzer) Java
Monitor.

The ServletFilter point requires that the HttpCorrelation2 point also be
activated for server filters to be monitored correctly. This is because servlet
filters sometimes are the first time Diagnostics sees an HTTP server request.

The EJBLocalHome, ServletFilter, and related HttpCorrelation2
instrumentation points are not active by default. Inactive points are
indicated by a red symbol on the icon next to the instrumentation point, as
shown below. To use these points, set active=true in the auto_detect.points
file through the UI or by directly editing the file.

421

Chapter 10 » Custom Instrumentation for Java Applications

Locate these points in the Profiler Ul as described in “Selecting and Viewing
an Existing Point” on page 416 and navigate to the Business
Tier>EJB>LocalHome>E]BLocalHome point or the Web
Tier>Servlet>ServletFilter point and HttpCorrelation2 point.

Instrumentation Points] Source

Wiew as: | Layers Tree |V|

£ Axis2 A] Mame: | EJBLocalHome |
1

:‘['j BEA Layer: | Business Tier/EJB/Local Home |

47 Business Tier

' 2 i :

B Corba [] Active Inttially Enabled Mode: | Also match over... =
-1 EJB

1 Entity Bean

1 Local Home Class: | javax.gjh EJBLocalHome |
- Method: [1r |

T{'Zl MessageDriven Bean

1 Session Bean

1 Stateful Session Bean Exclude:

1 Stateless Session Bean

F-10 Oracle

E-T{J SAPR3

Signature: | 1* |

Classes: |

|
Methods: | |
|
|

F-1(3 CrossvM Subclasses of: |
F-11 Database]
E]—Tfj Directory Service Scope: |
-3 Felix
BT GX -
[]_1{':, Hibernate Advanced Attributes
BT HttpStatus 00 | || e S e
E]—T{'j Legacy Can ke er?abled to be similar to OVTA.momto!'mg N)
E]—T{'j Load Balanced Request Mate, a§d|ng the EJBLocalHome combined with minimum latency = 0 is
[]—Tfj Logging verglt noisy . . .
o i tv:gjb tags this as an ejb method for the TV Plugin module
F-0 Messaging 1

To set these points to active:

1 Select the point from the Instrumentation Points navigation bar so that the
Profiler displays the details for the point. Check the active check box.

2 Close the Instrumentation Points dialog by clicking OK.

3 Apply all the changes made using the Configuration tab by clicking Apply
Changes. Restart your application server (which restarts the probe) for the
newly activated points to take effect.

422

Chapter 10 Custom Instrumentation for Java Applications

Restoring Default Points

When you finish diagnosing a problem using the Profiler or HP Diagnostics,
you can restore the default instrumentation to avoid incurring the overhead
from a more robust instrumentation.

To restore the default settings to the instrumentation:
1 Click Restore Defaults.

The instrumentation points are not actually added to the capture points file
until you apply all of your instrumentation points updates from the
Configuration tab in the Profiler.

2 Close the Instrumentation Points dialog by clicking OK.

3 Apply all of the changes made using the Configuration tab by clicking Apply
Changes.

Default Layers Defined for Typical Java Classes and Methods

HP Diagnostics groups the performance metrics for classes and methods into
layers and sublayers according to the instructions provided in the capture
points file. The default layers were defined so that the performance metrics
for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify
the areas of the system that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for
typical Java classes and methods.

Platform-specific layers are also defined in the capture points file. These
layers are, for the most part, sublayers of the top-level parent layers defined
in the following tables. You can see performance data for layers in the Load
View in the Diagnostics Ul

423

Chapter 10 ¢ Custom Instrumentation for Java Applications

424

Java EE Layers

Layer

sublayers

Parent Layer

Web Tier

INg
Servlets
Struts
Session
Spring
Struts2

Business Tier

EJB
Corba

Web Services

EJB

Entity Bean

Session Bean

Local Home

Stateless Session Bean
Stateful Session Bean

MessageDriven Bean

Business Tier

Directory Service JNDI

Database JDBC

JDBC Execute Database
Connection

Messaging JMS
Spring

JMS Producer Messaging
Listener
Consumer

Spring Producer Messaging
Consumer

Hibernate

Chapter 10 Custom Instrumentation for Java Applications

Portal Layers

Diagnostics groups the performance metrics for the classes and method calls
associated with processing for portals into Portal Component layers. Each
Portal Component layer is broken down into layers for the portal lifecycle
methods. For more information about portal layers, see the HP Diagnostics
User’s Guide.

425

Chapter 10 ¢ Custom Instrumentation for Java Applications

426

11

Custom Instrumentation for .NET
Applications

This section explains how to control the instrumentation that HP
Diagnostics applies to the classes and methods of applications to enable the
.NET Agent to gather the performance metrics.

This chapter includes:

» About Instrumentation and Capture Points Files on page 428

» Locating the .NET Capture Points Files on page 429

» Coding Points in the Capture Points File on page 430

» Instrumentation Examples on page 435

» Understanding the Overhead of Custom Instrumentation on page 461

» Default Layers for Typical .NET Applications on page 462

427

Chapter 11 ¢ Custom Instrumentation for .NET Applications

About Instrumentation and Capture Points Files

428

Instrumentation refers to bytecode that the probe inserts into the class files
of the application as they are loaded by the CLR. Instrumentation enables a
probe to measure execution time, count invocations, and catch exceptions;
and to correlate method calls and threads. The instrumentation points for
each probe are specified in the capture points file.

The capture points file enables you to control the scope of the
instrumentation so that Diagnostics can give you all the information you
need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The
instrumentation definitions contained in the capture points file are called
points that tell the probe which methods to instrument, how they should be
instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so
that they apply to more than one method, class or namespace specification.
For more information about using regular expressions, see "Using Regular
Expressions" on page 926.

You can customize the points in the capture point file to include methods,
classes, and namespaces for areas of the application that do not fall within
the default points.

The Microsoft specification for .NET does not include a unified or
recommended interface that business logic should implement except in the
case of instrumentation for web and WCF methods. This means that the
.NET probe will almost always require custom points in the capture points
file to enable it to gather meaningful metrics for the performance of the
business logic classes and methods in .NET applications.

The points in the capture points file are grouped into layers. Layers organize
the performance metrics into meaningful tiers of information that can be
compared as part of a triage process and control the collection behavior of
the instrumentation.

The points in the capture points files are grouped into default layers. You
can customize the default layers and create new layers (see "Default Layers
for Typical .NET Applications" on page 462).

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Locating the .NET Capture Points Files

When you install the .NET Agent, predefined default capture points files are
installed.

Default capture points files for ASP.NET applications are located at
<probe_install_dir>\etc\ and include Asp.Net.points, Ado.points and
WCEF.points as well as other points files shown in the table below.

In addition, the .NET Agent installer automatically creates a separate capture
points file for each IIS deployed ASP.NET Application Domain it detects. You
must modify the automatically detected and created points file to enable
custom instrumentation points for the Application Domain. These capture
points files are located in the
<probe_install_dir>\etc\<ApplicationDomain>.points file. These points files
and the default points files are read by the .NET Agent.

At installation, only the Asp.Net.points, Ado.points and WCF.points default
points files are enabled. The following default .NET points files are installed
in the <probe_install_dir>/etc directory but not enabled:

3;‘:2?:::dr;°int File (initially Instrumentation Target

Asp.Net.IExecutionStep.po | IISS, I11S6 and IIS7. This file makes the IIS points

ints obsolete.

IIS.points IISS and IIS6

Lwmd.points Lightweight Memory Diagnostics

Msmgq.points Microsoft Message Queuing (MSMQ
instrumentation)

Remoting.points .NET Remoting

WebServices.points ASP.NET Web Services

429

Chapter 11 ¢ Custom Instrumentation for .NET Applications

You can enable the points files by adding a reference to them in the
<points> element in the scope of the appdomain in the probe_config.xml
file. See Chapter 14, "Understanding the .NET Agent Configuration File" for
details on each element in the probe_config.xml file.

For information on .NET probe instrumentation specific to
TransactionVision, see the HP TransactionVision Deployment Guide.

Coding Points in the Capture Points File

430

The following arguments can be used to define a point in the points files:

[Point-Name] =<unique name for the point>

class = <class/package name/s to capture>
method = <method name/s to capture>
sighature = <signature/s of method/s>
ignoreClass = <classes to ignore>

ignoreMethod= <method prototypes to ignore>
ignoreTree= <class hierarchy to ignore>
deep_mode= <soft or hard mode>

scope = <comma separated list of methods>
ignoreScope= <comma separated list of methods>
detail = <list of specifiers>

keyword = <keyword>

layer = <layer name>

layerType = <layer type>

Caution: Do not modify any of the default points files because, in an
installation upgrade, modifications are lost. Store your application-specific
instrumentation points in a custom capture points file.

All arguments that can be specified as a regular expression list have an
effective maximum limit of 260 characters, which if exceeded results in a
truncated value. The arguments are described in the following sections.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Mandatory Point Arguments

Every point, except for the points for LWMD, HttpCorrelation,
WSCorrelation and WCEF, must contain the following arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be
instrumented. The name should include the full
namespace name using periods between the namespace
and class levels. Any valid regular expression can be used.

method Specifies the name of the method to be instrumented. To
be successful, the method name must match a method
defined in the class or interface specified by the class
argument. Any valid regular expression can be used.

layer Specifies a layer, sublayer, or tier under which the data

from this point is grouped. Layers are a part of the
instrumentation collection control.

Layers in a point can be specified with nested layers or
sublayers by separating the layer names with a / (slash).
The layer specified following the slash is a sublayer of the
layer specified before the slash. A sublayer can have its
own sublayers by coding another slash and layer name
following a sublayer name.

The following is an example of a custom point that contains the mandatory

arguments:

[MyCustomEntry 1]
; comments here....

class = myNameSpace.myClass.MyFoo

method = myMethod
layer = myCustomStuff

431

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Note: Regular expressions can be used for most of the arguments in a point.
They must be prefaced with an exclamation point. For more information
about using regular expressions, see "Using Regular Expressions" on

page 926.

Optional Point Entries

Point definitions can contain one or more of the following arguments:

Argument Description

keyword Indicates special instrumentation. The keyword argument
can be used to enable specific features; for example, the
WCF keyword turns on the WCF feature. The keyword
argument can also relate point definitions to special
functionality; an example of this is the RemotingServer
keyword and the Remoting.points file.

» HttpCorrelation. Turns on correlation of client/server
method calls via HTTP.

» WsCorrelation. Turns on web service correlation logic
on the client side and turns on correlation of raw HTTP
client request calls across both the .NET and Java
technologies.

WCEF. Turns on the WCEF feature.

REST. Turns on the WCF REST service instrumentation.
Iwmd. Turns on lwmd instrumentation.

YyYvYyYVvYYy

Remoting. Turns on .NET Remoting framework
instrumentation.

» RemotingServer. Associates points in a .NET Remoting
server to special .NET Remoting logic for these points.
See "How to Configure Instrumentation for .NET
Remoting" on page 451.

ignoreClass Specifies a comma-separated list of classes to ignore. Any
class matching one of the classes specified with
ignoreClass is not instrumented.

432

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Argument

Description

ignoreMethod

Specifies a comma-separated list of methods to ignore.
Any method matching one of the methods specified with
ignoreMethod is not instrumented.

ignoreTree

Ignores instrumenting any method that is implemented
on a class that inherits from the specified class. Thus, an
entire class hierarchy tree of methods would be ignored.

deep_mode

Specifies how subclasses are handled. This argument
accepts three values:

» none - A value of none is similar to not specifying a
deep_mode argument. It has no effect on how
subclasses are handled.

» soft - A value of soft requests that, for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces that also
implement the matching method and signature should
also be instrumented.

» hard - A value of hard requests that, for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces at any depth
should have all their methods instrumented. Hard
mode is typically used for points for interfaces. Caution:
Hard"mode can lead to extensive instrumentation and
very high probe overhead.

scope

Constrains the context in which instrumentation is
performed. If specified, the inserted bytecode is caller side.
Any valid regular expression can be used for the value of
this argument. Scope values are expressed as a
comma-separated list of method names.

ignoreScope

Excludes certain methods from those included in the
scope specified by the scope argument. Any valid regular
expression may be used for the value of this argument.
ignoreScope values are expressed as a comma-separated
list of method names.

433

Chapter 11 ¢ Custom Instrumentation for .NET Applications

434

Argument

Description

detail

Provides more specific capture instructions.

For the following the string that is returned is displayed in
the method's Argument field in the details pane of the
Call Profile view. It is a comma-separated list of the
following:

args:n — Captures all supported types of arguments for the
method(s) that match. A value of ‘n’ captures all
arguments. Or you can enter a value for n from 1 through
256.

args:0 — Calls the ToString() on the current class instance
or callee object. This is invalid for static methods.

args:1 — Marks () the argument as a key argument for the
server requests if the method is a top-level request.

The detail argument also takes the following value:

tv:user_event - Generates a TransactionVision event for
the methods that match. As part of the TransactionVision
event the parameters to the method are collected as the
Request Payload and the return value is collected as the
Response Payload. The values displayed are the ToString()
values returned by the parameters or the return value
objects. Note that all parameters and return values may
not be collected.

Provides extensive support for transaction tracing by
enabling TransactionVision event generation from
practically any given method in any .NET application. You
specify the method on which you want a
TransactionVision event generated. It is highly
recommended that event generation is specified for one
method at a time to avoid too many events and
performance degradation in TransactionVision. Avoid
using wild card specifications (but they are supported for
convenience).

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Argument Description

layerType Specifies special handling for some instrumented methods
and accepts three values:

» trended_method - Identifies methods to be displayed
in the Trended Methods view.

» sql — Identifies methods used to capture SQL for the
SQL views. These are set by HP Diagnostics and should
not be modified.

signature Specifies the signature (return and parameter types); for
example, System.String(System.int32, System.String). Any
valid regular expression can be used.

Instrumentation Examples

The following examples illustrate how you can customize the
instrumentation of an application by creating and modifying the points in
the capture points file.

This section includes:

» "Custom layer and sublayer" on page 436

"Wildcard method" on page 436

"Ignore Specified Methods" on page 436

"Capture Methods for the Trended Methods View" on page 437
"Capture Only a Specific Method In a Class" on page 437
"Capture a Specific Method That Returns a String" on page 438
"Caller Side Instrumentation" on page 438

"Argument Capture" on page 440

"Configure WCF REST Services for Monitoring" on page 444

Y Y Y Y Y Y Y Y Y

"Deep_mode Examples" on page 446

435

Chapter 11 ¢ Custom Instrumentation for .NET Applications

» "How to Configure and Set Up Points for Non-ASP.NET or Windows
Applications" on page 447

> "How to Configure Instrumentation for .NET Remoting" on page 451

Custom layer and sublayer

» The following point creates a custom sublayer called BAR within the layer
called FOO for the method myMethod in myCompany.myFoo class:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

layer = FOO/BAR

Wildcard method

» The following point captures all methods in the MyCompany.MyFoo
class:

[myCompany.myFoo_AllIMethods]
class = myCompany.myFoo
method = 1.*

layer = FOO/BAR

Ignore Specified Methods

» The following point captures all methods in the MyCompany.MyFoo
class except for the methods setHomelnterface and getHomelnterface:

[myCompany.myFoo_AllMethodsExcept]

class = myCompany.myFoo

method = 1.*

ignoreMethod = setHomelnterface,getHomelnterface
layer = FOO/BAR

436

Chapter 11 ¢ Custom Instrumentation for .NET Applications

» The following point captures all methods in the MyCompany namespace
except for those contained in the MyCompany.logging class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = ImyCompany\..*

method = .*

ignoreClass = MyCompany.logging

layer = FOO/BAR

Capture Methods for the Trended Methods View

» The following point captures the required data to populate the Trended
Methods View for the myMethod method:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod

layer = FOO/BAR

layertype = trended_method

Capture Only a Specific Method In a Class

» The following point captures all non-static constructor methods for the
MyCompany.MyFoo class:

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = .ctor

layer = FOO/BAR

» The following point captures all static constructor methods for the
MyCompany.MyFoo class:

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = .cctor

layer = FOO/BAR

437

Chapter 11 ¢ Custom Instrumentation for .NET Applications

438

» The following point captures the setFoo method in the
MyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo

layer = FOO/BAR

» The following point captures all methods in the MyCompany.MyFoo
class whose name includes “set”:

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = l.*set.*

layer = FOO/BAR

» The following point captures all methods in the MyCompany namespace:

[myCompany_All_Methods]
class = ImyCompany\..*
method = .*

layer = FOO/BAR

Capture a Specific Method That Returns a String

» The following point captures the getFoo method that returns a
System.String in the MyCompany.MyFoo class:

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo

method = getFoo

signature = !System.String\(.*

layer = FOO/BAR

Caller Side Instrumentation

By default, all the instrumentation in Diagnostics is Callee side
instrumentation where the bytecode is placed within the method call. Caller
side instrumentation refers to the process of placing bytecode for
measurement around the call to the method to be instrumented, instead of
within the method.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Caller side instrumentation allows for finer control of instrumentation
placement, but can increase the application initialization time because each
class specified in the scope must be checked for references to the class/
method specified in the points.

The scope and ignoreScope arguments are used to specify what caller should
be instrumented. The following two examples refer to Caller side
instrumentation.

» The following point captures all methods in the MyCompany namespace
that are called from the MyCompany.logging class.

[myCompany_All_Methods_from_MyCompany_Logging]
class = ImyCompany\..*

method = 1.*

scope = !MyCompany.logging.*

layer = FOO/BAR

» The ignoreScope argument is used to exclude certain classes and methods
from those included in the scope specified in scope argument. The
following point captures all methods in the MyCompany namespace that
are called from the MyCompany.logging class except for those called from
the myMethod method.

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = ImyCompany\..*

method = 1.*

scope = IMyCompany.logging.*

ignoreScope = MyCompany.logging.myMethod

layer = FOO/BAR

439

Chapter 11 ¢ Custom Instrumentation for .NET Applications

440

Argument Capture

The arguments to be captured are specified in the detail key of a points file
section.

The following example calls the ToString() method of the n-th argument.
The string that is returned is displayed in the method’s Argument field in
the Call Profile view: detail=args:1,...args:4, *args:3

There are several special values to note:

» args:n — Captures all supported types of arguments for the method(s) that
match. A value of ‘n’ captures all arguments. Or you can enter a value for
n from 1 through 256.

» args:0 — Calls the ToString() method on the current class instance or callee
object.

» Adding a * to the args element (*args:1) marks a key argument.

To see the arguments for each method call, do not specify a key argument.
This is a way to get more detailed information on the captured instance tree
and could help answer questions about why this instance is a MAX tree or
what values were passed in when there was an exception.

To group server requests for a method by arguments, specify a key argument.
The key arguments, aggregate server requests with distinct values.
Arguments that have a large number of distinct values are not good
candidates for key arguments because this will lead to unique server requests
for every distinct value.

Note: Even if you have not specified argument capture, arguments are
captured when a method in the call tree throws an exception. These
arguments are displayed in the Call Profile view, in the Stack Trace section of
the Exceptions detail pages. See the Call Profile View online help for more
details.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

The following argument capture example relates to the code shown below:

[ILTest]

class = !ILTest NameSpace.ILTest_Class
method = methodWithParams

detail = args:0, *args:3, args:5, args:7
layer = myFunctionLayer

Here is the relevant code example:

class ILTest_Class

{
public bool methodWithParams

(string param1, int param2, string QnameParam3, long param4, object param5, int
param6, double param7)

{

... Some implementation

}
}

In this example the defined detail will capture ILTest_Class.ToString(args:0)
paraml, QnameParam3, param5 and
param?.

The value of QnameParam3 will be part of the identity of the server request
if the top level method is methodWithParams.

When an argument to be captured is marked as a key argument (with an
asterisk *) and the method is a top-level method, the argument value
becomes part of the Server Request identity.

441

Chapter 11 ¢ Custom Instrumentation for .NET Applications

For example, if Shipping Type is a parameter of a method processing
different shipments and you specify the Shipping Type argument as a key
argument, you will be able to see aggregated views for each different
shipment (apples and oranges) being processed by the method.
All Server Requests on L85_Paramet...inttG6_W2k3 in Sanity_LR_9_5_owntt100 Probe Group filtered by Mo Filter -
with Top 5 by Latency % Owver Threshold chared for Last 5 minutes

Chart @ [¥] Commen Tasks & [+

14s /0 Create Mew Snapshot and Acd
(& View Profiler for LBS_Parameter...
1=iE @ Addto application...
10z Navigations O] [#]
e i view Layers (1)
i @ @ view Probes (1)
E00.0 ms
1 Details o 5]
S00.0 ms
] voee [|
2450 mz =
oo Ve ; ' -

Lokl

11:18:00 11:19:00 11:20:00 11:21:00 11:22:00
hdan 02/2400 hton 022400 hton 022400 hton 022400 han 022400

Arguments Apples

Default Hame Methods MySer ..
Method MyServerReqgue... =
Package HPSoftware AM...
Root Method Methods MySer...
Server Req... Pseuco

; ILatenm,r (Awg) <showing thleshold>|

_ 0 Signature System.Void My...
o | | 0 Court 58 Y
[*] Methods TestAllSystemBuitinsRefs() LIS _P... T 1.0 Exceptions 0 N
[~] || Methods TestBigUglyMethodSignatures() La5 P... 2..01...0.. Throughput 12/ min SN
Q [[] Methods TestOtherTypes() L35 _P... ... 1. 0. Timeouts 0 FE
=l Custom Attributes —

442

Chapter 11 ¢ Custom Instrumentation for .NET Applications

When you specify a key argument, the Call Profile view shows key
arguments in the Arguments field in the Details pane. You will also see the
arguments displayed under Method Arguments in the Details pane.

Call Profile [Average Instance on L95_ParameterCapture_ConsoleULNET_ovrnttes_W2k3 of
Methods MyServerReguestithArgs{ Apples) ending at 8/24/09 11:22:27 AM for Sanity LR_9 5 owrntt100]

1] Mms #ms Hms 42ms Hims 118ms 181 ms 1Bdms T ms 2342 ms

Methods.FindS hipper() Methods.ShipApples()

T
Call Latency (Total) | = Me
!|I- Methods MyServerRequestWithArgs() Arguments Apples

I: 33.3% Methods FindShipper() T7T9ms Feoftware AM.Tests
33.5% Methods ShipApples() T84 ms Alias
Default Name System.\Void HPSoftw:
Category Name y
| Layer ConsaleUliMethods J
Exception? false
Timeout? false
Mame Methods MyServerRe...
Mamespace HPSoftware AM.Test...
RefuraFy stem.oid 1
E Latenty |
|_stency (Tetaly 274 ? me "]

When arguments to be captured are NOT marked as key arguments (with no
asterisk *), they are displayed in the Call Profile view under Method
Arguments only.

443

Chapter 11 ¢ Custom Instrumentation for .NET Applications

444

Configure WCF REST Services for Monitoring

For a .NET Probe WCF REST services are monitored by default based on the
keyword=REST value enabled out-of-the-box in the WCF.points file. These
REST services will be monitored as web services and their performance data
displayed in the Diagnostics UI SOA Services views.

You can further configure REST services as described in the sections below.

REST Service Configuration

In WCEF REST style services sometimes the operations are encoded as url
parameters. For example:

HTTP Method: PUT Url: http://localhost:81/RestNOSvc/AccountsRESTService/
{ID}?0p={OPERATION} op can be "deposit" or "withdrawal"

To be able to distinguish operations in these types of services you can
specify the operation parameters of the REST service method as a key
argument to allow it to be displayed as a separate operation. See "Argument
Capture" on page 440 for a general description of argument capture.

For example, for the method

[Weblnvoke(UriTemplate = "{id}?op={operation}", Method = "PUT")]
public TransactionResult Update(string id, string operation, long Amount)

The operation is the key argument and can be specified in the points file as:

[WebSite2-RestNOSvc]

class = HP.Test.WcfRestService.*
method = Update

detail = *args:2

layer = WebSite2-RestNOSvc

Chapter 11 ¢ Custom Instrumentation for .NET Applications

The SOA Services Operations view example below shows the results of this
configuration with separate operations shown in the table.

Web Services Opeigtions of AccountsAEST Serice on 1 ROOTRESTn.. savm4G6_ W2 KA in Santy_LF_ _ovrescdwmd Probe Groupfitered by Tepe cortaining "Web Service® with Top

[e L=/ L
B ==2 |

200 e

T T T T T T T T T T
10:ETE0 WZEDD 1023 00 220 103000 AWEDA0 02100 A= AEZA0
Thy W00TA0 Tho A0A7TH0 Thu 100740 Thy A00TH0 Thy 100740 Thy 100740 Tho AA0TA0 Tho 200740 Thu AGETH0 Thu 00740

|-| =, [Latenay (foegy sshowing shrasnolas]

1[—!

Latency % * 1

Statuz | Color | Charf? I Wiak Sardica & Dparation Name | Praba Ovar Theashald h Latancy | Thraughput | CFU (fwg] Info
& = |v| AccoumtsRESTService: CheckBalance TRODOTRESTMOEY... 1.5 ms Timn 8246 =
$ Eocounts RESTService: Update(depasi) AROOTRESTneEY,, T4 ms HNE (b Bl Ems
& mmmm [/ pecountzRESTService!Updateiwihebanal) 1ROCTRESTAGTY... 4.3me EEIS B4.2me

REST Client Configuration

The REST service client is the same as an HTTP client call and cannot be
distinguished. So for monitoring .NET applications that are REST service
clients, the configuration option <httpclient showurl="false” /> should be
set in the probe_config.xml file to avoid a large number of outbound calls
and possible symbol table explosion. The number of calls is due to unique
urls accessed by the client, often with ids encoded in the urls.

For example:

/RestNOSvc/AccountsRESTService/
8FFD2F34-E334-4E1E-A940-50FCCCACE1D1

where the Guid represents different account ids.

445

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Deep_mode Examples

The following interface definition is used for both soft and hard deep_mode
examples:

public interface Interfacel {

public void callerMethod();

}

The following class is used for both soft and hard deep_mode examples:

public class Classl1 implements Interfacel {
public void callerMethod(){
calleeMethod();
calleeMethod2();

}

public void calleeMethod(){
Console.WriteLine("hello world");
/Imore code lines here...

}

public void calleeMethod2(){
Console.WriteLine("hello world 2");
}
}

» The following point captures the callerMethod in the Class1 class:

[Training-1]

class = Interfacel
method =1*
deep_mode = soft
layer = Training

446

Chapter 11 ¢ Custom Instrumentation for .NET Applications

» The following point captures all methods in Class 1; that is, callerMethod,
calleeMethod1, and calleeMethod2:

[Training-1]

class = Interfacel
method =1*
deep_mode = hard
layer = Training

How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications

This section explains how to configure both the probe_config.xml file and
custom points files that enable instrumentation for Non-ASP.NET or
Windows applications. Instrumentation for Windows Services, console
applications, Windows Forms applications, and WPF applications are
considered Windows applications and are referred to as such.

Windows Application Design

The critical point to consider when contemplating how to configure a
Windows application you want to monitor is that the .NET probe is
designed to monitor long running processes. Therefore, if your Windows
application is designed to run for a few seconds and then exit, you will
probably not be able to see any data for that run. When the Windows
application exits quickly, the appdomain is shut down and the probe is shut
down before it can establish and maintain communication with a
Diagnostics Server or the Diagnostics .NET Profiler.

447

Chapter 11 ¢ Custom Instrumentation for .NET Applications

448

The following simple Windows application illustrates a number of crucial
concepts to be considered when configuring the instrumentation for a
Windows application.

namespace Hello_dotNet_nameSpace
{

class someclass

{

static void Main(string[] args)
/I do something

Il read form commandline then exit
clReader myClReader = new clReader();
String cl;
cl = myCIReader.readCl();
}
}

/I Command Line Reader
public class clReader

{
public String clread;
public String readCl()
{
System.Console.WriteLine("Continue?");
clread = Console.ReadLine();
return clread;
}
}

The Hello_dotNet.exe Windows application has Main() that calls a method,
waits for the user to enter something on the command line, and then exits.
Until the application exits, the probe is active.

Creating the Hello_dotNet.points File

In the <probe_install_dir>\bin folder there is a Reflector.exe command line
utility you can run against the Hello_dotNet.exe Windows application to
obtain a suggested points file. See "Discovering the Classes and Methods in
an Application" on page 634 for more information on the reflector utility.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

When both the Reflector.exe and the Hello_dotNet.exe application are in
the same folder, you would the following command:

Reflector.exe Hello_dotNet.exe

The output is sent to stdout. Among other information you will see the
following suggested Hello_dotNet.points:

Sample .points by Namespace

[Hello_dotNet_nameSpace]
class = IHello_dotNet_nameSpace.*
layer = Hello_dotNet_nameSpace

The suggested points can be used as is, except when the Windows
application has a method like Main(); that is, a method that, if
instrumented, does not return an exit until the application exits. In this
case, the method spans the lifetime of the application so nothing would be
reported until the application exits. Since the probe will be unloaded when
the application exits, you will probably not get any data from the
instrumentation point.

To fix this situation, construct a points file so that the Main() method, or
any method like it, is not instrumented. The following Hello_dotNet.points
tile shows how to do this. It assumes that Main() is implemented in
someclass.

Hello_dotNet.points:

[Hello_dotNet_nameSpace]

class = !Hello_dotNet_nameSpace.*

ignoreClass = Hello_dotNet_nameSpace.someclass
layer = Hello_dotNet_nameSpace

[ignore]

class = Hello_dotNet_nameSpace.someclass
ignoreMethod = Main

layer = Hello_dotNet_nameSpace

449

Chapter 11 ¢ Custom Instrumentation for .NET Applications

450

The crucial aspect of this type of points file is shown in bold. The [ignore]
section instruments other methods in Hello_dotNet_nameSpace.someclass
if there are any while ignoring the Main() method.

Configuring the Windows Application for Instrumentation

To configure the .NET probe to instrument the Hello_dotNet.exe Windows
application, add the following XML to the probe_config.xml file. You can
add it to the bottom of the file just above the </probeconfig> entry.

<process name="Hello_dotNet">
<points file="Hello_dotNet.points" />
<instrumentation>
<logging level=" />

</instrumentation>
<logging level=" />
</process>

Note: You must place your Hello_dotNet.points file in the
<probe_install_dir>\etc folder before you make the above changes to the
probe_config.xml file.

The only required child element is the points file. The instrumentation,
logging, and modes are optional. The following instrumentation setting can
be useful when diagnosing which methods are or are not being
instrumented:

<instrumentation>
<logging level="points ilasm" />
</instrumentation>

Chapter 11 ¢ Custom Instrumentation for .NET Applications

How to Configure Instrumentation for .NET Remoting

You can configure the .NET probe to add custom instrumentation that
supports the instrumentation of .NET Remoting Client and Server
applications. Supported configurations are:

» Both HTTP and TCP bindings
» Both Binary and SOAP Formatting

Configuration

By default, the .NET probe is not enabled to instrument Remoting
applications. You must add custom instrumentation points for both the
Client and Server applications.

Two instrumentation keywords are related to Remoting:

Remoting. The Remoting keyword enables instrumentation for various
points in the Remoting Framework.

RemotingServer. The RemotingServer keyword identifies the class that
implements the Remoting Methods and isolates the instrumentation of the
methods on that class from unintended instrumentation of other similar
methods.

451

Chapter 11 ¢ Custom Instrumentation for .NET Applications

452

Client Example

The following very simple Windows application example illustrates a
number of crucial concepts the must be considered when configuring the
instrumentation for a Remoting Client Application.

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

class SimpleConsoleClient

{
[STAThread]

static void Main(string[] args)

{

const string msgl = "How are you?";

String filename =
AppDomain.CurrentDomain.Setuplnformation.ConfigurationFile;

RemotingConfiguration.Configure(filename, false);

MyRemotableObject remoteObject = new MyRemotableObject();

doit(remoteObject, myMsg);

Console.WriteLine();

Console.WriteLine("(Press any key to exit)");
Console.ReadKey();

}
public static void doit(MyRemotableObject obj, String message)
{
Console.WriteLine(obj.GetEnlightenment(message));
}

As described in "How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications" on page 447, you can use the Reflector utility to
help determine how to configure the Remoting Client points file.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

To configure the probe to instrument the SimpleConsoleClient Remoting
Windows application, add the following XML to the probe_config.xml file:

<process name="SimpleConsoleClient">
<points file="Remoting.points" />
<points file="SimpleConsoleClient.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level="" />
</process>

You must add the <points file="Remoting.points" /> entry.

If you are in the directory that holds the SimpleConsoleClient.exe and the
Reflector.exe is in the PATH, you can execute the Reflector on the command
line to view an implementation decomposition of the
SimpleConsoleClient.exe and suggested point file settings:

Reflector SimpleConsoleClient.exe

The output of this command will contain the following:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = IHPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient (8

Methods)
Equals System.Boolean(System.Object)
Finalize System.Void()
GetHashCode System.Int32()
GetType System.Type()
doit (method signature information unavailable))
Main System.Void(System.String[])
MemberwiseClone System.Object()
ToString System.String()

453

Chapter 11 ¢ Custom Instrumentation for .NET Applications

454

The suggested SimpleConsoleClient.points are:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

These settings, however, would not create instrumentation that would
produce any data. The reason, as discussed in "How to Configure and Set Up
Points for Non-ASP.NET or Windows Applications" on page 447, is that you
must ignore methods like Main(). If you factor in the need to ignore Main(),
you would be left with the following possible points file settings:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
ignoreMethod = Main

layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Although these settings might be useful and would produce data, you
should make them more precise. This is primarily due to probe performance.
The more methods that are instrumented, the greater will be the probe's
performance hit on the instrumented application. For example, if you can
remove the wildcards "I.*" from the settings, the scope of your settings
become explicit.

Notice from the Reflector output that there is actually only a single
implemented class:

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
You can remove the wildcards from the class setting as follows:

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Notice also, that the Reflector output does not contain a method setting.
The default meaning of no method setting is that all methods are
instrumented. Since most the following methods are only present because
they are inherited from System.Object, it is unlikely that you really want to
instrument these methods: Equals, Finalize, GetHashCode, GetType,
MemberwiseClone, ToString. However, it is likely that you would want to
instrument the doit method because it wraps the Remoting client call. The
following settings are recommended for the SimpleConsoleClient.points
file:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
method = doit

layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Server Example

The following Windows application example illustrates a number of crucial
concepts the must be considered when configuring the instrumentation for
a Remoting Server Application:

C# code snippets are shown for both the Remotable Object, which is shared
between the Remoting Client and Server, and the SimpleConsoleServer.exe
Remoting Server Application.

455

Chapter 11 ¢ Custom Instrumentation for .NET Applications

456

Here is the C# code snippet for the Remotable Object:

HPSoftware.AM.Tests.Remoting.SimpleRemoting

{
public class MyRemotableObject : MarshalByRefObject
{
const string response = "I'm just fine!";
public MyRemotableObject()
{
}
public String GetEnlightenment(string message)
{
return response;
}
}
}

Here is the C# code snippet for the SimpleConsoleServer.exe:

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting

{

class SimpleConsoleServer

[STAThread]
static void Main(string[] args)
{
String filename =
AppDomain.CurrentDomain.Setuplnformation.ConfigurationFile;
RemotingConfiguration.Configure(filename, false);

Console.WriteLine("Server is running... press any key to exit");
Console.ReadKey();

}
}
}

Chapter 11 ¢ Custom Instrumentation for .NET Applications

To configure the probe to instrument the SimpleConsoleServer Remoting
WIndows application, add the following XML to the probe_config.xml file:

<process name="SimpleConsoleServer">
<points file="SimpleConsoleServer.points" />
<instrumentation><logging level="" /></instrumentation>
<logging level=" />

</process>

You are not required to add the <points file="Remoting.points" /> entry.

Point files for the Remoting Server can have one or more sections. The first
section relates to the Remotable Object and is a required section. A second
section that relates to the Remoting Server instrumentation can be added.
Other optional sections can also be added to instrument other methods that
can be called by either the Remoting methods or the Remoting Server. We
will construct the Remotable Object section first.

The Remotable Object will reside in some assembly. We will assume it is in
the RemotableObijects.dll.

457

Chapter 11 ¢ Custom Instrumentation for .NET Applications

458

When you run the Reflector against the RemotableObijects.dll, you see
output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = IHPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject (17
Methods)
__RaceSetServerldentitySystem.Runtime.Remoting.Serverlden...)

__ResetServerldentity System.Void()

CanCastToXmIType System.Boolean(System.String,System...)
CreateObjRef System.Runtime.Remoting.ObjRef(Syste...)
Equals System.Boolean(System.Object)

Finalize System.Void()

GetComlUnknown System.IntPtr(System.Boolean)
GetEnlightenment System. String(System. String)
GetHashCode System.Int32()

GetLifetimeService System.Object()

GetType System.Type()

InitializeLifetimeService System.Object()

InvokeMember System.Object(System.String,System...)
IsinstanceOfType System.Boolean(System.Type)
MemberwiseClone System.MarshalByRefObject(System...)
MemberwiseClone System.Object()

ToString System.String()

As with the Remoting Client example, you cannot just use the suggested
point settings. You must be certain that you identified the class that
implements the Remotable Object. You do this by observing that the
Remotable Object is required to inherit from System.MarshalByRefObject
and therefore must have the following methods on it: CreateObjRef,
GetLifetimeService, InitializeLifetimeService, MemberwiseClone. From the
Reflector output above, you can see that the
HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject class
is an obvious candidate for the class that implements the Remotable Object.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

The Remotable Object section must include the keyword = RemotingServer
entry. This entry indicates that the probe's Instrumenter should perform
special processing for the point settings in this section. This special
processing accomplishes two things. It instruments all methods on a class
that inherits from System.MarshalByRefObject. Therefore, you need not
specify which Remoting methods to instrument. All Remoting methods will
be instrumented. This is also why there is no need for a method entry in this
section. Second, this keyword isolates the instrumentation of methods that
are implemented on a class that inherits from System.MarshalByRefObject
to the specified class. This is important because there are many System
classes and user classes that also inherit from System.MarshalByRefObject
and you do not want to unintentionally instrument them.

Based on these observations, here is the recommended Remotable Object
section:

[RemotableObiject]

keyword = RemotingServer

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

Now you can construct the optional Remoting Server section. You only need
to create this section if you want to monitor the Server logic that is invoked
independent of the Remoting methods.

459

Chapter 11 ¢ Custom Instrumentation for .NET Applications

460

When you run the Reflector against the SimpleConsoleServer.exe, you will
see output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = IHPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer (7
Methods)

Equals System.Boolean(System.Object)
Finalize System.Void()

GetHashCode System.Int32()

GetType System.Type()

Main System.Void(System.String[])
MemberwiseClone System.Object()

ToString System.String()

As explained in "How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications" on page 447, you cannot just use the suggested
points settings. You must ignore the Main() method.

Based on these observations, the following settings are the recommended
settings for the SimpleConsoleServer.points file:

[RemotableObject]

keyword = RemotingServer

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

[RemotingServer]

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer
ignoreMethod = Main

layer = RemotingServer

Finally, you can add other optional sections to instrument other methods
that can be called by either the Remoting methods or the Remoting Server.

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Understanding the Overhead of Custom Instrumentation

When creating custom instrumentation, beware of over-instrumenting the
application because that can introduce excessive latency into the probed
application. The custom instrumentation does not have the same impact on
the method latency or the CPU overhead because the overhead of
instrumentation is nearly fixed for every method because the amount of
bytecode is almost always the same. The physical percentages of the CPU
and latency overhead will vary in direct proportion to the length of time the
method takes to execute.

For example, if a method takes 100ms and instrumentation makes it execute
in 101ms, overhead is 1%. If a method takes 10ms and instrumentation
changes its response to 11ms, overhead is 10%. If this method is not called
very often, its overall latency effect on the application is minimal. However,
the overall latency effect of an instrumented method that is called more
frequently could have an impact on the latency of the application’s response
even though its overhead percentage is much smaller.

Unlike a traditional profiler that can profile every method called, HP
Diagnostics uses bytecode instrumentation. This allows the default
instrumentation to be selective so as to minimize the overhead caused by
instrumentation to an average of 3-5%. Methods with higher latency
overhead introduced by instrumentation are only instrumented when they
are called infrequently in relation to other components in the application
and when the instrumentation provides specific information needed for
triage activities.

You should also consider Diagnostics data overhead when you are
customizing the instrumentation for an application. The more methods you
instrument, the more data the probe must serialize and pass over the
network to the Diagnostics Server. You can tune the probe’s default
configuration so that it can adjust the volume of Diagnostics data to avoid
any unnecessary effect on the performance of the system being monitored.
Improper probe tuning can cause CPU, Memory, and Network overhead on
the physical machine where your probe resides. For more information about
managing Latency, CPU, Memory and Network overhead, see Chapter 15,
"Advanced .NET Agent Configuration."

461

Chapter 11 ¢ Custom Instrumentation for .NET Applications

Default Layers for Typical .NET Applications

462

HP Diagnostics groups the performance metrics for classes and methods into
layers and sublayers according to the instructions provided in the points file.
The default layers were defined so that the performance metrics for
processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify
the areas of the system that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for
typical .NET applications.

.NET Layers

Layer sublayers Parent Layer
Web Tier IS
IIS ExecutionSteps
Database ADO
ADO Execute Database
Connection
Fill
Update
Cache
Messaging Sender
Receiver
Web Services Soap
Http
WCF
LWMD
HTTP Client
Outbound Calls

Part V

Advanced Configuration of the
Diagnostics Server and the Java and .NET
Agents

This section includes:

» Advanced Diagnostics Server Configuration

» Advanced Java Agent and Application Server Configuration
» Understanding the .NET Agent Configuration File

» Advanced .NET Agent Configuration

464

12

Advanced Diagnostics Server
Configuration

This section describes advanced configuration of the Diagnostics Server.
Advanced configuration is intended for experienced users with in-depth
knowledge of this product. Use caution when modifying any of the
component properties.

This chapter includes:

Synchronizing Time Between Diagnostics Components on page 466
Configuring the Diagnostics Server for a Large Installation on page 470
Overriding the Default Diagnostics Server Host Name on page 476
Changing the Default Diagnostics Server Port on page 476

Migrating Diagnostics Server from One Host to Another on page 477

Y Y Y Y Y Y

Configuring the Diagnostics Server for Multi-Homed Environments
on page 479

» Reducing Diagnostics Server Memory Usage on page 483

» Configuring Server Request Name Based Trimming on page 484

» Automating Composite Application Discovery in HP Diagnostics on page 485
» Preparing a High Availability Diagnostics Server on page 488

» Configuring Diagnostics for HP ServiceGuard (HA solution) on page 489

» Diagnostics Server Assignments (LoadRunner/Performance Center Runs)
on page 491

» Configuring the Diagnostics Server for LoadRunner Offline Analysis File Size
on page 492

465

Chapter 12 ¢ Advanced Diagnostics Server Configuration

» Configuring Business Service Management Sample Queue Size and Web
Services CI Frequency on page 495

» Configuring Diagnostics Using the Diagnostics Server Configuration Pages
on page 496

» Optimizing the Diagnostics Server in Production to Handle More Probes
on page 496

» Configuring a Custom Context Root on page 497

Synchronizing Time Between Diagnostics Components

466

For Diagnostics data to be stored and correlated propetly, it is critical that
time is synchronized between the Diagnostics components. To facilitate
synchronization of data, the Diagnostics data is adjusted and saved to the
synchronized GMT time of the Diagnostics Server in Commander mode.
Synchronization makes it possible to display the data correctly for any local
time in which the UI can be located.

The following sections describe how time synchronization works, and how
to configure the components properly so that the time will be synchronized.

Probe collections running in VMware hosts have additional time
synchronization requirements. See “Time Synchronization for Probes
Running on VMware” on page 512.

Understanding Time Synchronization

Time synchronization in Diagnostics begins with the Diagnostics command
server determining the difference between its time and the GMT time
provided by a designated Time Source. The Time Source to be used is set
using the timemanager.time_source property in
<diagnostics_server_install_dir>/etc/server.properties.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

The valid values for the timemanager.time_source property are:

» NTP. Indicates that an NTP Server is to be used as the source of GMT
time. This is the default value.

The NTP servers that are to be used are listed as values of the
timemanager.ntp.servers property in <diagnostics_server_install_dir>/
etc/server.properties.

Note: Make sure that one of the NTP servers in the list can be contacted
from the Diagnostics Server, or add your local NTP server as the first
server in the list.

» BAC. Indicates that the registered Business Service Management gateway
server is to be used as the source of GMT time.

Note: If Business Service Management is configured to use Database time,
you should also configure the Diagnostics command server to use this
setting as the time source.

> SERVER. Indicates that the Diagnostics command server is to be used as
the Time Source.

This should only be used when the Diagnostics Server is being used in
Standalone mode.

The Diagnostics Servers that are in Mediator mode synchronize their time
by establishing the time difference between the Diagnostics Server in
Mediator mode and the Diagnostics Server in Commander mode.

If the Diagnostics Server in Commander mode did not yet synchronize with
the Time Source, the Diagnostics Servers in Mediator mode are considered
to be “unsynched.” The Diagnostics Servers in Mediator mode that are
unsynched attempt to synchronize their time every 15 seconds until they
succeed.

467

Chapter 12 ¢ Advanced Diagnostics Server Configuration

468

When a Diagnostics probe connects to a Diagnostics Server in Mediator
mode or to a Diagnostics Server in Commander mode, the time difference is
established between the Diagnostics Server and the probe.

If the probe attempts to connect to a Diagnostics Server that is still
“unsynched,” the probe connection is not allowed and is dropped.

Because the data is stored based on the GMT, differences in time zones or
daylight savings times for the various components are not an issue. For
example, the data that is displayed in the Diagnostics Ul can be adjusted to
display correctly for the time zone in which the Ul is running.

Note: All data is adjusted and saved to the synchronized GMT time of the
Diagnostics Server in Commander mode. If the Ul is running on a machine
whose time was not synchronized properly with the Time Source, the data
displayed in the UI appears shifted by the amount of time the Ul machine is
off from the synchronized GMT time.

Configuring the Time Synchronization on the Diagnostics
Server

You can synchronize the Diagnostics commander server by performing the
following procedure.

Note: Time Synchronization settings for Diagnostics Servers in Mediator
mode are ignored because their time is automatically synchronized with the
Diagnostics Server in Commander mode.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

To ensure that time on the Diagnostics Server in Commander mode can be
synchronized:

The default configuration for the Diagnostics Server is set such that the
value of the timemanager.time_source property in
<diagnostics_server_install_dir>/etc/server.properties is NTP.

If the Diagnostics Server has an internet connection and the ability to
connect to a server in the list of available NTP servers specified in the
timemanager.ntp.servers property, the default configuration will work and
no changes are necessary.

Because Business Service Management also uses NTP for time
synchronization by default, this is the recommended setting.

If the Diagnostics Server does not have an internet connection or the ability
to connect to the list of available NTP servers specified in
timemanager.ntp.servers property, you must do one of the following:

» Set up a local NTP server that can be contacted by the Diagnostics Server
in Commander mode. List this local NTP server as the first entry in the
timemanager.ntp.servers property in <diagnostics_server_install_dir>/
etc/server.properties.

Note: Have backup NTP servers in case the primary NTP server is not
available.

» If you are using Diagnostics in a Business Service Management or HP
Software as a Service (SaaS) environment, you can set the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties to BAC to indicate Business Service Management.
This causes the Diagnostics Server to connect to the registered Business
Service Management core server to establish the time.

Note: To set up Business Service Management to use Diagnostics, see
Chapter 22, “Setting Up the Integration Between Business Service
Management and Diagnostics.”

469

Chapter 12 ¢ Advanced Diagnostics Server Configuration

» If the Diagnostics Server in Commander mode is to be used in
Standalone mode, with no intention of using it with Business Service
Management, and there is no internet connection allowing time
synchronization with an NTP server, you can set the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties to SERVER. This causes the Diagnostics Server to use
its own time as the Time Source.

Note: It is recommended that you do not change the value of the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties once data is captured and persisted using the
designated Time Source. Changing the Time Source after data is captured
can result in a significant corruption to the data that was captured and
persisted. This is because the data that was persisted might have been
captured while the Diagnostics Server was not synchronized with GMT. If
the data that is captured later is captured while the Diagnostics Server is
synchronized with GMT, the data could get re-aggregated multiple times
or could get recorded into time buckets where it does not belong.

Configuring the Diagnostics Server for a Large Installation

470

If you are using a Diagnostics Server in Mediator mode with more than 20
probes, it is recommended that you make modifications to the default
configuration of the Diagnostics Server.

Note: These changes to the configuration are not needed for the Diagnostics
Server in Commander mode unless it also has probes assigned to it so that it
also serves as a Diagnostics Server in Mediator mode.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Adjusting the Heap Size

The size of the heap can impact the performance of the Diagnostics Server
in Mediator mode. If the heap is too small, the Diagnostics Server in
Mediator mode could “hangs” for periods of time. If the heap is too large,
the Diagnostics Server in Mediator mode could experience long garbage
collection delays (especially if there aren’t enough CPU resources available
such as multiple CPUs/cores or fast CPUs).

The default value for the heap size is 512 MB. The heap size is set in the
server.nanny file located at:
<diagnostics_server_install_dir>\nanny\windows\dat\nanny\ for
Windows, or <diagnostics_server_install_dir>/nanny/solaris/
launch_service/dat/nanny/ for Solaris.

Use the following VM argument to set the size (where ??? is the size in MB):
-Xmx???m

If you encounter problems with the Diagnostics Server in Mediator mode
hanging, you can increase the heap size specified by updating the value
specified in the -Xmx???m option.

To adjust the heap size of the Diagnostics Server in Mediator mode:

Use the following table to determine the amount of heap the Diagnostics
Server in Mediator mode will need:

Number of Probes Recommended Heap Size

Up to 50 Java Probes 512 MB

Up to 100 Java Probes 1400 MB

Up to 200 Java Probes 3000 MB (64bit)

Up to 10 .NET Probes 350 MB

Up to 20 .NET Probes 700 MB

Up to 50 .NET Probes 1400 MB

471

Chapter 12 ¢ Advanced Diagnostics Server Configuration

472

Note: The recommended heap size should not exceed more than 75% of the
physical memory of the machine. If a machine has 1 GB, the heap size must
not exceed 768 MB.

It is highly recommended to run Diagnostics on a system with more than
two CPUs or cores (four cores are recommended). In such an environment,
change the Garbage Collector to concurrent mark and sweep:
-XX:+UseConcMarkSweepGC

For 64bit JVMs, make sure to enable this option:
-XX:+UseCompressedOops

For VMware installations follow the best practices as described in VMware's
"Enterprise Java Applications on VMware Best Practices Guide". In essence,
use multiple vCPUs and fixed memory allocations (no ballooning or
swapping to disk) and ensure installation of VMware Tools.

Open the server.nanny file that is to be edited. This file is located at:

<diagnostics_server_install_dir>\nanny\windows\dat\nanny\
for Windows, or <diagnostics_server_install_dir>/nanny/solaris/
launch_service/dat/nanny/ for Solaris.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

3 On the start_<platform> line that is appropriate, replace the heap size
specified in the -Xmx???m option with the optimal heap size that you
calculated:

-Xmx???m

Continuing the previous example, the current heap size, represented by ???
is replaced with 768 MB.

-Xmx768m

Before you modify this line in the server.nanny file, it will look like this:

start_nt="C:\MercuryDiagnostics\Server\jre\bin\javaw.exe" -server -Xmx512m
-Dsun.net.client.defaultRead Timeout=70000
-Dsun.net.client.defaultConnectTimeout=30000
"-javaagent:C:\MercuryDiagnostics\Server\probe\lib\probeagent.jar"
-classpath "C:\MercuryDiagnostics\Server\lib\mediator.jar;
C:\MercuryDiagnostics\Server\lib\loading.jar;
C:\MercuryDiagnostics\Server\lib\common.jar;
C:\MercuryDiagnostics\Server\lib\mercury_picocontainer-1.1.jar"
com.mercury.opal.mediator.util.DiagnosticsServer

After you modify this line in the server.nanny file, it will look like this:

start_nt="C:\MercuryDiagnostics\Server\jre\bin\javaw.exe" -server -Xmx768m
-Dsun.net.client.defaultRead Timeout=70000
-Dsun.net.client.defaultConnectTimeout=30000
"-javaagent:C:\MercuryDiagnostics\Server\probe\lib\probeagent.jar"
-classpath "C:\MercuryDiagnostics\Server\lib\mediator.jar;
C:\MercuryDiagnostics\Server\lib\loading.jar;
C:\MercuryDiagnostics\Server\lib\common.jar;
C:\MercuryDiagnostics\Server\lib\mercury_picocontainer-1.1.jar"
com.mercury.opal.mediator.util.DiagnosticsServer

Adjusting the Amount of Data Pulled from the Probe

Large call profiles require significant network bandwidth between the probe
and server, and significant CPU resources on the server.

473

Chapter 12 ¢ Advanced Diagnostics Server Configuration

474

If the network becomes a bottleneck—for example, network utilization
above 25% on a mediator as observed in Windows task manager, or probes
report less than 100% availability although they were up—you should
reduce the data that is generated via trimming, to enable compression, if the
probe system's CPU is not fully used. You can also reduce the frequency of
the data that the server pulls from the probe.

The main trimming parameters on the probe are:

In the capture.properties file:
» maximum.stack.depth = 25

» maximum.method.calls = 1000 (for example, can be set to 25 to limit
overall number of methods in a Call Profile)

» minimum.method.latency = 51ms
In the dispatcher.properties file:

» minimum.fragment.latency = 51ms (for example, can be increased to
101ms). But note that by default trimming doesn’t affect synthetic
transactions (BPM/vugen/LoadRunner/Performance Center) so all
these server requests are reported.

For more information on trimming, see “Configuring Server Request Name
Based Trimming” on page 484 for the server, “Configuring Latency
Trimming and Throttling” on page 641 and “Configuring Depth Trimming”
on page 646 for .NET Agent, “Controlling Automatic Method Trimming on
the Agent” on page 508 for Java Agent.

To enable compression, on the probe set webserver.properties:
rhttp.gzip.replies = true. This reduces network traffic on the server
significantly. However, the probe (and server) require additional CPU for
compression.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Another way of decreasing network traffic is to change the frequency that
data is pulled from the probe. By default, trends are pulled every 5 seconds
and trees (Call Profiles) are pulled every 45 seconds. To lower the frequency
for call trees, change probe.trees.pull.interval on the mediator in the
server.properties file—for example, 90 seconds or 240 seconds depending
on how many methods a Call Profile contains. First, lower the pull
frequency of call trees. If this is not enough, lower the trend pull frequency
by changing probe.trends.pull.interval—for example, 10 seconds.

Changing any of these parameters requires restarting the probe or server.

Additional Adjustments

If more than 50 probes are connected, increase the number of threads used
for pulling data from the probe. For each mediator, set
probe.pull.max.threads=30 and restart the server.

You can also increase the number of threads available for jetty by setting
webserver.properties, jetty.threads.max=500.

If call tree and trend files (see also Appendix E, “Diagnostics Data
Management”) become too large (greater than 4 GB) in their uncompressed
state, offload some of the probes to a new mediator. Otherwise, the
aggregation and compression of the files could start to lag due to the large
amount of data.

When many probes are connected to a server, the default purging setting of
5 GB might not be enough. For more information, see “Data Retention” on
page 876.

475

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Overriding the Default Diagnostics Server Host Name

When a firewall or NAT is in place, or the host for the Diagnostics Server in
Mediator mode was configured as a multi-homed device, the Diagnostics
Server in Commander mode might not be able to communicate with the
Diagnostics Server in Mediator mode using the host name assigned when
the Diagnostics Server in Mediator mode was installed. The
registered_hostname property enables you to override the default host
name the Diagnostics Server in Mediator mode uses to register itself with the
Diagnostics Server in Commander mode.

To override the default host name for a Diagnostics Server in Mediator
mode, set the registered_hostname property located in
<diagnostics_server_install_dir>/etc/server.properties to an alternate
machine name or IP address that will allow the Diagnostics Server in
Commander mode to communicate with the Diagnostics Server in Mediator
mode.

Changing the Default Diagnostics Server Port

476

If the configuration of the Diagnostics Server host does not allow the default
Diagnostics port to be used, choose a different port for the Diagnostics
Server communications with the probes and other Diagnostics Servers.

Important: Make sure that the new port number is not already used by
another application and that the other Diagnostics components can
communicate with this port.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

If you decide to use an alternative port number after you deploy
Diagnostics, you must update the properties in the following table for each
of the indicated components in your deployment with the new port number
to ensure that the proper communications can take place.

Component Type Properties
Diagnostics command <diagnostics_server_install_dir>/etc
server » webserver.properties — jetty.port

» server.properties — commander.url
» probe/etc/dispatcher.properties — registrar.url

Diagnostics mediator <diagnostics_server_install_dir>/etc
server » server.properties — commander.url

<diagnostics_server_install_dir>/probe/etc
» dispatcher.properties — registrar.url

Probes <probe_install_dir>/etc
» dispatcher.properties — registrar.url

Migrating Diagnostics Server from One Host to Another

The following procedure shows how to migrate your Diagnostics Server
from one host to another and assumes the new host name is different from
the old host name.

To migrate a Diagnostics server from one host to another:

1 Ensure that the existing Diagnostics Server has been shut down by verifying
that there are no java/javaw processes in your process list. On Windows
systems, you can use the Task Manager to do this and on UNIX systems, you
can use ps.

2 Unregister the Diagnostics Commander Server from Business Service
Management.

3 Install the new Diagnostics Server on the new host.

4 On Windows, the Diagnostics Server is started automatically when the
installer finishes so you must shut down the Diagnostics Server.

477

Chapter 12 ¢ Advanced Diagnostics Server Configuration

478

10

11

On UNIX the server is not automatically started so you do not need to shut
it down.

Ensure that the Diagnostics Server has been shut down by verifying that
there are no java/javaw processes in your process list. On Windows systems,
you can use the Task Manager to do this and on UNIX systems, you can use

ps.

Be sure you know the host name of the old Diagnostics Server (you can find
the name in the /archive directory).

Delete the <diagnostics_server_install_dir>/archive directory on the new
Diagnostics Server.

Copy the <diagnostics_server_install_dir>/archive folder and all subfolders
from the old server into the new server <diagnostics_server_install_dir>/.

If the host name for the new Diagnostics Server is different than the host
name for the old Diagnostics Server, you must rename
<diagnostics_server_install_dir>/archive/mediator-<host-name> so that
<host-name> reflects the new Diagnostics Server host name. For example, if
your old host name was oldhost and the new host name is newhost you
would change

<diagnostics_server_install_dir>/archive/mediator-<oldhost> to
<diagnostics_server_install_dir>/archive/mediator-<newhost>.

Delete the <diagnostics_server_install_dir>/storage/ directory for the new
Diagnostics Server.

Copy the <diagnostics_server_install_dir>/storage/ folder and all subfolders
from the old server into the new server <diagnostics_server_install_dir>/.

On the new server rename <diagnostics_server_install_dir>/storage/
server-<hostname> so that <host-name> reflects the new Diagnostics Server
host name. For example, if your old host name was oldhost and the new
host name is newhost you would change

<diagnostics_server_install_dir>/storage/server-<oldhost> to
<diagnostics_server_install_dir>/storage/server-<newhost>

Copy the <diagnostics_server_install_dir>/etc folder from the old server into
the new server <diagnostics_server_install_dir>/ and copy the new license to
etc folder.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

12 Start new Diagnostics server and register the new Diagnostics server in
Business Service Management.

13 If the new server was the Commander then on all the mediators, you need
to scan the etc folder and change the old server name to the new server
name. Double check the dispatcher.properties file to make sure the
commander server hostname changed. Then restart all the mediators.

There is no change required on the probe side unless the probe is directly
reporting to the commander server or you are migrating the mediator server
the probe is connected to. If that is the case, scan the etc folder on the probe
system and change the old server name to the new server name (double
check the dispatcher.properties file to make sure the mediator server
hostname changed).

Configuring the Diagnostics Server for Multi-Homed
Environments
The machines that host the Diagnostics Server can be configured with more
than one Network Interface Card (NIC). The Diagnostics Server process
listens on all interfaces on its host. Some customer environments do not
allow applications to listen on all network interfaces on a machine. If your

environment has this restriction, use the following instructions to configure
the Diagnostics Server to listen on specific network interfaces.

Setting the Event Host Name

If the Diagnostics Server host has multiple network interfaces, and you want
to specify the hostname that the Diagnostics Server will listen on, you must
set the event.hostname property.

This property can be found in:
<diagnostics_server_install_dir>/etc/server.properties

Uncomment the property, event.hostname, and specify the hostname
value.

By default, the event.hostname property is not set. This means that the
Diagnostics Server will listen on all hostnames.

479

Chapter 12 ¢ Advanced Diagnostics Server Configuration

480

2

Modifying the jetty.xml File

The jetty.xml file has a section that defines the interfaces on which the
Diagnostics Server is permitted to listen. By default, the jetty.xml file
included with the Diagnostics Server has no listeners defined. The
Diagnostics Server listens on all of the interfaces.

To configure the Diagnostics Server to listen on specific network interfaces
on a machine:

Open <diagnostics_server_install_dir>/etc/jetty.xml and locate the
following line:

<Configure class="org.mortbay.jetty.Server">

Add the following block of code after this line, changing the <Set
name="Host">...... </Set> to contain the NIC’s IP address.

<Call name="addListener">

<Arg>

<New class="org.mortbay.http.SocketListener">

<Set name="Host">127.0.0.1</Set>
<Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
<Set name="MinThreads">1</Set>
<Set name="MaxThreads">5</Set>
<Set name="MaxIdleTimeMs">30000</Set>
<Set name="LowResourcePersistTimeMs">5000</Set>
<Set name="ConfidentialPort">8443</Set>
<Set name="IntegralPort">8443</Set>

</New>

</Arg>

</Call>

Chapter 12 ¢ Advanced Diagnostics Server Configuration

3 Repeat the previous step adding a new copy of the block of code and setting
the IP address for the NIC for each interface on which the Diagnostics Server
is to listen.

Make sure that the </Configure> tag follows the listener code for the last
NIC.

Note: Make sure that components that access the Diagnostics Server can
resolve the hostnames of the Diagnostics Server to the IP address that you
specify in the jetty.xml file for the host values. Some systems could resolve
the host name to a different IP address on the Diagnostics Server host. For
more information, see “Overriding the Default Diagnostics Server Host
Name” on page 476.

481

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Sample jetty.xml File

The following example shows the jetty.xml file for the Diagnostics Server,
where the Diagnostics Server will listen on loopback and one IP address on

the system.
<!I-- Configure the Jetty Server -->
<I-- -->
<Configure class="org.mortbay.jetty.Server">
<l ==
<!-- Configure the Request Listeners -->
<l-- >
<Call name="addListener">
<Arg>

<New class="org.mortbay.http.SocketListener">

<Set name="Host">127.0.0.1</Set>
<Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
<Set name="MinThreads">1</Set>
<Set name="MaxThreads">5</Set>
<Set name="MaxIdleTimeMs">30000</Set>
<Set name="LowResourcePersistTimeMs">5000</Set>
<Set name="ConfidentialPort">8443</Set>
<Set name="IntegralPort">8443</Set>

</New>

</Arg>

</Call>

<-Listen on specific IP Address on this machine for incoming Commander calls->
<Call name="addListener">
<Arg>
<New class="org.mortbay.http.SocketListener">
<Set name="Host">10.241.3.109</Set>
<Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
<Set name="MinThreads">1</Set>
<Set name="MaxThreads">5</Set>
<Set name="MaxldleTimeMs">30000</Set>
<Set name="LowResourcePersistTimeMs">5000</Set>
<Set name="ConfidentialPort">8443</Set>
<Set name="IntegralPort">8443</Set>
</New>
</Arg>
</Call>
</Configure>

482

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Reducing Diagnostics Server Memory Usage

The Transaction Timeout Period is a safety mechanism that prevents the
Diagnostics Server from using excessive amounts of memory because it is
holding on to old data for too long. The Diagnostics Server holds on to all of
the information it receives for a transaction until it receives the End of
Transaction Notification (ELT), which tells the Diagnostics Server the
transaction is complete. The timeout period for a transaction is reset each
time the Diagnostics Server receives data for the transaction.

If the machine on which the Diagnostics Server in Commander mode is
running is overloaded (CPU is heavily loaded or there are too many
transactions per second for it to handle), or if there are network connectivity
issues between the Load Generators or Business Service Management and
the Diagnostics command server, or between Business Process Monitor and
Business Service Management, the Diagnostics Server might not receive the
ELT that lets it know when a transaction ended. If the ELT is not received by
the time the transaction timeout period expires, the Diagnostics Server
assumes that the ELT is not coming and proceeds to process the data for the
transaction and free the memory the transaction data is using.

The correlation.txn.timeout property sets the duration of the transaction
timeout period. If you experience out-of-memory conditions in the
Diagnostics Server, you could reduce the transaction timeout period so that
the Diagnostics Server waits less time for the end of a transaction. Use
caution when adjusting the value of this property because multiple probes
could be sending data to the Diagnostics Server, and an active transaction
could be idle in one Diagnostics Server. Setting the value of this property too
low can cause transactions to be reported incorrectly. If you need to reduce
the value of this property, set it to 90 seconds more than the longest
transaction in your test.

483

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Configuring Server Request Name Based Trimming

484

Server Request name based trimming lets you configure Diagnostics to filter
out server requests that appear to be causing Diagnostics Server performance
issues without changing the configuration or the instrumentation used by
the probes.

Note: Server request name-based trimming is not intended to be used
instead of the latency and depth trimming you configure for the probes.

Using the trim.fragment properties in the
<diagnostics_server_install_dir>\etc\trimming.properties file, you can
specify the names of the server request fragments that Diagnostics is to trim.
Diagnostics trims the fragments for both Real User and Virtual User server
requests.

By default, the properties trim.fragment.1 and trim.fragment.2 are
commented out in trimming.properites. To specify a fragment to be
trimmed, uncomment one of the properties and type the fragment name
that is to be trimmed as it is listed in the Diagnostics views. If more than two
fragments need to be trimmed, create additional trim.fragment properties.
Make sure to increment the number at the end to ensure that each property
name is unique. For example, the next trim.fragment property would be
named trim.fragment.3.

Events and fragments that are trimmed as a result of these property settings
are counted in the dropped event and dropped fragment counts.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Automating Composite Application Discovery in HP
Diagnostics

Composite Application Discovery (CAM) provides a convenient way to
group application servers (probes) and to continuously detect new
components that are connected to these application servers by following the
calls a probe is making to these other components.

In addition to configuring applications in the Ul, Diagnostics provides
scripting support for CAM. This allows the dynamic creation of new
applications based on newly added probes outside the Ul

Scripting Applications

Scripts that are used to create new applications are stored on each mediator
in etc/appDiscoveryRules.properties. The script that ships with Diagnostics
contains some examples.

Typically, applications are based on certain patterns that are available in
entity properties such as probe name, probe group name or server request
name. The /groupby path is used to query the Diagnostics data model and
select instances. This query path is used in scripts such as the one below for
application discovery and is also used to automate setting thresholds and
alerts. See the Diagnostics Data Model and Query API Guide for details.

485

Chapter 12 ¢ Advanced Diagnostics Server Configuration

The following example illustrates an easy way to create new applications
based on parts of the probe name.

Example:

#

Put all probes with a particular naming pattern into

an application.

#

If you have a very consistent naming convention for probes, you
can auto-insert new probes into the appropriate application.

#

In the below example, we put any probe that has a hame starting
with "cs_" into the "Sales" application.

/groupby[name\='Default\ Client']/probegroup/probe=\
String probeName = probe.getName();\
if(probeName.startsWith("cs_")) {\
uid=name="Sales";\

}

The /groupby definition (in blue bold text) periodically queries all probes
on this mediator and executes the script (JavaScript in red italicized text)
against the returned probe names. In the example above, the code creates an
application with the name "Sales" for all probes that start with "cs_".

In addition to the name, application permissions can be specified. The script
includes more examples for specifying application permissions.

Further it is possible to automatically include all related probe entities such
as Server Requests and SQL statements. To do this, set the variable
discoveryPolicies with the value "applyAppFilterToProbeContents":

/groupby[name\='Default\ Client']/probegroup/probe=\
String probeName = probe.getName();\
if(probeName.startsWith("cs_")) {\
uid=name="Sales";\
discoveryPolicies="applyAppFilterToProbeContents"; \
}

486

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Moving Composite Applications Between Environments

The scripting approach provides an easy way to move applications between
environments such as from QA to production. All application definitions,
however, need to be created using the script. One master script can be used
on all mediators even if the probes are not reporting to this mediator.

It is important to use a naming scheme that works between production and
pre-production. This can be achieved by:

Putting probes in specific probe groups that are constant between
production and pre-production

Using a probe naming convention that allows the script to create an
application name as shown in the example above.

If the probes are in the same probe group and this name is constant between
environments (but the probe name changes), use probegroup.getName() in
the script to access the probe group name:

/groupby[name\='Default\ Client']/probegroup/probe=\

String probegroupName = probegroup.getName(); \

String probeName = probe.getName():\

if(probegroupName.startsWith("cs")) {\
uid=name="Sales";\
discoveryPolicies="applyAppFilterToProbeContents"; \

ja

else if (probegroupName.startsWith("is")) {\
uid=name="Information Systems";\
discoveryPolicies="applyAppFilterToProbeContents"; \

}

This script is generic and can be exchanged between environments.

487

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Preparing a High Availability Diagnostics Server

488

If your Diagnostics deployment requires that the Diagnostics Server have
high availability, you can create a standby Diagnostics Server for each
Diagnostics Server. The standby is then ready to be used during a hardware
failure or other problem with the host of the Diagnostics Server.

Creating a Standby Diagnostics Server

You can create a standby for each Diagnostics Server by installing the
Diagnostics Server onto a standby machine and then periodically replicating
the primary Diagnostics Server data into the standby Diagnostics Server.

To configure a standby Diagnostics Server:

Install the Diagnostics Server onto the standby machine. Make sure that the
version of the Diagnostics Server to be installed on the standby server is the
same as the Diagnostics Server on the primary server.

Schedule a periodic remote backup of the primary server into the standby
server using the following commands from the host of the standby
Diagnostics Server:

% cd /opt/MercuryDiagnosticsServer/
% ./bin/remote-backup.sh -h <primary_server_host> -0 .

Replace <primary_server_host> with the host name for the Diagnostics
Server that is being replicated.

These commands perform an incremental replication of the Diagnostic data,
configuration files, customized views, alerts, and comments onto the
standby Diagnostics Server. You can schedule the periodic backup using a
cron job or a scheduled task on Windows.

Note: The wget utility downloads the backup over HTTP. For Windows, you
must have an installation of cygwin on the host for the Diagnostics Server.
You can get a copy of cygwin at http://www.cygwin.com/.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Failover to the Standby Diagnostics Server

If the host for the primary Diagnostics Server fails, configure the standby
Diagnostics Server so that it can begin to function as the primary
Diagnostics Server.

To make the standby Diagnostics Server the primary Diagnostics Server:

1 Change the hostname of the standby Diagnostics Server to match the
hostname of the failed host of the primary Diagnostics Server. This allows
the probes to reconnect to the Diagnostics Server when it is started.

2 Start the standby Diagnostics Server as a Windows Service, or use the bin/
server.sh or bin\server.cmd scripts. The probes reconnect to the Diagnostics
server. Whenever a probe loses its connection to its Diagnostics Server it
attempts to reconnect approximately every 30 seconds.

3 The standby Diagnostics Server is now the primary Diagnostics Server.
Configure a new standby Diagnostics Server as described in “Creating a
Standby Diagnostics Server” on page 488.

Note: When the failed Diagnostics Server host is recovered, do not make it
the primary Diagnostics Server because it loses any data gathered from the
probes while the new primary Diagnostics Server is being used.

Configuring Diagnostics for HP ServiceGuard (HA solution)

You can configure Diagnostics for HP ServiceGuard as a HA (High
Availability) solution. This section outlines the necessary steps for
configuring HP Diagnostics (Version 7.50 and higher) to run under HP
ServiceGuard (Linux).

Note: It is assumed that you are familiar with both, Diagnostics and HP
ServiceGuard.

489

Chapter 12 ¢ Advanced Diagnostics Server Configuration

490

The configuration steps described in this section can be used for other HA
solutions as well (for example Microsoft Cluster Service).

The Diagnostics server should be installed on the shared disk with enough
room for the Diagnostics time series database (TSDB) and other
configuration items (for example user rights, custom dashboard screens,
etc).

Both Diagnostics servers (active and standby) need to be time synchronized
via NTP or Business Service Management. It is not recommended to use
SYSTEM as the time synchronization mechanism since the "clock" used by
the Diagnostics server needs to be the same on both servers.

The Diagnostics server uses the hostname as a prefix for sub-directories in
the archive and storage directory. This needs to be overwritten on the Java
command line that starts the server by specifying -Dmediator.id=cluster
-Dserver.id=<cluster> (<cluster> can be replaced by any other unique name)

Example: <installdir>/bin/server.sh

$JAVA1_5 HOME/bin/java -Dserver.id=cluster -Dmediator.id=cluster -server
-Xmx512m

$SERVER_BCP $JAVAOPTS -Dsun.net.client.defaultReadTimeout=70000
-Dsun.net.client.defaultConnectTimeout=30000

-classpath $SERVER_HOME/lib/mediator.jar$PATHSEP$SERVER_HOME/lib/
loading.jar$PATHSEP$SERVER _HOME/lib/common.jar$PATHSEP$SERVER _HOME/
lib/mercury_picocontainer-1.1.jar com.mercury.opal.mediator.util.DiagnosticsServer

Note: All command line components need to be on the same line.

The ServiceGuard package requires start and stop commands for the
application. The start command for Diagnostics is the <server_install_dir>/
bin/server.sh script.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

The stop command requires a new script that should reside in
<server_install_dir>/bin as well, with the following content:

<installdir>/bin/stop.sh

#!/bin/sh
PID="ps -ef | grep -v grep | grep DiagnosticsServer | awk { print $2 }'
kill $PID
sleep 10

Note, make sure that the script has execute permissions (chmod u+x
stop.sh).

In the ServiceGuard package script, add the following lines:

stop_command:
<installdir>/bin/stop.sh

start_command:
<installdir>/bin/server.sh &

Note, replace <installdir> with the Diagnostics' server install directory and
make sure that there is an ampersand (&) at the end of server.sh.

Diagnostics Server Assignments (LoadRunner/Performance
Center Runs)

By default, a probe that is selected for a LoadRunner or Performance Center
run uses the Diagnostics Server specified in its <probe_install_dir>/etc/
dynamic.properties.

It is possible to override the configuration when the probe is started for a
run. To do so, modify a mapping file on the Diagnostics Commander Server.
This enables you to override the Diagnostics Server assignment for a probe.

This can be useful when you are running Diagnostics in a combined
LoadRunner / Performance Center and Business Service Management
environment. You could have the probes use different Diagnostic Servers
when they are in a LoadRunner / Performance Center run than when they
are reporting data to Business Service Management.

491

Chapter 12 ¢ Advanced Diagnostics Server Configuration

It might be more convenient to use this mechanism than to edit the probe
configuration file.

Note: When the probe is not in a run, it uses the Diagnostics Server specified
in its <probe_install_dir>etc/dynamic.properties file.

To override the Diagnostics Server assignment for a probe, modify the
server_assignment.properties file in the
<diagnostics_server_install_dir>\etc directory on the Diagnostics Server in
Commander mode host machine.

The format of the server_assignment.properties file is:

<ProbelD> = <Server.id>

> Replace <ProbelD> with the ID of the probe.

» Replace <Server.id> with the ID of the Diagnostics Server.

The server_assignment.properties file is dynamically read at the start of
each LoadRunner / Performance Center run. Changes made to this file
become effective without restarting the Diagnostics Server in Commander
mode.

Configuring the Diagnostics Server for LoadRunner
Offline Analysis File Size

492

For each LoadRunner scenario or Performance Center test that is run, the
Diagnostics Server in Mediator mode produces a file that is needed for
LoadRunner Offline analysis containing the Java data captured during the
scenario. The size of this file can grow quite large. Make sure you have
enough disk space to hold the LoadRunner Offline file on both the
Diagnostics Server in Mediator mode host machine where the file is stored
temporarily while the scenario is running and the Load Runner controller
host machine where the file is stored when the scenario ends.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Estimating the Size of the LoadRunner Offline File

Estimating the size of the offline file is highly dependent upon the data and
rate at which the data is captured.

To estimate the size of the LoadRunner offline file:

Run a load test for five minutes and monitor the size of the offline file
created by the Diagnostics Server in Mediator mode when the Load Runner
scenario is started.

Locate the offline file on the Diagnostics Server in Mediator mode host
machine in <diagnostics_server_install_dir>/data/<newest directory>. The
offline file has an extension of .inuse.

After five minutes, note the size of the offline file.

Extrapolate the size of the offline file after an hour by multiplying the size of
the offline file from the previous step by 12.

Determine the anticipated size of the offline file at the end of the load test
by multiplying the 1 hour file size calculated in the previous step by the
number of hours you expect your actual load test to run.

Determine if the Diagnostics Server in Mediator mode host machine and the
Controller host machine have enough disk space to accommodate the
anticipated offline file size.

Reducing the Size of the LoadRunner Offline File

If you are concerned about the size of the offline file, you can reduce the file
size by increasing the offline aggregation periods for the Diagnostics Server
in Mediator mode. This will reduce the level of granularity in the offline
data and the size of the offline files.

The default settings for these properties are 5s (5 seconds), which causes the
Diagnostics Server in Mediator mode to aggregate all data into 5-second
time slices. Increasing the value of these properties makes the offline file
smaller because fewer data points need to be stored when the aggregation
period is longer. For example, increasing the offline aggregation period
properties to 45s reduces the file size by 50-75%.

493

Chapter 12 ¢ Advanced Diagnostics Server Configuration

494

Note: The impact on the size of the offline file size that will be achieved by
adjusting the offline aggregation period is highly dependent upon the
behavior of the application and the specifics of your load test.

Use the following steps to modify the Diagnostics Server in Mediator mode
offline aggregation period properties bucket.Ir.offline.duration and
bucket.Ir.offline.sr.duration in <diagnostics_server_install_dir>/etc/
server.properties.

To reduce the size of the offline files by increasing the Diagnostics Server in
Mediator mode offline aggregation periods:

Make sure that the Diagnostics Server in Mediator mode is not participating
in any active LoadRunner / Performance Center runs. This is necessary
because the Diagnostics Server in Mediator mode must be restarted before
the property changes described in the following steps can take effect.

Access the Mediator Configuration Page by navigating to the following URL:
http://<diagnostics_server_hostname>:8081/configuration/Aggregation?level=60

Increase the Offline VU Aggregation Period by increasing the setting for the
Load Runner / Performance Center Offline VU Aggregation Period property.
The value of this property must be a multiple of 5; for example, 45s.

Increase the Offline Server Request Aggregation Period by increasing the
value of the Load Runner / Performance Center Offline Server Request
Aggregation Period property. The value of this property must be a multiple
of 5; for example, 45s.

Update the Diagnostics Server in Mediator mode with the revised property
values by clicking Submit at the bottom of the page.

A message appears at the top of the page to indicate that the changes were
saved along with a reminder to restart the Diagnostics Server in Mediator
mode. The Restart Mediator button is also displayed.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

For more information on updating property values from the Configuration
Page and a screen image showing the command buttons, see “Making Server
Configuration Changes” on page 793.

To cause the configuration changes to take effect, restart the Diagnostics
Server in Mediator mode by clicking Restart Mediator.

Configuring Business Service Management Sample Queue
Size and Web Services Cl Frequency

The following configurations are applicable to Business Service Management
integrations.

Configuring Business Service Management Sample Queue
Size

Business Service Management Sample queue size, by default, is set to 100.
When more than 100 samples are created at once, some of the samples are
dropped, resulting in missing data in Application Management for SOA. You
can see the following message in the log: BAC sample being dropped since
too many are waiting for delivery.

You can increase the samples queue size by setting the server property,
dispatcher.server.wdedelivery.max.queue.size to configure the
WDEDelivery queue size.

Frequency of Web Service Cls
The Web Services Cls are created and added to the Run-time Service Model
automatically by Diagnostics using a default frequency.

You could change the timing of the process that adds the Web Services Cls
to the Run-time Service Model. The Web Service CI population process has
the following configuration properties defined in server.properties:

» bac.webservice.Cl.create.runfrequency — the number of seconds between
population runs (default=300s, 5m)

» bac.webservice.Cl.create.query.granularity — the granularity of the
Diagnostics query used to identify Web Service Cls to create (default=1d)

495

Chapter 12 ¢ Advanced Diagnostics Server Configuration

Configuring Diagnostics Using the Diagnostics Server
Configuration Pages

The Diagnostics Server Configuration pages enable you to set the property
values that control how the Diagnostics Server communicates with the
other Diagnostics components, and how it processes the data it receives
from the probes.

Note: To ensure that you are entering valid property values, use these pages
to update the Diagnostics Server properties rather than editing the property
files directly.

For information about viewing and modifying Diagnostics using the
Diagnostics Server Configuration pages, see Appendix A, “Diagnostics
Administration UL”

Optimizing the Diagnostics Server in Production to Handle
More Probes

496

The number of probes that a single diagnostic server process can handle
depends largely on the number of unique server requests per 5-minute
interval, and the number of methods and layers in each server request. The
following optimizations increase the number of probes that can be handled
per server process.

Chapter 12 ¢ Advanced Diagnostics Server Configuration

» The default setting is for the diagnostic server to pull the trends from each
probe every 5 seconds, and the trees from each probe every 45 seconds. If a
single diagnostic server process is handling more than 25 probes, this could
be optimized such that the trends and trees are pulled less often. A suggested
optimal setting in production is a 30-second trend pull interval, and a
120-second tree pull interval. These values can be configured in
<diagnostics_server_install_dir>\Server\etc\server.properties as follows:

The interval at which to pull trends from probes
probe.trends.pull.interval = 30s

The interval at which to pull trees from probes
probe.trees.pull.interval = 120s

» The maximum heap size of the server process is determined by the -Xmx
parameter in the server's startup script. The default setting is 512 MB for
maximum heap size. Increase the maximum heap size according to the load
from the probes. The suggested values for maximum heap size, based on the
number of probes to be handled, is available in Chapter 1, “Preparing to
Install HP Diagnostics.”

» A 1 Gbps link is strongly recommended in production for the diagnostic
server when the server is handling more than 30 probes.

» If a single server process is handling more than 75 probes, increase the
number of jetty threads. The general rule of thumb for sizing the number of
threads is twice the number of probes + 40. The default value is 200. The
number of jetty threads can be increased by modifying the
jetty.threads.max property in <diagnostics_server_install_dir>\Server\etc\
webserver.properties; for example:

jetty.threads.max=300

Configuring a Custom Context Root

To configure a custom context root on Diagnostics commander server set
the following in the etc/webserver.properties file:

Reverse proxy prefix for Diag URLs (e.g. /diag/customername in ES
environment) # reverse_proxy.prefix=

497

Chapter 12 ¢ Advanced Diagnostics Server Configuration

If BSM is also configured with a custom context root (instead of '/topaz'),
then in the BSM Admin Diagnostics Configuration page you will also need
to specify the context root configured on the diagnostics side for the
commander.

498

13

Advanced Java Agent and Application
Server Configuration

This section discusses advanced configuration of the Diagnostics Java Agent
and the application server environment. Advanced configuration is for
experienced users with in-depth knowledge of this product. Use caution
when modifying any of the component properties.

This chapter includes:

Advanced Configuration Overview on page 500

Disabling the Java Diagnostics Profiler on page 501

Controlling Probe Logging on page 502

Setting the Probe’s Host Machine Name on page 503

Specifying a Different Probe IP Address on page 505

Set the Active Products Mode on page 505

Controlling Automatic Method Trimming on the Agent on page 508
Configuring URI Truncation, Mapping and Trimming on page 510
Configuring an Agent for a Proxy Server on page 511

Time Synchronization for Probes Running on VMware on page 512
Limiting Exception Tree Data on page 512

Diagnostics Probe Administration Page on page 515

Authentication and Authorization for Diagnostics Java Profilers on page 518

Configuring Collection of CPU Time Metrics on page 521

Y Y Y Y Y Y Y Y Y Y Y VY VY VY Y

Configuring Consumer IDs on page 524

499

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

>
>
>
>
>
>
>

Configuring SOAP Fault Payload Data on page 535

Configuring REST Services on page 537

Customizing Grouping JMS Temporary Queue/Topics on page 537
Configuring SQL Query Parsing on page 537

Configuring Display of Application Name for Server Requests on page 538
Maintaining Probe Settings from the Java Profiler UI on page 539

Generating Performance Reports for JUnit Tests on page 547

Advanced Configuration Overview

500

The following bullet points list the probe configuration sources of
information to consult to configure your environment.

If you have a probe that you want to prevent others from using in Profiler
mode, see “Disabling the Java Diagnostics Profiler” on page 501.

To have log messages posted to the probe logs for lower level messages,
adjust the log level as described in “Controlling Probe Logging” on
page 502.

If you have more than one agent installed on the same host, make sure the
log messages for each agent are stored in a different file, as explained in
“Changing the Log Directory for a Probe” on page 503.

To examine the performance of processing that would normally be trimmed
from the metrics reported in Diagnostics, you can reduce the level of
trimming or turn off trimming completely as described in “Controlling
Automatic Method Trimming on the Agent” on page 508.

If there is a proxy between the agent and the Diagnostics command server,
you must set the correct property to tell the agent the URL of the
Diagnostics command server, see “Configuring an Agent for a Proxy Server”
on page S11.

If you installed a Java Agent in an HP Software as a Service (SaaS)
environment, disable the reverse http (rhttp) communication between the
agent and the Diagnostics mediator server, see “Time Synchronization for
Probes Running on VMware” on page 512.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

» If you are running in a virtual environment, see “Time Synchronization for
Probes Running on VMware” on page 512.

» If you need to limit the amount of exception data, see “Limiting Exception
Tree Data” on page 512.

» If you want to use some of the collection options that require property file
changes, see the other topics in this section such as “Configuring Consumer
IDs” on page 524.

Disabling the Java Diagnostics Profiler

You can disable the Diagnostics Profiler for Java on a Java Agent so that it
cannot be accessed accidently. When the Java Diagnostics Profiler is
disabled, the user interface cannot be accessed from the Java Diagnostics
Profiler URL: http://<probe_host>:<probeport>/profiler.

To disable the Java Diagnostics Profiler, set the disable.profiler property in
<probe_install_dir>/etc/probe.properties to true.

The default value for disable.profiler is false. To enable the Java Diagnostics
Profiler once it is disabled, change the value of the disable.profiler property
from true to false.

501

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Controlling Probe Logging

You can control the level of the messages the probe logs and change the
location where the log messages are posted using the probe properties.

Controlling the Log Message Level

The level of messages from the probe that are logged to the standard output
is controlled by the lowest_printing_level property in the property file
<probe_install_dir>/etc/logging.properties. The default setting for this
property is OFF. This prevents almost all agent messages from being logged
to the console.

You can adjust the logging level dynamically by changing the value assigned
to the lowest_printing_level property. The level of messages logged changes

as soon as you save the property file.

The valid values for the lowest_printing_level property are:

Property
Value

Description

OFF

No messages are logged.

DEBUG

All messages are logged.

INFO

Info, Severe, and Warning messages are logged.

WARN

Warning and Severe messages are logged.

SEVERE

Severe messages are logged.

502

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Changing the Log Directory for a Probe

The default location for the log directory for a probe is <probe_install_dir>/
log. When you have more than one probe on the same host, you can
change the location of the log directory for each probe using the log.dir
property. This property can be set in two ways:

» The value of the log.dir property can be set in the property file
<probe_install_dir>/etc/probe.property.

» The value of the log.dir property can be specified on the startup
command line for the application server as a JAVA system property as in
the following example:

-Dprobe.log.dir=/path/to/log

For more information on specifying the log.dir property on the startup
command line, see “Configuring an Agent for a Proxy Server” on
page S11.

Setting the Probe’s Host Machine Name

The probe’s host name registers the probe with the Diagnostics commander
server. The Diagnostics commander server uses the probe’s host name to
communicate with the probe and displays it along with the system metrics
for the server that the probe is monitoring in the Diagnostics views.

The probe normally can detect the host name of the machine that is its
host. In some situations, the server configuration is faulty and the probe
cannot detect the correct host name. In situations where a firewall or NAT is
in place or where your agent host machine was configured as a multi-homed
device, it might not be possible for the agent to properly detect its host.

If the probe cannot detect its host name, you can instruct the probe to get
the host name via a reverse DNS lookup based on the socket connection, or
you can specify the host name using a probe property.

503

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

504

Instructing the Probe to Use Reverse DNS Lookup

If the configuration of the probe’s host prevents the probe from detecting
the host name, you can instruct the probe to detect the host name using a
reverse-DNS lookup by setting the server.host.name.lookup property. This
property is located in the <probe_install_dir>/etc/dispatcher.properties file.

The default value for the server.host.name.lookup property is ‘false’. This
tells the probe to do the lookup without using reverse-DNS. Set this property
to ‘true’ to instruct the probe to use reverse-DNS lookup.

Manually Specifying the Probe Host Name

The registered_hostname property enables you to manually set a host
machine name for the probe and stop the probe from doing the automatic
lookup.

To set a default host machine name for a probe, set the
registered_hostname property (located in the property file
<probe_install_dir>/etc/dispatcher.properties) to a machine name or IP
address.

When you set the registered_hostname property, automatic lookup of the
host name is disabled.

Note: Setting the registered_hostname property because of a NAT or firewall
is only an issue for a test environment where you are using LoadRunner,
Performance Center, or Diagnostics Standalone.

When you set the registered_hostname in a production environment where
you are using Business Service Management or Diagnostics Standalone, the
name you specify is shown as the host name in System Health.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Specifying a Different Probe IP Address

The probe.host.ip.address.override property (located in the property file
<probe_install_dir>/etc/dispatcher.properties) enables you to override the
Probe’s IP address. You can use this property when you want the probe to
provide the server with a different IP address, for example, a Virtual IP that
would allow the server to communicate to the probe through a tunnel.

Set the Active Products Mode

The Java Agent mode is typically set for you based on the options you enter
in the setup program. But you can set the mode manually as described in
this section.

The Java Agent can be set in different modes to do the following:

» Monitor applications from development through pre-production testing
and into production

» Work with other HP Software products

» Be used as a standalone Diagnostics Java Profiler not reporting to a server or
to other HP Software products

The mode the Java Agent works in is determined by the modes value of the
active.products property located in the property file <probe_install_dir>/
etc/probe.properties.

The modes value in the active.products property is also used in determining
usage against the license capacity (see “License Information Based on
Currently Connected Probes” on page 85). For Diagnostics there are two
types of LTUs (License to use):

» AM - When using of the product in an enterprise mode, typically in a
production environment.

» AD - When using the product in a pre-production load testing environment
with probes in LoadRunner or Performance Center runs.

The value of the active.products property is initially set at the time you
install the Java Agent.

505

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

506

To change the value of the active.products property you can edit the
property file and restart the application server. Or you can re-run the Java
Agent Setup Module and use the Change option to set the mode to
Diagnostics Profiler Mode (PRO), Application Management/Enterprise Mode
for Diagnostics (Enterprise) and/or TransactionVision (TV) or Diagnostics
Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for Java trial copy in
enterprise mode or integrated with other HP Software products, contact HP
Software Customer Support to purchase HP Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software
products, you must perform additional configuration steps. See the sections
in “Setting Up Integration with Other HP Software Products” on page 735
for details on integration with Business Service Management, LoadRunner
or Performance Center. The sections that follow provide instructions for
configuring each product mode of the active.products property.

PRO Product Mode - Diagnostics Profiler for Java

When PRO mode is set, the agent gathers performance metrics and presents
them in the standalone Diagnostics Java Profiler user interface which is
made available through a URL on the agent host.

If you are running the Java Agent as part of the Java Diagnostics Profiler trial
copy, restrictions are placed on the agent to limit the load it can handle.

If you are running the Java Agent as part of the full Diagnostics enterprise
product, or along with another HP Software product, the Profiler is enabled
without the load restrictions.

PRO mode is not used in determine usage against license capacity.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Enterprise Product Mode

When configured in Enterprise mode, the agent works with HP Software
products such as Business Service Management, LoadRunner, Performance
Center, and as the full Diagnostics enterprise product. Although you must
also do additional configure to enable these integrations (see the sections in
“Setting Up Integration with Other HP Software Products” on page 735 for
details).

In Enterprise mode data will also be sent to the Diagnostics Java Profiler.

In Enterprise mode you must also register the agent with the Diagnostics
Servers (see “Register the Agent with the Diagnostics Servers” on page 150).

Enterprise mode is the default for Java Agents (if you don't specify AD or AM
mode). In Enterprise mode the agents are counted against the AM license
capacity.

AM Product Mode

In AM mode the Java agent will capture all instrumentation data. You can
set AM mode to protect an agent in a production Business Service
Management deployment from accidently being included in a LoadRunner
or Performance Center run. In AM mode, the agent is not listed as an
available agent in LoadRunner or Performance Center.

Agents in AM mode will always be counted against the AM license capacity.

AM mode supersedes all other modes except for AD.

AD Product Mode

In AD mode the Java agent will only capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21.

When the agent is in AD mode it will not use resources or send any data to
the server unless the probe is part of a LoadRunner/Performance Center run.

See Chapter 24, “Setting Up HP LoadRunner and HP Diagnostics
Integration” for how to set up LoadRunner integration or see Chapter 25,
“Setting Up Performance Center to Use Diagnostics” for how to setup
Performance Center integration.

507

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Use this mode to prevent an agent in a QA environment from using
additional resources and continually report data to the Diagnostics server
when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD
mode are only counted against the AD license capacity when in a
LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 are in a
run, then only 5 are counted against AD license capacity.

TV Product Mode

This mode will send events to Transaction Vision. This mode can be
combined with other modes. TV mode is not used to determine usage
against HP Diagnostics license capacity.

Controlling Automatic Method Trimming on the Agent

508

Default configuration for the agent includes settings that control the
trimming of methods. Trimming can be controlled according to how long
the method takes to execute, which is known as latency, and by the stack
depth of the method call. The default configuration instructs the probe to
trim both by latency and depth.

You could reduce the level of trimming, or turn off trimming completely.
You can control trimming using the minimum.method.latency and
maximum.stack.depth properties in <probe_install_dir>/etc/
capture.properties.

Controlling Latency Trimming

Methods that complete with latency greater than or equal to the value of
the minimum.method.latency property are captured, and those that
complete with latency less than this limit are trimmed to avoid incurring
the overhead for less interesting methods.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Note: In the following situations, latency is not trimmed when its latency is
less than the trimming property:

» Methods that are the root for a call tree.

» Methods that threw an exception.

If the information for all methods must be captured, lower the value of the
minimum.method.latency property or set it to zero.

Consider the following when setting the minimum.method.latency
property:
The lower the value of the minimum.method.latency property, the greater

the chance that the performance of your application will be adversely
impacted.

Depending on your platform, and whether native timestamps are being
used (use.native.timestamps = false), it might not be useful to specify this
value in increments of less than 10 ms.

Controlling Depth Trimming

Methods that are called at a stack depth less than or equal to the value of the
maximum.stack.depth property are captured. Those called at a stack depth
greater than this limit are trimmed to avoid incurring overhead for less
interesting methods.

Here is an example:

If maximum.stack.depth is 3 and /login.do calls a() calls b() calls c() then only /
login.do, a, and b are captured.

Note that setting a low maximum.stack.depth can significantly reduce the
overhead of capture.

509

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Configuring URI Truncation, Mapping and Trimming

510

Any HTTP/S server request URI can be transformed before being reported by
the probe. The possible transformations are based on regular expression
matching and replacement controlled by the uri.pattern.replace property in
dynamic.properties. The value of the property is a comma-separated list of
pattern replacement operations to attempt on each URI.

This can be used when you are seeing too many server requests and you
want to replace many server request URIs with one simplified server request
URI that aggregates them.

Truncate or map URIs using s/pattern/replace/ syntax. To perform multiple
operations use a comma-separated list. The operations are performed in
order.

For example, to truncate before a string, match the string and any characters
that follow it and leave replace empty. In this example '$' matches
end-of-line.

s/string.*$//

Comments in the dynamic.properties file under URI Truncation and
Mapping provide details and more examples.

Important: Overuse of this feature will impact performance.

If you have too many server requests you can also use the property
maximum.uri.pathsegments in the capture.properties file to trim server
requests down to n path segments.

The default is -1 which disables the property. For probes reporting in a Saa$
environment (SaaS$ selected in the Java Agent setup)
maximum.uri.pathsegments is set automatically to 2 to ensure the volume
of server request data sent to HP hosted servers is not too large.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

For example a setting of 2 would result in no more than two path segments.
So http://localhost:8080/path1/path2/path3 will trim down to
http://localhost:8080/path1/path2/.

You could use uri.pattern.replace and then set maximum.uri.pathsegments
to trim down to a certain number of path segments. Or use just one property
or the other.

Configuring an Agent for a Proxy Server

Important! This section only applies if you are using the Java Agent with a
Diagnostics Server.

Two properties are used to specify for the Java Agent, the URL of the
Diagnostics command server. The property you set depends on whether or
not there is a proxy.

> registrar.url in dispatcher.properties

The registrar.url property in
<probe_install_dir>\etc\dispatcher.properties is set when you install the
agent. When there is a direct connection between the agent and the URL
of the Diagnostics command server, the agent uses the value of this
property.

» registrar.url in webserver.properties

In the presence of a proxy, you must set the registrar.url property in the
<probe_install_dir>\etc\webserver.properties file to indicate the URL of
the Diagnostics command server.

511

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Time Synchronization for Probes Running on VMware

For probes running in a VMware guest, time must be synchronized between
the VMware guest and the underlying VMware host. If time is not
synchronized properly, the Diagnostics UI could display inaccurate metrics
or no metrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in
the VMware whitepaper on timekeeping
(http://www.vmware.com/pdf/vmware_timekeeping.pdf) in a section on
"Synchronizing Hosts and Virtual Machines with Real Time." VMware Tools
must be installed in each VMware guest operating system that hosts a
Diagnostics probe. The time synchronization option in VMWare Tools must
be turned on.

This option in VMware Tools works only if the guest operating system time
is initially set earlier than that of the VMware host. For instructions on how
to install VMware Tools, see the "Basic System Administration" document
for VMware ESX Server. If any non-VMware time synchronization software
(such as Network Time Protocol) is used, it should be run in the VMware
ESX server service console.

If you encounter negative latency issues when running the probe on
VMware guest with the probe property
attempt.vmware.timestamp.adjustments set to true, you should set the
following property in the probe etc/capture.properties file:

use.vmware.timestamp.workaround=true

When use.vmware.timestamp.workaround is set to true, the probe will use
the alternative call to get the VMware host timestamps, so as to workaround
the negative latency issue.

Limiting Exception Tree Data

The agent collects exception information and uses it to build exception
instance trees. Exception instance trees provide the data for the exception
information that appears in the Diagnostics Ul such as a stack trace.

512

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

By default, every exception that occurs in the monitored application is a
candidate for the exception instance trees. Collecting all exception
information is usually undesirable, however, because exceptions that are not
of interest overload the display as well as the data collection and transfer
operations. You can, therefore, limit the exception types for which data is
collected. For example, filtering application server-based errors such as
javax.naming.AuthenticationException allow the exception trees to contain
more application-specific errors.

The exception tree data collected is controlled by limiting specific exception
types or limiting the number of exception types.

Limit Specific Exception Types
You can control which specific exception types are excluded and included
from collection by setting the exception.types.to.exclude and

exception.types.to.include properties in the
<probe_install_dir>\etc\dispatcher.properties file as follows:

> exception.types.to.exclude

Set this property to ignore exceptions of one or more specified types. All
subtypes of each specified type are also ignored unless the subtype is
specified by the exception.types.to.include property.

> exception.types.to.include

Set this property to specify which, if any, of the specified excluded
exceptions (or their subtypes) are to be included. Subtypes of any
exception type specified to be included are also included.

Both properties take lists of fully-qualified exception type names, separated
by commas. Changes to the dispatcher.properties file take effect
immediately. It is not necessary to restart the application.

513

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

514

Limit the Number of Exception Types

You can limit the exception tree data collected by specifying the number of
different types of exceptions by setting the exception.instance.tree.count
property in server.properties. By default, this property is set to 4, which
indicates that only the first four exceptions types encountered during the
probe’s data collection cycle are used in building the exception trees. You
can raise or lower this setting.

Examples

The following example causes exceptions of type ClassNotFoundException
and all its subtypes to be ignored.

exception.types.to.exclude=javax.naming.AuthenticationException

The following example causes some subtypes of the java.lang.IOException
class to be excluded, as indicated by the diagram that follows:

exception.types.to.exclude=java.io.|OException,java.io.InvalidClassException
exception.types.to.include=java.io.ObjectStreamException

The following diagram shows the excluded and included exception types on
the java.io class hierarchy:

> javalang Throwable
: javalang Error
o javaio JQError
: javalang Exception
o javaio JOException
o javaio.CharConversionEzception
5 javaio EQOFException Excluded
o javaio FileNotFoundException
o javaio ImterruptedIOException
= java.io.ObjectStreamException— . |ncluded
> javaio ImvalidClassException ——FExcluded
> javaio InvalidObjectException)
javaio NetActiveException

> javaio NotSerializableException
5 javaio OptionalDataException

Included by default

Included

javaio StreamCorruptedException

> javaio WrteAbortedException)

> javaio.SvncFailedExzception
> javaio.UnsuppertedEncodinsException Excluded
5 javaio . UTFDataFormatException

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Diagnostics Probe Administration Page

You can use the Diagnostics Probe Administration page to configure Java
Agent and Profiler settings. Access the Diagnostics Probe Administration
page directly from your browser.

Accessing the Diagnostics Probe Administration Page

Open the Diagnostics Probe Administration page inside your browser.

To access the Diagnostics Probe Administration page:
1 In your browser, navigate to http://<probe_host>:<probeport>.
A probe is assigned to the first available port, beginning at 35000.

The Administration page opens.

[Diagnostics

Diagnostics
Probe

": Open Diagnostics Profiler (Open in This Window)

o

.-:‘Jr 3 Advanced Options

Manage Authorization and Authentication

2 Select the menu option for the activity you want to perform.
» Open Diagnostics Profiler. Opens the Java Diagnostics Profiler.

» Advanced Options. Opens the Components pages. For more information,
see “Diagnostics Probe Components Page” on page 516.

» Manage Authorization and Authentication. Depending on how your
probe is configured, you will access a different pages from this option

515

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

516

» If your probe is configured to work with a Diagnostics Server, the probe
(Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected.
When you click this option, you are redirected to that Diagnostics
command server. For more information, see Appendix B, “User
Authentication and Authorization.”

» If your probe is configured to work as a Profiler only and is not
connected to any Diagnostics Server, this option opens the User
Administration page, where you can create, edit and delete users and
change their privileges. For more information, see “Authentication
and Authorization for Diagnostics Java Profilers” on page 518.

Diagnostics Probe Components Page

From the Components page you can open the Java Diagnostics Profiler, and
access the User Administration page.

To access the Components page:

1 Open the Diagnostics Probe Administration page as described in “Accessing
the Diagnostics Probe Administration Page” on page 515.

2 Click Advanced Options.

3 If prompted, enter your user name and password.

The Components page opens.

[A Diagnostics
Components
Component Hame Component Descripton

uer
inst
security
scheduler

infrequentl ogger

]

iles

GQuery API - allows you to download diagnostics data in HTML, ¥ML or as Java aobjects
Instrurnentation Contral

Built-In User Management

See and contral regularly scheduled background tasks

See the current status of entries in the infrequent lagging table

Installation directary browser - upload and download property files, log files, etc

HP Diagnostics J2EE Probe "WLS21_MedRec_T155_W2k3", version 7.1.100,10

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

4 Click one of the following options:
» query. For internal use by developers.

» inst. Includes various instrumentation options. For more information
about probe instrumentation, see “Custom Instrumentation for Java
Applications” on page 337.

» security. Depending on how your probe is configured, you access a
different page from this option.

» If your probe is configured to work with a Diagnostics Server, the probe
(Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected.
When you click this option, you are redirected to that Diagnostics
command server. For more information, see “User Authentication and
Authorization” on page 797.

» If your probe is configured to work as a Profiler only and is not
connected to any Diagnostics Server, this option opens the User
Administration page, where you can create, edit, and delete users and
change their privileges. For more information, see “Authentication
and Authorization for Diagnostics Java Profilers” on page 518.

» scheduler. Enables you to see and control regularly scheduled
background tasks. For the ServerCommunication scheduler or the
sharedInfrequentEventScheduler, you can see the state and the number
of tasks inside each. For each task, you can select an action such as RUN
NOW or DELETE.

> infrequentLogger. See the current status of entries in the infrequent
logging table.

» files. Installation directory browser — upload and download property files,
log files, etc.

517

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Authentication and Authorization for Diagnostics Java

Profilers

518

When you install the Java Agent as a Profiler only (not connected to any
Diagnostics Server), you can manage the authentication and authorization
of users of the Profiler from the Diagnostics Probe User Administration page.

Note: If the Java Agent is configured to work with a Diagnostics Server, the

probe (Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected. For more
information, see “User Authentication and Authorization” on page 797.

To manage authentication and authorization for users of the standalone
Java Diagnostics Profiler:

Access the Diagnostics Probe Administration page

In your browser, navigate to http://<probe_host>:<probeport>. A probe is
assigned to the first available port, beginning at 35000.

The Diagnostics Probe administration page opens.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

2 Select Manage Authorization and Authentication to open the User
Administration page.

[Diagnostics
Permissions for 'Default Client”

Enterprise Diagnostics Permissions

User Administration |
Allows you to create, edit and delete Diagnostics users

Edit Enterprise Permissions | Allows you to grant @ user permissions across the entire Diagnostics
deployment.
Control over probes connected to "server-OVRNTT154": |
Edit Permissions Template | Edits user permissions used on probes in probe-groups not yet listed
below

Edit AIX

Edits user permissions on probes in the 'AIX' probe-group
Edit BAC

Edits user permissions cn probes in the 'BAC' probe-group

Edit Default
Edits user permissions on probes in the 'Default’ probe-group

On the User Administration page, you can create new users, assign privileges
to users, change passwords of existing users, and delete users.

To create a new user:

1 Click Create User, enter a user name in the New User Name box, and click
OK. The new user appears in the list of user names.

2 In the row representing the new user, type a password in the Password box
and confirm it by retyping it in the Confirm Password box.

3 Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

519

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

520

To assign privileges to a user:

Go to the row representing the relevant user and select the appropriate
check boxes representing the different privileges.

The following privilege levels can be assigned to Java Diagnostics Profiler
users:

Privilege Description
View The user can view Profiler data from the UL
Execute The user can perform garbage collection and clear the

performance data held by the Profiler.

Change The user can run potentially risky operations, such as taking a

heap-dump or changing instrumentation.

Note: The privilege levels, rhttpout and system are for internal purposes
only.

Each privilege level stands alone. There is no inheritance of privileges from
one level to the next. You must grant a user all of the privilege levels that are
necessary to perform the functions they need to perform.

Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

To change the password of an existing user:

Go to the row representing the relevant user, type a password in the
Password box, and confirm it by retyping it in the Confirm Password box.

Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

To delete a user:

1 Type the password of the user currently logged on, in the Password for
<current user> box.

22 2 Click the Delete user button corresponding to the user you want to delete.
A message box opens asking if you want to delete the selected user.

3 Click OK to delete the user.

Configuring Collection of CPU Time Metrics

The CPU Time metrics appear in the Details pane for the Transaction view,
the Probes view, the Call Profile view, and the Portal Components view. You
can enable, disable, and configure the collection of CPU time metrics. The
CPU time metrics are CPU (Avg) and CPU (Total). If collection of CPU time
metrics is disabled or not configured for methods, you will see N/A for these
metrics.

The CPU Time metrics rely on CPU timestamping which is generally
supported on the following platforms: Windows, Solaris, AIX, HP-UX and
Linux kernels 2.6.10 or later (for example RedHat 5.x, SUSE 10.x).

Note: Support for CPU timestamping can vary, however, not only by
operating system, but also by platform architecture (for example SPARC
versus x86).

For the most recent information on support for CPU Time on specific
platform versions and architecture, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

521

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

522

Important: In VMware, the CPU time metric is from the perspective of the
guest operating system and is affected by the VMware virtual timer. See the
VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and “Time
Synchronization for Probes Running on VMware” on page 512.

By default, collection of CPU time metrics is enabled for server requests. You
can disable CPU time metric collection and configure collection of CPU
time metrics in property files or using the Java Diagnostics Profiler Ul. You
can configure collection of the following CPU Time metrics:

» Server Requests only
» Server Requests and Portlet Methods
» Server Requests and All Methods

For a Java Agent, the collection of CPU Time metrics is controlled by two
properties:

use.cpu.timestamps property in
<probe_install_directory>\etc\capture.properties.

This property is set to true by default, which enables collection of CPU time
metrics. Collection of any CPU timestamps is controlled by a second
property listed below. If you set the use.cpu.timestamps property to false,
the CPU time metrics are not collected for any server request or method
reported by the probe

cpu.timestamp.collection.method property in
<probe_install_directory>\etc\dynamic.properties.

Note: Use caution when configuring the collection of CPU timestamps
because of the increase in Diagnostics overhead. The increased overhead is
caused by an additional call for each method that is needed to collect the
timestamp.

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Cpu.timestamp.collection.method can be set to one of the following:

» 0 - No CPU timestamping.

» 1 - CPU timestamps collected only for server requests.

The default value is 1, which means CPU times can be reported at the server
request level but not the transaction level. However, if the setting is
removed or commented out of the properties file, the default is O.

» 2 - CPU timestamps collected for All server requests and ALL methods.

» 3 - CPU timestamps collected for ALL server requests and the lifecycle

methods instrumented for Portal Components.

Another way to set the cpu.timestamp.collection.method property is using
the Configuration tab in the Java Diagnostics Profiler as follows:

In the Profiler U, select the Configuration tab. The profiler does not need to
be started to make this probe configuration change.

In the Configuration screen, select a Collect CPU Timestamps option from
the dropdown list.

CPU Timestamp Collection Description

Method P

None No CPU Timestamps.

For Server Requests Only CPU timestamps are only collected for server
requests.

For Server Requests and CPU timestamps are collected for ALL server

Portlet Methods requests and the lifecycle methods instrumented for
portal components.

For Server Requests and All | CPU timestamps are collected for ALL server

Methods requests and ALL methods.

523

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

3

When you complete your changes, click Apply Changes.

Note: Your changes take effect immediately. You do not need to restart the
application (or probe).

Configuring Consumer IDs

524

Y Y Y Y Y Y Y Y Y

Web service metrics can be grouped by particular consumers of the Web
service. The metrics are then aggregated for that consumer and displayed in
SOA Services views such Services by Consumer ID or Operations by
Consumer ID. There are several ways of defining the consumer ID:

A Value in a SOAP Header

A Value in a SOAP Envelope

A Value in the SOAP Body

A Value in an HTTP Header

A JMS Queue Name (or topic name) for SOAP over JMS web services
A JMS Message Property for SOAP over JMS web services

A JMS Message Header for SOAP over JMS web services

A specific IP Address

A Range of IP Addresses

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Important: Defining consumer ID based on SOAP header, envelope, or body
requires the Diagnostics SOAP message handler for Java probes. For some
application servers, special instrumentation is provided in Diagnostics to
automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1
JAX-RPC and Oracle 10g JAX-RPC, see “Loading the Diagnostics SOAP
Message Handler” on page 239 for details.

The Diagnostics SOAP message handler is not available for all application
servers. Custom instrumentation is not available to capture SOAP faults or
consumer IDs from SOAP payloads. Therefore, this feature is not available
on all versions of all application servers. For the most recent information
on Diagnostics SOAP message handler support, see the Diagnostics Support
Matrix at

http://support.openview.hp.com/sc/support_matrices.jsp.

Aggregating the data by consumer ID is useful if you want to determine who
is using a particular service and how frequently they are using it. Consumer
IDs are also useful for Business Service Management. Business Service
Management users can look at the performance of the same application
based on consumers to compare their performance characteristics.

Configuring Consumer IDs is optional. By default, IP address is used as
consumer ID for SOAP over HTTP/S web services and inbound queue name
(or topic name) is used by default as consumer ID for SOAP over JMS web
services.

This section includes:

» “Basic Procedure for Consumer ID Configuration” on page 526
» “About Consumer ID Rules” on page 527

> “Consumer ID Rules Syntax and Examples for Java Agents” on page 529

525

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

526

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:

(Optional). Specify *dump-payload in the consumer.properties file to print
the entire SOAP payload out to the consumer.log file. Use this output to
plan how to create the specific rules to configure consumer IDs for SOAP
payload capture.

Before you configure consumer IDs, familiarize yourself with the SOAP
payload data to determine how best to create the specific rules Diagnostics
will use to find the value for consumer IDs.

The dump-payload option should only be used when help is required to
locate the element that contains the Consumer Id.

This option should be the only value on the right side of the equal(=)sign
when used: DumpTest;HTTP_WS;TraderService = *dump-payload

Important: Do not try to use the same service name to extract a value AND
dump the payload at the same time.

For example, to use this feature, enter:

SoapTest];HTTP_WS;TraderService = *dump-payload

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

This results in printing the SOAP Payload for a rule that matches
TraderService. The content of the consumer.log file is:

2009-01-15 14:42:13,653 INFO consumer [[ACTIVE] ExecuteThread: '0' for queue:
‘weblogic.kernel.Default (self-tuning)'] [PAYLOAD:] <?xml version="1.0" encoding="UTF-8"
standalone="yes"?><soapenv:Envelope xmins:xsi="http://www.w3.0rg/2001/
XMLSchema-instance" xmins:xsd="http://www.w3.0rg/2001/XMLSchema" xmlIns:trad="http://
www.bea.com/examples/Trader® xmlins:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
<soapenv:Header>
<CallerA>customerA</CallerA>
</soapenv:Header>
<soapenv:Body>
<trad:buy soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<string xsi:type="xsd:string">hpg</string>
<intVal xsi:type="xsd:int">11</intVal>
</trad:buy>
</soapenv:Body>
</soapenv:Envelope>

2 For each Java Agent you want metrics grouped by consumer, update the
consumer.properties file as described in “Consumer ID Rules Syntax and
Examples for Java Agents” on page 529.

3 To track more than five consumer types, update the
max.tracked.ids.per.probe setting in the dispatcher.properties file.

4 Review the <probe_name>_id.properties file located in the probe/files/log
directory. The <probe_name>_id.properties file might need to be
completely deleted or modified to match the consumer.properties changes
made in the previous steps. The file goes together with the
max.tracked.ids.per.probe (dispatcher.properties) setting, once the limit is
reached, per probe, all other consumers are classified as "Other".

About Consumer ID Rules

The assignment of consumer IDs is controlled by consumer ID rules in a
configuration file, consumer.properties.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header
rules, JMS web service rules, and IP rules. The rules are not applied according
to how the rules are defined. The SOAP header rules are applied first; the
HTTP headers rules are applied next; then the JMS rules are applied; and
lastly the IP rules are applied.

527

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

528

Important: ALL configuration items in the rules are case sensitive. For
example, if you enter a <pattern-name> of TraderService, the Web service
name must have a capital T and a capital S for the pattern to match.

All rule types do not need to be used. There might be SOAP rules, no HTTP
rules, and IP rules. If there is no match on any of these rules, the original IP
address or queue name for JMS is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML
element in the SOAP header, SOAP envelope, or body as well. The rule
specifies a regular expression that is used to match against the web service
name being called by the consumer. See “Using Regular Expressions” on
page 926 for help using regular expressions.

If there is a match, the probe attempts to find the text element also specified
in the rule. If the text element is not found in the SOAP header, this rule is
skipped and the probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a
header in the collection of HTTP headers in a HTTP request.

The JMS web service rules allow for the consumer ID to be JMS queue/topic
name, and JMS Message properties or Message Header (JMSReplyTo only).

The IP rules allow for the consumer ID to be obtained from the mapping of
IP addresses to a consumer ID. The rule is used to define an IP address, or a
range of addresses, to be assigned to a consumer ID.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Consumer ID Rules Syntax and Examples for Java Agents

The assignment of consumer IDs is controlled by specifying rules in the
consumer.properties file.

Important: ALL configuration items are case sensitive. For example, if you
enter a <pattern-name> of TraderService, the Web service name must have a
capital T and a capital S for the pattern to match.

A Value in a SOAP Header

To assign a consumer ID based on a value in a SOAP header, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-header;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name
or you can use the exact Web service name.

<element-value> the element in the SOAP envelope whose value you want
to use as the Consumer ID.

For example, the following rule matches on a Web service with service name
TraderService and uses the CallerA element’s value as the consumer IDs:

SoapRulel;HTTP_WS;TraderService = soap-header;CallerA

529

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

530

When the callers of the TraderService Web service have a value defined for
CallerA, the metrics are grouped by the different values for CallerA. The
following excerpt from the soap header maps to a consumer ID of
"Customer2" for this caller of the TraderService:

SoapTestl;WS<env:Envelope xmins:env="http://schemas.xmlsoap.org/soap/
envelope/"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<env:Header>
<CallerA>Customer2</CallerA> <---- The consumer id returned would be
"Customer2"
</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:sell xmiIns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>
</m:sell>
</env:Body>
</env:Envelope>

By default, Diagnostics looks for CallerA in the first-level element (the
element directly under the SOAP env:Header). You can configure
Diagnostics to look into a deeper-level xml element for consumer ID. The
dynamic property max.search.level.depth in the consumer.properties file
controls the depth at which to search for consumer ID (default value is 1
level deep). For example, max.search.level.depth = 2 would find consumer
ID:

<env:Header>
<test:id>
<test:CallerA>consumerA</test:CallerA>
</test:id>
</env:Header>

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

A Value in a SOAP Envelope

To assign a consumer ID based on a value in a SOAP envelope, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-envelope;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name
or you can use the exact Web service name.

<element-value> the element in the SOAP envelope whose value you want

to use as the Consumer ID.

A Value in the SOAP Body

To assign a consumer ID based on a value in the SOAP body, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-body;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match in the Web service name or
you can use the exact Web service name.

<element-value> the element in the SOAP body whose value you want to

use as the Consumer ID.

A Value in an HTTP Header

To assign a consumer ID based on a value in an HTTP header, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = attribute;<header-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

531

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

532

<pattern-name> is a regular expression to match on, in the URL

<header-value> is the HTTP header whose value you want to use as the
Consumer ID.

For example, the following rule matches on a web service with a URI of "/
webservice/.*" and uses the "User-Agent" header’s value as the consumer ID:

WsRulel;HTTP_WS;/webservice/.* = attribute;User-Agent

When the callers of the Web service have a value defined for User-Agent, the
metrics are grouped by the different values for User-Agent. The following
excerpt from the HTTP header maps to a consumer ID in the heading:

GET /service/call HTTP/1.1

Accept: */*

Accept-Language: en-us

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000)
Host: ovrnttl

Caller: ovrnttl

Connection: Keep-Alive

A JMS Queue Name

To assign a consumer ID based on the matching the JMS queue/topic name,
use the following format:

<rule-name>;JMS_WS;<queue-name>=<consumerlD-string>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match on, in the JMS queue/topic
name.

<consumerID-string> is a literal string to use as the Consumer ID.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

For example, the following rule matches on a JMS queue name that starts
with queue://sca_soapjms.* and uses the string "myJMSConsumer" as the
consumer ID:

JMSTest3;JMS_WS;queue\://sca_soapjms.*=myJMSConsumer

You must use a backslash "\:" to escape the ":" after queue or topic.

The priority used in matching is determined by the order specified in the
consumer.properties file. JMS_WS queue matching takes priority over IP
matching; JMS_WS property matching takes priority over JMS_WS Header
matching; and JMS_WS Header matching takes priority over JMS_WS queue
name matching.

A JMS Message Property

To assign a consumer ID based on matching a JMS queue/topic name and
use the value from the JMS message property as the consumer ID, use the
following format:

<rule-name>;JMS_WS;<queue-name>=jms-property;<property-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match on in the JMS queue/topic
name.

<property-value> is the JMS property whose value you want to use as the
Consumer ID.

For example, the following rule matches on a JMS queue name that starts

with queue://MedRec.* and uses the value from the J]MSXDeliveryCount
property as the consumer ID:

JMSTest1;JMS_WS;queue\://MedRec.*=jms-property;JMSXDeliveryCount

You must use a backslash "\:" to escape the ":" after queue or topic.

533

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

534

A JMS Message Header

To assign a consumer ID based on matching the JMS queue/topic name and
JMS message header, use the following format:

<rule-name>;JMS_WS;<queue-name>=jms-header;<header-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match in the JMS queue/topic
name.

<header-value> must be JMSReplyTo.

For example, the following rule matches on a JMS queue name that starts
with queue://MedRec.* and uses the value from the JMSReplyTo header as
the consumer ID:

JMSTest1;JMS_WS;queue\://MedRec.*=jms-header;]JMSReplyTo

non

You must use a backslash "\:" to escape the ":" after queue or topic.

A specific IP Address

To assign a consumer ID based on an IP Address, use the following format:

<rule-name>; IP; <IP-address> = <consumerID-string>

For example, the following rule matches on IP address 123.456.567.8 and
uses the name "CustomerA_IP" as the consumer ID:

IPRulel;IP;123.456.567.8 = CustomerA_IP

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

A Range of IP Addresses

To assign a consumer ID based on a range of IP addresses, use the following
format:

<rule-name>; IP; <IP address range> = <consumer|D-string>

where <IP address range> can be defined with integers, wildcards specified
with *, integer range specified with -.

For example, the following rule matches all IP addresses whose first octet is
15 and uses the name "mySuperCluster" as the consumer ID:

IPRule2;1P;15.*.*.* = mySuperCluster

The following rule matches all IP addresses whose first octet is 15 and whose
second octet is between 200 and 300; it uses the name "Customer_IP" as the
consumer ID:

IPRule3;IP;15.200-300.*.* = Customer_IP

Configuring SOAP Fault Payload Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP
fault data. SOAP payload is only captured when there is a SOAP fault.

In the Diagnostics Ul, you can view the payload information as part of the
instance tree. Both JAX-WS and JAX-RPC web services are supported.

Because payloads can contain sensitive information such as credit card
numbers, payload capture on SOAP faults is disabled by default.

To enable payload capture on SOAP fault set max.soap.payload.bytes to a
value greater than zero , 5000 is recommended, in the dispatcher.properties
file on the Java agent.This is the number of bytes captured, so if the payload
you see in the Ul indicates it is too small you can increase this number. By
default the value is set to zero to disable payload capture.

535

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

536

Capturing SOAP payload requires the Diagnostics SOAP message handler for
Java probes. For some application servers, special instrumentation is
provided in Diagnostics to automatically load the Diagnostics SOAP message
handler.

Manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle
10g JAX-RPC. See “Loading the Diagnostics SOAP Message Handler” on
page 239 for details.

The Diagnostics SOAP message handler is not available for all application
servers, nor is custom instrumentation available to capture SOAP faults or
consumer IDs from SOAP payloads. Therefore, this feature is not available
on all versions of all application servers. For the most recent information
on Diagnostics SOAP message handler support, see the Diagnostics Support
Matrix at

http://support.openview.hp.com/sc/support_matrices.jsp.

For a Java Agent, define the limit for the payload size by modifying the
<probe_install_dir>\etc\dispatcher.properties file. Payloads larger than the
specified size are truncated.

For example, the following entry increases the SOAP payload length to
10000 from its default of 5000:

max.soap.payload.bytes = 10000

Set this property to O to disable this feature.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Configuring REST Services

You can configure REST style Web services to show up as regular Web
Services in the Diagnostics Ul See the comments in the following file for
configuration details: <probe_install_dir>\etc\rest.properties.

Currently, only HTTP is supported (no JMS).

Customizing Grouping JMS Temporary Queue/Topics

For reporting in Diagnostics, SOAP over JMS temporary queues are grouped
into a single node. Diagnostics matches the queue/topic name to a list of
regular expressions to find the temporary queue/topic names. The ones that
match are replaced with either queue:<probe-id>\TEMPORARY or
topic:<probe-id>\TEMPORARY according to the type.

The list of regular expressions used for this matching is in the
<probe_install_dir>/etc/capture.properties file. You can customize the list
of regular expressions under the property grouped.temporary.jms.names.

Configuring SQL Query Parsing

If there are a large number of SQL queries using literals it can overwhelm the
server symbol table. In these situations you can configure the
sql.parsing.mode property in the dispatcher.properties file on the Java
Agent. The possible mode settings are as follows:

1 - just methods, no SQL queries.
2 - main categories for SQL queries (select/update/insert/delete/...).

3 - (default) a measurement per whole SQL query aggregating similar
statements into a single measurement (ignore literals, keyword case...).

537

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

4 - a measurement per whole SQL query aggregating only identical
statements.

sql.parsing.mode = 3

Another property in the dispatcher.properties file can be used to limit the
number of different SQL statements collected in case of temporary database
tables, allowing you to fold down the table names using an SQL statement
regular expression subsitution. The property is sql.pattern.replace (see the
comments in the dispatcher.properties file for more information).

Configuring Display of Application Name for Server

Requests

538

The Deployed Into value displayed in the Diagnostics Ul in the Server
Requests details pane can show the Application Name of the server request
for most application servers. Prior to Diagnostics 9.0 this information was
only available for WebLogic application servers so only a WebLogic probe
could fill in the Application Name identifier on a server request.

To ensure backward compatibility with the server request trend lines, by
default the Application Name is not filled in for the server request, except in
WebLogic server requests.

This is configurable using the keep.fragment.data.compatible property in
the capture.properties file. By default keep.fragment.data.compatible=true
which means the Application Name is not filled in for the server requests,
except in WebLogic server requests.

You can set this property to false if you want the Diagnostics UI to show the
J2EE application server name of each server request (shown as Deployed
Into in the details pane of the Server Requests view).

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Maintaining Probe Settings from the Java Profiler Ul

You can use the Configuration tab in the Java Diagnostics Profiler to
maintain the instrumentation points and edit the probe configuration
without having to manually edit the Java Agent capture points file or
property files. You can access the Configuration tab from the Java
Diagnostics Profiler whether profiling has been started or not.

The Probe Settings section of the Java Diagnostics Profiler Configuration tab
enables you to configure probe settings for thread stack trace sampling,
collection of CPU time metrics (using timestamping) and reporting
collection leaks.

Probe Settings

Thread Stack Trace Sampling : Maximum Stack Trace Depth
Sampling Irterval ms Tardy Method Latency Threshold ms
Collect CPU Timestamps | For Server Requests Only |"|

Peport Collection Leaks

Collection Leaks Flag Threshold minutes Collection Leaks Unflag Threshold minutes

When you click Apply Changes on the Java Diagnostics Profiler
Configuration tab, all the updates you made in the Probe Settings sections
of the Configuration tab are applied to the capture points file and the
property files.

Note: Your changes take effect immediately. There is no need to restart the
application (or probe).

539

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

540

The following sections describe each of the Probe Settings sections:

» “Configuring Thread Stack Trace Sampling” on page 540
» “Controlling CPU Timestamp Collection” on page 545
> “Enabling and Configuring Collection Leak Reporting” on page 546

Configuring Thread Stack Trace Sampling

When asynchronous thread sampling is enabled, you can see, in the Call
Profile view, which methods were executed during long running fragments
even if no instrumented methods were hit during this time. See the HP
Diagnostics User’s Guide chapter on Call Profiles for a screen shot showing
the additional nodes added based on thread sampling.

Several properties enable and configure thread stack trace sampling.
The following properties are in dynamic.properties:

enable.stack.trace.sampling — enables asynchronous thread stack trace
sampling; possible values are false, auto (the default), and true.

When the dynamic property enable.stack.trace.sampling is set to auto, stack
trace sampling is enabled IF the probe is running on selected (certified)
platforms and JVMs. For other JVMs, the setting must be set to true
explicitly. Use caution because the JVM could generate errors or abort. See
the Diagnostics Readme.

tardy.method.latency.threshold — the minimum time that an instrumented
method must run without hitting any instrumentation points before stack
trace sampling is attempted for this method. The purpose of this property is
mainly to control the overhead of sampling by limiting the stack trace
collection to only the most interesting cases.

stack.trace.sampling.rate — the time that must elapse before the next
consecutive sampling attempt is made.

Small values for stack.trace.sampling.rate cause frequent sampling and
provide rich data but at the cost of increased overhead.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

The overhead caused by frequent sampling affects primarily the latency of
server requests. The overall CPU usage by the probe can go up as well, but
this effect is not as profound as the latency increase. For systems with many
CPUs, the process CPU consumption can actually go down (not a good
thing).

stack.trace.depth.max — the limit for the depth of stack traces obtained from
the JVM. You will most likely not need to adjust this value.

The following properties are in dispatcher.properties:

enable.stack.trace.aggregation — a boolean property allowing the
correlation thread to merge together nodes observed on more than one
consecutive stack trace collected, unless there is proof that the nodes must
not represent a single method invocation. When set to true, it could
decrease the number of additional call tree nodes created, but could create a
false impression that the number of calls to the additional nodes is known
and is small. When set to false, it creates a node for each method and each
stack trace it was visible on, creating a false impression that the number of
calls to the nodes is known and is large. In fact, stack trace sampling cannot
reveal the number of calls at all.

aggregated.stack.trace.validity.threshold - if the
enable.stack.trace.aggregation property is set to true, only the call tree nodes
that stem from more than the aggregated.stack.trace.validity.threshold
number of individual stack traces are reported. This setting controls noise
elimination and memory footprint, especially on the server side.

All of the properties can be dynamically changed so no restart of the
application is required.

You can change the first four properties (from dynamic.properties) remotely,
using the Configuration tab in the Diagnostics Java Profiler. After making
changes remember to apply all of the changes made using the Configuration
tab by clicking Apply Changes.

Thread Stack Trace Sampling Enabled |« Maximum Stack Trace Depth 60

Sampling Interval 150 ms Tardy Method Latency Threshold 100 ms

541

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

542

Example Thread Sampling Configurations

Use Case 1: A particular method has average latency of about 170
milliseconds, but from time to time it takes 1.4 seconds for this method to
complete. Most of the methods visible in Call Profiles for any fragment
execute in 550 milliseconds or less. Because the method in question makes
multiple calls to its callees, you do not want to instrument them.

Instead you enable stack trace sampling to find out what the cause for long
execution times. To minimize overhead, set tardy.method.latency.threshold
to 600 milliseconds. This ensures that most of the methods will not get
sampled at all because they are likely to complete before this time elapses.
However, any method running longer than this value, including our long
running method, will get sampled, once the method runs for 600
milliseconds (or longer) without making any calls to any of the
instrumented methods.

If you also set the value of stack.trace.sampling.rate to 100 milliseconds,
this should theoretically give up to eight samples for each method
invocation that lasts 1.4 seconds ((1400-600) / 100). Because you know that
the method makes many calls to its callees, you could also set
aggregated.stack.trace.validity.threshold to zero. This ensures that even if
each collected stack trace is completely different, they will all be reported.

If you examine the Call Profile for long running instances of the server
request, you would see additional nodes revealed by stack trace sampling.

Use Case 2: You prepare a custom application for deployment and see that
the default instrumentation provided with the Diagnostics agent does not
work very well because many Call Profiles contain very few methods, which
does not give any insight about the application specific behavior. You are
reluctant to add additional instrumentation for all classes and methods
belonging to the custom application because of the performance and
memory consumption concerns.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

You enable stack trace sampling. Assuming that a typical server request that
does not have sufficiently detailed call tree information runs in about

2 seconds, you select a stack.trace.sampling.rate of 200 milliseconds. This
can give up to 10 stack traces per typical server request. However, you do not
want all the stack traces to be reported because some of the methods visible
in the stack traces can be very fast, and they do not substantially contribute
to the server request’s overall latency. Therefore, you set
aggregated.stack.trace.validity.threshold to 2. This ensures that only
methods visible in three or more consecutive stack traces, or methods with
estimated latency of 600 milliseconds or more, will be reported.

After viewing the Call Profiles with the additional nodes obtained from
sampling, you can make informed decision about adding additional
instrumentation points to the probe configuration in deployment.

Troubleshooting Stack Trace Thread Sampling

Question 1: Why do I not see any new nodes in my Call Profile after I
enabled stack trace sampling.

Answer: Go through this checklist and see if any of the following applies to
your case:

Are you using Java 1.5 or newer? Stack trace sampling does not work for
earlier versions of Java.

Was the last method visible in the Call Profile an outbound call? Methods
marked as outbound do not get sampled. (To reliably check if a method is
marked as outbound, find this method in detailReport.txt file and check its
corresponding instrumentation point detail for the “outbound” keyword).

Was the last method visible in the Call Profile marked as no-layer-recurse
Such methods do not get sampled. (Use the same procedure as in the
previous point to check if a method is no-layer-recurse.)

Did you try reducing tardy.method.latency.threshold or
minimum.method.latency? It is possible that the last method visible in Call
Profile makes calls that get trimmed, but they prohibit the sampling to kick
in because there is never an inactive period of
tardy.method.latency.threshold for the caller.

543

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

544

Q Did you try reducing aggregated.stack.trace.validity.threshold or check if

there are warnings in the probe.log file about the stack depth being too
shallow? Possibly, the observed stack traces changed too quickly to get
reported.

Did you try reducing the stack.trace.sampling.rate? Perhaps your methods
simply miss the opportunities to get sampled.

Did you verify that the latency of the last visible method in Call Profile is
not caused by having run garbage collector? Java code, including the stack
trace sampling code, does not run during garbage collection.

Question 2: What is the minimum value of stack.trace.sampling.rate that
can be used?

Answer: You can use any positive value, but remember that each platform
will refuse to sample more frequently that it possibly can. The three
determining factors are the minimum granularity of sleep() available, the
timer resolution, and the time it actually takes to collect one set of samples.

Question 3: What is the maximum value of stack.trace.sampling.rate that
can be used?

Answer: There is no limit. The usefulness of a high setting depends entirely
on the latency of the server requests for the application. To get any results,
plan for at least a few samples for each server request you are concerned
with. Even that could require tuning other sampling parameters as well.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

Controlling CPU Timestamp Collection

The CPU timestamps calculate the amount of exclusive CPU time that a
method uses. You can view this information on the Hotspots tab in the Java
Diagnostics Profiler.

Important: In VMware, the CPU time metric is from the perspective of the
guest operating system and is affected by the VMware virtual timer. See the
VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and “Time
Synchronization for Probes Running on VMware” on page 512.

By default, collection of CPU time metrics is enabled for server requests.

Collection of CPU time metrics can be configured in property files (see
“Configuring Collection of CPU Time Metrics” on page 521) or using the
the Java Diagnostics Profiler Ul as described below.

In the Profiler Ul select the Configuration tab. The profiler does not need to
be started to make this probe configuration change.

In the Configuration screen select a Collect CPU Timestamps option from
the dropdown list.

CPU Timestamp Collection Description

Method P

None No CPU Timestamps.

For Server Requests Only CPU timestamps are only collected for server
requests.

For Server Requests and CPU timestamps are collected for ALL server

Portlet Methods requests and the lifecycle methods instrumented for
portal components (layertype=portlet).

For Server Requests and All | CPU timestamps are collected for ALL server

Methods requests and ALL methods.

545

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

546

3 When you finish making changes to the Configuration tab, click Apply
Changes.

Note: Your changes take effect immediately. There is no need to restart the
application (or probe).

Enabling and Configuring Collection Leak Reporting

Data collection and reporting for collection leak pinpointing is enabled by
default for the probe. The [Collection Leak Pinpointing] keyword = clp point
in the probe’s etc/auto_detect.points file is set to true by default.

Note: You must run the JRE Instrumenter using the appropriate mode for
your application server if you want to use the collection leaks pinpointing
(CLP) feature in the Java Agent.

You can set the following configuration items for collection leak reporting
using the Java Profiler Configuration tab:

v| Report Collection Leaks

Collection Leaks Flag Threshald 50| minutes Collection Leaks Unflag Threshold 50| minutes

> Report Collection Leaks. You can disable reporting in the Ul for this feature
by unchecking the checkbox.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

» Collection Leaks Flag Threshold. The threshold of time duration in which
the collection has size growth. If a collection's size growth period exceeds
this threshold, it will be flagged as a memory leak by the probe.

» Collection Leaks Unflag Threshold. For an already flagged leaking collection,
if its size stops growing continually for this threshold time period, the probe
will unflag it as a leak.

These same values can also be set in the dynamic.properties file for the
probe: clp.diagnostics.reporting, clp.diagnostics.growth.time and
clp.diagnostics.nongrowth.time.

Generating Performance Reports for JUnit Tests

When you run JUnit tests, you can enable and configure the Java Agent so
that it generates a performance report for all of your unit tests. This is useful
for finding out if the performance (latency/CPU) of a particular test has
changed over time.

When the unit test finishes, the Java Agent creates a CSV file for each test
method (represented as a server request). This CSV file contains a complete
listing of all test methods that were executed in each JVM instance, usually
per test class. The CSV file can be opened in a spreadsheet program to
analyze and visualize performance characteristics (the Filter function in
Excel is very helpful for selecting specific methods).

Following is an example of a CSV file:

Date,Server Request,Avg Latency,Count,Min Latency,Max Latency,Cpu
Time,Exceptions

Fri Sep 23 12:55:22 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1068.81,1,1068.81,1068.81,374.403,0
Fri Sep 23 12:55:40 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1064.845,1,1064.845,1064.845,405.60
2,0

Fri Sep 23 12:55:57 PDT
2011,UT_SiSXmIDataReader.testDataSample(),1141.689,1,1141.689,1141.689,358.80
2,0

Fri Sep 23 12:56:27 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1474.81,1,1474.81,1474.81,468.003,0

547

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

548

The latency times are in milliseconds (ms).

By default the data for each test execution is appended to the CSV files. This
is especially useful when tests are run as part of a Continuous Integration
cycle which allows you to capture results over time.

To use this functionality, enable the Java Agent in the JUnit test execution
by specifying the following JVM parameters:

JVM Parameter

Description

-javaagent:<Java_Agent_Home>/
DiagnosticsAgent/lib/
probeagent.jar (UNIX)

or

-javaagent:<Java_Agent_Home>\
DiagnosticsAgent\lib\probeagen
t.jar (Windows)

Enables the agent by specifying the path to
the agent JAR file. You can use
-Xbootclasspath/p:<JavaAgent_install_dir>/
DiagnosticsAgent/classes/boot instead if you
use JRE 1.4 .

-Ddispatcher.ac.autostart=true

Tells the agent to start profiling immediately.

-Dcapture.exit_report=dir=perfte
st:append

Instructs the agent to produce a performance
report to the specified directory and to
append the results. (To override the file,
replace append with override.)

-Ddispatcher.minimum.fragmen
t.latency=1ms

Collects only server requests (such as
execution of JUnit test methods) that have
latency above 1ms.

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

The following example shows an integraton into ANT:

<junit dir="${build}" fork="yes" forkmode="perTest" printsummary="yes"
jvm="${env.JAVA_HOME}/bin/java">

<jvmarg value="-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/
probeagent.jar"/>

<jvmarg value="-Ddispatcher.ac.autostart=true"/>

<jvmarg value="-Dcapture.exit_report=dir=<dir_name>:append"/>

<jvmarg value="-Ddispatcher.minimum.fragment.latency=1ms"/>

</junit>

In addition to the above settings, the JUnit point needs to be activated (set
active=true) in <Java_Agent_Home>/DiagnosticsAgent/etc/
auto_detect.points:

[JUnit]
class = junit.framework.TestCase
method = ltest.*

signature =1.*
deep_mode = hard
layer = JUnit
active =true

Note: If you use JUnit 4.x and your unit test classes are not a subclass of
junit.framework.TestCase, you need to change the class definition in the
above JUnit point to match your unit test classes.

549

Chapter 13 ¢ Advanced Java Agent and Application Server Configuration

550

14

Understanding the .NET Agent
Configuration File

You control the configuration of the .NET Agent by modifying the elements
and attributes in the .NET Agent configuration file: <probe_install_dir>/etc/
probe_config.xml.

This chapter includes:

» Understanding the .NET Agent Configuration File on page 551
» .NET Agent Configuration Elements on page 552

Understanding the .NET Agent Configuration File

The topics in this section describe the elements and attributes that make up
the .NET Agent configuration file <probe_install_dir>/etc/
probe_config.xml.

Each element is defined by describing its purpose, attributes, and parent and
children elements. For information on additional .NET Agent configuration
elements specific to TransactionVision see the HP TransactionVision
Deployment Guide.

551

Chapter 14 ¢ Understanding the .NET Agent Configuration File

.NET Agent Configuration Elements

<appdomain> element

Purpose

Builds an AppDomain inclusion list for processes that host multiple
application domains. If no appdomain elements are defined for a process
then all application domains for that process will be included.

Attributes
Attributes Valid Values Default | Description
enabled true true Determines if the AppDomain should
false be instrumented. Is overridden by
enableallappdomains attribute of a
process element.
name string none Name of the .NET AppDomain. (IIS
path qualified, see the example below.)
website string none The name of the Website for those
appdomains that are Websites
(information only)
Elements

Number of Occurrences

Zero or more

Parent Elements

process

Child Elements

bufferpool, credentials, diagnosticsserver, mediator,
id, ipaddress, logging, lwmd, modes, points,
profiler, sample, trim, webserver, symbols, filter,
topology

552

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Example
<appdomain enabled="true" hame="1/ROOT/MSPetShop"/>
Where 1/ROOT is the Website ID and MsPetShop is the Virtual DirName

<appdomain enabled="false" name="1/ROOT" website="Default Web Site">
<points file="Default Web Site.points"/>
<id probeid="Default Web Site" />

</appdomain>

<authentication> element

Purpose

List of authenticated user names and passwords.

Attributes
Attributes Valid Values Default Description
username string admin User name account.
password string admin Passwords must be
generated using the
passgen utility in the
<probe_install_dir>\bin
directory.
Elements
Number of Occurrences zero to many
Parent Elements profiler
Child Elements none
Example

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtI6 Twi7TkGAhQ="/>
</profiler>

553

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<bufferpool> element

Purpose

Configures the bufferpool behavior.

Attributes
Attributes Valid Values Default Description
size number 65536 Size of each buffer.
buffers number 512 Number of buffers in
pool.
sleep number 1000 Number of milliseconds
between flush checks.
expires number 1000 Number of milliseconds
before buffer expires.
Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process

Child Elements

none

Example

<bufferpool size="65536" buffers="512" sleep="1000" expires="1000" />

554

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<captureexceptions> element

Purpose

Enables and controls the stack trace capture for exceptions.

Attributes
Attributes Valid Values Default Description
enabled true true Enables exception
false capture.
max_per_request | number 4 Maximum exceptions
captured for one server
request.
max_stack_size number 0 (meaning no | Maximum size of the call
maximum) stack for a captured
exception.
Elements
Number of Occurrences 1
Parent Elements probeconfig

Child Elements

include, exclude

Example

<captureexceptions enabled="true" max_per_request="4">

555

Chapter 14 ¢ Understanding the .NET Agent Configuration File

556

<consumeridrules> element

Purpose

This is the root element for configuring consumer ID rules.

Attributes
Attributes Valid Values Default Description
enabled true false Enables consumer ID rule
false evaluation.
Elements
Number of Occurrences 1
Parent Elements probeconfig

Child Elements

httpheaderules, iprules, soaprules

Example

<consumeridrules enabled="false">

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<cputime> element

Purpose

Controls the cputime setting property.

Attributes
Attributes Valid Values Default Description
mode none, serverrequest
serverrequest,
method
Elements

Number of Occurrences

1

Parent Elements

probeconfig, process, or appdomain

Child Elements

none

Example

<cputime mode="serverrequest"/>

557

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<credentials> element

Purpose

Supplies credentials that are used to validate for communication with the
Diagnostics Server.

Attributes
Attributes Valid Values Default Description
username string none User name to validate
with the Diagnostics
Server.
password string none Password to validate with
the Diagnostics Server.
authenticate true, false true Enables and disables
authentication.
Elements
Number of Occurrences 1 per parent
Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<credentials username="test" password="diag" authenticate="true"/>

558

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<demomode> element

Purpose

This configures demo mode. Demo mode makes it easier to show capability
and value of the .NET agent because it requires less custom points to be
defined. With demomode turned on, all outbound calls will be shown
irrespective of any other instrumentation.

Once the calls leading to the outbound calls of interest are identified then
demomode should be turned off and "custom" instrumentation added to
ensure that call stacks leading to the outbound calls are apparent.

Note: It is recommended to TURN THIS OFF under production
environments.

Demomode is used primarily to find outbound calls (webserver, http,
remoteing, msmq) when the method making them is not instrumented. It is
meant as a way to quickly find how applications may be connected without
having to instrument application specific methods . This may be too noisy
in production situations but is useful when you there is a lack of upstream
instrumentation and you don’t knowwhere the outbound call is being made
from. It can be used for all kinds of applications including ASP.NET.

Attributes
Attributes Valid Values Default Description
enabled true, false false Enables or disables demo
mode.
Elements
Number of Occurrences Zero or one.
Parent Elements probeconfig
Child Elements none

559

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Example

<demomode enabled="false"/>

560

Chapter 14 ¢ Understanding the .NET Agent Configuration File
<depth> element

Purpose

Configures depth trimming.

Attributes
Attributes Valid Values Default Description
enabled true true Enables depth trimming.
false
depth number 25 Sets the depth for depth
trimming.
Elements
Number of Occurrences 1
Parent Elements trim
Child Elements none
Example
<trim>
<depth enabled="true" depth="25"/>
</trim>

561

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<diagnosticsserver> element

Purpose

Contains connection and settings information related to the Diagnostics

Server which are used for enterprise mode.

Attributes
Attributes Valid Values Default Description
url Registrar URL. | none URL to connect to
http://<host>: registrar.
<port>
delay number 2 Number of seconds to
wait before registering.
keepalive number 15 Number of seconds
between keepalives.
proxy URL of proxy none Registrar connection
proxy.
proxyuser user id for none Proxy user account.
proxy
proxypassword | password for none Proxy user account’s
proxy password.
registered_host | string none Name of host to register
name as (external name for
firewall traversing).
register_byip true, false false Register using ipaddress
instead of hostname.
timeskewcheck | number 60 Number of seconds to
interval wait for getting the time

skew from the
Diagnostics server.

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Elements

Number of Occurrences

1 per parent

Parent Elements

probeconfig

Child Elements

none

Example

This is a general example showing the setting for the <diagnosticsserver>

element. The question marks (?) indicate that appropriate values need to be

substituted.

<diagnosticsserver url="http://localhost:2006/commander" delay="2"
keepalive="15" proxy="?" proxyuser="?" proxypassword="?"
registerhostname="?" register_byip="false"/>

For the steps involved in using the registered_hostname attribute to override

the default probe host machine name see "Overriding the Default Probe

Host Machine Name" on page 656.

563

Chapter 14 ¢ Understanding the .NET Agent Configuration File

564

<exceptiontype> element

Purpose

Define an exception type.

Attributes
Attributes Valid Values Default Description
name string None Class name of an
exception.
Elements

Number of Occurrences

Zero to many

Parent Elements

include, exclude

Child Elements

None

Example

<exceptiontype name="System.DivideByZeroException"/>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<exclude> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to exclude.

Attributes

None

Elements
Number of Occurrences 1
Parent Elements captureexceptions
Child Elements exceptiontype

Example

<exclude>

<exceptiontype name="System.DivideByZeroException"/>

</exclude>

565

Chapter 14 ¢ Understanding the .NET Agent Configuration File

566

<exclude> element (when parent is lwmd)

Purpose

Define which collection classes to exclude from the Collections by Growth
and Collections by Size tables in the .NET Profiler's Collections tab and the
Diagnostics user interface’s Collections view.

The specified collection classes may include classes that implement
ICollection. Note that this setting does not affect the instrumentation of
LWMD points; it only affects the presentation of the LWMD data and the
amount of LWMD data that is sent to the Diagnostics Server.

Attributes

None

Elements

Number of Occurrences Zero to many

Parent Elements Iwmd

Child Elements None

Example

<lwmd enabled="true" sample="15s" autobaseline="1h" growth="10" size="10">
<exclude>System.Collections.ArrayList</exclude>
<exclude>System.Data.DataView</exclude>

</lwmd>

Note that System.Data.DataView implements
System.Collections.ICollection.

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<excludeassembly> element

Purpose

Excludes the instrumentation of an assembly. An assembly is an .exe or .dll
file. Provides the ability to exclude sensitive assemblies from
instrumentation (for example, when a product was used to obfuscate and
encrypt code in sensitive assemblies and exceptions would be thrown if
instrumented).

Add <excludeassembly name=<AssemblyNameToExclude> as a child to a
process element.

Attributes
Attributes Valid Values Default Description
name string none Name of assembly to
exclude (without the file
extension).
Elements
Number of Occurrences zero to many
Parent Elements process
Child Elements none
Example

<process enablealldomains="true" name="ASP.NET">
<logging level="" />
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="WCF.points" />

<excludeassembly name="Acme.Encryption" />
<appdomain enabled="false" name="TestWebService">
<points file=" TestWebService .points" />

</appdomain>
</process>

567

Chapter 14 ¢ Understanding the .NET Agent Configuration File

568

<filter> element

Purpose

Filters out certain metrics that would skew the results or not be
representative of the processing being monitored.

Attributes
Attributes Valid Values Default Description
firstserverrequest | true, false false Enables/disables skipping
the collection of metrics
for the first time a
particular server requests
(URL) gets run after
application startup.
Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process

Child Elements

none

Example

<filter firstserverrequest="false"/>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<httpclient> element

Purpose

This configures whether the URL will be included as part of an HTTP
outbound call’s identity. The default is true and should be kept so unless
there are many distinct URLs for the outbound HTTP calls. This could
potentially overwhelm the performance of the Diagnostics Server because of
the number outbound calls created (one for each distinct URL). You may
also want to turn it off if you do not care about the URL of the HTTP
outbound call. The identity of the HTTP outbound call will then be the
Server and port number to which the request is being made to.

Attributes
Attributes Valid Values Default Description
showurl true, false true Enables/disables the
inclusion of the URL as part
of the identity of an
outbound call made by a
client using HTTP.
Setting to false can be used to
protect against symbol table
explosion on the server/agent
side if there are too many
distinct http client calls.
The value should be set to
false for REST service client
applications
Elements
Number of Occurrences Zero to one.
Parent Elements probeconfig, process, appdomain
Child Elements none
Example

<httpclient showurl="true"/>

569

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<gentvhttpeventforwcf> element

Purpose

Setting this option enables generation of a TransactionVision event for a
WCF service with any binding that uses IIS (http based) hosting. Some WCF
services may use a custom or private binding that is not supported as a true
web service and in these types of cases TransactionVision web service events
would not be generated unless you enable this option.

Attributes
Attributes Valid Values Default Description
enabled true, false false Enables/disables the
generation of an http event
for a WCF service with any
binding that uses IIS (http
based) hosting. If enabled,
provides TransactionVision
web service events.
Elements
Number of Occurrences Zero to one.
Parent Elements probeconfig, process, appdomain
Child Elements none
Example

<gentvhttpeventforwcf enabled="true"/>

570

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<httpheaderrule> element

Purpose

Defines a consumer ID rule for HTTP headers.

Attributes
Attributes Valid Values Default Description
id string None ID of the rule.
rule string None A regular expression that
is used to match against
the URL that the HTTP
request is being sent to
by the consumer.
consumeridfield string None Name of the header to
use as the consumer ID.
Elements

Number of Occurrences

Zero to many

Parent Elements

httpheaderrules

Child Elements

None

Example

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*"

consumeridfield="Caller"/>

571

Chapter 14 ¢ Understanding the .NET Agent Configuration File

572

<httpheaderrules> element

Purpose

This element contains all of the <httpheaderrule> elements.

Attributes

None

Elements

Number of Occurrences

1

Parent Elements

consmeridrule

Child Elements

httpheaderule

Example

<httpheaderrules>
</httpheaderrules>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<id> element

Purpose
Provides probe id and probe group id.

Attributes
Attribute Valid Values Default Description
probeid String containing: $(APPDOMAIN).NET | The name of the
Letters, digits, probe a.ls
underscore, dash, recognized by
period and LoadRunner /
internally defined Performance
$() variable values: Center and
System Health.
$(APPDOMAIN),
$(MACHINENAME),
$(WEBSITENAME),
$(PID)
probegroup | string Default Defines the
grouping
recognized by the
Diagnostics
Server for
reporting of
system metrics
and probe
metrics.
Elements
Number of Occurrences 1 per parent
Parent Elements probeconfig, process, appdomain
Child Elements none

573

Chapter 14 ¢ Understanding the .NET Agent Configuration File

574

Example

Default setting example.

<id probeid="$(APPDOMAIN).NET" probegroup="Default"/>

Example

Example for a probe running in a LoadRunner 8.1 environment reporting to
"myDiagServer" with the probe’s name comprised of valid characters, the
name of the Web site the application is deployed under, plus the name of
the machine the application is deployed on.

<id probeid="LR_81_$(WEBSITENAME)_$(MACHINENAME).NET"
probegroup="LR_81 myDiagServer"/>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<include> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to include.

Attributes

None

Elements
Number of Occurrences 1
Parent Elements captureexceptions
Child Elements exceptiontype

Example

<include>

<exceptiontype name="System.DivideByZeroException"/>

</include>

575

Chapter 14 ¢ Understanding the .NET Agent Configuration File

576

<include> element (when parent is lwmd)

Purpose

Define which collections to include to the exclusion of others.

Attributes

None

Elements

Number of Occurrences

Zero to many

Parent Elements Iwmd
Child Elements None
Example

<include>System.Collections.Hashtable</include>
<include>System.Collections.ArrayList</include>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<instrumentation> element

Purpose

Contains logging configuration for instrumenter.

Attributes

None.

Elements

Number of Occurrences

1 per parent

Parent Elements

probeconfig, process

Child Elements

logging

Example

<instrumentation>

<logging level="property lwmd" />

</instrumentation>

577

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<iprule> element

Purpose

Defines a consumer ID rule for IP addresses.

Attributes
Attributes Valid Values Default Description
id string None Enables consumer ID rule
evaluation.
rule string None Define an IP address, or a
range of addresses, to be
assigned to a consumer ID.
consumerid string None The consumer ID to use if
there is a match on the rule.
Elements

Number of Occurrences

zero to many

Parent Elements

iprules

Child Elements

none

Example

<iprule id="IpTest1" rule="43.*.1-20.*" consumerid="HP"/>

578

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<iprules> element

Purpose

This element contains all of the <iprule> elements.

Attributes

None

Elements
Number of Occurrences 1
Parent Elements consumeridrules
Child Elements iprule

Example

<iprules>
</iprules>

579

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<latency> element

Purpose

Configures latency trimming.

Attributes
Attributes Valid Values Default Description
enabled true true Enables latency trimming.
false
throttle true true Enables latency trimming
false throttling.
min number 2 Minimum latency threshold.
max number 100 Maximum latency
threshold.
increment number 2 Threshold increment.
increment number 75 The percentage of the buffer
threshold usage before the throttling
should be incremented.
decrement number 50 The percentage of the buffer
threshold usage before the throttling
should be decremented.
Elements
Number of Occurrences 1
Parent Elements trim
Child Elements none
Example
<trim>

<latency enabled="true" throttle="true" min="2" max="100" increment="2"
incrementthreshold="75" decrementthreshold="50"/>
</trim>

580

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<logdirmgr> element

Purpose

Contains the configuration for the log directory manager. The logdirmgr
monitors the log directory to ensure that it does not grow unbounded. The
logdirmgr scans the logs periodically as indicated by the scaninterval. If the
size has exceeded the size indicated by maxdirsize the logdirmgr deletes the
oldest files until the size no longer is greater than the maxdirsize.

Important: The account under which the .NET process is running (for IIS the
AppPool Account) has to be provided delete privileges on the log folder.

This is not available by default on the NETWORK SRERVICE account or the
App Pool Identity Account (which is the default Application Pool Account).

Attributes
Attributes Valid Values Default Description
enabled true true
false
maxdirsize number 1024 MB Largest size that you
want to be the limit of
the size of the log
directory.
scaninterval number 30m How often the manager
scans the logs to check
for growth and size.
Elements
Number of Occurrences 1 per parent
Parent Elements probeconfig
Child Elements none
Example

<logdirmgr enabled="true" maxdirsize="1024 MB" scaninterval="30m"/>

581

Chapter 14 ¢ Understanding the .NET Agent Configuration File

582

<logging> element (when parent is instrumentation)

Purpose

Sets the logging level for the .NET Agent instrumentation processing.

Attributes

Attributes

Valid Values

Default

Description

level

off
assert
break
severe
warning
info

debug
points

eh

sig

chi

cil
classmap
ilasm
symbols
deepmode
load

all
checksum

property
remoting

Iwmd

http

which is
equivalent to
llinfOH

Level of logging.

threadids

true
false

true

Should thread IDs be
included in the log.

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Note: Valid values below "info" should typically not be used. These are
diagnostic settings that can produce extremely large log files.

Elements

Number of Occurrences

zero to many

Parent Elements instrumentation
Child Elements none
Example

<instrumentation>

<logging level="warning" />

</instrumentation>

583

Chapter 14 ¢ Understanding the .NET Agent Configuration File

584

<logging> element (when parent is appdomain,

probeconfig, or process)

Purpose

Sets the logging level for the .NET Agent processing for monitoring and
reporting application performance.

Attributes

Attributes

Valid Values

Default

Description

level

off
severe
warning
info

debug

events
property
webserver
http

symbols
probemetrics
registrar
threadpool
authentication
bufferpool
rum
bacforsoa
vmware
exceptions|

tvdebug

"

which is
equivalent to
"info”

max

number

10

The maximum size of a
probe log file. After the
log reaches this size no
more logging will occur.

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Note: Valid values below "info" should typically not be used. These are
Diagnostic settings that can produce extremely large log files.

Elements

Number of Occurrences

Parent Elements appdomain, probeconfig, process
Child Elements none
Example

<logging max="10" level="INFO"/>

585

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<lwmd> element

Purpose
Configures the Light-Weight Memory Diagnostics (LWMD) feature.

Attributes
Attributes Valid Values Default Description
enabled true false Enables sampling for
false Iwmd capturing.
sample string 1m Sample interval
(h-hour/m-minute/
s-second).
autobaseline string 1h Auto baseline interval.
manualbase string none Manual baseline time.
line
growth number 15 Number of collections to
growth track.
size number 15 Number of collections to
size track.
Elements
Number of Occurrences 1 per parent
Parent Elements appdomain, probeconfig, process
Child Elements exclude, include
Example

<lwmd enabled="false" sample="1m" autobaseline="1h" manualbaseline= "?"
growth="15" size="15"/>

586

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<mediator> element

Purpose

Specifies the diagnostics server that is in the Mediator mode to which events
are to be sent when in the enterprise mode.

Attributes

Attributes Valid Values Default Description

host host name none Name of mediator.

port number 2612 Mediator port.

ssl true/false false When the Diagnostics
Server URL starts with
http the default is false.
When the Diagnostics
URL starts with https the
default is true.

metrichost string The host to which metric
data is sent.

metricport number 2006 The port to which the
probe sends the probe
metrics such as heap
usage and availability.

block true/false false Block until mediator
connection established.

ipaddress local ipaddress to use
when connecting to the
eventserver.

587

Chapter 14 ¢ Understanding the .NET Agent Configuration File

588

Attributes Valid Values Default Description

localportstart number

4000 Beginning of port range
to use for tcp event
channel connection to
the Diagnostics mediator
server. Used only when
ipaddress is specified.

localportend number

5000 End of port range to use
for tcp event channel
connection to the
Diagnostics mediator
server. Used only when
ipaddress is specified.

Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process

Child Elements

none

Example

<mediator host="localhost" port="2612" ssl="false" metricport="2006"
block="false" ipaddress="16.255.18.99" localportstart="4000"

localportend="5000"/>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<metrics> element

Purpose

This element contains all of the <metric> elements.

Attributes

None

Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, process

Child Elements

metric

Example

<metrics>

<metric name="% Time in GC" group="Memory" units="percent"

category="_NET CLR Memory" counter="% Time in GC"/>

</metrics>

589

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<metric> element

Purpose

Specifies additional probe metrics that you want the Diagnostics .NET to
collect from perfmon. See "Collecting Additional Probe Metrics or
Modifying Probe Metrics" on page 666 for additional information.

Attributes
Attributes | Valid Values Default Description
name string Name of the metric as
you would like to see it
in the Diagnostics UI.
group string Group (Category) of the
metric as you would like
to see it in the
Diagnostics UI.
units microseconds, Units of measure for the
milliseconds, perfmon metric.
seconds,
minutes, hours,
days, bytes,
kilobytes,
megabytes,
gigabytes, count,
percent,
fraction_percent,
load, status
category string The performance counter
category as specified in
perfmon.
counter string The performance counter
as specified in perfmon

590

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Note: The instance of the counter is automatically assigned as the process
instance for the counter or application domain instance for ASP.NET
application counters. Counters that do not have process or application
domain instances are not collected; you should define system metrics

instead.

Elements

Number of Occurrences

1 or more per parent

Parent Elements metrics
Child Elements none
Example
<metrics>

<metric name="% Time in GC" group="Memory" units="percent"
category="_NET CLR Memory" counter="% Time in GC"/>

</metrics>

591

Chapter 14 ¢ Understanding the .NET Agent Configuration File

592

<modes> element

Purpose

Specifies which product mode(s) the .NET Agent should run in. See
"Controlling Which HP Software Products the Agent can Work With" on
page 637 for more information about using the different modes.

The <modes> element is also used in determining usage against the HP
Diagnostics license capacity (see "License Information Based on Currently
Connected Probes" on page 85 for more information on licenses).

The value of the <modes> element is initially set at the time you install the
agent.

The .NET agent can set in different modes to do the following:

Monitor applications from development through pre-production testing
and into production.

Used with other HP Software products.

» Used as a standalone Diagnostics Java Profiler not reporting to a server or to

other HP Software products.

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Attributes

Attributes | Valid Values | Default Description

enterprise | true Depends on mode Sets agent to run in
false chosen in installation. enterprise mode (probe is
working with Diagnostics

» true if pro is false
Server).

» false if pro is true
Enterprise mode is like a
combination of ad, am
and pro mode. It will
capture data for
LoadRunner runs as well
as data outside of
LoadRunner runs.

Enterprise mode is the
default for .NET Agents
(if you don’t specify AD
or AM mode). In
Enterprise mode the
agents are counted
against the AM license

capacity.

ent true Depends on mode This is a short form of the
false chosen in installation. enterprise attribute.

true if pro is false

false if pro is true

593

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Attributes | Valid Values | Default Description
ad true false ad mode supersedes all
false other modes. If ad mode

and any other modes are
set, then mode will be set
to ad.

In ad mode the .NET
Agent will only capture
runs from LoadRunner
and put the results in a
specific database for that
run (for example,
Default21).

Agents in AD mode will
only be counted against
AD license capacity when
the probe is running in a
LoadRunner or
Performance Center test
run. When not in a test
run the agent does not
count against license
capacity.

For example if 20 probes
are installed in
LoadRunner/
Performance Center AD
mode but only 5 are in a
run, then only S are
counted against AD
license capacity.

594

Chapter 14 ¢ Understanding the .NET Agent Configuration File

Attributes | Valid Values | Default Description
am true » false am mode supersedes all
false other modes except for

ad. In am mode the .NET
agent will ignore runs. If
LoadRunner is executing
an application then you
will see the data in the
normal Diagnostics
database.

Agents in AM mode will
always be counted
against the AM license

capacity.

595

Chapter 14 ¢ Understanding the .NET Agent Configuration File

596

Attributes | Valid Values

Default

Description

pro true
false

Depends on mode

chosen in installation.

» true if enterprise is
false

» false if enterprise is
true

Sets the agent to run in
Profiler mode.

This mode sends data to
the profiler. This mode
can be combined with
other modes. Agents in
pro mode are not
counted against license

capacity.

tv true
false

false

Enables the capture of
TransactionVision
events. See "About
Configuration of the
.NET Agent for
TransactionVision" on
page 279 for details on
setting transport and
other TV options. This
mode will send events to
TransactionVision. This
mode can be combined
with other modes and in
tv mode agents are not
counted against
Diagnostics’s license

capacity

Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process

Child Elements

none

Example

<modes enterprise="false" ad="false" am="false" pro="true"/>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<points> element

Purpose

Specifies the capture points file to use for instrumentation.

Attributes
Attributes Valid Values Default Description
file string none Name of instrumentation
capture points file.
Elements

Number of Occurrences

Zero or more

Parent Elements

appdomain, process

Child Elements

none

Example

<points file="ASP.NET.points"/>

597

Chapter 14 ¢ Understanding the .NET Agent Configuration File

598

<probeconfig> element

Purpose

Provides single containing root element for the .NET Agent configuration.

Attributes

None.

Elements
Number of Occurrences 1
Parent Elements None

Child Elements appdomain, bufferpool, captureexceptions,
consumeridrules, credentials, diagnosticsserver,
eventserverhost, id, instrumentation, ipaddress,
logging, lwmd, mediator, modes, points, process,
profiler, rum, sample, soappayload, trim, webserver,
topology, vmware, xvm

Example
<probeconfig>
</probeconfig>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<process> element

Purpose

Provides an inclusion filter list of which processes will be monitored.

If no process elements are defined then no processes will be monitored.

Attributes
Attributes Valid Values Default Description
enablealldomains | true true When set to true the
false enable attribute on all

appdomains that are part
of the process is
overriden so that all will
be enabled.

name string none Name of the .NET process

that these setting apply
to.

These are the rules for the enablealldomains attribute of the <process>

element:

» enablealldomains = false : If there are no domains in the list of

<appdomain> No domains should be enabled.

» enablealldomains = false : If there are domains in the list of
<appdomain> Domains should be enabled if the "enable" attribute is set
to true or not defined in the enable attribute of the <appdomain>.

» enablealldomains = true : If there are domains in the list of <appdomain>
Only Domains in the list should be enabled disregarding their "enable"

attribute.

» enablealldomains = true : If there are no domains in the list of

<appdomain> All domains should be enabled.

» enablealldomains attribute is not defined: same as if enablealldomains =

true.

599

Chapter 14 ¢ Understanding the .NET Agent Configuration File

600

Elements

Number of Occurrences

Zero or more

Parent Elements

probeconfig

Child Elements appdomain, bufferpool, credentials,
diagnosticsserver, mediator, id, instrumentation,
ipaddress, logging, lwmd, modes, points, profiler,
sample, trim, webserver, filter, symbols, topology

Example

<process enablealldomains="true" name="ASP.NET">

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<profiler> element

Purpose

Contains settings for the Profiler feature.

Attributes

Attributes Valid Default Description
Values

authenticate true, false none Enables/Disables
authentication of
incoming Profiler
connection requests.

register true, false false Tells the probe to register
even if it is in Profiler
only mode.

samples number 60 Tells the Profiler how
many samples to keep for
Iwmd/heap trending.

best number 1 The number of fastest
instance trees to keeps.

worst number 3 The number of slowest
instance trees to keep.

inactivitytimeout string 10m The length of time that
the Profiler continues to
run after the user has
stopped interacting with
the Profiler.

disableremoteaccess | true, false false Disables remote access to
the Profiler, thus not
exposing the User/
Password, and still be
able to telnet/
RemoteDeskTop into the
machine and run the
Profiler locally.

601

Chapter 14 ¢ Understanding the .NET Agent Configuration File

602

Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process

Child Elements

authentication

Example

<profiler authenticate="true" register="false" samples="60" best="1" worst="3"

inactivitytimeout="10m">

<authentication username="admin" password="admin"/>

</profiler>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<rum> element

Purpose

Controls the settings for Real User Monitoring.

Attributes
Attributes Valid Default Description
Values
enable true true Enables or disables the RUM
false Integration feature.
responseheader | string X-HP-CAM | The name of the http header
-COLOR whose value contains the
Diagnostics to RUM integration
information.
encryptedkey string The encrypted key must be
generated using the passgen
utility in the
<probe_install_dir>\bin directory.
Elements

Number of Occurrences

1 per parent

Parent Elements probeconfig
Child Elements none
Example

<rum enabled="true" responseheader="X-HP-CAM-COLOR"

encryptedkey="OBF:3pe941vx43903wre40303xxz3q6r420b43n93wre3io03xjs4
0h940pc3wir3g233jur3zir3yi03zir3vc03wre3xpi3r8o3olr44na3zor3vém3vc03zird
4u030hb3rdi3xjs3wx03v6m3zor3yc63zor3jqz3q6r3wd740vi40b53xpi3ike3wx04

3gp42ur3g233y3r3zwy3wx0432i42293p9p"/>

603

Chapter 14 ¢ Understanding the .NET Agent Configuration File

604

To create the encrypted key, use the PassGen utility as follows:

cd <installdir>/bin
PassGen /system encryptionKey

Where encryptionKey is a string of alpha-numeric characters with a
maximum length of 128 characters. The encryptedkey is shown on stdout.

passgen example:

PassGen /system TheLazyFoxJumpedHigh

Returns:

OBF:30g6r3xxz3y3r3xjs3wx03yc63n0r3lbr3vc03wd745893wre44u0413j3kn93zw
y40vi432i44fr3m453m894493439040pc40303kjd419r44na3wx0451h3wir3véma3
Ifr3mwj3yi03wre3xpi3xxz3y3r3g23

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<sample> element

Purpose

Sets the sampling type and rate.

Attributes
Attributes Valid Values Default Description
method percent, count, | percent Sets the sampling method:
period » for percent rate must be
0-100
» for count rate must be >1
» for period rate must be one
of standard Diagnostics time
strings (3m for 3 minutes, 4s
for 4 seconds, and so forth)
rate number 0 Sets the sampling rate for
percent type.
Elements

Number of Occurrences

1 per parent

Parent Elements

appdomain, probeconfig, process, ws

Child Elements

none

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>
Sampling is a random percentage rate.

<xvm>< ws ><sample method="count" rate="50"/></ ws ></xvm>
Sampling is once every rate count.

<xvm>< ws ><sample method="period" rate="60000"/></ ws ></xvm>

605

Chapter 14 ¢ Understanding the .NET Agent Configuration File

606

<soapcapture> element

Purpose

Configures whether SOAP requests and responses are captured.

Attributes

Attributes Valid Values Default Description

enabled true
false

true Enables or disables the
capture of SOAP requests
and responses. If this is
disabled it will affect the
following:

» SOAP request capture
for SOAP faults

» SOAP requests and
responses capture for
TV mode

» ConsumerID assigned
via the SOAP rules.

maxsize number

0 This is an optional
attribute that specifies
the maximum size in
characters of the SOAP
request or response
captured.

0 indicates unlimited.

Elements

Number of Occurrences

one per parent

Parent Elements probeconfig
Child Elements none
Example

<soapcapture enabled="true" maxsize="0" />

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<soappayload> element

Purpose

This element is deprecated and replaced by <soaprequestforsoapfault>.

Configures the SOAP payload capture on SOAP faults feature which provides
the SOAP payload associated with a SOAP fault. Here the SOAP payload is
defined as the entire SOAP envelope.

Attributes

Attributes

Valid Values Default

Description

enabled true
false

true

Enables or disables the
SOAP Payload capture
feature.

maxsize number

5000

This is an optional
attribute that specifies
the maximum size in
characters of any payload
capture. If not present
the Default value is used.
If present and an error is
made in the setting, the
Default value is used.

Elements

Number of Occurrences

one per parent

Parent Elements

probeconfig

Child Elements

none

Example

<soappayload enabled="true" maxsize="5000" />

607

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<soaprequestforsoapfault> element

Purpose

Configures SOAP request capture (including payloads) on SOAP Faults.
Payloads can contain sensitive information such as credit card numbers so
this element is disabled by default.

NOTE: If the <soapcapture> element is disabled it will override the
<soaprequestforsoapfault> setting. Please refer to the documentation for the
<soapcapture> element.

Attributes
Attributes Valid Values Default Description
enabled true false Enables or disables the
false SOAP request capture on
SOAP fault feature.
Disabled by default.
maxsize number 5000 This is an optional
attribute that specifies
the maximum size in
characters of SOAP
request capture. If not
present the Default value
is used. If present and an
error is made in the
setting, the Default value
is used.
Elements
Number of Occurrences one per parent
Parent Elements probeconfig
Child Elements none
Example

<soaprequestforsoapfault enabled="true" maxsize="5000" />

608

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<soaprule> element

Purpose

Defines a consumer ID rule for SOAP headers.

Attributes
Attributes Valid Values Default Description
id string None ID of the rule.
rule string None A regular expression that
is used to match against
the web service name
being called by the
consumer.
consumeridfield string None The element in the SOAP
header to get the value
for to use as the
consumer ID.
Elements

Number of Occurrences

zero to many

Parent Elements soaprules
Child Elements none
Example

<soaprule id="SOAP1" rule="TestService2" consumeridfield="Caller"/>

609

Chapter 14 ¢ Understanding the .NET Agent Configuration File

610

<soaprules> element

Purpose

This element contains all of the <soaprule> elements.

Attributes

None.

Elements

Number of Occurrences

1

Parent Elements

consumeridrules

Child Elements

soaprules

Example

<soaprules>
</soaprules>

Chapter 14 ¢ Understanding the .NET Agent Configuration File

<sqlparsing> element

Purpose

This element is used to indicate in what mode SQL queries should be parsed.
If there are a large number of SQL queries using literals it can overwhelm the
server symbol table so the default is set to mode 3 to avoid this problem.

Attributes

Attributes Valid Values | Default Description

mode 1,2,3,4 3 Mode indicates how to parse
SQL queries.

1 - just methods, no SQL queries

2 - main categories for SQL
queries (select/update/insert/
delete/...)

3 - (default) a measurement per
whole SQL query aggregating
similar statements into a single
measurement (ignore literals,
keyword case...)

4 - a measurement per whole
SQL query aggregating only
identical statements

keywordsfile string None Optionally allows you to specify
a file containing keywords you
want the agent to find