
HP Diagnostics

for the Windows®, Unix and Linux operating systems

Software Version: 9.21

Installation and Configuration Guide

Document Release Date: September 2013

Software Release Date: November 2012

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© 2004 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Java is a registered trademark of Oracle and/or its affiliates.

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Microsoft®, Windows®, Windows® NT, Windows® XP and Windows Vista® are U.S.
registered trademarks of Microsoft Corporation.

Oracle® is a registered trademark of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Acknowledgements

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product includes software developed by the Spice Group (http://spice.codehaus.org).

For information about open source and third-party license agreements, see the
Documentation directory on the product installation media.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome To This Guide ..19
How This Guide Is Organized ...19
HP Diagnostics Online Documentation..21
Additional Online Resources...22
Documentation Updates ...23

PART I: PREPARING TO INSTALL

Chapter 1: Preparing to Install HP Diagnostics27
HP Diagnostics Components and Data Flow......................................28
Supported Application Servers and Environments30
System Requirements for the Diagnostics Components.....................31
Information Required for Installation ..40
Pre-installation Considerations...47
Recommended Order of Installation...48
Licensing HP Diagnostics ..50
Upgrading from Earlier Versions of Diagnostics.................................50

PART II : INSTALLATION OF THE DIAGNOSTICS SERVER
AND COLLECTORS

Chapter 2: Installing the Diagnostics Server53
Installing Diagnostics Servers ...54
Verifying the Diagnostics Server Installation67
Silent Installation of the Diagnostics Server68
Starting and Stopping the Diagnostics Server.....................................70
Licensing Your Diagnostics Software ..72
More Information on Configuring Diagnostics Servers......................72
Determining the Version of the Diagnostics Server72
Uninstalling the Diagnostics Server ..73
Manual Installation of OM Agent and IAPA Components.................74
Manual Uninstall of OM Agent and IAPA Components76

Table of Contents

6

Chapter 3: Licensing HP Diagnostics ..79
About HP Diagnostics Licensing ...80
Types of Licenses ...80
Licensing the Diagnostics Server in Commander Mode.....................81
View License Information ...84
Licensing the Other Diagnostics Components88

Chapter 4: Installing Diagnostics Collectors.......................................91
About Installing the Diagnostics Collector...92
Accessing the Collector Installer ...93
Installing the Collector ...94
Silent Installation of the Diagnostics Collector103
Installing the Diagnostics Collector Using the Generic Installer104
How to Manually Add Another Collection Type After

Installing the Collector ...105
Configuring the Active System Property Files106
Configuration for SAP NetWeaver–ABAP..106
Configuration for Oracle...110
Configuration for SQL Server ..113
Configuration for MQ ...117
Configuration for TIBCO EMS ..120
Configuration for webMethods Broker ...121
Configuration for VMware..123
Password Obfuscation ...125
Verifying the Diagnostics Collector Installation127
Starting and Stopping the Diagnostics Collector..............................128
Determining the Version of the Diagnostics Collector130
Uninstalling the Diagnostics Collector...130

Table of Contents

7

PART III : INSTALLATION AND SETUP OF THE JAVA, .NET AND PYTHON
AGENTS

Chapter 5: Installing Java Agents..133
Overview of the Java Agent Installation ...134
Accessing the Java Agent Installer...135
Installing the Java Agent ...137
Running the Java Agent Setup Module...141
About Preparing the Application Server for Monitoring150
Register the Agent with the Diagnostics Servers...............................150
Verifying the Java Agent Installation..151
About Additional Configuration and Custom Instrumentation152
Installing the Java Agent on a z/OS Mainframe................................154
Installing the Java Agent Using the Generic Installer.......................156
Silent Installation of the Java Agent ...157
Setting File Permissions (UNIX Only) ...159
Determining the Version of the Java Agent......................................160
Uninstalling the Java Agent ..160

Chapter 6: Preparing Application Servers for Monitoring with
the Java Agent...161

About Preparing Application Servers for Monitoring162
Examples for Configuring Application Servers163
About the JRE Instrumenter and Different Options to Invoke.........219
Other Configuration Options ...232

Chapter 7: Preparing Application Servers for Client Monitoring
with the Java Agent ..245

About Client Monitoring ..245
Enabling Client Monitoring..246
Configuring and Disabling Client Monitoring.................................248
Manually Instrumenting HTML/JSP Pages for Client Monitoring: ..249

Table of Contents

8

Chapter 8: Installing .NET Agents...251
Overview of the .NET Agent Installation..252
Accessing the .NET Agent Installer ...254
Installing the .NET Agent..255
Post Install Tasks ...277
Verifying the .NET Agent Installation...278
About Configuration of the .NET Agent for Diagnostics..................279
About Configuration of the .NET Agent for TransactionVision.......279
Discovery and Standard Instrumentation...282
Probe Aggregator Service ...286
Monitoring NET Applications Deployed in Azure Cloud.................287
Determining the Version of the .NET Agent288
Enabling and Disabling the Diagnostics Agent for .NET..................288
Disabling Logging..289
Enabling and Disabling Standard Instrumentation for

Applications ..290
Troubleshooting .NET Web Applications Not Discovered292
Other .NET Agent Troubleshooting Tips ..294
Uninstalling the .NET Agent ...294

Chapter 9: Installing and Setting Up Python Agents295
Diagnostics Python Agent Overview ..296
System Requirements for the Diagnostics Python Agent296
Installing Python Agents...297
Instrumenting a Python Application..300
Configuring the Python Agent ...309
Description of the Parameters in the Points File316
Description of Custom Code...318
Available Out-of-the-box Configurations ...328
Reconnect/Reinitialize Event Channel After Server Reboot333
Troubleshooting ..333
Removing the Python Agent...334

Table of Contents

9

PART IV: CUSTOM INSTRUMENTATION FOR MONITORING JAVA AND .NET
APPLICATIONS

Chapter 10: Custom Instrumentation for Java Applications337
About Instrumentation and Capture Points Files338
Coding Points in the Capture Points File ...340
Defining Points With Code Snippets ..348
Controlling Class Map Capture...364
Instrumentation Examples..365
Understanding the Overhead of Custom Instrumentation..............381
Instrumentation Control on a Per Layer Basis..................................382
Advanced Instrumentation Examples...383
Configuring Cross VM Correlations for New or Custom

Technologies ...398
Tutorial for Configuring Cross VM Correlation for Custom

Technologies ...403
Maintaining Instrumentation from the Java Profiler UI412
Default Layers Defined for Typical Java Classes and Methods423

Chapter 11: Custom Instrumentation for .NET Applications427
About Instrumentation and Capture Points Files428
Locating the .NET Capture Points Files...429
Coding Points in the Capture Points File ...430
Instrumentation Examples..435
Understanding the Overhead of Custom Instrumentation..............461
Default Layers for Typical .NET Applications462

Table of Contents

10

PART V: ADVANCED CONFIGURATION OF THE DIAGNOSTICS SERVER AND
THE JAVA AND .NET AGENTS

Chapter 12: Advanced Diagnostics Server Configuration................465
Synchronizing Time Between Diagnostics Components..................466
Configuring the Diagnostics Server for a Large Installation.............470
Overriding the Default Diagnostics Server Host Name476
Changing the Default Diagnostics Server Port476
Migrating Diagnostics Server from One Host to Another477
Configuring the Diagnostics Server for Multi-Homed

Environments ...479
Reducing Diagnostics Server Memory Usage483
Configuring Server Request Name Based Trimming.........................484
Automating Composite Application Discovery in HP Diagnostics ..485
Preparing a High Availability Diagnostics Server..............................488
Configuring Diagnostics for HP ServiceGuard (HA solution)...........489
Diagnostics Server Assignments (LoadRunner/Performance

Center Runs) ...491
Configuring the Diagnostics Server for LoadRunner

Offline Analysis File Size...492
Configuring Business Service Management Sample Queue

Size and Web Services CI Frequency ..495
Configuring Diagnostics Using the Diagnostics Server

Configuration Pages..496
Optimizing the Diagnostics Server in Production to Handle

More Probes ..496
Configuring a Custom Context Root..497

Table of Contents

11

Chapter 13: Advanced Java Agent and Application
Server Configuration ..499

Advanced Configuration Overview...500
Disabling the Java Diagnostics Profiler ...501
Controlling Probe Logging..502
Setting the Probe’s Host Machine Name...503
Specifying a Different Probe IP Address ..505
Set the Active Products Mode..505
Controlling Automatic Method Trimming on the Agent.................508
Configuring URI Truncation, Mapping and Trimming....................510
Configuring an Agent for a Proxy Server ..511
Time Synchronization for Probes Running on VMware...................512
Limiting Exception Tree Data ...512
Diagnostics Probe Administration Page ..515
Authentication and Authorization for Diagnostics Java Profilers518
Configuring Collection of CPU Time Metrics...................................521
Configuring Consumer IDs ...524
Configuring SOAP Fault Payload Data..535
Configuring REST Services ..537
Customizing Grouping JMS Temporary Queue/Topics537
Configuring SQL Query Parsing..537
Configuring Display of Application Name for Server Requests........538
Maintaining Probe Settings from the Java Profiler UI539
Generating Performance Reports for JUnit Tests547

Chapter 14: Understanding the .NET Agent Configuration File551
Understanding the .NET Agent Configuration File551
.NET Agent Configuration Elements...552

Table of Contents

12

Chapter 15: Advanced .NET Agent Configuration627
Time Synchronization for .NET Agents Running on VMware628
Customizing the Instrumentation for ASP.NET Applications628
Discovering the Classes and Methods in an Application634
Controlling Which HP Software Products the Agent can

Work With ..637
Configuring Support for MSMQ Based Communication641
Configuring Latency Trimming and Throttling641
Configuring Depth Trimming...646
Configuring URI Truncation and Mapping647
Configuring the .NET Agent for Lightweight

Memory Diagnostics ...649
Limiting Exception Stack Trace Data ..652
Disabling Logging..655
Overriding the Default Probe Host Machine Name..........................656
Listing the Probes Running on a Host ..657
Authentication and Authorization for .NET Profilers.......................658
Configuring Consumer IDs ...660
Configuring SOAP Fault Data..665
Collecting Additional Probe Metrics or Modifying Probe Metrics ...666

PART VI: CONFIGURING COMMUNICATIONS THROUGH
PROXIES AND FIREWALLS

Chapter 16: Configuring Diagnostics Servers and
Agents for HTTP Proxy ...671

Enabling HTTP Proxy Communications for the
Diagnostics Servers..672

Enabling HTTP Proxy Communications for the Java Agent.............673
Enabling HTTP Proxy Communications for a .NET Agent674

Chapter 17: Configuring Diagnostics to Work in a
Firewall Environment..675

Overview of Configuring Diagnostics for a Firewall.........................676
Collating Offline Analysis Files over a Firewall679
Installing and Configuring the MI Listener......................................680
Configuring the Diagnostics mediator server

to Work with a Firewall ..681
Configuring LoadRunner and Performance Center

to Work with Diagnostics Firewalls ..687

Table of Contents

13

PART VII: CONFIGURING DIAGNOSTICS METRICS COLLECTORS

Chapter 18: .NET System Metrics Agent - Systems
Metrics Capture ..691

About the .NET System Metrics Agent ..691
System Metrics Captured by Default...692
Configuring .NET System Metrics Capture693
Adding System Metrics Using the Windows Performance

Monitor ...696
Default Entries in the .NET Agent metrics.config File698
Keywords in the metrics.config File ..699

Chapter 19: Java Agent Metrics Collectors703
About Metrics Capture ..703
What Metrics are Being Collected by the Java Agent705
Understanding Metric Collector Entries ...706
About Collecting Additional Probe Metrics708
Modifying Probe Metrics Already Being Captured708
Stopping Capture of a Metric ..708
Using Customized metrics.config Files for Multiple JVM

Applications on a System..709

Chapter 20: Java Agent - System Metrics Capture711
About System Metrics..711
System Metrics Captured by Default...712
Configuring the System Metrics Collector..713
Capturing Additional Custom System Metrics715
Enabling z/OS System Metrics Capture...721

Chapter 21: Java Agent - JMX Metrics Capture723
About JMX Metrics ..723
About Configuring JMX Metric Collectors724
Additional Custom JMX Metrics ...725
Getting a List of Available JMX or WebSphere PMI Metrics.............725
Creating New JMX or WebSphere PMI Metrics Entries728

Table of Contents

14

PART VIII : SETTING UP INTEGRATION WITH OTHER
HP SOFTWARE PRODUCTS

Chapter 22: Setting Up the Integration Between Business Service
Management and Diagnostics..737

About Setting Up the Integration Between
Business Service Management and Diagnostics739

Registering the Diagnostics Server in
Business Service Management ..740

Removing the Diagnostics Registration ..747
Understanding the Diagnostics Admin Page747
Assigning Permissions for Diagnostics Users in

Business Service Management ..748
Password for Data Collectors to Access RTSM750
Accessing the Diagnostics Pages in Windows 2003..........................751
Accessing the Diagnostics Application from

Business Service Management ..751
Data Samples Sent to Business Service Management........................752
Diagnostics Populates CIs and Models in

Business Service Management ..753
Synchronize CIs Between Diagnostics and

Business Service Management ..753
Diagnostics Provides KPI/HI Coloring to

Business Service Management ..754
Enabling Diagnostics Integration with BSM’s Service Health

Analyzer ..755
Integration with BSM’s Performance Graphing................................756
Diagnostics and OM Server Co-existence ...756
Configuration of Separate BSM Servers for DPS and Gateway761
Additional Information on Integration ..763

Chapter 23: Installing the LoadRunner Diagnostics Add-in.............765
Before Installing the LoadRunner Diagnostics Add-in766
Installing the LoadRunner Diagnostics Add-in.................................766

Chapter 24: Setting Up HP LoadRunner and
HP Diagnostics Integration...769

How You Can Use HP Diagnostics with LoadRunner.......................770
About Setting Up LoadRunner to Integrate with HP Diagnostics773
Configuring LoadRunner Scenarios to use HP Diagnostics774
Selecting Probe Metrics to Include in the Offline Analysis File........774
Improving Transfer of Large Offline Analysis Files...........................777
Out of Memory Issue in LoadRunner Controller’s Diagnostics UI...777

Table of Contents

15

Chapter 25: Setting Up Performance Center to Use Diagnostics779
How You Can Use HP Diagnostics with Performance Center780
About Setting Up Performance Center to Use Diagnostics...............782
Configuring Performance Center Load Tests to Use Diagnostics783
Managing Performance Center Offline Files.....................................784

PART IX: APPENDIXES

Appendix A: Diagnostics Administration UI787
Accessing the Diagnostics Administration UI...................................787
Using the Diagnostics Administration UI ...790

Appendix B: User Authentication and Authorization.......................797
About User Authentication and Authorization798
Understanding User Privileges ..799
Understanding Roles ...800
Accessing Diagnostics Using Default User Names801
Understanding the Diagnostics Server Permissions Page802
Creating, Editing and Deleting Users..810
Assigning Privileges Across the Diagnostics Deployment812
Assigning Privileges for Probe Groups ..813
Authentication and Authorization for Users of Integrated

HP Software Products..816
Tracking User Administration Activity ...818
List of Active Users ..819
Configuring Diagnostics to use JAAS ..820

Appendix C: Enabling HTTPS Between Components.......................839
About Configuring HTTPS Communications840
Filtering Encryption Cipher Suites..840
HTTPS Checklist per Diagnostics Component..................................841
Enabling Incoming HTTPS Communication for

Diagnostics Components..843
Generate Client Certificate..843
Enabling Outgoing HTTPS Communication from

Diagnostics Components..853
Enabling HTTPS Communications for the

Business Service Management Server ...860

Appendix D: Using System Views for Administrators863
System Views for Diagnostics’ Administrators..................................863
System Health View Description...865
System Capacity View Description ...866

Table of Contents

16

Appendix E: Diagnostics Data Management867
About Diagnostics Data...868
Custom View Data...868
Performance History Data ...870
Data Retention ..876
Disk Space Issues on the Server ...882
Pre-Installation Data Management Considerations..........................882
Backing Up Diagnostics Data ..883
Handling Diagnostics Data when Upgrading Diagnostics888

Appendix F: Diagnostics Technical Diagrams 889
Communications with Business Service Management890
Communications with LoadRunner and Performance Center.........891
.NET Probe Aggregator Data Flow ...892

Appendix G: Upgrade and Patch Install Instructions893
Before You Begin ...894
Diagnostics Compatibility with Earlier Diagnostics Versions894
Upgrade or Patch Install Instructions for Diagnostics

Components ...894
Diagnostics Compatibility with Other HP Software Products907

Appendix H: Troubleshooting HP Diagnostics909
Component Installation Interrupted on a Solaris Machine910
Diagnostics Installers Do Not Work on Some 64-bit Linux Systems910
Error During Linux Install - Missing libstdc++.so.5 Shared Library .911
Java Agent Fails to Operate Properly...911
Error During WAS Startup with Diagnostics Profiler for Java...........912
Missing Server-Side Transactions ..913
Event Capture Buffer Full Warning...913
WebSphere Application Server Startup Issue914
Java Agent Support Collector ..915
Event Based Health Indicator Status Troubleshooting Flow.............915
OM Agent Troubleshooting ..919
Troubleshooting Registration of OMi Between the

BSM Gateway Server and Data Processing Server922

Appendix I: General Reference Information.....................................925
Using UNIX Commands ...925
Using Regular Expressions...926
Multi-Lingual User Interface Support ...934

Table of Contents

17

Appendix J: Data Exporting ..937
Task 1: Prepare the target database ...938
Task 2: Determine which metrics you want to export939
Task 3: Determine the frequency and the recovery period942
Task 4: Modify the data export configuration file943
Task 5: Monitor the data export operation.......................................947
Task 6: Verify the results ...949
Task 7: Select the data from the target database...............................950
Sample Queries ..950

Index..953

Table of Contents

18

19

Welcome To This Guide

Welcome to the HP Diagnostics Installation and Configuration Guide. This
guide describes how to install and configure the HP Diagnostics
components. This guide also gives an overview of the integrations with
other HP Software products.

How This Guide Is Organized

This guide contains the following parts:

 Part I Preparing to Install

Provides the information and instructions to plan and prepare for the
installation and configuration of the Diagnostics components.

 Part II Installation of the Diagnostics Server and Collectors

Describes how to install and configure the HP Diagnostics Servers and the
HP Diagnostics Collectors.

 Part III Installation and Setup of the Java, .NET and Python Agents

Describes the processes for installing and configuring the Diagnostics
Agents.

 Part IV Custom Instrumentation for Monitoring Java and .NET Applications

Describes how to control the instrumentation HP Diagnostics applies to the
classes and methods of monitored applications to enable it to gather
performance metrics.

Welcome to This Guide

20

 Part V Advanced Configuration of the Diagnostics Server and the Java and
.NET Agents

Describes advanced configuration of the Diagnostics Server and the
Diagnostics .NET and Java Agents.

 Part VI Configuring Communications through Proxies and Firewalls

Describes how to set up your Diagnostics deployment using different
communication channels.

 Part VII Configuring Diagnostics Metrics Collectors

Describes metrics capture and how to configure the metric collectors for the
.NET Agent and the Java Agent.

 Part VIII Setting Up Integration with Other HP Software Products

Gives an overview of how to set up LoadRunner, Performance Center and
Business Service Management for integration with HP Diagnostics.

 Part IX Appendixes

Describes administrative tasks for the Diagnostics Administrator such as the
following and provides technical data flow diagrams:

➤ Using the Admin UI to configure and manage Diagnostics

➤ Setting up users, permissions, authorization and authentication

➤ Enabling HTTPS secure communications between components

➤ Using System Health UI

➤ Managing data as well as doing backup and recovery

➤ Upgrading Diagnostics and installing patch updates

➤ Using the Data Export feature

➤ Troubleshooting and finding additional reference information

Welcome to This Guide

21

HP Diagnostics Online Documentation

Your HP Diagnostics application comes with the following documentation:

➤ Diagnostics User’s Guide and Online Help. Explains how to use HP
Diagnostics to analyze the performance of your enterprise applications. You
access the online help for Using HP Diagnostics from the Help button in the
Diagnostics UI or from the help menu in the integrated HP Software
product. You access the PDF version of the User’s Guide from the
Diagnostics online help Home page, or from the Windows Start menu (Start
> Programs > HP Diagnostics Server > User Guide), or from the
Documentation directory on the HP Diagnostics installation disk, or from
the Diagnostics Server installation directory.

➤ Diagnostics Installation and Configuration Guide. Explains how to install
and configure the Diagnostics components and how to configure
Diagnostics for integration with other HP Software products. You access the
PDF of this guide from the Diagnostics online help Home page, or from the
Documentation directory on the Diagnostics installation disk, or from the
Diagnostics Server installation directory, or from the Windows Start menu
(Start > Programs > HP Diagnostics Server > Install Guide).

➤ Diagnostics Frequently Asked Questions. Gives answers to frequently asked
questions. You can access the pdf from the Diagnostics online help.

➤ Diagnostics Data Model and Query API. Describes the Diagnostics data
model and the query API you can use to access the data. You can access the
pdf from the Diagnostics online help.

➤ Readme. Provides last-minute technical and troubleshooting information
about HP Diagnostics. The file is located in the HP Diagnostics installation
disk root directory. There is also an Upgrade and Patch Install Instructions
document with details for installing an upgrade or patch release.

➤ Diagnostics Java Agent Guide. Describes how to install, configure, and use
the Diagnostics Java Agent and the Diagnostics Profiler for Java. You access
the PDF of this guide on the agent system in the \docs directory, or from the
Java Diagnostics Profiler UI online Help link, or in the Documentation
directory on the HP Diagnostics installation disk.

Welcome to This Guide

22

➤ Diagnostics .NET Agent Guide. Describes how to install, configure, and use
the Diagnostics .NET Agent and Diagnostics Profiler for .NET. You access the
PDF of this guide on the agent system in the \docs directory, or from the
.NET Diagnostics Profiler UI online Help link, or in the Documentation
directory on the HP Diagnostics installation disk.

Note: The information in the Diagnostics Agent guides is based on
information in the Diagnostics Installation and Configuration Guide and
the Diagnostics User’s Guide.

Additional Online Resources

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software

Welcome to This Guide

23

Documentation Updates

HP Software is continually updating its product documentation with new
information.

To check for recent updates, or to verify that you are using the most recent
edition of a document, go to the HP Software Product Manuals Web site
(http://h20230.www2.hp.com/selfsolve/manuals).

http://h20230.www2.hp.com/selfsolve/manuals

Welcome to This Guide

24

Part I

Preparing to Install

This section includes:

➤ Preparing to Install HP Diagnostics

26

27

1
Preparing to Install HP Diagnostics

Before you install HP Diagnostics, read the following information and
instructions that will help you plan and prepare for the installation and
configuration of the Diagnostics components.

This chapter includes:

 ➤ HP Diagnostics Components and Data Flow on page 28

 ➤ Supported Application Servers and Environments on page 30

 ➤ System Requirements for the Diagnostics Components on page 31

 ➤ Information Required for Installation on page 40

 ➤ Pre-installation Considerations on page 47

 ➤ Recommended Order of Installation on page 48

 ➤ Licensing HP Diagnostics on page 50

 ➤ Upgrading from Earlier Versions of Diagnostics on page 50

Chapter 1 • Preparing to Install HP Diagnostics

28

HP Diagnostics Components and Data Flow

The following diagram illustrates the data flow among Diagnostics
components and integrations with other HP Software products.

HP Diagnostics consists of the following components:

➤ Diagnostics Agents. Capture events from your J2EE and .NET applications
such as method invocations, the beginning and end of business transactions
and server requests and then aggregates performance metrics to be sent to a
Diagnostics Server. There is also now a Python Agent for monitoring Python
applications.

The Diagnostics Agent software is installed on the systems to be monitored.
With the Java Agent you instrument the application server(s) for
monitoring. With the .NET Agent you instrument the application domains
for monitoring.

Chapter 1 • Preparing to Install HP Diagnostics

29

Each instrumented application server or application domain results in an
agent instance represented by a probe entity. You control the data collection
settings for these probe entities using a number of different configuration
files in the agent installation folder.

➤ Diagnostics Collectors. Responsible for collecting data from external
environments including Oracle Databases, SQL Server systems, IBM
WebSphere MQ messaging systems, TIBCO Enterprise Message Service,
Software AG webMethods Broker, VMware vCenter or VMware ESX servers
and SAP NetWeaver - ABAP systems. You install the Diagnostics Collector
and define specific instances of these systems to be monitored. Each
monitored instance is represented as a probe entity in the Diagnostics user
interface.

➤ Diagnostics Servers. Responsible for working with the agents, collectors and
with other HP Software products to capture, process, and present the
performance metrics for your applications.

The Diagnostics Server processes and further aggregates the data that it
receives, and formats the information so that it can be displayed in the
views of the user interface.

A Diagnostics deployment may consist of one or many Diagnostics servers.
If there is only one Diagnostics server in your deployment, it is configured
as the Diagnostics commander server and must perform both the
commander and mediator roles. If there is more than one Diagnostics server
in a deployment, one must be configured as the Diagnostics commander
server, with all the rest running as (distributed) mediators.

In a typical deployment there is a Diagnostics commander server connected
to a one or more servers running as mediators. Each Diagnostics Mediator
Server is configured to receive data from systems where the agents and
collectors are installed. The Diagnostics Mediator Server then filters and
aggregates the events it receives. This information is sent to the Diagnostics
commander server, which displays the processed metrics in the UI.

The Diagnostics commander server is responsible for the command and
control functions between the various Diagnostics components and the
components of the other products with which Diagnostics is working.

The commander server keeps track of the location and status of the other
Diagnostics components, and is the communication hub between the other
components.

Chapter 1 • Preparing to Install HP Diagnostics

30

The commander server is also responsible for displaying the performance
information for the monitored applications in the Diagnostics user
interfaces.

User Interfaces. The main Diagnostics user interface (Diagnostics Enterprise
UI) displays performance data in charts and graphs for use in monitoring
performance, isolating problems and analyzing causes to solve complex
performance problems.

If you are using Diagnostics with other HP Software products you can also
access the Diagnostics Enterprise UI from the user interface of the other
products. For example you can access the Diagnostics Enterprise UI from HP
Business Service Management. And in pre-production, during a load test,
you can access the Diagnostics Enterprise UI from HP LoadRunner or HP
Performance Center.

Diagnostics also provides Java and .NET profilers displayed in separate user
interfaces (Diagnostics Profiler UIs) available directly on the agent systems
or as a drill down from the main Diagnostics user interface.

➤ Integrations. Diagnostics has integrations with the following other HP
Software products. See Part VIII, “Setting Up Integration with Other HP
Software Products” for more information. Also see the Online Help or User’s
Guide section on "Integrations with Other HP Software Products".

➤ HP Business Service Management

➤ HP LoadRunner

➤ HP Performance Center

➤ HP Sitescope

➤ HP Continuous Delivery Automation (CDA)

Supported Application Servers and Environments

HP Diagnostics supports the monitoring of:

➤ Java EE-based application servers. Including WebLogic, WebSphere,
Oracle, Sun Java Enterprise Server, JBoss, and more.

➤ .NET-based application servers. HP Diagnostics supports the Microsoft IIS
.NET Framework.

Chapter 1 • Preparing to Install HP Diagnostics

31

➤ Python applications.

➤ SAP NetWeaver–ABAP systems.

➤ Oracle databases.

➤ SQL Server databases.

➤ IBM WebSphere MQ systems.

➤ TIBCO Enterprise Message Service (EMS) systems.

➤ VMware vCenter or VMware ESX servers.

➤ Software AG webMethods Broker

For the most recent information on supported environments, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

System Requirements for the Diagnostics Components

The following section describes the recommended system configurations for
hosting the components of HP Diagnostics. See the deployment diagram in
the previous section to understand the component hosts described in this
section.

When you select the machines that will host the Diagnostics components,
make sure that the system configuration of the machines supports the
processing load and the number of applications you will be monitoring.

This section includes the following:

➤ “Supported Environments for the Diagnostics Components” on page 32

➤ “Requirements for the Diagnostics Enterprise UI” on page 32

➤ “Requirements for the Diagnostics Server Host” on page 32

➤ “Scalability Information” on page 34

➤ “Requirements for the Diagnostics Java Agent Host” on page 36

➤ “Requirements for the Host of the Diagnostics Java Profiler User Interface”
on page 37

Chapter 1 • Preparing to Install HP Diagnostics

32

➤ “Requirements for the Diagnostics .NET Agent Host” on page 38

➤ “Requirements for the Host of the Diagnostics .NET Profiler User Interface”
on page 39

➤ “Requirements for the Diagnostics Collector Host” on page 39

➤ “Requirements for the Python Agent” on page 39

Supported Environments for the Diagnostics Components
For the most recent information on supported environments for the
Diagnostics components, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Diagnostics Servers and Diagnostics Collectors use the Java 1.6 JVM.

Important: For Diagnostics Linux installers (both 32 and 64 bit for servers,
agents and collectors) the 64-bit Linux system must have the patch
libXtst-1.0.1-3.1 installed in order to run the installers in graphical mode.

Requirements for the Diagnostics Enterprise UI
The Diagnostics Enterprise UI is presented in a web browser using a Java
applet that requires JRE 1.6, minimally to be installed on the client systems
that access the UI. Supported browsers include Microsoft Internet Explorer
7, 8, 9 and Mozilla Firefox 3.5, 3.6, 5, 6. For the most recent information on
supported browsers, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Requirements for the Diagnostics Server Host
The system configuration requirements for the host of a Diagnostics Server
depend upon the number of probes and mediator servers that are reporting
to it. When a server is designated as the Diagnostics commander server, the
probe data is generally stored on each mediator server that reports to it.

Chapter 1 • Preparing to Install HP Diagnostics

33

If installing the Diagnostics Server on a SAN storage device the SAN must
have adequate read and write speed comparable with a mid to high end
drive (see “Scalability Information” on page 34).

Note: The requirements in the tables are guidelines that are based on tests
run with probes monitoring applications with an average number of server
requests and server request depths. The actual system requirements that you
need and the actual number of supported probes are affected by several
characteristics of the monitored environment including number of server
requests, server request depth (methods in the call profile), number of
trended methods, and number of out-bound calls. The type of server request
also affects the requirements. For example, Web services require more
resources and trimming does not apply to them.

The following table lists the desired system requirements for the host of a
Diagnostics server (typically a mediator server) receiving data from Java
probes.

Platform Item
Up to 50 Java
Probes

Up to 100 Java
Probes

Up to 200 Java
Probes

Windows CPU 2x 2.4 GHz 2x 2.8 GHz 2x 3.4 GHz

Windows Memory 4 GB 4 GB 4 GB

Solaris CPU 2x Ultra Sparc 3 2x Ultra Sparc 4 2x Ultra Sparc 4

Solaris RAM 4 GB 4 GB 4 GB

Linux CPU 2x 2.0 GHz 2x 2.4 GHz 2x 2.8 GHz

Linux Memory 2 GB 4 GB 4 GB

All Heap Size 512 M 750 M 1280 M

Chapter 1 • Preparing to Install HP Diagnostics

34

The following table lists the desired system requirements for the host of a
Diagnostics server (typically a mediator server) receiving data from .NET
probes.

Scalability Information

The following scalability numbers are derived from the following reference
hardware configuration:

All Disk 4 GB per probe

Notes regarding the test environment

➤ Call profile (depth of method calls) for each Server Request: 5

➤ Number of unique Server Requests per probe: 23

Platform Item
Up to 10 .NET
Probes

Up to 20 .NET
Probes

Up to 50 .NET
Probes

Windows CPU 1x 1.0 GHz 1x 2.0 GHz 2x 2.4 GHz

Windows Memory 768 MB 1 GB 3 GB

Solaris CPU 1x Ultra Sparc 2 2x Ultra Sparc 2 2x Ultra Sparc 3

Solaris RAM 1 GB 1.5 GB 3 GB

Linux CPU 1x 1.0 GHz 1x 2.0 GHz 2x 2.4 GHz

Linux Memory 768 MB 1 GB 3 GB

All Heap Size 350 M 700 M 1400 M

All Disk 3 GB per probe

Platform: Windows

Operating System: Windows Server 2008, 64-bit

CPU: Intel Xeon 5160 @ 3.00Ghz (quad core)

Platform Item
Up to 50 Java
Probes

Up to 100 Java
Probes

Up to 200 Java
Probes

Chapter 1 • Preparing to Install HP Diagnostics

35

Note: A 64-bit OS and JVM is recommended for use with Diagnostics for
optimal performance.

Scalability numbers for the previously referenced hardware.

See also “Configuring the Diagnostics Server for a Large Installation” on
page 470.

Memory: 8 GB

Disk I/O: Smart Array P400i, 2SCSI drives in RAID 0 (136 GB)
[130 MB/S, sequential read and write]

Java Heap: 5.9 GB (-Xmx6096m); 64-bit JVM

Disk Space: 2-4 GB per probe (overall disk space can be adjusted by
changing retention intervals)

Network: 1 Gbps

Up to 100 Java probes: 100 Server Requests per probe, 78 methods per
Call Profile pulled every 45s (default)

Up to 400 Java probes: 25 Server Requests per probe, 78 methods per Call
Profile pulled every 45s (default)

Up to 150 Java probes: 150 Server Requests per probe, 25 methods per
Call Profile pulled every 240s

Up to 230 Java probes: 100 Server Requests per probe, 25 methods per
Call Profile pulled every 240s

Up to 40 Java probes: 75 Web Service Operations, 10 unique consumers
per Web Service Operation, 25 methods per Call
Profile pulled every 45s (default)

Note, this load configuration requires 7 GB disk
space per probe.

Chapter 1 • Preparing to Install HP Diagnostics

36

Notes:

➤ For environments with many probes, better performance can be achieved
by having two or more instances of the Diagnostics server and
distributing the probes among each server instance.

➤ For configuration considerations related to the Diagnostics performance
data that is stored on the host for the Diagnostics commander server, see
“Pre-Installation Data Management Considerations” on page 882.

➤ For information on how to optimize a Diagnostics server to handle more
probes, see “Optimizing the Diagnostics Server in Production to Handle
More Probes” on page 496.

Requirements for the Diagnostics Java Agent Host

The overhead that the Diagnostics Java Agent imposes on the system being
monitored is extremely low. The following are the recommendations for
memory and disk space that support the agent’s processing:

Platform: All Platforms

Memory: 50MB Additional RAM

Free Hard Disk Space: 200MB free disk space is required for the intial
Java probe install. More space might be required
during runtime due to the creation of logfiles and
classmap. For large applications, it is
recommended to have an additional 200MB
available per probe for logfiles and classmap data.

Chapter 1 • Preparing to Install HP Diagnostics

37

Note: The additional memory must be allocated to the max heap for the
JVM by adding –Xmx???m to the java settings in the application’s startup
script.

Adjusting heap size. For information on setting the max heap for the Java
Agent, see “Adjusting the Heap Size for the Java Agent in the Application
Server” on page 237.

Adjusting permgen size. Typically any increase in permgen size as a result of
adding the Diagnostics agent is small. However, in some cases the
application, without the agent, uses almost all its permgen limit. In such
cases you will need to adjust it. For example you could increase it by the
existing limit * 1.05 +5MB. To adjust permgen for Hotspot JVM, use
-XX:MaxPermSize option, for example: -XX:MaxPermSize=240m.

Requirements for the Host of the Diagnostics Java Profiler
User Interface
The user interface for the Diagnostics Profiler for Java is presented in a web
browser using a Java applet that requires JRE 1.6 or above to be installed on
the client system that accesses the UI. This machine must be able to access
the Diagnostics Profiler URL: http://<probe_host>:<probeport>/profiler. By
default, the probes are assigned to the first available port beginning at
35000. Supported browsers include Microsoft Internet Explorer 7, 8, 9 and
Mozilla Firefox 3.5, 3.6, 5, 6. For the most recent information on supported
browsers, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Chapter 1 • Preparing to Install HP Diagnostics

38

Requirements for the Diagnostics .NET Agent Host
The overhead that the .NET agent imposes on the system being monitored is
extremely low. The following are the recommendations for memory and
disk space that support the agent’s processing:

Important: If you must support .NET Framework 1.1, use an earlier version
of the .NET Agent (8.x) which will continue to be supported and updated via
patches.

WCF Requirements and Limitations: Monitoring .NET Windows
Communication Foundation (WCF) services requires .NET Framework 3.0
SP1 or greater. Only the following bindings are supported:

➤ BasicHttpBinding

➤ WSHttpBinding

➤ NetTcpBinding

Platform All Supported Platforms

Memory 60 MB Additional RAM

Free Hard Disk Space 200 MB Additional Space

.NET Framework 2.0 or later

Chapter 1 • Preparing to Install HP Diagnostics

39

If your application uses a binding that is not supported, the .NET probe only
creates a generic server request for each WCF method. It will not be a web
Service and there will be no XVM correlation.

Requirements for the Host of the Diagnostics .NET
Profiler User Interface
The user interface for the .NET Diagnostics Profiler is presented using
DHTML/XML/XSLT/JScript technology that requires Internet Explorer 7 or
later. The machine that is to be used to present the UI must be able to access
the .NET Diagnostics Profiler URL: http://<probehost>:<probeport>/profiler.
The probes are assigned to the first available port within the range defined
during the Probe installation. The default port range is 35000 - 35100.

Requirements for the Diagnostics Collector Host
The Collector can be installed on supported systems that can interact with
the host machines of the SAP NetWeaver–ABAP, Oracle, SQL Server, IBM
WebSphere MQ, TIBCO EMS, Software AG webMethods Broker or VMware
application from which it is collecting data.

350MB free disk space is required for the Collector install. More space might
be required during runtime due to the creation of logfiles or for large
environments.

For the most recent information on supported environments for the
Diagnostics components, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Requirements for the Python Agent
See “Installing and Setting Up Python Agents” on page 295.

Chapter 1 • Preparing to Install HP Diagnostics

40

Information Required for Installation

Before installing the Diagnostics components, you should carefully plan the
configuration of the Diagnostics components and the machines that host
them. You should also consider the location of the component hosts within
your network topography.

The tables in the following sections can help you gather the information
required during the installation of the Diagnostics components.

Note: When you are installing Business Service Management with
Diagnostics, when entering the names for the hosts of the Diagnostics
components it is strongly recommended that you use fully qualified host
names; that is, the machine name and the domain name.

Diagnostics Server

Information Required Description

Will you have a commander server
and one or more mediators?

During planning for the Diagnostics
deployment this will be determined
based on the size and complexity of
the monitored environment.

Chapter 1 • Preparing to Install HP Diagnostics

41

For a Diagnostics commander server,
the location of the HP Diagnostics
license that was generated for the
machine that will host the server

Contact your HP Software support
person to request a license and place
it in a folder where it can be accessed
from the Diagnostics Server installer.

For a Diagnostics mediator server,
the URL for the Diagnostics
commander server

After the Diagnostics commander
server has been installed, the URL is
available to open Diagnostics views is
available.

Will Diagnostics by used in a SaaS
environment?

If you are deploying Diagnostics in a
SaaS (HP hosted) environment
different installer options will be
presented.

Will Diagnostics be integrated in a
Business Service Management
environment?

If you are deploying Diagnostics into
a Business Service Management
environment you’ll need to select
this option in the installer.

Information Required Description

Chapter 1 • Preparing to Install HP Diagnostics

42

Java Agent

➤ HP Software Product and Diagnostics Server Information

Information Required Where to find it Value

Mode for installing the
agent

Choose according to
product license.

➤ Profiler only (no
connection to server)

➤ Used only with
LoadRunner/
Performance Center
(AD license)

➤ Enterprise mode (AM
license) for use with
one of the following
or both:

➤ Diagnostics

➤ TransactionVision

Diagnostics Server Name Fully qualified host
name or IP address of the
host of the Diagnostics
Server.

This is not required for
using the Java
Diagnostics Profiler in a
standalone mode.

If there is only one
Diagnostics Server in the
deployment where the
agent will run, this is the
Diagnostics commander
server.

In a distributed
environment with a
commander server and
mediator servers, this is
the Diagnostics mediator
server that is to receive
events from the agent.

Diagnostics Server Port Use the default 2006 or
the port you configure
for accessing Diagnostics.

This is not required for
using the Java
Diagnostics Profiler in a
standalone mode.

Default value: 2006

Chapter 1 • Preparing to Install HP Diagnostics

43

➤ Instrumented Application Server and Agent Information

Information Required Where to find it Value

Java agent name A unique string;
Created by user.

The agent name is
assigned as the default
probe entity name.

The name of the agent
should indicate the
application you plan to
monitor and the type of
probe instrumentation,
to help you distinguish
between the different
applications and types
of probes.

There can be multiple
probes using a single
Java Agent
configuration. In this
case you can later
configure unique probe
names for each
monitored application.

For example:
WebLogic_MedRec_java

Java agent group This is user-defined at
the time that the agent
is installed.

The agent group name
you enter is used as the
probe group name.

Probe groups are logical
groupings of probes
that report to the same
Diagnostics Server.

Default value:

Default

Type of application server
that will be instrumented
for monitoring

The host system
administrator.

Chapter 1 • Preparing to Install HP Diagnostics

44

Application Server
configuration properties

The host system
administrator.

The details vary
according to the
application server you
are monitoring.

Location of the JRE
executable

The host system
administrator.

Depends on the type of
application server you
plan to monitor. See
“Preparing Application
Servers for Monitoring
with the Java Agent” on
page 161.

Information Required Where to find it Value

Chapter 1 • Preparing to Install HP Diagnostics

45

.NET Agent

➤ Diagnostics Server Information

Information Required Where to find it Value

Mode for installing the
agent

Choose according to
product license.

➤ Profiler only (no
connection to server)

➤ Used only with
LoadRunner/
Performance Center
(AD license)

➤ Enterprise mode (AM
license) for use with
one of the following
or both:

➤ Diagnostics

➤ TransactionVision

Diagnostics Server Name Fully qualified host name
or IP address of the host
of the Diagnostics Server.

This is not required for
using the .NET
Diagnostics Profiler in a
standalone mode.

If there is only one
Diagnostics Server in the
deployment where the
agent will run, this is the
Diagnostics commander
server.

In a distributed
environment with a
commander server and
mediator servers, this is
the Diagnostics mediator
server that is to receive
the events from the
agent.

Diagnostics Server Port Use the default 2006 or
the port you configure
for accessing Diagnostics.

This is not required for
using the.NET
Diagnostics Profiler in a
standalone mode.

Default value: 2612

Chapter 1 • Preparing to Install HP Diagnostics

46

➤ Agent and Port Information

Information Required Where to find it Value

agent group This is user defined at the
time that the agent is
installed.

The agent group name
you enter is used as the
probe group name

Probe groups are logical
groupings of probes that
report to the same
Diagnostics Server.

Default value:

Default

Web Port Min System Administrator.

The lowest port number
in a range of ports on the
agent system that can be
assigned to the probe.

Default value: 35000

Web Port Max System Administrator.

The highest port number
in a range of ports on the
agent system that can be
assigned to the probe.

Default value: 35100

Chapter 1 • Preparing to Install HP Diagnostics

47

Pre-installation Considerations

Note: Before you install any of the Diagnostics components on a Windows
machine, make sure that the Services window, accessible from
Administrative Tools, is not open.

Diagnostics Server

➤ The performance metrics for HP Diagnostics cannot be displayed until the
Diagnostics commander server has been licensed with a valid license. For
more information on obtaining a license and other licensing issues, see
Chapter 3, “Licensing HP Diagnostics.”

Note: For optimal display of the Diagnostics views, your screen resolution
should be at least 1024x768.

Diagnostics Java Agent

➤ The Java Agent must be installed on the same system as the Java application
under test.

➤ The Diagnostics Profiler for Java operates in an unlicensed mode with load
restrictions until it is able to connect to a Diagnostics commander server
that is properly licensed. For more information on obtaining a license and
other licensing issues, see Chapter 3, “Licensing HP Diagnostics.”

➤ Diagnostics does not support localization of agent names.

Chapter 1 • Preparing to Install HP Diagnostics

48

Diagnostics .NET Agent

➤ The .NET Agent must be installed on the same system as the .NET
application under test.

➤ The Diagnostics Profiler for .NET operates in an unlicensed mode with load
restrictions until it is able to connect to a Diagnostics commander server
that is properly licensed. For more information on obtaining a license and
other licensing issues, see Chapter 3, “Licensing HP Diagnostics.”

➤ Diagnostics does not support localization of agent names.

Diagnostics Python Agent

➤ The Python Agent must be installed on the same system as the Python
application under test.

LoadRunner and Performance Center Host Machines

➤ If LoadRunner is already installed, make sure that the Controller and main
LoadRunner window are closed before you install the LoadRunner
Diagnostics Add-in.

➤ The LoadRunner Diagnostics Add-in is not required for Performance Center.

➤ The time and time-zone settings of the host machines for the Diagnostics
components must be consistent. You will encounter time-difference
problems if the time is not properly set.

Recommended Order of Installation

Careful planning and preparation for installing the components of HP
Diagnostics can help you to avoid complications and errors, and enable you
to complete the installation and configuration steps quickly.

Note: The following order of the installation is recommended for the
products and components. Deviating from it could increase the complexity
of the installation process and produce unpredictable results.

Chapter 1 • Preparing to Install HP Diagnostics

49

Before you start, review the following information to get an overview of the
entire installation and configuration process.

Recommended order of installation:

 1 Check the system requirements and installation considerations.

See “System Requirements for the Diagnostics Components” on page 31.

 2 Install the Diagnostics Server.

For more information, see Chapter 2, “Installing the Diagnostics Server” and
Chapter 3, “Licensing HP Diagnostics.”

 3 Install the Diagnostics Agents and Collectors.

For a Java environment, see Chapter 5, “Installing Java Agents.”

For a .NET environment, see Chapter 8, “Installing .NET Agents.”

For a Python environment, see Chapter 9, “Installing and Setting Up Python
Agents”.

For Oracle Database, SAP NetWeaver-ABAP, SQL Server Database, VMware
vCenter or VMware ESX servers, WebSphere MQ, TIBCO EMS and Software
AG webMethods Broker environments, see Chapter 4, “Installing
Diagnostics Collectors.”

 4 For Java agents, instrument the application servers for monitoring by
Diagnostics (this results in agent instances which are represented as probe
entities in Diagnostics).

For more information, see Chapter 6, “Preparing Application Servers for
Monitoring with the Java Agent.”

For more information, see Chapter 7, “Preparing Application Servers for
Client Monitoring with the Java Agent”.

 5 Customize the instrumentation and control the data collection settings
using a number of different configuration files in the agent installation
folder.

For more information, see the sections on “Custom Instrumentation for
Monitoring Java and .NET Applications” and “Advanced Configuration of
the Diagnostics Server and the Java and .NET Agents”

Chapter 1 • Preparing to Install HP Diagnostics

50

 6 If HP Diagnostics is integrated with LoadRunner, Performance Center, or
Business Service Management, each of these products requires
configuration in order to use HP Diagnostics.

For Business Service Management, see Chapter 22, “Setting Up the
Integration Between Business Service Management and Diagnostics.”

For LoadRunner integration, install the LoadRunner Diagnostics Add-in (see
Chapter 23, “Installing the LoadRunner Diagnostics Add-in”) and set up
LoadRunner to use Diagnostics (see Chapter 24, “Setting Up HP LoadRunner
and HP Diagnostics Integration”).

For Performance Center, see Chapter 25, “Setting Up Performance Center to
Use Diagnostics.”

Licensing HP Diagnostics

To be able to see the metrics for applications in the Diagnostics views, you
must obtain a valid license for the Diagnostics commander server. For more
information on obtaining a license and other licensing issues, see Chapter 3,
“Licensing HP Diagnostics.”

Upgrading from Earlier Versions of Diagnostics

If you are installing HP Diagnostics in an environment where a previous
version of the product was installed, or where other HP Software products
need to be upgraded so that the features of Diagnostics can be accessed,
follow the instructions in Appendix G, “Upgrade and Patch Install
Instructions.” These instructions guide you to the appropriate instructions
for upgrading your current HP Software products and the Diagnostics
components.

Part II

Installation of the Diagnostics Server
and Collectors

This section includes:

➤ Installing the Diagnostics Server

➤ Licensing HP Diagnostics

➤ Installing Diagnostics Collectors

52

53

2
Installing the Diagnostics Server

This section explains how to install the Diagnostics Server on Windows and
UNIX machines.

This chapter includes:

 ➤ Installing Diagnostics Servers on page 54

 ➤ Verifying the Diagnostics Server Installation on page 67

 ➤ Silent Installation of the Diagnostics Server on page 68

 ➤ Starting and Stopping the Diagnostics Server on page 70

 ➤ Licensing Your Diagnostics Software on page 72

 ➤ More Information on Configuring Diagnostics Servers on page 72

 ➤ Determining the Version of the Diagnostics Server on page 72

 ➤ Uninstalling the Diagnostics Server on page 73

 ➤ Manual Installation of OM Agent and IAPA Components on page 74

 ➤ Manual Uninstall of OM Agent and IAPA Components on page 76

Chapter 2 • Installing the Diagnostics Server

54

Installing Diagnostics Servers

This chapter provides detailed instructions for installing the Diagnostics
Server and applies to:

➤ A Windows environment

➤ Most UNIX environments using a graphical installer. You can also install
on UNIX using the console mode command line interface.

For the most recent information on supported platforms, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp. Contact HP
Support for installation assistance for additional platforms not listed in the
support matrix.

Note: If an earlier version of the Diagnostics Server is installed on your
machine, see Appendix G, “Upgrade and Patch Install Instructions.”

Root Access Requirement. If the Diagnostics commander server will be
integrated with Business Service Management 9.00 or later, root access is
required during the Diagnostics Server installation. Root access is required
for the installation of the OM Agent and IAPA component.

If you need to install the Diagnostics Server without root access you can
chose to not install the OM Agent and the IAPA component and install
them later manually. When you see the dialog box: OM Agent and IAPA
component installations leave the box unchecked and install later (see
“Manual Installation of OM Agent and IAPA Components” on page 74).

Root privileges are also required on Solaris and Linux systems to setup the
server to auto-start at boot.

Chapter 2 • Installing the Diagnostics Server

55

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics Java Agents are installed in your company’s IT environment and
the Diagnostics Commander Server and Mediator Servers are installed by HP
on a SaaS system on-premises at HP. So for customers using Diagnostics in a
SaaS environment you would typically not install any Diagnostics servers on
your company’s systems and can ignore this chapter. In a SaaS deployment,
customers would just be installing Java Agents that connect to the Servers
set up by HP SaaS administrators on HP premises. Contact your SaaS
administrator for more information.

This section includes:

➤ “Launching the Diagnostics Server Installer” on page 55

➤ “Running the Installation” on page 58

Launching the Diagnostics Server Installer
Depending on your environment, launch either the Windows installer or
the UNIX installer. See also “Silent Installation of the Diagnostics Server” on
page 68.

Note: Allow approximately 400MB of free space in the temp directory.

To access the Windows installer:

 1 From the Diagnostics DVD (Autorun.exe) the installation menu page is
displayed. From the menu, select Diagnostics Server 32-bit to install the
32-bit Windows version of the Diagnostics Server. And select Diagnostics
Server 64-bit to install the 64-bit version of the Diagnostics Server.

 2 Or you can run the appropriate installer directly by double-clicking the
executable file HPDiagServer_<release number>_win32.exe (32-bit) or
HPDiagServer_<release number>_win64.exe (64-bit that runs with a 64-bit
JVM) in the Diagnostics_Servers directory.

Continue with “Running the Installation” on page 58.

Chapter 2 • Installing the Diagnostics Server

56

To access the UNIX installer:

 1 From the Diagnostics installation location access the Diagnostics_Servers
directory. Copy the appropriate installer HPDiagServer_<release
number>_<platform>.bin to the machine where the Diagnostics Server is to
be installed.

 2 Change the mode of the installer file to make it executable.

 3 Run the installer.

➤ To run the installer in the graphical mode, enter the installer
HPDiagServer_<release number>_<platform>.bin filename at the UNIX
command prompt; for example:

➤ To run the installer in console mode enter the installer
HPDiagServer_<release number>_<platform>.bin filename with the
-console option, at the UNIX command prompt; for example:

Continue with “Running the Installation” on page 58.

To download the installer from the HP Software Download Center:

 1 Go to the HP Software web site’s Software Download Center.

 2 Locate the Diagnostics information and choose the appropriate link for
downloading the Diagnostics Server software.

 3 Follow the download instructions on the web site.

Continue with “Running the Installation” on page 58.

./HPDiagServer_9.00_linux.bin

./HPDiagServer_9.00_linux.bin -console

Chapter 2 • Installing the Diagnostics Server

57

To download the installer from the Business Service Management
Diagnostics downloads page:

 1 In Business Service Management select Admin > Diagnostics from the top
menu and click the Downloads tab.

 2 On the Downloads page, click the link to download the appropriate
Diagnostics Server installer.

Note: The Java Agent installers are available in Business Service
Management only if they are placed into a directory that Business Service
Management can access. You can enable this during the installation of the
Diagnostic Server, or you can copy the server installers manually from the
installation disk to the required location.

Continue with “Running the Installation” on page 58

Chapter 2 • Installing the Diagnostics Server

58

Running the Installation
An overview of the Diagnostics Server installation steps is shown in the
diagram below; refer to the rest of this section for details on each step.

Note that additional steps are required by the HP SaaS administrator for a
SaaS deployment of servers on HP premises (HP internal documentation).

Chapter 2 • Installing the Diagnostics Server

59

Important: If there is a pre-existing installation of the Diagnostics Server on
the host machine, you must follow the instructions for upgrading the server
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

After you launch the installer, the software license agreement opens.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

To begin the installation and select the installation location and mode:

 1 Accept the software license agreement.

The software license agreement is displayed.

Read the agreement and accept the terms of the agreement.

Select Next to continue.

Note: For the UNIX console mode installer, you can press ENTER as you read
to move to the next page of text, or type q to jump to the end of the license
agreement.

 2 Specify the location where the Diagnostics Server is to be installed.

Accept the default installation directory or type the path to a different
location. In the Windows installer (or UNIX graphical mode installer), click
Browse to navigate to another directory.

Select Next to continue.

Chapter 2 • Installing the Diagnostics Server

60

Note: In the UNIX console mode installer, press 1 to select Next, 2 for
Previous, 3 to Cancel, or 4 to Re-display the screen.

 3 Indicate the Diagnostics Server mode for the Diagnostics Server that you
are installing.

The Diagnostics deployment you are setting up can consist of one or many
Diagnostics Servers. If there is only one Diagnostics Server in your
deployment, it is installed in Commander mode and can perform both
commander and mediator roles. When there is more than one Diagnostics
Server in a deployment, one is configured in Commander mode and all the
rest in Mediator mode reporting to the Commander Server.

➤ If this is the only Diagnostics Server in your deployment, select
Commander Mode.

➤ If there is more than one Diagnostics Server in your deployment, and the
one you are currently installing is to be configured in Commander mode,
select Commander Mode. Otherwise, select Mediator Mode.

Ignore the This Server is to be used in an HP Software-as-a-Service (SaaS)
environment checkbox as this is to be used by an HP SaaS administrator
installing a Diagnostics Server (either Commander or Mediator) on HP
premises.

At this stage, the installation differs according to whether you are installing
the Diagnostics Server in Commander or Mediator mode.

➤ To install the Diagnostics commander server, continue with “Installing the
Diagnostics Server in Commander Mode” on page 61.

➤ To install a Diagnostics mediator server, continue with “Installing the
Diagnostics Server in Mediator Mode” on page 65.

Chapter 2 • Installing the Diagnostics Server

61

Installing the Diagnostics Server in Commander Mode

If you are installing the Diagnostics Server in Commander Mode, continue
as follows:

 4 Select a time synchronization method.

For diagnostics data to be correlated properly, all the components in the
Diagnostics deployment must be time-synchronized. Select one of the
following time synchronization methods:

➤ Synchronize with an NTP server. This option applies only if the
Diagnostics Server can access an NTP Server outside the firewall. This is
the default method.

➤ Synchronize with the registered Business Service Management server. If
the Diagnostics Server is to work in a Business Service Management
environment, select this option to synchronize with the Business Service
Management server.

➤ Synchronize with system time. Select this option if the Diagnostics Server
is to work in an environment other than Business Service Management
and there is no access to an NTP server.

Select Next to continue.

 5 Select optional configurations for the Diagnostics Server.

This Server is to be used with HP Business Service Management (BSM).
Check this box if the Diagnostics commander server will be integrated with
Business Service Management.

If integrating with Business Service Management 9.00 or later, checking this
option means additional OM agent and IAPA components are installed for
use in sending Health Indicators to Business Service Management. IAPA is
the Integration Adapter Policy Activation component of the OMi agent that
Diagnostics uses to communicate with Business Service Management.

You will be prompted towards the end of this Diagnostics Commander
Server installation to confirm if you want to install these components.

Chapter 2 • Installing the Diagnostics Server

62

See “Setting Up the Integration Between Business Service Management and
Diagnostics” on page 737 for additional post install configuration required
to integrate with BSM. Also, if you need to set up reporting to an OM Server
as well as BSM Servers see “Diagnostics and OM Server Co-existence” on
page 756 for instructions.

Select the option that applies to this Diagnostics Server, and then select
Next to continue.

If you selected the HP Business Service Management option then an
additional dialog is displayed where you Provide the path to the directory
on the HP Diagnostics Installation DVD where the Diagnostics installers are
located.

Note: You must have the Diagnostics installation disk available for this step.

To be able to download the Diagnostics Agent and Collector installers from
the Diagnostics Configuration page in Business Service Management, you
must specify the path to the directory on the Diagnostics installation disk
where these installers are located (\Diagnostics_Installers).

Enter the path to the Diagnostics installers on the Diagnostics installation
disk, and select Next to continue.

The installers are automatically copied to the Diagnostics Server installation
directory, which Business Service Management can access. The
\Diagnostics_Installers directory is approximately 1.85 GB, so the copy
operation can take several minutes to complete.

Note: You can skip this step and always access the Agent and Collector
installers directly from the Diagnostics installation disk.
Alternatively, you can perform this step manually at a later stage, by
copying the Agent and Collector installers from the Diagnostics installation
disk (/Diagnostics_Installers) to the Diagnostics Server installation directory
(<diagnostics_server_install_dir>/html/opal/downloads) for Business
Service Management to access.

Chapter 2 • Installing the Diagnostics Server

63

 6 Indicate the SMTP setting for email alerts (optional).

These SMTP settings are optional during the installation. You configure
SMTP settings in order to have email alerts sent when there are problems
with the Diagnostics servers. If you want to configure this later (or modify
these settings later) you can skip this dialog and configure these setting
using the Diagnostics Server’s alert properties page (see the HP Diagnostics
User’s Guide section on Alerts for more information).

➤ SMTP Server. Host name or IP address of the SMTP server.

➤ SMTP Port. Port number for the SMTP server.

➤ From Email Address. The email address to send the email messages from.

➤ Admin Alert Email Addresses. If you want the Diagnostics administrator
to receive email alerts when there are problems with this Diagnostics
server then specify a comma-separated list of email addresses for the
administrator. Alerts can be issued for problems such as probes
generating large number of server requests to the server, disk space issues
on the server or from the Commander Server - license checking alerts.

The thresholds that determine these types of alerts for the Diagnostics
administrator are factory configured in the server’s server.properties file.
For more details see the comments in this file for the various watchdog
properties. Also see “Disk Space Issues on the Server” on page 882.

 7 Review the pre-installation summary information.

The installation settings you selected are displayed. Review the information
for accuracy.

Note: The estimated total size of the Diagnostics Server in Commander
mode installation does not include the size of the Agent installers, if they
were made available for Business Service Management.

You can change your settings by going back to previous installation steps.
For Windows, click Back. For UNIX, select Previous.

To start the installation of the Diagnostics Server, select Next.

Chapter 2 • Installing the Diagnostics Server

64

 8 Installation begins.

The server installation is started. When the installation is complete you will
see the post-installation summary information or, if you selected integration
with Business Service Management in step 5a above, an additional dialog is
displayed.

Check the post-installation summary and select Finish to exit the
installation or continue on to the next step if integrating with BSM.

 9 OM Agent and IAPA component installations checkbox.

If you selected that the Diagnostics commander server was to be used with
Business Service Management you will see an additional dialog box for OM
Agent and IAPA component installations. Check the box to install these
components. Note you can leave the box unchecked and install these
components later manually. See “Manual Installation of OM Agent and
IAPA Components” on page 74 for details.

When integrating Diagnostics with Business Service Management 9.00 or
later, the OM Agent and IAPA components must be installed on the
Diagnostics Commander Server. These components are used by Diagnostics
to send Health Indicator status events to the Business Service Management
Gateway Server. If you are integrating with an earlier version of Business
Availability Center you do not need to install these components.

Errors are reported in the <Diagnostics_install_dir>/server/log.txt file. See
“OM Agent Troubleshooting” on page 919 if you have any problems with
the installation.

Root access is required for the installation of the OM Agent and IAPA
component. If you need to install the Diagnostics Server without root access
you can chose to not install these two components and install them later
manually.

If the OM agent is already installed on the system then these installers will
update the OM agent components if they are an older version.

On Windows systems these components take a while to install.

You can leave the box unchecked to skip the installation of the OM Agent
and IAPA component and them install later.

Chapter 2 • Installing the Diagnostics Server

65

The installer bits are always laid down whether you check this box or not -
so you can install the components later when needed from
<Diagnostics_install_dir>/server/setup/ovo-agent and /ovoiapa. See
“Manual Installation of OM Agent and IAPA Components” on page 74 for
details.

Additional configuration steps are required in Business Service Management
after installing these components. See “Registering the Diagnostics Server in
Business Service Management” on page 740 for more information.

When the installation is complete, review the post-installation summary
information to make sure that the installation completed successfully.

Select Finish to exit the installation.

Note: On Windows machines, the Diagnostics Server attempts to start
automatically. The Diagnostics Server does not start if any other
applications are using the default Diagnostics Server ports. For instructions
on starting the Diagnostics Server manually, see “Starting and Stopping the
Diagnostics Server” on page 70.

Installing the Diagnostics Server in Mediator Mode

If you are installing the Diagnostics mediator server, continue the
installation as follows.

If you are installing the Diagnostics Server in mediator mode, continue as
follows:

 4 Provide the location of the Diagnostics Server in Commander mode.

Provide the information that enables the Diagnostics mediator server to
connect to the Diagnostics commander server.

➤ Enter the host name or IP address for the Diagnostics commander server.

➤ Enter the port for the Diagnostics commander server.

Chapter 2 • Installing the Diagnostics Server

66

The default port for the Diagnostics commander server is 2006. If you
changed the port since the Diagnostics Server was installed, specify that
port number here instead of the default. For information on changing
the Diagnostics Server port, see “Changing the Default Diagnostics Server
Port” on page 476.

➤ To allow the installer to check the connectivity to the host and port that
you specified, select Check the Connectivity to the Diagnostics Server.

If you do not want to check for connectivity problems at this stage, clear the
Check the connectivity to the Diagnostics Server option so that the
installation can proceed.

Select Next to continue.

If you instructed the installer to perform the test for connectivity, it tests the
connectivity at this point. If there are negative results, it reports these before
proceeding with the next installation step.

 5 Indicate the SMTP setting for email alerts (optional).

These SMTP settings are optional during the installation. You configure
SMTP settings in order to have email alerts sent when there are problems
with the Diagnostics servers. If you want to configure this later (or modify
these settings later) you can skip this dialog and configure these setting
using the Diagnostics Server’s alert properties page (see the HP Diagnostics
User’s Guide section on Alerts for more information).

➤ SMTP Server. Host name or IP address of the SMTP server.

➤ SMTP Port. Port number for the SMTP server.

➤ From Email Address. The email address to send the email messages from.

➤ Admin Alert Email Addresses. If you want the Diagnostics administrator
to receive email alerts when there are problems with this Diagnostics
server then specify a comma-separated list of email addresses for the
administrator. Alerts can be issued for problems such as probes
generating large number of server requests to the server, disk space issues
on the server or from the Commander Server - license checking alerts.

The thresholds that determine these types of alerts for the Diagnostics
administrator are factory configured in the server’s server.properties file.
For more details see the comments in this file for the various watchdog
properties. Also see “Disk Space Issues on the Server” on page 882.

Chapter 2 • Installing the Diagnostics Server

67

 6 Review the pre-installation summary information.

The installation settings you selected are displayed. Review the information
for accuracy.

You can change your settings by going back to previous installation steps.
For Windows, click Back. For UNIX, select Previous.

To start the installation of the Diagnostics Server, select Next.

 7 Installation begins.

When the installation is complete, review the post-installation summary
information to make sure that the installation completed successfully.

Select Finish to exit the installation.

Note: On Windows machines, the Diagnostics Server attempts to start
automatically. The Diagnostics Server does not start if any other
applications are using the default Diagnostics Server ports. For instructions
on starting the Diagnostics Server manually, see “Starting and Stopping the
Diagnostics Server” on page 70.

Verifying the Diagnostics Server Installation

To verify that a Diagnostics Server was installed correctly you can check the
<Diagnostics_server_install_dir>/log/server.log file for errors and warnings.

You can also launch the Diagnostics Enterprise UI to verify that the server is
running. Go to http://<Diagnostics_commander_server>:2006/. For now
you can use the default user/password of admin/admin or the login you
were given if a different one has been set up for you. But note that as
Diagnostics is deployed within your enterprise the admin/admin default
login should be changed (see Appendix B, “User Authentication and
Authorization” when you are ready to configure users, roles, permissions
and authentication).

Chapter 2 • Installing the Diagnostics Server

68

Note that in order to see data from agents in the UI you will also need to
install and configure Diagnostics agent and/or collector software to collect
and report performance data to the server for display in the UI.

You can also check the System Health view to find information about the
Diagnostics servers and the machines that host them.

To access the System Views:

 1 Open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

 2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

 3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

 4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Silent Installation of the Diagnostics Server

A silent installation is performed automatically, without the need for user
interaction. In place of user input, the silent installation accepts input from
a response file for each install step.

For example, a system administrator who needs to deploy a component on
multiple machines can create a response file that contains all the
prerequisite configuration information, and then perform a silent
installation on multiple machines. This eliminates the need to provide any
manual input during the installation procedure.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Chapter 2 • Installing the Diagnostics Server

69

Important: With each new release of Diagnostics you should re-record the
Diagnostics Server silent install response files prior to performing silent
installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

To generate a response file:

➤ Perform a regular installation with the following command line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

This creates a response file that includes all the information submitted
during the installation.

To perform a silent installation:

➤ Perform a silent installation using the relevant response file.

Perform the silent installation with the -silent command line option as
follows. Note that for Windows installers the options must be preceded with
-a. For example: HPDiagServer_9.20_win32.exe -a -silent -options myfile.

When performing a silent installation you can specify the following two
additional options after the response file name.

➤ You can create a log file by specifying the -is:log <logfilepath> option.

➤ You can change the temp directory to a user-specified directory by
specifying the -is:tempdir <tempDirPath> option.

<installer> -options-record <responseFileName>

<installer> -silent -options <responseFileName>

Chapter 2 • Installing the Diagnostics Server

70

Starting and Stopping the Diagnostics Server

Diagnostics servers are started automatically. But if you need to manually
start or stop a Diagnostics server follow the instructions below.

Instructions for a Windows Machine
To start the Diagnostics Server on a Windows machine:

Select Start > All Programs > HP Diagnostics Server >
Start HP Diagnostics Server.

To stop the Diagnostics Server on a Windows machine:

Select Start > All Programs > HP Diagnostics Server >
Stop HP Diagnostics Server.

Instructions for Solaris or Linux Machines (using the
Nanny)
The nanny is a process that runs as a daemon to ensure that the Diagnostics
Server is always running. The nanny also starts a LoadRunner agent to allow
offline data collation for LoadRunner or Performance Center.

The following procedures start and stop the Diagnostics Server using the
nanny.

But note that, the m_daemon_setup script does not configure the server to
restart automatically after a system boot. To support this the startup will
need to be integrated with the boot sequence or manually executed after
each system boot.

To start the Diagnostics Server on a Solaris or Linux machine:

 1 Make sure that the M_LROOT environment variable is defined as the root
directory of the Diagnostics Server nanny. For example, in ksh, you could
enter the following:

export M_LROOT=<diagnostics_server_install_dir>/nanny/<platform>

Chapter 2 • Installing the Diagnostics Server

71

In the example, <platform> is solaris, linux, or hpux. If the M_LROOT
environment variable is not defined as the root directory, the following
error is displayed:

 2 Change directories to $M_LROOT/bin.

 3 Run m_daemon_setup with the -install option; for example:

On some Linux systems, if you encounter an error saying that the
libstdc++.so.5 shared library is missing, you may need to install it. For
example, on CentOS, enter the following command to install the library:

yum install compat-libstdc++-33

To stop the Diagnostics Server on a UNIX or Linux machine:

 1 Change directories to $M_LROOT/bin.

 2 Run m_daemon_setup with the -remove option; for example:

Instructions for Solaris or Linux Machines (without using
the Nanny)
The following procedures start and stop the Diagnostics Server without
using the nanny.

To start the Diagnostics Server on a Solaris or Linux machine:

Run <diagnostics_server_install_dir>/bin/server.sh.

To stop the Diagnostics Server on a Solaris or Linux machine:

Terminate the process using a utility such as kill.

Warning : MDRV: cannot find lrun root directory . Please check your M_LROOT
Unable to format message id [-10791]
m_agent_daemon (is down)

cd $M_LROOT/bin
$./m_daemon_setup -install

cd $M_LROOT/bin
$./m_daemon_setup -remove

Chapter 2 • Installing the Diagnostics Server

72

Licensing Your Diagnostics Software

Your Diagnostics software comes with an instant-on license so you can start
using it right away. But eventually you will need to install your permanent
license key; which is done on the Diagnostics Commander Server. For
instructions on requesting a license file and uploading it, see Chapter 3,
“Licensing HP Diagnostics.”

More Information on Configuring Diagnostics Servers

The Diagnostics Server is installed with a default configuration that enables
it to begin working right away.

However you could encounter situations where changing the configuration
enables better Diagnostics Server performance or allows it to work in
unusual or complex situations. For information about advanced
configuration of the Diagnostics Servers, see Chapter 12, “Advanced
Diagnostics Server Configuration.”

See “Setting Up Integration with Other HP Software Products” on page 735
for additional post install configuration required to integrate with BSM.
Also, if you need to set up reporting to an OM Server as well as BSM Servers
see “Diagnostics and OM Server Co-existence” on page 756 for instructions.

Determining the Version of the Diagnostics Server

When you request support, you must know the version of the Diagnostics
Server. In the Diagnostics Enterprise UI the About dialog box shows you the
version of the Diagnostics server. Access the About dialog box by selecting
About HP Diagnostics from the Help menu in the Diagnostics Enterprise UI
toolbar.

Chapter 2 • Installing the Diagnostics Server

73

Uninstalling the Diagnostics Server

The following section contains instructions for uninstalling the Diagnostics
Server.

Important: Note that the OM agent is not uninstalled with the Diagnostics
Server in case it is used by other products. If you want to uninstall the OM
agent and IAPA components they must be uninstalled before you uninstall
the server because the uninstaller for these components is under the server
directory.

To uninstall the Diagnostics Server From a Windows Machine:

 1 Uninstall the Diagnostics Server by selecting Start > All Programs >
HP Diagnostics Server > Uninstall HP Diagnostics Server.

Alternatively, you can run uninstaller.exe, which is located in the
<diagnostics_server_install_dir>_uninst directory.

 2 During the uninstallation process, a message asks if you want to remove
specific files. Do the following:

➤ To completely uninstall the Diagnostics Server as well as any property
settings, click Yes or Yes to All.

➤ If you plan on reinstalling the Diagnostics Server, and want to keep the
custom property settings of the Diagnostics Server you are uninstalling,
back up the property files located in the etc directory to a new location.

If you backed up these files, click Yes or Yes to All.

If you did not back up these files, select No or No to All.

Chapter 2 • Installing the Diagnostics Server

74

To uninstall the Diagnostics Server From a UNIX Machine:

You can uninstall the Diagnostics Server in console mode or graphical
mode.

 1 Stop the Diagnostics Server. For instructions, see “Starting and Stopping the
Diagnostics Server” on page 70.

 2 Change the directory to the root directory.

 3 Enter the following at the UNIX command prompt:

➤ In console mode:

➤ In graphical mode:

Export your display before running in graphical mode.

export DISPLAY=<hostname>.0.0

Manual Installation of OM Agent and IAPA Components

The installer for the Diagnostics commander server includes installation of
the OM agent and IAPA components used for sending Health Indicator
status events to Business Service Management 9.00 or later. (If you are
integrating with an earlier version of Business Availability Center you do not
need to install these components).

The OM Agent and IAPA component installation on Windows can take a
while. You can choose to skip installing these components during the
Diagnostics Server installation and install the components manually on the
Diagnostics commander server at a later time as described below.

See “OM Agent Troubleshooting” on page 919 if you have any problems
with the installation.

<diagnostics_server_install_dir>/Server/_uninst/uninstaller.bin -console

<diagnostics_server_install_dir>/Server/_uninst/uninstaller.bin

Chapter 2 • Installing the Diagnostics Server

75

Note: The OM agent installer and IAPA installer bits are laid down during
the Diagnostics server installation whether it is a commander server or
mediating server and even if you elect to install these components later.

To manually install OM agent on a Windows systems:

 1 For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-agent/<platform> where <platform> is either win32 or win64.

 2 From the command line in this directory execute

cscript.exe opc_inst.vbs

To manually install OM agent on Linux or Solaris systems:

 1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-agent/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

 2 As root user, from the command line in this directory execute

./opc_inst

To manually install the IAPA component on Windows systems:

 1 For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-iapa/<platform> where <platform> is either win32 or win64.

 2 From the command line in the win32 directory execute

cscript.exe <install_dir>/server/bin/install_ovo_iapa.vbs /i
HPOprIAPA-09.00.111-WinNT4.0-release.msi <log file>

Where <log file> is a file where the results of the install are logged, path is
optional.

Or from the command line in the win64 directory execute

cscript.exe <install_dir>/server/bin/install_ovo_iapa.vbs /i
HPOprIAPA-09.00.111-Win5.2_64-release.msi <log file>

Where <log file> is a file where the results of the install are logged, path is
optional.

Chapter 2 • Installing the Diagnostics Server

76

To manually install the IAPA component on Linux or Solaris systems:

 1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-iapa/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

 2 As root user, from the command line in the Linux32 directory execute

rpm -ivh HPOprIAPA-09.00.111-Linux2.6-release.rpm

Or as root user, from the command line in the Linux32 directory execute

rpm -ivh HPOprIAPA-09.00.111-Linux2.6_64-release.rpm

Or as root user, from the command line in the solaris directory executes

pkgadd -a ./noask_pkgadd -d
HPOprIAPA-09.00.111-SunOS5.10-release.sparc HPOprIAPA

To complete the OM agent installation you must also do the following:

➤ To complete the OM agent configuration you must complete the steps to
register Diagnostics with Business Service Management. See “Registering the
Diagnostics Server in Business Service Management” on page 740 for details
relating to the OM agent.

Manual Uninstall of OM Agent and IAPA Components

The OM agent and IAPA components are not uninstalled when you
uninstall the Diagnostics Server. If you want to uninstall the OM agent and
IAPA components they must be uninstalled before you uninstall the server
because the uninstaller for these components is under the server directory.
And the components must be uninstalled in this order: first the IAPA
component and then the OM agent.

To manually uninstall the IAPA component on Windows systems:

 1 For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-iapa/<platform> where <platform> is either win32 or win64.

 2 From the command line in the win32 directory execute

cscript.exe <install_dir>\server\bin\install_ovo_iapa.vbs /x
HPOprIAPA-09.00.111-WinNT4.0-release.msi uninstall.log

Chapter 2 • Installing the Diagnostics Server

77

Or from the command line in the win64 directory execute

cscript.exe <install_dir>\server\bin\install_ovo_iapa.vbs /x
HPOprIAPA-09.00.111-Win5.2_64-release.msi uninstall.log

To manually uninstall the IAPA component on Linux or Solaris systems:

 1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-iapa/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

 2 As root user, from the command line in the Linux32 or Linux 64 directory
execute

rpm -e HPOprIAPA

Or as root user, from the command line in the solaris directory execute

pkgadd HPOprIAPA

To manually uninstall OM agent on a Windows systems:

 1 For Windows systems, change directory to <Diagnostics_install_dir>/server/
setup/ovo-agent/<platform> where <platform> is either win32 or win64.

 2 From the command line in this directory execute

cscript.exe opc_inst.vbs -r

To manually uninstall OM agent on Linux or Solaris systems:

 1 For Linux or Solaris systems, change directory to <Diagnostics_install_dir>/
server/setup/ovo-agent/<platform> where <platform> is either Linux32 or
Linux64 or solaris.

 2 As root user, from the command line in this directory execute

./opc_inst -r

Chapter 2 • Installing the Diagnostics Server

78

79

3
Licensing HP Diagnostics

HP Diagnostics requires you to upload valid licenses onto the Diagnostics
commander server.

This chapter includes:

 ➤ About HP Diagnostics Licensing on page 80

 ➤ Types of Licenses on page 80

 ➤ Licensing the Diagnostics Server in Commander Mode on page 81

 ➤ View License Information on page 84

 ➤ Licensing the Other Diagnostics Components on page 88

Chapter 3 • Licensing HP Diagnostics

80

About HP Diagnostics Licensing

Diagnostics is licensed using a file that you upload to the Diagnostics
commander server. You request this license file from your HP Software
Customer Support representative.

When the Diagnostics agents and Diagnostics mediator server first connect
with the Diagnostics commander server they are licensed based on the
license installed on the Diagnostics commander server.

If you want the Diagnostics administrator to receive license checking alerts
then when installing the Commander Server specify a comma-separated list
of Admin Alert Email Addresses in the SMTP Settings installation dialog. Or
the Admin address can be setup after installation using the Commander
Server’s Alert Properties page.

Types of Licenses

At installation you are given an Instant-On license which is packaged with
the product. With the Instant-On license you can install Diagnostics
components, begin to monitor applications, and process the performance
metrics. The Instant-On license is valid for a fixed period of time from the
time of installation or first use of the product.

Within this time period you must obtain a Permanent license or request an
Evaluation license to extend the evaluation period. Evaluation licenses are
available for Diagnostics to provide license keys that are meant to extend a
customer’s evaluation of the product. The Evaluation license is valid for a
fixed period of time.

If the Instant-On license (or the extended Evaluation license) expires before
you obtain a permanent license, the Diagnostics Server will issue reminder
messages.

Chapter 3 • Licensing HP Diagnostics

81

Note: The full Diagnostics product comes with the Instant-On license. The
standalone Diagnostics profilers are load-limited until you provide a valid
license file.

Your permanent license will typically be for a specific capacity (see “License
Information Based on Currently Connected Probes” on page 85). Once you
install the license key, Diagnostics will count usage against this capacity.

For Diagnostics there are two types of LTUs (License to use):

➤ AM License - For use when using the product in an application
management/enterprise mode, typically in a production environment. AM
licensed agents can also be used with LoadRunner/Performance Center.

➤ AD License - For use when using the product in Diagnostics mode for
LoadRunner/Performance Center runs in a pre-production load testing
environment.

The Instant-On licenses you receive with Diagnostics have the following
time and capacity limits: AM - 60 days and capacity of 50, AD - 14 days and
capacity of 50.

You will see reminder messages when limits are exceeded. See “License
Information Based on Currently Connected Probes” on page 85 for details
on AD and AM licenses.

Licensing the Diagnostics Server in Commander Mode

Obtain your Diagnostics license from your HP Software Customer Support
representative. The License Management page described below contains
useful information for determining the number of licenses required without
having to manually retrieve the information from each system. This
information is only available for Diagnostics 8.00 or later probes.

Chapter 3 • Licensing HP Diagnostics

82

You will receive a license certificate from HP verifying the terms of the
license purchase. License Keys/Passwords are issued after you enter the Sales
Order Number associated with their software product purchase, which is
unique for every order. This number appears on the license redemption
form, as well as on all paperwork associated with the shipment and
packaging of the order.

Store the license file in a directory that can be accessed from the License
Management page for the Diagnostics commander server. Then upload it to
the Diagnostics Commander Server as described in the steps below.

Important: For customers with licenses for versions prior to Diagnostics 9.10
your old licenses will still work with 9.10 or later versions. However the
following section describes how to use the new licensing process for new
purchases of Diagnostics 9.10 or later.

To license your Diagnostics deployment:

 1 Access the License Management page for the Diagnostics commander server
by accessing the Diagnostics Enterprise UI
 (http://<Diagnostics_Server>:2006)

 2 Enter the login and password. Either use the default or whatever has been
created and assigned to you. Default login is admin and default password is
admin.

 3 Select Configure Diagnostics.

 4 Select the license link. The License Management page opens providing the
following:

➤ Information about current licenses.

➤ A utility to upload a license received from HP Software Support.

➤ Information on operating system instance totals as well as application
server/probe instances in your monitored environment. You can also
find information on usage against Diagnostics AD and AM license
capacity.

Chapter 3 • Licensing HP Diagnostics

83

Chapter 3 • Licensing HP Diagnostics

84

 5 When you receive the license file for your Diagnostics deployment, upload
the file using the AutoPass License Upload section of the License
Management page.

The Server License Upload (Obsolete) section is obsolete and will only
appear when the type of license key Diagnostics previously used (.lic file) is
installed or only the Instant-On license is installed on the server. This
upload is provided for existing customers who already have a license from a
Diagnostics version prior to 9.10 allowing you to upload your old license.

Note: Do not attempt to copy the license file directly to the Diagnostics
Server installation directory. Always upload the file using the AutoPass
License Upload section of the License Management page.

Type the path to the location where you stored the license file or click
Browse to navigate to the license file location. Click Upload to apply the
license file to the Diagnostics Server.

If successful (the keys in the license file are valid and are not expired), the
licenses are added to DiagnosticsLicFile.txt by the upload process and stored
in the <Diagnostics_Install_Dir>/etc directory of the Diagnostics
Commander Server. With AutoPass licensing you can upload incremental
licenses which are added to the license file (you can’t do this when mixed
with the old licenses).

View License Information

Information on your current licenses is reported in the License Management
page. You can see the type of license, expiration date, if any, and the license
capacity.

Chapter 3 • Licensing HP Diagnostics

85

License Information Based on Currently Connected Probes
In the License information section you will see counts based on currently
connected probes. Counts are shown for operating system instances (see
example below). This is useful in determining the number of licenses
required without having to manually retrieve the information from each
system. This information is only available for Diagnostics 8.00 or later
probes.

The following counts are based on the number of operating system
instances running an agent:

➤ Total Operating System Instances. Total number of operating system
instances running an agent (not a collector). This is the sum of your AM and
AD Operating System Instances. Your license capacity must cover this total.

➤ Application Management/Enterprise Mode (AM License) OS instances. The
number of OS instances that host Enterprise/AM mode agent instances in
your production environment. These are counted against your HP
Diagnostics AM license capacity.

Chapter 3 • Licensing HP Diagnostics

86

When you install an agent, you are prompted to specify if the agent will be
configured in Application Management/Enterprise mode (AM License) to
work with a Diagnostics Server in a production environment. If you select
this mode then the following values are set in Diagnostics:

For a Java agent - the value of the active.products property in the etc/
probe.properties file is set to Enterprise mode at the time you install the
Java Agent (see “Set the Active Products Mode” on page 505). You can
change the mode value after installation by modifying this property.

For a .NET agent - the value of the probe_config.xml <modes> element is set
to enterprise mode at the time you install the .NET Agent (see “<modes>
element” on page 592). You can change the mode value after installation by
modifying this element.

For a Python agent - the mode is always set automatically to AM (cannot be
set to AD mode).

For agents with Enterprise mode set, the agent hosts will be counted against
your HP Diagnostics AM license capacity.

➤ LoadRunner/Performance Center (AD License) OS instances. The number of
OS instances that host active LoadRunner or Performance Center AD mode
application instances (does not include Enterprise/AM mode agent
instances). Only active AD mode agents are counted against your HP
Diagnostics AD license capacity. Those not in a run are not counted.

When you install an agent, you are prompted to specify if the agent will be
configured in AD mode for LoadRunner and Performance Center runs. If
you select the AD license option then the following values are set in
Diagnostics:

For a Java agent - the value of the active.products property in the etc/
probe.properties file is set to AD mode at the time you install the Java Agent
(see “Set the Active Products Mode” on page 505). You can change the mode
value after installation by modifying this property.

For a .NET agent - the value of the probe_config.xml <modes> element is set
to ad mode at the time you install the .NET Agent (see “<modes> element”
on page 592). You can change the mode value after installation by
modifying this element.

Chapter 3 • Licensing HP Diagnostics

87

The advantage of running a probe in AD mode is that you only need license
capacity for the number of hosts that are currently in a LoadRunner or
Performance Center test run. So for example if you have agents installed on
100 test systems but you will only have probes running on 10 hosts at any
one time then you would only need an AD license capacity of 10 hosts.

The following is for information only (these counts are not used as license
counts) and relates to probe instances rather than OS instances (you can
have more than one probe running on an OS instance).

➤ Total Application Server Instances. An application server instance is a Java
Agent instance (a probe) or a .NET Agent instance (.NET worker process) or a
Python Agent instance. This value is the total of Applicaton Management/
Enterprise Mode (AM License) probe instances and Load Runner/
Performance Center (AD License) probe instances.

➤ .NET processes. Any processes (application domains) instrumented for
monitoring by one or more .NET probes. For example, IIS worker process or
.NET console application/service/WCF. In the license report you may see the
number of Old .NET probes which are probes versioned prior to 8.00.

➤ Python processes. Any processes instrumented for monitoring by one or
more Python probes.

➤ Java probes. Monitored java or javaw processes or any other processes
embedding the JVM. This is equivalent to a Java probe.

➤ Collector instances. Collector instances include the following:

➤ Oracle - An instance in the (executed) Oracle software (Oracle processes)
and the memory they use (SGA). A SID identifies an instance. Instances
configured for monitoring with a <oracleInstance> entry in
oracle-config.xml are included.

➤ SQL Server - Instances apply primarily to the database engine and its
supporting components. Instances configured for monitoring with a
<sqlserverInstance> entry in sqlserver-config.xml are included.

➤ WebSphere MQ - Instances configured for monitoring with a
<mqInstance> entry in mq-config.xml are included.

➤ TIBCO EMS - Instances configured for monitoring with a <emsInstance>
entry in tibco-ems-config.xml are included.

Chapter 3 • Licensing HP Diagnostics

88

➤ WebMethods Broker - Instances configured for monitoring an
<WmBrokerInstace> entry in wm-broker-config.xml are included.

➤ SAP/ABAP - Each discovered Dialog instance (SAP ABAP probes) is
included.

➤ VMware - The number of vSphere servers as specified in the
vmware-config.xml file are included.

➤ Any probes prior to 8.0x will be listed under Old probes.

License Details
Selecting the Details link at the bottom of the License page displays detailed
information for each host with Diagnostics probes or collectors. Details
include HostName, Probe Name, port or PID, Run ID (for probes in a
LoadRunner/Performance Center load testing run), probe version and
product mode.

Following is an example showing part of the License Management Details
page:

Licensing the Other Diagnostics Components

The Diagnostics servers running as mediators and the Diagnostics agents do
not have independent licenses. Their license is based on the license of the
Diagnostics commander server. The first time these components connect to
a licensed Diagnostics commander server, the Diagnostics Agents and
Diagnostics mediator server are automatically licensed.

Chapter 3 • Licensing HP Diagnostics

89

When you install the Java or .NET Agent, the Diagnostics Profiler is
automatically installed. You view the Diagnostics Profiler in the context of a
probe entity. The Diagnostics Profiler is an independent UI that can be
accessed either directly on the system where the agent is installed or
through the HP Diagnostics UI.

The Diagnostics Profiler operates in an unlicensed mode with load
restrictions until a probe is able to connect to a Diagnostics commander
server that is properly licensed. In unlicensed mode, the Profiler is limited to
capturing data from five concurrent threads.

Chapter 3 • Licensing HP Diagnostics

90

91

4
Installing Diagnostics Collectors

You can install Diagnostics Collector on Windows and UNIX machines.

This chapter includes:

 ➤ About Installing the Diagnostics Collector on page 92

 ➤ Accessing the Collector Installer on page 93

 ➤ Installing the Collector on page 94

 ➤ Silent Installation of the Diagnostics Collector on page 103

 ➤ Installing the Diagnostics Collector Using the Generic Installer on page 104

 ➤ How to Manually Add Another Collection Type After Installing the Collector
on page 105

 ➤ Configuring the Active System Property Files on page 106

 ➤ Configuration for SAP NetWeaver–ABAP on page 106

 ➤ Configuration for Oracle on page 110

 ➤ Configuration for SQL Server on page 113

 ➤ Configuration for MQ on page 117

 ➤ Configuration for TIBCO EMS on page 120

 ➤ Configuration for webMethods Broker on page 121

 ➤ Configuration for VMware on page 123

 ➤ Password Obfuscation on page 125

 ➤ Verifying the Diagnostics Collector Installation on page 127

 ➤ Starting and Stopping the Diagnostics Collector on page 128

Chapter 4 • Installing Diagnostics Collectors

92

 ➤ Determining the Version of the Diagnostics Collector on page 130

 ➤ Uninstalling the Diagnostics Collector on page 130

About Installing the Diagnostics Collector

The Diagnostics Collector gathers data from remote systems. You can
configure the Collector to collect performance data from the following types
of active systems:

➤ SAP NetWeaver–ABAP

➤ Oracle Databases (including Oracle RAC)

➤ IBM WebSphere MQ

➤ TIBCO Enterprise Message Service (EMS)

➤ Software AG webMethods Broker

➤ SQL Server Databases

➤ VMware vCenter or VMware ESX Servers

During the installation of the Collector, you can choose to monitor any of
these active systems. After the installation, you define instances of Oracle
Databases, SQL Server systems, VMware vCenter or VMware ESX servers,
IBM WebSphere MQ messaging systems, TIBCO EMS systems, Software AG
webMethods Broker and SAP NetWeaver–ABAP systems to be monitored.
Each monitored instance is represented by a probe entity. Multiple probes
can be configured for each Collector.

Note: The Collector can be installed on any machine. It does not necessarily
have to be installed on the host machine of the SAP, Oracle, MQ, Tibco EMS,
webMethods Broker, VMware or SQL Server application. For Collector host
requirements, see “Requirements for the Diagnostics Collector Host” on
page 39.

Chapter 4 • Installing Diagnostics Collectors

93

Accessing the Collector Installer

The installation can be launched from the Diagnostics installation disk, or
copy the executable installation file to another location and run it, or select
it from the Diagnostics Downloads page in Business Service Management.

To access the installer from the Diagnostics installation media:

➤ For Windows, from the Diagnostics installation DVD (Autorun.exe) the
installation menu page is displayed. From the menu, select Diagnostics
Collector to launch the installer.

➤ Or you can run the appropriate installer by locating the
HPDiagCollector_<release number>_win.exe file for Windows or the
HPDiagCollector_<release number>_<platform>.bin files for Unix on the
installation media and copying the file to the new installation location.

Continue with “Installing the Collector” on page 94.

To download the installer from the HP Software Download Center:

 1 Go to the HP Software web site’s Software Download Center.

 2 Locate the Diagnostics downloads and choose the appropriate link for
downloading the Diagnostics Collector software.

 3 Follow the download instructions on the web site to download the installer
and save it to a local disk.

Continue with “Installing the Collector” on page 94.

Chapter 4 • Installing Diagnostics Collectors

94

To download the Installer from the Business Service Management
Diagnostics downloads page:

 1 In Business Service Management, select Admin > Diagnostics from the top
menu and click the Downloads tab.

 2 On the Downloads page, click the appropriate link to download the
appropriate Collector installer.

Note: The Collector installer is available in Business Service Management if
you put it into the required directory for Business Service Management to
access. You can enable this during the installation of the Diagnostic Server
by providing the path to the Diagnostics Agent and Collector installers, or
you can manually copy files from the installation disk to the
<diag_server_install_dir>/html/opal/downloads folder of the Diagnostics
Server installation directory. See Step on page 62 of Chapter 2, “Installing
the Diagnostics Server.”

Continue with “Installing the Collector” that follows.

Installing the Collector

The following steps provide detailed instructions for installing the Collector
on Windows or Unix systems.

For information on other types of installation see the following:

➤ For instructions on using the generic Unix installer for platforms others
than Linux and Solaris see “Installing the Diagnostics Collector Using the
Generic Installer” on page 104

➤ For information on silent installation see “Silent Installation of the
Diagnostics Collector” on page 103.

Note: Allow approximately 400MB of free space in the temp directory.

Chapter 4 • Installing Diagnostics Collectors

95

Note: If there is a pre-existing installation of the Collector on the host
machine, you must follow the instructions for upgrading the Collector
instead of these install instruction, see “Upgrade and Patch Install
Instructions” on page 893

The Windows installer and the Unix installers in graphical mode display the
same screens. If you run the Unix installer in console mode, prompts are
displayed instead of screens but the flow is the same as documented in this
section.

For Unix installers, where necessary, change the mode of the installer file to
make it executable.

➤ To run the Unix installer in graphical mode, enter the <installer>
executable at the UNIX command prompt, where <installer> is, for
example:

HPDiagCollector_<release number>_sol.bin

HPDiagCollector_<release number>_linux.bin

The installer displays the same screens that are displayed for the
Windows installer.

➤ To run the Unix installer in console mode, enter <installer> -console at
the UNIX command prompt.

The following instructions assume an understanding of UNIX console
screens and commands. For more information about UNIX screens and
commands, see “Using UNIX Commands” on page 925.The installer runs in
console mode displaying a series of prompts.

After you launch the installation, the software license agreement opens.

Chapter 4 • Installing Diagnostics Collectors

96

To install the Collector:

 1 Accept the software license agreement.

Read the agreement and select I accept the terms of the license agreement.
In console mode press Enter to continue through the license agreement and
when prompted, enter 1 to accept the agreement.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

Select Next to continue.

 2 Specify the location to install the Collector.

In the Installation Directory Name box, accept the default directory,
C:\MercuryDiagnostics\Collector or type the name of the directory where
you want to install the Collector. Or click Browse to navigate to another
directory. In this documentation this is referred to as the
<collector_install_dir>.

If the directory contains an existing installation of the Collector you want to
upgrade, cancel this installation and follow the upgrade procedure for
Collectors as described in Appendix G, “Upgrade and Patch Install
Instructions.”

Select Next to continue.

Chapter 4 • Installing Diagnostics Collectors

97

 3 Assign a unique name to the Collector.

Assign a name to the Collector that uniquely identifies this specific
Collector.

You can use - , _ and all alphanumeric characters in the name.

Select Next to continue.

Chapter 4 • Installing Diagnostics Collectors

98

 4 Select the environment to monitor.

Select the options that apply to this Collector. You can select one or more
options.

➤ To collect data in an SAP NetWeaver–ABAP environment, select SAP
NetWeaver–ABAP.

➤ To collect data from an Oracle 10g database server, select Oracle.

➤ To collect data in an MQ series environment, select MQ.

➤ To collect data from an SQL Server database, select SQL Server.

➤ To collect data from either a VMware vCenter or a VMware ESX server,
select VMware.

➤ To collect data from a TIBCO EMS environment, select TIBCO EMS.

➤ To collect data from a webMethods Broker system, select WebMethods
Broker.

Chapter 4 • Installing Diagnostics Collectors

99

Important: After installation, specify each of the SAP NetWeaver–ABAP,
Oracle, MQ, TIBCO EMS, SQL Server, webMethods Broker and VMware
instances to be monitored. These instances are manually defined in the
XML files provided with the installation. For more information, see
“Configuring the Active System Property Files” on page 106.

Select Next to continue.

 5 Provide information about the Diagnostics mediator server.

Provide the details that enables communication with the Diagnostics
mediator server.

If there is only one Diagnostics Server in the Diagnostics deployment where
the Collector will run, enter the host name of the Diagnostics Server and its
event port information.

Chapter 4 • Installing Diagnostics Collectors

100

If there is more than one Diagnostics Server in the deployment, enter the
information for the Diagnostics mediator server that is to receive the events
from the Collector.

 a In the Diagnostics Server Mediator Host box, type the host name or IP
address of the host for the Diagnostics mediator server.

Note: You must specify the fully qualified host name. In a mixed OS
environment, where UNIX is one of the systems, this is essential for
proper network routing.

 b In the Diagnostics Server Mediator Port box, type the port number
where the Diagnostics Server is listening for Collector communication.
The default port number is 2006. If you changed the port since the
Diagnostics Server was installed, specify that port number instead of the
default.

 c To make sure that the Diagnostics Server is running and accessible from
the installation host, select Check the connectivity to the Diagnostics
Server Mediator Host and Port.

Select Next to continue.

If you selected Check the connectivity to the Diagnostics Server Mediator
Host and Port and encountered connectivity problems, you will see the
results of the connectivity check, which the installer provides. If you do not
want to address these problems at this stage, clear the Check the
connectivity to the Diagnostics Server Mediator Host and Port check box,
proceed with the installation, and address the problem later.

Chapter 4 • Installing Diagnostics Collectors

101

 6 If you selected SAP NetWeaver–ABAP in step 4, provide the location of the
SAP Java Connector.

In the SAP Java Connector install directory box, enter the path to the
directory where the SAP Java Connector is installed. The installer will copy
the necessary files to the <collector_install_dir>\lib directory on the system
where the collector is installed.

This directory must contain the following files:

➤ sapjco.jar

➤ librfc.dll or librfc32.dll or librfccm.so

➤ sapjcorfc.dll or libsapjcorfc.so

If you do not know the SAP Java Connector directory name or if any of these
files are missing from the directory, contact your SAP representative.

Chapter 4 • Installing Diagnostics Collectors

102

 7 Remember to copy required files after installation to the Collector system.

If you selected Tibco EMS you will see a reminder to copy the following
third party jars after installation: tibjms.jar, tibjmsadmin.jar. The files are
typically found in your TIBCO EMS installation in the <Tibco_EMS>/ems/
<version>/lib directory and you copy them to the <collector_install_dir>\lib
directory on the system where the Collector is installed.

If you selected webMethods Broker you will see a reminder to copy the
following third party jars after installation: wm-brokerclient.jar,
wm-g11nutils.jar. The files are typically found in your Software AG
installation in the <SoftwareAG>/common/lib directory and you copy them
to the <collector_install_dir>\lib directory on the system where the
Collector is installed.

 8 Review the pre-installation summary.

The installation settings you selected are displayed. Review the information
for accuracy.

To select different installation settings, click Back (or in console mode select
Previous).

To begin installation, select Next.

 9 The installation completes.

When the installation completes, a message is displayed confirming that the
Collector is successfully installed. Select Finish to exit the installer.

 10 Configure the XML files for your active systems.

In step 4 you selected the active systems to be monitored. For each of these
active systems, you must configure properties that enable the Collector host
and the active system host to communicate.

For instructions on configuring the relative active system properties, see
“Configuring the Active System Property Files” on page 106.

Chapter 4 • Installing Diagnostics Collectors

103

 11 Verify that the Collector was installed properly and is running.

The Collector starts running automatically when the installation is
complete. You can verify the Collector installation by checking the
collector.log file for errors.For details see, “Verifying the Diagnostics
Collector Installation” on page 127.

In the Diagnostics UI, each collector instance is represented as a probe entity
of the system type: Oracle probe, SAP probe, MQ probe, EMS probe, WM
probe or SQL Server probe.

Silent Installation of the Diagnostics Collector

A silent installation is performed automatically, without the need for user
interaction. In place of user input, the silent installation accepts input from
a response file for each install step.

For example, a system administrator who needs to deploy a component on
multiple machines can create a response file that contains all the
prerequisite configuration information, and then perform a silent
installation on multiple machines. This eliminates the need to provide any
manual input during the installation procedure.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Important: With each new release of Diagnostics you should re-record the
Diagnostics Collector silent install response files prior to performing silent
installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

Chapter 4 • Installing Diagnostics Collectors

104

To generate a response file:

➤ Perform a regular installation with the following command line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

This creates a response file that includes all the information submitted
during the installation.

To perform a silent installation:

➤ Perform a silent installation using the relevant response file.

Perform the silent installation with the -silent command line option as
follows. Note that for Windows installers the options must be preceded with
-a. For example: HPDiagServer_9.20_win32.exe -a -silent -options myfile.

When performing a silent installation you can specify two additional
options.

➤ You can create a log file by specifying the -is:log <logfilepath> option after
the response file name.

➤ You can change the temp directory to a user-specified directory by
specifying the -is:tempdir <tempDirPath> option after the response file
name.

Installing the Diagnostics Collector Using the Generic
Installer

The installers for the Diagnostics Collector support installing the Collector
on Windows, Linux and Solaris systems. A generic Unix installer is provided
on the installation disk to allow you to install the Collector on other
platforms such as HP-UX and AIX.

<installer> -options-record <responseFileName>

<installer> -silent -options <responseFileName>

Chapter 4 • Installing Diagnostics Collectors

105

To install the Diagnostics Collector using the generic installer:

 1 Locate HPDiagCollector_<release version>_unix.zip from the Diagnostics
Installers folder on the HP Diagnostics installation disk.

 2 Unzip the file on the system where you want the Collector installed.

 3 Then for each of the active systems you want to monitor, you must
configure properties that enable the Collector host and the active system
host to communicate. For instructions on configuring the active system
properties, see “Configuring the Active System Property Files” on page 106.

How to Manually Add Another Collection Type After
Installing the Collector

During the initial installation of the Collector you select the different
collection types or types of active systems you want to monitor such as SAP
or Oracle. After installing the Collector you can add another collection type
or active system type manually.

To manually add another type of active system:

 1 Manually copy any required files to the <collector_install_dir>\lib directory.
These files are required for SAP, Tibco EMS and webMethods Broker active
systems. See the installation instructions for details on what files are
required. Other types of collection such as Oracle or SQL Server do not
require this step.

 2 On the system where you installed the Collector, in the
<collector_install_dir>\etc\collector.properties file edit the active.systems
property to add the additional collection type. Valid values (case insensitive)
are SAP_R3, Oracle, MQ, SQL_Server, VMWARE, EMS, WM_BROKER.

Chapter 4 • Installing Diagnostics Collectors

106

Configuring the Active System Property Files

When you install the Collector, you are asked to indicate the types of
collection (active systems the Collector will monitor). After installation, you
define instances of the active systems to be monitored. These instances are
manually defined in the XML files provided with the Collector installation.
An instance definition in the XML file is viewed as a probe entity of the
active system. Refer to the following sections for configuration instructions:

➤ “Configuration for SAP NetWeaver–ABAP” on page 106

➤ “Configuration for Oracle” on page 110

➤ “Configuration for SQL Server” on page 113

➤ “Configuration for MQ” on page 117

➤ “Configuration for TIBCO EMS” on page 120

➤ “Configuration for webMethods Broker” on page 121

➤ “Configuration for VMware” on page 123

Configuration for SAP NetWeaver–ABAP

A SAP NetWeaver–ABAP system deployment can include one or more
SAP NetWeaver–ABAP application instances. These instances together form
an SAP NetWeaver–ABAP system.

Depending on user permissions, access to the system or application
instances on the system might be direct or might require connection
through the SAP Message Server. For each SAP NetWeaver–ABAP probe
entity, you must know what connection option is used.

You configure the Collector to collect data for each instance of an active SAP
NetWeaver–ABAP system to be monitored. You configure SAP
NetWeaver-ABAP for monitoring in the
<collector_install_dir>\etc\r3config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\r3config.xsd.

Chapter 4 • Installing Diagnostics Collectors

107

To configure SAP NetWeaver–ABAP monitoring:

 1 Open Collector\etc\r3config.xml.

 2 If you are defining an SAP NetWeaver–ABAP probe entity where access to
the SAP NetWeaver–ABAP instance is through the SAP Message Server, locate
the section of code preceded by the following comment:

If you are defining an SAP NetWeaver–ABAP probe entity where access to
the SAP NetWeaver–ABAP instance is direct, locate the section of code
preceded by the following comment:

 3 Make a copy of the comment, together with the template code below the
comment, and paste it at the end of the file.

 4 Comment out the original template code by typing <!-- in an empty line
above the template code and --> in an empty line thereafter.

 5 In the copied code at the end of the file, alter the value of each property as
described in the following table and save the file.

<!--
Template to be used with the message server connection option.
-->

<!--
Template to be used with the direct connection option.
-->

Property Description Value

r3system name A logical name for the probe
group under which this SAP
NetWeaver–ABAP probe entity
appears in the Diagnostics UI.

User-defined.

systemId The ID of the SAP NetWeaver–
ABAP system. Consists of 3
characters only.

Format: [XXX]

Obtainable from the
SAP system
administrator.

Chapter 4 • Installing Diagnostics Collectors

108

client The client name for the SAP
NetWeaver–ABAP system.

Obtainable from the
SAP system
administrator.

user The name of the user
connecting to the SAP
NetWeaver–ABAP system.

This user needs to have at least
the S_RFC Authorization
Object in order to query the
Dialog info. The user on the
target system must have this
object in their authorization
profile to be able to use RFC to
connect to the target system.

However, for systems R/3 4.7
and earlier this is not sufficient.
The workaround is to install
the Collector on a machine
that is time-synched with the
ABAP host and then disable
time-synching in the Collector
by setting property
timesynch.interval.secs = 0 (in
Collector\etc\r3.properties).

Obtainable from the
SAP system
administrator.

password The password (plaintext) of the
user connecting to the SAP
NetWeaver–ABAP system.

Obtainable from the
SAP system
administrator.

encrypted-

password

The password (encrypted) of
the user connecting to the SAP
NetWeaver–ABAP system.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

messageServerHost

(Message Server
connection only)

The name of the SAP Message
Server host machine.

Obtainable from the
SAP system
administrator.

Property Description Value

Chapter 4 • Installing Diagnostics Collectors

109

r3Name

(Message Server
connection only)

Consists of 3 characters only. Format: [XXX]

Obtainable from the
SAP system
administrator.

group

(Message Server
connection only)

The group of the SAP
application servers.

Obtainable from the
SAP system
administrator.

dialogInstance Specify a list of Dialog
Instances to be monitored.

By default all Dialog Instances
within the ABAP system
(cluster) are automatically
discovered and monitored.

However, if the Dialog
Instances are too many (and
too busy) for a single Collector
to handle (it may run out of
memory), you can use this
property to monitor only some
of the Dialog Instances and
monitor the rest by different
Collectors.

SAP Dialog Instances

Property Description Value

Chapter 4 • Installing Diagnostics Collectors

110

Configuration for Oracle

You configure the Collector to collect data for each instance of an active
Oracle system to be monitored. You configure Oracle monitoring in the
<collector_install_dir>\etc\oracle-config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\oracle-config.xsd.

To configure Oracle monitoring:

 1 Open <collector_install_dir>\etc\oracle-config.xml.

 2 Copy the template code enclosed in the comment tags (<!-- and -->) and
paste it at the end of the file.

Use the oracleInstance element from the template to collect from Oracle 10g
and 11g instances. If you want to collect from multiple instances add
separate entries of the oracleInstance element.

To collect from Oracle RAC (Real Application Clusters) specify the oracleRac
element. The oracleRac configurations must come after the oracleInstance
configurations in the oracle-config.xml file.

 3 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The name of the Oracle database
server host machine. You must use
the fully qualified host name.

In an oracleRAC configuration,
this will be the cluster alias.

Obtainable from the
Oracle administrator.

portNumber Port where the Oracle database
server listens for requests.

Default value: 1521

instanceName Use for the oracleInstance element
(does not apply to oracleRAC
element). The name given to the
Oracle instance during
installation of the Oracle database
server.

Default value: Orcl

Obtainable from the
Oracle administrator.

Chapter 4 • Installing Diagnostics Collectors

111

serviceName Use for the oracleRac element
(does not apply to oracleInstance
element). serviceName along with
the cluster alias hostName,
isolates clients from changes in
the RAC installation.

Obtainable from the
Oracle administrator.

userId The ID of the user connecting to
the Oracle database server.

Note: The user needs at least
CREATE SESSION and SELECT ANY
DICTIONARY to collect
performance metrics.

Obtainable from the
Oracle administrator.

password The password (plaintext) of the
user connecting to the Oracle
database server.

Obtainable from the
Oracle administrator.

encrypted-
password

The password (encrypted) of the
user connecting to the Oracle
database server.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

112

To enable collection of additional metrics:

 1 If the Collector encounters a metric it is not configured to collect, a warning
containing the unrecognized metric ID and name is logged. If the metric is a
count, percent, byte, or centisecond metric, you can optionally collect the
metric by adding the metric ID to
<collector_install_dir\etc\oracle.properties.

 2 Locate the property name that corresponds to the type of metric you want
the Collector to collect and add the metric. The property names are:

➤ oracle.metrics.count

➤ oracle.metrics.percent

probeName For an oracleInstance. The logical
name to represent this Oracle
instance in the Diagnostics UI.
This name must be unique.

In an oracleRac configuration
there will be multiple probes so
you don’t enter a probeName.

User-defined. If this
value is not defined,
the same value given
for instanceName is
used.

The probe name for
each Oracle instance
in an Oracle RAC
configuration is
retrieved at run-time
from the
INSTANCE_NAME
column in the
GV$INSTANCE view.

probeGroupName The logical name of the probe
group under which the probe
appears in the Diagnostics UI. It
can be an existing probe group, or
you can define a new one.

Optional for the oracleRac
element, if omitted, probe group
is set to serviceName.

User-defined; for
example:

Existing: Default

New: Oracle

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

113

➤ oracle.metrics.bytes

➤ oracle.metrics.centiseconds (the Collector converts to milliseconds)

 3 Restart the Collector.

Configuration for SQL Server

You configure the Collector to collect data for each instance of an active SQL
Server system to be monitored. You configure SQL monitoring in the
<collector_install_dir>\etc\sqlserver-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\sqlserver-config.xsd.

To configure SQL Server monitoring:

 1 Open <collector_install_dir>\etc\sqlserver-config.xml.

 2 Copy the template code and paste it at the end of the file.

 3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

 4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The name of the SQL Server
database host machine. You must
use the fully qualified host name.

Obtainable from the
SQL Server
administrator.

portNumber The number of the port where the
SQL Server database listens for
requests.

Default value: 1433

Chapter 4 • Installing Diagnostics Collectors

114

instanceName The name given to the SQL Server
instance during installation of the
SQL Server database.

When you specify an instance
name, Diagnostics automatically
discovers all SQL Server databases
in the instance. To exclude some
of these databases from collection
(for example, system databases),
specify a comma-separated list in
the exclude.db.list property in the
<collector_install_dir>\etc\sqlserv
er.properties file.

Default value: Default

Obtainable from the
SQL Server
administrator.

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

115

 integratedSecurity If set to true, no username/
password should be specified. The
JDBC driver searches the local
computer credential cache for
credentials that have been
provided at the computer or
network logon.

When the Collector is run from
the service HP Diagnostics
Collector, the Windows user
credentials used to connect to SQL
Server must be set as the logon
property for the service. To do
this, run the Windows Services
Manager (services.msc from the
run dialog, or My Computer >
Manage > Services and
Applications > Services). Open the
Properties dialog for service HP
Diagnostics Collector, select the
Log On tab, and set Log on as: to
the user granted access to your
SQL Server instance. This must be
the domain account. Restart the
service.

When using Windows
authentication, a domain account
(not a local one) needs to be used
for making the connection to the
SQL Server instance.

If set to false, the username and
password must be supplied. If this
is not specified, its default value is
false.

Default value: false

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

116

userId The ID of the user connecting to
the SQL Server database.

Note: The user needs at least VIEW
SERVER STATE to collect
performance metrics.

Create the user as follows for
VIEW SERVER STATE:

➤ CREATE LOGIN diag WITH
PASSWORD = '<pwd>';

➤ USE master;

➤ GRANT VIEW SERVER STATE
TO diag;

➤ GO

From the SQL Server Management
Studio GUI, you can right-click on
the Instance name and select the
properties.

Obtainable from the
SQL Server
administrator.

password The password (plaintext) of the
user connecting to the SQL Server
database.

Obtainable from the
SQL Server
administrator.

encrypted-
password

The password (encrypted) of the
user connecting to the SQL Server
database.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

117

Configuration for MQ

You configure the Collector to collect data for each instance of an active MQ
system to be monitored. You configure MQ monitoring in the
<collector_install_dir>\etc\mq-config.xml file. The layout, elements, and
attributes of the xml file are described in
<collector_install_dir>\etc\mq-config.xsd.

The MQ probe requires the following permissions:

setmqaut -m <queue_manager_name> -n ** -t queue -g <OS_group_name> +dsp +get

setmqaut -m <queue_manager_name> -n SYSTEM.ADMIN.COMMAND.QUEUE -t
queue -g <OS_group_name> +dsp +get +put

setmqaut -m <queue_manager_name> -n ** -t channel -g <OS_group_name> +dsp
setmqaut -m <queue_manager_name> -t qmgr -g <OS_group_name> +connect +dsp
+inq

probeName The name to be used to represent
this instance as a probe in the HP
Diagnostics UI.

When you have n databases in
your instance, you actually have
n+1 probes: an extra probe for the
totals of the instance that includes
metrics such as wait events.

The extra probe is shown in the UI
as probeName. The probes for
each database are shown as
probeName_databaseName.

User-defined.

If this value is not
defined, the same
value given for
instanceName is
used.

probeGroupName The logical name of the probe
group under which this probe
entity appears in the Diagnostics
UI.

This can be an existing probe
group or you can define a new
one.

User-defined; for
example:

Existing: Default

New: SQL Server

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

118

You can limit the types of queues from which the MQ probe collects metrics
to isolate the most interesting metrics for your application. By default, the
MQ probe collects metrics only from predefined (or non-dynamic) queues.
You specify the queue types to collect or to ignore by setting properties in
the <collector_install_dir>\etc\mq.properties file.

To limit the queues for which metrics are collected:

 1 Open the <collector_install_dir>\etc\mq.properties file.

 2 Locate the property name that corresponds to the MQ Queue definition
type from which you do not want the Collector to collect metrics. The
following table lists the property names and their corresponding MQ Queue
definition types.

 3 The collect.predefined.queues property is set to true by default. The other
three properties are set to false by default. Specify false for any type for
which you do not want the Collector to gather metrics and then save the
mq.properties file.

Note: These properties are supported for MQ 6.x and later versions only.

MQ jar files are included with the Diagnostics Collector but if you must
overwrite these files you can. The MQ jar files provided with the Collector
are located in the <collector_install_dir>\lib directory and can be
overwritten by the MQ jar files provided in your local MQ installation. You
can typically find the jar files in you local WebSphere’s MQ installation’s
\lib directory containing the com.ibm.mq.jar file. If you have difficulty
locating these files contact your WebSphere MQ administrator.

Properties MQ Queue Definition Types

collect.predefined.queues MQQDT_PREDEFINED

collect.permanent.dynamic.queues MQQDT_PERMANENT_DYNAMIC

collect.temporary.dynamic.queues MQQDT_TEMPORARY_DYNAMIC

collect.shared.dynamic.queues MQQDT_SHARED_DYNAMIC

Chapter 4 • Installing Diagnostics Collectors

119

To configure MQ monitoring:

 1 Open <collector_install_dir>\etc\mq-config.xml.

 2 Copy the template code and paste it at the end of the file.

 3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

 4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostName The hostName. Obtainable from the
MQ administrator.

portNumber The number of the port (optional).

queueManagerName The MQ Manager to connect to. Obtainable from the
MQ administrator.

channelName The channel through which to
connect to the Queue Manager.

Obtainable from the
MQ administrator.

securityExit An IBM term for a pluggable
security provider (a piece of
code that provides a secure
interface to MQ.

If you are using one as a gateway
to MQ, specify the complete
class name as a parameter and
ensure your security Exit class is
available on the classpath.

probeName The name to be used to
represent this instance as a
probe in the HP Diagnostics UI.

This name must be unique.

User-defined. If not
defined, it defaults to
the Queue Manager
name.

probeGroupName The logical name of the probe
group under which this probe
entity appears in the Diagnostics
UI.This can be an existing probe
group, or you can define a new
one.

User-defined; for
example:

Existing: Default

New: MQ

Chapter 4 • Installing Diagnostics Collectors

120

Configuration for TIBCO EMS

You configure the Collector to collect data for each instance of an active
TIBCO Enterprise Message Service (EMS) system to be monitored.

You configure TIBCO EMS monitoring in the
<collector_install_dir>\etc\tibco-ems-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\tibco-ems-config.xsd.

In addition to the configuration described below, the following TIBCO EMS
jar files must be copied from your TIBCO EMS installation’s Tibco_EMS>/
ems/<version>/lib directory to the <collector_install_dir>\lib directory on
the system where the Collector is installed:

➤ tibjms.jar

➤ tibjmsadmin.jar

To configure TIBCO EMS monitoring:

 1 Open <collector_install_dir>\etc\tibco-ems-config.xml.

 2 Copy the template code and paste it at the end of the file.

 3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

 4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

emsServerUrl The EMS Server URL Default is tcp://
localhost:7222

username EMS server username. The user
must have the following
privileges: "view-destination"
and "view-server"

password EMS server password, plain text

Chapter 4 • Installing Diagnostics Collectors

121

You can customize TIBCO data collection by setting properties in the
<collector_install_dir>\etc\tibco-ems.properties file.

➤ How often to collect data

➤ How often to attempt to reconnect when a connection is not established

➤ Enable or disable server-level, queue-level and topic-level metric collection

➤ Include or exclude Global, Static or Temporary Queues and Topics

➤ Select individual metrics

Configuration for webMethods Broker

You can configure the Collector to collect data for the webMethods Broker
system to be monitored.

obfuscated-password EMS server password obfuscated
(optional). This property takes
precedence over the plain test
password if both are defined. If
neither are defined blank is
used for the password.

Use the
EncryptPassword.jsp
utility (see “Password
Obfuscation” on
page 125) to encrypt
the password.

probeName The name to be used to
represent this instance as a
probe in the HP Diagnostics UI.

This name must be unique.

User-defined.

probeGroupName The logical name of the probe
group under which this probe
entity appears in the
Diagnostics UI.

This can be an existing probe
group, or you can define a new
one.

User-defined for
example:

Existing: Default

New: TIBCO

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

122

You configure webMethods Broker monitoring in the
<collector_install_dir>\etc\wm-broker-config.xml file. The layout, elements
and attributes of the xml file are described in
<collector_install_dir>\etc\wm-broker-config.xsd.

In addition to the configuration described below, the following webMethods
Broker jar files must be copied from your webMethods Broker installation’s
<SoftwareAG>/common/lib directory to the <collector_install_dir>\lib
directory on the system where the Collector is installed:

➤ wm-brokerclient.jar

➤ wm-g11nutils.jar

To configure webMethods Broker monitoring:

 1 Open <collector_install_dir>\etc\wm-broker-config.xml.

 2 Copy the template code and paste it at the end of the file.

 3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

 4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

hostname Broker server hostname. Required. For
example: localhost.

brokerName The name of the broker to
connect to. If omitted, connects to
the default broker as defined
within the broker server.

Optional

Chapter 4 • Installing Diagnostics Collectors

123

You can customize webMethods data collection by setting properties in the
<collector_install_dir>\etc\wm-broker.properties file.

➤ How often to collect data

➤ How often to attempt to reconnect when a connection is not established

➤ Enable or disable server-level, queue-level metric collection

➤ Select individual metrics

Configuration for VMware

You configure the Collector to collect data for each VMware node to be
monitored. You configure VMware monitoring in the
<collector_install_dir>\etc\vmware-config.xml file. The layout, elements,
and attributes of the xml file are described in
<collector_install_dir>\etc\vmware-config.xsd. Changes to the
vmware-config.xml file are picked up dynamically.

The Collector requires a patch be installed on the vCenter server: (see
<http://kb.vmware.com/selfservice/microsites/
search.do?cmd=displayKC&docType=kc&externalId=1024596&sliceId=1&d
ocTypeID=DT_KB_1_1&dialogID=139216791&stateId=1 0 139218894> for
more information).

clientGroup The name of the client group to
use. If omitted, connects to the
’admin’ client group.

Optional

probeGroupName The logical name of the probe
group under which this probe
entity appears in the Diagnostics
UI.

This can be an existing probe
group, or you can define a new
one.

Optional, defaults to
Default.

You can enter a user
defined name.

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

124

You should have the latest VMware Tools installed on the VMware Guest.
These tools can be installed using the vSphere Client. The latest tools are
required for you to drill down from VMware Guest to Hosts in the
Diagnostics UI because the VMware tools make the Guest's FQDN available
to the VMware Collector via the vCenter.

The VMware Host/Guests associations are created when the Collector is
started. New VMware Hosts and VMware Guests may take up to 15 minutes
to show up in Diagnostics. Deleted or migrating VMware Guests may take
up to five minutes to show up in Diagnostics.

To configure VMware monitoring:

 1 Open <collector_install_dir>\etc\vmware-config.xml.

 2 Copy the template code and paste it at the end of the file.

 3 Comment out the template code by typing <!-- in an empty line above the
template code and --> in an empty line thereafter.

 4 In the copied code, alter the value of each property as described in the
following table and save the file.

Properties Description Value

serverURL The URL used to connect to the
VMware ESX or VCenter server via
the VMware infrastructure
vSphere Web Services API.

For example:

https://<myVM.myCo.com>/sdk

userId The VMware ESX or vCenter user
id.

At a minimum the user must have
ReadOnly access and be placed in
the Users group.

Chapter 4 • Installing Diagnostics Collectors

125

You can customize VMware data collection by setting properties in the
<collector_install_dir>\etc\vmware.properties file for the following:

➤ You can limit the query interval and reconnection time. The query interval
is just a hint to the Collector, because the sampling interval must actually be
a multiple of the interval configured on the VMware Server.

➤ You can also filter by VMware host (ESX Server) and VMware guest (Virtual
Machine). If the VMware Collector is unable to handle the load of an entire
vCenter, then the host and guest filters may allow you to use the VMware
Collector on the part of the vCenter that is most important to you or to
partition the vCenter among multiple VMware Collectors. To use these
filters, modify vmware.properties as described in the property file for
host.filters and guest.filters properties.

Password Obfuscation

Create an obfuscated password using the web application included with
Diagnostics. Access the Security page (http://<host name>:2006/security)
and select Encrypt Password at the bottom of the page. Replace <host
name> with the name of the computer on which the Diagnostics server is
installed.

The obfuscated password you generate can be used in the following xml files
for the different collection types:

encrypted-
password

The encrypted VMware password
corresponding to userId. First
checks for an encrypted password
and use it if it is non-blank;
otherwise use the plaintext
password. the plaintext password
does not exist or is blank then
uses blank for the password.

Optional

password The plaintext VMware password
corresponding to userId.

Optional

Properties Description Value

Chapter 4 • Installing Diagnostics Collectors

126

➤ r3config.xml file used to configure the SAP NetWeaver–ABAP collector

➤ oracle-config.xml file used to configure the Oracle collector

➤ vmware-config.xml file used to configure the VMware collector

➤ tibco-ems-config.xml file used to configure the TIBCO EMS collector

➤ sqlserver-config.xml file used to configure the SQL Server collector.

Enter the plaintext password, re-enter the password to confirm, and select
the Encrypt Password button. The obfuscated password is displayed. Copy
the entire obfuscated password from this page, including the OBF: at the
beginning, and paste that into the appropriate property file (r3config.xml,
oracle-config.xml, vmware-config.xml, tibco-ems-config.xml or
sqlserver-config.xml).

Note: You can continue to use the plaintext password property.

Chapter 4 • Installing Diagnostics Collectors

127

A security.encrypted-password property can also be used for the mercury
user password in the following property files: collector.properties,
dispatcher.properties, server.properties. The mercury user is used for
authentication between the various diagnostics components. The following
is a copy of the affected section of these properties files:

Verifying the Diagnostics Collector Installation

The Collector starts running automatically when the installation is
complete. You can verify the Collector installation by checking the
collector.log file for errors.

Once a collector probe instance is started you can launch the Diagnostics
Enterprise UI to verify that the probe is working. Go to
http://<Diagnostics_commander_server>:2006/. For now you can use the
default user/password of admin/admin or the login you were given if a
different one has been set up for you.

You can also check the System Health view to find information about the
Collector deployment and the machine that hosts the collector.

##
Remote Server Authentication Properties
##

#
This user name and password is used for communication between Diagnostics
components (probes, and servers). You may want to change this password
every so often to keep your system secure inside your enterprise. If you
do change this password, you must first use
http://<host name>:2006/security and select Encrypt Password to encrypt the
password.
Plaintext passwords can be used by replacing the security.encrypted-password
with security.password. You must also change the encrypted password in the
<install-dir>/etc/.htaccess file, as well as all the Diagnostics probe, and
servers, that communicate with each other in your enterprise.
#
security.username=mercury
security.encrypted-password=OBF:1c431jg81hv41k1d1l161wu81z0d1pyl1wmt1n6h1y
m71n511wnd1pw11z0h1wu61kxw1jyl1hse1jd21c2z

Chapter 4 • Installing Diagnostics Collectors

128

To access the System Views:

 1 Open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

 2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

 3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

 4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Starting and Stopping the Diagnostics Collector

Instructions for a Windows Machine
To start the Collector on a Windows machine:

➤ Select Start > All Programs > HP Diagnostics Collector >
Start HP Diagnostics Collector. Or enter net start "HP Diagnostics Collector"
at the command line.

To stop the Collector on a Windows machine:

➤ Select Start > All Programs > HP Diagnostics Collector >
Stop HP Diagnostics Collector. Or enter net stop "HP Diagnostics Collector"
at the command line.

Instructions for a UNIX Machine (using the Nanny)
The nanny is a process that runs as a daemon to ensure that the Collector is
always running. The following procedures start and stop the Collector using
the nanny.

Chapter 4 • Installing Diagnostics Collectors

129

To start the Collector on a UNIX machine:

 1 Make sure that the M_LROOT environment variable is defined as the root
directory of the Collector. For example, in ksh, you could enter the
following:

If the M_LROOT environment variable is not defined as the root directory,
you will see the following error:

 2 Change directories to $M_LROOT/bin.

 3 Run m_daemon_setup with the -install option, as in the following example:

To stop the Collector on a UNIX machine:

 1 Change directories to $M_LROOT/bin as set in the start procedure above.

 2 Run m_daemon_setup with the -remove option, as in the following
example:

Instructions for a UNIX Machine (without using the
Nanny)
The following procedures start and stop the Collector without using the
nanny.

To start the Collector on a UNIX machine:

➤ Run <collector_install_dir>/bin/collector.sh.

export M_LROOT=<collector_install_dir>/nanny/solaris

Warning : MDRV: cannot find lrun root directory . Please check your M_LROOT
Unable to format message id [-10791]
m_agent_daemon (is down)

cd $M_LROOT/bin
./m_daemon_setup -install

cd $M_LROOT/bin
./m_daemon_setup -remove

Chapter 4 • Installing Diagnostics Collectors

130

To stop the Collector on a UNIX machine:

➤ Terminate the process using a utility such as kill.

Determining the Version of the Diagnostics Collector

When you request support, it is useful to know the version of the
Diagnostics Collector. The version number of the Collector can be found in
the <collector_install_dir>\version.txt file.

Uninstalling the Diagnostics Collector

To uninstall the Collector:

➤ On a Windows machine, choose Start > All Programs > HP Diagnostics
Collector > Uninstall Diagnostics Collector.

Or you can run uninstaller.exe, which is located in the
<collector_install_dir>_uninst directory.

➤ On a Linux or Solaris UNIX machine, run uninstall*, which is located in the
<collector_install_dir>/_uninst directory.

➤ On other UNIX machines, choose a 1.5 or later JVM and run java -jar
<collector_install_dir>/_uninst/uninstall.jar to uninstall the Collector.

Part III

Installation and Setup of the Java, .NET
and Python Agents

This section includes:

➤ Installing Java Agents

➤ Preparing Application Servers for Monitoring with the Java Agent

➤ Preparing Application Servers for Client Monitoring with the Java Agent

➤ Installing .NET Agents

➤ Installing and Setting Up Python Agents

132

133

5
Installing Java Agents

This section describes how to install a Java Agent and give you information
about the setup and configuration of the Java Agent

This chapter includes:

 ➤ Overview of the Java Agent Installation on page 134

 ➤ Accessing the Java Agent Installer on page 135

 ➤ Installing the Java Agent on page 137

 ➤ Running the Java Agent Setup Module on page 141

 ➤ About Preparing the Application Server for Monitoring on page 150

 ➤ Register the Agent with the Diagnostics Servers on page 150

 ➤ Verifying the Java Agent Installation on page 151

 ➤ About Additional Configuration and Custom Instrumentation on page 152

 ➤ Installing the Java Agent on a z/OS Mainframe on page 154

 ➤ Installing the Java Agent Using the Generic Installer on page 156

 ➤ Silent Installation of the Java Agent on page 157

 ➤ Setting File Permissions (UNIX Only) on page 159

 ➤ Determining the Version of the Java Agent on page 160

 ➤ Uninstalling the Java Agent on page 160

Chapter 5 • Installing Java Agents

134

Overview of the Java Agent Installation

The HP Diagnostics/TransactionVision Java Agent installer installs a Java
Agent to collect data for either Diagnostics or TransactionVision or both.
TransactionVision provides data to the Transaction Management
application in Business Service Management. See the TransactionVision
Deployment Guide in the Business Service Management Documentation
Library for more information about setting up the Java Agent for
TransactionVision.

The agent is installed on the machine hosting the application you want to
monitor.

Before you can use a Java Agent to monitor an application in HP
Diagnostics, you must:

➤ Install the Java Agent.

➤ Run the Java Agent setup module which starts automatically after the
installer.

➤ The next steps are to instrument the JRE used by your application server and
configure your application server JVM parameters to invoke the Java Agent.
Depending on your application server, you may use the automatic JRE
instrumentation options instead of manually running the JRE Intrumenter
utility.

Allow approximately 400MB of free space in the temp directory. For
information about the recommended system configurations for hosting the
Java Agent, see “Requirements for the Diagnostics Java Agent Host” on
page 36. Java Agent installers are provided for Windows and for several
UNIX platforms. You can run the installers in graphical mode (which
displays install screens like the Windows installer) or using the console
mode command line interface. If you are not able to use the regular UNIX
installers, you can use the Generic installer as described in “Installing the
Java Agent Using the Generic Installer” on page 156.

Chapter 5 • Installing Java Agents

135

Important: By default, the <probe_install_dir>/log directory is set to 777.
This ensures that the Java Agent is able to collect metrics from monitored
applications being run by any user.
Depending on your organization’s security requirements, you could further
restrict access to this directory; for example:
chmod 775 /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/log

Note: If there is a pre-existing installation of the Java Agent on the host
machine, see “Upgrade and Patch Install Instructions” on page 893 for
important instructions on how to upgrade the agent systems.

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics Java Agents are installed in your company’s IT environment and
the Diagnostics Commander Server and Mediator Servers are installed by HP
on a SaaS system on-premise at HP. During the setup of the Java Agent you
select the option for configuring the agent for - Diagnostics with
SaaS-hosted mediator installed on HP premises.

See Accessing the Java Agent Installer to begin.

Accessing the Java Agent Installer

You can install the Java Agent from the Diagnostics installation disk or copy
the executable installation file to another location and run it, or select to
install the Java Agent from the Diagnostics Downloads page in Business
Service Management.

When installing just the Profiler trial software, you launch the installer from
the HP Software Web site.

Chapter 5 • Installing Java Agents

136

To access the Installer from a Diagnostics installation media:

➤ For Windows, from the Diagnostics installation DVD (Autorun.exe) the
installation menu page is displayed. From the menu, select Diagnostics
Agent for Java to launch the installer.

OR

➤ You could run the appropriate installer directly by locating the
HPDiagTVJavaAgt_<release number>_<platform>.bin files for Unix or
HPDiagTVJavaAgt_<release number>_win.exe files for Windows on the
installation media and copying the file to the new installation location.

Continue with “Installing the Java Agent” on page 137.

To download the installer from the HP Software Download Center:

 1 Go to the HP Software web site’s Software Download Center.

 2 Locate the Diagnostics (or TransactionVision) downloads and choose the
appropriate link for downloading the Diagnostics Agent software. Note that
you could also use the download center to get the Diagnostics profiler trial/
evaluation software.

 3 Follow the download instructions on the web site to download the installer
and save it to a local disk.

Continue with “Installing the Java Agent” on page 137.

To download the installer from the Business Service Management’s
Diagnostics downloads page:

 1 In Business Service Management select Admin > Diagnostics from the main
menu and click the Downloads tab.

 2 On the Downloads page, click the link to download the appropriate Java
Agent installer.

Chapter 5 • Installing Java Agents

137

Note: The Java Agent installers are available in Business Service
Management only if they are placed into a directory that Business Service
Management can access. You can enable this during the installation of the
Diagnostic Server, or you can copy the Java Agent installers manually from
the installation disk to the required location.

Continue with Installing the Java Agent.

Installing the Java Agent

This section provides detailed instructions for a first time installation of the
Java Agent on Windows or UNIX systems.

Important: If there is a pre-existing installation of the Java Agent on the
host machine, you must follow the instructions for upgrading the agent
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

Tips for using the installer on UNIX systems:

Where necessary when using the installer, change the mode of the UNIX
installer file to make it executable. For more information about UNIX
commands, see “Using UNIX Commands” on page 925.

To run the installer in console mode, enter the following at the command
prompt:

The console mode UNIX installer displays installation prompts rather than a
UI.

./<installer> -console

Chapter 5 • Installing Java Agents

138

To run the installer in graphical mode, enter the following at the command
prompt:

The graphical mode UNIX installer displays the same screens that are
displayed for the Windows installer.

For information on other types of installation see the following:

➤ For z/OS see “Installing the Java Agent on a z/OS Mainframe” on page 154.

➤ For information on installation with a generic installer see “Installing the
Java Agent Using the Generic Installer” on page 156.

➤ For information on silent installation see “Silent Installation of the Java
Agent” on page 157

./<installer>

Chapter 5 • Installing Java Agents

139

An overview of the Java Agent installation steps is shown in the diagram
below; refer to the rest of this section for details on each step.

Chapter 5 • Installing Java Agents

140

Begin the Java Agent installation with “Step 1. End User License Agreement”
on page 140.

Step 1. End User License Agreement
Accept the end user license agreement.

Read the agreement and select I accept the terms of the license agreement.

In the console mode interface, press Enter to move to the next page of text
instead of selecting Next, or type q to jump to the end of the license
agreement.

Note: On some 64-bit Linux systems, if the installer program terminates
without showing the license agreement, you need to install the 32-bit glibc
library and then try to run the installer again (see “Diagnostics Installers Do
Not Work on Some 64-bit Linux Systems” on page 910 for details).

Select Next (in console mode Enter) to proceed and continue to the next
step.

Step 2. Specify Install Location
Specify the location where you want to install the agent.

Accept the default install directory or specify a different location either by
typing the path to the installation directory into the Installation Directory
Name box, or by clicking Browse to navigate to the installation directory.

In the console mode interface, at the Installation Directory Name prompt,
accept the default installation location shown in brackets, or enter the path
to a different location.

Chapter 5 • Installing Java Agents

141

Note: This location becomes the <probe_install_dir>. By default, the
location is C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent on
Windows and /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent on
UNIX.

If you encounter an error, check to see if the JavaAgent directory already
exists and remove it. This could happen if you installed and uninstalled the
Java Agent previously without also removing the JavaAgent sub-directory.

Select Next (in console mode Enter) to proceed and continue to the next
step.

Step 3. Review Pre Installation Summary Information
Review the installation summary information.

The installation directory and size requirement are listed.

If these are acceptable, select Next (in console mode Enter) to start the
installation. The installation can take a few minutes.

When the installation is complete the Java Agent Setup Module starts.
Continue on to the next section on Running the Java Agent Setup Module.

Running the Java Agent Setup Module

The Java Agent can be configured as a Profiler without any connection to a
Diagnostics Server (or as an agent that works with a Diagnostics Server and/
or TransactionVision Server). When the agent is initially configured as a
Profiler only, you can, at a later time, configure the agent to work with a
Diagnostics server by re-running the Java Agent Setup Module.

Configure the Java Agent by using the Java Agent Setup Module which starts
automatically at the end of the Java Agent installation or you can start it at
any time by choosing Start > All Programs > HP Java Agent > Setup Module.
Or for UNIX you can start it at any time by running <probe_install_dir>/
bin/setupModule.sh.

Chapter 5 • Installing Java Agents

142

The Java Agent Setup Module includes the following steps, select Step 1.
Configuration Options to begin:

➤ “Step 1. Configuration Options” on page 142

➤ “Step 2. Agent Name and Group” on page 144

➤ “Step 3. Diagnostics Server Information” on page 145

➤ “Step 4. Post Setup Summary” on page 149

Step 1. Configuration Options
Indicate if the Java Agent is to be installed as a standalone Profiler without
any connection to a server (for example if you are installing the Diagnostics
Java Profiler trial software), or if you are installing the agent to work with
LoadRunner/Performance Center or to work with a Diagnostics and/or
TransactionVision Server.

Make the selection that is appropriate for the environment where you will
be using the agent.

➤ Application Management/Enterprise Mode (AM License). Select this option
to install the agent for use with a Diagnostics Server and/or a
TransactionVision Server in an enterprise (or production) environment.

Then indicate which of the following the agent will be configured for:

➤ Either a Diagnostics Server (installed locally) OR a Diagnostics Server
hosted on an HP SaaS system on-premise at HP

Chapter 5 • Installing Java Agents

143

➤ A TransactionVision server

➤ Both a Diagnostics Server installed locally and a TransactionVision Server

If you select HP SaaS mode then an HP SaaS administrator will provide you
with information on connecting the Java agent to an HP SaaS hosted
Diagnostics mediator server.

If you select TransactionVision, see the HP TransactionVision Deployment
Guide in the Business Service Management documentation library for details
on setup options specific to TransactionVision.

With the Application Management/Enterprise Mode (AM License) option,
the value of the active.properties property in the etc/probe.properties file
is set to Enterprise mode if you select the Diagnostics Server. It is set to TV
mode if you select the TransactionVision server at the time you install the
Java Agent (see “Set the Active Products Mode” on page 505).

For those agents with Enterprise mode set, the agent will be counted against
your HP Diagnostics AM license capacity.

➤ Select Diagnostics Profiler Mode to configure the agent as a Diagnostics Java
Profiler without any connection to a Diagnostics server. Diagnostics Profiler
mode is typically used when installing the Diagnostics Java Profiler trial
software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode the value of the active.products
property in the etc/probe.properties file is set to PRO mode at the time you
install the Java Agent (see “Set the Active Products Mode” on page 505).

When you select Diagnostics Profiler Mode there are no other configuration
options so you can select Finish to complete the configuration and the Post
Setup Summary dialog is displayed.

➤ Diagnostics Mode for LoadRunner/Performance Center (AD License). Select
this option to install the agent for use with a Diagnostics Server in a load
testing (or pre-production) environment where probes are used only in
LoadRunner or Performance Center runs.

The agent will be installed in AD license mode which means the agent will
only be counted against your HP Diagnostics AD license capacity when the
agent is in a LoadRunner or Performance Center testing run. See “License
Information Based on Currently Connected Probes” on page 85 for more
information on AD license capacity.

Chapter 5 • Installing Java Agents

144

In AD mode the agent will ONLY capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21. When the
agent is in AD mode it will NOT send any data to the server unless the probe
is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the active.properties
property in the etc/probe.properties file is set to AD mode at the time you
install the Java Agent (see “Set the Active Products Mode” on page 505).

The advantage of running a probe in AD mode is that probes in AD mode
are only counted against license capacity if they are in a LoadRunner or
Performance Center test run. For example if 20 probes are installed in
LoadRunner/Performance Center AD mode but only have 5 are in a run at
any one time then you would only need an AD license capacity of 5 probes.

In the console mode interface enter an X to select the mode for installation.

Select Next (in console mode Enter) to proceed and continue to the next
step.

Step 2. Agent Name and Group
Skip this step if the agent won’t be reporting to a Diagnostics Server.

Assign a name to the Java Agent and specify the group to which it belongs.

Chapter 5 • Installing Java Agents

145

➤ For the Java Agent name, enter a name that uniquely identifies the agent
within HP Diagnostics. You can use - , _ and all alphanumeric characters in
the name. The agent name is assigned as the default probe entity name. If
you have a single agent installed on a system and plan to monitor multiple
application servers or application domains you can later configure unique
probe names for each monitored application.

When assigning a name to an agent, choose a name that will help you
recognize the application being monitored and the system the agent is
installed on (for example if installing on the system ovrserver130 with a
WebLogic application server you could use the agent name
WL10_MedRec_ovrserver130).

➤ For the Java Agent group name, enter a name for an existing group or a new
group to be created. The agent group name is case-sensitive. The agent
group name is used as the probe group name.

Probe groups are logical groupings of probes that report to the same
Diagnostics Server. The performance metrics for a probe group are tracked
and can be displayed on many of the Diagnostics views.

For example, you can assign all of the probes for a particular enterprise
application to a probe group so that you can monitor both the performance
at the group level and the performance based on individual probe entities.

Select Next (in console mode Enter) to proceed and continue with the next
step.

Step 3. Diagnostics Server Information
Skip this step if the agent won’t be reporting to a Diagnostics Server.

Enter the configuration information for the Diagnostics Server and
additional options.

Chapter 5 • Installing Java Agents

146

In the console mode interface for each option enter an X for Yes and O for
No.

In the Diagnostics Server Name box, enter the host name or IP address of
the host of the Diagnostics Server this agent should connect to. You should
specify the fully qualified host name not just the simple host name. In a
mixed OS environment, where UNIX is one of the systems, this is essential
for proper network routing.

Chapter 5 • Installing Java Agents

147

Commander Server. If there is only one Diagnostics Server in the
Diagnostics deployment where the agent will run, enter the Diagnostics
Commander Server host name and port information here.

Mediator Server. In a distributed environment with a commander server
and mediator servers, enter the information for the Diagnostics Mediator
Server that is to receive data from the agent.

If you are using HP Software-as-a-Service (SaaS) then the Diagnostics
Mediator is installed by HP on an HP SaaS system on-premise at HP. An HP
SaaS administrator will provide you with the information on the host name
and port to use. Also note that for an HP SaaS environment the Enable gzip
option will be checked automatically for you and you will not see the
Enable SSL option because it is configured on the Diagnostics Commander/
Mediator on HP premises.

➤ In the Diagnostics Server Port box, enter the port number of the Diagnostics
Server.

The default port for the Diagnostics Server is 2006. For SSL communications
with the server the port is typically set to 8443 for a locally installed server.

The default port if you are installing the agent for a SaaS environment is 443
(the SaaS administrator will provide you with details).

If the port was changed since the Diagnostics Server was installed, you
should specify the new port number here instead of the default.

➤ To allow this agent to support a SAP NetWeaver Application Server, set the
Tune Diagnostics Java Agent for use in an SAP NetWeaver Application
Server check box.

➤ If you need to compress the data between the Java Agent and the mediator,
set the Enable gzip compression check box. This is a tradeoff between
bandwidth and probe performance overhead. In an HP SaaS environment
you are typically asked to enable gzip compression, see your SaaS
administrator for more information.

Chapter 5 • Installing Java Agents

148

➤ The Java Agent connects to the Diagnostics server via SSL when Enable SSL
is checked or the Diagnostics server is SaaS-hosted on HP premises.
Checking the Enable SSL checkbox instructs the agent to connect to the
Diagnostics Server in SSL mode and to attempt to download the required
certificate chain from the server. As a result the server.properties trusted
certificate will then include the certificate. For more information on secure
communications see “Enabling HTTPS Between Components” on page 839.

➤ If a proxy server is used to communicate with the Diagnostics Mediator
Server select Use Proxy Server to connect to Diagnostics Server check box
and enter the appropriate options. In an HP SaaS environment if your
company requires a proxy to communicate to outside servers then you
would select this option. These options can also be set in the
dispatcher.properties file on the agent system by setting proxy.enabled to
true and entering the other options. See “Configuring Diagnostics Servers
and Agents for HTTP Proxy” on page 671.

Proxy Server Options:

➤ Proxy Server Name. Host name of the proxy server.

➤ Proxy Server Port. Port of the proxy server.

➤ Proxy Server Username (optional). The user used to authenticate the
proxy server.

➤ Proxy Server Password (optional). The password used to authenticate the
proxy server.

➤ It is recommended that you change the Local Profiler Password from the
default (admin) password.

TransactionVision Information
If you selected to configure this agent for TransactionVision then you will
see additional dialog boxes to configure the agent for TransactionVision. See
the HP TransactionVision Deployment Guide for details on these installation
options.

Setup Process Begins
The Java Agent Setup process begins. In graphical mode a progress bar
indicates how the configuration is proceeding.

Chapter 5 • Installing Java Agents

149

The connectivity to the Diagnostics Server is tested. If any connectivity
problems are encountered, the Set Up Program displays the results of the
connectivity check.

Continue with the next step.

Step 4. Post Setup Summary
Review the Post Setup Summary and click OK.

You should use the automatic JRE instrumentation options instead of
manually running the JRE Intrumenter utility. Therefore the checkbox for
running the JRE Instrumenter utility is left blank by default. See the About
Preparing the Application Server for Monitoring below to continue.

Chapter 5 • Installing Java Agents

150

About Preparing the Application Server for Monitoring

The next steps are to instrument the JRE used by your application server and
configure your application server JVM parameters to invoke the Java Agent.

Follow the instructions in “Preparing Application Servers for Monitoring
with the Java Agent” on page 161 for how to instrument the JRE used by
your application server and how to configure the JVM parameters for
specific application servers to invoke the Java Agent.

After you prepare the application server for monitoring by the Java Agent
then you restart the application server and the Java Agent will be invoked to
begin monitoring the application.

For more information on client monitoring see Chapter 7, “Preparing
Application Servers for Client Monitoring with the Java Agent”.

Register the Agent with the Diagnostics Servers

Configure the agent to connect to the Diagnostics Commander Server.

One of the functions of the Diagnostics commander server is to keep track
of the Diagnostics components so that it can facilitate communication
between them and keep you informed about the status and health of the
components.

To configure the agent to register with the Diagnostics Server, set the host
name and port using the registrar.url property which can be found in the
property file: <probe_install_dir>\etc\dispatcher.properties.

Below is an excerpt from dispatcher.properties showing the registrar.url
property:

Chapter 5 • Installing Java Agents

151

Verifying the Java Agent Installation

The agent does not register with the Diagnostics Server until a probe is
started. The probe is started when the instrumented application server is
started. Therefore, you cannot check that the agent is working properly
until you instrument the JRE used by your application server and configure
your application server JVM parameters to invoke the Java Agent.

Once a Java probe instance is started you can launch the Diagnostics
Enterprise UI to verify that the probe is working. Go to
http://<Diagnostics_commander_server>:2006/. For now you can use the
default user/password of admin/admin or the login you were given if a
different one has been set up for you.

You can also check the System Health view to find information about the
Java agent deployments and the machines that host them.

To access the System Views:

 1 Open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

 2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

 3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

 4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

You can also check for entries in the
<probe_install_dir>\log\<probe_id>\probe.log file. If there are no entries
in the file, you did not instrument the JRE or did not enter the Java
parameter such as Xbootclasspath correctly. In the probe.log file look for
errors and look for an entry that says "Successfully downloaded first
command" which indicates that the communication between the probe and
the server has been established.

Continue on to the next section for post installation/setup tasks.

Chapter 5 • Installing Java Agents

152

About Additional Configuration and Custom
Instrumentation

There is some additional configuration and optional custom
instrumentation you can do. See the following:

➤ “Configure SOAP Message Handlers” on page 152

➤ “Specify Probe Properties as Java System Properties” on page 153

➤ “Optional Advanced Configurations” on page 153

➤ “Optional Custom Instrumentation” on page 153

➤ For information on configuration for environments with proxies see
“Configuring Diagnostics Servers and Agents for HTTP Proxy” on page 671,
firewalls see “Configuring Diagnostics to Work in a Firewall Environment”
on page 675 and for enabling HTTPS see “Enabling HTTPS Between
Components” on page 839.

Configure SOAP Message Handlers
The Diagnostics SOAP message handler is required to support the following
features:

➤ Collect payload for SOAP faults.

➤ Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets
were written to automatically configure the Diagnostics handlers for web
services being monitored.

For WebSphere 5 JAX-RPC and Oracle 10g JAX-RPC, manual steps are
required to configure the SOAP handler. See “Loading the Diagnostics SOAP
Message Handler” on page 239.

Chapter 5 • Installing Java Agents

153

Specify Probe Properties as Java System Properties
All of the probe properties, except for those defined in the
dynamic.properties property file, can be specified as Java System properties
on the startup command line for the application server. This is very useful
when there is more than one JVM using a single probe installation.

To specify a property as a Java System property, pre-pend the letter D and
the first part of the properties file name to the property name. The following
examples explain this.

➤ To set the id property in probe.properties from the startup command,
concatenate the D and probe from the property file name, and then tack on
the name of the property you are specifying; that is, id, as follows:

➤ To set the active.products property in probe.properties from the startup
command, concatenate the D and probe from the property file name, and
then tack on the name of the property you are specifying; that is,
active.products, as follows:

➤ To set the registrar.url property in dispatcher.properties from the startup
command, concatenate the D and dispatcher from the property file name,
and then tack on the name of the property you are specifying; that is,
registrar.url, as follows:

Optional Advanced Configurations
Determine which advanced configurations of the probe apply to your
environment. See Chapter 13, “Advanced Java Agent and Application
Server Configuration.”

Optional Custom Instrumentation
You can also configure custom instrumentation if needed. See Chapter 10,
“Custom Instrumentation for Java Applications,” for details.

-Dprobe.id=SomeId

-Dprobe.active.products=Enterprise,TV

-Ddispatcher.registrar.url=http:/</host01.company.com>:2006/commander/registrar

Chapter 5 • Installing Java Agents

154

Installing the Java Agent on a z/OS Mainframe

This section provides instructions for installing the Java Agent from the .tgz
file that is included on the Diagnostics installation disk.

Consider the following before you install a Java Agent and configure it to be
a Java Agent in a z/OS environment:

➤ The Diagnostics Java Agent is installed in and makes extensive use of the
Unix System Services environment (USS) on z/OS.

➤ When installed in a z/OS environment, the Java Agent expects the
Diagnostics property files to be in EBCDIC format rather than in ASCII. Use
an EBCDIC editor to update the property files and store the updates in that
same format.

➤ System metrics are not captured for z/OS. The Diagnostics Java Agent can be
configured to capture a limited number of system level metrics.

For more information on capturing system metrics in z/OS, see
“Enabling z/OS System Metrics Capture” on page 721.

Installing the Java Agent on z/OS from the Diagnostics
Installation Disk
A .tgz file containing the Java Agent files is included on the Diagnostics
installation disk and is used to install the Java Agent on a z/OS mainframe.

To install the Java Agent on a z/OS mainframe:

 1 Upload HPDiagTVJavaAgt_<release number>_zos.tgz from the
Diagnostics_Installers folder on the HP Diagnostics installation disk to the
directory on the z/OS system where you wish to unzip the installer.

 2 Unzip HPDiagTVJavaAgt_<release number>_zos.tgz using gzip as shown in
the following example:

This command creates the unzipped file, HPDiagTVJavaAgt_<release
number>_zos.tar.

gzip -d HPDiagTVJavaAgt_9.10_zos.tgz

Chapter 5 • Installing Java Agents

155

 3 To unpack the .tar file, run the tar command as shown in the following
example:

This command creates the unpacked directory, JavaAgent.

 4 Ensure that you have a Java executable on your path, and then run the Java
Agent Setup Module to configure the Java Agent as a Profiler only or as a
Java Agent to work with a Diagnostics Server and/or a TransactionVision
Processing Server. Refer to “Running the Java Agent Setup Module” on
page 141 for details. For example (or as appropriate for your shell):

And then:

 5 After you install the agent and run the Setup Module you must then
instrument the JRE used by the application server and configure your
application server JVM parameters to invoke the Java Agent see Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent.”

 6 Verify the agent installation as described in “Verifying the Java Agent
Installation” on page 151.

 7 Complete post installation configuration as required. See “About Additional
Configuration and Custom Instrumentation” on page 152.

Installing Java Agents on Multiple z/OS Machines
If you plan to install Java Agents on more than one z/OS machine, you
might want to create a pax archive of the agent implementation on the first
machine and then use the pax archive to install the agent onto the other
machines. Contact your system administrator for more information.

tar -xfp HPDiagTVJavaAgt_9.10_zos.tar

setenv PATH /u/Java6_31/J6.0/bin:/bin

<probe_install_dir>/bin/setupModule.sh

Chapter 5 • Installing Java Agents

156

Installing the Java Agent Using the Generic Installer

The installers for the Java Agent were built to support installing the agent on
all of the platforms for which the component was certified. However, the
agent might work on other platforms that are not yet certified. A generic
installer is provided on the product installation disk to allow you to install
the agent on these uncertified platforms.

To get the agent to work on the platforms that are not supported by the
regular installer, run the generic installer and manually configure the agent
as a Java Probe so that it can communicate with the other Diagnostics
components and monitor the processing of your application.

To install and configure the Java Agent on an uncertified platform:

 1 Locate HPDiagTVJavaAgt_<release number>_unix.tgz from the
Diagnostics_Installers folder on the HP Diagnostics installation disk.

 2 Unzip HPDiagTVJavaAgt_<release number>_unix.tgz using gzip as shown in
the following example:

When this command completes, the unzipped file is called
HPDiagTVJavaAgt_<release number>_unix.tar.

 3 To unpack the tar file, run the following tar command:

This command creates the unpacked JavaAgent directory.

 4 Run the Java Agent Setup Module to configure the Java Agent as a Profiler
only or as a Java Agent to work with a Diagnostics Server and/or a
TransactionVision Processing Server. Refer to “Running the Java Agent Setup
Module” on page 141 for details.

gzip -d HPDiagTVJavaAgt_9.10_unix.tgz

tar -xfp HPDiagTVJavaAgt_9.10_unix.tar

<probe_install_dir>/bin/setupModule.sh

Chapter 5 • Installing Java Agents

157

 5 After you install the agent and run the Setup Module then you must
instrument the JRE used by your application servers and configure your
application server JVM parameters to invoke the Java Agent, see Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent.”

 6 Verify the agent installation as described in “Verifying the Java Agent
Installation” on page 151.

 7 For additional information see “About Additional Configuration and
Custom Instrumentation” on page 152.

Silent Installation of the Java Agent

Silent installation of the Java Agent is supported. A silent installation is
performed automatically, without the need for user interaction. In place of
user input, the silent installation accepts input from a response file for each
install step.

Before you perform silent installations on multiple machines, you must
generate a response file that will provide input during the installation
procedure. This response file can be used in all silent installations that
require the same input during installation.

Important: With each new release of Diagnostics you should re-record the
response files prior to performing silent installation on multiple machines.

The response file has the suffix .rsp. You can edit the response file with a
standard text editor.

Silent installation uses two response files: one for the Java Agent installation
and one for the Java Agent Setup Module.

Chapter 5 • Installing Java Agents

158

To generate a response file for the Agent installation:

➤ Perform a regular installation with the following command-line option.
Note that for Windows installers the options must be preceded with -a. For
example: HPDiagServer_9.20_win32.exe -a -options-record myfile.

Where <installResponseFileName> is the fully qualified file. This creates a
response file that includes all the information submitted during the
installation.

To generate a response file for the Java Agent Setup Module:

➤ Run the Java Agent Setup Module with the following command-line
options.

On Windows:

On UNIX:

Where <JASMReponseFileName> is the fully qualified file. Either command
creates a response file that includes all the information submitted during the
setup.

To perform a silent installation of the Java Agent:

➤ Perform a silent installation using the Java agent install response file.

First set an environment variable and then run the installer with the
following -silent command-line option. Note that for Windows installers the
options must be preceded with -a. For example:
HPDiagServer_9.20_win32.exe -a -silent -options myfile.

<installer> -options-record <installResponseFileName>

<probe_install_dir>\bin\setupModule.cmd -createBackups -console -recordFile
 <JASMResponseFileName>

<probe_install_dir>/bin/setupModule.sh -createBackups -console -recordFile
 <JASMResponseFileName>

set HP_JAVA_AGENT_SETUP=-DoNotRun
<installer> -silent -options <installResponseFileName>

Chapter 5 • Installing Java Agents

159

On UNIX systems, use quotes when specifying the environment variable.

To perform a silent configuration using the Java Agent Setup Module:

➤ Perform a silent installation using the Java agent setup module response file.

Unset the environment variable and then run the Java Agent Setup Module
with the following -silent command-line option:

On UNIX systems, use empty quotes to unset the environment variable.

To specify two additional options after the response file name when
preforming a silent installation:

➤ You can create a log file by specifying the is:log <logfilepath> option.

➤ You can change the temp directory to a user-specified directory by
specifying the is:tempdir <tempDirPath> option.

Setting File Permissions (UNIX Only)

On UNIX only, after installing the Java Agent, make the agent’s ’group’ the
same as the application server’s ’group’. Then assign the following
permissions to files in the probe install directory for the group:

➤ Read access to the <probe_install_dir> directory and files.

➤ Execute access to the <probe_install_dir>/bin directory.

➤ Read/Write access to the <probe_install_dir>/log directory.

Depending on your organization’s security requirements, you might want to
further restrict access to this directory; for example:

chmod 775 /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/log

set HP_JAVA_AGENT_SETUP="-DoNotRun"

set HP_JAVA_AGENT_SETUP=
<setupModule> - silent -createBackups -console -installFile <JASMResponseFileName>

set HP_JAVA_AGENT_SETUP=""

Chapter 5 • Installing Java Agents

160

Determining the Version of the Java Agent

When you request support, it is useful to know the version of the
Diagnostics component you have a question about.

You can find the version of the Java Agent in one of the following ways:

➤ Locate the version file <Probe_install_dir>\version.txt. The file contains the
four-digit version number, as well as the build number.

➤ The version number is available in the probe log file (<Probe_install_dir>/
log/<probe_id>/probe.log).

➤ And the version number is available in the System Health view in the
Diagnostics UI (see Appendix D, “Using System Views for Administrators”).

Uninstalling the Java Agent

To uninstall the Java Agent:

➤ On a Windows machine, choose Start > All Programs > HP Java Agent >
Uninstaller.

Or run uninstaller.exe, which is located in the <probe_install_dir>_uninst
directory.

➤ On a Linux or Solaris machine, run uninstaller.bin, which is located in the
<probe_install_dir>/_uninst directory.

➤ On other UNIX machines, choose a 1.4 or later JVM and run java -jar
<probe_install_dir>/_uninst/uninstall.jar to uninstall the Java Agent.

Also remember to remove the Java Agent parameter you added to your
application server startup.

161

6
Preparing Application Servers for
Monitoring with the Java Agent

This chapter describes how to prepare your application servers to allow the
HP Diagnostics Java Agent to monitor your applications.

This chapter includes:

 ➤ About Preparing Application Servers for Monitoring on page 162

 ➤ Examples for Configuring Application Servers on page 163

 ➤ About the JRE Instrumenter and Different Options to Invoke on page 219

 ➤ Other Configuration Options on page 232

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

162

About Preparing Application Servers for Monitoring

Once you install the HP Diagnostics Java Agent you must prepare
(instrument) your application servers to allow the Java Agent to monitor
your applications. This preparation usually involves instrumenting the JRE
used by your application servers and configuring your application server
JVM parameters to invoke the Java Agent.

Diagnostics’ JRE instrumentation does not modify the installed JRE, but
rather places copies of instrumented classes under the Java Agent
installation directory. Then with the proper JVM parameters these
instrumented classes will be loaded into the JVM that runs your application
server. The instrumentation is done using the Diagnostics JRE Instrumenter
utility which can be invoked automatically using various options or
manually.

There are two-levels of instrumentation:

➤ Basic instrumentation.

By adding the Java Agent to your application server start up, your
application server will be instrumented and monitored. This is done by
adding the -javaagent option to your application server JVM parameters.

➤ Recommended instrumentation.

In addition to the basic instrumentation, we recommend that you also
instrument the JRE (Java Runtime Environment) used by your application
server using the JRE Instrumenter utility provided by the Java Agent. This
extra instrumentation will enable the Java Agent to provide advanced
features such as the patent-pending Collection Leak Pinpointing (CLP). CLP
automatically detects leaking collections and provides a stack trace of where
the leak occurs. This helps identify issues early, while there is time to
mitigate the issue (such as an eventual out of memory error/server crash), as
well as saves developers time by avoiding the tedious task of analyzing heap
dumps (see “Configuring Collection Leak Pinpointing” on page 377). And
this extra instrumentation also has performance benefits on certain
application servers such as WebSphere 6.1.

For general instructions on using the different JRE instrumentation modes
see “About the JRE Instrumenter and Different Options to Invoke” on
page 219.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

163

For older application servers that use JRE 1.4, such as WebLogic 8.1 and
WebSphere 5.1/6.0, the basic instrumentation is not available; you must use
the recommended instrumentation on them.

To continue, find your application server in the list below and follow the
instructions for instrumenting and configuring.

Examples for Configuring Application Servers

This section provides examples of how to configure various commonly used
application servers for monitoring. See the section “About the JRE
Instrumenter and Different Options to Invoke” on page 219 for a
description of the different ways you can invoke the JRE Instrumenter.

Important: Make sure that you understand the structure of the startup
scripts, how the property values are set, and the use of environment
variables before you make any application server configuration changes.
Always create a backup copy of any file that you plan to update before
making the changes.

“Example 1: Configuring GlassFish” on page 164

“Example 2: Configuring JBoss” on page 168

“Example 3: Configuring Oracle” on page 172

“Example 4: Configuring SAP NetWeaver” on page 178

“Example 5: Configuring TIBCO ActiveMatrix/BusinessWorks” on page 183

“Example 6: Configuring Tomcat” on page 187

“Example 7: Configuring WebLogic” on page 192

“Example 8: Configuring WebSphere” on page 196

“Example 9: Configuring webMethods” on page 212

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

164

For the most recent information on what application server versions are
supported on what platforms, see the HP Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp or contact HP
customer support.

Note:

➤ The script examples shown in this chapter may have line breaks to make
it easier to read. The actual scripts do not have line breaks. The text of the
commands will wrap on your screen as necessary.

➤ Use quotes if there are spaces in the path that you specify.

Example 1: Configuring GlassFish
Configuring a GlassFish application server involves modifying its
configuration files to add JVM parameters. Below are the instructions for a
generic GlassFish 3.x or 9.1 application server implementation. Your site
administrator should be able to use these instructions to guide you in
making the changes that are appropriate to your specific environment.

For GlassFish application servers you configure JRE instrumentation using
implicit mode (see “Using the JRE Instrumenter in Automatic Implicit
Mode” on page 224).

To configure a GlassFish application server:

 1 For GlassFish 3.x application servers locate the property
org.osgi.framework.bootdelegation in the GlassFish configuration files and
append com.mercury.opal.capture.proxy to its end (also need a comma as a
separator).

For GlassFish 9.1 skip this step.

In GlassFish 3.1.2, this property is located in <GlassFish_install_dir>/
glassfish/config/osgi.properties.

In an earlier version of GlassFish, this property may reside in the following
two files:

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

165

< GlassFish_install_dir >/osgi/equinox/configuration/config.ini

< GlassFish_install_dir >/osgi/felix/conf/config.properties

 2 Log in to the GlassFish Administration Console and go to the JVM Options
page, by using the following steps:

For GlassFish 3.1.2, in the left-hand tree go to Configurations >
{config_name} > JVM Settings, where {config_name} is the name of your
server configuration (such as., server-config). Then select the JVM Options
tab. See the screenshot below as a reference.

If you are working with an earlier version of GlassFish, click Application
Server in the left-hand tree and then select the JVM Settings tab at the top.
Then select the JVM Options tab.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

166

For GlassFish 9.1, in the left-hand tree click Application Server and then
select the JVM Settings tab at the top. Then select the JVM Options tab. See
the screenshot below as a reference.

 3 Click the Add JVM Option button to add two JVM parameters, one at a time.
The first parameter (-javaagent) causes the application server JVM to invoke
the Java Agent at start-up. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the name of the
directory for storing the instrumented classes. In the following examples
you would substitute a name you choose for MyServer.

Below is an example for a Windows environment:

Below is an example for a UNIX environment:

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServer\instr.jre

-javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/MyServer/instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

167

Note: In case of cluster setup, also add the following JVM parameter
-Dprobe.id=<ProbeID>_%0
where <ProbeID> is the probe name that you want to assign to this
application server cluster. The "%0" string will be replaced with a unique ID
so that you can differentiate different probe instances.

 4 Restart the GlassFish application server.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

If the GlassFish application server does not start, you can check and change
the JVM parameters in the <GlassFish_install_dir>/glassfish/domains/
<domain_name>/config/domain.xml file to resolve the issue, where
<domain_name> is the name of your domain (such as, domain1).

If GlassFish fails to start with class loader exceptions, then check whether
AS_JAVA is set correctly in <GlassFish_install_dir>/config/asenv.bat.

If the GlassFish application server takes a long time to initialize and fails to
start due to the following error:

Could not load Logmanager "com.sun.enterprise.server.logging.ServerLogManager"

add the following JVM option
 -Ddiag.agent.init.delay.ms=<delay_ms>
where <delay_ms> is the number of milliseconds (for example, 6000). You
can increase the <delay_ms> until the error is gone.

 5 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the GlassFish server log.

 6 Optionally, restart the application server again so that it will use the
instrumented JRE.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

168

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/MyServer directory (use your directory
name for MyServer) so that the new JRE will be instrumented. Otherwise,
your application server may not start. For details see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

Example 2: Configuring JBoss
JBoss application servers are started by shell or command scripts. Therefore,
we recommend that you modify the startup scripts to configure the JBoss
application server. Because the startup scripts that JBoss provides are
frequently customized by the site administrator, it is not possible to provide
detailed configuration instructions that apply exactly for each situation.
Therefore, the following sections provide instructions with specific
examples for the JBoss application server for a generic implementation. Your
site administrator should be able to use these instructions to guide you to
make these changes in your customized environment.

For JBoss application servers you configure JRE instrumentation using
explicit mode (see “Using the JRE Instrumenter in Automatic Explicit Mode”
on page 221).

To use Automatic Explicit mode, you need to accomplish two tasks:

➤ Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

➤ Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

To configure a JBoss application server:

 1 Locate the startup script that is used to start JBoss for the application. For
example:

➤ On JBoss versions earlier than 7.0:

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

169

The startup script file is typically located in a path similar to the
following:

<JBOSS_HOME>\bin\run.[bat|sh]

where <JBOSS_HOME> is the path to your JBoss installation directory,
such as C:\ jboss-4.2.3.GA or C:\jboss-6.0.0.Final.

➤ On JBoss 7.0 or higher:

The startup script file is typically located in a path similar to one of the
following:

<JBOSS_HOME>\bin\domain.[bat|sh]

<JBOSS_HOME>\bin\standalone.[bat|sh]

where <JBOSS_HOME> is the path to your JBoss installation directory,
such as C:\jboss-as-7.1.0.Final.

Note: If your JBoss application server is started as a Windows service, before
you continue with the following steps, make sure that you can start the
application server using the startup script, as the startup script will be
invoked by the Windows service behind the scene.

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

 3 Locate the java command line (or code block) that starts the application
server.

Below is an example showing the java command line from a .bat file:

"%JAVA%" %JAVA_OPTS% ^
-Djava.endorsed.dirs="%JBOSS_ENDORSED_DIRS%" ^
-classpath "%JBOSS_CLASSPATH%" ^ org.jboss.Main %*

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

170

Below is an example showing the java command line from a .sh file:

 4 Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MyServer.

Below is an example showing the added two lines in a .bat file of a JBoss
application server using JRE 5 or higher:

Below is an example showing the added two lines in a .sh file of a JBoss
application server that uses JRE 5 or higher:

 if ["x$LAUNCH_JBOSS_IN_BACKGROUND" = "x"]; then
 # Execute the JVM in the foreground
 "$JAVA" $JAVA_OPTS \
 -Djava.endorsed.dirs="$JBOSS_ENDORSED_DIRS" \
 -classpath "$JBOSS_CLASSPATH" \
 org.jboss.Main "$@"
 JBOSS_STATUS=$?
 else
 # Execute the JVM in the background
 "$JAVA" $JAVA_OPTS \
 -Djava.endorsed.dirs="$JBOSS_ENDORSED_DIRS" \
 -classpath "$JBOSS_CLASSPATH" \
 org.jboss.Main "$@" &
 JBOSS_PID=$!
 . ……

"%JAVA%" -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

"$JAVA" -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/jreinstrumenter.jar -f MyServer

JAVA_OPTS="$JAVA_OPTS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/
MyServer/instr.jre -javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar"

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

171

Below is an example showing the added two lines in a .bat file of a JBoss
application server using JRE 1.4:

Note: If your java command line does not use the JAVA_OPTS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTS shown in these examples to the correct name.

Important:

➤ For JBoss 6 or higher, add the following JVM parameter to JAVA-OPTS:
-Djava.util.logging.manager=org.jboss.logmanager.LogManager

➤ For JBoss 7 or higher, add the following JVM parameter to JAVA-OPTS:
-Djboss.modules.system.pkgs=org.jboss.byteman,com.mercury.opal

 5 Save the changes to the startup script and restart the application server
using the modified script.

 6 To help catch errors or typos, execute the starup script, find the output from
the JRE Instrumenter (search for Xbootclasspath). If you have added the
second line (setting JVM parameters) to the startup script in Step 4, compare
it with the JVM parameters from the JRE Instrumenter output. If they are
not the same, update the startup script with the correct JVM parameters
provided by the JRE Instrumenter and restart the application server. If you
have not added the second line (setting JVM parameters) to the startup
script in Step 4, add it now and restart the application server. See Step 4 for
examples.

"%JAVA%" -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

172

 7 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

Example 3: Configuring Oracle
This section provides instructions for configuring an Oracle 9i or 10g
application server.

About configuring an Oracle9i application server:

Oracle9i application servers are configured by adding the JVM parameters
provided by the JRE Instrumenter to the XML file used to start the
application server.

To configure an Oracle9i application server:

 1 Locate the XML file that is used to control the configuration of the
application server when the server is started. The file is typically located at
<Oracle 9iAS_Install_Dir>/opmn/conf/opmn.xml.

 2 Create a backup copy of the opmn.xml file and open the opmn.xml file to be
edited using your editor.

 3 Run the JRE Instrumenter manually to instrument the JRE used by your
Oracle application server. (See “Using the JRE Instrumenter in Manual
Mode” on page 226 for instructions on how to run the JRE Instrumenter
manually.)

 4 Add the Java parameters that you copied from the JRE Instrumenter results
(such as the Xbootclasspath property) to the java-option value property.

The following is an example of the Xbootclasspath parameter:

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\Sun\1.4.2_04\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

173

Note: When modifying the -Xbootclasspath parameter, use quotes if there
are spaces in the path you specify.

The following image is an example of an Oracle 9iAS startup script before
adding the Xbootclasspath parameter:

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

174

The following image is an example of an Oracle 9iAS startup script after
adding the Xbootclasspath parameter:

 5 Save the changes to the XML file and restart the Oracle application server.

 6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, you did not run the JRE Instrumenter or
did not enter the Java parameter such as Xbootclasspath correctly.

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), you must run the JRE
Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.
For details, see “Using the JRE Instrumenter in Manual Mode” on page 226.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

175

To configure an Oracle 10g application server:

 1 Run the JRE Instrumenter manually to instrument the JRE used by your
Oracle application server. (See “Using the JRE Instrumenter in Manual
Mode” on page 226 for details.) The JRE Instrumenter will provide the JVM
parameters (such as the -Xbootclasspath parameter) to be used later.

 2 Open Oracle's Application Server Control Console,

 3 Click the home (or MyOC4J) System Component.

 4 On the OC4J: home page, select Administration.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

176

 5 On the Administration page, select Server Properties.

 6 In the Server Properties window, under Command Line Options, add the
JVM parameters you copied from the JRE Instrumenter results to the Java
Options box.

Note: It is required to add a (^) prior to the /p switch or Oracle will change
the (/) switch option to a (\).

The following is an example of the Xbootclasspath parameter with the (^)
inserted.

-Xbootclasspath^/ p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\Sun\1.4.2_07\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

177

 7 Apply the changes and restart the Oracle server.

 8 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, you did not run the JRE Instrumenter or
did not enter the Java parameter such as Xbootclasspath correctly.

Some of the Web Services deployed on Oracle OC4J application server, due
to their non-compliance to the JAX-WS standard, may not be recognized by
Diagnostics. To work around this issue you can try setting
annotation.inheritance.allow=true in inst.properties.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

178

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), you must run the JRE
Instrumenter again to instrument the new JRE and change the JVM
parameters accordingly. Otherwise, your application server may not start.
For details, see “Using the JRE Instrumenter in Manual Mode” on page 226.

Example 4: Configuring SAP NetWeaver
Depending on the JRE version used by your SAP NetWeaver application
server, the instructions for configuration are different. The following two
sections provide instructions for a generic NetWeaver implementation with
JRE version 5 and higher and a generic NetWeaver implementation with JRE
version 1.4. Your site administrator should be able to use these instructions
to guide you through making the changes that are appropriate to your
specific environment.

For SAP NetWeaver application servers with JRE version 5 or higher you
configure JRE instrumentation using implicit mode (see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224). For SAP
NetWeaver application servers with JRE version 1.4 you run the JRE
Instrumenter manually (see “Using the JRE Instrumenter in Manual Mode”
on page 226).

To configure a SAP NetWeaver application server that uses JRE version 5 or
higher:

 1 Run the NetWeaver J2EE Engine configuration tool. The script to run this
tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\configtool directory, where CR2 is an example of
the name of your SAP system.

 2 In the configuration tool UI, in the left-hand tree, select the server that you
want to monitor. For example in the screenshot below, select cluster-data >
instance_ID39260 > server_ID3926050. Then, at the right-hand side select
the General tab and add two JVM parameters into the Java parameters text
window.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

179

The first parameter (-javaagent) causes the application server JVM to invoke
the Java Agent at start-up. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the directory for
storing the instrumented classes. In the example below the name
server_ID3926050 is used. You would substitute a name you choose for
server_ID3926050.

Below is an example screen for SAP NetWeaver versions 7.1 or earlier of the
JVM parameters.

The following is an example screen for SAP NetWeaver verison 7.3. You
enter the JVM parameters in the Custom parameters box and you must enter
each parameter separately (-javaagent and -Xbootclasspath).

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\server_ID3926050\instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

180

In a clustered environment where a single startup script is used to start
multiple probed application server instances you also enter the Custom
parameter -Dprobe.id=<probeName>%0. This will generate a custom probe
identifier for each probe. On Windows, use %%0. Use the first % to escape
the second %.

 3 Save your changes and exit the configuration tool.

 4 Edit the <JavaAgent_install_dir>\etc\capture.properties file and assign the
following values to these properties:

event_buffer.size = 10000
event_buffer.flush.level = 1000

 5 Restart the SAP NetWeaver application server.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

181

 6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, the JRE Instrumentation may have failed or
you did not enter the JVM parameters correctly. Check the NetWeaver
bootstrap log for error messages.

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/server_ID3926050 directory (use your
directory name for server_ID3926050) so that the new JRE will be
instrumented. Otherwise, your application server may not start. For details,
see “Using the JRE Instrumenter in Automatic Implicit Mode” on page 224.

To configure a SAP NetWeaver application server that uses JRE version 1.4:

 1 Locate the JRE that is used to run the NetWeaver application server.

 2 Run the JRE Instrumenter to instrument this JRE. The JRE Instrumenter will
provide the JVM parameters (such as the -Xbootclasspath parameter) to be
used later. See “Using the JRE Instrumenter in Manual Mode” on page 226"
for how to run the JRE Instrumenter and copy the resulting JVM parameters
to the clipboard for use in step 4 below.

 3 Run the NetWeaver 2EE Engine configuration tool. The script to run this
tool is called configtool.bat and is located in the
usr\sap\CR2\JC00\j2ee\configtool directory, where CR2 is an example of
the name of your SAP system.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

182

 4 On the configuration tool UI, in the left-hand tree, select the server that you
want to monitor, for example, cluster-data > instance_ID39260 >
server_ID3926050. In the General tab, you can find the Java parameters text
window. Add the JVM parameter provided by the JRE Instrumenter into the
text window. See the screenshot below as a reference.

 5 Save your changes and exit the configuration tool.

 6 Edit the <JavaAgent_install_dir>\etc\capture.properties file and assign the
following values to these properties

event_buffer.size = 10000
event_buffer.flush.level = 1000

 7 Restart the NetWeaver application server.

 8 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the NetWeaver bootstrap log.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

183

 Example 5: Configuring TIBCO ActiveMatrix/
BusinessWorks
The following sections describe the steps to configure TIBCO ActiveMatrix
and BusinessWorks so that the applications can be monitored.

For TIBCO ActiveMatrix and BusinessWords application servers you
configure JRE instrumentation using implicit mode (see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224).

Important: If you update the JRE used by your application server in the
future (such as applying an application server patch), before you start your
application server again you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/Tibco_Node1 directory (use your directory
name for Tibco_Node1) so that the new JRE will be instrumented.
Otherwise, your application server may not start.

To instrument TIBCO servers you add two JVM parameters as shown in the
following procedures for different TIBCO versions. The first parameter
(-javaagent) causes the application server JVM to invoke the Java Agent at
start-up. On the first invocation, the second parameter (-Xbootclasspath)
causes the application server JRE to be instrumented. In the -Xbootclasspath
parameter you enter a name to identify the server. In the following
procedures you substitute a name you choose for the example name shown
in bold.

To configure TIBCO BusinessWorks:

For TIBCO BusinessWorks, append the two JVM parameters like the
following example to the java.extended.properties in one of the following
TIBCO BusinessWorks files depending on how you deployed the application
and which applications you want to monitor. If java.extended.properties is
not present, add it. One way of doing this is shown in the example below:

java.extended.properties=-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/TIBCO_BW1/instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

184

If you want to monitor a previously deployed application or monitor only
certain applications in TIBCO BusinessWorks, update
<BusinessWorks_install_dir>\tra\domain\<Domain_Name>\application\<A
pplication_Name>\<Application_Name>.tra with the JVM parameters. The
JRE to instrument is specified in the .tra file user property
tibco.env.TIB_JAVA_HOME.

➤ If you deployed the application using TIBCO Administrator. Update
bwengine.tra with the JVM parameters.

➤ If you deployed the application using TIBCO Designer. Update designer.tra
with the JVM parameters.

To configure TIBCO BusinessWorks for JMX Metrics Collection:

For TIBCO BusinessWorks JMX metrics collection, enable JMX access to the
Business Works process. This is done by adding the following property to
the same Business Works .tra file where the Java Agent instrumentation is
configured.

JmxEnabled=true

Additional JMX metrics are exposed by certain components used by TIBCO,
such as Apache Tomcat and Pramati J2EE server. Some of these metrics are
not collected by default (these metrics are commented out in the
metric.config file). These metrics can be activated by uncommenting them
out in the metrics.config file. The reason to make them inactive is that the
metrics represent mainly performance tuning configuration parameters and
should rarely change during the lifetime of an application.

See “Java Agent - JMX Metrics Capture” on page 723 for general information
on JMX metrics collection.

To configure TIBCO ActiveMatrix Service Bus 2.0 and 2.3:

 1 For TIBCO ActiveMatrix Service Bus (AMSB) 2.0 and 2.3 locate the AMSB .tra
file and append JVM parameters to java.extended.properties. If
java.extended.properties does not exist, add it.

Below is an example on Windows that uses TIBCO_Node1 as the name. Note
the use of slash (/) instead of backward slash (\).

java.extended.properties=-javaagent:jarC:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/TIBCO_Node1/instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

185

 2 In addition, in order to see outbound JMS web service operations in AMSB,
you may need to update details.conditional.properties in
etc\inst.properties with the correct version. Currently, there are 2 versions
of AMSB supported, 2.0 and 2.3. Make sure only one version is enabled by
setting it to 'true' and setting the other to ’false’. The example below shows
the default version, AMSB version 2.3, enabled:

To configure TIBCO ActiveMatrix Service Bus 3.1.2 Production Environment:

 1 For TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 in a production
environment, locate the following AMSB file:

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_ServerName>\
tools\machinemodel\machine.xmi

 2 Update the runtimes section of the file for each node you want to monitor.
For example:

<runtimes xsi:type="machinemodel:OSGiRuntime" name="Node1"

In the runtimes section for each node locate the frameworkProperties key
org.osgi.framework.bootdelegation and append com.mercury.* to the value
of the property.

For example:

<frameworkProperties key="org.osgi.framework.bootdelegation"
value="com.ibm.*,,sun.*,com.mercury.*"/>

 3 Then for each node locate the .tra file.

<tibco_amx_configuration_dir>\data\tibcohost\<EnterpriseName_ServerName>\
nodes\<NodeName>\bin\tibams_<NodeName>.tra

details.conditional.properties= \
 mercury.enable.SOAPHandler=true, \
 mercury.enable.autoLoadSOAPHandler=true, \
 mercury.enable.resourcemonitor.jdbcConnection=false, \
 mercury.enable.resourcemonitor.jdbcStatement=false, \
 mercury.enable.resourcemonitor.jdbcResultSet=false, \
 mercury.enable.tibco.amsb2.0=false, \
 mercury.enable.tibco.amsb2.3=true

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

186

Append the two JVM parameters to the java.extended.properties in each
file. Below is an example that uses AMSB_Node1 as the name.

To configure TIBCO ActiveMatrix Service Bus 3.1.2 Development
Environment:

 1 For TIBCO ActiveMatrix Service Bus (AMSB) 3.1.2 in a development
environment you would update the boot delegation:

And append com.mercury.* to the end of
org.osgi.framework.bootdelegation.

For example:

OSGi framework properties
org.osgi.framework.bootdelegation=\
...
 org.xml.*,\
 sun.*,\
 com.mercury.*

 2 Then update the JVM Options in the Advance tab of Run Configuration to
add the two JVM parameters.

java.extended.properties=-javaagent:C:/ MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/ JavaAgent/DiagnosticsAgent/classes/auto/AMSB_Node1/instr.jre

<tibco_amx_configuration_dir>\components\shared\1.0.0\plugins\com.tibco.metadata.h
pa.tibcohost.nodetype.integration_3.1.200.000\META-INF\com.tibco.amf.node.types\co
m.tibco.amf.hpa.tibcohost.node.integration.feature\3.1.200\provisioning.properties

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

187

Following is an example, which uses AMSB_DevNode as the name.

Example 6: Configuring Tomcat
Apache Tomcat is frequently embedded into other applications or servers. As
a result, the way to instrument it may vary. The following sections provide
instructions on how to configure a Tomcat server in simple scenarios, but it
is generic enough to guide you in your particular situation.

If your Tomcat server is started by a shell or Windows command script, it is
recommended that you modify the startup script to instrument it, see
“Configuring Tomcat Server with a Startup Script” on page 187.

In a Windows environment, if Tomcat is installed as a Windows service and
has no scripts, we recommend that you modify its Java Options to
instrument it. See “Configuring Tomcat Server without a Startup Script” on
page 191.

Configuring Tomcat Server with a Startup Script

Because the startup scripts that Tomcat provides are frequently customized
by other applications or by the site administrator, it is not possible to
provide detailed configuration instructions that apply exactly for each
situation. Therefore, the following sections provide instructions with
specific examples for a generic Tomcat server implementation. Your site
administrator should be able to use these instructions to guide you to make
these changes in your customized environment.

You use Automatic Explicit instrumentation mode to configure Tomcat
server with a startup script (see “Using the JRE Instrumenter in Automatic
Explicit Mode” on page 221). This involves two tasks:

➤ Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

➤ Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar
-Xbootclasspath/p:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/classes/auto/AMSB_DevNode/instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

188

To configure a Tomcat server with a startup script:

 1 Locate the startup script that is used to start Tomcat for your application.

In some scenarios, the startup script will end up calling the following script
to start Tomcat:

<Tomcat_install_dir>/bin/catalina.[bat|sh]

where <Tomcat_install_dir> is the path to your Tomcat installation
directory, such as C:\apache-tomcat-7.0.8.

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

 3 Locate the java command line (or code block) that starts the Tomcat server.

Below is an example from the catalina.bat file:

rem Execute Java with the applicable properties
if not "%JPDA%" == "" goto doJpda
if not "%SECURITY_POLICY_FILE%" == "" goto doSecurity
%_EXECJAVA% %JAVA_OPTS% %CATALINA_OPTS% %DEBUG_OPTS%
-Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath "%CLASSPATH%"
-Dcatalina.base="%CATALINA_BASE%" -Dcatalina.home="%CATALINA_HOME%"
-Djava.io.tmpdir="%CATALINA_TMPDIR%" %MAINCLASS% %CMD_LINE_ARGS%
%ACTION%
……

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

189

Below is an example from the catalina.sh file:

 4 Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MyServer.

Below is an example showing the added two lines in the catalina.bat file of a
Tomcat server that uses JRE version 5 or higher:

 if ["$1" = "-security"] ; then
 if [$have_tty -eq 1]; then
 echo "Using Security Manager"
 fi
 shift
 eval \"$_RUNJAVA\" \"$LOGGING_CONFIG\" $JAVA_OPTS $CATALINA_OPTS \
 -Djava.endorsed.dirs=\"$JAVA_ENDORSED_DIRS\" -classpath \"$CLASSPATH\" \
 -Djava.security.manager \
 -Djava.security.policy==\"$CATALINA_BASE/conf/catalina.policy\" \
 -Dcatalina.base=\"$CATALINA_BASE\" \
 -Dcatalina.home=\"$CATALINA_HOME\" \
 -Djava.io.tmpdir=\"$CATALINA_TMPDIR\" \
 org.apache.catalina.startup.Bootstrap "$@" start
 else
 eval \"$_RUNJAVA\" \"$LOGGING_CONFIG\" $JAVA_OPTS $CATALINA_OPTS \
 -Djava.endorsed.dirs=\"$JAVA_ENDORSED_DIRS\" -classpath \"$CLASSPATH\" \
 -Dcatalina.base=\"$CATALINA_BASE\" \
 -Dcatalina.home=\"$CATALINA_HOME\" \
 -Djava.io.tmpdir=\"$CATALINA_TMPDIR\" \
 org.apache.catalina.startup.Bootstrap "$@" start
 fi

%_EXECJAVA% -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

190

Below is an example of the catalina.sh file of a Tomcat server that uses JRE
version 5 or higher:

Below is an example of the catalina.bat file of a Tomcat server that uses JRE
1.4:

Note: If your java command line does not use the JAVA_OPTS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTS shown in these examples to the correct name.

 5 Save the changes and restart the application server.

 6 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 4, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 4, add
it now and restart the application server. See Step 4 for examples.

 7 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\log\<probe_id>\probe.log file. If there are no
entries in the file, either the JRE instrumentation did not succeed or you did
not configure the JVM parameters correctly. For details, see “Using the JRE
Instrumenter in Automatic Explicit Mode” on page 221.

"$_RUNJAVA" -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/ jreinstrumenter.jar -f MyServer

JAVA_OPTS="$JAVA_OPTS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/ DiagnosticsAgent/classes/
MyServer/instr.jre -javaagent:/opt/MercuryDiagnostics/ JavaAgent/DiagnosticsAgent/lib/probeagent.jar"

%_EXECJAVA% -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

set JAVA_OPTS=%JAVA_OPTS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\Mercur
yDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

191

Configuring Tomcat Server without a Startup Script

The following instructions describe how to configure a Tomcat server
running as a Windows service:

To configure a Tomcat server without a startup script:

 1 From the Windows Task bar, right-click on the Apache Tomcat service icon
and then select Configure. Alternatively, you can navigate from the Start
menu. For example, Programs > Apache Tomcat 7.0 > Configure Tomcat.

 2 In the Apache Tomcat Properties dialog box, select the Java tab.

 3 In the Java Options box, add two JVM parameters like the following. The
first parameter (-javaagent) causes the application server JVM to invoke the
Java Agent at startup. On the first invocation, the second parameter
(-Xbootclasspath) causes the application server JRE to be instrumented. In
the -Xbootclasspath parameter enter a name to specify the name of the
directory for storing the instrumented classes. In the following example you
would substitute a name you’ve chosen instead of MyServer.

Important: Each JVM parameter must be on its own line.

 4 Restart the Tomcat service.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

 5 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, you may not have set the JVM parameters
correctly. Look for error messages in the <Tomcat_install_dir>/logs/
catalina.<date>.log file, where <date> is today's date.

 6 Optionally, restart the application server again so that it will use the
instrumented JRE.

-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServer\instr.jre

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

192

Important: If you update the JRE used by your Tomcat server in the future,
before you start the Tomcat server again, you must delete the
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/MyServer directory
(use your directory name for MyServer) so that the new JRE will be
instrumented. Otherwise, your application server may not start. For general
information on the instrumentation mode used see “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

Example 7: Configuring WebLogic
WebLogic application servers are started by shell or command scripts.
Therefore, we recommend that you modify the startup scripts to instrument
them.

Because the startup scripts that WebLogic provides are frequently
customized by a site administrator, it is not possible to provide detailed
configuration instructions that apply to all situations. Instead, the following
section provides general instructions with specific examples for the
WebLogic application server for a generic implementation. Your site
administrator should be able to use these instructions to show you how to
make these changes in your customized environment.

You use Automatic Explicit instrumentation mode to configure WebLogic
server (see “Using the JRE Instrumenter in Automatic Explicit Mode” on
page 221). This involves two tasks:

➤ Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

➤ Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

To configure a WebLogic application server:

 1 Locate the startup script used to start WebLogic for your domain.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

193

➤ On WebLogic 9.0 or higher:

The startup script file is typically located in a path similar to the
following:

<DOMAIN_HOME>\bin\startWebLogic.[cmd|sh]

where <DOMAIN_HOME> is the path to your domain directory, such as
C:\bea\user_projects\domains\<Domain_Name>; or
C:\bea\wlserver_10.0\samples\domains\<Domain_Name> where
<Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like
the following:

C:\bea\wlserver_10.0\samples\domains\medrec\bin\startWebLogic.c
md

➤ On WebLogic 8.1:

The startup script file is typically located in a path similar to one of the
following:

<WLS_HOME>\server\bin\startWLS.[cmd|sh]

where <WLS_HOME> is the path to your WebLogic installation
directory such as C:\bea\weblogic81

<DOMAIN_HOME>\start<Domain_Name>Server.[cmd|sh]

where <DOMAIN_HOME> is the path to your domain directory, such
as C:\bea\user_projects\domains\<Domain_Name> or
C:\bea\weblogic81\samples\domains\<Domain_Name>, where
<Domain_Name> is the name of your domain.

For example, if your domain name is MedRec, the path would look like
the following:

C:\bea\weblogic81\samples\domains\medrec\startMedRecServer.cmd

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

194

 3 Locate the java command line that starts the application server. Below is an
example from a .cmd file:

 4 Add two lines directly above the java command line (or code block). The
first line invokes the java command to run the JRE Instrumenter; the second
line adds the required JVM parameters. If you do not know what JVM
parameters to use, you can add them later in step 6. In these two lines, you
enter a name to specify the directory for storing the automatically
instrumented JRE classes. In the following examples you would substitute a
name you choose for MedRec.

Below is an example showing the added two lines in a .cmd file in WebLogic
9.x or higher:

Below is an example showing the added two lines in a .sh file in WebLogic
9.x or higher:

Below is an example showing the added two lines in a .cmd file for
WebLogic 8.1:

%JAVA_HOME%\bin\java %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Dweblogic.Name=%SERVER_NAME%
-Djava.security.policy=%WL_HOME%\server\lib\weblogic.policy
%PROXY_SETTINGS% %SERVER_CLASS%

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MedRec

set JAVA_OPTIONS=%JAVA_OPTIONS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MedRec\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

${JAVA_HOME}/bin/java -jar /opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/jreinstrumenter.jar -f
MedRec

JAVA_OPTIONS="$JAVA_OPTIONS -Xbootclasspath/p:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/
classes/MedRec/instr.jre -javaagent:/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/probeagent.jar"

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MedRec

set JAVA_OPTIONS=%JAVA_OPTIONS% -Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MedRec\instr.jre;C:\MercuryDiagnostics\JavaAg
ent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

195

Note:

➤ If your java command line does not use the JAVA_OPTIONS variable to
define the JVM parameters, you need to change the variable name
JAVA_OPTIONS shown in these examples to the correct name.

➤ On WebLogic 8.1 with the JRockit JRE, add the following JVM parameter
to the end of the second line:
-Xmanagement:class=com.mercury.opal.capture.proxy.JRockitManagement

 5 Save the changes to the startup script and restart the application server
using the modified script.

 6 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 4, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 4, add
it now and restart the application server. See Step 4 for examples.

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

 7 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

196

Example 8: Configuring WebSphere
WebSphere application servers are started by a shell script or by a Node
Agent in a UNIX environment. In a Windows environment, the application
server may be installed as a Window service, but can also be started by a
Windows command script. In either case, we recommend that you modify
the startup script to run the JRE Instrumenter in the Automatic Explicit
mode to instrument the JRE used by the application server.

Note: If you do not modify the startup script, or if your WebSphere
application server is running on z/OS, you have to choose one of the
following choices:

➤ You manually run the JRE Instrumenter to instrument the WebSphere
JRE and add the JVM parameters (provided by running the JRE
Instrumenter) into the application server JVM configuration. See “Using
the JRE Instrumenter in Manual Mode” on page 226 for details. In
addition, if your WebSphere is version 6.0, which uses a 1.4.2 JRE, you
also need to add the -Xj9 parameter in addition to the JVM parameters
provided by the JRE Instrumenter.

➤ Alternatively, if your WebSphere version is 7.0 or higher, you can use the
JRE Instrumenter in the Automatic Implicit mode. In this approach, you
only need to add JVM parameters to the application server JVM
configuration. See “Using the JRE Instrumenter in Automatic Implicit
Mode” on page 224 for details.

Because the WebSphere Application Server JVM parameters are not
controlled by the startup scripts, but by configuration files, we recommend
that you use the Integrated Solutions Console (also called WebSphere
Application Server Administrative Console in older versions) to add the JVM
parameters required to invoke the Java Agent and use the instrumented JRE.

The appearance of the Console can differ for different versions of
WebSphere. As a result, the following example might not correspond exactly
to your WebSphere version but does provide the information needed. Enter
the required parameters for monitoring by Diagnostics in the appropriate
location in the Console.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

197

Procedures are provided for WebSphere 5.1/6.0 (shown below) and for
WebSphere 6.1 or higher (see “To configure WebSphere 6.1 or higher:” on
page 205). Also see “To configure WebSphere 6.1/7.0 server for JMX metrics
collection:” on page 211.

To configure WebSphere 5.1 or 6.0:

 1 Locate the script that is used to start the WebSphere application server.

For example, <WAS_install_dir>\bin\startServer.bat

where <WAS_install_dir> is the path to your WebSphere installation
directory, such as C:\Program Files\IBM\WebSphere\AppServer.

Note: On some systems, you may use the startServer.[bat|sh] script in a
profile's bin directory to start a server. However, this script is usually a
simple wrapper that calls the startServer.[bat|sh] script in the
<WAS_install_dir>/bin directory.

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

 3 For WebSphere 5.1 or 6.0, locate the java command line that runs the
application server launcher. Below is an example from a startServer.bat file:

Above the identified java command line, add a line to invoke the JRE
Instrumenter. In this line, you need to specify the name of the directory for
storing the instrumented classes. Below is an example for WebSphere 6.0 on
Windows. You would substitute a name you’ve chosen instead of MyServer.

"%JAVA_HOME%\bin\java" -Dcmd.properties.file=%TMPJAVAPROPFILE%
%WAS_TRACE% %WAS_DEBUG% %CONSOLE_ENCODING% "%CLIENTSAS%"
"%CLIENTSSL%" %USER_INSTALL_PROP% "-Dwas.install.root=%WAS_HOME%"
com.ibm.ws.bootstrap.WSLauncher
com.ibm.ws.management.tools.WsServerLauncher "%CONFIG_ROOT%"
"%WAS_CELL%" "%WAS_NODE%" %* %WORKSPACE_ROOT_PROP%

"%JAVA_HOME%\bin\java" -jar
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

198

 4 Save the changes and restart the application server using the modified
script.

 5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath).

Below is an example JRE Instrumenter output (-Xbootclasspath) for
WebSphere 6.0 (or 5.1) on Windows using -f MyServer to specify the
directory for storing the instrumented classes - see step 3 above. You would
substitute a name you choose for MyServer.

If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve issues. For details, see “Using the JRE Instrumenter
in Automatic Explicit Mode” on page 221.

After you get the output from the JRE Instrumenter, you need to add it to
the application server JVM parameters.

 6 Use your Web browser to access the WebSphere Application Server
Administrative Console for the application server instance to be monitored
by the probe:

Replace <App_Server_Host> with the machine name for the application
server host and possibly 9090 with the correct administrative port number
(such as 9060, 9061, and so on).

-Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot

http://<App_Server_Host>:9090/admin

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

199

The Websphere Application Server Administrative Console opens.

 7 In the left panel, select Servers > Application Servers.

 8 From the list of application servers in the right panel, select the name of the
server that you want to configure to be monitored by the probe.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

200

The Configuration tab for the selected application server is displayed.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

201

 9 Scroll down in the Configuration tab and, in the General Properties
column, look for the Process Definition property.

 10 Click Process Definition.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

202

 11 Scroll down in the right panel, and look for Java Virtual Machine.

 12 Click Java Virtual Machine.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

203

 13 The Configuration tab for the Java Virtual Machine is displayed.

 14 In the Boot Classpath box, enter the boot class path from the JVM
parameters provided by the JRE Instrumenter (that is, the string after the
-Xbootclasspath/p: parameter). The JVM parameters output from the JRE
Instrumenter were generated earlier in step 3.

Below is an example for WebSphere 6.0 (or 5.1) that uses -f MyServer to
specify the name of the directory for storing the instrumented classes:

C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\Mer
curyDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

204

 15 Scroll to the bottom of the Configuration tab until the command buttons
are visible.

Click Apply.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

205

 16 A message confirms that your changes were applied. In the Save to Master
Configuration area, click Save.

 17 Click Save to apply the changes to the master configuration. If you are
prompted for confirmation, click Save again.

 18 Restart the WebSphere application server.

 19 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, the Java Agent was not started correctly or
you did not run the JRE Instrumenter or you did not enter the Java
parameter such as Xbootclasspath correctly. For details, see “About the JRE
Instrumenter and Different Options to Invoke” on page 219.

To configure WebSphere 6.1 or higher:

 1 Locate the script that is used to start the WebSphere application server.

For example, <WAS_install_dir>\bin\startServer.bat

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

206

where <WAS_install_dir> is the path to your WebSphere installation
directory, such as C:\Program Files\IBM\WebSphere\AppServer.

Note: On some systems, you may use the startServer.[bat|sh] script in a
profile's bin directory to start a server. However, this script is usually a
simple wrapper that calls the startServer.[bat|sh] script in the
<WAS_install_dir>/bin directory.

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

 3 For WebSphere 6.1 or higher, locate the code block that defines the
JAVA_EXE variable.

Below the above code block, add a line to invoke the JRE Instrumenter. In
this line, you need to specify the name of the directory for storing the
instrumented classes. Below is an example for WebSphere 6.1 on Windows.
You would substitute a name you’ve chosen instead of MyServer.

 4 Save the changes and restart the application server using the modified
script.

 5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath).

if exist "%JAVA_HOME%\bin\java.exe" (
 set JAVA_EXE="%JAVA_HOME%\bin\java"
) else (
 set JAVA_EXE="%JAVA_HOME%\jre\bin\java"
)

%JAVA_EXE% -jar
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f MyServer

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

207

WebSphere 6.1. Below is an example JRE Instrumenter output
(-Xbootclasspath) for WebSphere 6.1 on Windows (using -f MyServer to
specify the directory for storing the instrumented classes - see step 3 above.
You would substitute a name you choose for MyServer.

WebSphere 7.0 or 8.0. Below is an example JRE Instrumenter output
(-Xbootclasspath) for WebSphere 7.0 (or 8.0) on Windows (using -f
MyServer to specify the directory for storing the instrumented classes - see
step 3 above. You would substitute a name you choose for MyServer.

If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve issues. For details, see “Using the JRE Instrumenter
in Automatic Explicit Mode” on page 221.

After you get the output from the JRE Instrumenter, you need to add it to
the application server JVM parameters.

 6 Open the WebSphere Application Server Administrative Console. For
example:

http://<App_Server_Host>:9060/ibm/console

Replace <App_Server_Host> with the machine name for the application
server host and 9060 with the correct administrative port number (such as
9060, 9061, and so on).

 7 Navigate to the Java Virtual Machine page. For example:

For WebSphere 6.1, navigate to: Servers > Application servers

For WebSphere 7.0, navigate to: Servers > Server Types > WebSphere
Application servers

-Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot -Xshareclasses:none

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

208

Then click the application server instance name (such as server1).

Then, under Server Infrastructure > Java and Process Management, click
Process Definition > Java Virtual Machine.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

209

Then, under Additional Properties, click Java Virtual Machine.

 8 On the Java Virtual Machine page, in the Generic JVM Arguments box, enter
the JVM parameter from the JRE instrumenter. The JVM parameters output
from the JRE Instrumenter were generated earlier in step 3.

Below is an example for WebSphere 6.1 that uses -f MyServer to specify the
name of the directory for storing the instrumented classes:

Below is an example for WebSphere 6.1 that does not modify the startup
script but manually uses the JRE Instrumenter to instrument the JRE.

Below is an example for WebSphere 7 (or 8) that uses -f MyServer as the
command-line option to the JRE Instrumenter in the startup script:

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre;
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\boot -Xshareclasses:none

-Xbootclasspath/
p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\IBM\1.5.0\instr.jre;C:\MercuryDiagnostics\JavaA
gent\DiagnosticsAgent\classes\boot -Xshareclasses:none

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

210

Below is an example for WebSphere 7 (or 8) that does not modify the startup
script or manually run the JRE Instrumenter (using the JRE Instrumenter in
the Automatic Implicit mode):

 9 Apply and save your changes.

 10 Restart the WebSphere application server.

 11 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, , the Java Agent was not started correctly or
you did not run the JRE Instrumenter or you did not enter the Java
parameter such as Xbootclasspath correctly. For details, see “About the JRE
Instrumenter and Different Options to Invoke” on page 219.

-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\server1\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar -Xshareclasses:none

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

211

Running the JRE Instrumenter for WebSphere IDE

If you are using WebSphere IDE, you must run the JRE Instrumenter
manually to make sure the correct Java executable for the WSAD IDE was
instrumented.

The WSAD IDE has different java.exe executables to choose from. You must
instrument the one that is used to run WebSphere.

To instrument the correct java.exe:

 1 Determine the version of WebSphere you are using.

 2 Determine the location of the appropriate java.exe.

 3 Run the JRE Instrumenter and add the correct JVM. See “About the JRE
Instrumenter and Different Options to Invoke” on page 219 for details.

Configuring WebSphere for JMX Metric Collection

You might need to configure the Performance Monitoring Infrastructure
(PMI) service on the WebSphere server to start receiving JMX metrics.

Important: If Diagnostics is not able to identify your application server as a
WebSphere server, you must enable PMI and add the Jar files to the
server.policy file.

To configure WebSphere 6.1/7.0 server for JMX metrics collection:

 1 Open the WebSphere Administrative Console.

 2 In the Console navigation tree, select Servers > Application Servers. The
console displays a table of the application servers.

 3 Click the name of the application server you want to configure from the
Application Servers Table. The console displays the Runtime and the
Configuration tabs for the selected application server.

 4 Click the Configuration tab.

 5 In the Configuration tab:

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

212

➤ Under the Performance heading, click Performance Monitoring
Infrastructure (PMI).

➤ Under the General Properties heading, select the Enable Performance
Monitoring Infrastructure (PMI) check box.

➤ Under the Currently monitored statistic set heading select Extended.

 6 Click Apply or OK.

 7 If Java 2 Security is enabled on the application server, open the server policy
file (<WebSphere 6.x Installation Directory>/work/tools/ibm-6.0/
websphere/appserver/profiles/default/properties/server.policy or
<WebSphere 7.0 Installation Directory>/AppServer/profiles/
<your_profile_name>/properties/server.policy) and add the following
security permissions to enable JMX collection:

grant codeBase "file:/<probe_install_dir>/lib/probe-jmx.jar"
{ permission java.security.AllPermission; }

grant codeBase "file:/<probe_install_dir>/lib/probe-jmx-was6.jar" {
 permission java.security.AllPermission;
};

 8 Restart the application server.

Example 9: Configuring webMethods
There are two types of webMethods servers discussed in this example:

➤ webMethods Integration Server

➤ My webMethods Server

Because the startup scripts that webMethods provides are frequently
customized by a site administrator, it is not possible to provide detailed
configuration instructions that apply to all situations. Instead, the following
section provides general instructions with specific examples for
webMethods Integration Server and My webMethods Server. Your site
administrator should be able to use these instructions to show you how to
make these changes in your customized environment.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

213

To configure a webMethods Integration Server:

The webMethods Integration Server is started by shell or command scripts.
Therefore, we recommend that you modify the startup scripts to instrument
the server.

 1 Locate the startup script used to start the webMethods Integration Server.
There are two options based on how the server is started:

...\IntegrationServer\bin\server.bat

...\profiles\IS\bin\runtime.bat

 2 Create a backup copy of the startup script and use your editor to open the
startup script.

 3 Update the file as described below.

 a For the server.bat file locate the following section where the server is
started:

And directly above this section add the following:

if "1%1"=="1-service" (
 if exist LOCKFILE del LOCKFILE
 "%JAVA_EXEC%" -classpath %IS_PROXY_JAR%
com.wm.app.server.CustomServiceUpdater -isdir "%IS_DIR%" -wrapperdir
"%IS_DIR%\..\profiles\IS\configuration" -binpath "%PATH%" -jvmargs
"%SERVER_VM_OPT% %JAVA2_MEMSET% %JAVA_OPTS%" -progargs
%3#%4#%5#%6#%7#%8#%9
 goto :EOF
)

call "%PROFILES_DIR%\bin\start_runtime.bat" %1 %2 %3 %4 %5 %6 %7 %8 %9

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

214

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step
5. In these two lines, you enter a name to specify the directory for storing
the automatically instrumented JRE classes. In the example above you
would substitute a name you choose for MyServer.

 b For the runtime.bat file locate the following section where the server is
started:

And directly above this section add the two lines as shown in the
example :

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step
5. In these two lines, you enter a name to specify the directory for storing
the automatically instrumented JRE classes. In the example above you
would substitute a name you choose for MyServer.

 4 Save the changes to the startup script and restart the application server
using the modified script.

 5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 3, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 3, add
it now and restart the application server.

%JAVA_RUN% -Xbootclasspath/a:"%OSGI_CLASSPATH%" %JAVA_OPTS%
%JAVA_SYSPROPS% -cp "%OSGI_FRAMEWORK_JAR%"
org.eclipse.equinox.launcher.Main -configuration %OSGI_CONFIGURATION_AREA%
%CMD_ARGS%
goto end_start_cmd

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

215

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

 6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

To configure the My webMethods Server startup script:

The My webMethods Server is started either by script or by a wrapper
configuration. Therefore you will either modify the startup script, as in this
example, or edit the wrapper configuration file to instrument the server as
described in the next procedure.

 1 Locate the startup script used to start your My webMethods Server. The
script file is: ...\MWS\server\bin\mws.bat.

 2 Create a backup copy of the file and use your editor to open the file.

 3 Update the file as described below.

For the mws.bat file, you locate the definition of RUN_CMD as highlighted
in the following example:

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dserver.name=%SERVER_NAME%
-Djava.awt.headless=true
set PARAMS=
set MAIN_CLASS=com.webmethods.portal.system.PortalSystem
set RUN_CMD=%JAVA% -cp %CLASSPATH% %JAVA_ARGS% %JAVA_OPTIONS%
%ACTION_PARAMS% -Dmain.class=%MAIN_CLASS%
7 %8 %9

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

216

And above this section add the two lines as shown in the following
example:

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. If you do not know what
JVM parameters to use for the second line, you can add them later in step 5.
In these two lines, you enter a name to specify the directory for storing the
automatically instrumented JRE classes. In the example above you would
substitute a name you choose for MyServer.

 4 Save the changes to the startup script and restart the application server
using the modified script.

 5 In the output from running the startup script, find the output from the JRE
Instrumenter (search for Xbootclasspath). If you have added the second line
(setting JVM parameters) to the startup script in Step 3, compare it with the
JVM parameters from the JRE Instrumenter output. If they are not the same,
update the startup script with the correct JVM parameters provided by the
JRE Instrumenter and restart the application server. If you have not added
the second line (setting JVM parameters) to the startup script in Step 3, add
it now and restart the application server.

Note: If you cannot find the JRE Instrumenter output, or if there are error
messages, the JRE may not be properly instrumented. You should check the
startup script and resolve any issues.

 6 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>\DiagnosticsAgent\log\<probe_id>\probe.log file.
If there are no entries in the file, either the JRE instrumentation did not
succeed or you did not configure the JVM parameters correctly. For details,
see “Using the JRE Instrumenter in Automatic Explicit Mode” on page 221.

%JAVA_HOME%\bin\java -jar C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\jreinstrumenter.jar -f
MyServer

set JAVA_OPTIONS=%JAVA_OPTIONS%
-Xbootclasspath/p:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\MyServer\instr.jre
-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

217

To configure the My webMethods Server configuration wrapper:

The My webMethods Server is started either by script or by a wrapper
configuration. Therefore you will either modify the startup script or edit the
wrapper configuration file, as in this example, to instrument the server.

 1 Locate the configuration wrapper used to start your My webMethods Server.
The configuration file is:
...MWS\server\<server_name>\config\wrapper.conf

 2 Create a backup copy of the file and use your editor to open the file.

 3 Update the file as described below.

For the wrapper.conf file add the following (changing the numbers 270 and
280 depending on your configuration file::

The first line invokes the java command to run the JRE Instrumenter; the
second line adds the required JVM parameters. On the first invocation, the
second parameter (-Xbootclasspath) causes the application server JRE to be
instrumented. In the -Xbootclasspath parameter enter a name to specify the
name of the directory for storing the instrumented classes. In the example
above you would substitute a name you choose for MyServer.

 4 Save the changes to the configuration wrapper and restart the application
server using the modified wrapper.

The Java Agent will be invoked and implicitly run the JRE Instrumenter to
instrument the JRE.

 5 To verify that the probe was configured correctly, check for entries in the
<JavaAgent_install_dir>/DiagnosticsAgent/log/<probe_id>/probe.log file. If
there are no entries in the file, you may not set the JVM parameters
correctly.

 6 Optionally, restart the application server again so that it will use the
instrumented JRE.

wrapper.java.additional.270=-Xbootclasspath/p:
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\classes\auto\MyServer\instr.jre

wrapper.java.additional.280=-javaagent:C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\lib\probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

218

Important: If you update the JRE used by your My webMethods Server when
started with the configuration wrapper in the future, before you start the My
webMethods Server again, you must delete the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/auto/MyServer directory (use your directory
name for MyServer) so that the new JRE will be instrumented. Otherwise,
your application server may not start. For general information on the
instrumentation mode used see “Using the JRE Instrumenter in Automatic
Implicit Mode” on page 224.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

219

About the JRE Instrumenter and Different Options to
Invoke

The JRE Instrumenter is a utility to instrument a JRE so that the Java Agent
can provid advanced features such as the patent-pending Collection Leak
Pinpointing (CLP). It does not modify the installed JRE in any way, but
rather places copies of instrumented classes somewhere under the
<JavaAgent_install_dir>/DiagnosticsAgent/classes directory. You can use the
JRE Instrumenter to instrument multiple JREs if they are installed on your
system.

The JRE Instrumenter instruments some standard Java classes used by the
application server JVM and applications running on it. It also provides you
with the JVM parameters that must be used when the application server is
started so that the application server uses the instrumented classes.

With different command-line options, the JRE Instrumenter can be invoked
and used in three different ways, each of which has its own advantages and
limitations. You will use one of these methods according to the
characteristics of your application servers (see “Examples for Configuring
Application Servers” on page 163 for examples).

➤ Automatic Explicit Mode. If your application server is or can be started by a
script, it is recommended that you use this mode. To use this mode, you add
a line to your application server startup script to explicitly and
non-interactively run the JRE Instrumenter to instrument the JRE. Your
script will continue to start the application server JVM (with additional
parameters) using the freshly instrumented JRE. See “Using the JRE
Instrumenter in Automatic Explicit Mode” on page 221.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

220

➤ Automatic Implicit Mode. With this mode, you do not need to explicitly run
the JRE Instrumenter — you only need to modify your application server
JVM parameters to invoke the Java Agent and ask it to run the JRE
Instrumenter as needed. When the Java Agent is used for the first time, it
implicitly runs the JRE Instrumenter to instrument the JRE. However, the
first time this instrumented JRE will not be used; your application server will
be using an uninstrumented JRE. The next time your application server is
started, it will use the instrumented JRE. Therefore, if you want to use the
full monitoring features of the Java Agent, you need to restart your
application server twice after you enable the Java Agent. See “Using the JRE
Instrumenter in Automatic Implicit Mode” on page 224.

➤ Manual Mode. With this mode, you need to manually and interactively run
the JRE Instrumenter, either at the end of the Java Agent installation or at a
later time, to instrument the JRE. You then modify your application server
JVM parameters according to the parameters provided by the JRE
Instrumenter. This method is how the JRE Instrumenter works in earlier
versions of HP Diagnostics. See “Using the JRE Instrumenter in Manual
Mode” on page 226.

If your JRE is updated (such as, applying an application server patch) or if
you update the Java Agent, you may need to instrument the JRE again. This
issue will be discussed in each mode.

Below is a table that summarizes the requirements of each of the four
different methods of doing instrumentation:

Recommended Instrumentation
(Using the JRE Instrumenter)

Basic
Instrumen-

tation

In
Automatic

Explicit
Mode

In
Automatic

Implicit
Mode

In Manual
Mode

Minimum required JRE
version

1.5 1.4 1.5 1.4

Requires the application
server being started by a
script

No Yes No No

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

221

* If you cannot find where the JRE invocation parameters can be defined,
you may still have the option of using an environment variable such as
JAVA_OPTIONS to do that.

Using the JRE Instrumenter in Automatic Explicit Mode
Using the JRE Instrumenter in the Automatic Explicit Mode is
recommended when an application server is started by a script, such as
WebLogic and JBoss application servers. It is also recommended for
WebSphere application servers if they are or can be started by a script - this
is the case for most platforms except z/OS. It is also recommended for
Tomcat if it is not installed as a Windows service.

Requires knowing where
the JRE is installed

No No No Yes

Requires manually running
the JRE Instrumenter

No No No Yes

Requires knowing where
the JVM parameters can be
configured

Yes* Yes* Yes* Yes*

Requires restarting the
application server after
enabling Java Agent

Yes, once Yes, once or
twice

Yes, twice Yes, once

Requires maintenance after
JRE upgrade/patch

No No Yes Yes

Recommended Instrumentation
(Using the JRE Instrumenter)

Basic
Instrumen-

tation

In
Automatic

Explicit
Mode

In
Automatic

Implicit
Mode

In Manual
Mode

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

222

To use Automatic Explicit mode, you need to accomplish two tasks:

➤ Modify your application server startup script to run the JRE Instrumenter
using the same JRE used by your application server. The output from the JRE
Instrumenter will give you the JVM parameters you will need in the next
task.

➤ Configure your application server JVM parameters found in the output from
the JRE Instrumenter.

Note: Make sure you understand the structure of the startup script, how the
property values are set, and how to use environment variables before you
make any configuration changes. Always create a backup copy of any file
you plan to modify before making the changes.

In modifying the application server startup script, you first need to identify
the line (or lines) in which the JRE is invoked to start the application server
JVM. Then, right above this line, you add a line like the following to invoke
the JRE Instrumenter using the same JRE used by your application server:

The <java_command> must be exactly the same java command that is used
to start your application server JVM, since it is the JRE that is instrumented
by the JRE Instrumenter. You can usually get this java command by copying
the beginning portion of the line that starts your application server JVM.

Below is a table showing the java command used by the original startup
script of some commonly used application servers. (Note that this table is
provided as helpful tips only; your application server startup script may use
a different java command.)

<java_command> -jar <JavaAgent_install_dir>/DiagnosticsAgent/lib/jreinstrumenter.jar
-f <pathname>

Application Server Shell Scripts (.sh)
Windows Command Scripts
(.bat or .cmd)

JBoss "$JAVA" "%JAVA%"

Tomcat ${_RUNJAVA} %_RUNJAVA%.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

223

The <JavaAgent_install_dir> indicates the directory where the Java Agent is
installed.

The <pathname> must be relative. The JRE Instrumenter will put the
instrumented classes in the <JavaAgent_install_dir>/DiagnosticsAgent/
classes/<pathname>/instr.jre directory. If you run multiple application
servers with Diagnostics, you should give each application server a unique
<pathname> (such as the probe name) so that the multiple instances of the
JRE Instrumenter do not interfere each other. See also “Configure
Monitoring of Multiple Java Processes on an Application Server” on
page 233 for details.

After you add the line as described above to the startup script, every time
you start your application server using the startup script, the JRE
Instrumenter is invoked and instruments the current JRE. It also prints out
the JVM parameters that you should use in the next task. You can usually
find the output of the JRE Instrumenter among the output from running the
startup script.

Below is an example output from the JRE Instrumenter that instruments a
typical JRE version 5.0 or higher:

Below is an example output from the JRE Instrumenter that instruments a
typical JRE version 1.4.x:

WebLogic ${JAVA_HOME}/bin/java %JAVA_HOME%\bin\java

WebSphere ${JAVA_EXE} %JAVA_EXE%

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/<pathname>/instr.jre
-javaagent:<JavaAgent_install_dir>/DiagnosticsAgent/lib/probeagent.jar

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/<pathname>/instr.jre;
<JavaAgent_install_dir>/DiagnosticsAgent/classes/boot

Application Server Shell Scripts (.sh)
Windows Command Scripts
(.bat or .cmd)

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

224

The second task for using the Automatic Explicit JRE instrumentation is to
modify your application server JVM parameters according to the output of
the JRE Instrumenter. In many cases, you just need to modify the java
command-line options in the startup script to include the JVM parameters
provided by the JRE Instrumenter. However, in some scenarios (such as for
WebSphere application servers), you may need to modify a configuration
file or use an administration console to add these JVM parameters.

Note: To get the output from the JRE Instrumenter, you need to modify the
startup script as described in the first task and restart the application server.
Then, after you make changes to the application server JVM parameters, you
need to restart the application server again (causing you to restart the
application server twice). However, for most of the JREs, the actual JVM
parameters provided by the JRE Instrumenter will be the same as or will
include what is provided in the examples above. Therefore, you can safely
add these "default" JVM parameters even before you run the modified script.
This approach is used in the instructions for specific application servers.
Refer to the example for your application server (JBoss, WebLogic,
WebSphere, Tomcat) to see detailed instructions for how to configure using
automatic explicit mode.

Alternatively, you can redirect (or pipe) the output from the JRE
Instrumenter to the java command-line options, or get the JVM parameters
from a difference source to avoid restarting twice.

Using the JRE Instrumenter in Automatic Implicit Mode
Using the JRE Instrumenter in the Automatic Implicit Mode is
recommended when an application server cannot be started by a script,
such as GlassFish, NetWeaver, Tomcat installed as a Windows service (no
scripts), WebSphere installed on z/OS, and TIBCO ActiveMatrix and
BusinessWorks.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

225

To use this mode, you do not need to explicitly invoke the JRE Instrumenter;
it is implicitly invoked by the Java Agent. You just configure your
application server JVM parameters to invoke the Java Agent and, when the
Java Agent sees that the JVM boot class path contains a path pointing to a
location matching the following pattern, it enters the automatic
instrumentation mode to create the instrumented classes and populates the
specified directories with copies of the instrumented classes:

For example if you add the following JVM parameters:

Then during the first execution of the application server, the directory
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
may not even exist. The Java Agent will create and populate the specified
directory with the instrumented classes. And it will use the exact
(uninstrumented) JRE that it runs on.

The first execution of the application server will not benefit from the
instrumented JRE, but all subsequent executions will use the instrumented
classes prepared in the first run.

Important: If you update the JRE used by your application server (such as
applying an application server patch) or if you update the Java Agent, before
you start the application server again you must delete the
<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne
directory (use your directory name for ServerOne) so that the new JRE will
be instrumented. Otherwise, your application server may not start. You can
also manually delete this directory when you want the Java Agent to
instrument the JRE again.

<JavaAgent_install_dir>/DiagnosticsAgent /classes/auto/<name>/instr.jre

-Xbootclasspath/p:<JavaAgent_install_dir>/DiagnosticsAgent/classes/auto/ServerOne/instr.jre
-javaagent: <JavaAgent_install_dir>/DiagnosticsAgent /lib/probeagent.jar

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

226

Using the JRE Instrumenter in Manual Mode
You can manually run the JRE Instrumenter and copy the provided JVM
parameters into your application server startup settings. Using the JRE
Instrumenter in the Manual Mode is recommended for Oracle application
servers.

The JRE Instrumenter performs the following functions:

➤ Identifies JREs that are available to be instrumented.

➤ Searches for additional JREs in directories you specify.

➤ Instruments the JREs you specify and provides the parameter you must
add to the startup script for the JRE to point to the location of the
instrumented classes.

➤ When the Instrumenter is run using the graphical interface or console
mode in a Windows or UNIX environment, the Instrumenter places the
instrumented classes in a folder under the <JavaAgent_install_dir>/
DiagnosticsAgent/classes/<JRE_vendor>/<JRE_version> directory.

Important: If you update the JRE used by your application server (such as
applying an application server patch) or if you update the Java Agent, you
must run the JRE Instrumenter again to instrument the new JRE and change
the JVM parameters accordingly. Otherwise, your application server may not
start.

Running the JRE Instrumenter Utility in UI Mode

When the JRE Instrumenter is run without any options the Instrumenter
displays the dialogs of its graphical user interface.

To start the JRE Instrumenter utility on a Windows system run the
<probe_install_dir>\bin\jreinstrumenter.cmd command.

To start the JRE Instrumenter utility on UNIX or Linux run the
<probe_install_dir>\bin\jreinstrumenter.sh command.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

227

The Instrumenter lists the JVMs that were discovered by the Instrumenter
and are available for instrumentation. The JVMs that were instrumented are
listed with a green square preceding the name of the JVM.

If the JRE Directory is not listed on the dialog, click the Add JRE(s) button to
browse to the JRE. Navigate to the directory location where you want to
begin searching for JVMs and then select the file where you want to begin
the search and click Search from here. The Instrumenter searches and then
lists the JVMs found in the Available JREs list.

Select the JRE to be instrumented and then click Instrument.

The JRE Instrumenter instruments some of the classes for the selected JVM
and places the instrumented classes in a folder under the
<probe_install_dir> /classes directory. It also displays the JVM parameter
that must be used when the application server is started in the box below
the Available JREs list.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

228

When the JRE Instrumenter instruments a JRE, it also creates the JVM
parameters you must include in the startup script for the application server
to cause your application to use the instrumented classes. When you select
an instrumented JRE from the Available JREs list, the JVM parameters are
displayed in the box below the list.

Click Copy Parameter to place the corresponding parameter on the
clipboard. The JVM parameter is copied to the clipboard so that you can use
the JVM parameters in configuring your application server to activate
monitoring by the Java Agent.

Important: You will use the clipboard contents later in configuring you
application server, so be careful to not overwrite the clipboard contents.

Click Exit to close the JRE Instrumenter window and continue with
configuring your application server JVM parameters.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

229

For general instructions for how to insert the JVM parameter into
application server startup scripts see “Including the JVM Parameter in the
Application Server’s Startup Script” on page 230. For specific examples of
how to insert the JVM parameter into startup scripts for different
application servers such as JBoss, WebLogic and Tomcat see “Examples for
Configuring Application Servers” on page 163.

Running the JRE Instrumenter in Console Mode

Open <probe_install_dir>\bin to locate the JRE Instrumenter executable.
Run the following command:

When the Instrumenter runs, it displays a list of the processing options that
are available. The following table directs you to the documentation for each
of the processing options:

./jreinstrumenter.sh -console

Instrumenter Function Descritpion

jreinstrumenter -l Display a list of the JVMs that are known to
the JRE Instrumenter. Displays the JVM
vendor, JRE version, and the location where
the JRE is located.

jreinstrumenter -i
<jre_directory>

Select a JRE in a specific directory for
instrumentation. Replace <jre_directory> with
the path to the folder where the JRE you selected
from the Available JVM list is found.

This command instructs the JRE Instrumenter to
instrument the classes for the selected JVM and
to place the instrumented classes in a folder
under the <probe_install_dir> /classes/
<JVM_vendor>/<JRE_version> directory.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

230

Copy the JVM parameter from the output of the JRE Instrumenter so that
you can paste it into the location that allows it to be picked up when your
application server starts in order to activate monitoring by the Java Agent.

Exit the JRE Instrumenter and continue with configuring your application
server JVM parameters.

For General instructions for how to insert the JVM parameter into
application server startup scripts see “Including the JVM Parameter in the
Application Server’s Startup Script” on page 230. For specific examples of
how to insert the JVM parameter into startup scripts for different
application servers such as JBoss, WebLogic and Tomcat see “Examples for
Configuring Application Servers” on page 163.

Including the JVM Parameter in the Application Server’s
Startup Script

When the JRE Instrumenter instruments a JVM, it also creates the JVM
parameter you must include in the startup script for the application server
in order to cause your application to use the instrumented classes. When the
Instrumenter finishes instrumenting the JVM, it displays the JVM
parameter.

Copy the JVM parameter to the clipboard and paste it into the location that
allows it to be picked up when your application server starts. General
instructions are provided below.

jreinstrumenter -a
<directory>

Search for JVMs within a specific directory and
add any JVMs that are found to the list of the
JVMs known to the JRE Instrumenter. Replace
<directory> with the path to the location where
you would like the Instrumenter to begin
searching.

The Instrumenter searches the directories from
the location specified including the directories
and subdirectories. When it completes its search,
it displays the updated list of Available JVMs.

Instrumenter Function Descritpion

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

231

See “Examples for Configuring Application Servers” on page 163 for specific
examples of how to insert the JVM parameter for application servers such as
WebLogic, WebSphere, JBoss and others.

To update the application server configuration:

 1 Locate the application server startup script or the file where the JVM
parameters are set.

 2 Create a backup copy of the application server startup script before you
make any changes to the script.

 3 Use an editor or the application server console to open the startup script.

 4 Add the Java parameter from the JRE Instrumenter to the java command
line that starts the application server, for example:

In this instance, <probe_install_dir> is the path to the directory where the
Java Agent was installed.

This connects the probe to the application.

The following is an example of a WebLogic java command line in a startup
script before adding the Java parameter:

-Xbootclasspath/p:<probe_install_dir>\classes\Sun\1.4.2_04\instr.jre;
<probe_install_dir>\classes\boot

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

232

The following is an example of a WebLogic java command line in a startup
script after adding the Java parameter:

 5 Save the changes to the startup script.

 6 Restart the application server under test.

 7 To verify that the probe was configured correctly, check for entries in the
<probe_install_dir>\log\<probe_id>\probe.log file. If there are no entries
in the file, you did not instrument the JRE used by the application server or
did not configure your application server JVM parameters to invoke the Java
Agent (see the instructions in this chapter for your application server).

Other Configuration Options

The following sections give you other configuration options:

➤ “Configure Monitoring of Multiple Java Processes on an Application Server”
on page 233

➤ “Adjusting the Heap Size for the Java Agent in the Application Server” on
page 237

➤ “Configuring the SOAP Message Handler” on page 237

➤ “Configuring the Discovery of a New J2EE Server for CI Population” on
page 241

➤ “Special Considerations for Applications Based on the OSGi Framework” on
page 242

➤ “Special Considerations for Azul Users” on page 243

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m
-Xbootclasspath/p:<probe_install_dir>\classes\Sun\1.5.0_17\instr.jre;
-javaagent:<probe_install_dir>\lib\probeagent.jar
-classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

233

Configure Monitoring of Multiple Java Processes on an
Application Server
When your application server is using multiple Java processes, or when you
want to collect performance data for multiple Java processes, you must
perform additional agent configuration steps. You have two options. You
can configure a separate Java Agent installation for each JVM on a host, or
you can configure a single Java Agent installation to be shared by all of the
JVMs.

This section includes:

➤ “Configure a Single Java Agent Installation to be Shared by Multiple JVMs”
on page 233

➤ “Configure a Separate Java Agent Installation For Each JVM” on page 236

Configure a Single Java Agent Installation to be Shared by
Multiple JVMs

To allow multiple JVMs to share a single Java Agent installation, you must
configure a separate probe instance for each JVM. This configuration enables
the following:

➤ Establishment of communication between the Diagnostics Server and the
probe

➤ Identification of the probe by the Diagnostics Server

➤ Instrumentation of the JRE used by the JVM

To configure a single Java Agent installation to be shared by multiple JVMs:

When a single Java Agent installation is used to monitor multiple JVMs, you
must configure application server JVM parameters accordingly to invoke the
Java Agent. Each JVM can use a different JRE instrumenation mode (see
Chapter 6, “Preparing Application Servers for Monitoring with the Java
Agent” for details on JRE instrumentation modes.

 1 If you did not instrument each of the JRE versions used, do so now. See
Chapter 6, “Preparing Application Servers for Monitoring with the Java
Agent.”

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

234

 2 Specify the range of ports from which the probe can automatically select.
The Java Agent communicates using the mini web server. A separate port is
assigned for communications for each JVM that a probe is monitoring. By
default, the port number range (Min/Max) is set to 35000–35100. You must
increase the port number range when the probe is working with more than
100 JVMs.

Note: If a firewall separates the probe from the other Diagnostics
components, configure the firewall to allow communications using the
ports in the range you specify. For more information, see Appendix ,
“Configuring Diagnostics to Work in a Firewall Environment.”

If you configure the firewall to allow probe communications on a range of
ports that is different than the default, update the port range values
discussed in the following bullets.

 a Locate the webserver.properties file in the folder <probe_install_dir>/
etc.

 b Set the following properties to adjust the range of ports available for
probe communications.

➤ The minimum port in the port number range uses the following
property:

jetty.port=35000

➤ The maximum port in the port number range uses the following
property:

jetty.max.port=35100

 3 Assign a unique probe name using one of the following methods.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

235

The command line properties must be entered on one line, without any line
breaks. The probe ids defined on the Java command line override the probe
names defined in the probe.properties file using the probe’s id property.

 a Assign a custom probe Identifier to the probe for each JVM, using the
Java command line or startup script.

-Dprobe.id=<Unique_Probe_Name>

The following example shows a WebLogic startup script before adding
the probe.id parameter:

The following example shows a WebLogic startup script after adding the
probe.id parameter:

 b When a single Java parameter is specified but multiple probes are started
using the same script, use the %0 string to generate a custom probe
identifier for each probe—for example, in a clustered environment where
a single startup script is used to start multiple probed application server
instances.

 -Dprobe.id=<probeName>%0

On Windows, use %%0. Use the first % to escape the second %.

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath "%CLASSPATH%"
-Dweblogic.Domain=petstore -Dweblogic.Name=petstoreServer -Dbea.home="C:\\bea"
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m"
-Xbootclasspath/
p:C:\MercuryDiagnostics\JAVAProbe\classes\Sun\1.4.1_03;C:\MercuryDiagnostics\JA
VAProbe\classes\boot"
-classpath "%CLASSPATH%"
-Dprobe.id=<Unique_Probe_Name> -Dweblogic.Domain=petstore
-Dweblogic.Name=petstoreServer
-Dbea.home="C:\\bea" -Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Dcloudscape.system.home=./samples/eval/cloudscape/data
-Djava.security.policy=="C:\bea\wlserver6.1/lib/weblogic.policy" weblogic.Server

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

236

The %0 is replaced dynamically with a number to create a unique probe
name for each probe; for example, <probeName>0, <probeName>1, and
so on.

 4 Specify the points file each probe will use. By default, the points file name is
auto_detect.points. You can specify that a custom points file be used when
you must use more than one custom instrumentation plan, or where you
have several JRE versions on the same machine using a single agent
installation, and one or more of the JREs needs specific methods and classes
included in a layer to support custom instrumentation.

Configure a Separate Java Agent Installation For Each JVM

When there are multiple JVMs on a single host, you can configure a separate
Java Agent installation for each JVM instance. You install the agent multiple
times and define an instance of a probe by setting the probe’s id property in
the probe.properties file in each agent’s installation directory.

To configure a separate installed agent for each JVM:

 1 If you did not instrument the JRE, do so now see Chapter 6, “Preparing
Application Servers for Monitoring with the Java Agent.”.

 2 Locate the probe.properties file in the <probe_install_dir>/etc directory.

Here is an example:

 3 Assign a name to the id property that is unique on the server and on the
Diagnostics Server, as follows:

-Dprobe.points.file.name="<Custom_AutoDetect_Points_File>"

C:\\MercuryDiagnostics\JAVAProbe\etc\probe.properties

id=<uniqueProbeName>

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

237

When the probe is started, a log file is created in the <probe_install_dir>/log
directory where the log messages for the probe are stored.

Adjusting the Heap Size for the Java Agent
in the Application Server
The size of the heap can impact the performance of the Java Agent and the
application server. The default value for the heap size is 64 MB, but an
application server usually increases it to a larger amount. When you add the
Java Agent to an application server, you may need to increase the heap size
to accommodate the memory used by the Java Agent. See “Requirements for
the Diagnostics Java Agent Host” on page 36 for details.

The heap size is set in the application server JVM configuration using the
following JVM argument:

You can increase the heap size by updating the value specified in the
-Xmx<size> option. See your JVM documentation for help on setting this
parameter.

Configuring the SOAP Message Handler
The Diagnostics SOAP message handler is required for Java probes to support
the following features:

➤ Collect payload for SOAP faults.

➤ Determine SOA consumer ID from SOAP header, body, or envelope.

For most application servers, the instrumentation points and code snippets
are written to automatically configure the Diagnostics handlers for web
services being monitored.

-Xmx<size>

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

238

Important: For some application servers, special instrumentation is provided
in Diagnostics to automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1
JAX-RPC and Oracle 10g JAX-RPC. See “Loading the Diagnostics SOAP
Message Handler” on page 239.

In addition, the Diagnostics SOAP message handler is not available for all
application servers, nor is custom instrumentation available to capture
SOAP faults or consumer IDs from SOAP payloads. Therefore, this feature is
not available on all versions of all application servers. For the most recent
information on Diagnostics SOAP message handler support, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

This section includes the following:

➤ “Disabling the SOAP Message Handler” on page 238

➤ “Loading the Diagnostics SOAP Message Handler” on page 239

➤ “WebSphere 5.1 JAX-RPC” on page 239

➤ “Oracle 10g JAX-RPC” on page 240

Disabling the SOAP Message Handler

By default, the SOAP message handler is enabled. You can disable the
handler as follows:

In the <probe_install_dir>/etc/inst.properties file edit the
details.conditional.properties property to include
mercury.enable.autoLoadSOAPHandler = false.

If the SOAP message handler is disabled, you must manually configure
where in the chain the handler gets installed.

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

239

Loading the Diagnostics SOAP Message Handler

The SOAP message handler is loaded automatically on most application
servers but requires manual configuration on these application servers:

WebSphere 5.1 JAX-RPC

To configure the SOAP message handler on WebSphere 5.1 JAX-RPC, follow
these steps:

Note: For WebSphere 6.1 JAX-WS web services, Diagnostics handlers are not
supported. You must recompile the application with the Diagnostics SOAP
handler classes.

 1 Locate the Web service deployment descriptor (webservices.xml) for the
application. The directory path should look similar to the following:

<install_root>\config\cell\<Server>\applications\
<WebServiceEAR>\deployments\<WebServiceName>\
<WebServiceJAR|WARName>\WEB-INF

Here is an example:

 2 Edit the webservices.xml and add the Diagnostics handler for each
<port-component>:

C:\Program Files\WebSphere\AppServer\config\
cells\MyServer1\application\WebServicesSamples.ear\
deployments\WebServicesSamplea\AddressBookJ2WB.war\ WEB-INF

<port-component>

 <handler>
 <handler-name>Diagnostics RPC Handler</handler-name>
 <handler-class>
 com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
 </handler-class>
 </handler>

</port-component>

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

240

 3 Copy the Diagnostics handler jar
(<probe_install_dir>\lib\probeSOAPHandler.jar) to the WebSphere lib
directory.

Here is an example:

These steps were developed with IBM WebSphere 5.1.0 Application Server
on Windows.

Oracle 10g JAX-RPC

To configure the SOAP message handler on Oracle 10g JAX-RPC, follow
these steps.

 1 Locate the Web service deployment descriptor (webservices.xml) for the
application. The directory path should look similar to the following:

<OC4J_install_root>\j2ee\home\applications\<app name>\ <deployment
name>\WEB-INF\webservices.xml

 2 Edit the webservices.xml and add the Diagnostics handler for each
<port-component>:

 3 Copy the Diagnostics handler jar
(<probe_install_dir>\lib\probeSOAPHandler.jar) to the
<OC4J_install_root>\j2ee\home\applib directory.

These steps were developed with Oracle Containers for J2EE (OC4J) 10g
Release 3 (10.1.3.3) on Windows.

cp C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\ lib\probeSOAPHandler.jar
C:\Program Files\WebSphere\AppServer\lib

<port-component>

 <handler>
 <handler-name>Diagnostics RPC Handler</handler-name>
 <handler-class>
 com.mercury.opal.javaprobe.handler.soap.ProbeRPCHandler
 </handler-class>
 </handler>

</port-component>

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

241

Configuring the Discovery of a New J2EE Server for CI
Population
The agent provides data to populate the J2EE Application Server and J2EE
Application Domain CIs in Business Service Management.

The probe automatically populates CIs for well known J2EE servers such as
JBoss and WebLogic.

You can also configure application server discovery to populate CIs for other
J2EE servers. Application server name can be directly specified or configured
to be discovered by JMX or be discovered by a point/code snippet.

You configure application server discovery in the probe etc/metrics.config
file as described below.

The class AppServerDiscoveryCollector is located in the <probe_install_dir>/
lib/probe-jmx.jar file and you can write you own collector class to do both
application server discovery and metrics collection.

The following is the configuration for application server discovery for a
generic application server. Note the collector name is case sensitive and
should be different from any collector name in the metrics.config file.

And then you should add the following Java system property definition in
the app-server/javaprobe startup script or java command line.

Every 15 minutes the probe refreshes the collectors (including the
AppServerDiscoveryCollector) and makes the discovery based on any new
configuration.

<user-defined-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.AppServerDiscoveryCollector
<user-defined-collector-name>.class.path = probe-jmx.jar
<user-defined-collector-name>.app_server.configure.discovery = true
<user-defined-collector-name>.app_server.type = <user-defined-type>
<user-defined-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-collector-name>.app_server.domain_name =
<user-defined-domain-name>

-Dapp_server.discovery.collector=<user-defined-collector-name>

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

242

For the advanced user who knows how to use JMX to discover the new
application server name and J2EE domain name, you may add the following
configuration in the probe etc/metrics.config file.

Special Considerations for Applications Based on the OSGi
Framework
If your application is based on the OSGi framework, you may need to set
some additional properties. If not already the default value, set the
osgi.java.profile.bootdelegation property to the default value "ignore". Then
append com.mercury.* to the end of the
org.osgi.framework.bootdelegation property in your osgi.java.profile. For
example:

<user-defined-jmx-collector-name>.class.name =
com.mercury.diagnostics.capture.metrics.jmx.JMXCollector
<user-defined-jmx-collector-name>.class.path = probe-jmx.jar
<user-defined-jmx-collector-name>.depends.on.class =
javax.management.MBeanServer
<user-defined-jmx-collector-name>.app_server.configure.discovery = true
<user-defined-jmx-collector-name>.app_server.type = <user-defined-type>
<user-defined-jmx-collector-name>.app_server.server_name =
<user-defined-server-name>
<user-defined-jmx-collector-name>.app_server.server_name.discovery.by.jmx =
<jmx-ObjectName>.<jmx-AttributeName>
<user-defined-jmx-collector-name>.app_server.domain_name =
<user-defined-domain-name>
<user-defined-jmx-collector-name>.app_server.domain_name.discovery.by.jmx =
<jmx-ObjectName-1>.<jmx-AttributeName-1>@<jmx-ObjectName-2>.<jmx-AttributeNa
me-2>

org.osgi.framework.bootdelegation= <existing packages>,com.mercury.*

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

243

Special Considerations for Azul Users
Azul provides two highly scalable and highly performing solutions for
enterprise Java users: Vega and Zing. Vega is a special hardware appliance
which connects to the user local network. Zing is a virtual equivalent of
Vega, provided in a form of a guest image for VMware or KVM. A major
advantage of the Azul appliances is its innovative pauseless garbage
collector, which runs continuously and can handle heaps up to tens of
gigabytes. Both appliances are supported by Diagnostics equally, although
we tested only Zing in the lab.

The Java SDK or JRE provided by Azul installs on a traditional system, such
as Linux or Solaris, but when it is invoked, it delegates the execution of any
Java code to the appliance. Thus, although the Java application seems to be
running where it was invoked, it actually runs on a different system. This is
done seamlessly, so the application interacts with its environment just as if
it was running on a local system. If the application makes a JNI call, it is
made across the network to be executed on the originating host.

This execution model creates a number of issues for Diagnostics users. The
JNI calls made by the probe are costly, but what is more important, they do
not provide the results the user might expect.

➤ The CPU timestamps do not work correctly. They measure the CPU time
used on the originating server, and therefore are useless.

➤ Process metrics are useless, too, because they measure the front-end process.

➤ In most cases, all system metrics are useless as well. They measure the
originating system and are irrelevant to the application running on the
appliance.

➤ Garbage collection metrics are confusing. Since Azul uses continuous
garbage collector, seeing garbage collection percentages over 100% is
normal.

➤ Heap Breakdown and Heap Walker do not work.

➤ VMware special timers do not work (even if using virtual appliance on
VMware)

Chapter 6 • Preparing Application Servers for Monitoring with the Java Agent

244

Configuring Diagnostics for Azul VM

Invoking Azul java command requires adding parameters that properly
identify the appliance to be used for running the application. This creates a
difficulty for JREinstrumenter (unless run in Automatic Implicit mode),
which needs to run the JRE to be instrumented in order to determine its
version and vendor, but is not capable of adding the required parameters.

The solution is to edit the file azul.properties found in the Azul JRE
installation and define the required parameters. The settings are needed
while the JREinstrumenter runs and can be removed for running the
application with Diagnostics.

To eliminate possible confusion and pointless overhead, we recommend to
use the following settings while using Diagnostics Agent:

➤ In metrics.config, comment out all metrics for "system" and "ProcessMetrics"
collectors, and Garbage Collection metrics for the "Java Platform" collector.

➤ In capture.properties set use.cpu.timestamps=false.

245

7
Preparing Application Servers for Client
Monitoring with the Java Agent

This section explains how to prepare application servers for client
monitoring with the Java Agent.

This chapter includes:

 ➤ About Client Monitoring on page 245

 ➤ Enabling Client Monitoring on page 246

 ➤ Configuring and Disabling Client Monitoring on page 248

 ➤ Manually Instrumenting HTML/JSP Pages for Client Monitoring: on page 249

About Client Monitoring

Client Monitoring measures web page performance as seen by the user's
browser and correlates these measurements with the back end server
request.

Three important metrics are measured: the back-end time, the front-end
time, and the total time.

The back-end time is the amount of time it takes from when a web page
request is sent until the first byte of the response is received.

The front-end time is the amount of time it takes from when the first byte of
the response is received until the page is loaded.

The total-time is the sum of the front and back end times.

Chapter 7 • Preparing Application Servers for Client Monitoring with the Java Agent

246

Client Monitoring aggregates these measures and presents them by URL,
Location, and Browser-OS combination.

By monitoring web page performance, application owners can quickly
identify performance issues, characterizing them by tier (front or back-end),
location, and browser.

When the issue is on the back-end, client monitoring correlates the URL to
the associated server request and its call-profile.

An example showing client monitoring is shown below:

Enabling Client Monitoring

Enabling client monitoring requires you to deploy a .war file on the
application server and in some cases to configure the web server. Client
Monitoring views are available in the Diagnostics Enterprise UI.

Chapter 7 • Preparing Application Servers for Client Monitoring with the Java Agent

247

To enable Client Monitoring:

When client monitoring is enabled, most JSP pages served via JBoss, Tomcat,
WebSphere and WebLogic will be automatically modified to include
additional Java Script calls near the <head> tag. You can see which pages are
instrumented by opening the page in your browser and selecting view
source.

Other application servers may require manual page instrumentation for
client monitoring. See “Manually Instrumenting HTML/JSP Pages for Client
Monitoring:” on page 249.

Client monitoring, including automatic JSP instrumentation, will remain
disabled until this .war file is deployed.

 1 Deploy HPDiagCM.war file.

Use the application server’s Administrative Console to deploy the
<probe_install_dir>\contrib\HPDiagCM.war as an application.

Client monitoring will remain disabled until this .war file is deployed.

For WebSphere application servers, be sure to set the context root to
/HPDiagCM instead of the default (/).

 2 If you have configured a web server as the front-end of your application,
then you also need to add the following context root to your Web Server's
configuration:
/HPDiagCM/*

Tip: You can verify the web server is correctly configured if your browser can
access this link: (it will return a blank page)
http://hostname:port/HPDiagCM/B/.

Chapter 7 • Preparing Application Servers for Client Monitoring with the Java Agent

248

Example - Setting up an Apache HTTP Server Reverse Proxy for Client
Monitoring

Important: These are very basic instructions. These configuration files are
highly customized in each customer's environment. Please consult the
Apache HTTP Server documentation for more details.

In order for client monitoring JavaScript file to be successfully downloaded
by browsers and for client-side metrics to be received by the probe, it is
necessary to configure the web server to correctly forward those requests to
the application server. This is typically achieved by setting up a reverse
proxy or gateway.

 1 Update the conf\httpd.conf file by adding the following lines, replacing
<HostName> and <HostPort> with the host name and port of the
application server, and restart the web server.

ProxyPass /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM
ProxyPassReverse /HPDiagCM http://<HostName>:<HostPort>/HPDiagCM

 2 Check if your changes are successful by driving traffic to your web
application via the web server and checking the web server's log messages in
the log/access.log file. Error messages will have an http response code in the
400-500 range such as "GET /HPDiagCM/boomerang-min.js HTTP/1.1" 404.
When successful, you should see log messages such as "GET /HPDiagCM/
boomerang-min.js HTTP/1.1" 200.

If you don't see either of these messages, then client monitoring is not
correctly set up in your environment.

Configuring and Disabling Client Monitoring

If desired, Client Monitoring can be dynamically controlled by updating
several properties in <probe_install_dir>\etc\dynamic.properties.

Chapter 7 • Preparing Application Servers for Client Monitoring with the Java Agent

249

The client.monitoring.enable property provides a master switch to
dynamically enable and disable the client monitoring feature. When set to
false, all client monitoring data events received are dropped, JSP page
auto-instrumentation will be disabled, and
client.monitoring.sampling.percent is set to 0.0 (to disable manually
instrumented JSP pages’ client monitoring Java Script code).

You can reduce the client monitoring load on your server by adjusting the
client.monitoring.sampling.percent property in dynamic.propertes.

You can also specify that you want a strict check on the referrer by setting
client.monitoring.strict.referrer to true. This will help ensure that only
events that originate from a web page instrumented with client monitoring
are used. The default value is false but the recommended value is true if this
setting works in your environment.

You can also stop or uninstall/undeploy the HPDiagM.war using your
application server management console.

Manually Instrumenting HTML/JSP Pages for Client
Monitoring:

Add the following code to your HTML/JSP pages immediately after the
<head> tag:

<!-- HP Client Monitoring -->
<script>
if (window.t_firstbyte === undefined) {

var t_firstbyte = Number(new Date());
}
</script>
<script type='text/javascript' src='/HPDiagCM/boomerang-min.js'>
</script>
<script>
BOOMR.init({beacon_url:"/HPDiagCM/B",

RT:{cookie:"X-HP-CM-RT",cookie_exp:600,expandFrames:true,hashURLs:true},
HP:{cookie:"X-HP-CM-GUID"}});

</script>

Chapter 7 • Preparing Application Servers for Client Monitoring with the Java Agent

250

If you prefer to manually instrument HTML/JSP pages you can permanently
disable auto-instrumentation by setting the following properties in
inst.properties to false. These changes require a restart of the application
server.

<probe_install_dir>\etc\inst.properties:

details.conditional.properties= \
mercury.enable.clientmonitoring.JspWriterImpl.autoinstrumentation=false,\
mercury.enable.clientmonitoring.CoyoteWriter.autoinstrumentation=false,\
mercury.enable.clientmonitoring.BodyContentImpl.autoinstrumentation=false,\

251

8
Installing .NET Agents

This section describes how to install a .NET Agent and gives you
information about the setup and configuration of the .NET Agent.

This chapter includes:

 ➤ Overview of the .NET Agent Installation on page 252

 ➤ Accessing the .NET Agent Installer on page 254

 ➤ Installing the .NET Agent on page 255

 ➤ Post Install Tasks on page 277

 ➤ Verifying the .NET Agent Installation on page 278

 ➤ About Configuration of the .NET Agent for Diagnostics on page 279

 ➤ About Configuration of the .NET Agent for TransactionVision on page 279

 ➤ Discovery and Standard Instrumentation on page 282

 ➤ Probe Aggregator Service on page 286

 ➤ Monitoring NET Applications Deployed in Azure Cloud on page 287

 ➤ Determining the Version of the .NET Agent on page 288

 ➤ Enabling and Disabling the Diagnostics Agent for .NET on page 288

 ➤ Disabling Logging on page 289

 ➤ Enabling and Disabling Standard Instrumentation for Applications
on page 290

 ➤ Troubleshooting .NET Web Applications Not Discovered on page 292

 ➤ Other .NET Agent Troubleshooting Tips on page 294

 ➤ Uninstalling the .NET Agent on page 294

Chapter 8 • Installing .NET Agents

252

Overview of the .NET Agent Installation

The .NET Agent software is installed on the machine hosting the application
you want to monitor. With the .NET Agent you instrument the application
domains for monitoring.

See Chapter 1, “Preparing to Install HP Diagnostics,” for .NET Agent
requirements.

The .NET Agent (version 9.x) requires .NET Framework 2.0 or later. The .NET
Framework must be installed on the machine before you run the .NET Agent
installation.

Important: If you need to support .NET Framework 1.1, you will need to use
an earlier version of the .NET Agent (8.x).

WCF Requirements and Limitations: Monitoring .NET Windows
Communication Foundation (WCF) services requires .NET Framework 3.0
SP1 or greater. WCF bindings using the following transports are supported:

➤ Http

➤ TCP

If your application uses a transport that is not supported, the .NET probe
only creates a generic server request for each WCF method. It will not be a
Web Service and there will be no cross VM correlation.

The HP Diagnostics/TransactionVision .NET Agent installer installs a .NET
Agent to collect data for either Diagnostics or TransactionVision or both.

The .NET Agent installer automatically detects the ASP.NET applications on
the system where the agent is installed. See “Discovery and Standard
Instrumentation” on page 282

The installer configures the agent to capture basic workload and events for
each of the ASP.NET applications detected. The agent configuration is
controlled using the probe_config.xml file. See “Automatic Instrumentation
and Configuration for Discovered ASP.NET Applications” on page 283.

Chapter 8 • Installing .NET Agents

253

The .NET agent uses points files to provide standard instrumentation to
enable you to start monitoring applications. The points files control the
workload the agent captures for the application. See Chapter 11, “Custom
Instrumentation for .NET Applications”. See “Enabling and Disabling
Standard Instrumentation for Applications” on page 290.

The following points files are installed and enabled to provide
instrumentation for monitoring ASP.NET applications:

➤ ASP.NET.points

➤ ADO.points

➤ WCF.points

➤ The following points files can be used for instrumenting applications
that use other Microsoft technologies:

➤ Remoting.points (for .NET remoting environments)

➤ msmq.points (for MSMQ environments)

➤ LWMD.points (for analysis of memory used by collections in
applications)

Separate instrumentation points files are created for each IIS installed
ASP.NET application domain detected (<applicationDomin>.points files).
The probe_config.xml file contains an appdomain reference for each of the
detected ASP.NET applications. And each appdomain section contains an
instrumentation points file reference. The .NET Agent uses this runtime
instrumentation to capture method latency information from specified
applications.

HP Software-as-a-Service (SaaS). HP Diagnostics can be deployed into an HP
Software-as-a-Service (SaaS) environment. In a SaaS deployment the
Diagnostics .NET Agents are installed in your company’s IT environment
and the Diagnostics Commander Server and Mediator Servers are installed
by HP on a SaaS system on-premise at HP. During the setup of the .NET
Agent you select the following option for configuring the agent: Diagnostics
Mode with SaaS-hosted mediator installed on HP premises.

See Accessing the .NET Agent Installer to begin.

Chapter 8 • Installing .NET Agents

254

Accessing the .NET Agent Installer

You can launch the .NET Agent installer a number of different ways. You can
install the .NET Agent from the Diagnostics installation disk or the BSM
installation disk or from the Downloads page in Business Service
Management. You can install the software from the SSO Portal. And if you
want to install a trial version of the HP Diagnostics Profiler for .NET you can
launch the installer from the HP Software Web site download center.

To access the Installer from a Diagnostics installation location:

➤ From the Diagnostics Installation DVD (Autorun.exe) the installation menu
page is displayed. From the menu, select Diagnostics Agent for .NET 32-bit
to launch the install for the 32-bit Windows version of the .NET agent. And
select Diagnostics Agent for .NET 64-bit to launch the install for the 64-bit
version of the .NET agent.

➤ You could run the appropriate installer directly by locating the executable
file HPDiagTV.NETAgt_<release number>_win32.msi (32-bit) or
HPDiagTV.NETAgt_<release number>_win64.msi (64-bit) in the location
you install from and copying the file to the new installation location and
then double-clicking it to run the installer.

Continue with “Installing the .NET Agent” on page 255.

To download the installer from the HP Software Download Center:

 1 Access the SSO portal at http://support.openview.hp.com/selfsolve using
your HP Passport login.

 2 Locate the Diagnostics (or TransactionVision) downloads and choose the
appropriate link for downloading the Diagnostics .NET Agent software. Note
that you could also use the download center in order to get the Diagnostics
.NET profiler trial/evaluation software.

 3 Follow the download instructions on the web site.

Continue with “Installing the .NET Agent” on page 255.

Chapter 8 • Installing .NET Agents

255

To download the Installer from Business Service Management’s Diagnostics
downloads page:

 1 In Business Service Management, either select Admin > Diagnostics from
the main menu and click the Downloads tab. Or select Admin > Platform
from the main menu and click the Setup and Maintenance tab.

 2 On the Downloads page, click the appropriate link to download the .NET
Agent installer for either 32-bit Windows or 64-bit Windows.

Note: The .NET Agent installers are available in Business Service
Management if put into the required directory for Business Service
Management to access. You can enable this during the installation of the
Diagnostic Server, or you can copy the .NET agent installers manually from
the Diagnostics installation disk to the required location.

Continue with “Installing the .NET Agent” on page 255.

To launch the installer for HP Diagnostics Profiler for .NET trial software
from the HP Software Trial Software Download Web site:

 1 Go to the HP Software Web site’s Download Center.

 2 In the Quick Search section, in the Products list, click Diagnostics and click
Search.

 3 Under Trial Software, select the appropriate link.

 4 Follow the download instructions on the web site.

Continue with “Installing the .NET Agent” on page 255.

Installing the .NET Agent

This section provides detailed instructions for a first time installation of the
.NET Agent.

Chapter 8 • Installing .NET Agents

256

Important: If there is a pre-existing installation of the .NET Agent on the
host machine, you must follow the instructions for upgrading the agent
system instead of these install instructions see “Upgrade and Patch Install
Instructions” on page 893.

Chapter 8 • Installing .NET Agents

257

An overview of the .NET Agent installation steps is shown in the diagram
below, refer to the rest of this section for details on each step:

Chapter 8 • Installing .NET Agents

258

The .NET Agent installation process includes the following steps, select Step
1. End user license agreement to begin:

➤ “Step 1. End user license agreement” on page 258

➤ “Step 2. Specify install location” on page 258

➤ “Step 4. Select agent features to install” on page 261

➤ “Step 3. Select installation options” on page 259

➤ “Step 5. Agent name and group” on page 262

➤ “Step 6. Diagnostics server information” on page 264

➤ “Step 7. Port and connection information” on page 266

➤ “Step 8. Pre-install summary” on page 272

➤ “Step 9. Additional Setup for Agents Working in an HP SaaS Environment”
on page 273

➤ “Step 10. Post Install Information” on page 275

➤ “Step 11. Restart IIS” on page 276

Step 1. End user license agreement
Accept the end user license agreement.

Read the agreement and select I accept the terms of the License Agreement.

Click Next to proceed and continue to the next step.

Step 2. Specify install location
Provide the location where you want the Agent installed.

By default, the Agent is installed in C:\MercuryDiagnostics\.NET Probe.
This location becomes the <probe_install_dir>.

Accept the default directory or select a different location either by typing in
a different path, or by clicking Browse to navigate to the installation
directory.

Click Next to proceed and continue to the next step.

Chapter 8 • Installing .NET Agents

259

Step 3. Select installation options
Indicate if the .NET Agent is to be installed as a standalone Profiler without
any connection to a server (for example if you are installing the Diagnostics
.NET Profiler trial software), or if you are installing the agent to work
LoadRunner/Performance or to work with a Diagnostics and/or
TransactionVision Server.

Make the selection that is appropriate for the environment where you will
be using the agent.

➤ Diagnostics Profiler Mode. Select this option to install the agent as a
Diagnostics .NET Profiler without any connection to a Diagnostics server.
This is typically selected when installing the Diagnostics .NET Profiler trial
software prior to purchasing the HP Diagnostics product.

If you select Diagnostics Profiler Mode option, the value of the
probe_config.xml <modes> element is set to pro mode at the time you
install the .NET Agent (see “<modes> element” on page 592).

Chapter 8 • Installing .NET Agents

260

➤ Diagnostics Mode for LoadRunner/Performance Center (AD License). Select
this option to install the agent for use with a Diagnostics Server in a load
testing (or pre-production) environment where probes are used only in
LoadRunner or Performance Center runs.

The advantage of running a probe in AD mode is that probes in AD mode
are only counted against your HP Diagnostics AD license capacity when in a
LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 in a run,
then only 5 are counted against your AD license capacity. See “License
Information Based on Currently Connected Probes” on page 85 for more
information on AD license capacity.

In AD mode the agent will ONLY capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21. When the
agent is in AD mode it will not use resources or send any data to the server
unless the probe is part of a LoadRunner/Performance Center run.

If you select this AD License option, the value of the probe_config.xml
<modes> element is set to ad mode at the time you install the .NET Agent
(see “<modes> element” on page 592).

➤ Diagnostics Mode with SaaS-hosted mediator on HP premise (AM License).
Select this option to install the agent to work in a SaaS environment where
the .NET agent will connect to an HP SaaS server on-premise at HP. An HP
SaaS administrator will provide you with information on connecting the
.NET agent to an HP SaaS hosted Diagnostics mediator server.

➤ Application Management/Enterprise Mode (AM License). Select this option
to install the agent for use with a Diagnostics Server and/or a
TransactionVision Server in an enterprise (or production) environment.

Then indicate which of the following the agent will be configured for:

➤ A Diagnostics Server (installed locally)

➤ A TransactionVision server

➤ Both a Diagnostics Server installed locally and a TransactionVision Server

If you select TransactionVision, see the HP TransactionVision Deployment
Guide in the Business Service Management documentation library for details
on setup options specific to TransactionVision.

Chapter 8 • Installing .NET Agents

261

With this option, the value of the probe_config.xml <modes> element is set
to enterprise mode if you select the Diagnostics Server and tv mode if you
select the TransactionVision server at the time you install the .NET Agent
(see “<modes> element” on page 592).

For those agents with Enterprise mode set, the agent will be counted against
your HP Diagnostics AM license capacity.

Click Next to proceed and continue to the next step.

Step 4. Select agent features to install
Select the .NET Agent features you want to install.

Metrics Agent. It is recommended that you install the Metrics Agent which
is checked by default. See Chapter 18, “.NET System Metrics Agent - Systems
Metrics Capture” for more information. But if you do NOT want to capture
system metrics on the host machine you can uncheck the Metrics Agent
box.

Probe Aggregator. Optionally you can select to install the Probe Aggregator
Service. If you are installing the agent to work in an HP SaaS environment
the Probe Aggregator box will be checked for you since this option is
required for SaaS and cannot be changed.

Chapter 8 • Installing .NET Agents

262

This Probe Aggregator service aggregates .NET Agent data to 5 second
intervals before sending the performance data to the Diagnostics mediator
server. This can improve scalability by reducing network communications
with the server but the aggregator will also increase probe system overhead.
See “Probe Aggregator Service” on page 286 for more information on the
performance tradeoffs to installing the Probe Aggregator.

Disk Cost. To check the amount of available disk space on the drives of the
host, click the Disk Cost button. Use this functionality to make sure that
there is enough room for the Agent installation.

Click Next to proceed and continue to the next step.

Step 5. Agent name and group

Skip this step if the agent won’t be reporting to a Diagnostics Server.

Enter the Agent Name and Agent Group Name.

➤ Agent Name. The name that identifies the agent within HP Diagnostics. If
you leave this field blank, the .NET Agent will auto-generate an agent name
based on the application domain name of the monitored application. The
agent name is assigned as the probe entity name.

Chapter 8 • Installing .NET Agents

263

Note: It is recommended that you leave Agent Name blank and allow the
agent to auto-generate the agent name. Read the following information
carefully if you decide to enter your own agent name.

Considerations when entering an agent name:

➤ Valid characters that can appear in the agent name are: letters, digits,
dashes, underscores, and periods.

➤ Assign an agent name that will help you recognize the application that is
being monitored, and the type of instrumentation.

For example, the agent name for the .NET Agent installed to monitor the
application named PetWorld can be:

 PetWorld_Dotnet_Agent

➤ When you specify an agent name, all of the agents on the host are forced
to use the same agent name.

The default agent name auto-generated by the agent when the agent
name field is left blank is equivalent to specifying $(APPDOMAIN).NET.

To override the default name, use the following substitution macros to
enhance the name at run time:

➤ $(MACHINENAME): Machine’s host name

➤ $(APPDOMAIN): Application’s domain name

➤ $(PID): Application’s process ID

➤ $(WEBSITENAME): The IIS Web site under which the application is
hosted.

➤ $(COMMANDLINE:n) Where n is the command line parameter
number.

For example:

<id probeid=”ILTEST_$(COMMANDLINE:3)_rest” probegroup=”Default”/>

with a command line of iltest “heart and lung” -abc server results in a
probeid of ILTEST_server_rest.

Chapter 8 • Installing .NET Agents

264

Note that n=0 indicates the executable/command name.

Note:

➤ For applications that are not hosted in IIS the agent name will be reverted
to the default, that is, $(APPDOMAIN).NET. An example of this would be
console applications.

➤ For newly installed IIS applications you may need to run Rescan ASP.NET
Applications from the HP Diagnostics .NET Agent program group in the
Windows Start menu.

➤ Agent Group Name: Enter a name for an existing group or for a new group
to be created. The default value for the agent group name is Default. The
agent group name is case-sensitive. In Diagnostics this name is used as the
probe group name.

Probe groups are logical groupings of probes that report to the same
Diagnostics Server. The performance metrics for a probe group are tracked,
and can be displayed on many of the Diagnostics views.

For example, you could assign all of the probes for a particular enterprise
application to a single probe group so that you can monitor both the
performance at the group level and the performance based on individual
probe entities.

➤ Profiler Admin Password. Enter the admin user password used to connect to
the .NET Diagnostics Profiler. If left blank, the default password (admin) is
set.

Click Next to proceed and continue to the next step.

Step 6. Diagnostics server information

Skip this step if the agent won’t be reporting to a Diagnostics Server or if you
are installing the agent to work in an HP SaaS environment. Your HP SaaS
administrator will provide details for configuring communication between
the agent and the SaaS-hosted Diagnostics Server.

Provide the information needed to enable the .NET Agent to communicate
with the Diagnostics mediator server.

Chapter 8 • Installing .NET Agents

265

If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Data Port instead of the Diagnostics Server Data Port and Probe
Aggregator Metric Port instead of Diagnostics Server Metric Port.

➤ In the Diagnostics Server (Name or IP address) box, type the host name or
IP address of the host for the Diagnostics mediator server.

➤ Specify the fully qualified host name, not just the simple host name. In a
mixed OS environment, where UNIX is one of the systems, this is essential
for proper network routing.

➤ In the Diagnostics Server Data Port box, type the port number where the
Diagnostics Server is listening for Agent communication. The default port
number is 2612. If you changed the port since the Diagnostics Server was
installed, specify that port number here instead of using the default.

➤ If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Data Port box instead of for the Diagnostics Server data port.
Type in the port number where the Diagnostics mediator server is listening
for the Agent communication when probe aggregation is installed. The
default port number is 2626. If you changed the port since the Diagnostics
Server was installed, specify that port number instead of using the default.

Chapter 8 • Installing .NET Agents

266

➤ In the Diagnostics Server Metric Port box, type the port number where the
Diagnostics Server is listening for communications from the System Metrics
Agent. The default port number is 2006. If you changed the port since the
Diagnostics Server was installed, specify that port number here instead of
the default.

➤ If you selected to install the Probe Aggregator Service, you will see the Probe
Aggregator Metric Port box instead of for the Diagnostics Server metric
port. Type in the port number where the Diagnostics mediator server is
listening for the Agent communication when probe aggregation is installed.
The default port number is 45000. If you changed the port since the
Diagnostics Server was installed, specify that port number instead of using
the default.

➤ To perform a connectivity check to make sure that the Diagnostics Server is
running and accessible from the installation host, click Test.

➤ The connectivity check lets you know right away if you made an error in the
information you provided about the Diagnostics mediator server, or if there
is a connection problem between the Diagnostics Server’s host and the
Agent’s host. If the connection to the Diagnostics mediator server host
cannot be resolved, an error message is displayed.

➤ Click Next to proceed and continue to the next step.

Step 7. Port and connection information
You will see different port and connection configuration dialogs depending
on what install options you selected. Select from the following and proceed
with the configuration:

➤ Port connection information for Diagnostics Servers

➤ Port and connection information for TransactionVision Server

➤ Profiler mode with no connection to a Diagnostics or TransactionVision
Server

Chapter 8 • Installing .NET Agents

267

If you are installing the Agent to work with a Diagnostics
Server, you will see the following dialog box.

Provide the Web port range for the .NET Agent to use.

➤ Minimum Web Port. Type the lowest port number, in a range of ports on the
Agent host, you want to assign to the Agent.

➤ Maximum Web Port. Type the highest port number, in a range of ports on
the Agent host, you want to assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of the Web Port Range are defined by the
Minimum Web Port and Maximum Web Port fields. The Web Port Range
contains the ports the Agent can use.

When an Agent is started, it attempts to find an unused port from within
this range, starting from the lowest port number in the range and working
its way up to the highest. Ports within the range could already be in use if
another Agent or application previously claimed them.

Chapter 8 • Installing .NET Agents

268

The minimum size for the port range is equal to the maximum number of
Agents that will be concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

➤ If the Agents are working with ASP.NET applications, double the number
of ports to account for ASP.NET’s appdomain recycling.

➤ If you have a firewall between the Agent and a component that will be
communicating with the Agent, open the firewall for the ports within
the range. Adjust the range to be just big enough.

Click Next to proceed and continue to the next step. If you also selected the
option to have the agent work in a TransactionVision Environment see the
following section for additional configuration.

If you are installing the Agent to work in a TransactionVision
environment, you will see the following dialog box.

If you selected to install the agent to work with a TransactionVision Server
you will see additional screens in the installation. See the TransactionVision
Deployment Guide for information on using the agent in a TransactionVision
environment.

Chapter 8 • Installing .NET Agents

269

The Configure the .NET Agent for TransactionVision dialog box appears.

Choose the Messaging Middleware Provider. Options are: WebSphere MQ
and SonicMQ.

SonicMQ is included with the .NET Agent. If you specify this option, the
Sonic MQ .NET client (Sonic.Client.dll - Progress SonicMQ .NET Client,
version 7.6.0.112) is installed as part of the Agent installation.

A third-party WebSphere MQ installation can be used instead. In this case,
you must install the MQ series .NET client (amqmdnet.dll - WebSphere MQ
Classes for .NET, version 1.0.0.3) on the host being monitored.

By default, SonicMQ is selected.

➤ For SonicMQ, enter the following:

Broker. Host name on which the Sonic broker is running. Typically this will
be the Analyzer hostname.

Port. The port on which the broker communicates. By default, 21111.

Configuration Queue. Name of the configuration queue. By default,
TVISION.CONFIGURATION.QUEUE.

Chapter 8 • Installing .NET Agents

270

User. User id if required by SonicMQ installation for connection. By default,
no username is required.

Password. Password if required by SonicMQ installation for connection.
This is in the obfuscated form created by using the PassGen utility. By
default, no password is required. For more information about PassGen, see
"Command-Line Utilities" in Using Transaction Management.

➤ For WebSphere MQ, enter the following:

Host. The host on which the WebSphere MQ queue manager resides.

Port. Port number for WebSphere MQ queue manager.

Configuration Queue. Name of the configuration queue.

User. User id if required by WebSphere installation for connection.

Password. Password if required by the WebSphere MQ installation for
connection. This is in the obfuscated form created by using the PassGen
utility. For more information about PassGen, see "Command-Line Utilities"
in Using Transaction Management.

Websphere MQ channel. Channel name for WebSphere MQ queue manager.

Websphere MQ Q Manager. CCSID for WebSphere.

Click Next to proceed and continue to the next step.

Chapter 8 • Installing .NET Agents

271

If you are installing the Agent in Profiler mode, you will see the
following dialog box:

Provide the Web port range for the .NET Agent to use.

➤ Minimum Web Port. Type the lowest port number, in a range of ports on the
Agent host, you want to assign to the Agent.

➤ Maximum Web Port. Type the highest port number, in a range of ports on
the Agent host, you want to assign to the Agent.

Note: The default range is from 35000 to 35100 (inclusive).

The upper and lower limits of the Web Port Range are defined by the
Minimum Web Port and Maximum Web Port fields. The Web Port Range
contains the ports that the Agent can use.

When an Agent is started, it attempts to find an unused port from within
this range; starting from the lowest port number in the range and working
its way up to the highest. Ports within the range could already be in use if
another Agent or application previously claimed them.

Chapter 8 • Installing .NET Agents

272

The minimum size for the port range is equal to the maximum number of
Agents that will be concurrently running on the Agent’s host.

Considerations when setting the Web Port Range:

➤ If the Agents are working with ASP.NET applications, it is recommended
that you double the number of ports to account for ASP.NET’s
appdomain recycling.

➤ If you have a firewall between the Agent and a component that will be
communicating with the Agent, you must open the firewall for the ports
within the range. For this reason you might want to adjust the range to
be just big enough.

Click Next to proceed and continue to the next step.

Step 8. Pre-install summary
The pre-installation summary screen opens. Click Back to make any
changes. Click Install to start the .NET Agent installation.

Chapter 8 • Installing .NET Agents

273

Note: When installing the agent for use as a Profiler only, there is no test for
Metric Port connectivity.

If you are installing the agent to work in an HP SaaS environment continue
to Step 9 otherwise skip the next step and continue to Step 10.

Step 9. Additional Setup for Agents Working in an HP
SaaS Environment
If you are installing the agent to work in an HP SaaS environment then the
SaaS Setup module starts automatically or you can run the SaaS Setup
module anytime by selecting Start > All Programs > HP Diagnostics .NET
Probe > SaaS Setup.

In the SaaS Setup module the following dialog is displayed. If you are not
setting up the agent for an HP SaaS environment then you will not see this
dialog.

Chapter 8 • Installing .NET Agents

274

Chapter 8 • Installing .NET Agents

275

➤ Diagnostics Server Connectivity. In an HP SaaS environment the Diagnostics
Server is setup by HP on an a system on-premise at HP. The default port for a
SaaS environment is 443. An HP SaaS administrator will provide you with
the information on the Diagnostics Server host name and port to use.

➤ If a proxy server is used to communicate with the Diagnostics Mediator
Server select Use Proxy Server to connect to Diagnostics Server check box
and enter the appropriate options. In an HP SaaS environment if your
company requires a proxy to communicate to outside servers then you
would select this option.

Proxy Server Options:

➤ Proxy Server Name. Host name of the proxy server.

➤ Proxy Server Port. Port of the proxy server.

➤ Proxy Server Username (optional). The user used to authenticate the
proxy server.

➤ Proxy Server Password (optional). The password used to authenticate the
proxy server.

➤ Probe Aggregator Admin password. The password is automatically set to
the same password as the .NET Profiler Admin password (entered in step 5),
so for an initial agent setup for SaaS you will not see this field. If you want to
subsequently change the Probe Aggregator Admin password, you can run
the SaaS Setup module again and this field will be displayed.

Continue on to the next step to finish the installation.

Step 10. Post Install Information
On the final installation screen, you can select the Show the Windows
Installer Log checkbox to view the log file and check for errors.

Click Finish to exit the installer.

For information on post installation tasks see “Post Install Tasks” on
page 277.

When you are ready you must restart IIS, see the next step.

Chapter 8 • Installing .NET Agents

276

Step 11. Restart IIS
After you finish installing and setting up the agent you must restart either
the IIS or the Web publishing service before you can use the .NET agent with
ASP.NET applications.

To restart IIS from the command line or from the Start > Run menu, type
iisreset and press Enter.

For Diagnostics this command restarts the Web publishing service but does
not immediately start the .NET Agent. The next time that a Web page in the
application is requested, the agent is started, the applications are
instrumented, and the agent registers with the Diagnostics command server.

For TransactionVision this command restarts the Web publishing service but
does not immediately start the .NET Agent. The next time that a Web page
in the application is requested, the agent is started, the applications are
instrumented, and the agent reads the Configuration Queue Messages from
the Analyzer.

Note: ASP.NET automatically restarts applications under various
circumstances, including when it detects that applications are redeployed,
or when applications exceed the configured resource thresholds.

When ASP.NET restarts an application that is being monitored by a .NET
Agent, the agent is deactivated and a new agent is started. While this is
occurring, there can be a period of overlap where there are multiple agents
simultaneously registered with the Diagnostics command server and
connected to the Diagnostics mediator server. This condition could cause
LoadRunner / Performance Center and Business Service Management to
report errors during the application restart sequence.

Continue with the next section to learn more about post installation tasks.

For information on verifying the installation see “Verifying the .NET Agent
Installation” on page 278.

Chapter 8 • Installing .NET Agents

277

Post Install Tasks

See the following topics for information about additional configuration for
the .NET Agent:

➤ For information on how the .NET Agent automatically discovers
applications and configures standard instrumentation to allow monitoring
see “Discovery and Standard Instrumentation” on page 282.

➤ For information on configuring the .NET Agent for Diagnostics and for links
to more advanced topics see “About Configuration of the .NET Agent for
Diagnostics” on page 279.

➤ For information on configuring the .NET Agent for TransactionVision and to
see the types of events TransactionVision can trace with the .NET Agent see
“About Configuration of the .NET Agent for TransactionVision” on
page 279.

➤ “Enabling and Disabling Standard Instrumentation for Applications” on
page 290 for more information.

➤ For information on configuration for environments with proxies see
“Configuring Diagnostics Servers and Agents for HTTP Proxy” on page 671,
firewalls see “Configuring Diagnostics to Work in a Firewall Environment”
on page 675 and for enabling HTTPS see “Enabling HTTPS Between
Components” on page 839.

Chapter 8 • Installing .NET Agents

278

Verifying the .NET Agent Installation

On the final installation screen you can select the Show the Windows
Installer Log checkbox to view the log file and check for errors.

The .NET Agent does not register with the Diagnostics Server until the probe
is started. the probe is started and registered with the Server when the
instrumented application is run. For ASP.NET applications this happens the
first time a page is requested for the instrumented application.

Once a .NET probe instance is started you can launch the Diagnostics
Enterprise UI to verify that the probe is working. Go to http://
<Diagnostics_commander_server>:2006/. For now you can use the default
user/password of admin/admin or the login you were given if a different one
has been set up for you.

You can also check the System Health view to find information about the
.NET agent deployments and the machines that host them.

To access the System Views:

 1 Open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

 2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

 3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

 4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Chapter 8 • Installing .NET Agents

279

About Configuration of the .NET Agent for Diagnostics

You can customize the .NET Agent configuration and add custom
instrumentation to suit your environment and the performance issues you
would like to diagnose.

The installer configures your ASP.NET applications and the .NET Agent to
work together to capture the basic workload of the applications. It is
possible that one or more of your ASP.NET applications was deployed in a
manner that prevents the installer from detecting it. Or, you might want to
enhance the standard instrumentation to capture the performance metrics
for the custom classes in the application.

In Diagnostics, you can do additional configuration using the
probe_config.xml file. For details on this file see Chapter 14,
“Understanding the .NET Agent Configuration File.” For instructions on
advanced .NET Agent configuration, see Chapter 15, “Advanced .NET Agent
Configuration.”

Also in Diagnostics, you can create custom instrumentation points to
handle unique situations in your application environment. For general
information on custom instrumentation see Chapter 11, “Custom
Instrumentation for .NET Applications.”

About Configuration of the .NET Agent for
TransactionVision

When used with TransactionVision the .NET Agent captures events from
.NET applications and sends the events to the TransactionVision Analyzer.
See the Business Service Management Documentation Library for more
information about TransactionVision.

Chapter 8 • Installing .NET Agents

280

.NET Agent Configuration for TransactionVision
The default configuration of the .NET Agent allows you to begin tracing
certain .NET events in a monitored application. You can customize the .NET
Agent configuration to control what .NET events are traced and sent to the
TransactionVision Analyzer.

To override the default configuration, access the <agent_install_dir>/etc/
probe_config.xml file. See “Understanding the .NET Agent Configuration
File” on page 551 for details on the elements you can configure for both
Diagnostics and TransactionVision.

The <modes> element in the probe_config.xml file is set at installation for
both Diagnostics and TransactionVision (see “<modes> element” on
page 592).

When you select to install the .NET Agent to work in a TransactionVision
environment the <modes> element in the probe_config.xml file is set to tv.
When this is the only mode selected the agent will work in a TV only mode
where the Profiler and the Diagnostics probe is disabled and only TV events
are generated. When you select to install the .NET Agent to work in other
modes such as with Diagnostics then both TV events and Diagnostics data
collection will be enabled.

In order to specify TransactionVision specific and TransactionVision
transport specific configuration the following elements in the
probe_config.xml file are used exclusively for TransactionVision:

➤ <tv> element (see “<tv> element” on page 619 for details)

➤ <timeskew> element (see “<timeskew> element” on page 614 for details)

➤ <transport> element (see “<transport> element” on page 616 for details)

➤ <gentvhttpeventforwcf> element (see “<gentvhttpeventforwcf> element” on
page 570 for details)

If the .NET Agent is using SonicMQ transport to communicate with the
TransactionVision Analyzer, SSL can be enabled. See the HP Business Service
Management Hardening Guide PDF for details.

By default, .NET Events are not correlated. To enable correlation refer to the
HP TransactionVision documentation.

Chapter 8 • Installing .NET Agents

281

Types of Events TransactionVision Can Trace with the .NET
Agent
When used with TransactionVision the .NET Agent traces the following
types of .NET events:

 1 Web Services

 a ASP.NET (*.asmx) - Client and Server

To generate events, use the ASP.NET.points file.

 b WCF (*.svc) - Client and Server

To generate events, use the wcf.points file.

 c REST style services - Server

To generate events, use the wcf.points file and set up the instrumentation
of the application as described in “Configure WCF REST Services for
Monitoring” on page 444.

 2 Database calls executed using ADO.NET

To generate events, use the ADO.points file.

 3 .NET Remoting - Client and Server

To generate .NET remoting events, use the Remoting.points file and setup
the application for instrumentation as described in “How to Configure
Instrumentation for .NET Remoting” on page 451.

 4 MSMQ - Send and Receive (asynchronous)

To generate events, use the Msmq.points file.

 5 HTTP

 a Client outbound - includes calls to REST services

To generate events, use the ASP.NET.points file.

 b ASP.NET inbound/server (POST, GET, PUT) (*.aspx)

To generate events for HTTP, use ASP.NET.points file.

Chapter 8 • Installing .NET Agents

282

 6 User defined events

Use the detail argument tv:user_event (see “Optional Point Entries” on
page 432)

To turn off event generation remove the relevant points file from scope.

Discovery and Standard Instrumentation

The .NET Agent installer automatically discovers the ASP.NET applications
you might want to instrument. After you install the .NET Agent, you can
request that the agent rescan your IIS configuration to catch any additions
or changes.

Discovering ASP.NET Applications During Installation
The .NET Agent installer detects ASP.NET applications on the machine when
the agent is installed. The .NET Agent installer discovers applications by
inspecting the IIS configuration and looking for virtual directory entries that
might refer to ASP.NET applications.

In some instances, the ASP.NET applications are installed in a manner that
prevents them from being detected. An example is when an ASP.NET
application is installed as a Web directory instead of a virtual directory.

Discovering ASP.NET Applications After Installation
You can request a rescan of the IIS configuration if you modified an existing
ASP.NET application deployment or installed new ASP.NET applications.

To request that the agent rescan the IIS configuration and update the
probe_config.xml file, select Start > HP Diagnostics .NET Probe > Rescan
ASP.NET Applications.

Chapter 8 • Installing .NET Agents

283

Automatic Instrumentation and Configuration for
Discovered ASP.NET Applications
The .NET Agent installer configures the agent to capture basic ASP.NET/
ADO/WCF workload for each of the ASP.NET applications detected. The
agent performs the following configuration steps:

➤ Creates an application-specific capture points file template.

The capture points file defines the instrumentation that controls the
workload that the agent captures for each application. You can modify
the instrumentation in the capture points file to provide instructions
that allow the agent to capture performance data for application-specific
custom methods.

➤ Creates an appdomain tag in the probe_config.xml file, which is located
in the <probe_install_dir>/etc directory. The attributes of the appdomain
tag direct the behavior of the .NET Agent (points and enabled attributes).
See Chapter 14, “Understanding the .NET Agent Configuration File” for
details.

Note: Diagnostics enables the instrumentation for all discovered
applications by setting the enablealldomains attribute in the process tag to
true, which overrides the appdomain tag’s enabled attribute. For
information on enabling and disabling instrumentation for applications see
“Disabling Logging” on page 289.

Discovery of IIS Metadata for CI Population of IIS
Deployed ASP.NET Applications
With Diagnostics 9.0x or later, Diagnostics populates CIs and model
relationships in the Business Service Management 9.0 or later Run-time
Service Model (RTSM) for application infrastructure elements and business
transactions.

Chapter 8 • Installing .NET Agents

284

For CI population the .NET Agent installer automatically discovers the IIS
configuration metadata for ASP.NET applications that are deployed under IIS
versions 6.x or greater. The discovered IIS configuration metadata is written
to the iis_discovery_data.xml file which is located in the
<probe_install_dir>\etc directory. After you have installed the .NET Agent,
you can request that the agent re-scan your IIS configuration to update for
any additions or changes.

Note: This information is for integrating with Business Service Management
9.0 or later

➤ Runtime Population CIs for IIS Deployed ASP.NET Applications

At runtime the .NET Agent queries the iis_discovery_data.xml file for IIS
configuration metadata associated with the instrumented appdomain. If the
associated metadata is found, the agent forwards the data to its Diagnostic
Server which populates the Business Service Management Run-time Service
Model CIs for .NET Application. See Chapter 22, “Setting Up the Integration
Between Business Service Management and Diagnostics” for a discussion of
the integration with the Business Service Management 9.0 Run-time Service
Model model for .NET Applications.

➤ Discovery of IIS Metadata of IIS Deployed ASP.NET Applications During
Installation

The .NET Agent installer discovers IIS deployed ASP.NET applications on the
machine when the agent is installed. The .NET Agent installer discovers
applications by querying the WMI (WMEB) Provider for the IIS
configuration metadata. The pertinent metadata is written to the
iis_discovery_data.xml file.

➤ Discovery of IIS Metadata of IIS Deployed ASP.NET Applications After
Installation

Chapter 8 • Installing .NET Agents

285

You must request a re-scan of the IIS configuration metadata when you have
modified an existing ASP.NET application deployment or installed new
ASP.NET applications. To request that the agent re-scan the IIS configuration
and write a new iis_discovery_data.xml file, run Start > HP Diagnostics .NET
Probe > Rescan ASP.NET Applications shortcut. Note that the new
iis_discovery_data.xml file is not intended for editing by the user; any such
user edits will be overwritten by executing this shortcut.

➤ Privilege Requirements for Discovery of IIS Deployed ASP.NET Applications

The user must have Administrator privileges on the machine that the .NET
Agent is installed on, otherwise the WMI queries will fail and the
iis_discovery_data.xml file will not be created.

➤ Debugging the Discovery of IIS Deployed ASP.NET Applications

If the iis_discovery_data.xml file is not created or there is any reason to
suspect that some of its metadata may be inaccurate, you can enable the
creation of a detailed debug file to examine the results of the WMI queries.
To enable the creation of a detailed debug file. change last parameter of the
Target Property for the Start > HP Diagnostics .NET Probe > Rescan ASP.NET
Applications shortcut from "false" to "true". When the Rescan ASP.NET
Applications shortcut is executed, an <probe_install_dir>/log/
AutoDetect.log is created. Note that you should have Administrator
privileges when executing this shortcut. You can send the AutoDetect.log to
HP Support for analysis.

Non ASP.NET Applications
The .NET Agent installation automatically discovers your ASP.NET
applications, creates settings for the applications in the probe_config.xml,
and creates template points file for them. For each non-ASP.NET
application—for example, NT Service, console application, UI client—you
must create the appropriate settings in the probe_config.xml settings to
configure the .NET Agent to monitor your applications as well as create
points files indicating which points in your application you want to
monitor.

Chapter 8 • Installing .NET Agents

286

The following is an example of a probe_config.xml setting for an
application called SimpleConsoleHost.exe:

<process name="SimpleConsoleHost">
<points file="SimpleConsoleHost.points"/>
<logging level=" "/>

</process>

The following is an example of points file setting for an application called
SimpleConsoleHost.exe:

[SimpleConsoleHost]
class = MyNamespace.SimpleConsoleHost
method = !.*
ignoreMethod = Main
layer = SimpleConsoleHost

See Chapter 11, “Custom Instrumentation for .NET Applications” for more
details.

Probe Aggregator Service

The Probe Aggregator Service can optionally be installed as part of the .NET
Agent installation. It runs as a Windows Service, HP Probe Aggregator.

The Probe Aggregator Service aggregates probe data to 5 second intervals
before sending the performance data to the Diagnostics mediator server.
This is useful when the volume of data collected based on instrumentation
of multiple applications is high and networking traffic would be too great if
not aggregated. See “.NET Probe Aggregator Data Flow” on page 892 for a
technical diagram of the data processing.

The basic .NET Agent installation, without the Probe Aggregator Service,
results in performance data being sent to the Diagnostics mediator server as
method starts and stops occur.

Chapter 8 • Installing .NET Agents

287

There are performance trade-offs to using the Probe Aggregator Service. So
you must assess the requirements in your environment. For example,
consider using the probe aggregator when you have two or more .NET probe
instances running on the same system. Actual network overhead is
dependent on the applications being monitored, so you need to determine
if the potential savings in network bandwidth and mediator load offsets the
increased memory usage on the application system.

When you install the .NET Agent with the Probe Aggregator Service, this
service runs automatically and waits for connections from the .NET probes.
Standard configuration of the probe aggregator is done during the .NET
Agent installation. The
<probe_install_dir>\ProbeAggregator\etc\probeaggregator.properties file
is used to set configuration parameters for the Probe Aggregator (for
example, setting the SQL trending threshold).

If you decide, post installation, to install the Probe Aggregator Service you
can run the .NET Agent installation again, selecting the Change button.
Then select the check box for installing the Probe Aggregator Service.

Performing a remove or uninstalling the .NET Agent also removes the Probe
Aggregator Service. For information on how to disable and enable the Probe
Aggregator Service see “Enabling and Disabling the Diagnostics Agent for
.NET” on page 288.

Monitoring NET Applications Deployed in Azure Cloud

Microsoft provides Windows Azure SDK for developers to create and deploy
Azure applications to the Microsoft Windows Azure Cloud Infrastructure.
The Diagnostics .NET Agent leverages the Azure SDK to provide seamless
deployment of the .NET Agent into the Azure Infrastructure. Once deployed
the .NET Agent monitors applications running in the Azure Cloud,
collecting performance data and reporting to an HP Diagnostics Server for
analysis and problem detection. See the AzurePackReadMe.pdf in the .NET
Agent AzurePack zip file for details on installing and configuring the .NET
Agent for monitoring applications in the Windows Azure Cloud.

Chapter 8 • Installing .NET Agents

288

Determining the Version of the .NET Agent

When you request support, it is useful to know the version of the
Diagnostics components you installed.

To determine the version of the .NET Agent:

➤ Right-click the file <Agent_install_dir>\bin\HP.Profiler.dll and select
Properties from the menu. In the Properties dialog, select the Version tab to
display the component version information.

Or you can use the System Health view in the Diagnostics UI Appendix D,
“Using System Views for Administrators”).

Enabling and Disabling the Diagnostics Agent for .NET

The .NET Agent is enabled when it is installed. After you restart your Web
server and a URL in the application is accessed, the .NET Agent begins to
gather performance information.

You can disable the .NET Agent so that it does not start and does not gather
performance metrics.

To disable a .NET Agent:

➤ Select Start > All Programs > HP Diagnostics .NET Probe > Disable HP .NET
Probe.

To enable a .NET Agent that was disabled:

➤ Select Start > All Programs > HP Diagnostics .NET Probe > Enable HP .NET
Probe.

Chapter 8 • Installing .NET Agents

289

Note: Disabling the .NET Agent only disables the probe metrics collector
and the active probes. It does not disable the system metrics collector. The
process of enabling or disabling system metrics collection is controlled
through the standard Windows services manager. The effect of enabling or
disabling probes only happens the next time the probed application restarts.
It has no affect on currently running applications.

Once the Probe Aggregator Service is installed and running, you can disable
and enable it from the Start Menu. Select Start > All Programs > HP
Diagnostics .NET Probe > Disable HP .NET Probe or Enable HP .NET Probe.
Selecting Disable HP .NET Probe, in addition to disabling the .NET probes
will mark the Probe Aggregator Service as disabled, but not stop the service
(in case there are running probes remaining). Selecting Enable HP .NET
Probe, in addition to enabling the .NET probes will change the Probe
Aggregator Service back to type automatic and start it if needed.

Disabling Logging

You can disable probe application logging by changing the logging level tag
of the ASP.NET process section of the probe_config.xml file, as shown in the
following example:

You can disable probe instrumentation logging by changing the logging
level tag of the instrumentation section, as shown in the following example:

<process name="ASP.NET">
<logging level="off"/>

</process>

<instrumentation>
<logging level="off" />

</instrumentation>

Chapter 8 • Installing .NET Agents

290

Enabling and Disabling Standard Instrumentation for
Applications

When the .NET Agent is first installed, the standard ASP.NET/ADO
instrumentation for all discovered applications is enabled, but no
application specific instrumentation is enabled. You control which
applications have their instrumentation enabled or disabled using the
attributes of the enablealldoamins attribute in the <process> element and
attributes in the <appdomain> element in the probe_config.xml file for the
.NET Agent.

Disabling instrumentation for an application allows you to avoid the
processing overhead and distracting information in the Diagnostics views
for applications that are not relevant to the environment whose
performance you want to monitor.

Enabling instrumentation for all application allows the .NET Agent to
monitor the performance of all detected applications so that you can see the
performance metrics for all of the applications in the views of the
Diagnostics and Profiler user interfaces.

These are the rules for the enablealldomains attribute of the <process>
element:

➤ enablealldomains = false : If there are no domains in the list of
<appdomain> No domains should be enabled.

➤ enablealldomains = false : If there are domains in the list of
<appdomain> Domains should be enabled if the "enable" attribute is set
to true or not defined in the enable attribute of the <appdomain>.

➤ enablealldomains = true : If there are domains in the list of <appdomain>
Only Domains in the list should be enabled disregarding their "enable"
attribute.

➤ enablealldomains = true : If there are no domains in the list of
<appdomain> All domains should be enabled.

➤ enablealldomains attribute is not defined: same as if enablealldomains =
true.

Chapter 8 • Installing .NET Agents

291

To enable or disable the instrumentation for an application:

 1 Set the enablealldomains attribute in the <process> element to false. This
allows the attributes of each appdomain tag to control the state of the
instrumentation for each application. If there are no appdomain entries, no
applications are enabled.

 2 Set the enabled attribute in the <appdomain> element to true for each
application where you want to enable the instrumentation.

 3 Set the enabled attribute in the <appdomain> element to false for each
application that is to have its instrumentation disabled.

The following example shows instrumentation enabled for one application
and disabled for another.

To enable the instrumentation for ALL applications:

➤ Set the enablealldomains attribute in the <process> element to true. This
overrides the settings of the attributes in each <appdomain> element so that
the instrumentation can be enabled without having to set numerous
attributes.

<process name="ASP.NET" enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/myApplication" website=”Default Web Site”

enabled="true">
<points file="DefaultWebsite-myApplication.points" />

</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site”

enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

Chapter 8 • Installing .NET Agents

292

The following example shows instrumentation enabled for all applications:

Troubleshooting .NET Web Applications Not Discovered

In a Microsoft Windows 2003 server and IIS 6 environment, if your web site
has a virtual directory under a web folder .NET Agent may fail to discover
the virtual directory. This is because of an issue with the Microsoft WMI
provider used by Diagnostics to walk down the web site tree. The WMI
provider does not properly recognize the web folder as an IIS web directory
and so Diagnostics can’t discover the virtual directory under the folder. See
the example described below.

<process name="ASP.NET" enablealldomains="true">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/myApplication" website=”Default Web Site”

enabled="false">
<points file="DefaultWebsite-myApplication.points"/>

</appdomain>
<appdomain name="1/ROOT/myApplicationTwo" website=”Default Web Site”

enabled="false">
<points file="DefaultWebsite-myApplicationTwo.points"/>

</appdomain>
</process>

Chapter 8 • Installing .NET Agents

293

The example shows web folder WebFolderTest under the web site abc. Under
this web folder there is a virtual directory WebChain.

Because of an issue with the WMI provider, the listing in WMI for this web
site would not show the WebFolderTest/WebChain virtual directory. The
.NET Agent uses the listing from the WMI provider to discover web
applications. So in situations like this, the .NET Agent may not be able to
discover virtual directories under a web folder.

Microsoft recommends modifying the metabase directly or using a simple
script like the following to set the folder style using ADSI:

Instead of using a script you can manually configure the web folder as an
application in IIS. Once this is done it can be reverted to a non-application
but the property would now be set and Diagnostics would be able to
discover the web application.

Another option is to manually add the excluded APPDOMAIN in the
ASP.NET appdomain list in the probe_config.xml file.

Set objRoot = GetObject("IIS://localhost/W3SVC/1/Root/WebFolderTest")
objRoot.KeyType = "IIsWebDirectory"
objRoot.SetInfo()

Chapter 8 • Installing .NET Agents

294

Other .NET Agent Troubleshooting Tips

If you have problems getting the agent started properly here are some things
to check:

➤ Make sure you restarted the web server and that a URL in the application
was accessed, this triggers the agent to begin collecting data.

➤ Check if a probe_config.xml file was created and is formatted correctly (that
is, no missing tag closers, etc.). This can be done by opening the file in a web
browser.

➤ Look for any message in the Windows Event Log named “HP Diagnostics”.
This log is used exclusively by the .NET Agent. There should be a message
for each attempt to instrument an application.

Uninstalling the .NET Agent

To uninstall the .NET Agent:

 1 Stop all Web applications that are using SOAP.

 2 From the Windows Control Panel, select Add/Remove Programs and then
select HP Diagnostics/TransactionVision Agent for .NET to uninstall.

 3 Restart the Web applications.

To remove the Probe Aggregator Service you can uninstall the .NET Agent
which will also remove the Probe Aggregator Service. Or you can run the
.NET Agent installation again, selecting the Change button and then
de-select the check box for installing the Probe Aggregator Service.

295

9
Installing and Setting Up Python Agents

This section describes how to install a Python Agent and gives you
information about the setup and configuration of the Python Agent.

This chapter includes:

➤ Diagnostics Python Agent Overview on page 296

➤ System Requirements for the Diagnostics Python Agent on page 296

➤ Installing Python Agents on page 297

➤ Instrumenting a Python Application on page 300

➤ Configuring the Python Agent on page 309

➤ Description of the Parameters in the Points File on page 316

➤ Description of Custom Code on page 318

➤ Available Out-of-the-box Configurations on page 328

➤ Reconnect/Reinitialize Event Channel After Server Reboot on page 333

➤ Troubleshooting on page 333

➤ Removing the Python Agent on page 334

Installing and Setting Up Python Agents

296

Diagnostics Python Agent Overview

The HP Diagnostics Python Agent install package includes the software
necessary to capture events such as method invocations, server requests, and
system metrics from Python applications. The Python Agent package must
be installed on the systems to be monitored that are running Python
applications. Each instrumented application results in a unique probe entity
which can be independently configured for data collection. The Diagnostics
Python Agent is distributed for all platforms in a single zip file named
HPDiagPythonAgt_<release number>.zip.

System Requirements for the Diagnostics Python Agent

The following sections describe the system configurations that are
recommended for hosting the Diagnostics Python Agent.

Platform Support
The Python Agent has been tested on the following operating systems:

➤ Win2008 64-bit, Win7 64-bit

➤ Ubuntu 11.10, 12.04

➤ RedHat 6.2

➤ SuSE 12.1

The Python Agent has been tested under the following environments:

Platform/Technology Versions Certified

Python 2.6.5, 2.6.6, 2.6.8, and 2.7

OpenStack Diablo, Essex

Django 1.3, 1.4

Installing and Setting Up Python Agents

297

The Python Agent may work under additional platform versions as well.
Please review the Diagnostics Support Matrix at http://
support.openview.hp.com/sc/support_matrices.jsp to assess known platform
compatibility, or contact HP Support to determine the feasibility of using
the Python Agent in your environment.

Diagnostics Server Compatibility
The Diagnostics 9.21 Python Agent requires the Diagnostics 9.20 Server as a
prerequisite. Customers running older versions of the server must upgrade
to the 9.20 version in order to use the Python Agent. If you are running a
later version of the Diagnostics Server, please review the Diagnostics Support
Matrix at http://support.openview.hp.com/sc/support_matrices.jsp to assess
potential compatibility.

Installing Python Agents

The Python Agent is installed on the same machine as the Python
application under test.

This section describes how to install a Python Agent and gives you
information about the setup and configuration of the Python Agent.

Overview of the Python Agent Installation
The Python Agent must be installed on all systems running Python
application that you wish to monitor. Installation involves simply
unzipping the install package and running the setup.py script on each
system. After this is completed, it is then necessary to define the points
that you wish to monitor within your applications. If you wish to monitor
OpenStack or Django, configuration files and scripts have been supplied
that will allow you monitor these applications.

Installing the Python Agent
The Python Agent installation process includes the following steps:

 1 Unzip the HPDiagPythonAgt_<release number>.zip file. This creates a
directory named HPDiagPythonAgt_<version>.

Installing and Setting Up Python Agents

298

 2 Change directory to HPDiagPythonAgt_<version>/
pythonprobe-<version>.

 3 Execute the probe_setup.py script using the Python interpreter that is
used for the monitored application:

➤ For Linux

 /<path to python>/python probe_setup.py

➤ For Windows

 <path to python>\python.exe probe_setup.py

The probe_setup.py Script
The script probe_setup.py is used to install, upgrade or remove the HP
Diagnostics Python Agent.

Usage:

probe_setup.py [-h|--help] [-u|--update] [-r|--remove] [-d|--dont_ask]

Options:

The probe_setup.py script accomplishes the following steps during the
installation:

 1 Install the hpdiag modules in the site-packages or dist-packages directory
of the Python installation (see "Directory Structure" on page 299 for
details on where files are installed).

 2 Install the hpdiag scripts in the Python bin (Linux) or Scripts (Windows)
directory.

 3 Install the PythonProbe configuration files to the hpdiag/etc directory.

Option Description

-h, --help Show this help message and exit.

-u, --update Update or upgrade the Python Probe.

-r, --remove Remove the Python Probe.

-d, --dont_ask Install or remove the Python Probe without asking.

Installing and Setting Up Python Agents

299

 4 Install the systemmetrics binary to the hpdiag/bin directory.

 5 Create the PythonProbe log directory /var/log/hpdiag (Linux) or
%PROGRAMDATA%\Hewlett-Packard\hpdiag\log (Windows).

 6 Store a list of installed files in hpdiag/backups/installed_files.

Directory Structure
The Python Agent uses the following directory structure.

Python Modules

The hpdiag Python modules are stored in the Python site-packages or
dist-packages directory as follows:

➤ On Linux: /path/to/lib/python[python_version]/site-packages/hpdiag

➤ On Windows:
\path\to\lib\python[python_version]\site-packages\hpdiag

Scripts

➤ On Linux, the hpdiag Python scripts are copied into the bin directory,
where the Python executable also resides.

➤ On Windows the scripts are installed into the Scripts directory under the
Python installation directory.

hpdiag Directory

The HP Diagnostics Python Agent requires a dedicated directory for its
configuration and binary files. The location of this directory differs based on
the platform and in the case of Windows, is based on the Windows version
as well.

➤ On Linux: /opt/hpdiag

➤ On Windows XP/2k3: C:\ProgramData\Hewlett-Packard\hpdiag

➤ On Windows Vista/7/2k8: %PROGRAMDATA%\Hewlett-Packard\hpdiag

Binaries

The binaries are stored in: <hpdiag_dir>/bin

Installing and Setting Up Python Agents

300

Configuration Files

The configuration files are stored in: <hpdiag_dir>/etc

Log Files

The HP Diagnostics Python Agent creates the following directories for the
Python Agent to place its log files:

➤ On Linux: /var/log/hpdiag

➤ On Windows XP/2k3: C:\ProgramData\Hewlett-Packard\hpdiag\log

➤ On Windows Vista/7/2k8:
%PROGRAMDATA%\Hewlett-Packard\hpdiag\log

Instrumenting a Python Application

There are multiple ways to instrument a Python application, and each is
explained below.

➤ "Using the hpdiag_instrument.py Wrapper Script" on page 300

➤ "Instrument the Main Script of the Monitored Application" on page 303

➤ "Decorate the Functions and Classes of the Monitored Application" on
page 305

➤ "In Code Creation of Capture Points" on page 306

➤ "Instrumenting a Single Script" on page 308

Using the hpdiag_instrument.py Wrapper Script
The HP Diagnostics Python Agent provides a script to instrument and start
an application: hpdiag_instrument.py.

No source code change is required in the Python application using this
approach. If the main script of the monitored Python application is called
"app_main.py", for example, then the instrumented application is run by
the following command:

hpdiag_instrument.py --config app_main.conf --point app_main.point
app_main.py

Installing and Setting Up Python Agents

301

The script hpdiag_instrument.py initializes the Python probe and reads the
capture points from the given point file. Afterwards, it starts the main script
of the application via Python's execfile function. When the monitored
application exits, this script closes all resources of the running probe.

The modules used by the python application are instrumented at runtime
when they are imported. The probe uses the custom import hook
sys.meta_path as described in the PEP 302 of the Python language. This
might conflict with applications that also use this import hook. See
"Decorate the Functions and Classes of the Monitored Application" on
page 305 for an alternative.

Usage:

hpdiag_instrument.py [--config_dir <config dir>] [--bin_dir <bin_dir>] \
 [--config <config_file>] --point <point_file> \
 [--single] <target_script> [<target_script_args>]

Options:

Option Description

 -h, --help Show this help message and exit.

-d CONFIGDIR,
--config_dir=CONFIGDIR

Configuration directory of the Python Agent.

 -b BINDIR, --bin_dir=BINDIR Binary directory of the Python Agent.

-c FILE, --config=FILE Python probe configuration file [default =
probe.conf

 -p FILE, --point=FILE Configuration of methods to measure.

 -s, --single Instrument the target_script as well as any
modules it loads.

By default, only modules referenced in the
target_script are instrumented.

Installing and Setting Up Python Agents

302

Parameters:

The parameters --config_dir, --bin_dir and --config are optional and are only
needed when it is desired to use different settings than the defaults.

Note: The specification of the directories as parameter for
hpdiag_instrument.py has a higher priority than the environment variable
settings. The environment variable settings have a higher priority than the
defaults.

Several examples for starting your application are shown below:

Example 1:

hpdiag_instrument.py --point webapp.point webapp.py

Example 2:

hpdiag_instrument.py --config my_probe.conf --point webapp.point webapp.py

Example 3:

hpdiag_instrument.py -d /path/to/my/config/data \

Option Default
Environment
Variable

Description

-d, --config_dir /opt/hpdiag/etc;
%PROGRAMDAT
A%\Hewlett-Pac
kard\hpdiag\etc

$PYPROBE_CONFIG
_DIR

Directory
containing the
configuration files.

-b, --bin_dir /opt/hpdiag/bin;
%PROGRAMDAT
A%\Hewlett-Pac
kard\hpdiag\bin

$PYPROBE_BIN_DIR Directory
containing the
binary files like
'systemmetrics'

-c, --config probe.conf N/A File containing the
probe
configuration.

Installing and Setting Up Python Agents

303

 -p other_weapp.point \

 webapp.py

On Windows, the path_to_python\python.exe must be added in front of
hpdiag_instrument.py.

Instrument the Main Script of the Monitored Application
It is also possible to initialize and shutdown the Python probe directly from
the main script of the Python application (similar to what
hpdiag_instrument.py does). The code below shows this approach:

There are only a couple of lines to be added into the main script:

 1 The statement to import the module "hpdiag.pyprobe"

try:
 from hpdiag import pyprobe
except ImportError:
 class PyProbeDummy(object):
 @staticmethod
 def init(*args, **kws):
 print "Warning: Cannot initialize HP Diagnostics Python Agent. Failed to import
'hpdiag.pyprobe' in file '%s'" % __file__
 @staticmethod
 def shutdown():
 print "Warning: Cannot shutdown HP Diagnostics Python Agent. Failed to import
'hpdiag.pyprobe' in file '%s'" % __file__
 pyprobe = PyProbeDummy

pyprobe.init(config_file = "app_probe.conf", point_file = "app.point")

try:
 def main():
 # call the application entry point here

 if __name__ == '__main__':
 main()

finally:
 pyprobe.shutdown()

Installing and Setting Up Python Agents

304

 2 The initialize function "pyprobe.init()" at the beginning

 3 The shutdown function at the end

 4 The try-finally block around the original code. This is optional, but highly
recommended.

Note: In WSGI scripts, only the first two lines are needed. Adding the
shutdown function at the end will cause the probe to not function properly.
See below for more details.

The initialize function takes up to four parameters:

 1 config_file: The configuration file for the probe.

 2 point_file: The point file containing the capture points for the
instrumented Python application.

 3 config_dir: The directory where the configuration files (probe
configuration and point file) are located, if different from the default
location.

 4 bin_dir: The directory where the executables (systemmetrics, ...) are
located, if different from the default location.

Note: Please be sure to always specify the parameter for the pyprobe.init()
function using keywords like "point_file = app.point". This allows the
parameters to be listed in any order, and also allows for parameters to
remain unset so that they will get the default values.

All APIs of the python probe are in the module hpdiag.pyprobe. Only the
functions and classes defined in this module should be used to instrument
the monitored application! Functions and classes in all other modules of the
Python probe may change without notice at any time!

Installing and Setting Up Python Agents

305

Decorate the Functions and Classes of the Monitored
Application
It is also possible to create the capture points in the Python source at
run-time by using the following decorator functions from the module
hpdiag.pyprobe: func_point, method_point, and class_point. They are used
as decorators directly in the Python source above the instrumented
function, method, or class. The supported arguments for these decorators
are exactly the same arguments as those for the capture points in the point
file. For example:

This decorator creates one capture point for the class Fibo. The method’s
argument specifies that the method fib and the method rfib should be
instrumented. Please note that Python regular expressions are used here.
The regular expression ^fib$ means that only the method fib is
instrumented whereas the regular expression rfib means that any method
that has a sub-string rfib in its name will be instrumented (for example, also
rfib_seq).

The argument layer defines the layer for all instrumented methods of this
class. The other mandatory arguments class and module are automatically
determined by the decorator.

It is also possible to decorate a single function or method using the
func_point and method_point decorator. For example:

Even though the decorator is executed in the context of the method, it is
necessary to specify the name of the class because the class is not yet defined
(and so cannot be automatically determined) at the time the decorator is
executed.

from hpdiag import pyprobe

@pyprobe.class_point(method = "^fib$|rfib ", layer = "fiboLayer")
class Fibo(object):
 # the implementation of the Fibo class

class Fibo(object):
 @pyprobe.method_point(clazz = "Fibo", layer = "fiboLayer", args = "0")
 def fib_seq2(self, n):
 # the implementation of the method

Installing and Setting Up Python Agents

306

Note: Please also note that the argument name is clazz because class is a
Python key word which cannot be used.

If the instrumented function or method already has other decorators (for
example, it is a @staticmethod or @classmethod), then the decorator that
creates the capture point for the probe must be written directly above the
function or method (if not it might cause problems). For example:

Please note that all three decorator functions are executed at import time of
the module and create just the capture point. The automatic
instrumentation of the module via the above described import hook is
performed after the module was loaded. Thus, the decorated functions,
methods, and classes are treated like any capture point read from the point
file.

In Code Creation of Capture Points
If you do not want to add the decorators in all the source files of the
monitored application (or if the sources are not available at all), it is also
possible to create all the capture points in one place within your
application.

The point arguments are the same as the options of a point in the point file,
for example, layer="Database", detail="is_sql_statement".

@_DecoMemoize
@pyprobe.func_point(layer = "fiboLayer", args = 0)
def mfib(n):
 # the implementation of the function

from hpdiag import pyprobe
pyprobe.init(config_file = "probe.conf", point_file = "app.point")
pl = pyprobe.PointList()
pl.create_method_point("func_name", "module_name", <point arguments>)
pl.create_method_point("method_name", "module_name", "class_name", <point
arguments>)
pl.create_class_point(<class instance>, <point arguments>)
pl.create_point(<point arguments>)

Installing and Setting Up Python Agents

307

Once all points are created, it is possible to trigger the instrumentation by
calling:

Passing the point list to the instrument function ensures that only the
newly created points are instrumented. Capture points that were read from
the point file (passed as second parameter to the init function) are, by
default, automatically instrumented at import time of the module (using the
custom import hook describe above).

Please note that the point file that is passed to the init function is optional!
If not specified, only the capture points created by the decorator functions
are used by default, that is, if the automatic instrumentation at import time
is enabled.

It is possible to disable the automatic instrumentation at import time. Use
the following argument in the probe section of the probe config file to do
this:

If this argument is set to False (the default is True), the modules imported by
the monitored application are not automatically instrumented. Instead, it is
possible to trigger the instrumentation any time at runtime by calling:

Because no point list is passed as parameter to the function, it will use all
capture points that were created so far at runtime and/or read by the init
function from the point file to instrument the currently loaded modules.

pyprobe.instrument(pl)

call the actual application entry point

pyprobe.shutdown()

[Probe]
auto_instrument = True

pyprobe.instrument()

Installing and Setting Up Python Agents

308

Instrumenting a Single Script
A single script is characterized by the fact that it is not imported by another
script. Thus it is more difficult to instrument such a script. If a script can be
instrumented or not depends on the availability of classes and methods
inside the script.

Prerequisites

The hpdiag_instrument.py tool allows the execution of instrumented single
scripts by loading it as a module and calling its main() method. This means
that the existence of a main() function in the script is a prerequisite. Simple
Python scripts often have no main() method, but look like this:

In most cases this can be easily changed to:

This allows access to the main() method by the hpdiag_instrument.py tool,
and thus to instrument this single script.

if __name__ == '__main__':

 instance = MyClass()
 :
 xyz = helper_function()

if __name__ == '__main__':

 instance = MyClass()
 :
 xyz = helper_function()

In most cases this can be easily changed to:
def main():

 instance = MyClass()
 :
 xyz = helper_function()

if __name__ == '__main__':

 main()

Installing and Setting Up Python Agents

309

Point Definitions

The script is imported with its file name as module name, so that its name is
referenced in the point file as module name to define the instrumentation
points. For example when the script name is myScript.py then this is
imported as 'myScript' and might be referenced in the point file as follows:

Note: Because single scripts are imported as module, the file name must not
contain any dots ('.'). For example myScript-0.2.py does not work because
dots are not allowed in module names. Correct is myScript.py or
my_script.py.

Calling hpdiag_instrument.py

The hpdiag_instrument.py tool has the parameter '-s | --single' to indicate
that the called Python script is a single script:

hpdiag_instrument.py --config myScript.conf --point myScript.point \

 --single /path/to/myScript.py --script_par1 ...

Configuring the Python Agent

The file <hpdiag_dir>/etc/probe.conf drives the basic agent behavior. The
probe.conf file has section/namespaces. Configuration parameters are
defined within these namespaces.

The following sections give detailed descriptions of the configuration
parameters in the probe.conf file. Also included are two sections that give
details on some specific URI replace pattern configurations in the
probe.conf file.

[myScript_1]
module = myScript
class = MyClass
method = class_method
layer = myscript

Installing and Setting Up Python Agents

310

Namespace [Mediator]

➤ hostname: The Diagnostics mediator host name.

➤ port: The Diagnostics mediator port number.

➤ channeltype: One of synchronous, threaded, or multiprocess. This value
configures how events are sent to the mediator. Python has a very
peculiar threading behavior, so testing may be necessary to determine the
optimal settings for your application.

➤ synchronous: The events are sent as part of the business application
thread. This might slow down the business application.

➤ threaded: The events are sent in a separate thread, but in the same
process as the business application. This is the default.

➤ multiprocess: The events are sent in a separate process.

➤ reconnect_timeout: The timeout in seconds before the next reconnect, in
case the connection to the mediator has been lost. Server requests that
complete while the mediator connection is unavailable are dropped
silently.

➤ keep_alive_interval: Interval in seconds at which the probe will send keep
alive messages to the registrar on the mediator.

Namespace [Logging]

➤ class: Specify the logging (handler) type. There are two types supported:

➤ TimedRotatingFileHandler: It supports rotation of disk log files at
certain timed intervals.

➤ RotatingFileHandler: It supports rotation of disk log files based on file
size limits.

➤ file: The absolute path to the log file.

➤ level: The default logging level: CRITICAL, ERROR, WARNING, INFO or
DEBUG.

Installing and Setting Up Python Agents

311

➤ level_exceptions: Specify exceptions to the default logging level of the
Python probe. These exceptions are specified as Python dictionary with a
Python pattern as key and the logging level as value (in the form of a
string). The probe iterates through all keys (patterns) of the dictionary
and will use the first one that matches. The order is not defined, however.

The example below sets the DEBUG level to all loggers in modules that
start with hpdiag.location. Likewise, it sets the INFO level to all loggers in
modules that start with hpdiag.importhook:

level_exceptions = {r'hpdiag\.location.*' : 'DEBUG', r'hpdiag\.importhook.*' :
'INFO'}

➤ backup_count: If nonzero, at most backup_count files will be kept. If
more would be created when roll-over occurs, the oldest one is deleted.

➤ max_file_size: For RotatingFileHandler: The maximum size of the log file
in MB.

➤ when: For TimedRotatingFileHandler: Rotating happens based on the
product of when and interval. Possible values are:

'S' Seconds, 'M' Minutes, 'H' Hours, 'D' Days, 'W#' Week day (# = 0 - 6 with
0 = Monday), or 'midnight' Roll over at midnight.

➤ interval: For TimedRotatingFileHandler: The roll-over interval. Example:
If when is set to '1#' (= Tuesday) and interval is set to '2', then the log file
will be rolled over every second Tuesday.

➤ utc: Use times in UTC (default is local time).

Namespace [Probe]

➤ probe_id: The name of the probe instance. Add %0 to the probe_id to get
a unique probe name if several instances of the same probe are running
on the same system.

➤ registered_hostname: The hostname to be used if DNS/IP lookups don't
work reliably.

➤ probe_group: Probe Group name (used in the same manner as in the Java
and .NET probes).

➤ system_group: System Group name (used in the same manner as in the
Java and .NET probes).

Installing and Setting Up Python Agents

312

➤ auto_instrument: Enable/disable automatic instrumentation at import
time (default: True).

➤ instrument_loaded_modules: Instrument modules that have been loaded
before pyprobe.init() is called (default: False).

➤ instrument_pyprobe_threads: Instrument points found in the probe
threads, e.g. monitor the probe itself (default: False).

➤ error_on_duplicate_location: An exception is thrown whenever the same
location is instrumented multiple times (default: False).

➤ sql_parsing_mode: Parsing mode of SQL queries.

➤ 1 = just methods, no SQL queries

➤ 2 = main categories for SQL queries (select/update/insert/delete/...)

➤ 3 = a measurement per whole SQL query aggregating similar
statements into a single measurements

➤ 4 = a measurement per whole SQL query aggregating only identical
statements

➤ Agent side trimming:

➤ maximum_stack_depth: Don't capture any data about methods called
at a depth greater than this. For example, if maximum_stack_depth is
3, and "/login.do" calls a() calls b() calls c(), only login.do, a, and b will
be captured. Setting a low maximum_stack_depth can somewhat
reduce the overhead of capture. Setting this to a very high value
disables depth trimming. This is dangerous if potentially recursive
methods are instrumented as it can lead to nearly infinite call-trees.
This will consume a lot of memory. Setting this value above 100 is
strongly discouraged. The default is 25.

➤ minimum_method_latency: Latency trimming - never capture any data
about regular methods that execute faster than this number of
milliseconds. Depending upon your platform & whether hi-res time
stamps are being used, it may not be useful to specify this value in
increments of less than 10ms. It defaults to 51 milliseconds.

➤ minimum_fragment_latency: If an entire server request takes less than
this number of milliseconds, it will not be captured, unless a threshold
has been set on that server request. The default value is 51ms.

Installing and Setting Up Python Agents

313

➤ maximum_method_calls: Tree size trimming - never capture more than
this number of methods per instance tree. This is regardless of latency
and depth trimming. It defaults to 1000. Note that this applies to all
methods, including outbound calls.

➤ minimum_sql_latency: If an SQL statement takes less than this amount
of time, it will not be trended, until it does exceed this time. It defaults
to 1000 milliseconds (one second).

➤ httpserver_port: Port to use for python probe http server.

➤ http_client_show_url: Enables/disables the inclusion of the URL as part of
the identity of an outbound call. The value should be set to false for REST
service client applications.

➤ uri_replace_pattern: A comma-separated list of pattern replacement
operations to attempt on each URI (see "URI Truncation and Mapping" on
page 314).

➤ uri_pathsegments: Number of URI path segments to allow (see "URI Path
Segment Trimming" on page 316).

➤ username: User name used to authenticate the mediator with the probe
http server. If it is empty, a default user name will be used.

➤ password: Password used to authenticate the mediator with the probe
http server. Use the utility hpdiag_encodepassword.py to encode your
password before adding it there. If it is empty, a default password will be
used.

Namespace [SystemMetricsCollector]

➤ enabled: True or False, decides whether the system metrics collector is
active.

➤ sampling_rate: How fast should a metric be locally sampled. Uses time
string values, like 5s.

➤ metrics_group: What group should system metrics be associated with?
This value may be the same as an existing probe group, or completely
independent.

➤ udp_port: Port to use for system metrics UDP control port. Do NOT
modify this unless there is a conflict with another application. All
Diagnostics agents on a system MUST be configured to use the same port.

Installing and Setting Up Python Agents

314

➤ mediator_port: Port on the mediator used to deliver metrics to.

➤ udp_retry_interval: How often should the metrics collector try to open
the UDP port in case it is in use by another program. Uses time string
values, like 10min.

➤ username: User name used to authenticate the system metrics collector
with the mediator.

➤ password: Password used to authenticate the system metrics collector
with the mediator. Use the utility hpdiag_encodepassword.py to encode
your password before entering it here.

Namespace [SystemMetrics]
This namespace contains the system metrics to collect.

These system metrics collector entries use the same layout as the ones for
the Java Agent (see Chapter 20, "Java Agent - System Metrics Capture") with
the exception that the collector name is not available in the Python agent.

URI Truncation and Mapping
It is possible to truncate or change the URI of a request using Python regular
expressions. This is specified in the probe.conf file in the option
uri_replace_pattern. This is a comma-separated list of pattern replacement
operations to attempt on each URI. This is useful to replace many server
request URIs with one simplified server request URI that aggregates them.
The truncation or mapping of URIs is done using the 's/pattern/replace/'
syntax, which is the only supported syntax for the URI replacement
patterns.

How and Where are the Patterns Used

This functionality is applied after before:code custom functions, args:name
or args:n were applied. The output of before:code or args:x is used as input
for the URI replacement patterns.

If more than one pattern is specified, all patterns will be applied. The
patterns are applied in order. The output of a previous matched pattern will
be used as input for the next pattern. The resulting string is used in the
Diagnostics GUI for the request name.

Installing and Setting Up Python Agents

315

Characteristics

Because s/pattern/replace is not Python syntax, it is necessary to use '#'
instead of '/' in the configuration file

s/pattern/replace/

must be written as

s#pattern#replace#

s/pattern/replace/ is used to be comparable with the syntax in Perl or on the
Unix shell. It is also possible to omit the s and write #pattern#replace#.

Examples

Truncate before a string, match the string and any characters that follow it
and leave replace empty. In this example $ matches end-of-line.

uri_replace_pattern = s#string.*$##

Truncate after a string. Match the string in a grouping and use
\group-number to put the string into the replacement.

uri_replace_pattern = s#(string).*$#\1#

Use a comma separated list to perform multiple operations. The operations
will all be performed in order. This would change every foo to bar and then
change every bar back to foo.

uri_replace_pattern = s#foo#bar#,s#bar#foo#

Truncate before any semicolon.

uri_replace_pattern = s#;.*$##

Truncate before any /! or !. This uses ? to say that the slash is optional.

uri_replace_pattern = s#/?\!.*$##

Truncate before any ';' or '/!' or '!'.

uri_replace_pattern = s#(;|/?\!).*$##

Map /django/portal/ and /django/myportal/ to Django Portal.

Installing and Setting Up Python Agents

316

uri_replace_pattern = s#^/django/(my)?portal/#Django Portal#

Other examples:

uri_replace_pattern = s#(;|/
?\!).*$##,s#.*\.(js|css|jpg|gif|png|pdf|html|jar|class)$#Static Content#

uri_replace_pattern = s#.*/([a-zA-Z0-9_]*)\.py#\1#

URI Path Segment Trimming
The URI path can be trimmed by the definition of uri_pathsegments in the
probe.conf file. uri_pathsegments is set to the number of URI path segments
to allow - everything after this point will be trimmed. For example, with a
setting of 2, URLs like /foo/bar/1, /foo/bar/2 will be trimmed to /foo/bar. A
value of -1 or 0 will disable the path trimming.

Description of the Parameters in the Points File

The points file specifies which Python classes, methods and functions are
monitored.

The syntax of the points file is the same as for the Java probe. Therefore see
the Java probe documentation for details.

The following arguments are supported:

Argument Description Mandatory

module A Python regular expression yes

class A Python regular expression no

method A Python regular expression yes

layer The name of the layer yes

Installing and Setting Up Python Agents

317

layer_type One of the following 4 values:

➤ method (the default)

➤ trended_method

➤ portlet

➤ sql

no

detail Specifies more specific capture instructions. It is a
comma-separated list of the following:

➤ before:code:<name>: execute the custom code with
filename <name> before the instrumented method/
function

➤ after:code:<name>: execute the custom code with
filename <name> after the instrumented method/
function

➤ args:name: uses the string representation of the
instance on which the instrumented method was called
as call argument

➤ args:n: uses the string representation of the argument
on index 'n' as call argument in the GUI (see more
details below)

➤ is_sql_statement: marks methods/functions that
execute SQL statements

➤ inbound: marks a method/function as inbound call
that is used to track cross-VM transactions

➤ outbound: marks a method/function as outbound call
that is used to track cross-VM transactions

➤ method_trim: indicates that every invocation of the
method instrumented by this point should be
“trimmed”, that is, not reported. However, side-effects
of the corresponding code-snippets, if any, take place
normally.

➤ method_no_trim: indicates that no latency-based
trimming should take place when a method
instrumented by this point is executed.

➤ no_layer_recurse: prohibits recording of any methods
called from the method instrumented by this point,
unless the callee belongs to a different layer.

no

Argument Description Mandatory

Installing and Setting Up Python Agents

318

For example:

To distinguish a method of a class from a function within a module, the
Python agent introduces the additional argument “module” and considers
the class argument as optional. Thus, a point describes either a set of module
functions or a set of class methods. If both functions as well as class
methods within the same module should be captured, it is necessary to
specify two different points.

Including Points Files
The point file referenced during the instrumentation can include other
point files. This is done by using the special point IncludePoints. The file
references have to be relative to the location of the main point file.

For example:

Description of Custom Code

Custom code are Python functions that can be executed before or after the
monitored method or function is executed. These functions are stored in
files in the Python agent custom_code directory. The custom code functions
used are defined in the points file and are specified separately for each
monitored function. The custom code functions are referenced by file name.

The following sections gives details about custom code.

➤ "The Purpose of Custom Code" on page 319

[httplibHTTPConnectionOutbound]
module = httplib
class = HTTPConnection
method = request
layer = Sending
detail = outbound,before:code:httpconnection_outbound

[IncludePoints]
1 = ../../etc/httprequest.point
2 = httpserver.point
3 = others/database.point

Installing and Setting Up Python Agents

319

➤ "Custom Functions" on page 320

➤ "Returning HTTP Request Status Codes" on page 324

➤ "Cross VM Server Requests" on page 324

➤ "Argument Extraction" on page 328

➤ "Available Out-of-the-box Configurations" on page 328

➤ "URI Path Segment Trimming" on page 316

The Purpose of Custom Code
Custom code can be used in the Python Probe to extract data from the
arguments passed into an instrumented function or method. If this data is
returned by the custom code, it will be displayed as an argument of the
method in the Diagnostics GUI (in the call profile). With custom code, it is
even possible to modify the arguments of an instrumented function or
method. Custom code is also used to track calls between multiple probe
installations (cross VM calls).

Custom code can be called two times: before the instrumented method is
called (before:code) and after it was called (after:code).

before:code

The before:code is used to extract data from the argument list of the
instrumented method. If this extracted data (for example, a URI) is returned
by the custom function, it will be displayed in the Diagnostics GUI as call
argument.

The custom code functions are also used to intercept information that is
needed for correct display in the Diagnostics UI. The custom code function
can return a string (used as the argument of the call, as explained above), a
dictionary, or a tuple of both. In the dictionary, the following entries are
used by the probe to report data to the server:

Key Meaning

uri URI of an incoming http service request.

inbound_coloring Coloring token of an inbound call used to track
cross-VM transactions.

Installing and Setting Up Python Agents

320

Server requests are reported as inbound to the Diagnostics server if a
coloring token has been reported by any method in the call stack.

If any method reported an URI, the server request type is reported as 'HTTP';
otherwise it will show up as "Pseudo"

Check the files in etc/custom_code for syntax and usage examples of
custom code, especially the way the coloring tokens are injected and
retrieved from the calls.

after:code

The after:code can be used to do any processing that might be useful after
the instrumented method was called.

Custom Functions
All custom code needs to be written as a function with the name
custom_fct_before(...) or custom_fct_after(...). The custom function that is
used for before:code takes the following argument list:
custom_fct_before(instance, location, args, kws)

➤ instance: the class instance on which the instrumented method is called.
It is None for instrumented module functions.

➤ location: the python probe location object that identifies the
instrumented function/method.

➤ args: the tuple of positional arguments passed to the instrumented
function/method.

➤ kws: the dictionary of keyword arguments passed to the instrumented
function/method.

It can return the following values:

remote_ip Caller IP address of an inbound call.

diag_arg The diag argument required for both incoming and
outgoing calls.

Key Meaning

Installing and Setting Up Python Agents

321

➤ method argument: the argument string for the instrumented method as
displayed by the Diagnostics GUI in the call profile.

➤ a dictionary: a dictionary of key value pairs. This dictionary is passed to
the before:after function after the instrumented method got called. There
are two special keys in this dictionary, however. If custom_fct_before adds
the keys "method_args" and/or "method_kws" to this dictionary, it is
assumed that they represent the modified argument list of the
instrumented function/method being called. The value for key
"method_args" must be of type 'tuple' and the value of key "method_kws"
must be of type 'dict'. If the instrumented method is an outbound call,
then this dictionary has to contain the key "diag_arg". If it is an inbound
call, it has to contain the keys "diag_arg", "inbound_coloring" and
"remote_ip".

➤ a tuple: both values described above wrapped into a tuple.

➤ None: the custom code function may also return None.

The custom function for after:code takes the following parameters:
custom_fct_after(instance, location, method_return_value, code_dict).

➤ instance: the class instance on which the instrumented method is called.
It is None for instrumented module functions.

➤ location: the python probe location object that identifies the
instrumented function/method.

➤ return value: the return value of the instrumented function or method.

➤ a dictionary: the dictionary that was returned by the before:code
function.

Installing and Setting Up Python Agents

322

Example for before:code in the file custom_code/cust_example_before.py:

The file name cust_example_before is used as reference of the custom code
to be used in the point file. The function name is always
custom_fct_before(instance, location, args, kws). This code would be
referenced in the point file via the following:

detail = before:code:cust_example_before

Example for after:code in the file custom_code/cust_example_after.py:

It is possible to define a custom_fct_before(...) function and a
custom_fct_after(...) function in the same file and reference it using the
same name. Which function is be used is defined in the detail section in the
point file.

Note: The Python Probe imports the custom code files as Python modules.
This means that all limitations regarding the file names for Python modules
also apply to the custom code files. For example the characters (<space>) or
('-') are not allowed in file names

Used by [DiagShop]

from urlparse import urlparse

def custom_fct_before(instance, location, args, kws):

 ret_val = None
 purl = urlparse(str(args[0]))
 if len(purl.scheme) == 0:
 ret_val = ''
 else:
 ret_val = purl.path

 return ret_val

def custom_fct_after(instance, location, method_return_value, code_dict):

 print "CustomAfter: Custom code executed - does not return anything."

Installing and Setting Up Python Agents

323

Using Sub-directories

Because the custom code files are handled as Python modules by the Python
Probe, it is also possible to categorize custom code files in sub-directories
(modules). If this is desired, each sub-directory needs to have a Python
special file in it - this is the file _init_.py. This file can be empty, but must be
there to be able to import custom code from a sub-directory. Example:

With these files in place, the files of this structure can be referenced in the
point file for example via

detail = before:code:get_http_request

from the custom code base directory or for the pyapp controller from the
pyapp_controller sub-directory:

detail = before:code:pyapp_controller.get_details

Note: A _init_.py file is not needed in the custom code base directory,
because the files in this directory are not regarded as Python modules.

pyapp_code
|- get_http_request.py
|- get_request_2.py
|- pyapp_controller
| |- __init__.py
| |- get_details.py
| |- do_something.py
|- pyapp_scheduler
| |- __init__.py
| |- get_request_from_queue.py
| |- get_service_request.py

Installing and Setting Up Python Agents

324

Returning HTTP Request Status Codes
For each HTTP request the HTTP server returns a status code. The custom
code can be used to report this status code to the HP Diagnostics server. To
do this, the location object, passed to the before and after functions,
implements the method add_request_attribute. It takes the attribute name
and the attribute value as parameters. At the moment, only the following
four attributes are supported by the HP Diagnostics server:

➤ WS_consumer_id

➤ HTTP_status_code

➤ HTTP_status_desc

➤ tcp_server_port

The following example shows how to extract the HTTP status code of
requests to django applications and have it sent to the HP Diagnostics
server:

Cross VM Server Requests

Outbound Calls

To enable HP Diagnostics to connect calls made from one instrumented
application to another, a unique identifier (coloring) needs to be added to
the data sent to the called application. This can be done with custom code.

def custom_fct_after(instance, location, method_return_value, custom_code_dict):
 from django.core.handlers import wsgi

 try:
 status_text = wsgi.STATUS_CODE_TEXT[method_return_value.status_code]
 except KeyError:
 status_text = 'UNKNOWN STATUS CODE'

 if method_return_value.status_code >= 500 and method_return_value.status_code
<=699:
 location.add_request_attribute("HTTP_status_code",
str(method_return_value.status_code))
 location.add_request_attribute("HTTP_status_desc", status_text)

 return None

Installing and Setting Up Python Agents

325

The following example is used to instrument the request method of the
python httplib.HTTPConnectionOutbound class. It shows how to get the
coloring from the probe using the location.get_outbound_coloring call
which takes the called target as parameter. The next step is to add it to the
data which will get sent to the called application.
location.create_diag_envelope will either add it to the data to be sent
(passed as second parameters) or will return an encoded version of the
coloring if no data is passed. In the latter case, you have to add the coloring
to the request yourself. The data to be sent has to be a str for the enveloping
to work! This example adds it as an additional HTTP header called
X-Mercury-Diag-HTTP-Color.

Then a string called diag_arg needs to get constructed which must be passed
back to the Python probe via a dictionary (using the dictionary key
"diag_arg"). In case the arguments of the instrumented methods are
modified within the custom code, they also have to be passed back to the
probe via the returned dictionary (using the keys "method_args" for the
positional arguments and "method_kws" for the keyword arguments).

Installing and Setting Up Python Agents

326

File httpconnection_outbound.py:

Inbound Calls

In inbound calls, the custom code is used to remove the coloring from the
request received and pass it to the python probe.

Used by [httplibHTTPConnectionOutbound]

import httplib

def custom_fct_before(instance, location, args, kws):

 if isinstance(instance, httplib.HTTPSConnection):
 url = "https://%s:%s/%s"
 elif isinstance(instance, httplib.HTTPConnection):
 url = "http://%s:%s/%s"
 else:
 url = "request://%s:%s/%s"

 outbound_coloring = location.get_outbound_coloring(url % (instance.host,
instance.port, args[1]))
 outbound_coloring = location.create_diag_envelope(outbound_coloring, "")

 if (args[3]):
 args[3]['X-Mercury-Diag-HTTP-Color'] = outbound_coloring
 else:
 args[3] = {'X-Mercury-Diag-HTTP-Color' : outbound_coloring}

 param_dict = {'name': '{0}:{1}'.format(instance.host, instance.port),
 'target': '{0}:{1}'.format(instance.host, instance.port)}
 diag_arg = location.create_diag_arg('http', param_dict)
 result = {}
 result['diag_arg'] = diag_arg

 result['method_kws'] = kws
 result['method_args'] = args

 return result

Installing and Setting Up Python Agents

327

The following example is used to instrument the WSGI handler of the
Django framework. It removes the coloring from the request, passed as the
X-Mercury-Diag-HTTP-Color parameter using the
location.get_coloring_from_diag_envelope method. The coloring is then
returned to the python probe. In addition to the coloring, a diag_arg string
and the IP address of the calling application and the called URI needs to get
returned.

File basehttprequesthandler_inbound.py:

Used by [BaseHTTPServerBaseHTTPRequestHandlerInbound]

import BaseHTTPServer, socket

def custom_fct_before(instance, location, args, kws):

 result = {}
 path = None

 if 'X-Mercury-Diag-HTTP-Color' in instance.headers:
 inbound_coloring =
location.get_coloring_from_diag_envelope(instance.headers['X-Mercury-Diag-HTTP-C
olor'])
 del (instance.headers['X-Mercury-Diag-HTTP-Color'])
 result['inbound_coloring'] = inbound_coloring

 if isinstance(instance, BaseHTTPServer.BaseHTTPRequestHandler):
 host, port = instance.client_address[:2]

 param_dict = {'name': instance.path, 'target': instance.headers['host']}
 diag_arg = location.create_diag_arg('http', param_dict)

 path = instance.path
 result['diag_arg'] = diag_arg
 result['remote_ip'] = host
 result['uri'] = path

 return (path, result)

Installing and Setting Up Python Agents

328

Argument Extraction

args:name

args:name uses the string representation of the instance on which the
instrumented method was called as call argument. For class or static
methods or a module function, it returns the doc string of the instrumented
function. If no doc string exists, it returns the module name.

args:n

args:n uses the string representation of the argument on index 'n' as call
argument in the GUI. 'n' can be in the range 0 - 254.

args:name and args:n can be used together with an after:code custom
function, but not together with a before:code custom function. If a
before:code function is referenced and args is used, it is undefined as to
which one will be used.

Available Out-of-the-box Configurations

The Python Agent comes with a number of out-of-the-box configurations as
ready-to-use configuration or as starting point for own configurations.
Currently available is instrumentation for:

➤ OpenStack Diablo and Essex releases

➤ Django and WSGI

OpenStack Instrumentation
The Python Agent provides configuration for the instrumentation of the
OpenStack cloud computing platform (Diablo and Essex Release).

For OpenStack, the following is provided in addition to the standard python
agent:

➤ Points files for every component of OpenStack

➤ Setup scripts and configuration files for OpenStack

Installing and Setting Up Python Agents

329

Point Files

For every component of OpenStack one or more ready-made point files can
be installed and used.

➤ common.point

➤ dashboard.point

➤ glance.point

➤ keystone.point

➤ nova-api.point

➤ nova-general-controller.point

➤ nova-queue-send.point

➤ nova-scheduler.point

➤ setup-openstack.conf

➤ setup-openstack.txt

➤ swift-common.point

➤ swift-account-server.point

➤ swift-container-server.point

➤ swift-object-server.point

➤ swift-proxy-server.point

Setup of the OpenStack Instrumentation

The startup scripts of the OpenStack components that need to be
instrumented must be changed in order to start the instrumentation
together with a particular configuration. This can be done using a setup
script hpdiag_setup_openstack.py.

hpdiag_setup_openstack.py -i|--install <os_version> | \

-u|--uninstall <os_version> \

[-m|--mediator <hostname_fqdn>] [-h|--help]

Installing and Setting Up Python Agents

330

Install OpenStack instrumentation:

-i --install <os_verson> Install the OpenStack instrumentation

-u --uninstall <os_version> Remove the OpenStack instrumentation

-m --mediator <mediator> Hostname of the Diagnostics Server

-h --help Display this message

OpenStack versions:

essex OpenStack 2012.1

diablo OpenStack 2011.3

The setup script uses the information about which component will be
instrumented and where to find its start script that is provided in the
setup_openstack.conf file.

The setup_openstack.conf file has the following syntax:

<probe id>:<absolute path to the start script>:<pyprobe.init call>

For example:

In addition to setting up the instrumentation in the OpenStack start up
scripts, the script hpdiag_setup_openstack.py creates a configuration file for
each component of OpenStack. It uses the default configuration file
probe.conf in /opt/hpdiag/etc as master and creates a copy for each
component. Each configuration file contains the hostname of the
Diagnostics server (mediator) and the probe ID which will be displayed in
Diagnostics' user interface. The hostname and the probe ID are added to the
component's configuration file automatically. The name of the
configuration file is <probe_id>.conf.

The instrumentation steps are:

nova-compute:/usr/bin/nova-compute:pyprobe.init(config_dir="/opt/hpdiag/etc/
openstack", \
bin_dir="/opt/hpdiag/bin", config_file = "nova-compute.conf", \
point_file = "nova-general-controller.point")

Installing and Setting Up Python Agents

331

 1 Stop all OpenStack processes

For

Diablo go into /opt/hpdiag/etc/openstack-diablo

Essex go into /opt/hpdiag/etc/openstack-essex

 2 Call hpdiag_setup_openstack.py to instrument the OpenStack
components Swift, Nova, Glance, Keystone, and the dashboard. The script
creates various *.conf files for the various Python probes that monitor
OpenStack.

> hpdiag_setup_openstack.py -m <diagnostics_server_name> -i essex|diablo

When -m is omitted, then the hostname will be taken from the file /opt/
hpdiag/etc/probe.conf. You may edit this file to set the HP Diagnostics
server name for the OpenStack instrumentation.

 3 Restart the OpenStack services.

For all Swift servers only one Python source file is modified: /usr/share/
pyshared/swift/common/wsgi.py. It is the central entry point for most Swift
processes. The inserted pyprobe.init function call looks as follows:

As you can see, the name of the *.conf and *.point files is built based on the
log_name variable. It must be "proxy-server", "account-server",
"container-server", or "object-server" to match the generated files from
hpdiag_setup_openstack.py. To ensure this, check the swift config files in /
etc/swift. For example, the default log_name for the Swift proxy server in
the Essex release is "swift-proxy". This does not match the generated *.conf
files. Thus, edit the file /etc/swift/proxy-server.conf and change the value
for log_name in the section [app:proxy-server] to "proxy-server".
Alternatively, you can also rename the generated Swift *.conf and *.point
files if you do not want to change the files in /etc/swift.

The original OpenStack scripts are preserved in /opt/hpdiag/backup. The
instrumentation can be removed with the command
hpdiag_setup_openstack.py \-u essex\|diablo.

pyprobe.init(config_dir = "/opt/hpdiag/etc/openstack-essex",
config_file = "swift-" + log_name + ".conf",
point_file = "swift-" + log_name + ".point")

Installing and Setting Up Python Agents

332

Django and WSGI Instrumentation
The Python Agent provides configuration for the instrumentation of the
Django and WSGI. The provided point files can be used for that. The Django
point file is:

django.point

This instruments a point in the WSGI handler, that provides the request
information:

Setup of the Django Instrumentation

The Django WSGI script needs to be changed to instrument a Django
application. The Python Probe initialization needs to be done in that script.

Example Script:

[DjangoWSGIHandlerInbound]
module = django.core.handlers.wsgi
class = WSGIHandler
method = __call__
layer = WSGIHandler
detail = inbound,before:code:django_wsgi_call_inbound

import os, sys

---- Start of PyProbe section
Calculate the path based on the location of the WSGI script.
sys.path.append(os.path.dirname(__file__))
sys.path.append('<path_to_the_app>')

Instrument the application
from hpdiag import pyprobe
pyprobe.init(config_dir = '/opt/hpdiag/etc/mysite',
 bin_dir = '/opt/hpdiag/bin',
 config_file="probe.conf",
 point_file="mysite.point")
---- End of PyProbe section

os.environ['DJANGO_SETTINGS_MODULE'] = 'settings'
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()

Installing and Setting Up Python Agents

333

Note: It is recommended to put the original start-up code into a try: /
except: / finally: block where the finally: executes pyprobe.shutdown(). This
is not recommended for WSGI scripts because the WSGI scripts are executed
and terminated for every request. Calling pyprobe.shutdown() would
launch a new probe every time, which strongly reduces the correlation and
presentation quality in the HP Diagnostics UI.

Reconnect/Reinitialize Event Channel After Server Reboot

In case the Diagnostics server has been rebooted or shut down for some
reason the python probe gets disconnected from the server. In this case
everytime the probe wants to send data to the server it tries to reconnect
first. In order to avoid that reconnection attempts occur too often, the probe
only tries to reconnect to the server after a timeout. By default this timeout
is set to 5 seconds. The value can be modified in the configuration file. See
"Configuring the Python Agent" on page 309 for more information about
this value. While the probe is disconnected from the server all collected data
will be deleted. After the server is running the probe gets reconnected
automatically and continues to send collected data. The maximum time
needed for a reconnection after the server is up and running again, is the
reconnection timeout mentioned above.

Troubleshooting

Rotating log files are known to result in errors on Windows. The
workaround is to set file size or the rotation interval in the probe.conf file to
large values to ensure that rotation never happens.

Installing and Setting Up Python Agents

334

Removing the Python Agent

During the installation of the HP Diagnostics Python Agent, the installation
script was copied into the hpdiag directory with the name
probe_deinstall.py. Executing this script will remove the Python Agent.

Important: Please make sure that no application is instrumented and that
no probe is running when the probe will be removed. If a probe is still
running on Windows, then the rename of the hpdiag directory will fail and
an error is returned.On a Linux system we cannot detect if a probe is still
running during uninstall. This may lead to unpredictable results.

On Linux:

/path/to/python /opt/hpdiag/probe_deinstall.py

On Windows:

cd %PROGRAMDATA%\Hewlett-Packard

\path\to\python hpdiag\probe_deinstall.py

Please note that on Windows it is necessary to call this script from outside of
the hpdiag directory, because the hpdiag directory will be renamed during
the de-installation. This rename fails when the console is opened in the
hpdiag directory.

The deinstallation script will perform the following steps:

 1 Remove the probe Python files from the Python site-packages directory.

 2 Remove the .egg-info file.

 3 Rename the hpdiag directory to hpdiag.<date>-<time>.

Part IV

Custom Instrumentation for Monitoring
Java and .NET Applications

This section includes:

➤ Custom Instrumentation for Java Applications

➤ Custom Instrumentation for .NET Applications

336

337

10
Custom Instrumentation for Java
Applications

This section explains how to control the instrumentation that Diagnostics
applies to the classes and methods of the applications to enable the Java
Agent to gather the performance metrics.

This chapter includes:

 ➤ About Instrumentation and Capture Points Files on page 338

 ➤ Coding Points in the Capture Points File on page 340

 ➤ Defining Points With Code Snippets on page 348

 ➤ Controlling Class Map Capture on page 364

 ➤ Instrumentation Examples on page 365

 ➤ Understanding the Overhead of Custom Instrumentation on page 381

 ➤ Instrumentation Control on a Per Layer Basis on page 382

 ➤ Advanced Instrumentation Examples on page 383

 ➤ Configuring Cross VM Correlations for New or Custom Technologies
on page 398

 ➤ Tutorial for Configuring Cross VM Correlation for Custom Technologies
on page 403

 ➤ Maintaining Instrumentation from the Java Profiler UI on page 412

 ➤ Default Layers Defined for Typical Java Classes and Methods on page 423

Chapter 10 • Custom Instrumentation for Java Applications

338

About Instrumentation and Capture Points Files

Instrumentation refers to bytecode that the probe inserts into the class files
of the application as they are loaded by the class loader of your virtual
machine. Instrumentation enables a probe to measure execution time,
count invocations, retrieve arguments, catch exceptions, and correlate
method calls and threads. The instrumentation points for each probe
instance are specified in a capture points file.

When you install the Java Agent, a predefined default capture points file is
installed with a set of points for the platform you are using. A default
capture points file containing pre-defined Java points is located at
<probe_install_dir>\etc\auto_detect.points.

The capture points file enables you to control the scope of the
instrumentation so that Diagnostics can give you all the information you
need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The
instrumentation definitions in the capture points files are called points. The
points define which methods to instrument, how they should be
instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so
that they apply to more than one method, class, and package or namespace
specification. For more information about using regular expressions, see
“Using Regular Expressions” on page 926.

To add custom instrumentation, make a copy of the default
auto_detect.points file, give it a different name, and use it to make all your
instrumentation customizations. This precaution prevents you from losing
your custom instrumentation when you upgrade to a new version of the
Java Agent and the installer overlays the auto_detect.points file.

You can customize the points in the capture points files to include methods,
classes, packages, and namespaces for areas of the application that do not
fall within the default points. A common situation that might require
custom points is when a J2EE application contains business logic that is not
derived from the javax.ejb.SessionBean interface. Another situation for
custom points is when you want to override a default point to alter its layer
or to track it from a specific caller method.

Chapter 10 • Custom Instrumentation for Java Applications

339

The points in the capture points file are grouped into layers. Layers organize
the performance metrics into meaningful tiers of information that can be
compared as part of a triage process. They control the collection behavior of
the instrumentation.

The points in the capture points file installed with the Java Agent are
grouped into default layers. You can customize the default layers and create
new layers. For description of the default layers see “Default Layers Defined
for Typical Java Classes and Methods” on page 423.

Notes:

➤ The default capture points file name is specified in
<probe_install_dir>\etc\probe.properties.

➤ To override the default file name so that the copy with your custom
points is used instead, use the
-Dprobe.points.file.name=<newPointsFileName_NoExtension> JVM
property.

Chapter 10 • Custom Instrumentation for Java Applications

340

Coding Points in the Capture Points File

The following arguments can be used to define a point in the capture points
file:

The following sections describe the arguments.

➤ “Mandatory Point Arguments” on page 341

➤ “Optional Point Entries” on page 342

[Point-Name] =<unique name for the point>
;---
class = <class name or regular expression>
method = <method name or regular expression>
signature = <method signature or regular expressions>
ignore_cl = <list of class names or regular expressions>
ignore_method = <list of method names or regular expressions>
ignore_tree = <list of class names or regular expressions>
method_access_filter = <list of class names or regular expressions>
deep_mode = <soft or hard mode>
scope = <list of methods or regular expressions>
ignoreScope = <list of methods or regular expressions>
detail = <list of specifiers>
layer = <layer name>
layerType = <layer type>
rootRenameTo = <string>
keyword = <keyword>
priority = <integer number>
active = <true, false>

Chapter 10 • Custom Instrumentation for Java Applications

341

Mandatory Point Arguments
Every point, except for the points for CLP, LWMD, RMI and SAP RFC,
HttpCorrelation, and JDBC SQL, must contain the following arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be
instrumented. The name should include the full package/
namespace name using periods between the package
levels. Any valid regular expression can be used.

method Specifies the name of the method to be instrumented. To
be successful, the method name must match a method
defined in the class or interface specified by the class
argument. Any valid regular expression can be used.

signature Specifies the signature (parameter and result types) of the
method using javap symbolic encoding for method
signatures (<jdk_install>/bin.javap -s).

layer Specifies a layer, sublayer, or tier under which the data
from this point is grouped. Layers are a part of the
instrumentation collection control.

Layers in a point can be specified with nested layers or
sublayers by separating the layer names with a / (slash).
The layer specified following the slash is a sublayer of the
layer specified before the slash. A sublayer can have its
own sublayers by coding another slash and layer name
following a sublayer name.

In the UI, the sublayers for a layer are displayed under
their parent layer. For example, the sublayers JSP and
Struts would be displayed under the web layer and a
drilldown would exist from Web to JSP and Struts.

Chapter 10 • Custom Instrumentation for Java Applications

342

The following is an example of a custom point that contains the mandatory
arguments:

Note: Regular expressions can be used for most of the arguments in a point.
They must be prefaced with an exclamation point. For more information
about using regular expressions, see “Using Regular Expressions” on
page 926.

Optional Point Entries
Point definitions can contain one or more of the following arguments:

[MyCustomEntry_1]
; comments here….
class = myPackage.myClass.MyFoo
method = myMethod
signature = !.*
layer = myCustomStuff

Argument Description

keyword The keyword indicates an instrumentation point
handled by a special instrumentation class. The value
of the keyword is looked up as a property in
inst.properties, and the value of the found property is
the instrumentation class name. The special
instrumentation points can use
implementation-specific arguments not documented
here, refer to the comments in the inst.properties file.

ignore_cl Specifies a comma-separated list of class names or
regular expressions to ignore. Any class matching one
of the classes specified with ignore_cl is not
instrumented.

ignore_method Specifies a comma-separated list of methods to ignore.
Any method matching one of the methods specified
with ignore_method is not instrumented.

Chapter 10 • Custom Instrumentation for Java Applications

343

Ignore_tree A list of classes or regular expressions. Any subclass of a
class matching one of the list items is excluded from
the instrumentation.

method_access_filter A list of method specifiers, separated by commas. The
available specifiers are static, private, protected,
package, and public. Any method matching this point
is not instrumented if its access specifier matches any of
the listed values.

deep_mode Specifies how subclasses are handled. This argument
accepts three values:

➤ none – A value of “none” is similar to not specifying
a deep_mode argument. It has no effect on how
subclasses are handled.

➤ soft – A value of “soft” requests that for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces that also
implement the matching method and signature
should also be instrumented.

➤ hard – A value of “hard” requests that for every class
or interface matching the class, method, and
signature entries, any subclasses or subinterfaces at
any depth should have all their methods
instrumented. Hard mode is typically used for points
for interfaces. Caution: Hard mode can lead to
extensive instrumentation and very high probe
overhead.

scope Constrains the context in which instrumentation is
performed. If specified, the inserted bytecode will be
caller side. Any valid regular expression can be used for
the value of this argument. Scope values are a
comma-separated list of package, class, and method
names in standard Java notation.

ignoreScope Lists method names or regular expressions and excludes
certain packages, classes, and methods from those
included in the scope specified in the scope argument.

Argument Description

Chapter 10 • Custom Instrumentation for Java Applications

344

detail Specifies more specific capture instructions. It is a
comma-separated list of the following:

➤ caller – causes caller side instrumentation to be
performed. If this keyword is not specified, the
default instrumentation, callee side instrumentation,
is performed.

➤ args:n – calls the toString() method of the n-th
argument. The string that is returned is displayed in
the method's argument field in the Diagnostics
console. The captured string can be used as the
aggregation parameter in the layer argument. The
value for n can be 1 through 256.

➤ args:0 – calls the toString() on the current class
instance or callee object. Static methods return the
class name of the callee object.

➤ before:code:<code-key> – inserts the code-snippet
specified in the key at the start for the bytecode for
methods that comply with the point. The final string
value on the stack when the code-snippet runs is
displayed in the method's argument field in the
Diagnostics console and can also be used as the
aggregation parameter in the layer argument. The
code-key argument specifies the secure code key you
generated for the code snippet you created for the
point. See “Defining Points With Code Snippets” on
page 348 for information about code snippets and
“Securing Code Snippets” on page 362 for
information on code keys.

➤ after:code:<code-key> – inserts the code-snippet
specified by the key at every exit point from the
bytecode of methods that comply with the point.
The after code-snippets should not leave any values
on the stack after they run.

Argument Description

Chapter 10 • Custom Instrumentation for Java Applications

345

detail (continued) ➤ disabled – prevents the instrumentation inserted
into the bytecode from reporting data. A disabled
point can be dynamically enabled using the
Instrumentation control web page so that it will
begin reporting data. This web page can be accessed
using the Profiler URL

 http://<probe_install_dir>:<probe_port>/inst/layer.

➤ outbound – flags the method so it is listed on the
Outbound Calls screen. Also causes the Diagnostics
argument for this instrumentation entry to be parsed
to determine if additional information about the
outbound request can be displayed in the
Diagnostics dashboards.

➤ no-correlation – used with those “outbound” points
that do not use correlation supporting technologies.

➤ method-no-trim – indicates that no latency-based
trimming should take place when a method
instrumented by this point is executed.

➤ method-trim – indicates that every invocation of the
method instrumented by this point should be
“trimmed”, that is, not reported. However,
side-effects of the corresponding code-snippets, if
any, take place normally.

➤ lifecycle – identifies the instrumentation point as
relevant for object lifecycle monitoring.

➤ no-layer-recurse – prohibits recording of any
methods called from the method instrumented by
this point, unless the callee belongs to a different
layer.

➤ is-statement – marks calls into the java.sql.Statement
class.

➤ is-prepare-statement – marks calls returning
java.sql.Statement objects to capture.

➤ method-cpu-time – causes the CPU inclusive time to
be collected for this method in addition to latency,
unless CPU collection is completely turned off
(cpu.timestamp.collection.method = 0).

Argument Description

Chapter 10 • Custom Instrumentation for Java Applications

346

detail (continued) ➤ condition – prohibits instrumentation by this point
unless the specified condition is met. The conditions
are static and are defined by the
details.conditional.properties property in
inst.properties (or on the command line).

➤ when-root-rename – instructs the probe to rename
the server request whenever the method
instrumented by this point is the first one executed.

➤ diag – marks the point as relevant for HP Diagnostics
(default).

➤ tv:<key> – marks the point as relevant for HP
Transaction Vision.

➤ no-tv – marks the point as conflicting with HP
Transaction Vision. If Transaction Vision is
configured to be active, such points are prohibited
from instrumenting the Java code at all.

➤ add-field:<access>:<type>:<name> – causes adding
the specified field to the instrumented class.

➤ gen-instrument-trace – causes printing of the thread
stack trace onto stdout whenever this point is used
for instrumentation.

➤ gen-runtime-trace – causes printing of the thread
stack trace onto stdout whenever the methods
instrumented by this point are executed.

➤ trace – causes printing of verbose instrumentation
information into probe.log on each enter or exit
from each method instrumented by this point.

➤ sub-point:<key> – specifies additional processing
during instrumentation; the key must be present in
inst.properties and must identify a class name used
for the processing.

➤ store-thread – causes all special fields used in the
corresponding code-snippet to be stored in a
thread-local data structure.

➤ store-fragment – causes all special fields used in the
corresponding code-snippet to be stored as attributes
of the current server request.

Argument Description

Chapter 10 • Custom Instrumentation for Java Applications

347

detail (continued) ➤ store-method – causes all special fields used in the
corresponding code-snippet to be stored as attributes
of the invocation of the method instrumented by
this point.

➤ ws-operation – specifies that the instrumentation
entry is for an inbound web services call. Also causes
the Diagnostics argument for this instrumentation
entry to be parsed to determine if additional
information about the web service request can be
displayed in the Diagnostics dashboards.

rootRenameTo Identifies server requests whenever the
when-root-rename detail is in effect.

layerType Specifies special handling for some instrumented
methods and accepts the following values:

➤ method – no special handling (default).

➤ trended_method – identifies methods to be
displayed in the Trended Methods view.

➤ Portlet – identifies portlet lifecycle methods that are
used for the Portal Components views. These are set
by HP Diagnostics and should not be modified.

➤ sql – identifies methods that are used to capture SQL
for the SQL views. These are set by HP Diagnostics
and should not be modified.

priority Whenever there is more than one instrumentation
point that can be applied to a given method, and the
Diagnostics Agent cannot resolve the conflict on its
own, the point’s priority determines which point to
use. Higher priority wins. The default is zero.

active Activates or deactivates a point. When set to true, the
point is activated. When set to false, the point is
inactive and is ignored by the probe.

Argument Description

Chapter 10 • Custom Instrumentation for Java Applications

348

Defining Points With Code Snippets

Custom code arguments specify a snippet of code that is to be inserted into
the bytecode for a point. Code snippets in a point are used when the value
returned by calling an object’s toString() method, as specified in the args:n
argument, is not going to provide useful information for the Diagnostics
console or when there is a requirement to display more than one argument
for an instrumented method.

A code snippet in a point is declared using the keyword
before:code:<code-key> or after:code:<code-key> in the detail argument
of the point. The before and after is used to execute the code snippet before
or after the instrumented method. The code snippet is typically secured
using a code-key argument to prevent unauthorized modifications of the
code snippet. The values for the code-key arguments can be generated using
any running probe's code-key generator page and are valid on any Java
Agent installation. For more information on the code-key see “Securing
Code Snippets” on page 362.

The actual code snippets for a point are entered into the
<probe_install_dir>/etc/code/custom_code.properties file. These snippets
are then associated with the point in the capture points file using the value
of the code-key. Code snippets are created using pseudo Java code that uses
syntax similar to OGNL. Using code snippets, calls can be made from the
instrumented bytecode to methods that can be accessed by the
instrumented method. Objects returned by code snippets can be cast and
can have their methods executed as well. Code snippets must end with a
string or an object where toString() can be left on the stack of statements
being parsed into bytecode. This final string of the code snippet is used for
the returned argument value displayed in the Diagnostics console.

Code snippets can also be used to store values for a particular fragment
directly or that could be used in a later code snippet. These features can be
used through special fields and key word details like store-fragment and
store-thread.

Chapter 10 • Custom Instrumentation for Java Applications

349

Note: Code snippets are a very powerful tool that should be used carefully
because of the potential impact to the overhead incurred by the probe. For
this reason, Diagnostics requires that a code-key be specified along with the
code snippet before the probe will use the code snippet during
instrumentation.

This section includes:

➤ “Using Code Snippets” on page 349

➤ “Code Snippet Grammar” on page 350

➤ “Code Snippet Helper” on page 354

➤ “Securing Code Snippets” on page 362

Using Code Snippets
To use code snippets when specifying a point in <probe_install_dir>/etc/
auto_detect.points, the following detail:

The before:code entry in the detail argument indicates that a code snippet
was entered for the point. The code-key value secures the code in the code
snippet and ties the point with the actual code snippet.

class = javax.jms.TopicPublisher
method = publish
signature = !\(Ljavax/jms/Topic.*
deep_mode = soft
layer = Messaging/JMS/Producer
detail = outbound,no-correlation,before:code:6d0f3088

Chapter 10 • Custom Instrumentation for Java Applications

350

The code snippet associated with the point must be entered in
<probe_install_dir>/etc/code/custom_code.properties as shown in the
following example:

The code snippet is associated with the point in the capture points file using
the value of the code-key.

Code Snippet Grammar
The following describes the syntax that must be used to create the code
snippets.

➤ Literals

Only the following literal types are supported in code snippets.

Used by [JMS-TopicPublisher2]
6d0f3088 = #topic =
@ProbeCodeSnippetHelper@.checkForTempName(#arg1.getTopicName()); \
"DIAG_ARG:type=jms&name=topic:"+ #topic + "&target=topic://" + #topic;

Literal Type Syntax Example

string "a string"

boolean true, false

integer 42

null constant null

a no-type, no-value
constant

void

Chapter 10 • Custom Instrumentation for Java Applications

351

➤ String concatenation

Basic string concatenation is supported in code snippets.

➤ Local members

Default local members provide a way for code snippets to reference the
current instance or objects that were passed to the instrumented method.
These local members call methods or retrieve values from those references.

Note: Some instrumentation points support special variable references. For
example, the CLApplicationDiscoveryPoint supports a #classloader variable.

Concatenation Type Syntax Example

Two strings "a string" + "another string"

A string and a literal "a string" + 42

Variable Use

#callee References the callee object for an instance method.
Equivalent to the java “this” reference. Must not be
used when referencing a static method.

#arg1, #arg2, ..., #argN References the arguments for the callee method call.

#return References the return value of the method end for
after code snippets.

#classloader Reserved for HP Software internal use.

Chapter 10 • Custom Instrumentation for Java Applications

352

➤ DIAG_ARG strings

Code snippets allow concatenation of a series of values building up a single
DIAG_ARG value. This value allows for instrumentation of some common
types of support data like Web Services and JMS by returning all the data for
a particular type in one DIAG_ ARG formatted string.

The format of the DIAG_ARG string includes the type fields and values
(local variables) concatenated into one string as follows:

The DIAG_ARG string must not be used in combination with the
store-fragment special fields for web service inbound data (special fields
starting with ##WS_inbound_*). Use ONLY one for collecting web service
inbound data.

Type Field (required) Definition

ws &ws_name

&ws_op

&ws_ns

&ws_port (inbound only)

&target (outbound only)

Web Service name

Web Service Operation name

Web Service namespace

Web Service Port Name

Outbound Web Service Target

jms &name

&target

Queue or Topic name

Target Queue or Topic name

"DIAG_ARG:type=ws&ws_name="+ #servicename +"&ws_op="+ #operation +\
"&ws_ns="+ #ns +"&ws_port="+ #port;

Chapter 10 • Custom Instrumentation for Java Applications

353

➤ Special fields (store-fragment)

Default special fields provide an easy way for code snippets to pass
fragment-related data for common events. This mechanism supplements
the existing events, but is not expected to replace them. Fragment Local
Storage has higher overhead cost than custom events. The following
variables must be used with the store-fragment detail setting.

➤ Special fields (store-thread)

Additionally special fields provide an easy way for code snippets to store
related data for the life of the thread. Use these thread local storage variables
with caution because they have overhead associated with them. Use them
only with the store-thread detail setting.

Variable Use

##WS_consumer_id Stores the consumer Id for a particular fragment.

##WS_SOAP_fault_code Stores the SOAP fault code.

##WS_SOAP_fault_reason Stores the SOAP fault reason.

##WS_SOAP_fault_detail Stores the SOAP fault detail.

##WS_inbound_service_nam
e

Stores the inbound web service name.

##WS_inbound_operation_n
ame

Stores the inbound web service operation name.

##WS_inbound_target_nam
espace

Stores the inbound web service target namespace.

##WS_inbound_port_name Stores the inbound web service port name.

Chapter 10 • Custom Instrumentation for Java Applications

354

These variables can be retrieved in later code snippets by making a call to
the probe’s ThreadContextProxy class reference with either the
getThreadContextValue(“string value”) or
getAndRemoveThreadContextValue(“string value”) methods, with “string
value” being the name of the variable without the leading ## signs. The last
retrieval of the value should always call
getAndRemoveThreadContextValue(“string value”) to clear the value from
memory and to remove the value for the next thread.

➤ Class references and static members

Static members/methods can be accessed by pre-pending the class with an
@ symbol to identify it as a Static, and marking the method being accessed
with an @ symbol as in the examples below:

The arguments in the code snippets support Java class syntax when the Java
class is surrounded with a marker that the parser can get hold of. The
following examples show how to use the @ symbol as a marker:

Code Snippet Helper
Some functionality is very hard, or even impossible, to get coded using the
limited syntax available within the code-snippets.

Variable Use

##SOAPHandler_wsname Stores the web service name for later use by the
SOAP Handler.

##<any_string> Stores any value for later retrieval in a following
code snippet.

@java.lang.System@.out ("Hello World");

@com.mercury.diagnostics.capture.metrics.countingCollector@.incrementCounter();

@java.lang.System@

@java.lang.System@out (Static field)

Chapter 10 • Custom Instrumentation for Java Applications

355

Therefore, the code-snippet environment offers two helper classes,
ProbeCodeSnippetHelper and ProbeCodeSnippetHelperV5. The
CodeSnippetHelperV5 uses some APIs available only with Java 5 or later.

The following shows ProbeCodeSnippetHelper functionality.
 /*
 * (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
 */

package com.mercury.opal.capture.proxy;

/**
 * Used to help out Code Snippets
 */
public class ProbeCodeSnippetHelper {

 /**
 * When a Special Field holds a reference to the string below,
 * it will not be stored in the Fragment Local Storage,
 * or Invocation Local Storage
 */
 public static final String DO_NOT_STORE = ...

 /**
 * Helper to convert an int to an Integer
 * @param i
 * @return a new Integer object having the value of i
 */
 public static Object intToInteger(int i) {
 ...
 }

 /*
 * Mark the current thread, if not marked yet
 * @return true, if and only if the thread had been already marked
 */
 public static boolean testAndSetRecursiveFlag() {
 ...
 }

 /*
 * Unmark the current thread
 */
 public static void clearRecursiveFlag() {
 ...
 }

 /**
 * Helper method to call ResourceBundle.getString() and catch any exceptions that
 * might be thrown
 * @param theBundle the ResourceBundle on which to call getString
 * @param key the key to pass getString
 * @return the value returned from getString, or null if an exception occurred
 */
 public static String getStringFromResourceBundle(ResourceBundle theBundle, String key) {
 ...
 }

Chapter 10 • Custom Instrumentation for Java Applications

356

 /*
 * Helper methods to allow our cross-vm coloring to piggyback ride across
 * the custom outbound calls in which the application passes [only] a String.
 * The actual transport technology is irrelevant.
 * Instead of sending the original message, a composite message ("envelope")
 * will be passed. The composite message includes both the original message
 * and Diagnostics Probe ENCODED cross-vm coloring.
 * On the receiving end, the composite message will be received, but only
 * the original message will be passed to the application, and the coloring
 * will be retained by the probe.
 */

 /**
 * Create a composite message, given the coloring and the original message.
 * @param coloring - the correlation String obtained via the ENCODED coloring,
 * may be null
 * @param originalMessage - the original messsage sent by the application
 * @return - the composite message, null if and only if the originalMessage is null
 */
 public static String createDiagEnvelope(String coloring, String originalMessage) {
 ...
 }

 /**
 * Extract the coloring from the composite message (envelope).
 * @param envelope - the composite message or the original message
 * @return the coloring as created on the sender side, or null if not present
 */
 public static String extractColoringFromDiagEnvelope(String envelope) {
 ...
 }

 /**
 * Extract the original message from the composite message (envelope).
 * Works properly, even if the sender side has not been instrumented, and
 * there's no envelope.
 * @param envelope - the composite message or the original message
 * @return the original message (before coloring)
 */
 public static String extractOriginalMessageFromDiagEnvelope(String envelope) {
 ...
 }

}

Chapter 10 • Custom Instrumentation for Java Applications

357

The following shows ProbeCodeSnippetHelperV5 functionality.

/*
 * (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
 */

package com.mercury.opal.capture.jdk15.agent;

/**
 * Used to help out Code Snippets using Java 5 or later
 */
public class ProbeCodeSnippetHelperV5 {

 /**
 * Get the annotation of the specified type from the class or its superclass,
 * or its implemented interfaces
 * @param theClass The class to get the annotation for
 * @param annClass The annotation class to look for
 * @return
 */
 public static Object getEndpointClassAnnotation(Class theClass, Class annClass) {
 ...
 }

 /**
 * Get the method annotation of the specified type from the class
 * or its superclass, or its implemented interfaces
 * @param theClass the class
 * @param methodName the method name
 * @param argCount the argument count
 * @param annClass the class annotation type
 * @param methodAnnClass the method annotation type
 * @return
 */
 public static Object getEndpointMethodAnnotation(Class theClass, String methodName,
 String argCount, Class annClass, Class methodAnnClass) {

 ...
 }

 /**
 * Helper method to get an annotation element value. If the annotation
 * does not have the element, return null.
 * @param annClass The class of the annotation
 * @param instance The annotation instance object
 * @param elementName The element name
 * @return The element value for the annotation instance, or null
 */
 public static String getAnnotationElementValue(Class annClass, Object instance, String elementName) {
 ...
 }

 /**
 * This helper method is used to serialize a DOM document.
 * This method uses APIs available in DOM Level 3 or newer, which are
 * available with a 1.5 or later JVM.
 * @param document
 * @return The serialized form (XML) of the input DOM document
 */
 public static String serializeDOMToString(Document document) {
 ...
 }

}

Chapter 10 • Custom Instrumentation for Java Applications

358

➤ Spanning multiple lines with the stack of method calls

The stack of method calls in a code snippet can span multiple lines. The
parser that builds the bytecode requires a “\” (backslash) before each
carriage return when it must continue parsing the stack of statements. The
final line of the Code Snippet stack of statements should not contain a
backslash and should simply end with carriage return.

➤ Casting

When calling a method that returns an object, casting is typically required
to call members on the returned object. Casting is supported on object
references. To cast an object to another type, place the casting reference
between the symbols “<“ and “>” following the reference to that object. The
following are examples of casting.

Note: Casting is not supported for special types such as #classloader.

@java.lang.System@.out ("Hello World");\
"Callee Name="+#callee.getName().toString();

#arg1<com.myCompany.myFoo>.myMethod();

This is equivalent to the Java statement:

((com.myCompany.myFoo)arg1).myMethod();

@some.class.Foo@foo<com.myCompany.myFoo>.myMethod();

Would be equivalent to the java statement:

((com.MyCompany.myFoo)some.class.Foo.foo).doSomething();

#foo = #arg1<bar>.b(); #foo.toString();

Creates the following java equivalent:

String foo = ((Bar)arg1).b(); ((Object)foo).toString();

Chapter 10 • Custom Instrumentation for Java Applications

359

➤ Method calls

Method calls can be included in snippet arguments. The support of method
calls includes calls with or without arguments and method chaining. The
following are examples of method calls that are included in code snippet
arguments:

The dot still needs to appear after the static reference for the method call to
be parsed properly.

To speed up the generation of bytecode at runtime (by avoiding reflection),
you can specify the type that is returned from a method as shown in the
following example:

This will not help if the method takes arguments, or if a static field is used.

➤ Multiple statements

Code snippets can include multiple statements in a single code snippet. This
is necessary for instrumentation, such as CLApplicationDiscoveryPoint, that
expect multiple objects to be left on the stack. It can be handy in other
situations as well.

#arg1.toString()

#arg2.getSomething().getSomethingElse()

#callee.getSomething("foo", #arg1).somethingElse()

@some.Class@.staticMethod()

@java.lang.System@out.println("Here I am!")

#arg1.getSomething()<some.class.Here>

@java.lang.System@out.println("Look out!");
#arg2.getSomething();

Chapter 10 • Custom Instrumentation for Java Applications

360

➤ Local Member assignment

In addition to the default supported “local” variables, you can create your
own local members to hold object references returned by called methods.

To create a new Local Member enter, the "#" symbol before the name of the
local member. The parser creates the local member for you.

➤ Special Field assignment (store-fragment)

You can use a pre-defined special field to store the object references returned
by called methods. Enter the "##" symbols before the name of the special
field along with the store-fragment detail keyword on the instrumentation
point.

➤ Special Field assignment (store-thread)

You can use a special field to store the object references returned by called
methods. Enter the "##" symbols before the name of the special field along
with the store-thread detail keyword on the instrumentation point.

In a later code snippet you can retrieve the value stored by calling
getThreadContextValue with the special field value above without the
leading ## symbols.

#myBar = #arg2.getName();\
#myUpperBar = #myBar.toUpper();\
"Target Name=http://"+myUpperBar+"/services";

##WS_SOAP_fault_code = #arg2;\
##WS_SOAP_fault_reason = #arg3;\
##WS_SOAP_fault_detail = (#arg4 == null ? null : #arg4.toString());"";

Used by [SOA_Broker_Payload_Handler]
##SOA_Manager_Inbound_Payload=#callee.getRequestDocument();"";

#temp_soam_payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.get
ThreadContextValue("SOA_Manager_Inbound_Payload");

Chapter 10 • Custom Instrumentation for Java Applications

361

In a later code snippet you can retrieve and remove the special field value
stored by calling getAndRemoveThreadContextValue method with the value
same above without the leading ## symbols. It is very important that you
call getAndRemoveThreadContextValue to free memory and clear the way
for the next occurrence.

➤ Conditional Logic

Code snippet syntax allows for limited conditional logic that is equivalent
to the Java if-else statement. This syntax enables you to compare object
references of the same type or integer or boolean primitives using both the
== and != operators. Literal value and other primitive comparisons are not
valid using this syntax.

The following is an example of how to compare references:

The following is an example of how to verify that an object is not null
before calling a method:

This would be equivalent to the following Java statement:

➤ Exception Handling

A limited form of exception handling is provided by the following syntax:

The specified code is executed and the value of the above expression is the
thrown exception, or null if no exception was thrown during the execution
of the code.

#temp_soam_payload=@com.mercury.opal.capture.proxy.ThreadContextProxy@.
getAndRemoveThreadContextValue(("SOA_Manager_Inbound_Payload");

 (value1 == value2 ? <if_True_codeSnippet>:<if_False_codeSnippet>)

(#arg1 == null ? "Unknown" : #arg1.getSomething())

if (arg1==null) return "Unknown" else return arg1.getSomething();

!{<code-snippet-code>}!

Chapter 10 • Custom Instrumentation for Java Applications

362

Securing Code Snippets
By default, you must specify a valid code-key along with the code snippet
before the probe will use the code snippet during instrumentation.
Requiring the code-key prevents accidently introducing instrumentation
that could significantly increase the overhead of the probe.

When you generate the code-key, Diagnostics checks the syntax of the code
snippet to make sure it is valid before it generates the key. When Diagnostics
instruments an application, it checks the value entered for the code-key
argument to make sure it matches the code-key it calculates for the code
snippet for the point. If the code-keys do not match, Diagnostics ignores the
code snippet and does not create the instrumentation point.

Generating the Code Snippet Code-Key

The Java Agent is installed with a tool that generates the code-key from the
code snippet you input.

To generate a code-key:

 1 Open the page at the following URL in your browser:

http://<probe-host>:<probe-port>/inst/code-key

Chapter 10 • Custom Instrumentation for Java Applications

363

Diagnostics displays the page where you can validate the code snippet
syntax and generate the code-key as shown in the following example:

 2 Enter the code snippet you specified in the code argument in the
auto_detect.points file into the Input your code snippet text box and click
Submit.

Note: The code snippet must include all of the text following the code =
argument name.

Chapter 10 • Custom Instrumentation for Java Applications

364

 3 Diagnostics presents the results of the code snippet validation and the
code-key generation in the Resulting point section text box.

If the code snippet is valid, Diagnostics displays the value of both the
code-key and code arguments. Enter these values into the capture points
file.

If the code snippet is not valid, Diagnostics displays an error message that
indicates the problem that was detected. Correct the problem and click
Submit again to validate the corrected code.

Disabling the Code-Key Security Check

By default, Diagnostics verifies that the value of the code-key argument
matches the value it generates when it is instrumenting the application. It is
possible to disable this security check by inserting the
require.code.security.key property into the <probe_install_dir>/etc/
inst.properties file with a value of false.

Note: Be very careful when using this property. If you disable this check,
you could experience unexpected processing overhead and unpredictable
performance monitoring results.

Controlling Class Map Capture

The class map allows Diagnostics to provide more details about the classes
and methods that are invoked by a server request. This information can help
you to narrow your search for the source of a performance issue and help
you instrument the application code properly. The cost for using class map
comes from the additional overhead that creating the map places upon the
agent’s host system.

By default the property use.class.map=false is set in the probe.properties
file. Changing this to true provides a class map.

Chapter 10 • Custom Instrumentation for Java Applications

365

Instrumentation Examples

The examples in this section illustrate how you can customize the
instrumentation of an application by creating and modifying the points in
the capture points file.

This section includes the following examples:

➤ Custom Layer and Sublayer

➤ Wildcard Method

➤ Ignore Specified Methods

➤ Capture Methods for the Trended Methods View

➤ Capture Only a Specific Method In a Class

➤ Capture a Specific Method That Returns a String

➤ Capture with a Controlled Scope

➤ Hard and Soft deep_mode

➤ Argument Capture

➤ Inbound and Outbound Web Services

➤ Renaming Root Methods

➤ Adding a Field to a Class

➤ Passing Attributes to Instance Trees

➤ Filtering Out Methods by Their Access Flag

➤ Not Recording Direct Recursion

➤ Performing Caller Side Instrumentation

➤ Configuring Allocation Analysis

➤ Configuring Lightweight Memory Diagnostics (LWMD)

➤ Configuring Collection Leak Pinpointing

➤ Enabling Object Lifecycle Monitoring for JDBC Result Set

➤ Adding a Disabled Point and Enabling it at Runtime

➤ Specifying that a Method Should Never be Trimmed

Chapter 10 • Custom Instrumentation for Java Applications

366

➤ Specifying that a Method Should Always be Trimmed

➤ Enabling Collection of CPU Time for a Method

➤ Changing SAP RFC Instrumentation Based on SAP JCO Library Version

➤ Printing Instrumentation and Runtime Information for a Point (Debugging
Only)

Custom Layer and Sublayer

➤ The following point creates a custom sublayer called “BAR” within the layer
called “FOO” for the method myMethod in myCompany.myFoo class:

Wildcard Method

➤ The following point captures all methods in the MyCompany.MyFoo class:

Ignore Specified Methods

➤ The following point captures all methods in the MyCompany.MyFoo class
except for the methods setHomeInterface and getHomeInterface:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo
method = !.*
ignoreMethod = !setHomeInterface.*, !getHomeInterface.*
signature = !.*
layer = FOO/BAR

Chapter 10 • Custom Instrumentation for Java Applications

367

➤ The following point captures all methods in the MyCompany package/
namespace except for those contained in the MyCompany.logging class:

Capture Methods for the Trended Methods View

➤ The following point captures the required data to populate the Trended
Methods View for the myMethod method:

Capture Only a Specific Method In a Class

➤ The following point captures all methods in the constructor for the
MyCompany.MyFoo class:

➤ The following point captures all methods in the singleton constructor for
the MyCompany.MyFoo class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
ignore_cl = MyCompany.logging
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
signature = !.*
layer = FOO/BAR
layertype = trended_method

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = <init>
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = <clinit>
signature = !.*
layer = FOO/BAR

Chapter 10 • Custom Instrumentation for Java Applications

368

➤ The following point captures the setFoo method in the MyCompany.MyFoo
class:

➤ The following point captures all "set" methods in the MyCompany.MyFoo
class:

➤ The following point captures all methods in the MyCompany package/
namespace:

Capture a Specific Method That Returns a String

➤ The following point captures the getFoo method with no arguments that
returns a java.lang.String in the MyCompany.MyFoo class:

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !set.*
signature = !.*
layer = FOO/BAR

[myCompany_All_Methods]
class = !myCompany\..*
method = !.*
signature = !.*
layer = FOO/BAR

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo
method = getFoo
signature = ()Ljava\lang\String
layer = FOO/BAR

Chapter 10 • Custom Instrumentation for Java Applications

369

Capture with a Controlled Scope

➤ The following point captures all methods in the MyCompany package/
namespace that are called from the MyCompany.logging class. For more
details see “Using Caller Side Instrumentation” on page 383.

➤ The ignoreScope argument is used to exclude certain packages, classes, and
methods from those included in the scope specified in scope argument. The
following point captures all methods in the MyCompany package/
namespace that are called from the MyCompany.logging class except for
those called from the myMethod method. For more details see “Using Caller
Side Instrumentation” on page 383.

Hard and Soft deep_mode

➤ The following interface definition is used for both soft and hard deep_mode
examples:

[myCompany_All_Methods_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
signature = !.*
scope = MyCompany.logging
layer = FOO/BAR

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
signature = !.*
scope = MyCompany.logging
ignoreScope = MyCompany.logging\myMethod
layer = FOO/BAR

public interface Interface1 {

 public void callerMethod();

}

Chapter 10 • Custom Instrumentation for Java Applications

370

➤ The following class is used for both soft and hard deep_mode examples:

➤ The following point captures the "callerMethod" in the Class1 class:

➤ The following point captures all methods in Class 1 (for example,
"callerMethod", "calleeMethod1" and "calleeMethod2):

public class Class1 implements Interface1 {
 public void callerMethod(){
 calleeMethod();
 calleeMethod2();
 }

 public void calleeMethod(){
 System.out.println("hello world");
 //more code lines here…

 }

 public void calleeMethod2(){
 System.out.println("hello world 2");
 }
}

[Training-1]
class = Interface1
method = !.*
signature = !.*
deep_mode = soft
layer = Training

[Training-1]
class = Interface1
method = !.*
signature = !.*
deep_mode = hard
layer = Training

Chapter 10 • Custom Instrumentation for Java Applications

371

Argument Capture
The argument displayed in Diagnostics is the final string left on the stack by
the code snippet. Code snippets must end with a string or an object where
toString() can be left on the stack of statements to be parsed to the bytecode.

Important: Extreme caution has to be exercised when using argument
capture. Unless the set of all possible values of the captured argument is
finite, the agent will run out of Java heap space.

➤ Suppose that you instrument a method called
myCompany.myFoo.myMethod(), and myFoo has another method called
getComponentName() that returns a String. The following example shows
the result of getComponentName() as the argument in Diagnostics (#callee
refers to the callee object for an instance method, in this case).

The code snippet in the custom_code.properties file is entered as follows:

[myCompany_componentName_as_argument]
class = myCompany.myFoo
method = myMethod
signature = !.*
detail = before:code: 8d2509eb
layer = FOO/BAR

8d2509eb = #callee.getComponentName()

Chapter 10 • Custom Instrumentation for Java Applications

372

➤ The following point captures the first argument to myMethod and shows it
as the captured argument in Diagnostics. It also uses it as the sublayer name.
This is achieved by including ${ARG} in the layer. In this example, if the
captured argument—in this case, the first argument of myMethod—has the
value myArg, the layer is FOO/myArg.

The code snippet in the custom_code.properties file is entered as follows. If
you use #arg2, you would capture the second argument instead.

Inbound and Outbound Web Services
When the detail argument in a point contains the "outbound" or
"ws-operation" keyword, Diagnostics attempts to parse the final string on
the Code Snippet stack for additional information to display about the
method call.

➤ For inbound Web Services (“ws-operation” detail must be used), the string
looks like the following:

➤ For outbound Web Services (“outbound” detail must be used), the string
looks like the following:

[myCompany_capture_firstArg_and_also_show_as_layer]
class = myCompany.myFoo
method = myMethod
signature = !.*
detail = before:code: 358f05d6
layer = FOO/${ARG}

358f05d6 = #arg1.toString()

"DIAG_ARG:type=ws&ws_name=”+<WebServiceName>+"&ws_op=”+
<OperationName>+”&ws_ns=”+<TargetNameSpace>+”&wsOport=”+<wsPort>

"DIAG_ARG:type=ws&ws_name=”+<WebServiceName>+"&ws_op=”+
<OperationName>+”&target=”+<TargetName>

Chapter 10 • Custom Instrumentation for Java Applications

373

Here is an example:

The code snippet in the custom_code.properties file is entered as follows:

edd75e36 = #service = #callee.getService().getWsdlService();\
#qname = #service.getName();\
"DIAG_ARG:type=ws&ws_name="+ #qname.getLocalPart() +"&ws_op="+ \
#callee.getMethod(#arg1).getOperationName().getLocalPart() +"&target="+ \
#callee.getProperty("javax.xml.rpc.service.endpoint.address");

Renaming Root Methods

➤ Consider the following point:

If such a method ends up being the root method, the name of such a server
request is Background-mySuffix, and the type of the server request is
RootRename.

➤ Consider the following point instead:

Notice that the rootRenameTo property is skipped. The name of such a
server request is Background–Database (because Database is the first
sublayer) and the server request type is RootRename again.

class = weblogic.wsee.ws.WsStub
method = invoke
signature = (Ljava/lang/String;Ljava/lang/String;Ljava/util/Map;Ljava/util/Map;)Ljava/
lang/Object;
layer = Web Services
detail = outbound,before:code:edd75e36

class = Statement
method = execute
layer = Database/JDBC/Execute
detail = when-root-rename
rootRenameTo = mySuffix

class = Statement
method = execute
layer = Database/JDBC/Execute
detail = when-root-rename

Chapter 10 • Custom Instrumentation for Java Applications

374

Adding a Field to a Class

➤ Consider the following point:

The detail causes the following one field and two public setter/getter
methods to be added to the class com.corp.Foo:

Passing Attributes to Instance Trees

➤ The following example attaches my_attribute name to every captured
instance of com.corp.Foo.bar().

The name prefixed with display_ and its corresponding value is shown in
the call profile.

Code snippet:

Filtering Out Methods by Their Access Flag

➤ The following example instruments all methods in class com.corp.Foo (but
not static methods).

class = com.corp.Foo
method = bar
detail = add-field:protected:Object:serviceName

protected transient Object serviceName
public void _diag_set_serviceName(Object arg)
public Object _diag_get_serviceName()

class = com.corp.Foo
method = bar
detail = store-method,code:f59f0c5c

f59f0c5c = ##my_attribute="value-of-my-attribute";"";

class = com.corp.Foo
method = !.*
signature = !.*
method_access_filter = static

Chapter 10 • Custom Instrumentation for Java Applications

375

Not Recording Direct Recursion

➤ In the following example, if method com.corp.Foo.bar calls itself (or
anything in the same layer), the second call is not recorded. This is caused
by the detail = no-layer-recurse.

This, however, is only for direct recursion. If com.corp.Foo.bar calls an
instrumented method from another layer that calls this method again, all
methods are recorded.

Performing Caller Side Instrumentation

➤ The following point causes caller side instrumentation to be performed (as
opposed to the default callee instrumentation). This is caused by the detail =
caller.

Another way to do caller side instrumentation is to use the “scope” property
as described in “Using Caller Side Instrumentation” on page 383.

Configuring Allocation Analysis
Both of the following examples track allocations of java.lang.Integer in the
package com.mycompany.mycomponent. There are, however, two
differences:

➤ In the first example (detail = leak), tracking is managed. It starts when the
user clicks start in the profiler and stops when the user clicks stop. In the
second example (detail = deallocation), tracking starts with application
startup.

➤ In the first example, the point is disabled when it comes to regular
instrumentation. This means you will not see “new Integer” show up on an
instance tree. In the second example, you will.

class = com.corp.Foo
method = bar
layer = Example/MyBar
detail = no-layer-recurse

class = com.corp.Foo
method = bar
detail = caller

Chapter 10 • Custom Instrumentation for Java Applications

376

Example 1 – Managed. Tracking starts when the user clicks start and stops
when the user clicks stop in the profiler:

Example 2 – Unmanaged. Tracking starts with application startup:

Neither of these points captures reflected allocation. To enable reflected
allocation capture, simply append the detail “reflection” to the point (detail
= leak,reflection).

Configuring Lightweight Memory Diagnostics (LWMD)

➤ The following example turns on collection diagnostics for collections that
happened inside of the com.mercury.mycomponent package. You can find
this example in the auto_detect.points file. It is set to active = false by
default.

You also need to set the property lwm.diagnostics.capture=true in the
dynamic.properties file. For more information, see the HP Diagnostics User’s
Guide chapter on the "Collections and Resources View."

[Leak]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer
keyword = allocation
detail = leak
active = true

[Leak]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer
keyword = allocation
detail = deallocation
active = true

[Light-Weight Memory Diagnostics]
scope = !com\.mycompany\.mycomponent\..*
class = java.lang.Integer
keyword = lwmd
active = true

Chapter 10 • Custom Instrumentation for Java Applications

377

Configuring Collection Leak Pinpointing

Regardless of JRE version, you must run the JRE Instrumenter using the
appropriate mode for your application server if you want to use the
collection leak pinpointing (CLP) feature in the Java Agent. Chapter 6,
“Preparing Application Servers for Monitoring with the Java Agent” for
details on instrumenting the JRE.

By default collection leak pinpointing is enabled in the auto_detect.points
file.

In the dynamic.properties file you can set the following properties to
configure collection leak reporting. These same values can also be set in the
Java Profiler Configuration tab UI (see “Enabling and Configuring
Collection Leak Reporting” on page 546).

clp.diagnostics.reporting=true

Enable reporting in the Diagnostics UI. You can disable reporting in the UI
for this feature by unchecking the checkbox.

clp.diagnostics.growth.time.threshold.flag = 60m

The threshold of time duration in which the collection has size growth. If a
collection's size growth period exceeds this threshold, it will be flagged as a
memory leak by the probe. To avoid false positives, this value should be
larger than the time required by your application to fully initialize all its
caches.

clp.diagnostics.nongrowth.time.threshold.unflag = 60m

For an already flagged leaking collection, if its size stops growing
continually for this threshold time period, the probe will unflag it as a leak.

Enabling Object Lifecycle Monitoring for JDBC Result Set
A few preconfigured instrumentation points allow object lifecycle
monitoring but are disabled by default. Two of them are shown in the
following example.

[Collection Leak Pinpointing]
keyword = clp

Chapter 10 • Custom Instrumentation for Java Applications

378

The example shows how to enable object lifecycle monitoring for JDBC
Result Sets. For a more detailed discussion on object lifecycle monitoring,
see the HP Diagnostics User’s Guide, chapter on "Analyzing Memory and
Object Lifecycle" in the section on the Allocation /Lifecycle Analysis Tab.

For this example, two actions are required:

 1 Go to inst.properties and find details.conditional.properties. Set
mercury.enable.resourcemonitor.jdbcResultSet=true

 2 Specify the scope in the corresponding open instrumentation points (shown
below).

In the following, the probe performs object lifecycle monitoring for JDBC
Result Sets inside package com.mycompany.mycomponent.

[Lifecycle-JDBC-ResultSet-Open]
scope = !com\.mycompany\.mycomponent\..*
class = java.sql.Statement
method = !(getResultSet.*)|(executeQuery.*)
signature = !.*\)Ljava/sql/.*ResultSet;
detail = condition:mercury.enable.resourcemonitor.jdbcResultSet,lifecycle,caller

[Lifecycle-JDBC-ResultSet-Close]
class =
!(java\.sql\.ResultSet)|(weblogic\.jdbc\.wrapper\.ResultSet)|(com\.ibm\.ws\.rsadapter\.jd
bc\.WSJdbcResultSet)
method = !(close)|(closeWrapper)
signature = !.*
deep_mode = soft
detail =
condition:mercury.enable.resourcemonitor.jdbcResultSet,before:code:513a2b36,metho
d-trim

Chapter 10 • Custom Instrumentation for Java Applications

379

Adding a Disabled Point and Enabling it at Runtime

➤ In the following example, the point is disabled. This does not mean that
instrumentation does not happen. Instrumentation happened but did
collect any data. This significantly lowers the runtime overhead of such a
point.

To enable data collection while the application is running, go to the Layer
page in the (http://<probe-host>:<probe-port>/inst/layer or from the Profiler
select the Configuration tab and then select View instrumentation), look for
layer myLayer, and click Enable.

If you do not want instrumentation to happen at all, use active=false.
However, such a point cannot be enabled at runtime.

Specifying that a Method Should Never be Trimmed

➤ In the following example, latency trimming does not apply to
Example.myMethod().

Specifying that a Method Should Always be Trimmed

➤ In the following example, the method Example.myMethod() is not
reported. However, any code snippets associated with the point will always
be executed.

[My Example]
class = Example
method = !.*
layer = myLayer
detail = disabled

[My Example]
class = Example
method = myMethod
detail = method-no-trim

[My Example]
class = Example
method = myMethod
detail = method-trim, before:code:...

Chapter 10 • Custom Instrumentation for Java Applications

380

Enabling Collection of CPU Time for a Method

➤ In the following example, the detail “method-cpu-time” causes the CPU
time to be collected for method Example.myMethod().

Changing SAP RFC Instrumentation Based on SAP JCO
Library Version
In the <probe_install_dir>/etc/inst.properties file there are two points
defined depending on the version of SAP JCO used. Comment out the
version you are not using. Starting with version 2.1.10 or later use
com.mercury.opal.capture.inst.SapRfcinstrumentationPoint2_1_10.
Otherwise the default setting will work for version 2.1.9 and earlier.

Printing Instrumentation and Runtime Information for a
Point (Debugging Only)
The following example prints several pieces of debug information in
standard out and probe.log.

➤ The gen-instrument-trace detail causes printing to stdout the thread stack
trace whenever this point is used to instrument a method.

➤ The gen-runtime-trace causes printing to stdout the thread stack trace
whenever Example.myMethod() is run.

➤ The trace detail causes printing in the probe.log verbose instrumentation
information whenever Example.myMethod() is run.

[My Example]
class = Example
method = myMethod
detail = method-cpu-time

[My Example]
class = Example
method = myMethod
detail = gen-instrument-trace, gen-runtime-trace, trace

Chapter 10 • Custom Instrumentation for Java Applications

381

Understanding the Overhead of Custom Instrumentation

When you are creating custom instrumentation, beware of
over-instrumenting the application because it can introduce excessive
latency into the probed application. Excessive latency arises from an
increase in the classloader latency as more and more classes are
instrumented. The custom instrumentation does not have the same impact
on the method latency or the CPU overhead because the overhead of
instrumentation is nearly fixed for every method because the amount of
bytecode is almost always the same. This means that the physical
percentages of the CPU and latency overhead will vary in direct proportion
to the length of time the method takes to run.

For example, if a method takes 100ms, and instrumentation makes it run in
101ms, overhead is 1%. If a method takes 10ms and instrumentation
changes its response to 11ms, overhead is 10%. If this method is not called
very often, its overall latency effect on the application is minimal. However,
the overall latency effect of an instrumented method that is called more
frequently can affect the latency of the application’s response even though
its overhead percentage is much smaller.

Unlike a traditional profiler, HP Diagnostics uses bytecode instrumentation.
This allows the default instrumentation to be selective to minimize the
overhead caused by instrumentation to an average of 3-5%. Methods with
higher latency overhead introduced by instrumentation are only
instrumented when they are called infrequently in relation to other
components in the application and when the instrumentation provides
specific information needed for triage activities (for example, JNDI lookups).

You should also consider Diagnostics data overhead when you are
customizing the instrumentation for an application. The more methods you
instrument, the more data the probe must serialize and pass over the
network to the Diagnostics Server. You can tune the Java probe’s default
configuration so that it can adjust the volume of Diagnostics data to avoid
any unnecessary effect on the performance of the system being monitored.
Improper tuning of a probe can cause CPU, Memory and Network overhead
on the physical machine where the Java Agent is installed. For more
information about managing Latency, CPU, Memory and Network
overhead, see Chapter 13, “Advanced Java Agent and Application Server
Configuration.”

Chapter 10 • Custom Instrumentation for Java Applications

382

Instrumentation Control on a Per Layer Basis

By default, the layers defined in the capture points file are enabled. If you
include the details=disabled argument in a point, the layer is disabled when
the probe is started.

The classmap in JDK 1.5 provides the capability to dynamically instrument
methods and classes using the JVMTI interface without restarting the JVM
instance. All other virtual machines require that the JVM instance be
restarted to apply changes you make to the capture points files.

Once instrumentation is placed within a method, its data collection and
running CPU and method latency overhead can be controlled on a per layer
basis (see the Instrumented Layers page below).

You can access the Instrumented Layers page from the URL:

http://<probe-host>:<probe-port>/inst/layer.

To disable a layer from the Instrumented Layers page, click the Disable link
associated with the layer on the page. The layer is disabled and the link
toggles to Enabled so that you can enable the layer again when necessary.

Chapter 10 • Custom Instrumentation for Java Applications

383

Advanced Instrumentation Examples

This section includes:

➤ “Using Caller Side Instrumentation” on page 383

➤ “URI Aggregation Instrumentation” on page 386

➤ “CORBA Cross VM Instrumentation” on page 387

➤ “Using RMI Instrumentation” on page 387

➤ “Using Thread Local Storage to Store the SOAP Payload” on page 388

➤ “Performing Correlation Across Multiple Threads” on page 389

➤ “Using Fragment Local Storage to Store Web Service Field” on page 392

➤ “Using Annotations for Custom Instrumentation” on page 396

Using Caller Side Instrumentation
By default, all instrumentation in Diagnostics is callee side instrumentation
where the bytecode is placed within the method call. Caller side
instrumentation refers to the process of placing the bytecode for
measurement around the call to the method to be instrumented instead of
within.

Caller side instrumentation allows finer control of instrumentation
placement, but can increase application classloader time because each class
specified in the scope must be checked for references to the class/method
specified in the points.

A common use for caller side instrumentation is to instrument calls to
methods in rt.jar. Classes loaded into the virtual machine using the
bootclassloader and not from a conventional class loader cannot be directly
instrumented. To instrument calls to these methods, you must use caller
side instrumentation.

Chapter 10 • Custom Instrumentation for Java Applications

384

In the following example, the parse methods for the
javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder are
instrumented by placing bytecode around the calls to parse in any (!.*)
method from any class. Caller side instrumentation is required because both
the javax.xml.parsers.SAXParser and javax.xml.parsers.DocumentBuilder
classes are contained in the rt.jar and loaded into the virtual machine by the
bootclassloader.

In the following example, instruments calls to javax.naming.Context's
"lookup" method that are called from the com.myCompany.myFoo classes
and places them in the JNDI sublayer in the FOO layer.

[XML-DOM-JDK14]
;---------- Interface --------------
Class = !javax\.xml\.parsers\.(SAXParser|DocumentBuilder)
method = parse
signature = !.*
scope = !.*
layer = XML

[JNDI-lookup-FOO]
;------------- Server side JNDI hook --------------
class = javax.naming.Context
method = lookup
signature = (Ljava/lang/String;)Ljava/lang/Object;
scope = !com\.myCompany\.myFoo\..*
deep_mode = soft
layer = FOO/JNDI

Chapter 10 • Custom Instrumentation for Java Applications

385

Notes:

➤ To verify that the point has caused the bytecode to be properly placed,
check the <probe_Install_dir>/log/<probeName>/detailReport.txt file
for the entries Unique Header Name (that is, [JNDI-lookup-FOO]).

➤ During final triage steps for a performance issue, it can be impractical to
use the classmap and individual build points for every method called by
a suspect area of the application. It is very common to use one or more
levels of caller side instrumentation to identify the time spent within an
individual method or methods that have a suspected bottleneck. This is a
useful way to fill in the next level to a Call Profile in Diagnostics.

The following example instruments any call to a method that is performed
within the com.myCompany.myFoo class by the "myMethod" method:

The following example also captures the arguments to any "set" method
called in com.myCompany.myFoo class by the "myMethod" method:

[MethodsCalledByFoo.myMethod]
class = !.*
method = !.*
scope = !com\.myCompany\.myFoo\.myMethod.*
layer = FOO/other

[SetMethodsCalledByFoo.myMethod]
class = !.*
method = !set.*
scope = !com\.myCompany\.myFoo\.myMethod.*
detail = args:1
layer = FOO/other

Chapter 10 • Custom Instrumentation for Java Applications

386

URI Aggregation Instrumentation
Applications typically use the same URL to access different workflow. If the
application uses a URI (for example,
http://<myserver>/myApplication?page=home) argument to differentiate the
between the workflow, Diagnostics can be configured to parse and treat the
different URIs as different server requests.

URI aggregation is controlled from the [HttpCorrelation] point. A valid
regular expression entry for args_by_class should be created for each URI
pattern.

The following example allows the ServerRequests to appear uniquely in the
Diagnostics console:

The following example shows that more than one URI parameter can be
used for URI parsing:

Note: Avoid using a session parameter or highly unique URI value because
of the impact to overhead and data storage.

In a WebLogic environment, set the use.weblogic.get.parameter=true in
<probe_install_dir>/etc/inst.properties when using URI aggregation to
prevent URI aggregation from consuming the ServletRequest's inputstream.

http://<myserver>/myApplication?page=home
http://<myserver>/myApplication?page=openReport

[HttpCorrelation]
args_by_class=!.*&page

args_by_class=!.*&page&role

Chapter 10 • Custom Instrumentation for Java Applications

387

CORBA Cross VM Instrumentation
The Common Object Requesting Broker Architecture (CORBA) standard
enables components written in different computer languages and running
on different systems to work together.

Instrumentation for correlating CORBA cross VM instance trees is provided
in the <probe_install_dir>\etc\auto_detect.points file.

Follow these steps in to enable cross-VM instance trees for CORBA:

 1 Uncomment the Corba cross-VM points in the auto_detect.points file.

 2 Specify the following JVM argument at Application Server startup:

-Dorg.omg.PortableInterceptor.ORBInitializerClass.com.mercury.opal.javaprobe.
handler.corba.CorbaORBInitializer

 3 Put the following jar file in the classpath:

<java-agent-install-dir>/lib/probeCorbaInterceptors.jar

Using RMI Instrumentation
The RMI (Cross-VM) point in the capture points file is inactive by default.
You must activate this point to capture the cross-vm processing in the
application. If you have Java probes with this point activated on both sides
of an RMI call, Diagnostics can correlate the call tree data from both virtual
machines.

[RMI]
keyword = rmi
layer = CrossVM
active = false

Chapter 10 • Custom Instrumentation for Java Applications

388

RMI Instrumentation In a Clustered Environment

The weblogic.t3.rmi property in the <probe_install_dir>/etc/inst.properties
file controls how the RMI instrumentation captures Cross-VM RMI
performance metrics. By default, weblogic.t3.rmi is set to false, which causes
the performance metrics to be gathered using the generic RMI
instrumentation. In a clustered environment, all servers in a cluster must
have RMI instrumentation turned on to avoid application failure when
weblogic.t3.rmi is set to false.

When weblogic.t3.rmi is set to true, the generic RMI instrumentation is
disabled, and the RMI Cross VM is captured using only WebLogic’s T3
protocol. This allows the Java probe to function with only some of the
servers in a cluster probed with RMI instrumentation enabled.

Using Thread Local Storage to Store the SOAP Payload
The following example demonstrates usage of thread local storage. In
particular, it shows how to store (and clean) the SOAP payload from thread
local storage. SOAP payload is captured by default only for certain
application servers. For more information on the support matrix, see
“Configuring SOAP Fault Payload Data” on page 535.

The following example is applicable only for application servers where
Diagnostics does not capture payload out of the box.

First, it is necessary to identify where to access the payload from. Assume
that the payload is the second argument of a method called
DispatchController.dispatch().

Chapter 10 • Custom Instrumentation for Java Applications

389

The keyword store-thread causes the Java probe to store the special fields in
the corresponding code snippet (in this case, My_Inbound_Payload) into
thread local storage. This can be referenced from a different code snippet
provided both points are hit on the same thread. Looking up the payload is
demonstrated in the next example (“Using Fragment Local Storage to Store
Web Service Field” below).

Performing Correlation Across Multiple Threads
Asynchronous Server Requests are server requests that switch threads
between server request start and end events. In the most simple case, one
thread receives the request, partially processes it, and then hands it off to
another thread to complete processing and to send the response back to the
requesting party.

Diagnostics offers two operations, available through code snippets, to allow
the Java agent to perform correlation across multiple threads:

➤ parkFragment(Object anchor)

[MyAppServer-SoapPayload-Capture]
class = com.myCompany.DispatchController
method = dispatch
signature = !\(Ljava/lang/Object;Ljava/lang/Object;\).*
layer = Web Services
detail = before:code: ae7f0a58,store-thread

Used by [MyAppServer-SoapPayload-Capture]
ae7f0a58 = ##My_Inbound_Payload=#arg2;"";

Chapter 10 • Custom Instrumentation for Java Applications

390

This operation is executed to indicate that the current thread will no longer
run the current server request. All method invocations, as recorded by the
Java Agent, are artificially terminated at this point. This is to indicate that
even though some of these methods will continue execution, their activity
will have nothing to do with the current server request. Furthermore, even if
the current thread will invoke some instrumented methods after calling
parkFragment, these calls will not be reported. The server request is no
longer considered running, and the specified object (anchor) is used by the
application as a unique identification of the server request to be resumed
later (presumably, by another thread).

➤ resumeFragment(Object anchor)

This operation is executed to indicate that the current thread resumes
execution of previously parked server request. The argument (anchor) is
used to identify the server request. All active method invocations will have
their start time artificially reset to the current time. This is to indicate that
even though some time may have elapsed while these method were
executing, their execution had nothing to do with the server request being
resumed. If the current thread was already running a server request, it will
be ignored (dropped).

When using these operations, it is essential that the correct anchor object, as
well as the correct thread switching points are identified by the application
specialist.

Beware of race conditions: if the fragment is reported "parked" too late, after
the corresponding resume operation is performed, the fragment will get lost
(and a warning will appear in probe.log). Two useful techniques to avoid the
race condition are: first, calling parkFragment slightly before the current
thread really abandons the server request, and second, try to piggyback the
application built-in synchronization which is often used to hand off an
object from one thread to another.

A "parked" fragment can be seen using the pending-fragment servlet, as
"PARKED SERVER REQUEST" displayed in place of the currently running
method.

Chapter 10 • Custom Instrumentation for Java Applications

391

The feature usually requires you to identify the thread switching points in
the monitored application, and to provide the corresponding
instrumentation points with code snippets. Out of the box support is
provided for BEA AquaLogic.

Examples of two instrumentation points with the corresponding code
snippets are presented below. They are a part of the AquaLogic support.

The first point presented below is executed whenever AquaLogic sends a
sub-request to another server. The instrumented method,
PipelineContextImpl.dispatch(...) returns true if the sub-request was
successfully sent. The thread sending the sub-request does not wait for a
response, but proceeds to pick up the next server request from a pipeline.

Therefore, the code snippet examines the return value, and if it is true,
signals to the probe that the current server request will be suspended. The
server request is identified by a MessageContext object, which AquaLogic
creates for every incoming server request.

Upon receiving a response from the sub-request, AquaLogic executes
RouterCallback.onReceiveResponse(...), possibly on another thread. The
processing of the original server request resumes, and this is signaled to the
probe by the code snippet.

[BEA_ALSB_AsyncDispatch]
; instrumentation point for AquaLogic Service Bus asynchronous dispatch
class = com.bea.wli.sb.pipeline.PipelineContextImpl
method = dispatch
signature = !\(Lcom/bea/wli/sb/context/MessageContext;.*
detail = after:code:549b1b59
layer = Service Bus/AquaLogic

Used by [BEA_ALSB_AsyncDispatch]
Asynchronously dispatches a subrequest for a service, the response will be
processed on another thread
549b1b59 = (#return == true ?
@ThreadContextProxy@.parkFragment(#location,#arg1) : void);

Chapter 10 • Custom Instrumentation for Java Applications

392

In this case, the MessageContext object representing the server request is
not available as an argument of the instrumented method and needs to be
extracted from the RouterCallback object.

Using Fragment Local Storage to Store Web Service Field
The following example demonstrates several features of points and code
snippets:

➤ How to use fragment local storage to store web service-specific fields
(ws_name, ws_op, and so on). This is an alternative to specifying the
“DIAG_ARG” string.

➤ How to retrieve (and remove) the stored payload from thread local storage
(which was stored in the previous example).

➤ How to extract the consumer ID out of the SOAP payload.

➤ How to use fragment local storage to store the consumer ID.

Because web services are treated in a special way, several fields must be
captured. These fields are described in “Code Snippet Grammar” on
page 350.

[BEA_ALSB_ProxyService_Callback_Response]
; instrumentation point for AquaLogic Service Bus callback function
class = com.bea.wli.sb.pipeline.RouterCallback
method = !(onError)|(onReceiveResponse)
signature = !.*
layer = Service Bus/AquaLogic
detail = before:code:dba72078

Used by [BEA_ALSB_ProxyService_Callback_Response]
Resume processing of a server request when the reply for a subservice comes back
(or when the server request was moved to the response pipeline internally)
dba72078 =
@ThreadContextProxy@.resumeFragment(#location,#callee._context.getMessageCon
text());"";

Chapter 10 • Custom Instrumentation for Java Applications

393

The first step is to find the instrumentation points that will give access to
the required fields (Web Service name, operation, namespace, port name).
Suppose that there is a single class in the instrumented application that has
access to all these fields. Assume that this class is called
com.myCompany.MyWSContext. We need to access an instance of this
class when all the above fields are set. There can be many options. Suppose
that one such option is when MyWSContext is passed as the first argument
of a method MyWSFactory.create(). This is the method we want to
instrument.

Here is our instrumentation point (each line is explained below):

The first three lines of the point shown above cause the probe to instrument
anything that matches
com.myCompany.MyWSFactory.create(MyWSContext, *).

The fourth line specifies the layer for this point.

The fifth line provides the probe with additional information about this
point (details):

➤ The first detail (ws-operation) is important because it causes the probe to
treat this as an inbound Web Service.

➤ The second detail (before:code: f334f0b4) causes the probe to insert the
corresponding code snippet at the start of the methods that comply with
this point. The actual code snippet is shown below. The number f334f0b4
was generated by going to

http://<probe-host>:<probe-port>/inst/code-key and pasting the code
snippet in the text box.

➤ The third detail (store-fragment) causes the probe to store all special
fields (##) found in the corresponding code snippet as attributes of the
server request.

class = com.myCompany.MyWSFactory
method = create
signature = !\(Lcom/myCompany/MyWSContext;.*
layer = Web Services
detail = ws-operation, before:code: f334f0b4,store-fragment

Chapter 10 • Custom Instrumentation for Java Applications

394

Here is the corresponding code snippet (each line of the below code snippet
is explained below).

First line: f334f0b4 = #wsContext=#arg1;\

As mentioned previously, the number f334f0b4 was generated by going to
http://<probe-host>:<probe-port>/inst/code-key and pasting the code
snippet in the text box. The actual code snippet starts after f334f0b4 =. The
first expression is #wsContext=#arg1. It simply assigns the first argument of
the method—in this case, a MyWSContext object—to a local variable
(wsContext).

Second line: ##WS_inbound_service_name=#wsContext.getServiceName();\

This expression uses fragment local storage to store the service name. It is
important to use the exact variable name (WS_inbound_service_name).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Third line: ##WS_inbound_operation_name=#wsContext.getOperationName();/

This expression uses fragment local storage to store the ws operation. It is
important to use the exact variable name (WS_inbound_operation_name).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Fourth line: ##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\

f334f0b4 = #wsContext=#arg1;\
##WS_inbound_service_name=#wsContext.getServiceName();\
##WS_inbound_operation_name=#wsContext.getOperationName();\
##WS_inbound_target_namespace=#wsContext.getNamespaceURI();\
##WS_inbound_port_name=#wsContext.getEndpoint();\
#soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getThreadContextValue("My
_Inbound_Payload");\
#consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerIdFromDo
cument(##WS_inbound_service_name<java.lang.String>,#soap_payload<org.w3c.do
m.Document>));\
##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

Chapter 10 • Custom Instrumentation for Java Applications

395

This expression uses fragment local storage to store the ws namespace. It is
important to use the exact variable name (WS_inbound_target_namespace).
These variable names are documented in the “Special Fields” section of
“Code Snippet Grammar” on page 350.

Fifth line: ##WS_inbound_port_name=#wsContext.getEndpoint();\

This expression uses fragment local storage to store the ws port name. It is
important to use the exact variable name (WS_inbound_port_name). These
variable names are documented in the “Special Fields” section of “Code
Snippet Grammar” on page 350.

The above first five lines are sufficient to successfully capture the inbound
Web Service. The remaining of the code snippet deals with capturing the
consumer ID out of the SOAP payload. This is optional and only if the
instrumented application server is not one of the application servers
supported for capturing SOAP payload out of the box. See the previous
example for details. In the followings example, we refer to the SOAP payload
that was captured in the previous example.

Sixth line: #soap_payload =
@com.mercury.opal.capture.proxy.ThreadContextProxy@.getAndRemoveThrea
dContextValue("My_Inbound_Payload");\

This expression retrieves and removes the stored payload from thread local
storage (see the previous example on how this was stored) and stores it on a
local variable (soap_payload).

Seventh line: #consumer_id = (#soap_payload == null ? null :
@com.mercury.opal.capture.proxy.ProbeCodeSnippetHelper@.getConsumerId
FromDocument(##WS_inbound_service_name<java.lang.String>,#soap_payloa
d<org.w3c.dom.Document>));\

This expression sets a consumer_id local variable. If the payload is null, the
consumer_id is set to null. Otherwise, we use the service name to perform
consumer ID matching based on the consumer.properties entries. For more
information on consumer ID matching, see “Configuring Consumer IDs” on
page 524.

Eighth line: ##WS_consumer_id = (#consumer_id == null ?
@ProbeCodeSnippetHelper@DO_NOT_STORE : #consumer_id);"";

Chapter 10 • Custom Instrumentation for Java Applications

396

In this final line, this consumer ID local variable becomes the consumer id
for this server request. It is important to use the exact variable name
(WS_consumer_id). These variable names are documented in the “Special
Fields” section of “Code Snippet Grammar” on page 350.

Using Annotations for Custom Instrumentation
Applications that use version 1.5 or greater of the JVM can “force” the
instrumentation of methods by simply using a custom annotation
(InstrumentationPoint) that is contained in the annotation.jar file in the
Diagnostics Java Agent lib directory. Put a copy of this file in your classpath
when compiling your classes using the InstrumentationPoint annotation.
The annotation is defined as follows (InstrumentationPoint.java):

This feature requires that the look.for.annotations property in
inst.properties is set to true (default).

Development

 1 Add the path to the annotation.jar (or copy the jar into your application)
file found in the Diagnostics Java Agent lib directory to your application
build classpath.

 2 Import the classes for any methods that need to be monitored:

import com.mercury.diagnostics.common.api.InstrumentationPoint;

 3 Identify methods to be monitored and add the annotation:

/*
 * (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
 * --
*/
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = ElementType.METHOD)
public @interface InstrumentationPoint {
 String layer();
 String keyword() default “”;
 String layerType() default “method”;
 String detail() default “”;
 String code() default “”;
 Boolean active() default true;
}

Chapter 10 • Custom Instrumentation for Java Applications

397

 @InstrumentationPoint(ARGS)

 public void launchTest4()

In this instance, ARGS includes the following (refer to points file
documentation for more information about what these arguments mean):

➤ layer="layer name"

➤ keyword= "keyword"

➤ layerType="type"

➤ detail="details"

➤ active="true/false"

Example

The following example shows code that uses the InstrumentationPoint
annotation.

In the example, myMethod1 will get instrumented and be visible as a node
in all instance trees. It will not get trimmed, even if its latency goes below
the minimum method latency threshold (51 ms by default). The inclusive
(including children) CPU consumption by this method will be measured
and reported.

/*
 * (c) Copyright 2008 Hewlett-Packard Development Company, L.P.
--
*/

import com.mercury.diagnostics.common.api.InstrumentationPoint;

…

@InstrumentationPoint(layer=”my_app”,detail=”diag,method-no-trim,method-cpu-tim
e”)
public void myMethod1(Object x, String y) {
 …
}

Chapter 10 • Custom Instrumentation for Java Applications

398

Configuring Cross VM Correlations for New or Custom
Technologies

Diagnostics can show call profiles that span multiple Java virtual machines
(JVM). These Cross VM call profiles and topologies are very useful when a
performance issue involves a client and a server. You want to know which
application is the source of the problem but looking at the call profile for
the client or server individually may not help with intermittent issues since
they would not be correlated. The Cross VM call profile will show the client
and the server correlated together in a single call tree.

Out-of-the-box the Java Agent provides support for this feature for many
different technologies: for example, JMS, HTTP/S (Web Services only), RMI,
SAP, TIBCO and Corba. With the latest version of Diagnostics, additional
support was added to help you configure cross VM correlation for new or
custom technologies.

The Cross VM correlation technique is exposed in code snippets, allowing
you to prepare instrumentation points and code snippets to correlate almost
any inter-process communication, including home-grown and legacy
communication techniques. The only requirement for the communication
technique is that its messages be able to carry an additional string, which is
referred to as coloring.

The coloring string is created on the client side by the Java Agent, and
attached to the outgoing message by a user-written code snippet. After the
message is received, a user-written code snippet on the server side extracts
the coloring from the message and passes it to the server side agent for
parsing and processing.

Thus, your responsibility related to the cross-vm communication technique
is primarily limited to embedding the coloring into the outgoing messages,
and extracting the coloring from the received messages. This, of course,
includes identifying the code locations (instrumentation points) for the
client side (the outbound point), and for the server side (the inbound
point). Refer to “Tutorial for Configuring Cross VM Correlation for Custom
Technologies” on page 403 for a detailed example. And refer to “APIs Used
to Facilitate Custom Transport Cross-VM Correlations” on page 401 for
information on the three APIs provided to help you configure custom
cross-vm correlation.

Chapter 10 • Custom Instrumentation for Java Applications

399

Client Side
For the outbound calls (the client side), use the new
outbound:<coloring-type> detail.

The available coloring types are:

➤ default

➤ sap

➤ none

➤ snippet

For all coloring types except none, there should be an associated code
snippet, which will provide a special argument containing the technology
type, the call target name and identification.

The argument has the following form:

DIAG_ARG:type=<type>&name=<name>&target=<target>

where <type> is the technology type used for the remote call, and <name>
and <target> are technology dependent values. The technology type should
be the same as the one used for the inbound instrumentation point (see
“Server Side” on page 401).

For all coloring types except snippet, the probe will generate the appropriate
coloring and it will report the coloring to the Diagnostics Server for future
correlation. However, the outgoing message remains unmarked at this time.

For all coloring types except none, a code snippet for another
instrumentation point (which is hit after the outbound point, preferably
during the outbound method execution) must attach the generated coloring
to the outgoing message.

The most recently generated coloring can be obtained by calling
ICorrelationColor RemoteCaptureProxy.getCurrentColor(#location).

Chapter 10 • Custom Instrumentation for Java Applications

400

In developing support for your own cross-vm communication, you may use
snippet, which means that the coloring will be explicitly created by a direct
call from a code snippet. For the snippet coloring the above order is
reversed, which means the coloring is generated (and, most often,
immediately attached to the message) before the outbound point is hit.
Please note that this includes a case where the before code snippet for the
outbound point creates the coloring, because the code snippet will be
executed before the agent is called.

To create the coloring from code snippets:

 1 Make a call to
ICorrelationColor RemoteCaptureProxy.createColoring(#location, <type>,
<diag-arg>)

For type, use

RemoteCaptureProxy.ENCODED_COLORING for default

RemoteCaptureProxy.SAP_R3_COLORING for sap

If in doubt which type to use, use the default.

 2 Make a call to grabCorrelationString() on the object returned in step 1, and
insert the returned string into the outgoing message (using a
technology-dependent technique). This is where you can use your creativity.

Tip: If using String messages, use the following helper API to accomplish this
step:

ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

 3 Hit an instrumented point with the outbound:snippet detail. This will
automatically use the most recently created coloring instead of creating a
new one. Executing the outbound point informs the probe that the coloring
was actually used, and identifies the method which will be considered the
connection point for cross-vm call profiles. For synchronous cross-vm
communication it is recommended to use outbound detail for a method
that is used to both send the message and receive an acknowledgment, so
the latency of the outbound call can be properly captured.

Chapter 10 • Custom Instrumentation for Java Applications

401

Server Side
For the inbound calls (the server side), use the inbound:<technology-type>
detail. Use your own technology type names when supporting new cross-vm
technologies. Check to avoid conflicts with existing technology names
(server request types). Examples of server request types include: ADO, CICS,
Corba, HTTP, JDBC, JMS, MSMQ, RMI, Remoting (.NET), SAP ABAP types,
Web Services. In addition, you may see server request types named Pseudo
and RootRename.

The before code snippet has to perform the following steps:

 1 Extract the correlation string from the incoming message, using the
technology-dependent technique, corresponding to the one used for the
outbound calls.

Tip: If the ProbeCodeSnippetHelper.createDiagEnvelope() was used
previously, use
ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String
envelope) to get the correlation string.

And use
ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String
envelope) to get the original message.

 2 Leave TWO Strings on the stack: the capture argument (as any before code
snippet should), and the extracted correlation string.

APIs Used to Facilitate Custom Transport Cross-VM
Correlations
Three helper APIs were added to facilitate custom transport cross-VM
correlations (see the tips in the sections above and see “Code Snippet
Helper” on page 354 for information on their use. There is also a “Tutorial
for Configuring Cross VM Correlation for Custom Technologies” on
page 403 to walk you through an example.

➤ ProbeCodeSnippetHelper.createDiagEnvelope(String coloring, String
originalMessage)

Chapter 10 • Custom Instrumentation for Java Applications

402

➤ ProbeCodeSnippetHelper.extractColoringFromDiagEnvelope(String
envelope)

➤ ProbeCodeSnippetHelper.extractOriginalMessageFromDiagEnvelope(String
envelope)

HTTP/S Support
The support for the server side HTTP/S is built in and is enabled by default.
The Java Agent automatically recognizes standard J2EE implementation of
HttpServlet, as well as Jetty and Apache Catalina implementations. No user
action is required on the server side, if one of these technologies is used.

For the client side, the Java Agent automatically instruments the
openConnection method from the java.net.URL class, to embed the most
recently generated coloring (if it exists) into the outgoing HTTP request.
One of the HTTP request headers is used to carry the coloring. The header
will be recognized by the server side agent.

Therefore, HTTP support on the client side is an exception to the above
rules. You still have to provide the outbound point and the corresponding
DIAG_ARG, but you do not have to worry about embedding the coloring
into the outgoing messages.

For example, Diagnostics mediators use the following point:

[RemoteHttpComponent-Outbound-1]
class = com.mercury.diagnostics.common.net.registrar.RemoteHttpComponent
method = getConnection
signature = (Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;Ljava/lang/String;)Ljava/net/HttpURLConnection;
priority = 1
detail = method-no-trim,outbound:default,before:code:7b1125e2
layer = Network.RemoteHttpComponent

Chapter 10 • Custom Instrumentation for Java Applications

403

The first argument for the getConnection method is a String representing
the connection URL. The referred code snippet extracts from it the
hostname and port and uses them for the target identification. A special
utility method is provided by RemoteCaptureProxy to facilitate this
conversion in a way consistent with the built-in part of the HTTP/S support.

Tutorial for Configuring Cross VM Correlation for Custom
Technologies

This tutorial takes a simplified client-server application that uses a shared
blocking queue as its custom transport solution. The client sends a "String"
message by adding it to the queue. The server receives a "String" message by
removing it from the queue.

Although this example runs in a single JVM (to keep it simple), it uses two
threads to simulate an application running in two JVMs. (If your intention
is to correlate threads running in a single JVM, there is a simpler solution
that will help you do this. See“Performing Correlation Across Multiple
Threads” on page 389 for more details).

The sample code is shown below:

public class SimulatedCrossVM {

 private static int INTERVAL = 5 * 1000; // 5 seconds
 private static BlockingQueue<String> queue = new LinkedBlockingQueue<String>();

 private static class ReceiverSide extends Thread {

 public ReceiverSide() {
 super("Receiver");
 }

 public void execute(String receivedString) throws InterruptedException {
 System.out.println("Executing message: " + receivedString);
 sleep(2 * INTERVAL);
 }

7b1125e2 = #target=@RemoteCaptureProxy@.getTargetFromUri(#arg1); \
"DIAG_ARG:type=http&name="+#target+"&target="+#target;

Chapter 10 • Custom Instrumentation for Java Applications

404

 private void receiveAndHandleMessage() throws InterruptedException {
 String message = null;
 message = queue.take();
 // Handle it
 execute(message);
 }

 public void run() {
 try {
 while (true) {
 receiveAndHandleMessage();
 }
 }
 catch (Throwable t) {
 // oops
 t.printStackTrace();
 }
 }
 }

 private static class SenderSide extends Thread {

 // For simulated TCP connection
 private String destHost;
 private int destPort;

 public SenderSide(String host, int port) {
 super(host + ":" + port);
 destHost = host;
 destPort = port;
 }

 public void sendMessage(String origMessage) throws InterruptedException {
 queue.put(origMessage);
 }

 private String generateMessage() {
 String message = "T" + System.currentTimeMillis();
 return message;
 }

 private void generateAndSendMessage() throws InterruptedException {
 sleep(2 * INTERVAL);
 // generate message
 String message = generateMessage();

Chapter 10 • Custom Instrumentation for Java Applications

405

 System.out.println("Sender's original message: " + message);
 // And send it (outbound call)
 sendMessage(message);
 sleep(INTERVAL);
 }

 public void run() {
 try {
 while (true) {
 generateAndSendMessage();
 }
 }
 catch (Throwable t) {
 // oops
 t.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 SenderSide sender = new SenderSide("fake-host", 12345);
 ReceiverSide receiver = new ReceiverSide();

 sender.start();
 receiver.start();
 }
}

Executing this code will have the following output:

Sender's original message: T1313785958127

Executing message: T1313785958127

Chapter 10 • Custom Instrumentation for Java Applications

406

Step 1: Instrument Your Methods
By instrumenting your methods, you let Diagnostics know which methods
are important. Since these methods are custom, the out-of-the-box
instrumentation points won't do anything. Edit the etc/autodetect.points
file by adding the following instrumentation points. See “Maintaining
Instrumentation from the Java Profiler UI” on page 412 for guidance on
defining instrumentation points.

[SimCrossVM-Sender]
class = SimulatedCrossVM$SenderSide
method = generateAndSendMessage
signature = !.*
layer = Sending

[SimCrossVM-Outbound]
class = SimulatedCrossVM$SenderSide
method = sendMessage
signature = !.*
layer = Sending

[SimCrossVM-Receiver]
class = SimulatedCrossVM$ReceiverSide
method = receiveAndHandleMessage
signature = !.*
layer = Receiving

[SimCrossVM-Inbound]
class = SimulatedCrossVM$ReceiverSide
method = execute
signature = !.*
layer = Receiving

Chapter 10 • Custom Instrumentation for Java Applications

407

Result: Running this instrumented test program, you see the following
Server Requests:

Here are the call profiles shown for the sender and receiver.

Chapter 10 • Custom Instrumentation for Java Applications

408

Step 2: Add “Coloring” to the Sender Logic
In this step, we add "coloring" to the messages sent by the client. When the
instrumented server receives this colored message, HP Diagnostics will
correlate them. This part is trickier, if you're not familiar with the code
snippet syntax, it is described in “Defining Points With Code Snippets” on
page 348.

First, we mark the method as an outbound point that uses a code snippet
(outbound:snippet), and identify the code snippet to execute before
invoking the method (before:code:5ea4753f). Since we're going to use the
first argument, it's a good idea to provide a more specific signature (!\(Ljava/
lang/String;.*).

[SimCrossVM-Outbound]
class = SimulatedCrossVM$SenderSide
method = sendMessage
signature = !\(Ljava/lang/String;.*
layer = Sending
detail = outbound:snippet,before:code:5ea4753f

The corresponding code snippet is shown below. Line 1 creates a string
(#target) that includes the hostname and destination port of the server. Line
2 defines a new string (#diagArg) that follows a special syntax
(DIAG_ARG:type=<type>&name=<name>&target=<target>). The "type" is
the technology type and can be any name you choose; it will be used in the
next step. The "name" and "target" are technology dependent values that
will be shown in the UI; they can also be anything you choose. Line 3
defines a third string (#color) which will be used to identify this specific
invocation of the method call from any other. Line 4 updates the method's
1st argument with the colored String, which will cause sendMessage to send
a modified String. Finally, line 5, places the coloring on the stack for usage
by HP Diagnostics.

 1 5ea4753f = #target=#callee.destHost+":"+#callee.destPort; \

 2 #diagArg =
"DIAG_ARG:type=CB-TCP&name=Senders.sendMessage&target="+#target; \

Chapter 10 • Custom Instrumentation for Java Applications

409

 3 #color = (null == #arg1 ? null :
@RemoteCaptureProxy@.createAndGrabColor(#location,
@RemoteCaptureProxy@ENCODED_COLORING, #diagArg.toString())); \

 4 #arg1 = @ProbeCodeSnippetHelper@.createDiagEnvelope(#color, #arg1); \

 5 #diagArg;

Running the example updates the output as follows. Notice the receiving
side did not get the same string message that was sent. This is a result of the
code snippet's Line 4. In many cases, the receiving side may not handle this
well. It's a good idea to note the receiver's behavior as this can happen
"accidentally" if the client and server are not both using the same
instrumentation, and in particular, not both instrumented.

Sender's original message: T1313786970403
Executing message: HP_DIAG1_!Dhf/
ABAABKrh3Qf0cy7yaLsAAAAAAA9mYWtlLWhvc3Q6MTIzNDUAYTEzMTM3ODY5N
jAzODgmU2ltdWxhdGVDcm9zc1ZNJlNpbXVsYXRlZENyb3NzVk0kU2VuZGVyU2lk
ZS52b2lkIGdlbmVyYXRlQW5kU2VuZE1lc3NhZ2UoKSZcMCZcMCZcMCY=:T131378
6970403

At this point, the only change you'll see in the UI is some "Outbound Calls".
Notice the values in the columns "Outbound Call" and "Remote Target",
these are the values you provided in the code snippet "name" and "target".

Chapter 10 • Custom Instrumentation for Java Applications

410

Step 3: Remove Coloring from the Receiver Side
The last step is to remove the coloring on the receive side so that the
receiver can get the original "uncolored" message from the sender. First we
mark the point as an inbound point with the technology type used in the
code snippet defined in step 2, and assign a code snippet to run before this
method is called. Again, we also specify a more specify signature since that
argument will be used in the code snippet.

[SimCrossVM-Inbound]
class = SimulatedCrossVM$ReceiverSide
method = execute
signature = !\(Ljava/lang/String;.*
detail = before:code:d2c83d3c,inbound:CB-TCP
layer = Receiving

The corresponding code snippet is shown below. Line 1 extracts the coloring
from the incoming message. Line 2 updates the method's 1st argument,
restoring it to the original message sent by the client. Line 3 puts the
coloring on the stack (and an empty String) for use by HP Diagnostics.

 1 d2c83d3c =
#coloring=@ProbeCodeSnippetHelper@.extractColoringFromDiagEnvelope(
#arg1); \

 2 #arg1=@ProbeCodeSnippetHelper@.extractOriginalMessageFromDiagEnvelope(
#arg1); \

 3 "";#coloring;

The program's output is now restored to the original:

Sender's original message: T1313789287234
Executing message: T1313789287234

Chapter 10 • Custom Instrumentation for Java Applications

411

The Server Request view now shows a Cross-VM call profile is available for
the Sender's "generateAndSendMessage". Open this call profile and observe
the client and server call profiles are now stitched together! They're not
doing much in this sample application, but in a real application, you would
be able to see if performance issues occur in the client, server, or both.

Chapter 10 • Custom Instrumentation for Java Applications

412

This call profile looks a bit strange but is typical for asynchronous
applications. The client does not wait for a response, but does continue to
do some processing (err sleeping for 5 seconds). During that time the server
is processing the request and completes a few seconds afterwards. You will
see the time durations for the methods in the tree as shown below. Notice
also the diamonds with the number 2 inside, which represent the JVM
depth. If your server made yet another outbound call, you could have 3 or
more! In those cases, cross VM correlation because especially useful. Imagine
trying to find the source of a performance issue across that many JVMs!

Maintaining Instrumentation from the Java Profiler UI

You can use the Configuration tab in the Java Diagnostics Profiler to
maintain the instrumentation points and edit the probe configuration
without having to manually edit the Java Agent capture points file or
property files. You can access the Configuration tab from the Java
Diagnostics Profiler whether profiling has been started or not.

The Instrumentation section of the Java Diagnostics Profiler gives you
access to view and update the instrumentation for the application the probe
is monitoring. The edit dialogs enable you to view and edit the
instrumentation points as defined in the capture points file that Diagnostics
uses to instrument your applications.

Chapter 10 • Custom Instrumentation for Java Applications

413

Reviewing the Current Instrumentation
To review the layers, classes, and methods that were instrumented as a result
of the points in the current capture points file, click View... in the
Instrumentation section of the Configuration tab. The Profiler displays the
Instrumented Layers page:

Chapter 10 • Custom Instrumentation for Java Applications

414

The Instrumented Layers page lists the layers that were instrumented, the
number of times the instrumentation points in the layer were triggered, and
the number of points currently active in the layer. The following columns
are provided:

Column Description

Layer Lists the layers that were instrumented. The layer
names in this column are links to a page that
provides details about the processing in the layer
that was monitored by the probe. Note: Only the
layers defined in points that were actually
instrumented are listed.

Hits Contains a count of the number of times that the
classes and methods that are monitored by the
points in the listed layer were invoked. You can
reset the count using the Clear # of Hits link in the
Actions column.

Active Points Contains the count of the number of points that are
currently active as well as the total number of
points that were defined for the particular layer.

Actions Contains links that enable you to manipulate the
information for the listed layers. The available
action are:

➤ Disable: Disables all of the points in the selected
layer so that they no longer capture data. The
instrumentation stays in place and can be
enabled again. Enabling or disabling points here
is effective only until the next restart of your
application. To change the default enabled state
for a point, see “Coding Points in the Capture
Points File” on page 340.

➤ Clear # Hits: Resets the hit count displayed in the
Hits column for the selected layer.

Chapter 10 • Custom Instrumentation for Java Applications

415

Maintaining the Instrumentation Points
To maintain the points that provide the instrumentation instructions that
tell the probe what to monitor in your application, navigate to the
Configuration tab in the Java Diagnostics Profiler and click Edit... for either
the Shared Instrumentation or the Instance Instrumentation. The
Instrumentation Points dialog opens:

You can edit the instrumentation in two ways: visually, using a list or tree of
points on the Instrumentation Points tab; or via the source of the capture
points file on the Source tab.

Chapter 10 • Custom Instrumentation for Java Applications

416

Selecting and Viewing an Existing Point

The navigation bar in the Instrumentation Points dialog helps locate the
points in the capture points file that you would like to maintain. By making
a selection from the View as dropdown, you can choose the format in which
the points are listed.

When you select Layers Tree from the dropdown, you see a list of the points
in the capture points file in a tree structure according to the layers and
sublayers you assigned to the point:

Chapter 10 • Custom Instrumentation for Java Applications

417

When you select Points List from the dropdown, you see a list of the points
in the capture points file in ascending alphabetical order:

When you locate the point you want to view or maintain, select the point in
the navigation bar. Then you see the details of the selected point in the
view/edit panel where you can maintain the point.

Chapter 10 • Custom Instrumentation for Java Applications

418

Updating an Existing Point

When you select a layer or sublayer from the navigation bar, the view/edit
panel contains only a prompt to remind you to select a point.

To update an existing point, select the point from the navigation bar so that
the Profiler displays the details for the point in the Instrumentation Points
tab of the view/edit panel:

The arguments that are commonly used when defining a point in the
capture points file are displayed as separate data fields to make it easier for
you to make any necessary updates. More advanced arguments are displayed
in the Advanced Attributes tab at the bottom of the display. Comments for
the point are displayed in the Comment tab. After making changes click OK.
And remember to apply all of the changes made using the Configuration tab
by clicking Apply Changes.

Chapter 10 • Custom Instrumentation for Java Applications

419

The arguments that can be used to define a point in the capture points file
are documented in “Coding Points in the Capture Points File” on page 340.

The following is an example of the Source tab:

Deleting an Existing Point or Layer

You could delete a point or layer listed in the navigation bar.

To delete a point or layer:

 1 Select the point or layer from the Navigation bar on the Instrumentation
Points tab.

 2 Click Delete Point. The Profiler deletes the selected entity from the list in
the navigation bar.

The selected entity is not actually deleted from the capture points file until
you apply all of your instrumentation points updates from the
Configuration tab in the Profiler.

Chapter 10 • Custom Instrumentation for Java Applications

420

 3 Close the Instrumentation Points dialog by clicking OK.

 4 Apply all of the changes made using the Configuration tab by clicking Apply
Changes.

Adding a New Point

You could add a point to the instrumentation.

To add a point:

 1 Click New Point. The Profiler displays the Select New Point Type dialog box:

 2 Select the appropriate point type from the dropdown and click OK.

The Profiler displays the Instrumentation Points tab with the view/edit
section initialized for creating a new point for the selected point type.

 3 Enter the arguments and comments for the new point into the appropriate
locations on the tab.

When you enter the Layer information, the entry for the new point in the
navigation bar is updated to show the point in the correct existing layer or,
if the layer that you specified does not already exist, with a brand new layer.

The new point is not actually added to the capture points file until you
apply all of your instrumentation points updates from the Configuration
tab in the Profiler.

 4 Close the Instrumentation Points dialog by clicking OK.

 5 Apply all of the changes made using the Configuration tab by clicking Apply
Changes.

Chapter 10 • Custom Instrumentation for Java Applications

421

Activating OVTA-like Points

Points are included in the Java probe instrumentation for Servlet Filters and
EJB local home methods. These instrumentation points provide additional
functionality similar to the OVTA (OpenView Transaction Analyzer) Java
Monitor.

The ServletFilter point requires that the HttpCorrelation2 point also be
activated for server filters to be monitored correctly. This is because servlet
filters sometimes are the first time Diagnostics sees an HTTP server request.

The EJBLocalHome, ServletFilter, and related HttpCorrelation2
instrumentation points are not active by default. Inactive points are
indicated by a red symbol on the icon next to the instrumentation point, as
shown below. To use these points, set active=true in the auto_detect.points
file through the UI or by directly editing the file.

Chapter 10 • Custom Instrumentation for Java Applications

422

Locate these points in the Profiler UI as described in “Selecting and Viewing
an Existing Point” on page 416 and navigate to the Business
Tier>EJB>LocalHome>EJBLocalHome point or the Web
Tier>Servlet>ServletFilter point and HttpCorrelation2 point.

To set these points to active:

 1 Select the point from the Instrumentation Points navigation bar so that the
Profiler displays the details for the point. Check the active check box.

 2 Close the Instrumentation Points dialog by clicking OK.

 3 Apply all the changes made using the Configuration tab by clicking Apply
Changes. Restart your application server (which restarts the probe) for the
newly activated points to take effect.

Chapter 10 • Custom Instrumentation for Java Applications

423

Restoring Default Points

When you finish diagnosing a problem using the Profiler or HP Diagnostics,
you can restore the default instrumentation to avoid incurring the overhead
from a more robust instrumentation.

To restore the default settings to the instrumentation:

 1 Click Restore Defaults.

The instrumentation points are not actually added to the capture points file
until you apply all of your instrumentation points updates from the
Configuration tab in the Profiler.

 2 Close the Instrumentation Points dialog by clicking OK.

 3 Apply all of the changes made using the Configuration tab by clicking Apply
Changes.

Default Layers Defined for Typical Java Classes and Methods

HP Diagnostics groups the performance metrics for classes and methods into
layers and sublayers according to the instructions provided in the capture
points file. The default layers were defined so that the performance metrics
for processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify
the areas of the system that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for
typical Java classes and methods.

Platform-specific layers are also defined in the capture points file. These
layers are, for the most part, sublayers of the top-level parent layers defined
in the following tables. You can see performance data for layers in the Load
View in the Diagnostics UI.

Chapter 10 • Custom Instrumentation for Java Applications

424

Java EE Layers

Layer sublayers Parent Layer

Web Tier JSP

Servlets

Struts

Session

Spring

Struts2

Business Tier EJB

Corba

Web Services

EJB Entity Bean

Session Bean

Local Home

Stateless Session Bean

Stateful Session Bean

MessageDriven Bean

Business Tier

Directory Service JNDI

Database JDBC

JDBC Execute

Connection

Database

Messaging JMS

Spring

JMS Producer

Listener

Consumer

Messaging

Spring Producer

Consumer

Messaging

Hibernate

Chapter 10 • Custom Instrumentation for Java Applications

425

Portal Layers
Diagnostics groups the performance metrics for the classes and method calls
associated with processing for portals into Portal Component layers. Each
Portal Component layer is broken down into layers for the portal lifecycle
methods. For more information about portal layers, see the HP Diagnostics
User’s Guide.

Chapter 10 • Custom Instrumentation for Java Applications

426

427

11
Custom Instrumentation for .NET
Applications

This section explains how to control the instrumentation that HP
Diagnostics applies to the classes and methods of applications to enable the
.NET Agent to gather the performance metrics.

This chapter includes:

➤ About Instrumentation and Capture Points Files on page 428

➤ Locating the .NET Capture Points Files on page 429

➤ Coding Points in the Capture Points File on page 430

➤ Instrumentation Examples on page 435

➤ Understanding the Overhead of Custom Instrumentation on page 461

➤ Default Layers for Typical .NET Applications on page 462

Chapter 11 • Custom Instrumentation for .NET Applications

428

About Instrumentation and Capture Points Files

Instrumentation refers to bytecode that the probe inserts into the class files
of the application as they are loaded by the CLR. Instrumentation enables a
probe to measure execution time, count invocations, and catch exceptions;
and to correlate method calls and threads. The instrumentation points for
each probe are specified in the capture points file.

The capture points file enables you to control the scope of the
instrumentation so that Diagnostics can give you all the information you
need to understand the performance of the applications without
overwhelming you with costly or confusing extraneous information. The
instrumentation definitions contained in the capture points file are called
points that tell the probe which methods to instrument, how they should be
instrumented, and which instrumentation should be installed.

Points can include regular expressions that "wildcard" the instructions so
that they apply to more than one method, class or namespace specification.
For more information about using regular expressions, see "Using Regular
Expressions" on page 926.

You can customize the points in the capture point file to include methods,
classes, and namespaces for areas of the application that do not fall within
the default points.

The Microsoft specification for .NET does not include a unified or
recommended interface that business logic should implement except in the
case of instrumentation for web and WCF methods. This means that the
.NET probe will almost always require custom points in the capture points
file to enable it to gather meaningful metrics for the performance of the
business logic classes and methods in .NET applications.

The points in the capture points file are grouped into layers. Layers organize
the performance metrics into meaningful tiers of information that can be
compared as part of a triage process and control the collection behavior of
the instrumentation.

The points in the capture points files are grouped into default layers. You
can customize the default layers and create new layers (see "Default Layers
for Typical .NET Applications" on page 462).

Chapter 11 • Custom Instrumentation for .NET Applications

429

Locating the .NET Capture Points Files

When you install the .NET Agent, predefined default capture points files are
installed.

Default capture points files for ASP.NET applications are located at
<probe_install_dir>\etc\ and include Asp.Net.points, Ado.points and
WCF.points as well as other points files shown in the table below.

In addition, the .NET Agent installer automatically creates a separate capture
points file for each IIS deployed ASP.NET Application Domain it detects. You
must modify the automatically detected and created points file to enable
custom instrumentation points for the Application Domain. These capture
points files are located in the
<probe_install_dir>\etc\<ApplicationDomain>.points file. These points files
and the default points files are read by the .NET Agent.

At installation, only the Asp.Net.points, Ado.points and WCF.points default
points files are enabled. The following default .NET points files are installed
in the <probe_install_dir>/etc directory but not enabled:

Default Point File (initially
disabled)

Instrumentation Target

Asp.Net.IExecutionStep.po
ints

IIS5, IIS6 and IIS7. This file makes the IIS points
obsolete.

IIS.points IIS5 and IIS6

Lwmd.points Lightweight Memory Diagnostics

Msmq.points Microsoft Message Queuing (MSMQ
instrumentation)

Remoting.points .NET Remoting

WebServices.points ASP.NET Web Services

Chapter 11 • Custom Instrumentation for .NET Applications

430

You can enable the points files by adding a reference to them in the
<points> element in the scope of the appdomain in the probe_config.xml
file. See Chapter 14, "Understanding the .NET Agent Configuration File" for
details on each element in the probe_config.xml file.

For information on .NET probe instrumentation specific to
TransactionVision, see the HP TransactionVision Deployment Guide.

Coding Points in the Capture Points File

The following arguments can be used to define a point in the points files:

Caution: Do not modify any of the default points files because, in an
installation upgrade, modifications are lost. Store your application-specific
instrumentation points in a custom capture points file.

All arguments that can be specified as a regular expression list have an
effective maximum limit of 260 characters, which if exceeded results in a
truncated value. The arguments are described in the following sections.

[Point-Name] =<unique name for the point>
;---
class = <class/package name/s to capture>
method = <method name/s to capture>
signature = <signature/s of method/s>
ignoreClass = <classes to ignore>
ignoreMethod= <method prototypes to ignore>
ignoreTree= <class hierarchy to ignore>
deep_mode= <soft or hard mode>
scope = <comma separated list of methods>
ignoreScope= <comma separated list of methods>
detail = <list of specifiers>
keyword = <keyword>
layer = <layer name>
layerType = <layer type>

Chapter 11 • Custom Instrumentation for .NET Applications

431

Mandatory Point Arguments
Every point, except for the points for LWMD, HttpCorrelation,
WSCorrelation and WCF, must contain the following arguments:

The following is an example of a custom point that contains the mandatory
arguments:

Argument Description

Point-Name A unique name for the point.

class Specifies the name of the class or interface to be
instrumented. The name should include the full
namespace name using periods between the namespace
and class levels. Any valid regular expression can be used.

method Specifies the name of the method to be instrumented. To
be successful, the method name must match a method
defined in the class or interface specified by the class
argument. Any valid regular expression can be used.

layer Specifies a layer, sublayer, or tier under which the data
from this point is grouped. Layers are a part of the
instrumentation collection control.

Layers in a point can be specified with nested layers or
sublayers by separating the layer names with a / (slash).
The layer specified following the slash is a sublayer of the
layer specified before the slash. A sublayer can have its
own sublayers by coding another slash and layer name
following a sublayer name.

[MyCustomEntry_1]
; comments here….
class = myNameSpace.myClass.MyFoo
method = myMethod
layer = myCustomStuff

Chapter 11 • Custom Instrumentation for .NET Applications

432

Note: Regular expressions can be used for most of the arguments in a point.
They must be prefaced with an exclamation point. For more information
about using regular expressions, see "Using Regular Expressions" on
page 926.

Optional Point Entries
Point definitions can contain one or more of the following arguments:

Argument Description

keyword Indicates special instrumentation. The keyword argument
can be used to enable specific features; for example, the
WCF keyword turns on the WCF feature. The keyword
argument can also relate point definitions to special
functionality; an example of this is the RemotingServer
keyword and the Remoting.points file.

➤ HttpCorrelation. Turns on correlation of client/server
method calls via HTTP.

➤ WsCorrelation. Turns on web service correlation logic
on the client side and turns on correlation of raw HTTP
client request calls across both the .NET and Java
technologies.

➤ WCF. Turns on the WCF feature.

➤ REST. Turns on the WCF REST service instrumentation.

➤ lwmd. Turns on lwmd instrumentation.

➤ Remoting. Turns on .NET Remoting framework
instrumentation.

➤ RemotingServer. Associates points in a .NET Remoting
server to special .NET Remoting logic for these points.
See "How to Configure Instrumentation for .NET
Remoting" on page 451.

ignoreClass Specifies a comma-separated list of classes to ignore. Any
class matching one of the classes specified with
ignoreClass is not instrumented.

Chapter 11 • Custom Instrumentation for .NET Applications

433

ignoreMethod Specifies a comma-separated list of methods to ignore.
Any method matching one of the methods specified with
ignoreMethod is not instrumented.

ignoreTree Ignores instrumenting any method that is implemented
on a class that inherits from the specified class. Thus, an
entire class hierarchy tree of methods would be ignored.

deep_mode Specifies how subclasses are handled. This argument
accepts three values:

➤ none - A value of none is similar to not specifying a
deep_mode argument. It has no effect on how
subclasses are handled.

➤ soft - A value of soft requests that, for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces that also
implement the matching method and signature should
also be instrumented.

➤ hard - A value of hard requests that, for every class or
interface matching the class, method, and signature
entries, any subclasses or subinterfaces at any depth
should have all their methods instrumented. Hard
mode is typically used for points for interfaces. Caution:
Hard"mode can lead to extensive instrumentation and
very high probe overhead.

scope Constrains the context in which instrumentation is
performed. If specified, the inserted bytecode is caller side.
Any valid regular expression can be used for the value of
this argument. Scope values are expressed as a
comma-separated list of method names.

ignoreScope Excludes certain methods from those included in the
scope specified by the scope argument. Any valid regular
expression may be used for the value of this argument.
ignoreScope values are expressed as a comma-separated
list of method names.

Argument Description

Chapter 11 • Custom Instrumentation for .NET Applications

434

detail Provides more specific capture instructions.

For the following the string that is returned is displayed in
the method's Argument field in the details pane of the
Call Profile view. It is a comma-separated list of the
following:

args:n – Captures all supported types of arguments for the
method(s) that match. A value of ‘n’ captures all
arguments. Or you can enter a value for n from 1 through
256.

args:0 – Calls the ToString() on the current class instance
or callee object. This is invalid for static methods.

args:1 – Marks () the argument as a key argument for the
server requests if the method is a top-level request.

The detail argument also takes the following value:

tv:user_event - Generates a TransactionVision event for
the methods that match. As part of the TransactionVision
event the parameters to the method are collected as the
Request Payload and the return value is collected as the
Response Payload. The values displayed are the ToString()
values returned by the parameters or the return value
objects. Note that all parameters and return values may
not be collected.

Provides extensive support for transaction tracing by
enabling TransactionVision event generation from
practically any given method in any .NET application. You
specify the method on which you want a
TransactionVision event generated. It is highly
recommended that event generation is specified for one
method at a time to avoid too many events and
performance degradation in TransactionVision. Avoid
using wild card specifications (but they are supported for
convenience).

Argument Description

Chapter 11 • Custom Instrumentation for .NET Applications

435

Instrumentation Examples

The following examples illustrate how you can customize the
instrumentation of an application by creating and modifying the points in
the capture points file.

This section includes:

➤ "Custom layer and sublayer" on page 436

➤ "Wildcard method" on page 436

➤ "Ignore Specified Methods" on page 436

➤ "Capture Methods for the Trended Methods View" on page 437

➤ "Capture Only a Specific Method In a Class" on page 437

➤ "Capture a Specific Method That Returns a String" on page 438

➤ "Caller Side Instrumentation" on page 438

➤ "Argument Capture" on page 440

➤ "Configure WCF REST Services for Monitoring" on page 444

➤ "Deep_mode Examples" on page 446

layerType Specifies special handling for some instrumented methods
and accepts three values:

➤ trended_method – Identifies methods to be displayed
in the Trended Methods view.

➤ sql – Identifies methods used to capture SQL for the
SQL views. These are set by HP Diagnostics and should
not be modified.

signature Specifies the signature (return and parameter types); for
example, System.String(System.int32, System.String). Any
valid regular expression can be used.

Argument Description

Chapter 11 • Custom Instrumentation for .NET Applications

436

➤ "How to Configure and Set Up Points for Non-ASP.NET or Windows
Applications" on page 447

➤ "How to Configure Instrumentation for .NET Remoting" on page 451

Custom layer and sublayer

➤ The following point creates a custom sublayer called BAR within the layer
called FOO for the method myMethod in myCompany.myFoo class:

Wildcard method

➤ The following point captures all methods in the MyCompany.MyFoo
class:

Ignore Specified Methods

➤ The following point captures all methods in the MyCompany.MyFoo
class except for the methods setHomeInterface and getHomeInterface:

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR

[myCompany.myFoo_AllMethods]
class = myCompany.myFoo
method = !.*
layer = FOO/BAR

[myCompany.myFoo_AllMethodsExcept]
class = myCompany.myFoo
method = !.*
ignoreMethod = setHomeInterface,getHomeInterface
layer = FOO/BAR

Chapter 11 • Custom Instrumentation for .NET Applications

437

➤ The following point captures all methods in the MyCompany namespace
except for those contained in the MyCompany.logging class:

Capture Methods for the Trended Methods View

➤ The following point captures the required data to populate the Trended
Methods View for the myMethod method:

Capture Only a Specific Method In a Class

➤ The following point captures all non-static constructor methods for the
MyCompany.MyFoo class:

➤ The following point captures all static constructor methods for the
MyCompany.MyFoo class:

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
ignoreClass = MyCompany.logging
layer = FOO/BAR

[myCompany.myFoo_customLayer]
class = myCompany.myFoo
method = myMethod
layer = FOO/BAR
layertype = trended_method

[myCompany.myFoo_Constructor]
class = myCompany.myFoo
method = .ctor
layer = FOO/BAR

[myCompany.myFoo_Singleton]
class = myCompany.myFoo
method = .cctor
layer = FOO/BAR

Chapter 11 • Custom Instrumentation for .NET Applications

438

➤ The following point captures the setFoo method in the
MyCompany.MyFoo class:

➤ The following point captures all methods in the MyCompany.MyFoo
class whose name includes “set”:

➤ The following point captures all methods in the MyCompany namespace:

Capture a Specific Method That Returns a String

➤ The following point captures the getFoo method that returns a
System.String in the MyCompany.MyFoo class:

Caller Side Instrumentation
By default, all the instrumentation in Diagnostics is Callee side
instrumentation where the bytecode is placed within the method call. Caller
side instrumentation refers to the process of placing bytecode for
measurement around the call to the method to be instrumented, instead of
within the method.

[myCompany.myFoo_setFoo]
class = myCompany.myFoo
method = setFoo
layer = FOO/BAR

[myCompany.myFoo_AllSets]
class = myCompany.myFoo
method = !.*set.*
layer = FOO/BAR

[myCompany_All_Methods]
class = !myCompany\..*
method = !.*
layer = FOO/BAR

[myCompany.myFoo_GetFoo_String]
class = myCompany.myFoo
method = getFoo
signature = !System.String\(.*
layer = FOO/BAR

Chapter 11 • Custom Instrumentation for .NET Applications

439

Caller side instrumentation allows for finer control of instrumentation
placement, but can increase the application initialization time because each
class specified in the scope must be checked for references to the class/
method specified in the points.

The scope and ignoreScope arguments are used to specify what caller should
be instrumented. The following two examples refer to Caller side
instrumentation.

➤ The following point captures all methods in the MyCompany namespace
that are called from the MyCompany.logging class.

➤ The ignoreScope argument is used to exclude certain classes and methods
from those included in the scope specified in scope argument. The
following point captures all methods in the MyCompany namespace that
are called from the MyCompany.logging class except for those called from
the myMethod method.

[myCompany_All_Methods_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
layer = FOO/BAR

[myCompany_All_Methods_except_from_MyCompany_Logging]
class = !myCompany\..*
method = !.*
scope = !MyCompany.logging.*
ignoreScope = MyCompany.logging.myMethod
layer = FOO/BAR

Chapter 11 • Custom Instrumentation for .NET Applications

440

Argument Capture
The arguments to be captured are specified in the detail key of a points file
section.

The following example calls the ToString() method of the n-th argument.
The string that is returned is displayed in the method’s Argument field in
the Call Profile view: detail=args:1,...args:4, *args:3

There are several special values to note:

➤ args:n – Captures all supported types of arguments for the method(s) that
match. A value of ‘n’ captures all arguments. Or you can enter a value for
n from 1 through 256.

➤ args:0 – Calls the ToString() method on the current class instance or callee
object.

➤ Adding a * to the args element (*args:1) marks a key argument.

To see the arguments for each method call, do not specify a key argument.
This is a way to get more detailed information on the captured instance tree
and could help answer questions about why this instance is a MAX tree or
what values were passed in when there was an exception.

To group server requests for a method by arguments, specify a key argument.
The key arguments, aggregate server requests with distinct values.
Arguments that have a large number of distinct values are not good
candidates for key arguments because this will lead to unique server requests
for every distinct value.

Note: Even if you have not specified argument capture, arguments are
captured when a method in the call tree throws an exception. These
arguments are displayed in the Call Profile view, in the Stack Trace section of
the Exceptions detail pages. See the Call Profile View online help for more
details.

Chapter 11 • Custom Instrumentation for .NET Applications

441

The following argument capture example relates to the code shown below:

Here is the relevant code example:

The value of QnameParam3 will be part of the identity of the server request
if the top level method is methodWithParams.

When an argument to be captured is marked as a key argument (with an
asterisk *) and the method is a top-level method, the argument value
becomes part of the Server Request identity.

[ILTest]
class = !ILTest_NameSpace.ILTest_Class
method = methodWithParams
detail = args:0, *args:3, args:5, args:7
layer = myFunctionLayer

class ILTest_Class
{
public bool methodWithParams
(string param1, int param2, string QnameParam3, long param4, object param5, int
param6, double param7)
{

... some implementation

}
}
In this example the defined detail will capture ILTest_Class.ToString(args:0)
param1, QnameParam3, param5 and
param7.

Chapter 11 • Custom Instrumentation for .NET Applications

442

For example, if Shipping Type is a parameter of a method processing
different shipments and you specify the Shipping Type argument as a key
argument, you will be able to see aggregated views for each different
shipment (apples and oranges) being processed by the method.

Chapter 11 • Custom Instrumentation for .NET Applications

443

When you specify a key argument, the Call Profile view shows key
arguments in the Arguments field in the Details pane. You will also see the
arguments displayed under Method Arguments in the Details pane.

When arguments to be captured are NOT marked as key arguments (with no
asterisk *), they are displayed in the Call Profile view under Method
Arguments only.

Chapter 11 • Custom Instrumentation for .NET Applications

444

Configure WCF REST Services for Monitoring
For a .NET Probe WCF REST services are monitored by default based on the
keyword=REST value enabled out-of-the-box in the WCF.points file. These
REST services will be monitored as web services and their performance data
displayed in the Diagnostics UI SOA Services views.

You can further configure REST services as described in the sections below.

REST Service Configuration

In WCF REST style services sometimes the operations are encoded as url
parameters. For example:

HTTP Method: PUT Url: http://localhost:81/RestNOSvc/AccountsRESTService/
{ID}?op={OPERATION} op can be "deposit" or "withdrawal"

To be able to distinguish operations in these types of services you can
specify the operation parameters of the REST service method as a key
argument to allow it to be displayed as a separate operation. See "Argument
Capture" on page 440 for a general description of argument capture.

For example, for the method

[WebInvoke(UriTemplate = "{id}?op={operation}", Method = "PUT")]
public TransactionResult Update(string id, string operation, long Amount)

The operation is the key argument and can be specified in the points file as:

[WebSite2-RestNOSvc]
class = !HP.Test.WcfRestService.*
method = Update
detail = *args:2
layer = WebSite2-RestNOSvc

Chapter 11 • Custom Instrumentation for .NET Applications

445

The SOA Services Operations view example below shows the results of this
configuration with separate operations shown in the table.

REST Client Configuration

The REST service client is the same as an HTTP client call and cannot be
distinguished. So for monitoring .NET applications that are REST service
clients, the configuration option <httpclient showurl=”false”/> should be
set in the probe_config.xml file to avoid a large number of outbound calls
and possible symbol table explosion. The number of calls is due to unique
urls accessed by the client, often with ids encoded in the urls.

For example:

/RestNOSvc/AccountsRESTService/
8FFD2F34-E334-4E1E-A940-50FCCCACE1D1

where the Guid represents different account ids.

Chapter 11 • Custom Instrumentation for .NET Applications

446

Deep_mode Examples
The following interface definition is used for both soft and hard deep_mode
examples:

The following class is used for both soft and hard deep_mode examples:

➤ The following point captures the callerMethod in the Class1 class:

public interface Interface1 {

 public void callerMethod();

}

public class Class1 implements Interface1 {
 public void callerMethod(){
 calleeMethod();
 calleeMethod2();
 }

 public void calleeMethod(){
 Console.WriteLine("hello world");

 //more code lines here…
 }

 public void calleeMethod2(){
 Console.WriteLine("hello world 2");
 }
}

[Training-1]
class = Interface1
method = !.*
deep_mode = soft
layer = Training

Chapter 11 • Custom Instrumentation for .NET Applications

447

➤ The following point captures all methods in Class 1; that is, callerMethod,
calleeMethod1, and calleeMethod2:

How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications
This section explains how to configure both the probe_config.xml file and
custom points files that enable instrumentation for Non-ASP.NET or
Windows applications. Instrumentation for Windows Services, console
applications, Windows Forms applications, and WPF applications are
considered Windows applications and are referred to as such.

Windows Application Design

The critical point to consider when contemplating how to configure a
Windows application you want to monitor is that the .NET probe is
designed to monitor long running processes. Therefore, if your Windows
application is designed to run for a few seconds and then exit, you will
probably not be able to see any data for that run. When the Windows
application exits quickly, the appdomain is shut down and the probe is shut
down before it can establish and maintain communication with a
Diagnostics Server or the Diagnostics .NET Profiler.

[Training-1]
class = Interface1
method = !.*
deep_mode = hard
layer = Training

Chapter 11 • Custom Instrumentation for .NET Applications

448

The following simple Windows application illustrates a number of crucial
concepts to be considered when configuring the instrumentation for a
Windows application.

The Hello_dotNet.exe Windows application has Main() that calls a method,
waits for the user to enter something on the command line, and then exits.
Until the application exits, the probe is active.

Creating the Hello_dotNet.points File

In the <probe_install_dir>\bin folder there is a Reflector.exe command line
utility you can run against the Hello_dotNet.exe Windows application to
obtain a suggested points file. See "Discovering the Classes and Methods in
an Application" on page 634 for more information on the reflector utility.

namespace Hello_dotNet_nameSpace
{
 class someclass
 {
 static void Main(string[] args)
 {
// do something

 // read form commandline then exit
 clReader myClReader = new clReader();
 String cl;
 cl = myClReader.readCl();
 }
 }
 // Command Line Reader
 public class clReader
 {
 public String clread;

 public String readCl()
 {
 System.Console.WriteLine("Continue?");
 clread = Console.ReadLine();
 return clread;
 }
 }
}

Chapter 11 • Custom Instrumentation for .NET Applications

449

When both the Reflector.exe and the Hello_dotNet.exe application are in
the same folder, you would the following command:

Reflector.exe Hello_dotNet.exe

The output is sent to stdout. Among other information you will see the
following suggested Hello_dotNet.points:

--
Sample .points by Namespace
--
[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
layer = Hello_dotNet_nameSpace

The suggested points can be used as is, except when the Windows
application has a method like Main(); that is, a method that, if
instrumented, does not return an exit until the application exits. In this
case, the method spans the lifetime of the application so nothing would be
reported until the application exits. Since the probe will be unloaded when
the application exits, you will probably not get any data from the
instrumentation point.

To fix this situation, construct a points file so that the Main() method, or
any method like it, is not instrumented. The following Hello_dotNet.points
file shows how to do this. It assumes that Main() is implemented in
someclass.

Hello_dotNet.points:

[Hello_dotNet_nameSpace]
class = !Hello_dotNet_nameSpace.*
ignoreClass = Hello_dotNet_nameSpace.someclass
layer = Hello_dotNet_nameSpace

[ignore]
class = Hello_dotNet_nameSpace.someclass
ignoreMethod = Main
layer = Hello_dotNet_nameSpace

Chapter 11 • Custom Instrumentation for .NET Applications

450

The crucial aspect of this type of points file is shown in bold. The [ignore]
section instruments other methods in Hello_dotNet_nameSpace.someclass
if there are any while ignoring the Main() method.

Configuring the Windows Application for Instrumentation

To configure the .NET probe to instrument the Hello_dotNet.exe Windows
application, add the following XML to the probe_config.xml file. You can
add it to the bottom of the file just above the </probeconfig> entry.

Note: You must place your Hello_dotNet.points file in the
<probe_install_dir>\etc folder before you make the above changes to the
probe_config.xml file.

The only required child element is the points file. The instrumentation,
logging, and modes are optional. The following instrumentation setting can
be useful when diagnosing which methods are or are not being
instrumented:

<process name="Hello_dotNet">
 <points file="Hello_dotNet.points" />
 <instrumentation>
 <logging level="" />
 </instrumentation>
 <logging level="" />
</process>

 <instrumentation>
 <logging level="points ilasm" />
 </instrumentation>

Chapter 11 • Custom Instrumentation for .NET Applications

451

How to Configure Instrumentation for .NET Remoting
You can configure the .NET probe to add custom instrumentation that
supports the instrumentation of .NET Remoting Client and Server
applications. Supported configurations are:

➤ Both HTTP and TCP bindings

➤ Both Binary and SOAP Formatting

Configuration

By default, the .NET probe is not enabled to instrument Remoting
applications. You must add custom instrumentation points for both the
Client and Server applications.

Two instrumentation keywords are related to Remoting:

Remoting. The Remoting keyword enables instrumentation for various
points in the Remoting Framework.

RemotingServer. The RemotingServer keyword identifies the class that
implements the Remoting Methods and isolates the instrumentation of the
methods on that class from unintended instrumentation of other similar
methods.

Chapter 11 • Custom Instrumentation for .NET Applications

452

Client Example

The following very simple Windows application example illustrates a
number of crucial concepts the must be considered when configuring the
instrumentation for a Remoting Client Application.

As described in "How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications" on page 447, you can use the Reflector utility to
help determine how to configure the Remoting Client points file.

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{
 class SimpleConsoleClient
 {
 [STAThread]
 static void Main(string[] args)
 {
 const string msg1 = "How are you?";

 String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
 RemotingConfiguration.Configure(filename, false);

 MyRemotableObject remoteObject = new MyRemotableObject();

 doit(remoteObject, myMsg);

 Console.WriteLine();
 Console.WriteLine("(Press any key to exit)");
 Console.ReadKey();
 }

 public static void doit(MyRemotableObject obj, String message)
 {
 Console.WriteLine(obj.GetEnlightenment(message));
 }
}

Chapter 11 • Custom Instrumentation for .NET Applications

453

To configure the probe to instrument the SimpleConsoleClient Remoting
Windows application, add the following XML to the probe_config.xml file:

You must add the <points file="Remoting.points" /> entry.

If you are in the directory that holds the SimpleConsoleClient.exe and the
Reflector.exe is in the PATH, you can execute the Reflector on the command
line to view an implementation decomposition of the
SimpleConsoleClient.exe and suggested point file settings:

Reflector SimpleConsoleClient.exe

The output of this command will contain the following:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient (8
Methods)
 Equals System.Boolean(System.Object)
 Finalize System.Void()
 GetHashCode System.Int32()
 GetType System.Type()
 doit (method signature information unavailable))
 Main System.Void(System.String[])
 MemberwiseClone System.Object()
 ToString System.String()

<process name="SimpleConsoleClient">
 <points file="Remoting.points" />
 <points file="SimpleConsoleClient.points" />
 <instrumentation><logging level="" /></instrumentation>
 <logging level="" />
 </process>

Chapter 11 • Custom Instrumentation for .NET Applications

454

The suggested SimpleConsoleClient.points are:

These settings, however, would not create instrumentation that would
produce any data. The reason, as discussed in "How to Configure and Set Up
Points for Non-ASP.NET or Windows Applications" on page 447, is that you
must ignore methods like Main(). If you factor in the need to ignore Main(),
you would be left with the following possible points file settings:

Although these settings might be useful and would produce data, you
should make them more precise. This is primarily due to probe performance.
The more methods that are instrumented, the greater will be the probe's
performance hit on the instrumented application. For example, if you can
remove the wildcards "!.*" from the settings, the scope of your settings
become explicit.

Notice from the Reflector output that there is actually only a single
implemented class:

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

You can remove the wildcards from the class setting as follows:

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
ignoreMethod = Main
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient

Chapter 11 • Custom Instrumentation for .NET Applications

455

Notice also, that the Reflector output does not contain a method setting.
The default meaning of no method setting is that all methods are
instrumented. Since most the following methods are only present because
they are inherited from System.Object, it is unlikely that you really want to
instrument these methods: Equals, Finalize, GetHashCode, GetType,
MemberwiseClone, ToString. However, it is likely that you would want to
instrument the doit method because it wraps the Remoting client call. The
following settings are recommended for the SimpleConsoleClient.points
file:

Server Example

The following Windows application example illustrates a number of crucial
concepts the must be considered when configuring the instrumentation for
a Remoting Server Application:

C# code snippets are shown for both the Remotable Object, which is shared
between the Remoting Client and Server, and the SimpleConsoleServer.exe
Remoting Server Application.

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleClient
method = doit
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

Chapter 11 • Custom Instrumentation for .NET Applications

456

Here is the C# code snippet for the Remotable Object:

Here is the C# code snippet for the SimpleConsoleServer.exe:

HPSoftware.AM.Tests.Remoting.SimpleRemoting
{

public class MyRemotableObject : MarshalByRefObject
{

 const string response = "I'm just fine!";

public MyRemotableObject()
{
}

public String GetEnlightenment(string message)
{

 return response;
}

}
}

namespace HPSoftware.AM.Tests.Remoting.SimpleRemoting
{
 class SimpleConsoleServer
 {
 [STAThread]
 static void Main(string[] args)
 {
 String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
 RemotingConfiguration.Configure(filename, false);

 Console.WriteLine("Server is running... press any key to exit");
 Console.ReadKey();
 }
 }
}

Chapter 11 • Custom Instrumentation for .NET Applications

457

To configure the probe to instrument the SimpleConsoleServer Remoting
WIndows application, add the following XML to the probe_config.xml file:

You are not required to add the <points file="Remoting.points" /> entry.

Point files for the Remoting Server can have one or more sections. The first
section relates to the Remotable Object and is a required section. A second
section that relates to the Remoting Server instrumentation can be added.
Other optional sections can also be added to instrument other methods that
can be called by either the Remoting methods or the Remoting Server. We
will construct the Remotable Object section first.

The Remotable Object will reside in some assembly. We will assume it is in
the RemotableObjects.dll.

<process name="SimpleConsoleServer">
 <points file="SimpleConsoleServer.points" />
 <instrumentation><logging level="" /></instrumentation>
 <logging level="" />
</process>

Chapter 11 • Custom Instrumentation for .NET Applications

458

When you run the Reflector against the RemotableObjects.dll, you see
output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject (17
Methods)
 __RaceSetServerIdentitySystem.Runtime.Remoting.ServerIden…)
 __ResetServerIdentity System.Void()
 CanCastToXmlType System.Boolean(System.String,System…)
 CreateObjRef System.Runtime.Remoting.ObjRef(Syste…)
 Equals System.Boolean(System.Object)
 Finalize System.Void()
 GetComIUnknown System.IntPtr(System.Boolean)
 GetEnlightenment System.String(System.String)
 GetHashCode System.Int32()
 GetLifetimeService System.Object()
 GetType System.Type()
 InitializeLifetimeService System.Object()
 InvokeMember System.Object(System.String,System…)
 IsInstanceOfType System.Boolean(System.Type)
 MemberwiseClone System.MarshalByRefObject(System…)
 MemberwiseClone System.Object()
 ToString System.String()

As with the Remoting Client example, you cannot just use the suggested
point settings. You must be certain that you identified the class that
implements the Remotable Object. You do this by observing that the
Remotable Object is required to inherit from System.MarshalByRefObject
and therefore must have the following methods on it: CreateObjRef,
GetLifetimeService, InitializeLifetimeService, MemberwiseClone. From the
Reflector output above, you can see that the
HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject class
is an obvious candidate for the class that implements the Remotable Object.

Chapter 11 • Custom Instrumentation for .NET Applications

459

The Remotable Object section must include the keyword = RemotingServer
entry. This entry indicates that the probe's Instrumenter should perform
special processing for the point settings in this section. This special
processing accomplishes two things. It instruments all methods on a class
that inherits from System.MarshalByRefObject. Therefore, you need not
specify which Remoting methods to instrument. All Remoting methods will
be instrumented. This is also why there is no need for a method entry in this
section. Second, this keyword isolates the instrumentation of methods that
are implemented on a class that inherits from System.MarshalByRefObject
to the specified class. This is important because there are many System
classes and user classes that also inherit from System.MarshalByRefObject
and you do not want to unintentionally instrument them.

Based on these observations, here is the recommended Remotable Object
section:

Now you can construct the optional Remoting Server section. You only need
to create this section if you want to monitor the Server logic that is invoked
independent of the Remoting methods.

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

Chapter 11 • Custom Instrumentation for .NET Applications

460

When you run the Reflector against the SimpleConsoleServer.exe, you will
see output that includes:

Sample .points by Namespace

[HPSoftware.AM.Tests.Remoting.SimpleRemoting]
class = !HPSoftware.AM.Tests.Remoting.SimpleRemoting.*
layer = HPSoftware/AM/Tests/Remoting/SimpleRemoting

(1 classes) Namespace: HPSoftware.AM.Tests.Remoting.SimpleRemoting

HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer (7
Methods)
 Equals System.Boolean(System.Object)
 Finalize System.Void()
 GetHashCode System.Int32()
 GetType System.Type()
 Main System.Void(System.String[])
 MemberwiseClone System.Object()
 ToString System.String()

As explained in "How to Configure and Set Up Points for Non-ASP.NET or
Windows Applications" on page 447, you cannot just use the suggested
points settings. You must ignore the Main() method.

Based on these observations, the following settings are the recommended
settings for the SimpleConsoleServer.points file:

Finally, you can add other optional sections to instrument other methods
that can be called by either the Remoting methods or the Remoting Server.

[RemotableObject]
keyword = RemotingServer
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.MyRemotableObject
layer = RemotableObject

[RemotingServer]
class = HPSoftware.AM.Tests.Remoting.SimpleRemoting.SimpleConsoleServer
ignoreMethod = Main
layer = RemotingServer

Chapter 11 • Custom Instrumentation for .NET Applications

461

Understanding the Overhead of Custom Instrumentation

When creating custom instrumentation, beware of over-instrumenting the
application because that can introduce excessive latency into the probed
application. The custom instrumentation does not have the same impact on
the method latency or the CPU overhead because the overhead of
instrumentation is nearly fixed for every method because the amount of
bytecode is almost always the same. The physical percentages of the CPU
and latency overhead will vary in direct proportion to the length of time the
method takes to execute.

For example, if a method takes 100ms and instrumentation makes it execute
in 101ms, overhead is 1%. If a method takes 10ms and instrumentation
changes its response to 11ms, overhead is 10%. If this method is not called
very often, its overall latency effect on the application is minimal. However,
the overall latency effect of an instrumented method that is called more
frequently could have an impact on the latency of the application’s response
even though its overhead percentage is much smaller.

Unlike a traditional profiler that can profile every method called, HP
Diagnostics uses bytecode instrumentation. This allows the default
instrumentation to be selective so as to minimize the overhead caused by
instrumentation to an average of 3-5%. Methods with higher latency
overhead introduced by instrumentation are only instrumented when they
are called infrequently in relation to other components in the application
and when the instrumentation provides specific information needed for
triage activities.

You should also consider Diagnostics data overhead when you are
customizing the instrumentation for an application. The more methods you
instrument, the more data the probe must serialize and pass over the
network to the Diagnostics Server. You can tune the probe’s default
configuration so that it can adjust the volume of Diagnostics data to avoid
any unnecessary effect on the performance of the system being monitored.
Improper probe tuning can cause CPU, Memory, and Network overhead on
the physical machine where your probe resides. For more information about
managing Latency, CPU, Memory and Network overhead, see Chapter 15,
"Advanced .NET Agent Configuration."

Chapter 11 • Custom Instrumentation for .NET Applications

462

Default Layers for Typical .NET Applications

HP Diagnostics groups the performance metrics for classes and methods into
layers and sublayers according to the instructions provided in the points file.
The default layers were defined so that the performance metrics for
processing in the application that used similar system resources could be
reported together. The layers make it easier for you to isolate and identify
the areas of the system that could be contributing to performance issues.

The following table lists the default layers and sublayers that are defined for
typical .NET applications.

.NET Layers

Layer sublayers Parent Layer

Web Tier IIS

IIS ExecutionSteps

Database ADO

ADO Execute

Connection

Fill

Update

Cache

Database

Messaging Sender

Receiver

Web Services Soap

Http

WCF

LWMD

HTTP Client

Outbound Calls

Part V

Advanced Configuration of the
Diagnostics Server and the Java and .NET

Agents

This section includes:

➤ Advanced Diagnostics Server Configuration

➤ Advanced Java Agent and Application Server Configuration

➤ Understanding the .NET Agent Configuration File

➤ Advanced .NET Agent Configuration

464

465

12
Advanced Diagnostics Server
Configuration

This section describes advanced configuration of the Diagnostics Server.
Advanced configuration is intended for experienced users with in-depth
knowledge of this product. Use caution when modifying any of the
component properties.

This chapter includes:

 ➤ Synchronizing Time Between Diagnostics Components on page 466

 ➤ Configuring the Diagnostics Server for a Large Installation on page 470

 ➤ Overriding the Default Diagnostics Server Host Name on page 476

 ➤ Changing the Default Diagnostics Server Port on page 476

 ➤ Migrating Diagnostics Server from One Host to Another on page 477

 ➤ Configuring the Diagnostics Server for Multi-Homed Environments
on page 479

 ➤ Reducing Diagnostics Server Memory Usage on page 483

 ➤ Configuring Server Request Name Based Trimming on page 484

 ➤ Automating Composite Application Discovery in HP Diagnostics on page 485

 ➤ Preparing a High Availability Diagnostics Server on page 488

 ➤ Configuring Diagnostics for HP ServiceGuard (HA solution) on page 489

 ➤ Diagnostics Server Assignments (LoadRunner/Performance Center Runs)
on page 491

 ➤ Configuring the Diagnostics Server for LoadRunner Offline Analysis File Size
on page 492

Chapter 12 • Advanced Diagnostics Server Configuration

466

 ➤ Configuring Business Service Management Sample Queue Size and Web
Services CI Frequency on page 495

 ➤ Configuring Diagnostics Using the Diagnostics Server Configuration Pages
on page 496

 ➤ Optimizing the Diagnostics Server in Production to Handle More Probes
on page 496

 ➤ Configuring a Custom Context Root on page 497

Synchronizing Time Between Diagnostics Components

For Diagnostics data to be stored and correlated properly, it is critical that
time is synchronized between the Diagnostics components. To facilitate
synchronization of data, the Diagnostics data is adjusted and saved to the
synchronized GMT time of the Diagnostics Server in Commander mode.
Synchronization makes it possible to display the data correctly for any local
time in which the UI can be located.

The following sections describe how time synchronization works, and how
to configure the components properly so that the time will be synchronized.

Probe collections running in VMware hosts have additional time
synchronization requirements. See “Time Synchronization for Probes
Running on VMware” on page 512.

Understanding Time Synchronization
Time synchronization in Diagnostics begins with the Diagnostics command
server determining the difference between its time and the GMT time
provided by a designated Time Source. The Time Source to be used is set
using the timemanager.time_source property in
<diagnostics_server_install_dir>/etc/server.properties.

Chapter 12 • Advanced Diagnostics Server Configuration

467

The valid values for the timemanager.time_source property are:

➤ NTP. Indicates that an NTP Server is to be used as the source of GMT
time. This is the default value.

The NTP servers that are to be used are listed as values of the
timemanager.ntp.servers property in <diagnostics_server_install_dir>/
etc/server.properties.

Note: Make sure that one of the NTP servers in the list can be contacted
from the Diagnostics Server, or add your local NTP server as the first
server in the list.

➤ BAC. Indicates that the registered Business Service Management gateway
server is to be used as the source of GMT time.

Note: If Business Service Management is configured to use Database time,
you should also configure the Diagnostics command server to use this
setting as the time source.

➤ SERVER. Indicates that the Diagnostics command server is to be used as
the Time Source.

This should only be used when the Diagnostics Server is being used in
Standalone mode.

The Diagnostics Servers that are in Mediator mode synchronize their time
by establishing the time difference between the Diagnostics Server in
Mediator mode and the Diagnostics Server in Commander mode.

If the Diagnostics Server in Commander mode did not yet synchronize with
the Time Source, the Diagnostics Servers in Mediator mode are considered
to be “unsynched.” The Diagnostics Servers in Mediator mode that are
unsynched attempt to synchronize their time every 15 seconds until they
succeed.

Chapter 12 • Advanced Diagnostics Server Configuration

468

When a Diagnostics probe connects to a Diagnostics Server in Mediator
mode or to a Diagnostics Server in Commander mode, the time difference is
established between the Diagnostics Server and the probe.

If the probe attempts to connect to a Diagnostics Server that is still
“unsynched,” the probe connection is not allowed and is dropped.

Because the data is stored based on the GMT, differences in time zones or
daylight savings times for the various components are not an issue. For
example, the data that is displayed in the Diagnostics UI can be adjusted to
display correctly for the time zone in which the UI is running.

Note: All data is adjusted and saved to the synchronized GMT time of the
Diagnostics Server in Commander mode. If the UI is running on a machine
whose time was not synchronized properly with the Time Source, the data
displayed in the UI appears shifted by the amount of time the UI machine is
off from the synchronized GMT time.

Configuring the Time Synchronization on the Diagnostics
Server
You can synchronize the Diagnostics commander server by performing the
following procedure.

Note: Time Synchronization settings for Diagnostics Servers in Mediator
mode are ignored because their time is automatically synchronized with the
Diagnostics Server in Commander mode.

Chapter 12 • Advanced Diagnostics Server Configuration

469

To ensure that time on the Diagnostics Server in Commander mode can be
synchronized:

 1 The default configuration for the Diagnostics Server is set such that the
value of the timemanager.time_source property in
<diagnostics_server_install_dir>/etc/server.properties is NTP.

If the Diagnostics Server has an internet connection and the ability to
connect to a server in the list of available NTP servers specified in the
timemanager.ntp.servers property, the default configuration will work and
no changes are necessary.

Because Business Service Management also uses NTP for time
synchronization by default, this is the recommended setting.

 2 If the Diagnostics Server does not have an internet connection or the ability
to connect to the list of available NTP servers specified in
timemanager.ntp.servers property, you must do one of the following:

➤ Set up a local NTP server that can be contacted by the Diagnostics Server
in Commander mode. List this local NTP server as the first entry in the
timemanager.ntp.servers property in <diagnostics_server_install_dir>/
etc/server.properties.

Note: Have backup NTP servers in case the primary NTP server is not
available.

➤ If you are using Diagnostics in a Business Service Management or HP
Software as a Service (SaaS) environment, you can set the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties to BAC to indicate Business Service Management.
This causes the Diagnostics Server to connect to the registered Business
Service Management core server to establish the time.

Note: To set up Business Service Management to use Diagnostics, see
Chapter 22, “Setting Up the Integration Between Business Service
Management and Diagnostics.”

Chapter 12 • Advanced Diagnostics Server Configuration

470

➤ If the Diagnostics Server in Commander mode is to be used in
Standalone mode, with no intention of using it with Business Service
Management, and there is no internet connection allowing time
synchronization with an NTP server, you can set the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties to SERVER. This causes the Diagnostics Server to use
its own time as the Time Source.

Note: It is recommended that you do not change the value of the
timemanager.time_source property in <diagnostics_server_install_dir>/
etc/server.properties once data is captured and persisted using the
designated Time Source. Changing the Time Source after data is captured
can result in a significant corruption to the data that was captured and
persisted. This is because the data that was persisted might have been
captured while the Diagnostics Server was not synchronized with GMT. If
the data that is captured later is captured while the Diagnostics Server is
synchronized with GMT, the data could get re-aggregated multiple times
or could get recorded into time buckets where it does not belong.

Configuring the Diagnostics Server for a Large Installation

If you are using a Diagnostics Server in Mediator mode with more than 20
probes, it is recommended that you make modifications to the default
configuration of the Diagnostics Server.

Note: These changes to the configuration are not needed for the Diagnostics
Server in Commander mode unless it also has probes assigned to it so that it
also serves as a Diagnostics Server in Mediator mode.

Chapter 12 • Advanced Diagnostics Server Configuration

471

Adjusting the Heap Size
The size of the heap can impact the performance of the Diagnostics Server
in Mediator mode. If the heap is too small, the Diagnostics Server in
Mediator mode could “hangs” for periods of time. If the heap is too large,
the Diagnostics Server in Mediator mode could experience long garbage
collection delays (especially if there aren’t enough CPU resources available
such as multiple CPUs/cores or fast CPUs).

The default value for the heap size is 512 MB. The heap size is set in the
server.nanny file located at:
<diagnostics_server_install_dir>\nanny\windows\dat\nanny\ for
Windows, or <diagnostics_server_install_dir>/nanny/solaris/
launch_service/dat/nanny/ for Solaris.

Use the following VM argument to set the size (where ??? is the size in MB):

-Xmx???m

If you encounter problems with the Diagnostics Server in Mediator mode
hanging, you can increase the heap size specified by updating the value
specified in the -Xmx???m option.

To adjust the heap size of the Diagnostics Server in Mediator mode:

 1 Use the following table to determine the amount of heap the Diagnostics
Server in Mediator mode will need:

Number of Probes Recommended Heap Size

Up to 50 Java Probes 512 MB

Up to 100 Java Probes 1400 MB

Up to 200 Java Probes 3000 MB (64bit)

Up to 10 .NET Probes 350 MB

Up to 20 .NET Probes 700 MB

Up to 50 .NET Probes 1400 MB

Chapter 12 • Advanced Diagnostics Server Configuration

472

Note: The recommended heap size should not exceed more than 75% of the
physical memory of the machine. If a machine has 1 GB, the heap size must
not exceed 768 MB.

It is highly recommended to run Diagnostics on a system with more than
two CPUs or cores (four cores are recommended). In such an environment,
change the Garbage Collector to concurrent mark and sweep:
-XX:+UseConcMarkSweepGC

For 64bit JVMs, make sure to enable this option:

-XX:+UseCompressedOops

For VMware installations follow the best practices as described in VMware's
"Enterprise Java Applications on VMware Best Practices Guide". In essence,
use multiple vCPUs and fixed memory allocations (no ballooning or
swapping to disk) and ensure installation of VMware Tools.

 2 Open the server.nanny file that is to be edited. This file is located at:

<diagnostics_server_install_dir>\nanny\windows\dat\nanny\
for Windows, or <diagnostics_server_install_dir>/nanny/solaris/
launch_service/dat/nanny/ for Solaris.

Chapter 12 • Advanced Diagnostics Server Configuration

473

 3 On the start_<platform> line that is appropriate, replace the heap size
specified in the -Xmx???m option with the optimal heap size that you
calculated:

-Xmx???m

Continuing the previous example, the current heap size, represented by ???
is replaced with 768 MB.

-Xmx768m

Before you modify this line in the server.nanny file, it will look like this:

After you modify this line in the server.nanny file, it will look like this:

Adjusting the Amount of Data Pulled from the Probe
Large call profiles require significant network bandwidth between the probe
and server, and significant CPU resources on the server.

start_nt="C:\MercuryDiagnostics\Server\jre\bin\javaw.exe" -server -Xmx512m
-Dsun.net.client.defaultReadTimeout=70000
-Dsun.net.client.defaultConnectTimeout=30000
"-javaagent:C:\MercuryDiagnostics\Server\probe\lib\probeagent.jar"
-classpath "C:\MercuryDiagnostics\Server\lib\mediator.jar;
C:\MercuryDiagnostics\Server\lib\loading.jar;
C:\MercuryDiagnostics\Server\lib\common.jar;
C:\MercuryDiagnostics\Server\lib\mercury_picocontainer-1.1.jar"
com.mercury.opal.mediator.util.DiagnosticsServer

start_nt="C:\MercuryDiagnostics\Server\jre\bin\javaw.exe" -server -Xmx768m
-Dsun.net.client.defaultReadTimeout=70000
-Dsun.net.client.defaultConnectTimeout=30000
"-javaagent:C:\MercuryDiagnostics\Server\probe\lib\probeagent.jar"
-classpath "C:\MercuryDiagnostics\Server\lib\mediator.jar;
C:\MercuryDiagnostics\Server\lib\loading.jar;
C:\MercuryDiagnostics\Server\lib\common.jar;
C:\MercuryDiagnostics\Server\lib\mercury_picocontainer-1.1.jar"
com.mercury.opal.mediator.util.DiagnosticsServer

Chapter 12 • Advanced Diagnostics Server Configuration

474

If the network becomes a bottleneck—for example, network utilization
above 25% on a mediator as observed in Windows task manager, or probes
report less than 100% availability although they were up—you should
reduce the data that is generated via trimming, to enable compression, if the
probe system's CPU is not fully used. You can also reduce the frequency of
the data that the server pulls from the probe.

The main trimming parameters on the probe are:

➤ In the capture.properties file:

➤ maximum.stack.depth = 25

➤ maximum.method.calls = 1000 (for example, can be set to 25 to limit
overall number of methods in a Call Profile)

➤ minimum.method.latency = 51ms

➤ In the dispatcher.properties file:

➤ minimum.fragment.latency = 51ms (for example, can be increased to
101ms). But note that by default trimming doesn’t affect synthetic
transactions (BPM/vugen/LoadRunner/Performance Center) so all
these server requests are reported.

For more information on trimming, see “Configuring Server Request Name
Based Trimming” on page 484 for the server, “Configuring Latency
Trimming and Throttling” on page 641 and “Configuring Depth Trimming”
on page 646 for .NET Agent, “Controlling Automatic Method Trimming on
the Agent” on page 508 for Java Agent.

To enable compression, on the probe set webserver.properties:
rhttp.gzip.replies = true. This reduces network traffic on the server
significantly. However, the probe (and server) require additional CPU for
compression.

Chapter 12 • Advanced Diagnostics Server Configuration

475

Another way of decreasing network traffic is to change the frequency that
data is pulled from the probe. By default, trends are pulled every 5 seconds
and trees (Call Profiles) are pulled every 45 seconds. To lower the frequency
for call trees, change probe.trees.pull.interval on the mediator in the
server.properties file—for example, 90 seconds or 240 seconds depending
on how many methods a Call Profile contains. First, lower the pull
frequency of call trees. If this is not enough, lower the trend pull frequency
by changing probe.trends.pull.interval—for example, 10 seconds.

Changing any of these parameters requires restarting the probe or server.

Additional Adjustments
If more than 50 probes are connected, increase the number of threads used
for pulling data from the probe. For each mediator, set
probe.pull.max.threads=30 and restart the server.

You can also increase the number of threads available for jetty by setting
webserver.properties, jetty.threads.max=500.

If call tree and trend files (see also Appendix E, “Diagnostics Data
Management”) become too large (greater than 4 GB) in their uncompressed
state, offload some of the probes to a new mediator. Otherwise, the
aggregation and compression of the files could start to lag due to the large
amount of data.

When many probes are connected to a server, the default purging setting of
5 GB might not be enough. For more information, see “Data Retention” on
page 876.

Chapter 12 • Advanced Diagnostics Server Configuration

476

Overriding the Default Diagnostics Server Host Name

When a firewall or NAT is in place, or the host for the Diagnostics Server in
Mediator mode was configured as a multi-homed device, the Diagnostics
Server in Commander mode might not be able to communicate with the
Diagnostics Server in Mediator mode using the host name assigned when
the Diagnostics Server in Mediator mode was installed. The
registered_hostname property enables you to override the default host
name the Diagnostics Server in Mediator mode uses to register itself with the
Diagnostics Server in Commander mode.

To override the default host name for a Diagnostics Server in Mediator
mode, set the registered_hostname property located in
<diagnostics_server_install_dir>/etc/server.properties to an alternate
machine name or IP address that will allow the Diagnostics Server in
Commander mode to communicate with the Diagnostics Server in Mediator
mode.

Changing the Default Diagnostics Server Port

If the configuration of the Diagnostics Server host does not allow the default
Diagnostics port to be used, choose a different port for the Diagnostics
Server communications with the probes and other Diagnostics Servers.

Important: Make sure that the new port number is not already used by
another application and that the other Diagnostics components can
communicate with this port.

Chapter 12 • Advanced Diagnostics Server Configuration

477

If you decide to use an alternative port number after you deploy
Diagnostics, you must update the properties in the following table for each
of the indicated components in your deployment with the new port number
to ensure that the proper communications can take place.

Migrating Diagnostics Server from One Host to Another

The following procedure shows how to migrate your Diagnostics Server
from one host to another and assumes the new host name is different from
the old host name.

To migrate a Diagnostics server from one host to another:

 1 Ensure that the existing Diagnostics Server has been shut down by verifying
that there are no java/javaw processes in your process list. On Windows
systems, you can use the Task Manager to do this and on UNIX systems, you
can use ps.

 2 Unregister the Diagnostics Commander Server from Business Service
Management.

 3 Install the new Diagnostics Server on the new host.

 4 On Windows, the Diagnostics Server is started automatically when the
installer finishes so you must shut down the Diagnostics Server.

Component Type Properties

Diagnostics command
server

<diagnostics_server_install_dir>/etc
➤ webserver.properties – jetty.port

➤ server.properties – commander.url

➤ probe/etc/dispatcher.properties – registrar.url

Diagnostics mediator
server

<diagnostics_server_install_dir>/etc
➤ server.properties – commander.url

<diagnostics_server_install_dir>/probe/etc
➤ dispatcher.properties – registrar.url

Probes <probe_install_dir>/etc
➤ dispatcher.properties – registrar.url

Chapter 12 • Advanced Diagnostics Server Configuration

478

On UNIX the server is not automatically started so you do not need to shut
it down.

Ensure that the Diagnostics Server has been shut down by verifying that
there are no java/javaw processes in your process list. On Windows systems,
you can use the Task Manager to do this and on UNIX systems, you can use
ps.

Be sure you know the host name of the old Diagnostics Server (you can find
the name in the /archive directory).

 5 Delete the <diagnostics_server_install_dir>/archive directory on the new
Diagnostics Server.

 6 Copy the <diagnostics_server_install_dir>/archive folder and all subfolders
from the old server into the new server <diagnostics_server_install_dir>/.

 7 If the host name for the new Diagnostics Server is different than the host
name for the old Diagnostics Server, you must rename
<diagnostics_server_install_dir>/archive/mediator-<host-name> so that
<host-name> reflects the new Diagnostics Server host name. For example, if
your old host name was oldhost and the new host name is newhost you
would change

<diagnostics_server_install_dir>/archive/mediator-<oldhost> to
<diagnostics_server_install_dir>/archive/mediator-<newhost>.

 8 Delete the <diagnostics_server_install_dir>/storage/ directory for the new
Diagnostics Server.

 9 Copy the <diagnostics_server_install_dir>/storage/ folder and all subfolders
from the old server into the new server <diagnostics_server_install_dir>/.

 10 On the new server rename <diagnostics_server_install_dir>/storage/
server-<hostname> so that <host-name> reflects the new Diagnostics Server
host name. For example, if your old host name was oldhost and the new
host name is newhost you would change

<diagnostics_server_install_dir>/storage/server-<oldhost> to
<diagnostics_server_install_dir>/storage/server-<newhost>

 11 Copy the <diagnostics_server_install_dir>/etc folder from the old server into
the new server <diagnostics_server_install_dir>/ and copy the new license to
etc folder.

Chapter 12 • Advanced Diagnostics Server Configuration

479

 12 Start new Diagnostics server and register the new Diagnostics server in
Business Service Management.

 13 If the new server was the Commander then on all the mediators, you need
to scan the etc folder and change the old server name to the new server
name. Double check the dispatcher.properties file to make sure the
commander server hostname changed. Then restart all the mediators.

There is no change required on the probe side unless the probe is directly
reporting to the commander server or you are migrating the mediator server
the probe is connected to. If that is the case, scan the etc folder on the probe
system and change the old server name to the new server name (double
check the dispatcher.properties file to make sure the mediator server
hostname changed).

Configuring the Diagnostics Server for Multi-Homed
Environments

The machines that host the Diagnostics Server can be configured with more
than one Network Interface Card (NIC). The Diagnostics Server process
listens on all interfaces on its host. Some customer environments do not
allow applications to listen on all network interfaces on a machine. If your
environment has this restriction, use the following instructions to configure
the Diagnostics Server to listen on specific network interfaces.

Setting the Event Host Name
If the Diagnostics Server host has multiple network interfaces, and you want
to specify the hostname that the Diagnostics Server will listen on, you must
set the event.hostname property.

This property can be found in:

<diagnostics_server_install_dir>/etc/server.properties

Uncomment the property, event.hostname, and specify the hostname
value.

By default, the event.hostname property is not set. This means that the
Diagnostics Server will listen on all hostnames.

Chapter 12 • Advanced Diagnostics Server Configuration

480

Modifying the jetty.xml File
The jetty.xml file has a section that defines the interfaces on which the
Diagnostics Server is permitted to listen. By default, the jetty.xml file
included with the Diagnostics Server has no listeners defined. The
Diagnostics Server listens on all of the interfaces.

To configure the Diagnostics Server to listen on specific network interfaces
on a machine:

 1 Open <diagnostics_server_install_dir>/etc/jetty.xml and locate the
following line:

<Configure class="org.mortbay.jetty.Server">

 2 Add the following block of code after this line, changing the <Set
name="Host">……</Set> to contain the NIC’s IP address.

<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

Chapter 12 • Advanced Diagnostics Server Configuration

481

 3 Repeat the previous step adding a new copy of the block of code and setting
the IP address for the NIC for each interface on which the Diagnostics Server
is to listen.

Make sure that the </Configure> tag follows the listener code for the last
NIC.

Note: Make sure that components that access the Diagnostics Server can
resolve the hostnames of the Diagnostics Server to the IP address that you
specify in the jetty.xml file for the host values. Some systems could resolve
the host name to a different IP address on the Diagnostics Server host. For
more information, see “Overriding the Default Diagnostics Server Host
Name” on page 476.

Chapter 12 • Advanced Diagnostics Server Configuration

482

Sample jetty.xml File
The following example shows the jetty.xml file for the Diagnostics Server,
where the Diagnostics Server will listen on loopback and one IP address on
the system.

<!-- Configure the Jetty Server -->
<!-- === -->
<Configure class="org.mortbay.jetty.Server">
<!--=== -->
<!-- Configure the Request Listeners -->
 <!--== -->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">127.0.0.1</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>

<-Listen on specific IP Address on this machine for incoming Commander calls->
<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Host">10.241.3.109</Set>
 <Set name="Port"><SystemProperty name="jetty.port" default="2006"/></Set>
 <Set name="MinThreads">1</Set>
 <Set name="MaxThreads">5</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 <Set name="ConfidentialPort">8443</Set>
 <Set name="IntegralPort">8443</Set>
 </New>
 </Arg>
 </Call>
</Configure>

Chapter 12 • Advanced Diagnostics Server Configuration

483

Reducing Diagnostics Server Memory Usage

The Transaction Timeout Period is a safety mechanism that prevents the
Diagnostics Server from using excessive amounts of memory because it is
holding on to old data for too long. The Diagnostics Server holds on to all of
the information it receives for a transaction until it receives the End of
Transaction Notification (ELT), which tells the Diagnostics Server the
transaction is complete. The timeout period for a transaction is reset each
time the Diagnostics Server receives data for the transaction.

If the machine on which the Diagnostics Server in Commander mode is
running is overloaded (CPU is heavily loaded or there are too many
transactions per second for it to handle), or if there are network connectivity
issues between the Load Generators or Business Service Management and
the Diagnostics command server, or between Business Process Monitor and
Business Service Management, the Diagnostics Server might not receive the
ELT that lets it know when a transaction ended. If the ELT is not received by
the time the transaction timeout period expires, the Diagnostics Server
assumes that the ELT is not coming and proceeds to process the data for the
transaction and free the memory the transaction data is using.

The correlation.txn.timeout property sets the duration of the transaction
timeout period. If you experience out-of-memory conditions in the
Diagnostics Server, you could reduce the transaction timeout period so that
the Diagnostics Server waits less time for the end of a transaction. Use
caution when adjusting the value of this property because multiple probes
could be sending data to the Diagnostics Server, and an active transaction
could be idle in one Diagnostics Server. Setting the value of this property too
low can cause transactions to be reported incorrectly. If you need to reduce
the value of this property, set it to 90 seconds more than the longest
transaction in your test.

Chapter 12 • Advanced Diagnostics Server Configuration

484

Configuring Server Request Name Based Trimming

Server Request name based trimming lets you configure Diagnostics to filter
out server requests that appear to be causing Diagnostics Server performance
issues without changing the configuration or the instrumentation used by
the probes.

Note: Server request name-based trimming is not intended to be used
instead of the latency and depth trimming you configure for the probes.

Using the trim.fragment properties in the
<diagnostics_server_install_dir>\etc\trimming.properties file, you can
specify the names of the server request fragments that Diagnostics is to trim.
Diagnostics trims the fragments for both Real User and Virtual User server
requests.

By default, the properties trim.fragment.1 and trim.fragment.2 are
commented out in trimming.properites. To specify a fragment to be
trimmed, uncomment one of the properties and type the fragment name
that is to be trimmed as it is listed in the Diagnostics views. If more than two
fragments need to be trimmed, create additional trim.fragment properties.
Make sure to increment the number at the end to ensure that each property
name is unique. For example, the next trim.fragment property would be
named trim.fragment.3.

Events and fragments that are trimmed as a result of these property settings
are counted in the dropped event and dropped fragment counts.

Chapter 12 • Advanced Diagnostics Server Configuration

485

Automating Composite Application Discovery in HP
Diagnostics

Composite Application Discovery (CAM) provides a convenient way to
group application servers (probes) and to continuously detect new
components that are connected to these application servers by following the
calls a probe is making to these other components.

In addition to configuring applications in the UI, Diagnostics provides
scripting support for CAM. This allows the dynamic creation of new
applications based on newly added probes outside the UI.

Scripting Applications
Scripts that are used to create new applications are stored on each mediator
in etc/appDiscoveryRules.properties. The script that ships with Diagnostics
contains some examples.

Typically, applications are based on certain patterns that are available in
entity properties such as probe name, probe group name or server request
name. The /groupby path is used to query the Diagnostics data model and
select instances. This query path is used in scripts such as the one below for
application discovery and is also used to automate setting thresholds and
alerts. See the Diagnostics Data Model and Query API Guide for details.

Chapter 12 • Advanced Diagnostics Server Configuration

486

The following example illustrates an easy way to create new applications
based on parts of the probe name.

The /groupby definition (in blue bold text) periodically queries all probes
on this mediator and executes the script (JavaScript in red italicized text)
against the returned probe names. In the example above, the code creates an
application with the name "Sales" for all probes that start with "cs_".

In addition to the name, application permissions can be specified. The script
includes more examples for specifying application permissions.

Further it is possible to automatically include all related probe entities such
as Server Requests and SQL statements. To do this, set the variable
discoveryPolicies with the value "applyAppFilterToProbeContents":

Example:
#
Put all probes with a particular naming pattern into
an application.
#
If you have a very consistent naming convention for probes, you
can auto-insert new probes into the appropriate application.
#
In the below example, we put any probe that has a name starting
with "cs_" into the "Sales" application.

/groupby[name\='Default\ Client']/probegroup/probe=\
 String probeName = probe.getName();\
 if(probeName.startsWith("cs_")) {\
 uid=name="Sales";\
 }

/groupby[name\='Default\ Client']/probegroup/probe=\
 String probeName = probe.getName();\
 if(probeName.startsWith("cs_")) {\
 uid=name="Sales";\
 discoveryPolicies="applyAppFilterToProbeContents"; \
 }

Chapter 12 • Advanced Diagnostics Server Configuration

487

Moving Composite Applications Between Environments
The scripting approach provides an easy way to move applications between
environments such as from QA to production. All application definitions,
however, need to be created using the script. One master script can be used
on all mediators even if the probes are not reporting to this mediator.

It is important to use a naming scheme that works between production and
pre-production. This can be achieved by:

➤ Putting probes in specific probe groups that are constant between
production and pre-production

➤ Using a probe naming convention that allows the script to create an
application name as shown in the example above.

If the probes are in the same probe group and this name is constant between
environments (but the probe name changes), use probegroup.getName() in
the script to access the probe group name:

This script is generic and can be exchanged between environments.

/groupby[name\='Default\ Client']/probegroup/probe=\
 String probegroupName = probegroup.getName(); \
 String probeName = probe.getName();\
 if(probegroupName.startsWith("cs")) {\
 uid=name="Sales";\
 discoveryPolicies="applyAppFilterToProbeContents"; \
 } \
 else if (probegroupName.startsWith("is")) { \
 uid=name="Information Systems";\
 discoveryPolicies="applyAppFilterToProbeContents"; \
 }

Chapter 12 • Advanced Diagnostics Server Configuration

488

Preparing a High Availability Diagnostics Server

If your Diagnostics deployment requires that the Diagnostics Server have
high availability, you can create a standby Diagnostics Server for each
Diagnostics Server. The standby is then ready to be used during a hardware
failure or other problem with the host of the Diagnostics Server.

Creating a Standby Diagnostics Server
You can create a standby for each Diagnostics Server by installing the
Diagnostics Server onto a standby machine and then periodically replicating
the primary Diagnostics Server data into the standby Diagnostics Server.

To configure a standby Diagnostics Server:

 1 Install the Diagnostics Server onto the standby machine. Make sure that the
version of the Diagnostics Server to be installed on the standby server is the
same as the Diagnostics Server on the primary server.

 2 Schedule a periodic remote backup of the primary server into the standby
server using the following commands from the host of the standby
Diagnostics Server:

Replace <primary_server_host> with the host name for the Diagnostics
Server that is being replicated.

These commands perform an incremental replication of the Diagnostic data,
configuration files, customized views, alerts, and comments onto the
standby Diagnostics Server. You can schedule the periodic backup using a
cron job or a scheduled task on Windows.

Note: The wget utility downloads the backup over HTTP. For Windows, you
must have an installation of cygwin on the host for the Diagnostics Server.
You can get a copy of cygwin at http://www.cygwin.com/.

% cd /opt/MercuryDiagnosticsServer/
% ./bin/remote-backup.sh -h <primary_server_host> -o .

Chapter 12 • Advanced Diagnostics Server Configuration

489

Failover to the Standby Diagnostics Server
If the host for the primary Diagnostics Server fails, configure the standby
Diagnostics Server so that it can begin to function as the primary
Diagnostics Server.

To make the standby Diagnostics Server the primary Diagnostics Server:

 1 Change the hostname of the standby Diagnostics Server to match the
hostname of the failed host of the primary Diagnostics Server. This allows
the probes to reconnect to the Diagnostics Server when it is started.

 2 Start the standby Diagnostics Server as a Windows Service, or use the bin/
server.sh or bin\server.cmd scripts. The probes reconnect to the Diagnostics
server. Whenever a probe loses its connection to its Diagnostics Server it
attempts to reconnect approximately every 30 seconds.

 3 The standby Diagnostics Server is now the primary Diagnostics Server.
Configure a new standby Diagnostics Server as described in “Creating a
Standby Diagnostics Server” on page 488.

Note: When the failed Diagnostics Server host is recovered, do not make it
the primary Diagnostics Server because it loses any data gathered from the
probes while the new primary Diagnostics Server is being used.

Configuring Diagnostics for HP ServiceGuard (HA solution)

You can configure Diagnostics for HP ServiceGuard as a HA (High
Availability) solution. This section outlines the necessary steps for
configuring HP Diagnostics (Version 7.50 and higher) to run under HP
ServiceGuard (Linux).

Note: It is assumed that you are familiar with both, Diagnostics and HP
ServiceGuard.

Chapter 12 • Advanced Diagnostics Server Configuration

490

The configuration steps described in this section can be used for other HA
solutions as well (for example Microsoft Cluster Service).

The Diagnostics server should be installed on the shared disk with enough
room for the Diagnostics time series database (TSDB) and other
configuration items (for example user rights, custom dashboard screens,
etc).

Both Diagnostics servers (active and standby) need to be time synchronized
via NTP or Business Service Management. It is not recommended to use
SYSTEM as the time synchronization mechanism since the "clock" used by
the Diagnostics server needs to be the same on both servers.

The Diagnostics server uses the hostname as a prefix for sub-directories in
the archive and storage directory. This needs to be overwritten on the Java
command line that starts the server by specifying -Dmediator.id=cluster
-Dserver.id=<cluster> (<cluster> can be replaced by any other unique name)

Example: <installdir>/bin/server.sh

Note: All command line components need to be on the same line.

The ServiceGuard package requires start and stop commands for the
application. The start command for Diagnostics is the <server_install_dir>/
bin/server.sh script.

$JAVA1_5_HOME/bin/java -Dserver.id=cluster -Dmediator.id=cluster -server
-Xmx512m
$SERVER_BCP $JAVAOPTS -Dsun.net.client.defaultReadTimeout=70000
-Dsun.net.client.defaultConnectTimeout=30000
-classpath $SERVER_HOME/lib/mediator.jar$PATHSEP$SERVER_HOME/lib/
loading.jar$PATHSEP$SERVER_HOME/lib/common.jar$PATHSEP$SERVER_HOME/
lib/mercury_picocontainer-1.1.jar com.mercury.opal.mediator.util.DiagnosticsServer

Chapter 12 • Advanced Diagnostics Server Configuration

491

The stop command requires a new script that should reside in
<server_install_dir>/bin as well, with the following content:

<installdir>/bin/stop.sh

Note, make sure that the script has execute permissions (chmod u+x
stop.sh).

In the ServiceGuard package script, add the following lines:

Note, replace <installdir> with the Diagnostics' server install directory and
make sure that there is an ampersand (&) at the end of server.sh.

Diagnostics Server Assignments (LoadRunner/Performance
Center Runs)

By default, a probe that is selected for a LoadRunner or Performance Center
run uses the Diagnostics Server specified in its <probe_install_dir>/etc/
dynamic.properties.

It is possible to override the configuration when the probe is started for a
run. To do so, modify a mapping file on the Diagnostics Commander Server.
This enables you to override the Diagnostics Server assignment for a probe.

This can be useful when you are running Diagnostics in a combined
LoadRunner / Performance Center and Business Service Management
environment. You could have the probes use different Diagnostic Servers
when they are in a LoadRunner / Performance Center run than when they
are reporting data to Business Service Management.

#!/bin/sh
PID=`ps -ef | grep -v grep | grep DiagnosticsServer | awk '{ print $2 }' `
kill $PID
sleep 10

stop_command:
 <installdir>/bin/stop.sh

start_command:
 <installdir>/bin/server.sh &

Chapter 12 • Advanced Diagnostics Server Configuration

492

It might be more convenient to use this mechanism than to edit the probe
configuration file.

Note: When the probe is not in a run, it uses the Diagnostics Server specified
in its <probe_install_dir>etc/dynamic.properties file.

To override the Diagnostics Server assignment for a probe, modify the
server_assignment.properties file in the
<diagnostics_server_install_dir>\etc directory on the Diagnostics Server in
Commander mode host machine.

The format of the server_assignment.properties file is:

<ProbeID> = <Server.id>

➤ Replace <ProbeID> with the ID of the probe.

➤ Replace <Server.id> with the ID of the Diagnostics Server.

The server_assignment.properties file is dynamically read at the start of
each LoadRunner / Performance Center run. Changes made to this file
become effective without restarting the Diagnostics Server in Commander
mode.

Configuring the Diagnostics Server for LoadRunner
Offline Analysis File Size

For each LoadRunner scenario or Performance Center test that is run, the
Diagnostics Server in Mediator mode produces a file that is needed for
LoadRunner Offline analysis containing the Java data captured during the
scenario. The size of this file can grow quite large. Make sure you have
enough disk space to hold the LoadRunner Offline file on both the
Diagnostics Server in Mediator mode host machine where the file is stored
temporarily while the scenario is running and the Load Runner controller
host machine where the file is stored when the scenario ends.

Chapter 12 • Advanced Diagnostics Server Configuration

493

Estimating the Size of the LoadRunner Offline File
Estimating the size of the offline file is highly dependent upon the data and
rate at which the data is captured.

To estimate the size of the LoadRunner offline file:

 1 Run a load test for five minutes and monitor the size of the offline file
created by the Diagnostics Server in Mediator mode when the Load Runner
scenario is started.

Locate the offline file on the Diagnostics Server in Mediator mode host
machine in <diagnostics_server_install_dir>/data/<newest directory>. The
offline file has an extension of .inuse.

 2 After five minutes, note the size of the offline file.

 3 Extrapolate the size of the offline file after an hour by multiplying the size of
the offline file from the previous step by 12.

 4 Determine the anticipated size of the offline file at the end of the load test
by multiplying the 1 hour file size calculated in the previous step by the
number of hours you expect your actual load test to run.

 5 Determine if the Diagnostics Server in Mediator mode host machine and the
Controller host machine have enough disk space to accommodate the
anticipated offline file size.

Reducing the Size of the LoadRunner Offline File
If you are concerned about the size of the offline file, you can reduce the file
size by increasing the offline aggregation periods for the Diagnostics Server
in Mediator mode. This will reduce the level of granularity in the offline
data and the size of the offline files.

The default settings for these properties are 5s (5 seconds), which causes the
Diagnostics Server in Mediator mode to aggregate all data into 5-second
time slices. Increasing the value of these properties makes the offline file
smaller because fewer data points need to be stored when the aggregation
period is longer. For example, increasing the offline aggregation period
properties to 45s reduces the file size by 50-75%.

Chapter 12 • Advanced Diagnostics Server Configuration

494

Note: The impact on the size of the offline file size that will be achieved by
adjusting the offline aggregation period is highly dependent upon the
behavior of the application and the specifics of your load test.

Use the following steps to modify the Diagnostics Server in Mediator mode
offline aggregation period properties bucket.lr.offline.duration and
bucket.lr.offline.sr.duration in <diagnostics_server_install_dir>/etc/
server.properties.

To reduce the size of the offline files by increasing the Diagnostics Server in
Mediator mode offline aggregation periods:

 1 Make sure that the Diagnostics Server in Mediator mode is not participating
in any active LoadRunner / Performance Center runs. This is necessary
because the Diagnostics Server in Mediator mode must be restarted before
the property changes described in the following steps can take effect.

 2 Access the Mediator Configuration Page by navigating to the following URL:

http://<diagnostics_server_hostname>:8081/configuration/Aggregation?level=60

 3 Increase the Offline VU Aggregation Period by increasing the setting for the
Load Runner / Performance Center Offline VU Aggregation Period property.
The value of this property must be a multiple of 5; for example, 45s.

 4 Increase the Offline Server Request Aggregation Period by increasing the
value of the Load Runner / Performance Center Offline Server Request
Aggregation Period property. The value of this property must be a multiple
of 5; for example, 45s.

 5 Update the Diagnostics Server in Mediator mode with the revised property
values by clicking Submit at the bottom of the page.

A message appears at the top of the page to indicate that the changes were
saved along with a reminder to restart the Diagnostics Server in Mediator
mode. The Restart Mediator button is also displayed.

Chapter 12 • Advanced Diagnostics Server Configuration

495

For more information on updating property values from the Configuration
Page and a screen image showing the command buttons, see “Making Server
Configuration Changes” on page 793.

To cause the configuration changes to take effect, restart the Diagnostics
Server in Mediator mode by clicking Restart Mediator.

Configuring Business Service Management Sample Queue
Size and Web Services CI Frequency

The following configurations are applicable to Business Service Management
integrations.

Configuring Business Service Management Sample Queue
Size
Business Service Management Sample queue size, by default, is set to 100.
When more than 100 samples are created at once, some of the samples are
dropped, resulting in missing data in Application Management for SOA. You
can see the following message in the log: BAC sample being dropped since
too many are waiting for delivery.

You can increase the samples queue size by setting the server property,
dispatcher.server.wdedelivery.max.queue.size to configure the
WDEDelivery queue size.

Frequency of Web Service CIs
The Web Services CIs are created and added to the Run-time Service Model
automatically by Diagnostics using a default frequency.

You could change the timing of the process that adds the Web Services CIs
to the Run-time Service Model. The Web Service CI population process has
the following configuration properties defined in server.properties:

➤ bac.webservice.CI.create.runfrequency – the number of seconds between
population runs (default=300s, 5m)

➤ bac.webservice.CI.create.query.granularity – the granularity of the
Diagnostics query used to identify Web Service CIs to create (default=1d)

Chapter 12 • Advanced Diagnostics Server Configuration

496

Configuring Diagnostics Using the Diagnostics Server
Configuration Pages

The Diagnostics Server Configuration pages enable you to set the property
values that control how the Diagnostics Server communicates with the
other Diagnostics components, and how it processes the data it receives
from the probes.

Note: To ensure that you are entering valid property values, use these pages
to update the Diagnostics Server properties rather than editing the property
files directly.

For information about viewing and modifying Diagnostics using the
Diagnostics Server Configuration pages, see Appendix A, “Diagnostics
Administration UI.”

Optimizing the Diagnostics Server in Production to Handle
More Probes

The number of probes that a single diagnostic server process can handle
depends largely on the number of unique server requests per 5-minute
interval, and the number of methods and layers in each server request. The
following optimizations increase the number of probes that can be handled
per server process.

Chapter 12 • Advanced Diagnostics Server Configuration

497

➤ The default setting is for the diagnostic server to pull the trends from each
probe every 5 seconds, and the trees from each probe every 45 seconds. If a
single diagnostic server process is handling more than 25 probes, this could
be optimized such that the trends and trees are pulled less often. A suggested
optimal setting in production is a 30-second trend pull interval, and a
120-second tree pull interval. These values can be configured in
<diagnostics_server_install_dir>\Server\etc\server.properties as follows:

➤ The maximum heap size of the server process is determined by the -Xmx
parameter in the server's startup script. The default setting is 512 MB for
maximum heap size. Increase the maximum heap size according to the load
from the probes. The suggested values for maximum heap size, based on the
number of probes to be handled, is available in Chapter 1, “Preparing to
Install HP Diagnostics.”

➤ A 1 Gbps link is strongly recommended in production for the diagnostic
server when the server is handling more than 30 probes.

➤ If a single server process is handling more than 75 probes, increase the
number of jetty threads. The general rule of thumb for sizing the number of
threads is twice the number of probes + 40. The default value is 200. The
number of jetty threads can be increased by modifying the
jetty.threads.max property in <diagnostics_server_install_dir>\Server\etc\
webserver.properties; for example:

Configuring a Custom Context Root

To configure a custom context root on Diagnostics commander server set
the following in the etc/webserver.properties file:

Reverse proxy prefix for Diag URLs (e.g. /diag/customername in ES
environment) # reverse_proxy.prefix=

The interval at which to pull trends from probes
probe.trends.pull.interval = 30s

The interval at which to pull trees from probes
probe.trees.pull.interval = 120s

jetty.threads.max=300

Chapter 12 • Advanced Diagnostics Server Configuration

498

If BSM is also configured with a custom context root (instead of '/topaz'),
then in the BSM Admin Diagnostics Configuration page you will also need
to specify the context root configured on the diagnostics side for the
commander.

499

13
Advanced Java Agent and Application
Server Configuration

This section discusses advanced configuration of the Diagnostics Java Agent
and the application server environment. Advanced configuration is for
experienced users with in-depth knowledge of this product. Use caution
when modifying any of the component properties.

This chapter includes:

 ➤ Advanced Configuration Overview on page 500

 ➤ Disabling the Java Diagnostics Profiler on page 501

 ➤ Controlling Probe Logging on page 502

 ➤ Setting the Probe’s Host Machine Name on page 503

 ➤ Specifying a Different Probe IP Address on page 505

 ➤ Set the Active Products Mode on page 505

 ➤ Controlling Automatic Method Trimming on the Agent on page 508

 ➤ Configuring URI Truncation, Mapping and Trimming on page 510

 ➤ Configuring an Agent for a Proxy Server on page 511

 ➤ Time Synchronization for Probes Running on VMware on page 512

 ➤ Limiting Exception Tree Data on page 512

 ➤ Diagnostics Probe Administration Page on page 515

 ➤ Authentication and Authorization for Diagnostics Java Profilers on page 518

 ➤ Configuring Collection of CPU Time Metrics on page 521

 ➤ Configuring Consumer IDs on page 524

Chapter 13 • Advanced Java Agent and Application Server Configuration

500

 ➤ Configuring SOAP Fault Payload Data on page 535

 ➤ Configuring REST Services on page 537

 ➤ Customizing Grouping JMS Temporary Queue/Topics on page 537

 ➤ Configuring SQL Query Parsing on page 537

 ➤ Configuring Display of Application Name for Server Requests on page 538

 ➤ Maintaining Probe Settings from the Java Profiler UI on page 539

 ➤ Generating Performance Reports for JUnit Tests on page 547

Advanced Configuration Overview

The following bullet points list the probe configuration sources of
information to consult to configure your environment.

➤ If you have a probe that you want to prevent others from using in Profiler
mode, see “Disabling the Java Diagnostics Profiler” on page 501.

➤ To have log messages posted to the probe logs for lower level messages,
adjust the log level as described in “Controlling Probe Logging” on
page 502.

➤ If you have more than one agent installed on the same host, make sure the
log messages for each agent are stored in a different file, as explained in
“Changing the Log Directory for a Probe” on page 503.

➤ To examine the performance of processing that would normally be trimmed
from the metrics reported in Diagnostics, you can reduce the level of
trimming or turn off trimming completely as described in “Controlling
Automatic Method Trimming on the Agent” on page 508.

➤ If there is a proxy between the agent and the Diagnostics command server,
you must set the correct property to tell the agent the URL of the
Diagnostics command server, see “Configuring an Agent for a Proxy Server”
on page 511.

➤ If you installed a Java Agent in an HP Software as a Service (SaaS)
environment, disable the reverse http (rhttp) communication between the
agent and the Diagnostics mediator server, see “Time Synchronization for
Probes Running on VMware” on page 512.

Chapter 13 • Advanced Java Agent and Application Server Configuration

501

➤ If you are running in a virtual environment, see “Time Synchronization for
Probes Running on VMware” on page 512.

➤ If you need to limit the amount of exception data, see “Limiting Exception
Tree Data” on page 512.

➤ If you want to use some of the collection options that require property file
changes, see the other topics in this section such as “Configuring Consumer
IDs” on page 524.

Disabling the Java Diagnostics Profiler

You can disable the Diagnostics Profiler for Java on a Java Agent so that it
cannot be accessed accidently. When the Java Diagnostics Profiler is
disabled, the user interface cannot be accessed from the Java Diagnostics
Profiler URL: http://<probe_host>:<probeport>/profiler.

To disable the Java Diagnostics Profiler, set the disable.profiler property in
<probe_install_dir>/etc/probe.properties to true.

The default value for disable.profiler is false. To enable the Java Diagnostics
Profiler once it is disabled, change the value of the disable.profiler property
from true to false.

Chapter 13 • Advanced Java Agent and Application Server Configuration

502

Controlling Probe Logging

You can control the level of the messages the probe logs and change the
location where the log messages are posted using the probe properties.

Controlling the Log Message Level
The level of messages from the probe that are logged to the standard output
is controlled by the lowest_printing_level property in the property file
<probe_install_dir>/etc/logging.properties. The default setting for this
property is OFF. This prevents almost all agent messages from being logged
to the console.

You can adjust the logging level dynamically by changing the value assigned
to the lowest_printing_level property. The level of messages logged changes
as soon as you save the property file.

The valid values for the lowest_printing_level property are:

Property
Value

Description

OFF No messages are logged.

DEBUG All messages are logged.

INFO Info, Severe, and Warning messages are logged.

WARN Warning and Severe messages are logged.

SEVERE Severe messages are logged.

Chapter 13 • Advanced Java Agent and Application Server Configuration

503

Changing the Log Directory for a Probe
The default location for the log directory for a probe is <probe_install_dir>/
log. When you have more than one probe on the same host, you can
change the location of the log directory for each probe using the log.dir
property. This property can be set in two ways:

➤ The value of the log.dir property can be set in the property file
<probe_install_dir>/etc/probe.property.

➤ The value of the log.dir property can be specified on the startup
command line for the application server as a JAVA system property as in
the following example:

For more information on specifying the log.dir property on the startup
command line, see “Configuring an Agent for a Proxy Server” on
page 511.

Setting the Probe’s Host Machine Name

The probe’s host name registers the probe with the Diagnostics commander
server. The Diagnostics commander server uses the probe’s host name to
communicate with the probe and displays it along with the system metrics
for the server that the probe is monitoring in the Diagnostics views.

The probe normally can detect the host name of the machine that is its
host. In some situations, the server configuration is faulty and the probe
cannot detect the correct host name. In situations where a firewall or NAT is
in place or where your agent host machine was configured as a multi-homed
device, it might not be possible for the agent to properly detect its host.

If the probe cannot detect its host name, you can instruct the probe to get
the host name via a reverse DNS lookup based on the socket connection, or
you can specify the host name using a probe property.

-Dprobe.log.dir=/path/to/log

Chapter 13 • Advanced Java Agent and Application Server Configuration

504

Instructing the Probe to Use Reverse DNS Lookup
If the configuration of the probe’s host prevents the probe from detecting
the host name, you can instruct the probe to detect the host name using a
reverse-DNS lookup by setting the server.host.name.lookup property. This
property is located in the <probe_install_dir>/etc/dispatcher.properties file.

The default value for the server.host.name.lookup property is ‘false’. This
tells the probe to do the lookup without using reverse-DNS. Set this property
to ‘true’ to instruct the probe to use reverse-DNS lookup.

Manually Specifying the Probe Host Name
The registered_hostname property enables you to manually set a host
machine name for the probe and stop the probe from doing the automatic
lookup.

To set a default host machine name for a probe, set the
registered_hostname property (located in the property file
<probe_install_dir>/etc/dispatcher.properties) to a machine name or IP
address.

When you set the registered_hostname property, automatic lookup of the
host name is disabled.

Note: Setting the registered_hostname property because of a NAT or firewall
is only an issue for a test environment where you are using LoadRunner,
Performance Center, or Diagnostics Standalone.

When you set the registered_hostname in a production environment where
you are using Business Service Management or Diagnostics Standalone, the
name you specify is shown as the host name in System Health.

Chapter 13 • Advanced Java Agent and Application Server Configuration

505

Specifying a Different Probe IP Address

The probe.host.ip.address.override property (located in the property file
<probe_install_dir>/etc/dispatcher.properties) enables you to override the
Probe’s IP address. You can use this property when you want the probe to
provide the server with a different IP address, for example, a Virtual IP that
would allow the server to communicate to the probe through a tunnel.

Set the Active Products Mode

The Java Agent mode is typically set for you based on the options you enter
in the setup program. But you can set the mode manually as described in
this section.

The Java Agent can be set in different modes to do the following:

➤ Monitor applications from development through pre-production testing
and into production

➤ Work with other HP Software products

➤ Be used as a standalone Diagnostics Java Profiler not reporting to a server or
to other HP Software products

The mode the Java Agent works in is determined by the modes value of the
active.products property located in the property file <probe_install_dir>/
etc/probe.properties.

The modes value in the active.products property is also used in determining
usage against the license capacity (see “License Information Based on
Currently Connected Probes” on page 85). For Diagnostics there are two
types of LTUs (License to use):

➤ AM - When using of the product in an enterprise mode, typically in a
production environment.

➤ AD - When using the product in a pre-production load testing environment
with probes in LoadRunner or Performance Center runs.

The value of the active.products property is initially set at the time you
install the Java Agent.

Chapter 13 • Advanced Java Agent and Application Server Configuration

506

To change the value of the active.products property you can edit the
property file and restart the application server. Or you can re-run the Java
Agent Setup Module and use the Change option to set the mode to
Diagnostics Profiler Mode (PRO), Application Management/Enterprise Mode
for Diagnostics (Enterprise) and/or TransactionVision (TV) or Diagnostics
Mode for LoadRunner/Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for Java trial copy in
enterprise mode or integrated with other HP Software products, contact HP
Software Customer Support to purchase HP Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software
products, you must perform additional configuration steps. See the sections
in “Setting Up Integration with Other HP Software Products” on page 735
for details on integration with Business Service Management, LoadRunner
or Performance Center. The sections that follow provide instructions for
configuring each product mode of the active.products property.

PRO Product Mode – Diagnostics Profiler for Java

When PRO mode is set, the agent gathers performance metrics and presents
them in the standalone Diagnostics Java Profiler user interface which is
made available through a URL on the agent host.

If you are running the Java Agent as part of the Java Diagnostics Profiler trial
copy, restrictions are placed on the agent to limit the load it can handle.

If you are running the Java Agent as part of the full Diagnostics enterprise
product, or along with another HP Software product, the Profiler is enabled
without the load restrictions.

PRO mode is not used in determine usage against license capacity.

Chapter 13 • Advanced Java Agent and Application Server Configuration

507

Enterprise Product Mode

When configured in Enterprise mode, the agent works with HP Software
products such as Business Service Management, LoadRunner, Performance
Center, and as the full Diagnostics enterprise product. Although you must
also do additional configure to enable these integrations (see the sections in
“Setting Up Integration with Other HP Software Products” on page 735 for
details).

In Enterprise mode data will also be sent to the Diagnostics Java Profiler.

In Enterprise mode you must also register the agent with the Diagnostics
Servers (see “Register the Agent with the Diagnostics Servers” on page 150).

Enterprise mode is the default for Java Agents (if you don’t specify AD or AM
mode). In Enterprise mode the agents are counted against the AM license
capacity.

AM Product Mode

In AM mode the Java agent will capture all instrumentation data. You can
set AM mode to protect an agent in a production Business Service
Management deployment from accidently being included in a LoadRunner
or Performance Center run. In AM mode, the agent is not listed as an
available agent in LoadRunner or Performance Center.

Agents in AM mode will always be counted against the AM license capacity.

AM mode supersedes all other modes except for AD.

AD Product Mode

In AD mode the Java agent will only capture data during a LoadRunner or
Performance Center run and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21.

When the agent is in AD mode it will not use resources or send any data to
the server unless the probe is part of a LoadRunner/Performance Center run.

See Chapter 24, “Setting Up HP LoadRunner and HP Diagnostics
Integration” for how to set up LoadRunner integration or see Chapter 25,
“Setting Up Performance Center to Use Diagnostics” for how to setup
Performance Center integration.

Chapter 13 • Advanced Java Agent and Application Server Configuration

508

Use this mode to prevent an agent in a QA environment from using
additional resources and continually report data to the Diagnostics server
when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD
mode are only counted against the AD license capacity when in a
LoadRunner or Performance Center run. For example if you have 20 probes
installed in LoadRunner/Performance Center AD mode but only 5 are in a
run, then only 5 are counted against AD license capacity.

TV Product Mode

This mode will send events to Transaction Vision. This mode can be
combined with other modes. TV mode is not used to determine usage
against HP Diagnostics license capacity.

Controlling Automatic Method Trimming on the Agent

Default configuration for the agent includes settings that control the
trimming of methods. Trimming can be controlled according to how long
the method takes to execute, which is known as latency, and by the stack
depth of the method call. The default configuration instructs the probe to
trim both by latency and depth.

You could reduce the level of trimming, or turn off trimming completely.
You can control trimming using the minimum.method.latency and
maximum.stack.depth properties in <probe_install_dir>/etc/
capture.properties.

Controlling Latency Trimming
Methods that complete with latency greater than or equal to the value of
the minimum.method.latency property are captured, and those that
complete with latency less than this limit are trimmed to avoid incurring
the overhead for less interesting methods.

Chapter 13 • Advanced Java Agent and Application Server Configuration

509

Note: In the following situations, latency is not trimmed when its latency is
less than the trimming property:

➤ Methods that are the root for a call tree.

➤ Methods that threw an exception.

If the information for all methods must be captured, lower the value of the
minimum.method.latency property or set it to zero.

Consider the following when setting the minimum.method.latency
property:

➤ The lower the value of the minimum.method.latency property, the greater
the chance that the performance of your application will be adversely
impacted.

➤ Depending on your platform, and whether native timestamps are being
used (use.native.timestamps = false), it might not be useful to specify this
value in increments of less than 10 ms.

Controlling Depth Trimming
Methods that are called at a stack depth less than or equal to the value of the
maximum.stack.depth property are captured. Those called at a stack depth
greater than this limit are trimmed to avoid incurring overhead for less
interesting methods.

Here is an example:

If maximum.stack.depth is 3 and /login.do calls a() calls b() calls c() then only /
login.do, a, and b are captured.

Note that setting a low maximum.stack.depth can significantly reduce the
overhead of capture.

Chapter 13 • Advanced Java Agent and Application Server Configuration

510

Configuring URI Truncation, Mapping and Trimming

Any HTTP/S server request URI can be transformed before being reported by
the probe. The possible transformations are based on regular expression
matching and replacement controlled by the uri.pattern.replace property in
dynamic.properties. The value of the property is a comma-separated list of
pattern replacement operations to attempt on each URI.

This can be used when you are seeing too many server requests and you
want to replace many server request URIs with one simplified server request
URI that aggregates them.

Truncate or map URIs using s/pattern/replace/ syntax. To perform multiple
operations use a comma-separated list. The operations are performed in
order.

For example, to truncate before a string, match the string and any characters
that follow it and leave replace empty. In this example '$' matches
end-of-line.

 s/string.*$//

Comments in the dynamic.properties file under URI Truncation and
Mapping provide details and more examples.

Important: Overuse of this feature will impact performance.

If you have too many server requests you can also use the property
maximum.uri.pathsegments in the capture.properties file to trim server
requests down to n path segments.

The default is -1 which disables the property. For probes reporting in a SaaS
environment (SaaS selected in the Java Agent setup)
maximum.uri.pathsegments is set automatically to 2 to ensure the volume
of server request data sent to HP hosted servers is not too large.

Chapter 13 • Advanced Java Agent and Application Server Configuration

511

For example a setting of 2 would result in no more than two path segments.
So http://localhost:8080/path1/path2/path3 will trim down to
http://localhost:8080/path1/path2/.

You could use uri.pattern.replace and then set maximum.uri.pathsegments
to trim down to a certain number of path segments. Or use just one property
or the other.

Configuring an Agent for a Proxy Server

Important! This section only applies if you are using the Java Agent with a
Diagnostics Server.

Two properties are used to specify for the Java Agent, the URL of the
Diagnostics command server. The property you set depends on whether or
not there is a proxy.

➤ registrar.url in dispatcher.properties

The registrar.url property in
<probe_install_dir>\etc\dispatcher.properties is set when you install the
agent. When there is a direct connection between the agent and the URL
of the Diagnostics command server, the agent uses the value of this
property.

➤ registrar.url in webserver.properties

In the presence of a proxy, you must set the registrar.url property in the
<probe_install_dir>\etc\webserver.properties file to indicate the URL of
the Diagnostics command server.

Chapter 13 • Advanced Java Agent and Application Server Configuration

512

Time Synchronization for Probes Running on VMware

For probes running in a VMware guest, time must be synchronized between
the VMware guest and the underlying VMware host. If time is not
synchronized properly, the Diagnostics UI could display inaccurate metrics
or no metrics at all from a probe running in a VMware guest.

Time should be synchronized according to the recommendations given in
the VMware whitepaper on timekeeping
(http://www.vmware.com/pdf/vmware_timekeeping.pdf) in a section on
"Synchronizing Hosts and Virtual Machines with Real Time." VMware Tools
must be installed in each VMware guest operating system that hosts a
Diagnostics probe. The time synchronization option in VMWare Tools must
be turned on.

This option in VMware Tools works only if the guest operating system time
is initially set earlier than that of the VMware host. For instructions on how
to install VMware Tools, see the "Basic System Administration" document
for VMware ESX Server. If any non-VMware time synchronization software
(such as Network Time Protocol) is used, it should be run in the VMware
ESX server service console.

If you encounter negative latency issues when running the probe on
VMware guest with the probe property
attempt.vmware.timestamp.adjustments set to true, you should set the
following property in the probe etc/capture.properties file:

use.vmware.timestamp.workaround=true

When use.vmware.timestamp.workaround is set to true, the probe will use
the alternative call to get the VMware host timestamps, so as to workaround
the negative latency issue.

Limiting Exception Tree Data

The agent collects exception information and uses it to build exception
instance trees. Exception instance trees provide the data for the exception
information that appears in the Diagnostics UI such as a stack trace.

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 • Advanced Java Agent and Application Server Configuration

513

By default, every exception that occurs in the monitored application is a
candidate for the exception instance trees. Collecting all exception
information is usually undesirable, however, because exceptions that are not
of interest overload the display as well as the data collection and transfer
operations. You can, therefore, limit the exception types for which data is
collected. For example, filtering application server-based errors such as
javax.naming.AuthenticationException allow the exception trees to contain
more application-specific errors.

The exception tree data collected is controlled by limiting specific exception
types or limiting the number of exception types.

Limit Specific Exception Types
You can control which specific exception types are excluded and included
from collection by setting the exception.types.to.exclude and
exception.types.to.include properties in the
<probe_install_dir>\etc\dispatcher.properties file as follows:

➤ exception.types.to.exclude

Set this property to ignore exceptions of one or more specified types. All
subtypes of each specified type are also ignored unless the subtype is
specified by the exception.types.to.include property.

➤ exception.types.to.include

Set this property to specify which, if any, of the specified excluded
exceptions (or their subtypes) are to be included. Subtypes of any
exception type specified to be included are also included.

Both properties take lists of fully-qualified exception type names, separated
by commas. Changes to the dispatcher.properties file take effect
immediately. It is not necessary to restart the application.

Chapter 13 • Advanced Java Agent and Application Server Configuration

514

Limit the Number of Exception Types
You can limit the exception tree data collected by specifying the number of
different types of exceptions by setting the exception.instance.tree.count
property in server.properties. By default, this property is set to 4, which
indicates that only the first four exceptions types encountered during the
probe’s data collection cycle are used in building the exception trees. You
can raise or lower this setting.

Examples
The following example causes exceptions of type ClassNotFoundException
and all its subtypes to be ignored.

The following example causes some subtypes of the java.lang.IOException
class to be excluded, as indicated by the diagram that follows:

The following diagram shows the excluded and included exception types on
the java.io class hierarchy:

...
exception.types.to.exclude=javax.naming.AuthenticationException

...
exception.types.to.exclude=java.io.IOException,java.io.InvalidClassException
exception.types.to.include=java.io.ObjectStreamException

Chapter 13 • Advanced Java Agent and Application Server Configuration

515

Diagnostics Probe Administration Page

You can use the Diagnostics Probe Administration page to configure Java
Agent and Profiler settings. Access the Diagnostics Probe Administration
page directly from your browser.

Accessing the Diagnostics Probe Administration Page
Open the Diagnostics Probe Administration page inside your browser.

To access the Diagnostics Probe Administration page:

 1 In your browser, navigate to http://<probe_host>:<probeport>.

A probe is assigned to the first available port, beginning at 35000.

The Administration page opens.

 2 Select the menu option for the activity you want to perform.

➤ Open Diagnostics Profiler. Opens the Java Diagnostics Profiler.

➤ Advanced Options. Opens the Components pages. For more information,
see “Diagnostics Probe Components Page” on page 516.

➤ Manage Authorization and Authentication. Depending on how your
probe is configured, you will access a different pages from this option

Chapter 13 • Advanced Java Agent and Application Server Configuration

516

➤ If your probe is configured to work with a Diagnostics Server, the probe
(Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected.
When you click this option, you are redirected to that Diagnostics
command server. For more information, see Appendix B, “User
Authentication and Authorization.”

➤ If your probe is configured to work as a Profiler only and is not
connected to any Diagnostics Server, this option opens the User
Administration page, where you can create, edit and delete users and
change their privileges. For more information, see “Authentication
and Authorization for Diagnostics Java Profilers” on page 518.

Diagnostics Probe Components Page
From the Components page you can open the Java Diagnostics Profiler, and
access the User Administration page.

To access the Components page:

 1 Open the Diagnostics Probe Administration page as described in “Accessing
the Diagnostics Probe Administration Page” on page 515.

 2 Click Advanced Options.

 3 If prompted, enter your user name and password.

The Components page opens.

Chapter 13 • Advanced Java Agent and Application Server Configuration

517

 4 Click one of the following options:

➤ query. For internal use by developers.

➤ inst. Includes various instrumentation options. For more information
about probe instrumentation, see “Custom Instrumentation for Java
Applications” on page 337.

➤ security. Depending on how your probe is configured, you access a
different page from this option.

➤ If your probe is configured to work with a Diagnostics Server, the probe
(Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected.
When you click this option, you are redirected to that Diagnostics
command server. For more information, see “User Authentication and
Authorization” on page 797.

➤ If your probe is configured to work as a Profiler only and is not
connected to any Diagnostics Server, this option opens the User
Administration page, where you can create, edit, and delete users and
change their privileges. For more information, see “Authentication
and Authorization for Diagnostics Java Profilers” on page 518.

➤ scheduler. Enables you to see and control regularly scheduled
background tasks. For the ServerCommunication scheduler or the
sharedInfrequentEventScheduler, you can see the state and the number
of tasks inside each. For each task, you can select an action such as RUN
NOW or DELETE.

➤ infrequentLogger. See the current status of entries in the infrequent
logging table.

➤ files. Installation directory browser – upload and download property files,
log files, etc.

Chapter 13 • Advanced Java Agent and Application Server Configuration

518

Authentication and Authorization for Diagnostics Java
Profilers

When you install the Java Agent as a Profiler only (not connected to any
Diagnostics Server), you can manage the authentication and authorization
of users of the Profiler from the Diagnostics Probe User Administration page.

Note: If the Java Agent is configured to work with a Diagnostics Server, the
probe (Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected. For more
information, see “User Authentication and Authorization” on page 797.

To manage authentication and authorization for users of the standalone
Java Diagnostics Profiler:

 1 Access the Diagnostics Probe Administration page

In your browser, navigate to http://<probe_host>:<probeport>. A probe is
assigned to the first available port, beginning at 35000.

The Diagnostics Probe administration page opens.

Chapter 13 • Advanced Java Agent and Application Server Configuration

519

 2 Select Manage Authorization and Authentication to open the User
Administration page.

On the User Administration page, you can create new users, assign privileges
to users, change passwords of existing users, and delete users.

To create a new user:

 1 Click Create User, enter a user name in the New User Name box, and click
OK. The new user appears in the list of user names.

 2 In the row representing the new user, type a password in the Password box
and confirm it by retyping it in the Confirm Password box.

 3 Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

Chapter 13 • Advanced Java Agent and Application Server Configuration

520

To assign privileges to a user:

 1 Go to the row representing the relevant user and select the appropriate
check boxes representing the different privileges.

The following privilege levels can be assigned to Java Diagnostics Profiler
users:

Note: The privilege levels, rhttpout and system are for internal purposes
only.

Each privilege level stands alone. There is no inheritance of privileges from
one level to the next. You must grant a user all of the privilege levels that are
necessary to perform the functions they need to perform.

 2 Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

To change the password of an existing user:

 1 Go to the row representing the relevant user, type a password in the
Password box, and confirm it by retyping it in the Confirm Password box.

 2 Type the password of the user currently logged on, in the Password for
<current user> box and click Save Changes.

Privilege Description

View The user can view Profiler data from the UI.

Execute The user can perform garbage collection and clear the
performance data held by the Profiler.

Change The user can run potentially risky operations, such as taking a
heap-dump or changing instrumentation.

Chapter 13 • Advanced Java Agent and Application Server Configuration

521

To delete a user:

 1 Type the password of the user currently logged on, in the Password for
<current user> box.

 2 Click the Delete user button corresponding to the user you want to delete.

A message box opens asking if you want to delete the selected user.

 3 Click OK to delete the user.

Configuring Collection of CPU Time Metrics

The CPU Time metrics appear in the Details pane for the Transaction view,
the Probes view, the Call Profile view, and the Portal Components view. You
can enable, disable, and configure the collection of CPU time metrics. The
CPU time metrics are CPU (Avg) and CPU (Total). If collection of CPU time
metrics is disabled or not configured for methods, you will see N/A for these
metrics.

The CPU Time metrics rely on CPU timestamping which is generally
supported on the following platforms: Windows, Solaris, AIX, HP-UX and
Linux kernels 2.6.10 or later (for example RedHat 5.x, SUSE 10.x).

Note: Support for CPU timestamping can vary, however, not only by
operating system, but also by platform architecture (for example SPARC
versus x86).
For the most recent information on support for CPU Time on specific
platform versions and architecture, see the Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Chapter 13 • Advanced Java Agent and Application Server Configuration

522

Important: In VMware, the CPU time metric is from the perspective of the
guest operating system and is affected by the VMware virtual timer. See the
VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and “Time
Synchronization for Probes Running on VMware” on page 512.

By default, collection of CPU time metrics is enabled for server requests. You
can disable CPU time metric collection and configure collection of CPU
time metrics in property files or using the Java Diagnostics Profiler UI. You
can configure collection of the following CPU Time metrics:

➤ Server Requests only

➤ Server Requests and Portlet Methods

➤ Server Requests and All Methods

For a Java Agent, the collection of CPU Time metrics is controlled by two
properties:

➤ use.cpu.timestamps property in
<probe_install_directory>\etc\capture.properties.

This property is set to true by default, which enables collection of CPU time
metrics. Collection of any CPU timestamps is controlled by a second
property listed below. If you set the use.cpu.timestamps property to false,
the CPU time metrics are not collected for any server request or method
reported by the probe

➤ cpu.timestamp.collection.method property in
<probe_install_directory>\etc\dynamic.properties.

Note: Use caution when configuring the collection of CPU timestamps
because of the increase in Diagnostics overhead. The increased overhead is
caused by an additional call for each method that is needed to collect the
timestamp.

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 • Advanced Java Agent and Application Server Configuration

523

Cpu.timestamp.collection.method can be set to one of the following:

➤ 0 – No CPU timestamping.

➤ 1 – CPU timestamps collected only for server requests.

The default value is 1, which means CPU times can be reported at the server
request level but not the transaction level. However, if the setting is
removed or commented out of the properties file, the default is 0.

➤ 2 – CPU timestamps collected for All server requests and ALL methods.

➤ 3 – CPU timestamps collected for ALL server requests and the lifecycle
methods instrumented for Portal Components.

Another way to set the cpu.timestamp.collection.method property is using
the Configuration tab in the Java Diagnostics Profiler as follows:

 1 In the Profiler UI, select the Configuration tab. The profiler does not need to
be started to make this probe configuration change.

 2 In the Configuration screen, select a Collect CPU Timestamps option from
the dropdown list.

CPU Timestamp Collection
Method

Description

None No CPU Timestamps.

For Server Requests Only CPU timestamps are only collected for server
requests.

For Server Requests and
Portlet Methods

CPU timestamps are collected for ALL server
requests and the lifecycle methods instrumented for
portal components.

For Server Requests and All
Methods

CPU timestamps are collected for ALL server
requests and ALL methods.

Chapter 13 • Advanced Java Agent and Application Server Configuration

524

 3 When you complete your changes, click Apply Changes.

Note: Your changes take effect immediately. You do not need to restart the
application (or probe).

Configuring Consumer IDs

Web service metrics can be grouped by particular consumers of the Web
service. The metrics are then aggregated for that consumer and displayed in
SOA Services views such Services by Consumer ID or Operations by
Consumer ID. There are several ways of defining the consumer ID:

➤ A Value in a SOAP Header

➤ A Value in a SOAP Envelope

➤ A Value in the SOAP Body

➤ A Value in an HTTP Header

➤ A JMS Queue Name (or topic name) for SOAP over JMS web services

➤ A JMS Message Property for SOAP over JMS web services

➤ A JMS Message Header for SOAP over JMS web services

➤ A specific IP Address

➤ A Range of IP Addresses

Chapter 13 • Advanced Java Agent and Application Server Configuration

525

Important: Defining consumer ID based on SOAP header, envelope, or body
requires the Diagnostics SOAP message handler for Java probes. For some
application servers, special instrumentation is provided in Diagnostics to
automatically load the Diagnostics SOAP message handler.

However, some manual configuration is required for WebSphere 5.1
JAX-RPC and Oracle 10g JAX-RPC, see “Loading the Diagnostics SOAP
Message Handler” on page 239 for details.

The Diagnostics SOAP message handler is not available for all application
servers. Custom instrumentation is not available to capture SOAP faults or
consumer IDs from SOAP payloads. Therefore, this feature is not available
on all versions of all application servers. For the most recent information
on Diagnostics SOAP message handler support, see the Diagnostics Support
Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Aggregating the data by consumer ID is useful if you want to determine who
is using a particular service and how frequently they are using it. Consumer
IDs are also useful for Business Service Management. Business Service
Management users can look at the performance of the same application
based on consumers to compare their performance characteristics.

Configuring Consumer IDs is optional. By default, IP address is used as
consumer ID for SOAP over HTTP/S web services and inbound queue name
(or topic name) is used by default as consumer ID for SOAP over JMS web
services.

This section includes:

➤ “Basic Procedure for Consumer ID Configuration” on page 526

➤ “About Consumer ID Rules” on page 527

➤ “Consumer ID Rules Syntax and Examples for Java Agents” on page 529

Chapter 13 • Advanced Java Agent and Application Server Configuration

526

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:

 1 (Optional). Specify *dump-payload in the consumer.properties file to print
the entire SOAP payload out to the consumer.log file. Use this output to
plan how to create the specific rules to configure consumer IDs for SOAP
payload capture.

Before you configure consumer IDs, familiarize yourself with the SOAP
payload data to determine how best to create the specific rules Diagnostics
will use to find the value for consumer IDs.

The dump-payload option should only be used when help is required to
locate the element that contains the Consumer Id.

This option should be the only value on the right side of the equal(=)sign
when used: DumpTest;HTTP_WS;TraderService = *dump-payload

Important: Do not try to use the same service name to extract a value AND
dump the payload at the same time.

For example, to use this feature, enter:

SoapTest1;HTTP_WS;TraderService = *dump-payload

Chapter 13 • Advanced Java Agent and Application Server Configuration

527

This results in printing the SOAP Payload for a rule that matches
TraderService. The content of the consumer.log file is:

 2 For each Java Agent you want metrics grouped by consumer, update the
consumer.properties file as described in “Consumer ID Rules Syntax and
Examples for Java Agents” on page 529.

 3 To track more than five consumer types, update the
max.tracked.ids.per.probe setting in the dispatcher.properties file.

 4 Review the <probe_name>_id.properties file located in the probe/files/log
directory. The <probe_name>_id.properties file might need to be
completely deleted or modified to match the consumer.properties changes
made in the previous steps. The file goes together with the
max.tracked.ids.per.probe (dispatcher.properties) setting, once the limit is
reached, per probe, all other consumers are classified as "Other".

About Consumer ID Rules
The assignment of consumer IDs is controlled by consumer ID rules in a
configuration file, consumer.properties.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header
rules, JMS web service rules, and IP rules. The rules are not applied according
to how the rules are defined. The SOAP header rules are applied first; the
HTTP headers rules are applied next; then the JMS rules are applied; and
lastly the IP rules are applied.

2009-01-15 14:42:13,653 INFO consumer [[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)'] [PAYLOAD:] <?xml version="1.0" encoding="UTF-8"
standalone="yes"?><soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:trad="http://
www.bea.com/examples/Trader" xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/">
 <soapenv:Header>
 <CallerA>customerA</CallerA>
 </soapenv:Header>
 <soapenv:Body>
 <trad:buy soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <string xsi:type="xsd:string">hpq</string>
 <intVal xsi:type="xsd:int">11</intVal>
 </trad:buy>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 13 • Advanced Java Agent and Application Server Configuration

528

Important: ALL configuration items in the rules are case sensitive. For
example, if you enter a <pattern-name> of TraderService, the Web service
name must have a capital T and a capital S for the pattern to match.

All rule types do not need to be used. There might be SOAP rules, no HTTP
rules, and IP rules. If there is no match on any of these rules, the original IP
address or queue name for JMS is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML
element in the SOAP header, SOAP envelope, or body as well. The rule
specifies a regular expression that is used to match against the web service
name being called by the consumer. See “Using Regular Expressions” on
page 926 for help using regular expressions.

If there is a match, the probe attempts to find the text element also specified
in the rule. If the text element is not found in the SOAP header, this rule is
skipped and the probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a
header in the collection of HTTP headers in a HTTP request.

The JMS web service rules allow for the consumer ID to be JMS queue/topic
name, and JMS Message properties or Message Header (JMSReplyTo only).

The IP rules allow for the consumer ID to be obtained from the mapping of
IP addresses to a consumer ID. The rule is used to define an IP address, or a
range of addresses, to be assigned to a consumer ID.

Chapter 13 • Advanced Java Agent and Application Server Configuration

529

Consumer ID Rules Syntax and Examples for Java Agents
The assignment of consumer IDs is controlled by specifying rules in the
consumer.properties file.

Important: ALL configuration items are case sensitive. For example, if you
enter a <pattern-name> of TraderService, the Web service name must have a
capital T and a capital S for the pattern to match.

A Value in a SOAP Header
To assign a consumer ID based on a value in a SOAP header, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-header;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name
or you can use the exact Web service name.

<element-value> the element in the SOAP envelope whose value you want
to use as the Consumer ID.

For example, the following rule matches on a Web service with service name
TraderService and uses the CallerA element’s value as the consumer IDs:

SoapRule1;HTTP_WS;TraderService = soap-header;CallerA

Chapter 13 • Advanced Java Agent and Application Server Configuration

530

When the callers of the TraderService Web service have a value defined for
CallerA, the metrics are grouped by the different values for CallerA. The
following excerpt from the soap header maps to a consumer ID of
"Customer2" for this caller of the TraderService:

By default, Diagnostics looks for CallerA in the first-level element (the
element directly under the SOAP env:Header). You can configure
Diagnostics to look into a deeper-level xml element for consumer ID. The
dynamic property max.search.level.depth in the consumer.properties file
controls the depth at which to search for consumer ID (default value is 1
level deep). For example, max.search.level.depth = 2 would find consumer
ID:

SoapTest1;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<env:Header>

<CallerA>Customer2</CallerA> <---- The consumer id returned would be
 "Customer2"

</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>

</m:sell>
</env:Body>

</env:Envelope>

<env:Header>
<test:id>

<test:CallerA>consumerA</test:CallerA>
</test:id>

</env:Header>

Chapter 13 • Advanced Java Agent and Application Server Configuration

531

A Value in a SOAP Envelope
To assign a consumer ID based on a value in a SOAP envelope, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-envelope;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match on the Web service name
or you can use the exact Web service name.

<element-value> the element in the SOAP envelope whose value you want
to use as the Consumer ID.

A Value in the SOAP Body
To assign a consumer ID based on a value in the SOAP body, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = soap-body;<element-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<pattern-name> is a regular expression to match in the Web service name or
you can use the exact Web service name.

<element-value> the element in the SOAP body whose value you want to
use as the Consumer ID.

A Value in an HTTP Header

To assign a consumer ID based on a value in an HTTP header, use the
following format:

<rule-name>;HTTP_WS;<pattern-name> = attribute;<header-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

Chapter 13 • Advanced Java Agent and Application Server Configuration

532

<pattern-name> is a regular expression to match on, in the URI.

<header-value> is the HTTP header whose value you want to use as the
Consumer ID.

For example, the following rule matches on a web service with a URI of "/
webservice/.*" and uses the "User-Agent" header’s value as the consumer ID:

When the callers of the Web service have a value defined for User-Agent, the
metrics are grouped by the different values for User-Agent. The following
excerpt from the HTTP header maps to a consumer ID in the heading:

A JMS Queue Name
To assign a consumer ID based on the matching the JMS queue/topic name,
use the following format:

<rule-name>;JMS_WS;<queue-name>=<consumerID-string>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match on, in the JMS queue/topic
name.

<consumerID-string> is a literal string to use as the Consumer ID.

WsRule1;HTTP_WS;/webservice/.* = attribute;User-Agent

GET /service/call HTTP/1.1
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 2000)
Host: ovrntt1
Caller: ovrntt1
Connection: Keep-Alive

Chapter 13 • Advanced Java Agent and Application Server Configuration

533

For example, the following rule matches on a JMS queue name that starts
with queue://sca_soapjms.* and uses the string "myJMSConsumer" as the
consumer ID:

You must use a backslash "\:" to escape the ":" after queue or topic.

The priority used in matching is determined by the order specified in the
consumer.properties file. JMS_WS queue matching takes priority over IP
matching; JMS_WS property matching takes priority over JMS_WS Header
matching; and JMS_WS Header matching takes priority over JMS_WS queue
name matching.

A JMS Message Property
To assign a consumer ID based on matching a JMS queue/topic name and
use the value from the JMS message property as the consumer ID, use the
following format:

<rule-name>;JMS_WS;<queue-name>=jms-property;<property-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match on in the JMS queue/topic
name.

<property-value> is the JMS property whose value you want to use as the
Consumer ID.

For example, the following rule matches on a JMS queue name that starts
with queue://MedRec.* and uses the value from the JMSXDeliveryCount
property as the consumer ID:

You must use a backslash "\:" to escape the ":" after queue or topic.

JMSTest3;JMS_WS;queue\://sca_soapjms.*=myJMSConsumer

JMSTest1;JMS_WS;queue\://MedRec.*=jms-property;JMSXDeliveryCount

Chapter 13 • Advanced Java Agent and Application Server Configuration

534

A JMS Message Header
To assign a consumer ID based on matching the JMS queue/topic name and
JMS message header, use the following format:

<rule-name>;JMS_WS;<queue-name>=jms-header;<header-value>

<rule-name> is a String that identifies the rule. The name must be unique to
the consumer.properties file.

<queue-name> is a regular expression to match in the JMS queue/topic
name.

<header-value> must be JMSReplyTo.

For example, the following rule matches on a JMS queue name that starts
with queue://MedRec.* and uses the value from the JMSReplyTo header as
the consumer ID:

You must use a backslash "\:" to escape the ":" after queue or topic.

A specific IP Address
To assign a consumer ID based on an IP Address, use the following format:

<rule-name>; IP; <IP-address> = <consumerID-string>

For example, the following rule matches on IP address 123.456.567.8 and
uses the name "CustomerA_IP" as the consumer ID:

JMSTest1;JMS_WS;queue\://MedRec.*=jms-header;JMSReplyTo

IPRule1;IP;123.456.567.8 = CustomerA_IP

Chapter 13 • Advanced Java Agent and Application Server Configuration

535

A Range of IP Addresses
To assign a consumer ID based on a range of IP addresses, use the following
format:

<rule-name>; IP; <IP address range> = <consumerID-string>

where <IP address range> can be defined with integers, wildcards specified
with *, integer range specified with -.

For example, the following rule matches all IP addresses whose first octet is
15 and uses the name "mySuperCluster" as the consumer ID:

The following rule matches all IP addresses whose first octet is 15 and whose
second octet is between 200 and 300; it uses the name "Customer_IP" as the
consumer ID:

Configuring SOAP Fault Payload Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP
fault data. SOAP payload is only captured when there is a SOAP fault.

In the Diagnostics UI, you can view the payload information as part of the
instance tree. Both JAX-WS and JAX-RPC web services are supported.

Because payloads can contain sensitive information such as credit card
numbers, payload capture on SOAP faults is disabled by default.

To enable payload capture on SOAP fault set max.soap.payload.bytes to a
value greater than zero , 5000 is recommended, in the dispatcher.properties
file on the Java agent.This is the number of bytes captured, so if the payload
you see in the UI indicates it is too small you can increase this number. By
default the value is set to zero to disable payload capture.

IPRule2;IP;15.*.*.* = mySuperCluster

IPRule3;IP;15.200-300.*.* = Customer_IP

Chapter 13 • Advanced Java Agent and Application Server Configuration

536

Capturing SOAP payload requires the Diagnostics SOAP message handler for
Java probes. For some application servers, special instrumentation is
provided in Diagnostics to automatically load the Diagnostics SOAP message
handler.
Manual configuration is required for WebSphere 5.1 JAX-RPC and Oracle
10g JAX-RPC. See “Loading the Diagnostics SOAP Message Handler” on
page 239 for details.

The Diagnostics SOAP message handler is not available for all application
servers, nor is custom instrumentation available to capture SOAP faults or
consumer IDs from SOAP payloads. Therefore, this feature is not available
on all versions of all application servers. For the most recent information
on Diagnostics SOAP message handler support, see the Diagnostics Support
Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

For a Java Agent, define the limit for the payload size by modifying the
<probe_install_dir>\etc\dispatcher.properties file. Payloads larger than the
specified size are truncated.

For example, the following entry increases the SOAP payload length to
10000 from its default of 5000:

Set this property to 0 to disable this feature.

max.soap.payload.bytes = 10000

Chapter 13 • Advanced Java Agent and Application Server Configuration

537

Configuring REST Services

You can configure REST style Web services to show up as regular Web
Services in the Diagnostics UI. See the comments in the following file for
configuration details: <probe_install_dir>\etc\rest.properties.

Currently, only HTTP is supported (no JMS).

Customizing Grouping JMS Temporary Queue/Topics

For reporting in Diagnostics, SOAP over JMS temporary queues are grouped
into a single node. Diagnostics matches the queue/topic name to a list of
regular expressions to find the temporary queue/topic names. The ones that
match are replaced with either queue:<probe-id>\TEMPORARY or
topic:<probe-id>\TEMPORARY according to the type.

The list of regular expressions used for this matching is in the
<probe_install_dir>/etc/capture.properties file. You can customize the list
of regular expressions under the property grouped.temporary.jms.names.

Configuring SQL Query Parsing

If there are a large number of SQL queries using literals it can overwhelm the
server symbol table. In these situations you can configure the
sql.parsing.mode property in the dispatcher.properties file on the Java
Agent. The possible mode settings are as follows:

1 - just methods, no SQL queries.

2 - main categories for SQL queries (select/update/insert/delete/...).

3 - (default) a measurement per whole SQL query aggregating similar
statements into a single measurement (ignore literals, keyword case...).

Chapter 13 • Advanced Java Agent and Application Server Configuration

538

4 - a measurement per whole SQL query aggregating only identical
statements.

Another property in the dispatcher.properties file can be used to limit the
number of different SQL statements collected in case of temporary database
tables, allowing you to fold down the table names using an SQL statement
regular expression subsitution. The property is sql.pattern.replace (see the
comments in the dispatcher.properties file for more information).

Configuring Display of Application Name for Server
Requests

The Deployed Into value displayed in the Diagnostics UI in the Server
Requests details pane can show the Application Name of the server request
for most application servers. Prior to Diagnostics 9.0 this information was
only available for WebLogic application servers so only a WebLogic probe
could fill in the Application Name identifier on a server request.

To ensure backward compatibility with the server request trend lines, by
default the Application Name is not filled in for the server request, except in
WebLogic server requests.

This is configurable using the keep.fragment.data.compatible property in
the capture.properties file. By default keep.fragment.data.compatible=true
which means the Application Name is not filled in for the server requests,
except in WebLogic server requests.

You can set this property to false if you want the Diagnostics UI to show the
J2EE application server name of each server request (shown as Deployed
Into in the details pane of the Server Requests view).

sql.parsing.mode = 3

Chapter 13 • Advanced Java Agent and Application Server Configuration

539

Maintaining Probe Settings from the Java Profiler UI

You can use the Configuration tab in the Java Diagnostics Profiler to
maintain the instrumentation points and edit the probe configuration
without having to manually edit the Java Agent capture points file or
property files. You can access the Configuration tab from the Java
Diagnostics Profiler whether profiling has been started or not.

The Probe Settings section of the Java Diagnostics Profiler Configuration tab
enables you to configure probe settings for thread stack trace sampling,
collection of CPU time metrics (using timestamping) and reporting
collection leaks.

When you click Apply Changes on the Java Diagnostics Profiler
Configuration tab, all the updates you made in the Probe Settings sections
of the Configuration tab are applied to the capture points file and the
property files.

Note: Your changes take effect immediately. There is no need to restart the
application (or probe).

Chapter 13 • Advanced Java Agent and Application Server Configuration

540

The following sections describe each of the Probe Settings sections:

➤ “Configuring Thread Stack Trace Sampling” on page 540

➤ “Controlling CPU Timestamp Collection” on page 545

➤ “Enabling and Configuring Collection Leak Reporting” on page 546

Configuring Thread Stack Trace Sampling
When asynchronous thread sampling is enabled, you can see, in the Call
Profile view, which methods were executed during long running fragments
even if no instrumented methods were hit during this time. See the HP
Diagnostics User’s Guide chapter on Call Profiles for a screen shot showing
the additional nodes added based on thread sampling.

Several properties enable and configure thread stack trace sampling.

The following properties are in dynamic.properties:

➤ enable.stack.trace.sampling – enables asynchronous thread stack trace
sampling; possible values are false, auto (the default), and true.

When the dynamic property enable.stack.trace.sampling is set to auto, stack
trace sampling is enabled IF the probe is running on selected (certified)
platforms and JVMs. For other JVMs, the setting must be set to true
explicitly. Use caution because the JVM could generate errors or abort. See
the Diagnostics Readme.

➤ tardy.method.latency.threshold – the minimum time that an instrumented
method must run without hitting any instrumentation points before stack
trace sampling is attempted for this method. The purpose of this property is
mainly to control the overhead of sampling by limiting the stack trace
collection to only the most interesting cases.

➤ stack.trace.sampling.rate – the time that must elapse before the next
consecutive sampling attempt is made.

Small values for stack.trace.sampling.rate cause frequent sampling and
provide rich data but at the cost of increased overhead.

Chapter 13 • Advanced Java Agent and Application Server Configuration

541

The overhead caused by frequent sampling affects primarily the latency of
server requests. The overall CPU usage by the probe can go up as well, but
this effect is not as profound as the latency increase. For systems with many
CPUs, the process CPU consumption can actually go down (not a good
thing).

➤ stack.trace.depth.max – the limit for the depth of stack traces obtained from
the JVM. You will most likely not need to adjust this value.

The following properties are in dispatcher.properties:

➤ enable.stack.trace.aggregation – a boolean property allowing the
correlation thread to merge together nodes observed on more than one
consecutive stack trace collected, unless there is proof that the nodes must
not represent a single method invocation. When set to true, it could
decrease the number of additional call tree nodes created, but could create a
false impression that the number of calls to the additional nodes is known
and is small. When set to false, it creates a node for each method and each
stack trace it was visible on, creating a false impression that the number of
calls to the nodes is known and is large. In fact, stack trace sampling cannot
reveal the number of calls at all.

➤ aggregated.stack.trace.validity.threshold – if the
enable.stack.trace.aggregation property is set to true, only the call tree nodes
that stem from more than the aggregated.stack.trace.validity.threshold
number of individual stack traces are reported. This setting controls noise
elimination and memory footprint, especially on the server side.

All of the properties can be dynamically changed so no restart of the
application is required.

You can change the first four properties (from dynamic.properties) remotely,
using the Configuration tab in the Diagnostics Java Profiler. After making
changes remember to apply all of the changes made using the Configuration
tab by clicking Apply Changes.

Chapter 13 • Advanced Java Agent and Application Server Configuration

542

Example Thread Sampling Configurations

Use Case 1: A particular method has average latency of about 170
milliseconds, but from time to time it takes 1.4 seconds for this method to
complete. Most of the methods visible in Call Profiles for any fragment
execute in 550 milliseconds or less. Because the method in question makes
multiple calls to its callees, you do not want to instrument them.

Instead you enable stack trace sampling to find out what the cause for long
execution times. To minimize overhead, set tardy.method.latency.threshold
to 600 milliseconds. This ensures that most of the methods will not get
sampled at all because they are likely to complete before this time elapses.
However, any method running longer than this value, including our long
running method, will get sampled, once the method runs for 600
milliseconds (or longer) without making any calls to any of the
instrumented methods.

If you also set the value of stack.trace.sampling.rate to 100 milliseconds,
this should theoretically give up to eight samples for each method
invocation that lasts 1.4 seconds ((1400–600) / 100). Because you know that
the method makes many calls to its callees, you could also set
aggregated.stack.trace.validity.threshold to zero. This ensures that even if
each collected stack trace is completely different, they will all be reported.

If you examine the Call Profile for long running instances of the server
request, you would see additional nodes revealed by stack trace sampling.

Use Case 2: You prepare a custom application for deployment and see that
the default instrumentation provided with the Diagnostics agent does not
work very well because many Call Profiles contain very few methods, which
does not give any insight about the application specific behavior. You are
reluctant to add additional instrumentation for all classes and methods
belonging to the custom application because of the performance and
memory consumption concerns.

Chapter 13 • Advanced Java Agent and Application Server Configuration

543

You enable stack trace sampling. Assuming that a typical server request that
does not have sufficiently detailed call tree information runs in about
2 seconds, you select a stack.trace.sampling.rate of 200 milliseconds. This
can give up to 10 stack traces per typical server request. However, you do not
want all the stack traces to be reported because some of the methods visible
in the stack traces can be very fast, and they do not substantially contribute
to the server request’s overall latency. Therefore, you set
aggregated.stack.trace.validity.threshold to 2. This ensures that only
methods visible in three or more consecutive stack traces, or methods with
estimated latency of 600 milliseconds or more, will be reported.

After viewing the Call Profiles with the additional nodes obtained from
sampling, you can make informed decision about adding additional
instrumentation points to the probe configuration in deployment.

Troubleshooting Stack Trace Thread Sampling

Question 1: Why do I not see any new nodes in my Call Profile after I
enabled stack trace sampling.

Answer: Go through this checklist and see if any of the following applies to
your case:

❑ Are you using Java 1.5 or newer? Stack trace sampling does not work for
earlier versions of Java.

❑ Was the last method visible in the Call Profile an outbound call? Methods
marked as outbound do not get sampled. (To reliably check if a method is
marked as outbound, find this method in detailReport.txt file and check its
corresponding instrumentation point detail for the “outbound” keyword).

❑ Was the last method visible in the Call Profile marked as no-layer-recurse
Such methods do not get sampled. (Use the same procedure as in the
previous point to check if a method is no-layer-recurse.)

❑ Did you try reducing tardy.method.latency.threshold or
minimum.method.latency? It is possible that the last method visible in Call
Profile makes calls that get trimmed, but they prohibit the sampling to kick
in because there is never an inactive period of
tardy.method.latency.threshold for the caller.

Chapter 13 • Advanced Java Agent and Application Server Configuration

544

❑ Did you try reducing aggregated.stack.trace.validity.threshold or check if
there are warnings in the probe.log file about the stack depth being too
shallow? Possibly, the observed stack traces changed too quickly to get
reported.

❑ Did you try reducing the stack.trace.sampling.rate? Perhaps your methods
simply miss the opportunities to get sampled.

❑ Did you verify that the latency of the last visible method in Call Profile is
not caused by having run garbage collector? Java code, including the stack
trace sampling code, does not run during garbage collection.

Question 2: What is the minimum value of stack.trace.sampling.rate that
can be used?

Answer: You can use any positive value, but remember that each platform
will refuse to sample more frequently that it possibly can. The three
determining factors are the minimum granularity of sleep() available, the
timer resolution, and the time it actually takes to collect one set of samples.

Question 3: What is the maximum value of stack.trace.sampling.rate that
can be used?

Answer: There is no limit. The usefulness of a high setting depends entirely
on the latency of the server requests for the application. To get any results,
plan for at least a few samples for each server request you are concerned
with. Even that could require tuning other sampling parameters as well.

Chapter 13 • Advanced Java Agent and Application Server Configuration

545

Controlling CPU Timestamp Collection
The CPU timestamps calculate the amount of exclusive CPU time that a
method uses. You can view this information on the Hotspots tab in the Java
Diagnostics Profiler.

Important: In VMware, the CPU time metric is from the perspective of the
guest operating system and is affected by the VMware virtual timer. See the
VMware whitepaper on timekeeping at
http://www.vmware.com/pdf/vmware_timekeeping.pdf and “Time
Synchronization for Probes Running on VMware” on page 512.

By default, collection of CPU time metrics is enabled for server requests.

Collection of CPU time metrics can be configured in property files (see
“Configuring Collection of CPU Time Metrics” on page 521) or using the
the Java Diagnostics Profiler UI as described below.

 1 In the Profiler UI select the Configuration tab. The profiler does not need to
be started to make this probe configuration change.

 2 In the Configuration screen select a Collect CPU Timestamps option from
the dropdown list.

CPU Timestamp Collection
Method

Description

None No CPU Timestamps.

For Server Requests Only CPU timestamps are only collected for server
requests.

For Server Requests and
Portlet Methods

CPU timestamps are collected for ALL server
requests and the lifecycle methods instrumented for
portal components (layertype=portlet).

For Server Requests and All
Methods

CPU timestamps are collected for ALL server
requests and ALL methods.

http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 13 • Advanced Java Agent and Application Server Configuration

546

 3 When you finish making changes to the Configuration tab, click Apply
Changes.

Note: Your changes take effect immediately. There is no need to restart the
application (or probe).

Enabling and Configuring Collection Leak Reporting
Data collection and reporting for collection leak pinpointing is enabled by
default for the probe. The [Collection Leak Pinpointing] keyword = clp point
in the probe’s etc/auto_detect.points file is set to true by default.

Note: You must run the JRE Instrumenter using the appropriate mode for
your application server if you want to use the collection leaks pinpointing
(CLP) feature in the Java Agent.

You can set the following configuration items for collection leak reporting
using the Java Profiler Configuration tab:

➤ Report Collection Leaks. You can disable reporting in the UI for this feature
by unchecking the checkbox.

Chapter 13 • Advanced Java Agent and Application Server Configuration

547

➤ Collection Leaks Flag Threshold. The threshold of time duration in which
the collection has size growth. If a collection's size growth period exceeds
this threshold, it will be flagged as a memory leak by the probe.

➤ Collection Leaks Unflag Threshold. For an already flagged leaking collection,
if its size stops growing continually for this threshold time period, the probe
will unflag it as a leak.

These same values can also be set in the dynamic.properties file for the
probe: clp.diagnostics.reporting, clp.diagnostics.growth.time and
clp.diagnostics.nongrowth.time.

Generating Performance Reports for JUnit Tests

When you run JUnit tests, you can enable and configure the Java Agent so
that it generates a performance report for all of your unit tests. This is useful
for finding out if the performance (latency/CPU) of a particular test has
changed over time.

When the unit test finishes, the Java Agent creates a CSV file for each test
method (represented as a server request). This CSV file contains a complete
listing of all test methods that were executed in each JVM instance, usually
per test class. The CSV file can be opened in a spreadsheet program to
analyze and visualize performance characteristics (the Filter function in
Excel is very helpful for selecting specific methods).

Following is an example of a CSV file:

Date,Server Request,Avg Latency,Count,Min Latency,Max Latency,Cpu
Time,Exceptions
Fri Sep 23 12:55:22 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1068.81,1,1068.81,1068.81,374.403,0
Fri Sep 23 12:55:40 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1064.845,1,1064.845,1064.845,405.60
2,0
Fri Sep 23 12:55:57 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1141.689,1,1141.689,1141.689,358.80
2,0
Fri Sep 23 12:56:27 PDT
2011,UT_SiSXmlDataReader.testDataSample(),1474.81,1,1474.81,1474.81,468.003,0

Chapter 13 • Advanced Java Agent and Application Server Configuration

548

The latency times are in milliseconds (ms).

By default the data for each test execution is appended to the CSV files. This
is especially useful when tests are run as part of a Continuous Integration
cycle which allows you to capture results over time.

To use this functionality, enable the Java Agent in the JUnit test execution
by specifying the following JVM parameters:

JVM Parameter Description

-javaagent:<Java_Agent_Home>/
DiagnosticsAgent/lib/
probeagent.jar (UNIX)

or

-javaagent:<Java_Agent_Home>\
DiagnosticsAgent\lib\probeagen
t.jar (Windows)

Enables the agent by specifying the path to
the agent JAR file. You can use
-Xbootclasspath/p:<JavaAgent_install_dir>/
DiagnosticsAgent/classes/boot instead if you
use JRE 1.4 .

-Ddispatcher.ac.autostart=true Tells the agent to start profiling immediately.

-Dcapture.exit_report=dir=perfte
st:append

Instructs the agent to produce a performance
report to the specified directory and to
append the results. (To override the file,
replace append with override.)

-Ddispatcher.minimum.fragmen
t.latency=1ms

Collects only server requests (such as
execution of JUnit test methods) that have
latency above 1ms.

Chapter 13 • Advanced Java Agent and Application Server Configuration

549

The following example shows an integraton into ANT:

In addition to the above settings, the JUnit point needs to be activated (set
active=true) in <Java_Agent_Home>/DiagnosticsAgent/etc/
auto_detect.points:

Note: If you use JUnit 4.x and your unit test classes are not a subclass of
junit.framework.TestCase, you need to change the class definition in the
above JUnit point to match your unit test classes.

<junit dir="${build}" fork="yes" forkmode="perTest" printsummary="yes"
jvm="${env.JAVA_HOME}/bin/java">

 ...

 <jvmarg value="-javaagent:C:/MercuryDiagnostics/JavaAgent/DiagnosticsAgent/lib/
probeagent.jar"/>
 <jvmarg value="-Ddispatcher.ac.autostart=true"/>
 <jvmarg value="-Dcapture.exit_report=dir=<dir_name>:append"/>
 <jvmarg value="-Ddispatcher.minimum.fragment.latency=1ms"/>

 ...

</junit>

[JUnit]
class = junit.framework.TestCase
method = !test.*
signature = !.*
deep_mode = hard
layer = JUnit
active = true

Chapter 13 • Advanced Java Agent and Application Server Configuration

550

551

14
Understanding the .NET Agent
Configuration File

You control the configuration of the .NET Agent by modifying the elements
and attributes in the .NET Agent configuration file: <probe_install_dir>/etc/
probe_config.xml.

This chapter includes:

➤ Understanding the .NET Agent Configuration File on page 551

➤ .NET Agent Configuration Elements on page 552

Understanding the .NET Agent Configuration File

The topics in this section describe the elements and attributes that make up
the .NET Agent configuration file <probe_install_dir>/etc/
probe_config.xml.

Each element is defined by describing its purpose, attributes, and parent and
children elements. For information on additional .NET Agent configuration
elements specific to TransactionVision see the HP TransactionVision
Deployment Guide.

Chapter 14 • Understanding the .NET Agent Configuration File

552

.NET Agent Configuration Elements

<appdomain> element

Purpose

Builds an AppDomain inclusion list for processes that host multiple
application domains. If no appdomain elements are defined for a process
then all application domains for that process will be included.

Attributes

Elements

Attributes Valid Values Default Description

enabled true
false

true Determines if the AppDomain should
be instrumented. Is overridden by
enableallappdomains attribute of a
process element.

name string none Name of the .NET AppDomain. (IIS
path qualified, see the example below.)

website string none The name of the Website for those
appdomains that are Websites
(information only)

Number of Occurrences zero or more

Parent Elements process

Child Elements bufferpool, credentials, diagnosticsserver, mediator,
id, ipaddress, logging, lwmd, modes, points,
profiler, sample, trim, webserver, symbols, filter,
topology

Chapter 14 • Understanding the .NET Agent Configuration File

553

Example

<appdomain enabled="true" name="1/ROOT/MSPetShop"/>
Where 1/ROOT is the Website ID and MsPetShop is the Virtual DirName

<appdomain enabled="false" name="1/ROOT" website="Default Web Site">
 <points file="Default Web Site.points"/>
 <id probeid="Default Web Site" />
</appdomain>

<authentication> element

Purpose

List of authenticated user names and passwords.

Attributes

Elements

Example

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>

Attributes Valid Values Default Description

username string admin User name account.

password string admin Passwords must be
generated using the
passgen utility in the
<probe_install_dir>\bin
directory.

Number of Occurrences zero to many

Parent Elements profiler

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

554

<bufferpool> element

Purpose

Configures the bufferpool behavior.

Attributes

Elements

Example

<bufferpool size="65536" buffers="512" sleep="1000" expires="1000" />

Attributes Valid Values Default Description

size number 65536 Size of each buffer.

buffers number 512 Number of buffers in
pool.

sleep number 1000 Number of milliseconds
between flush checks.

expires number 1000 Number of milliseconds
before buffer expires.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

555

<captureexceptions> element

Purpose

Enables and controls the stack trace capture for exceptions.

Attributes

Elements

Example

<captureexceptions enabled="true" max_per_request="4">

Attributes Valid Values Default Description

enabled true
false

true Enables exception
capture.

max_per_request number 4 Maximum exceptions
captured for one server
request.

max_stack_size number 0 (meaning no
maximum)

Maximum size of the call
stack for a captured
exception.

Number of Occurrences 1

Parent Elements probeconfig

Child Elements include, exclude

Chapter 14 • Understanding the .NET Agent Configuration File

556

<consumeridrules> element

Purpose

This is the root element for configuring consumer ID rules.

Attributes

Elements

Example

<consumeridrules enabled="false">

Attributes Valid Values Default Description

enabled true
false

false Enables consumer ID rule
evaluation.

Number of Occurrences 1

Parent Elements probeconfig

Child Elements httpheaderules, iprules, soaprules

Chapter 14 • Understanding the .NET Agent Configuration File

557

<cputime> element

Purpose

Controls the cputime setting property.

Attributes

Elements

Example

<cputime mode="serverrequest"/>

Attributes Valid Values Default Description

mode none,
serverrequest,
method

serverrequest

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

558

<credentials> element

Purpose

Supplies credentials that are used to validate for communication with the
Diagnostics Server.

Attributes

Elements

Example

<credentials username="test" password="diag" authenticate="true"/>

Attributes Valid Values Default Description

username string none User name to validate
with the Diagnostics
Server.

password string none Password to validate with
the Diagnostics Server.

authenticate true, false true Enables and disables
authentication.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

559

<demomode> element

Purpose

This configures demo mode. Demo mode makes it easier to show capability
and value of the .NET agent because it requires less custom points to be
defined. With demomode turned on, all outbound calls will be shown
irrespective of any other instrumentation.

Once the calls leading to the outbound calls of interest are identified then
demomode should be turned off and "custom" instrumentation added to
ensure that call stacks leading to the outbound calls are apparent.

Note: It is recommended to TURN THIS OFF under production
environments.

Demomode is used primarily to find outbound calls (webserver, http,
remoteing, msmq) when the method making them is not instrumented. It is
meant as a way to quickly find how applications may be connected without
having to instrument application specific methods . This may be too noisy
in production situations but is useful when you there is a lack of upstream
instrumentation and you don’t knowwhere the outbound call is being made
from. It can be used for all kinds of applications including ASP.NET.

Attributes

Elements

Attributes Valid Values Default Description

enabled true, false false Enables or disables demo
mode.

Number of Occurrences Zero or one.

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

560

Example

<demomode enabled="false"/>

Chapter 14 • Understanding the .NET Agent Configuration File

561

<depth> element

Purpose

Configures depth trimming.

Attributes

Elements

Example

<trim>
<depth enabled="true" depth="25"/>

</trim>

Attributes Valid Values Default Description

enabled true
false

true Enables depth trimming.

depth number 25 Sets the depth for depth
trimming.

Number of Occurrences 1

Parent Elements trim

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

562

<diagnosticsserver> element

Purpose

Contains connection and settings information related to the Diagnostics
Server which are used for enterprise mode.

Attributes

Attributes Valid Values Default Description

url Registrar URL.
http://<host>:
<port>

none URL to connect to
registrar.

delay number 2 Number of seconds to
wait before registering.

keepalive number 15 Number of seconds
between keepalives.

proxy URL of proxy none Registrar connection
proxy.

proxyuser user id for
proxy

none Proxy user account.

proxypassword password for
proxy

none Proxy user account’s
password.

registered_host
name

string none Name of host to register
as (external name for
firewall traversing).

register_byip true, false false Register using ipaddress
instead of hostname.

timeskewcheck
interval

number 60 Number of seconds to
wait for getting the time
skew from the
Diagnostics server.

Chapter 14 • Understanding the .NET Agent Configuration File

563

Elements

Example

This is a general example showing the setting for the <diagnosticsserver>
element. The question marks (?) indicate that appropriate values need to be
substituted.

<diagnosticsserver url="http://localhost:2006/commander" delay="2"
keepalive="15" proxy="?" proxyuser="?" proxypassword="?"
registerhostname="?" register_byip="false"/>

For the steps involved in using the registered_hostname attribute to override
the default probe host machine name see "Overriding the Default Probe
Host Machine Name" on page 656.

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

564

<exceptiontype> element

Purpose

Define an exception type.

Attributes

Elements

Example

<exceptiontype name="System.DivideByZeroException"/>

Attributes Valid Values Default Description

name string None Class name of an
exception.

Number of Occurrences Zero to many

Parent Elements include, exclude

Child Elements None

Chapter 14 • Understanding the .NET Agent Configuration File

565

<exclude> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to exclude.

Attributes

None

Elements

Example

<exclude>
<exceptiontype name="System.DivideByZeroException"/>

</exclude>

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Chapter 14 • Understanding the .NET Agent Configuration File

566

<exclude> element (when parent is lwmd)

Purpose

Define which collection classes to exclude from the Collections by Growth
and Collections by Size tables in the .NET Profiler's Collections tab and the
Diagnostics user interface’s Collections view.

The specified collection classes may include classes that implement
ICollection. Note that this setting does not affect the instrumentation of
LWMD points; it only affects the presentation of the LWMD data and the
amount of LWMD data that is sent to the Diagnostics Server.

Attributes

None

Elements

Example

<lwmd enabled="true" sample="15s" autobaseline="1h" growth="10" size="10">
<exclude>System.Collections.ArrayList</exclude>
<exclude>System.Data.DataView</exclude>

</lwmd>

Note that System.Data.DataView implements
System.Collections.ICollection.

Number of Occurrences Zero to many

Parent Elements lwmd

Child Elements None

Chapter 14 • Understanding the .NET Agent Configuration File

567

<excludeassembly> element

Purpose

Excludes the instrumentation of an assembly. An assembly is an .exe or .dll
file. Provides the ability to exclude sensitive assemblies from
instrumentation (for example, when a product was used to obfuscate and
encrypt code in sensitive assemblies and exceptions would be thrown if
instrumented).

Add <excludeassembly name=<AssemblyNameToExclude> as a child to a
process element.

Attributes

Elements

Example

<process enablealldomains="true" name="ASP.NET">
 <logging level="" />
 <points file="ASP.NET.points" />
 <points file="ADO.points" />
 <points file="WCF.points" />

 <excludeassembly name="Acme.Encryption" />

 <appdomain enabled="false" name="TestWebService">
 <points file=" TestWebService .points" />
 </appdomain>
</process>

Attributes Valid Values Default Description

name string none Name of assembly to
exclude (without the file
extension).

Number of Occurrences zero to many

Parent Elements process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

568

<filter> element

Purpose

Filters out certain metrics that would skew the results or not be
representative of the processing being monitored.

Attributes

Elements

Example

<filter firstserverrequest="false"/>

Attributes Valid Values Default Description

firstserverrequest true, false false Enables/disables skipping
the collection of metrics
for the first time a
particular server requests
(URL) gets run after
application startup.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

569

<httpclient> element

Purpose

This configures whether the URL will be included as part of an HTTP
outbound call’s identity. The default is true and should be kept so unless
there are many distinct URLs for the outbound HTTP calls. This could
potentially overwhelm the performance of the Diagnostics Server because of
the number outbound calls created (one for each distinct URL). You may
also want to turn it off if you do not care about the URL of the HTTP
outbound call. The identity of the HTTP outbound call will then be the
Server and port number to which the request is being made to.

Attributes

Elements

Example

<httpclient showurl="true"/>

Attributes Valid Values Default Description

showurl true, false true Enables/disables the
inclusion of the URL as part
of the identity of an
outbound call made by a
client using HTTP.

Setting to false can be used to
protect against symbol table
explosion on the server/agent
side if there are too many
distinct http client calls.

The value should be set to
false for REST service client
applications

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

570

<gentvhttpeventforwcf> element

Purpose

Setting this option enables generation of a TransactionVision event for a
WCF service with any binding that uses IIS (http based) hosting. Some WCF
services may use a custom or private binding that is not supported as a true
web service and in these types of cases TransactionVision web service events
would not be generated unless you enable this option.

Attributes

Elements

Example

<gentvhttpeventforwcf enabled="true"/>

Attributes Valid Values Default Description

enabled true, false false Enables/disables the
generation of an http event
for a WCF service with any
binding that uses IIS (http
based) hosting. If enabled,
provides TransactionVision
web service events.

Number of Occurrences Zero to one.

Parent Elements probeconfig, process, appdomain

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

571

<httpheaderrule> element

Purpose

Defines a consumer ID rule for HTTP headers.

Attributes

Elements

Example

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*"
consumeridfield="Caller"/>

Attributes Valid Values Default Description

id string None ID of the rule.

rule string None A regular expression that
is used to match against
the URL that the HTTP
request is being sent to
by the consumer.

consumeridfield string None Name of the header to
use as the consumer ID.

Number of Occurrences Zero to many

Parent Elements httpheaderrules

Child Elements None

Chapter 14 • Understanding the .NET Agent Configuration File

572

<httpheaderrules> element

Purpose

This element contains all of the <httpheaderrule> elements.

Attributes

None

Elements

Example

<httpheaderrules>
</httpheaderrules>

Number of Occurrences 1

Parent Elements consmeridrule

Child Elements httpheaderule

Chapter 14 • Understanding the .NET Agent Configuration File

573

<id> element

Purpose

Provides probe id and probe group id.

Attributes

Elements

Attribute Valid Values Default Description

probeid String containing:

Letters, digits,
underscore, dash,
period and
internally defined
$() variable values:

$(APPDOMAIN),

$(MACHINENAME),

$(WEBSITENAME),

$(PID)

$(APPDOMAIN).NET The name of the
probe as
recognized by
LoadRunner /
Performance
Center and
System Health.

probegroup string Default Defines the
grouping
recognized by the
Diagnostics
Server for
reporting of
system metrics
and probe
metrics.

Number of Occurrences 1 per parent

Parent Elements probeconfig, process, appdomain

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

574

Example

Default setting example.

<id probeid="$(APPDOMAIN).NET" probegroup="Default"/>

Example

Example for a probe running in a LoadRunner 8.1 environment reporting to
"myDiagServer" with the probe’s name comprised of valid characters, the
name of the Web site the application is deployed under, plus the name of
the machine the application is deployed on.

<id probeid="LR_81_$(WEBSITENAME)_$(MACHINENAME).NET"
probegroup="LR_81_myDiagServer"/>

Chapter 14 • Understanding the .NET Agent Configuration File

575

<include> element (when parent is captureexceptions)

Purpose

Define a list of exceptions to include.

Attributes

None

Elements

Example

<include>
<exceptiontype name="System.DivideByZeroException"/>

</include>

Number of Occurrences 1

Parent Elements captureexceptions

Child Elements exceptiontype

Chapter 14 • Understanding the .NET Agent Configuration File

576

<include> element (when parent is lwmd)

Purpose

Define which collections to include to the exclusion of others.

Attributes

None

Elements

Example

<include>System.Collections.Hashtable</include>
<include>System.Collections.ArrayList</include>

Number of Occurrences Zero to many

Parent Elements lwmd

Child Elements None

Chapter 14 • Understanding the .NET Agent Configuration File

577

<instrumentation> element

Purpose

Contains logging configuration for instrumenter.

Attributes

None.

Elements

Example

<instrumentation>
<logging level="property lwmd" />

</instrumentation>

Number of Occurrences 1 per parent

Parent Elements probeconfig, process

Child Elements logging

Chapter 14 • Understanding the .NET Agent Configuration File

578

<iprule> element

Purpose

Defines a consumer ID rule for IP addresses.

Attributes

Elements

Example

<iprule id="IpTest1" rule="43.*.1-20.*" consumerid="HP"/>

Attributes Valid Values Default Description

id string None Enables consumer ID rule
evaluation.

rule string None Define an IP address, or a
range of addresses, to be
assigned to a consumer ID.

consumerid string None The consumer ID to use if
there is a match on the rule.

Number of Occurrences zero to many

Parent Elements iprules

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

579

<iprules> element

Purpose

This element contains all of the <iprule> elements.

Attributes

None

Elements

Example

<iprules>
</iprules>

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements iprule

Chapter 14 • Understanding the .NET Agent Configuration File

580

<latency> element

Purpose

Configures latency trimming.

Attributes

Elements

Example

<trim>
<latency enabled="true" throttle="true" min="2" max="100" increment="2"

incrementthreshold="75" decrementthreshold="50"/>
</trim>

Attributes Valid Values Default Description

enabled true
false

true Enables latency trimming.

throttle true
false

true Enables latency trimming
throttling.

min number 2 Minimum latency threshold.

max number 100 Maximum latency
threshold.

increment number 2 Threshold increment.

increment
threshold

number 75 The percentage of the buffer
usage before the throttling
should be incremented.

decrement
threshold

number 50 The percentage of the buffer
usage before the throttling
should be decremented.

Number of Occurrences 1

Parent Elements trim

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

581

<logdirmgr> element

Purpose

Contains the configuration for the log directory manager. The logdirmgr
monitors the log directory to ensure that it does not grow unbounded. The
logdirmgr scans the logs periodically as indicated by the scaninterval. If the
size has exceeded the size indicated by maxdirsize the logdirmgr deletes the
oldest files until the size no longer is greater than the maxdirsize.

Important: The account under which the .NET process is running (for IIS the
AppPool Account) has to be provided delete privileges on the log folder.
This is not available by default on the NETWORK SRERVICE account or the
App Pool Identity Account (which is the default Application Pool Account).

Attributes

Elements

Example

<logdirmgr enabled="true" maxdirsize="1024 MB" scaninterval="30m"/>

Attributes Valid Values Default Description

enabled true
false

true

maxdirsize number 1024 MB Largest size that you
want to be the limit of
the size of the log
directory.

scaninterval number 30m How often the manager
scans the logs to check
for growth and size.

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

582

<logging> element (when parent is instrumentation)

Purpose

Sets the logging level for the .NET Agent instrumentation processing.

Attributes

Attributes Valid Values Default Description

level off
assert
break
severe
warning
info

debug
points
eh
sig
chi
cil
classmap
ilasm
symbols
deepmode
load
all
checksum
property

remoting

lwmd

http

""

which is
equivalent to
"info"

Level of logging.

threadids true
false

true Should thread IDs be
included in the log.

Chapter 14 • Understanding the .NET Agent Configuration File

583

Note: Valid values below "info" should typically not be used. These are
diagnostic settings that can produce extremely large log files.

Elements

Example

<instrumentation>
<logging level="warning" />

</instrumentation>

Number of Occurrences zero to many

Parent Elements instrumentation

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

584

<logging> element (when parent is appdomain,
probeconfig, or process)

Purpose

Sets the logging level for the .NET Agent processing for monitoring and
reporting application performance.

Attributes

Attributes Valid Values Default Description

level off
severe
warning
info

debug
events
property
webserver
http
symbols
probemetrics
registrar
threadpool
authentication
bufferpool
rum
bacforsoa
vmware
exceptions|

tvdebug

""

which is
equivalent to
"info"

max number 10 The maximum size of a
probe log file. After the
log reaches this size no
more logging will occur.

Chapter 14 • Understanding the .NET Agent Configuration File

585

Note: Valid values below "info" should typically not be used. These are
Diagnostic settings that can produce extremely large log files.

Elements

Example

<logging max="10" level="INFO"/>

Number of Occurrences

Parent Elements appdomain, probeconfig, process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

586

<lwmd> element

Purpose

Configures the Light-Weight Memory Diagnostics (LWMD) feature.

Attributes

Elements

Example

<lwmd enabled="false" sample="1m" autobaseline="1h" manualbaseline= "?"
growth="15" size="15"/>

Attributes Valid Values Default Description

enabled true
false

false Enables sampling for
lwmd capturing.

sample string 1m Sample interval
(h-hour/m-minute/
s-second).

autobaseline string 1h Auto baseline interval.

manualbase
line

string none Manual baseline time.

growth number 15 Number of collections to
growth track.

size number 15 Number of collections to
size track.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements exclude, include

Chapter 14 • Understanding the .NET Agent Configuration File

587

<mediator> element

Purpose

Specifies the diagnostics server that is in the Mediator mode to which events
are to be sent when in the enterprise mode.

Attributes

Attributes Valid Values Default Description

host host name none Name of mediator.

port number 2612 Mediator port.

ssl true/false false When the Diagnostics
Server URL starts with
http the default is false.
When the Diagnostics
URL starts with https the
default is true.

metrichost string The host to which metric
data is sent.

metricport number 2006 The port to which the
probe sends the probe
metrics such as heap
usage and availability.

block true/false false Block until mediator
connection established.

ipaddress local ipaddress to use
when connecting to the
eventserver.

Chapter 14 • Understanding the .NET Agent Configuration File

588

Elements

Example

<mediator host="localhost" port="2612" ssl="false" metricport="2006"
block="false" ipaddress="16.255.18.99" localportstart="4000"
localportend="5000"/>

localportstart number 4000 Beginning of port range
to use for tcp event
channel connection to
the Diagnostics mediator
server. Used only when
ipaddress is specified.

localportend number 5000 End of port range to use
for tcp event channel
connection to the
Diagnostics mediator
server. Used only when
ipaddress is specified.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Attributes Valid Values Default Description

Chapter 14 • Understanding the .NET Agent Configuration File

589

<metrics> element

Purpose

This element contains all of the <metric> elements.

 Attributes

None

Elements

Example

<metrics>
 <metric name="% Time in GC" group="Memory" units="percent"
category=".NET CLR Memory" counter="% Time in GC"/>
</metrics>

Number of Occurrences 1 per parent

Parent Elements appdomain, process

Child Elements metric

Chapter 14 • Understanding the .NET Agent Configuration File

590

<metric> element

Purpose

Specifies additional probe metrics that you want the Diagnostics .NET to
collect from perfmon. See "Collecting Additional Probe Metrics or
Modifying Probe Metrics" on page 666 for additional information.

Attributes

Attributes Valid Values Default Description

name string Name of the metric as
you would like to see it
in the Diagnostics UI.

group string Group (Category) of the
metric as you would like
to see it in the
Diagnostics UI.

units microseconds,
milliseconds,
seconds,
minutes, hours,
days, bytes,
kilobytes,
megabytes,
gigabytes, count,
percent,
fraction_percent,
load, status

Units of measure for the
perfmon metric.

category string The performance counter
category as specified in
perfmon.

counter string The performance counter
as specified in perfmon

Chapter 14 • Understanding the .NET Agent Configuration File

591

Note: The instance of the counter is automatically assigned as the process
instance for the counter or application domain instance for ASP.NET
application counters. Counters that do not have process or application
domain instances are not collected; you should define system metrics
instead.

Elements

Example

<metrics>
 <metric name="% Time in GC" group="Memory" units="percent"
category=".NET CLR Memory" counter="% Time in GC"/>
</metrics>

Number of Occurrences 1 or more per parent

Parent Elements metrics

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

592

<modes> element

Purpose

Specifies which product mode(s) the .NET Agent should run in. See
"Controlling Which HP Software Products the Agent can Work With" on
page 637 for more information about using the different modes.

The <modes> element is also used in determining usage against the HP
Diagnostics license capacity (see "License Information Based on Currently
Connected Probes" on page 85 for more information on licenses).

The value of the <modes> element is initially set at the time you install the
agent.

The .NET agent can set in different modes to do the following:

➤ Monitor applications from development through pre-production testing
and into production.

➤ Used with other HP Software products.

➤ Used as a standalone Diagnostics Java Profiler not reporting to a server or to
other HP Software products.

Chapter 14 • Understanding the .NET Agent Configuration File

593

Attributes

Attributes Valid Values Default Description

enterprise true
false

Depends on mode
chosen in installation.

➤ true if pro is false

➤ false if pro is true

Sets agent to run in
enterprise mode (probe is
working with Diagnostics
Server).

Enterprise mode is like a
combination of ad, am
and pro mode. It will
capture data for
LoadRunner runs as well
as data outside of
LoadRunner runs.

Enterprise mode is the
default for .NET Agents
(if you don’t specify AD
or AM mode). In
Enterprise mode the
agents are counted
against the AM license
capacity.

ent true
false

Depends on mode
chosen in installation.

true if pro is false

false if pro is true

This is a short form of the
enterprise attribute.

Chapter 14 • Understanding the .NET Agent Configuration File

594

ad true
false

false ad mode supersedes all
other modes. If ad mode
and any other modes are
set, then mode will be set
to ad.

In ad mode the .NET
Agent will only capture
runs from LoadRunner
and put the results in a
specific database for that
run (for example,
Default21).

Agents in AD mode will
only be counted against
AD license capacity when
the probe is running in a
LoadRunner or
Performance Center test
run. When not in a test
run the agent does not
count against license
capacity.

For example if 20 probes
are installed in
LoadRunner/
Performance Center AD
mode but only 5 are in a
run, then only 5 are
counted against AD
license capacity.

Attributes Valid Values Default Description

Chapter 14 • Understanding the .NET Agent Configuration File

595

am true
false

➤ false am mode supersedes all
other modes except for
ad. In am mode the .NET
agent will ignore runs. If
LoadRunner is executing
an application then you
will see the data in the
normal Diagnostics
database.

Agents in AM mode will
always be counted
against the AM license
capacity.

Attributes Valid Values Default Description

Chapter 14 • Understanding the .NET Agent Configuration File

596

Elements

Example

<modes enterprise="false" ad="false" am="false" pro="true"/>

pro true
false

Depends on mode
chosen in installation.

➤ true if enterprise is
false

➤ false if enterprise is
true

Sets the agent to run in
Profiler mode.

This mode sends data to
the profiler. This mode
can be combined with
other modes. Agents in
pro mode are not
counted against license
capacity.

tv true
false

false Enables the capture of
TransactionVision
events. See "About
Configuration of the
.NET Agent for
TransactionVision" on
page 279 for details on
setting transport and
other TV options. This
mode will send events to
TransactionVision. This
mode can be combined
with other modes and in
tv mode agents are not
counted against
Diagnostics’s license
capacity

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements none

Attributes Valid Values Default Description

Chapter 14 • Understanding the .NET Agent Configuration File

597

<points> element

Purpose

Specifies the capture points file to use for instrumentation.

Attributes

Elements

Example

<points file="ASP.NET.points"/>

Attributes Valid Values Default Description

file string none Name of instrumentation
capture points file.

Number of Occurrences zero or more

Parent Elements appdomain, process

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

598

<probeconfig> element

Purpose

Provides single containing root element for the .NET Agent configuration.

Attributes

None.

Elements

Example

<probeconfig>
</probeconfig>

Number of Occurrences 1

Parent Elements None

Child Elements appdomain, bufferpool, captureexceptions,
consumeridrules, credentials, diagnosticsserver,
eventserverhost, id, instrumentation, ipaddress,
logging, lwmd, mediator, modes, points, process,
profiler, rum, sample, soappayload, trim, webserver,
topology, vmware, xvm

Chapter 14 • Understanding the .NET Agent Configuration File

599

<process> element

Purpose

Provides an inclusion filter list of which processes will be monitored.

If no process elements are defined then no processes will be monitored.

Attributes

These are the rules for the enablealldomains attribute of the <process>
element:

➤ enablealldomains = false : If there are no domains in the list of
<appdomain> No domains should be enabled.

➤ enablealldomains = false : If there are domains in the list of
<appdomain> Domains should be enabled if the "enable" attribute is set
to true or not defined in the enable attribute of the <appdomain>.

➤ enablealldomains = true : If there are domains in the list of <appdomain>
Only Domains in the list should be enabled disregarding their "enable"
attribute.

➤ enablealldomains = true : If there are no domains in the list of
<appdomain> All domains should be enabled.

➤ enablealldomains attribute is not defined: same as if enablealldomains =
true.

Attributes Valid Values Default Description

enablealldomains true
false

true When set to true the
enable attribute on all
appdomains that are part
of the process is
overriden so that all will
be enabled.

name string none Name of the .NET process
that these setting apply
to.

Chapter 14 • Understanding the .NET Agent Configuration File

600

Elements

Example

<process enablealldomains="true" name="ASP.NET">

Number of Occurrences zero or more

Parent Elements probeconfig

Child Elements appdomain, bufferpool, credentials,
diagnosticsserver, mediator, id, instrumentation,
ipaddress, logging, lwmd, modes, points, profiler,
sample, trim, webserver, filter, symbols, topology

Chapter 14 • Understanding the .NET Agent Configuration File

601

<profiler> element

Purpose

Contains settings for the Profiler feature.

Attributes

Attributes
Valid
Values

Default Description

authenticate true, false none Enables/Disables
authentication of
incoming Profiler
connection requests.

register true, false false Tells the probe to register
even if it is in Profiler
only mode.

samples number 60 Tells the Profiler how
many samples to keep for
lwmd/heap trending.

best number 1 The number of fastest
instance trees to keeps.

worst number 3 The number of slowest
instance trees to keep.

inactivitytimeout string 10m The length of time that
the Profiler continues to
run after the user has
stopped interacting with
the Profiler.

disableremoteaccess true, false false Disables remote access to
the Profiler, thus not
exposing the User/
Password, and still be
able to telnet/
RemoteDeskTop into the
machine and run the
Profiler locally.

Chapter 14 • Understanding the .NET Agent Configuration File

602

Elements

Example

<profiler authenticate="true" register="false" samples="60" best="1" worst="3"
inactivitytimeout="10m">

<authentication username="admin" password="admin"/>
</profiler>

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements authentication

Chapter 14 • Understanding the .NET Agent Configuration File

603

<rum> element

Purpose

Controls the settings for Real User Monitoring.

Attributes

Elements

Example

<rum enabled="true" responseheader="X-HP-CAM-COLOR"
encryptedkey="OBF:3pe941vx43903wre40303xxz3q6r42ob43n93wre3io03xjs4
0h940pc3wir3q233jur3zir3yi03zir3vc03wre3xpi3r8o3olr44na3zor3v6m3vc03zir4
4u03ohb3rdi3xjs3wx03v6m3zor3yc63zor3jqz3q6r3wd740vi40b53xpi3ike3wx04
3gp42ur3q233y3r3zwy3wx0432i42293p9p"/>

Attributes
Valid
Values

Default Description

enable true
false

true Enables or disables the RUM
Integration feature.

responseheader string X-HP-CAM
-COLOR

The name of the http header
whose value contains the
Diagnostics to RUM integration
information.

encryptedkey string The encrypted key must be
generated using the passgen
utility in the
<probe_install_dir>\bin directory.

Number of Occurrences 1 per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

604

To create the encrypted key, use the PassGen utility as follows:

cd <installdir>/bin
PassGen /system encryptionKey

Where encryptionKey is a string of alpha-numeric characters with a
maximum length of 128 characters. The encryptedkey is shown on stdout.

passgen example:

PassGen /system TheLazyFoxJumpedHigh

Returns:

OBF:3q6r3xxz3y3r3xjs3wx03yc63n0r3lbr3vc03wd745893wre44u0413j3kn93zw
y40vi432i44fr3m453m894493439040pc40303kjd419r44na3wx0451h3wir3v6m3
lfr3mwj3yi03wre3xpi3xxz3y3r3q23

Chapter 14 • Understanding the .NET Agent Configuration File

605

<sample> element

Purpose

Sets the sampling type and rate.

Attributes

Elements

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>
Sampling is a random percentage rate.

<xvm>< ws ><sample method="count" rate="50"/></ ws ></xvm>
Sampling is once every rate count.

<xvm>< ws ><sample method="period" rate="60000"/></ ws ></xvm>

Attributes Valid Values Default Description

method percent, count,
period

percent Sets the sampling method:

➤ for percent rate must be
0-100

➤ for count rate must be >1

➤ for period rate must be one
of standard Diagnostics time
strings (3m for 3 minutes, 4s
for 4 seconds, and so forth)

rate number 0 Sets the sampling rate for
percent type.

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process, ws

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

606

<soapcapture> element

Purpose

Configures whether SOAP requests and responses are captured.

Attributes

Elements

Example

<soapcapture enabled="true" maxsize="0" />

Attributes Valid Values Default Description

enabled true
false

true Enables or disables the
capture of SOAP requests
and responses. If this is
disabled it will affect the
following:

➤ SOAP request capture
for SOAP faults

➤ SOAP requests and
responses capture for
TV mode

➤ ConsumerID assigned
via the SOAP rules.

maxsize number 0 This is an optional
attribute that specifies
the maximum size in
characters of the SOAP
request or response
captured.

0 indicates unlimited.

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

607

<soappayload> element

Purpose

This element is deprecated and replaced by <soaprequestforsoapfault>.

Configures the SOAP payload capture on SOAP faults feature which provides
the SOAP payload associated with a SOAP fault. Here the SOAP payload is
defined as the entire SOAP envelope.

Attributes

Elements

Example

<soappayload enabled="true" maxsize="5000" />

Attributes Valid Values Default Description

enabled true
false

true Enables or disables the
SOAP Payload capture
feature.

maxsize number 5000 This is an optional
attribute that specifies
the maximum size in
characters of any payload
capture. If not present
the Default value is used.
If present and an error is
made in the setting, the
Default value is used.

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

608

<soaprequestforsoapfault> element

Purpose

Configures SOAP request capture (including payloads) on SOAP Faults.
Payloads can contain sensitive information such as credit card numbers so
this element is disabled by default.

NOTE: If the <soapcapture> element is disabled it will override the
<soaprequestforsoapfault> setting. Please refer to the documentation for the
<soapcapture> element.

Attributes

Elements

Example

<soaprequestforsoapfault enabled="true" maxsize="5000" />

Attributes Valid Values Default Description

enabled true
false

false Enables or disables the
SOAP request capture on
SOAP fault feature.
Disabled by default.

maxsize number 5000 This is an optional
attribute that specifies
the maximum size in
characters of SOAP
request capture. If not
present the Default value
is used. If present and an
error is made in the
setting, the Default value
is used.

Number of Occurrences one per parent

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

609

<soaprule> element

Purpose

Defines a consumer ID rule for SOAP headers.

Attributes

Elements

Example

<soaprule id="SOAP1" rule="TestService2" consumeridfield="Caller"/>

Attributes Valid Values Default Description

id string None ID of the rule.

rule string None A regular expression that
is used to match against
the web service name
being called by the
consumer.

consumeridfield string None The element in the SOAP
header to get the value
for to use as the
consumer ID.

Number of Occurrences zero to many

Parent Elements soaprules

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

610

<soaprules> element

Purpose

This element contains all of the <soaprule> elements.

Attributes

None.

Elements

Example

<soaprules>
</soaprules>

Number of Occurrences 1

Parent Elements consumeridrules

Child Elements soaprules

Chapter 14 • Understanding the .NET Agent Configuration File

611

<sqlparsing> element

Purpose

This element is used to indicate in what mode SQL queries should be parsed.
If there are a large number of SQL queries using literals it can overwhelm the
server symbol table so the default is set to mode 3 to avoid this problem.

Attributes

Attributes Valid Values Default Description

mode 1, 2, 3, 4 3 Mode indicates how to parse
SQL queries.

1 - just methods, no SQL queries

2 - main categories for SQL
queries (select/update/insert/
delete/...)

3 - (default) a measurement per
whole SQL query aggregating
similar statements into a single
measurement (ignore literals,
keyword case...)

4 - a measurement per whole
SQL query aggregating only
identical statements

keywordsfile string None Optionally allows you to specify
a file containing keywords you
want the agent to find in the
SQL statement and highlight in
upppercase when stored or
displayed by Diagnostics. This
helps ensure similar queries are
recognized as the same query
irrespective of case.

Chapter 14 • Understanding the .NET Agent Configuration File

612

Elements

Example

<sqlparsing mode="4" keywordsfile="C:\myfolder\mykeyword.txt"/>

Number of Occurrences 1

Parent Elements probeconfig

Child Elements

Chapter 14 • Understanding the .NET Agent Configuration File

613

<symbols> element

Purpose

Limits the number of unique URIs and SQL strings that can be captured to
control the amount of memory consumed.

Attributes

Elements

Example

<symbols maxuri="1000" maxuriname="Maximum number of unique URIs
exceeded" maxsql="1000" maxsqlname="Maximum number of unique SQLs
exceeded"/>

Attributes Valid Values Default Description

maxuri number 1000 Sets the top limit for
number of unique URIs
that can be captured.

maxuriname string Maximum
number of
unique URIs
exceeded

maxsql number 1000 Sets the top limit for
number of unique URIs
that can be captured.

maxsqlname string Maximum
number of
unique SQLs
exceeded

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements urireplacepattern

Chapter 14 • Understanding the .NET Agent Configuration File

614

<timeskew> element

Purpose

Used in configuring HP TransactionVision. Calculates the time difference
between the time server and the host on which the .NET Agent is running.
The frequency of checking with the time server can be configured.

Attributes

Elements

Example

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"
retrythreshold="8"/>

Attributes
Valid
Values

Default Description

historysize number 24 (Read on startup) number of
time skew samples to store
and compare for best
sample.

checkinterval number 300,000
ms.

(Dynamic) The time in
milliseconds to wait before
checking the time server for
the skew time calculation.

latencythreshold number 100 ms. (Dynamic) The maximum
time in milliseconds a reply
from a time server can take
for a valid time skew value.

retrythreshold number 8 (Dynamic) Number of times
to try when request to time
server fails.

Number of Occurrences 1 (one)

Parent Elements tv

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

615

<topology> element

Purpose

Controls whether topology information will be collected and sent to the
Diagnostics server.

Attributes

Elements

Example

<topology enable="true">

Attributes Valid Values Default Description

enable true
false

true Enables gathering
topology information
and passing it to the
Diagnostics Server.

Number of Occurrences 1

Parent Elements <probeconfig>, <process>, or <appdomain>

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

616

<transport> element

Purpose

Configure the events channel used by TransactionVision.

Attributes

conectionString Syntax when type=sonicmq

Attributes
Valid
Values

Default Description

type mqseries
sonicmq

sonicmq The event transport provider
being used by the Agent.

connectionString See below. The connection information
for the event transport
provider.

broker = <broker>; port = <port>; user = <user>; password =<password>;
configurationQueue = <configurationQueue>

Where: Is:

broker Host name on which the Sonic broker is running.
Typically this will be the Analyzer hostname.

port The port on which the broker communicates. By
default, 21111.

user User id if required by SonicMQ installation for
connection. By default, no username is required.

password Password if required by SonicMQ installation for
connection. This is in the obfuscated form created by
using the PassGen utility. By default, no password is
required. For more information about PassGen, see
"Administration Utilities" in the BSM Application
Administration User Guide.

configurationQueue Name of the queue which has the configuration
messages for the .NET TransactionVision Agent.

Chapter 14 • Understanding the .NET Agent Configuration File

617

conectionString Syntax when type=mqseries

Elements

Example

For SonicMQ:

<transport type="sonicmq" connectionstring="broker=brokerHost;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

For MQ Series:

<transport type="mqseries" connectionstring="host=mqHost;
queuemanager=; port=1414; channel=TRADING.CHL;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

host= <host>; queuemanager=<queuemanager>; port= <port>; channel=,channel>
configurationQueue = <configurationQueue>

Where: Is:

host Host on which the TransactionVision configuration
queue is hosted.

queuemanager Name of the queuemanager.

port MQSeries port on which the QueueManager
communicates.

channel MQSeries channel which will be used to communicate.

configurationQueue Name of the queue which has the configuration
messages for the .NET TransactionVision Agent.

Number of Occurrences 1 (one)

Parent Elements tv

Child Elements None

Chapter 14 • Understanding the .NET Agent Configuration File

618

<trim> element

Purpose

Configures the trimming feature to reduce data volume transferred between
the probe and the Diagnostics Server.

The Profiler user interface ignores all configured trim settings, for example,
depth trimming and latency trimming, as the Profiler does not require that
any data be sent to the Diagnostics Server.

Attributes

None.

Elements

Example

<trim>
</trim>

Number of Occurrences 1 per parent

Parent Elements appdomain, probeconfig, process

Child Elements depth, latency

Chapter 14 • Understanding the .NET Agent Configuration File

619

<tv> element

Purpose

Configure the .NET Agent for use with TransactionVision.

Attributes

Elements

Attributes
Valid
Values

Default Description

eventthreads number 3 (Read on startup) The
number of threads spawned
by the Agent to send events
to the Analyzer.

eventthreadsleep number 100 (Dynamic) The time in
milliseconds the event
thread sleeps after sending a
message(event package).

eventmemorythreshold number 25,000,000 (Dynamic) The memory
consumed by the internal
buffer (Q) after which the
Agent will try and send the
message on the application
thread.

configthreadsleep number 10,000 (Dynamic) The time in
milliseconds the event
thread sleeps after browsing
the configuration queue.

Number of Occurrences 1 (one)

Parent Elements ProbeConfig

Child Elements transport, timeskew

Chapter 14 • Understanding the .NET Agent Configuration File

620

Example

<tv eventthreads="3" eventthreadsleep="80"
eventmemorythreshold="25000000" configthreadsleep="10000" >

<timeskew historysize="24" checkinterval="300000" latencythreshold="100"
retrythreshold="8"/>
<transport type="sonicmq"
connectionstring="broker=myhost.mydomain.com;
port=21111; user=; password=;
configurationqueue=TVISION.CONFIGURATION.QUEUE"/>

</tv>

Chapter 14 • Understanding the .NET Agent Configuration File

621

<urireplacepattern> element

Purpose

Used to reduce the number of server requests by replacing many server
requests with one simplified server request URI that aggregates them. Uses
regular expression pattern matching. See "Configuring URI Truncation and
Mapping" on page 647.

Attributes

Elements

Example

<symbols maxuri="" maxsql="">
 <urireplacepattern enabled="true">
 <pattern value="s/TestService1/CommonService/"/>

 <pattern value="s/TestService2/CommonService/"/>
 </urireplacepattern>
 </symbols>

Attributes Valid Values Default Description

enabled true
false

false Enables uri pattern
replacement.

pattern
value

s/string/string/ If
enabled
there
are two
default
patterns
defined
for you.

The syntax for the pattern
value is s/search_pattern/
replace_pattern/.

If / is used in the pattern then
the character # should be used
instead of / as the separator.

Patterns are applied to all server
requests and are applied in the
order they are specified in
probe_config.xml.

Number of Occurrences 1

Parent Elements probeconfig, symbols

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

622

<vmware> element

Purpose

Controls the ability to adjust timestamps to be more accurate when running
in a VMware environment.

Attributes

Attributes Valid Values Default Description

attempttime
stampadjustments

true
false

false Enables time stamp
adjustments in VMware
environments.

useworkaround true
false

false If you encounter negative
latency issues when running
the .NET Agent on a VMware
guest with the
attempttimestampadjustments
attribute set to true you should
set this attribute to true. When
this attribute is set to true the
.NET Agent will use an
alternative call to get the
VMware host timestamps to
workaround the negative
latency issue.

disableperfcounters true
false

false Set this option to true if the
.NET Agent causes IIS worker
process to crash in a VMWare
environment. This is a
workaround for a
Microsoft-VMWare
environment problem related
to accessing perfmon counters
in certain VMWare
environments.

Chapter 14 • Understanding the .NET Agent Configuration File

623

Elements

Example

<vmware attempttimestampadjustments="false"/>

Number of Occurrences 1

Parent Elements probeconfig

Child Elements none

Chapter 14 • Understanding the .NET Agent Configuration File

624

<webserver> element

Purpose

Specifies the local Web server properties for communication with the probe.

Attributes

Example

<webserver start="35000" end="35100" ipaddress="16.255.18.99"/>

Attributes Valid Values Default Description

start number 35000 Starting port for
webserver.

end number 35100 Ending port for
webserver.

ipaddress IP address Local ip address to run
webserver on.

Chapter 14 • Understanding the .NET Agent Configuration File

625

<ws> element

Purpose

Controls Web services correlation sampling.

Attributes

None.

Elements

Example

<xvm><ws><sample method="percent" rate="50"/></ ws ></xvm>

Number of Occurrences 1

Parent Elements <xvm>

Child Elements <sample>

Chapter 14 • Understanding the .NET Agent Configuration File

626

<xvm> element

Purpose

Controls the cross VM settings.

Attributes

None.

Elements

Example

<xvm></xvm>

Number of Occurrences 1

Parent Elements probeconfig, process, or appdomain

Child Elements <ws>

627

15
Advanced .NET Agent Configuration

Instructions are provided for advanced configuration of the .NET Agent.
Advanced configuration is intended for experienced users with in-depth
knowledge of this product. Use caution when modifying any of the
Diagnostics components’ properties.

This chapter includes:

 ➤ Time Synchronization for .NET Agents Running on VMware on page 628

 ➤ Customizing the Instrumentation for ASP.NET Applications on page 628

 ➤ Discovering the Classes and Methods in an Application on page 634

 ➤ Controlling Which HP Software Products the Agent can Work With
on page 637

 ➤ Configuring Support for MSMQ Based Communication on page 641

 ➤ Configuring Latency Trimming and Throttling on page 641

 ➤ Configuring Depth Trimming on page 646

 ➤ Configuring URI Truncation and Mapping on page 647

 ➤ Configuring the .NET Agent for Lightweight Memory Diagnostics
on page 649

 ➤ Limiting Exception Stack Trace Data on page 652

 ➤ Disabling Logging on page 655

 ➤ Overriding the Default Probe Host Machine Name on page 656

 ➤ Listing the Probes Running on a Host on page 657

 ➤ Authentication and Authorization for .NET Profilers on page 658

 ➤ Configuring Consumer IDs on page 660

Chapter 15 • Advanced .NET Agent Configuration

628

 ➤ Configuring SOAP Fault Data on page 665

 ➤ Collecting Additional Probe Metrics or Modifying Probe Metrics on page 666

Time Synchronization for .NET Agents Running on VMware

.NET Agents running in VMware hosts have additional time
synchronization requirements. For agents running in a VMware guest, time
must be synchronized between the VMware guest and the underlying
VMware host. If time is not synchronized properly, the Diagnostics UI could
display inaccurate metrics or no metrics at all from a probe running in a
VMware guest.

Time should be synchronized according to the recommendations given in
the VMware whitepaper on timekeeping (http://www.vmware.com/pdf/
vmware_timekeeping.pdf) in the section "Synchronizing Hosts and Virtual
Machines with Real Time." In summary, VMware Tools must be installed in
each VMware guest operating system that hosts a Diagnostics probe and the
time synchronization option in VMWare Tools should be turned on. Note
that this option in VMware Tools will only work if the guest operating
system time is initially set earlier than that of the VMware host. For
instructions on how to install VMware Tools, see the "Basic System
Administration" document for VMware ESX Server. In addition, if any
non-VMware time synchronization software (such as Network Time
Protocol) is used, it should be run in the VMware ESX server service console.

Customizing the Instrumentation for ASP.NET Applications

When the .NET Agent is installed, the ASP.NET.points file is created with the
standard instrumentation that the agent applies to all ASP.NET processing
on the monitored server.

http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.vmware.com/pdf/vmware_timekeeping.pdf

Chapter 15 • Advanced .NET Agent Configuration

629

You must create application-specific instrumentation points to capture
performance metrics for the business logic that has been implemented
through application-specific classes and methods. The application-specific
instrumentation points must be stored in a custom capture points file that
can be associated with the application using the attributes in the
<probe_install_dir>/etc/probe_config.xml file. If the application was
auto-detected during the installation or during a rescan of IIS, a custom
capture points file was automatically created for the application at the same
time.

Note: If you do not know the classes and methods in an application that
you want to monitor, you can use the Reflector tool that was installed with
the .NET Agent to analyze the .dll files in the application and discover the
classes and methods. See "Discovering the Classes and Methods in an
Application" on page 634 for instructions on using Reflector.

To let the .NET Agent know that you want the instrumentation points in a
custom capture points file to apply to an application, you must update the
points attribute of the appdomain element in the probe_config.xml file.

To associate a custom capture points file with an application:

 1 Create a capture points file with the instrumentation for the application
specific classes. To create a capture points file, copy an existing capture
points file in the <probe_install_dir>/etc directory.

Note: If the application was auto-detected during the installation or during
a rescan of IIS, a capture points file already exists for the application with
some or all of the points file entries commented out.

 2 Customize the capture points file by adding instrumentation points so that
the agent captures custom business logic for the applications.

Chapter 15 • Advanced .NET Agent Configuration

630

The following example illustrates how to modify the capture points file so
that the agent captures IBuySpy custom code:

For more information about instrumentation, see Chapter 11, "Custom
Instrumentation for .NET Applications."

 3 Update the configuration of the .NET Agent probe in probe_config.xml to
ensure that the modified capture points file is properly referenced.

Within the ASP.NET <process> tag add an <appdomain> tag for the
application. Include the <points> tag with the file attribute and the enabled
attribute. See "Virtual Directories (AppDomains) Under Different IIS Paths
with the Same Names" on page 632 for more examples.

[IBuySpy Callee]
class = !IBuySpy.*
method = !.*
signature =
scope =
ignoreScope =
layer = Custom.IBuySpy

<appdomain name="1/ROOT/your_app_name" website="Default Web Site"
enabled="true">

<points file="DefaultWebsite-your_app.capture points"/>
</appdomain>

Chapter 15 • Advanced .NET Agent Configuration

631

The example below illustrates this step. A custom capture points file has
been created for the MSPetsShop application. The file has been named
MSPetShop.points. The <appdomain> tag for the application, and the
capture points file were added to the ASP.NET <process> tag in the
probe_config.xml file. Note that the IIS path is included in the appdomain
tag.

 4 Restart IIS as instructed in "Discovery and Standard Instrumentation" on
page 282.

<?xml version="1.0" encoding="utf-8"?>

<probeconfig>
<id probeid="" probegroup="Umatilla"/>

<credentials username="" password=""/>
<profiler authenticate=""><authentication username="" password=""/></profiler>

<diagnosticsserver url="http://issaquah:2006"/>
<mediator host="issaquah" port="2612"/>
<webserver start="35000" end="35100"/>
<modes am="true"/>

<instrumentation><logging level="" threadids="no"/></instrumentation>

<lwmd enabled="true" sample="1m" autobaseline="1h" growth="10" size="10"/>

<process name="ASP.NET", enablealldomains="false">
<logging level=""/>
<points file="ASP.NET.points"/>
<appdomain name="1/ROOT/MSPetShop" website="Default Web Site"

enabled="true">
<points file="DefaultWebsite-MSPetShop.points"/>

</appdomain>
</process>

</probeconfig>

Chapter 15 • Advanced .NET Agent Configuration

632

Virtual Directories (AppDomains) Under Different IIS
Paths with the Same Names
You can distinguish two or more appdomains on the same IIS server which
have the same name. Consider the configuration below where there are 3
virtual directories (AppDomains) with the name CallChain.

In the probe_config.xml file you can distinguish the AppDomains by
including the IIS configuration path.

Chapter 15 • Advanced .NET Agent Configuration

633

The configuration for the 3 CallChain applications in the example above
would be as follows:

The resultant probes are distinguished using the IIS path and are displayed
in the Enterprise UI as: 1ROOTCallChain.NET,
1ROOTCallChainCallChain.NET, 2ROOTCallChain.NET

Backward Compatibility with Pre-9.01 Releases
For the sake of backward compatibility, the 9.01 or later version of the agent
will be able to read and process versions of the probe configuration earlier
than 9.01 for ASP.NET AppDomains. The ’earlier’ format is shown in the
example below:

If you use the earlier format, then the behavior of the agent will revert to the
previous version’s behavior.

➤ All AppDomains with name "CallChain" (in this example) will be enabled or
disabled simultaneously.

➤ All CallChain probe instances will be consolidated on the server into one
probe.

➤ Trend lines for probes and server requests should continue from previous
versions.

It is recommended that you do NOT use the earlier format of configuration
where backward compatibility (such as trend lines) is not required.

<appdomain enabled="false" name="1/ROOT/CallChain/CallChain" website="Default
Web Site">
 <points file="Default Web Site-CallChain-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="1/ROOT/CallChain" website="Default Web Site">
 <points file="Default Web Site-CallChain.points" />
</appdomain>
<appdomain enabled="false" name="2/ROOT/CallChain" website="WebSite2">
 <points file="WebSite2-CallChain.points" />
</appdomain>

<appdomain name="CallChain">
 <points file="CallChain.points" />
</appdomain>

Chapter 15 • Advanced .NET Agent Configuration

634

For an appdomain configured using the earlier format, if the new behavior is
desired, the "old" format entry should be deleted from the probe_config.xml
file. Then run Rescan ASP.NET Applications from the start menu on the
probe system. This will result in the addition of AppDomain entries with the
new format, allowing you to distinguish different probes on the same IIS
server with the same name.

The upgrade install will retain the earlier version of the appdomain
configuration and modify probe_config.xml to add the new format
configuration for any unlisted AppDomains.

Discovering the Classes and Methods in an Application

To monitor the performance of an application that you are not familiar
with, use the Reflector automatic discovery tool that is installed with the
.NET Agent to find the classes and methods in the application that you want
to add to the instrumentation used by a probe. The Reflector executable is
located at <probe_install_dir>\bin\reflector.exe.

To discover classes and methods using Reflector:

 1 Locate the installation directory for the application that you want to
monitor.

 2 Locate the folder in the application installation directory where the .dll files
are stored.

 3 Open a command prompt and change the directory to the folder where the
.dll files for the application are stored.

 4 Run the Reflector against all of the .dll files and .exe files in the current
directory by executing the following the command at the command
prompt:

<probe_install_dir>\bin\Reflector.exe

Chapter 15 • Advanced .NET Agent Configuration

635

You can limit the Reflector to certain .dll and .exe files by adding additional
parameters to the command. The following example shows another way to
enter the command in the previous example:

This command explicitly tells the Reflector to check all of the .dll and .exe
files in the target directory.

To limit the Reflector to specific files, you could enter the following:

This command explicitly tells the Reflector to check only the two .dll files
specified.

The following example shows the commands you might execute if you have
an application called PetShop that has .dll files located in a bin folder:

<probe_install_dir>\bin\Reflector.exe *.dll *.exe

<probe_install_dir>\bin\Reflector.exe WorkHorse.dll Utility.dll

C:\>cd "c:\Program Files\Microsoft\PetShop\Web\bin"

C:\Program Files\Microsoft\PetShop\Web\bin>
C:\MercuryDiagnostics\".NET Probe"\bin\Reflector.exe

Chapter 15 • Advanced .NET Agent Configuration

636

 5 The Reflector displays a report of the assemblies, namespaces, classes, and
methods found in the .dll files that you specified.

Chapter 15 • Advanced .NET Agent Configuration

637

Note: You can redirect the output from the Reflector to a file, as shown in
the following example:

<probe_install_dir>\bin\Reflector.exe sys*.dll > <report_name>.txt

The output from Reflector is redirected to the file that you specify.

Use the information in the report to customize the instrumentation for the
application, as described in "Customizing the Instrumentation for ASP.NET
Applications" on page 628.

Controlling Which HP Software Products the Agent can
Work With

The .NET Agent can be set in different modes for the following:

➤ Monitoring applications from development through pre-production testing
and into production.

➤ Use with other HP Software products.

➤ Use as a standalone Diagnostics Java Profiler not reporting to a server or to
other HP Software products.

The mode the .NET Agent works in is determined by the <modes> element
set in the <probe_install_dir>/etc/probe_config.xml file.

The <modes> element is also used in determining usage against the license
capacity (see "License Information Based on Currently Connected Probes"
on page 85). For Diagnostics there are two types of LTUs (License to use):

➤ AM - When using of the product in an enterprise mode, typically in a
production environment.

➤ AD - When using the product in a pre-production load testing environment
with probes in LoadRunner or Performance Center runs.

The value of the <modes> element is initailly set at the time you install the
.NET agent. See Chapter 8, "Installing .NET Agents."

Chapter 15 • Advanced .NET Agent Configuration

638

To change the value of the <modes> element you can edit the
probe_config.xml file. Or you can re-run the .NET Agent installer and use
the Change option to set the mode to Diagnostics Profiler Mode (PRO),
Application Management/Enterprise Mode for Diagnostics (Enterprise) and/
or TransactionVision (TV) or Diagnostics Mode for LoadRunner/
Performance Center (AD).

Note: To use the standalone Diagnostics Profiler for .NET in enterprise mode
or integrated with other HP Software products, contact HP Software
Customer Support to purchase HP Diagnostics.

To see Diagnostics data in the user interface of the interfacing HP Software
products, you must perform additional configuration steps. See the sections
in "Setting Up Integration with Other HP Software Products" on page 735 for
details on integration with Business Service Management, LoadRunner or
Performance Center.

The sections that follow provide instructions for configuring each product
mode of the <modes> element (see also "<modes> element" on page 592).

PRO Mode - Diagnostics Profiler for .NET

When PRO mode is set, the agent gathers performance metrics and presents
them in the standalone Diagnostics Profiler for .NET user interface which is
made available through a URL on the agent host.

In this mode the profiler is always collecting data even when the profiler UI
is not in use. This mode can be combined with other modes.

PRO mode is not used in determing usage against license capacity.

Enterprise Mode

When configured in Enterprise mode, the agent works with HP Software
products such as Business Service Management, LoadRunner, Performance
Center, and as the full Diagnostics enterprise product. It will capture data
for LoadRunner/Performance Center runs in a separate database as well as
capture data outside of LoadRunner/Performance Center runs.

Chapter 15 • Advanced .NET Agent Configuration

639

Both AD and AM modes will override this mode.

In Enterprise mode data will also be sent to the Diagnostics .NET Profiler. If
the PRO mode is set along with Enterprise mode then the .NET Agent will
collect data continuously for the profiler even if the profiler UI is not in use.
If PRO mode is not set then the agent will not start collecting data until the
profiler UI is started.

Enterprise mode is the default for .NET Agents (if you don’t specify AD or
AM mode). In Enterprise mode the agents are counted against the AM
license capacity.

AM Mode

In AM mode the .NET agent will capture all instrumentation data. You can
set AM mode to protect an agent in a production Business Service
Management deployment from accidently being included in a LoadRunner
or Performance Center run. In AM mode, the agent is not listed as an
available agent in LoadRunner or Performance Center.

Agents in AM mode will always be counted against the AM license capacity.

AM mode supersedes all other modes except for AD.

AD Mode

In AD mode the .NET agent will only capture data during runs from
LoadRunner/Performance Center and the results will be stored in a specific
Diagnostics database for that run, for example, Default Client:21.

When the agent is in this mode it will not use resources or send any data to
the server unless the probe is part of a LoadRunner/Performance Center run.

AD mode supersedes all other modes. So for example, if AD mode and any
other modes are set then the mode will be set to AD.

See Chapter 24, "Setting Up HP LoadRunner and HP Diagnostics
Integration" for how to set up LoadRunner integration or see Chapter 25,
"Setting Up Performance Center to Use Diagnostics" for how to setup
Performance Center integration.

Chapter 15 • Advanced .NET Agent Configuration

640

Use this mode to prevent an agent in a QA environment from using
additional resources and continually report data to the Diagnostics console
dataset when a load test is not running.

Another advantage of running a probe in AD mode is that probes in AD
mode will only be counted against AD license capacity when the probe is
running in a LoadRunner or Performance Center test run. For example if
you have 20 agents installed in LoadRunner/Performanace Center AD mode
but only 5 are in a run, then only 5 are counted against AD license capacity.

TV mode

This mode will send events to Transaction Vision. This mode can be
combined with other modes. TV mode is not used in determing usage
against HP Diagnostics license capacity.

Note about AD Mode and Enterprise Mode

The .NET agent gets notified of LoadRunner/Performance Center runs by
the Diagnostic Mediator.

If LoadRunner/Performance Center starts testing an instrumented
application that is not running, for example, a web application getting hit
the first time, then when the application starts executing the Diagnostics
agent will not be notified of the run. This is because the agent will not have
had enough time to get initialized and start listening to the mediator for
this notification.

To work around this problem, the .NET agent needs to be
"primed"(initialized) by a call to the web application before a LoadRunner/
Performance Center run is started. This initializes the web application's
process (worker process) and the probe so that it is ready to accept run
information from the mediator.

Chapter 15 • Advanced .NET Agent Configuration

641

Configuring Support for MSMQ Based Communication

To configure the .NET Agent to support MSMQ based communication,
include the msmq.points file in the scope of the appdomain as shown in the
example excerpt from a <probe_install_dir>/etc/probe_config file:

Configuring Latency Trimming and Throttling

When the .NET Agent determines that it is running out of resources because
the Diagnostics Server is not keeping up with the amount of data that the
probes are capturing, the agent can automatically reduce the number of
methods the probe captures using a process called latency trimming. By
default, latency trimming is enabled so that the probe’s work load can be
adjusted as necessary.

When latency trimming is enabled, the .NET Agent trims the number of
methods captured by a probe by ignoring methods with a total latency
below a certain minimum latency threshold. The idea behind trimming is
that it is better to miss capturing methods with lower latency that are less
likely to be of interest than to allow the probe to bog down or stop running.
Trimming allows the probe to continue to run so that it can capture the
more interesting methods with higher latencies.

Note: Because of threading and buffering, partial information about a
method that was trimmed can be transmitted to the Diagnostics Server.
When the Diagnostics Server detects that it received only partial
information for a method, it issues a warning message. You should ignore
these warning messages unless you expected that the information for all
methods was to be captured.

<process name="SimplestQueuingSender">
<points file="msmq.points"/>
<modes enterprise="true"/>
</process>

Chapter 15 • Advanced .NET Agent Configuration

642

Notes:

➤ Latency trimming and throttling are ignored by the Profiler user
interface.

➤ The Diagnostics Server can be configured to apply additional trimming of
the probe’s data which will affect the granularity of the data shown by
the Diagnostics user interface.

Disabling Latency Trimming
By default, trimming is enabled for the .NET Agent. To disable trimming you
must change the configuration.

To disable Latency Trimming:

Add the latency tag to the <probe_install_dir>/etc/probe_config.xml
configuration file, as shown in the following example:

The attribute of the latency element that turns on latency trimming is
enabled. Latency trimming is enabled when enabled is set to true. When
enabled attribute is set to false, latency trimming is disabled. The default
value for this attribute is true.

For a description of attributes and elements of the latency element, see
Chapter 14, "Understanding the .NET Agent Configuration File."

<trim>
<latency enabled="false" />

</trim>

Chapter 15 • Advanced .NET Agent Configuration

643

Enabling Latency Trimming
By default, trimming is enabled for the .NET Agent. If you subsequently
disabled trimming, you must change the configuration to enable it once
more.

To enable Latency Trimming:

Change the value of the enabled attribute of the latency element in the
<probe_install_dir>/etc/probe_config.xml configuration file, as shown in
the following example:

The attribute of the latency element that turns on latency trimming is
enabled. Latency trimming is enabled when enabled is set to true. When
enabled attribute is set to false, latency trimming is disabled. The default
value for this attribute is true.

For a description of attributes and elements of the latency element, see
Chapter 14, "Understanding the .NET Agent Configuration File."

Setting Latency Trimming Thresholds
By default, the latency trimming thresholds are set so that those methods
with a latency less than 2 ms are trimmed, and those methods with a
latency greater than 100 ms are never trimmed.

You can set the minimum trimming threshold by adjusting the value of the
min attribute. You can set the maximum trimming threshold by adjusting
the value of the max attribute. These attributes are specified in the latency
element in the <probe_install_dir>/etc/probe_config.xml configuration file.

<trim>
<latency enabled="true" />

</trim>

<trim>
<latency enabled="true" min="50" max="100" />

</trim>

Chapter 15 • Advanced .NET Agent Configuration

644

The attributes of the latency element that control the trimming thresholds
are:

➤ min

Sets the minimum latency threshold. When latency trimming is enabled,
methods with a latency less than or equal to the value of this attribute are
trimmed. If you do not specify a value for this attribute, the default value of
2 ms is used.

The lower the value of the min attribute the greater the chance that the
performance of the application will be adversely impacted. A lower value
means that fewer methods are trimmed because more low-latency methods
are captured.

If the information for all methods must be captured, disable latency
trimming by setting latency enabled equal to false.

➤ max

Sets the maximum latency threshold. When latency trimming is enabled,
methods with a latency greater than or equal to the value of this attribute
are never to be trimmed. The default value for this attribute, if you do not
specify a value, is 100ms.

For a description of the attributes and elements of the latency element, see
Chapter 14, "Understanding the .NET Agent Configuration File."

Configuring Latency Trimming Throttling
Latency trimming is throttled by default. When throttling is enabled, the
amount of trimming that is done is automatically adjusted based on the
percentage of the probe resources that are being used up by the Diagnostics
Server processing backlog.

Without throttling, the methods that fall below the minimum method
latency threshold are always trimmed.

Chapter 15 • Advanced .NET Agent Configuration

645

If the percentage resources used by the probe increases above a set throttling
increment threshold, the effective trimming threshold is incremented so
that methods with higher latency are trimmed. If the percentage of probe
resources used increases above the threshold again, the effective trimming
threshold is incremented once more so that methods with even higher
latency are trimmed. If the percentage of probe resources used drops below
the throttling decrement threshold, the effective trimming threshold is
decremented so that the methods with lower latencies are captured once
more.

The effective trimming threshold cannot be incremented above the
maximum method latency threshold, and it cannot be decremented below
the minimum method latency threshold.

Below is an example of the latency element in the probe_config.xml
configuration file that includes the throttling attributes:

The attributes of the latency element that control throttling are:

➤ throttle

Throttling is enabled when this attribute is set to true. When this attribute is
set to false throttling is disabled. The default value for this attribute is true.

➤ increment

Sets the amount that the effective trimming threshold is incremented when
the percentage of probe resources used exceeds the incrementthreshold. Sets
the amount that the effective trimming threshold is decremented when the
decrementthreshold is crossed. The default value for this attribute is 2 ms.

➤ incrementthreshold

When the percentage of probe resource usage rises to the value of this
attribute or higher, throttling is triggered so that the effective trimming
threshold is incremented. The default value for this attribute is 75 percent.

<trim>
<latency enabled="true" min="50" max="100"
throttle="true" incrementthreshold="75"
decrementthreshold="50" increment="2"/>

</trim>

Chapter 15 • Advanced .NET Agent Configuration

646

➤ decrementthreshold

When the percentage of probe resource usage falls to the value of this
attribute or lower, throttling is triggered so that the effective trimming
threshold is decremented. The default value for this attribute is 50 percent.

For a description of the attributes and elements of the latency element, see
Chapter 14, "Understanding the .NET Agent Configuration File".

Configuring Depth Trimming

The .NET Agent can automatically reduce the number of methods that it
captures using a process called depth trimming. When the Diagnostics Server
is not keeping up with the amount of data that the probe is capturing, the
probe can use depth trimming to help prevent it from running out of
resources. By default, depth trimming is enabled.

Note: Depth trimming is ignored by the Profiler user interface.

When depth trimming is enabled, the .NET Agent trims the number of
methods captured by ignoring methods that are called at a stack depth that
is greater than the maximum stack depth threshold. Those that are called at
a stack depth less than or equal to the stack depth threshold are captured.
The idea behind trimming is that it is better to miss capturing methods
further down in the call stack, that are less likely to be of interest, so that the
probe is able to continue to run and is able to capture the more interesting
methods that occur higher in the call stack.

For example, if the stack depth threshold is 3, and the following method
calls are made:

where only the /login.do, a, and b methods are captured, and method c is
trimmed.

/login.do calls a() calls b() calls c()

Chapter 15 • Advanced .NET Agent Configuration

647

Below is an example of the depth element in the probe_config.xml
configuration file that includes the trimming attributes:

The attributes of the depth element that control trimming are:

➤ enabled

Depth trimming is enabled when this attribute is set to true. When this
attribute is set to false depth trimming is disabled. The default value for this
attribute is true.

➤ depth

Sets the threshold that are used for depth trimming. Methods that are called
at or below the value of this attribute are trimmed when depth trimming
has been enabled. The default value for this attribute is 25.

Setting depth to a lower value can significantly reduce the overhead of
capture. For a description of the attributes and elements of the depth
element, see Chapter 14, "Understanding the .NET Agent Configuration
File".

Configuring URI Truncation and Mapping

Any HTTP/S server request URI can be transformed before being reported by
the probe. This transformation is based on regular expression matching and
replacement controlled by the urireplacepattern element in the
probe_config.xml configuration file. It is turned off by default.

This can be useful when you are seeing too many server requests and you
want to replace many server request URIs with one simplified server request
URI that aggregates them.

Important: Overuse of this feature will impact performance.

<trim>
<depth enabled="true" depth="10" />

</trim>

Chapter 15 • Advanced .NET Agent Configuration

648

An example is shown below:

The syntax used for the pattern value is s/search_pattern/replace_pattern/.

The search_pattern and replace_pattern should be enclosed in /. If / is used
in the pattern then the character # should be used instead of / as the
separator.

The patterns are applied to all server requests and are applied to the uri in
the order they are specified in the probe_config.xml file.

If urireplacepattern is enabled, then two default patterns are configured by
default.

The first of these default patterns is used to trim server requests that contain
a ; or /!. All content after these tokens is removed from the server request.

The pattern used is : s#(;|/?\\!).*$##"

The second of these default patterns replaces loading of images, pdfs and
docs with a fixed token ("/Static Content").

The pattern used is:

s#(?<word1>^.*)(/.*\\.js|css|jpg|gif|png|pdf|html|doc|docx)#${word1}/Static
Content#

Both of these patterns can be customized.

<symbols maxuri="" maxsql="">
 <urireplacepattern enabled="true">
 <pattern value="s/TestService1/CommonService/"/>

 <pattern value="s/TestService2/CommonService/"/>
 </urireplacepattern>
 </symbols>

Chapter 15 • Advanced .NET Agent Configuration

649

Configuring the .NET Agent for Lightweight
Memory Diagnostics

The Lightweight Memory Diagnostics (LWMD) feature refers to the ability to
capture and analyze usage data that relates to Collections. Specifically
Collections refer to any class that implements either the
System.Collections.ICollection or System.Collections.Generic.ICollection
interfaces. Examples of such Collections are ArrayList, HashTable, DataView
etc. The most common from of .NET memory leaks occur in Collections that
are not properly maintained.

When the .NET Agent is installed, the default configuration for the .NET
Agent probe is to have LWMD turned off. To enable the LWMD feature you
must perform two modifications to the probe_config.xml file:

➤ You must enable the <lwmd> element (see "<lwmd> element" on page 586).

➤ You must add one or more references to the Lwmd.points file as described in
the instructions below.

Note: Enabling the probe to capture collections metrics could incur
additional overhead on the host for an application.

To enable the capture of collection metrics for a process or for an
appdomain:

Add a points tag for the Lwmd.points file to either the process tag or to one
or more appdomain tags in the probe_config.xml configuration file.

When you install the .NET Agent, the Lwmd.points file is installed in the
<probe_install_dir>/etc/ directory along with the ASP.NET.points and
ADO.points files. The Lwmd.points file contains the instrumentation
instructions needed to enable the capture of collection metrics.

Chapter 15 • Advanced .NET Agent Configuration

650

To enable LWMD instrumentation for all enabled appdomains that run
under a process, you add the points tag to the process tag in the
probe_config.xml configuration file. For example, to enable LWMD
instrumentation for all enabled ASP.NET appdomains:

To enable LWMD instrumentation for a specific enabled appdomain that
runs under a process, you add the points tag to an appdomain tag in the
probe_config.xml configuration file. You can add the points tag to one or
more of the appdomain tags. For example, to enable LWMD
instrumentation for the "your_app_name" appdomain running in the
ASP.NET process:

To disable LWMD:

To disable the LWMD feature you must perform two modifications to the
probe_config.xml file:

➤ Disable the <lwmd> element (see "<lwmd> element" on page 586).

➤ Delete the points tags for the Lwmd.points file from all process tags and
from the appropriate appdomain tags.

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<points file="Lwmd.points"/>
<appdomain name="1/ROOT/your_app_name" website="Default Web Site"

enabled="true">
<points file="DefaultWebsite-your_app.capture points" />

</appdomain>
</process>

<process name="ASP.NET", <enablealldomains="false">
<points file="ASP.NET.points" />
<points file="ADO.points" />
<appdomain name="1/ROOT/your_app_name" website="Default Web Site"

enabled="true">
<points file="DefaultWebsite-your_app.capture points" />
<points file="Lwmd.points"/>

</appdomain>
</process>

Chapter 15 • Advanced .NET Agent Configuration

651

Without the LWMD points tags in the configuration file, the probe cannot
locate the LWMD instrumentation instructions contained in the
Lwmd.points file and so the probe will not instrument for Collection usage.

To control LWMD Instrumentation:

When the .NET Agent is installed, the default configuration for the
Lwmd.points file contain instructions to instrument Collection usage in a
wide range of assemblies, appdomains, namespaces and classes. You can
modify the your application's points file to narrow the scope of the
Collections that you want to inspect. LWMD Instrumentation is
implemented as Caller side Instrumentation, refer to "Caller Side
Instrumentation" on page 438 for a description of how this instrumentation
works.

Note: Narrowing the scope of LWMD instrumentation is a recommended
best practice.

To narrow the scope of the Collections that you want to inspect perform the
following steps:

 1 Delete the points tags for the Lwmd.points file from the process tags and
from the appropriate appdomain tags. This will remove the LWMD settings
that specify a wide instrumentation scope.

 2 Add an LWMD section to the points file for your process or appDomain. As
an example, to do this copy and paste the following into your_app.points
file:

[LWMD]
keyWord = lwmd
scope =
ignoreScope =

Chapter 15 • Advanced .NET Agent Configuration

652

 3 Set the scope and ignoreScope Arguments in the LWMD section to narrow
the scope of the Collections that you want to inspect. Example:

[LWMD]
keyWord = lwmd
scope = !my_namespace\..*
ignoreScope = !my_namespace.my_class1\..*

The example above instruments all the Collections that are constructed
from the my_namespace namespace except for any Collections that are
constructed from any method in the my_namespace.my_class1 class.

For LWMD Instrumentation there is an internal default value for
ignoreScope that is unpublished and is always included with any value you
enter. The default value includes namespaces and classes relating to the
.NET Infrastructure that if instrumented would adversely affect the
application, for example, !System.*, !Microsoft.*, and so on.

Limiting Exception Stack Trace Data

The agent collects exception data for exception throwing server requests and
presents the information in the Diagnostics UI. The collected exception data
can optionally include a stack trace.

Collecting stack trace data for all exceptions is usually undesirable however,
because exception stack traces that are not of interest overload the display as
well as the data collection and transfer operations. You can therefore limit
the exception types for which stack trace data is collected. For example,
filtering application server-based errors such as
System.Security.Authentication.AuthenticationException would allow the
stack traces to be used for more application-specific errors.

The stack trace data that is collected is controlled in three ways: limiting
specific exception types, limiting the number of exceptions for which stack
trace data is collected and limiting the size of the stack trace data.

Chapter 15 • Advanced .NET Agent Configuration

653

Note: You can disable all stack trace collection by setting captureexceptions
enabled="false" in the probe_config.xml file. By default, stack trace
collection is enabled.

This section includes:

➤ Limit Specific Exception Types

➤ Limit the Number of Exceptions per Server Request

➤ Limit the Size of the Stack Trace

➤ Example

Limit Specific Exception Types
The exceptions for which stack trace data is collected is limited by setting
the exclude and include properties in the probe_config.xml file as shown in
the following example:

Subtypes of any exception type specified to be excluded or included are also
excluded or included, respectively, unless they are explicitly specified
otherwise on the include or exclude list.

<exclude>
<exceptiontype name="System.ArithmeticException"/>

</exclude>
<include>

<exceptiontype name="System.DivideByZeroException"/>
</include>

Chapter 15 • Advanced .NET Agent Configuration

654

The following diagram shows which exception types are included and
excluded based on the preceding example:

Changes to the probe-config.xml file take effect immediately; it is not
necessary to restart the application.

Limit the Number of Exceptions per Server Request
By default, the .NET Agent probes collect stack trace data on only the first 4
exceptions encountered during a server request. If your application has
more exceptions for which you want to view stack trace information, you
can increase the value of the max_per_request property in the
probe_config.xml file. As with all collected metrics, increased amounts of
collected data place a higher load on the Diagnostics Server.

Limit the Size of the Stack Trace
By default, the captured stack trace data can be of any size. You can limit the
size of the stack trace string to improve the readability of the Exceptions tab.
Set the value of the max_stack_size property to the maximum stack trace
string in the probe_config.xml file. As with all collected data, increased
amounts of collected data place a higher load on the Diagnostics Server. By
default, this property is set to 0 (zero) which means that the stack trace size
is not limited.

}
Included

Excluded

Excluded

Included by default}

Chapter 15 • Advanced .NET Agent Configuration

655

Example
The following settings enable exception stack traces with a maximum stack
trace string size of 2048.

Disabling Logging

You can disable application logging by changing the logging level tag of the
ASP.NET process section of the probe_config.xml file, as shown in the
following example:

You can disable instrumentation logging by changing the logging level tag
of the instrumentation section, as shown in the following example:

<captureexceptions enabled="true" max_per_request="4" max_stack_size="2048">
 <exclude>

<exceptiontype name="System.ArithmeticException"/>
 </exclude>
 <include>

<exceptiontype name="System.DivideByZeroException"/>
 </include>
</captureexceptions>

<process name="ASP.NET">
<logging level="off"/>

</process>

<instrumentation>
<logging level="off" />

</instrumentation>

Chapter 15 • Advanced .NET Agent Configuration

656

Overriding the Default Probe Host Machine Name

The registered_hostname property enables you to override the default host
machine name that a probe uses to register itself with the Diagnostics
command server. In situations where a firewall or NAT is in place or where
your probe host machine has been configured as a multi-homed device, it
might not be possible for the Diagnostics command server to communicate
with the probe unless you override the default host machine name.

To override the default host machine name for a probe there is a three step
process.

 1 First, set the registered_hostname attribute, located in the .NET Agent
<diagnosticsserver> element of the probe_config.xml file, to an alternate
machine name or IP address that allows the Diagnostics command server to
communicate with the Probe.

For example:

<diagnosticsserver url="http://localhost:2006/commander"
registered_hostname=" my_host_name "/>

 2 Second, register the alternate machine name or IP address of the host with
the .NET Metrics Agent. To do this, make a
metrics.agent.registered_hostname entry in the metrics.config file. You can
add the entry just under the metrics.systemgroup entry.

For example:

metrics.systemgroup = Default
metrics.agent.registered_hostname = my_host_name

 3 Finally, you must restart both the .NET Agent and the .NET Metrics Agent
for this change to take affect.

Chapter 15 • Advanced .NET Agent Configuration

657

Notes:

➤ You need to set the registered_hostname attribute to deal properly with
the use of the IIS Host Header technology.

➤ Setting the registered_hostname attribute because of a NAT or firewall is
only an issue for a test environment where you are using LoadRunner,
Performance Center, or Diagnostics Standalone.

➤ However, if you should set the registered_hostname in a production
environment where you are using Business Service Management or
Diagnostics Standalone, the name that you specify is shown as the host
name in System Health.

Listing the Probes Running on a Host

When more than one probe is running on a single host, you cannot know
which port each probe is using since the port that is assigned is based on the
one that is available at the time the application (and probe) is started. As the
applications are started and stopped, the port that is assigned to the probe
for a given application is likely to change.

You can determine which probes are running on a host and the ports that
they are using by accessing the following URL:

For the port value, enter the port number 35000 or 35001. It does not matter
which one you enter.

 http://<probe_host>:<port>

Chapter 15 • Advanced .NET Agent Configuration

658

The list of probes and ports is displayed as shown in the following example:

Authentication and Authorization for .NET Profilers

You can manage the authentication and authorization of users of the
Profiler in the <probe_install_dir>/etc/probe_config.xml file.

Note: If the .NET Agent is configured to work with a Diagnostics Server, the
probe (Profiler) authorization and authentication settings are managed from
the Diagnostics command server to which this probe is connected. For more
information, see "User Authentication and Authorization" on page 797.

When you access the probe from the Diagnostics Server, the default
username is admin and the default password is admin.

If the .NET Agent is installed as a profiler only, by default, users are not
required to enter a username and password to access the profiler.

Chapter 15 • Advanced .NET Agent Configuration

659

However, you can configure the profiler to require user authentication. If
you configure the profiler to require user authentication, you can define the
password required for accessing the profiler.

To configure the profiler to require user authentication:

➤ Go to the <probe_install_dir>/etc/probe_config.xml file and set the value of
profiler authenticate to true.

If you do not set a username and password, the default username is admin
and the default password is admin.

To create new usernames and passwords for users of the .NET Diagnostics
Profiler:

 1 Generate a new username and password using the PassGen.exe utility
located in the <probe_install_dir>/bin directory. Enter the user name and
password for encryption. The encrypted password generated for the user is
FIPS-2 compliant.

 2 In the probe_install_dir>/etc/probe_config.xml file, after the <profiler
authenticate="true"> line, enter the username and password for each new
user, in the following format:

➤ For authentication username, enter the username that you chose when
running the PassGen utility.

➤ for password, enter the encoded string that was returned by the
PassGen.exe utility.

<profiler authenticate="true">
<authentication username="Test" password="uU8X9zOtl6Twi7TkGAhQ="/>

</profiler>>

<profiler authenticate="true">
<authentication username="" password=""/>

</profiler>

Chapter 15 • Advanced .NET Agent Configuration

660

Caution: If you defined new usernames and passwords to access the profiler,
you can no longer use the default username and password (admin, admin).
Rather, you must use one of the new usernames that you defined.

Configuring Consumer IDs

Web service metrics can be grouped by particular consumers of the Web
service. The metrics are then aggregated for that consumer and displayed as
such in the Services by Consumer ID and Operations by Consumer ID views.

Aggregating the data by consumer ID is useful if you want to determine who
is using a particular service and how frequently they are using it. Consumer
IDs are also useful for Business Service Management. BSM users can look at
the performance of the same application based on consumers to compare
their performance characteristics.

Configuring Consumer IDs is optional. By default, the Consumer ID of a
Web service being monitored is reported as the IP address of the consumer
of the Web service.

There are three ways of defining the consumer ID:

➤ a value that appears in the SOAP request

➤ a value that appears in an HTTP header

➤ to a specific IP address or a range of IP addresses

Basic Procedure for Consumer ID Configuration
The basic procedure to configure consumer IDs is as follows:

 1 For each .NET probe for which you want metrics grouped by consumer,
update the probe_config.xml file as described in "Consumer ID Rules Syntax
and Examples for .NET Agent" on page 661.

 2 If you are configuring more than 5 consumer types, update the
max.tracked.ids.per.probe setting in the server.properties file.

Chapter 15 • Advanced .NET Agent Configuration

661

About Consumer ID Rules
The assignment of consumer IDs is controlled by consumer ID rules in the
probe_config.xml file.

Each category of consumer IDs has its own rules: SOAP rules, HTTP header
rules, and IP rules. The rules are applied in an order no matter which order
the rules are defined. The SOAP header rules are applied first, the HTTP
headers rules are applied next, and lastly the IP rules are applied.

All rule types do not need to be used. There could be SOAP rules, no HTTP
rules, and IP rules. If there is no match on any of these rules, the original IP
address is used as the consumer ID.

The SOAP rules allow for the consumer ID to be obtained from an XML
element in the SOAP header, envelope or body. The rule specifies a regular
expression that is used to match against the web service name being called
by the consumer. See "Using Regular Expressions" on page 926 for help using
regular expressions.

If there is a match with the web service name, the agent/probe attempts to
find the element defined in consumeridfield in the appropriate SOAP
location defined by the SOAP rule. If the element is not found, this rule is
skipped and the agent/probe goes on to the next rule that is defined.

The HTTP header rules allow for the consumer ID to be obtained from a
header in the collection of HTTP headers in a HTTP request.

The IP rules allow for the consumer ID to be obtained from the mapping of
IP addresses to a consumer ID. The rule is used to define an IP address, or a
range of addresses, to be assigned to a consumer ID.

Consumer ID Rules Syntax and Examples for .NET Agent
The rules syntax and examples are specific to how the consumer ID is being
defined.

SOAP Rules

The SOAP rules allow for the consumer ID to be obtained from an XML
element in the SOAP header, envelope or body.

Chapter 15 • Advanced .NET Agent Configuration

662

An example of configuring consumer ID based on a value in the SOAP
header is shown below:

id= attribute can be any name you would like to use to identify the rule; this
attribute is not used by the .NET probe.

rule= attribute must be defined for a soaprule. The rule is a regular
expression that is used to match against the web service name being called
by the consumer or you can use the exact Web service name.

location= can be set to "soap-header", "soap-envelope", "soap-body". If you
do not specify a location, it defaults to use "soap-header." If you configure a
location for any soap rule, you must configure a location for all soap rules,
or a severe error will occur and the consumer ID based on SOAP logic will be
disabled.

consumeridfield= attribute must be defined for a soaprule. The element in
the SOAP header, envelope or body whose value you want to use as the
consumer ID.

If there is a match with the pattern specified in the rule= attribute, the .NET
agent attempts to find a text element for the element defined in the
consumeridfield. The element in the consumeridfield can be a qualified
name—that is, composed of a namespace name and the local part—or an
unqualified name, which does not have an associated namespace. If the
element is not found in the specified location, this rule is skipped and the
probe goes on to the next rule that is defined.

For example, the following rule matches on a Web service named TestService
and uses the Caller element’s value as the consumer ID:

<consumeridrules enabled="true">
 <soaprules>
 <soaprule id="SOAP1" rule="TestService" location="soap-header"

consumeridfield="Caller"/>
 </soaprules>
</consumeridrules>

<soaprule id="SOAP1" rule="TestService" location="soap-header"
consumeridfield="Caller"/>

Chapter 15 • Advanced .NET Agent Configuration

663

As long as the callers of the TestService Web service have a value defined for
Caller, the metrics will be grouped by the different values for Caller. Here is
an excerpt from the soap header that would map to a consumer ID of
"Customer2" for this caller of the TestService:

Enable SOAP Capture

SOAP envelopes can be very large so the <soapcapture> element is provided
to enable you to control the overhead, mainly memory overhead, of
capturing SOAP requests and responses.

<soapcapture enabled="true">

The <soapcapture> element controls whether SOAP requests and responses
are captured. If it is disabled, SOAP requests and responses will not be
captured. This means there will not be SOAP requests or responses included
in TransactionVision events, nor will there be any SOAP requests available
with SOAP faults, and you cannot configure consumer ID based on SOAP
header, envelope, or body.

The <soapcapture> setting overrides the settings in
<soaprequestforsoapfault> which controls SOAP payload capture on SOAP
faults. See "Configuring SOAP Fault Data" on page 665.

SoapTest1;WS<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<env:Header>

<Caller>Customer2</Caller> <-- The consumer id returned is
 "Customer2"

</env:Header>
<env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:sell xmlns:m="http://www.bea.com/examples/Trader">
<string xsi:type="xsd:string">sample string</string>
<intVal xsi:type="xsd:int">100</intVal>

</m:sell>
</env:Body>

</env:Envelope>

Chapter 15 • Advanced .NET Agent Configuration

664

HTTP Header Rules

The HTTP header rules allow for the consumer ID to be obtained from a
header in the collection of HTTP headers in a HTTP request. A rule and
consumeridfield attribute must both be defined for a HTTP rule element,
and an id attribute can also be defined for the user to identify individual
rules.

The rule is a regular expression that is used to match against the URL that
the HTTP request is being sent to by the consumer. If there is a match, the
.NET probe attempts to find an HTTP header for the header name defined in
the consumeridfield. If the header name is not found in the collection of
HTTP headers, this rule is skipped and the probe goes on to the next rule
that is defined.

Example httpheader rules:

IP Address Rules

The IP rules allow for the consumer ID to be obtained from the mapping of
IP addresses to a consumer ID. A rule and consumerid attribute must both be
defined for an IP rule element, and an id attribute can also be defined for the
user to identify individual rules.

The rule is used to define an IP address, or a range of addresses, to be
assigned to a consumer ID. This rule can be defined as a single IP address; for
example, 19.225.17.125. The rule can also define a range; for example,
19.255.17.125,19.255.17.255.

An asterisk can also be used in an octet of an IP address to match against
anything in that octet; for example, 19.255.17.*. A range can be defined in
an octet to match a range of values in that octet; for example,
19.255.17.20-255. Combinations of these can also be used; for example,
19.*.17.20-255, 20.*.10-55.*. If there is a match, the .NET probe sets the
consumer ID to the consumer ID defined in the rule.

<consumeridrules enabled="true">
 <httpheaderrules>

<httpheaderrule id="httpHeader 1" rule="/Webservice/.*
consumeridfield="Caller"/>
 </httpheaderrules>
</consumeridrules>

Chapter 15 • Advanced .NET Agent Configuration

665

Examples:

Configuring SOAP Fault Data

If a SOAP fault is detected, the SOAP payload can be included with the SOAP
fault data. SOAP payload is only captured when there is a SOAP fault.

In the Diagnostics UI, you can view the payload information as part of the
SOAP fault instance tree (call profile).

Because payloads can contain sensitive information such as credit card
numbers, payload capture on SOAP faults is disabled by default. To enable
payload capture on SOAP faults set <soaprequestforsoapfault
enabled="true"/> in the probe_config.xml file on the .NET probe system.

You can also define the limit for the payload size using the maxsize attribute
in the <soaprequestforsoapfault> element. For example, the following entry
increases the SOAP payload length to 10000 from its default of 5000:

The <soapcapture> element overrides the <soaprequestforsoapfault>
element. So that if <soapcapture> is disabled, <soaprequestforsoapfault> is
disabled even if <soaprequestforsoapfault> is set to true. Also whatever
<soapcapture> maxsize value is set, overrides the <soaprequestforsoapfault>
maxsize. So that is <soapcapture> maxsize is set to 5000 and
<soaprequestforsoapfault> maxsize is set to 10000, the payload size will be
maximum of 5000.

<consumeridrules enabled="true">
 <iprules>

<iprule id="IpTest1" rule="18.*.1-20.*" consumerid="Client1"/>
<iprule id="IpTest2" rule="17.*.*.*" consumerid="Client2"/>
<iprule id="IpTest3" rule="19.255.17.125,19.255.17.255" consumerid="Client3"/>

 </iprules>
</consumeridrules>

<soaprequestforsoapfault enabled="true" maxsize="10000"/>

Chapter 15 • Advanced .NET Agent Configuration

666

Collecting Additional Probe Metrics or Modifying Probe
Metrics

You can configure the .NET agent to collect additional probe metrics based
on perfmon counters using the <metrics> and <metric> elements in the
<probe_install_dir>\etc\probe_config.xml file. See "<metric> element" on
page 590 and "<metric> element" on page 590 for details.

You can also modify probe metrics using the <metric> element. But note the
following special cases:

➤ If you want to move a metric from one metric category to another, you must
change the metric’s group attribute as well as the metric name attribute.
This is because the existing metric name is already registered to its old group
on the Diagnostics mediator and this association cannot be changed.

➤ If you want to redefine an existing probe metric it is better to create a
completely new metric entry rather than assigning a different perfmon
counter to the metric. This ensures that you avoid aggregating disparate
data.

Performance Counter Security
The .NET Agent uses Performance Counters to collect probe metrics. This
requires the application process that is being monitored by the .NET Agent
to have access rights to performance counters. Each process runs as a user
account therefore this user account must have access rights to performance
counters. The simplest way to do this is to add the user account that the
process runs as to the Performance Monitor Users group.

However Microsoft has introduced the concept of a virtual accounts in
Windows Vista SP2, Windows Server 2008 SP2, Windows 7 and Windows
Server 2008 R2 (see
http://technet.microsoft.com/en-us/library/dd548356(WS.10).aspx for
details). These operating systems have used the virtual accounts concept in
IIS and by default, application pools in IIS run as ApplicationPoolIdentity.
Because this user account is virtual, it requires special steps to add the user
account to the Performance Monitors Users group.

Chapter 15 • Advanced .NET Agent Configuration

667

In Windows 2008 R2 and Windows 7 do the following:

 1 Open the Server Manager tool, there are many ways to do this but one is
through Administrative Tools.

 2 In the left hand pane find Local Users and Groups under Configuration.

 3 Click the + to expand it.

 4 Double-click Groups.

 5 Double-click the Performance Monitor Users group.

 6 Click the Add… button.

 7 Click the Locations… button.

 8 Select the local computer.

 9 Click the OK button.

 10 Make sure that object types includes Built-in security principals.

 11 Enter IIS APPPOOL\<name of the application pool>, (example IIS
APPPOOL\My WebService App Pool, where My WebService App Pool is the
name of the application pool), in the text box.

 12 Click the OK button.

In Windows 2008 SP2 and Windows Vista SP2 do the following:

 1 Open a Command Prompt window.

 2 Type net localgroup "Performance Monitor Users" "IIS APPPOOL\<name of
application pool> /ADD (where <name of the application pool> is the
application pool name).

 3 The command completed successfully will be displayed if this is successful.

Chapter 15 • Advanced .NET Agent Configuration

668

Part VI

Configuring Communications through
Proxies and Firewalls

This section includes:

➤ Configuring Diagnostics Servers and Agents for HTTP Proxy

➤ Configuring Diagnostics to Work in a Firewall Environment

670

671

16
Configuring Diagnostics Servers and
Agents for HTTP Proxy

Configuration steps are provided for you to enable HTTP proxy
communications between the Diagnostics components. These configuration
instructions are intended for experienced administrators with in-depth
knowledge of Diagnostics. Use caution when modifying any configuration
settings for the Diagnostics components.

This chapter includes:

➤ Enabling HTTP Proxy Communications for the Diagnostics Servers
on page 672

➤ Enabling HTTP Proxy Communications for the Java Agent on page 673

➤ Enabling HTTP Proxy Communications for a .NET Agent on page 674

Chapter 16 • Configuring Diagnostics Servers and Agents for HTTP Proxy

672

Enabling HTTP Proxy Communications for the
Diagnostics Servers

The following section describes how to configure the Diagnostics
commander server and Diagnostics mediator server to communicate with
each other through an HTTP proxy.

To configure the Diagnostics Servers for HTTP proxy communications:

 1 Set the following properties in <diagnostics_server_install_dir>/etc/
server.properties:

➤ Set proxy.host to the host name of the proxy server.

➤ Set proxy.port to the port of the proxy server.

➤ Set proxy.protocol to the protocol to use for the proxy server (http).

➤ Set proxy.user to the user used to authenticate the proxy server.

➤ Set proxy.password to the password used to authenticate the proxy
server.

➤ For a Diagnostics commander server that is to run over the proxy, set
commander.url so that the host name is the real host name and not a
localhost.

 2 Restart the Diagnostics Server. For instructions, see "Starting and Stopping
the Diagnostics Server" on page 70.

Chapter 16 • Configuring Diagnostics Servers and Agents for HTTP Proxy

673

Enabling HTTP Proxy Communications for the Java Agent

The following section describes how to configure the Java Agent to
communicate with Diagnostics commander server through an HTTP proxy.
You can also have proxy communications configured for you by selecting
the Use Proxy Server checkbox in the Java Agent installation and setup
program.

To configure the Java Agent for HTTP proxy communications:

 1 Set the following properties in <probe_install_dir>/etc/
dispatcher.properties:

➤ Set proxy.enabled to true to enable proxy communications for the Java
Agent and then enter the following options.

➤ Set proxy.host to the host name of the proxy server.

➤ Set proxy.port to the port of the proxy server.

➤ Set proxy.protocol to the protocol to use for the proxy server (http).

➤ Set proxy.user to the user used to authenticate the proxy server.

➤ Set proxy.password to the password used to authenticate the proxy
server.

 2 Restart the instrumented application VM.

Chapter 16 • Configuring Diagnostics Servers and Agents for HTTP Proxy

674

Enabling HTTP Proxy Communications for a .NET Agent

The following section describes how to configure the .NET Agent to
communicate with the Diagnostics commander server through an HTTP
proxy:

To configure a .NET Agent for HTTP proxy communications:

 1 Set the following proxy properties in the <probe_install_dir>/etc/
probe_config.xml file to point to the Diagnostics Server host:

➤ Set uri to the host for the Diagnostics Server.

➤ Set proxy to the proxy url.

➤ Set proxy.user to the user used to authenticate the proxy server.

➤ Set proxy.password to the password used to authenticate the proxy server.

The following example shows how this would look in the
probe_config.xml file:

 2 Set the following proxy properties in the <probe_install_dir>/etc/
metrcis.config file to configure system metrics to use a proxy:

➤ Set proxy.uri to the proxy url.

➤ Set proxy.user to the user used to authenticate the proxy server.

➤ Set proxy.password to the password used to authenticate the proxy
server.

 3 Restart the instrumented application process.

<diagnosticsserver url="http://<diagserver_host_name>:2006/registrar/"
proxy="http://proxy:8080" proxyuser= "<username>" proxypassword="<password>"/>

675

17
Configuring Diagnostics to Work in a
Firewall Environment

Some basic configuration information is provided for you to enable HP
Diagnostics to work correctly in an environment where a firewall is present.
This additional configuration is required when the firewall separates the
probes from the other Diagnostics components or the components of
LoadRunner, Performance Center, or Business Service Management. See the
LoadRunner, Performance Center and Business Service Management
documentation for more details.

This chapter includes:

 ➤ Overview of Configuring Diagnostics for a Firewall on page 676

 ➤ Collating Offline Analysis Files over a Firewall on page 679

 ➤ Installing and Configuring the MI Listener on page 680

 ➤ Configuring the Diagnostics mediator server to Work with a Firewall
on page 681

 ➤ Configuring LoadRunner and Performance Center to Work with Diagnostics
Firewalls on page 687

Note: The configuration instructions should be used only by experienced
users with in-depth knowledge of HP Diagnostics. Use caution when
modifying any configuration settings for the Diagnostics components.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

676

Overview of Configuring Diagnostics for a Firewall

Configuring Diagnostics for a firewall differs depending on which HP
Software product is part of the Diagnostics integration.

Business Service Management
The diagram below shows a typical Diagnostics deployment where a firewall
separates the probe from the other Diagnostics and Business Service
Management components.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

677

To configure the firewall to enable the communications between
Diagnostics components and Business Service Management, open the ports
that will allow the following:

➤ HTTP requests from the Business Service Management server(s) to the
Diagnostics Commander Server, on port 2006.

➤ HTTP requests from the Diagnostics Commander Server to Business
Service Management Server on port 80. HI updates from the Diagnostics
Commander Server to Business Service Management on port 383.

➤ HTTP requests from the Diagnostics UI web browser client machine to
the Diagnostics Commander Server on port 2006. Note that you can also
access the Java or .NET profilers from the Diagnostics UI.

➤ HTTP requests from the Diagnostics Mediator Servers to the Diagnostics
Commander Server on port 2006.

➤ HTTP requests from the Diagnostics Mediator Servers to ports
35000-35100 of the probe. The actual ports on which you must allow
communications will depend on the port numbers that you enabled
when you configured the probe and the number of instrumented VMs.
For information on setting the probe port range, see “Configure
Monitoring of Multiple Java Processes on an Application Server” on
page 233

➤ TCP requests from the .NET Agent to the Diagnostics Mediator Server on
port 2612.

➤ HTTP requests from the Java Agent, Collector, .NET Metrics Collector to
the Diagnostics Mediator Server on port 2006.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

678

LoadRunner and Performance Center
The diagram below shows a typical Diagnostics topology where a firewall
separates the probe from the other Diagnostics and LoadRunner
components.

Note: LoadRunner is used in this diagram for illustrative purposes. The same
information would apply to Performance Center.

You must configure the firewall to allow the Diagnostics components to
communicate with each other.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

679

To configure the firewall to enable the communications between the
Diagnostics components, open the ports that will allow:

➤ HTTP requests from the Diagnostics mediator server to the Diagnostics
commander server on port 2006.

➤ TCP requests from the probe to the Diagnostics mediator server on port
2612.

➤ HTTP requests from the probe to the Diagnostics mediator server on port
2006.

Note: In addition to the above topology, if you are using the LoadRunner
Analysis Tool to view offline J2EE results, see “Collating Offline Analysis
Files over a Firewall” to properly configure the Controller and the
Diagnostics Servers in Mediator mode for offline file retrieval.

Collating Offline Analysis Files over a Firewall

During a LoadRunner / Performance Center load test, the Diagnostics
Servers that have probes reporting to them generate an offline analysis file
on their host machine. The offline analysis files is retrieved by LoadRunner /
Performance Center when it collates the results of a load test.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

680

If there is a firewall between the LoadRunner / Performance Center
Controller and the Diagnostics Server involved in a load test, you must
configure the Controller and the Diagnostics Server to use the MI Listener
utility to enable the transfer of the offline analysis file. The MI Listener
utility comes with LoadRunner / Performance Center and should be
installed on a machine inside your firewall as shown in the following
diagram.

To configure the Controller to access Diagnostics Servers that are behind a
firewall see the following sections:

➤ Installing and Configuring the MI Listener.

➤ Configuring the Diagnostics mediator server to Work with a Firewall.

➤ Configuring LoadRunner and Performance Center to Work with
Diagnostics Firewalls.

Installing and Configuring the MI Listener

The MI Listener component is the same component that is used to serve
Load Generators that are outside of a firewall. For more information about
how to configure the MI Listener for LoadRunner, see the HP LoadRunner
Controller User Guide. For more information about how to configure the MI
Listener for Performance Center, see the HP Performance Center
Administrator’s Guide.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

681

Configuring the Diagnostics mediator server
to Work with a Firewall

To configure the Diagnostics mediator server so that it can work across a
firewall, you must complete the following additional configuration steps. If
you did not install and configure the Diagnostics mediator server you must
do so before attempting these steps. For instructions on installing the
Diagnostics mediator server, see Chapter 2, “Installing the Diagnostics
Server.”

To configure the Diagnostics mediator server for a firewall on a Windows
machine:

 1 Launch the Agent Configuration by running
<diagnostics_server_install_dir>/nanny/windows/bin/AgentsConfig.exe.

The Agent Configuration dialog box opens:

 2 Select Enable Firewall Agent. The Settings button becomes enabled.

 3 Click Settings. The Agent Configuration process opens the Agent
Configuration Settings dialog box.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

682

 4 In Value column of the MI Listener Name property, enter the host name or
IP address of the machine where the MI Listener was installed.

 5 For the Local Machine Key property, enter the machine name of the host of
the Diagnostics mediator server.

Important:

➤ When entering the host name of a Diagnostics component you must use
the fully qualified host name, that is, the machine name and the domain
name.

➤ Use the System Health view in the Diagnostics UI to determine the
machine name for the host of the Diagnostics mediator server. For more
information on the System views, see Appendix D, “Using System Views
for Administrators.”

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

683

 6 Click OK to close the dialog box.

 7 Click OK again to close the Agent Configuration dialog box.

 8 The Restart Agent dialog box opens. Click OK to restart the Agent.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

684

To configure the Diagnostics mediator server for a firewall on a UNIX/Linux
machine:

 1 Modify the <diagnostics_server_install_dir>/nanny/<platform>/dat/
br_lnch_server.cfg file.

Change the value of the FireWallServiceActive property to 1.

 2 Run the following commands to launch the Agent Configuration utility.

For Solaris and Linux, where <platform> is either solaris or linux:

For HP-UX:

 3 In the Agent Configuration Utility window, press 2, Change a Setting.

export LD_LIBRARY_PATH=.
export M_LROOT=<diagnostics_server_install_dir>/nanny/<platform>
cd $M_LROOT/bin
./agent_config

export SHLIB_PATH=.
export M_LROOT=<diagnostics_server_install_dir>/nanny/hpux
cd $M_LROOT/bin
./agent_config

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

685

 4 A list of settings appears.

Press 1 to select MI Listener Name, and enter the machine name or IP
address of the MI Listener host.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

686

 5 Press 2 to select Change a Setting and enter the machine name of the host
of the Diagnostics mediator server.

Use the System Health view in the Diagnostics UI to determine the machine
name for the host of the Diagnostics mediator server. For more information
on the System views, see Appendix D, “Using System Views for
Administrators.”

 6 Press 3, Save changes and exit, to complete the updates.

 7 Restart the Diagnostics mediator server.

./m_daemon_setup -remove (this stops the server and MI Agent)

./m_daemon_setup -install (this starts the server and MI Agent)

On some Linux systems, if you encounter an error saying that the
libstdc++.so.5 shared library is missing, you may need to install it. For
example, on CentOS, enter the following command to install the library:

yum install compat-libstdc++-33

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

687

Configuring LoadRunner and Performance Center
to Work with Diagnostics Firewalls

After the MI Listener has been installed and your Mediator machines are
configured, you must update the Diagnostics Configuration in LoadRunner
/ Performance Center so that the application knows to use the MI Listener
when it is transferring the offline data from a Mediator that is outside of a
firewall.

For Performance Center:

Make sure that you specified the IP address of the MI Listener machine that
is configured to collect application diagnostics data from over the firewall.
For details, see the section on MI Listerners in the HP Performance Center
Administrator’s Guide. Also make sure that Diagnostics is enabled in
Performance Center. For details, see the section about HP Diagnostics in the
Performance Center User’s Guide.

For LoadRunner:

Make sure that Diagnostics is enabled in LoadRunner. When you configure
your load test scenario to work with Diagnostics, make sure that you select
the option to work over a firewall and specify the name of the relevant MI
Listener server. For details, see the section about HP Diagnostics in the HP
LoadRunner Controller User Guide.

Chapter 17 • Configuring Diagnostics to Work in a Firewall Environment

688

Part VII

Configuring Diagnostics Metrics
Collectors

This section includes:

➤ .NET System Metrics Agent - Systems Metrics Capture

➤ Java Agent Metrics Collectors

➤ Java Agent - System Metrics Capture

➤ Java Agent - JMX Metrics Capture

690

691

18
.NET System Metrics Agent - Systems
Metrics Capture

Information is provided about system metrics capture and how to configure
the system metrics collector installed with the .NET Agent.

This chapter includes:

 ➤ About the .NET System Metrics Agent on page 691

 ➤ System Metrics Captured by Default on page 692

 ➤ Configuring .NET System Metrics Capture on page 693

 ➤ Adding System Metrics Using the Windows Performance Monitor
on page 696

 ➤ Default Entries in the .NET Agent metrics.config File on page 698

 ➤ Keywords in the metrics.config File on page 699

About the .NET System Metrics Agent

A system metrics collector is installed with the .NET Agent and run as a
Windows Service (HP Diagnostics Metrics Agent). The .NET system metrics
agent gathers system level metrics, such as CPU usage and memory usage,
from the agent’s host. It is configurable so you can control which metrics are
collected as well as aspects of how the metrics are collected and published.

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

692

Only one instance of the .NET system metrics agent is run on a given host,
no matter how many instances of the probe were started on the host.

Note: To configure additional probe metric capture with the .NET Agent
(other than system metrics capture described here) see “Collecting
Additional Probe Metrics or Modifying Probe Metrics” on page 666.

System Metrics Captured by Default

The following are the system metrics that the .NET system metrics agent
collects by default for all supported platforms (excluding z/OS):

➤ CPU

➤ MemoryUsage

➤ VirtualMemoryUsage

➤ ContextSwitchesPerSec

➤ DiskBytesPerSec

➤ DiskIOPerSec

➤ NetworkBytesPerSec

➤ NetworkIOPerSec

➤ PageInsPerSec

➤ PageOutsPerSec

In addition to the default system metrics listed above, the following system
metrics are also captured by default on .NET Agent systems. (The layout of
these entries is described in “Understanding the system/ Metrics Collector
Entries” on page 694).

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

693

.NET CLR Memory\# Total committed Bytes_Global_
ASP.NET\Application Restarts
ASP.NET\Requests Queued
ASP.NET Apps v2.0.50727\Requests/sec__Total__

You can control which of the default system metrics the .NET system
metrics agent gathers and you can capture custom system metrics with the
.NET system metrics agent.

Configuring .NET System Metrics Capture

The configuration file for the .NET system metrics agent is the
<probe_install_dir>/etc/metrics.config file. Changes to the metrics.config
file are processed dynamically by the .NET Agent.

Note: There is a different metrics.config file included with the Java Agent
(see Chapter 19, “Java Agent Metrics Collectors”).

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

694

Understanding the system/ Metrics Collector Entries
Metrics collector entries in the metrics.config file instruct the .NET system
metrics agent to gather specific metrics. Entries that begin with system/ are
processed as Windows Performance Monitor Counters.

These system metrics collector entries use the following layout:

All fields are required except for the optional <Instance> and
<Remote_machine> fields.

Where:

➤ Counter_name indicates the Windows Performance Monitor counter. See
“Adding System Metrics Using the Windows Performance Monitor” on
page 696 for details on how to identify the counter, performance object
and instance in the Windows Performance Monitor UI.

➤ Performance_object indicates the Windows Performance Monitor
performance object associated with the Counter_name.

➤ Instance indicates the Windows Performance Monitor instance of a
counter. You may use a wildcard (*) to indicate that all instances are
desired. If you wish to specify a specific enumeration of all instances, you
precede the enumeration index number with the hash sign (#1). The
enumeration index number must be a positive number.

➤ Remote_machine is only required if the Windows Performance Monitor
Counter is running on a machine that is different (remote) from the
machine that the .NET system metrics agent is running on. The
minimum requirement for this configuration to work is that the Network
Service User on the machine that the .NET system metrics agent is
running on must have permissions to read the Windows Performance
Monitor Counters from the remote machine.

system/<Counter_name>\<Performance_object>\<Instance>\<Remote_machine> =
<metric_id>|<metric_units>|<category_id>

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

695

➤ <metric_id> indicates the name that represents the metric in the
Diagnostics UI. The metric_id must be unique in the metrics.config file.
If the value of the metric_id is the same as one of the default metrics,
Diagnostics replaces the metric_id in the entry with a standard name to
be used to reference the metric in the UI. If the value of the metric_id is
not the same as one of the default metrics, the metric_id is used as the
name of the metric in the UI exactly as shown in the entry.

➤ <metric_units> indicates the units of measure in which the metric is
reported. This is a required parameter and it must contain one of the
following units of measure:

➤ microseconds, milliseconds, seconds, minutes, hours, days

➤ bytes, kilobytes, megabytes, gigabytes

➤ percent, fraction_percent

➤ count

➤ load

➤ <category_id> groups a set of metrics together under the same heading in
the Details pane of the Diagnostics UI. This parameter has no impact on
the data displayed in the Diagnostics views.

Example without an <Instance>:

Example with an <Instance>:

Example with an integer <Instance>:

Example without an <Instance> and running on a <Remote_Machine):

system/ASP.NET\Requests Queued = Requests Queued|count|ASP

system/Processor\% Processor Time_Total = CPU|percent|System

system/Processor\% Processor Time\#1 = CPU 1|percent|System

system/ASP.NET\Requests Queued\\IISAQUAH = Requests
Queued(IISAQUAH)|count|ASP

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

696

Adding System Metrics Using the Windows Performance
Monitor

To add a system metric counter to the metrics.config file you must first find
its definition using the Windows Performance Monitor (Perfmon). The
following example uses version 5.x of Perfmon. Version 6.x is similar but the
UI is a little different.

To add counters in Perfmon:

 1 Start the Windows Performance Monitor. For example select Start > Control
Panel > Administrative Tools > Performance.

 2 The Perfmon Performance dialog box is displayed showing the System
Monitor graph with a table of the current counters beneath the graph.
Right-click the System Monitor graph and select Add Counters... from the
pop-up menu.

The Add Counters dialog box is displayed:

 3 Select the Select counters from computer entry and make sure the host
computer is select in from the drop down list.

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

697

 4 In the Performance object list, select the object that the counter belongs to.

 5 Choose Select counters from list and select an instance from the list of
instances.

 6 Click the Add button to add the counter. The following instructions tell you
how to create an entry for a counter using the system/ metrics entry
described in “Understanding the system/ Metrics Collector Entries” on
page 694.

To collect metrics for a Perfmon counter:

 1 Open the <probe_install_dir>/etc/metrics.config file on the .NET agent
system.

 2 Create the system/ metrics entry for the counter using the layout described
in “Understanding the system/ Metrics Collector Entries” on page 694.

You can add this entry anywhere in the file, however best practice is to add
it to the bottom of existing collection of these type of entries. In the
example shown in the screen shot above:

➤ The selected host computer is ROS59524ART

➤ The selected Performance object is Processor

➤ The selected Counter is % Processor Time

➤ The selected Instance is _Total

So if the host computer is local, the entry in the metrics.config file for the
Performance Monitor counter would be:

And if the host computer is remote, the entry in the metrics.config file for
the Performance Monitor counter would be:

system/Processor\% Processor Time_Total = CPU|percent|System

system/Processor\% Processor Time_Total\ROS59524ART =
CPU(ROS59524ART)|percent|System

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

698

Performance Counter Security
The .NET metrics agent uses Performance Counters to collect system
metrics. The metrics agent runs as a Network Service and this account needs
to be added to the Performance Monitor Users group.

Troubleshooting Added System Metrics Counters

If you specify a new counter that appears to not be functioning, you can use
the Windows Event Viewer to look at the Diagnostics logs for the .NET
system metrics agent source for errors and warnings.

For example:

A Could not locate Performance Counter with specified category name
warning entry typically indicates that you may have mis-typed the name of
the counter. This can happen, for example, if you read a counter name from
the PerfMon Performance pane that has embedded blanks. The default font
used by PerfMon is not a monospaced font and as such makes it difficult to
see embedded blanks in the name of the counters, categories and instances.
You can change the font to a monospaced font type and then more clearly
see the exact format of counter names.

For example:

An Instance does not exist in the specified Category warning entry typically
indicates that the instance you have chosen is not active at this time. We do
not recommend that you use transient instances. Permanent instances like
__Total__ are appropriate.

Default Entries in the .NET Agent metrics.config File

Upon installation, the <probe_install_dir>/etc/metrics.config file has three
entries:

➤ A grouping of default system/ entries for PerfMon counters

➤ A metrics.server.uri entry that specifies how the .NET system metrics agent
publishes its data

➤ A default metrics.systemgroup entry

Other additional entries can be added after these default entries.

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

699

Keywords in the metrics.config File

The keywords that can be used in entries in the <probe_install_dir>/etc/
metrics.config file are as follows:

➤ credentials.password

➤ credentials.username

➤ default.sampling.rate

➤ metrics.server.uri

➤ metrics.systemgroup

➤ metrics.agent.publish.interval

➤ metrics.agent.registered_hostname

➤ proxy.password

➤ proxy.user

➤ proxy.uri

➤ system/

The use of the system/ keyword is described in “Configuring .NET System
Metrics Capture” on page 693.

The use of each of the other keywords is described in the following section.

credentials.password This setting must match the setting for the password attribute
of the <credentials> element in the probe_config.xml file. See
“<credentials> element” on page 558 for more details.

credentials.username This setting must match the setting for the username attribute
of the <credentials> element in the probe_config.xml file. See
“<credentials> element” on page 558 for more details.

default.sampling.rate This setting defines the rate at which the .NET system metrics
agent samples the configured system metric counters. The
default rate is every 5 seconds. Values are expressed as a number
of Seconds, Minutes, Hours or Days, for example, nS, nM, nH or
nD. The following example sets the rate to every 10 seconds:

default.sampling.rate = 10s

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

700

metrics.server.uri This setting is automatically generated at install time. It defines
the URI that the .NET system metrics agent uses to publish the
system metric counters to the Diagnostic Mediator Server.

The following example is for a Diagnostic Mediator Server
running on the my_diag_server machine, and using a
metricport of 2006 to publish the metrics:

metrics.server.uri =
http://<my_diag_server>:2006/metricdata/?sleep=false

Any changes to the probe_config.xml settings for either the
metrichost attribute or the metricport attribute of the
<mediator> element must also be reflected at the same time in
the metrics.server.uri setting.

The ?sleep setting controls whether the Diagnostic Mediator
Server that receives the published metrics will respond
immediately or delay its response to the .NET system metrics
agent. A setting of ?sleep=false responds immediately, a setting
of ?sleep=true delays its responds by a default of 5 seconds.

metrics.systemgroup This setting is automatically generated at install time. Do not
change this setting.

metrics.agent.publish.interval This setting defines the interval between publishes of the
current values of the System Metric Counters by the .NET
system metrics agent to the Diagnostic Mediator Server. The
default interval is 5 seconds. Set values can be expressed as a
number of Seconds or Minutes, for example, nS or nM. The
following example sets the publish interval to 10 seconds:

metrics.agent.publish.interval = 10S

metrics.agent.registered_host
name

Refer to the “Overriding the Default Probe Host Machine
Name” on page 656 for a description of when and how to use
this setting.

proxy.password This setting must match the setting for the proxypassword
attribute of the < diagnosticsserver> element in the
probe_config.xml file. See “<diagnosticsserver> element” on
page 562 for more details. Also refer to Chapter 16,
“Configuring Diagnostics Servers and Agents for HTTP Proxy.”

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

701

proxy.user This setting must match the setting for the proxyuser attribute
of the < diagnosticsserver> element in the probe_config.xml
file. See “<diagnosticsserver> element” on page 562 for more
details. Also refer to Chapter 16, “Configuring Diagnostics
Servers and Agents for HTTP Proxy.”

proxy.uri This setting must match the setting for the proxy attribute of
the < diagnosticsserver> element in the probe_config.xml file.
See “<diagnosticsserver> element” on page 562 for more
details. Also refer to Chapter 16, “Configuring Diagnostics
Servers and Agents for HTTP Proxy.”

Chapter 18 • .NET System Metrics Agent - Systems Metrics Capture

702

703

19
Java Agent Metrics Collectors

This section describes Java Agent metrics capture and how to configure the
metric collectors.

This chapter includes:

 ➤ About Metrics Capture on page 703

 ➤ What Metrics are Being Collected by the Java Agent on page 705

 ➤ Understanding Metric Collector Entries on page 706

 ➤ About Collecting Additional Probe Metrics on page 708

 ➤ Modifying Probe Metrics Already Being Captured on page 708

 ➤ Stopping Capture of a Metric on page 708

 ➤ Using Customized metrics.config Files for Multiple JVM Applications on a
System on page 709

About Metrics Capture

With the Java Agent you can configure metrics collectors by modifying the
entries in the metrics configuration file, <probe_install_dir>/etc/
metrics.config.

Chapter 19 • Java Agent Metrics Collectors

704

Note: There is a different metrics.config file included with the .NET Agent
(see “.NET System Metrics Agent - Systems Metrics Capture” on page 691).

The system and JMX metric collectors for your agent installation are defined
in the metrics configuration file. The properties and entries in the metrics
configuration file, <probe_install_dir>/etc/metrics.config, enable you to
control the metric collectors.

Note: If you update the metrics configuration file, the metric collectors
automatically restarts so that your changes can take effect.

Chapter 19 • Java Agent Metrics Collectors

705

What Metrics are Being Collected by the Java Agent

In the metrics.config file you can see what metrics are being collected by the
Java Agent.

Listing Available Metrics
The Java Agent metrics.config file has a feature to write a list of all the
available metrics for each JMX collector into a file. When the
default.dump.available.metrics property in the metrics.config file is set to
true, the probe will write this list of available metrics to text files in the
probe log directory. The files are named as follows: <probe_install_dir>/log/
<probe-id>/jmx_metrics_<collector-name>.txt. See “Getting a List of
Available JMX or WebSphere PMI Metrics” on page 725 for details and
examples of how to use this information as a template for configuring
additional metrics capture.

Chapter 19 • Java Agent Metrics Collectors

706

Understanding Metric Collector Entries

Metric Collector entries instruct the Java Agent metric collectors to gather
specific metrics. The parameters on the left hand side of the entry control
how the probe gathers the metric from the host or the JVM, and the
parameters on the right hand side of the entry define how the collected
metrics are processed in Diagnostics and displayed in the user interface.

The entries can have one of the following layouts:

or

where:

➤ <collector_name> indicates the name of the Diagnostics metric collector.
The collectors are defined in metrics.config.

For system metrics the value of this parameter is system. For JMX metrics
the value of this parameter is usually defined as the name of the
application server type and the version, such as WebSphere5.

The collector-name along with metric names can also be found on the
Advanced Query page in the Diagnostics UI (http://
<diagnostics_sever>:2006/query).

➤ <metric_config> identifies the metric that is to be monitored on the host
system or on the JVM for the application server. The format of this
parameter varies depending on whether you are creating an entry for a
system metric or a JMX metric. For information on formatting the
metric_config property for the system metric collector, see “Capturing
Additional Custom System Metrics” on page 715. For information on
formatting the metric_config property for JMX metrics, see “Creating
New JMX or WebSphere PMI Metrics Entries” on page 728.

➤ RATE(...) indicates that metric values are converted to a rate (units per
second) during sampling.

<collector_name>/<metric_config>=<metric_id>|<metric_units>|<category_id>

<collector_name>/<metric_config>=
RATE<rate_multiplier>(<metric_id>|<metric_units>|<category_id>)

Chapter 19 • Java Agent Metrics Collectors

707

For example, when the Rate parameter is used with the metric total
servlet requests since startup, the value of the collected metric is
converted from a count of servlet requests to the number of servlet requests
per second.

When Rate is not used, omit the parenthesis as shown in the first
example above.

Note: This parameter should only be used for metrics with
non-decreasing values.

➤ <rate_multiplier> is an optional parameter that indicates that the rate is
to be adjusted by multiplying it by the <rate_multiplier>.

For example, when the Rate parameter and the rate_multiplier are used
with the metric total gc time (in ms), the value of the metric collected is
converted from the total time for gc to the percent time spent in gc.

➤ <metric_id> indicates the name that represents the metric in the UI. The
metric_id must be unique in the metrics.config file. If the value of the
metric_id is the same as one of the default metrics, Diagnostics replaces
the metric_id in the entry with a standard name to be used to reference
the metric in the UI. If the value of the metric_id is not the same as one
of the default metrics, the metric_id is used as the name of the metric in
the UI exactly as shown in the entry.

➤ <metric_units> indicates the units of measure in which the metric is
reported. This is a required parameter and it must contain one of the
following units of measure:

➤ microseconds, milliseconds, seconds, minutes, hours, days

➤ bytes, kilobytes, megabytes, gigabytes

➤ percent, fraction_percent

➤ count

➤ load

Chapter 19 • Java Agent Metrics Collectors

708

➤ <category_id> groups a set of metrics together under the same heading in
the tree in the side bar of the Metrics tab in the Java Diagnostics Profiler.
This parameter has no impact on the data displayed in the Details pane
in the Diagnostics UI views.

Note: After you create the metric collector entry, add the escape character
"\" before each occurrence of a back-slash '\', space ' ', or colon ':'. This is
a requirement for Java properties loaded from a file.

About Collecting Additional Probe Metrics

To gather information for an additional metric, add an entry for the metric
to the appropriate metric collector in the metrics.config file using the syntax
described in “Understanding Metric Collector Entries” on page 706.

See “Capturing Additional Custom System Metrics” on page 715 for details
on capturing additional system metrics.

See “Additional Custom JMX Metrics” on page 725 for details on capture
addition JMX metrics.

Modifying Probe Metrics Already Being Captured

You can update both the default and the custom metric entries in the metric
collectors in the metrics.config file.

Stopping Capture of a Metric

To stop a metric collector from collecting a metric listed in metrics.config,
you can either delete the metric entry or make the metric entry a comment
line by adding a '#' to the beginning.

Chapter 19 • Java Agent Metrics Collectors

709

Using Customized metrics.config Files for Multiple JVM
Applications on a System

There may be times when you only need to collect certain metrics, or
customize the metric collector properties for select JVM applications
running on a system with multiple JVMs, and such changes would
negatively impact the other instrumented JVMs running on the system. In
these cases, you can create and customize different metrics.config
configuration files and configure those JVM applications to use the
customized settings by following these steps:

Note: You only need to configure the JVM applications that need
customized metrics.config files. The other JVM applications can use the
out-of-the-box metrics.config configuration.

 1 Copy the etc/metrics.config file for each JVM application requiring special
customization and name the file, such as metrics_<app_name>.config. This
file must be in the same <probe_install_dir>/etc folder as the original
metrics.config file. Customize this file as needed.

 2 Create a copy of the lib/modules.properties file for each
metrics_<app_name>.config file created, and name the file, such as
modules_<app_name>.properties. This file must be in the same
<probe_install_dir>/lib folder as the original modules.properties file.

Change the metrics.properties property of this new file to point to the new
metrics_<app_name>.config file as shown in the following example:

##
Metrics capture module
##
metrics.class.name=com.mercury.diagnostics.capture.metrics.MetricsModule
metrics.class.loader=probeLoader
metrics.properties=metrics_<app_name>.config

Chapter 19 • Java Agent Metrics Collectors

710

 3 Update each JVM start script that needs customized metrics collection to use
the new corresponding lib/modules_<app_name>.properties file by adding
the following to the JVM property definition:

-Dmodules.properties.file=module_<app_name>.properties

711

20
Java Agent - System Metrics Capture

Information is provided on the process for capturing system metrics and
how to configure the Java Agent system metric collector to capture them.

This chapter includes:

 ➤ About System Metrics on page 711

 ➤ System Metrics Captured by Default on page 712

 ➤ Configuring the System Metrics Collector on page 713

 ➤ Capturing Additional Custom System Metrics on page 715

 ➤ Enabling z/OS System Metrics Capture on page 721

About System Metrics

The system metric collector is installed with the Java Agent. The system
metric collector gathers system level metrics, such as CPU usage and
memory usage, from the agent’s host. The system metric collector is
configurable so you can control which system metrics are collected.

Only one instance of the system metric collector is run on a given host, no
matter how many instances of the probe were started on the host. When an
instance of the probe is started, it attempts to connect to the UDP port
specified in the metrics properties. If a connection is established, the system
metric collector instance is started. If a connection cannot be made, a
system metric collector instance has already been started on the host by
another instance of the probe and a new instance cannot be started.

Chapter 20 • Java Agent - System Metrics Capture

712

Each probe periodically attempts to connect to the port to make sure that a
system metric collector is always running. If the probe that started the
systems metric collector is stopped, one of the other instances of the probe
will start a new instance of the systems metric collector when it finds that
the port is available.

System Metrics Captured by Default

The following are the system metrics that the metric collector collects by
default for all supported platforms (excluding z/OS):

➤ CPU

➤ MemoryUsage

➤ VirtualMemoryUsage

➤ ContextSwitchesPerSec

➤ DiskBytesPerSec

➤ DiskIOPerSec

➤ NetworkBytesPerSec

➤ NetworkIOPerSec

➤ PageInsPerSec

➤ PageOutsPerSec

You can control which of the default system metrics the system metric
collector gathers and you can add other platform specific metrics so that the
collector gathers the information for them as well. See “Configuring the
System Metrics Collector” on page 713 for more information. For certain
platforms, such as Windows, Solaris, and Linux, you can create custom
system metrics that can be gathered by the system metric collector. For
details, see “Capturing Additional Custom System Metrics” on page 715.

For information on z/OS system metrics see “Enabling z/OS System Metrics
Capture” on page 721.

Chapter 20 • Java Agent - System Metrics Capture

713

Configuring the System Metrics Collector

You can configure the system metrics capture process to run in your
environment, and to collect and report the system metrics that are of
interest to you, by modifying the entries in the metrics configuration file,
<probe_install_dir>/etc/metrics.config. See Chapter 19, “Java Agent Metrics
Collectors” for general information on the metrics collector and see
“Understanding Metric Collector Entries” on page 706 for an explanation of
the metrics collector entries and syntax.

Note: There is a different metrics.config file included with the .NET Agent
(see “.NET System Metrics Agent - Systems Metrics Capture” on page 691).

Note: If you update the metrics configuration file, the systems metric
collector automatically restarts so that your changes can take effect.

Chapter 20 • Java Agent - System Metrics Capture

714

Example System Metrics Collector Entry

The following example shows how to create the metric collector entry for a
system metric. To create an entry for a system metric called CPU on a host
platform, you would enter the following:

where:

➤ system indicates that the metric is to be collected by the system metric
collector

➤ the first CPU indicates that the metric known as CPU on the platform, is
being monitored

➤ the second CPU is the name that is to be used in the UI to label the
metric

➤ percent indicates the units in which the metric is measured on the host,
and reported in the UI

Modifying the Default Port
The default port for the metric collector is 35000. This value can be
modified using the system.udp.port property if the configuration for your
agent host requires that another port be used.

To modify the default port:

 1 Locate the system.udp.port property in metrics.config.

 2 Change the value of the system.udp.port property to the number of the port
that you want to be used by the system metric collector. The default port is
35000.

Note: The port assigned to the system metric collector is not related to the
port for the agent's Web server.

system/CPU = CPU|percent

Chapter 20 • Java Agent - System Metrics Capture

715

Disabling System Metrics Collection
To disable the collection of system metrics so that they will not be collected
or displayed in the UI, set the value of the system.udp.port property to -1.

Capturing Additional Custom System Metrics

You can capture custom system metrics on Windows, Solaris, and Linux
platforms using the Java Agent system metric collector.

The following sections provide instructions for capturing the metrics and
updating the entries in the system metric collector so that the custom
metrics can be monitored.

This section includes:

➤ Capturing Custom System Metrics on Windows Hosts

➤ Capturing Custom System Metrics on Solaris Hosts

➤ Capturing Custom System Metrics on Linux Hosts

Capturing Custom System Metrics on Windows Hosts
Using the features of Windows System Monitor, you can add counters to
represent the performance of specific aspects of a system or service. The
counters are tracked and reported in the Windows System Monitor, and can
be monitored by the Java Agent system metric collector.

To add counters using the Windows System Monitor:

 1 Start the Windows Performance Monitor:

 a Select Start > Run from the Start menu.

 b In the Open box on the Run dialog box type perfmon.

The Performance dialog box opens showing the System Monitor graph
with a table of the current counters beneath the graph.

 2 Display the Add Counters dialog box:

Right-click the System Monitor graph and select Add Counters... from the
pop-up menu.

Chapter 20 • Java Agent - System Metrics Capture

716

Windows displays the Add Counters dialog box:

 3 Make sure that the host computer is selected from Select counters from
computer list.

 4 In the Performance object list, select the object that the counter belongs to.

 5 Choose Select counters from list, and select a counter from the list of
counters that follows.

 6 Choose Select instances from list, and select an instance from the list of
instances that follows.

 7 Click Add.

Once a counter has been added to the Systems Monitor, the system metric
collector can be configured to gather the metrics for the counter. The
following instructions will guide you through the steps to create an entry for
the metrics.config based on the following template:

This template is described in “Understanding Metric Collector Entries” on
page 706.

<collector_name>/<metric_config>= <metric_id>|<metric_units>

Chapter 20 • Java Agent - System Metrics Capture

717

To collect metrics for a Windows System Monitor Counter:

 1 Open <probe_install_dir>/etc/metrics.config.

 2 Create the <metric_config> part of the entry using the following template,
type the entry for the counter:

In the example shown in the preceding screen image:

➤ the selected Performance Object is %Processor

➤ the selected Instance is _Total

➤ the selected Counter is Processor Time

The <metric_config> portion of the entry that would be created for this
example would be:

 3 Fill in the rest of the system metric entry template as shown in the following
example:

 4 Format the initial entry by prepending a back-slash '\' before each
occurrence of back-slash '\', space ' ', or colon ':' in the initial entry.

Following this step, the initial entry in the previous step becomes:

This is the correctly formatted entry for metrics.config to enable the system
metric collector to gather the metrics for a Windows System Monitor
counter.

\<performance_object>(<instance>)\<counter>

\Processor(_Total)\% Processor Time

system/\Processor(_Total)\% Processor Time = ProcessorTime|percent

system/\\Processor(_Total)\\%\ Processor\ Time = ProcessorTime|percent

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\ Time=
Processor\ Time(Remote Machine)|percent

Chapter 20 • Java Agent - System Metrics Capture

718

Note: Assuming perfmon is setup properly on a remote machine, you can
use it to get metrics from remote machines by adding \\MachineName
before the Performance object name as shown in the following example:

system/\\\\RemoteMachine\\Processor(_TOTAL)\\%\ Processor\
Time=Processor\ Time(Remote Machine)|percent

Capturing Custom System Metrics on Solaris Hosts
The Solaris system metrics that can be monitored by the system metric
collector are found using the kstat command. Only a subset of the metrics
found using the kstat command can be monitored by the system metric
collector.

To collect metrics for a Solaris system metric:

 1 Execute the ksat command and identify the metric that you want to
monitor.

A Solaris system metric has the following format:

Here is an example:

 2 To cause the metric collector to gather the metrics for an additional system
metric, add an entry for the metric to the system metric collector in the
metrics.config file using the following template:

This template is described in “Understanding Metric Collector Entries” on
page 706.

module:instance:name:statistic

vmem:35:ptms_minor:free

<collector_name>/<metric_config>= <metric_id>|<metric_units>

Chapter 20 • Java Agent - System Metrics Capture

719

Using this template, the example from the previous step would initially
appear as follows:

 3 Format the initial entry by prepending a back-slash '\' before every
back-slash '\', space ' ', or colon ':'.

Following this step the initial entry in the previous step becomes:

This is the correctly formatted entry for metrics.config to enable the system
metric collector to gather the metrics for a Solaris systems metric.

Capturing Custom System Metrics on Linux Hosts
The Linux system metrics that can be monitored by the system metric
collector are found in the /proc file system. To configure the system metric
collector to gather custom Linux metrics, scan the/proc file system to locate
the desired metric, and then create the system metric collector entry for the
metric in metrics.config according to the location of the metric
information.

To collect metrics for a Linux system metric:

 1 Scan the /proc file system to locate the metric that you would like the
Diagnostics system metric collector to monitor.

To create the system metrics configuration entry in metrics.config for the
Linux metric, you must explicitly specify where the value for the system
metric is located. The location is specified using the following values:

➤ File name. The name of the file where the metric information is located,
including the path from the /proc directory.

➤ Line offset. A count of the number of lines in the file to the line where
the system metric is located. The first line is counted as line 0.

➤ Word offset. A count of the number of words that the metric value is
offset into the line in the file. The first word in the line is counted as line
0. The value at the specified offset must be an unsigned integer.

system/vmem:35:ptms_minor:free = Virtual Memory (35) Free | count

system/vmem\:35\:ptms_minor\:free = Virtual\ Memory\ (35)\ Free | count

Chapter 20 • Java Agent - System Metrics Capture

720

For example, if you wanted the system metric collector to monitor the
SwapFree system metric so that you can see it displayed in the Diagnostics
views, you would scan the /proc directory to locate the metric, and you
would discover that the metric is located in the meminfo file. The layout of
this file is as follows:

The location of the SwapFree metric in this file would lead to the following
values:

➤ File name: meminfo

➤ Line offset: 12

➤ Word offset: 1

MemTotal: 515548 kB
MemFree: 1552 kB
Buffers: 41616 kB
Cached: 152084 kB
SwapCached: 46064 kB
Active: 402720 kB
Inactive: 75328 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 515548 kB
LowFree: 1552 kB
SwapTotal: 1048568 kB
SwapFree: 779192 kB
Dirty: 4544 kB
Writeback: 0 kB
Mapped: 300056 kB
Slab: 28764 kB
Committed_AS: 801364 kB
PageTables: 3184 kB
VmallocTotal: 499704 kB
VmallocUsed: 2184 kB
VmallocChunk: 497324 kB
HugePages_Total: 0
HugePages_Free: 0
Hugepagesize: 4096 kB

Chapter 20 • Java Agent - System Metrics Capture

721

 2 To gather the metrics for an additional system metric, add an entry for the
metric to the system metric collector in the metrics.config file using the
following template:

This template is a version of the template described in “Understanding
Metric Collector Entries” on page 706. The <metric_config> property has
been replaced with the properties <line>:<word>:<file>.

Using this template, the example from the previous step would initially
appear as follows:

 3 Format the initial entry by prepending a back-slash '\' before every
back-slash '\', space ' ', or colon ':'.

Following this step the initial entry in the previous step becomes:

This is the correctly formatted entry for metrics.config to enable the system
metric collector to gather the metrics for a Solaris systems metric.

Enabling z/OS System Metrics Capture

The following system metrics can be collected for the z/OS platform:

➤ CPU

➤ DiskIOPerSec

➤ DiskBytesPerSec

<collector_name>/<line>:<word>:<file>= <metric_id>|<metric_units>

system/12:1:meminfo = Swap Free | kilobytes

system/12\:1\:meminfo = Swap\ Free | kilobytes

Chapter 20 • Java Agent - System Metrics Capture

722

System metrics are not captured by default, because this requires some
system configuration changes. You must perform the following
configuration steps to enable capture of z/OS system metrics.

To enable z/OS system metrics capture:

 1 Change the permissions for the directory <probe_install_dir>/bin/ to
recursively allow execution. This can be done using the following
command:

 2 Change the permissions for the directory <probe_install_dir>/bin/390-zos/
systemmetrics to allow execution. This can be done using the following
command:

 3 Start the RMF Monitor III and make sure that SMF record 70-79 is collecting.

 4 Start the RMF Data Buffer on one or more systems in the sysplex.

 5 Check the list of system names passed to the ERBDSQRY service.

 6 Make sure that the system is collecting SMF record 92 with subtype 5.

chmod -R 770...

chmod -R 0+x ...

723

21
Java Agent - JMX Metrics Capture

Information is provided on the process for capturing JMX metrics and how
to configure Java Agent metric collectors to capture them.

This chapter includes:

 ➤ About JMX Metrics on page 723

 ➤ About Configuring JMX Metric Collectors on page 724

 ➤ Additional Custom JMX Metrics on page 725

 ➤ Getting a List of Available JMX or WebSphere PMI Metrics on page 725

 ➤ Creating New JMX or WebSphere PMI Metrics Entries on page 728

About JMX Metrics

The Java Agent comes with pre-defined JMX metric collectors that access the
JMX metrics from the following application servers:

➤ IBM WebSphere

➤ BEA WebLogic

➤ SAP NetWeaver

➤ Oracle AS

➤ Apache Tomcat

➤ JBoss J2EE Server

➤ TIBCO Business Works

The Java Agent can also collect JMX data from any J2EE server that supports
the JMX standard.

Chapter 21 • Java Agent - JMX Metrics Capture

724

The Java Agent runs the JMX metric collectors periodically to collect the
metrics from the application server. The collected metrics are displayed on
the user interfaces in both HP Diagnostics and the Diagnostics Java Profiler.

Configuring WebSphere for JMX Metric Collection
For WebSphere JMX metric collection, you might need to configure the
Performance Monitoring Infrastructure (PMI) service on the WebSphere
server to start receiving JMX metrics.

See “Configuring WebSphere for JMX Metric Collection” on page 211 for
information on how to configure WebSphere 5.x, 6.x and 7.0 servers for
JMX metrics collection.

Configuring TIBCO for JMX Metric Collection
For TIBCO JMX metric collection you need to enable JMX metric collection
see “To configure TIBCO BusinessWorks for JMX Metrics Collection:” on
page 184 for instructions.

About Configuring JMX Metric Collectors

The JMX metric collectors are configurable so that you can control which
JMX metrics are collected. The JMX metric collectors are defined in the
<probe_install_dir>/etc/metrics.config file.

Typically a separate collector is defined for each major version of each
application server.

See Chapter 19, “Java Agent Metrics Collectors” for general information on
the metrics collector and see “Understanding Metric Collector Entries” on
page 706 for an explanation of the metrics collector entries and syntax.

Chapter 21 • Java Agent - JMX Metrics Capture

725

Additional Custom JMX Metrics

The Java Agent is installed with a number of predefined JMX metric
collectors for the application servers listed in “About JMX Metrics” on
page 723. You configure these collectors by defining entries in the
metrics.config file, see “Understanding Metric Collector Entries” on
page 706. You could also create entries in the existing metric collectors and
even create new collectors if there are additional JMX metrics that you
would like Diagnostics to monitor.

In order to create new entries in the JMX metric collectors you can get a list
of the available JMX metrics and WebSphere Performance Monitoring
Infrastructure (PMI) metrics. Then you can create new metrics entries in the
metrics.config file. The following sections provide instructions for creating
new entries in the JMX metric collectors so that additional JMX metrics and
PMI metrics can be monitored.

Getting a List of Available JMX or WebSphere PMI Metrics

The metric collectors installed with the Java Agent include entries for many
of the JMX metrics that are available for each application server. However,
there could be other JMX metrics or WebSphere PMI metrics that you could
monitor, or new metrics could be exposed by the application server vendor.

In order to make it easier to configure new/additional JMX/PMI metrics for
collection the metrics.config file has a feature to write a list of all the
available metrics for each JMX collector into a file. When the
default.dump.available.metrics property in the metrics.config file is set to
true, the probe will write this list of available metrics to text files in the
probe log directory. The files are named as follows: <probe_install_dir>/log/
<probe-id>/jmx_metrics_<collector-name>.txt.

The default.dump.available.metrics property in the probe metrics.config file
can be changed at runtime. It is recommended that the property is only set
to true temporarily to write the list of available JMX/PMI metrics. After the
metrics list is written to the file, the property should be set back to false (or
commented out) to avoid the overhead of the probe periodically writing the
metrics list to file.

Chapter 21 • Java Agent - JMX Metrics Capture

726

Some examples of the metrics list file are shown below. You can use this type
of information to configure additional JMX or PMI metrics in the probes’
etc/metrics.config file.

The following example shows the available MBean ObjectNames and their
collectable attributes:

The following example shows the available MBean ObjectNames and their
collectable attributes and fields:

======= MBean ObjectNames and Available Attributes =======
MBean ObjectName:
WebSphere:J2EEServer=server1,JDBCProvider=Derby JDBC
Provider,JDBCResource=Derby JDBC
Provider,Server=server1,cell=yli87Node01Cell,diagnosticProvider=true,j2eeType=JDB
CDataSource,mbe
anIdentifier=cells/yli87Node01Cell/nodes/yli87Node01/servers/server1/
resources.xml#DataSource_12442
31364323,name=WST_PriceGen,node=yli87Node01,platform=dynamicproxy,process=
server1,spec=1.0,
type=DataSource,version=6.1.0.0
Available Attributes:
name: loginTimeout, type: int
name: statementCacheSize, type: int
name: testConnectionInterval, type: java.lang.Integer
........................

======= MBean ObjectNames and Available Attributes and Fields =======
MBean ObjectName:
java.lang:name=PS Old Gen,type=MemoryPool
Available Metrics:
Attribute: CollectionUsage type: javax.management.openmbean.CompositeData
 Field: committed, type: java.lang.Long
 Field: init, type: java.lang.Long
 Field: max, type: java.lang.Long
 Field: used, type: java.lang.Long

Chapter 21 • Java Agent - JMX Metrics Capture

727

The following example shows the available MBean ObjectNames and their
collectable operations and fields:

For WebSphere JMX collectors, besides the generic MBean JMX metrics, the
available WebSphere specific PMI metrics are also dumped to the WebSphere
collector's dump file. This includes the PMI tree instance paths and their
available statistics, and the PMI module configuration information as
shown in the example below:

======= MBean ObjectNames and Available Operations and Fields =======
MBean ObjectName:
com.tibco.bw:key=engine,name="MortgageBroker-BrokerService"
Available Metrics:
Operation: java.lang.Integer GetActiveProcessCount()
Operation: javax.management.openmbean.CompositeData GetExecInfo()
 Field: Threads, type: java.lang.Integer
 Field: Uptime, type: java.lang.Long

Operation: javax.management.openmbean.CompositeData GetMemoryUsage()
 Field: FreeBytes, type: java.lang.Long
 Field: PercentUsed, type: java.lang.Long
 Field: TotalBytes, type: java.lang.Long
 Field: UsedBytes, type: java.lang.Long

======= PMI Tree and Available PMI Statistics =======
connectionPoolModule
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime
connectionPoolModule->Derby JDBC Provider
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime
connectionPoolModule->Derby JDBC Provider->jdbc/ALBUM
Available Statistics:
CreateCount, CloseCount, AllocateCount, ReturnCount, PoolSize, FreePoolSize,
WaitingThreadCount, FaultCount, PercentUsed, PercentMaxed, UseTime, WaitTime,
ManagedConnectionCount, ConnectionHandleCount, PrepStmtCacheDiscardCount,
JDBCTime

Chapter 21 • Java Agent - JMX Metrics Capture

728

Creating New JMX or WebSphere PMI Metrics Entries

The following instructions guide you through the process of creating the
JMX or PMI metric entries according to the following template:

This template is described in “Understanding Metric Collector Entries” on
page 706.

To capture JMX or WebSphere PMI metrics:

 1 Open <probe_install_dir>/etc/metrics.config. and locate the JMX metric
collector that is appropriate for the application that is being monitored by
the Java Agent.

 2 The <collector_name> parameter is the same as the rest of the entries in the
collector. If you were creating an entry for WebLogic, the value of this
parameter would be WebLogic.

 3 Create the <metric_config> parameter.

 a For JMX metrics the <metric_config> parameter is a pattern that the
collector uses to find a matching MBean. The pattern consists of two
components, separated by the '.' character. See syntax below.

MBean object and attributes:

MBean Object, attribute and fields:

MBean object and operations:

MBean object, operations and fields:

<collector_name>/<metric_config>= <metric_id>|<metric_units>

<MBean object name pattern>.<attribute name>

<MBean object name pattern>.<attribute name>#<field name>

<MBean object name pattern>.(<operationname>())

<MBean object name pattern>.(<operationname>()#<field name>)

Chapter 21 • Java Agent - JMX Metrics Capture

729

➤ <MBean object name pattern> is the string representation of the
object name of an MBean. For an explanation of metric patterns see
“Understanding Metric Patterns” on page 731. For an explanation of
how to group JMX metrics see “JMX GROUPBY and EXPAND_PMI
Modifiers” on page 732.

➤ <attribute name> is the name of the MBean attribute that represents
the metric. If <attribute name> has any '.' in it, it should be surrounded
by parenthesis: <MBean object name pattern>.(<attribute name>)

As an example, for a WebLogic application server, the <metric_config>
parameter for the throughput of all Execute Queues is configured as:

:Type=ExecuteQueueRuntime,.ServicedRequestTotalCount

See “Getting a List of Available JMX or WebSphere PMI Metrics” on
page 725 for an example of a metrics dump showing available
attributes.

➤ <attribute name>#<field name> JMX Attributes that return Composite
Data can have their numeric fields used as metrics. Simply append the
symbol # followed by the name of the field after the MBean name.

For example:

Java\ Platform/java.lang\:type\=MemoryPool,name\=Perm\
Gen.Usage#used

will track the <used> field of the <Perm Gen> MBean's <Usage>
composite data attribute.

➤ (<operationname>()) where the operation name is followed by open
and close parentheses. And the entire operation name is enclosed in
parentheses.If the operation returns a composite attribute, suffix the
composite attribute field after the () as for attributes.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*.(GetActiveProcessCount()) =
Active Process Count|count|Tibco

Note that only operations that don’t take arguments are supported.

Chapter 21 • Java Agent - JMX Metrics Capture

730

➤ (<operation name>()#<field name>) JMX Operations that return
Composite Data can have their numeric fields used as metrics. Simply
append the symbol # followed by the name of the field after the
MBean name.

For example:

Tibco/com.tibco.bw\:key\=engine,name\=*.(getStatus()#Total\ Errors) =
Total Errors|count|Tibco

will track the "Total Errors" field of the Composite data object returned
by the getStatus() operation.

 b For WebSphere PMI metrics, the <metric_config> parameter is a pattern
that the collector uses to find the matching PMI statistics. The pattern
consists of two components separated by the '.' character.

➤ <PMI StatDescriptor> is used to locate and access particular Stats in the
WebSphere PMI tree. It can be either a PMI module name (for example,
webAppModule), or a PMI module branch (for example,
[webAppModule][AccountManagement#AccountManagementWar.war]

➤ <statistics name> is the name of the PMI statistics that represent the
metric. If statistics name has any '.' in it, it should be surrounded by
parenthesis:
[webAppModule][AccountManagement#AccountManagementWar.war].(w
ebAppModule.numLoadedServlets)

See “Getting a List of Available JMX or WebSphere PMI Metrics” on
page 725 for an example of the PMI module and PMI module branches
and their available statistics names.

See “JMX GROUPBY and EXPAND_PMI Modifiers” on page 732 for an
example of how to group PMI metrics.

 4 Fill in the rest of the JMX metric entry template as shown in the following
example:

<PMI StatDescriptor>.<statistics name>

WebLogic/*:Type=ExecuteQueueRuntime,*.ServicedRequestTotalCount =
RATE(Execute Queues Requests / sec|count|Execute Queues)

Chapter 21 • Java Agent - JMX Metrics Capture

731

 5 Format the initial entry by prepending a back-slash '\' before every
back-slash '\', space ' ', equals (=), or colon ':'.

Following this step the initial entry in the previous step becomes:

This is the correctly formatted entry for a JMX metric collector to enable the
collector to gather a WebLogic JMX metrics.

Understanding Metric Patterns
For JMX metrics the <metric_config> parameter is a pattern that the
collector uses to find a matching MBean; for example:

In the example above, the object name is *:Type=ExecuteQueueRuntime,*,
which could actually resolves to many MBeans whose names have the Type
component equal to ExecuteQueueRuntime. ServicedRequestTotalCount is
an attribute name for which metric values will be collected by the JMX
metric collector.

Note: Current implementation of the JMX collector only supports attributes
that are numeric in type (for example, long, integer, etc.).

The JMX metric collector first uses MBeanServer's query mechanism to find
the matching MBeans for each object name provided in the configuration.
For JMX metrics the object names are a pattern that the collector uses to
find a matching MBean. For more details around the object names, see
http://java.sun.com/j2ee/1.4/docs/api/javax/management/ObjectName.html.

WebLogic/*\:Type\=ExecuteQueueRuntime,*.ServicedRequestTotalCount =
RATE(Execute Queues Requests / sec|count|Execute Queues)

:Type=ExecuteQueueRuntime,.ServicedRequestTotalCount

Chapter 21 • Java Agent - JMX Metrics Capture

732

Since MBean object names are patterns that can resolve into multiple
MBeans, the JMX collector will validate all of the attribute names in the
entry against all MBeans that match the pattern, and will aggregate the
attribute values over the set of those matching MBeans. Of course, it is not
always the case that the object name resolves into multiple MBeans. For
example, the following object name resolves to a single MBean (on a
WebLogic application server):

JMX GROUPBY and EXPAND_PMI Modifiers
You can use the optional GROUPBY modifier to create a separate metric for
each matched group of MBean ObjectNames with the same value of the key
specified by GROUPBY. In the probe's etc/metrics.config file, for JMX
metrics that describe an MBean object name pattern there is an optional
modifier GROUPBY that can be added, which tells a JMX-based collector to
treat the metric_config as multi-instance expression:

collector_name/GROUPBY[oname_key]/metric_config = ...

The collector will find all MBeans matching the metric_config and create a
corresponding metric for each of them using the object name key
oname_key to provide unique naming by appending it to category_id.

WebSphere6/GROUPBY[name]/
WebSphere\:type\=DataSource,*.statementCacheSize = JDBC Statement
Cache Size|bytes|JDBC DataSource

For example:

WebSphere6/connectionPoolModule.CreateCount = JDBC Connection
Creates|count|JDBC ConnectionPools

WebSphere6/[connectionPoolModule][Derby\ JDBC\ Provider][jdbc/
ALBUM].AllocateCount = JDBCConnection Allocates|count|JDBC
ConnectionPools

Or, you may use the optional EXPAND_PMI modifier to group PMI metrics
similar to how you group JMX metrics.

*\:Name\=weblogic.kernel.Default,Type\=ExecuteQueueRuntime,
*.ServicedRequestTotalCount

Chapter 21 • Java Agent - JMX Metrics Capture

733

For PMI, the EXPAND_PMI modifier is specified to expand the PMI tree from
the given module or StatDescriptor branch by the specified level. The
expansion level "n" can be 1, 2, ..., or *, with the default level of 1 and *
means expand all:

collector_name/EXPAND_PMI[n]/metric_config = ...

For example:

WebSphere6/EXPAND_PMI[*]/connectionPoolModule.AllocateCount = JDBC
Connection Allocates|count|JDBC ConnectionPools

creates "JDBC Connection Allocates" metric for each JDBC connection pool
provider and for each DataSource of the provider.

Chapter 21 • Java Agent - JMX Metrics Capture

734

Part VIII

Setting Up Integration with Other
HP Software Products

This section includes:

➤ Setting Up the Integration Between Business Service Management and
Diagnostics

➤ Installing the LoadRunner Diagnostics Add-in

➤ Setting Up HP LoadRunner and HP Diagnostics Integration

➤ Setting Up Performance Center to Use Diagnostics

736

737

22
Setting Up the Integration Between
Business Service Management and
Diagnostics

Information is provided on setting up the integration between HP Business
Service Management and Diagnostics.

Note: This documentation is relevant for Diagnostics’ integration with
Business Service Management 9.x unless otherwise stated. For the most
recent information on supported integrations, see the Diagnostics Support
Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

This chapter includes:

 ➤ About Setting Up the Integration Between Business Service Management and
Diagnostics on page 739

 ➤ Registering the Diagnostics Server in Business Service Management
on page 740

 ➤ Removing the Diagnostics Registration on page 747

 ➤ Understanding the Diagnostics Admin Page on page 747

 ➤ Assigning Permissions for Diagnostics Users in Business Service Management
on page 748

 ➤ Password for Data Collectors to Access RTSM on page 750

 ➤ Accessing the Diagnostics Pages in Windows 2003 on page 751

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

738

 ➤ Accessing the Diagnostics Application from Business Service Management
on page 751

 ➤ Data Samples Sent to Business Service Management on page 752

 ➤ Diagnostics Populates CIs and Models in Business Service Management
on page 753

 ➤ Synchronize CIs Between Diagnostics and Business Service Management
on page 753

 ➤ Diagnostics Provides KPI/HI Coloring to Business Service Management
on page 754

 ➤ Enabling Diagnostics Integration with BSM’s Service Health Analyzer
on page 755

 ➤ Integration with BSM’s Performance Graphing on page 756

 ➤ Diagnostics and OM Server Co-existence on page 756

 ➤ Configuration of Separate BSM Servers for DPS and Gateway on page 761

 ➤ Additional Information on Integration on page 763

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

739

About Setting Up the Integration Between
Business Service Management and Diagnostics

Before using HP Diagnostics with Business Service Management, you
provide Business Service Management with the information that it needs to
communicate with the Diagnostics components.

To set up Diagnostics in Business Service Management:

 1 Specify the Diagnostics Server details.

Enter the Diagnostics Server details in Business Service Management. For
more information, see “Registering the Diagnostics Server in Business
Service Management” on page 740.

 2 Assign relevant permissions (optional).

Grant different permissions to different Diagnostics users. (This step is
optional.) For more information, see “Assigning Permissions for Diagnostics
Users in Business Service Management” on page 748.

 3 For Windows 2003 only: Change your Internet browser settings.

When your Internet browser is running in a Windows 2003 environment,
you must change your Internet browser settings to access the Diagnostics
configuration and application pages in Business Service Management. See
“Accessing the Diagnostics Pages in Windows 2003” on page 751.

 4 Enable cookies on the Diagnostics Commander host.

Cookies must be enabled to view Diagnostics data in Business Service
Management. This can usually be accomplished by adding the registered
Diagnostics Commander Server as a trusted site in the browser
configuration.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

740

Registering the Diagnostics Server in
Business Service Management

To make HP Diagnostics accessible from Business Service Management, you
register the Diagnostics Server. The following section describes the steps for
registering in Business Service Management. Differences for BAC 8.x are
noted.

Important: After a Business Service Management upgrade, you must
re-register the Business Service Management-Diagnostics integration.

Note: If you are using Windows 2003, you must configure your Internet
browser settings to access the Diagnostics Admin page. For more details, see
“Accessing the Diagnostics Pages in Windows 2003” on page 751.

If Diagnostics is integrated with Business Service Management then after an
upgrade of the Diagnostics Commander Server, you must copy over the
RegistrarPersistence.xml file from the etc.old folder to the new etc folder
Then check the Diagnostics Integration in the BSM > Admin > Diagnostics
page and re-do the registration of Diagnostics server in BSM if it is not
working properly.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

741

To initially register the Diagnostics Server in Business Service Management:

 1 Log on to Business Service Management.

 2 Select Admin > Diagnostics. When you are first setting up the integration,
the Diagnostics Server Details page is displayed.

Note: If you try to access HP Diagnostics (by clicking Diagnostics on the Site
Map page or by selecting Applications > Diagnostics) before you configure
the Diagnostics Server, you will receive a message instructing you to register
the Diagnostics Server. Click the link to open the Diagnostics Configuration
page.

 3 Enter the details for the Diagnostics command server.

➤ Diagnostics server host name. Enter the name of the machine that is
host to the Diagnostics command server.

Even if the Diagnostics Server is installed on the same system as Business
Service Management, you still need to enter the actual name of the host
in the Diagnostics server host name box. It is not sufficient to type
localhost instead of the host name.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

742

If Business Service Management will be accessed through a fully-qualified
domain name, register the Diagnostics Server host with a fully-qualified
domain name.

➤ Diagnostics server port number. Enter the port number used by the
Diagnostics command server. The default port number is 2006.

➤ Diagnostics server protocol. Select the communication protocol through
which Business Service Management connects to Diagnostics, either
HTTP or HTTPS.

➤ Diagnostics root context. If BSM is configured to use a custom context
root and you have configured Diagnostics commander server to use a
custom context root, enter the Diagnostics commander context root. See
“Configuring a Custom Context Root” on page 497.

Note: If you select HTTPS as your communication protocol, additional
configuration steps are required. For more information about the steps
required, see Chapter , “Enabling HTTPS Between Components.”

 4 After you enter the Diagnostics Server details and verify that these details are
accurate, click Submit to complete the Diagnostics Server configuration
process.

If the server name you entered is incorrect or if the server is unavailable, an
error message is displayed.

When you click Submit, the Diagnostics Server details are saved in Business
Service Management and the Business Service Management server details are
automatically registered on the Diagnostics Server machine.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

743

 5 The Registration tab in the Diagnostics Configuration page opens,
displaying the Business Service Management server details that were
available.

Business Service Management Details

Where necessary, you can manually change the Business Service
Management server details in the Enter Business Service Management
details section of the Registration tab.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

744

Gateway Server URL. Verify that the root URL, matches the root URL that
you use to access Business Service Management.

Data Processing Server URL. Verify that the root URL, matches the root URL
that you use to access Business Service Management. If the Data Processing
Server URL is different from the Gateway Server URL, typically you would
use port 8080 in this URL.

Note: In the cases where the BSM Processing Server cannot be accessed from
the Diagnostics Server and the BSM Gateway Server has been configured to
tunnel certificate requests to the Processing Server (such as when the
Gateway and Procesing Server are on the other side of a Load Balancer or SSL
Accelerator), then use the BSM Gateway as both the BSM Gateway Server
and Processing Server in this Diagnostics Server registration page. You may
still need to manually grant certificates on the Processing Server as described
on the following page.

Token Creation key (initString). If you are using TransactionVision, then to
avoid a user having to login again when drilling from TransactionVision to
Diagnostics you enter the Business Service Management token creation key
in the field. Entering the token key provides the key to Diagnostics. If you
are not using TransactionVision then this is not required.

You can find the Token Creation Key (initString) in Business Service
Management in Admin > Platform > Users and Permissions > Authentication
Management. Once you complete the registration, this token creation key is
written to the Diagnostics lwsso.properties file.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

745

Event Channel Integration Status. When integrating Diagnostics 9.x with
Business Service Management 9.x, the event channel is used by Diagnostics
(actually the OM agent and IAPA components are used) to send Health
Indicator status events to the Business Service Management gateway server.

The registration executes a script to do the event channel integration
(<Diagnostics_install_dir>/server/bin/switch_ovo_agent.sh or .vbs. Root
access on UNIX is required to run the script. If the Diagnostics commander
server is not run as root on UNIX the registration of Diagnostics in BSM will
fail with a permission denied error. After you get this failure you must
execute the script manually as root on the Diagnostics commander server. It
is important that the BSM registration step is done first prior to running the
script manually.

Important: For communications between BSM gateway server and BSM
processing server with an event channel integration there must be a trust
relationship between the machines if the servers are on different systems.
See “Configuration of Separate BSM Servers for DPS and Gateway” on
page 761 if you need to set this up.

When the Event Channel Integration Status is red, see if the message
displayed indicates a certificate request is pending. The registration executes
a script to do the event channel integration (<Diagnostics_install_dir>/
server/bin/switch_ovo_agent.vbs or .sh). But you must do some manual
steps to grant the certificates, so the status indicates the certificate request is
pending.

In this case you need to do the following to complete the event channel
integration.

To manually grant the certificate:

 1 Go to the Business Service Management Data Processing server and grant
the OM agent’s certificates. If there is more than one certificate listed select
the appropriate one.

ovcm -listpending -l

ovcm -grant <core id from above output>

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

746

See “OM Agent Troubleshooting” on page 919 if you have any problems
with the OM Agent and IAPA installation or the certificates.

Note: When integrating Diagnostics with Business Service Management 8.x
you will see Event Channel Integration Status: N/A since the OM agent and
IAPA components are not used by Diagnostics when integrated with
Business Service Management 8.x.

 2 Click Save Registration and verify the Event Channel Integration Status is
OK and the other values are correct.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

747

Removing the Diagnostics Registration

You can remove the Diagnostics registration completely.

To remove the Diagnostics registration:

 1 Select Admin > Diagnostics.

 2 In the Registration tab, click the Remove Diagnostics registration button.

 3 In the message that opens, click OK to confirm that you want to remove the
Diagnostics registration.

A message is displayed, confirming that you successfully removed the
Diagnostics registration.

To register a new Diagnostics Server, select Admin > Diagnostics and follow
the procedure explained in “Registering the Diagnostics Server in Business
Service Management” on page 740.

Understanding the Diagnostics Admin Page

You access the Diagnostics Configuration page by selecting Admin >
Diagnostics. The Diagnostics Admin page in Business Service Management
consists of the following three tabs, which are described in this section:

Registration Tab
The Registration tab displays the following details:

➤ The Diagnostics Server details that you registered in Business Service
Management. To change these details, see “Removing the Diagnostics
Registration” on page 747.

➤ The Business Service Management server details that were automatically
registered on the Diagnostics Server machine. You can manually change
the Business Service Management server details in the Enter Business
Service Management details section.

For information about registering Diagnostics in Business Service
Management for the first time, see “Registering the Diagnostics Server in
Business Service Management” on page 740.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

748

Downloads Tab
The Downloads tab provides links to the Diagnostics Agent and Collector
installers, enabling you to download the agent or collector installation file
for your relevant platform.

If you did not specify the path to the Agent and Collector installers during
the installation of the Diagnostics Server, the Downloads tab will not
display any components. For more information, see Chapter 2, “Installing
the Diagnostics Server.”

System Health Tab

Provides you with a map of all the components of your HP Diagnostics
deployment and gives you real-time status and health information for each
component.

Assigning Permissions for Diagnostics Users in
Business Service Management

Business Service Management enables you to apply permissions to users and
user groups for specific resources that are defined in the system. There are
specific types of permission operations that administrators can grant to
Diagnostics users.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

749

The following is an example of the Admin > Platform > Users and
Permissions > User Management page in Business Service Management:

Permissions for Diagnostics are under a context called "Diagnostics". The
tree shows Business Service Management and under it Diagnostics. In
Business Service Management 8.x permissions for Diagnostics are under the
Monitors context.

When applying permissions in Business Service Management,
administrators can grant Diagnostics users the following types of permission
operations:

➤ Change: Enables viewing Diagnostics administration and configuring the
Diagnostics settings.

➤ View: Enables viewing the Diagnostics application when accessing
Diagnostics from Business Service Management.

➤ Execute: Enables setting thresholds in Diagnostics.

➤ Full Control: Enables performing all operations on Diagnostics, and
granting and removing permissions for those operations.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

750

Diagnostics permissions can be inherited from BSM roles.

For detailed information about how to assign user permissions in Business
Service Management, see Platform Administration in the HP Business Service
Management Documentation Library.

Password for Data Collectors to Access RTSM

During the Business Service Management configuration server launch you
can choose to override the default password for data collections, such as
Diagnostics, to access RTSM. When you override this password in the
Business Service Management Setup and Database Configuration Utility’s
Login Settings page the same password will be used for all data collectors
(TV, BPI, RUM and Diagnostics).

If you override the default password in BSM, you must make a
corresponding change in the password in Diagnostics to match the new
password. You make the change on the Diagnostics server in the etc/
cmdbProperties.xml file.

<customer>
 <!-- customerId is an Integer -->
 <customerId>1</customerId>
 <customerName>Default Client</customerName>
 <userName>diagnostics</userName>
 <!-- userPassword may be obfuscated -->
 <userPassword>integration</userPassword>
 </customer>
<customer>

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

751

Accessing the Diagnostics Pages in Windows 2003

When your Internet browser is running in a Windows 2003 environment,
you must change your Internet browser settings to access the Diagnostics
configuration and application pages in Business Service Management.

To access the Diagnostics pages in a Windows 2003 environment:

 1 In Internet Explorer, select Tools > Internet Options to open the Internet
Options dialog box.

 2 In the Privacy tab, click Sites to open the Per Site Privacy Actions dialog box.

 3 In the Address of Web site box, enter the name of the Diagnostics Server.

➤ If you entered an IP address when you registered the Diagnostics Server
in Business Service Management, enter the IP address. If you entered a
host name in Business Service Management, enter the host name.

➤ Include the "http://" or "https://" prefix, and the port number, as
illustrated in the following example:

http://<Diagnostics_Commander>:2006/

 4 Click Allow.

 5 Click OK to close the Per Site Privacy Actions dialog box.

 6 Click OK to close the Internet Options dialog box.

Accessing the Diagnostics Application from
Business Service Management

Once you’ve set up Business Service Management to use Diagnostics you
will be able to access the Diagnostics UI from within Business Service
Management.

In Business Service Management, select Applications > Diagnostics to open
the Diagnostics UI.

With the integration between Business Service Management and
Diagnostics, data from Diagnostics is sent to Business Service Management.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

752

You can see this Diagnostics data for application infrastructure elements and
business transactions in various views within Business Service Management.
And because Diagnostics and Business Service Management share a
common data model you can select in context drill downs to Diagnostics
directly from within Business Service Management.

For selected CIs in Business Service Management populated by Diagnostics
you can right-click to select Drill to Diagnostics. In various reports in
Business Service Management you can select an icon for an in context drill
down to Diagnostics.

Data Samples Sent to Business Service Management

When you integrate Diagnostics with Business Service Management,
Diagnostics monitors your enterprise applications and sends application
performance and availability data to Business Service Management as Data
Samples. See HP Diagnostics User’s Guide section on Integrations for more
information.

Diagnostics provides the following data samples to Business Service
Management:

➤ ws_perf_aggr_t (SOA Sample)

➤ ws_event_aggr_t (SOA Sample)

➤ appmon_vu_t (Transaction (BPM) Sample)

➤ dg_trans_t (Business Transaction (Diagnostics) sample)

See the HP Business Service Management Documentation Library for more
information on Data Samples.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

753

Diagnostics Populates CIs and Models in
Business Service Management

With Diagnostics 9.0 or later, Diagnostics populates CIs and model
relationships in the Business Service Management Run-time Service Model
(RTSM) for application infrastructure elements and business transactions.
See HP Diagnostics User’s Guide section on Integrations for more information.

For ASP.NET applications see “Discovery of IIS Metadata for CI Population of
IIS Deployed ASP.NET Applications” on page 283 for information on
discovery of IIS metadata required for Run-time Service Model population
and running a Rescan if you modify an existing ASP.NET application
deployment.

In rare cases where you want to change the timing of the process that adds
these CIs to the Run-time Service Model, a number of properties are
provided in the server.properties file in Diagnostics.

Synchronize CIs Between Diagnostics and
Business Service Management

If you need to force a synchronization between Diagnostics and Business
Service Management for Diagnostics populated models (CIs), a synchronize
function is available on the Diagnostics Server.

From the main Diagnostics UI select Configure Diagnostics (or from any
Diagnostics view select the Maintenance link in the top right corner) and
the Components page is displayed. Select the synchronize link to display the
page for synchronizing models.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

754

Anytime a Business Service Management system is upgraded or re-installed,
a manual hard sync is needed (or a wait period of 12 hours) before CIs from
Diagnostics are forwarded to Business Service Management. To do a hard
sync, select Hard.

Diagnostics Provides KPI/HI Coloring to
Business Service Management

Health Indicator status (coloring) for business transaction and web service
CIs populated by Diagnostics is metric-based. Status for metric based KPIs
and Health Indicators is sent to Business Service Management from
Diagnostics in data samples. Diagnostics sends data samples to Business
Service Management and rules in Business Service Management are used to
evaluate the data and set the indicator’s status.

You can change default objectives for business transaction and Web service
Health Indicators in Business Service Management Admin > Service Health.
See the Business Service Management Documentation Library for information
on using Service Health Admin.

Health Indicator status (coloring) for application infrastructure CIs
populated by Diagnostics is event-based. Status for event-based Health
Indicators is sent to Business Service Management from Diagnostics when
there is a threshold violation on relevant metrics.

The threshold violation event data is sent to Business Service Management
using the OM agent and IAPA components installed with the Diagnostics
Commander Server.

See Chapter 2, “Installing the Diagnostics Server” for information on
installing the OM Agent/IAPA components. See “Registering the Diagnostics
Server in Business Service Management” on page 740 for details on checking
the Event Channel status. See “Event Based Health Indicator Status
Troubleshooting Flow” on page 915 if there are issues.

See HP Diagnostics User’s Guide section on Integrations for overview
information about KPI and HI status coloring and Business Service
Management views populated with Diagnostics application and
infrastructure performance data.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

755

Enabling Diagnostics Integration with BSM’s Service Health
Analyzer

You can enable an integration between Diagnostics and BSM’s Service
Health Analyzer (SHA). With this integration samples containing host
metrics and probe metrics are sent from the Diagnostics Mediator Servers
and relayed through the Diagnostics Commander Server to BSM where the
metrics are put into the BSM SHA database.

The SHA application uses these Diagnostics probe and host metrics as well as
metrics from other samples to create baselines. The SHA application
compares metrics to the baseline and reports anomalies as performance
issues are detected. For an anomaly you can drill down to Diagnostics Probes
view or Hosts view for detailed Diagnostic data (see BSM’s Service Health
Analyzer documentation for details on using SHA).

The integration of Diagnostics with SHA is not enabled by default.

To enable the integration:

 1 On each Diagnostics Mediator locate the /etc/server.properties file.

 2 Make the following changes.

Send host metrics for Service Health Analyzer (SHA)
bac.diag.sha.host.metric.create.samples=true
Send probe metrics for Service Health Analyzer (SHA)
bac.diag.sha.probe.metric.create.samples=true

 3 Restart each Diagnostics Mediator.

 4 Once the integration is enabled and the host metrics and probe metrics
from Diagnostics are available in Business Service Management’s SHA
database you then select these CIs in the SHA Admin application for use in
anomaly detection.

You can also define filters in Diagnostics to determine which host and probe
metrics are sent to SHA’s database. Use the following XML files in the
Diagnostics server’s /etc directory to filter these metrics. Filters are based on
regular expression matching similar to data exporting.

➤ shaHostMetrics.xml. Include/exclude filters for host metrics

➤ shaProbeMetrics.xml. Include/exclude filters for probe metrics

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

756

Integration with BSM’s Performance Graphing

Once you register the Diagnostics commander server with BSM, then in the
BSM UI you can graph Diagnostics data. In the BSM UI (Applications >
Operations Management > Performance Perspective) when you select a CI in
the View Explorer tree you can see applicable Diagnostics graph templates in
the Graphs tab. You can also graph individual Diagnostics metrics from the
Metrics tab. An example from BSM is shown below.

Diagnostics and OM Server Co-existence

Diagnostics 9.x bundles and uses the OM agent to send Health Indicator
(HI) update events to BSM 9.x. The following procedure describes the
necessary changes if the system that is used for the Diagnostics commander
server already contains an OM agent and you want to configure reporting to
an OM Server as well as to BSM servers.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

757

Configure Trusted Certificates
In an environment with multiple BSM/OM servers, you must configure each
server to trust certificates that the other servers issued. This task involves
exporting every server's trusted certificate, and then importing this trusted
certificate to every other server. You must also update the agent's trusted
certificates, so that the agent also trusts the BSM/OM servers.

To configure trusted certificates for every BSM/OM:

 1 On every BSM/OM server, export the trusted certificate to a file using the
following command:

ovcert -exporttrusted -file <file>

The command generates a file with the name that you specify.

 2 Copy each file to every other server, and then import the trusted certificate
using the following commands:

ovcert -importtrusted -file <file>

ovcert -importtrusted -ovrg server -file <file>

 3 On the Diagnostics system (in case an agent was already installed), update
the trusted certificates using the following

ovcert -updatetrusted

OM Agent Installed Before Diagnostics is Installed
This scenario assumes that the OM agent is already present and reporting to
an OM server on the system where Diagnostics commander server is to be
installed.

To setup coexistence when OM Agent is installed first:

 1 Install the Diagnostics commander server (see “Installing the Diagnostics
Server” on page 53).

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

758

At this step, check the BSM integration box:

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

759

 When the install comes to this step, don't check the box below:

 2 On the Diagnostic commander server, install the IAPA component (see
“Manual Installation of OM Agent and IAPA Components” on page 74 for
instructions).

 3 Register Diagnostics in BSM via the Diagnostics Admin page in BSM (see
“Setting Up the Integration Between Business Service Management and
Diagnostics” on page 737). Note if the Diagnostics commander server is on
LInux and you aren’t running the Diagnostics Server as root, you will get an
error during BSM registration of Diagnostics. Ignore this error and continue.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

760

 4 On the Diagnostics commander server, go to
<Diagnostics_server_install_dir>\bin and execute switch_ovo_agent.vbs or
on UNIX switch_ovo_agent.sh, specifying the OM server as the target for
-server and -cert_srv. Note, on Linux, you have to run this command as root.

For example:

cscript switch_ovo_agent.vbs -server ovruxt65.rose.hp.com -cert_srv
ovruxt65.rose.hp.com

 5 Determine the core IDs for the BSM Gateway Server and OM Server. On the
Diagnostics commander execute:

bbcutil -ping <OM Server>

bbcutil -ping <BSM Gateway Server>

 6 Copy directory:
<Diagnostics_server_install_Dir>\newconfig\ovo-agent\policies\mgrconf
to <Diagnostics_server_install_dir>\newconfig\ovo-agent\policies\tmp

If the mgrconf directory doesn’t exist, contact support to get the content of
this directory. Also if you have a more complex setup (for example with
multiple OM managers) you may need to make additional changes to the
file below.

 7 Edit the file:
<Diagnostics_server_install_dir>\newconfig\ovo-agent\policies\tmp\mgrc
onf\FF9A8F04-B5E3-43C3-999B-7A9492C35014_data.

➤ Locate the string ${OM_MGR_SRV} and replace all occurrences with the
FQDN of the HPOM management server.

➤ Locate the string ${OM_MGR_SRV_ID} and replace all occurrences with
the core ID of the HPOM management server.

➤ Locate the string ${OMi_MGR_SRV} and replace all occurrences with the
FQDN of the BSM gateway server.

➤ Locate the string ${OMi_MGR_SRV_ID} and replace all occurrences with
the core ID of the BSM gateway server.

Note in case of a more complex OM setup you may need to add additional
entries in this file.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

761

 8 Go to the directory:
<Diagnostics_server_install_dir>\newconfig\ovo-agent\policies\tmp and
install the policy:

ovpolicy -install -dir mgrconf

 9 The Diagnostics specific logfile encapsulator template that comes with the
agent will now report to the BSM server and all of the other policies will
report to the OM server.

Diagnostics Already Installed
It is recommended to un-install the OM agent first and then use the above
procedure.

Diagnostics 9.x bundles and uses the OM agent to send Health Indicator
(HI) update events to BSM 9.x. The following procedure describes the
necessary changes if you already have Diagnostics installed and you have
installed the OM agent and IAPA components that come with Diagnostics
you now want to configure events to flow to an OM Server as well as to BSM
servers.

To setup coexistence when Diagnostics is already installed:

 1 Uninstall the OM agent component you installed with Diagnostics (see
“Manual Uninstall of OM Agent and IAPA Components” on page 76 for
instructions).

 2 Go to your OM Server and deploy an OM agent to the Diagnostics
commander server.

 3 Then follow steps 2 through 9 on the previous pages.

Configuration of Separate BSM Servers for DPS and
Gateway

When integrating Diagnostics 9.0 or later with Business Service
Management 9.0 or later, the OMi event channel is used by Diagnostics
(actually the OM agent and IAPA components are used) to send Health
Indicator status events from Diagnostics to the Business Service
Management gateway server.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

762

Diagnostics requires the OMi communication channel to be setup, see
“Business Service Management Details” on page 743 for information on
checking event channel integration status in BSM.

Your BSM Gateway server and BSM Data Processing Server can be set up on
separate systems (see the BSM documentation for how to set this up). When
the servers are running on different systems and you have event channel
integration, there must be a trust relationship between the machines for
communications between the BSM gateway server and BSM processing
server.

To set up certificates on a separate Gateway Server do the following:

 1 On the BSM Gateway Server, execute the following commands:

ovconfchg -ns sec.cm.client -set CERTIFICATE_SERVER <processing_server>

and:

ovcert -certreq

 2 On the BSM Processing Server, execute the following commands:

ovcm -listpending -l

and:

ovcm -grant <reqid>

 3 On the BSM Gateway Server, execute the following commands:

ovcert -list

and:

bbcutil -ping <processing_server>

See the Business Service Management Online Help for more information.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

763

Additional Information on Integration

Some additional information on setting up integration between Diagnostics
and Business Service Management is provided below.

Authentication Dialog Displayed
When the Diagnostics server is installed on a different domain than the
Business Service Management server, the MyBSM Diagnostics Dashboard
may show an authentication dialog before the Diagnostics dashboard applet
is displayed if Lightweight Single Sign-On (LWSSO) is not set up to add the
Diagnostics server domain as a trusted domain.

To fix this issue, ensure that the domain that the Diagnostics server is
running on is listed in Business Service Management’s Single Sign-On page.

 1 In Business Service Management select Admin > Platform > Users and
Permissions > Authentication Management > Single Sign-On Configuration.

 2 Click the Configure button.

 3 Click Next in the wizard to get to the Single Sign-On page.

 4 Click the Add a Trusted host/domain icon and enter the Diagnostics Server’s
domain.

 5 Click Next.

 6 Click Next.

 7 Click Finish. This logs you out of Business Service Management. Log back in
to Business Service Management and open the MyBSM Diagnostics
Dashboard.

Missing Link in the Diagnostics UI
If the Diagnostics UI is launched from Business Service Management and in
addition the Diagnostics UI is launched in standalone mode on the same
system, the Maintenance link in the Diagnostics UI in standalone mode will
not be available.

To resolve this issue close both instances of the Diagnostics UI and re-launch
the Diagnostics standalone UI.

Chapter 22 • Setting Up the Integration Between Business Service Management and Diagnostics

764

HI Events not Flowing to Business Service Management
When integrated with Business Service Management 9.x, Diagnostics sends
Health Indicator status events to the Business Service Management gateway
server. If there are problems with HI events flowing to Business Service
Management see Appendix H, “Troubleshooting HP Diagnostics” sections
on the OM Agent, BSM Gateway Trust Relationship and Event Based HI
Status Troubleshooting Flow.

765

23
Installing the LoadRunner Diagnostics
Add-in

The LoadRunner Diagnostics Add-in makes it possible for you to access the
Diagnostics UI from within LoadRunner. Once the LoadRunner Diagnostics
Add-in has been installed, you can configure LoadRunner to use the
Diagnostics components to gather performance metrics during your load
tests and connect to the Diagnostics UI.

This chapter includes:

 ➤ Before Installing the LoadRunner Diagnostics Add-in on page 766

 ➤ Installing the LoadRunner Diagnostics Add-in on page 766

Chapter 23 • Installing the LoadRunner Diagnostics Add-in

766

Before Installing the LoadRunner Diagnostics Add-in

Before installing the LoadRunner Diagnostics Add-in, Diagnostics
commander server and LoadRunner must be installed. To install
LoadRunner, see the HP LoadRunner Installation Guide.

You need to use the latest published Diagnostics 9.10 LoadRunner add-in for
Diagnostics versions 8.0x, 9.0x, 9.10 and later.

Installing the LoadRunner Diagnostics Add-in

The LoadRunner Diagnostics Add-in is installed on the LoadRunner
Controller host machine.

Note: The LoadRunner Diagnostics add-in uses a small bootstrapper to
dynamically download most of the software required from the Diagnostics
server when it is first executed. If Diagnostics is updated, the new
Diagnostics files should be picked up automatically at the next LoadRunner
execution.

To install the LoadRunner Diagnostics Add-in:

 1 Close LoadRunner or any LoadRunner related processes (such as the
LoadRunner Agent) running on the LoadRunner Controller system.

 2 Run setup.exe from the LR_AddIn directory of the Diagnostics installation
disk. The setup installation program is launched.

Chapter 23 • Installing the LoadRunner Diagnostics Add-in

767

 3 The software license agreement is displayed. Read the agreement and click
Yes to accept it.

The Registration Information dialog box opens.

In the Registration Information dialog box, type your name, the name of
your company, and your LoadRunner maintenance number. You can find
the maintenance number in the maintenance pack shipped with
LoadRunner.

Click Next to start the installation process. The installation process begins.

 4 When the installation process is complete, the installation wizard displays a
confirmation message.

Click Finish to complete the installation process.

In certain cases when related LoadRunner processes are running on your
computer (such as the LoadRunner Agent), you will be required to restart
your computer to complete the LoadRunner Add-in installation process.

Chapter 23 • Installing the LoadRunner Diagnostics Add-in

768

Note: No uninstall utility is provided for the LoadRunner Diagnostics
add-in.

Note: If you are installing the LoadRunner Diagnostics Add-in on a
Windows XP machine with service pack 1 and Windows XP Hotfix Q328310
applied, you will receive an Application Error message for iKernal.exe. This
message is issued because the Windows XP Hotfix Q328310 contains a
Win32 API that does not execute as expected by the InstallShield engine. To
resolve this problem, see the recommended solutions at the Java Technology
Help web site, http://java.com/en/download/help/ikernel.jsp.

Before you can access the Diagnostics UI from within LoadRunner you must
configure LoadRunner and provide the necessary information to enable
communication with the Diagnostics components. See Chapter 24, “Setting
Up HP LoadRunner and HP Diagnostics Integration” for information on
configuring LoadRunner for integration with Diagnostics.

769

24
Setting Up HP LoadRunner and
HP Diagnostics Integration

General information is provided on setting up HP LoadRunner and HP
Diagnostics integration in load testing runs and offline analysis.

This chapter includes:

 ➤ How You Can Use HP Diagnostics with LoadRunner on page 770

 ➤ About Setting Up LoadRunner to Integrate with HP Diagnostics on page 773

 ➤ Configuring LoadRunner Scenarios to use HP Diagnostics on page 774

 ➤ Selecting Probe Metrics to Include in the Offline Analysis File on page 774

 ➤ Improving Transfer of Large Offline Analysis Files on page 777

 ➤ Out of Memory Issue in LoadRunner Controller’s Diagnostics UI on page 777

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

770

How You Can Use HP Diagnostics with LoadRunner

LoadRunner diagnostics modules and the integration with HP Diagnostics
provide detailed performance information in LoadRunner to help you
rapidly identify and pinpoint performance problems in Siebel, Oracle, SAP,
J2EE and .NET environments.

In LoadRunner, the J2EE/.NET diagnostics functionality is provided by HP
Diagnostics allowing you to monitor, analyze and solve complex
performance problems in your J2EE and .NET application test
environments.

Once you set up LoadRunner integration with HP Diagnostics you can view
HP Diagnostics data in LoadRunner in a number of ways:

➤ Diagnostics UI Views for a LoadRunner Scenario

➤ Drill Down to the Diagnostics UI for Details on a Transaction

➤ LoadRunner Analysis J2EE and .NET Diagnostics Graphs

Diagnostics UI Views for a LoadRunner Scenario
For a LoadRunner load test scenario you can open the HP Diagnostics UI
and get detailed performance data for the whole scenario.

In LoadRunner you select the Diagnostics for J2EE/.NET tab at the bottom of
the scenario window and the HP Diagnostics UI opens displaying detailed
diagnostic data for the scenario. In the HP Diagnostics UI you can navigate
to other views to identify, isolate, analyze and solve performance problems
detected during the run.

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

771

Following is an example of the HP Diagnostics UI:

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

772

Drill Down to the Diagnostics UI for Details on a
Transaction
In LoadRunner you can drill down to the HP Diagnostics UI for a particular
transaction to get diagnostics data for that transaction.

In LoadRunner select one of the Transactions graphs (such as Transaction
Response Time) and from the graph you drill down to the HP Diagnostics UI
which opens displaying the Transactions view. From here you can navigate
to other views in the HP Diagnostics UI to troubleshoot problems related to
the transaction.

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

773

LoadRunner Analysis J2EE and .NET Diagnostics Graphs
In LoadRunner Analysis the J2EE and .NET Diagnostics graphs are based on
data provided by HP Diagnostics. These graphs enable you to trace, time and
troubleshoot individual transactions and server requests through J2EE and
.NET web, application and database servers. you can also quickly pinpoint
problem servlets and JDBC calls to maximize business process performance,
scalability and efficiency.

The J2EE & .NET Diagnostics graphs in LoadRunner are comprised of two
groups: J2EE & .NET Diagnostics Graphs, J2EE & .NET Server Diagnostics
Graphs.

Refer to the HP LoadRunner Controller User Guide and the HP LoadRunner
Analysis User Guide for information on viewing HP Diagnostics data in
LoadRunner.

About Setting Up LoadRunner to Integrate with HP
Diagnostics

Before you can access the Diagnostics UI from within LoadRunner, you must
provide LoadRunner with the information it needs to communicate with
the HP Diagnostics components.

To make the Diagnostics UI accessible from LoadRunner, you must
configure the integration with the Diagnostics Server. You only need to
specify the Diagnostics Server details the first time you use LoadRunner with
Diagnostics. See the HP LoadRunner Controller User Guide for details about
configuring LoadRunner to access the Diagnostics Server.

Note: Before specifying the Diagnostics Server details, make sure that the
LoadRunner Controller is closed. When the Controller is open, you can view
the Diagnostics configuration settings, but you cannot change them.

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

774

Configuring LoadRunner Scenarios to use HP Diagnostics

Each time you want to capture Diagnostics metrics in a load test scenario,
you must configure the Diagnostics parameters for the scenario and select
the probes that will be included in the scenario. You configure your scenario
for Diagnostics from the LoadRunner Controller. See the HP LoadRunner
Controller User Guide for details.

Note: If you saved a scenario with the Diagnostics settings already
configured, you do not need to reconfigure the Diagnostics parameters each
time you run that scenario.

Selecting Probe Metrics to Include in the Offline Analysis
File

Diagnostics probe metric data can be included for use in LoadRunner
Offline Analysis.

By default, only HeapUsed, GC Collections/sec and GC time Spent in Collections
metric data is included in offline Analysis. To select additional probe metrics
to be included in offline Analysis (.eve file), you use the Diagnostics
configuration file, etc/offline.xml.

Configure the offline.xml files on the Diagnostics mediators to specify the
Diagnostics probe metrics that you want to be included in the offline
analysis. You would configure this file for all mediators that have probes
participating in runs.

Probe metrics are only available from the Java probe, not the .NET probe.

Note: Make sure that the clocks are synchronized between the Diagnostic
servers and LoadRunner.

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

775

A list of all the possible Diagnostics metrics can be found in metrics.config
in the Diagnostics probe install directory. This file contains all metrics,
although some of these metrics might not be available for offline analysis,
depending on the platform (Java probe only), application server type, and
version being monitored.

In general, all the metrics that you can see under a Java probe in the
Diagnostics UI Details pane can be used in the offline.xml file for the
relevant mediator. The following collectors that are included in the
metrics.config file cannot be used in the offline.xml file: "system" and
"Mercury System".

An example of the offline.xml file is shown below:

The <metric> element specifies a match condition. Matching is possible on
metric name (<name>), category (<category>) and collector (<collector>).
The <name>, <category> and <collector> elements can be combined, in
which case all elements must match.

Matching examples:

Match and include a metric named "HeapUsed"

<?xml version="1.0" encoding="UTF-8"?>
<probeMetrics xmlns="http://hp.com/diagnostics/offline/1.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="offline.xsd">
<metric>
 <name>HeapUsed</name>
 </metric>
 <metric>
 <name>GC Collections/sec</name>
 </metric>
 <metric>
 <name>GC Time Spent in Collections</name>
 </metric>
</probeMetrics>

<metric>
 <name>HeapUsed</name>
</metric>

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

776

Match and include any metric that the "JVM" collector exposes.

Match and include a metric named "HeapFree" that the "JVM" collector
exposes.

By default, the matching is performed on a substring, meaning the specified
text between <name>, <category> and <collector> needs to be within (or
contain) the actual metric name, category or collector. For example,
specifying "HeapFree" text for <name> would match any metric that has
"HeapFree" in its name (for example "MyHeapFreeMetric",
"YourHeapFreeMetric").

It is further possible to specify a regular expression for <name>, <category>
and <collector> via the match attribute on <metric> (for example <metric
match="regex">). Note, regular expressions are expensive and will impact
the time it takes to write out .eve files.

Specify sending all probe metrics to LoadRunner as follows:

<metric>
 <collector>JVM</collector>
</metric>

<metric>
 <name>HeapFree</name>
 <collector>JVM</collector>
</metric>

<metric match="regex">
 <collector>.*</collector>
 </metric>

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

777

Note: Adding lots of metrics in offline.xml will increase the size of the
offline (.eve) file, which in turn impacts the time it takes to analyze the
offline file in the LoadRunner Analysis application.

Changes to the offline.xml file are automatically detected and applied every
15 seconds. Configuration errors (validated against offline.xsd) are logged to
the server.log file.

Improving Transfer of Large Offline Analysis Files

The offline analysis files (.eve) generated by Diagnostics during a
LoadRunner or Performance Center test run can get quite large. At the end
of the runs these files are transferred from the Diagnostics servers to the
LoadRunner/Performance Center controller for collation and analysis. You
can improve the transfer time and load time of the offline analysis files that
include Diagnostics data by lowering the resolution of the .eve files.

Use the bucket.lr.offline.duration property and the
bucket.lr.offline.sr.duration properties in the server.properties file on the
Diagnostics server to increase the aggregation period (for example, from 5s
to 15s). These properties enable you to define how many five second trend
points are to be aggregated together to produce a single sample for offline
analysis.

Out of Memory Issue in LoadRunner Controller’s
Diagnostics UI

If you find OutOfMemory errors in the LoadRunner UI log
(Mercury_Diagnostics_UI.log) this may be caused by a memory limit
imposed on the Diagnostics applet displaying data in the Diagnostics tab of
the LoadRunner Controller.

Chapter 24 • Setting Up HP LoadRunner and HP Diagnostics Integration

778

To fix this you can increase the heap memory of the Diagnostics applet by
defining the system environment variables in the OS of the LoadRunner
system: APPCRITIC_MAX_MEM=256m and
JAVA_TOOL_OPTIONS=-Xmx256m (in case 256MB Max VM Heap is also
needed).

779

25
Setting Up Performance Center to Use
Diagnostics

General information is provided on configuring Performance Center to
enable HP Diagnostics for use in a load test.

This chapter includes:

 ➤ How You Can Use HP Diagnostics with Performance Center on page 780

 ➤ About Setting Up Performance Center to Use Diagnostics on page 782

 ➤ Configuring Performance Center Load Tests to Use Diagnostics on page 783

 ➤ Managing Performance Center Offline Files on page 784

Chapter 25 • Setting Up Performance Center to Use Diagnostics

780

How You Can Use HP Diagnostics with Performance Center

Performance Center diagnostics modules and the integration with HP
Diagnostics provide detailed performance information in Performance
Center to help you rapidly identify and pinpoint performance problems in
Siebel, Oracle, SAP, J2EE and .NET environments.

In Performance Center, the J2EE/.NET diagnostics functionality is provided
by HP Diagnostics allowing you to monitor, analyze and solve complex
performance problems in your J2EE and .NET application test
environments.

Once you set up Performance Center integration with HP Diagnostics you
can view HP Diagnostics data from Performance Center.

For a Performance Center load test run you can drill down into HP
Diagnostics UI and get detailed performance data for the whole load test or
for a particular transaction. After the load test run, you can use HP
LoadRunner Analysis to analyze offline diagnostics data generated during
the load test.

Chapter 25 • Setting Up Performance Center to Use Diagnostics

781

Chapter 25 • Setting Up Performance Center to Use Diagnostics

782

About Setting Up Performance Center to Use Diagnostics

Performance Center and Diagnostics are integrated products that are
designed to work together to provide information to help you understand
and improve the performance of your applications.

To make Diagnostics accessible from Performance Center,the following
Diagnostics Server details are specified in Performance Center.

➤ Server Name. The name of the machine that is host to the Diagnostics
command server.

➤ Port Number. The port number used by the Diagnostics command server.
The default port number is 2006.

➤ Login Name. The user name with which you log on to HP Diagnostics. The
default user name is admin.

The user name that you specify should have view, change and execute
privileges. For more information about user privileges, see “Understanding
User Privileges” on page 799.

➤ Password. The password with which you log on to HP Diagnostics. The
default password is admin.

➤ Communication. The communication protocol with which Performance
Center accesses the Diagnostics Server.

If HTTPS is the communication protocol, additional configuration steps are
required. For more information about the steps required, see Appendix C,
“Enabling HTTPS Between Components.”

Note: You only need to specify these details the first time you use
Performance Center with Diagnostics. You provide this information on the
Diagnostics page of the Performance Center Administration Site.

Chapter 25 • Setting Up Performance Center to Use Diagnostics

783

Configuring Performance Center Load Tests to Use
Diagnostics

Each time you want to capture Diagnostics metrics in a load test, you must
configure the Diagnostics parameters for the load test and select the probes
that will be included in the load test.

For complete instructions on how to configure Performance Center to
integrate with Diagnostics see the HP Performance Center User’s Guide section
about HP Diagnostics integration with Performance Center.

If there is a firewall between the Performance Center Controller and the
Diagnostics Server involved in a load test, you must configure the Controller
and the Diagnostics Server to use the MI Listener utility to enable the
transfer of the offline analysis file. Also you must specify the IP address of
the MI Listener machine in Performance Center.

And you must configure the Diagnostics Server in Mediator mode so that it
can work across a firewall. See “Configuring Diagnostics to Work in a
Firewall Environment” on page 675.

The benefit of enabling the "Monitor server requests" functionality in the
integration is that calls into a back-end VM can be captured even in the case
where:

➤ the probe is not capturing RMI calls.

➤ RMI calls cannot be captured (perhaps because an unsupported
application container is being used).

➤ the application uses some other mechanism for communications
between multiple VMs.

Note: If you configure the integration to monitor server requests this
functionality imposes an additional overhead on the probe.

To investigate any issues that you have with the connections between the
Diagnostics components, use the System Health Monitor accessible from
Performance Center.

Chapter 25 • Setting Up Performance Center to Use Diagnostics

784

Managing Performance Center Offline Files

HP Performance Center offline files are kept by default. To manage offline
files, you must configure the Diagnostics Servers in Mediator mode so that
they delete these files.

You do this by setting the property distributor.offlinedelivery.preserveFiles
to true in <diagnostics_server_install_dir>/etc/server.properties. When set
to true, this property causes the run-specific “offline” files stored in the
server's data directory to be retained for the amount of time specified in the
facade.run_delete_delay property in the server's webserver.properties file
(default period is 5 days).

During this retention period, the run can be successfully collated. Sometime
after the retention period has ended, the associated offline files will be
deleted from the system.

Part IX

Appendixes

This section includes:

➤ Diagnostics Administration UI

➤ User Authentication and Authorization

➤ Enabling HTTPS Between Components

➤ Using System Views for Administrators

➤ Diagnostics Data Management

➤ Diagnostics Technical Diagrams

➤ Upgrade and Patch Install Instructions

➤ Troubleshooting HP Diagnostics

➤ General Reference Information

➤ Data Exporting

786

787

A
Diagnostics Administration UI

Information is provided on how to access and use the Diagnostics Server
Administration UI, where you can configure Diagnostics properties and
manage your Diagnostics software.

This chapter includes:

 ➤ Accessing the Diagnostics Administration UI on page 787

 ➤ Using the Diagnostics Administration UI on page 790

Accessing the Diagnostics Administration UI

You can view information about the Diagnostics configuration, set the user
privileges, configure Diagnostics settings and manage your Diagnostics
software directly from the main UI of Diagnostics.

To access the Diagnostics Administration UI:

 1 Open the main Diagnostics UI by navigating to
http://<diagnostics_server_host>:2006 in your browser, or by selecting Start
> All Programs > Diagnostics Server > Administration. The port number in
the URL, 2006, is the default port for the Diagnostics Server. If you
configured the Diagnostics Server to use an alternative port, use that port
number in the URL.

If you are not already signed into the Diagnostics Server, you are prompted
for a user name and password. This must be a valid user name, and must
have both View and Change privileges. For information about valid user
names and privileges, see Appendix B, “User Authentication and
Authorization.”

Appendix A • Diagnostics Administration UI

788

The main Diagnostics UI opens in your browser.

There are three options as described below.

➤ Open Diagnostics. Opens the Diagnostics UI where you can view the
performance metrics collected by the agents that are reporting to the
Diagnostics Server. The performance metrics are displayed in Diagnostics
views.

For more information about the Diagnostics views, see the online help or
the HP Diagnostics User’s Guide.

Appendix A • Diagnostics Administration UI

789

➤ Configure Diagnostics. Opens the Components administration page,
which has a link to the Diagnostics Server Configuration page.

For more information about configuring the Diagnostics properties, see
“Making Server Configuration Changes” on page 793.

➤ Manage Authorization and Authentication. Opens the User
Administration page where you can add and maintain security
information, and user privileges for specific users. For more information
about security and user privileges, see “User Authentication and
Authorization” on page 797.

 2 From the main Diagnostics UI select Configure Diagnostics. See “Using the
Diagnostics Administration UI” on page 790 for details.

Notes:

➤ Diagnostics continues to prompt for a user name and password until
valid credentials are entered.

➤ If you click Cancel, the following error message is displayed in your
browser: Access denied. You must specify a valid user name and
password.

➤ If you entered a valid user name and password, but do not have the
proper privileges, the following error message is displayed in your
browser: Access denied. You do not have the required permission to view
this screen.

To log on as a different user to the one you are currently logged on as, you
must close your browser and reopen it.

Appendix A • Diagnostics Administration UI

790

Using the Diagnostics Administration UI

In the Diagnostics Administration UI, you view information about your
Diagnostics configuration, set the property values that control how the
Diagnostics Server communicates with the other Diagnostics components,
and how it processes the data that it receives from the probes.

To ensure that you are entering valid property values, it is recommended
that you use the configuration pages to modify the Diagnostics Server
properties, rather than editing the property files directly.

From the main Diagnostics UI select Configure Diagnostics and the
Components page is displayed.

You can also access this Components page by selecting the Maintenance
link in any Diagnostics view.

Appendix A • Diagnostics Administration UI

791

You can select from the following links to go to different administration
pages for Diagnostics. Some of the links take you to information pages and
other links allow you to make configuration changes.

➤ Registrar. Central list of all Diagnostics component deployments.

➤ Query. Query API which enables you to download Diagnostics data in
HTML, XML or as Java objects. An example is provided in the /contrib
directory of the use of the Diagnostics Query API to create a custom
dashboard. Also see the HP Diagnsotics Data Model and Query API Guide (pdf)
available from the online help Home page and in the Documentation
directory.

If you select the Active Users link at the bottom of the initial query page you
can get a list of active users seen by the Diagnostics server in the last 60
seconds. And you can see the Queries/sec indicating how much load the
user generates with summary or trend queries.

➤ Security. Built-In User Management. See “Understanding the Diagnostics
Server Permissions Page” on page 802.

➤ Logging. Configure log files and logging details.

➤ Configuration. Configure the Diagnostics Server. See “Making Server
Configuration Changes” on page 793 for more information on additional
configuration pages.

➤ Files. Installation directory browser for use in uploading and downloading
property files, log files and other files.

➤ License. License management. See “Licensing HP Diagnostics” on page 79
for details.

➤ Synchronize. Synchronize CIs with Business Service Management. You can
force a hard sync (perform full synchronization with Business Service
Management) or soft sync (synchronize only new CIs with Business Service
Management).

➤ Thresholding. Script statements for setting thresholds and alerts.

Appendix A • Diagnostics Administration UI

792

The components displayed on the Components page are the commonly
used components. The more advanced components are hidden by default.

Important: Do not manipulate the advanced options without the guidance
of your HP Software Customer Support representative.

To display the advanced options:

➤ At the bottom of the page, click Show Advanced Options.

The list of options on the page is updated to include the advanced
configuration options, and the link changes to Hide Advanced Options.

Additional advanced configuration options are displayed.

To hide the advanced options:

➤ At the bottom of the page, click Hide Advanced Options.

The list of options on the page is updated so that the advanced
configuration options are no longer visible, and the link changes to Show
Advanced Options.

Appendix A • Diagnostics Administration UI

793

Making Server Configuration Changes
From the main Diagnostics UI, select Configure Diagnostics and then select
the configuration link to access the Configuration page shown below.

 1 Click the link to the page whose properties you want to update. For the
Diagnostics Server you can configure:

➤ Customer information

➤ Alert properties

➤ Component Communications

➤ Memory Diagnostics

➤ Online cache

➤ Logging

Appendix A • Diagnostics Administration UI

794

The configuration options displayed on this page are the commonly
configured options. The more advanced configuration options are hidden
by default. Select Show Advanced Options to see more configuration
options.

Important: Do not manipulate the advanced options without the guidance
of your HP Software Customer Support representative.

 2 For example if you select Customer Information the page below is displayed.
Review the properties that are displayed and make updates.

 3 When you are satisfied with your changes, click Submit to save them. Click
Reset All to reset ALL values back to the default settings or close the dialog if
you do not want to submit any changes.

A message appears at the top of the page to indicate that your changes were
saved.

Appendix A • Diagnostics Administration UI

795

Notes:

➤ For most properties that you update, a message is displayed reminding
you to restart the Diagnostics Server. The property changes will not take
effect until you restart the Diagnostics Server.

If you want make other changes to the Diagnostics Server properties, you
should finish making all of your changes before restarting the
Diagnostics Server.

Restarting the server will result in a small loss of data (up to 6 minutes).
You should therefore schedule restarts at a time that is convenient.

➤ Modifying the logging level details does not require restarting the
Diagnostics Server; however, it could take up to a minute for your
changes to be applied.

Appendix A • Diagnostics Administration UI

796

797

B
User Authentication and Authorization

Information is provided on the Diagnostics authentication and
authorization process and describes how to create and maintain user
security permissions.

This chapter includes:

 ➤ About User Authentication and Authorization on page 798

 ➤ Understanding User Privileges on page 799

 ➤ Understanding Roles on page 800

 ➤ Accessing Diagnostics Using Default User Names on page 801

 ➤ Understanding the Diagnostics Server Permissions Page on page 802

 ➤ Creating, Editing and Deleting Users on page 810

 ➤ Assigning Privileges Across the Diagnostics Deployment on page 812

 ➤ Assigning Privileges for Probe Groups on page 813

 ➤ Authentication and Authorization for Users of Integrated HP Software
Products on page 816

 ➤ Tracking User Administration Activity on page 818

 ➤ List of Active Users on page 819

 ➤ Configuring Diagnostics to use JAAS on page 820

Appendix B • User Authentication and Authorization

798

About User Authentication and Authorization

User authentication and authorization settings for all the Diagnostics
components are configured in the Diagnostics Commander.

Authentication is the process of verifying a person’s identity. Authorization
is the process of verifying that a known person has the authority
(permission or privilege) to perform a certain action. Roles are bundles of
permissions assigned to a user.

You manage authentication and authorization by creating and editing user
names and granting the users privileges so that users are able to perform the
functions within the application for which they are responsible.

User permissions and privileges for the Profilers (.NET Diagnostics Profiler or
Java Diagnostics Profiler) of the probes connected to a particular Diagnostics
Server are also defined in the Diagnostics Commander. You can assign users
one set of permissions for accessing Profilers in a particular probe group and
a different set of permissions for accessing the Diagnostics Server.

Important:

➤ When you install the agent as a profiler only (not connected to any
Diagnostics Server), you manage the authentication and authorization of
users of the Profiler in the agent itself.

➤ For information about managing authentication and authorization for
the Java Agent installed as a profiler only, see “Authentication and
Authorization for Diagnostics Java Profilers” on page 518.

➤ For information about managing authentication and authorization for
the .NET Agent installed as a profiler only, see “Authentication and
Authorization for .NET Profilers” on page 658.

Appendix B • User Authentication and Authorization

799

Before you can view any Diagnostics data, or make any changes to the
Diagnostics configuration or user privileges, you must log on to the
Diagnostics Commander using a user name that has valid security access
with the appropriate privileges.

After logging on to the Diagnostics Server in a particular browser session,
the user name remains in effect until the browser session ends. When you
are finished using Diagnostics, close your browser to prevent others from
accessing Diagnostics using your privileges.

Understanding User Privileges

The following privilege levels can be assigned to Diagnostics users:

Privilege Description

View The user can view Diagnostics data from the UI.

Execute The user can make changes to the settings on the UI, such as
changing thresholds or adding comments. On the Profiler, this
privilege gives permission to perform garbage collection and
clear the performance data held by the Profiler.

Change The user can access the Configure Diagnostics menu to alter
component configuration, and maintain user information. On
the profiler, this gives permission to run potentially risky
operations, such as taking a heap-dump or changing
instrumentation.

Appendix B • User Authentication and Authorization

800

Notes:

➤ The privilege levels, rhttpout and system are for internal purposes only.
rhttpout is used to grant the user access to the rhttp/out URL for doing
remote management of distributed servers.

➤ system is an internal permission generally granted only to the mercury
special user. It is the permission that allows Diagnostics components to
talk to one another (for example, the permission required for a probe to
register with the Diagnostics Server). System permission is required to
view system health.

Each privilege level stands alone. There is no inheritance of privileges from
one level to the next. You must grant a user all of the privilege levels that are
necessary to perform the functions that they need to perform.

For example, a user must be granted both View and Execute privileges to be
able to make changes to thresholds. A user name that has been granted only
Execute privileges would not be useful, as it would not allow the user to see
the UI on which they have permission to make changes.

For information about assigning privileges to users, see “Assigning Privileges
Across the Diagnostics Deployment” on page 812.

Understanding Roles

In addition to the user/privilege assignment, it is also possible to assign
privileges to roles and assign these roles to users. This makes the
management of multiple users easier: when a new user is added to
Diagnostics only the user/role assignment has to be performed. This is
especially helpful when a user is set up to have different privileges for
accessing the Diagnostics Server and the Profiler of a particular probe group.

Appendix B • User Authentication and Authorization

801

Consider the following example:

Two development teams (Dev1 and Dev2) that require all permissions (view,
execute, change) to the Profiler on the agent system that they own and view
permission on the agent system that they don't own. Both teams should
have view and execute permissions for the UI.

The following roles must be created:

Note that roles need to be enclosed in brackets to distinguish them from
users. For example, if a new user to the Dev1 team is added to Diagnostics, it
would need to be part of the following roles: [DevUI],[Dev1All],[Dev1View].

Accessing Diagnostics Using Default User Names

The following default user names are defined for Diagnostics:

You can use these default user names to access Diagnostics functionality.

Role Privileges

Enterprise (access to the UI) [DevUI] = view,execute

Dev1 Probe Group [Dev1All] = view,execute,change

[Dev2View] = view

Dev2 Probe Group [Dev2All] = view,execute,change

[Dev1View] = view

Default User
Names

Privileges Description

user View Can only view the data from the UI.

superuser View, Execute Can view data, change thresholds, and create
alerts and comments from the UI.

admin View, Change,
Execute,
System

Can view data, change thresholds, and create
alerts and comments from the UI. Can
configure components and maintain user
information.

Appendix B • User Authentication and Authorization

802

The passwords for the default user names are the same as the user names.
For example, for the user name admin, the password is admin.

You can modify the password or privileges for the default user names to suit
your needs. You can also define new user names to control user access to
Diagnostics.

Important: There are two default users, mercury and bac, that are used for
internal purposes and should never be modified. These users are for internal
communication between components.

Understanding the Diagnostics Server Permissions Page

You manage users and assign user privileges in the Permissions page.

This section includes:

➤ “Accessing the Permissions Page” that follows.

➤ “The Permissions Page at a Glance” on page 805

➤ “Enterprise and Application Permissions” on page 806

Appendix B • User Authentication and Authorization

803

Accessing the Permissions Page
You can access the Permissions page from the main Diagnostics UI by
selecting Manage Authorization and Authentication.

You can also access this Permissions page by selecting the Maintenance link
in any Diagnostics view and then selecting the security link.

Appendix B • User Authentication and Authorization

804

Before you can view any Diagnostics data, or make any changes to the
Diagnostics configuration or user privileges, you must log on to the
Diagnostics Commander using a user name that has valid security access
with the appropriate privileges.

When the Permissions page opens, if you are not already signed into the
Diagnostics Server, you might be prompted for a user name and password.
You must have at least View privileges to view your privileges and modify
your password. To add or delete users, or update user privileges, you must
have both View and Change privileges.

Notes:

➤ Diagnostics continues to prompt for a user name and password until
valid details are entered.

➤ If you click Cancel, the following error message is displayed in your
browser: Access denied. You must specify a valid username and
password.

➤ If you entered a valid user name and password, but do not have the
proper privileges, the following error message is displayed in your
browser: Access denied. You do not have the required permission to view
this screen.

Appendix B • User Authentication and Authorization

805

The Permissions Page at a Glance
The following screen is an example of the Diagnostics Server Permissions
page:

The Permissions page is divided into the following three sections:

➤ Enterprise Diagnostics Permissions. In this section you manage Diagnostics
users and you assign privileges across the whole Diagnostics deployment,
including the Diagnostics Servers and agents.

By default, if users are authorized to access a particular Diagnostics Server,
they also have the same authorization (and privileges) to access all probes
connected to that server.

Appendix B • User Authentication and Authorization

806

Note: Diagnostics has a centralized permissions system whereby permissions
can be set for a user and they will apply to all distributed servers and probes
connected to the Diagnostics system. However, permissions are only pushed
out to the distributed components once every 5 minutes, so permission
changes do not take effect immediately.

➤ Control over probes connected to <Diagnostics_commander_server>. In
this section you assign privileges for users accessing the probe Profilers. You
can assign users one set of permissions for accessing Profilers in a particular
probe group and a different set of permissions for accessing the Diagnostics
Commander Server.

➤ Encrypt Internal Diagnostics Passwords. You can access the
EncryptPassword utility to encrypt a password.

Enterprise and Application Permissions
In addition to the enterprise and probe level permissions you set on the
Permissions page, you can also set application level permissions. Application
permissions are set in the Diagnostics UI in the initial Applications window.
See the HP Diagnostics User’s Guide for details on setting application
permissions.

The three groups of permissions are as follows:

➤ Enterprise

➤ View. The user can look at performance data in the Diagnostics UI.

➤ Execute. The user can change thresholds and add comments and create
applications.

➤ Change. The user has full administration access to the system (for
example, can create users).

Appendix B • User Authentication and Authorization

807

➤ Per Probe Group (applied in the Profiler)

➤ View. The user can view performance data collected by the Profiler.

➤ Execute. The user can run Garbage Collections and clear the performance
data held by the Profiler.

➤ Change. The user can run operations such as taking a heap-dump or
changing instrumentation.

➤ Application

➤ View. The user can view applications and edit entity properties (this
requires Enterprise permissions set to Change).

➤ Modify. The user can delete, rename, modify applications, and can add or
remove an entity from an application.

➤ Edit Screens. The user can edit using the Application Overview screen.

Note: Permissions are NOT inclusive (Execute does not include View).

Area and Action Enterprise Permissions Application Permissions

view execute change view modify
edit
screens

Diagnostics UI

View Diagnostics data in UI X

Change custom attributes X

Set thresholds in UI X

Create/Modify/Delete
comments in UI

X

Create alert rules in UI X

Configure Diagnostics page X

Configure Business
Transactions

X

Appendix B • User Authentication and Authorization

808

View system health

Note: To view system health,
you also require system
enterprise permission.

X

Manage authorization and
authentication for other
users

X

Access maintenance page X

Working with incidents X

Working with custom views X

Profiler UI

Perform garbage collection
in Profiler

X

Clear performance data in
Profiler

X

View Diagnostics data in
Profiler

X

Perform heap-dump
(Memory & Allocation
Analysis)

X

Change configuration X

User defined applications

Create application X

Delete application X X

Rename application X X

Change application path X X

Area and Action Enterprise Permissions Application Permissions

view execute change view modify
edit
screens

Appendix B • User Authentication and Authorization

809

Modify application
permissions

 X X

Edit custom application
screen

X X

Add entity to application X X

Remove entity from
application

X X

Edit entity properties
(thresholds, comments, etc)

 X X

View application X X

Auto discovered applications, transaction applications or Entire Enterprise

Create, Delete and Change
of application path is not
allowed

Modify application
permissions

 X X

Edit application screen X X

Add entity to application X X

Remove entity from
application

X X

Edit entity properties X X

View application X X

Area and Action Enterprise Permissions Application Permissions

view execute change view modify
edit
screens

Appendix B • User Authentication and Authorization

810

Creating, Editing and Deleting Users

Users with both View and Change privileges can create new users, edit the
password for an existing user, or delete users. Users with only View
privileges can maintain their own password.

To create a new user:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the Permissions page, click User Administration to open the User
Administration page.

 3 On the User Administration page, click Create User.

 4 In the New User Name box, type a user name for the new user and click OK.
The new user appears in the list of user names.

Note: Username and password must contain English characters only due to
Browser restrictions in handling basic authentication.

 5 Under Change Password, in the Password box, type a password for the new
user, and confirm it by retyping it in the Confirm Password box.

 6 In the Password for <current user> box, type the password of the user
currently logged on.

 7 Click Save Changes.

By default the new user, has view privileges. For information about
changing the privileges assigned to the user, see “Assigning Privileges Across
the Diagnostics Deployment” on page 812.

Appendix B • User Authentication and Authorization

811

To assign roles:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the User Administration page, assign the roles for a user. Make sure that
the roles are enclosed in brackets ([aRole]). Roles can be separated by comma
([Role1],[Role2]).

Note: Permissions must be set up for roles under the Enterprise and/or Per
Probe Group dialogs (see “Assigning Privileges Across the Diagnostics
Deployment” on page 812 and “Assigning Privileges for Probe Groups” on
page 813).

To delete a user:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the Permissions page, click User Administration to open the User
Administration page.

 3 On the User Administration page, in the Password for <current user> box,
type the password of the user currently logged on.

 4 Click the red X (Delete user) button corresponding to the user you want to
delete.

 5 A message box opens asking if you want to delete the selected user.

Click OK to delete the user.

To change a user’s password if you have View and Change privileges:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the Permissions page, click User Administration to open the User
Administration page.

 3 On the User Administration page, in the row representing the relevant user,
type the new password in the Password and Confirm Password boxes.

Appendix B • User Authentication and Authorization

812

 4 In the Password for <current user> box, type the password of the user
currently logged on.

 5 Click Save Changes to save all the changes you made to the different user
names.

To change your own password if you only have View privileges:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the Permissions page, click User Administration to open the User
Administration page.

 3 On the User Administration page, type the new password in the Password
and Confirm Password boxes.

 4 In the Old Password box, type your old password.

 5 Click Save Changes.

Assigning Privileges Across the Diagnostics Deployment

Users with both View and Change privileges can grant users privileges across
the entire Diagnostics deployment.

Note: For a description of the user privileges that you can assign to
Diagnostics users, see “Understanding User Privileges” on page 799.

To assign user privileges across the entire Enterprise:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 On the Permissions page, click Edit Enterprise Permissions to open the
Editing Enterprise Permissions page.

The Editing Enterprise Permissions page is an editable page which enables
you to modify user privileges.

Appendix B • User Authentication and Authorization

813

 3 Locate the name of the user, whose privileges you want to modify.

Important: You add users on the User Administration page, as described in
“Creating, Editing and Deleting Users” on page 810.

 4 Add the privileges to the username as comma separated values.

For example, if you defined a user by the name of newuser and you want to
assign this user with view and execute privileges you must locate newuser
and edit the line so that it appears as follows:

The Editing Enterprise Permissions page also includes a set of default users.
These users are described in “Accessing Diagnostics Using Default User
Names” on page 801. You can modify the privileges of these default users.

Assigning Privileges for Probe Groups

Users with both View and Change privileges can grant users privileges for
accessing the probe Profilers belonging to particular probe groups.

By default, if users are authorized to access a particular Diagnostics Server,
they also have the same authorization (and privileges) to access all probe
Profilers connected to that server.

However, you can assign users a different set of permissions for different
probe groups than what they have for the Diagnostics Servers themselves.

Note: For a description of the user privileges that you can assign to
Diagnostics users, see “Understanding User Privileges” on page 799.

newuser = view,execute

Appendix B • User Authentication and Authorization

814

You can modify user privileges for each probe group individually and you
can also modify a Permissions template that defines the user privilege
settings for all future probe groups added to your system.

Note: User and permission settings could take up to 1 minute after the
changes are saved to take effect.

For each probe group, there are three default user groups of users with
certain privileges. You can choose to comment out these groups or to
modify their privileges. The following groups of users are defined by default
in all the probe groups:

User Group Permissions

any_diagnostics_admin This group refers to any user with administration
(change) privileges on the Diagnostics Server. By
default, any user who falls into this category and
does not have any other predefined permission
settings has administration permissions for all
probes connected to that server.

any_diagnostics_superuser This group refers to any user with superuser
(execute) privileges on the Diagnostics Server. By
default, any user who falls into this category and
does not have any other predefined permission
settings has execute permissions for all probes
connected to that server.

any_diagnostics_user This group refers to any user with user (view)
privileges on the Diagnostics Server. By default, any
user who falls into this category and does not have
any other predefined permission settings has view
permissions for all probes connected to that server.

Appendix B • User Authentication and Authorization

815

To assign user privileges for accessing a particular probe group:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 In the Control over probes connected to <Diagnostics_commander_server>
section of the permissions page, click Edit <name of probe group>.

The Editing Permissions page opens. This is an editable page which enables
you to modify user privileges.

 3 Enter the username to which you want to assign unique privileges and add
the privileges to the username as comma separated values.

For example, if you defined a user by the name of newuser and you want to
assign this user with view and execute privileges on this particular probe
group, enter the following line:

To assign user privileges using the Permissions template:

 1 Access the Diagnostics Server Permissions page as described in “Accessing
the Permissions Page” on page 803.

 2 In the Control over probes connected to <Diagnostics_commander_server>
section of the permissions page, click Edit Permissions Template.

The Editing Template Permissions page opens. This is an editable page
which enables you to modify user privileges.

 3 Enter the username to which you want to assign unique privileges and add
the privileges to the username as comma separated values.

For example, if you defined a user by the name of newuser and you want to
assign this user with view and execute privileges on this particular probe
group, enter the following line:

newuser = view,execute

newuser = view,execute

Appendix B • User Authentication and Authorization

816

You could also modify or comment out one of the user group settings
defined in the template.

Important: All future probe groups that are connected to your Diagnostics
Server will inherit the user privilege settings from this Permissions template.

Authentication and Authorization for Users of Integrated
HP Software Products

Diagnostics can be integrated with other HP Software applications (Business
Service Management, Performance Center, or LoadRunner). This section
describes how authentication and authorization works for users of these
integrated products and includes the following sections:

➤ “Authentication and Authorization for Business Service Management Users”
on page 816

➤ “Authentication and Authorization for Performance Center and
LoadRunner Users” on page 817

Authentication and Authorization for Business Service
Management Users
In Business Service Management, you can define user permissions for
Diagnostics. For more information, see “Assigning Permissions for
Diagnostics Users in Business Service Management” on page 748.

When an existing or new Business Service Management user opens
Diagnostics from Business Service Management, their permissions are
picked up from the Business Service Management session and copied into
the Diagnostics permissions system (under the SaaS customer, if relevant).

Updates to Business Service Management user permissions are only picked
up when the user opens Diagnostics. (If Diagnostics is already open, changes
will not be detected until it is closed and reopened).

Appendix B • User Authentication and Authorization

817

Business Service Management passwords are never sent to Diagnostics—
Diagnostics trusts a successful Business Service Management login.

If privileges of Business Service Management users change, the changes are
not picked up until that user reopens Diagnostics.

If a Business Service Management user is deleted, it is recommended that
you manually remove their permissions from Diagnostics. For more
information, see “Creating, Editing and Deleting Users” on page 810.

Note: The Diagnostics Server can take up to five minutes to detect
permission changes to users.

Authentication and Authorization for Performance
Center and LoadRunner Users
When you set up both LoadRunner or Performance Center for integration
with Diagnostics, you specify the Diagnostics Server details within
LoadRunner / Performance Center. These details include the username and
password with which you log on to HP Diagnostics.

When you access Diagnostics from LoadRunner or Performance Center, you
are logged into Diagnostics with that same username and password that you
specified during the integration setup.

Users accessing Diagnostics from within LoadRunner or Performance
Center, will therefore have the privileges that are associated with the
username that was specified during the integration setup.

Appendix B • User Authentication and Authorization

818

Tracking User Administration Activity

Each time a user enters the Diagnostics Server User Administration page, all
activity that takes place is logged in the following log file:
<diagnostics_server_install_dir>\log\useradmin.log.

The data logged in the file includes the date and time of each action
performed, a description of the action, and the name of the user performing
the action.

To view the log file:

 1 Open the Diagnostics Server administration page in one of the following
ways:

➤ By selecting Start > All Programs > HP Diagnostics Server >
Administration.

➤ By navigating to http://<diagnostics_server_host>:2006 in your browser.
The port number in the URL, 2006, is the default port for the Diagnostics
Server. If you configured the Diagnostics Server to use an alternative port,
use that port number in the URL.

The Diagnostics UI main page opens.

 2 Click Configure Diagnostics.

Appendix B • User Authentication and Authorization

819

 3 If you are not already signed into the Diagnostics Server, you are prompted
for a user name and password. This must be a valid user name, and must
have both View and Change privileges. For information about valid user
names and privileges, see “Understanding User Privileges” on page 799.

Notes:

➤ Diagnostics continues to prompt for a user name and password until
valid credentials are entered.

➤ If you click Cancel, the following error message is displayed in your
browser: Access denied. You must specify a valid user name and
password.

➤ If you entered a valid user name and password, but do not have the
proper privileges, the following error message is displayed in your
browser: Access denied. You do not have the required permission to view
this screen.

The Diagnostics Server Components page opens.

 4 Click logging. The logging page opens.

 5 Click View Log Files. A list of log files appears.

 6 Click the <diagnostics_server_install_dir>\log\useradmin.log link.

The log file is displayed at the bottom the page.

List of Active Users

You can get a list of active users seen by the Diagnostics server in the last 60
seconds. And you can see the Queries/sec indicating how much load the
user generates with summary or trend queries.

From the main Diagnostics UI select Configure Diagnostics and the
Components page is displayed. (You can also access this Components page
by selecting the Maintenance link in any Diagnostics view).

Appendix B • User Authentication and Authorization

820

Select the query link and then select the Active Users link at the bottom of
that page to display a list of active users.

You can configure limits on the queries the UI is executing if you find there
are very high query loads. Use the ui.properties file on the server to set
properties to throttle update frequency of UI queries to the server.

Configuring Diagnostics to use JAAS

Diagnostics can be configured to use JAAS (Java Authentication and
Authorization Service) for authentication of users. If JAAS is enabled, the
user name and password entered in the login dialog when the UI is accessed
is authenticated by a configured JAAS pluggable authentication module
(LoginModule).

Note: JAAS support is only available on the Diagnostics commander server.

JAAS must be enabled in the <INSTALL_DIR>/etc/server.properties file by
un-commenting the following two lines:

authentication.jaas.config.file=jaas.configuration
authentication.jaas.realm=Diagnostics

Appendix B • User Authentication and Authorization

821

The authentication.jaas.config.file property specifies the configuration file
(relative to the etc directory) that defines the LoginModules and
authentication.jaas.realm specifies the entry that should be used in the
configuration file.

Example jaas.configuration:

For more information on the JAAS configuration file, see Oracle’s
documentation on JAAS and Oracle’s javadoc on
javax.security.auth.login.Configuration.

Note: The users that were created by Diagnostics through the Manage
Authorization and Authentication web page are used first when
authenticating a username and password. Only if that authentication fails
will the JAAS authentication be performed.

Diagnostics provides the following LoginModules:

➤ LDAP. (com.mercury.diagnostics.server.jaas.spi.LDAPLoginModule) which
allows authentication against an LDAP server.

➤ SiteMinder.
(com.mercury.diagnostics.server.jaas.spi.SiteMinderLoginModule) which
allows authentication against a SiteMinder environment.

Diagnostics
{
 com.mercury.diagnostics.server.jaas.spi.SiteMinderLoginModule sufficient
 ip="1.2.3.4";

 com.mercury.diagnostics.server.jaas.spi.LDAPLoginModule sufficient
 useSSL="true"
 serverCertificate="etc/ldap.keystore"
 providerURL="ldap://ldap.yourdomain.com:636"
 baseDN="ou=People,o=yourdomain.com";

};

Appendix B • User Authentication and Authorization

822

Notes:

➤ After making any changes to server.properties and/or the
jaas.configuration file, you must restart the Diagnostics commander
server.

➤ When using a JAAS authentication provider that is also used in other
applications, such as LDAP, it is recommended to turn on HTTPS for
accessing the Diagnostics UI.

➤ When using a JAAS authentication provider, user accounts are
maintained by the authenticating source. Ask your administrator for
details on user name syntax.

➤ Subsequent authorization of authenticated users privileges is maintained
using the permissions page. Roles can also be used if the appropriate
LoginModule is configured to use them. In this case, existing roles can be
used or new roles can be created.

Configuring LDAP Authentication
To configure LDAP authentication in Diagnostics you must first configure
Diagnostics to use JAAS (see “Configuring Diagnostics to use JAAS” on
page 820) and then configure the LDAPLoginModule on the Diagnostics
commander server.

In general here is how Diagnostics handles permissions and how LDAP
authentication is handled (see the flow diagram on the following page):

 1 Accept a username and password from the user.

 2 Compare the username and password against cached usernames and
passwords.

 a If the username is in the cache and the password matches, then the login
succeeds or fails based on the last login attempt with the same
credentials.

 b Otherwise, proceed to the next step.

Appendix B • User Authentication and Authorization

823

 3 Compare the username and password against the Enterprise Diagnostics
Permissions (EDP).

 a If the username is in the EDP and the password matches, then go to step
6.

 b Otherwise, proceed to the next step.

 4 Loop through all the LDAP Login Modules configured in jaas.configuration.

 a If the LoginModule authenticates the username/password, then go to
step 6.

 b Otherwise, proceed to the next Login Module.

 5 If all the above fail, then fail the login and cache that this username/
password results in failure.

 6 Lookup the role/permissions of the username in the EDP.

 7 Cache that the username/password credentials result in a successful login.

 8 Return that the user logged in successfully.

Appendix B • User Authentication and Authorization

824

Diagnostics LDAP Authentication Flow

Appendix B • User Authentication and Authorization

825

Edit the Diagnostics JAAS realm (application) block in <INSTALL_DIR>/etc/
jaas.configuration with option values specific to your LDAP server.

The LDAPLoginModule may be used in a simplified or an advanced mode.

➤ In both modes:

➤ SSL and a server certificate may be configured.

➤ Roles may be configured.

➤ Debug information may be requested.

➤ In simplified mode:

➤ Anonymous directory searches may be done.

➤ A predefined search filter is used.

➤ Only a single base DN (distinguished name) may be configured.

➤ Referrals are not available.

➤ In advanced mode:

➤ Credentials must be provided for directory searches.

➤ RFC 2254 compliant search filters may be used.

➤ Multiple base DNs may be configured.

➤ Referrals are available.

You can launch the ldp.exe utility on your Active Directory system to test
settings.

Appendix B • User Authentication and Authorization

826

The following table lists LDAPLoginModule common attributes (for all
modes):

Attribute Description and Examples Values

authType Specifies the security level to use
when authenticating the user.

"simple" (default)

"none"

"strong"

debug Specifies whether to write debug
information to server.log.

"false" (default)

"true"

defaultRoles Comma-delimited list of roles to
assign each authenticated user.

Example: "SuperUsers"

roleAttributes Comma-delimited list of the user’s
DN attributes whose values will be
used as the user’s roles. If defaultRoles
is also set, the resulting roles will be
the union of the defaultRoles and
roleAttributes.

Example:
"employeeType,hpJobFunction"

"roles" (default)

serverCertificate Path to the trust store file containing
the LDAP server’s certificate. Path can
be absolute or relative to the server’s
installation directory. See
Appendix C, “Enabling HTTPS
Between Components” for
information on generating a keystore.

Example: "etc/jssecacerts"

useSSL If set to true, use SSL to connect to
the LDAP server.

"false" (default)

"true"

Appendix B • User Authentication and Authorization

827

The following table lists LDAPLoginModule simple mode attributes:

Attribute Description and Examples Values

allowAnonymo
us

If set to true, then allow anonymous
searches of the LDAP server to
retrieve the user’s principal DN. To be
effective the searchFirst attribute
must also be set to true.

"false" (default)

"true"

baseDN Used to construct the principal’s DN.
If anonymous searches are allowed,
then it is also used to specify which
base DN to search for the user in.
(required)

Example:
"OU=Users,DC=your,DC=ldap,DC=do
main,DC=com"

providerURL URL to the LDAP server. Used for
authentication. If anonymous
searches are allowed then it is also
used to search for the user. (required)

Example: "ldap://
your.ldap.domain.com:389"

SSL example: "ldaps://
yourldap.domain.com:636"

searchFirst If set to true and allowAnonymous is
also true then do an anonymous
search for the users; otherwise,
construct the user’s principal DN
from the uidAttribute, the user’s login
name and the baseDN attribute.

"false" (default)

"true"

uidAttribute Used in the construction of the user’s
principal DN. If anonymous searches
are allowed, it is also used to
construct the search filter.

"uid" (default)

common values: "uid", "CN"

Appendix B • User Authentication and Authorization

828

Example of constructing the user’s principal DN:

If uidAttribute="UID", and user login name is jsmith, and
baseDN="OU=Users,DC=your,DC=ldap,DC=domain,DC=com", then the
user's principal DN will be:

"UID=jsmith,OU=Users,DC=your,DC=ldap,DC=domain,DC=com"

The following table lists LDAPLoginModule advanced mode attributes:

Attribute Description and Examples Values

providerURL URL to the LDAP server used for
authentication. Used to authenticate
the user.

Example: "ldap://
yourldap.domain.com:389"

SSL example: "ldaps://
your.ldap.domain.com:636"

Default is the value of the
searchProviderURL attribute

searchBaseDNs Semicolon-separated list of base DNs
to which to apply the search filter.
(required)

Example:
"DN=America,DN=ns,DN=root,DN=c
om;
DN=asia,DN=ns,DN=root,DN=com;
DN=europe,DN=ns,DN=root,DN=co
m"

Referral Example:
"DN=ns,DN=root,DN=com"

Appendix B • User Authentication and Authorization

829

searchDN The principal’s DN used to search for
the user principal to authenticate.
(required) Assumes that searchFirst is
set to true even if you don’t specify
this.

Example:
"CN=SearchAdmin,OU=Administrato
rs,DC=americas,DC=ns,DC=root,DC=
com"

searchFilter An RFC 2254 compliant search filter
(see http://www.ief.org/rfc/
rfc2254.txt). The "{USERNAME}"
string in the filter will be replaced
with the user’s login name before the
directory is searched. When
connecting to Active Directory, it is
useful to test search filters using
ldp.exe before putting them in the
jaas.configuration file. (required)

Example1: "(uid={USERNAME})"

Example2:
"(&(CN={USERNAME})(objectClass=u
ser))"

Example 3:
"(sAMAccountName={USERNAME})"

searchFirst Is set to true. "true"

Attribute Description and Examples Values

Appendix B • User Authentication and Authorization

830

Note: After making any changes to server.properties or the
jaas.configuration file, you must restart the Diagnostics commander server.

searchPassword The password of the searchDN
attribute. It may be plain text or
obfuscated. (required) See
Appendix C, “Enabling HTTPS
Between Components” for
information on password
obfuscation.

Example: "Secret123"

Obfuscated example:
"OBF:1fof1j1u1igh1ym51t331ym91id
p1iz01fmn"

searchProvider
URL

URL to the LDAP server used to
search for the user’s principal DN.
This is used to find the user.

Example: "ldap://
america.ns.root.com:389"

SSL example: "ldaps://
america.ns.root.com:636"

Referral example: "ldaps://
ns-root.com:636"

Default is the value of the
providerURL attribute.

searchReferral If set to follow, then the LDAP sever
will refer search requests to other
LDAP servers. if it cannot resolve the
search or authentication request. If
set to follow then only the forest’s
principal DN needs to be listed in the
searchBaseDNs.

"ignore" (default)

"follow"

"throw"

(see http://
download.oracle.com/javase/
1.5.0/docs/guide/jndi/
jndi-ldap-gl.html#referral).

Attribute Description and Examples Values

Appendix B • User Authentication and Authorization

831

The following example is a configuration where all users have the same base
DN that starts with "CN", so their principal DBs can be determined without
searching for them.

If "larry" logs in, then his principal DN will be
"CN=larry,OU=Users,DC=simple,DC=domain,DC=com".

The following example is a configuration where all users have the same base
DN that starts with "CN", so the principle DNs can be determined without
searching for them, but you want to search for them anyway.

If "sally" logs in, then her principal DN will be
"CN=sally,OU=Users,DC=simple,DC=domain,DC=com".

Diagnostics {
 baseDN="OU=Users,DC=simple,DC=domain,DC=com"
 providerURL="ldap://simple.domain.com:389"
 uidAttribute="CN"
 ;
};

Diagnostics {
 allowAnonymous="true"
 baseDN="OU=Users,DC=simple,DC=domain,DC=com"
 providerURL="ldap://simple.domain.com:389"
 searchFirst="true"
 uidAttribute="CN"
 ;
};

Appendix B • User Authentication and Authorization

832

The following example is a configuration where users may be from anyplace
in the world, but we are only interested in IT employees from three regions.

If "ororro" in Africa logs in, then her principal DN will be
"CN=ororro,OU=IT,DC=africa,DC=ns,DC=root,DC=com".

The following example is a configuration where users may be from anyplace
in the world and hosted on different LDAP servers. In addition, users CNs
may be localized but their sAMAccountNames are guaranteed to be ISO
8859-1.

If Σαλοθ in Greece logs in as his sAMAccountName "Saloth", then his
principal DN used for authentication will be
"CN=Σαλοθ,OU=Υσερζ,DC=greece,DC=ns,DC=root,DC=com".

Diagnostics {
 searchFirst="true"
 searchReferral="follow"
 useSSL="true"
 serverCertificate="etc/key.store"
 searchProviderURL="ldaps://america.ns.root.com:636"
 searchDN="CN=Searcher,OU=Admins,DC=america,DC=ns,DC=root,DC=com"
 searchPassword="OBF:1fof1j1u1igh1ym51t331ym91idp1iz01fmn"
 searchFilter="(&(CN={USERNAME})(objectClass=IT))"
 searchBaseDNs="DC=america,DC=ns,DC=root,DC=com; \
 DC=africa,DC=ns,DC=root,DC=com; \
 DC=russia,DC=ns,DC=root,DC=com"
 ;
};

Diagnostics {
 searchFirst="true"
 searchReferral="follow"
 useSSL="true"
 serverCertificate="etc/key.store"
 searchProviderURL="ldaps://ns.root.com:636"
 searchDN="CN=Searcher,OU=Admins,DC=america,DC=ns,DC=root,DC=com"
 searchPassword="OBF:1fof1j1u1igh1ym51t331ym91idp1iz01fmn"
 searchFilter="(sAMAccountName={USERNAME})"
 searchBaseDNs="DC=ns,DC=root,DC=com"
 ;
};

Appendix B • User Authentication and Authorization

833

Using Reverse Proxy with SiteMinder JAAS LoginModule
The SiteMinder JAAS LoginModule requires a reverse proxy server in which
the SiteMinder web agent is installed. A proxy server simply forwards HTTP/
S requests to the Diagnostics server.

Example set-up:

In the above diagram, an Apache web server listening for requests on port
7080 is configured as a reverse proxy. It contains the SiteMinder web agent
which performs the authentication and if successful, allows Apache to pass
the request through to port 2006 (or whatever Diagnostics Server port is
configured) on which the Diagnostics server listens.

Appendix B • User Authentication and Authorization

834

Note: It is recommended that the login page is served up by another web
server (different web server than the reverse proxy) to avoid conflicts with
the redirect that the reverse proxy performs and the redirect that the
SiteMinder module performs.
Alternatively, with Apache 2.2, the ProxyPass directive can be used to
suppress proxying for certain URLs; for example, "ProxyPass /loginpage !".
See the Apache 2.2 documentation for more information.

The Diagnostics Server detects requests from SiteMinder via the SiteMinder
LoginModule.

Note: To use the SiteMinder JAAS authentication the users must go to the
port of the reverse proxy, 7080 in this example, instead of port 2006. If the
proxy server is not installed on the same system as the Diagnostics Server,
the computer name for the proxy server must be used in the URL instead of
the computer name of the Diagnostics server or localhost.

Example of Apache reverse proxy setup on HP-UX: edit the Apache
configuration file httpd.conf and add the following properties:

➤ ProxyPass /siteminderagent !

➤ ProxyPass / http://<IP-address of Diagnostics Server>:2006/

(2006 is the default Diagnostics Server port, use the port configured for your
Diagnostics Server)

➤ ProxyPassReverse / http://<IP-address of Diagnostics Server>:2006/

(2006 is the default Diagnostics Server port, use the port configured for your
Diagnostics Server)

Appendix B • User Authentication and Authorization

835

Note: After making any changes to the httpd.conf file, you must restart the
Apache server (apachectl stop and apachectl start).

You can do the following as an optional step to provide additional security
when you are concerned about spoofing:

➤ If the proxy server is not installed on the same system as the Diagnostics
server, you can place the Diagnostics Server and the proxy server on the
same subnet and configure an ingress filter for the proxy IP-address on the
switch/router to prevent spoofing of the reverse proxy's IP-address from
outside of the subnet.

See the diagram below:

Appendix B • User Authentication and Authorization

836

Configuring SiteMinder JAAS Authentication
To configure SiteMinder authentication in Diagnostics you must configure
the following on the Diagnostics commander server:

 1 Configure Diagnostics to use JAAS (see “Configuring Diagnostics to use
JAAS” on page 820).

 2 Edit the <INSTALL_DIR>/etc/webserver.properties file.

 a Uncomment the authentication.header.filter.username property. Set the
authentication.header.filter.username property to a field in the HTTP
request header that should be used to get the username. By default this is
set to SM_UNIVERSALID which is a field that SiteMinder creates in the
HTTP request containing a user ID.

 b To use the Diagnostics roles, uncomment the authentication.header.
filter.roles property (this is an optional step). Set the
authentication.header. filter.roles property to a field in the HTTP header
that should be used to get role information. This field can contain one
role or many roles with commas separating them. If defaultRoles is also
set, the resulting roles will be the union of defaultRoles and these roles.

 3 Edit the Diagnostics JAAS realm (application) block in the <INSTALL_DIR>/
etc/jaas.configuration file; for example:

Diagnostics
{
 com.mercury.diagnostics.server.jaas.spi.SiteMinderLoginModule sufficient
 defaultRoles="Role1,Role2"
 ip="16.228.25.40";
};

Appendix B • User Authentication and Authorization

837

SiteMinder LoginModule Options

The following is a complete list of the options that can be specified for the
SiteMinder LoginModule in the JAAS configuration file:

Note: After making any changes to server.properties, webserver.properties or
the jaas.configuration file, you must restart the Diagnostics commander
server.

Option Name Description
Required
/Optional

Defaul
t Value

Example

IP IP address of the
reverse proxy
server

required ip="16.228.25.40"

defaultRoles Comma-delimited
list of roles to
assign each
authenticated user.

optional defaultRoles=
"SuperUsers"

Appendix B • User Authentication and Authorization

838

839

C
Enabling HTTPS Between Components

Information is provided on the configuration steps to enable HTTPS
communications between the HP Diagnostics components and with
Business Service Management.

This chapter includes:

 ➤ About Configuring HTTPS Communications on page 840

 ➤ Filtering Encryption Cipher Suites on page 840

 ➤ HTTPS Checklist per Diagnostics Component on page 841

 ➤ Enabling Incoming HTTPS Communication for Diagnostics Components
on page 843

 ➤ Generate Client Certificate on page 843

 ➤ Enabling Outgoing HTTPS Communication from Diagnostics Components
on page 853

 ➤ Enabling HTTPS Communications for the Business Service Management
Server on page 860

Note: The configuration instructions are intended for experienced users
with in-depth knowledge of HP Diagnostics. Use caution when modifying
any configuration settings for the Diagnostics components.

Appendix C • Enabling HTTPS Between Components

840

About Configuring HTTPS Communications

The instructions for configuring each type of component contain details of
the following main steps:

➤ Generate a keystore on the component

➤ Export the certificate from the keystore

➤ Obfuscate passwords that provide access to the keystore

➤ Copy the component’s certificate to the Diagnostics components that
will initiate communication

➤ Configure the component’s security properties to enable SSL and provide
the passwords necessary for HTTPS communication to take place

Note: As you review this information it will be useful to reference the
Component Communication Diagram in Appendix F, “Diagnostics
Technical Diagrams.”

Filtering Encryption Cipher Suites

A cipher suite defines the security algorithms and key sizes used for HTTPS/
SSL encryption. The supported cipher suites are based on the version of Java
used. Your organization may have a policy of filtering out certain ciphers
either because they are not secure enough or are not allowed. There are two
properties related to cipher suites that you can set in the
webserver.properties file:

➤ log.cipher.suites: Prints messages related to cipher suites to the server.log
file. These messages include the supported cipher suites and the cipher
suites enabled after applying the cipher.suites.filters.

➤ cipher.suites.filters: A common-separated-value list of regular expression
excludes and includes used to filter the cipher suites.

Appendix C • Enabling HTTPS Between Components

841

For example, suppose the following cipher suites are listed for your
installation:

But you want to filer out the 40-bit, anonymous and DES-based cipher suites
and you only want to include RC4-based encryptions. Then you can specify
a filter that looks like this:

HTTPS Checklist per Diagnostics Component

The following table summarizes the configuration steps that you must
perform to enable HTTPS communications for each Diagnostics component:

SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA
SSL_DH_anon_WITH_RC4_128_MD5

cipher.suite.filters=\
 exclude:.*[0-9]?40[0-9]?.*, \
 exclude:.*_anon_.*, \
 exclude:.*_DES_.*, \
 exclude:.*_3DES_.*, \
 INCLUDE:.*_WITH_RC4_.*, \
 exclude:.*

Configuration step
Commander
Server

Mediator
Server

Java
Probe

Collector
.NET
Probe

Generate key and export
certificate

Yes Yes Yes Yes No

Obfuscate passwords Yes Yes Yes Yes No

Copy commander server
certificate

No Yes No No No

Copy mediator server
certificate

Yes No Yes Yes Yes

Appendix C • Enabling HTTPS Between Components

842

Copy Java Probe certificates Yes Yes No No No

Copy Collector certificates No Yes No No No

Edit security.properties:
enablessl=true,
keystorepassword, keypassword

Yes Yes Yes Yes No

Edit security.properties: add
commander server certificate to
trusted.certificates

No Yes No No No

Edit security.properties: add
mediator server certificate to
trusted.certificates

Yes No Yes Yes No

Edit security.properties: add
Java probe certificate to
trusted.certificates

Yes Yes No No No

Edit security.properties: add
Collector certificate to
trusted.certificates

No Yes No No No

Import mediator server
certificate to Trusted Root
Authority

No No No No Yes

Edit server.properties: set
commander.url

Yes Yes No No No

Edit dispatcher.properties: set
registrar.url

No No Yes No No

Edit collector.properties: set
registrar.url

No No No Yes No

Edit probe_configuration.xml:
set diagnosticsserver url,
mediator host, metricport, and
ssl

No No No No Yes

Edit metric.config: set
metrics.server.uri

No No No No Yes

Configuration step
Commander
Server

Mediator
Server

Java
Probe

Collector
.NET
Probe

Appendix C • Enabling HTTPS Between Components

843

Enabling Incoming HTTPS Communication for
Diagnostics Components

This section includes instructions for configuring the Diagnostics Server, the
Java Agent and the Collector to receive incoming HTTPS communications.
The HTTPS communications can come from other Diagnostics components,
from when the Diagnostics component is accessed using a Web browser, or
when the component is accessed by other external applications.

This section includes the following topics:

➤ “Configuring the Diagnostics Server for Incoming HTTPS Connections” on
page 844

➤ “Configuring the Java Agent for Incoming HTTPS Connections” on
page 847

➤ “Configuring the Collector for Incoming HTTPS Connections” on page 850

Generate Client Certificate

Generate client certificate using advanced settings in Certificate Services and
specify FQDN. Mark keys exportable and use the Friendly Name=CLIENT.

Appendix C • Enabling HTTPS Between Components

844

Configuring the Diagnostics Server for Incoming HTTPS
Connections

Notes:

➤ To avoid issues with DNS and host name resolution, the Commander
URL for the Diagnostics commander server should be configured as
localhost. This can be accomplished by setting the commander.url
property in <server_install_dir>/etc/server.properties to
http://localhost:2006 (or the appropriate port number).

➤ When you enable HTTPS communications with a Diagnostics
commander server, you must use port 8443 to run the Enterprise UI, for
example:
https://<commander_server>:8443.

To configure the Diagnostics Server for incoming HTTPS connections:

 1 Generate a keystore in the <diagnostics_server_install_dir>/etc directory. An
example command is shown below:

To use this command example:

➤ Replace <diagnostics_server_install_dir> with the path to the installation
directory for the Diagnostics Server.

➤ Replace <diagnostics_server_hostname> with the machine name for the
host of the Diagnostics Server (you should use the fully qualified domain
name for the subject (CN) in the certificate).

➤ Replace each occurrence of <password> with the same password string.
You can assign different passwords to the storepass and the keypass.

After you execute this command, a keystore is created in
<diagnostics_server_install_dir>/etc/keystore with an entry called SERVER
for the host of the Diagnostics Server.

<diagnostics_server_install_dir>/_jvm/bin/keytool -genkey -keystore
<diagnostics_server_install_dir>/etc/keystore -storepass <password> -alias SERVER
-keyalg RSA -keypass <password> -dname "CN=<diagnostics_server_hostname>,
OU=Diagnostics, O=Hewlett-Packard, L=Palo Alto, S=CA, C=USA" -validity 3650

Appendix C • Enabling HTTPS Between Components

845

 2 Export the certificate for the SERVER entry in the keystore using the
following command.

To use this command:

➤ Replace <diagnostics_server_install_dir> with the path to the installation
directory for the Diagnostics Server.

➤ Replace <password> with the string that you assigned as the storepass
password when you created the keystore.

➤ Replace <server_certificate_name> with the name that you would like to
assign to the certificate file. It is recommended that you assign a
certificate name that will make it easy to recognize the component for
which the certificate was created.

Use diag_server_commander.cer or diag_server_mediator.cer.

After this command runs, a certificate file with the name assigned in
<server_certificate_name> is created in the <diagnostics_server_install_dir>/
etc directory for the Diagnostics Server, for example,
diag_server_commander.cer.

Note: The certificate file must be imported to the host machines for each of
the Diagnostics components that are expected to initiate communications
with the Diagnostics Server. The instructions for importing the certificate
file to each Diagnostics component are provided below.

 3 Using the command in the following example, generate an obfuscated
version of the storepass and the keypass passwords that you assigned when
you created the keystore.

 a Replace <diagnostics_server_install_dir> with the path to the installation
directory for the Diagnostics Server.

<diagnostics_server_install_dir>/_jvm/bin/keytool -export -keystore
<diagnostics_server_install_dir>/etc/keystore -storepass <password> -alias
SERVER -rfc -file <diagnostics_server_install_dir>/etc/
<server_certificate_name>.cer

Appendix C • Enabling HTTPS Between Components

846

 b Replace <password> with the string that you assigned as the password
when you created the keystore.

The output from the obfuscation is shown in the following example. In this
example, the password string was "testpass". The output consists of three
lines. The original string that was to be obfuscated and two lines depicting
the obfuscated password. Only the line that begins with "OBF" is used to set
the properties in the following step of this process.

Note: If you did not use the same password for keypass and storepass, you
must run this command twice to create an obfuscated version for each
password.

 4 Change the following properties in the file <diagnostics_server_install_dir>/
etc/security.properties for the Diagnostics commander server.

 a Set enableSSL=true.

 b Set keyStorePassword=<obfuscated_password>.

 c Set keyPassword=<obfuscated_password>.

Note: The value entered for <obfuscated_password> must include the
entire "OBF" line that was output from the command in the previous
step; for example:

keyStorePassword=OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta

<diagnostics_server_install_dir>/_jvm/bin/java -cp <diagnostics_server_install_dir>/
lib/ThirdPartyLibs.jar org.mortbay.util.Password <password>

testpass
OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta
MD5:179ad45c6ce2cb97cf1029e212046e81

Appendix C • Enabling HTTPS Between Components

847

Configuring the Java Agent for Incoming HTTPS
Connections

Note:

➤ Enabling SSL and HTTPS Communications for the Java Agent is
supported on SUTs with the Sun, IBM, and JRockit JVMs. However, if you
are using a JVM version prior to 1.4, you must download and install the
Sun JSSE Optional Package onto the SUT server before you can enable
SSL.

Other JSSE implementation, such as IBM’s are not supported.

➤ When you enable HTTPS communications with a Java agent system, you
must use port 45000 to run the Profiler UI, for example:
https://<my_probe_system>:45000.

Note: The location in which the agent is installed becomes the Diagnostics
<probe_install_dir>. By default, the location is
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent on Windows and
/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent on UNIX.

To configure the Java Agent for incoming HTTPS connections:

 1 Generate a keystore in the <probe_install_dir>/etc directory using the
following command:

To use this command example:

➤ Replace <probe_install_dir> with the path to the installation directory for
the Java Agent.

/opt/MercuryDiagnostics/JavaAgent/_jvm/bin/keytool -genkey -keystore
<probe_install_dir>/etc/keystore -storepass <password> -alias PROBE -keyalg RSA
-keypass <password> -dname "CN=<probe_hostname>, OU=Diagnostics,
O=Hewlett-Packard, L=Palo Alto, S=CA, C=USA" -validity 3650

Appendix C • Enabling HTTPS Between Components

848

➤ Replace <probe_hostname> with the machine name for the host of the
Java Agent. This value cannot be the server’s IP address. You should use
the fully qualified domain name for the subject (CN) in the certificate.

➤ Replace each occurrence of <password> with the same password string.
You can assign different passwords to the storepass and the keypass.

After you run this command, a keystore is created in <probe_install_dir>/
etc/keystore with an entry called PROBE for the host of the Java Agent.

 2 Export the certificate for the PROBE entry in the keystore using the
following command.

To use this command:

➤ Replace <probe_install_dir> with the path to the installation directory for
the Java Agent.

➤ Replace <password> with the string that you assigned as the storepass
password when you created the keystore.

➤ Replace <probe_certificate_name> with the name that you would like to
assign to the certificate file. It is recommended that you assign a
certificate name that will make it easy to recognize the component for
which the certificate was created.

Include the type of the probe and the host name for the probe so that it
will be easy to recognize the component for which the certificate was
created; for example: Java_probe_<probe_hostname>.

After this command runs, a certificate file called
Java_probe_<probe_hostname>.cer is created in the <probe_install_dir>/etc
directory for the Java Agent.

/opt/MercuryDiagnostics/JavaAgent/_jvm/bin/keytool -export -keystore
<probe_install_dir>/etc/keystore -storepass <password> -alias PROBE -rfc -file
<probe_install_dir>/etc/<probe_certificate_name>.cer

Appendix C • Enabling HTTPS Between Components

849

Note: The certificate file must be imported to the host machines for each of
the Diagnostics components that are expected to initiate communications
with the Java Agent. The instructions for importing the certificate file to
each Diagnostics component are provided below.

 3 Using the command in the following example, generate an obfuscated
version of the storepass and the keypass passwords that you assigned when
you created the keystore.

 a Replace <probe_install_dir> with the path to the installation directory for
the Java Agent.

 b Replace <password> with the string that you assigned as the password
when you created the keystore.

The output from the obfuscation is shown in the following example. In this
example, the password string was "testpass". The output consists of three
lines. The original string that was to be obfuscated and two lines depicting
the obfuscated password. Only the line that begins with "OBF" is used to set
the properties in the following step of this process.

Note: If you did not use the same password for keypass and storepass, you
must run this command twice to create an obfuscated version for each
password.

/opt/MercuryDiagnostics/JavaAgent/_jvm/bin/java -cp
<probe_install_dir>/lib/ThirdPartyLibs.jar org.mortbay.util.Password <password>

testpass
OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta
MD5:179ad45c6ce2cb97cf1029e212046e81

Appendix C • Enabling HTTPS Between Components

850

 4 Change the following properties in the file <probe_install_dir>/etc/
security.properties.

 a Set enableSSL=true.

 b Set keyStorePassword=<obfuscated_password>.

 c Set keyPassword=<obfuscated_password>.

Note: The value entered for <obfuscated_password> must include the
entire "OBF" line that was output from the command in the previous
step; for example:

keyStorePassword=OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta

Configuring the Collector for Incoming HTTPS
Connections
This section provides instructions for configuring the Collector to receive
incoming HTTPS connections.

To configure the Collector for incoming HTTPS connections:

 1 Generate a keystore in the <collector_install_dir>/etc directory using the
following command:

To use this command example:

➤ Replace <collector_install_dir> with the path to the installation directory
for the Collector.

➤ Replace <collector_hostname> with the machine name for the host of
the Collector. This value cannot be the server’s IP address. You should use
the fully qualified domain name for the subject (CN) in the certificate.

<collector_install_dir>/_jvm/bin/keytool -genkey -keystore <collector_install_dir>/etc/
keystore -storepass <password> -alias COLLECTOR -keyalg RSA -keypass
<password> -dname "CN=<collector_hostname>, OU=Diagnostics,
O=Hewlett-Packard, L=Palo Alto, S=CA, C=USA" -validity 3650

Appendix C • Enabling HTTPS Between Components

851

➤ Replace each occurrence of <password> with the same password string.
You can assign different passwords to the storepass and the keypass.

After you run this command, a keystore is created in <collector_install_dir>/
etc/keystore with an entry called COLLECTOR for the host of the Collector.

 2 Export the certificate for the COLLECTOR entry in the keystore using the
following command.

To use this command:

➤ Replace <collector_install_dir> with the path to the installation directory
for the Collector.

➤ Replace <password> with the string that you assigned as the storepass
password when you created the keystore.

➤ Replace <collector_certificate_name> with the name that you would like
to assign to the certificate file. It is recommended that you assign a
certificate name that will make it easy to recognize the component for
which the certificate was created.

Include the type of the collector and the host name for the collector so
that it will be easy to recognize the component for which the certificate
was created; for example: collector_<collector_hostname>.

After this command runs, a certificate file called
collector_<collector_hostname>.cer is created in the <collector_install_dir>/
etc directory for the Collector.

Note: The certificate file must be imported to the host machines for each of
the Diagnostics components that are expected to initiate communications
with the Collector. The instructions for importing the certificate file to each
Diagnostics component are provided below.

<collector_install_dir>/_jvm/bin/keytool -export -keystore <collector_install_dir>/etc/
keystore -storepass <password> -alias COLLECTOR -rfc -file
<collector_install_dir>/etc/<collector_certificate_name>.cer

Appendix C • Enabling HTTPS Between Components

852

 3 Using the command in the following example, generate an obfuscated
version of the storepass and the keypass passwords that you assigned when
you created the keystore.

 a Replace <collector_install_dir> with the path to the installation directory
for the Collector.

 b Replace <password> with the string that you assigned as the password
when you created the keystore.

The output from the obfuscation is shown in the following example. In this
example, the password string was testpass. The output consists of three
lines. The original string that was to be obfuscated and two lines depicting
the obfuscated password. Only the line that begins with "OBF" is used to set
the properties in the following step of this process.

Note: If you did not use the same password for keypass and storepass, you
must run this command twice to create an obfuscated version for each
password.

 4 Change the following properties in the file <collector_install_dir>/etc/
security.properties.

 a Set enableSSL=true.

 b Set keyStorePassword=<obfuscated_password>.

<collector_install_dir>/_jvm/bin/java -cp
<collector_install_dir>/lib/ThirdPartyLibs.jar org.mortbay.util.Password <password>

testpass
OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta
MD5:179ad45c6ce2cb97cf1029e212046e81

Appendix C • Enabling HTTPS Between Components

853

 c Set keyPassword=<obfuscated_password>.

Note: The value entered for <obfuscated_password> must include the entire
"OBF" line that was output from the command in the previous step; for
example:

keyStorePassword=OBF:1ytc1vu91v2p1y831y7v1v1p1vv11yta

Enabling Outgoing HTTPS Communication from
Diagnostics Components

The following instructions provide you with the steps necessary to configure
the Diagnostics components to send outgoing HTTPS communications to
other Diagnostics components.

Note: The location in which the agent is installed becomes the Diagnostics
<probe_install_dir>. By default, the location is
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent on Windows and
/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent on UNIX.

To enable the Diagnostics commander server for outgoing communication
to the Diagnostics mediator server via HTTPS:

 1 Copy the certificate file from <diagnostics_server_install_dir>/etc/
diag_server_mediator.cer on the Diagnostics Server to
<diagnostics_server_install_dir>/etc/diag_server_mediator.cer on the
Diagnostics commander server.

 2 Change the value of the trusted.certificate property in the file
<diagnostics_server_install_dir>/etc/security.properties for the Diagnostics
commander server.

Appendix C • Enabling HTTPS Between Components

854

 3 Set trusted.certificate=diag_server_mediator.cer. If there are already other
certificate files included in the value of this property, add the certificate file
to the end of the list separated from the preceding value by a comma.

 4 For incoming Diagnostics Server communication, indicate the URL for the
Diagnostics Server by updating the following property in the file
<diagnostics_server_inst_dir>/etc/server.properties on the Diagnostics
commander server.

Set commander.url to https://<diagserver_commander_hostname>:8443

To enable the Diagnostics Mediator Server for outgoing communication to
the Diagnostics commander server via HTTPS:

 1 Copy the certificate file from <diagnostics_server_install_dir>/etc/
diag_server_commander.cer on the Diagnostics commander server to
<diagnostics_server_install_dir>/etc/diag_server_commander.cer on the
Diagnostics mediator server.

 2 Change the value of the trusted.certificate property in the file
<diagnostics_server_install_dir>/etc/security.properties for the Diagnostics
mediator server.

 3 Set trusted.certificate=diag_server_commander.cer. If there are already
other certificate files included in the value of this property, add the
certificate file to the end of the list separated from the preceding value by a
comma.

 4 For incoming Diagnostics Server communication, indicate the URL for the
Diagnostics Server by updating the following property in the file
<diagnostics_server_inst_dir>/etc/server.properties on the Diagnostics
Server in Mediator mode.

Set commander.url to https://<diagserver_commander_hostname>:8443.

Note: When you enable HTTPS on the server, you must use port 8443 in the
URL to run the Diagnostics UI.

Appendix C • Enabling HTTPS Between Components

855

To enable the Diagnostics Server (in Commander or Mediator mode) for
outgoing communications to the probes via HTTPS:

 1 Copy the certificate file from <probe_install_dir>/etc/
java_probe_<probe_host>.cer for each probe to
<diagnostics_server_install_dir>/etc/Java_probe_<probe_host>.cer on the
Diagnostics Server.

 2 Change the value of the trusted.certificate property in the file
<diagnostics_server_install_dir>/etc/security.properties for the Diagnostics
Server.

Set trusted.certificate=Java_probe_<probe_host>.cer. If there are already
other certificate files included in the value of this property, add the
certificate file to the end of the list separated from the preceding value by a
comma.

To enable the Diagnostics Server in Mediator mode for outgoing
communications to the collectors via HTTPS:

 1 Copy the certificate file from <collector_install_dir>/etc/
collector_<collector_host>.cer for each probe to
<diagnostics_server_install_dir>/etc/collector_<collector_host>.cer on the
Diagnostics Server.

 2 Change the value of the trusted.certificate property in the file
<diagnostics_server_install_dir>/etc/security.properties for the Diagnostics
Server.

Set trusted.certificate=collector_<collector_host>.cer. If there are already
other certificate files included in the value of this property, add the
certificate file to the end of the list separated from the preceding value by a
comma.

To enable the Java Agent for outgoing communications to the Diagnostics
mediator server via HTTPS:

 1 Copy the certificate file from <diagnostics_server_install_dir>/etc/
diag_server_mediator.cer on the Diagnostics mediator server to
<probe_install_dir>/etc/diag_server_mediator.cer on the Java Agent.

Appendix C • Enabling HTTPS Between Components

856

 2 Change the value of the trusted.certificate property in the file
<probe_install_dir>/etc/security.properties for the Java Agent.

Set trusted.certificate=diag_server_mediator.cer. If there are already other
certificate files included in the value of this property, add the certificate file
to the end of the list separated from the preceding value by a comma.

 3 For incoming Java Agent communication, indicate the URL for the
Diagnostics mediator server by updating the following property in the file
<probe_inst_dir>/etc/dispatcher.properties.

Set registrar.url to https://<diagserv_mediatormode_hostname>:8443/
commander/registrar/

Note: When you enable HTTPS on the server, you must use port 8443 in the
URL to run the Diagnostics UI.

To enable the server/collector's embedded java probe for outgoing
communications to the Diagnostics Server in Mediator mode via HTTPS:

 1 Copy the certificate file from <diagnostics_server_install_dir>/etc/
diag_server_mediator.cer on the Diagnostics Server in Mediator mode to
<server/collector_install_dir>/probe/etc/diag_server_mediator.cer on the
embedded Java probe.

 2 Change the value of the trusted.certificate property in the file <server/
collector_install_dir>/probe/etc/security.properties for the embedded Java
probe. Set trusted.certificate=diag_server_mediator.cer. If there are already
other certificate files included in the value of this property, add the
certificate file to the end of the list separated from the preceding value by a
comma.

 3 For incoming embedded Java probe communication, indicate the URL for
the Diagnostics Server in Mediator mode by updating the following
property in the file < server/collector_install_dir>/probe/etc/
dispatcher.properties. Set registrar.url to
https://<diagserv_mediatormode_hostname>:8443/commander/registrar/.

Appendix C • Enabling HTTPS Between Components

857

To enable the Collector for outgoing communications to the Diagnostics
mediator server via HTTPS:

 1 Copy the certificate file from <diagnostics_server_install_dir>/etc/
diag_server_mediator.cer on the Diagnostics mediator server to
<collector_install_dir>/etc/diag_server_mediator.cer on the Collector.

 2 Change the value of the trusted.certificate property in the file
<collector_install_dir>/etc/security.properties for the Collector.

Set trusted.certificate=diag_server_mediator.cer. If there are already other
certificate files included in the value of this property, add the certificate file
to the end of the list separated from the preceding value by a comma.

 3 For incoming Collector communication, indicate the URL for the
Diagnostics mediator server by updating the following property in the file
<collector_install_dir>/etc/collector.properties.

Set registrar.url to https://<diagserv_mediatormode_hostname>:8443/
commander/registrar/

Note: When you enable HTTPS on the server, you must use port 8443 in the
URL to run the Diagnostics UI.

To enable the .NET Agent for outgoing communications to the Diagnostics
commander server via HTTPS:

 1 Copy the certificate for the Diagnostics mediator server to the host for the
.NET Agent. The certificate was generated when the Diagnostics mediator
server was configured to receive HTTPS. See “Enabling Incoming HTTPS
Communication for Diagnostics Components” on page 843 for instructions
to configure the Diagnostics mediator server to receive HTTPS. If you
followed the instructions in the referenced section, the certificate can be
found in <diagnostics_server_install_dir>/etc/diag_server_mediator.cer.

 2 On the Windows Taskbar, select Start > Run.

 3 Run the Microsoft Management Console by typing mmc, and then clicking
OK.

Appendix C • Enabling HTTPS Between Components

858

 4 On the Microsoft Management Console menu, select File > Add/Remove
Snap-in to display the Add/Remove Snap-in dialog.

 5 Click Add on the Add/Remove Snap-in dialog.

 6 Select Certificates from the Available Standalone Snap-in list and click Add.

 7 In the Certificates Snap-in dialog box select Computer account, and click
Next.

 8 In the Select Computer dialog box, select Local Computer: (the computer
this console is running on), and then click Finish.

 9 Click Close on the Add Standalone Snap-in.

 10 Click OK on the Add/Remove Snap-in dialog.

 11 On the Microsoft Management Console expand the listing for Certificates
(Local Computer) in the left pane of the Console Root dialog.

 12 Under Certificates (Local Computer), expand Trusted Root Certification
Authorities.

 13 Under Trusted Root Certification Authorities, right-click Certificates and
select All Tasks > Import to start the Certificate Import Wizard.

 14 Click Next to move past the Welcome dialog box of the Certificate Import
Wizard.

 15 Click Browse to navigate to the public keystore for the Diagnostics mediator
server.

 a Select All Files (*.*) in Files of type.

 b Navigate to the directory where the keystore for the Diagnostics
commander server was copied in step 1 and click Open. This should be:
<diagnostics_server_install_dir>/etc/diag_server_mediator.cer

 16 Click Next to import the file.

 17 Click Next to accept the default Certificate Store location of "Trusted Root
Certification Authorities."

 18 Click Finish on Completing the Certificate Import Wizard.

 19 Click OK on the Certificate Import Wizard confirmation dialog.

Appendix C • Enabling HTTPS Between Components

859

 20 Select Certificates under Trusted Root Certification Authorities to find the
certificate you just added (it should be the hostname of the mediator server).
Make a note of the value in the Issued to column. This value will be used for
modifying the probe configuration files.

 21 Edit the <probe_install_dir>/etc/probe_config.xml and change the
diagnosticsserver url property to use the HTTPS URL: <diagnosticsserver
url="https://<diagnostics_mediator_server_host>:8443/commander" />

 22 Change the mediator host and port and add ssl="true": <mediator
host="<diagnostics_mediator_server_host>" port="2612" metricport="8443"
ssl="true"/>

 23 Edit <probe_install_dir>/etc/metrics.config. Change the metrics.server.uri
value to specify the HTTPS URL: metrics.server.uri =
https://<diagnostics_mediator_server_host>:8443/metricdata/

Note: For both the probe_config.xml and the metrics.config files, the
<diagnostics_mediator_server_host> value must match the name that
appears in the certificate. For example, if the hostname in the certificate is
fully qualified, the hostname in the configuration files should also be fully
qualified.

 24 Restart IIS. For instructions on restarting IIS see “Discovery and Standard
Instrumentation” on page 282.

To verify that you successfully configured the .NET probe for HTTPS
communication with the Diagnostics commander server:

 1 Browse to your .NET application to activate the .NET Agent.

 2 Verify that the .NET Agent is available by checking the System Health view
in the Diagnostics UI.

Appendix C • Enabling HTTPS Between Components

860

Enabling HTTPS Communications for the
Business Service Management Server

The following instructions will guide you through the process of
configuring Business Service Management for HTTPS communication with
Diagnostics.

To enable HTTPS communications between the Diagnostics commander
server and Business Service Management:

 1 Copy the Diagnostics certificate file, diag_server_commander.cer, from the
Diagnostics commander server installation directory,
<diagnostics_server_install_dir>/etc/, to the Business Service Management
host.

 2 Import the copied certificate, diag_server_commander.cer, into the Business
Service Management server cacert keystore by running the following
command on the Business Service Management host:

➤ Replace <BAC_server_install_dir> with the path to the installation
directory for Business Service Management.

➤ Replace <copied_diag_certificate_directory> with the path to the copied
Diagnostics certificate file.

Type changeit when you are prompted to enter the keystore password.

Type yes, instead of the default no when you are asked if the certificate
should be trusted.

 3 Copy the Business Service Management certificate file,
<BAC_certificate_file.cer>, to the Diagnostics Server host.

<BAC_server_install_dir>/_jvm/bin/keytool -import -file
<copied _diag_certificate_directory>/diag_server_commander.cer -keystore
<BAC_server_install_dir>/jre/lib/security/cacerts -alias SERVER

Appendix C • Enabling HTTPS Between Components

861

 4 Import the copied certificate into the Diagnostics Server cacert keystore by
running the following command on the Diagnostics Server host.

➤ Replace <diagnostics_server_install_dir> with the path to the installation
directory of the Diagnostics commander server.

➤ Replace <copied_BAC_certificate_directory> with the path to the copied
Business Service Management certificate file.

When you are prompted to enter the keystore password, type the string that
you assigned as the storepass password when you created the keystore.

Type yes, instead of the default no, when you are asked if the certificate
should be trusted.

 5 Point the Business Service Management server to the HTTPS port on the
Diagnostics commander server.

 a Open the Diagnostics Administration in Business Service Management
by selecting Admin > Diagnostics.

 b Click the Registration tab.

 c Locate the Diagnostics Server details section.

 d Provide the following information in the appropriate fields:

➤ Enter the host name for the Diagnostics commander server exactly as
it was specified in the CN parameter when you created the keystore for
the Diagnostics commander server. You should have used the fully
qualified domain name for the subject (CN) in the certificate. See
“Enabling Incoming HTTPS Communication for Diagnostics
Components” on page 843.

➤ Enter HTTPS for the protocol.

➤ Enter 8443 for the Web port of the Diagnostics Server.

 e Click Submit Configuration.

<diagnostics_server_install_dir>/_jvm/bin/keytool -import -file
<copied_BAC_certificate_directory>/<BAC_certificate_file.cer> -keystore
<diagnostics_server_install_dir>/JRE/lib/security/cacerts

Appendix C • Enabling HTTPS Between Components

862

863

D
Using System Views for Administrators

You can use the Diagnostics System views to monitor the health of the
Diagnostics components and verify that they are working properly.

This chapter includes:

 ➤ System Views for Diagnostics’ Administrators on page 863

 ➤ System Health View Description on page 865

 ➤ System Capacity View Description on page 866

System Views for Diagnostics’ Administrators

In large scale Diagnostics deployments you can use the System Views
instead of the System Health Monitor. The specialized System Views allow
you to quickly locate systems or groups of system based on various system
attributes. Allowing you to more easily monitor system health and identify
when systems are nearing capacity.

In many cases, the System views will be your first and only stop when you
need to know information about the components in your Diagnostics
deployment and the machines that host them. At a glance, you can
determine which components are experiencing problems.

To access the System Views:

 1 Open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/.

 2 In the query page locate the Mercury System customer in the list and select
the link to Open Diagnostics.

Appendix D • Using System Views for Administrators

864

 3 Log in to Diagnostics and on the Applications window select Entire
Enterprise and select any link to open the Diagnostics Views.

 4 In the Views pane you'll see the System Views view group. Open the view
group and select either the System Health view or System Capacity view.

Note: The System Health Monitor is still available for compatibility and can
be accessed from Performance Center, LoadRunner Controller or Business
Service Management. Access to the System Health Monitor requires system
permissions. From Diagnostics you can access it from http://<Diagnostics
command server host>:<Diagnostics command server port>/registrar/health.

Appendix D • Using System Views for Administrators

865

System Health View Description

The System Health view in the Diagnostics UI provides overall health
information for the components you have installed in your Diagnostics
environment. The information is similar to that provided in the System
Health Monitor but allows you to filer, sort and select metrics and attributes
of interest.

Appendix D • Using System Views for Administrators

866

System Capacity View Description

The System Capacity view in the Diagnostics UI provides information for
managing capacity in your Diagnostics environment. This view shows the
number of probe groups and probes that are assigned to each Diagnostics
mediator.

867

E
Diagnostics Data Management

Detailed information is provided on how Diagnostics data is managed and
stored.

This chapter includes:

 ➤ About Diagnostics Data on page 868

 ➤ Custom View Data on page 868

 ➤ Performance History Data on page 870

 ➤ Data Retention on page 876

 ➤ Disk Space Issues on the Server on page 882

 ➤ Pre-Installation Data Management Considerations on page 882

 ➤ Backing Up Diagnostics Data on page 883

 ➤ Handling Diagnostics Data when Upgrading Diagnostics on page 888

Appendix E • Diagnostics Data Management

868

About Diagnostics Data

There are two main types of Diagnostics data:

➤ The custom views that each user has created.

➤ Data collected by the probes and aggregated by the Diagnostics Servers. This
data is stored in a time-series database on the Diagnostics Servers.

Each Diagnostics Server stores the data that is collected by the probes that
report to it. In addition, the Diagnostics command server stores the virtual
transactions' data both for LoadRunner/Performance Center runs and
Business Service Management as well as the application metrics. The
organization and maintenance of the data files that make up the data base
are described in this chapter.

Custom View Data

Diagnostics users can create and save customized views as described in the
chapter, "Customizing Diagnostics Views," in the HP Diagnostics User’s Guide.
Diagnostics stores the customized views as XML files on the host for the
Diagnostics command server.

Custom View Data Organization
The user defined custom views are stored as XML files in the
<diagnostics_server_install_dir>/storage/userdata directory on the host for
the Diagnostics command server. The custom view files are relatively small.

Appendix E • Diagnostics Data Management

869

Each user that has defined a custom view has their own custom view
sub-directory in the userdata directory. For example, if the admin user
created two custom views, Sales Status and Host Status, the two views would
be stored as separate .xml files in the <diagnostics_server_install_dir>/
storage/userdata/Default Client/admin directory on the Diagnostics
command server as shown in the following example.

Appendix E • Diagnostics Data Management

870

Performance History Data

Diagnostics stores the historical performance data in a time series database
(TSDB) on the Diagnostics mediator server. If the Diagnostics Server has
numerous probes reporting to it, the stored historical performance data can
grow to many gigabytes of data. Although the amount of data collected for
each application can vary in size, it is recommended that you plan for
approximately 3 GB of data for each virtual machine that you are
monitoring. For more information, see “Data Retention” on page 876.

This section includes:

➤ “Performance History Data Organization” on page 870

➤ “Performance History Data File Types” on page 874

Performance History Data Organization
The Diagnostics performance history data is in the
<diagnostics_server_install_dir>/archive/mediator-<host_name>/
persistence/<customer_name>_ directory of the Diagnostics mediator server
where:

➤ <host_name> is the name of the host for the Diagnostics mediator server.

➤ <customer_name> is the customer name that you entered when you
installed the Diagnostics mediator server. The name of this directory is
the customer name with an appended underscore.

Appendix E • Diagnostics Data Management

871

The archive archive.dirname property in etc/server.properties identifies
where the archive should be stored (either absolute or relative to the
<server_install_dir>. If you would like to move or store the archive on a NAS
drive (for example //<hostname>/<sharename>) the share you configure in
archive.dirname needs to have read/write permissions for the user(s)
Diagnostics will run as.

Notes:

➤ Unless you are an HP Software-as-a-Service (SaaS) customer, the customer
name should always be Default Client.

➤ The Diagnostics Performance history data for Performance Center or
LoadRunner runs is stored in the ../persistence/<customer_name>_<run
identifier> directory.

Appendix E • Diagnostics Data Management

872

In the /persistence directory, the performance data is organized into
directories as shown below:

The directory levels are referred to as Major time periods (Days, Hours
Months, Weeks and Years) and the subdirectories are referred to as Minor
time periods (1d, 6h, 1h, 20m, 5m, 1M, 7d, 1Y 3M, Years). These time
periods are also referred to as data granularity.

As seen in the directory example above, the Hours directory represents a
major time period and has three subdirectories for the minor periods 5m,
20m, 1h.

Appendix E • Diagnostics Data Management

873

These same minor time periods serve as the viewing periods in the UI. An
example of the Viewing filter in Diagnostics is shown below:

Appendix E • Diagnostics Data Management

874

Performance History Data File Types
The Diagnostics performance history data is stored in several types of files.
And example of the directories with these files is shown below:

Symbol Table Files

The symbol tables contain string-to-integer mappings for small and fast data
encoding of the other data files. For example, /login.do might be encoded as
1347854.

The symbol tables are stored in the <diagnostics_server_install_dir>/
archive/mediator-<host_name>/symboltable directory.

Summary Files

The summary files are accessed to display data in the Diagnostics View’s
entity tables and details pane. The Status shown in Diagnostics Views is
based on summary files. Each viewable time period is stored in separate
summary files.

Appendix E • Diagnostics Data Management

875

Each summary file is named according to the minute (in GMT) at which
Diagnostics started storing summary data in it. For example, a summary file
that contained data beginning at midnight (GMT) on April 24, 2009 would
be named 2009_4_27_0.summary.

Trend Files

The trend files are accessed to display graph (charted) data in Diagnostics
Views. To retrieve a trend for a minor time period, such as 5 minutes, only a
small portion of the data in its major time period (1 hour in this case) trend
file is read. Diagnostics stores the charted trend data for each major time
period in trend files.

The trend files are named according to the minute (in GMT) at which the
trended data that they contain was captured. For example, a file that
contained hourly trend data starting at midnight April 24, 2009 would be
named as follows: 2009_4_27_0.trend.

When Diagnostics displays trended metrics in the Diagnostics views, it
attempts to show approximately sixty data points for each viewable period
so that the trend that is presented will be meaningful and easy to
understand. To arrive at the data points needed for each viewable period,
the Diagnostics Server consolidates the data from the appropriate tier in the
data files. For example, when you are looking at trended data for the last
hour, one data point per minute is shown in the graph. These data points
were created by consolidating raw data points for twelve 5-second time
periods.

Instance Tree Files

Instance tree files are accessed when you drill down to an instance call tree
on the Diagnostics Server Requests view.

The instance tree files are similar to the trend files. There is a corresponding
dump of the collected instance call trees for each major time period; for
example, 2009_4_27_0.tree.

Appendix E • Diagnostics Data Management

876

Compressed Zip Files

Data in the instance tree, trend and summary files is for current time
periods. The data in these files is uncompressed. The data files are quite large
so they are automatically compressed after each time period is complete to
save disk space. Compressed files have the same file names as the
uncompressed file, but with a .zip extension; for example,
2009_4_26_0.summary.zip.

Data Retention

Diagnostics uses data retention strategies that allow it to optimize its use of
disk storage. Default settings for data retention are set out of the box. You
should monitor your systems to check available disk space and change the
data retention settings accordingly.

Data retention settings are taken into consideration in determining when
purging occurs so if you see unexpectedly high disk space usage you should
check your data retention settings to see if they need to be modified. See
“Symbol Table Purging” on page 879.

This section includes:

➤ “Data Retention on the Mediators” on page 876

➤ “Data Retention Configuration” on page 877

➤ “Symbol Table Purging” on page 879

Data Retention on the Mediators
To make optimum use of disk space, historical performance data is stored in
major and minor time periods with the data in each period retained based
on the diagnostics data retention policy.

The data in the time periods with lower resolution data points is kept for
longer periods of time to assist with such activities as capacity planning. The
data in the time periods with high resolution data points is kept for shorter
periods of time to assist with such activities as performance diagnostics. For
this retention policy, measurements have shown that Diagnostics uses
approximately 3 GB for each probed virtual machine.

Appendix E • Diagnostics Data Management

877

In the table below you can see the Major time periods (directories as
described in “Performance History Data Organization” on page 870) and the
Minor time periods (viewable periods or subdirectories). The viewable
periods under each directory are grouped together because they have the
same resolution. So for example in the Days directory, 1 day and 6 hour data
both have 5-minute resolution.

The following table illustrates the general Diagnostics data retention policy.

The above table only applies when the entities don't change and are
constantly available for the specified periods of time. See “Symbol Table
Purging” that follows.

As shown in the table above, data for the last 1 hour, 20 minutes and 5
minutes viewing periods is kept for 72 hours while data for the last quarter is
kept for 5 years.

Data Retention Configuration
You can configure data retention using the server.properties file on each
mediator server. Default settings for data retention are set out of the box.
You should monitor your systems to check available disk space and change
the data retention settings accordingly.

Appendix E • Diagnostics Data Management

878

An example showing the persistence section of the server.properties file is
shown below:

The retention level from the major time period is inherited by the minor
time period.

To set the retention for a minor time period to a different value, add a line as
shown below for the 1h minor time period. This sets retention of hourly
data to 90 hours:

persistency.major.0.minor.2.name=1h
persistency.major.0.minor.2.length=1
persistency.major.0.minor.2.unit=h
persistency.major.0.minor.2.retention=90

Appendix E • Diagnostics Data Management

879

To retain the hourly data for one week, set retention to 168 hours. Units are
in hours (unit=h) so we compute one week in hours as [7 (days) x 24 (hours)
= 168].

To retain daily data for six months you would set retention to 186 days.
Units are in days (unit=d) so we compute six months in days as [6 (months)
x 31 (days/month) = 186].

Symbol Table Purging
The purging mechanism must take a number of settings and other factors
into account when determining when and how to purge data.

By default purging is set to run every 6 months (4320 hours). The purging
interval can be modified in server.properties by changing the number of
hours in the persistency.major.4.total.length parameter (requires restart of
the server).

Important: Increasing the purging interval requires more server memory.

Data that is part of a snapshot is not purged since doing so renders the
snapshot useless.

If a probe gets renamed or no data is received from the probe for 6 months
(by default), Diagnostics automatically purges the probe and its data from
the database.

persistency.major.0.minor.2.name=1h
persistency.major.0.minor.2.length=1
persistency.major.0.minor.2.unit=h
persistency.major.0.minor.2.retention=168

persistency.major.1.minor.1.name=1d
persistency.major.1.minor.1.length=24
persistency.major.1.minor.1.unit=d
persistency.major.1.minor.1.retention=186

Appendix E • Diagnostics Data Management

880

A property can be specified for how much space you want the TSDB to use
and data will typically be deleted to maintain a size less than this specified
threshold. The persistence.purging.threshold property is set in the
<diagnostics_server_install_dir>/etc/server.properties file. But note that a
number of other settings can take priority over this threshold value and can
result in too much data being retained.

If you find that disk space is being exhausted this does not mean that
purging isn’t working it may mean that one of the following factors has
affected the purging mechanism. For example if you have allocated 10GB of
disk space on the server for Diagnostics but you see the archive at 20GB in
danger of exhausting disk space on the system, this could be possible for any
of the following reasons:

➤ Purging interval has not been reached yet. You can adjust to a shorter
interval.

➤ There are a large number of snapshots on the system that by design do not
get purged.

➤ The data retention settings may be requiring too much data to be retained.
You may need to adjust data retention in order to save disk space (see “Data
Retention” on page 876).

Data files that contain data for snapshots will not be purged. Since the TSDB
is distributed and the snapshots only reside on the commanding server, a
mechanism for determining what time ranges should be preserved is
required.

When a snapshot is created, the commanding server will add the time range
for the incident to the global list of preserved times. Upon snapshot
deletion, this time range is removed. To allow multiple snapshots at the
same time, each snapshot creates a new preservation entry. Identical entries
are not merged because the deletion handling would not be possible. The UI
will inform the server that a time range needs to be preserved independently
of snapshots. This will allow preservation of data for non-snapshot
purposes.

Appendix E • Diagnostics Data Management

881

When a server starts the purging process it will retrieve the preserved times
from the commanding server. Failure to retrieve the list will cancel the
purging process and it will be rerun at a later time. If the commanding
server hasn't been contacted after 1 week, purging will be run without
consideration for the preservation list to prevent unbounded growth on
distributed servers in the case that the commanding server has been
permanently taken offline.

No data will be deleted until the size of the archive has exceeded the
purging threshold (persistence.purging.threshold property). After that, the
policy defined below will be used to delete files until the archive is less than
this threshold (provided other factors do not affect the purging
mechanism). The threshold is set to 5G by default but you can change the
value for persistence.purging.threshold in the server.properties file.

The purging process will scan the data files and identify all candidates for
deletion. This process will operate on file sets. Since trend files are the
largest consumer of disk space, and they require their summary files, data
purging will be done based on trend file. For each trend file that exists, that
does not have a preserved time range contained within it, a fileset
containing all the files that are associated with that trend will be created.
This will include the summary and tree file in the major summary that
contains the trend file (only majors contain trend files), as well as all the
minor summaries that index into that trend file.

Each fileset will have several values associated with it that will be used for
determining which ones to purge. The "end time" of a fileset is the time of
the last data point contained within the set. The "purge size" is the size of all
the files in the summary that can be deleted.

Appendix E • Diagnostics Data Management

882

Disk Space Issues on the Server

You can set up E-mail alerts to be sent to the Diagnostics administrator for
disk space issues on the server. The Administrator E-mail address can be
entered during the server installation or setup later using the Alert
Properties page.

Alerts are issued if the server has less than 100MB of free disk space for the
archive directory. If the server has less than 50MB of space the server stops
collecting data and exits. The server will also not startup if there is less than
50MB of free disk space. These precautions help ensure the server stops
collecting data before running out of disk space to maintain server stability.

The thresholds that determine these types of alerts for the Diagnostics
administrator are factory configured in the server’s server.properties file. For
more details see the comments in this file for the various watchdog
properties.

Pre-Installation Data Management Considerations

When preparing to install and configure a large Diagnostics Server, you
should consider the following performance tuning recommendations:

➤ For maximum performance, the Diagnostics Server should be installed
onto an empty or recently defragmented disk. The archive directory
should be stored on that same disk. Alternatively, the archive directory
could be mounted on an empty or recently defragmented disk.

Note: It is recommended that the disk used for diagnostics time series
database that is stored in the <diagnostics_server_install_dir>/archive
not be used for other disk activity (don't mount the
<diagnostics_server_install_dir>/archive directory on the same disk that
is used for your system files, temporary files etc...)

➤ To reduce fragmentation over time and increase system performance a
separate disk (or partition) dedicated to the archive directory is
recommended.

Appendix E • Diagnostics Data Management

883

➤ Intensive background disk processes (such as disk de-fragmentation or
virus scans) should be disabled on the disk where the archive directory is
stored.

➤ Network file systems such as NFS or Samba should not be used.

Note: The better the raw performance of the disk that you dedicate to the
archive directory of the Diagnostics Server, the more load the Diagnostics
Server can handle. Ask your system administrator to make sure the disk
mounted for the archive directory is a high-performance disk or array.

Backing Up Diagnostics Data

It is recommended that you back up the Diagnostics data regularly so that it
can be restored in the case of a disk or system failure.

If you use your own backup approach, you have to shutdown the server
(because of Locked PathSymbolTable.pst). But use of the backup script
provided with Diagnostics is recommended.

Note: If your Diagnostics deployment requires that the Diagnostics Server
have high availability, you can create a standby Diagnostics Server for each
Diagnostics Server. The standby is then ready to be used during a hardware
failure or other problem with the host of the Diagnostics Server. See
“Preparing a High Availability Diagnostics Server” on page 488

This section includes:

➤ “Backing up Data Remotely” on page 884

➤ “Configuring Symbol Table Backup” on page 886

➤ “Restoring Data After a Failure” on page 887

Appendix E • Diagnostics Data Management

884

Backing up Data Remotely
Remote backup is possible by downloading the Diagnostics data files over
HTTP to a local directory, and backing up that directory using your normal
backup procedures.

The Diagnostics Server also supports the HTTP If-Modified-Since and
Request-Range headers ("re-get") to allow standard HTTP mirroring software
to download or incrementally update these files. If you choose to use your
own HTTP mirroring software, work with your HP support representative to
make sure the files are backed up in the proper order to ensure data
integrity.

Diagnostics is installed with a remote backup script stored at
<diagnostics_install_dir/server/bin/remote-backup.sh. The UNIX script uses
the wget utility (http://www.gnu.org/software/wget/wget.html) to
download incrementally over HTTP. On Windows, Cygwin
(http://www.cygwin.com/) can be used to run this script.

There is also a remote-backup.cmd for Windows. The .cmd script requires
wget.exe be located in <diagnostics_install_dir>/server/bin/wget directory
(the .sh script just requires wget in the path).

The backup script can backup data remotely and from that directory you
can do your traditional backup if you want. The script can also backup data
to a local directory (ideally another drive on the same host).

Important: The backup script supplied with the Diagnostics Server backs up
the data in a specific order. Failing to back up files in the correct order causes
the restored backup to be unusable. It is therefore recommended to always
use the supplied script to create data backups.

Appendix E • Diagnostics Data Management

885

The following table lists the remote-backup.sh parameters:

For example, to back up a Diagnostics Server running on the dragonfly
machine into the dragonfly-backup directory:

Parameter Description

-h The host (or IP address) to download from

-o The directory to store the backup in

-u The HTTP username to use
Default: admin

-p The HTTP password to use
Default: admin

-P The HTTP port number to use (optional)
Default: 2006

-r The ID of the Diagnostics Server in Mediator
mode being read from (for rhttp backups)
(optional). For example, if you have 2 servers
"commander" and "mediator", you could backup
mediator over rhttp with: -h commander -r
mediatorId.

-c The clean option. When specified, files that exist in
the output directory and do not exist on the server
will be removed (the others need to be kept for
better performance with the timestamping feature
on download).

-v Specified for more verbose output.

% mkdir dragonfly-backup
% bin/remote-backup.sh -u admin -p secret -h dragonfly -o dragonfly-backup

Appendix E • Diagnostics Data Management

886

The data is backed up in the following directories:

Configuring Symbol Table Backup
Sometimes the backup folder for the jdb files under symboltable use up a lot
of disk space when there are a large number of symbol files. So you can
configure backing up the symbol table as follows:

➤ You can enable or disable backing up the symbol table by setting the
symboltable.backup property to true or false in the server.properties file.

➤ You can configure symbol table backup frequency by setting the
symboltable.backup.majors property in the server.properties file.

Set the symboltable.backup.majors property using a comma separated list,
to the desired backup frequency (Days, Weeks, Months). The frequency
values are the same as defined by the persistency.major.<n>.name property
(see “Data Retention Configuration” on page 877). For example, to backup
the symbol table weekly, use the persistency.major.2.name which is Weeks.

The default configuration for symbol table backup as defined in
server.properties is:

Data Backup Directory

Server configuration etc/

User custom views storage/userdata

Raw performance history
data

archive/.../persistence/

Symbol table archive/.../symboltable/

 # Should the server backup the symboltable?
symboltable.backup = true
Which majors should be backed up?
symboltable.backup.majors = Days,Weeks,Months

Appendix E • Diagnostics Data Management

887

Restoring Data After a Failure
The files in the backup directory are stored in the structure used by the
Diagnostics Server.

To restore the time series database from the backup:

 1 Install a clean Diagnostics Server. The Diagnostics Server is started
automatically after the installation completes.

 2 Shut down the Diagnostics Server.

 3 Make sure that the Diagnostics Server has been shut down by verifying that
there are no java/javaw processes in your process list. On Windows systems,
you can use the Task Manager to do this and on UNIX systems, you can use
ps.

 4 Delete the <diagnostics_server_install_dir>/archive directory from
Diagnostics Server.

 5 Copy the database backup to replace the <diagnostics_server_install_dir>/
archive.

 6 If the host name for the Diagnostics Server has changed since the backup
was taken you must update the directory name that is based on the
Diagnostics Server host name to reflect the new host name.

Rename <diagnostics_server_install_dir>/archive/mediator-<host-name> so
that <host-name> reflects the new Diagnostics Server host name. For
example, if host name in the backup was oldhost and the new host name is
newhost you would change <diagnostics_server_install_dir>/archive/
mediator-oldhost to <diagnostics_server_install_dir>/archive/
mediator-newhost

Index Regeneration

When a restored Diagnostics Server is first started, the indexed data, which
was not backed up, must be regenerated. Index regeneration is started
automatically in the background and could take several hours to complete.
While the indexes are regenerated, the Diagnostics Server is able to receive
events from probes, but some historical data cannot be displayed in the
Diagnostics views until the restoration is complete.

Appendix E • Diagnostics Data Management

888

Known Limitation

In Diagnostics, binary data is written in the native byte order. This means
that a Diagnostics data backup from a Big Endian machine cannot be
restored and used on a Little Endian machine.

Handling Diagnostics Data when Upgrading Diagnostics

For details on handling Diagnostics data when upgrading, see Appendix G,
“Upgrade and Patch Install Instructions.”

889

F
Diagnostics Technical Diagrams

Data flow and communication diagrams are provided to assist you as you
deploy Diagnostics components and integrate Diagnostics with other HP
Software Products.

This chapter includes:

➤ Communications with Business Service Management on page 890

➤ Communications with LoadRunner and Performance Center on page 891

➤ .NET Probe Aggregator Data Flow on page 892

Note: The diagrams are intended to provide a high-level view, not provide
an in-depth knowledge of the working of the components.

Appendix F • Diagnostics Technical Diagrams

890

Communications with Business Service Management

Appendix F • Diagnostics Technical Diagrams

891

Communications with LoadRunner and Performance Center

Appendix F • Diagnostics Technical Diagrams

892

.NET Probe Aggregator Data Flow

893

G
Upgrade and Patch Install Instructions

Instructions are provided for upgrading between major releases of
Diagnostics (for example 8.0 to 9.0). You follow these same instructions
when installing a patch release. Patch releases contain a full replacement of
the Diagnostics product components so you need to follow the same
instructions as for an upgrade.

Note: The Java Agent and .NET Agent instructions apply when upgrading or
installing a patch release of a Diagnostics Agent AND a TransactionVision
Agent.

This chapter includes:

 ➤ Before You Begin on page 894

 ➤ Diagnostics Compatibility with Earlier Diagnostics Versions on page 894

 ➤ Upgrade or Patch Install Instructions for Diagnostics Components
on page 894

 ➤ Diagnostics Compatibility with Other HP Software Products on page 907

Appendix G • Upgrade and Patch Install Instructions

894

Before You Begin

The following recommendations are generally applicable when upgrading
from earlier versions of Diagnostics or installing patch releases.

➤ Before you upgrade to a newer version of a component on the same host
that was used for the earlier version of the component, make sure that the
host meets the system requirements for the new version of the component.
See the Diagnostics Release Notes or the HP Diagnostics Installation and
Configuration Guide for system requirements.

➤ You have to upgrade the Diagnostics Server before upgrading an agent.

➤ You should contact HP Software Customer Support when you need to
upgrade from an earlier version of Business Service Management or
Performance Center and refer to the upgrade documentation for these
products for important instructions relevant to the Diagnostics integration.

Diagnostics Compatibility with Earlier Diagnostics Versions

The Diagnostics Server is supported to work with the following earlier agent
and collector versions:

➤ Java Agent 8.x, 9.0x, 9.1x

➤ .NET Agent 8.x, 9.0x, 9.1x

➤ Collectors 8.x, 9.0x, 9.1x

Upgrade or Patch Install Instructions for Diagnostics
Components

The following instructions guide you in the process of upgrading an existing
Diagnostics component or installing a component from a patch release.

This section includes instructions for the following:

➤ “Diagnostics Server” on page 895

➤ “Java Agent” on page 899

Appendix G • Upgrade and Patch Install Instructions

895

➤ “.NET Agent” on page 903

➤ “Diagnostics Collector” on page 904

Diagnostics Server
This section contains instructions for upgrading your Diagnostics Server
from an earlier version. The same instructions would apply for installing
patch releases.

Note:

➤ If you update a Diagnostics Server you must upgrade all of the
Diagnostics Servers in your deployment. All Diagnostics Servers in your
deployment must be running the same Diagnostics version.

➤ If you are an HP Software-as-a-Service (SaaS) customer, contact SaaS
Support for upgrade instructions.

During the installation the keystore is overwritten along with the JRE. As a
result your trusted certificates will be unavailable after the upgrade.

With each new release of Diagnostics you should re-record the Diagnostics
Server silent install response files prior to performing silent installation on
multiple machines.

To upgrade a Diagnostics Server:

 1 Shut down the current Diagnostics Server.

 2 Make a backup copy of the current Diagnostics Server directory. By default
this is C:\MercuryDiagnostics\Server on Windows and
/opt/MercuryDiagnostics/Server on UNIX although a different directory
could have been specified when the Server was installed.

Because the upgrade procedure requires you to uninstall the current
Diagnostics Server, the backup copy can be used in case you need to start
over.

Appendix G • Upgrade and Patch Install Instructions

896

 3 Uninstall the current Diagnostics Server, but retain the modified files when
prompted. For example, on Windows click No to All at the following
prompt:

For information about uninstalling and removing the Diagnostics Server,
completely see the HP Diagnostics Installation and Configuration Guide.

During the upgrade the existing etc directory is renamed to
etc.old_<timestamp>.

 4 Install the new Diagnostics Server into the same installation directory that
you used for the previous version of the Diagnostics Server. Specify the same
host and port for the new Diagnostics Server that was being used by the
previous Diagnostics Server.

Reply Yes to the following message:

 5 If installing on Windows, stop the Diagnostics Server.

On Windows, the Diagnostics Server is started automatically when the
installer finishes. On UNIX the server is not automatically started so you do
not need to stop it.

 6 Compare the etc directory and the etc.old_<timestamp> directory so that
you can determine the differences between the two. It might be helpful to
use a diff/merge tool for this purpose.

Appendix G • Upgrade and Patch Install Instructions

897

Important: When upgrading from a version prior to 9.20, you may have to
modify the following two properties whether or not you previously
customized them:

➤ If a copy of server.properties exists in etc.old_<timestamp>, copy the
thresholding.evaluation.status.red.for.availability property and its value
from the old file to the new file.

➤ If a copy of thresholds.configuration exists in etc.old_<timestamp>, copy
the com.mercury.diagnostics.common.data.graph.node.ProbeData.Availability
property and its value from the old file to the new file; otherwise, set the
value in the new file to "-95" instead of ",-95".

These changes preserve the behavior of previously set Availability
thresholds. If you missed these changes during the initial upgrade, you may
make them later.

Apply any differences that were caused by the customizations that were
made (found in the etc.old_<timestamp> directory) to the etc directory so
that they will not be lost. Here are some common changes:

Property File
Configuration Properties To Be Copied to the New
Diagnostics Server

alerting.properties SNMP and SMTP servers, mail addresses.

security.properties If the system is set up for SSL mode, all parameters
should be updated and certificates manually copied to
the new /etc folder.

server.properties Timeout/Trimming settings, Commander’s URL.

See the Important note above regarding the
thresholding.evaluation.status.red.for.availability
property.

thresholds.configuration Copy any customizations that were made.

See the Important note above regarding the
com.mercury.diagnostics.common.data.graph.node.P
robeData.Availability property.

Appendix G • Upgrade and Patch Install Instructions

898

 7 If the system is integrated with LoadRunner or Performance Center, copy
run_id.xml from the etc.old_<timestamp> directory to the new etc directory
to ensure that the Run ID is properly incremented for future runs.

 8 If you are upgrading the Diagnostics command server, copy the
DiagnosticsLicFile.txt or DiagnosticsServer.lic file from the
etc.old<timestamp> directory to the new etc directory.

 9 Start the Diagnostics Server.

 10 Clear your browser's cache and restart the browser before you attempt to
access the Diagnostics UI.

 11 You can verify that the upgraded Diagnostics Server is running by checking
the version in the System Health view in the Diagnostics UI. The version
should be the latest version if the upgrade was successful and the
Diagnostics Server was restarted. To access the System Health view you must
open the Diagnostics UI as the Mercury System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the
Views pane you can select the System Views view group.

webserver.properties Default port information.

.htaccess The .htaccess file is for security and it needs to be
copied to the new /etc folder to retain your original
settings for user roles.

Property File
Configuration Properties To Be Copied to the New
Diagnostics Server

Appendix G • Upgrade and Patch Install Instructions

899

 12 If Diagnostics is integrated with Business Service Management you need to
do the following:

 a Check the Diagnostics Readme for any installation notes when
integrating Diagnostics with BSM.

 b After a Diagnostics upgrade of the Commander Server, you must copy
over the RegistrarPersistence.xml file from the etc.old_<timestamp>
folder to the new etc folder. Then check the Diagnostics Integration in
the BSM -> Admin -> Diagnostics page and re-do the registration of
Diagnostics server in BSM if it is not working properly. See the HP
Diagnostics Installation and Configuration Guide chapter on "Setting Up the
Integration Between Business Service Management and Diagnostics".

 13 Once you are satisfied that the Diagnostic Server has been upgraded
successfully, remove the backup copy you created in Step 2.

Note: When you open the custom views that were created in an earlier
version of Diagnostics for the first time in a newer version, Diagnostics will
upgrade the view for any changes that are necessary because of changes that
were made to the functionality of Diagnostics. When Diagnostics changes
your custom views a message is displayed to let you know that your custom
view has been modified.

Java Agent
This section contains instructions for upgrading your Diagnostics Java Agent
from an earlier version. The same instructions would apply for installing
patch releases.

Note: You must upgrade the Diagnostics Server before upgrading the agents
that are connected to it because Diagnostics Servers are not forward
compatible.

Appendix G • Upgrade and Patch Install Instructions

900

Caution: With each new release of Diagnostics you should re-record the Java
agent silent install response files prior to performing silent installation on
multiple machines.

To upgrade a Java Agent:

Note: The new agent installation will not begin monitoring your
applications until you have updated the startup scripts to start the new
agent and restarted the applications as described in these instructions.

 1 Install the Diagnostics Agent for Java into a different directory than the
current agent’s installation directory.

During the installation, for Diagnostics be sure to do the following. This
ensures that the persisted data for your application will match up with the
metrics captured by the new agent.

➤ configure the Java Agent to work with a Diagnostics Server or as a
standalone Diagnostics Profiler. The Java Agent can also be configured to
work with a TransactionVision Server if desired.

➤ for the agent name, use the same probe name as used by the previous
agent

➤ for the agent group name, use the same group name as used by the
previous agent

➤ for the mediator server name and port, use the same information as used
by the previous agent

 2 The installer creates a <probe_install_dir>\etc directory in the new
installation directory.

In 7.50 or later releases, the default directory of <probe_install_dir> has
changed. The default location is
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent on Windows and
/opt/MercuryDiagnostics/JavaAgent/DiagnosticsAgent on UNIX.

Appendix G • Upgrade and Patch Install Instructions

901

 3 Compare the new agent’s \etc directory and the previous agent’s \etc
directory so that you can determine the differences between the two.

HP recommends that you execute the Property Scanner utility provided
with the Java Agent which will indicate the differences (properties and
points) between two different Java Agent installations. To execute the
Property Scanner utility, change the current directory to
<probe_install_dir>/contrib/JASMUtilities/Snapins and execute the
runPropertyScanner.cmd –console (.sh for Unix) command as follows:

runPropertyScanner –console –diffOnly yes –Source1 ..\..\..\etc –Source2
OtherEtc

Sample Input:

C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\contrib\JASMUtilities\Sna
pins>runPropertyScanner -console -diffOnly yes -Source1
C:\MercuryDiagnostics\JavaAgent\DiagnosticsAgent\etc -Source2
C:\MercuryDiagnostics\JavaAgent8\DiagnosticsAgent\etc

Sample Output:

****** Property dispatcher.properties:stack.trace.method.calls.max
PropertyFile=dispatcher.properties
Property=stack.trace.method.calls.max
Source1=
Source2=1000

Apply any differences that were caused by the customizations that you
made to the previous agent’s \etc directory to the new agent’s \etc directory
so that they will not be lost. You should look for the following changes:

Property File
Configuration Properties To Be Copied to the New
Diagnostics Agent

auto_detect.points Copy custom points that you have created and
points that you have modified from the
auto_detect.points file in the old etc directory to
the new etc directory. Be sure to check the points
for RMI, LWMD, args_by_class when looking for
points you may have modified.

capture.properties Depth and latency trimming.

Appendix G • Upgrade and Patch Install Instructions

902

 4 Prepare your application servers to be monitored using the JRE
instrumentation methods described in the HP Diagnostics Installation and
Configuration Guide chapter on "Preparing Application Servers for
Monitoring with the Java Agent". In particular you need to update the
application’s startup script or JVM parameters to point to the upgraded
agent installation. The parameters include the -javaagent and/or
-Xbootclasspath.

 5 At an approved time, shut down the applications that were being monitored
by the old agent.

 6 Restart the applications to allow the new version of the agent to begin
monitoring your applications.

 7 Clear your browser's cache and restart the browser before you attempt to
access the Java Diagnostics Profiler user interface. Failure to do this may
result in a size mismatch error message.

inst.properties define.pre.process

dispatcher.properties minimum.sql.latency

sql.parsing.mode

dynamic.properties cpu.timestamp.collection.method

metrics.config Verify that any metric that you uncommented in
the previous version is also uncommented in the
new version so that you can continue to use the
metrics that you are used to.

security.properties If the system is set up for SSL mode, set all
properties and copy the certificates from the old
property file to the property file.

Property File
Configuration Properties To Be Copied to the New
Diagnostics Agent

Appendix G • Upgrade and Patch Install Instructions

903

 8 You can verify that the upgraded Diagnostics Agent is running by checking
the version in the System Health view in the Diagnostics UI. The version
should be the latest version if the upgrade was successful. To access the
System Health view you must open the Diagnostics UI as the Mercury
System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the
Views pane you can select the System Views view group.

 9 When all your applications have been migrated over to be the latest version
and everything is working properly, you can delete the old directory. Don’t
try to uninstall the old version because this will actually uninstall the new
version.

.NET Agent
This section contains instructions for upgrading your Diagnostics .NET
Agent from an earlier version. The same instructions apply for installing
patch releases.

Note: You must upgrade the Diagnostics Server before upgrading the .NET
Agents that are connected to it because Diagnostics Servers are not
forward-compatible.

To upgrade a .NET Agent:

 1 Install the new Diagnostics Agent for .NET (select Upgrade).

The upgrade will take effect when the probed applications are restarted.

To force the upgrade to take effect:

 a Shut down all applications that are being monitored by the current .NET
Probe.

 b Restart IIS.

 c Restart the applications that were being monitored by the old probe.

Appendix G • Upgrade and Patch Install Instructions

904

 2 You can verify that the upgraded Diagnostics Agent is running by checking
the version in the System Health view in the Diagnostics UI. The version
should be the latest version if the upgrade was successful. To access the
System Health view you must open the Diagnostics UI as the Mercury
System customer from
http://<Diagnostics_Commanding_Server_Name>:2006/query/. Then in the
Views pane you can select the System Views view group.

Diagnostics Collector
This section contains instructions for upgrading your Diagnostics collector
from an earlier version. The same instructions apply for installing a patch
release.

Note: You must upgrade the Diagnostics Server before upgrading the
Collectors that are connected to it because Diagnostics Servers are not
forward-compatible.

Important: With each new release of Diagnostics you should re-record the
Diagnostics Collector silent install response files prior to performing silent
installation on multiple machines.

To upgrade a Diagnostics Collector:

 1 Stop or shut down the Diagnostics Collector that you want to upgrade.

 2 Back-up the directory for the current collector installation.

By default this is C:\MercuryDiagnostics\Collector on Windows and
/opt/MercuryDiagnostics/Collector on UNIX.

Because the upgrade procedure requires you to uninstall the current
Diagnostics Collector, the backup copy can be used in case you need to start
over.

Appendix G • Upgrade and Patch Install Instructions

905

 3 Uninstall the current Diagnostics Collector, but retain the modified files
when prompted. For example, on Windows click No to All at the following
prompt:

For information about uninstalling and removing the Collector completely,
see the HP Diagnostics Installation and Configuration Guide.

During the upgrade the existing etc directory is rename to
etc.old_<timestamp>.

 4 Install the new Collector into the same installation directory that was used
for the old version of the Collector.

Make sure to use the same Collector name and Mediator host to ensure that
the persisted data for the application will match up with the metrics
captured by the new collector.

You can determine the old Collector name by viewing the backed up
<collector_install_dir>\etc\collector.properties file.

 5 If installing on Windows, stop the Collector.

The Collector is started automatically when the installer finishes.

On UNIX the Collector is not automatically started so you do not need to
stop it.

 6 Compare the new etc directory and the etc.old_<timestamp> directory to
determine the differences between the two. (It might be helpful to use a diff/
merge tool for this purpose.)

Appendix G • Upgrade and Patch Install Instructions

906

Apply any differences that were caused by the customizations that you
made (found in the etc.old_<timestamp>) directory to the new etc directory
so that they will not be lost.

 7 Start the Diagnostics Collector.

 8 You can verify the upgraded Collector by checking the version.

 9 Once you are satisfied that the Diagnostic Collector has been upgraded
successfully, remove the backup copy you created in Step 2.

Property File
Configuration Properties To Be Copied to the New
Diagnostics Server

mq-config.xml If the collector is monitoring an MQ environment.

oracle-config.xml If the collector is monitoring an Oracle
environment.

sqlserver-config.xml If the collector is monitoring an SQL Server
environment.

If you are upgrading from 7.x you must remove the
databaseName attribute from the
sqlserver-config.xml file because in later Collector
versions the databaseName is automatically
discovered.

r3config.xml If the collector is monitoring an SAP ABAP
environment.

vmware-config.xml If the collector is monitoring a VMware
environment.

tibco-ems-config.xml If the collector is monitoring a TIBCO EMS
environment.

wm-broker-config.xml If the collector is monitoring a webMethods Broker
environment.

security.properties If the system is set up for SSL mode, set all
properties and copy the certificates from the old
property file to the property file.

Appendix G • Upgrade and Patch Install Instructions

907

Diagnostics Compatibility with Other HP Software Products

For the most recent information on version compatibility, see the
Diagnostics Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

Appendix G • Upgrade and Patch Install Instructions

908

909

H
Troubleshooting HP Diagnostics

Troubleshooting tips are provided for problems that could occur when using
HP Diagnostics.

This chapter includes:

 ➤ Component Installation Interrupted on a Solaris Machine on page 910

 ➤ Diagnostics Installers Do Not Work on Some 64-bit Linux Systems
on page 910

 ➤ Error During Linux Install - Missing libstdc++.so.5 Shared Library on page 911

 ➤ Java Agent Fails to Operate Properly on page 911

 ➤ Error During WAS Startup with Diagnostics Profiler for Java on page 912

 ➤ Missing Server-Side Transactions on page 913

 ➤ Event Capture Buffer Full Warning on page 913

 ➤ WebSphere Application Server Startup Issue on page 914

 ➤ Java Agent Support Collector on page 915

 ➤ Event Based Health Indicator Status Troubleshooting Flow on page 915

 ➤ OM Agent Troubleshooting on page 919

 ➤ Troubleshooting Registration of OMi Between the BSM Gateway Server and
Data Processing Server on page 922

Appendix H • Troubleshooting HP Diagnostics

910

Component Installation Interrupted on a Solaris Machine

If a component installer on a Solaris machine is interrupted before it has
finished installing the component, there is no option for automatically
uninstalling or reinstalling the component. You must manually clean up the
partial installation of the component before you can start the installation
again.

To manually clean up after an interrupted installation:

 1 Clean the installation directory.

 2 Delete ~/vpd.properties and ~/vpd.patches.

 3 Delete the Solaris directories: /var/sadm/pkg/IS* and /var/sadm/pkg/
MERQ.

Diagnostics Installers Do Not Work on Some 64-bit Linux
Systems

On some 64-bit Linux systems (for example, RedHat Enterprise Linux 6,
CentOS 6, Ubuntu 11), the Diagnostics Installers (.bin files) may not work
because the 32-bit glibc library is not installed. To work around this issue,
you need to install the 32-bit glibc library.

To install the 32-bit glibc package in RHEL 6/CentOS 6, run this command:
yum install glibc.i686.

To install the 32-bit glibc package in Ubuntu 11, run this command:
sudo apt-get install libc6:i386.

Then try to run the install again.

Appendix H • Troubleshooting HP Diagnostics

911

Error During Linux Install - Missing libstdc++.so.5 Shared
Library

On some Linux systems, when you install the Diagnostics Server or
Collector, if you encounter an error saying that the libstdc++.so.5 shared
library is missing, you may need to install it. For example, on CentOS, enter
the following command to install the library:

yum install compat-libstdc++-33

Java Agent Fails to Operate Properly

If the Java Agent does not operate properly, check whether the
ClassLoader.class file located in the folder
<probe_install_dir>\classes\boot\java\lang\ was created during the
installation process.

If the file was not created, make sure you have instrumented the JRE as this
is what creates it. See Chapter 6, “Preparing Application Servers for
Monitoring with the Java Agent.”

Appendix H • Troubleshooting HP Diagnostics

912

Error During WAS Startup with Diagnostics Profiler for Java

Symptoms:

Class Loader errors occur when starting WAS with the Diagnostics Profiler
for Java.

Reason:

Additional classes need to be excluded from the instrumentation.

Solution:

 1 Open the property file, <probe_install_dir>\etc\inst.properties

 2 Update the classes.to.exclude property to exclude !com\.ibm\..* by
appending the class to the end of the existing values.

classes.to.exclude=!iaik\.security\..*,!c8e\..*,!org\.jboss\.net\.protocol\.file\.Handler,!
org\.jboss\.net\.protocol\.file\.FileURLConnection,!.*ByCGLIB.*,!com\.ibm\..*

Appendix H • Troubleshooting HP Diagnostics

913

Missing Server-Side Transactions

Symptoms:

The server requests for each probe are displayed in Diagnostics but the BPM
transactions that are associated with the server requests are not displayed.

There are two symptoms to look for in the server.log file:

"not dropping at least one transaction that timed out" – this indicates that a
transaction has not received any data for a period of time (10m by default)
and has not received the ELT. This warning is issued infrequently, and only
when the transaction times out. After this warning you should see the
transaction data in the UI. For more information on ELT see “Reducing
Diagnostics Server Memory Usage” on page 483.

"Late data received for time period that was already persisted. Adjusting
data by…" – this indicates that the server received an ELT unreasonably late,
but before the transaction timed out. The data will be reported, but not at
the same time that BSM or SaaS reported it.

Reason:

If you do not see either of the log messages listed above and there is no
transaction data the most likely cause is the BPM is not running the scripts.

Solution:

 1 Verify that Business Process Monitor is running in Business Service
Management or HP Software-as-a-Service (SaaS) and that the monitor is
running.

 2 Verify the state of the profile in the Business Process Monitor Console.

Event Capture Buffer Full Warning

Symptoms:

Some Diagnostics data loss is occurring and the following error appears in
the probe log file:

"The event capture buffer is full, at least one event dropped."

Appendix H • Troubleshooting HP Diagnostics

914

Reason:

The log entry indicates that the application load is too high, or that the
application is excessively instrumented.

Solution:

In some cases, increasing the value of the event_buffer.size property in the
etc/capture.properties file can help avoid dropping events, but often
reducing the application instrumentation is necessary.

WebSphere Application Server Startup Issue

Symptoms:

With the Java probe enabled, the WebSphere application server throws
exceptions such as "java.lang.NoClassDefFoundError:
javax.xml.rpc.handler.Handler" during application startup.

Reason:

The SOAP Handler cannot be loaded in this configuration.

Solution:

Turn off the SOAP Handler (impacts SOAP consumer ID and payload
capture) by changing the property below to false in the probes’s
etc\inst.properties file. Then restart the application server.

details.conditional.properties=\
mercury.enable.SOAPHandler=false
mercury.enable.autoLoadSOAPHandler= false, \

OR

Add the missing classes to the application server’s class path so they can be
accessed by the probe’s SOAP Handler.

For example from <WebSphere>/lib/j2ee.jar there are several jars that
contain the missing classes.

Appendix H • Troubleshooting HP Diagnostics

915

Java Agent Support Collector

The runSupportSnapshot utility creates a .zip file containing the entire set
of files relevant to troubleshooting one or more instances of the Java agent
in a Diagnostics or TransactionVision deployment environment.

The .zip file contains the following:

➤ Files from the <Diagnostics_probe_install_dir>\etc directory

➤ Files from the <Diagnostics_probe_install_dir>\log directory

➤ Files from the <TransactionVision_agent_install_dir>\config directory

➤ Files from the <TransactionVision_agent_install_dir>\logs directory

➤ Property Scanner report, which compares two agent directories and reports
differences between property files, points files, and XML files
(TransactionVision Agents only).

➤ Probe instance information, including property settings. For agents running
in 1.5 JVMs, environment variables, stack dumps, and class loader
information is also included.

To run runSupportSnapshot:

 1 Navigate to
<Diagnostics_probe_install_dir>\contrib\JASMUtilities\Snapins.

Note that the utility is also available in the <probe_install_dir>\bin
directory

 2 Execute .\runSupportSnapshot.cmd -console on Windows, or
./runSupportSnapshot.sh -console on UNIX or Linux.

 3 A .zip file is created. The default location of the saved zip file is the .../
DiagnosticsAgent/ folder.

Event Based Health Indicator Status Troubleshooting Flow

When integrated with Business Service Management 9.0 or later, Diagnostics
sends Health Indicator status events to the Business Service Management
gateway server.

Appendix H • Troubleshooting HP Diagnostics

916

Important: For communications between BSM gateway server and BSM
processing server with an event channel integration there must be a trust
relationship between the machines. See “Configuration of Separate BSM
Servers for DPS and Gateway” on page 761 if you need to set this up.

The following gives the troubleshooting flow you can use if there are
problems with Health Indicator status events sent to Business Service
Management.

To troubleshoot problems with HI status events:

 1 Verify whether Diagnostics writes to bachi_data.log on Health Indicator
status change on a probe metric:

Entry:

 2 Verify whether opcle is up via ovc -status:

 3 Check the agent log file for errors (for example, unable to communicate to
BSM server or certificate errors).

C:\Documents and Settings\All Users\Application Data\HP\HP BTO
Software\log\System.txt

 4 Enable tracing if necessary:

Traces are written to C:\Documents and Settings/All Users/Application
Data/HP/HP BTO Software/tmp/OpC and /var/opt/OV/log/tmp.

C|latency|jbossas|bsavm12.ovrtest.adapps.hp.com|17b87476ac6de3938ff9898cd19c8
bd8|mercury|Default Client|1|J2EE|PROBE|2010-05-17 13:40:51|latency
[BpmTxJpaImpl.getBamNodeStatusKey() (144.5µs > 122.6µs)]

opcle OVO Logfile Encapsulator AGENT,EA (5528) Running
opcmsga OVO Message Agent AGENT,EA (5460) Running

ovconfchg -ns eaagt -set OPC_TRACE TRUE -set OPC_TRC_PROCS opcle -set
OPC_TRACE_AREA ALL

Appendix H • Troubleshooting HP Diagnostics

917

To test the event channel on the Business Service Management Gateway
Server:

 1 Check if OPR (hpbsm_opr-backend) is running by manually submitting an
event.

 a First get the CMDBID of a CI that Diagnostics populates (look in the BSM
Diagnostics Probe and Infrastructure view).

 b Then go to opr\support and run the following (replace the CMDBID in
bold with the one from the previous step):

sendEvent.bat -s critical -t foo -eh CPU Critical -rch
UCMDB:7b75a57ee89fe6c076ce8d258be4a971

Appendix H • Troubleshooting HP Diagnostics

918

 2 Verify the flow in log\opr-backend\opr-backend.log:

2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'PipelineEntry': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'CIResolver': got 1 events
2010-05-11 06:17:18,981 [Thread-37] ERROR
EventChannelCiResolver.resolveHost(172) - No host CI found for event
com.hp.opr.common.model.Event@4ef05e84[865b7200-5cff-71df-00eb-0f2bf8e70000,
Back to normal: Threshold violation(s) for latency on
mercury:bsavm12.ovrtest.adapps.hp.com,<null>,OPEN,NORMAL,NONE,J2EE,<null>,
<null>,UCMDB:17b87476ac6de3938ff9898cd19c8bd8,<null>,<null>,<null>,com.hp.opr.
common.model.ResolutionHints@6cd5499[<null>,ROS84604HAE.ovrtest.adapps.hp.c
om,15.43.248.231,ad2c79b2-9af7-7543-002d-ceeb548960bc],com.hp.opr.common.mo
del.ResolutionHints@126d0c4c[Diagnostics:mercury,ROS84604HAE.ovrtest.adapps.h
p.com,15.43.248.231,ad2c79b2-9af7-7543-002d-ceeb548960bc],<null>,<null>,false,-1,
-1,[],{},Tue May 11 06:17:18 PDT 2010,Tue May 11 06:17:18 PDT 2010,Tue May 11
06:17:18 PDT
2010,0,latency:Normal,<null>,<null>,Diagnostics,latency,N:17b87476ac6de3938ff9898
cd19c8bd8:latency,^<*>:17b87476ac6de3938ff9898cd19c8bd8:latency$,N|latency|jbos
sas|bsavm12.ovrtest.adapps.hp.com|17b87476ac6de3938ff9898cd19c8bd8|mercury|D
efault Client|1|J2EE|PROBE|2010-05-11
06:16:48|latency,false,com.hp.opr.common.model.MatchInfo@35425b07,<null>,<null>]
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'CiVariableReplacer': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'DowntimeProvider': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'EtiResolverByHint': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'EtiResolverByRule': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'HIUpdater': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO MarbleHealthSubmitter.submit(129) -
submitting 1 health updates for customer 1
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'ResolutionCompleted': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'IMDBStore': got 1 events
2010-05-11 06:17:18,981 [Thread-37] INFO Step.process(45) - Pipeline Step
'PairwiseCorrelation': got 1 events

Appendix H • Troubleshooting HP Diagnostics

919

 3 Enable more tracing if needed:

For additional troubleshooting steps go to OM Agent Troubleshooting in the
following section. And you can also check “Configuration of Separate BSM
Servers for DPS and Gateway” on page 761.

OM Agent Troubleshooting

When integrating Diagnostics with Business Service Management 9.0 or
later, the OM Agent and IAPA components must be installed on the
Diagnostics Commander Server. These components are used by Diagnostics
to send Health Indicator status events to the Business Service Management
Gateway Server.

➤ OM Agent Installation Verified. Make sure the OM Agent components were
installed and if there are problems with the installation, errors are reported
in the <Diagnostics_install_dir>/server/log.txt file.

➤ Root Access Requirement. Root access is required for the installation of the
OM Agent and IAPA component. If you need to install the Diagnostics
Server without root access you can chose to not install these two
components and install them later manually. When you see the dialog box:
OM Agent and IAPA component installations leave the box unchecked and
install later (see “Manual Installation of OM Agent and IAPA Components”
on page 74).

➤ Grant Certificates on Gateway Server. After installing the OM Agent and
IAPA components you must complete additional configuration which is
performed when you register Diagnostics with Business Service
Management 9.0 or later. The required certificates are requested during the
registration and then you perform an additional step to grant the certificate
on the gateway server. (See “Registering the Diagnostics Server in Business
Service Management” on page 740 in the section "To manually grant the
certificate".)

HPBSM\conf\core\Tools\log4j\opr-backend\opr.backend.properties

Appendix H • Troubleshooting HP Diagnostics

920

To check that the Diagnostics Commander Server can ping the Business
Service Management Gateway Server:

 1 Execute the following on the Diagnostics Commander Server:

This is the expected output:

 2 If you get an eSSLError, remove the certificates (unless the OM Agent on the
Diagnostics Commander Server is used by another OM server):

 3 And then run <server_install_dir>\server\bin\switch_ovo_agent.vbs again:

bbcutil –ping <gateway server hostname>

bsavm12.rose.hp.com: status=eServiceOK
coreID=6c852d02-9ae6-7543-1d6e-b6fab24428f0
bbcV=06.20.101 appN=ovbbccb appV=06.20.101 conn=2
time=218 ms

cscript switch_ovo_agent.vbs –server <GATEWAY SERVER> -cert_srv <DATA
PROCESSING SERVER>

Appendix H • Troubleshooting HP Diagnostics

921

To check if the agent cannot communicate with the server:

 1 If you get errors in the C:\Documents and Settings\All Users\Application
Data\HP\HP BTO Software\log\System.txt file indicating that the agent
cannot communicate with the server, verify that com.hp.ov.opc.msgr is
running on the Business Service Management Gateway Server:

To fix the problem if the Registration times out because of the OM Agent:

 1 If you see and error like the one below:

 2 Select Save Registration again in the Business Service Management
Registration page for Diagnostics.

bbcutil –reg
BasePath=/com.hp.ov.ctrl.ovcd/
 Protocol=HTTPS
 BindAddress=localhost
 Port=1057
 Authentication=REMOTE
 BasePath=/com.hp.ov.opc.msgr/
 Protocol=https
 BindAddress=ANY
 Port=2506
 Authentication=REMOTE

Timed Out: cscript //NoLogo C:\MercuryDiagnostics\Server\bin\switch_ovo_agent.vbs
-server hpswros055.ovrtest.adapps.hp.com -cert_srv
hpswros055.ovrtest.adapps.hp.com
64-bit OS
Server is currently set to '' need to register 'hpswros055.ovrtest.adapps.hp.com'
Certificate server is currently set to '' need to register
'hpswros055.ovrtest.adapps.hp.com'

Appendix H • Troubleshooting HP Diagnostics

922

Troubleshooting Registration of OMi Between the
BSM Gateway Server and Data Processing Server

Complete the following steps to register OMi between the BSM Gateway
Server and Data Processing Server on separate systems in order to get
Diagnostics 9.x events to show up in BSM.

To troubleshoot:

 1 First check the certificate on the BSM Gateway Server. From a command
prompt on the Gateway Server, run the command: ovcert --check.

If there are problems, you’ll see an error like the following:

Otherwise, you’ll see a message like the following:

 2 Check if the OMi BSM Gateway Server is registered properly with the BSM
Data Processing Server. From a command prompt on the BSM Gateway
Server run the command: bbcutil -ping <Data Processing Server>.

If there are problems, you will get an error like the following:

(bbc-289) status=eServiceError coreID= bbcV= appN= appV=conn=0 time=109
ms

C:\Documents and Settings\Admin>ovcert -check
OvCoreId set : OK
Private key installed : FAILED
Certificate installed : FAILED
Certificate valid : FAILED
Trusted certificates installed : FAILED
Trusted certificates valid : FAILED

C:\Documents and Settings\Admin>ovcert -check
OvCoreId set : OK
Private key installed : OK
Certificate installed : OK
Certificate valid : OK
Trusted certificates installed : OK
Trusted certificates valid : OK
Check succeeded.

Appendix H • Troubleshooting HP Diagnostics

923

Otherwise, you will see a message like the following:

status=eServiceOK coreID=09139942-991a-7549-1eae-ee2cbe62289a

 bbcV=11.00.044 appN=ovbbccb appV=11.00.044 conn=2 time=156 ms

 3 Check if OMi BSM Data Processing Server is registered properly with the
BSM Gateway Server. From a command prompt on the BSM Data Processing
Server run the command: bbcutil -ping <Gateway Server>.

If there are problems, you’ll see an error like the following:

(bbc-288) status=eServiceError coreID= bbcV= appN= appV=
conn=0 time=109 ms

Otherwise, you’ll see a message like the following:

status=eServiceOK

coreID=c3475f92-a584-7546-1cfb-b2612a96538f

bbcV=11.00.044 appN=ovbbccb appV=11.00.044

conn=2 time=94 ms

 4 If you have any of the problem conditions from above, use the following
steps to set up certificates on separate BSM Gateway Server and Data
Processing Server (As described in the BSM Deployment Guide).

 a From a command prompt on the BSM Gateway Server run the following
commands:

ovconfchg -ns sec.cm.client -set CERTIFICATE_SERVER <Data Processing
Server>

ovcert -certreq

INFO: Certificate request has been successfully triggered

 b From a command prompt on the BSM Data Processing Server run the
following command:

ovcm -listpending -l

RequestID: e0609222-7ea6-754d-0a03-e1a09dc5dd43
Context:
CN: c3475f92-a584-7546-1cfb-b2612a96538f
Nodename: bsavm9.ovrtest.adapps.hp.com
IPAddress: 16.93.25.199
PeerAddress: 16.93.25.199

Appendix H • Troubleshooting HP Diagnostics

924

Platform: Windows 5.2, CPU: x64
InstallType: Manual
TimeReceived: 1/19/2011 1:49:18 PM Pacific Standard Time

 c Grant the RequestID.

ovcm -grant e0609222-7ea6-754d-0a03-e1a09dc5dd43

 d From a command prompt on the BSM Gateway Server run the command:

ovcert --list

You should see Certificates and Trusted Certificates as in the example
below:

+---+
| Keystore Content |
+---+
| Certificates: |
| c3475f92-a584-7546-1cfb-b2612a96538f (*) |
+---+
| Trusted Certificates: |
| CA_09139942-991a-7549-1eae-ee2cbe62289a |
+---+

 e From a command prompt on the BSM Gateway Server run the command:

bbcutil -ping <Data Processing Server>

Ping should now work.

status=eServiceOK coreID=09139942-991a-7549-1eae-ee2cbe62289a

bbcV=11.00.044 appN=ovbbccb appV=11.00.044 conn=2 time=156 ms

 5 Should be working now.

925

I
General Reference Information

This section includes general reference topics.

This chapter includes:

➤ Using UNIX Commands on page 925

➤ Using Regular Expressions on page 926

➤ Multi-Lingual User Interface Support on page 934

Using UNIX Commands

When running an installation on a UNIX platform, you can usually follow
the instructions that appear on the screen. The on-screen instructions can
be confusing at times.

If something is unclear, use the following guidelines:

➤ To select an option from a list of options, type the number
corresponding to the option and press Enter. Then type 0 and press
Enter again to confirm your choice.

➤ When selecting multiple options, for each selection type the
corresponding number and press Enter. After you finish selecting all
your options, type 0 and press Enter again to confirm your choices.

➤ If you selected an option and want to clear it, retype the corresponding
number, or type the number of another option, and press Enter. Then
type 0 and press Enter again to confirm your choice.

➤ When entering information at a prompt:

Appendix I • General Reference Information

926

➤ To accept a default value that is displayed at the prompt, press Enter.

➤ Type the information and press Enter to continue.

➤ To continue with the next step of an installation, type 1 to select Next,
and press Enter.

➤ To go back to previous prompts to make changes, type 2 to select
Previous and press Enter.

➤ To cancel an installation, type 3 to select Cancel and press Enter.

➤ To redisplay a prompt, type 4 to select Redisplay and press Enter.

Using Regular Expressions

When you specify the instrumentation definitions for each probe in the
capture points file, you can use regular expressions for most of the
arguments in a point.

A regular expression is a string that specifies a complex search phrase. By
using special characters, such as a period (.), asterisk (*), caret (^), and
brackets ([]), you can define the conditions of a search.

Note: Regular expressions in Diagnostics must be prefaced with an
exclamation point.

By default, Diagnostics treats all characters in a regular expression literally,
except for the period (.), hyphen (-), asterisk (*), caret (^), brackets ([]),
parentheses (()), dollar sign ($), vertical line (|), plus sign (+), question mark
(?), and backslash (\). When one of these special characters is preceded by a
backslash (\), Diagnostics treats it as a literal character.

Appendix I • General Reference Information

927

Common Regular Expression Operators
This section describes some of the more common operators that can be used
to create regular expressions.

Note: For a complete list and explanation of supported regular expression
characters, see the Regular Expressions section in the Microsoft VBScript
documentation.

Operator Used for

(\) Rendering Special Characters Literal

Creating Special Characters out of Literal Characters

(.) Matching Any Single Character

([xy]) Matching Any Single Character in a List

([^xy]) Matching Any Single Character Not in a List

([x-y]) Matching Any Single Character within a Range

(*) Matching Zero or More Specific Characters

(+) Matching One or More Specific Characters

(?) Matching Zero or One Specific Character

(()) Grouping Regular Expressions

(|) Matching One of Several Regular Expressions

(^) Matching the Beginning of a Line

($) Matching the End of a Line

(\w) Matching Any AlphaNumeric Character Including the Underscore

(\W) Matching Any Non-AlphaNumeric Character

Appendix I • General Reference Information

928

Using the Backslash Character
A backslash (\) can serve two purposes. It can be used in conjunction with a
special character to indicate that the next character be treated as a literal
character. For example, \. would be treated as period (.) instead of a wildcard
(see "Matching Any Single Character" on page 929).

Alternatively, if the backslash (\) is used in conjunction with some
characters that would otherwise be treated as literal characters, such as the
letters n, t, w, or d, the combination indicates a special character. For
example, \n stands for the newline character.

Here is an example:

➤ w matches the character w

➤ \w is a special character that matches any word character including
underscore

➤ \\ matches the literal character \

➤ \(matches the literal character (

For example, if you were looking for a file called:

filename.ext

the period would be mistaken as an indication of a regular expression. To
indicate that the period is not part of a regular expression, you would enter
it as follows:

filename\.ext

Note: If a backslash character is used before a character that has no special
meaning, the backslash is ignored. For example, \z matches z.

Appendix I • General Reference Information

929

Matching Any Single Character
A period (.) instructs Diagnostics to search for any single character (except
for \n); for example:

welcome.

matches welcomes, welcomed, or welcome followed by a space or any other
single character. A series of periods indicates the same number of
unspecified characters.

To match any single character including \n, enter:

(.|\n)

For more information on the () regular expression characters, see "Grouping
Regular Expressions" on page 931. For more information on the | regular
expression character, see "Matching One of Several Regular Expressions" on
page 932.

Matching Any Single Character in a List
Square brackets instruct Diagnostics to search for any single character
within a list of characters. For example, to search for the date 1967, 1968, or
1969, enter:

196[789]

Appendix I • General Reference Information

930

Matching Any Single Character Not in a List
When a caret (^) is the first character inside square brackets, it instructs
Diagnostics to match any character in the list except for the ones specified
in the string; for example:

[^ab]

matches any character except a or b.

Note: The caret has this special meaning only when it is the first character
displayed within the brackets.

Matching Any Single Character within a Range
To match a single character within a range, you can use square brackets ([])
with the hyphen (-) character. For example, to match any year in the 1960s,
enter:

196[0-9]

A hyphen does not signify a range if it is displayed as the first or last
character within brackets, or after a caret (^).

For example, [-a-z] matches a hyphen or any lowercase letter.

Note: Within brackets, the characters ".", "*", "[" and "\" are literal. For
example, [.*] matches . or *. If the right bracket is the first character in the
range, it is also literal.

Appendix I • General Reference Information

931

Matching Zero or More Specific Characters
An asterisk (*) instructs Diagnostics to match zero or more occurrences of
the preceding character; for example:

ca*r

matches car, caaaaaar, and cr.

Matching One or More Specific Characters
A plus sign (+) instructs Diagnostics to match one or more occurrences of
the preceding character; for example:

ca+r

matches car and caaaaaar, but not cr.

Matching Zero or One Specific Character
A question mark (?) instructs Diagnostics to match zero or one occurrences
of the preceding character; for example:

ca?r

matches car and cr, but nothing else.

Grouping Regular Expressions
Parentheses (()) instruct Diagnostics to treat the contained sequence as a
unit, just as in mathematics and programming languages.

Using groups is especially useful for delimiting the argument(s) to an
alternation operator (|) or a repetition operator (* , + , ? , { }).

Appendix I • General Reference Information

932

Matching One of Several Regular Expressions
A vertical line (|) instructs Diagnostics to match one of a choice of
expressions; for example:

foo|bar

causes Diagnostics to match either foo or bar.

fo(o|b)ar

causes Diagnostics to match either fooar or fobar.

Matching the Beginning of a Line
A caret (^) instructs Diagnostics to match the expression only at the start of
a line, or after a newline character.

Here is an example:

book

matches book within the lines book, my book, and book list, while

^book

matches book only in the lines book and book list.

Matching the End of a Line
A dollar sign ($) instructs Diagnostics to match the expression only at the
end of a line, or before a newline character; for example:

book

matches book within the lines my book, and book list, while a string that is
followed by ($), matches only lines ending in that string; for example:

book$

matches book only in the line my book.

Appendix I • General Reference Information

933

Matching Any AlphaNumeric Character Including the
Underscore
\w instructs Diagnostics to match any alphanumeric character and the
underscore (A-Z, a-z, 0-9, _).

Here is an example:

\w* causes Diagnostics to match zero or more occurrences of the
alphanumeric characters—A-Z, a-z, 0-9, and the underscore (_). It matches
Ab, r9Cj, or 12_uYLgeu_435.

Here is an example:

\w{3} causes Diagnostics to match 3 occurrences of the alphanumeric
characters—A-Z, a-z, 0-9, and the underscore (_). It matches Ab4, r9_, or
z_M.

Matching Any Non-AlphaNumeric Character
\W instructs Diagnostics to match any character other than alphanumeric
characters and underscores.

Here is an example:

\W matches &, *, ^, %, $, and # .

Appendix I • General Reference Information

934

Combining Regular Expression Operators
You can combine regular expression operators in a single expression to
achieve the exact search criteria you need.

For example, you can combine the ‘.’ and ‘*’ characters to find zero or more
occurrences of any character (except \n).

For example,

start.*

matches start, started, starting, starter, and so forth.

You can use a combination of brackets and an asterisk to limit the search to
a combination of non-numeric characters; for example:

[a-zA-Z]*

To match any number between 0 and 1200, you must match numbers with
1 digit, 2 digits, 3 digits, or 4 digits between 1000-1200.

The regular expression below matches any number between 0 and 1200.

([0-9]?[0-9]?[0-9]|1[01][0-9][0-9]|1200)

Multi-Lingual User Interface Support

The Diagnostics user interface (UI) can be viewed in multiple languages in
your Web browser. This applies when Diagnostics is integrated with Business
Service Management or running in standalone mode (no integration).

If Diagnostics is integrated with LoadRunner or Performance Center, the
display language of the UI is determined by the client locale setting (defined
in the Regional Settings of your operating system).

Caution: Diagnostics does not support localization of agent names.

Appendix I • General Reference Information

935

This appendix explains how to view the Diagnostics user interface in a
specific language. The Diagnostics UI can be viewed in the following
languages in your Web browser:

You use the language preference option in your browser to select how you
view Diagnostics. The language preference chosen affects only the user’s
local machine and not the Diagnostics Server or any other user accessing the
same Diagnostics Server.

Language Language preference in Web browser

English English

Simplified Chinese Chinese (China) [zh-cn],
Chinese (Singapore) [zh-sg]

Korean Korean [ko]

Japanese Japanese [ja]

Appendix I • General Reference Information

936

To view the Diagnostics UI in a specific language:

 1 Install the appropriate language’s fonts on your local machine if they are
not yet installed. If you choose a language in your Web browser whose fonts
are not installed, the Diagnostics user interface uses the default language of
your local machine.

Assume, for example, that the default language on your local machine is
English and the Web browser is configured to use Japanese. If Japanese fonts
are not installed on the local machine, the Diagnostics user interface is
displayed in English.

 2 If you are using Internet Explorer, configure the Web browser on your local
machine to select the language in which you want to view the Diagnostics
user interface. For details, see
http://support.microsoft.com/kb/306872/en-us.

Continue with step 4.

 3 If you are using FireFox, configure the Web browser on your local machine
as follows:

 a Select Tools > Options > Advanced. Click Edit Languages. The Language
dialog box opens.

 b Highlight the language in which you want to view Diagnostics.

If the language you want is not listed in the dialog box, expand the
Select language to add list, select the language, and click Add.

 c Click Move Up to move the selected language to the first row.

 d Click OK to save the settings. Click OK to close the Language dialog box.

 4 Close your existing browser and open Diagnostics in a new browser. The
Diagnostics user interface is displayed in the selected language.

937

J
Data Exporting

The metric data collected by Diagnostics can be archived directly to a
third-party database where it can be retained or it can be formatted into
reports as supported by the database.

This data export is accomplished by using XPath-like queries to pull the
desired metrics from the Diagnostics Time Series database (TSDB), which is
the repository for all persistent Diagnostics data. For information about the
TSDB, see “Diagnostics Data Management” on page 867.

This chapter includes:

 ➤ Task 1: Prepare the target database on page 938

 ➤ Task 2: Determine which metrics you want to export on page 939

 ➤ Task 3: Determine the frequency and the recovery period on page 942

 ➤ Task 4: Modify the data export configuration file on page 943

 ➤ Task 5: Monitor the data export operation on page 947

 ➤ Task 6: Verify the results on page 949

 ➤ Task 7: Select the data from the target database on page 950

 ➤ Sample Queries on page 950

Appendix J • Data Exporting

938

Task 1: Prepare the target database

The target database for the exported data can be an SQL Server or Oracle
database to which the Diagnostics commanding server has access. For the
most recent information on supported environments, see the Diagnostics
Support Matrix at
http://support.openview.hp.com/sc/support_matrices.jsp.

The data export performed by the Diagnostics server automatically creates
the schema and tables in the target database. The target database should
have at least 1 GB of space available. During the first few export operations,
you should monitor the size of the database to see if more space is needed.

To connect to the target database, you must specify the login credentials for
a user that has read/write privileges to the database and has table definition
privileges.

Note. If you are upgrading to Diagnostics 9.10 or later but you want to keep
the old pre-9.10 database content you can alter the database to gain the
following new functionality: In 9.10 or later the min and max values use
doubles instead of integers allowing exported data to show decimal places.
Alter the database after upgrading as follows:

Oracle:

SQL Server:

ALTER TABLE RECORD MODIFY (
 REC_COUNT NUMBER(38),
 TOTAL FLOAT,
 MINIMUM FLOAT,
 MAXIMUM FLOAT)

ALTER TABLE RECORD ALTER COLUMN REC_COUNT DECIMAL(19)
ALTER TABLE RECORD ALTER COLUMN TOTAL FLOAT
ALTER TABLE RECORD ALTER COLUMN MINIMUM FLOAT
ALTER TABLE RECORD ALTER COLUMN MAXIMUM FLOAT

Appendix J • Data Exporting

939

Task 2: Determine which metrics you want to export

 There are different ways to control which metrics are exported. You can
specify to get all metrics for a particular entity type. You can exclude metrics
from that grouping or you can specify to include only specific metrics. For
more information on the Diagnostics data model see the Diagnostics Data
Model and Query API document available on the DVD and in the help.

Important: The data export operation exports metric data only, that is
counts, latencies, and averages. No instance data or status data is exported.
Also you cannot export call profile data.

Metrics are grouped by the entity type to which they apply as well as other
criteria. The following entity type groupings are the most commonly used:

➤ /probegroup/probe

Metrics for all probes across all probe groups.

➤ /probegroup/probe/fragment

Metrics for all server requests across all probe groups and probes.

➤ /probegroup/index[name='rollup_fragment']/fragment

Metrics for server requests rolled up by probe across all probe groups.

➤ /probegroup/probe/index[name=’services’]/service

Metrics for Web services (excluding operation) across all probe groups and
probes.

➤ /index [equals(name,'apps')]/app/app_metrics

Metrics for a particular application.

➤ /probegroup/probe[equals(probeType, 'Oracle')]

Metrics for all Oracle collectors.

➤ /probegroup/probe[equals(probeType, 'SqlServer')]

Metrics for all SqlServer collectors.

➤ /host -- Metrics for all hosts (various system metrics).

➤ /txn -- Metrics for all BPM transactions.

Appendix J • Data Exporting

940

The following tables give examples of types of metrics and the categories
they belong to:

Category Metric

Classes Classes Currently Loaded
Classes Loaded
Classes Unloaded

Dynamic Caching Caching Current Cache Size
Caching Max Cache Size

EJB EJB Activates
EJB Activation Time
EJB Committed Transactions / sec
EJB Concurrent Active Methods
EJB Concurrent Live Beans
EJB Create Time
EJB Creates
EJB Drain Size
EJB Drains From Pool
EJB Frees
EJB Gets Found
EJB Gets From Pool
EJB Instantiates
EJB Load Time
EJB Loads
EJB Passivates
EJB Passivation Time
EJB Passive Beans
EJB Pools Size
EJB Ready Beans
EJB Remote Time
EJB Removes
EJB Response Time
EJB Returns Discarded
EJB Returns To Pool
EJB Rolled Back Transactions / sec
EJB Store Time
EJB Stores

Appendix J • Data Exporting

941

EJB

(Continued)

EJB Timed Out Transactions / sec
EJB Total Method Calls
EJB-Cache Access / sec
EJB-Cache Beans Cached
EJB-Cache Get Failures / sec
EJB-Pool Access / sec
EJB-Pool Available Beans
EJB-Pool Beans in Use
EJB-Pool Current Waiters
EJB-Pool Get Failures / sec
EJB-Pool Get Timeouts / sec

Execute Queues Execute Queues Idle Threads
Execute Queues Pending Requests
Execute Queues Requests / sec
Execute Queues Total Threads

GC GC Collections/sec
GC Time Spent in Collections

Http Status 5xx-6xx

J2C Connections J2C Connection Handles
J2C Connection Released
J2C Connections Allocated
J2C Connections Closed
J2C Connections Created

JDBC JDBC Connections Created/sec
JDBC Create Connection Delay
JDBC Current Capacity
JDBC Execute Statement
JDBC Leaked Connections
JDBC Reconnect Failures
JDBC Requests Waiting for Connection
JDBC Statement Cache Accesses / sec
JDBC Statement Cache Hits / sec
JDBC Statement Cache Size
JDBC Total Connections Opened
JDBC Wait Seconds High

Category Metric

Appendix J • Data Exporting

942

You specify the group or individual metric to export as described in Task 4.

Task 3: Determine the frequency and the recovery period

Each export operation has a specified frequency which controls how often it
occurs and therefore the granularity of the returned metrics. The
recommended frequency is 1h (hourly) which means that every hour the
export operation is run. Other options for frequency are: 5m and 1d.

Note: The data export operation can be run as frequently as desired however
the data export operation affects the Diagnostics Server performance. The
higher the frequency, the greater the load on the server. You can configure
the export processing of the mediators in batches to reduce the load on the
commanding server (servers-per-query attribute set in the etc/
data-export-config.xml file on the server).

You can also specify a frequency recovery period. The recovery period is
used only when the commanding Diagnostics Server is shut down or
becomes otherwise unavailable. This value tells the commanding
Diagnostics Server how far back to go to resume running the data export
operations when it resumes operation.

The frequency recovery period formula is:

(current time) - (recovery-periods * frequency)

Latency latency

total_cpu

exception_count

timeout_count

throughput

Category Metric

Appendix J • Data Exporting

943

For example, assume a commanding Diagnostics Server was not active for 24
hours. A data export operation with an hourly frequency has missed a
minimum of 23 executions. By default, the data export operations would
start querying at the time the outage occurred (24 hours in the past). The
metrics for the hourly data were aggregated into larger buckets and,
therefore, the returned metrics are not meaningful.

However, if the recovery periods is specified as 6h, the hourly task would go
back 6 hours in time (instead of 24) to start it's querying against the TSDB.
These metrics are meaningful.

Set the <frequency> and <recovery-periods> elements as described in Task 4.

Task 4: Modify the data export configuration file

The queries that export the Diagnostics data are defined in
<diagnostics_server_install_dir>/etc/data-export-config.xml file of the
Diagnostic Commander Server.

Follow these steps to set up this file:

 1 Make a backup copy of the <diagnostics_server_install_dir>/etc/
data-export-config.xml file if desired.

 2 Open the <diagnostics_server_install_dir>/etc/data-export-config.xml file
for editing.

 3 Locate the <enabled> element and set it to true:

This element is used to turn on or off the data export operation. You should
disable the data export operation when it is not needed to avoid
unnecessary system overhead. By default the data export operation is
disabled.

 4 Locate the <customer name> element and set it to the customer name:

Unless you are a SaaS customer, the customer name should always be
Default Client.

<enabled>true</enabled>

<customer name=’Default Client">

Appendix J • Data Exporting

944

 5 Locate the <db-target> element and enter the driver name, connection URL,
user name and password (encrypted or plain text) for the target database.

For example, for SQL Server with an encrypted password:

For example, for Oracle with an unencrypted password:

For Oracle databases, the oracle.jdbc.defaultNChar property must be set to
true when UTF8/UTF15 character support is required.

To encrypt a database password, use the Diagnostics password encryptor. See
“Password Obfuscation” on page 125.

For the <batchsize> element, specify the batch size in units used for optimal
JDBC PreparedStatement execution. By default, this is set to 100. Large
implementations with large payloads require adjustments to the default.

 6 For each set of metrics that you want to export, specify the following in the
<query>:

id= A name which identifies the query being defined. Must be unique to this
data-export-config.xml file. Spaces are not allowed in the id value.

frequency= A string value that specifies how often to run the query. Options
are: 1h, 5m, and 1d.

recovery-periods= specifies how far back in time to start querying after an
outage occurs.

<db-target>
<driver>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver>
<connection-url>jdbc:sqlserver://testapps.hp.com:1433;databaseName=DIAG</

connection-url>
<username>sa</username>
<encrypted-password>OBF:1ym51y0s1uo71z0f1unr1y0y1ym9</encrypted-password>
<batchsize>200</batchsize>

</db-target>

<db-target>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<connection-url>jdbc:oracle:thin:@testapps.hp.com:1521:ORCL</connection-url>
<username>diagfan</username>
<password>tiger2</password>
<connection-property name="oracle.jdbc.defaultNChar" value="true"/>

</db-target>

Appendix J • Data Exporting

945

<entity-path> One of the entity path groupings described in Task 2.

<init-query-time> or <init-query-periods> A time in the past at which the
query starts. <init-query-time> is a time value specified in standard XSD
time format. <init-query-periods> is an integer that is multiplied by the
frequency to determine the query time. If omitted, the query runs at the
next frequency boundary.

For example, the following entry creates a query that runs every hour and
returns all of the metrics for all probes in all probe groups. If an outage
occurs, only recover back 2 hours from current time:

The following entry creates a query that runs every hour and returns every
hour’s rollup fragment latency metrics for all probe groups:

The following entry creates a query that runs every hour and returns every
hour’s web services latency metrics for all probe groups starting from April
22 at 3pm:

 7 Optionally, you can use the servers-per-query attribute on a query as a way
to reduce the load on the server.

servers-per-query= specifies processing the export query in batches.

<query id="Probes" frequency="1h" recovery-periods="2">
<entity-path>/probegroup/probe</entity-path>

</query>

<query id="Aggregate-SRs" frequency="1h" recovery-periods="2">
<entity-path>/probegroup/index[name='rollup_fragment']/fragment</entity-path>

</query>

<query id="Web-Services" frequency="1h" recovery-periods="2">
<entity-path>/probegroup/probe/index[name='services']/service</entity-path>
<init-query-time>2009-04-22T15:00:00</init-query-time>

</query>

<query id="Probes" frequency="1h" recovery-periods="2" servers-per-query="10">
<entity-path>/probegroup/probe</entity-path>

</query>

Appendix J • Data Exporting

946

For example, if there are 30 mediator servers and you set
servers-per-query=10, then the export gets results for 10 mediators, exports
these results and then processes the next 10 mediators and so on.

This attribute should only be set when using more than 10 mediators.

 8 Optionally, each query can have an include or exclude filter applied to the
query specified in the <entity-path> element. The include filter elements
must be specified first before the exclude filter elements.

For either filter, specify:

name= A regular expression to match against the metric name to filter. A
value of "" matches all metrics.

category= A regular expression to match against the category name to filter.
A value of "" matches all categories.

<order>: For multiple include or exclude filters, the order in which to
process the filters.

For example, the following entry returns metrics for Database metrics only:

The following example returns all metrics for EJBs excluding EJB-Poll
metrics.

For more information about regular expressions, see “Using Regular
Expressions” on page 926.

<query id="Probes" frequency="5m" recovery-periods="2">
<entity-path>/probegroup/probe</entity-path>
<metric-include-filter order="1" name="" category="Database" />
<metric-exclude-filter order="1" category="" />

</query>

<query id="EJBStats" frequency="5m" recovery-periods="2">
<entity-path>/probegroup/probe</entity-path>
<metric-include-filter order="1" name="" category="EJB" />
<metric-exclude-filter order="1" name="EJB-Pool" />

</query>

Appendix J • Data Exporting

947

 9 Optionally, specify the data retention rules for the extracted data by
specifying the <purge> element. This prevents the database from running
out of storage.

For example, the following entry causes data that is over 24 hours old
(retention="1d") to be deleted from the target database. The purge operation
is initiated every hour (frequency="1h") and any needed purge operations
use 1hr increments (purgeInterval="1h") to purge the data, thus reducing
overall load on the system:

 10 Save the changes to the data-export-config.xml file.

Task 5: Monitor the data export operation

Assuming that the corresponding commanding Diagnostics Server is started,
the entries in the saved configuration file take effect immediately. You do
not need to restart the commanding Diagnostics Server.

<purge id="Default.Client.Purger" frequency="1h" retention="1d" purgeInterval="1h"/>

Appendix J • Data Exporting

948

The data-export-config.xml is parsed and verified as follows:

 1 Each [db-target] specified in the XML is verified by connecting and verifying
the database tables are available. If they are not available they are created
with the following data relationships:

 2 The Diagnostics Server schedules when to run each query based on the
<frequency> specified. For example, a daily report (frequency = 1d) is run
once a day after the last hour of the day has been aggregated into that daily
summary. This means, in particular, that the queries are automatically
aligned at the existing granularity boundaries.

 3 When the scheduled query executes, the results of the query are stored in
the database tables as follows:

➤ Entity descriptions, such as probe, fragment, or host are stored in the
ENTITY table and the unique key is a MD5 hash of the TSDB entity key
and the distributed source value to make it unique within a federated
environment.

Appendix J • Data Exporting

949

➤ Metrics descriptions are stored in the METRIC table and the unique key is
a MD5 hash of the metric data name, metric data collector name and the
distributed source to make it unique within a federated environment.

➤ The metric values are stored in the RECORD table and have the foreign
key values pointing to the ENTITY and METRIC table unique keys. This is
done to reduce overall size of data storage as the descriptions of both
entities and metrics would be duplicated on every RECORD table row.

➤ The 2 additional tables, ENTITY_ATTRIBUTE_VALUES and
ENTITY_ATTRIBUTE, serve as lookup tables to further describe the
ENTITY dimension.

Task 6: Verify the results

You can use the database tools of your target database to verify the expected
results. For example, the following image shows the results stored in the
METRIC table of a SQL Server database. This set of metrics is returned based
on the query statement shown:

<query id="Probes" frequency="1h" recovery-periods="2">
<entity-path>/probegroup/probe</entity-path>

</query>

Appendix J • Data Exporting

950

Task 7: Select the data from the target database

Once the exported data is stored in the target database, you can query it as
desired. However, a pivot manipulation is required to get the data into a
useful reporting format. The pivot uses the foreign key references to
combine the dimension table data into a flatten row with the description
data joined to the fact table.

Sample SQL scripts, queries and reports are included in <server_install_dir>/
contrib/dataexport/ as follows:

➤ sql_server_sample_view.sql. SQL Server views used to denormalize and
pivot exported data into a more friendly reporting format.

➤ oracle_server_sample_view.sql. Oracle DB Server views used to
denormalize and pivot exported data into a more friendly reporting format.

➤ oracle_view_query_samples.sql. Various examples of querying the Oracle
views.

➤ sql_server_reports directory. A directory containing SQL Server Reports
project with various sample reports. Using the SQL Server Reporting tool,
open the sql_server_reports directory and the "Diagnostic Fragments.sln"
file.

Sample Queries

This section includes some query examples for dealing with time, querying
totals and querying averages.

Dealing with Time

To query for data from 8 am to 5 pm, your query should specify the start
time as 8:00 and the end time as 16:59. If you specify 17:00 as your query's
end time, you will include data from the next time bucket which could be
17:00 to 18:00. This is reflected in the examples that follow.

Querying for Totals

Use the sum() function to calculate totals of metrics.

Appendix J • Data Exporting

951

Example:

This query will calculate the total number of threshold violations between
6pm and 8pm for the Server Request with the entity path: Default Client /
Default / ROS54770TST_Diag80_JDK_15.

select entity_display_name as Server_Request, sum(total) as
Avg_Latency,sum(total) as Tot_Latency, sum(rec_count) as count, metric_name,
units, name, entity_path
from DIAG.DBO.REG_FRAGMENT_TYPE_METRICS_VIEW
where metric_name = 'threshold_violations'
 and ts between '2009-06-11 18:00:00.000' and '2009-06-11 19:59:00.000'
 and entity_path = 'Default Client / Default / ROS54770TST_Diag80_JDK_15 / '
 group by entity_path, entity_display_name , metric_name,units, name
 order by entity_path, entity_display_name

Querying for Averages

To calculate the average metric value, divide the total metric value by its
count. The rec_count field will contain the count.

Note: The count for the Soap Fault metric is set to its total and hence it is
not possible to calculate an average value for this metric. Only a total
calculation is possible for this metric. In Diagnostics version 7.5, this was
also true for the Threshold Violations metric. From Diagnostics 8.0 onwards,
the count is available for Threshold Violation and hence it is possible to
calculate an average for this metric.

Appendix J • Data Exporting

952

Example:

This query will calculate the average latency between 6pm and 8pm for the
Server Request with the entity path: Default Client / Default /
ROS54770TST_Diag80_JDK_15.

select entity_display_name as Server_Request, sum(total)/sum(rec_count) as
Avg_Latency,sum(total) as Tot_Latency, sum(rec_count) as count, metric_name,
units, name, entity_path
from DIAG.DBO.REG_FRAGMENT_TYPE_METRICS_VIEW
where metric_name = 'latency'
 and ts between '2009-06-11 18:00:00.000' and '2009-06-11 19:59:00.000'
 and entity_path = 'Default Client / Default / ROS54770TST_Diag80_JDK_15 / '
 group by entity_path, entity_display_name , metric_name,units, name
 order by entity_path, entity_display_name

Example:

This query will calculate the average number of threshold violations
between 6pm and 8pm for the Server Request with the entity path: Default
Client / Default / ROS54770TST_Diag80_JDK_15.

select entity_display_name as Server_Request, sum(total)/sum(rec_count) as
Avg_Latency,sum(total) as Tot_Latency, sum(rec_count) as count, metric_name,
units, name, entity_path
from DIAG.DBO.REG_FRAGMENT_TYPE_METRICS_VIEW
where metric_name = 'threshold_violations'
 and ts between '2009-06-11 18:00:00.000' and '2009-06-11 19:59:00.000'
 and entity_path = 'Default Client / Default / ROS54770TST_Diag80_JDK_15 / '
 group by entity_path, entity_display_name , metric_name,units, name
 order by entity_path, entity_display_name

953

Symbols

.NET advanced configuration
ASP.NET applications 282

.NET agent
.NET framework requirements 252
add an HP software product to

configuration 637
advanced configuration 627
collect additional metrics 666
configure for outgoing HTTPS 857
enabling and disabling 288
HTTP proxy 674
installing 251
launching the installers 254
performance counters 666
probe_config file elements 551
system metrics collector 691
uninstall 294
uninstalling 294
upgrade 903

.NET agent installer
how it works 252

.NET agent version information 288

.NET configuration file 551

.NET instrumentation 427

.NET layers 462

.NET points files 429

A

active 347
active users

list of 791, 819
active.products property 505
AD license 81, 86
AD mode

java agent 143

add-in
LoadRunner Diagnostics 765

admin alert message configuration 63
adonet.points 429
advanced options

show or hide 792
after

code 344
agent

.NET system requirements 38, 39
Java 133, 295

agent administration UI 515
agent name not localizable 47
agent, .NET, See .NET agent
agent, Java, See Java agent
agent.Java properties file 338
altert properties 793
AM license 81, 85
AM product mode 507
AM/Enterprise mode

java agent 142
appdomain element 552
application level permissions 806
application name

configure show in server request 538
application server

multiple JVM instances 233
application server configuration

generic 219
Oracle 224
SAP NetWeaver 178

application server startup script
generic 231

application servers
supported 30

application servers, supported 30
ApplicationPoolIdentity 666

Index

Index

954

args 344
argument capture 434, 440
arguments

mandatory for .NET 431
mandatory for Java 341
optional for .NET 432
optional for Java 342

ASP.NET applications
automatic configuration 283
discovering 282

aspnet.points 429
asynchronous thread sampling 540
authentication element 553
authorization and authentication 798
auto_detect.points file 338
automatic explicit mode 221
automatic implicit mode 224
automatic jsp instrumentation 247
Automatic Method Trimming

controlling 508
Azure Cloud 287

B

backslash (\) 928
backup 883
backup directories 886
backup symbol table

configuring 886
before

code 344
BizTalk 263
BSM performance graphing 756
bufferpool element 554
Business Availability Center

assigning permissions for Diagnostics
users 748

Diagnostics configuration 747
Business Service Management

Admin>Diagnostics 747
changing the Diagnostics Server

details 747
configure HTTPS communications

860
Diagnostics downloads 748
Diagnostics registration 747

samples queue size 495
setup to use Diagnostics 737
specifying Diagnostics Server details

740
Business Service Management server HTTPS

communication 860

C

caller 344
capture points

.NET 428
capture points files

mandatory point entries 341, 431
optional point entries 342, 432
using for instrumentation 338, 428

captureexceptions element 555
change

privilege level 799
CI population

discovery of IIS metadata 284
cipher suites 840
CIs

Diagnostics populates in BSM 283,
753

discover new J2EE servers 241
synchronize with BSM 791

class 341, 431
class map capture 364
ClassLoader class, recreating 911
client monitoring

disable 249
instrumentation 247

cloud
monitoring applications in the 287

CLP 377
code snippet helper 354
code snippets 348

secure code-key 362
code-key

generating 362
collect CPU timestamps 545
collector

configure for incoming HTTPS 850
configure for outgoing HTTPS 857
configuring active system property

Index

955

files 106
installing on Windows 94
starting and stopping 128
supported platforms 92
uninstalling 130
upgrade 904
verifying installation 103, 127
version information 130

communication diagrams 889
compatibility with other HP Software 907
component and communication diagrams

889
component communications 793
Components page 790
compressed files 876
configure Diagnostics 787
consumer ID

look deeper in xml to find 530
consumer IDs

configuring 524
consumeridrules element 556
CORBA instrumentation 387
CPU 521
CPU time metrics 521

configuring 521
CPU timestamp 545
cpu.timestamp.collection.method 522
cputime element 557
credentials element 558
cross VM

RMI instrumentation 387
custom context root 497
custom dashboard 791
custom data 868
custom sub-layer instrumentation 366
custom_code.properties 350
customer information 793

D

data compression 876
Data exporting

about 937
configuration file 943
frequency 942
recovery period 942

sample scripts 950
supported metrics 939
target database 938, 943

data management 867
data management, See Diagnostics data

management
data port 265
data retention 876
database name

automatically discovered 114
data-export-config.xml file 943
days data 873
deep_mode 343, 369, 433
deployed into

show for server request 538
depth element 561
depth trimming 509, 646
detail 344
Diagnostics

integration with LoadRunner 769
integration with Performance Center

779
integration wtih Business Service

Management 737
Diagnostics components

description 28
host requirements 31
synchronizing time between 466

Diagnostics data management
backing up data 883, 888
custom screen data 868
data sizes & data retention 876
performance considerations 882
performance history data 870, 874

Diagnostics mediator
firewall configuration 681

Diagnostics Server
adjusting heap size 471
administration 787
advanced configuration 465
changing default port 476
configuration pages 492
configure for incoming HTTPS 844
configure for outgoing HTTPS 853
configuring 72
configuring for large installation 470

Index

956

configuring for multi-homed
environments 479

configuring LoadRunner offline file
492

configuring time synchronization 468
configuring, advanced 465
high availability 488
HTTP proxy 672
information required for installation

40
installing 54
jetty.xml file, modifying 480
jetty.xml file, sample 482
launching the installers 55
optimized to handle more probes 496
override assignment for a probe 491
overriding default host name 476
reducing memory usage 483
reducing memory use 483
running the installation 59
setting event host name 479
setup in BSM 740
starting and stopping 70
synchronizing time between

Diagnostics components 466
system requirements 47
UI 787
uninstalling 73
upgrade 895
verifying installation 67

Diagnostics Server host name
overridding 476

Diagnostics Server installation 54
Diagnostics Server port

changing default 476
Diagnostics Server version information 72
Diagnostics UI 788
diagnosticsserver element 562
discovery

new J2EE servers 241
disk space exhausted 876
documentation updates 23

E

embedded java probe and HTTPS 856

enable.stack.trace.sampling 540
encrypted password 125
encryption cipher suites

filtering 840
EncryptPassword.jsp 125
enterprise level permissions 806
eve files 777
event host, setting name for 479
exception data

limiting 652
exception tree data

limiting 513
exceptiontype element 564
exclude element

parent is captureexceptions 565
parent is lwmd 566

excludeassembly element 567
execute

privilege level 799
explicit mode 221
exporting data 937

F

files 791
files page

accessing 517
filter element 568
firewall

enabling communications through
675

fragment name based trimming 484

G

gentvhttpeventforwcf element 570
granularity 872
GROUPBY for JMX metrics 732

H

heap size 471
adjusting for large installation 471
adjusting in startup script 237

high availability 488
host requirements, Diagnostics components

31

Index

957

hours data 873
HP Software Support Web site 22
HP Software Web site 22
HTTP proxy communication

.NET Probe 674
Diagnostics Server in Mediator Mode

672
enabling 671
Java Probe 673

httpclient element 569
httpd.conf 834
httpheaderrule element 571
httpheaderrules element 572
HTTPS

configuration steps 841
configure for incoming

communication 843
configure for outgoing

communication 853
HTTPS communication

enabling for Business Service
Management server 860

HTTPS communications
enabling between components 840

I

IAPA 61
id element 573
ignore_cl 342, 432
ignore_method 342, 433
ignore_tree 343
ignoreScope 343, 433
IIS Host Header 657
IIS worker process crash in VMWare 622
iis_discovery_data.xml 284
implicit mode 224
include element

parent is captureexceptions 575
parent is lwmd 576

installation
.NET agent 251
collector 92
Diagnostics Server 53
Diagnostics Server (Windows) 54
gathering information for 40

interruption during 910
Java agent 133
order of 48
planning 40
recommended order 48

installation requirements
.NET agent 38, 39
.NET Diagnostics Profiler 39
Diagnostics Server 32
Java agent 36
Java Diagnostics Profiler 37

instance tree files 875
instant on license 80
instrumenation

deep_mode examples 446
instrumentation

.NET applications 427

.NET remoting 451
access filter 374
advanced 383
allocation analysis 375
always trim 379
argument capture 371, 440
attributes in instance trees 374
caller side 375, 438
capture for trended methods view

367, 437
capture with controlled scope 369
collection leak pinpointing 377
correlation across multiple threads

389
CPU time collection 380
custom layers 366, 436
deallocation 375
deep_mode hard and soft 369
direct recursion 375
edit points 415
edit points from the profiler 412
enable at runtime 379
enabling for .NET 290
fragment local storage 392
ignore specific methods 366, 436
Java applications 337
LWMD 376
never trim 379
non-ASP.NET applications 447

Index

958

object lifecycle 377
printing 380
RMI 387
RootRename 373
thread local storage 388
TransactionVision related 346
URI aggregation 386
using annotations 396
using wildcards 366, 436
view current 413
web services 372

instrumentation element 577
instrumentation examples

.NET 435
Java 365

instrumentation overhead 381, 461
instrumentation page

accessing 517
iprule element 578
iprules element 579

J

JAAS authentication 820
Java agent

add an HP software product to
configuration 505

advanced configuration 499
automatic method trimming 508
configure for incoming HTTPS 847
configure for outgoing HTTPS 855
configuring and installing, about 134
configuring for multiple JVMs 233
configuring for proxy server 511
controlling log messages 502
edit probe settings from the profiler

539
failed operation 911
HTTP proxy 673
installing 133
installing using generic installer 156
JMX metric collector 723
JMX metrics collector 723
launching windows installer 135
log messages 502
metrics collectors 703

proxy server 511
reverse HTTP for agent in SaaS 512
silent installation 157
system metrics 711
system requirements 36
uninstalling 160
Unix install 134
upgrade 899
upgrade steps 900

Java agent installer
how it works 134

Java agent windows install 137
Java Diagnostics Profiler

disabling 501
WAS startup error 912, 913

Java instrumentation 337
code snippets 348

Java layers 424
Java Profiler

PRO product mode 506, 507
Java profiler

configuration tab 412, 539
Java system properties 153
JDK/JRE executable 149
jetty.xml 480
jetty.xml file

modifying 480
sample 482

JMS temporary queues
grouping 537

JMX metrics
accessing 723
add custom 725
collecting 725
custom 728
GROUPBY 732
understanding patterns 731

JMX metrics collector 723
configuring 724

JRE instrumenter
how it works 226

JRE instrumenter options to invoke 219

K

keyword 342, 432

Index

959

L

large deployments
data management 882

latency element 580
latency trimming 508, 641
layer 341, 431
layer_type 435
layers

.NET 462

.NET layers 462
about instrumentation 423, 462
Java 423
Portals 425
view current 414

layers page
instrumentation control and edit 382

layers tree 416
layerType 347
LDAP authentication 822
license 791
light-weight memory Diagnostics (LWMD)

649
Linux custom metrics 719
llicensing 80
LoadRunner

Diagnostics probe metrics 774
Diagnostics, configuring scenarios to

use 774
Diagnostics, setting up 773
firewall configuration 687
installing add-in for Diagnostics 765

LoadRunner offline analysis
reducing file size 493

LoadRunner Offline File
advanced Diagnostics Server

configuration 493
estimating size of 493
reducing size of 493

LoadRunner scenarios
configure Diagnostics parameters 774

log messages 502
logdirmgr element 581
logging 791, 793

controlling 502
disable .NET agent 289
disabling 655

logging element
parent is appdomain probeconfig

process 584
parent is instrumentation 582

LR/PC runs
assign Diagnostics server for a probe

491
lwmd element 586
LWMD See lightweight memory Diagnostics

(LWMD)

M

major time periods 872
manual mode 226
max.search.level.depth 530
mediator element 587
memory diagnostics 793
memory usage, reducing 483
message handler 237
method 341, 431
method_access_filter 343
metric collector default port 714
metric element 590
metric patterns 731
metric port 266
metrics

add custom JMX 725
add custom system 696, 715
list available 705
list available JMX 725

metrics agent 691
metrics collector

modifying default port 714, 715
system metrics 713

metrics element 589
metrics entries 694, 706, 728
metrics.config

.Net 693
Java 703, 713
keywords 699

MI listener 680
migrate servers 477
minor time periods 872
modes

.NET agent 638

Index

960

Java agent 505, 637
modes element 592
months data 873
MQ probe

configuring 117
permissions required 117

multi-homed environments 479
multiple JVM instances 233
MyBSM authentication issue 763

N

nanny
start and stop using 70

negative latency with VMWare guest 622
NET Diagnostics Profiler

enabling 641
non ASP.NET applications 285
non-ASP.NET applications

instrumenting 447

O

offline analysis files
improve transfer 777

offline.xml 775
OM agent and IAPA component installation

64
online cache 793
Oracle 10g JAX-RPC

SOAP message handler 240
Oracle application server startup scripts

modifying 172
Oracle probe, configuring 110
Oracle, application server configuration 224
order of installation, recommended 48
OSGi 242
OVTA like points 421

P

parked fragments 390
password obfuscation 125
patch installation instructions 893
path segment trimming 510
perfmon 666

system metric counters 696

Performance Center
firewall configuration 687
integration with Diagnostics 779
load tests, configuring to use

Diagnostics 783
offline analysis files 784
setting up to use Diagnostics 782

performance counters
access rights 666

performance history data 870
performance monitor users group 666
permission denied

server install 64, 919
Permissions Page 805
permissions, See user permissions
persistence

configure 877
data file types 873, 874
data files 876

persistence directory
history data 872

persistence.purging.threshold 880
PMI

EXPAND_PMI 733
PMI integration 756
points

.NET 428
arguments defined for .NET 430
arguments defined for Java 340
edit 418
Java 338
specifying for Java applications 349

points element 597
points list 417
portal layers 425
preinstallation considerations 47
priority 347
privileges

user 799
PRO product mode 506, 507
probe administration UI 515
probe aggregator 286
probe host machine name

getting 503
probe level permissions 806
probe metrics

Index

961

additional .NET 590
collect additional 666

probe metrics in offline analysis 774
probe name

unique 234
probe settings

edit from the profiler 539
Probe, .NET

enabling 628
Probe, .NET advanced configuration

classes/methods 628
customizing instrumentation for

ASP.NET applications 628
depth trimming 646
disabling logging 655
elements and attributes 551
latency trimming and throttling 641
light-weight memory Diagnostics

(LWMD) 649
overriding default Probe host name

656
probe.id 235
probe_config.xml

elements and attributes defined 551
probeconfig element 598
process element 599
product security 798
profiler

disabling 501
profiler element 601
profilers

authentication for standalone 518
proxy

enabling communication through
671

proxy server
configuring for agent 511

purging
symbol table 879

Python agent
installing 295

Q

query 791
query page

accessing 517
queue size 495

R

reflector 634
registrar 791
regular expressions 926
regular expressions, backslash (\) 928
remote-backup.sh 884
remoting

instrumentation for 451
requirements, Diagnostics Server 47
REST client

.NET configuration 445
REST services

.NET WCF 444
configuring as web services 537

restore 887
resumeFragment 390
retention 876
reverse HTTP

configuring for SaaS 512
RMI instrumentation 387
roles 800
rootRenameTo 347
rum element 603
Run-time Service Model

timing for adding web service CIs 753

S

SaaS
.NET agents 253
java agent and mediator connection

147
java agents 135
port 147
servers 55

sample element 605
samples queue size 495
samples sent to BSM 752
sampling

thread stack trace 540
SAN drive 33
SAP collector

Index

962

out of memory 109
SAP NetWeaver, application server

configuration 178
SAP probe, configuring 106
scalability information 34
scheduler page

accessing 517
scope 343, 433
secure communications 839
security 791
security page

accessing 517
security permissions 799
server configuration pages 496
server requests

too many URIs 510
Server, Diagnostics See Diagnostics Server
servers

migrating 477
Service Health Analyzer (SHA) 755
ServiceGuard

high availability server 489
setup

installation 55
signature 341, 435
silent install

log file 69, 104, 159
server 68
specify temp dir 69, 104, 159

SiteMinder
reverse proxy setup in Apache 834

SiteMinder JAAS authentication 836
SiteMinder JAAS LoginModule

reverse proxy 833
SMTP settings 63
snapshot persistence 880
SOAP Fault Data, configuration for .NET

probes 665
SOAP fault data, configuring for Java probes

535
SOAP faults

configuring capture 535, 665
SOAP message handler 152, 237

disable 238
loading 239

soapcapture element 606

soaprequestforsoapfault element 608
soaprule element 609
soaprules element 610
Solaris custom metrics 718
SQL Server collector

Windows NT security 115
SQL Server probe

configuring 113
sql statement parsing 537
sql statements

limit number of 538
sqlparsing element 611
stack trace data

limiting 654
stack trace sampling 540

examples 542
troubleshooting 543

startup script
multiple probes 235

summary files 874
support collector 915
switch_ovo_agent.sh 745
symbol table backup

configuring 886
symbol table files 874
symbols element 613
synchronize web service CIs 753
synchronize with BAC 791
system metrics

.NET 691
about 711
add custom 696, 715
capture 691
customizing in Windows 715
customizing on Linux host 719
customizing on Solaris host 718
default metrics collected by .NET

metrics agent 692
default metrics collected by Java agent

712
Java 711
metrics collector 713
metrics collector entries 705
modifying captured metrics 708
stopping capture 708

system metrics collector 711

Index

963

system requirements 31
.NET agent 38
Diagnostics Server host 32
Java agent host 36
with .NET probes 34
with Java probes 33

system/ 694

T

temporary queues
grouping into a single node 537

thread stack trace sampling 540
throttling 644
TIBCO ActiveMatrix 3.x configuration 185
TIBCO BusinessWorks configuration 183
TIBCO EMS probe

configuring 120
TIBCO JMX metrics collection 184
time synchronization 466
time synchronizing between components

466
timestamping 521
timestamps

CPU 545
Tomcat application server configuration 187
topology element 615
TransactionVision related instrumentation

346
trend files 875
trial license 80
trim element 618
trimming

controlling depth 509
controlling latency 508, 641
server request name based 484
server request URIs 510

trimming parameters 474
troubleshooting Diagnostics 909
TV event generation

points driven 434

U

UI requirements
JRE version 32

unique probe name 234
UNIX installer

how to select an option 925
updates, documentation 23
upgrade paths

general recommendations 894
upgrade procedures 893
upgrade recommendations 894
upgrading earlier versions of Diagnostics 50
URI truncation and trimming 510
use.cpu.timestamps 522
user permissions

about 798
accessing Diagnostics, default users

801
assigning for Diagnostics users in

Business Availability Center 748
managing user details 802, 810

user roles 800
users

list of 791, 819

V

view
privilege level 799

VMWare
time synchronization 628

VMware
time synchronization 512

VMware and CPU time metrics 522, 545
vmware element 622
VMWare issues on .NET 622
VMware probe

configuring 123

W

WCF supported transports 252
WCF.points 429
WDEDelivery queue size 495
weblogic over T3

instrumentation for cross VM 388
webservice element 624
WebSphere application server startup script

modifying 196

Index

964

WebSphere application startup issue 914
WebSphere IDE configuration 211
WebSphere JAX-RPC

SOAP message handler 239
WebSphere JMX metric collection 211
weeks data 873
windows credentials

SQL server collector 115
Windows custom metrics 715
ws element 625

X

xml
look deeper in xml for consumer ID

530
xvm element 626

Y

years data 873

Z

z/OS
installing the Java agent 154
Java agent install 154

zip files 876

	HP Diagnostics Installation and Configuration Guide
	Table of Contents
	Welcome To This Guide
	How This Guide Is Organized
	HP Diagnostics Online Documentation
	Additional Online Resources
	Documentation Updates

	Preparing to Install
	Preparing to Install HP Diagnostics
	HP Diagnostics Components and Data Flow
	Supported Application Servers and Environments
	System Requirements for the Diagnostics Components
	Supported Environments for the Diagnostics Components
	Requirements for the Diagnostics Enterprise UI
	Requirements for the Diagnostics Server Host
	Scalability Information
	Requirements for the Diagnostics Java Agent Host
	Requirements for the Host of the Diagnostics Java Profiler User Interface
	Requirements for the Diagnostics .NET Agent Host
	Requirements for the Host of the Diagnostics .NET Profiler User Interface
	Requirements for the Diagnostics Collector Host
	Requirements for the Python Agent

	Information Required for Installation
	Diagnostics Server
	Java Agent
	.NET Agent

	Pre-installation Considerations
	Recommended Order of Installation
	Licensing HP Diagnostics
	Upgrading from Earlier Versions of Diagnostics

	Installation of the Diagnostics Server and Collectors
	Installing the Diagnostics Server
	Installing Diagnostics Servers
	Launching the Diagnostics Server Installer
	Running the Installation

	Verifying the Diagnostics Server Installation
	Silent Installation of the Diagnostics Server
	Starting and Stopping the Diagnostics Server
	Instructions for a Windows Machine
	Instructions for Solaris or Linux Machines (using the Nanny)
	Instructions for Solaris or Linux Machines (without using the Nanny)

	Licensing Your Diagnostics Software
	More Information on Configuring Diagnostics Servers
	Determining the Version of the Diagnostics Server
	Uninstalling the Diagnostics Server
	Manual Installation of OM Agent and IAPA Components
	Manual Uninstall of OM Agent and IAPA Components

	Licensing HP Diagnostics
	About HP Diagnostics Licensing
	Types of Licenses
	Licensing the Diagnostics Server in Commander Mode
	View License Information
	License Information Based on Currently Connected Probes
	License Details

	Licensing the Other Diagnostics Components

	Installing Diagnostics Collectors
	About Installing the Diagnostics Collector
	Accessing the Collector Installer
	Installing the Collector
	Silent Installation of the Diagnostics Collector
	Installing the Diagnostics Collector Using the Generic Installer
	How to Manually Add Another Collection Type After Installing the Collector
	Configuring the Active System Property Files
	Configuration for SAP NetWeaver-ABAP
	Configuration for Oracle
	Configuration for SQL Server
	Configuration for MQ
	Configuration for TIBCO EMS
	Configuration for webMethods Broker
	Configuration for VMware
	Password Obfuscation
	Verifying the Diagnostics Collector Installation
	Starting and Stopping the Diagnostics Collector
	Instructions for a Windows Machine
	Instructions for a UNIX Machine (using the Nanny)
	Instructions for a UNIX Machine (without using the Nanny)

	Determining the Version of the Diagnostics Collector
	Uninstalling the Diagnostics Collector

	Installation and Setup of the Java, .NET and Python Agents
	Installing Java Agents
	Overview of the Java Agent Installation
	Accessing the Java Agent Installer
	Installing the Java Agent
	Step 1. End User License Agreement
	Step 2. Specify Install Location
	Step 3. Review Pre Installation Summary Information

	Running the Java Agent Setup Module
	Step 1. Configuration Options
	Step 2. Agent Name and Group
	Step 3. Diagnostics Server Information
	TransactionVision Information
	Setup Process Begins
	Step 4. Post Setup Summary

	About Preparing the Application Server for Monitoring
	Register the Agent with the Diagnostics Servers
	Verifying the Java Agent Installation
	About Additional Configuration and Custom Instrumentation
	Configure SOAP Message Handlers
	Specify Probe Properties as Java System Properties
	Optional Advanced Configurations
	Optional Custom Instrumentation

	Installing the Java Agent on a z/OS Mainframe
	Installing the Java Agent on z/OS from the Diagnostics Installation Disk
	Installing Java Agents on Multiple z/OS Machines

	Installing the Java Agent Using the Generic Installer
	Silent Installation of the Java Agent
	Setting File Permissions (UNIX Only)
	Determining the Version of the Java Agent
	Uninstalling the Java Agent

	Preparing Application Servers for Monitoring with the Java Agent
	About Preparing Application Servers for Monitoring
	Examples for Configuring Application Servers
	Example 1: Configuring GlassFish
	Example 2: Configuring JBoss
	Example 3: Configuring Oracle
	Example 4: Configuring SAP NetWeaver
	Example 5: Configuring TIBCO ActiveMatrix/ BusinessWorks
	Example 6: Configuring Tomcat
	Example 7: Configuring WebLogic
	Example 8: Configuring WebSphere
	Example 9: Configuring webMethods

	About the JRE Instrumenter and Different Options to Invoke
	Using the JRE Instrumenter in Automatic Explicit Mode
	Using the JRE Instrumenter in Automatic Implicit Mode
	Using the JRE Instrumenter in Manual Mode

	Other Configuration Options
	Configure Monitoring of Multiple Java Processes on an Application Server
	Adjusting the Heap Size for the Java Agent in the Application Server
	Configuring the SOAP Message Handler
	Configuring the Discovery of a New J2EE Server for CI Population
	Special Considerations for Applications Based on the OSGi Framework
	Special Considerations for Azul Users

	Preparing Application Servers for Client Monitoring with the Java Agent
	About Client Monitoring
	Enabling Client Monitoring
	Configuring and Disabling Client Monitoring
	Manually Instrumenting HTML/JSP Pages for Client Monitoring:

	Installing .NET Agents
	Overview of the .NET Agent Installation
	Accessing the .NET Agent Installer
	Installing the .NET Agent
	Step 1. End user license agreement
	Step 2. Specify install location
	Step 3. Select installation options
	Step 4. Select agent features to install
	Step 5. Agent name and group
	Step 6. Diagnostics server information
	Step 7. Port and connection information
	Step 8. Pre-install summary
	Step 9. Additional Setup for Agents Working in an HP SaaS Environment
	Step 10. Post Install Information
	Step 11. Restart IIS

	Post Install Tasks
	Verifying the .NET Agent Installation
	About Configuration of the .NET Agent for Diagnostics
	About Configuration of the .NET Agent for TransactionVision
	.NET Agent Configuration for TransactionVision
	Types of Events TransactionVision Can Trace with the .NET Agent

	Discovery and Standard Instrumentation
	Discovering ASP.NET Applications During Installation
	Discovering ASP.NET Applications After Installation
	Automatic Instrumentation and Configuration for Discovered ASP.NET Applications
	Discovery of IIS Metadata for CI Population of IIS Deployed ASP.NET Applications
	Non ASP.NET Applications

	Probe Aggregator Service
	Monitoring NET Applications Deployed in Azure Cloud
	Determining the Version of the .NET Agent
	Enabling and Disabling the Diagnostics Agent for .NET
	Disabling Logging
	Enabling and Disabling Standard Instrumentation for Applications
	Troubleshooting .NET Web Applications Not Discovered
	Other .NET Agent Troubleshooting Tips
	Uninstalling the .NET Agent

	Installing and Setting Up Python Agents
	Diagnostics Python Agent Overview
	System Requirements for the Diagnostics Python Agent
	Platform Support
	Diagnostics Server Compatibility

	Installing Python Agents
	Overview of the Python Agent Installation
	Installing the Python Agent
	The probe_setup.py Script
	Directory Structure

	Instrumenting a Python Application
	Using the hpdiag_instrument.py Wrapper Script
	Instrument the Main Script of the Monitored Application
	Decorate the Functions and Classes of the Monitored Application
	In Code Creation of Capture Points
	Instrumenting a Single Script

	Configuring the Python Agent
	Namespace [Mediator]
	Namespace [Logging]
	Namespace [Probe]
	Namespace [SystemMetricsCollector]
	Namespace [SystemMetrics]
	URI Truncation and Mapping
	URI Path Segment Trimming

	Description of the Parameters in the Points File
	Including Points Files

	Description of Custom Code
	The Purpose of Custom Code
	Custom Functions
	Returning HTTP Request Status Codes
	Cross VM Server Requests
	Argument Extraction

	Available Out-of-the-box Configurations
	OpenStack Instrumentation
	Django and WSGI Instrumentation

	Reconnect/Reinitialize Event Channel After Server Reboot
	Troubleshooting
	Removing the Python Agent

	Custom Instrumentation for Monitoring Java and .NET Applications
	Custom Instrumentation for Java Applications
	About Instrumentation and Capture Points Files
	Coding Points in the Capture Points File
	Mandatory Point Arguments
	Optional Point Entries

	Defining Points With Code Snippets
	Using Code Snippets
	Code Snippet Grammar
	Code Snippet Helper
	Securing Code Snippets

	Controlling Class Map Capture
	Instrumentation Examples
	Custom Layer and Sublayer
	Wildcard Method
	Ignore Specified Methods
	Capture Methods for the Trended Methods View
	Capture Only a Specific Method In a Class
	Capture a Specific Method That Returns a String
	Capture with a Controlled Scope
	Hard and Soft deep_mode
	Argument Capture
	Inbound and Outbound Web Services
	Renaming Root Methods
	Adding a Field to a Class
	Passing Attributes to Instance Trees
	Filtering Out Methods by Their Access Flag
	Not Recording Direct Recursion
	Performing Caller Side Instrumentation
	Configuring Allocation Analysis
	Configuring Lightweight Memory Diagnostics (LWMD)
	Configuring Collection Leak Pinpointing
	Enabling Object Lifecycle Monitoring for JDBC Result Set
	Adding a Disabled Point and Enabling it at Runtime
	Specifying that a Method Should Never be Trimmed
	Specifying that a Method Should Always be Trimmed
	Enabling Collection of CPU Time for a Method
	Changing SAP RFC Instrumentation Based on SAP JCO Library Version
	Printing Instrumentation and Runtime Information for a Point (Debugging Only)

	Understanding the Overhead of Custom Instrumentation
	Instrumentation Control on a Per Layer Basis
	Advanced Instrumentation Examples
	Using Caller Side Instrumentation
	URI Aggregation Instrumentation
	CORBA Cross VM Instrumentation
	Using RMI Instrumentation
	Using Thread Local Storage to Store the SOAP Payload
	Performing Correlation Across Multiple Threads
	Using Fragment Local Storage to Store Web Service Field
	Using Annotations for Custom Instrumentation

	Configuring Cross VM Correlations for New or Custom Technologies
	Client Side
	Server Side
	APIs Used to Facilitate Custom Transport Cross-VM Correlations
	HTTP/S Support

	Tutorial for Configuring Cross VM Correlation for Custom Technologies
	Step 1: Instrument Your Methods
	Step 2: Add “Coloring” to the Sender Logic
	Step 3: Remove Coloring from the Receiver Side

	Maintaining Instrumentation from the Java Profiler UI
	Reviewing the Current Instrumentation
	Maintaining the Instrumentation Points

	Default Layers Defined for Typical Java Classes and Methods
	Java EE Layers
	Portal Layers

	Custom Instrumentation for .NET Applications
	About Instrumentation and Capture Points Files
	Locating the .NET Capture Points Files
	Coding Points in the Capture Points File
	Mandatory Point Arguments
	Optional Point Entries

	Instrumentation Examples
	Custom layer and sublayer
	Wildcard method
	Ignore Specified Methods
	Capture Methods for the Trended Methods View
	Capture Only a Specific Method In a Class
	Capture a Specific Method That Returns a String
	Caller Side Instrumentation
	Argument Capture
	Configure WCF REST Services for Monitoring
	Deep_mode Examples
	How to Configure and Set Up Points for Non-ASP.NET or Windows Applications
	How to Configure Instrumentation for .NET Remoting

	Understanding the Overhead of Custom Instrumentation
	Default Layers for Typical .NET Applications
	.NET Layers

	Advanced Configuration of the Diagnostics Server and the Java and .NET Agents
	Advanced Diagnostics Server Configuration
	Synchronizing Time Between Diagnostics Components
	Understanding Time Synchronization
	Configuring the Time Synchronization on the Diagnostics Server

	Configuring the Diagnostics Server for a Large Installation
	Adjusting the Heap Size
	Adjusting the Amount of Data Pulled from the Probe
	Additional Adjustments

	Overriding the Default Diagnostics Server Host Name
	Changing the Default Diagnostics Server Port
	Migrating Diagnostics Server from One Host to Another
	Configuring the Diagnostics Server for Multi-Homed Environments
	Setting the Event Host Name
	Modifying the jetty.xml File
	Sample jetty.xml File

	Reducing Diagnostics Server Memory Usage
	Configuring Server Request Name Based Trimming
	Automating Composite Application Discovery in HP Diagnostics
	Scripting Applications
	Moving Composite Applications Between Environments

	Preparing a High Availability Diagnostics Server
	Creating a Standby Diagnostics Server
	Failover to the Standby Diagnostics Server

	Configuring Diagnostics for HP ServiceGuard (HA solution)
	Diagnostics Server Assignments (LoadRunner/Performance Center Runs)
	Configuring the Diagnostics Server for LoadRunner Offline Analysis File Size
	Estimating the Size of the LoadRunner Offline File
	Reducing the Size of the LoadRunner Offline File

	Configuring Business Service Management Sample Queue Size and Web Services CI Frequency
	Configuring Business Service Management Sample Queue Size
	Frequency of Web Service CIs

	Configuring Diagnostics Using the Diagnostics Server Configuration Pages
	Optimizing the Diagnostics Server in Production to Handle More Probes
	Configuring a Custom Context Root

	Advanced Java Agent and Application Server Configuration
	Advanced Configuration Overview
	Disabling the Java Diagnostics Profiler
	Controlling Probe Logging
	Controlling the Log Message Level
	Changing the Log Directory for a Probe

	Setting the Probe’s Host Machine Name
	Instructing the Probe to Use Reverse DNS Lookup
	Manually Specifying the Probe Host Name

	Specifying a Different Probe IP Address
	Set the Active Products Mode
	Controlling Automatic Method Trimming on the Agent
	Controlling Latency Trimming
	Controlling Depth Trimming

	Configuring URI Truncation, Mapping and Trimming
	Configuring an Agent for a Proxy Server
	Time Synchronization for Probes Running on VMware
	Limiting Exception Tree Data
	Limit Specific Exception Types
	Limit the Number of Exception Types
	Examples

	Diagnostics Probe Administration Page
	Accessing the Diagnostics Probe Administration Page
	Diagnostics Probe Components Page

	Authentication and Authorization for Diagnostics Java Profilers
	Configuring Collection of CPU Time Metrics
	Configuring Consumer IDs
	Basic Procedure for Consumer ID Configuration
	About Consumer ID Rules
	Consumer ID Rules Syntax and Examples for Java Agents
	A Value in a SOAP Header
	A Value in a SOAP Envelope
	A Value in the SOAP Body
	A Value in an HTTP Header
	A JMS Queue Name
	A JMS Message Property
	A JMS Message Header
	A specific IP Address
	A Range of IP Addresses

	Configuring SOAP Fault Payload Data
	Configuring REST Services
	Customizing Grouping JMS Temporary Queue/Topics
	Configuring SQL Query Parsing
	Configuring Display of Application Name for Server Requests
	Maintaining Probe Settings from the Java Profiler UI
	Configuring Thread Stack Trace Sampling
	Controlling CPU Timestamp Collection
	Enabling and Configuring Collection Leak Reporting

	Generating Performance Reports for JUnit Tests

	Understanding the .NET Agent Configuration File
	Understanding the .NET Agent Configuration File
	.NET Agent Configuration Elements
	<appdomain> element
	<authentication> element
	<bufferpool> element
	<captureexceptions> element
	<consumeridrules> element
	<cputime> element
	<credentials> element
	<demomode> element
	<depth> element
	<diagnosticsserver> element
	<exceptiontype> element
	<exclude> element (when parent is captureexceptions)
	<exclude> element (when parent is lwmd)
	<excludeassembly> element
	<filter> element
	<httpclient> element
	<gentvhttpeventforwcf> element
	<httpheaderrule> element
	<httpheaderrules> element
	<id> element
	<include> element (when parent is captureexceptions)
	<include> element (when parent is lwmd)
	<instrumentation> element
	<iprule> element
	<iprules> element
	<latency> element
	<logdirmgr> element
	<logging> element (when parent is instrumentation)
	<logging> element (when parent is appdomain, probeconfig, or process)
	<lwmd> element
	<mediator> element
	<metrics> element
	<metric> element
	<modes> element
	<points> element
	<probeconfig> element
	<process> element
	<profiler> element
	<rum> element
	<sample> element
	<soapcapture> element
	<soappayload> element
	<soaprequestforsoapfault> element
	<soaprule> element
	<soaprules> element
	<sqlparsing> element
	<symbols> element
	<timeskew> element
	<topology> element
	<transport> element
	<trim> element
	<tv> element
	<urireplacepattern> element
	<vmware> element
	<webserver> element
	<ws> element
	<xvm> element

	Advanced .NET Agent Configuration
	Time Synchronization for .NET Agents Running on VMware
	Customizing the Instrumentation for ASP.NET Applications
	Virtual Directories (AppDomains) Under Different IIS Paths with the Same Names
	Backward Compatibility with Pre-9.01 Releases

	Discovering the Classes and Methods in an Application
	Controlling Which HP Software Products the Agent can Work With
	Configuring Support for MSMQ Based Communication
	Configuring Latency Trimming and Throttling
	Disabling Latency Trimming
	Enabling Latency Trimming
	Setting Latency Trimming Thresholds
	Configuring Latency Trimming Throttling

	Configuring Depth Trimming
	Configuring URI Truncation and Mapping
	Configuring the .NET Agent for Lightweight Memory Diagnostics
	Limiting Exception Stack Trace Data
	Limit Specific Exception Types
	Limit the Number of Exceptions per Server Request
	Limit the Size of the Stack Trace
	Example

	Disabling Logging
	Overriding the Default Probe Host Machine Name
	Listing the Probes Running on a Host
	Authentication and Authorization for .NET Profilers
	Configuring Consumer IDs
	Basic Procedure for Consumer ID Configuration
	About Consumer ID Rules
	Consumer ID Rules Syntax and Examples for .NET Agent

	Configuring SOAP Fault Data
	Collecting Additional Probe Metrics or Modifying Probe Metrics
	Performance Counter Security

	Configuring Communications through Proxies and Firewalls
	Configuring Diagnostics Servers and Agents for HTTP Proxy
	Enabling HTTP Proxy Communications for the Diagnostics Servers
	Enabling HTTP Proxy Communications for the Java Agent
	Enabling HTTP Proxy Communications for a .NET Agent

	Configuring Diagnostics to Work in a Firewall Environment
	Overview of Configuring Diagnostics for a Firewall
	Business Service Management
	LoadRunner and Performance Center

	Collating Offline Analysis Files over a Firewall
	Installing and Configuring the MI Listener
	Configuring the Diagnostics mediator server to Work with a Firewall
	Configuring LoadRunner and Performance Center to Work with Diagnostics Firewalls

	Configuring Diagnostics Metrics Collectors
	.NET System Metrics Agent - Systems Metrics Capture
	About the .NET System Metrics Agent
	System Metrics Captured by Default
	Configuring .NET System Metrics Capture
	Understanding the system/ Metrics Collector Entries

	Adding System Metrics Using the Windows Performance Monitor
	Performance Counter Security
	Troubleshooting Added System Metrics Counters

	Default Entries in the .NET Agent metrics.config File
	Keywords in the metrics.config File

	Java Agent Metrics Collectors
	About Metrics Capture
	What Metrics are Being Collected by the Java Agent
	Listing Available Metrics

	Understanding Metric Collector Entries
	About Collecting Additional Probe Metrics
	Modifying Probe Metrics Already Being Captured
	Stopping Capture of a Metric
	Using Customized metrics.config Files for Multiple JVM Applications on a System

	Java Agent - System Metrics Capture
	About System Metrics
	System Metrics Captured by Default
	Configuring the System Metrics Collector
	Example System Metrics Collector Entry
	Modifying the Default Port
	Disabling System Metrics Collection

	Capturing Additional Custom System Metrics
	Capturing Custom System Metrics on Windows Hosts
	Capturing Custom System Metrics on Solaris Hosts
	Capturing Custom System Metrics on Linux Hosts

	Enabling z/OS System Metrics Capture

	Java Agent - JMX Metrics Capture
	About JMX Metrics
	Configuring WebSphere for JMX Metric Collection
	Configuring TIBCO for JMX Metric Collection

	About Configuring JMX Metric Collectors
	Additional Custom JMX Metrics
	Getting a List of Available JMX or WebSphere PMI Metrics
	Creating New JMX or WebSphere PMI Metrics Entries
	Understanding Metric Patterns
	JMX GROUPBY and EXPAND_PMI Modifiers

	Setting Up Integration with Other HP Software Products
	Setting Up the Integration Between Business Service Management and Diagnostics
	About Setting Up the Integration Between Business Service Management and Diagnostics
	Registering the Diagnostics Server in Business Service Management
	Business Service Management Details

	Removing the Diagnostics Registration
	Understanding the Diagnostics Admin Page
	Registration Tab
	Downloads Tab

	Assigning Permissions for Diagnostics Users in Business Service Management
	Password for Data Collectors to Access RTSM
	Accessing the Diagnostics Pages in Windows 2003
	Accessing the Diagnostics Application from Business Service Management
	Data Samples Sent to Business Service Management
	Diagnostics Populates CIs and Models in Business Service Management
	Synchronize CIs Between Diagnostics and Business Service Management
	Diagnostics Provides KPI/HI Coloring to Business Service Management
	Enabling Diagnostics Integration with BSM’s Service Health Analyzer
	Integration with BSM’s Performance Graphing
	Diagnostics and OM Server Co-existence
	Configure Trusted Certificates
	OM Agent Installed Before Diagnostics is Installed
	Diagnostics Already Installed

	Configuration of Separate BSM Servers for DPS and Gateway
	Additional Information on Integration
	Authentication Dialog Displayed
	Missing Link in the Diagnostics UI
	HI Events not Flowing to Business Service Management

	Installing the LoadRunner Diagnostics Add-in
	Before Installing the LoadRunner Diagnostics Add-in
	Installing the LoadRunner Diagnostics Add-in

	Setting Up HP LoadRunner and HP Diagnostics Integration
	How You Can Use HP Diagnostics with LoadRunner
	Diagnostics UI Views for a LoadRunner Scenario
	Drill Down to the Diagnostics UI for Details on a Transaction
	LoadRunner Analysis J2EE and .NET Diagnostics Graphs

	About Setting Up LoadRunner to Integrate with HP Diagnostics
	Configuring LoadRunner Scenarios to use HP Diagnostics
	Selecting Probe Metrics to Include in the Offline Analysis File
	Improving Transfer of Large Offline Analysis Files
	Out of Memory Issue in LoadRunner Controller’s Diagnostics UI

	Setting Up Performance Center to Use Diagnostics
	How You Can Use HP Diagnostics with Performance Center
	About Setting Up Performance Center to Use Diagnostics
	Configuring Performance Center Load Tests to Use Diagnostics
	Managing Performance Center Offline Files

	Appendixes
	Diagnostics Administration UI
	Accessing the Diagnostics Administration UI
	Using the Diagnostics Administration UI
	Making Server Configuration Changes

	User Authentication and Authorization
	About User Authentication and Authorization
	Understanding User Privileges
	Understanding Roles
	Accessing Diagnostics Using Default User Names
	Understanding the Diagnostics Server Permissions Page
	Accessing the Permissions Page
	The Permissions Page at a Glance
	Enterprise and Application Permissions

	Creating, Editing and Deleting Users
	Assigning Privileges Across the Diagnostics Deployment
	Assigning Privileges for Probe Groups
	Authentication and Authorization for Users of Integrated HP Software Products
	Authentication and Authorization for Business Service Management Users
	Authentication and Authorization for Performance Center and LoadRunner Users

	Tracking User Administration Activity
	List of Active Users
	Configuring Diagnostics to use JAAS
	Configuring LDAP Authentication
	Using Reverse Proxy with SiteMinder JAAS LoginModule
	Configuring SiteMinder JAAS Authentication

	Enabling HTTPS Between Components
	About Configuring HTTPS Communications
	Filtering Encryption Cipher Suites
	HTTPS Checklist per Diagnostics Component
	Enabling Incoming HTTPS Communication for Diagnostics Components
	Generate Client Certificate
	Configuring the Diagnostics Server for Incoming HTTPS Connections
	Configuring the Java Agent for Incoming HTTPS Connections
	Configuring the Collector for Incoming HTTPS Connections

	Enabling Outgoing HTTPS Communication from Diagnostics Components
	Enabling HTTPS Communications for the Business Service Management Server

	Using System Views for Administrators
	System Views for Diagnostics’ Administrators
	System Health View Description
	System Capacity View Description

	Diagnostics Data Management
	About Diagnostics Data
	Custom View Data
	Custom View Data Organization

	Performance History Data
	Performance History Data Organization
	Performance History Data File Types

	Data Retention
	Data Retention on the Mediators
	Data Retention Configuration
	Symbol Table Purging

	Disk Space Issues on the Server
	Pre-Installation Data Management Considerations
	Backing Up Diagnostics Data
	Backing up Data Remotely
	Configuring Symbol Table Backup
	Restoring Data After a Failure

	Handling Diagnostics Data when Upgrading Diagnostics

	Diagnostics Technical Diagrams
	Communications with Business Service Management
	Communications with LoadRunner and Performance Center
	.NET Probe Aggregator Data Flow

	Upgrade and Patch Install Instructions
	Before You Begin
	Diagnostics Compatibility with Earlier Diagnostics Versions
	Upgrade or Patch Install Instructions for Diagnostics Components
	Diagnostics Server
	Java Agent
	.NET Agent
	Diagnostics Collector

	Diagnostics Compatibility with Other HP Software Products

	Troubleshooting HP Diagnostics
	Component Installation Interrupted on a Solaris Machine
	Diagnostics Installers Do Not Work on Some 64-bit Linux Systems
	Error During Linux Install - Missing libstdc++.so.5 Shared Library
	Java Agent Fails to Operate Properly
	Error During WAS Startup with Diagnostics Profiler for Java
	Missing Server-Side Transactions
	Event Capture Buffer Full Warning
	WebSphere Application Server Startup Issue
	Java Agent Support Collector
	Event Based Health Indicator Status Troubleshooting Flow
	OM Agent Troubleshooting
	Troubleshooting Registration of OMi Between the BSM Gateway Server and Data Processing Server

	General Reference Information
	Using UNIX Commands
	Using Regular Expressions
	Common Regular Expression Operators
	Using the Backslash Character
	Matching Any Single Character
	Matching Any Single Character in a List
	Matching Any Single Character Not in a List
	Matching Any Single Character within a Range
	Matching Zero or More Specific Characters
	Matching One or More Specific Characters
	Matching Zero or One Specific Character
	Grouping Regular Expressions
	Matching One of Several Regular Expressions
	Matching the Beginning of a Line
	Matching the End of a Line
	Matching Any AlphaNumeric Character Including the Underscore
	Matching Any Non-AlphaNumeric Character
	Combining Regular Expression Operators

	Multi-Lingual User Interface Support

	Data Exporting
	Task 1: Prepare the target database
	Task 2: Determine which metrics you want to export
	Task 3: Determine the frequency and the recovery period
	Task 4: Modify the data export configuration file
	Task 5: Monitor the data export operation
	Task 6: Verify the results
	Task 7: Select the data from the target database
	Sample Queries

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

