

HP UFT Add-ins Guide
Software Version: 11.50

Enter the operating system(s), e.g. Windows ®

For GUI Testing

Document Release Date: December 2012

Software Release Date: December 2012

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© 1992 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

Intel®, Pentium®, and Intel® Xeon™ are trademarks of Intel Corporation in the U.S. and
other countries.

Java™ is a US trademark of Sun Microsystems, Inc.

Microsoft®, Windows®, Windows NT®, and Windows® XP are U.S registered trademarks of
Microsoft Corporation.

Oracle® is a registered US trademark of Oracle Corporation, Redwood City, California.

Unix® is a registered trademark of The Open Group.

SlickEdit® is a registered trademark of SlickEdit Inc.

3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates, or to verify that you are using the most recent edition of a
document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

Support

Visit the HP Software Support web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As
a valued support customer, you can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many
also require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

5

Table of Contents

Welcome to the HP Unified Functional Testing
Add-ins Guide ..17

HP Unified Functional Testing Add-ins Guide Overview17
Prerequisite Background..18
How Do I Find the Information That I Need?19
Unified Functional Testing Help Contents...21
Additional Online Resources...25

PART I: WORKING WITH UFT ADD-INS

Chapter 1: UFT Add-ins Overview...29

Concepts

UFT Add-in Support - Overview..30
Record and Run Settings for Add-ins - Overview................................35
UFT Add-in Extensibility ...38

Tasks

How to Manage UFT Add-ins ..40
How to Define Record and Run Settings for UFT Add-ins..................41

Reference

Add-in Manager Dialog Box ..44

Table of Contents

6

Chapter 2: Web-Based Application Support.......................................49

Concepts

Web-Based Application Support - Overview.......................................51
Considerations - Web-Based Application Support..............................51
Registering Browser Controls ..54
Accessing Password-Protected Resources in the Active Screen55
Checkpoints for Web Pages...57
Event Recording Configuration for Web-Based Applications.............58
Advanced Operations on Web-Based Applications.............................59
Web Object Identifiers ..62

Tasks

How to Define Record and Run Variables for a Web-Based
Environment...67

How to Modify Event Recording Configuration for Web-Based
Applications ..69

How to Configure UFT to Record Mouse Clicks71
How to Use Web Object Identifiers - Exercise73

Reference

Web Tab (Record and Run Settings Dialog Box).................................77
Web > General Pane (Options Dialog Box)...82
Web Pane (Test/Business Component Settings Dialog Box /

Application Area - Additional Settings Pane)101
Web Event Recording Configuration XML File Structure106
Register Browser Control Utility ...108
Active Screen Dialog Box...109

Chapter 3: Windows-Based Application Support117

Concepts

Windows-Based Application Support - Overview.............................118

Tasks

How to Configure Options for Windows-Based Applications120
How to Define Record and Run Settings for Windows-Based

Applications ..121

Table of Contents

7

Reference

Windows Applications Tab (Record and Run Settings Dialog Box) .124
Windows Applications > General Pane (Options Dialog Box >

GUI Testing Tab) ...136
Windows Applications > Advanced Pane (Options Dialog Box >

GUI Testing Tab) ...139

PART II: .NET ADD-IN

Chapter 4: .NET Add-in - Overview...151

Chapter 5: .NET Web Forms Add-in - Quick Reference153

Concepts

Considerations for Testing .NET Web Forms....................................156
 .NET Web Forms Objects and Outputting Values............................157

Reference

Troubleshooting and Limitations - .NET Web Forms.......................158

Chapter 6: .NET Windows Forms Support - Quick Reference163

Concepts

Considerations for Testing .NET Windows Forms Applications166
.NET Add-in Extensibility..166
Troubleshooting and Limitations - .NET Windows Forms...............167

Chapter 7: .NET Windows Forms Support - Testing and
Configuration171

Concepts

.NET Windows Forms Objects - Checkpoints and Output Values ...172

.NET Windows Forms Spy ...174

Tasks

How to Use the .NET Windows Forms Spy.......................................176

Reference

.NET Windows Forms Spy Dialog Box ..182

Chapter 8: .NET Silverlight Add-in - Quick Reference187

Concepts

Silverlight Add-in Extensibility ..191

Table of Contents

8

References

Troubleshooting and Limitations - Silverlight Add-in193

Chapter 9: .NET Windows Presentation Foundation Add-in -
Quick Reference197

Concepts

Considerations for Working with the WPF Add-in200
WPF Add-in Extensibility ..200

Reference

Troubleshooting and Limitations - Windows Presentation F
oundation ...202

Chapter 10: .NET Windows Presentation Foundation Add-in -
Testing and Configuration205

Concepts

About WPF User Interface Automation ..206
 WPF Objects, Methods, and Properties to Enhance Your Test or

Component...208

PART III: ACTIVEX ADD-IN

Chapter 11: ActiveX Add-in - Quick Reference.................................213

Concepts

Considerations for Working with the ActiveX Add-in216

Reference

Troubleshooting and Limitations - ActiveX Add-in218

PART IV: DELPHI ADD-IN

Chapter 12: Delphi Add-in - Quick Reference...................................225

Concepts

Delphi Add-in Extensibility ..228

Tasks

How to Enable Communications Between UFT and Your Delphi
Application..230

Table of Contents

9

PART V: FLEX ADD-IN

Chapter 13: Flex Add-in - Quick Reference.......................................235

Concepts

Considerations - Flex Add-in...237

Tasks

 How to Prepare Flex Applications for Testing..................................239

Reference

Troubleshooting and Limitations - Flex Add-in241

PART VI: JAVA ADD-IN

Chapter 14: Java Add-in - Quick Reference.......................................245

Concepts

Considerations - Java Add-in...248
Java Add-in Extensibility ...250

Reference

Troubleshooting and Limitations - Java Add-in252

Chapter 15: Java Add-in - Testing and Configuration267

Concepts

Java Add-in - Overview..268
Recording Steps on Java Objects ...269
Advanced Java Test Object Methods...272
Java Add-in Environments ..275

Tasks

How to Record Steps on Java Table Objects......................................277
How to Define Record and Run Environment Variables for Java

Objects ..281
How to Optimize Settings for Other Record and Run Settings

Dialog Box Tabs ..282
How to Disable Dynamic Transformation Support (Advanced).......283

Table of Contents

10

Reference

Java Pane (Options Dialog Box > GUI Testing Tab)..........................286
Java Pane (Test/Business Component Settings Dialog Box /

Application Area - Additional Settings Pane)294
Java Tab (Record and Run Settings Dialog Box)298

PART VII: ORACLE ADD-IN

Chapter 16: Oracle Add-in - Quick Reference...................................305

Concepts

Considerations for Working with the Oracle Add-in308

Reference

Troubleshooting and Limitations - Oracle Add-in............................310

Chapter 17: Oracle Add-in - Testing and Configuration315

Concepts

Recording Tests on Oracle Applications ...316
 Dynamic Transformation Support ..318

Tasks

How to Verify or Enable the Oracle Server Unique Name
Attributes...320

How to Enable the Oracle Name Attribute321
How to Set Oracle Environment Variables323
How to Locate the Java Console ...324
How to Disable Dynamic Transformation Support325

Reference

Oracle Tab (Record and Run Settings Dialog Box)............................327
Oracle Record and Run Environment Variables330

PART VIII : PEOPLESOFT ADD-IN

Chapter 18: PeopleSoft Add-in - Quick Reference............................335

Concepts

Considerations for Working with the PeopleSoft Add-in.................338

Reference

Troubleshooting and Limitations - PeopleSoft Add-in339

Table of Contents

11

PART IX: POWERBUILDER ADD-IN

Chapter 19: PowerBuilder Add-in - Quick Reference343

Concepts

Considerations for Working with the PowerBuilder Add-in346

Reference

Troubleshooting and Limitations - PowerBuilder Add-in.................348

PART X: QT ADD-IN

Chapter 20: Qt Add-in - Quick Reference ...351

PART XI: ADD-IN FOR SAP SOLUTIONS

Chapter 21: Add-in for SAP Solutions - Overview357

Chapter 22: Web-Based SAP Support - Quick Reference359
Troubleshooting and Limitations - Web-based SAP362

Chapter 23: Web-Based SAP Support - Testing and Configuration.365

Concepts

Considerations for Working with SAP GUI for HTML......................366

Reference

Web > Page/Frame Options Pane (Options Dialog Box >
GUI Testing Tab) ...367

Web > Advanced Pane (Options Dialog Box > GUI Testing Tab)369

Chapter 24: Windows-based SAP Support - Quick Reference..........371

Concepts

Considerations - Windows-based SAP Add-in for SAP Solutions......374
Checkpoints and Output Values in SAP GUI for Windows..............375

Reference

Package and Patch Versions Requirements - SAP Application
Server and SAP GUI for Windows...377

Troubleshooting and Limitations - Windows-based SAP377

Table of Contents

12

Chapter 25: Windows-based SAP Support - Testing and
Configuration..385

Concepts

SAP GUI Scripting API and UFT ...386
Using the Auto-Parameterize Option to Parameterize Table and

Grid Cell Values ..389
Low-Level or Analog Mode Recording on SAP GUI for Windows....397
Spooling Data from a Table...398

Tasks

How to Enable Support for SAP GUI for Windows...........................399
How to Record on Standard Windows Controls During an

SAP GUI for Windows Recording Session.....................................406

Reference

SAP Tab (Record and Run Settings Dialog Box)407
Environment Variables for Windows-based SAP Applications.........411
SAP > General Pane (Options Dialog Box > GUI Testing Tab)412

Chapter 26: UFT-SAP Solution Manager Integration417

Concepts

UFT-SAP Solution Manager Integration - Overview419
Test Management in SAP Solution Manager.....................................420
Resource Files in Solution Manager ..422
Standalone Mode...422
Integrated Mode ..424

Tasks

How to Configure Solution Manager to Work with UFT425
How to Open and Save Tests in Solution Manager in

Standalone Mode ..428
How to Upload Files to Solution Manager in Standalone Mode431
How to Run a Test Stored in Solution Manager in

Standalone Mode ..435
How to Run a Test Stored in Solution Manager in Integrated Mode437
How to Display or Edit a GUI Test from Solution Manager in

Integrated Mode..439
How to Transfer Data To and From GUI Tests in Integrated Mode

Using Test Parameters ...441

Table of Contents

13

Reference

Solution Manager Testing Modes: Standalone or Integrated............442
Solution Manager Connection Dialog Box444
Save GUI Test to Solution Manager Dialog Box................................446
Open GUI Test from Solution Manager Dialog Box448
Upload File to Solution Manager Dialog Box449
Save External File to Solution Manager Dialog Box..........................451
Download File from Solution Manager...452
SAP > SAP Solution Manager Pane (Options Dialog Box >

GUI Testing Tab) ...454
Solution Manager Trace Options Dialog Box....................................456

PART XII: SIEBEL ADD-IN

Chapter 27: Siebel Add-in - Quick Reference....................................461
Considerations - Siebel Add-in..464
Troubleshooting and Limitations - Siebel Add-in.............................465

Chapter 28: Siebel Add-in - Testing and Configuration...................471

Concepts

Siebel Add-in - Overview ...472
Siebel Test Object Model - Overview...473
Siebel Add-in - Checkpoints and Output Values476
Siebel 7.7.x or Late - Test Automation Module Configuration.........479

Tasks

How to Define Environment Variables for Siebel Applications........482
How to Upgrade Tests Created with Version 6.5 of the Siebel

Add-in ...483

Reference

Siebel Tab (Record and Run Settings Dialog Box).............................485

Chapter 29: Siebel Test Express ..491

Concepts

Using Siebel Test Express to Generate or Update Shared Object
Repositories ...492

Tasks

How to Use Siebel Test Express to Generate or Update a Shared
Object Repository..493

Table of Contents

14

Reference

Create Object Repository Wizard ..496

PART XIII: STANDARD WINDOWS TESTING SUPPORT

Chapter 30: Standard Windows Support -Quick Reference.............507

PART XIV: STINGRAY ADD-IN

Chapter 31: Stingray Add-in - Quick Reference................................513
Considerations for Working with the Stingray Add-in515
Troubleshooting and Limitations - Stingray Add-in.........................516

Chapter 32: Stingray Add-in - Testing and Configuration519

Concepts

Setting Up Stingray Object Support ..520
Stingray Run-time Agent (Agent DLL) ..521
Stingray Precompiled Agent Mode..522

Tasks

How to Set Up Your Stingray Project Using the Precompiled
Agent Mode...523

Reference

Stingray Support Configuration Wizard ...527
Stingray Pane (Options Dialog Box) ...548

PART XV: TERMINAL EMULATOR ADD-IN

Chapter 33: Terminal Emulator Add-in - Quick Reference557
Troubleshooting and Limitations - Terminal Emulator559

Chapter 34: Terminal Emulator Add-in - Testing and
Configuration..567

Concepts

Terminal Emulator Add-in - Overview..568
Recording Tests and Components on Terminal Emulator

Applications ..570
Checkpoints and Output Values - Terminal Emulators....................572
Run Session Synchronization ...573
Terminal Emulator Recovery Scenarios ..574

Table of Contents

15

Tasks

How to Check the Validity of a Terminal Emulator Configuration.576
How to Copy Existing Terminal Emulator Configurations576
How to Set Your HLLAPI Terminal Emulator to Work with UFT579
How to Manage Terminal Emulator Configuration Settings............585
How to Synchronize Steps on Terminal Emulators586

Reference

Test Object Classes and Icons - Terminal Emulators590
Validating a Terminal Emulator - Possible Error Responses591
Terminal Emulator Pane (Options Dialog Box)595
Terminal Emulator Configuration Wizard Overview609

PART XVI: VISUALAGE SMALLTALK ADD-IN

Chapter 35: VisualAge Smalltalk Add-in - Quick Reference..............637

Tasks

How to Configure the VisualAge Smalltalk Add-in640

PART XVII: VISUAL BASIC ADD-IN

Chapter 36: Visual Basic Add-in - Quick Reference...........................645

Reference

Troubleshooting and Limitations - Visual Basic Add-in648

PART XVIII: WEB ADD-IN

Chapter 37: Web Add-in - Quick Reference......................................651
Web Add-in Extensibility ..654
Extensibility Accelerator for HP Functional Testing655
Considerations - Mozilla Firefox ...656
Considerations - Google Chrome ...659
Considerations - Working With Multiple Browsers..........................659
Troubleshooting and Limitations - Web Add-in...............................660

Chapter 38: Web Add-in - Testing and Configuration669

Concepts

Event Recording Configuration for Web Objects - Overview...........670
Web 2.0 Toolkit Support ...675

Table of Contents

16

Tasks

How to Manage Custom Web Event Recording Configurations681
How to Manage Listening and Recording Events for Web Objects..683

Reference

Web Event Recording Configuration Dialog box686
Custom Web Event Recording Configuration Dialog Box688

PART XIX: APPENDIX

Appendix A: GUI Checkpoints and Output Values Per Add-in.........695
Supported Checkpoints ...696
Supported Output Values ..698

17

Welcome to the HP Unified Functional
Testing
Add-ins Guide

This chapter includes:

➤ HP Unified Functional Testing Add-ins Guide Overview on page 17

➤ Prerequisite Background on page 18

➤ How Do I Find the Information That I Need? on page 19

➤ Unified Functional Testing Help Contents on page 21

➤ Additional Online Resources on page 25

HP Unified Functional Testing Add-ins Guide Overview

This HP Unified Functional Testing Add-ins Guide explains how to set up
support for, and work with, the UFT add-ins and standard Windows testing
support, enabling you to test any supported environment using GUI tests
and business components. The guide begins with an introductory section
that describes working with GUI testing add-ins, and specific aspects of
working with Windows-based and Web-based add-ins. After this overview
section, and the section on standard Windows testing support, the add-ins
are presented alphabetically.

Welcome to the HP Unified Functional Testing Add-ins Guide

18

Prerequisite Background

This guide assumes that you are familiar with UFT features and options. It
describes the functionality that is added or changed in UFT when you work
with specific GUI testing add-ins, as well as other add-in-specific
considerations and best practices.

This guide should be used in conjunction with the HP Unified Functional
Testing User Guide and the HP Unified Functional Testing Object Model
Reference.

The information, examples, and screen captures in this guide often focus
specifically on working with GUI tests. However, much of the information
applies equally to keyword components and scripted components.
Information that is unique to using a specific add-in with Business Process
Testing is indicated as such.

Note: Keyword components and scripted components are part of
HP Business Process Testing, which utilizes a keyword-driven methodology
for testing applications. For more information, see the section on working
with Business Process Testing in the HP Unified Functional Testing User Guide.

For users that work with UFT add-in extensibility, UFT also provides
developer guides that describe how to extend UFT support for third-party
and custom controls for supported environments, such as Delphi, Java,
.NET, or Web. For more information, see the relevant Add-in Extensibility
Help, available from the UFT Extensibility Documentation program group
(Start > All Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation). Printer-friendly (PDF) versions of the
developer guides are available in the <Unified Functional Testing installation
folder>\help\Extensibility folder.

Welcome to the HP Unified Functional Testing Add-ins Guide

19

This guide is intended for UFT users at all levels. You should already have
some understanding of functional testing concepts and processes, and know
which aspects of their application you want to test.

In addition, because each UFT add-in takes advantage of commonly used
UFT features such as the object repository, Keyword View, and checkpoints
and output value steps, you should also have at least a basic understanding
of these concepts before you begin working with a UFT add-in.

How Do I Find the Information That I Need?

Within this guide, each subject area is organized into topics. A topic
contains a distinct module of information for that subject. The topics are
generally classified according to the type of information they contain.

This structure is designed to create easier access to specific information by
dividing the documentation into the different types of information you
may need at different times.

Three main topic types are in use: Concepts, Tasks, and Reference. The topic
types are differentiated visually using icons.

Topic Types

Topic Type Description Usage

Concepts General Concepts.
Background, descriptive, or
conceptual information.

Learn general information
about what a feature does.

Use-case Scenario Concepts.
Real-life examples of when or
why to use a specific product
area.

Learn why or when you
may want to use the
feature.

Welcome to the HP Unified Functional Testing Add-ins Guide

20

Tasks Instructional Tasks. Step-by-
step guidance to help you
work with the application and
accomplish your goals. Some
task steps include examples,
using sample data.

Task steps can be with or
without numbering:

➤ Numbered steps. Tasks that
are performed by following
each step in consecutive
order.

➤ Non-numbered steps. A list
of self-contained operations
that you can perform in any
order.

➤ Learn about the overall
workflow of a task.

➤ Follow the steps listed in
a numbered task to
complete a task.

➤ Perform independent
operations by
completing steps in a
non-numbered task.

Exercise Tasks. Step-by-step
instructions for a task using a
sample application or sample
data.

Follow the steps in these
topics to practice the
workflow of a task.

Use-case Scenario Tasks.
Examples of how to perform a
task for a specific situation.

Learn how a task could be
performed in a realistic
scenario.

Topic Type Description Usage

Welcome to the HP Unified Functional Testing Add-ins Guide

21

Unified Functional Testing Help Contents

This guide is part of the Unified Functional Testing Help. The Unified
Functional Testing Help provides a single-point of access for all UFT
documentation.

You can access the Unified Functional Testing Help by using the following:

➤ Select Help > HP Unified Functional Testing Help.

➤ In the Start menu, select All Programs > HP Software > HP Unified
Functional Testing > Documentation > HP Unified Functional Testing
Help.

➤ Click in selected UFT windows and dialog boxes or press F1.

➤ View a description, syntax, and examples for a UFT test object, method,
or property by placing the cursor on it and pressing F1.

Reference General Reference. Detailed
lists and explanations of
reference-oriented material.

Look up a specific piece of
reference information
relevant to a particular
context.

User Interface Reference.
Specialized reference topics
that describe a particular user
interface in detail. Pressing F1
in the product area generally
open the user interface topics.

Look up specific
information about what to
enter or how to use one or
more specific user interface
elements, such as a
window, dialog box, or
wizard.

Troubleshooting
and Limitations

Troubleshooting and
Limitations. Specialized
reference topics that describe
commonly encountered
problems and their solutions,
and list limitations of a feature
or product area.

Increase your awareness of
important issues before
working with a feature, or
if you encounter usability
problems in the software.

Topic Type Description Usage

Welcome to the HP Unified Functional Testing Add-ins Guide

22

The Unified Functional Testing Help includes the following:

Type Included Documentation

Getting Started
Documentation

➤ Readme provides the latest news and information about
UFT. Select Start > All Programs > HP Software > HP Unified
Functional Testing > Readme.

➤ HP Unified Functional Testing Installation Guide explains
how to install and set up UFT. Select Help > Unified
Functional Testing Help and click the link to the Installation
Guide.

➤ HP Unified Functional Testing Tutorial teaches you basic
UFT skills and shows you how to design tests for your
applications. Select Help > Unified Functional Testing Help >
Tutorial.

➤ Product Feature Movies provide an overview and step-by-
step instructions describing how to use selected UFT
features. Select Help > Product Feature Movies.

➤ Using this Help. Information on the structure, navigation,
and content of the Unified Functional Testing Help. Select
Help > Unified Functional Testing Help.

➤ What’s New provides an overview of the features,
enhancements and supported environments that are new in
the current version of UFT. Choose Help > What’s New.

LandingPages.chm::/LP_UFT_Install_Guide.htm
LandingPages.chm::/LP_UFT_Install_Guide.htm

Welcome to the HP Unified Functional Testing Add-ins Guide

23

Feature
Documentation

Unified Functional Testing Help includes:

➤ Home provides links commonly used topics, feature movies,
and links to support sites and forums.

➤ What’s New in Unified Functional Testing describes the
newest features, enhancements, and supported
environments in the latest version of UFT.

➤ HP Unified Functional Testing User Guide describes how to
use UFT to test your application.

➤ HP Unified Functional Testing for Business Process Testing
User Guide provides step-by-step instructions for using UFT
to create and manage assets for use with Business Process
Testing.

➤ HP Unified Functional Testing Add-ins Guide describes how
to work with supported environments using UFT add-ins,
and provides environment-specific information for each
add-in.

➤ HP Unified Functional Testing Object Model Reference
describes UFT test objects, lists the methods and properties
associated with each object, and provides syntax
information and examples for each method and property.

Type Included Documentation

Welcome to the HP Unified Functional Testing Add-ins Guide

24

Reference
Documentation

➤ HP Unified Functional Testing Advanced References
contains documentation for the following UFT COM and
XML references:

➤ HP Unified Functional Testing Automation Object Model
provides syntax, descriptive information, and examples
for the automation objects, methods, and properties. It
also contains a detailed overview to help you get started
writing UFT automation scripts. The automation object
model assists you in automating test management, by
providing objects, methods and properties that enable
you to control virtually every UFT feature and capability.

➤ HP Unified Functional Testing Run Results Schema
documents the run results XML schema, which provides
the information you need to customize your run results.

➤ HP Unified Functional Testing Object Schema documents
the test object XML schema, which provides the
information you need to extend test object support in
different environments.

➤ HP Unified Functional Testing Object Repository Schema
documents the object repository XML schema, which
provides the information you need to edit an object
repository file that was exported to XML.

➤ HP Unified Functional Testing Object Repository
Automation documents the Object Repository
automation object model, which provides the
information you need to manipulate UFT object
repositories and their contents from outside of UFT.

➤ VBScript Reference contains Microsoft VBScript
documentation, including VBScript, Script Runtime, and
Windows Script Host.

Type Included Documentation

AutomationObjectModel.chm::/Welcome1.htm
XMLReport.chm::/XmlReport_xsd.html
TestObjectSchema.chm::/TOConfigXML_Overview.htm
ObjectRepositorySchema.chm::/ObjectRepositorySchema_xsd.html
ObjectRepositoryUtil.chm::/REPOSITORYUTILLib_P.html
ObjectRepositoryUtil.chm::/REPOSITORYUTILLib_P.html

Welcome to the HP Unified Functional Testing Add-ins Guide

25

Additional Online Resources

Sample applications. The following sample applications are the basis for
many examples in this guide:

➤ Mercury Tours sample Web site. The URL for this Web site is
newtours.demoaut.com.

➤ Mercury Flight application. To access from the Start menu, select Start >
All Programs > HP Software > HP Unified Functional Testing > Sample
Applications > Flight.

Troubleshooting & Knowledge Base accesses the Troubleshooting page on
the HP Software Support Web site where you can search the Self-solve
knowledge base. Choose Help > Troubleshooting & Knowledge Base. The
URL for this Web site is http://h20230.www2.hp.com/troubleshooting.jsp.

HP Software Support accesses the HP Software Support Web site. This site
enables you to browse the Self-solve knowledge base. You can also post to
and search user discussion forums, submit support requests, download
patches and updated documentation, and more. Choose Help > HP Software
Support. The URL for this Web site is www.hp.com/go/hpsoftwaresupport.

Most of the support areas require that you register as an HP Passport user
and sign in. Many also require a support contract.

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport user ID, go to:

http://h20229.www2.hp.com/passport-registration.html

HP Software Web site accesses the HP Software Web site. This site provides
you with the most up-to-date information on HP Software products. This
includes new software releases, seminars and trade shows, customer support,
and more. Choose Help > HP Software Web site. The URL for this Web site
is www.hp.com/go/software.

http://h20230.www2.hp.com/troubleshooting.jsp
http://www.hp.com/go/hpsoftwaresupport
http://h20230.www2.hp.com/new_access_levels.jsp
http://h20229.www2.hp.com/passport-registration.html
http://www.hp.com/go/software
http://newtours.demoaut.com

Welcome to the HP Unified Functional Testing Add-ins Guide

26

Part I

Working with UFT Add-ins

28

29

1
UFT Add-ins Overview

This chapter includes:

Concepts

➤ UFT Add-in Support - Overview on page 30

➤ Record and Run Settings for Add-ins - Overview on page 35

➤ UFT Add-in Extensibility on page 38

Tasks

➤ How to Manage UFT Add-ins on page 40

➤ How to Define Record and Run Settings for UFT Add-ins on page 41

Reference

➤ Add-in Manager Dialog Box on page 44

Chapter 1 • UFT Add-ins Overview

30

Concepts

UFT Add-in Support - Overview

UFT add-ins help you to create and run tests and business components on
applications in a variety of development environments. After you load an
add-in, you can record and run tests or business components on
applications in the corresponding development environment, similar to the
way you do with any other application. When you work with UFT add-ins,
you can use special methods, properties, and various special options to
create the best possible test or business component for your application.

You can install UFT add-ins when you install UFT, or you can install the
add-ins at a later time by running the installation again in Modify mode. For
details about installing and loading add-ins, see "How to Manage UFT
Add-ins" on page 40.

When UFT opens, you can choose which of the installed add-ins you want
to load using the Unified Functional Testing Add-In Manager dialog box,
but to maximize performance, you should load only the add-ins you need
for that testing session.

UFT includes built-in support for testing standard Windows applications.
Standard Windows testing support is automatically loaded when UFT opens.

Your UFT license enables all UFT features, including the use of all UFT
add-ins. You can use the latest released version of all add-ins with UFT. If
you upgrade from a version earlier than 9.5, only licensed add-ins are
available. Additional non-licensed add-ins that you install are disabled in
the Add-in Manager dialog box. For details on installing add-ins and
licenses, see the HP Unified Functional Testing Installation Guide. For details,
see "Add-in Licenses" on page 33.

Chapter 1 • UFT Add-ins Overview

31

Using Add-ins in Your Test or Component

➤ You can use the Keyword View, the Step Generator, and the Editor to
activate environment-specific test object and native (run-time object)
operations, retrieve and set the values of properties, and check that
objects exist.

➤ You can enhance your tests and business components using
environment-specific checkpoints and output values. See the sections
describing checkpoints and output values in the HP Unified Functional
Testing User Guide.

➤ You can customize the Active Screen capture settings for some of the UFT
add-ins. When you apply custom Active Screen settings, you override
your previous capture-level settings with all of the settings in the Custom
Active Screen Capture Settings dialog box. If you want to customize only
specific settings, use the Reset to option to ensure that all other settings
are using the capture-level setting you prefer and then modify the specific
settings you need. For details, see the section describing Active Screen
capture setting options in the HP Unified Functional Testing User Guide.

Available Add-ins Environments

➤ Several UFT Add-ins are designed to support special objects that are
generally available in Web applications, such as standard Web (HTML),
Siebel, .NET Web Forms, and Web-based SAP objects. These add-ins are
known as Web-based Add-ins. The interface options, capabilities, and
other functionality that is available for the Web-based add-ins are often
identical or similar. These Web-specific features are described in
Chapter 2, "Web-Based Application Support."

➤ UFT provides a set of add-ins designed to support special objects that are
generally part of Windows applications, such as .NET Windows Forms,
Windows Presentation Foundation, PowerBuilder, SAP GUI for Windows,
VisualAge Smalltalk, Stingray, and others. These add-ins are known as
Windows-based Add-ins. The interface options, capabilities, and other
functionality that is available for the Windows-based add-ins are often
identical or similar. These Windows-specific features are described in
Chapter 3, "Windows-Based Application Support."

Chapter 1 • UFT Add-ins Overview

32

This section also includes:

➤ "Loading UFT Add-ins" on page 32

➤ "Considerations for Working with UFT Add-ins" on page 34

Loading UFT Add-ins
To test applications developed in various environments, you must ensure
that the relevant UFT add-in is installed and loaded on the computer on
which you create and run your tests and business components. Loading the
relevant add-in enables UFT to work with the corresponding environment.

When you start UFT, the Add-in Manager dialog box opens. It displays a list
of all installed add-ins and the license used for each add-in. If you are using
a seat add-in license, it also displays the time remaining for time-limited
licenses. For details on the Add-in Manager dialog box user interface, see
"Add-in Manager Dialog Box" on page 44.

If you have UFT add-ins installed, you can specify which add-ins to load at
the beginning of each UFT session. You can also load UFT without add-in
support if you want to test only standard Windows-based objects.

While UFT is open, you can check whether a specific add-in is installed by
choosing Help > About Unified Functional Testing. Loaded add-ins are
indicated by a check mark in the add-ins list.

Tip: The Web Services Add-in is supported for backwards compatibility only
and is not enabled by default. New tests and components can use UFT’s API
testing solution for web service testing purposes. To enable the Web Services
Add-in for previously created tests, contact HP Software support.

Chapter 1 • UFT Add-ins Overview

33

When you load an add-in, UFT recognizes the objects you work with on the
corresponding environment. In many cases, loading the add-in also adds
new user interface options and capabilities to UFT, as well as adding support
for the add-in’s object model—the set of test objects, methods, and
properties specially designed for working with the objects in your
development environment. Details of these objects, methods, and
properties can be found in the relevant section of the HP Unified Functional
Testing Object Model Reference (Select Help > HP Unified Functional Testing
Help).

Add-in Licenses
When you open UFT, if an add-in license has not yet been installed for a
specific add-in, the add-in is displayed as Not Licensed in the License
column of the Add-in Manager dialog box. An add-in may also be displayed
as Not Licensed if no concurrent license server within your subnet has a
registered license for the specific add-in, or if all concurrent licenses are in
use (and are, therefore, unavailable). In this case, you can use the
LSFORCEHOST or LSHOST variable to connect to a concurrent license server
outside of the subnet that has the relevant add-in license installed on it, if
one is available. For details on connecting to concurrent license servers, see
the HP Unified Functional Testing Installation Guide.

You can also view license details for all currently loaded licensed add-ins by
clicking License in the About Unified Functional Testing dialog box (Help >
About Unified Functional Testing).

➤ For seat licenses, the category for each license is displayed. The license
category may be Demo, Permanent, Commuter, or Time-Limited. For
Demo, Commuter (used with concurrent licenses), and Time-Limited
UFT seat licenses, the number of days and hours remaining until the
license expires is also displayed.

➤ For concurrent licenses, the URL or host name of the concurrent
license server used for each license is displayed.

➤ To switch between a seat and a concurrent license, click Modify
License. Note that you can use only one license type per session for
UFT and all loaded add-ins—either seat or concurrent. For more
information on license types, installing licenses, and modifying
licenses, see the HP Unified Functional Testing Installation Guide.

Chapter 1 • UFT Add-ins Overview

34

Considerations for Working with UFT Add-ins
Consider the following when loading and using UFT add-ins:

Installing and Loading Add-ins

➤ You must install and load an add-in to enable UFT to recognize objects
from the corresponding environment. To load an add-in, select the add-in
from the Add-in Manager dialog box that opens when you start UFT. For
details, see "Add-in Manager Dialog Box" on page 44.

➤ For optimal performance when testing your applications, it is strongly
recommended that you load only the required add-in or add-ins. For
example, if you want to test a process that spans a Web application and a
.NET application, load only the Web and .NET Add-ins. Do not load all
add-ins unless you need to work with all of them. As a reminder, the tip at
the bottom of the Add-in Manager changes to red text if more than three
add-ins are selected.

➤ Some UFT add-ins require additional configuration after the installation is
complete. Similarly, some environments may require configuration to
enable UFT to interact with them. Configuration requirements, if any, are
described in the introductory section of each relevant environment.

➤ Some applications must be opened prior to opening UFT, while some
must be opened after UFT is opened. These requirements are described in
the introductory section for each relevant environment.

➤ When testing applications that do not contain .NET objects, it is strongly
recommended that you do not load the .NET Add-in.

➤ When you open a test or business component, UFT compares the add-ins
that are currently loaded with the add-ins associated with your test or
with your business component’s application area. If they do not match,
UFT issues a warning message. For details on matching loaded add-ins
with installed add-ins, see "Match loaded add-ins with associated add-ins"
on page 40.

Running UFT from ALM with Add-ins

➤ When you run a UFT test from ALM, ALM instructs UFT to load the
add-ins that are associated with the test.

Chapter 1 • UFT Add-ins Overview

35

If you created the test in ALM (and not in UFT), the test contains the
settings specified in the template test you chose when creating the test. If
you need to modify the associated add-ins, you can do so by opening the
test in UFT. For details, see the section on template tests in the HP Unified
Functional Testing User Guide.

➤ Before you run a UFT test from ALM, make sure that the required UFT
add-ins are installed on the computer on which you want to run the UFT
test.

Record and Run Settings for Add-ins - Overview

Before you record or run a test on an application, you can use the Record
and Run Settings dialog box to instruct UFT which applications to open
when you begin to record or run your test.

For some Windows-based applications, you also use the dialog box to
specify the specific applications you want UFT to recognize during record,
run, and Object Spy sessions. For example, you can choose to have UFT
open a specific application when you start a record or run session.

You can set your record and run options in the Record and Run Settings
dialog box, or you can set the options using environment variables.

The Record and Run Settings dialog box opens automatically each time you
begin recording a new test and saves your settings with that test.
Subsequently, when you perform additional record or run sessions on
existing tests, the Record and Run Settings dialog box does not open. This is
because UFT automatically applies the saved record and run settings.

You can modify the record or run settings prior to any session using the
Record and Run Settings dialog box (Record > Record and Run Settings).

The Record and Run Settings dialog box always contains the Windows
Applications tab. It may contain other tabs corresponding to add-ins that
are loaded. For details on which tab of the Record and Run Settings dialog
box you should use with an add-in, see the relevant add-in chapter.

Chapter 1 • UFT Add-ins Overview

36

For details on defining record and run settings, see the relevant add-in
environment section, for example, "Windows Applications Tab (Record and
Run Settings Dialog Box)" on page 124 if you are testing a standard
Windows-based application.

This section also includes:

➤ "Considerations for Defining Record and Run Settings" on page 36

➤ "Environment Variables in Record and Run Settings" on page 37

Considerations for Defining Record and Run Settings

➤ The setting of the Active Screen capture level (Tools > Options > GUI
Testing tab > Active Screen pane) can significantly affect the recording
time for your test and the functionality of the Active Screen while editing
your test. Confirm that the level selected answers your testing needs. For
details, see the section on setting active screen options in the HP Unified
Functional Testing User Guide.

➤ You can set the record and run settings for some add-in environments
using the corresponding tab in the Record and Run Settings dialog box
(displayed only when the add-in is installed and loaded). For details on
record and run settings for:

➤ Windows-based applications, see "Define record and run settings for
Windows-based applications" on page 122.

➤ Web-based environments, see "Web Tab (Record and Run Settings
Dialog Box)" on page 77.

➤ other environments, see the relevant add-in chapter.

➤ You can set record and run options such that no applications open at the
beginning of record and run sessions. In this case, you may need to open
the application after you open UFT to ensure that UFT recognizes the
application. For details, see the relevant add-in chapter.

➤ After you set the record and run settings for a test, the Record and Run
settings dialog box will not open the next time you record operations in
that test. If needed, you open the Record and Run Settings dialog box by
choosing Record > Record and Run Settings.

Chapter 1 • UFT Add-ins Overview

37

If you change the record and run settings for additional recording
sessions, confirm that you return the settings to match the needs of the
first step in your test before you run it.

You should set or modify your record and run preferences in the
following scenarios:

➤ You have already recorded one or more steps in the test and you want
to modify the settings before you continue recording.

➤ You want to run the test on a different application than the one you
previously set in the Record and Run Settings dialog box.

➤ If you define environment variables to specify the record and run details,
those values override the values in the Record and Run Settings dialog
box. For details, see "Environment Variables in Record and Run Settings"
on page 37.

Environment Variables in Record and Run Settings
You can use special, predefined environment variables to specify the
applications or browsers you want to use for your test. This can be useful if
you want to test how your application works in different environments. For
example, you may want to test that your Web application works properly on
identical or similar Web sites with different Web addresses.

When you define an environment variable for one (or more) of the
application details, the environment variable values override any values that
were added using these areas of the Record and Run Settings dialog box.

Note: If you select the option to Record and Run on any application (the
upper radio button in each tab of the Record and Run Settings dialog box),
UFT ignores any defined Record and Run environment variables.

You can define the environment variables as internal user-defined variables,
or you can add them to an external environment variable file and set your
test to load environment variables from that file.

Chapter 1 • UFT Add-ins Overview

38

You can set your Record and Run settings manually while recording your
test and then define the environment variables or load the environment
variable file only when you are ready to run the test (as described in the
procedure below).

Alternatively, you can define environment variables before you record your
test. In this case, UFT uses these values to determine which applications or
browsers to open when you begin recording—assuming that the option to
open an application when starting record and run sessions for the particular
environment is selected. (This option corresponds to the lower radio button
in each tab of the Record and Run Settings dialog box, and the third check
box in the Windows Applications tab.)

For details on setting and modifying environment variables, see "How to
Define Record and Run Settings for UFT Add-ins" on page 41.

UFT Add-in Extensibility

UFT add-in extensibility, available for some environments, enables you to
extend the relevant UFT add-in to support third-party and custom controls
that are not supported out-of-the-box.

When UFT learns an object in an application, it recognizes the object as
belonging to a specific test object class. This type of test object might not
have certain characteristics that are specific to the control you are testing.
Therefore, when you try to create test steps with this test object, the
available identification properties and test object operations might not be
sufficient.

By developing support for a control using Add-in Extensibility, you can
direct UFT to recognize the control as belonging to a specific test object
class, and you can specify the behavior of the test object.

You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each lower-level
control separately. For example, a calendar control may consist of buttons
and text boxes. If you teach UFT to recognize the control as a calendar,
ignoring the individual buttons and text boxes, you can create more
meaningful tests on the calendar control.

Chapter 1 • UFT Add-ins Overview

39

In most environments, you can also extend the list of available test object
classes that UFT is able to recognize. This enables you to create tests that
fully support the specific behavior of your controls.

UFT add-in extensibility is currently supported for the Delphi, Java, .NET,
Silverlight, Web, and WPF add-ins.

If you cannot develop support for your controls using the extensibility
options provided for these environments, you might be able to take
advantage of the Testing Extensibility for Unified Functional Testing
program. Testing Extensibility is intended for customers who want to extend
UFT testing capabilities for technologies or applications not supported by
existing UFT add-ins. Participation in the program requires a separate license
agreement with HP.

For details on Testing Extensibility, contact HP Software support.

For details on UFT Add-in Extensibility, see:

➤ "Delphi Add-in Extensibility" on page 228

➤ "Java Add-in Extensibility" on page 250

➤ ".NET Add-in Extensibility" on page 166

➤ "Silverlight Add-in Extensibility" on page 191

➤ "Web Add-in Extensibility" on page 654

➤ "WPF Add-in Extensibility" on page 200

Chapter 1 • UFT Add-ins Overview

40

Tasks

How to Manage UFT Add-ins

This task contains the following steps:

➤ "Load or remove add-ins from UFT" on page 40

➤ "Match loaded add-ins with associated add-ins" on page 40

Load or remove add-ins from UFT

 1 Select Start > All Programs > HP Software > HP Unified Functional Testing
> HP Unified Functional Testing. The Unified Functional Testing Add-in
Manager dialog box opens.

If the Add-in Manager dialog box does not open, see the To access section
in "Add-in Manager Dialog Box" on page 44.

 2 In the add-in list, select or clear the check box for the relevant add-in and
click OK. For details about the Add-in Manager, see "Add-in Manager
Dialog Box" on page 44.

Match loaded add-ins with associated add-ins

If there are add-ins associated with your test or with your business
component’s application area that are not currently loaded, you can:

➤ Close and reopen UFT, and select the required add-ins in the Add-in
Manager dialog box.

➤ Remove the add-ins from the list of associated add-ins for your test or
business component. To change the list of add-ins associated with your
test or business component, select File > Settings and click Modify in the
Properties pane.

Chapter 1 • UFT Add-ins Overview

41

If add-ins are loaded but are not associated with your test or with your
business component’s application area, you can:

➤ Close and reopen UFT, and clear the check boxes for the add-ins in the
Add-in Manager dialog box, if they are not required.

➤ Add the add-ins to the list of associated add-ins for your test or for your
business component’s application area.

➤ To change the list of add-ins associated with your test, select File >
Settings and click Modify in the Properties pane.

➤ To change the list of add-ins associated with your business component,
open the application area associated with your business component,
and modify the list in the Properties pane.

For details on associating add-ins with your test or business component, see
the HP Unified Functional Testing User Guide.

How to Define Record and Run Settings for UFT Add-ins

This task contains the following steps:

➤ "Define record and run settings for specific add-ins" on page 41

➤ "Set record and run environment variables for add-ins" on page 42

Define record and run settings for specific add-ins

 1 Review "Considerations for Defining Record and Run Settings" on
page 36.

 2 Use one of the following to open the Record and Run Settings dialog box:

➤ Select Record > Record and Run Settings.

➤ Click the Record button or select Record > Record. If you are recording
for the first time in a test and have not yet set your recording
preferences (by opening the dialog box manually), the Record and Run
Settings dialog box opens.

The Record and Run Settings dialog box is divided by environment into
several tabbed pages.

Chapter 1 • UFT Add-ins Overview

42

 3 Select the relevant environment by clicking a tab.

 4 Set the required options, as described in the relevant add-in chapter.

 5 To apply your changes and keep the Record and Run Settings dialog box
open, click Apply.

 6 Close the Record and Run Settings dialog box to begin your record or run
session, click OK.

Set record and run environment variables for add-ins

 1 Review "Environment Variables in Record and Run Settings" on page 37.

 2 Use one of the following to open the Record and Run Settings dialog box:

➤ Select Record > Record and Run Settings.

➤ Click the Record button or select Record > Record. If you are recording
for the first time in a test and have not yet set your recording
preferences (by opening the dialog box manually), the Record and Run
Settings dialog box opens.

The Record and Run Settings dialog box is divided by environment into
several tabbed pages.

 3 Set your record and run preferences normally before recording your test.

Note: If you already have environment variables set for one or more
application details, and you select the option to open an application
when the record session begins (the lower radio button in each tab of the
Record and Run Settings dialog box), UFT ignores the record settings you
enter in the dialog box.

 4 Record and edit your test normally.

 5 If you did not define environment variables prior to recording your test,
define an environment variable for each application detail you want to
set using the appropriate variable name. For details on the variable names
required, see:

Chapter 1 • UFT Add-ins Overview

43

➤ For Web browsers and URLs to open, see "How to Define Record and
Run Variables for a Web-Based Environment" on page 67.

➤ For Windows applications on which you want to record and run tests,
see "How to Define Record and Run Settings for Windows-Based
Applications" on page 121.

➤ For other tabs in the Record and Run Settings dialog box, see the
relevant add-in chapter in this guide.

For details on how to define a user-defined environment variable and
how to create environment variable files, see the section on using
environment variable parameters in the HP Unified Functional Testing User
Guide.

 6 Run the test. UFT uses the environment values to determine which
applications to open at the beginning of the run session, and on which
processes to record.

Chapter 1 • UFT Add-ins Overview

44

Reference

Add-in Manager Dialog Box

This dialog box enables you to select the add-ins that you want UFT to load
by selecting the check boxes adjacent to required add-ins.

Chapter 1 • UFT Add-ins Overview

45

User interface elements are described below:

To access By default, this dialog box opens when you start UFT.

To display the Add-in Manager if it does not open when
you start UFT, select Tools > Options > General tab >
Startup Options node and select Display Add-in Manager
on startup.

Important
information

➤ If you select the check box of an add-in that contains a
child add-in, the parent add-in is selected automatically.

➤ If you clear the check box for a parent add-in, the check
boxes for its children are also cleared.

➤ UFT remembers which add-ins you selected so that the
next time you open UFT, the same add-ins are selected in
the Add-in Manager dialog box.

➤ If you load or unload an add-in that is displayed as a
child of the Java add-in in the Add-in Manager, only
applications that are opened after loading or unloading
the add-in are affected.

Relevant tasks ➤ "How to Start UFT" in the HP Unified Functional Testing
User Guide

➤ "How to Manage UFT Add-ins" on page 40

See also ➤ "Product Information Window" in the HP Unified
Functional Testing User Guide

➤ "UFT Add-in Support - Overview" on page 30

➤ "Considerations for Working with UFT Add-ins" on
page 34

MainUsersGuide.chm::/Start_QT.htm
MainUsersGuide.chm::/product_info_UI_TEST.htm

Chapter 1 • UFT Add-ins Overview

46

UI Element Description

Add-in The names of the installed add-ins.

The list of Add-ins might also include child nodes
representing add-ins that you or a third party developed to
support additional environments or controls using add-in
extensibility. For details, see the relevant Add-in
Extensibility Developer Guide, available from the UFT
Extensibility Documentation program group (Start > All
Programs > HP Software > HP Unified Functional Testing >
Extensibility > Documentation).

Note:

➤ If you plan to test your application in a Web browser,
select Web as well as your required add-in.

➤ If you want to test .NET Windows Forms, select .NET and
click OK. A message is displayed stating that for full
operation of the .NET Add-in you must also load the Web
Add-in. If you want to test only .NET Windows Forms
(and not .NET Web Forms), you can click Yes.

License The license used by the add-in, if any, and the time
remaining until a time-limited license expires:

➤ Licensed. Applies to the add-ins that are provided with
UFT. Add-ins use the same license as UFT. Therefore, if
UFT uses a Permanent license, the add-ins use the same
Permanent license; if UFT uses a Time-Limited license,
the add-ins use the same Time-Limited license.

➤ Not Licensed. Applies to an add-in that does not have an
installed seat license or access to a concurrent license (for
example, if all concurrent licenses are currently in use, or
if the required add-in license is not installed on the
concurrent license server on your subnet). To load the
add-in, you first need to install or access a license.

➤ Time Remaining. Specifies the number of days and hours
remaining until a time-limited add-in license expires.
(Displayed only when using a UFT seat license—not a
concurrent license.)

For more details, see the HP Unified Functional Testing
Installation Guide.

Chapter 1 • UFT Add-ins Overview

47

License used The license used by UFT:

➤ Unified Functional Testing. Enables you to use all UFT
features, including the use of GUI testing and API testing
features.

➤ QuickTest Professional. Enables you to open only GUI
tests and components. When using this license, API
testing-related options are not available.

➤ Service Test. Enables you to open only API tests and
components. When using this license, GUI
testing-related options are not available.

➤ QuickTest and Service Test. Enables you to use UFT with a
QuickTest 11.00 or earlier or a Service Test 11.20 or earlier
license. When using this type of license, business process
testing features and GUI/API integration features (like
calls to a GUI test from an API test and vice versa are not
available).

Click Change to modify the type of license used with a
session of UFT.

Show on startup Instructs UFT to display the Add-in Manager dialog box
each time you open UFT.

When this check box is cleared, UFT opens and loads the
same add-ins it loaded in the previous session, without
displaying the Add-in Manager.

Note for concurrent license users: If this check box was
cleared in the previous session, and the license type selected
from the concurrent license server in that session is not
currently available, UFT tries to load an available license
that matches the selected add-ins.

To display the Add-in Manager again:
Select Tools > Options > General tab > Startup Options node
and select Display Add-in Manager on startup.

UI Element Description

Chapter 1 • UFT Add-ins Overview

48

49

2
Web-Based Application Support

This chapter includes:

Concepts

➤ Web-Based Application Support - Overview on page 51

➤ Considerations - Web-Based Application Support on page 51

➤ Registering Browser Controls on page 54

➤ Accessing Password-Protected Resources in the Active Screen on page 55

➤ Checkpoints for Web Pages on page 57

➤ Event Recording Configuration for Web-Based Applications on page 58

➤ Advanced Operations on Web-Based Applications on page 59

➤ Web Object Identifiers on page 62

Tasks

➤ How to Define Record and Run Variables for a Web-Based Environment
on page 67

➤ How to Modify Event Recording Configuration for Web-Based
Applications on page 69

➤ How to Configure UFT to Record Mouse Clicks on page 71

➤ How to Use Web Object Identifiers - Exercise on page 73

Reference

➤ Web Tab (Record and Run Settings Dialog Box) on page 77

➤ Web > General Pane (Options Dialog Box) on page 82

➤ Web Pane (Test/Business Component Settings Dialog Box /
Application Area - Additional Settings Pane) on page 101

Chapter 2 • Web-Based Application Support

50

➤ Web Event Recording Configuration XML File Structure on page 106

➤ Register Browser Control Utility on page 108

➤ Active Screen Dialog Box on page 109

Troubleshooting and Limitations - Web-Based Application Support
on page 110

Chapter 2 • Web-Based Application Support

51

Concepts

Web-Based Application Support - Overview

UFT provides a number of add-ins for testing Web-based applications. The
way you configure many of your UFT settings is the same or similar for most
UFT Web-based add-ins. These common configuration options are described
in the remainder of this chapter.

For additional details on how to work with Web-based add-ins, see the
following sections:

➤ ".NET Web Forms Add-in - Quick Reference" on page 153

➤ "PeopleSoft Add-in - Quick Reference" on page 335

➤ "Siebel Add-in - Quick Reference" on page 461

➤ ".NET Silverlight Add-in - Quick Reference" on page 187

➤ "Web Add-in - Quick Reference" on page 651

➤ "Web 2.0 Toolkit Support" on page 675

➤ "Web-Based SAP Support - Quick Reference" on page 359

In addition to using the add-ins described above, you can also use the
Extensibility Accelerator to develop your own Web-based add-in support for
third-party and custom Web controls that are not supported by any of the
above UFT Web-based add-ins. For details, see "Extensibility Accelerator for
HP Functional Testing" on page 655.

Considerations - Web-Based Application Support

This section contains the following items to consider when testing
Web-based applications:

➤ "Recording and Running Steps on Web Controls" on page 52

➤ "Working with Web Browsers" on page 52

Chapter 2 • Web-Based Application Support

52

➤ "Testing Applications with Embedded Web Browser Controls" on page 53

Recording and Running Steps on Web Controls

➤ If UFT does not record Web events in a way that matches your needs, you
can also configure the events you want to record for each type of Web
object. For example, if you want to record events, such as moving the
pointer over an object to open a sub-menu, you may need to modify the
Web event configuration to recognize such events. For details, see "Event
Recording Configuration for Web-Based Applications" on page 58.

➤ If you are recording on a list in an application, you must highlight the
list, scroll to an entry that was not originally showing, and select it. If you
want to select the item in the list that is already displayed, you must first
select another item in the list (click it), then return to the originally
displayed item and select it (click it). This is because UFT records a step
only if the value in the list changes.

➤ If a Web element in an HTML page is set to be disabled or invisible, for
example if a <DIV> element above it controls its appearance, but the
elements on the page are available in the DOM, then UFT can perform
operations on those objects even though a human user of the application
could not.

Working with Web Browsers

➤ You select your browser in the Web tab of the Record and Run Settings
dialog box. For details, see "Web Tab (Record and Run Settings Dialog
Box)" on page 77.

➤ UFT does not support the option to zoom in and out of a Web page. If you
use this option, some UFT functionality may not work as expected. For
example, the Object Spy may be unable to correctly highlight objects or
display object details. (These problems do not occur if the Zoom Text
Only Firefox menu item is selected.)

Additionally, bitmap checkpoints will fail if a different zoom level is used
when capturing the expected bitmap than the zoom level used when
running the checkpoint step.

Chapter 2 • Web-Based Application Support

53

➤ By default, the name assigned to the Browser test object in the object
repository is always the name assigned to the first Page object that is
learned or recorded for the Browser object. The same Browser test object is
used each time you learn an object or record in a browser with the same
ordinal ID. Therefore, the name used for the Browser test object in the
steps you record may not reflect the actual browser name.

➤ UFT Web support behaves as a browser extension in Microsoft Internet
Explorer. Therefore, you cannot use the Web Add-in on Microsoft Internet
Explorer without selecting the Enable third-party browser extensions
option. To set the option, in Microsoft Internet Explorer select Tools >
Internet Options > Advanced and select the Enable third-party browser
extensions option.

➤ For UFT to run JavaScript methods, the security settings in your browser
must be set to allow active scripting. (In Internet Explorer 7, for example,
you can find these security settings under: Tools > Internet Options >
Security > Custom Level > Scripting > Active scripting.)

This is relevant if your test steps include RunScript or EmbedScript
methods, or if you are working with test objects supported using Web
Add-in Extensibility, such as Web 2.0 test objects.

➤ Creating and running steps that start an InPrivate Browsing session is
supported only by using Tools > InPrivate Browsing. Using toolbars or
extensions for this operation may cause Microsoft Internet Explorer to
behave unexpectedly.

➤ Creating and running steps that are related to tabs, such as selecting a tab
or creating a new tab is not supported when Microsoft Internet Explorer is
in Full Screen mode.

Workaround: Add a <Browser>.FullScreen step before and after the
desired step to toggle Full Screen mode.

Testing Applications with Embedded Web Browser Controls

Working with applications that contain embedded Web browser controls is
similar to working with Web objects in a Web browser.

Chapter 2 • Web-Based Application Support

54

Note: Embedded browser controls are supported only for Microsoft Internet
Explorer.

To test objects in embedded browser controls, ensure that:

➤ The Web Add-in is loaded.

➤ The application opens only after UFT is open.

➤ (For tests) In the Web tab of the Record and Run Settings dialog box, the
Record and run test on any open browser option is selected. (This option
is not relevant for business components.)

After these conditions are met, you can start adding steps or running your
test or business component.

Registering Browser Controls

A browser control adds navigation, document viewing, data download, and
other browser functionality to a non-Web application. This enables the user
to browse the Internet as well as local and network folders from within the
application.

UFT cannot automatically recognize the objects that provide browser
functionality in your non-Web application as Web objects. For UFT to record
or run on these objects, the application hosting the browser control must be
registered.

Note: You can register applications developed in different environments,
such as those written in Java, .NET, and so on.

For user interface details, see "Register Browser Control Utility" on page 108.

Chapter 2 • Web-Based Application Support

55

Accessing Password-Protected Resources in the Active
Screen

When UFT creates an Active Screen page for a Web-based application, it
stores the path to images and other resources on the page, rather than
downloading and storing the images with your test.

Note: The Active Screen pane is not available when working with keyword
components (although it is available for scripted components).

Storing the path to images and other resources ensures that the disk space
used by the Active Screen pages captured with your test is not affected by
the file size of the resources displayed on the page.

For this reason, a page in the Active Screen (or in your run results) may
require a user name and password to access certain images or other resources
within the page. If this is the case, a pop-up login window may open when
you select a step corresponding to the page (see "Active Screen Dialog Box"
on page 109), or you may note that images or other resources are missing
from the page.

For example, the formatting of your page may look very different from the
actual page on your Web site if the cascading style sheet (CSS) referenced in
the page is password-protected, and therefore could not be downloaded to
the Active Screen.

Chapter 2 • Web-Based Application Support

56

You may need to use one or both of the following methods to access your
password-protected resources, depending on the password-protection
mechanism used by your Web server:

➤ Standard Authentication. If your server uses a standard authentication
mechanism, you can enter the login information in the Web pane of the
Test Settings dialog box. UFT saves this information with your test and
automatically enters the login information each time you select to display
an Active Screen page that requires the information. For details, see "Web
Pane (Test/Business Component Settings Dialog Box / Application Area -
Additional Settings Pane)" on page 101.

If you do not enter this information in the Web pane of the Test Settings
dialog box and attempt to access the password-protected resources, the
Active Screen dialog box opens. For details, see "Active Screen Dialog Box"
on page 109.

➤ Advanced Authentication. If your server uses a more complex
authentication mechanism, you may need to log in to the Web site
manually using the Advanced Authentication dialog box. This gives the
Active Screen access to password-protected resources in your Active Screen
pages for the duration of your UFT session. When using this method, you
must log in to your Web site in the Advanced Authentication dialog box
each time you open the test in a new UFT session. For details, see
"Advanced Authentication Dialog Box" on page 104.

In most cases, the automatic login is sufficient. In some cases, you must use
the manual login method. In rare cases, you may need to use both login
mechanisms to enable access to all resources in your Active Screen pages.

Note: If your Web site is not password-protected, but you are still unable to
view images or other resources on your Active Screen, you may not be
connected to the Internet, the Web server may be down, or the source path
that was captured with the Active Screen page may no longer be accurate.

Chapter 2 • Web-Based Application Support

57

Checkpoints for Web Pages

This section describes the checkpoint types that are supported only for
Web-based add-ins. For a list of all supported checkpoints per add-in, see
"Supported Checkpoints" on page 696.

Accessibility Checkpoints

Accessibility checkpoints are designed to help you easily locate the areas of
your Web site that require special attention according to the W3C Web
Content Accessibility Guidelines. They do not necessarily indicate whether
or not your Web site conforms to the guidelines.

Accessibility checkpoints are not supported for keyword components.

For details, see the chapter on accessibility checkpoints in the HP Unified
Functional Testing User Guide.

Page Checkpoints

When working with tests, you can check statistical information about your
Web pages by adding page checkpoints to your test. These checkpoints
check the links and the sources of the images on a Web page. You can also
instruct page checkpoints to include a check for broken links.

Page checkpoints are not supported for keyword components.

For details, see the chapter on page checkpoints in the HP Unified Functional
Testing User Guide.

Tip: You can instruct UFT to create automatic page checkpoints for every
page in all tests by selecting the Create a checkpoint for each Web page
while recording check box in the Web > Advanced pane of the Options
dialog box (Tools > Options > GUI Testing tab > Web > Advanced node). For
details, see "Web > Advanced Pane (Options Dialog Box)" on page 92.

MainUsersGuide.chm::/CH_Check_Page.htm
MainUsersGuide.chm::/CH_Access_Chk.htm

Chapter 2 • Web-Based Application Support

58

Event Recording Configuration for Web-Based
Applications

When you record on a Web application, UFT generates steps by recording
the events you perform on the Web objects in your application. An event is
a notification that occurs in response to an operation, such as a change in
state, or as a result of the user clicking the mouse or pressing a key while
viewing the document.

UFT includes event recording configurations that have been optimized for
each Web-based add-in, so that in most cases UFT records steps for relevant
events on each object and avoids recording steps for events that usually do
not impact the application. For example, by default, UFT records a step
when a click event occurs on a link object, but does not record a step when a
mouseover event occurs on a link.

Each Web-based add-in has its own XML file that defines the Web-event
recording configuration for objects in that environment.

When you perform an operation on a Web-based object during a recording
session (and the appropriate add-in is installed and loaded), UFT uses the
recording configuration defined for that environment.

If your application contains several types of Web-based controls, the
appropriate Web event recording configuration is used for each object and
the configuration for one environment does not override another.

Chapter 2 • Web-Based Application Support

59

Customizing Event Recording Configurations for Web-Based
Applications

You can view and customize the configuration settings for the Web Add-in
in the Web Event Recording Configuration dialog box. The settings in that
dialog box affect the recording behavior only for objects that UFT recognizes
as Web test objects.

Note: For the purposes of Web event recording, UFT treats Web test objects
that are child objects of a PSFrame test object as PeopleSoft objects and thus
applies the settings in the PeopleSoft event configuration XML file when
recording those objects.

For details, see "Event Recording Configuration for Web Objects - Overview"
on page 670.

In most cases, it is not necessary to customize the Web event recording
configuration of other add-ins. If you do need to customize these settings,
you can do so either by editing the XML for the relevant add-in manually, or
you can import the XML into the Web Event Recording Configuration
dialog box to make the necessary changes and then export the modified file.

Advanced Operations on Web-Based Applications

This section describes various advanced operations you can perform on
Web-based objects, and includes the following:

➤ "Activating methods associated with a Web-based object using the Object
property" on page 60

➤ "Using programmatic descriptions for the WebElement object" on page 61

Chapter 2 • Web-Based Application Support

60

Activating methods associated with a Web-based
object using the Object property
In the Editor, you can use the Object property to activate the method for a
Web object. Activating the method for a Web object has the following
syntax:

WebObjectName.Object.Method_to_activate()

For example, suppose you have the following statement in your script:
document.MyForm.MyHiddenField.value = "My New Text"

The following example achieves the same thing by using the Object
property, where MyDoc is the DOM’s document:

Dim MyDoc
Set MyDoc = Browser(browser_name).page(page_name).Object
MyDoc.MyForm.MyHiddenField.value = "My New Text"

In the following example, LinksCollecton is assigned to the link collection of
the page through the Object property. Then, a message box opens for each
of the links, with its innerHTML text.

Dim LinksCollection, link
Set LinksCollection = Browser(browser_name).Page(page_name).Object.links
For Each link in LinksCollection

MsgBox link.innerHTML
Next

For details on the Object property (.Object), see the section on retrieving
and setting identification property values in the HP Unified Functional Testing
User Guide.

For a list of a Web object's internal properties and methods, see:

http://msdn2.microsoft.com/en-us/library/ms531073.aspx

http://msdn2.microsoft.com/en-us/library/ms531073.aspx

Chapter 2 • Web-Based Application Support

61

Using programmatic descriptions for the WebElement
object
When UFT recognizes an object as a Web-based object that does not fit into
any other HP UFT test object class, it learns the object as a WebElement
object. You can also use a programmatic description with a WebElement test
object to perform methods on any Web object in your Web site.

For example, when you run either of the examples below, UFT clicks the first
Web object in the Mercury Tours page with the name UserName.

Browser("Mercury Tours").Page("Mercury Tours").
WebElement("Name:=UserName", "Index:=0").Click

or

set WebObjDesc = Description.Create()
WebObjDesc("Name").Value = "UserName"
WebObjDesc("Index").Value = "0"
Browser("Mercury Tours").Page("Mercury Tours").WebElement(WebObjDesc).

Click

For details on the WebElement object, see the HP Unified Functional Testing
Object Model Reference. For details on programmatic descriptions, see the
section on programmatic descriptions in the HP Unified Functional Testing
User Guide.

Chapter 2 • Web-Based Application Support

62

Web Object Identifiers

During a run session, UFT attempts to identify each object in your
application by matching the description properties stored for the
corresponding test object with the properties of the DOM element in the
application. For complex Web applications that contain many objects, using
only the standard identification methods may have unreliable results. For
details on the standard methods UFT uses to identify objects, see the section
on how UFT identifies objects in the HP Unified Functional Testing User Guide.

You can instruct UFT to use Web object identifiers before the regular object
identification process to help limit the number of candidate objects to
identify. UFT accesses the application’s DOM and returns objects that match
the object identifier property values. UFT then continues to identify this
smaller set of returned objects using the normal object identification
process. Therefore, using Web object identifiers can lead to a more reliable
and accurate object identification, and a quicker object identification
process.

To follow an exercise describing the identification process using Web object
identifiers, see "How to Use Web Object Identifiers - Exercise" on page 73.

For details about the general workflow of the object identification process,
see the section on object identification in the HP Unified Functional Testing
User Guide.

This section includes:

➤ "Web Object Identifier Types" on page 63

➤ "Considerations - Web Object Identifiers" on page 65

MainUsersGuide.chm::/Und_QT_ID_Dur_Run.htm
MainUsersGuide.chm::/ObjID_Workflow.htm

Chapter 2 • Web-Based Application Support

63

Web Object Identifier Types
The following Web object identifiers are available:

CSS

CSS (Cascading Style Sheet) is a language used to define formatting of
elements in HTML pages. You can define a CSS identification property value
for a test object to help identify a Web object in your application based on
its CSS definition.

UFT uses CSS identifiers only when identifying objects and not when
learning objects. Therefore, they are not available from the Object Spy or
the Object Identification dialog box.

For usage examples, see "How to Use Web Object Identifiers - Exercise" on
page 73.

User-defined XPath

XPath (XML Path) is a language used to define the structure of elements in
XML documents. You can define an XPath identification property to help
identify a Web object in your application based on its location in the
hierarchy of elements in the Web page. Because of the flexible nature of the
language, you can define the XPath according to the unique way your Web
page is structured.

UFT uses XPath identifiers only when identifying objects and not when
learning objects. Therefore, they are not available from the Object Spy or
the Object Identification dialog box.

For usage examples, see "How to Use Web Object Identifiers - Exercise" on
page 73.

Automatic XPath

You can instruct UFT to automatically generate and store an XPath value
when learning Web test objects. During the run session, if the automatically
learned XPath for a particular object results in multiple matches or no
matches, the learned XPath is ignored. Additionally, if you have added a
user-defined XPath or CSS identification property to a test object
description, then the automatically learned XPath is ignored.

Chapter 2 • Web-Based Application Support

64

Automatic XPath is a UFT-generated property, and therefore it is not
available from the Object Spy, the Add/Remove Properties dialog box, or the
Object Identification dialog box.

You enable this option in the Web section of the Options dialog box. For
details, see "Web > General Pane (Options Dialog Box)" on page 82.

Attribute/* Notation

You can use the attribute/* notation to access custom native properties of
Web-based objects or events associated with Web-based objects. You can
then use these properties or events to identify such objects by adding the
notation to the object’s description properties using the Object
Identification dialog box, or by using programmatic descriptions.

Example of using attribute/<property> to identify a Web object

Suppose a Web page has the same company logo image in two places on the
page:

You could identify the image that you want to click by adding the attribute/
LogoID notation to the object’s description properties and using a
programmatic description to identify the object:

Browser("Mercury Tours").Page("Find Flights").Image("src:=logo.gif",
"attribute/LogoID:=123").Click 68, 12

Example of using attribute/<event> to identify a Web object

Suppose a Web page has an object with an onclick event attached to it:

‘’alert('OnClick event for edit.');”

You can identify the object by adding the attribute/onclick notation to the
object’s description properties and using a programmatic description to
identify the object:

Chapter 2 • Web-Based Application Support

65

Browser("Simple controls").Page("Simple controls").WebEdit("attribute/onclick:=
alert\('OnClick event for edit\.'\);").Set "EditText"

For details on the Object Identification dialog box and programmatic
descriptions, see the HP Unified Functional Testing User Guide.

For considerations on working with Web object identifiers, see
"Considerations - Web Object Identifiers" on page 65.

Considerations - Web Object Identifiers
Consider the following when using Web object identifiers:

General

➤ Defining xpath and css properties using Frame HTML tags is not
supported. This may cause incorrect identification when identifying
Frame objects or retrieving Frame objects using the ChildObjects method.

➤ xpath and css properties are not supported for .NET Web Forms test
objects or for other Web-based test objects that have .NET Web Forms
parent test objects.

➤ When running in Maintenance Mode, UFT may replace test objects with
XPath or CSS identifier property values with new objects from your
application.

Workaround: Use the Update from Application option in the Object
Repository Manager to update specific test objects with XPath or CSS
identifier property values.

Chapter 2 • Web-Based Application Support

66

Differences Between User-Defined XPath and Automatic XPath
Behavior During Run Sessions

Behavior in
case of...

User-defined XPath Automatic XPath

Multiple
objects
match the
XPath value

UFT continues to identify the
matching objects.

UFT ignores the learned XPath
and continues with the regular
object identification process.

No objects
match the
XPath value

Object identification fails,
and UFT continues to identify
the object using Smart
Identification

UFT ignores the learned XPath
and continues with the regular
object identification process.

Chapter 2 • Web-Based Application Support

67

Tasks

How to Define Record and Run Variables for a Web-Based
Environment

You can use predefined environment variables to specify the applications or
browsers you want to use for your test. This can be useful if you want to test
how your application works in different environments.

Note: For details on environment variables and how to use them in tests, see
"Environment Variables in Record and Run Settings" on page 37.

Chapter 2 • Web-Based Application Support

68

To use environment variables to define the Web browser and URL to open,
set the appropriate variable names as specified below:

Option Variable Name Description

Type BROWSER_ENV The browser program to open. For example,
Microsoft Internet Explorer, Google Chrome, or
Mozilla Firefox.

Possible values:

IE. Opens Internet Explorer.

IE64. Opens a 64-bit version of Internet Explorer.

CHROME. Opens Google Chrome.

FIREFOX. Opens the latest version of Mozilla
Firefox that is both installed on the computer and
supported by UFT.

FF<VersionNumber>. Opens the specified
version of Mozilla Firefox. For example: FF36
(version 3.6), FF40 (version 4.0), FF140 (version
14.0).

Note:

➤ If the specified browser program is not installed,
the default browser is used.

➤ Mozilla Firefox is supported only for the Web
Add-in.

➤ When specifying a Firefox version number,
make sure to specify a supported version. For a
list of all supported browser versions, see the
HP Unified Functional Testing Product Availability
Matrix, available from the UFT Help or the root
folder of the Unified Functional Testing DVD.
The most up-to-date product availability matrix
is available from the HP Software Product
Manuals site, at http://h20230.www2.hp.com/
selfsolve/manuals (requires an HP Passport).

Address URL_ENV The Web address to display in the browser.

LandingPages.chm::/LP_UFT_PAM.htm
http://h20230.www2.hp.com/selfsolve/manuals
http://h20230.www2.hp.com/selfsolve/manuals

Chapter 2 • Web-Based Application Support

69

How to Modify Event Recording Configuration for
Web-Based Applications

This task includes the following steps:

➤ "Modify the event recording configuration XML file manually" on
page 69

➤ "Modify the event recording configuration in the Web Event Recording
Configuration dialog box" on page 69

Modify the event recording configuration XML file manually

 1 In a text or XML editor, open the appropriate
MyEnvEventConfiguration.xml file from the <UFT installation folder>\dat
folder, according to the following table:

 2 Edit the file as necessary.

 3 Save the file.

Modify the event recording configuration in the Web Event
Recording Configuration dialog box

 1 Back up the event recording configuration for the Web environment:

 a Select Record > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 b Click Custom Settings.

Object Type: XML File Name

.NET Web Forms WebFormsEventConfiguration.xml

Siebel 7.5 or earlier SiebelEventConfiguration.xml

Siebel 7.7 or later CASEventConfiguration.xml

PeopleSoft Frame objects and all Web
objects that are children of a PeopleSoft
frame object

PSEventConfiguration.xml

Chapter 2 • Web-Based Application Support

70

 c Select File > Save Configuration As and specify an XML filename for
the backup file.

 2 Back up the event recording configuration for the environment you want
to modify:

Create a copy of the relevant <MyEnv>EventConfiguration.xml file from
the <UFT installation folder>\dat folder.

 3 Modify the <MyEnv>EventConfiguration.xml file in the Web Event
Recording Configuration dialog box:

 a In the Web Event Recording Configuration dialog box, select File >
Load Configuration and browse to the relevant <UFT installation
folder>\dat\<MyEnv>EventConfiguration.xml file. The event
configuration for the selected environment is displayed in the dialog
box.

 b Modify the configuration using the Web Event Recording
Configuration dialog box options, as described in "Event Recording
Configuration for Web Objects - Overview" on page 670.

 c Select File > Save Configuration As and overwrite the previous <UFT
installation folder>\dat\<MyEnv>EventConfiguration.xml file.

 4 Restore the configuration file for the Web environment:

Select File > Load Configuration and browse to the backup copy of the
Web configuration file that you saved in step 1.

Caution: UFT always applies the configuration that is loaded in the Web
Event Recording Configuration dialog box to all Web objects. If you do
not restore the Web configuration file as described in step 4, then UFT
will apply the configuration for the file you loaded in step 3, and as a
result, UFT may not record Web events properly.

Chapter 2 • Web-Based Application Support

71

How to Configure UFT to Record Mouse Clicks

This task describes how to instruct UFT to record right mouse clicks by
modifying the configuration file manually.

 1 (Web Add-in only) Prerequisite - Export the configuration
file from the Custom Web Event Recording Configuration
dialog box

 a Select Record > Web Event Recording Configuration, and then click
Custom Settings. For user interface details, see the section on the
Custom Web Event Recording Configuration dialog box.

 b Export your custom configuration to an XML file by selecting File >
Save Configuration As. Then, navigate to the folder in which you want
to save the Web event recording configuration file, and enter a
configuration file name. The extension for configuration files is .xml.

 2 Open the XML file in a text editor

 a Open the configuration file for editing in any text editor. The
configuration file uses a predefined XML structure. For details, see
"Web Event Recording Configuration XML File Structure" on page 106.

The following example illustrates the beginning of an exported
configuration file:

The Property Name element controls the recording of the mouse
buttons. The values of the mouse buttons are defined as follows:

➤ 1. Left

➤ 2. Right

➤ 4. Middle

WebUsersGuide.chm::/Custom_Web_Event_Recording_Configuration.htm
WebUsersGuide.chm::/Custom_Web_Event_Recording_Configuration.htm

Chapter 2 • Web-Based Application Support

72

 3 Modify the XML file to enable mouse click recording

 a Edit the XML file as follows:

➤ To record a left mouse click for the onmouseup event, add the
following line:

<Property Name="button" Value="1" Listen="2" Record="2"/>

➤ To record right and left mouse clicks for the onmousedown event,
add the following lines:

<Event Name="onmousedown" Listen="2" Record="1">

<Property Name="button" Value="2" Listen="2" Record="2"/>

<Property Name="button" Value="1" Listen="2" Record="2"/>

</Event>

Note: Only one event, either onmouseup or onmousedown, should be
used to handle mouse clicks. If both events are used, UFT records two
clicks instead of one. By default, UFT listens for the onmouseup event.

 b Save the XML file.

 4 (Web Add-in only) Load the XML file into the Custom Web
Even Recording Configuration dialog box

 a In the Custom Web Event Recording Configuration Dialog Box
(described on page 688), select File > Load Configuration. The Open
dialog box opens.

 b Navigate to the folder in which you saved the edited configuration file,
select the file, and click Open. The Custom Web Recording
Configuration dialog box reopens.

 c Click OK. The new configuration is loaded, with all preferences
corresponding to those you defined in the XML configuration file. Any
Web objects you now record will be recorded according to these new
settings.

WebUsersGuide.chm::/Custom_Web_Event_Recording_Configuration.htm

Chapter 2 • Web-Based Application Support

73

How to Use Web Object Identifiers - Exercise

In this exercise, you use XPath and CSS identifiers in a test object
description to help locate the correct button in an HTML table.

This exercise includes the following steps:

➤ "Prerequisites" on page 73

➤ "Create a sample Web application" on page 74

➤ "Learn the button objects in the Web application" on page 74

➤ "Remove the ordinal identifiers from the button objects" on page 75

➤ "Add a CSS identifier based on the object’s parent container" on page 75

➤ "Add an XPath identifier based on the object’s parent container" on
page 75

➤ "Add an XPath identifier based on the object’s sibling element" on
page 76

➤ "Results" on page 76

 1 Prerequisites

 a Open UFT and create a new test.

 b Disable Smart Identification for the Button test object class by
selecting Tools > Object Identification, selecting the Web environment
in the Object Identification dialog box, and then selecting the Button
test object class from the Test Object classes list.

 c Disable automatic XPath by selecting Tools > Options > GUI Testing
tab > Web > Advanced node , and then making sure that the Learn and
run using automatic XPath identifiers check box is not selected.

Chapter 2 • Web-Based Application Support

74

 2 Create a sample Web application

 a Open the Help version of this exercise, copy the syntax content into a
text document, and save the document with an .html extension. The
document is saved as an HTML page.

 b Review the appearance and content of your newly created HTML page
in any browser. Make sure that it matches the following image.

 3 Learn the button objects in the Web application

 a In UFT, open the Object Repository Manager, and select Object >
Navigate and Learn. UFT is hidden, and the cursor changes to a
pointing hand.

 b To verify that UFT learned the objects correctly, in the object
repository, select each Button object and select View > Highlight in
Application. UFT highlights each button object in the HTML page.

 c Rename the Button objects to make them more clear:

➤ Rename Buy to Buy_BPT.

➤ Rename Buy_2 to Buy_ALM.

➤ Rename Buy_3 to Buy_UFT.

Chapter 2 • Web-Based Application Support

75

 4 Remove the ordinal identifiers from the button objects

Because all of the Button objects have identical property values, when
UFT learned the objects it assigned an ordinal identifier to each test object
based on the location of each object in the application. This may cause
UFT to identify the objects incorrectly if the sorting order of the buttons
in the application changes.

 a Select the first button object to display its object properties on the
right side of the object repository window.

 b In the Ordinal Identifier section, select the Browse button. The Ordinal
Identifier dialog box opens.

 c In the Identifier type drop-down list, select None and close the dialog
box. The ordinal identifier is removed from the test object’s
identification properties.

 d Repeat steps a- c above for each of the buttons.

 e Verify that the test object descriptions are no longer unique by
selecting each test object and selecting View > Highlight in
Application. UFT cannot identify the objects.

 5 Add a CSS identifier based on the object’s parent container

 a Select the Buy_BPT button. The test object details are displayed on the
right side of the object repository window.

 b In the Object Description section, click the Add button, and add the
css property to the test object description.

 c Copy and paste the following syntax into the Value edit box:

 6 Add an XPath identifier based on the object’s parent
container

 a Select the Buy_UFT button. The test object details are displayed on the
right side of the object repository window.

 b In the Object Description section, click the Add button, and add the
xpath property to the test object description.

tr.BPTRow input

Chapter 2 • Web-Based Application Support

76

 c Copy and paste the following syntax into the Value edit box:

 7 Add an XPath identifier based on the object’s sibling element

 a Select the Buy_QC button. The test object details are displayed on the
right side of the object repository window.

 b In the Object Description section, click the Add button, and add the
xpath property to the test object description.

 c Copy and paste the following syntax into the Value edit box:

 8 Results

Select each object and select View > Highlight in Application. UFT can
now identify each button based on the Web object identifiers you added.

//TR[@id='UFT']/*/INPUT

//td[contains(text(),'Quality')]/../*/INPUT

Chapter 2 • Web-Based Application Support

77

Reference

Web Tab (Record and Run Settings Dialog Box)

This tab enables you to set options that instruct UFT which applications to
open when you begin to record or run your test. You can instruct UFT to
open and record on applications from more than one environment. You can
also create steps on more than one browser tab, if your browser supports
tabbed browsing.

Chapter 2 • Web-Based Application Support

78

To access Select Record > Record and Run Settings and select the
Web tab.

Important
information

➤ The Web tab is available only when the Web add-in is
installed and loaded. UFT uses the settings in this tab
when recording and running tests or business
components on Web, .NET Web Forms, PeopleSoft,
and Web-based SAP objects.

➤ Siebel. For Siebel objects, UFT uses the settings in the
Siebel tab, available when the Siebel Add-in is installed
and loaded. For details, see "Siebel Tab (Record and
Run Settings Dialog Box)" on page 485.

➤ Other environments. In addition to setting the
appropriate settings in the Web tab, you should
confirm that the other tabs in the dialog box have the
appropriate settings.

The following settings are recommended:

➤ Windows Applications tab. Select Record and run
only on: and confirm that all three check boxes are
cleared, as shown below.

➤ Other tabs. (If displayed.) Select the option to
record and run on any open application (upper
radio button of each tab).

While these settings do not directly affect your record
or run sessions when working with Web-based
applications, they prevent you from inadvertently
recording operations performed on Windows
applications (such as e-mail) during your recording
session. These settings also prevent UFT from opening
unnecessary applications when you record or run tests
on Web-based applications.

➤ Environment variables. You can also use special,
predefined environment variables to specify the
applications or browsers you want to use for your test.
For details, see "Environment Variables in Record and
Run Settings" on page 37.

SiebelUsersGuide.chm::/Record_Settings_Siebel_Tab.htm

Chapter 2 • Web-Based Application Support

79

User interface elements are described below:

Relevant tasks ➤ "How to Modify Event Recording Configuration for
Web-Based Applications" on page 69

➤ "How to Define Record and Run Variables for a
Web-Based Environment" on page 67

➤ "How to Define Record and Run Settings for UFT
Add-ins" on page 41

See also ➤ "Considerations for Testing Applications with
Embedded Web Browser Controls" on page 81

UI Element Description

Record and run test
on any open browser

Instructs UFT to record and run on any open (supported)
Web browser. (For details on supported browsers, see the
HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the
Unified Functional Testing DVD.)

Note: You must open the Web browser after you open
UFT.

Tip: You can instruct UFT to ignore ALM browsers or
other browsers that are open to a specified URL or have a
specific title. For details, see "Web > General Pane
(Options Dialog Box)" on page 82.

Open the following
address when a
record or run session
begins

Instructs UFT to open a new browser session to record
and run the test using the specified URL address.

Note: If you define a value for the URL_ENV environment
variable, that value overrides the value specified here
during a run session. For details, see "Environment
Variables in Record and Run Settings" on page 37.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 2 • Web-Based Application Support

80

Open the following
browser when a
record or run session
begins

Instructs UFT to open the specified browser type when
recording or running a test:

Notes:

➤ Only those browsers currently installed on your
computer are available in the list.

➤ If you define a value for the BROWSER_ENV
environment variable, that value overrides the value
specified here during a run session. For details, see
"How to Define Record and Run Variables for a
Web-Based Environment" on page 67 and
"Environment Variables in Record and Run Settings"
on page 37.

➤ If you select Mozilla Firefox, UFT opens the latest
version of Mozilla Firefox that is both installed on your
computer and supported by UFT.

➤ If you want to open a specific version of Firefox that
is not available in this list, you can use the
BROWSER_ENV environment variable as described
in "How to Define Record and Run Variables for a
Web-Based Environment" on page 67.

➤ For a list of all supported browser versions, see the
HP Unified Functional Testing Product Availability
Matrix, available from the UFT Help or the root
folder of the Unified Functional Testing DVD.

Do not record and
run on browsers that
are already open

Instructs UFT not to record or run tests on any browsers
that are already open prior to the start of the record or
run session (and prior to opening UFT).

Selecting this option also prevents you from viewing the
properties of these browsers using the Object Spy.

Close the browser
when the test closes

Instructs UFT to close the browser window specified in
the Address box when the test closes.

UI Element Description

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 2 • Web-Based Application Support

81

Considerations for Testing Applications with Embedded Web
Browser Controls

➤ To record and run tests on an application with embedded Web browser
controls, select Record and run tests on any open Web browser in the
Record and Run Settings dialog box.

➤ Register your browser control application (using the Register Browser
Control Utility) so that UFT recognizes your Web object when recording
or running tests. For details, see "Register Browser Control Utility" on
page 108.

➤ Make sure that the application is opened after UFT, and start recording.

Chapter 2 • Web-Based Application Support

82

Web > General Pane (Options Dialog Box)

This pane enables you to determine how UFT behaves when recording and
running tests or business components on Web sites.

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Web >
General node.

Important
information

You can also modify how UFT displays captured Web
pages in the Active Screen. You do this in the Active
Screen pane of the Options dialog box (Tools > Options >
GUI Testing tab > Active Screen node). For details, see the
section describing Active Screen options in the HP Unified
Functional Testing User Guide.

Chapter 2 • Web-Based Application Support

83

Relevant tasks "How to Modify Event Recording Configuration for
Web-Based Applications" on page 69

See also ➤ "Browser Details Dialog Box" on page 86

➤ "Web > Page/Frame Options Pane (Options Dialog
Box)" on page 88

➤ "Web > Advanced Pane (Options Dialog Box)" on
page 92

Chapter 2 • Web-Based Application Support

84

User interface elements are described below:

UI Element Description

Ignore the following
browsers

Instructs UFT to ignore any specified browsers that may
be open while UFT is recording or running a test or
business component. This enables you to keep browsers
that are not related to your testing environment open,
without having them affect the record or run session.

For example, you may want to check your company’s
share price or the news headlines during a record and run
session. If you instruct UFT to ignore these specific
browsers, they do not affect the session.

Note:

➤ UFT ignores browsers that match the defined criteria
at the start of a record or run session. However,
browsers that do not match the defined criteria at the
start of a record or run session, but do match them
during the session, are not ignored.

➤ Changes made to these settings apply to new tests or
business components and new steps in existing tests
or business components only, but not to any other
existing steps.

➤ When working with tests, UFT ignores browsers only if
you selected Record and run test on any open Web
browser in the Web tab of the Record and Run Settings
dialog box. For details, see "Web Tab (Record and Run
Settings Dialog Box)" on page 77.

For details, see "Browser Details Dialog Box" on page 86.

Add Browser. Opens the Browser Details dialog box,
which enables you to add browsers to the Ignore the
following browsers list. For details, see "Browser Details
Dialog Box" on page 86.

Modify Browser Details. If you selected a browser from
the Ignore the following browsers list, this option opens
the Browser Details dialog box, which enables you to edit
the details of the selected browser. For details, see
"Browser Details Dialog Box" on page 86.

Chapter 2 • Web-Based Application Support

85

Remove Browser. Removes the selected browser from the
list if you no longer want UFT to ignore it during a record
or run session.

Note: If a browser in the list is required for running a
specific test, you can temporarily remove it from the list
by clearing the check mark next to its name in the list of
browsers.

Ignore ALM Instructs UFT to ignore all instances of ALM that are
opened while recording or running a test or business
component. By default, this option is selected.

Add __ seconds to
page load time

Instructs UFT to add a specified number of seconds to the
page load time property specified in each Page
checkpoint. (Page checkpoints are not relevant for
keyword components.)

Note: This option is a safeguard that prevents page
checkpoints from failing in the event that the amount of
time it takes for a page to load during the run is longer
than the amount of time it took during the record
session.

Broken links - check
only links to current
host

Instructs UFT to check only for broken links that are
targeted to your current host.

UI Element Description

Chapter 2 • Web-Based Application Support

86

Browser Details Dialog Box
This dialog box enables you to specify the browsers that you want UFT to
ignore during a record or run session.

To access In the Web > General Pane (Options Dialog Box), click
the Add Browser button or the Modify Browser Details
button.

For details on the Web pane, see "Web > General Pane
(Options Dialog Box)" on page 82.

Chapter 2 • Web-Based Application Support

87

User interface elements are described below:

Important
information

➤ You can specify any one of the Title or URL properties,
or both. However, the Title and URL properties have an
AND relationship, meaning that a browser must
match both property values (if defined) to be ignored
by UFT.

➤ You can use regular expressions when specifying the
values of these properties. For example, you can use
.*finance.mybank.com to specify all
finance.mybank.com domains and Web sites starting
with www., http://, or https://. You do not need to use a
regular expression to include child pages of a site, as
UFT automatically ignores the entire domain or site.
For details on supported regular expressions, see the
HP Unified Functional Testing User Guide.

See also ➤ "Web > Page/Frame Options Pane (Options Dialog
Box)" on page 88

➤ "Web > Advanced Pane (Options Dialog Box)" on
page 92

UI Element Description

Name The name of the browser definition. The name you
specify is used only to identify the browser in the list,
and is not used by UFT.

Default format: Browser<number of browser in list>

Title The name of the Web page as it appears in the title bar of
the browser.

Example: MyBank - Finance.*

URL The URL of the Web page. Any descendants of the
specified Web page are automatically included in the list
of browsers to ignore.

Example: http://www.finance.mybank.com

Chapter 2 • Web-Based Application Support

88

Web > Page/Frame Options Pane (Options Dialog Box)
This pane enables you to modify how UFT records Page and Frame objects.

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Web > Page/
Frame Options node.

See also ➤ "Web > General Pane (Options Dialog Box)" on page 82

➤ "Web > Advanced Pane (Options Dialog Box)" on page 92

Chapter 2 • Web-Based Application Support

89

User interface elements are described below:

UI Element Description

Create a new Page test object for

These options instruct UFT when to create a new Page object in the object
repository while recording.

Create a new Frame test object for

These options instruct UFT when to create a new Frame object in the object
repository while recording. The Frame options are similar to the Page options
(except that the Every navigation option is not available).

Every
navigation

Instructs UFT to create a new Page object every time a
navigation is performed in a Web page.

(Relevant only for Create a new Page test object for.)

Different test
object
descriptions

Instructs UFT to create a new Page test object for pages with
different test object descriptions, according to the properties
defined for the Page test object.

Note: The default test object description for Page objects
includes only the test object class. If you select this option, it
is highly recommended that you define object identification
properties that uniquely identify different Page objects. You
should also ensure that the properties you define remain
constant over time, otherwise future runs may fail.

Chapter 2 • Web-Based Application Support

90

Different URLs
or a change in
data transfer

Instructs UFT to create a new Page object only when the page
URL changes, or if the URL stays the same and data that is
transferred to the server changes, according to the data types
and transfer methods you select:

➤ Ignore non user-input data - Get. Instructs UFT to ignore
non user-input data if the Get method is used to transfer
data to the server.

For example, suppose a user enters data on a Web page, and
the data is then inserted as a hidden field using the Get
method. The user clicks Submit (to send the data to the
server). The new Web page is different, according to the
hidden field data. However, UFT does not create a new Page
test object.

➤ Ignore non user-input data - Post. Instructs UFT to ignore
non-user-input data if the Post method is used to transfer
data to the server.

For example, suppose a user enters data on a Web page, and
the data is then inserted as a hidden field using the Post
method. The user clicks Submit (to send the data to the
server). The new Web page is different, according to the
hidden field data. However, UFT does not create a new Page
test object.

➤ Ignore user-input data - Get. Instructs UFT to ignore
user-input data if the Get method is used to transfer data to
the server.

For example, suppose a user enters data in a form on a Web
page and clicks Submit (to send the data to the server) using
the Get method. The new Web page is different according
to the data filled in by the user. However, UFT does not
create a new Page test object.

➤ Ignore user-input data - Post. Instructs UFT to ignore
user-input data if the Post method is used to transfer data to
the server.

For example, suppose a user enters data in a form on a Web
page and clicks Submit (to send the data to the server) using
the Post method. The new Web page is different according
to the data filled in by the user. However, UFT does not
create a new Page test object.

UI Element Description

Chapter 2 • Web-Based Application Support

91

Use additional
Page
information

Instructs UFT to use additional properties of the test object to
identify an existing Page test object.

Tip: Select this option to instruct UFT to recognize existing
pages when the Back and Forward navigation buttons are
used.

Reset All Resets all options to their default core settings. Some
Web-based add-ins modify the default settings to optimize
page and frame recording. If you are using an add-in, it is
recommended that you keep the default add-in settings and
do not use the Reset button.

UI Element Description

Chapter 2 • Web-Based Application Support

92

Web > Advanced Pane (Options Dialog Box)
This pane enables you to modify how UFT records and runs tests and
business components on Web sites.

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Web >
Advanced node.

Important
information

The Accessibility checkpoint and Automatic Page
checkpoint options are not relevant for keyword
components.

See also "Web > General Pane (Options Dialog Box)" on page 82

"Web > Page/Frame Options Pane (Options Dialog Box)"
on page 88

Chapter 2 • Web-Based Application Support

93

User interface elements are described below:

Accessibility Checkpoint (Tests Only)

Accessibility checkpoints enable you to check that Web pages and frames
conform to the W3C Web Content Accessibility Guidelines. All accessibility
checkpoints in a test use the options that are selected in this dialog box
during the run session.

For general information about accessibility checkpoints, see the chapter on
accessibility checkpoints in the HP Unified Functional Testing User Guide.

UI Element Description

ActiveX Check Checks whether the page or frame contains ActiveX
objects. If so, UFT sends a warning and displays a list of
the objects in the Run Results.

Alt Property Check Checks that the <alt> attribute exists for all relevant
objects (such as images). If one or more objects lack the
required attribute, the test fails and UFT displays a list of
the objects with the missing attribute in the Run Results.
(Selected by default.)

Applet Check Checks whether the page or frame contains Java objects.
If so, UFT sends a warning and displays a list of the
objects in the Run Results.

Frame Titles Check Checks that the page and all frames in the page have
titles. If one or more frames (or the page) lack the
required title, the test fails and UFT displays a list of the
frames that lack titles in the Run Results.

Multimedia Links
Check

Checks whether the page or frame contains links to
multimedia objects. If so, UFT sends a warning and
displays a list of the links in the Run Results.

Server-side Image
Check

Checks whether the page or frame contains Server-side
images. If so, UFT sends a warning and displays a list of
the images in the Run Results.

MainUsersGuide.chm::/CH_Access_Chk.htm
MainUsersGuide.chm::/CH_Access_Chk.htm

Chapter 2 • Web-Based Application Support

94

Automatic Page Checkpoint (Tests Only)

These options enable you to check that expected and actual page properties
are identical, by instructing UFT to automatically add a Page checkpoint for
each Web page navigated during the recording process.

Note: If you are testing a Web page with dynamic content, using automatic
Page checkpoints may cause the test to fail as these checkpoints assume that
the page content is static between record and run sessions.

Tables Check Checks whether the page or frame contains tables. If so,
UFT sends a warning and displays the table format and
the tags used in each cell in the Run Results.

Add an automatic
accessibility
checkpoint to each
Web page while
recording

Instructs UFT to automatically add an accessibility
checkpoint to each Web page while recording, using the
checks selected in the option above.

UI Element Description

Broken links Displays the number of broken links contained in the
page during the run session.

Note: If the Broken links - check only links to current host
option is selected in the Web pane of the Options dialog
box (see "Web > General Pane (Options Dialog Box)" on
page 82), this number includes only those broken links
that are targeted to the current host.

HTML source Checks that the expected source code is identical to the
source code during the run session.

HTML tags Checks that the expected HTML tags in the source code
are identical to those in the run session.

UI Element Description

Chapter 2 • Web-Based Application Support

95

Image source Checks that the expected source paths of the images are
identical to the sources in the run session.

Links URL Checks that the expected URL addresses for the links are
identical to the URL addresses in the source code during
the run session.

Load time Checks that the expected time it takes for the page to
load during the run session is less than or equal to the
amount of time it took during the record session PLUS
the amount of time specified in the Add seconds to page
load time option (see "Web > General Pane (Options
Dialog Box)" on page 82).

Number of images Checks that the expected number of images is identical
to the number displayed in the run session.

Number of links Checks that the expected number of links is identical to
the number displayed in the run session.

Create a checkpoint
for each Web page
while recording

Instructs UFT to automatically add a Page checkpoint for
each Web page navigated during the recording process.

Ignore automatic
checkpoints while
running tests

Instructs UFT to ignore the automatically added Page
checkpoints while running your test.

UI Element Description

Chapter 2 • Web-Based Application Support

96

Record Settings

These options enable you to set preferences for recording Web objects.

Note: If UFT does not record Web events in a way that matches your needs,
you can also configure the events you want to record for each type of Web
object. For example, if you want to record events, such as a mouseover that
opens a sub-menu, you may need to modify your Web event configuration
to recognize such events. For details, see "Event Recording Configuration for
Web-Based Applications" on page 58.

UI Element Description

Enable Web support
for Microsoft
Windows Explorer.

When selected, UFT treats relevant objects in Microsoft
Windows Explorer as Web objects. When cleared, UFT
does not record events on Web pages displayed in
Microsoft Windows Explorer.

Note: After modifying this setting, for the change to take
effect, you must close all instances of Microsoft Windows
Explorer (confirm that all explorer.exe processes are
closed in the Windows Task Manager or restart the
computer) and then restart UFT.

Record coordinates Records the actual coordinates relative to the object for
each operation.

Record MouseDown
and MouseUp as
Click

Records a Click method for mouseup and mousedown
events.

Note: For Web, UFT records RightClick and MiddleClick
methods for most Web objects. Therefore, this option is
relevant only for clicks made using the left mouse
button.

Chapter 2 • Web-Based Application Support

97

Record Navigate for
all navigation
operations

Records a Navigate statement each time a Frame URL
changes.

Use standard
Windows mouse
events

Instructs UFT to use standard Windows mouse events
instead of browser events for the following events:

➤ OnClick

➤ OnMouseDown

➤ OnMouseUp

Note:

➤ Use this option only if the events are not properly
recorded using browser events.

➤ For Web, UFT records RightClick and MiddleClick
methods for most Web objects. Therefore, this option
is relevant only for clicks made using the left mouse
button.

➤ This option is available only for Internet Explorer.

UI Element Description

Chapter 2 • Web-Based Application Support

98

Run Settings

These options enable you to set preferences for working with Web objects
during a run session.

UI Element Description

Browser cleanup Closes all open browsers after the current run or iteration
ends.

When this option is selected, all currently open browsers
are closed when the current run or iteration ends,
regardless of whether the browsers were opened before or
after UFT was opened.

Note:

This option is only applicable when a test iteration
finishes naturally by running all test steps, and not by
using the ExitTestIteration method.

If you need to use the ExitTestIteration method, add a wait
statement at the end of the test script, just before the
ExitTestIteration step.

Run only click Determines whether a Click operation is run on the
application by sending MouseDown, MouseUp, and
Click events, or by sending only a Click event. This
option is relevant only for Click operations when Event is
selected for the 'Replay type' option. It is relevant only
for left-button mouse clicks.

Replay type Configures how to run mouse operations according to
the selected option:

➤ Event. Runs mouse operations using browser events.

➤ Mouse. Runs mouse operations using the mouse, and
keyboard operations using the keyboard.

Chapter 2 • Web-Based Application Support

99

Run using source
index

Instructs UFT to learn and store the source index value
when learning Web test objects, and to use that value
during a run session to improve performance. During run
sessions, UFT uses the learned source index value to
return the relevant DOM element from the application
and then verifies that this object matches the test object
description. This operation is faster than searching the
entire DOM for objects that match the test object
description.

If the returned object does not match the description, the
source index is ignored and UFT attempts to identify the
object using the standard object identification process.

The source index is also ignored during a run session in
the following scenarios:

➤ The description for a test object includes the XPath or
CSS identifier. For details, see "Web Object Identifiers"
on page 62.

➤ If you manually define an Index ordinal identifier for
the test object. For details, see the section on Index
Ordinal Identifiers in the HP Unified Functional Testing
User Guide.

➤ The run session is performed using Mozilla Firefox.

UI Element Description

MainUsersGuide.chm::/About_Index_Property.htm
MainUsersGuide.chm::/About_Index_Property.htm

Chapter 2 • Web-Based Application Support

100

Resize browser on
run if resized during
a recording session

If you select this option and then resize the browser
during a recording session, UFT resizes the browser to
this size when the first time you run the recorded steps.
At the end of a run session, the browser returns to its
default size. It is recommended that you select this
option if your test performs drag and drop operations.

Note:

➤ To use this option, select the Open the following
browser option in the Record and Run Settings dialog
box before recording.

➤ When this option is cleared, UFT does not change the
browser size when a run session begins. If you run
your steps with this option cleared, and the select this
option again, UFT opens the browser to the same size
as the previous run session, regardless of any resizing
information you provided when recording the steps.

Learn and run using
automatic XPath
identifiers (Web
Add-in only)

Generates and stores an XPath value when learning Web
test objects, and uses that value during a run session to
improve object identification reliability. During the run
session, UFT uses the learned XPath value to return the
DOM element from the application and verifies that this
object matches the test object description. If it does not,
the learned XPath is ignored.

Additionally, if the description for a test object includes
the XPath or CSS identifier, or if the Run using source
index option is selected, then this option is ignored for
that object. For details, see "Web Object Identifiers" on
page 62.

UI Element Description

Chapter 2 • Web-Based Application Support

101

Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)

This pane provides options for recording and running tests on Web sites.

The following image displays the Web pane of the Test Settings dialog box.
The content of this pane is identical to the content of the Web pane of the
Business Component Settings dialog box and the Application Area’s
Additional Settings pane.

Chapter 2 • Web-Based Application Support

102

User interface elements are described below:

To access Do one of the following:

➤ For a test or component:

Select File > Settings > Web node.

➤ For an application area:

Open the application area and select Additional
Settings > Web in the sidebar.

Important
information

➤ The Web pane is available only if the Web Add-in is
installed and loaded.

➤ Recording events. In addition to the options in this
pane, you can also configure the events you want to
record for each type of Web object. For example, if you
want to record events, such as moving the pointer
over an object to open a sub-menu, you may need to
modify your Web event configuration to recognize
such events. For details, see "Event Recording
Configuration for Web-Based Applications" on
page 58.

➤ Business components. For business components, the
settings displayed in this pane are read-only. To
change the Web pane settings for a business
component, open its associated application area and
use the application area’s Additional Settings > Web
pane.

UI Element Description

Browser navigation
timeout

Sets the maximum time (in seconds) that UFT waits for a
Web page to load before running a step in the test.

User name
(tests only)

The user name for password-protected resources that use
a standard authentication mechanism.

For details, see "Advanced Authentication Dialog Box" on
page 104.

Chapter 2 • Web-Based Application Support

103

Password
(tests only)

The password for password-protected resources that use a
standard authentication mechanism.

For details, see "Advanced Authentication Dialog Box" on
page 104.

Advanced
(tests only)

Opens the Advanced Authentication dialog box, which
enables you to manually log in to your Web site to enable
access to password-protected resources that use an
advanced authentication mechanism.

For details, see "Advanced Authentication Dialog Box" on
page 104.

UI Element Description

Chapter 2 • Web-Based Application Support

104

Advanced Authentication Dialog Box
This dialog box enables you to define login information, so that the Active
Screen can access the resources on a site, where the automatic Active Screen
login mechanism may not be sufficient.

Chapter 2 • Web-Based Application Support

105

To access In the Web Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings Pane),
click Advanced.

For details on the Web pane, see "Web Pane (Test/
Business Component Settings Dialog Box /
Application Area - Additional Settings Pane)" on
page 101.

Important
information

➤ After closing this dialog box, refresh the Active Screen
by selecting a new step in the Keyword View or select
View > Active Screen to re-display the Active Screen.
Confirm that the pages are displayed correctly.

If you still cannot view images or other resources on
your Active Screen, you may not be connected to the
Internet, the Web server may be down, or the source
path that was captured with the Active Screen page
may no longer be accurate.

➤ When you log in using the Advanced Authentication
mechanism, you remain logged in to the site for the
duration of the UFT session. If you close and reopen
UFT and then reopen your test, you must log in again.

➤ If the site to which you log in has an inactivity
timeout after which you are automatically logged out
of the Web site, you may need to log in using the
Advanced Authentication dialog box more than once
while editing your test to re-enable access to your
Active Screen pages.

See also ➤ "Active Screen Dialog Box" on page 109

➤ "Accessing Password-Protected Resources in the Active
Screen" on page 55

Chapter 2 • Web-Based Application Support

106

User interface elements are described below (unlabeled elements are shown
in angle brackets):

Web Event Recording Configuration XML File Structure

The Web event recording configuration XML file is structured in a specific
format when you export it from the Custom Web Event Configuration
Dialog Box (described on page 688). If you are modifying the file, or creating
your own file, you must ensure that you adhere to this format for your
settings to take effect.

For task details, see "How to Modify Event Recording Configuration for
Web-Based Applications" on page 69.

UI Element Description

<browser window> The default Web page for the test, displayed according to
the following guidelines:

➤ The first time you open this dialog box for a given test,
the browser window displays the URL address set for
the test in the Web tab of the Record and Run Settings
dialog box.

➤ If you navigate to a new URL address using this dialog
box, that address becomes the default Advanced
Authentication page for this test.

Use this window to enter your login information, and
after logging into your application, click Close. The login
session remains open for the remainder of your UFT
session (or until the Web site’s inactivity timeout is
exceeded).

Address The URL address of the Web page. If the displayed Web
page is not the correct page for logging in to your site,
enter the correct URL address in the Address box and
click Go.

WebUsersGuide.chm::/Custom_Web_Event_Recording_Configuration.htm
WebUsersGuide.chm::/Custom_Web_Event_Recording_Configuration.htm

Chapter 2 • Web-Based Application Support

107

Sample XML File

The following attributes enable you to define the listening criteria and
recording status options in the XML file:

<XML>
<Object Name="Any Web Object">

<Event Name="onclick" Listen="2" Record="2"/>
<Event Name="onmouseup" Listen="2" Record="1">

<Property Name="button" Value="2" Listen="2" Record="2"/>
</Event>

</Object>
. . .
. . .
. . .

<Object Name="WebList">
<Event Name="onblur" Listen="1" Record="2"/>
<Event Name="onchange" Listen="1" Record="2"/>
<Event Name="onfocus" Listen="1" Record="2"/>

</Object>
</XML>

Attribute Possible Values

Listen 1. Always

2. If Handler

4. If Behavior

6. If Handler or Behavior

0. Never

Record 1. Disabled

2. Enabled

6. Enabled on Next Event

Chapter 2 • Web-Based Application Support

108

Register Browser Control Utility

This utility enables you to define the path of your Web application hosting
the browser control. After registration, UFT will recognize Web objects in
your application when recording or running tests.

User interface elements are described below (unlabeled elements are shown
in angle brackets):

To access Select Start > All Programs > HP Software >
HP Unified Functional Testing > Tools > Register New
Browser Control.

Important
information

After you register an application hosting a browser
control using this utility, you must restart UFT before you
test your application.

See also "Registering Browser Controls" on page 54

UI Element Description

<host application
path>

The absolute path to the .exe file of the application
hosting the browser control.

Register / Unregister Registers or removes a registered application.

Chapter 2 • Web-Based Application Support

109

Active Screen Dialog Box

This dialog box enables you to enter login information for any images or
other resources in the Active Screen that are password-protected using the
standard authentication mechanism.

To access This dialog box opens when you select a step in your test
or results in which one or more images or other resources
in the Active Screen may be password-protected.

Important
information

➤ After you enter a user name and password, refresh the
Active Screen by selecting a new step in the Keyword
View or select View > Active Screen to re-display the
Active Screen. Confirm that the page is displayed
correctly.

➤ If one or more resources are still missing or displayed
incorrectly, you may need to use the Advanced
Authentication mechanism. For details, see "Advanced
Authentication Dialog Box" on page 104.

See also ➤ "Advanced Authentication Dialog Box" on page 104

➤ "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101

Chapter 2 • Web-Based Application Support

110

User interface elements are described below:

Troubleshooting and Limitations - Web-Based
Application Support

This section contains general troubleshooting and limitation information
about the Web add-in, and includes the following sections:

➤ "User Account Control (Where Applicable)" on page 111

➤ "Test Objects, Methods, and Properties" on page 111

➤ "Creating and Running Testing Documents" on page 112

➤ "Running Tests or Components in Microsoft Internet Explorer" on
page 112

➤ "Recognition of WebTable Test Objects" on page 113

➤ "Multilingual Support for Web Browsers" on page 116

UI Element Description

User name The user name used to log into your application.

Password The password used to log into your application.

Save the User Name
and Password

Enables the automatic Active Screen login mechanism,
by adding the login information to the Active Screen
access area in the Web pane of the Test Settings dialog
box. This prevents the Active Screen dialog box from
opening, and ensures that all images and resources are
displayed in the Active Screen and results each time you
open the test, you can use the automatic Active Screen
login mechanism.

Note: You can also add the login information manually
in the Web pane of the Test Settings dialog box. For
details, see "Web Pane (Test/Business Component
Settings Dialog Box / Application Area - Additional
Settings Pane)" on page 101.

Chapter 2 • Web-Based Application Support

111

User Account Control (Where Applicable)

➤ If you are working on a computer where the UAC (User Account Control)
option is set to ON, UFT does not support testing on Mozilla Firefox
browsers that were installed (or upgraded to a new version) after you
installed UFT.

Workaround: After installing Mozilla Firefox on the environment
described above, log in as an administrator and open UFT. This enables
UFT to install files that are required for Mozilla Firefox support.

Test Objects, Methods, and Properties

➤ Web test objects do not support the Class Name identification property. If
you try to run a ChildObjects(Descr) step on a Web object, and the Descr
argument includes the Class Name property, a General Run Error message
is displayed.

Workaround: Use the micclass property in the Descr argument.

➤ If you record drag and drop steps on a Web element within the same
frame, the test steps may fail during the run session if the screen
resolution is not identical to the screen resolution during the recording
session. This is because the target location coordinates may be different
for different screen resolutions.

Workaround: If this problem occurs, adjust the Drop coordinates
according to the new location.

➤ UFT records changes in the edit field only on <input type="file"> tags.
Browsing operations are not recorded.

➤ Clicks on form tags of type POST may not run correctly.

Workaround: If this problem occurs, change the replay type before the
click to Run by mouse operations using:
Setting.WebPackage("ReplayType") = 2. It is recommended to return the
replay type to the default (Run by Events) setting after the click step:
Setting.WebPackage("ReplayType") = 1.

Chapter 2 • Web-Based Application Support

112

Creating and Running Testing Documents

➤ If you use the Tab key when recording password fields in the
AutoComplete dialog box, UFT may record incorrectly.

Workaround: Press ENTER after entering the user name or click the button
for logging in.

➤ When UFT opens a browser, it may not correctly recognize multiple tabs
that were opened and saved from a previous browser session.

Workaround: If multiple tabs are required, open them during the run
session by adding the relevant steps to your test or business component.

Running Tests or Components in Microsoft Internet Explorer

➤ When using Microsoft Internet Explorer 7.0, UFT cannot switch to tabs
that are not visible on the tab-band without scrolling.

Workaround: Perform either of the following:

➤ Maximize the browser to increase the number of tabs that are visible in
the tab-band without scrolling.

➤ Increase the screen resolution to allow more tabs to be visible in the
tab band.

➤ If you record a click on an area of an image map that is not mapped to a
URL in Microsoft Internet Explorer, UFT will perform a click on the first
mapped area of that map during the run session.

➤ UFT does not record on customized toolbar buttons in Microsoft Internet
Explorer. (It records only on the toolbar buttons that are displayed by
default in the browser.)

➤ UFT does not record on the Find window of the Microsoft Internet
Explorer browser.

➤ UFT may respond slowly during a recording session if the drop-down
boxes in a Web page contain a lot of data.

Workaround: Learn the objects on a Web page that contains a lot of data
(instead of recording).

Chapter 2 • Web-Based Application Support

113

➤ If you install an update for Microsoft Internet Explorer 7 and later try to
open UFT, UFT sometimes does not open correctly. This is due to a known
Microsoft issue in which the urlmon.dll file becomes corrupted during the
Microsoft Internet Explorer update. For details on this issue from the
Microsoft support site see, http://support.microsoft.com/kb/946627.

Workaround: Reinstall Microsoft Internet Explorer 7 or install a later
version.

➤ If Internet Explorer 9 displays the message: Speeding up browsing by
disabling add-ons, choose Don't disable or select a bigger threshold value.

➤ When using Internet Explorer 9, the innertext, outertext, innerhtml and
outerhtml property values may differ from earlier versions of Internet
Explorer. Therefore, using these values in parameters or running
checkpoints that use these property values may cause the steps to fail.

Recognition of WebTable Test Objects

By default, when using the UFT Web Add-in, UFT recognizes any HTML
table as a WebTable test object.

However, in QuickTest 9.5 or 10.00, the default behavior was to ignore
HTML tables with one row and one column during Object Spy, learn, and
record sessions.

In specific situations, this changed default behavior may result in
differences when learning new test objects or when running steps
containing Web test objects that were learned in QuickTest 9.5 or 10.00. For
example, the ChildObjects method may return a different value for parent
objects that contain Web tables.

If necessary, you can revert to the previous behavior by enabling (and
optionally modifying) abstract table support.

Abstract tables are defined in a built-in Web Add-in Extensibility toolkit
support set called HPInternal. By default, this toolkit support set is not
loaded.

http://support.microsoft.com/kb/946627

Chapter 2 • Web-Based Application Support

114

To activate the abstract table support:

 1 Open <UFT installation folder>\dat\Extensibility\Web\
Toolkits\HPInternal\loadalways.ind

 2 Change the single line in the file to: load=true

To modify which types of tables UFT treats as an abstract table:

Edit the IsHPAbstractTable JavaScript located in:
<UFT installation folder>\dat\Extensibility\Web\
Toolkits\HPInternal\HPAbstractTable.js.

The sample IsHPAbstractTable JavaScript function below causes UFT to treat
Web table elements containing one row and one column as abstract tables:

function IsHPAbstractTable()
{

// Treat all tables with only one cell as abstract tables
if (_elem.rows.length == 1 && _elem.rows[0].cells.length == 1)
{

return true;
}
return false;

}

To instruct UFT to ignore additional types of Web table elements, modify
the IsHPAbstractTable JavaScript function to return true for those types
based on their HTML properties or other information. (Use the token _elem
to represent the Web element UFT is currently handling.).

Caution: HPAbstractTable.js affects the way UFT identifies Web objects and
can cause problems if modified incorrectly. Edit this file only if you are an
experienced JavaScript programer and are familiar with the implementation
of your Web controls. Make sure to create a backup copy of the file before
making changes.

Chapter 2 • Web-Based Application Support

115

Checkpoints, Output Values, and the Active Screen

➤ Checkpoints on page source/HTML tags cannot be inserted from the
Active Screen and must be inserted while recording. These checkpoints
may fail during the first run session.

Workaround: Perform an update run (Run > Update Run Mode) of your
test or business component before you run a test or business component
that includes a page source/HTML tag checkpoint.

➤ If you insert checkpoints from the Active Screen when you are working
with an application containing a browser control instead of a Web
browser, your checkpoints may fail.

Workaround: Insert checkpoints while recording.

➤ If you take a snapshot of an ASPAjaxRichTextArea object on FireFox, it
might not be displayed correctly in the Active screen.

Working with Multiple Web Browsers

Problem

When running steps that are intended to be performed on different
browsers, and UFT tries to perform the step intended for the second browser
before the second browser has finished loading, UFT will perform the step
on the first browser, and the step may fail.

Solution

Insert a Wait() statement before the first step on the second browser to
enable the second browser to finish loading.

Reason

By default, a Browser test object does not have any identification properties
in its description. When only one browser is open, the open browser
matches the (empty) description for any Browser test objects. When
multiple browsers are open, UFT uses smart identification or the ordinal
identifier property value stored with the relevant Browser test object to
distinguish between the browsers and to select the correct browser.

Chapter 2 • Web-Based Application Support

116

However, if a second browser has not fully loaded when UFT tries to perform
a step intended for that browser, UFT will assume that only one browser is
open and it will try to perform the step on the first browser without
reverting to smart identification or ordinal identifiers.

Multilingual Support for Web Browsers

➤ In Internet Explorer, the AutoComplete operation on edit fields is not
recorded.

Workaround: You can disable the AutoComplete feature in Microsoft
Internet Explorer by selecting Tools > Internet Options > Advanced and
deselecting the Use inline AutoComplete under the Browsing options in
Microsoft Internet Explorer.

➤ If a test or business component contains a step that closes a Mozilla
Firefox browser, UFT may behave unexpectedly when that step is reached
during a run session.

Workaround: Do not include a step that closes a Mozilla Firefox browser.

117

3
Windows-Based Application Support

This chapter includes:

Concepts

➤ Windows-Based Application Support - Overview on page 118

Tasks

➤ How to Configure Options for Windows-Based Applications on page 120

➤ How to Define Record and Run Settings for Windows-Based Applications
on page 121

Reference

➤ Windows Applications Tab (Record and Run Settings Dialog Box)
on page 124

➤ Windows Applications > General Pane (Options Dialog Box > GUI Testing
Tab) on page 136

➤ Windows Applications > Advanced Pane (Options Dialog Box >
GUI Testing Tab) on page 139

Chapter 3 • Windows-Based Application Support

118

Concepts

Windows-Based Application Support - Overview

UFT provides a number of add-ins for testing Windows-based applications.

The way you configure many of your UFT options is the same or similar for
most UFT Windows-based add-ins (as well as for the built-in standard
Windows testing support). For details, see "How to Configure Options for
Windows-Based Applications" on page 120.

Many UFT add-ins rely on the settings in the Windows Applications tab of
the Record and Run Settings dialog box to determine on which applications
UFT records and runs. For some add-ins, these settings may also affect the
applications that UFT recognizes for certain operations while in edit mode,
such as using the Object Spy or other pointing hand operations. For details,
see "How to Define Record and Run Settings for Windows-Based
Applications" on page 121.

You can also use predefined environment variables to specify the
applications or browsers you want to use for your test. This can be useful if
you want to test how your application works in different environments.

There may also be additional issues that you need to address to ensure that
UFT recognizes your objects properly during record, run, and/or pointing
hand operations. For details, see "Record and Run Setting Guidelines for
Windows-Based Add-ins" on page 133.

For details about standard Windows testing support, see Chapter 30,
"Standard Windows Support -Quick Reference."

For details on how to work with Windows-based add-ins, see the specific
sections describing these add-ins in the guide:

➤ "ActiveX Add-in - Quick Reference" on page 213

➤ "Delphi Add-in - Quick Reference" on page 225

➤ ".NET Windows Forms Support - Quick Reference" on page 163

Chapter 3 • Windows-Based Application Support

119

➤ "PowerBuilder Add-in" on page 341

➤ "Qt Add-in" on page 349

➤ "Windows-based SAP Support - Quick Reference" on page 371

➤ "Stingray Add-in" on page 511

➤ "Terminal Emulator Add-in" on page 555

➤ "VisualAge Smalltalk Add-in" on page 635

➤ "Visual Basic Add-in" on page 643

Chapter 3 • Windows-Based Application Support

120

Tasks

How to Configure Options for Windows-Based
Applications

This task describes the different ways you can configure UFT settings and
options for working with Windows applications.

This task includes the following steps:

➤ "Configure general Windows-based application options" on page 120

➤ "Configure advanced Windows-based application options" on page 121

➤ "Define record and run settings for Windows-based applications" on
page 122

Configure general Windows-based application options

Use the Windows Applications pane of the Options dialog box (Tools >
Options > GUI Testing tab > Windows Applications node) to configure how
UFT records and runs tests and business components for Windows-based
applications, such as standard Windows, ActiveX, .NET Windows Forms,
WPF, SAP GUI for Windows, and Visual Basic applications. For details, see
"Windows Applications > General Pane (Options Dialog Box > GUI Testing
Tab)" on page 136.

Chapter 3 • Windows-Based Application Support

121

Tip: When recording tests or scripted components on Windows-based
applications, you can choose to save all Active Screen information in every
step, save information only in certain steps, or disable Active Screen
captures entirely. You set this preference in the Active Screen pane of the
Options dialog box (Tools > Options > GUI Testing tab > Active Screen
node). The less information saved, the faster your recording times will be.

This option is not relevant for keyword components.

For details, see the section describing the Active Screen pane in the
HP Unified Functional Testing User Guide.

Configure advanced Windows-based application options

Use the Windows Applications > Advanced pane of the Options dialog box
(Tools > Options > GUI Testing tab > Windows Applications > Advanced
node) to modify how UFT records and runs tests or business components on
Windows-based applications, such as ActiveX or Visual Basic. For details, see
"Windows Applications > Advanced Pane (Options Dialog Box > GUI Testing
Tab)" on page 139.

How to Define Record and Run Settings for
Windows-Based Applications

This task includes the following steps:

➤ "Define record and run settings for Windows-based applications" on
page 122

➤ "Define environment variables for Windows-based applications" on
page 122

Chapter 3 • Windows-Based Application Support

122

Define record and run settings for Windows-based applications

➤ In the Windows Applications tab of the Record and Run Settings dialog
box, you can set options that affect how you start creating and running
tests for Windows-based applications. These options instruct UFT which
applications to open when you begin to record or run your test. For
details, see "Windows Applications Tab (Record and Run Settings Dialog
Box)" on page 124.

➤ For Windows applications, you also specify the applications on which
you want to record. For details, see "Application Details Dialog Box" on
page 130.

Note: The Record and Run Settings dialog box applies only to tests. Record
settings for business components are specified in the Applications pane or
Applications dialog box of the relevant application area. However, specific
record and run settings do not need to be defined for business components.
For details on the Applications pane in the Additional Settings pane of an
application area, see the HP Unified Functional Testing User Guide.

Define environment variables for Windows-based applications

Note:

➤ For details on environment variables and how to use them in tests, see
"Environment Variables in Record and Run Settings" on page 37.

➤ The environment variables described in this section correspond with the
settings you define in the Application Details Dialog Box (described on
page 130).

Chapter 3 • Windows-Based Application Support

123

To use environment variables to define the details for the Windows-based
applications on which you want to record and run tests, use the appropriate
variable names as specified below:

Option Variable Names Description

Application EXE_ENV_1 …
EXE_ENV_10

The executable files on which UFT
records operations when record and
run sessions begin. You can specify up
to ten executable files.

Working folder DIR_ENV_1 …
DIR_ENV_10

The folder to which the corresponding
executable file refers (for each
corresponding application).

Program
arguments

ARGS_ENV_1 …
ARGS_ENV_10

The command line arguments to be
used for the specified application (for
each corresponding application).

Launch
application

LNCH_ENV_1 …
LNCH_ENV_10

Whether to open the application when
starting the record and run session (for
each corresponding application).

Possible values:
0 (do not launch the application)
1 (launch the application)

Include
descendant
processes

CHLD_ENV_1 …
CHLD_ENV_10

Whether to record and run on
processes created by the application
during the record and run session (for
each corresponding application).

Possible values:
0 (do not record on descendant
processes)
1 (record descendant processes)

Chapter 3 • Windows-Based Application Support

124

Reference

Windows Applications Tab (Record and Run Settings
Dialog Box)

This tab enables you to define preferences for recording and running tests
on Windows-based applications.

Chapter 3 • Windows-Based Application Support

125

To access Select Record > Record and Run Settings and then select the
Windows Applications tab.

Note: The Record and Run Settings dialog box also opens
automatically each time you begin recording a new test
(unless you open the dialog box and set your preferences
manually before you begin recording).

Important
information

➤ You can instruct UFT to open and record on applications
from more than one environment.

➤ For some Windows-based add-ins, the settings in this
dialog box may also affect the applications that UFT
recognizes for other UFT operations, such as learning
objects or using the Object Spy. For details, see "Record and
Run Setting Guidelines for Windows-Based Add-ins" on
page 133.

➤ For performance reasons, the default setting in the
Windows Applications tab is set to record and run only on
the applications you specify (and not on any open
application). If you do not specify an application or change
this option, UFT will not record or run on any
Windows-based application.

➤ If you loaded other add-ins when you opened UFT, there
may be additional tabs in the Record and Run Settings
dialog box. If this is the case, confirm that in each
additional tab, the option to record and run on any open
application (upper radio button of each tab) is selected.

While this setting does not directly affect your record or
run sessions, it prevents UFT from opening unnecessary
applications when you begin record or run sessions.

Relevant tasks "How to Define Record and Run Settings for Windows-Based
Applications" on page 121

Chapter 3 • Windows-Based Application Support

126

See also ➤ "Record and Run Setting Guidelines for Windows-Based
Add-ins" on page 133

➤ "Environment Variables in Record and Run Settings" on
page 37

➤ "Application Details Dialog Box" on page 130

➤ "Record and Run Settings for Add-ins - Overview" on
page 35

➤ "Windows-Based Application Support - Overview" on
page 118

Chapter 3 • Windows-Based Application Support

127

User interface elements are described below:

UI Elements Description

Record and run
test on any open
Windows-based
application

Instructs UFT to record all operations performed on any
Windows-based application that is opened while recording
your test (including e-mail applications, file management
applications, and so on). UFT records and runs only on
applications that have a user interface, and it does not matter
how the applications are opened (as child processes of
Windows Explorer, child processes of UFT, and so on).

When selecting this option, make sure that all the
applications on which you want to record are currently
closed. For some environments, UFT can recognize and/or
record on the applications that you open manually only after
you select this option and click OK. Instances of these
applications that are already open when the Record and Run
Settings dialog box opens may be ignored or may not be
recognized or recorded correctly.

Chapter 3 • Windows-Based Application Support

128

Record and run
only on

Restricts record and run (and in some cases pointing hand)
operations to selected applications. Additionally, you can
configure whether UFT should open these applications for
you at the beginning of a record or run session. The following
options are available:

➤ Applications opened by UFT. This option records,
recognizes, and runs only on applications invoked by UFT
(as child processes of UFT). For example, applications
opened during a record or run session using a
SystemUtil.Run statement, or using a statement such as
Set shell = createobject("wscript.shell")
shell.run "notepad".

➤ Applications opened via the Desktop (by the Windows
shell). This option records, recognizes, and runs only on
applications that are opened via the Windows Desktop.
For example, applications opened from the Windows Start
menu, by double-clicking executable files in the Windows
Explorer, by double-clicking a shortcut on the Windows
Desktop, or by clicking icons on the Quick Launch bar.

➤ Applications specified below. This option records,
recognizes, and runs only on applications listed in the
Application details area.

Tips:

➤ If you do not want to record on any Windows-based
applications, select only the Applications specified below
check box, and ensure that there are no applications listed
in the Application details area.

➤ Make sure that all the applications listed in the Application
details area are currently closed. For some environments,
UFT can record only on the instances of the specified
applications that are opened after you select this option
and click OK. Instances of these applications that are
already open when the Record and Run Settings dialog box
opens may be ignored or may not be recognized or
recorded correctly.

UI Elements Description

Chapter 3 • Windows-Based Application Support

129

Application
details

The details of the applications on which to record and run
the test. For details on the details displayed, see "Application
Details Dialog Box" on page 130.

Note: If you define values for one or more environment
variables, those values override the values in the Windows
Applications tab during a test run. For details, see
"Environment Variables in Record and Run Settings" on
page 37.

Add. Opens the Application Details dialog box to enable you
to add an application to the application list. You can add up
to ten applications.

For details, see "Application Details Dialog Box" on page 130.

Edit. Opens the Application Details dialog box to enable you
to edit the application details for the selected application. For
details, see "Application Details Dialog Box" on page 130.

Delete. Removes the selected application from the
application list.

UI Elements Description

Chapter 3 • Windows-Based Application Support

130

Application Details Dialog Box
This dialog box enables you to add details for an application or to edit
details for the application that you selected in the Windows Applications
tab of the Record and Run Settings dialog box.

To access Select Record > Record and Run Settings, select the Windows
Applications tab, and click the Add button or Edit button

.

Note: The Record and Run Settings dialog box also opens
automatically each time you begin recording a new test (unless
you open the dialog box and set your preferences manually
before you begin recording).

Important
information

➤ You can add up to ten applications to the application list
displayed in the Windows Applications tab, and you can edit
an existing application in the list. You can also select whether
to launch the selected applications when the session starts,
and whether to record and run on the application’s
descendant processes.

➤ The details entered in the Application Details dialog box are
displayed as a single list item for each application in the
Application details area of the Windows Applications tab.

Chapter 3 • Windows-Based Application Support

131

User interface elements are described below:

Relevant
tasks

"How to Define Record and Run Settings for Windows-Based
Applications" on page 121

See also ➤ "Windows Applications Tab (Record and Run Settings Dialog
Box)" on page 124

➤ "Windows Applications > General Pane (Options Dialog Box >
GUI Testing Tab)" on page 136

➤ "Windows Applications > Advanced Pane (Options Dialog
Box > GUI Testing Tab)" on page 139

➤ "Record and Run Settings for Add-ins - Overview" on page 35

➤ "Windows-Based Application Support - Overview" on
page 118

UI Elements Description

Application The executable file on which to record.

You can enter the executable file as a relative path. During the
run session, UFT searches for the file in the folder for the
current test, and then in the folders listed in the Folders pane
of the Options dialog box (Tools > Options > GUI Testing tab >
Folders node). For details, see the sections on setting folder
testing options, and on using relative paths in the HP Unified
Functional Testing User Guide.

Note:

➤ The Application box should contain only the file name and
path for the application. If you want to add command line
arguments, use the Program arguments box.

➤ The full path name is used to launch an application only
when Launch application is selected. UFT records and runs
on any application with the specified executable file name.
For example, if you specify C:\Windows\Notepad.exe, UFT
records on a Notepad application invoked from any folder.

Tip: You can specify a document or other file associated in the
file system with an application, for example, c:\tmp\a.txt. In this
case, UFT automatically opens the specified file in the
associated application (Notepad in this example). If you use
this option, UFT ignores any defined program arguments.

Chapter 3 • Windows-Based Application Support

132

Working folder Optional. The current working folder for the application. The
current working folder is used by the application to search for
related files. If a working folder is not specified, the executable
folder is used as the working folder.

Note: This parameter is used only when Launch application is
selected. If Launch application is not selected, its value has no
effect.

Program
arguments

Optional. Instructs UFT to open the application using the
specified command line arguments.

Note: This parameter is used only when Launch application is
selected. If Launch application is not selected, its value has no
effect.

Launch
application

Instructs UFT whether to launch the selected application when
the record and run session begins. By default, this option is
selected.

Include
descendant
processes

Instructs UFT whether to record and run on processes created
by the specified application during the record and run session.
For example, a process that is used only as a launcher may
create another process that actually provides the application
functionality. This descendant process must therefore be
included when recording or running tests on this application,
otherwise the functionality will not be recorded, or the run
session will fail.

By default, this option is selected.

UI Elements Description

Chapter 3 • Windows-Based Application Support

133

Record and Run Setting Guidelines for Windows-Based
Add-ins
Special considerations are detailed below for each UFT add-in that is affected
by the settings in the Windows Applications tab of the Record and Run
Settings dialog box.

Add-in Environment Guidelines

ActiveX ➤ If you select the Record and Run only on radio button,
the settings also define and limit which applications
are recognized by the Object Spy and other pointing
hand operations.

➤ UFT recognizes ActiveX objects only in applications
that are opened after changing the settings in the
Windows Applications tab of the Record and Run
Settings dialog box.

Delphi ➤ UFT recognizes only Delphi applications that have
been precompiled with the Delphi agent module
(MicDelphiAgent.pas). For details, see "How to Enable
Communications Between UFT and Your Delphi
Application" on page 230.

➤ In some cases, if you select the Record and Run only
on radio button, the settings may also define and limit
which applications are recognized by the Object Spy
and other pointing hand operations.

.NET Windows Forms If you select the Record and Run only on radio button,
the settings also define and limit the applications that are
recognized by the .NET Windows Forms Spy, the Object
Spy, and other pointing hand operations.

.NET Windows
Presentation
Foundation
Environment

If you select the Record and Run only on radio button,
the settings also define and limit the applications that are
recognized by the .NET Spy, the Object Spy, and other
pointing hand operations.

PowerBuilder If you select the Record and Run only on radio button,
the settings also define and limit the applications that are
recognized by the Object Spy and other pointing hand
operations.

Chapter 3 • Windows-Based Application Support

134

Standard Windows ➤ The Record and Run only on radio button applies only
to record and run sessions. UFT recognizes all standard
Windows objects for Object Spy and pointing hand
operations, regardless of the settings in the Record and
Run Settings dialog box.

➤ It is recommended that applications are opened after
changing the settings in the Windows Applications
tab of the Record and Run Settings dialog box.

Stingray ➤ In addition to the settings in the Record and Run
Settings dialog box, you must also configure UFT to
recognize your Stingray applications in the Stingray
pane of the Options dialog box (Tools > Options > GUI
Testing tab > Stingray node). For details, see "Stingray
Pane (Options Dialog Box)" on page 548.

➤ If you select the Record and Run only on radio button,
the settings also define and limit the applications that
are recognized by the Object Spy and other pointing
hand operations.

Terminal Emulators ➤ UFT recognizes only the terminal emulator set in the
Terminal Emulator pane of the Options dialog box
(Tools > Options > GUI Testing tab > Terminal
Emulator node). For details, see "Terminal Emulator
Pane (Options Dialog Box)" on page 595.

➤ The Record and Run only on radio button does not
affect the applications on which UFT records,
recognizes, and runs.

Add-in Environment Guidelines

Chapter 3 • Windows-Based Application Support

135

Visual Basic ➤ If you select the Record and Run only on radio button,
the settings may also define and limit the applications
that are recognized by the Object Spy and other
pointing hand operations.

➤ UFT recognizes Visual Basic objects only in
applications that are opened after changing the
settings in the Windows Applications tab of the
Record and Run Settings dialog box.

VisualAge ➤ UFT can recognize only VisualAge Smalltalk
applications that have been precompiled with the
VisualAge Smalltalk agent (qt-adapter). For details, see
"How to Configure the VisualAge Smalltalk Add-in" on
page 640.

➤ The Record and Run only on radio button applies only
to record and run sessions. UFT recognizes all
VisualAge Smalltalk objects for Object Spy and
pointing hand operations, regardless of the settings in
the Record and Run Settings dialog box.

Add-in Environment Guidelines

Chapter 3 • Windows-Based Application Support

136

Windows Applications > General Pane (Options Dialog
Box > GUI Testing Tab)

This pane enables you to configure how UFT records and runs tests and
business components for Windows-based applications.

To access Select Tools > Options > GUI Testing tab > Windows Applications
> General node.

See also ➤ "Windows Applications > Advanced Pane (Options Dialog
Box > GUI Testing Tab)" on page 139

➤ "Windows Applications Tab (Record and Run Settings Dialog
Box)" on page 124

➤ "Windows-Based Application Support - Overview" on page 118

➤ "How to Configure Options for Windows-Based Applications"
on page 120

Chapter 3 • Windows-Based Application Support

137

User interface elements are described below:

UI Elements Description

Attached text The search criteria that UFT uses to retrieve an object’s attached
text. An object’s attached text is the closest static text within a
specified radius from a specified point. The retrieved attached
text is saved in the object’s corresponding text or attached text
identification property.

Note: Sometimes the static text that you believe to be closest to
an object is not actually the closest static text. You may need to
use trial and error to make sure that the attached text is the
static text object of your choice.

I

Search radius. The maximum distance, in pixels, that UFT
searches for attached text.

Search area. The point on an object from which UFT searches
for the object’s attached text.

Select an option from the Search area list:

➤ Top-Left. Top-left corner

➤ Top. Midpoint between the two top corners

➤ Top-Right. Top-right corner

➤ Right. Midpoint between the two right corners

➤ Bottom-Right. Bottom-right corner

➤ Bottom. Midpoint between the two bottom corners

➤ Bottom-Left. Bottom-left corner

➤ Left. Midpoint between the two left corners

Open menu to
retrieve item
properties

Instructs UFT to open Standard Windows menu objects before
retrieving menu item properties during a run session.

Note:

➤ Selecting this option may slow the run, but it can be useful if
menu item properties change upon opening the menu.

➤ This option, which is selected by default, sets the default
behavior for all menu objects. You can use the ExpandMenu
property in a test or function library to set this behavior for a
specified menu object. For details, see the HP Unified
Functional Testing Object Model Reference.

Chapter 3 • Windows-Based Application Support

138

Learn
non-unique list
items

Determines what UFT learns when more than one item (in a
Standard Windows list or tree) has an identical name.

➤ by name. Learns the item’s name.

During a run session, UFT finds and selects the first instance
of the name, regardless of the item chosen when learning.
Select this option if the all items with the same name have
the identical behavior.

➤ by index. Learns the item’s index number.

Select this option if items with the same name do not
necessarily have the identical behavior.

Learn
owner-drawn
buttons as

Instructs UFT how to identify and learn Standard Windows
custom-made buttons in the application.

Select an option from the list:

➤ push buttons

➤ check boxes

➤ radio buttons

➤ objects

Note: If you select objects, UFT learns each owner-drawn
button as a WinObject. (When working with tests, UFT can also
learn an owner-drawn button as a virtual object, if you define
the virtual object. For details, see the section on learning
virtual objects in the HP Unified Functional Testing User Guide.)

UI Elements Description

Chapter 3 • Windows-Based Application Support

139

Windows Applications > Advanced Pane (Options Dialog
Box > GUI Testing Tab)

This pane enables you to modify how UFT records and runs tests or business
components on Windows-based applications.

To access Select Tools > Options > GUI Testing tab > Windows
Applications > Advanced node.

Important
Information

For advanced Windows-based application testing
information, intended for users with expertise in the Win32
API and the Windows messages model, see "Considerations
for Advanced Windows-based Application Testing" on
page 145.

See also "Windows-Based Application Support - Overview" on
page 118

Chapter 3 • Windows-Based Application Support

140

User interface elements are described below:

UI Elements Description

Object Identification node

Always
enumerate
child windows
(may affect
performance)

Instructs UFT to enumerate all child windows when recording
and running a test or business component. This option is cleared
by default and should be used only when an object cannot
otherwise be identified, because it may significantly affect
performance. For details, see "Considerations for Advanced
Windows-based Application Testing" on page 145.

Record Settings node

Button Defines record settings for button objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the button. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Click. Specifies whether the Click operation should be
recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button up.

Chapter 3 • Windows-Based Application Support

141

List Defines record settings for Windows-based list objects (for
example, WinList, WinListView, and VbList):

➤ Record only the object’s basic operation. Enables simplified
recording on the list. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Select. Specifies whether the Select operation should
be recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up).
Default = On mouse button up.

Menu Defines record settings for menu objects:

➤ Enable recording. Specifies whether UFT records operations
on menu controls. For example, you may want UFT to ignore
the actual process of selecting a menu to open another
window. This option is selected by default.

➤ Menu recording mode. Specifies whether UFT verifies or
ignores menu initialization events before recording
operations on menu controls. This option is enabled only
when Enable recording is selected.
Default = Verify menu initialization event.

For details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

UI Elements Description

Chapter 3 • Windows-Based Application Support

142

Object Defines record settings for objects recognized as WinObject test
objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the WinObject test object. Using this mode may
improve recognition of user operations in non-standard cases.
This option is cleared by default and should be used only
when the default recording method does not meet your
needs. For details, see "Considerations for Advanced
Windows-based Application Testing" on page 145.

➤ Record Click. Specifies whether the Click operation should be
recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button down.

Tab Defines record settings for tab objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the tab. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Select. Specifies whether the Select operation should
be recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button up.

UI Elements Description

Chapter 3 • Windows-Based Application Support

143

Toolbar Defines record settings for toolbar objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the toolbar. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Press. Specifies whether the Press operation should be
recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button up.

Tree view Defines record settings for tree view objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the tree view. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Select. Specifies whether the Select operation should
be recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button up.

➤ Record tree items. Specifies whether tree items are recorded
By name or By virtual index.
Default = By name.

UI Elements Description

Chapter 3 • Windows-Based Application Support

144

Window Defines record settings for window objects:

➤ Record only the object’s basic operation. Enables simplified
recording on the window. Using this mode may improve
recognition of user operations in non-standard cases. This
option is cleared by default and should be used only when
the default recording method does not meet your needs. For
details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

➤ Record Click. Specifies whether the Click operation should be
recorded when the mouse button is pressed (On mouse
button down) or when the mouse button is released (On
mouse button up). This option is enabled only when Record
only the object’s basic operation is selected.
Default = On mouse button up.

Keyboard Defines record settings for operations performed on the
keyboard:

➤ Keyboard state detection. Specifies which API UFT should use
to detect the keyboard state.
Default = Standard.

For details, see "Considerations for Advanced Windows-based
Application Testing" on page 145.

Utility object Defines record settings for utility objects:

➤ Record SystemUtil.Run commands. Specifies whether UFT
records SystemUtil.Run commands when you open an
application during a recording session. This option is selected
by default. For details on the SystemUtil.Run method, see the
HP Unified Functional Testing Object Model Reference.

UI Elements Description

Chapter 3 • Windows-Based Application Support

145

Considerations for Advanced Windows-based
Application Testing
The following information is intended for users with expertise in the Win32
API and the Windows messages model. It expands on the information
provided for some of the options described in "Windows Applications >
Advanced Pane (Options Dialog Box > GUI Testing Tab)" on page 139.

Always enumerate child windows

If UFT does not correctly record an object in your application, you can select
this option to force UFT to enumerate all windows in the system. This
means that even when UFT looks for a window without WS_CHILD style, it
enumerates all windows in the system and not only the top-level windows.

You should select this option if there is a window in your application that
does not have a WS_CHILD style but does have a parent (not an owner)
window.

Run Settings node

Edit Box Defines run settings for Edit objects:

➤ Click Edit box before inserting text. Specifies whether UFT
performs a Click operation to set the focus in an edit box
before inserting text in it while running a test or business
component. This option is cleared by default.

➤ Use keyboard events to perform Set operations. When
selected, instructs UFT to simulate keyboard events when
performing Set operations on edit boxes during a run session.
When cleared, instructs UFT to use API or Window messages
for edit box Set operations. This option is cleared by default.

Bottom area

Description Describes the selected option.

Reset button Resets all options in the pane to their default values.

UI Elements Description

Chapter 3 • Windows-Based Application Support

146

Record only the object’s basic operation

In general, UFT records operations on Windows objects based on Windows
messages sent by the application. UFT recognizes the sequence of Windows
messages sent to a specific application window by the system, and uses a
smart algorithm to determine which operation to record.

In rare cases (where a non-standard message sequence is used), the smart
algorithm may record unwanted operations. Select this option if you want
to record only the object’s basic operation when the selected event occurs.
When you select this option, you can also select when to record the
operation. If you select On mouse button down, UFT records the operation
performed when a WM_LBUTTONDOWN message is detected; if you select
On mouse button up, UFT records the operation performed when a
WM_LBUTTONUP message is detected.

Keyboard state detection

If UFT does not correctly record keyboard key combinations (for example,
CTRL+Y, or ALT+CTRL+HOME), you can try changing the default setting for
this option. Following is a brief explanation of each of the options:

➤ Standard. Uses the GetKeyboardState API to detect the keyboard state.
For details, see http://msdn2.microsoft.com/en-us/library/ms646299.aspx.

➤ Alternate synchronous. Uses the GetKeyState API to detect the keyboard
state. For details, see http://msdn2.microsoft.com/en-us/library/
ms646301.aspx.

➤ Alternate asynchronous. Uses the GetAsyncKeyState API to detect the
keyboard state. For details, see http://msdn2.microsoft.com/en-us/library/
ms646293.aspx.

http://msdn2.microsoft.com/en-us/library/ms646299.aspx
http://msdn2.microsoft.com/en-us/library/ms646301.aspx
http://msdn2.microsoft.com/en-us/library/ms646301.aspx
http://msdn2.microsoft.com/en-us/library/ms646293.aspx
http://msdn2.microsoft.com/en-us/library/ms646293.aspx

Chapter 3 • Windows-Based Application Support

147

Menu recording mode

In most applications, Windows sends a WM_CONTEXTMENU message,
WM_ENTERMENULOOP message, WM_INITMENU message,
WM_INITMENUPOPUP message, or other initialization message when a
user opens a menu. Windows then sends a WM_MENUSELECT message
when a user selects a menu item.

The Verify menu initialization event option instructs UFT to record menu
operations only after detecting a menu initialization message. If UFT does
not correctly record menu operations, or if your application does not send
initialization messages before sending WM_MENUSELECT messages, try
using the Ignore menu initialization event option. This instructs UFT to
always record menu operations.

Chapter 3 • Windows-Based Application Support

148

Part II

.NET Add-in

150

151

4
.NET Add-in - Overview

You can use the Unified Functional Testing .NET Add-in to test user interface
objects (controls) in Silverlight, .NET Web Forms, .NET Windows Forms, and
Windows Presentation Foundation applications. You can create and run
tests and business components on these objects, and check their properties.

This section contains:

➤ .NET Silverlight Add-in

➤ .NET Web Forms Add-in

➤ .NET Windows Forms Support

➤ .NET Windows Presentation Foundation Add-in

Chapter 4 • .NET Add-in - Overview

152

153

5
.NET Web Forms Add-in - Quick Reference

You can use the .NET Add-in to test .NET Web Forms user-interface objects
(controls).

The following table summarizes basic information about the .NET Web
Forms application support and how it relates to some commonly-used
aspects of UFT.

General Information

Add-in Type The .NET Add-in functions like a Web-based add-in when
testing .NET Web Forms controls. Much of its functionality
is the same as other Web-based add-ins.

See "Web-Based Application Support" on page 49.

Supported
Environments

For details on supported .NET Web Forms environments,
see the .NET Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the UFT
Help or the root folder of the Unified Functional Testing
DVD.

Test Object
Methods and
Properties

The .NET Add-in provides test objects, methods, and
properties that can be used when testing objects in .NET
Web Forms applications. For details, see the .NET Web
Forms section of the HP Unified Functional Testing Object
Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

➤ See ".NET Web Forms Objects and Outputting Values"
on page 157.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 5 • .NET Web Forms Add-in - Quick Reference

154

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - .NET Web Forms"
on page 158.

Prerequisites

Opening Your
Application

You must open UFT and set the Record and Run options
before opening your .NET Web Forms application. Open
your application only after you begin the recording
session.

Add-in
Dependencies

The Web Add-in must be loaded.

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

See "Web > General Pane (Options Dialog Box)" on
page 82.

Record and Run
Settings Dialog Box
(tests only)

Use the Web tab.
(Record > Record and Run Settings)

See "Web Tab (Record and Run Settings Dialog Box)" on
page 77

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

155

This chapter includes:

Concepts

➤ Considerations for Testing .NET Web Forms on page 156

➤ .NET Web Forms Objects and Outputting Values on page 157

Reference

➤ Troubleshooting and Limitations - .NET Web Forms on page 158

Application Area
Additional Settings
pane
(business
components only)

Use the Web pane.
In the application area, select Additional Settings > Web in
the sidebar.

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

156

Concepts

Considerations for Testing .NET Web Forms

When testing .NET Web Forms Applications applications, consider the
following:

➤ When UFT learns .NET Web Forms objects, it does not learn the HTML
elements that comprise the test objects. For example, when UFT learns
the WbfGrid test object, the WbfGrid object is the bottommost object in
the hierarchy, and the HTML elements used to create the grid’s cells are
not learned.

➤ When you load the .NET Add-in, the Web event recording configurations
designed for this add-in are loaded and are used whenever you record on
a .NET Web Forms object. The.NET Web Forms Web event recording
configurations do not affect the way UFT behaves when you record on
other non-.NET Web Forms Web objects. For details, see "Event Recording
Configuration for Web-Based Applications" on page 58.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

157

 .NET Web Forms Objects and Outputting Values

You can check or output values from supported .NET Web Forms controls
and use the Object property to retrieve internal properties.

Accessing Internal Properties and Methods of Run-Time .NET
Web Forms Objects

You can use the Object property to retrieve internal (native) properties and
activate internal methods of any .NET Web Forms object in your
application.

In the example below, the orientation property of the WbfTabStrip control
is returned and displayed in a message box.

MsgBox Browser("WebControls:").Page("Page").WbfTabStrip("WbfTabStrip").
Object.Orientation

The Object property is also useful for verifying the value of properties that
are not available using a standard checkpoint.

For details on the Object property and for details on .NET Web Forms test
objects, methods, and properties see the .NET Web Forms section of the
HP Unified Functional Testing Object Model Reference.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

158

Reference

Troubleshooting and Limitations - .NET Web Forms

This section describes troubleshooting and limitations for the .NET Web
Forms Add-in.

General

➤ xpath and css properties are not supported for .NET Web Forms test
objects or for other Web-based test objects that have .NET Web Forms
parent test objects.

➤ Tests on WbfTreeView test objects that contain special characters may not
run as expected.

Workaround: To run a test on a WbfTreeView item that contains special
characters, use the #index format. See the .NET Web Forms Object Model
Reference Help for details.

➤ WbfTreeView, WbfToolbar, and WbfTabStrip test objects are not
supported for browser control applications.

➤ Active Screen operations are not supported for WbfTreeView, WbfToolbar,
and WbfTabStrip objects.

➤ Performing a Select or Expand operation on a WbfTreeView object that
causes page navigation may fail due to a synchronization problem.

Workaround: Try running the test on the WbfTreeView object
step-by-step, meaning instead of using WbfTreeView.Select
"item1;item2;item3;"
Use
WbfTreeView.Expand "item1"
WbfTreeView.Expand "item1;item2"
WbfTreeView.Select "item1;item2;item3;"

➤ Working on a .NET Web Forms application that has calendars with more
than one unified style is not fully supported.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

159

➤ The value of the Selected Date and Selected Range identification
properties is always none for WbfCalendar objects in selection mode
none.

➤ To retrieve correct values for WbfCalendar Selected Date and
Selected Range identification properties, the selected date or range must
be currently visible in your Web Forms application.

➤ All operations on grouping areas in WbfUltraGrid objects (Infragistics
UltraWebGrid) are not recorded.

➤ Operations performed in a rapid sequence on WbfUltraGrid objects may
not be recorded.

Workaround: Try to limit the recording to 1-2 operations per second.

WbfUltraGrid column names are comprised of the inner HTML of the
column header, and therefore may include extraneous information.

➤ WbfUltraGrid may fail to sort columns in a descending order when the
column is not already sorted.

Workaround: Split the Sort call into two calls—first sort in ascending
order, then sort in descending order. For example:

Change:

WbfUltraGrid("UltraWebGrid1").Sort "Model","Descending"

To:

WbfUltraGrid("UltraWebGrid1").Sort "Model","Ascending"
WbfUltraGrid("UltraWebGrid1").Sort "Model","Descending"

➤ Note that Visual Basic .NET applications are supported by the Unified
Functional Testing .NET Add-in.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

160

Creating, Editing, and Running Testing Documents

➤ UFT may recognize some Web Forms grids as WebTables instead of
WbfGrid test objects.

Workaround: Do one of the following:

➤ Modify the Web forms control so that it meets one of the following
conditions:

➤ The class attribute contains the string DataGrid.

➤ The id attribute contains at least one of the strings DataGrid or
GridView.

➤ Modify the rules that UFT uses to determine when to identify a Web
Forms table control as a DataGrid or GridView (and learn it as a
WbfGrid test object).

These rules are defined in:
<UFT installation folder>\dat\WebFormsConfiguration.xml.

The file contains comments that describe its format and explain how
to use it.

➤ If you record a test containing .NET Web Forms objects, you can run it
only on Microsoft Internet Explorer.

➤ When recording, you must open UFT and define record options before
opening your .NET Web Forms application.

Checkpoint and Output Values

➤ WbfTreeView, WbfToolbar, and WbfTabStrip objects are not properly
recognized in the Active Screen. Therefore:

➤ You cannot insert checkpoint or output value steps for these objects
from the Active Screen.

➤ If you select to insert checkpoints for these objects from the Keyword
View or Editor while in edit mode, the expected values of these objects
may be incorrect.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

161

Workaround: Insert checkpoint or output value steps on these objects
during a recording session or remove the Active Screen for the relevant
step and then insert a checkpoint from the Keyword View or Editor with
your application open to the proper location, so that the values will be
retrieved from the application.

➤ Text checkpoints are not supported for WbfTreeView, WbfToolbar, and
WbfTabStrip objects.

➤ The Active Screen image for a WbfCalendar object is always saved before
navigation. For example, if you click a NextMonth link, the Active Screen
displays the current month. Therefore, if you create a checkpoint from
the Active Screen and insert it after the Calendar.ShowNextMonth line,
the checkpoint will fail.

Workaround: Do one of the following:

➤ Insert checkpoints on calendar objects while recording.

➤ While editing your test, edit the expected value for the checkpoint or
insert the checkpoint before the current step.

➤ Table checkpoints are supported for WbfUltraGrid objects only while
recording.

➤ When using the WbfUltraGrid.RowCount and
WbfUltraGrid.ColumnCount methods or performing a table checkpoint
on a grid that also contains additional grid controls inside it, UFT
retrieves the rows or columns only for the outermost table. Note that the
rows property and RowCount method count only the non-grouping rows.

Chapter 5 • .NET Web Forms Add-in - Quick Reference

162

163

6
.NET Windows Forms Support -
Quick Reference

You can use the Unified Functional Testing .NET Add-in to test .NET
Windows Forms user-interface objects (controls).

The following table summarizes basic information about .NET Windows
Forms application support and how it relates to some commonly-used
aspects of UFT.

General Information

Add-in Type The .NET Windows Forms testing support functions like a
Windows-based add-in. Much of its functionality is the
same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported .NET Windows Forms
environments, see the .NET Add-in section of the
HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the
Unified Functional Testing DVD.

Important
Information

➤ You can also test most custom .NET controls inherited
from the System.Windows.Forms.Control regardless of
which language was used to create the application (for
example, Visual Basic .NET, C#, and so on)

➤ See Considerations for Testing .NET Windows Forms
Applications.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 6 • .NET Windows Forms Support - Quick Reference

164

Test Object
Methods and
Properties

The .NET Add-in provides test objects, methods, and
properties that can be used when testing objects in .NET
Windows Forms applications. For details, see the .NET
Windows Forms section of the HP Unified Functional Testing
Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Considerations for Testing .NET Windows Forms
Applications" on page 166.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Extending the .NET
Add-in

.NET Add-in Extensibility (described on page 166) enables
you to develop support for testing third-party and custom
.NET Windows Forms controls that are not supported
out-of-the-box by the Unified Functional Testing .NET
Add-in.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - .NET Windows
Forms" on page 167.

Prerequisites

Opening Your
Application

You must open UFT before opening your .NET Windows
Forms application

Add-in
Dependencies

The .NET Add-in must be installed.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Select Tools > Options > GUI Testing tab > Windows
Applications node).

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Chapter 6 • .NET Windows Forms Support - Quick Reference

165

This chapter includes:

Concepts

➤ Considerations for Testing .NET Windows Forms Applications
on page 166

➤ .NET Add-in Extensibility on page 166

➤ Troubleshooting and Limitations - .NET Windows Forms on page 167

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Note: If you select the Record and Run only on radio
button in the Record and Run Settings dialog box, the
settings also apply to (limit) the applications that are
recognized for the .NET Windows Spy, the Object Spy, and
other pointing hand operations.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 6 • .NET Windows Forms Support - Quick Reference

166

Concepts

Considerations for Testing .NET Windows Forms
Applications

➤ You can use the Keyword View and Editor to activate .NET Windows
Forms test object operations and native (run-time object) operations,
retrieve and set the values of properties, and check that objects in your
application exist and function as expected.

➤ When you create a checkpoint on a .NET Windows Forms object, UFT
stores the selected property values of the object. If your application
changes, you can modify the captured values to match the new expected
values.

.NET Add-in Extensibility

Unified Functional Testing .NET Add-in Extensibility enables you to develop
support for testing third-party and custom .NET Windows Forms controls
that are not supported out-of-the-box by the Unified Functional Testing
.NET Add-in.

If the test object class that UFT uses to represent a control does not provide
the operations and properties necessary to operate on your control, you can
use .NET Add-in Extensibility to customize this behavior.

➤ You can instruct UFT to use a different test object class to represent the
control.

➤ You can add operations or override existing ones, using .NET
programming, to operate as necessary on the control.

➤ You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each
lower-level control separately.

To implement .NET Add-in Extensibility, you need to be familiar with:

Chapter 6 • .NET Windows Forms Support - Quick Reference

167

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ .NET programming in C# or Visual Basic

➤ XML (basic knowledge) Reference

You can install the .NET Add-in Extensibility SDK from the Add-in
Extensibility and Web 2.0 Toolkits option in the UFT setup program.

The SDK also includes:

➤ Project templates and a wizard for Microsoft Visual Studio, that simplify
setting up of your .NET Add-in Extensibility project.

➤ Samples of support developed using .NET Add-in Extensibility, which you
can use to gain a better understanding of how to create your own support.

For installation and implementation details, see the .NET Add-in Windows
Forms Extensibility Help, available from the UFT Extensibility
Documentation program group (Start > All Programs > HP Software >
HP Unified Functional Testing > Extensibility > Documentation).

A printer-friendly (PDF) version of the HP Unified Functional Testing .NET
Add-in Extensibility Developer Guide is available in the <Unified Functional
Testing installation folder>\help\Extensibility folder.

Troubleshooting and Limitations - .NET Windows Forms

This section describes troubleshooting and limitations for the .NET
Windows Forms Add-in.

➤ Navigating in grid controls using keyboard keys (for example, to select
cells, rows, and so on) may not be recorded correctly.

Workaround: Use the mouse to navigate in the grid control.

➤ If you call the Back method for a Microsoft DataGrid control on a table
that does not have a parent row, no operation is performed when the

statement runs, and no error message is displayed.

➤ Grid controls in the Card View mode are not supported.

Chapter 6 • .NET Windows Forms Support - Quick Reference

168

➤ Changing the format of a DateTimePicker control during a test run or
between record and run sessions (for example, from "Long Date" to
"Time") will cause the test run to fail.

➤ Combo box objects of style Simple ComboBox are not supported.

➤ If a window in the tested application has an opacity property value not
equal to 100% (that is, the form is completely or partially transparent),
the Active Screen captures the image displayed below the form, and not
the transparent window.

➤ .NET Windows Forms table checkpoints and output value steps can be
created only for objects that UFT recognizes as SwfTable objects. UFT does
not treat SwfPropertyGrid test objects as table objects.

➤ Operations on a grid cell that was selected before you started recording on
the grid control may be recorded incorrectly. For example, a child cell
element operation may be recorded instead of the parent grid operation
(for example, SetCellData).

Workaround: Before performing operations on a cell that is already
selected, begin recording, move the focus to another cell, select the
required cell, and then perform the required operation.

➤ When recording steps using low-level recording, default description
properties for WinObject and Window objects do not have constant
values. This may lead to different description property values during a run
session, which causes steps on these objects to fail.

Chapter 6 • .NET Windows Forms Support - Quick Reference

169

Workaround:

➤ Window test objects. Before recording, remove the regexpwndclass
property from the list of mandatory, assistive, and Smart Identification
properties using the Object identification dialog box.

➤ WinObject test objects. Do the following:

➤ Before recording, remove the window id property from the list of
mandatory, assistive, and Smart Identification properties using the
Object identification dialog box.

➤ After recording, change the regexpwndclass property value to a
regular expression for each WinObject test object in the object
repository, and edit the property value to remove everything except
for the control type, for example:
Change
WindowsForms10.BUTTON.app3
to
.*BUTTON.*

➤ Note that Visual Basic .NET applications are supported by the Unified
Functional Testing .NET Add-in.

Chapter 6 • .NET Windows Forms Support - Quick Reference

170

171

7
.NET Windows Forms Support - Testing
and Configuration

This chapter includes:

Concepts

➤ .NET Windows Forms Objects - Checkpoints and Output Values
on page 172

➤ .NET Windows Forms Spy on page 174

Tasks

➤ How to Use the .NET Windows Forms Spy on page 176

Reference

➤ .NET Windows Forms Spy Dialog Box on page 182

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

172

Concepts

.NET Windows Forms Objects - Checkpoints and Output
Values

You can check or output values from supported .NET Windows Forms grid
controls and use the Object property to retrieve internal properties.

For details, see:

➤ "Checking .NET Windows Forms Tables and Outputting Their Values" on
page 172

➤ "Accessing Internal Properties and Methods of Run-Time .NET Windows
Forms Objects" on page 173

Checking .NET Windows Forms Tables and Outputting Their
Values

You check or output values from supported .NET Windows Forms grid
controls using the Table Checkpoint Properties dialog box.

For tables with more than 100 rows, you can specify the rows you want to
include in the checkpoint or output value in the Define Row Range dialog
box. If you do not specify the rows to include, the table checkpoint or
output value captures all data in the current level or view as follows:

When working with: The table checkpoint or output value captures:

ComponentOne C1FlexGrid
and C1TrueDBGrid

The entire grid.

Microsoft Data Grid and
DataGrid View

The currently displayed table (parent or child).

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

173

Apart from the difference in captured information as listed above, you
define a table checkpoint or output value for .NET Windows Forms in the
same way as you do for any other table. For details, see the sections on
checkpoints and output values in the HP Unified Functional Testing User
Guide.

Accessing Internal Properties and Methods of Run-Time .NET
Windows Forms Objects

You can use the Object property to retrieve internal (native) properties and
activate internal methods of any .NET Windows Forms object in your
application.

For example, you can set the focus to a particular button and change its
caption using statements similar to the following:

Set theButton = SwfWindow("frmWin").SwfButton("OK").Object
theButton.SetFocus
theButton.Caption = "Yes"

The Object property is also useful for verifying the value of properties that
are not available using a standard checkpoint.

When you use the Object property to retrieve arrays of structures, the Object
property returns the COM wrapper of the system.array object. In your
VBScript test or business component steps, you can then use the
system.array object to access the array members.

For example, suppose a button object in your application has a PointArray
property, which is an array of Point structures. To access the first item in the
PointArray property, you would use the following expression:

Infragistics UltraWinGrid The band in which a cell, column, or row is
selected.

DevExpress XtraGrid The view that was most recently set.

Tip: Insert a SetView method before your table
checkpoint to ensure that the view you want is
displayed when the table checkpoint runs.

When working with: The table checkpoint or output value captures:

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

174

SwfWindow("Form1").SwfButton("button1").Object.PointArray.GetValue1(0)

If the same object had an IntArray property, which was an array of integers,
you would use the following expression to access the first item in the
IntArray property:

SwfWindow("Form1").SwfButton("button1").Object.IntArray(0)
For details on the Object property and for details on .NET Windows Forms
test objects, methods, and properties see the .NET Windows Forms section of
the HP Unified Functional Testing Object Model Reference.

.NET Windows Forms Spy

The .NET Windows Forms Spy (described in ".NET Windows Forms Spy
Dialog Box" on page 182) enables you to select a specific control in your
.NET application, view its run-time object properties and values, change
property values in the application in run-time, listen to events on a specific
control, view the event arguments, and fire events back at the application.

You can use the .NET Windows Forms Spy to help you develop extensibility
for .NET Windows Forms controls.

To spy on a .NET Windows Forms application, make sure that the
application is specified in the Windows Applications tab of the Record and
Run Settings dialog box, and that the application is running with Full Trust.
If the application is not defined to run with Full Trust, you cannot spy on
the .NET application’s Windows Forms controls with the .NET Windows
Forms Spy. For details on defining trust levels for .NET applications, see
Microsoft documentation.

The .NET Windows Forms Spy is intended for advanced UFT users, especially
those who are using .NET Add-in Extensibility to create support for custom
.NET Windows Forms controls. The .NET Windows Forms Spy can assist you
in examining .NET Windows Forms controls within your application and
seeing which events cause it to change (to facilitate recording and running)
and how the changes manifest themselves in the control’s state.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

175

Note: The .NET Windows Forms Spy runs in the context of your .NET
application, not in the UFT context. The objects and run-time object
properties on which you are spying are the raw .NET objects in your
application, and not the .NET test objects used in UFT. Since the .NET
Windows Forms Spy runs in the context of your .NET application, you can
close UFT while you use the .NET Windows Forms Spy. However, UFT must
be open if you want to use the pointing hand mechanism to spy on
additional objects. If you close the .NET application on which you are
spying, the UFT .NET Windows Forms Spy window is closed automatically.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

176

Tasks

How to Use the .NET Windows Forms Spy

This task describes elements of the .NET Windows Forms Spy including how
to:

Spy on an object

 1 Make sure that the application on which you want to spy is specified in
the Windows Applications tab of the Record and Run Settings dialog box,
and that the application is running with Full Trust.

 2 Open the .NET Windows Forms application to the window containing the
object on which you want to spy.

 3 Select Tools > .NET Windows Forms Spy. The UFT .NET Windows Forms
Spy window opens.

For details on the .NET Windows Forms Spy dialog box, see ".NET
Windows Forms Spy Dialog Box" on page 182.

 4 In the UFT .NET Windows Forms Spy window, click the pointing hand.
Both UFT and the .NET Windows Forms Spy are minimized so that you
can point to, and click on, any object in the open application.

For details on using the pointing hand, see the section describing the
pointing hand in the HP Unified Functional Testing User Guide.

 5 Click the object whose properties you want to view. If the location you
clicked in your application is associated with more than one object, the
Object Selection dialog box opens. The objects associated with the
location you clicked are displayed in hierarchical order.

 6 Select the .NET Windows Forms object on which you want to spy and
click OK. The UFT .NET Windows Forms Spy window opens showing the
properties and values for the selected object.

 7 You can repeat steps 4 to 6 to spy on additional objects and add them to
the Objects pane in the UFT .NET Windows Forms Spy window.

MainUsersGuide.chm::/tips_pointing_hand.htm

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

177

Remove objects from the Objects pane

 1 Select the object that you want to remove.

 2 Perform one of the following:

➤ Right-click the object and select Remove Object.

➤ Press DELETE.

View values of run-time object properties

In the Objects pane, select the object whose run-time object properties you
want to view. The properties for the selected object are displayed in the
Properties tab, with the property names on the left, and the property values
on the right. A description of the selected property is displayed below the
properties grid.

Note: Any changes you make to the values of run-time object properties in
the .NET application remain in effect only for the current instance of the
.NET application. The next time you run the .NET application, the
properties will return to their original run-time values.

View properties of embedded objects

 1 In the Properties tab, select the property whose embedded object
properties you want to view. For details on locating a property by value,
see "Locate a property by its value" on page 178.

 2 Click the Add selected property to the Objects tree button. The property
is added to the Objects pane, and its run-time object properties and
property values (if any) are shown in the Properties tab. Each time you
add an embedded object to the Objects pane, it is added below its parent
object, in a hierarchical format.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

178

Note: The Add selected property to the Objects tree button is disabled if
the property’s value is null, or the property is an object with no properties
of its own.

Locate a property by its value

 1 Click the Search a property by value button. The Find Property by Value
dialog box opens.

 2 In the Find what box, specify the value for which you want to search.

 3 To find only those occurrences in which the capitalization matches the
text you entered, select Match case.

 4 Specify the direction from the current cursor location in which you want
to search: Up or Down.

 5 Click Find Next. The .NET Windows Forms Spy locates the property
whose value you specified.

Sort the properties grid

Click one of the following buttons to sort the properties grid in the
Properties tab:

➤ Categorized. Lists all properties and property values for the selected
object, by category. Categories are listed alphabetically. You can collapse a
category to reduce the number of visible properties. When you expand or
collapse a category, a plus (+) or minus (-) is displayed to the left of the
category name.

➤ Alphabetical. Alphabetically sorts all run-time object properties for the
selected object.

Note: The Property Pages button is not currently supported.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

179

Modify values of run-time object properties

 1 In the Properties tab, click the property value you want to modify.
Properties shown in gray are defined as read-only in the .NET application
and cannot be modified.

 2 Edit the property value as required. The property value displays different
types of edit fields, depending on the needs of a particular property. These
edit fields include edit boxes, drop-down lists, and links to custom editor
dialog boxes.

After you modify a property value, the new value is applied to the
run-time instance of the .NET application. For example, you can change
the text of an edit box label, change the background color of a dialog box
from gray to red, and so on.

View event arguments on an object

 1 In the Objects pane, select the object whose event arguments you want to
view.

 2 Select the event in the Fired Events list whose arguments you want to
view. The selected events arguments and argument values are shown
directly below the event, in the Event Arguments list.

Listen to specified events of an object

 1 In the Objects pane, select the object to whose events you want to listen.

 2 In the Events list, select the check boxes for the event types to which you
want to listen.

Note: The events that you select affect only the events that are listened to
and logged by UFT. If you select or clear a check box for an event type
after listening to events for an object, the events in the Fired Events list
are not changed.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

180

Tip: You can click the Select All Events or Clear All Events buttons to select
or clear all the event check boxes. You can also right-click the Events list
and select Select All or Clear All.

 3 Click the Listen to Selected Events button. UFT starts listening to the
specified events on the selected object, and Listening is displayed in the
status bar.

 4 In your .NET application, perform the operations on the object to whose
events you want to listen. The specified events are logged as they occur
and are shown in the Fired Events list.

 5 When you want to stop listening to events, click the Stop Listening to
Events button. UFT stops listening to and logging the specified events.

Fire selected events on an object

 1 In the Objects pane, select the object whose events you want to fire.

 2 In the Fired Events list, select one or more events that you want to fire on
your .NET application. You can select multiple events using standard
Windows selection techniques (CTRL and SHIFT keys).

Tip: The selected events are fired in the order in which they appear in the
Fired Events list. If the events do not appear in the Fired Events list in the
order in which you want to fire them, listen to more events on the object
until the events you want are added to the Fired Events list in the
required order.

 3 If the events you selected have editable arguments, you can change their
argument values in the Event Arguments list if needed before firing the
events. When the events are fired, they will be fired with the modified
argument values.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

181

 4 Click the Fire Selected Events button. The selected events are fired in the
order in which they appear in the Fired Events list. You can view the
effect that firing these events has on the relevant object in your .NET
application. The status bar displays that the event firing is in progress,
and when it ends.

Remove specific events from the Fired Events list

 1 In the Objects pane, select the object whose events you want to remove
from the Fired Events list.

 2 Select the events in the Fired Events list that you want to remove. You can
select multiple events using standard Windows selection techniques (CTRL
and SHIFT keys).

 3 Click the Clear Selected Events button. The selected events are removed
from the Fired Events list.

Clear all events from the Fired Events list

 1 In the Objects pane, select the object whose events you want to remove
from the Fired Events list.

 2 Click the Clear Event List button. All the logged events are removed from
the Fired Events list.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

182

Reference

.NET Windows Forms Spy Dialog Box

This dialog box enables you to select a specific control in your .NET
application, view its run-time object properties and values, change property
values in the application in run-time, listen to events on a specific control,
view the event arguments, and fire events back at the application.

The following illustrates an example of the Form Spy dialog box.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

183

The following illustrates an example of the Form Spy Object Pane.

The following illustrates an example of the Form Spy Events tab.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

184

The following illustrates an example of the Form Spy Properties tab.

To access Select Tools > .NET Windows Forms Spy.

Relevant tasks ➤ "How to Use the .NET Windows Forms Spy" on
page 176

See also ➤ ".NET Windows Forms Objects - Checkpoints and
Output Values" on page 172.

➤ ".NET Add-in Extensibility" on page 166.

➤ ".NET Windows Forms Spy" on page 174.

➤ ".NET Windows Forms Spy Dialog Box" on page 182.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

185

User interface elements are described below:

UI Elements Description

Enables you to select a .NET Windows Forms object on
which to spy. You can spy on as many objects within a
single .NET application as you want. Each object that you
select is added to the Objects pane.

Notes:

➤ If you select an object from a different .NET
application, an additional UFT .NET Windows Forms
Spy window opens, showing the information for the
selected object.

➤ UFT must be open if you want to use the pointing
hand mechanism to spy on additional objects.

Type Displays the full type name of the selected object.

Objects pane Displays a hierarchical tree of the objects you selected to
spy.

The Objects pane contains a list of the objects in your
.NET application on which you have spied. Each time
you spy on another object in the same .NET application,
it is added to the Objects pane. You can spy on as many
objects from the same .NET application as you want,
using the pointing hand button in the UFT .NET
Windows Forms Spy window.

The Objects pane also contains any embedded objects
that you added from the Properties tab. Each time you
add an embedded object to the Objects pane, it is added
below its parent object, in a hierarchical format. You can
select an object in the Objects pane and view or modify
its properties and property values, and listen to and fire
its events. For details, see ".NET Windows Forms Spy" on
page 174.

Chapter 7 • .NET Windows Forms Support - Testing and Configuration

186

Properties tab Enables you to view and modify values of run-time object
properties in your .NET application. The Properties tab
enables you to view run-time object properties and values
for objects in your .NET application. You can select a
property to display a description of the property below
the property grid.

You can choose to display the properties alphabetically or
by category. You can change property values in the .NET
Windows Forms Spy and apply those changes to your
.NET application in run-time. For details, see ".NET
Windows Forms Spy" on page 174.

Events tab Enables you to listen to events in your .NET application
and fire them at the application.

The Events tab enables you to listen to selected events on
a specific control in your .NET application. You can then
view the event arguments, and fire selected events back
at the application.

This is especially useful if you are using .NET Add-in
Extensibility to create support for custom .NET Windows
Forms controls. You can see which events cause your
.NET application to change, so you can implement
extensibility for recording operations on specific
controls, and also check which events need to be fired to
make your .NET application behave the way you want.

For details, see ".NET Windows Forms Spy" on page 174.

Status bar Displays the class name of the object that is selected in
the Objects pane, and the event handling status.

UI Elements Description

187

8
.NET Silverlight Add-in - Quick Reference

You can use the Unified Functional Testing Silverlight Add-in to test
user-interface objects (controls) in Silverlight applications.

The following table summarizes basic information about the Silverlight
Add-in and how it relates to some commonly-used aspects of UFT.

General

Add-in Type This is a Web-based add-in. Much of its functionality is the
same as other Web-based add-ins.

This add-in is installed as a sub add-in of the .NET Add-in.

See "Web-Based Application Support" on page 49.

Supported
Environments

For details on supported Silverlight environments, see the
.NET Add-in section of the HP Unified Functional Testing
Product Availability Matrix, available from the UFT Help or
the root folder of the Unified Functional Testing DVD.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 8 • .NET Silverlight Add-in - Quick Reference

188

Important
Information

➤ To work with the Silverlight Add-in, your Silverlight
application must be initialized with the
EnableHtmlAccess property value set to ’True’. For
details, see http://msdn.microsoft.com/en-us/library/
cc838264.aspx

➤ Registering Microsoft sslauncher.exe. You can use the
UFT Silverlight Add-in to test Silverlight out-of-browser
applications. To do this you must register the Microsoft
sslauncher.exe as a browser control. This executable is
located in the Silverlight installation folder, for
example, C:\Program Files\Microsoft Silverlight. You can
do this using the UFT Register Browser Control Utility,
which is available from Start > All Programs >
HP Software > HP Unified Functional Testing > Tools >
Register New Browser Control. For details, see
"Registering Browser Controls" on page 54.

Test Object
Methods and
Properties

The Silverlight Add-in provides test objects, methods, and
properties that can be used when testing objects in
Silverlight applications. For details, see the Silverlight
section of the HP Unified Functional Testing Object Model
Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Extending the
Silverlight Add-in

Silverlight Add-in Extensibility (described on page 191)
enables you to develop support for testing third-party and
custom Silverlight controls that are not supported
out-of-the-box by the Unified Functional Testing
Silverlight Add-in.

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Silverlight Add-in" on
page 193.

Prerequisites

Opening Your
Application

You must open UFT before opening your Silverlight
application.

Add-in
Dependencies

The Web Add-in must be loaded.

GeneralHelp.chm::/QuickTest_HomePortal.htm
http://msdn.microsoft.com/en-us/library/cc838264.aspx
http://msdn.microsoft.com/en-us/library/cc838264.aspx

Chapter 8 • .NET Silverlight Add-in - Quick Reference

189

Other To work with the Silverlight Add-in, .NET FrameWork 3.0
or later must be installed on your computer.

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

See "Web > General Pane (Options Dialog Box)" on
page 82.

Record and Run
Settings Dialog Box
(tests only)

Use the Web tab.
(Record > Record and Run Settings.)

See "Web Tab (Record and Run Settings Dialog Box)" on
page 77.

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Web pane.
In the application area, select Additional Settings > Web in
the sidebar.

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Chapter 8 • .NET Silverlight Add-in - Quick Reference

190

This chapter includes:

Concepts

➤ Silverlight Add-in Extensibility on page 191

References

➤ Troubleshooting and Limitations - Silverlight Add-in on page 193

Chapter 8 • .NET Silverlight Add-in - Quick Reference

191

Concepts

Silverlight Add-in Extensibility

Unified Functional Testing Silverlight Add-in Extensibility enables you to
develop support for testing third-party and custom Silverlight controls that
are not supported out-of-the-box by the Unified Functional Testing
Silverlight Add-in.

If the test object class that UFT uses to represent a control does not provide
the operations and properties necessary to operate on your control, you can
use Silverlight Add-in Extensibility to create a new test object class.

You can then map the control to the new test object class, and design the
test object class behavior using .NET programming. You can program how
operations are performed on the control, how properties are retrieved, and
more.

You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each lower-level
control separately.

To implement Silverlight Add-in Extensibility, you need to be familiar with:

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ .NET programming in C#

➤ XML (basic knowledge)

You can install the WPF and Silverlight Add-in Extensibility SDK from the
Add-in Extensibility and Web 2.0 Toolkits option in the UFT setup program.

The SDK also includes project templates and a wizard for Microsoft Visual
Studio, that simplify setting up of your Silverlight Add-in Extensibility
project.

Chapter 8 • .NET Silverlight Add-in - Quick Reference

192

For details on implementing Silverlight Add-in Extensibility, see the WPF
and Silverlight Add-in Extensibility Help, available from the UFT
Extensibility Documentation program group (Start > All Programs >
HP Software > HP Unified Functional Testing > Extensibility >
Documentation).

A printer-friendly (PDF) version of the HP Unified Functional Testing WPF and
Silverlight Add-in Extensibility Developer Guide is available in the <Unified
Functional Testing installation folder>\help\Extensibility folder.

Chapter 8 • .NET Silverlight Add-in - Quick Reference

193

References

Troubleshooting and Limitations - Silverlight Add-in

This section describes troubleshooting and limitations for the Silverlight
Add-in, and contains the following sections:

➤ "General" on page 193

➤ "Checkpoints" on page 193

➤ "Creating and editing testing documents" on page 194

➤ "Running steps on Silverlight applications" on page 194

General

➤ UFT retrieves incorrect values for the all items and selection properties for
ListBox and ComboBox controls that are bound to data via a template.

➤ If a recovery scenario uses the Object State trigger, the following may
occur:

➤ The recovery scenario may detect redundant test objects when
checking a SlvWindow state.

➤ The run results may not include all nodes related to the recovery
scenario.

➤ You cannot create a virtual object for an area in a Silverlight application.

➤ Silverlight applications are not supported in Mozilla Firefox versions 4.0
and higher.

Checkpoints

➤ If you insert a text area checkpoint or a text area output value using the
Windows API text recognition mechanism (as opposed to the OCR
mechanism), all of the text on the Silverlight control is captured (instead
of only the text from the selected area).

Chapter 8 • .NET Silverlight Add-in - Quick Reference

194

➤ For some test objects, if you try to insert a text checkpoint from the Active
Screen, the text checkpoint cannot be inserted and an error message is
displayed.

Creating and editing testing documents

➤ Recording on windowless Silverlight applications is not supported on
Mozilla Firefox.

➤ If you open a Silverlight context menu when creating or editing a test,
you must close the context menu control (for example, by pressing ESC)
before you close the browser. Otherwise, during a run session, the browser
window will remain open.

Workaround: Add the following line to the test before the line that closes
the browser:
Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvBu
tton("Login").Type micEsc

Example:

Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvBu
tton("Login").ShowContextMenu

Browser("SilverLightAUT").Page("SilverLightAUT").SlvWindow("Page").SlvBu
tton("Login").Type micEsc

Browser("SilverLightAUT").Close

Running steps on Silverlight applications

➤ If a Web page contains a Silverlight application that is windowless and is
scrolled out of view when the page opens the first time, UFT will not be
able to make this application visible. (For example, in this scenario, UFT
will not be able to perform an SlvWindow.MakeVisible step).

Chapter 8 • .NET Silverlight Add-in - Quick Reference

195

➤ In some versions of Internet Explorer, the Silverlight application becomes
active only after a Click operation is performed. In these cases, UFT may
fail to run test steps unless an initial Click operation is performed.

Workaround: Insert a step containing a Click operation on the Silverlight
application before performing other operations on the application.

➤ To improve performance when running legacy tests in UFT, update your
Silverlight test object descriptions to include the devnamepath property.

Chapter 8 • .NET Silverlight Add-in - Quick Reference

196

197

9
.NET Windows Presentation Foundation
Add-in - Quick Reference

You can use the UFT Windows Presentation Foundation Add-in to test WPF
(Windows Presentation Foundation) user-interface objects (controls).

The following table summarizes basic information about Windows
Presentation Foundation Add-in and how it relates to some commonly-used
aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

This add-in is installed as a sub add-in of the .NET Add-in.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported Windows Presentation
Foundation environments, see the WPF Add-in section of
the HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the
Unified Functional Testing DVD.

Test Object
Methods and
Properties

The WPF Add-in provides test objects, methods, and
properties that can be used when testing objects in WPF
applications. For details, see the .NET Windows
Presentation Foundation section of the HP Unified
Functional Testing Object Model Reference.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

198

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ To check properties that are not included in the
Checkpoint Properties dialog box you can use the
Object, AutomationElement, or AutomationPattern
property. For details, see "Accessing Internal Properties
and Methods of WPF Objects" on page 208.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Extending the WPF
Add-in

WPF Add-in Extensibility (described on page 200) enables
you to develop support for testing third-party and custom
WPF controls that are not supported out-of-the-box by the
UFT WPF Add-in. For details, see "WPF Add-in
Extensibility" on page 200

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - Windows
Presentation Foundation" on page 202.

Prerequisites

Opening Your
Application

You can open your WPF application before or after
opening UFT.

Add-in
Dependencies

The Web and .NET Add-ins must be installed.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

For details, see "Define record and run settings for
Windows-based applications" on page 122.

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

199

This chapter includes:

Concepts

➤ Considerations for Working with the WPF Add-in on page 200

➤ WPF Add-in Extensibility on page 200

Reference

➤ Troubleshooting and Limitations - Windows Presentation Foundation
on page 202

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

200

Concepts

Considerations for Working with the WPF Add-in

➤ You can test most custom WPF controls inherited directly or indirectly
from the System.Windows.Controls.Control class regardless of which
language was used to create the application (for example, Visual Basic,
.NET, C#, and so on), as well as third-party WPF controls that are
inherited from the System.Windows.Controls.Control class and
implement automation interfaces.

➤ You can use the Keyword View and Editor to activate WPF test object,
Automation object and run-time object methods, retrieve and set the
values of properties, and check that objects exist.

WPF Add-in Extensibility

UFT WPF Add-in Extensibility enables you to develop support for testing
third-party and custom WPF controls that are not supported out-of-the-box
by the UFT WPF Add-in.

If the test object class that UFT uses to represent a control does not provide
the operations and properties necessary to operate on your control, you can
use WPF Add-in Extensibility to create a new test object class.

You can then map the control to the new test object class, and design the
test object class behavior using .NET programming. You can program how
operations are performed on the control, how properties are retrieved, and
more.

You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each lower-level
control separately.

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

201

To implement WPF Add-in Extensibility, you need to be familiar with:

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ .NET programming in C#

➤ XML (basic knowledge)

You can install the WPF Add-in Extensibility SDK from the Add-in
Extensibility and Web 2.0 Toolkits option in the UFT setup program.

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

202

Reference

Troubleshooting and Limitations - Windows
Presentation Foundation

➤ When you spy on a WPF object using the Object Spy (or the .NET
Windows Forms Spy when the .NET Add-in is loaded), and the Record
and Run Settings dialog box is not configured to record on the WPF
application on which you are spying, UFT recognizes the object as a
standard Windows object.

Workaround: Close your WPF application. In UFT, open the Record and
Run Settings dialog box (Record > Record and Run Settings) and in the
Windows Application tab, select the Record and run test on any Windows
application option. Reopen your WPF application and then spy on it
again.

➤ When recording steps using low-level recording, default description
properties for Windows Presentation Foundation test objects do not have
constant values. This may lead to different description property values
during a run session, which causes steps on these objects to fail.

➤ When you spy on a WpfComboBox control on a Microsoft Windows 7
operating system, to enable displaying the correct all items property
value, you must first manually expand and collapse the combo box.

➤ The Unified Functional Testing .NET Add-in supports testing WPF
controls inherited directly or indirectly from the
System.Windows.Controls.Control class regardless of which language was
used to create the application (for example, VisualBasic.NET, C#, and so
forth), as well as third-party WPF controls that are inherited from the
System.Windows.Controls.Control class and implement automation
interfaces when the WPF Add-in is loaded.

➤ The Unified Functional Testing .NET Add-in supports:

➤ Testing standard .NET Windows Forms controls from the
System.Windows.Forms library.

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

203

➤ Testing third-party .NET Windows Forms controls that are inherited
from System.Windows.Forms.Control class.

➤ In addition to the controls listed in the HP Unified Functional Testing
Product Availability Matrix, custom-built UFT support for a variety of
Infragistics .NET Windows Forms controls is provided out-of-the-box by
Infragistics TestAdvantage. For more information, refer to: http://
www.infragistics.com/dotnet/testadvantageoverview.aspx#Overview

➤ To view the full type name of a .NET Windows Forms object in your
application, view the SwfTypeName identification property in the Object
Spy.

You can also view a list of the base types of a selected object by running a
statement using the following syntax:

MsgBox SwfTestObj(descr).GetROProperty("SwfTypeNames")

where SwfTestObj(descr) is the test object you want to check.

Running this statement causes a message box to open displaying the
actual class at the top of the list and the base classes below it.

http://www.infragistics.com/dotnet/testadvantageoverview.aspx#Overview
http://www.infragistics.com/dotnet/testadvantageoverview.aspx#Overview

Chapter 9 • .NET Windows Presentation Foundation Add-in - Quick Reference

204

205

10
.NET Windows Presentation Foundation
Add-in - Testing and Configuration

This chapter includes:

Concepts

➤ About WPF User Interface Automation on page 206

➤ WPF Objects, Methods, and Properties to Enhance Your Test or
Component on page 208

Chapter 10 • .NET Windows Presentation Foundation Add-in - Testing and Configuration

206

Concepts

About WPF User Interface Automation

UI Automation provides a single, consistent, reference object for UI
elements in multiple frameworks (For example, Win32, WPF, and Trident).
With UI Automation, the functionality of objects in the UI is defined by a
set of standard control patterns and properties that are common to all
objects of that type.

WPF uses UI (User Interface) Automation to define UI objects.
UI Automation provides standardization of controls and properties for the
functionality of objects. The .NET Add-in supports UI Automation through
the AutomationElement and Automation Pattern properties.

To learn more about UI Automation, see the UI Automation Fundamentals
page of the Microsoft Developer Network library at http://
msdn2.microsoft.com/en-us/library/ms753107.aspx.

Automation Elements
UI Automation exposes every element in the UI as an Automation Element.
Automation Elements expose common properties of the UI elements they
represent.

For example, a button control has the Automation Element property
NameProperty, which references the name or text associated with a button
control. That same property is called caption or alt in Win32 and HTML,
respectively. With UI Automation, all button controls have a NameProperty,
which is mapped to the corresponding property in each framework.

The Automation Element also exposes control patterns that provide
properties and expose methods specific to their control types.

Chapter 10 • .NET Windows Presentation Foundation Add-in - Testing and Configuration

207

Control Patterns
Control patterns represent discrete pieces of functionality that a control in
the UI can perform. The total set of control patterns for a control type define
the functionality of that control type.

Control patterns expose methods that provide the ability to
programmatically manipulate the control.

Control patterns expose properties that provide information on the
control’s functionality and current state.

The set of supported control patterns for a particular control can be
dynamically defined. Therefore, a particular control type may not always
support the same set of control patterns. For example, a multiline edit box
supports scrolling (scrollpattern pattern) only if its text exceeds the viewable
area.

Some controls types, such as Image controls do not support any control
patterns.

UFT enables you to access the methods and properties of automation
elements and control patterns using special properties in the UFT object
model for WPF.

For details on how to work with UI Automation in your test or business
component, see "Accessing Internal Properties and Methods of WPF Objects"
on page 208.

Chapter 10 • .NET Windows Presentation Foundation Add-in - Testing and Configuration

208

 WPF Objects, Methods, and Properties to Enhance Your
Test or Component

A test or business component consists of statements coded in Microsoft
VBScript. These statements are composed of objects, methods, and/or
properties that instruct UFT to perform operations or retrieve information.
You add these statements using objects from your object repositories, and
methods and properties that are available for each object type. In addition,
when you record, these statements are generated automatically in response
to input to the application. You can also program statements manually, or
mix recorded and programmed statements in the same test or business
component. You create, view, and edit these statements in the Keyword
View and/or Editor.

Accessing Internal Properties and Methods of WPF Objects

When accessing the internal properties and methods of WPF objects, it is
important to know which property to use to access the object that contains
the information you want to set or retrieve.

➤ AutomationElement property. Returns the object that gives access to the
set of standard properties that expose information about the Automation
Element.

➤ AutomationPattern property. Returns the object that gives access to the
specific instance of a Control Pattern. For details on the methods and
properties that are accessible through the AutomationPattern property,
see the .NET Framework Developer Center of the Microsoft Developer
Network library at http://msdn2.microsoft.com/en-us/library/
system.windows.automation.aspx.

➤ Object property. Returns the object that gives access to properties specific
to the actual run-time UI object, as defined by the developer.

http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx
http://msdn2.microsoft.com/en-us/library/system.windows.automation.aspx

Chapter 10 • .NET Windows Presentation Foundation Add-in - Testing and Configuration

209

Many of the properties and methods accessible through the
AutomationElement and AutomationPattern properties contain the same
information as the properties and methods accessible through the Object
property. However, information available through UI Automation that is
accessed through the Object property lacks the standardization provided by
UI Automation.

Custom properties designed by the developer are accessible only through
the Object property.

Chapter 10 • .NET Windows Presentation Foundation Add-in - Testing and Configuration

210

Part III

ActiveX Add-in

212

213

11
ActiveX Add-in - Quick Reference

You can use the Unified Functional Testing ActiveX Add-in to test ActiveX
user-interface objects (controls).

The following table summarizes basic information about the ActiveX Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported ActiveX environments, see the
ActiveX Add-in section of the HP Unified Functional Testing
Product Availability Matrix, available from the UFT Help or
the root folder of the Unified Functional Testing DVD.

Important
Information

See "Considerations for Working with the ActiveX Add-in"
on page 216.

Test Object
Methods and
Properties

The ActiveX Add-in provides test objects, methods, and
properties that can be used when testing ActiveX objects
in applications. For details, see the ActiveX section of the
HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - ActiveX Add-in" on
page 218.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 11 • ActiveX Add-in - Quick Reference

214

Prerequisites

Opening Your
Application

The application containing the ActiveX controls on which
you want to record must be closed before you begin a UFT
recording session and set the Record and Run options.
Open the application only after you begin the recording
session.

Add-in
Dependencies

Loading the ActiveX and Siebel add-ins together may cause
problems when recording on some ActiveX methods.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Run > Run Settings or Record > Record Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Note:

➤ If you select the Record and Run only on radio button in
the Record and Run Settings dialog box, the settings
also apply to (limit) the applications that are recognized
for Object Spy and other pointing hand operations.

➤ UFT recognizes ActiveX objects only in applications
that are opened after changing the record and replay
settings in the Windows Applications tab of the Record
and Run Settings dialog box.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Chapter 11 • ActiveX Add-in - Quick Reference

215

This chapter includes:

Concepts

➤ Considerations for Working with the ActiveX Add-in on page 216

Reference

➤ Troubleshooting and Limitations - ActiveX Add-in on page 218

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 11 • ActiveX Add-in - Quick Reference

216

Concepts

Considerations for Working with the ActiveX Add-in

➤ When you create a checkpoint on an ActiveX control, UFT captures all
the properties for an ActiveX control, but it does not select any properties
to check.

➤ When testing ActiveX objects in a browser, the top-level ActiveX object is
inserted within the standard Web object hierarchy, for example,
Browser.Page.ActiveX.

➤ UFT can record on standard controls within an ActiveX control and if an
ActiveX control contains another ActiveX control, then UFT can record
and run on this internal control as well. For example, suppose your
ActiveX control is a calendar that contains a drop-down list from which
you can choose the month. If you record a click in the list to select the
month of May, UFT records this step in the Editor as:

➤ Loading the ActiveX and Siebel add-ins together may cause problems
when recording on some ActiveX methods.

➤ When creating a programmatic description for an ActiveX test object and
the relevant run-time object is windowless (has no window handle
associated with it), you must add the windowless property to the
description and set its value to True.

For example:

Dialog("ActiveX Calendars").ActiveX("SMonth Control").
WinComboBox("ComboBox").Select "May"

Set ButDesc = Description.Create
ButDesc("ProgId").Value = "Forms.CommandButton.1"
ButDesc("Caption").Value = "OK"
ButDesc("Windowless").Value = True
Window("Form1").AcxButton(ButDesc).Click

Chapter 11 • ActiveX Add-in - Quick Reference

217

For details, see the section on using programmatic descriptions in the
HP Unified Functional Testing User Guide.

➤ If a "windowless" ActiveX radio button object is not first activated by
clicking on it (AcxRadioButton.Click) or by using the Set method, a step
containing the AcxRadioButton.GetVisibleText method will return an
error stating that the object is not visible.

Workaround: Insert a step using the Click or Set methods prior to any step
that uses the GetVisibleText method on a "windowless" ActiveX radio
button object.

Chapter 11 • ActiveX Add-in - Quick Reference

218

Reference

Troubleshooting and Limitations - ActiveX Add-in

This section describes troubleshooting and limitations for the ActiveX
Add-in.

Creating, Editing, and Running Testing Documents

➤ In the following ActiveX test object methods, if you specify the column
by name, an error occurs when you run the test: ActivateCell,
ActivateColumn, SelectCell, SetCellData, SelectColumn.

Workaround: When calling these methods, specify the column by
number.

➤ When inserting steps in the Editor for a Web application that has a mixed
hierarchy of Java objects inside an ActiveX control, then it may take a
long time for UFT to retrieve the possible argument values (dynamic list
of values) for ActiveX arguments.

Workaround: Insert these steps using the Keyword View (where the
dynamic list of values functionality is not used).

➤ If UFT does not recognize an ActiveX control inside a Web page, reduce
the security level within your Microsoft Internet Explorer browser.

➤ If an ActiveX control’s internal properties have the same name as the
ActiveX properties created by UFT, retrieval and verification of such
properties may be problematic.

Workaround: You can access the internal properties of an ActiveX control
using the Object property.

➤ Methods performed on row and column positions for Apex, DataBound,
and Sheridan grids return the values of the visible positions and not the
absolute positions within the tables.

Workaround: Use the scroll bar while recording in order to display the
required cells.

Chapter 11 • ActiveX Add-in - Quick Reference

219

Checkpoints and Output Values

➤ ActiveX table checkpoints capture only visible rows in data bound grids.

➤ When you insert a checkpoint on an ActiveX table from the Active
Screen, the browser (or application) must be open to the same page (or
screen). Otherwise, some data from the ActiveX table will be missing.

Workaround: Create ActiveX table checkpoints while recording.

➤ Checkpoints and output values for ActiveX properties of type
VT_DISPATCH are not supported.

➤ Checkpoints and output values for write-only ActiveX properties are not
supported.

➤ If you perform an update run (Run > Update Run Mode) on a test that
contains checkpoints or output values for windowless ActiveX controls,
and then you rerun the test, the run session may fail. This is because a
hidden property called "windowless" is missing from the test object
description.

Workaround: You can either relearn the problematic ActiveX controls, or
you can add the "windowless" property with a value of 1 to all
problematic, windowless ActiveX controls.

Chapter 11 • ActiveX Add-in - Quick Reference

220

Unsupported Controls
UFT does not support certain ActiveX controls or controls with certain
prefixes. These controls are listed in the table below.

Unsupported Control Prefixes Unsupported Controls

Msawt AMOVIE.ActiveMovieControl.2

SpectrumHR.GrabBag MediaPlayer.MediaPlayer.1

SpectrumHR.EDataControl Trident.HTMLEditor.1

SpectrumHR.SSDBGridEventHandlerhtmlfile

ShockwaveFlash xmlfile

Spider90 htmlfile_FullWindowEmbed

XGO xmlfile_FullWindowEmbed

lnkfile

JScript

VBScript

MSJava

PDF.PdfCtrl.1

ScriptBridge.ScriptBridge.1

JavaSoft.JavaBeansBridge.1

Oracle.JavaBeansBridge.1

Spider.Loader.1

COMCTL.ImageListCtrl.1

ActiveTabs.SSTabPanel.4

ActiveTabs.SSTabPanel.2

ActiveTabs.SSTabPanel.3

{3050f67D-98b5-11cf-bb82-00aa00bdce
0b}

Chapter 11 • ActiveX Add-in - Quick Reference

221

{3050F5C8-98B5-11CF-BB82-00AA00B
DCE0B}

TriEditDocument.TriEditDocument.1

Miner3D.Miner3DObj.1

ActiveBar2Library.ActiveBar2.2

{275C23E2-3747-11D0-9FEA-00AA003F
8646}

SpectrumHR.GrabBag.1

SpectrumHR.EDataControl.1

SpectrumHR.SSDBGridEventHandler.1

Unsupported Control Prefixes Unsupported Controls

Chapter 11 • ActiveX Add-in - Quick Reference

222

Part IV

Delphi Add-in

224

225

12
Delphi Add-in - Quick Reference

You can use the Unified Functional Testing Delphi Add-in to test Delphi
user-interface objects (controls).

The following table summarizes basic information about the Delphi Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

The Delphi Add-in supports testing on Delphi controls
created in the Delphi IDE and based on the Win32 VCL
library. For details on supported Delphi environments, see
the Delphi Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the UFT
Help or the root folder of the Unified Functional Testing
DVD.

Test Object
Methods and
Properties

The Delphi Add-in provides test objects, methods, and
properties that can be used when testing objects in Delphi
applications. For details, see the Delphi section of the
HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 12 • Delphi Add-in - Quick Reference

226

Extending the
Delphi Add-in

Delphi Add-in Extensibility (described on page 228)
enables you to develop support for testing third-party and
custom Delphi controls that are not supported
out-of-the-box by the Unified Functional Testing Delphi
Add-in.

Prerequisites

Opening Your
Application

You can open your Delphi application before or after
opening UFT.

Add-in
Dependencies

None

Other Before running a test on a Delphi application, the
application being tested must be compiled with the UFT
agent MicDelphiAgent.

See "How to Enable Communications Between UFT and
Your Delphi Application" on page 230.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Notes:

➤ UFT recognizes only Delphi applications that have been
precompiled with the MicDelphiAgent.pas module. For
details, see "How to Enable Communications Between
UFT and Your Delphi Application" on page 230.

➤ In some cases, if you select the Record and Run only on
radio button, the settings may also apply to (limit) the
applications that are recognized for Object Spy and
other pointing hand operations.

Chapter 12 • Delphi Add-in - Quick Reference

227

This chapter includes:

Concepts

➤ Delphi Add-in Extensibility on page 228

Tasks

➤ How to Enable Communications Between UFT and Your Delphi
Application on page 230

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows section.
(Tools > Options > GUI Testing tab > Active Screen pane >
Custom Level button)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 12 • Delphi Add-in - Quick Reference

228

Concepts

Delphi Add-in Extensibility

Unified Functional Testing Delphi Add-in Extensibility enables you to
develop support for testing third-party and custom Delphi controls that are
not supported out-of-the-box by the Unified Functional Testing Delphi
Add-in.

If the test object class that UFT uses to represent your control does not
provide the operations and properties necessary to operate on your control,
you can use Delphi Add-in Extensibility to customize this behavior.

➤ You can map the control to an existing test object class.

➤ You can map the control to a new test object class that you create, and
design the test object class behavior in Delphi code. You can program
how operations are performed on the control, how properties are
retrieved, and more.

➤ You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each
lower-level control separately.

To implement Delphi Add-in Extensibility, you need to be familiar with:

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ XML (basic knowledge)

➤ Delphi programming

Delphi Add-in Extensibility is available as part of the Delphi Add-in and
does not require an additional installation.

UFT also provides samples of support developed using Delphi Add-in
Extensibility, which you can use to gain a better understanding of how to
create your own support.

Chapter 12 • Delphi Add-in - Quick Reference

229

For details on implementing Delphi Add-in Extensibility, see the Delphi
Add-in Extensibility Help, available from the UFT Extensibility
Documentation program group (Start > All Programs > HP Software >
HP Unified Functional Testing > Extensibility > Documentation).

A printer-friendly (PDF) version of the HP Unified Functional Testing Delphi
Add-in Extensibility Developer Guide is available in the <UFT installation
folder>\help\Extensibility folder.

Chapter 12 • Delphi Add-in - Quick Reference

230

Tasks

How to Enable Communications Between UFT and Your
Delphi Application

This task describes how to:

➤ Use the MicDelphiAgent.pas module to enable communications between
UFT and each Delphi project you want to test.

➤ Configure support for the TwwDBGrid from InfoPower.

Link to the MicDelphiAgent.pas Module to Enable
Communications

You must perform the following steps for each application that you want to
test.

 1 Add the <UFT Installation folder>\dat\Extensibility\Delphi folder to your
Delphi project search path, or copy the contents of the <UFT Installation
folder>\dat\Extensibility\Delphi folder to your project folder.

 2 Add MicDelphiAgent to the Uses section of your application’s project file
(project.dpr) as shown in the example below:

program flight;
uses

MicDelphiAgent,
Forms,
Windows;

($R*.RES)
begin

Application.Initialize
Application.Title :='Flight Reservation';
Application.Run;

end.

Chapter 12 • Delphi Add-in - Quick Reference

231

 3 Compile your Delphi project.

Note: If your application includes the TwwDBGrid from InfoPower, you
must add support for this grid as described below..

Configure Support for TwwDBGrid

If your application includes the TwwDBGrid from InfoPower, do the
following to enable support for this grid:

 1 Add MicWWSupport to the Uses section of your application’s project file
(project.dpr) after MicDelphiAgent, as shown in the example below:

 2 Recompile your application.

You are now ready to create and run tests on Delphi applications.

program flight;
uses

MicDelphiAgent,
MicWWSupport,
Forms,
Windows;

($R*.RES)
begin

Application.Initialize
Application.Title :='Flight Reservation';
Application.Run;

end.

Chapter 12 • Delphi Add-in - Quick Reference

232

Part V

Flex Add-in

234

235

13
Flex Add-in - Quick Reference

You can use the Unified Functional Testing Flex Add-in to test Flex
user-interface objects (controls).

The following table summarizes basic information about the Flex Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Supported
Environments

For details on supported Flex Add-in environments, see the
Flex section of the HP Unified Functional Testing Product
Availability Matrix, available from the UFT Help or the root
folder of the Unified Functional Testing DVD.

Important
Information

➤ Tested applications must be built with Adobe Flex SDK
version 4.5.x.

➤ You must prepare Flex applications before testing. For
details, see "How to Prepare Flex Applications for
Testing" on page 239.

➤ See "Considerations - Flex Add-in" on page 237.

Test Object
Methods and
Properties

The Flex Add-in provides Flex test objects, methods, and
properties that can be used when testing Flex objects in
Flex applications. For details, see the Flex section of the
HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See: "GUI Checkpoints and Output Values Per Add-in"
on page 695

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Flex Add-in" on
page 241

AddinOverview.chm::/Ch_WinBased_Apps.htm
AddinOverview.chm::/Ch_Testing_Web_Based_Apps.htm
LandingPages.chm::/LP_UFT_PAM.htm

Chapter 13 • Flex Add-in - Quick Reference

236

This chapter includes:

Concepts

➤ Considerations - Flex Add-in on page 237

Tasks

➤ How to Prepare Flex Applications for Testing on page 239

Reference

➤ Troubleshooting and Limitations - Flex Add-in on page 241

Prerequisites

Opening Your
Application

You can open your Flex application before or after opening
UFT.

Add-in
Dependencies

Different versions of the Flex SDK require different
versions of Adobe Flash Player or Adobe Air.

The Flex Add-in requires the versions of Adobe Flash Player
or Adobe Air that are required by the version of the Flex
SDK used to build the application being tested.

For more information, see the Adobe Flex SDK
documentation.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Run > Run Settings or Record > Record Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Chapter 13 • Flex Add-in - Quick Reference

237

Concepts

Considerations - Flex Add-in

Considerations when working with the Flex Add-in include issues relating to
the following:

➤ "UFT Interaction with the UFT Flex Agent" on page 237

➤ "UFT Recognition of Web-based Flex Applications" on page 238

UFT Interaction with the UFT Flex Agent
You must compile your application together with the precompiled agent
provided with UFT. This agent enables UFT to communicate with the
application.

For details about how to precompile the Flex Agent with UFT, see "How to
Prepare Flex Applications for Testing" on page 239.

Note: UFT interacts with the UFT Flex Agent via a local TCP socket object. If
the local TCP port is being used by another application, change the port
being used by the other application in order to free this port for UFT.

Chapter 13 • Flex Add-in - Quick Reference

238

UFT Recognition of Web-based Flex Applications
UFT does not recognize local Web-based Flex applications as Flex test objects
until you register them as trusted applications. Local Web-based Flex
applications are Flex applications that are stored locally and run in a
browser window.

Register your local Web-based Flex applications by adding the folder path
containing the Web-based Flex application to one of the following:

➤ The Trusted Locations list in the Flash Player Global Settings.

➤ A text file located in the FlashPlayerTrust folder in the following location:
%appdata%\Macromedia\Flash Player\#Security\FlashPlayerTrust

Each line in the text file must contain the name of a folder to be trusted.
If a user specifies a folder, all files in that folder or any sub-folders are
trusted. For example:

Note: The %appdata% folder is hidden in Windows by default. To show
hidden folders, open the Windows Explorer Folder Options dialog box and
select Show hidden files and folders.

If the #Security\FlashPlayerTrust directories do not exist, create them in the
location relevant for your operating system, as listed above.

Trust all files in the Employee online calendar application folder
C:\Program Files\Personnel\Employees\OnlineCalendar

Chapter 13 • Flex Add-in - Quick Reference

239

Tasks

 How to Prepare Flex Applications for Testing

This task describes the steps you must perform before testing Flex
applications using UFT.

This section includes:

➤ "To prepare a Flex application for Web for testing" on page 239

➤ "To prepare an Flex application for Adobe AIR for testing" on page 239

➤ "To prepare a Flex application hosted by Adobe standalone Flash Player
for testing, including the debug version, or Adobe Flash Player Projector"
on page 240

➤ "To prepare a Flex application that uses the Flex charting or
AdvancedDataGrid classes" on page 240

To prepare a Flex application for Web for testing

 1 Link the Flex application to Adobe Flex automation libraries and a UFT
Flex pre-compiled agent. To do this, add the following compiler
arguments in the Flex project:

-include-libraries
"<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"

-include-libraries "${flexlib}\libs\automation\automation_agent.swc"

-include-libraries "${flexlib}\libs\automation\automation.swc"

-include-libraries "${flexlib}\libs\automation\automation_spark.swc"

 2 Embed the Flex application into a host .html document and open the
host document using a Web browser.

To prepare an Flex application for Adobe AIR for testing

Link the Flex AIR application to Adobe Flex automation libraries and a UFT
Flex pre-compiled agent. To do this, add the following compiler argument in
the Flex AIR project:

Chapter 13 • Flex Add-in - Quick Reference

240

-include-libraries "<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"

-include-libraries "${flexlib}\libs\automation\automation_agent.swc"

-include-libraries "${flexlib}\libs\automation\automation.swc"

-include-libraries "${flexlib}\libs\automation\automation_spark.swc"

-include-libraries "${flexlib}\libs\automation\automation_air.swc"

-include-libraries "${flexlib}\libs\automation\automation_airspark.swc"

To prepare a Flex application hosted by Adobe standalone Flash Player for
testing, including the debug version, or Adobe Flash Player Projector

 1 Link the Flex application to Adobe Flex automation libraries and a UFT
Flex pre-compiled agent. To do this, add the following compiler argument
in the Flex project:

-include-libraries
"<PATH_TO_UFT_ROOT>\dat\Flash\Flex\HpQTPAgent.swc"

-include-libraries "${flexlib}\libs\automation\automation_agent.swc"

-include-libraries "${flexlib}\libs\automation\automation.swc"

-include-libraries "${flexlib}\libs\automation\automation_spark.swc"

 2 Open the application in one of the following:

➤ the Adobe standalone Flash Player

➤ the Debug version of the standalone Flash Player

➤ the Adobe Flash Player Projector

To prepare a Flex application that uses the Flex charting or
AdvancedDataGrid classes

Link the Flex application to the automation_dmv.swc library. To do this, add
the following compiler argument in the Flex project:

-include-libraries "${flexlib}\libs\automation\automation_dmv.swc"

Chapter 13 • Flex Add-in - Quick Reference

241

Reference

Troubleshooting and Limitations - Flex Add-in

General Functionality

➤ The Flex Add-in does not provide backward compatibility with the Adobe
Flex Add-in for QuickTest, and uses a different set of test objects,
methods, and properties. Legacy QuickTest tests recorded using the Adobe
Flex Add-in cannot be used, and they cannot be upgraded to be used with
the UFT Flex Add-in.

➤ The Flex Add-in does not support cross-domain or cross-host Flex
applications. These types of applications are Flex applications where the
HTML and SWF files are served from different domains, or from different
hostnames within the same domain. For example, if an HTML page on
www.mysite.com references an SWF file located on www.anothersite.com,
or in content.mysite.com.

➤ The Flex Add-in relies on the port of the local TCP socket (#24654). If the
communication port #24654 is occupied by another software program
(for example, by a Web server), the add-in fails to load properly.

Workaround: If possible, configure the program occupying
communication port #24654 to use another port.

➤ Testing Flex applications in UFT is only supported in Internet Explorer.

Active Screen

➤ The Active Screen pane is not fully supported for Flex test objects, and
may not display the recorded steps correctly.

Object Identification

➤ UFT cannot recognize Flex test objects in windowless Flex applications. A
windowless Flex application an wmode parameter defined as opaque or
transparent, in the object element of a Flash Player object.

Chapter 13 • Flex Add-in - Quick Reference

242

Workaround: Use the window value for the wmode parameter value, or
remove the wmode parameter altogether. This workaround requires that
users can modify the Web page that contains the Flex application object.

➤ When identifying objects in a Flex application opened in a Web browser,
the FlexWindow top-level test object is contained in a Page object.

Part VI

Java Add-in

244

245

14
Java Add-in - Quick Reference

You can use the Unified Functional Testing Java Add-in to test Java
user-interface objects (controls).

The following table summarizes basic information about the Java Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Supported
Environments

➤ You can run steps on Java objects in environments such
as Internet Explorer, Mozilla Firefox, Java Web Start,
Applet Viewer, and in standalone Java applications.

➤ For details on supported Java toolkits and versions, see
the Java Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the
UFT Help or the root folder of the Unified Functional
Testing DVD.

Important
Information

"Considerations - Java Add-in" on page 248

Test Object
Methods and
Properties

The Java Add-in provides customized Java test objects,
methods, and properties that can be used when testing
objects in Java applications. For details, see the Java section
of the HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Text Checkpoint and Text Output Value Steps for
Java Objects" on page 271.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 14 • Java Add-in - Quick Reference

246

Extending the Java
Add-in

"Java Add-in Extensibility" on page 250 (described on
page 250) enables you to develop support for testing
third-party and custom Java controls that are not
supported out-of-the-box by the Unified Functional
Testing Java Add-in.

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Java Add-in" on
page 252

Prerequisites

Opening Your
Application

You can open your Java application before or after opening
UFT.

Note: If you cannot open your Java application after
starting UFT, you may have a memory fragmentation issue.
Check your memory settings, and see "Opening Java
Applications After Opening UFT" on page 256.

Add-in
Dependencies

The Unified Functional Testing Java Add-in can be
installed and run together with any other UFT add-in.
When testing Java applets in a Web browser, if your tests
include operations on Web test objects, you must load the
Web Add-in as well as the Java Add-in and use the Web tab
of the Record and Run Settings dialog box to specify your
record and run preferences.

Configuration

Options Dialog Box Use the Java pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Java node.)

See "Java Pane (Options Dialog Box > GUI Testing Tab)" on
page 286.

Record and Run
Settings Dialog Box
(tests only)

Use the Java tab.
(Record > Record and Run Settings

See "Java Tab (Record and Run Settings Dialog Box)" on
page 298.

Chapter 14 • Java Add-in - Quick Reference

247

This chapter includes:

Concepts

➤ Considerations - Java Add-in on page 248

➤ Java Add-in Extensibility on page 250

Reference

➤ Troubleshooting and Limitations - Java Add-in on page 252

Test Settings Dialog
Box
(tests only)

Use the Java pane.
(File > Settings > Java node)

See "Java Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 294.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Java section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

➤ Use the Java pane.
In the application area, select Additional Settings > Java
in the sidebar.

➤ See "Java Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 294. (For business components, the
settings displayed in this pane are read-only. To change
the Java pane settings for a business component, open
its associated application area and use the application
area’s Additional Settings > Java pane.)

Chapter 14 • Java Add-in - Quick Reference

248

Concepts

Considerations - Java Add-in

When learning objects and running steps on Java applications, consider the
following:

➤ After installing the Java Add-in, Java applets and applications will always
open with Java support active. You can confirm that your Java
environment has opened properly by checking the Java console for a
message similar to the following confirmation message: "Loading Unified
Functional Testing Java Support (version x.x.x.x) (<App> version x.x.x.x)."
(where <App> is IE, IBM, or Oracle).

➤ The Object property can access only public methods and properties. A
recommended alternative to using the Object property is to extend UFT
support for the required Java object using UFT Java Add-in Extensibility.
For details, see the HP Unified Functional Testing Java Add-in Extensibility
Developer Guide.

➤ You cannot add SWT-based JavaMenu objects directly to an object
repository using the Add Objects to Local button in the Object Repository
window or the Add Objects button in the Object Repository Manager. If
you want to add an SWT-based JavaMenu object to the object repository,
you can use the Add Objects or Add Objects to Local button to add its
parent object and then select to add the parent object together with its
descendants. Alternatively, you can add a JavaMenu object using the
Navigate and Learn option in the Object Repository Manager. For details,
see the section on adding test objects using the Navigate and Learn
option in the HP Unified Functional Testing User Guide.

Chapter 14 • Java Add-in - Quick Reference

249

➤ If you want to use a control’s native property for object identification,
you can add the property to a Java test object as an identification property
in the Add/Remove Properties dialog box. If you do this, consider the
following:

➤ You can add only native properties for which the control has a public
get or is method that returns the property value.

➤ If the native property name includes upper-case letters, then in the
corresponding identification property name that you create, you must
replace each of the upper-case letters except the first one with
_<lower-case letter>. For example, to use the native property
OneSmallProp, add an identification property named One_small_prop.

For more details on adding identification properties, see the section on
the Object Identification dialog box in the HP Unified Functional Testing
User Guide.

➤ In early releases of QuickTest, Java identification properties were not
case-sensitive. If you learned a test object in a QuickTest version earlier
than 11.00, you need to re-learn the object with properties that are
case-sensitive by performing an Update Run (using the Update test object
descriptions option). For details, see the section on Updating Test Object
Descriptions in the HP Unified Functional Testing User Guide.

➤ In UFT, table data is always loaded from the application itself, even if the
Active Screen contains an image of the table. For this reason, you must
first open the table in the application before creating a table checkpoint
in a test.

➤ In some cases you may have to scroll to the last row of the table to
make sure that all the data is loaded.

➤ It is not necessary to open the table in your application to edit an
existing table checkpoint.

➤ If you load or unload an add-in that is displayed as a child of the Java
add-in in the Add-in Manager, only applications that are opened after
loading or unloading the add-in are affected.

➤ When working with tests, if you create a checkpoint on an SWT-based
Java tree with columns, a table checkpoint is created.

MainUsersGuide.chm::/Obj_Ident_Add_Remove.htm
MainUsersGuide.chm::/update_mode_task.htm
MainUsersGuide.chm::/update_mode_task.htm

Chapter 14 • Java Add-in - Quick Reference

250

➤ For details on UFT functionality, see the HP Unified Functional Testing User
Guide.

Java Add-in Extensibility

Unified Functional Testing Java Add-in Extensibility enables you to develop
support for testing third-party and custom Java controls that are not
supported out-of-the-box by the Unified Functional Testing Java Add-in.

If the test object class that UFT uses to represent a control does not provide
the operations and properties necessary to operate on your control, you can
use Java Add-in Extensibility to customize this behavior.

➤ You can map a custom control to an existing test object class, or to a new
test object class that you define

➤ You can design and customize the behavior of the test object classes by
developing custom Java support classes. You can program how operations
are performed on the control, how properties are retrieved, and more.

➤ You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each
lower-level control separately.

To implement Java Add-in Extensibility, you need to be familiar with:

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ XML (basic knowledge)

➤ Java programming

You can install the Java Add-in Extensibility SDK from the Add-in
Extensibility and Web 2.0 Toolkits option in the UFT setup program.

The SDK also includes:

➤ A plug-in for the Eclipse Java development environment, which provides
wizards and commands that help you create and edit the support that you
develop.

Chapter 14 • Java Add-in - Quick Reference

251

➤ Samples of support developed using Java Add-in Extensibility, which you
can use to gain a better understanding of how to create your own support.

For details on installing and implementing Java Add-in Extensibility, see the
Java Add-in Extensibility Help, available from the UFT Extensibility
Documentation program group (Start > All Programs > HP Software >
HP Unified Functional Testing > Extensibility > Documentation).

A printer-friendly (PDF) version of the HP Unified Functional Testing Java
Add-in Extensibility Developer Guide is available in the <UFT installation
folder>\help\Extensibility folder.

Chapter 14 • Java Add-in - Quick Reference

252

Reference

Troubleshooting and Limitations - Java Add-in

This section is intended to help pinpoint and resolve some common
problems that may occur when testing Java applets and applications.

This section includes:

➤ "Identifying and Solving Common Problems" on page 253

➤ "General Notes and Limitations" on page 255

➤ "Java Environment Variables Settings" on page 262

➤ "Locating the Java Console" on page 264

➤ "Checking Whether the Problem is Application-Specific by Running an
Application or Applet with the Same Settings" on page 265

Chapter 14 • Java Add-in - Quick Reference

253

Identifying and Solving Common Problems
The Unified Functional Testing Java Add-in provides a number of indicators
that help you identify whether your add-in is properly installed and
functioning. The following table describes the indicators you may see when
your add-in is not functioning properly and suggests possible solutions:

Indicator Solution

You cannot record or run
tests on Java applets or
applications, or the Object
Spy identifies Java objects
as Standard Windows
objects.

➤ Make sure that the Java Add-in is loaded with
UFT. To check this, select Help > About Unified
Functional Testing and verify that the Java Add-in
check box is selected.

You load the Java Add-in using the Add-in
Manager. For details, see "How to Manage UFT
Add-ins" on page 40.

You cannot record or run
tests on Java applets
running on Microsoft
Internet Explorer, and the
Object Spy identifies Java
objects in these applets as
Standard Windows
objects.

If you are working on the Microsoft Vista operating
system, or a later version of Microsoft Windows,
and you are using the Oracle Java 6 or 7 JRE on
Microsoft Internet Explorer 7 or later, the JVM
might not use the Java settings added to your
system’s environment variables.

Use the Java Add-in JRE Support Tool to adjust your
computer’s configuration to overcome this problem.
The tool is available in the Start > All Programs >
HP Software > HP Unified Functional Testing >
Tools program group.

For details, see:

➤ "Java Environment Variables Settings" on
page 262

➤ "Using the Java Add-in on Applets Running on
Microsoft Windows Vista or Later and Internet
Explorer 7 or Later" on page 263

Chapter 14 • Java Add-in - Quick Reference

254

The Java console does not
display a line containing
text similar to "Loading
Java Support".

Check that the settings in your environment
correspond to the environment settings defined in
this chapter, or check for a batch file that may
override the settings.

For details, see:

➤ "Java Environment Variables Settings" on
page 262

➤ "Locating the Java Console" on page 264

A different applet or
application works with the
Unified Functional Testing
Java Add-in, but the
application you want to
test does not work.

First check whether you can record and run tests if
you invoke the other Java applet or application
using exactly the same settings.

Check that the settings in your environment
correspond to the environment settings defined in
this chapter, or check for a batch file that may
override the settings.

For details, see:

➤ "Checking Whether the Problem is
Application-Specific by Running an Application
or Applet with the Same Settings" on page 265

➤ "Java Environment Variables Settings" on
page 262

After installing the Java
Add-in, you cannot run
Java applications using the
IBM Java 6 JVM.

Check that the settings in your environment
correspond to the environment settings defined in
"Java Environment Variables Settings" on page 262,
or check for a batch file that may override the
settings.

In addition, you may need to do the following:

1 Remove -Xrunjvmhook from the _JAVA_OPTIONS
and IBM_JAVA_OPTIONS environment variables.

2 Add -agentlib:jvmhook at the beginning of the
_JAVA_OPTIONS and IBM_JAVA_OPTIONS
environment variables.

3 Delete the JAVA_TOOL_OPTIONS environment
variable.

Indicator Solution

Chapter 14 • Java Add-in - Quick Reference

255

General Notes and Limitations
This section contains general information and limitations about the Java
add-in, and includes the following sections:

➤ "Installing the Java Add-in" on page 256

➤ "Opening Java Applications After Opening UFT" on page 256

➤ "Loading a Child Add-in of the Java Add-in" on page 257

➤ "Creating and Running Testing Documents" on page 258

➤ "Record and Run Options" on page 258

➤ "Working with Java Controls" on page 259

➤ "Test Objects and Methods" on page 261

➤ "Checkpoints and Output Values" on page 261

The add-in does not
function properly with
applications that run with
the -Xincgc option.

Either remove the -Xincgc option, or run without
dynamic transformation support.

For details, see: "How to Disable Dynamic
Transformation Support (Advanced)" on page 283.

Your Java console contains
the line: Could not find
-Xrun library: jvmhook.dll.

Check that the jvmhook.dll is located within your
java.library.path.

None of the indicators
above describe my
problem.

See "General Notes and Limitations" on page 255

Indicator Solution

Chapter 14 • Java Add-in - Quick Reference

256

Installing the Java Add-in

In Windows XP and Windows 2003, after you install the Unified Functional
Testing Java Add-in, the Windows Remote Shell Service (rshsvc.exe) may fail
and display an error message every time you restart the computer. This
occurs only if the Remote Shell Service is configured to run automatically.

Workaround: Either disable the automatic launching of the Remote Shell
Service, or move the following variables from the System Variables section
of the Environment Variables dialog box to the User Variables section:
_classload_hook, _JAVA_OPTIONS, IBM_JAVA_OPTIONS, and MSJAVA
_ENABLE _MONITORS.

Opening Java Applications After Opening UFT

If you are not able to open your Java application after you’ve opened UFT,
you may have a memory space fragmentation issue, caused by loading a
Windows .dll file. If Eclipse fails to start with higher memory settings, do
one of the following:

➤ Use a 64-bit Windows operating system and 64-bit JVM, with 64-bit
Eclipse. Have a 64-bit virtual memory space can prevent you from
encountering memory fragmentation issues.

➤ Force Eclipse to start using the java.exe or javaw.exe file instead of the
default jvm.dll startup file. To do this edit the eclipse.ini file by adding the
following text, on two separate lines:

-vm

<full path to the java.exe or javaw.exe file>

➤ Modify the Eclipse memory setting in the eclipse.ini file. For example, if
the application fails to start with a parameter setting of -Xmx512m, use a
parameter setting of -Xmx256m or -Xmx384m instead.

Chapter 14 • Java Add-in - Quick Reference

257

Loading a Child Add-in of the Java Add-in

When you select a child add-in under Java in the Add-in Manager, you load
Java Add-in extensibility support for the selected environment.

If you load support that was developed using a Java Add-in Extensibility
SDK version earlier than version 10.00, then when you open one of the UFT
dialog boxes that display test object classes for a selected environment (such
as the Object Identification dialog box), the extensibility test object classes
are displayed in the wrong list. If you select the child add-in in the
Environment list, the list of test object classes is empty. Instead, the
extensibility test object classes are displayed directly under the Java
environment instead of being displayed under the child add-in in the
Environment list.

Additionally, in some cases, the Generate Script button in the Object
Identification dialog box does not function properly.

Workaround:

 1 Locate the test object configuration file associated with the child add-in.
This file is located in the following locations:

➤ <UFT Installation Folder>\dat\Extensibility\Java\<add-in
name>TestObjects.xml.

➤ If working with ALM: <UFT Add-in for ALM Installation
Folder>\dat\Extensibility\Java\<add-in name>TestObjects.xml.

 2 In the XML file, locate the PackageName attribute in the
TypeInformation element, and change its value from JavaPackage to the
name of the child add-in.

 3 Save the file and reopen UFT.

 4 If this extensibility support (child add-in) was developed by a third party,
you may want to contact them for assistance.

Chapter 14 • Java Add-in - Quick Reference

258

Creating and Running Testing Documents

➤ If, while recording keyboard operations in a JFC single-line edit box in an
IME composition window, you press the ENTER key to select the
composition string, the key press may be recorded as the Activate
method, thereby generating an extra step. For example:
JavaWindow("Application").JavaEdit("User Name").Activate
This extra step generally does not affect the run session adversely.

Workaround: Before running your test or business component, remove
the extra step that was recorded.

➤ The ALT+F4 keyboard shortcut (used for closing a Java applet or Java
application) is not supported for recording or running.

Workaround: Use a Close menu command or button to close a Java applet
or Java application during a recording session. Alternatively, manually
add a JavaWindow(...).Close step.

Record and Run Options

➤ Adding a -Xincgc flag to the java.exe command line (in the Record and
Run Settings dialog box or in a batch file) prevents the Java support from
working properly.

Workaround: When testing with UFT Java support, do not use -Xincgc in
your command line, or, alternatively, do not use the dynamic
transformation support mechanism. For details, see the HP Unified
Functional Testing Add-ins Guide.

➤ When selecting a JAR file from the command line in the Record and Run
Settings dialog box, you should manually add -jar to the Command line
box before you invoke the Java application.

➤ If you intend to launch your Java application using the Record and Run
Settings dialog box without using a batch file (or another executable file),
and without the -jar command line option (after selecting a JAR file), you
should include the fully qualified name of the Java class in the Command
line box.

Chapter 14 • Java Add-in - Quick Reference

259

Working with Java Controls

➤ By default, moving and resizing of Java windows are not recorded. This is
because it may cause redundant recordings in some cases.

Workaround: To instruct the Java Add-in record these actions, use the
Setting.Java method to set the record_win_ops variable to 1. For example:
Setting.Java("RECORD_WIN_OPS") = 1

➤ AWT popup menus are recorded by the Standard Window control support
WinMenu test object (while other Java menus are recorded using the
JavaMenu test object). You cannot perform checkpoints or Active Screen
operations on such menus.

Workaround: Use other verification methods (such as using
GetTOProperty). For more details on verification methods, see the
HP Unified Functional Testing User Guide.

➤ A call to .Object.startModal of a JavaInternalFrame or JavaDialog object
may cause UFT to behave unexpectedly until the dialog box is closed.

➤ The use of multi-byte characters in a multiline edit field object is not
supported.

➤ The Java Add-in does not record or run steps for hovering over identifiers
in an Eclipse window.

➤ When you record a step that closes a Java dialog box, UFT records an
additional Close statement.

Workaround: Manually delete the extraneous Close statement.

Chapter 14 • Java Add-in - Quick Reference

260

➤ For button objects (either JavaButton or a button in a JavaToolbar) whose
label is determined by the name of the image file they display, the process
of naming the test object when running in JDK 1.6 is different than the
one used when running in JDK 1.5.

Therefore, if you have a test or business component containing button
objects that were learned on JDK 1.5 and labeled according to their image
file, when you run it on JDK 1.6, the test or business component may fail.

Workaround:

➤ For a JavaButton object—relearn the object on JDK 1.6. Then modify
the test to use the new test object, or delete the old object from the
object repository and rename the new test object to match the object
name used in the step. Make sure the Automatically update test and
business components steps when you rename test objects option is
selected in the General pane of the GUI Testing tab in the Options
dialog box (Tools > Options > GUI Testing tab > General node).

➤ For a button in a JavaToolbar object—modify the Item argument in the
JavaToolbar statement to refer to the relevant button. You can specify
the button’s index, or you can use the Object Spy to spy on the toolbar
button, and then provide the label identification property as the Item
argument.

➤ When the Active Screen displays a Java applet or ActiveX control within a
Web page, the applet or control is for viewing purposes only and you
cannot perform operations (for example, create checkpoints, add
methods, and so forth) on the object.

Workaround: Record an operation on the Java applet/ActiveX control to
create a step on the object with the ActiveX Add-in and/or Java Add-in
loaded. Then you can create a checkpoint, parameterize a step, or add a
method from the individual Java applet/ActiveX control in the Active
Screen.

Chapter 14 • Java Add-in - Quick Reference

261

Test Objects and Methods

The PropertyValue argument (second argument) of the WaitProperty
method for any Java test object can be only of type string.

Workaround: Use a string instead of the original type. For example, instead
of 1, use "1". For example: y = JavaCheckBox("Active").WaitProperty
("enabled", "1", 1000)

Checkpoints and Output Values

➤ You can create text checkpoints and text output values only for Java
objects that meet specific criteria. For details, see the HP Unified Functional
Testing Add-ins Guide.

➤ To create a new table checkpoint on a Java table while editing a test or
business component, you must first open the application containing the
table you want to check and display the table in the application.

➤ If you add a checkpoints on a JavaList or JavaTree object while editing a
test or business component, the list_content or tree_content property is
not available in the checkpoint.

Workaround: Create checkpoints on Java lists and Java trees while
recording.

➤ Performing a checkpoint on an object that is not always visible (such as a
list opening from a combo box selection or a menu item) is not fully
supported.

Workaround: If a checkpoint on a transient object is required, make sure
the object is visible prior to executing the checkpoint. For example, in the
case of combo box list, you should insert a statement that clicks the
combo box button before executing the checkpoint.

Chapter 14 • Java Add-in - Quick Reference

262

Java Environment Variables Settings
This section describes the environment variables that need to be set when
you load your Java application with Unified Functional Testing Java Add-in
support. You need to set one or more environment variables to the path
name of the Java Add-in support classes folder.

Set the _JAVA_OPTIONS environment variable (Oracle) or the
IBM_JAVA_OPTIONS environment variable (IBM) as follows:

-Xrunjvmhook
-Xbootclasspath/a:"<UFT installation folder>\bin\java_shared\classes";
"<UFT installation folder>\bin\java_shared\classes\jasmine.jar"

The above settings should appear on one line (no newline separators).

If you are working with Oracle Java 6 or 7 (versions 1.6 or 1.7), you must set
an additional environment variable, JAVA_TOOL_OPTIONS, with the value
-agentlib:jvmhook

Tip: If needed, you can temporarily remove Java support by renaming the
_JAVA_OPTIONS or IBM_JAVA_OPTIONS environment variable. (If you are
working with Java 6 or 7, you need to rename the JAVA_TOOL_OPTIONS
environment variable as well.) For example, you must remove Java support
if you want to test ActiveX controls that are embedded in SWT- or
Eclipse-based applications.

Note:

You can also use short paths in these commands. For example:

-Xrunjvmhook -Xbootclasspath/a:C:\PROGRA~2\HP\UNIFIE~1\bin\
JAVA_S~1\classes;C:\PROGRA~2\HP\UNIFIE~1\bin\JAVA_S~1\classes\
jasmine.jar

In this example, UFT is installed in the default installation folder (C drive,
Program Files) on a Windows 7 computer. PROGRA~2 denotes the Program
Files (x86) folder, which is the Program Files folder on 64-bit operating
systems.

Chapter 14 • Java Add-in - Quick Reference

263

Running Java applications on the IBM Java Runtime
Environment (JRE) 1.6

In some cases, after installing the Java Add-in, Java applications running on
the IBM Java 6 JVM cannot be started. The error message displayed may
indicate that Mercury Interactive support could not be loaded and the Java
Virtual Machine could not be created.

Workaround:

 1 Remove -Xrunjvmhook from the _JAVA_OPTIONS and
IBM_JAVA_OPTIONS environment variables.

 2 Add -agentlib:jvmhook at the beginning of the _JAVA_OPTIONS and
IBM_JAVA_OPTIONS environment variables.

 3 Delete the JAVA_TOOL_OPTIONS environment variable.

Using the Java Add-in on Applets Running on Microsoft
Windows Vista or Later and Internet Explorer 7 or Later

In some cases, when using the Microsoft Windows Vista operating system,
or a later version of Microsoft Windows, and running Java applets using the
Oracle Java 6 or 7 JRE on Microsoft Internet Explorer 7 or later, the Java
Add-in does not recognize the applet as belonging to the Java environment.
It does not recognize objects in the applet as Java objects, and cannot record
or run steps on them.

This happens when the JVM does not use the Java Add-in’s settings from the
environment variables. In this case, you need to set -agentlib:jvmhook
-Xbootclasspath/ a:"<UFT installation folder>\bin\java_shared\classes";"<UFT
installation folder>\bin\java_shared\classes\jasmine.jar" in the JVM Runtime
Parameters.

Use the Java Add-in JRE Support Tool to set this string in the Runtime
Parameters for the relevant JVM. The tool is available from: Start > All
Programs > HP Software > HP Unified Functional Testing > Tools > Java
Add-in JRE Support Tool

Chapter 14 • Java Add-in - Quick Reference

264

Locating the Java Console
The Java console is the window in which your Java application or applet
displays messages. The location of the Java console changes according to
your application setup. Your Java application may be:

➤ A standalone application

➤ Run in an applet viewer

➤ An applet run in Microsoft Internet Explorer

If your Java application is a standalone application:

Open the batch file or shortcut that invokes the application and look for the
command that launches Java (java.exe, javaw.exe, jre.exe, or jrew.exe).

➤ If the application was run with java.exe or jre.exe, it will load with a
console (Command prompt window).

➤ If the application was run with javaw.exe or jrew.exe, it will not load with
a console (the console is unavailable). You can check for Java Add-in
support by invoking the application with java.exe or jre.exe. Do this by
altering your batch file or the shortcut invoking your application.

Note: java.exe and javaw.exe are nearly identical, as are jre.exe and
jrew.exe. The only difference between them is whether they launch a
console window.

If your Java application runs in an applet viewer:

Look in the DOS command prompt window that invoked the applet viewer.

If there is no DOS command prompt window, your applet viewer may be
run by a batch file similar to a standalone application. For details, see the
information on javaw and jrew in the standalone application section above.

Chapter 14 • Java Add-in - Quick Reference

265

If your Java applet runs in Microsoft Internet Explorer:

If your applet runs in Microsoft Internet Explorer using the Oracle Java
plug-in:

Right-click the Java (plug-in) icon in your taskbar tray and click the option
that opens the console (for example, Open Console or Show Console,
depending on the installed version).

If you do not see the Java (plug-in) icon in your taskbar tray, select
Start > Control Panel and double-click the Java icon or option (select the
Java version used by your application). Then, in the displayed dialog box,
select the option to show the Java console (for example, Show console). Note
that the actual name of the option, and its location in the dialog box,
depend on the Java version used by your application.) Confirm the change
(for example, by clicking Apply). Restart the browser.

Checking Whether the Problem is Application-Specific
by Running an Application or Applet with the Same
Settings
In some cases, running another Java application or applet with the exact
same settings helps determine whether you are encountering a general
problem with the Java Add-in or an application-specific problem.

To run an application or applet with the same settings:

➤ Determine whether the application is a standalone application or an
applet.

➤ If the application is an applet, check the browser type.

➤ If the applet is executed from a shortcut, execute the applet with the same
command.

➤ If the applet is executed from a batch file, copy the batch file and change
only the class file that invokes the applet.

Chapter 14 • Java Add-in - Quick Reference

266

Note: If the classpath must also be changed, add only the new items
needed. Do not remove any of the items from the original application or
applet classpath.

267

15
Java Add-in - Testing and Configuration

This chapter includes:

Concepts

➤ Java Add-in - Overview on page 268

➤ Recording Steps on Java Objects on page 269

➤ Advanced Java Test Object Methods on page 272

➤ Java Add-in Environments on page 275

Tasks

➤ How to Record Steps on Java Table Objects on page 277

➤ How to Define Record and Run Environment Variables for Java Objects
on page 281

➤ How to Optimize Settings for Other Record and Run Settings Dialog Box
Tabs on page 282

➤ How to Disable Dynamic Transformation Support (Advanced)
on page 283

Reference

➤ Java Pane (Options Dialog Box > GUI Testing Tab) on page 286

➤ Java Pane (Test/Business Component Settings Dialog Box / Application
Area - Additional Settings Pane) on page 294

➤ Java Tab (Record and Run Settings Dialog Box) on page 298

Chapter 15 • Java Add-in - Testing and Configuration

268

Concepts

Java Add-in - Overview

This chapter explains how to use UFT to set testing preferences and to
record and run steps on Java applets and applications. The chapter assumes
basic knowledge of UFT features and capabilities. For details on working
with UFT, see the HP Unified Functional Testing User Guide.

Note: Some of the features described in this chapter are relevant only for
tests and scripted components. For details on the features that are available
when working with keyword components, see the HP Unified Functional Testing
User Guide.

Java Testing Options

You can use the Java pane of the Options dialog box (Tools > Options > GUI
Testing tab > Java node) to set UFT record and run options on Java applets or
applications. You can also open the Advanced Java Options dialog box that
enables you to set table record mode preferences, enable text retrieval for
checkpoints and output values, and specify lists of controls.

For details, see:

➤ "Java Pane (Options Dialog Box > GUI Testing Tab)" on page 286

➤ "Advanced Java Options Dialog Box" on page 290

Java Settings - Tests and Components

You define and view Java test or business component settings using one of
the following:

➤ The Java pane of the Test Settings dialog box.

➤ The Java pane of the Business Component Settings dialog box (view
only).

Chapter 15 • Java Add-in - Testing and Configuration

269

➤ The Java pane of the application area’s Additional Settings pane.

For details, see "Java Pane (Test/Business Component Settings Dialog Box /
Application Area - Additional Settings Pane)" on page 294.

Recording Steps on Java Objects

When you record an operation on an applet, application, or Java object,
UFT records the appropriate object icon next to the step in the Keyword
View (for tests and business components) and adds the relevant statement
in the Editor (for tests only).

If you try to record an operation on an unsupported or custom Java object,
UFT records a generic JavaObject.Click statement that includes the
coordinates of the click and the mouse button (that is, left or right) that was
clicked. You can create support for your custom object using the UFT Java
Add-in Extensibility. For details, see the HP Unified Functional Testing Java
Add-in Extensibility Developer Guide.

Note: The way in which UFT records operations depends on the type of
JTable cell editor in the table cell. For details, see "How to Record Steps on
Java Table Objects" on page 277.

The UFT recorded hierarchy is composed of two or three levels of Java test
objects. The top level is represented by the JavaApplet, JavaDialog, or
JavaWindow object, as appropriate. The actual object on which you
performed an operation may be recorded as a second or third level object. If
the object is located directly in the top level object, it is recorded as a second
level object (for example, JavaApplet.JavaButton). If a JavaDialog or
JavaInternalFrame exists at the second level, then the object on which you
performed the operation is recorded as a third level object (for example,
JavaWindow.JavaDialog.JavaButton).

When testing applets in a browser, the two- or three-level hierarchy is
recorded within the standard Web object hierarchy (for example,
Browser.Page.JavaApplet.JavaTestObject.SubJavaTestObject).

Chapter 15 • Java Add-in - Testing and Configuration

270

Even though the object on which you record may be embedded in several
levels of objects, the recorded hierarchy does not include these objects. For
example, if the JavaList object on which you record is actually contained in
several JPanel objects, which are all contained in a JavaWindow, the
recorded hierarchy is only JavaWindow.JavaList.

Example

In a test, if you record a click on a Java check box, the Keyword View may be
displayed as follows:

UFT records this step in the Editor as:

Window("Microsoft Internet Explorer").JavaApplet("Periodic").
JavaCheckBox("Toggle").Set "ON"

In a keyword component, if you record a click on this same Java check box,
the Keyword View would displayed as follows:

You can view the recorded hierarchy of a test object in the object repository.
You can also access the full hierarchy of an object when using the pointing
hand mechanism in the Step Generator (tests only), when inserting a
checkpoint or output value step while recording, or when using the Object
Spy.

For a related task, see "How to Record Steps on Java Table Objects" on
page 277.

This section also includes:

➤ "Text Checkpoint and Text Output Value Steps for Java Objects" on
page 271

➤ "Full Object Hierarchy Views" on page 272

Chapter 15 • Java Add-in - Testing and Configuration

271

Text Checkpoint and Text Output Value Steps for Java
Objects
When working with tests, you can use checkpoints or output values to
check that text in your Java application or applet displays correctly. Similar
to many other supported environments, it is recommended to retrieve and
check text from your Java applet or application by inserting a standard
checkpoint or output value for the object containing the desired text, and
selecting to check or output its text (or similar) identification property (for
example, text, attached text, or label).

If the object you want to work with does not have an appropriate
identification property, or, if for any other reason, the above
recommendation does not answer your needs (for example, the text before
or after the selected text is important), you can consider inserting a UFT text
checkpoint or text output value step for a Java object if it meets the
following criteria:

➤ The object must draw the text itself (and not delegate the drawing task to
the underlying operating system, as is the case with most AWT business
components).

➤ The object must draw text by overriding the paint() method and calling
the standard graphics.drawString() method to draw text. For example,
the object cannot use special drawing methods for writing text, such as
using a method that can draw oval circles to draw the letter O.

➤ The object cannot use the double (image) buffering drawing technique.

Note: Because many Java objects do not answer these criteria, the text
checkpoint and text output mechanism for Java objects is disabled by
default. You can enable it in the Advanced Java Options dialog box. For
details, see "Advanced Java Options Dialog Box" on page 290.

Chapter 15 • Java Add-in - Testing and Configuration

272

Full Object Hierarchy Views
The Java Add-in enables you to view the full object hierarchy of each of the
objects in your application in the Object Spy and Object Selection dialog
boxes. In contrast to the recorded object hierarchy, the full object hierarchy
shows you all of the parent objects associated with the clicked locations
and, in some cases, the child objects of the clicked object.

The full object hierarchy enables you to view associated operations and
properties of non-recorded objects in the Object Spy. You can also access
non-recorded objects from the Object Selection dialog box that opens when
using the Step Generator (tests only) or when inserting a checkpoint or
output value step during a recording session.

The Object Spy and Object Selection dialog boxes enable you to view details,
insert statements, or perform operations even for elements of an object
(class business components) that are not recorded, such as
java.awt.Component. For example, you can access the edit box, drop-down
list, and button elements of a combo box.

For details on the Object Spy and Object Selection dialog boxes, see the
HP Unified Functional Testing User Guide.

Advanced Java Test Object Methods

Java test object classes include test object methods that you can use in your
tests to enhance the interaction between UFT and the application being
tested.

This section includes:

➤ "CreateObject Method" on page 273

➤ "GetStatics Method" on page 273

➤ "FireEvent / FireEventEx Methods" on page 274

Chapter 15 • Java Add-in - Testing and Configuration

273

CreateObject Method
You can use the CreateObject method to create an instance of any Java
object within your applet or application. The CreateObject method returns
an object reference to the newly created Java object. For details on the
syntax of this method, see the Java section of the HP Unified Functional
Testing Object Model Reference.

You can activate the methods of an object you create in the same way as you
would activate the methods of any returned object from a prior call. Because
the CreateObject method returns an object reference, there is no need to use
the Object property when activating methods of the created object.

For example, you can use the CreateObject method to create a rectangle
object. The return value is an object reference.

Set Rect =
Browser("Periodic").Page("Periodic").JavaApplet("Periodic").JavaObject
("Panel").CreateObject ("java.awt.Rectangle", 10, 20)

Note: The CreateObject method can be performed on any Java test object.
The class loader of the Java test object on which the CreateObject method is
performed is used to load the class of the newly created Java object.

It is recommended to use the CreateObject method on a Java test object
from the same toolkit as the object you want to create. For example, to
create a Swing/JFC object, use the CreateObject method on an existing
Swing/JFC Java test object.

GetStatics Method
You can invoke any static method, or you can set or retrieve the value of any
static property of a Java class using the GetStatics method. For details on the
syntax of this method, see the Java section of the HP Unified Functional
Testing Object Model Reference.

GetStatics returns a reference to an object that can access static members of
the specified class. The class loader of the Java test object on which the
GetStatics method is performed is used to load the class specified as a
parameter of the GetStatics method.

Chapter 15 • Java Add-in - Testing and Configuration

274

For example, to invoke the gc method of class.java.lang.System, which runs
the garbage collector on the application, you can insert a statement similar
to the following:

Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").
JavaObject("MyButton").GetStatics("java.lang.System").gc

To retrieve the value of the out property of the java.lang.System class, you
can insert a statement similar to the following:

Set OutStream=
Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").
JavaObject("MyButton").GetStatics("java.lang.System").out

To print a message to the Java console, you can insert a statement similar to
the following:

Set OutStream=
Browser("Browser").Page("Page").JavaApplet("mybuttonapplet.htm").
JavaObject("MyButton").GetStatics("java.lang.System").out
OutStream.println "Hello, World!"

FireEvent / FireEventEx Methods
You can simulate an event on a Java object during a run session with the
FireEvent and FireEventEx methods. The FireEvent method simulates an
event on a Java object using one of several pre-defined event constants. If
the list of pre-defined constants does not cover the event you want to fire,
you can use the FireEventEx method to fire any Java event. For details on the
syntax of these methods and for the list of pre-defined event constants, see
the Java section of the HP Unified Functional Testing Object Model Reference.

For example, you can use the FireEvent method to fire a MouseClick event
on the JavaObject called MyButton_0.

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEvent micMouseClick, 0, "BUTTON1_MASK", 4, 4, 1, "OFF"

Chapter 15 • Java Add-in - Testing and Configuration

275

Alternatively, you can use the FireEventEx method to fire the same event as
follows:

Browser("Browser").Page("Page").Applet("mybuttonapplet.htm").JavaObject
("MyButton_0").FireEventEx "java.awt.event.MouseEvent",
"MOUSE_CLICKED", 0, "BUTTON1_MASK", 4,4, 1, "False"

Note that you can pass any Java constant that is used as one of the event’s
constructor parameters using its string, rather than its value. In the example
above, the "java.awt.event.MouseEvent" Java constant MOUSE_CLICKED is
supplied as a string argument instead of its value (500 in this example).

Java Add-in Environments

The Java Add-in uses a mechanism that supports multiple Java
environments (such as IBM JRE, Oracle JRE, and Oracle JInitiator) and
multiple Java versions (such as, JDK 1.5.x, 1.6.x and so on) without
requiring any configuration changes. (For a list of supported environments
and versions, see the HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the UFT DVD.)

This mechanism, known as the dynamic transformation support
mechanism, adjusts the Java Add-in support classes according to the Java
environment and version used. The dynamic transformation support
mechanism uses the Tool Interface of the Java Virtual Machine (JVMTI) (or
the Profiler Interface (JVMPI) when working with JDK 1.5 and earlier).

The dynamic transformation support mechanism is invoked by the
-Xrunjvmhook option, which is supplied to the JVM. If the -Xrunjvmhook
option is specified, the JVM hook profiler (part of the Java Add-in support) is
loaded with every Java application or applet that loads. The JVM hook
profiler dynamically transforms the necessary classes to enable
context-sensitive Java support.

When you run the Java Add-in on Java 6 or Java 7 environments, the
dynamic transformation support mechanism is invoked by the
-agentlib:jvmhook, which is defined in the JAVA_TOOL_OPTIONS
environment variable.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 15 • Java Add-in - Testing and Configuration

276

Note: When working with Oracle Java 6 or Java 7 there is no conflict
between -agentlib:jvmhook (defined in the JAVA_TOOL_OPTIONS
environment variable) and -Xrunjvmhook (defined in the _JAVA_OPTIONS
environment variable) because Java 6 and Java 7 ignore -Xrunjvmhook.

When working with IBM Java 6 or Java 7, these environment variables may
conflict. For workaround details, see "Running Java applications on the IBM
Java Runtime Environment (JRE) 1.6" on page 263.

The Java agent searches for the jvmhook.dll according to the
java.library.path system property. You can identify any override of this
system property using the Java command line: -djava.library.path = <path>
However, although you can override the java.library.path system property, it
is recommended to extend the java.library.path and not to overwrite it.

By default, the value of the java.library.path system property is the system
path. If your application is loaded with a different library path, you must
either add the jvmhook.dll to a location within the java.library.path, or
change the java.library.path to contain <Windows installation folder>/
system32.

The <JRE root folder>/bin folder is always located in the java.library.path. If
needed, you can manually copy the jvmhook.dll to this folder. However, if
you need to modify more than one computer, it is recommended to modify
the batch file that alters the java.library.path.

For task details, see "How to Disable Dynamic Transformation Support
(Advanced)" on page 283.

Chapter 15 • Java Add-in - Testing and Configuration

277

Tasks

How to Record Steps on Java Table Objects

When you record an operation that changes the data in a cell of a Java table
object, UFT generally records the end result of the data in the cell in the
form of a JavaTable.SetCellData statement. (JavaTable.SetCellData is not
used when the JavaTable record mode is set to Analog. For details on
JavaTable record mode, see "Advanced Java Options Dialog Box" on
page 290.)

This task describes how to identify and record steps on different types of
Java tables, and includes the following steps:

➤ "Record on standard cell editors in Swing JTable tables" on page 277

➤ "Record on custom cell editors in Swing JTable tables" on page 278

➤ "Modify the default JTable recording behavior (advanced)" on page 278

➤ "Find the toolkit class of a JTable cell editor using the Object Spy" on
page 280

Record on standard cell editors in Swing JTable tables

Record operations using the Unified Functional Testing Java Add-in built-in
support for several standard Swing JTable cell editor types. By default, UFT
records operations on these standard cell editors in the same way as other
table objects, using SetCellData statements.

Chapter 15 • Java Add-in - Testing and Configuration

278

Record on custom cell editors in Swing JTable tables

When a JTable contains a custom (non-standard) cell editor, the default
SetCellData statement cannot be recorded. For example, if a cell contains
both a check box and a button that opens a dialog box, then a SetCellData
statement may not always provide an accurate description of the operations
performed inside the cell.

If you record an operation on a custom cell editor, UFT records a statement
that reflects the operation you performed on the object inside of the cell.
For example, if the cell editor contains a custom check box, UFT might
record the following statement:

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog("Set
Options").JavaCheckBox("MyCheckBox").Set "ON"

instead of:

Browser("Periodic").Page("Periodic").JavaWindow("CoolJava").JavaDialog("Set
Options").JavaTable("MyTable").SetCellData "ON"

Modify the default JTable recording behavior (advanced)

If the default recording behavior for JTables does not provide the desired
value for the SetCellData statement of a particular editor, set that editor to be
recorded, like a custom cell editor, in terms of the operation performed on
the object inside the cell, by doing one of the following:

➤ Select Table cell controls > Controls to identify as separate test objects
option in the Advanced Java Options dialog box, and then specify specific
cell editor types that should always be treated as separate objects, and not
as part of a JavaTable object.

➤ Create a Setting.Java ("table_internal_editors_list") statement. For details,
see "Advanced Java Options Dialog Box" on page 290, and the HP Unified
Functional Testing Object Model Reference.

Chapter 15 • Java Add-in - Testing and Configuration

279

Modify table cell control options

Use the Advanced Java Options dialog box to specify a list of table cell
controls that you want UFT to identify as separate test objects. You can also
specify a list of table cell controls for which you want UFT to record and run
JavaTable operations. For user interface details, see "Advanced Java Options
Dialog Box" on page 290.

Notes:

➤ Any changes you make are not applied to the currently open test or
business component. To apply your changes, close your test or business
component and reopen it.

➤ You can restore the default settings in the Advanced Java Options dialog
box by clicking the Reset button.

 1 Click the relevant option once to highlight it.

 2 Click the option again or press F2 to open an edit box in which you can
add or modify a list of controls.

 3 Change the value as necessary.

Note: Specify editor class names separated by a space, tab, newline, or
return character. Values are case sensitive.

 4 When you finish editing the value, click another location in the dialog
box to set the value.

Chapter 15 • Java Add-in - Testing and Configuration

280

Find the toolkit class of a JTable cell editor using the Object Spy

If you do not know the value of the toolkit class for an editor for use with
the table_external_editors_list variable, you can find it by using the Object
Spy, by running a short test in UFT to retrieve the value, or by creating a
user-defined function and inserting it as a step.

To find the toolkit class of a JTable cell editor using the Object Spy:

 1 Open the table and activate a cell in the cell editor column. For example,
make sure the cursor is blinking inside an edit field or display the
drop-down list of a combo box.

 2 With the appropriate cell activated, use the Object Spy to point to the
active cell. For details on using the Object Spy, see the HP Unified
Functional Testing User Guide.

 3 Make sure the Properties tab of the Object Spy is displayed and select the
Identification radio button.

 4 In the Properties column, scroll to toolkit class.

 5 In the Values column, select the value of the toolkit class. The value is
displayed in the box below the Properties tab.

 6 Copy and paste the value from the Object Spy to the Table cell controls >
Controls to identify as separate test objects option or your Setting.Java
("table_internal_editors_list") statement.

Chapter 15 • Java Add-in - Testing and Configuration

281

To find the toolkit class of a JTable editor by running a UFT script

For some cell editors, it is difficult or impossible to capture an activated cell
with the Object Spy because the cell does not stay activated for a long
enough period of time. For example, after a check box is selected or cleared,
the cell is no longer active. If you need to find the toolkit class value to use
for these types of cell editors, you can run a short test in UFT to retrieve the
value. If you are working with business components, you can create a
user-defined function and insert it as a step.

You can insert steps similar to the following example:

' Sample test to retrieve the toolkit class of a table cell editor
' that cannot be made continuously active
Set table = JavaWindow("TableDemo").JavaTable("Left table").Object
Set JTableCS = table.mic_get_supp_class()
Set comp = JTableCS.getComponentAt(table, 0, 6) ‘row 0, col 6
MsgBox comp.getClass().getName()
' Set the value of TABLE_EXTERNAL_EDITORS_LIST
Setting.Java("TABLE_EXTERNAL_EDITORS_LIST") =
comp.getClass().getName()

How to Define Record and Run Environment Variables
for Java Objects

This task describes which application detail environment variables to
specify for the applications you want to use for recording and running your
test.

If you define any of these application details environment variables, they
override the values in the Executable file, Command line, and Working
directory boxes in the Java tab of the Record and Run Settings dialog box.
For details, see "Java Tab (Record and Run Settings Dialog Box)" on page 298.

Chapter 15 • Java Add-in - Testing and Configuration

282

Use the variable names listed in the table below to define Java application
details:

For details on defining and working with environment variables, see the
HP Unified Functional Testing User Guide.

How to Optimize Settings for Other Record and Run
Settings Dialog Box Tabs

In addition to setting the appropriate settings in the Java tab (or Web tab for
applets in browsers), you should confirm that the other tabs in the dialog
box have the appropriate settings for your test.

The following settings are recommended:

➤ Windows Applications tab. Select Record and run only on and confirm
that all check boxes are cleared.

➤ Other tabs. (If displayed.) Select the option to record and run on any
open application (upper radio button of each tab).

While these settings do not directly affect your record or run sessions when
working with Java applets and applications, these settings prevent you from
inadvertently recording operations performed on Windows applications
(such as e-mail) during your recording session. These settings also prevent
UFT from opening unnecessary applications when you record or run tests
on Java applets and applications.

Option Variable Name Description

Executable file EXEPATH_ENV The executable file or a batch
file to open.

Command line CMDLINE_ENV The command line to use to
open the file.

Working directory WORKDIR_ENV The folder to which the
specified command line or
executable file refers.

Chapter 15 • Java Add-in - Testing and Configuration

283

For details on the Record and Run Settings dialog box, see "Record and Run
Settings for Add-ins - Overview" on page 35.

How to Disable Dynamic Transformation Support
(Advanced)

This task describes how to disable the dynamic transformation support
mechanism if it does not work properly, and how to manually configure the
Java environment to use the Java Add-in without dynamic transformation
support. For general details about using the Java Add-in with multiple
environments, see "Java Add-in Environments" on page 275.

Note: The dynamic transformation support mechanism is not supported
when using the incremental garbage collector (-Xincgc option). Therefore, if
you absolutely must use the -Xincgc option, you need to disable dynamic
transformation support.

This task includes the following steps:

➤ "Save the dynamically transformed classes" on page 284

➤ "Disable dynamic transformation support" on page 285

➤ "Results" on page 285

Chapter 15 • Java Add-in - Testing and Configuration

284

 1 Save the dynamically transformed classes

 a Specify the folder in which to save the dynamically transformed
classes that will be generated during the preliminary launching of your
java applet or application.

To do this, open the registry editor (select Start > Run, type regedit in
the Open box and click OK) and navigate to the JavaAgent main key,
located in: HKEY_LOCAL_MACHINE\SOFTWARE\Mercury
Interactive\JavaAgent. Define a new string value named
ClassesDumpFolder, and set its value data to an existing folder
(preferably empty) on your computer, for example,
C:\JavaSupportClasses.

Note: If the ClassesDumpFolder string value already exists, you can
modify its value data to an existing folder on your computer.

 b If you are using the -Xincgc option, temporarily remove it from the
command line to enable the JVM hook profiler to transform and save
the necessary classes.

 c Launch your applet or application and perform some basic operations
on it. This ensures that all of the necessary classes are transformed and
saved. Close your applet or application. All of the dynamically
transformed classes are now saved in the folder you specified in the
previous step (for example, C:\JavaSupportClasses).

 d If you temporarily removed the -Xincgc option from the command
line in step b, you can restore it now.

Now that you saved the transformed classes, you are ready to disable
dynamic transformation support.

Chapter 15 • Java Add-in - Testing and Configuration

285

 2 Disable dynamic transformation support

 a Remove the -Xrunjvmhook option from the _JAVA_OPTIONS (or
IBM_JAVA_OPTIONS for IBM VM-based applications, and
JAVA_TOOL_OPTIONS if you are working with Java 6) environment
variable.

 b Add the following option instead:
-Xbootclasspath/p:<ClassesDumpfolder>\Final where
<ClassesDumpfolder> is the value of the folder in which the
dynamically transformed classes were saved (step a on page 284). For
example, after your modification the _JAVA_OPTIONS environment
variable might look like this:

 3 Results

The saved transformed classes are now used instead of dynamic
transformation.

-Xbootclasspath/p:C:\JavaSupportClasses\Final -Xbootclasspath/
a:C:\PROGRA~1\HP\UNIFIE~1\bin\JAVA_S~1\classes;C:\PROGRA~1\HP\UNIFIE~
1\bin\JAVA_S~1\classes\jasmine.jar

Chapter 15 • Java Add-in - Testing and Configuration

286

Reference

Java Pane (Options Dialog Box > GUI Testing Tab)

This pane enables you to configure how UFT records and runs tests on Java
applets or applications.

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Java node.

Important
information

The Java pane is available only when the Java or Oracle
Add-ins are installed and loaded. If you are using the Oracle
Add-in, and you add steps to your test for Java objects within
your Oracle application, the options in this pane are relevant
for the Java steps in your test.

Chapter 15 • Java Add-in - Testing and Configuration

287

Related tasks ➤ "How to Record Steps on Java Table Objects" on page 277

➤ "How to Optimize Settings for Other Record and Run
Settings Dialog Box Tabs" on page 282

➤ "How to Define Record and Run Environment Variables for
Java Objects" on page 281

See also ➤ "Advanced Java Options Dialog Box" on page 290.

➤ "Java Pane (Test/Business Component Settings Dialog Box /
Application Area - Additional Settings Pane)" on page 294

➤ "Java Tab (Record and Run Settings Dialog Box)" on
page 298

➤ "Recording Steps on Java Objects" on page 269

Chapter 15 • Java Add-in - Testing and Configuration

288

User interface elements are described below:

UI Element Description

Record items
mode

Determines how UFT records operations on items in List box,
Combo box, Tree view, and Tab control objects. The following
options are available for each object:

➤ By name. (Default) Records operations on an item within
the object (for example, selected list item or tab) according
to the item’s name.

➤ By index. Records operations on an item within the object
(for example, selected list item or tab) according to the
item’s position within the Java object.

Note:

➤ If you select the By index option for Tree view, do not
specify "#" as the default separator in the Tree view path
separator option below.

➤ This option corresponds to the
Setting.Java("record_by_num") variable.

Search radius
for attached
text

The maximum distance in pixels to search for attached text.

Default value: 100

Note:

➤ This option is relevant only when the label identification
property is unavailable.

➤ This option corresponds to the
Setting.Java("max_text_distance") variable.

Chapter 15 • Java Add-in - Testing and Configuration

289

Tree view path
separator

The default separator used to separate entries in a path to a
node of a Tree view control.

➤ Default value: ;

➤ Possible value: One or more single-character separators

Notes:

➤ If you enter more than one character, UFT treats each of
the characters as a separator (but not both of them in
sequence). If a path contains two consecutive separators,
UFT interprets the path as if it contains a node with no
name between the two separators. For example, if you
specify %$ for this option and a particular path contains
MyNode%$MySubNode, then UFT treats the % character as
a separator for a node with no name, and the $ character as
the separator for an additional node named MySubNode.

➤ If you select the By index option for Tree View in the
Record Items mode area above, do not specify "#" as the
default separator.

➤ This option corresponds to the
Setting.Java("treeview_path_separator") variable.

Reset Resets the Java settings to their default values.

Advanced Opens the Advanced Java Options dialog box. For details, see
"Advanced Java Options Dialog Box" on page 290.

UI Element Description

Chapter 15 • Java Add-in - Testing and Configuration

290

Advanced Java Options Dialog Box
This dialog box enables you to specify additional Java options. You can
configure table record mode preferences, enable retrieving text information
from the run-time object for checkpoints and output values (tests only), and
specify lists of controls.

Chapter 15 • Java Add-in - Testing and Configuration

291

To access

Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Java node > Advanced
button. Then do the following:

1 Click the relevant option once to highlight it.

2 Click the option again or press F2 to open an edit box
in which you can add or modify a list of controls.

3 Change the value as necessary.

Note: Specify editor class names separated by a space,
tab, newline, or return character. Values are case
sensitive.

4 When you finish editing the value, click another
location in the dialog box to set the value.

Important
information

➤ If you are using the Oracle Add-in, and you add steps
to your test for Java objects within your Oracle
application, the options in this dialog box are relevant
for the Java steps in your test.

➤ Any changes you make are not applied to the currently
open test or business component. To apply your
changes, close your test or business component and
reopen it.

➤ You can restore the defaultsettings in the Advanced
Java Options dialog box by clicking the Reset button.

Related tasks "How to Record Steps on Java Table Objects" on page 277

See also ➤ "Java Pane (Options Dialog Box > GUI Testing Tab)" on
page 286

➤ "Java Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 294

➤ "Java Tab (Record and Run Settings Dialog Box)" on
page 298

➤ "Recording Steps on Java Objects" on page 269

➤ "Text Checkpoint and Text Output Value Steps for Java
Objects" on page 271

Chapter 15 • Java Add-in - Testing and Configuration

292

User interface elements are described below:

UI Element Description

JavaTable record
mode

The record mode for table objects. The following modes
are available:

➤ Context sensitive. (Default) Records operations on
table objects in context-sensitive mode: SetCellData,
SelectRow, and so on.

➤ Analog. Records only low-level (analog) table
methods: ClickCell, DoubleClickCell, and Drag.

Note: This option corresponds to the
Setting.Java("table_record_mode") variable.

Checkpoint and
output value options

The preferences for checkpoint and output value steps on
Java objects. The following option is available:

Enable retrieving text data from the Java run-time object:
Enables UFT to retrieve text information from the Java
objects in the application for checkpoints and output
value steps. This option is not relevant if UFT is
configured to use the OCR mechanism for text
recognition (Tools > Options > GUI Testing tab > Text
Recognition node).

Note:

➤ Retrieving text information from the run-time object
is supported only for Java objects that meet very
specific criteria. Therefore, this option is disabled by
default.

➤ For a list of supported checkpoints and output values
for the Java Add-in, see "Java Add-in - Quick Reference"
on page 245.

Chapter 15 • Java Add-in - Testing and Configuration

293

Table cell controls The preferences for the way that UFT identifies controls
inside table cells. The following options are available:

➤ Controls to identify as separate test objects: Specifies
the list of controls that you want UFT to identify as
separate test objects and not as part of a JavaTable
object. Use this option to access methods that are
specific to the object type or to otherwise improve the
functionality of steps that UFT would normally record
and run as operations on a JavaTable object.

Notes:

➤ This option is relevant for JTable Swing toolkit
tables.

➤ Control class names must be separated by a space,
tab, newline, or return character. Values are case
sensitive.

➤ This option corresponds to the
Setting.Java("table_internal_editors_list") variable.

➤ Controls to treat as part of the JavaTable test object:
Specifies the list of controls for which you want UFT to
record and run JavaTable operations. Use this option
to record and run JavaTable operations (such as
SetCellData and Select) on controls that UFT would
normally treat as separate test objects.

Notes:

➤ This option is relevant for JTable Swing toolkit
tables.

➤ Editor class names must be separated by a space,
tab, newline, or return character. Values are case
sensitive.

➤ This option corresponds to the
Setting.Java("table_external_editors_list") variable.

See also:

➤ "Modify table cell control options" on page 279

➤ "Find the toolkit class of a JTable cell editor using the
Object Spy" on page 280

UI Element Description

Chapter 15 • Java Add-in - Testing and Configuration

294

Java Pane (Test/Business Component Settings Dialog Box
/ Application Area - Additional Settings Pane)

This pane enables you to define Java test or business component settings.
For business components, you use the application area’s Additional Settings
pane to define the settings, and the Business Component Settings dialog
box to view the settings in read-only mode.

The following image displays the Java pane of the Test Settings dialog box.
The content of this pane is identical to the content of the Java pane of the
Business Component Settings dialog box and the application area’s
Additional Settings pane.

Chapter 15 • Java Add-in - Testing and Configuration

295

To access Do one of the following:

➤ For a test or component:

Select File > Settings > Java node.

➤ For an application area:

Open the application area and select Additional Settings >
Java in the sidebar.

Important
information

➤ The options shown in the Java pane are the same in the
application area’s Additional Settings pane, the Business
Component Settings dialog box, and the Test Settings
dialog box.

The Business Component Settings dialog box displays the
settings in read-only mode. To define the settings for a
business component, use its application area’s Additional
Settings pane.

➤ The Java pane is available only when the Java or Oracle
Add-ins are installed and loaded. If you are using the
Oracle Add-in, and you add steps to your test for Java
objects within your Oracle application, the options in this
pane are relevant for the Java steps in your test.

➤ For details on the Test Settings and Business Component
Settings dialog boxes, and on application areas, see the
HP Unified Functional Testing User Guide.

Related tasks ➤ "How to Define Record and Run Environment Variables
for Java Objects" on page 281

➤ "How to Optimize Settings for Other Record and Run
Settings Dialog Box Tabs" on page 282

See also ➤ "Java Pane (Options Dialog Box > GUI Testing Tab)" on
page 286

➤ "Java Tab (Record and Run Settings Dialog Box)" on
page 298

➤ "Recording Steps on Java Objects" on page 269

External
resources

➤ For details on JFC or AWT-based Java key events and input
methods, see Java documentation at http://www.oracle.com/
technetwork/java/index.html.

➤ For details on SWT-based Java key events, see Java
documentation at http://www.eclipse.org.

http://www.eclipse.org
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Chapter 15 • Java Add-in - Testing and Configuration

296

User interface elements are described below:

UI Element Description

When running
JavaEdit.Set steps

Specifies how operations are performed on edit boxes
during a test run. It is recommended not to modify these
settings unless you fully understand Java key events and
input methods, as well as the implications of sending or
not sending these events. Note that JavaEdit.Set steps may
fail during a run session if an incorrect value is used for
these settings. You can set one or more of the following
options:

➤ Send KEY_PRESSED event. Sends a KEY_PRESSED event
to the object for every character from the input string.
(Selected by default.) This setting corresponds to the P
value of the Setting.Java("edit_replay_mode") variable.

➤ Send KEY_TYPED event. Sends a KEY_TYPED event to
the object for every character from the input string.
(Selected by default.) This setting corresponds to the T
value of the Setting.Java("edit_replay_mode") variable.

➤ Send KEY_RELEASED event. Sends a KEY_RELEASED
event to the object for every character from the input
string. (Selected by default.) This setting corresponds to
the R value of the Setting.Java("edit_replay_mode")
variable.

➤ Use Java API. Calls the setValue() method to set a value
of the edit object. This setting corresponds to the S
value of the Setting.Java("edit_replay_mode") variable.

➤ Send InputMethod event. Sends an InputMethod event
to the object for every character from the input string.
This event is used with Unicode applications (for
example, for some non-English applications). This
setting corresponds to the I value of the
Setting.Java("edit_replay_mode") variable.

➤ Send FOCUS_LOST event at end. Generates a
FOCUS_LOST event after running the step. This setting
corresponds to the F value of the
Setting.Java("edit_replay_mode") variable.

Chapter 15 • Java Add-in - Testing and Configuration

297

Characters to
exclude

Instructs UFT to ignore the specified characters during a
run session. List characters consecutively, without a
separator.

Default value: \t\n\r

Notes:

➤ This option is relevant only if the Use Java API check
box is selected in the upper section of this dialog box,
or if the value of the Setting.Java("edit_replay_mode")
variable is set to S.

➤ This setting corresponds to the
Setting.Java("exclude_control_chars") variable.

Perform mouse/
keyboard operations
at device level for
these selected
methods

By default, UFT performs mouse operations at the
context-sensitive level. You can use this option to select
specific operations to perform using device-level replay.
Device-level replay simulates mouse or key operations
exactly as if they occur on the mouse or keyboard drivers.
When a mouse action is simulated on device replay, the
mouse pointer moves on the screen to the point where
the action is to be performed during the run session. You
can select from the following mouse and keyboard
methods:

➤ Click

➤ DoubleClick

➤ Type

➤ Drag / Drop

Default value: All check boxes are cleared.

This option corresponds to the
Setting.Java("device_replay_mode") variable.

UI Element Description

Chapter 15 • Java Add-in - Testing and Configuration

298

Java Tab (Record and Run Settings Dialog Box)

This tab enables you to instruct UFT to open your Java applet or application
each time you begin a recording session, or to instruct UFT to record on any
open Java application.

To access Use one of the following:

Select Record > Record and Run Settings and select the Java tab.

Note: The Record and Run Settings dialog box opens
automatically each time you begin recording a new test or
business component (unless you open the dialog box and set
your preferences manually before you begin recording).

Chapter 15 • Java Add-in - Testing and Configuration

299

Important
information

➤ Testing Java applets in a Web browser. You must load both the
Web Add-in and the Java Add-in. In this case, you use the Web
tab of the Record and Run Settings dialog box to specify your
record and run preferences.

➤ Verifying record and run settings. When you run a test, or if
you begin a new recording session on an existing test, UFT
automatically uses the existing record and run settings for the
test and does not open the Record and Run Settings dialog
box. However, it is important to confirm that the options in
the Record and Run Settings Java tab are appropriate for the
first step of your test before running it because you (or
someone else) may have modified the Record and Run
Settings dialog box manually in a prior recording session.

➤ Testing business components. Components do not require
specific record and run settings to work with Java applets and
applications. To record a business component, you need to
first open the Java applet or application manually.
Alternatively, you can include steps in your business
component that connect to the Java applet or application, for
example, you can include a step that contains the OpenApp
operation.

When you begin recording a new business component, the
Applications dialog box opens (unless you previously specified
a Windows environment in the Business Component Settings
dialog box or the application area’s Additional Settings pane).
Click OK in the dialog box without making modifications to
begin recording. For details on the Applications pane and
Applications dialog box, see "Define record and run settings
for Windows-based applications" on page 122.

Related tasks ➤ "How to Define Record and Run Environment Variables for
Java Objects" on page 281

➤ "How to Optimize Settings for Other Record and Run Settings
Dialog Box Tabs" on page 282

➤ "How to Define Record and Run Settings for UFT Add-ins" on
page 41

Chapter 15 • Java Add-in - Testing and Configuration

300

User interface elements are described below:

See also ➤ "Java Pane (Options Dialog Box > GUI Testing Tab)" on
page 286

➤ "Advanced Java Options Dialog Box" on page 290

➤ "Recording Steps on Java Objects" on page 269

➤ For details on the Web tab of the Record and Run Settings
dialog box, see "Web-Based Application Support" on page 49.

➤ For general details on the Record and Run Settings dialog box,
see the HP Unified Functional Testing User Guide.

UI Element Description

Record and run
test on any open
Java application

Instructs UFT to record and run the test on any open Java
application or applet.

Open the
following
application when
a record or run
session begins

Instructs UFT to open a new Java application or applet using
the specified application details.

Note:

➤ This setting controls only which Java application, if any, is
opened at the beginning of a record or run session. It does
not affect the applications that UFT recognizes. Even if
this radio button is selected and no application is
specified, UFT can still record, recognize, and run on any
open Java application.

➤ When working with a Java applet inside a browser, use the
Web tab of the Record and Run Settings dialog box to open
the URL containing the applet.

Chapter 15 • Java Add-in - Testing and Configuration

301

Application
details

The details of the Java application on which to run the test:

➤ Executable file. Instructs UFT to open the specified
executable or batch file.

➤ Command line. Instructs UFT to open the application
from the specified command line.

➤ Working directory. Instructs UFT to run the specified
executable file or command line from the specified
directory. Make sure you specify the full directory path, for
example, C:\Program Files\Java\jre1.6.0\bin.

Note:

➤ If you define values for the EXEPATH_ENV,
CMDLINE_ENV, and/or WORKDIR_ENV test environment
variables, these values override the values in the
Executable file, Command line, and Working Directory
boxes of the Java tab during a run session. For details, see
"How to Define Record and Run Environment Variables for
Java Objects" on page 281.

➤ Always enter a value in the Working directory field,
otherwise UFT cannot open your Java application.

UI Element Description

Chapter 15 • Java Add-in - Testing and Configuration

302

Part VII

Oracle Add-in

304

305

16
Oracle Add-in - Quick Reference

You can use the Unified Functional Testing Oracle Add-in to test Oracle
Applications and Oracle Forms objects (controls).

The following table summarizes basic information about the Oracle Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Web-based add-in. Much of its functionality is the
same as other Web-based add-ins.

See "Web-Based Application Support" on page 49.

Supported
Environments

For details on supported Oracle environments, see the
Oracle Add-in section of the HP Unified Functional Testing
Product Availability Matrix, available from the UFT Help or
the root folder of the Unified Functional Testing DVD.

Important
Information

 When working with the Oracle Add-in, you must:

➤ Verify that the Oracle Name attribute is unique.
See "How to Verify or Enable the Oracle Server Unique
Name Attributes" on page 320.

➤ Enable the Oracle Name attribute.
See "How to Enable the Oracle Name Attribute" on
page 321.

Test Object
Methods and
Properties

The Oracle Add-in provides test objects, methods, and
properties that can be used when testing objects in Oracle
applications. For detail, see the Oracle section of the
HP Unified Functional Testing Object Model Reference.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 16 • Oracle Add-in - Quick Reference

306

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - Oracle Add-in" on
page 310.

Prerequisites

Opening Your
Application

You can open your Oracle application before or after
opening UFT.

Add-in
Dependencies

➤ The Web Add-in must be loaded. The Web Add-in
supports Web-based forms.

➤ The Java Add-in must be loaded if your Oracle test or
business component includes Java test objects.

Configuration

Options Dialog Box Use the Java pane if your Oracle test or business
component includes Java test objects.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Java node).

See "Java Pane (Options Dialog Box > GUI Testing Tab)" on
page 286.

Record and Run
Settings Dialog Box
(tests only)

Use the Oracle tab.
(Record > Record and Run Settings)

See "Oracle Tab (Record and Run Settings Dialog Box)" on
page 327.

Test Settings Dialog
Box
(tests only)

➤ Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 101.

➤ Use the Java pane if your Oracle test or business
component includes Java test objects.
(File > Settings > Java node)

See "Java Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 294.

Chapter 16 • Oracle Add-in - Quick Reference

307

This chapter includes:

Concepts

➤ Considerations for Working with the Oracle Add-in on page 308

Reference

➤ Troubleshooting and Limitations - Oracle Add-in on page 310

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Oracle applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

For details, see the section on the Custom Active Screen
Capture Settings dialog box in the HP Unified Functional
Testing User Guide.

Application Area
Additional Settings
pane
(business
components only)

➤ Use the Web pane if your test includes Web test objects.
In the application area, select Additional Settings > Web
in the sidebar.

For details, see "Web Pane (Test/Business Component
Settings Dialog Box / Application Area - Additional
Settings Pane)" on page 101.

➤ Use the Java pane if your Oracle test or business
component includes Java test objects.
In the application area, select Additional Settings > Java
in the sidebar.

See "Java Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 294.(The options shown in the Java
pane of the Test Settings dialog box are the same as the
options that are available in the Additional Settings in
the application area.)

Chapter 16 • Oracle Add-in - Quick Reference

308

Concepts

Considerations for Working with the Oracle Add-in

➤ If you installed a version of JInitiator 1.1.x after installing the Oracle
Add-in, a warning is displayed when you start recording your test or
business component. Versions of JInitiator 1.1.x installed after you install
the Oracle Add-in are not supported by UFT. In this case, you can repair
the Oracle Add-in to enable full support of all currently installed versions
of JInitiator 1.1.x. For details, see the section on repairing your UFT
installation in the HP Unified Functional Testing Installation Guide.

If you try to record an action on an Oracle object with an unsupported
version of JInitiator 1.1.x, UFT records a generic WinObject.Click
statement that includes the coordinates of the click and the mouse button
that was clicked.

➤ After installing the Oracle Add-in, your applications will always open
with Java support active. You can confirm that your Oracle environment
has opened properly by checking the Java console for the confirmation
message similar to:
Loading Oracle Support (version x.x build xxx) (Oracle Corporation x.x.x.xx).

For details, see "Dynamic Transformation Support" on page 318.

Note: The Unified Functional Testing Oracle Add-in supports only Oracle
clients that are Java-based. Oracle Developer/2000 is not supported.

➤ Before using the Oracle Add-in to test Oracle Applications, you must first
enable the Name attribute supplied by the Oracle Applications server.
details, see "How to Enable the Oracle Name Attribute" on page 321.

Chapter 16 • Oracle Add-in - Quick Reference

309

➤ The Oracle Applications server supplies a unique Name attribute for many
application objects. You can also find the Oracle Applications server
Name attribute in the Oracle Add-in developer name identification
property. The developer name identification property is used by UFT in
most test object descriptions to identify Oracle objects. For details, see
"How to Enable the Oracle Name Attribute" on page 321.

➤ In UFT, table data is always loaded from the application itself, even if the
Active Screen contains an image of the table. For this reason, you must
first open the table in the application before creating a table checkpoint
in a test.

➤ In some cases you may need to scroll to the last row of the table to
make sure that all the data is loaded.

➤ If the table object is not open in your application when you create the
checkpoint, the Table Checkpoint Properties dialog box contains only
the Properties tab, and the option to select which type of information
to check (content or properties) is disabled.

➤ It is not necessary to open the table in your application to edit an
existing table checkpoint.

➤ For details on UFT functionality, see the HP Unified Functional Testing User
Guide.

Chapter 16 • Oracle Add-in - Quick Reference

310

Reference

Troubleshooting and Limitations - Oracle Add-in

This section contains general information and limitations about the Oracle
add-in, and includes the following sections:

➤ "Installing the Oracle Add-in" on page 310

➤ "Creating and Running Testing Documents" on page 312

➤ "Record and Run Options" on page 313

➤ "Checkpoints" on page 313

For limitations relevant to specific test objects and methods, see the Oracle
section of the HP Unified Functional Testing Object Model Reference.

Installing the Oracle Add-in

➤ If you install an Oracle JInitiator 1.1.x version after you install the UFT
Oracle Add-in, you must repair UFT to test applications running in the
newly installed JInitiator version. For details, see the HP Unified Functional
Testing Add-ins Guide.

Note: It is not necessary to re-install or otherwise configure the UFT
Oracle Add-in if you installed a new Oracle environment other than
JInitiator 1.1.x.

Chapter 16 • Oracle Add-in - Quick Reference

311

➤ In Windows XP and Windows 2003, after you install the Oracle Add-in,
the Windows Remote Shell Service (rshsvc.exe) may fail and display an
error message every time you restart the computer. This occurs only if the
Remote Shell Service is configured to run automatically.

Workaround: Either disable the automatic launching of the Remote Shell
Service, or move the following variables from the System Variables section
of the Environment Variables dialog box to the User Variables section:
_classload_hook, _JAVA_OPTIONS, IBM_JAVA_OPTIONS, and MSJAVA
_ENABLE _MONITORS.

➤ The Unified Functional Testing Oracle Add-in provides a number of
indicators that help you identify whether your add-in is properly installed
and functioning. The following table describes the indicators you may see
when your add-in is not functioning properly, and suggests possible
solutions:

Indicator Solution

You cannot record or run
tests on Oracle
Applications.

Ensure that the Oracle Add-in is loaded. For
details, see "How to Manage UFT Add-ins" on
page 40.

The Java console does not
display a line containing
the text similar to:
Loading Oracle Support.

Check that the settings in your environment
correspond to the environment settings defined
in this chapter, or check for a batch file that may
override the settings.

For details, see:

➤ "Recording Tests on Oracle Applications" on
page 316.

➤ "Dynamic Transformation Support" on
page 318.

Your Java console contains
the line Could not find –
Xrun library: jvmhook.dll.

Check that you have jvmhook.dll in your system
folder (WINNT\system32, Windows\System32,
or Windows\SysWOW64, depending on your
operating system).

Chapter 16 • Oracle Add-in - Quick Reference

312

If, after reviewing the above indicators and solutions, you are still unable
to record and run tests on your Oracle application, contact HP Software
Support.

Creating and Running Testing Documents

➤ Test objects that require the index property for their description (for
example, range flexfield objects) cannot be created from the Active
Screen.

Workaround: Use the Add Objects button in the Object Repository
window to add these test objects directly from your Oracle Applications
instead.

➤ Active Screen captures are not supported for OracleListOfValues and
OracleNotification test objects.

➤ The recovery scenario pop-up window trigger event is not supported
when testing Oracle Applications.

➤ Simultaneous testing of multiple Oracle Applications sessions is not
supported.

You cannot use UFT to
record on Oracle
Applications running on
Oracle JInitiator versions
1.1.X.

The version of Oracle JInitiator 1.1.X on which
your Oracle Application runs must be installed
before you install the Unified Functional Testing
Oracle Add-in.

If you installed Oracle JInitiator versions 1.1.X on
your computer after you installed the Oracle
Add-in, you should repair the Oracle Add-in
installation. For details, see the section on
repairing your UFT installation in the HP Unified
Functional Testing Installation Guide.

Indicator Solution

Chapter 16 • Oracle Add-in - Quick Reference

313

Record and Run Options

The Log out of the application when the test closes option in the Record
and Run Settings dialog box does not work if the Responsibilities List of
Values window is displayed in the Oracle Applications session.

Checkpoints

➤ Performing a checkpoint on an object that is not always visible (such as a
list opening from a combo box selection or a menu item) is not fully
supported.

Workaround: If a checkpoint on a transient object is required, make sure
the object is visible prior to executing the checkpoint. For example, in the
case of combo box list, you should insert a statement that clicks the
combo box button before executing the checkpoint.

➤ When testing Oracle applications, a table checkpoint may not capture the
values of columns that are not visible.

Workaround: Before creating a table checkpoint, scroll in the table so that
the last column is visible.

Chapter 16 • Oracle Add-in - Quick Reference

314

315

17
Oracle Add-in - Testing and Configuration

This chapter includes:

Concepts

➤ Recording Tests on Oracle Applications on page 316

➤ Dynamic Transformation Support on page 318

Tasks

➤ How to Verify or Enable the Oracle Server Unique Name Attributes
on page 320

➤ How to Enable the Oracle Name Attribute on page 321

➤ How to Set Oracle Environment Variables on page 323

➤ How to Locate the Java Console on page 324

➤ How to Disable Dynamic Transformation Support on page 325

Reference

➤ Oracle Tab (Record and Run Settings Dialog Box) on page 327

➤ Oracle Record and Run Environment Variables on page 330

Chapter 17 • Oracle Add-in - Testing and Configuration

316

Concepts

Recording Tests on Oracle Applications

As you record on an Oracle Applications session, UFT inserts statements into
your test or business component that represent the operations you perform.
The Unified Functional Testing Oracle Add-in recognizes specific Oracle
objects such as button, form, navigator, list, and tree. It records these objects
in relation to the data selected or entered and to the object within its parent
object.

Note: UFT does not record the selection of Oracle tabs. Each object in an
Oracle tab is included in the object repository within the tab hierarchy. UFT
then uses this hierarchy when the test or business component is run,
switching to the appropriate tab if needed.

The UFT learned object hierarchy is composed of one, two, or three levels of
Oracle test objects. Depending on the actual object on which you performed
an operation, that object may be recorded as a first level object (for example,
OracleLogon), as a second level object (for example,
OracleFormWindow.OracleList), or as a third level object (for example,
OracleFormWindow.OracleTabbedRegion.OracleTable).

Even though the object on which you record may be embedded in several
levels of objects, the recorded hierarchy does not include these objects. For
example, even if the OracleListOfValues object in which you select an item
is actually within an Oracle form, which is contained within an Oracle
Applications session window, the recorded hierarchy is only
OracleListOfValues.

Chapter 17 • Oracle Add-in - Testing and Configuration

317

Example of a Step on an Oracle Object

If you record the selection of an item in an Oracle List of Values window, the
Keyword View may be displayed as follows:

UFT records this step in the Editor as:

OracleListOfValues("Responsibilities").Select "Assets, Vision Operations (USA)"

Working with Tests

Each time you begin recording a test, you can use the Oracle tab of the
Record and Run Settings dialog box to instruct UFT to connect to a specified
Oracle Applications server. Alternatively, you can instruct UFT to record on
any open browser. For details, see "Recording Tests on Oracle Applications"
on page 316.

Working with Components

The Record and Run Settings dialog box is used for tests only. When you
record a business component on an Oracle Applications session, you cannot
instruct UFT to open or connect to a specified Oracle Applications server.
You can open and connect to it manually or include statements in your
business component (using the OpenApp operation or the SystemUtil utility
object and the OracleLogon test object) that open and connect to the Oracle
Applications server. For details on the Applications pane and Applications
dialog box, see the HP Unified Functional Testing User Guide.

Chapter 17 • Oracle Add-in - Testing and Configuration

318

Working with Java Test Objects

You may have a combination of Oracle and Java test objects in your Oracle
test or business component. This occurs when UFT encounters a Java applet
within your Oracle Applications session and records it using the Java test
object hierarchy.

You can edit steps that use Java test objects, methods, and properties in the
same way as you edit other standard steps. You can add new steps to existing
tests or business components using the new Oracle test object model. For
details on Java objects, methods, and properties, see the Java section of the
HP Unified Functional Testing Object Model Reference, installed together with
the Oracle Add-in. For details on Oracle objects, methods, and properties,
see the Oracle section of the HP Unified Functional Testing Object Model
Reference.

There are specific options and settings you can use in your test or business
component that apply only to steps that use Java test objects. These options
and settings are located in the Java pane of the Test Settings dialog box (File
> Settings > Java node) and the Java pane of the Options dialog box (Tools >
Options > GUI Testing tab > Java node). For more information, click the
Help button in the relevant Java pane. Note that the options in the Java
panes do not have any effect on Oracle object steps in your test or business
component.

 Dynamic Transformation Support

The Oracle Add-in uses a mechanism for supporting multiple Java
environments (Oracle Plug-in, JInitiator) and their versions (JInitiator 1.1.8,
1.3.1, and so on) without requiring any configuration changes. This
mechanism is known as dynamic transformation support.

Dynamic transformation support uses the profiler interface of the Java
Virtual Machine (JVM) to adjust the Oracle Add-in support classes according
to the Java environment and version in use.

Chapter 17 • Oracle Add-in - Testing and Configuration

319

The dynamic transformation support mechanism is invoked by the
-Xrunjvmhook option (for JInitiator 1.3.1.x and Sun Plug-in 1.4.1) or the
_classload_hook=jvmhook option (for JInitiator 1.1.x) supplied to the JVM.
If this option is specified, the JVM hook profiler, which is part of the Oracle
Add-in support, is loaded with every application or applet and dynamically
transforms the necessary classes to enable context-sensitive Oracle support.

➤ If the dynamic transformation support mechanism does not work
properly, you can disable it and manually configure the Oracle
environment to use the Oracle Add-in without dynamic transformation
support. For details, see "How to Disable Dynamic Transformation
Support" on page 325.

➤ The dynamic transformation support mechanism is not supported when
using the incremental garbage collector (-Xincgc option). Therefore, if
you absolutely must use the -Xincgc option, you need to disable dynamic
transformation support. For details, see "How to Disable Dynamic
Transformation Support" on page 325

Chapter 17 • Oracle Add-in - Testing and Configuration

320

Tasks

How to Verify or Enable the Oracle Server Unique Name
Attributes

This task includes the following steps:

➤ "Prerequisite" on page 320

➤ "Enable the Oracle server to supply unique Name attributes" on page 320

 1 Prerequisite

Use the Object Spy to point to a few edit boxes inside the Oracle
application and view the developer name attribute. If the developer
name is displayed in all capital letters in the format FORM:BLOCK:FIELD
or FORM_BLOCK_FIELD, then the developer name attribute is supplied
correctly.

If the developer name value is empty, then the server does not supply
unique Name attributes. To use the Oracle Add-in to test Oracle
Applications, your Oracle server must supply unique Name attributes.

Your Oracle server administrator can assist you in enabling unique Name
attributes.

 2 Enable the Oracle server to supply unique Name attributes

 a Add the following line to the server configuration file (for example,
$OA_HTML/bin/appsweb_UKTRN_hwu00001.cfg):

 b Restart the Oracle server.

otherparams=record=names

Chapter 17 • Oracle Add-in - Testing and Configuration

321

How to Enable the Oracle Name Attribute

This task describes the different ways in which you can enable the Name
attribute supplied by the Oracle Applications server before using the Oracle
Add-in to test Oracle Applications.

This task includes:

➤ "Enable the Name attribute when accessing the application directly" on
page 321

➤ "Enable the Oracle server to supply unique Name attributes" on page 320

➤ "Enable the Name attribute when using HTML to launch the Oracle
application" on page 321

Enable the Name attribute when accessing the application
directly

Add record=names to the URL parameters.

Example:

Enable the Name attribute when using HTML to launch the
Oracle application

 1 In the startup HTML file that is used to launch the application, locate the
line: <PARAM name="serverArgs fndnam= APPS">

 2 Add the Oracle key: record=names

Example:

http://oracleapps.mydomain.com:8002/dev60cgi/f60cgi?record=names

<PARAM name="serverArgs" value="module=f:\FNDSCSGN userid=XYZ
fndnam=apps record=names">

Chapter 17 • Oracle Add-in - Testing and Configuration

322

Enable the Name attribute when using the Personal Home Page
to launch your Forms 6 application

Set up the following system profile option at (your) user level to enable the
Name attribute:

 1 Sign on to your Oracle application and select System Administrator
responsibility.

 2 Select Nav > Profile > System.

 3 In the Find System Profile Values form:

➤ Confirm that Display: Site and Users contains your user logon.

➤ Enter %ICX%Launch% in the Profile box.

➤ Click the Find button.

 4 Copy the value from the Site box of the ICX: Forms Launcher profile and
paste it in the User box. Add &play=&record=names to the end of the URL
in the User box.

 5 Save your transaction.

 6 Sign on again using your user name.

Note: If the ICX: Forms Launcher profile option is not updatable at the user
level, access Application Developer and select the Updatable check box for
the ICX_FORMS_LAUNCHER profile.

Chapter 17 • Oracle Add-in - Testing and Configuration

323

How to Set Oracle Environment Variables

This task describes how to set the environment variables you need for
loading your Oracle application with UFT Oracle Add-in support. For all the
environments, you need to set one or more environment variables with the
path name of the Oracle Add-in support classes folder.

This task includes the following steps:

➤ "Sun Plug-in 1.4.1 and Oracle JInitiator 1.3.1.x" on page 323

➤ "Oracle JInitiator 1.1.x" on page 323

Sun Plug-in 1.4.1 and Oracle JInitiator 1.3.1.x

Set the _JAVA_OPTIONS environment variable as follows:

-Xrunjvmhook
-Xbootclasspath/a:"<UFT installation folder>\bin\java_shared\classes";
"<UFT installation folder>\bin\java_sharedclasses\jasmine.jar"

The above variables should appear on one line (no newline separators).

Note:

You can also use short paths in this command. For example:

-Xrunjvmhook -Xbootclasspath/a:C:\PROGRA~2\HP\UNIFIE~1\bin\
JAVA_S~1\classes;C:\PROGRA~2\HP\UNIFIE~1\bin\JAVA_S~1\classes\
jasmine.jar

In this example, UFT is installed in the default installation folder (C drive,
Program Files) on a Windows 7 computer. PROGRA~2 denotes the Program
Files (x86) folder, which is the Program Files folder on 64-bit operating
systems.

Oracle JInitiator 1.1.x

Set the _classload_hook environment variable to jvmhook.

Chapter 17 • Oracle Add-in - Testing and Configuration

324

How to Locate the Java Console

This task describes how to locate the Java console for the following:

This task describes how to set environment variables for:

➤ "Oracle JInitiator 1.3 or higher" on page 324

➤ "IJInitiator 1.1.x" on page 324

➤ "JDK 1.4 Plug-in" on page 324

Oracle JInitiator 1.3 or higher

Do one of the following:

➤ Right-click the JInitiator icon in the taskbar tray and click Show Console.

➤ If you do not see the JInitiator icon in the taskbar tray, click Control Panel
in the Start menu. Double-click the JInitiator icon (choose the icon for
the Java version used by your application). In the Basic tab, select Show
Java console and click Apply. Restart your JInitiator application.

IJInitiator 1.1.x

If you do not see the JInitiator icon in the taskbar tray, click All
Programs > JInitiator Control Panel in the Start menu. In the Basic tab,
select Show Java console and click Apply. Restart your JInitiator application.

JDK 1.4 Plug-in

Right-click the Java Plug-in icon in the taskbar tray and click Open Console.

Click Control Panel in the Start menu. Double-click the Java Plug-in icon. In
the Basic tab, select Show Java in System Tray. Restart the browser.

Chapter 17 • Oracle Add-in - Testing and Configuration

325

How to Disable Dynamic Transformation Support

This task includes the following steps:

➤ "Save the dynamically transformed classes" on page 325

➤ "Disable dynamic transformation support" on page 326

This task describes how to disable dynamic transformation support if the
dynamic transformation support mechanism does not work properly.

 1 Save the dynamically transformed classes

 a Specify the folder in which to save the dynamically transformed
classes that will be generated during the preliminary launching of your
Oracle application.

To do this:

Open the registry editor (select Start > Run, type regedit in the Open
box and click OK)

Navigate to the JavaAgent main key, located in:
HKEY_LOCAL_MACHINE\SOFTWARE\Mercury
Interactive\JavaAgent.

Define a new string value named ClassesDumpFolder, and set its
value data to an existing folder (preferably empty) on your
computer, for example, C:\JavaSupportClasses.

If the ClassesDumpFolder string value already exists, you can modify
its value data to an existing folder on your computer.

 b If you are using the -Xincgc option, temporarily remove it from the
command line to enable the JVM hook profiler to transform and save
the necessary classes. You can add it back to the command line after
performing the following step.

 c Launch your applet or application and perform some basic operations
on it. This ensures that all of the necessary classes are transformed and
saved. Close your application. All of the dynamically transformed
classes are now saved in the folder you specified in the previous step
(for example, C:\JavaSupportClasses).

Chapter 17 • Oracle Add-in - Testing and Configuration

326

 2 Disable dynamic transformation support

For Sun Plug-in 1.4.1 or JInitiator 1.3.1.x:

 a Remove the -Xrunjvmhook option from the _JAVA_OPTIONS
environment variable.

 b Add the following option instead: -Xbootclasspath/
p:<ClassesDumpFolder>\Final, where <ClassesDumpFolder> is the
value of the folder in which the dynamically transformed classes were
saved (step a on page 325), appended by the Final subfolder. For
example, after your modification the _JAVA_OPTIONS environment
variable might look like this:

For Initiator 1.1.x:

 a Remove the _classload_hook option from the JDK settings by deleting
the environment variable.

 b Manually copy the classes from the <ClassesDumpFolder>, where
<ClassesDumpFolder> is the value of the folder in which the
dynamically transformed classes were saved (step a on page 325),
appended by the Final subfolder, to the JInitiator 1.1.x classes folder.
The JInitiator 1.1.x classes folder can be typically found under
C:\Program Files\Oracle\JInitiator 1.1.x\classes.

-Xbootclasspath/p:C:\JavaSupportClasses\Final -Xbootclasspath/a:"C:\Program
Files\HP Software\Unified Functional Testing\bin \java_shared\classes";

Chapter 17 • Oracle Add-in - Testing and Configuration

327

Reference

Oracle Tab (Record and Run Settings Dialog Box)

This tab enables you to specify whether or not to connect to an Oracle
Applications server and open a specified Oracle Applications session when a
record or run session begins. If you select to connect to a specific server, you
can specify details that will enable UFT to automatically log on to the server
each time a record or run session begins (instead of recording the log-in
steps).

Chapter 17 • Oracle Add-in - Testing and Configuration

328

To access Select Record > Record and Run Settings

Note: If you do not modify the Record and Run settings
before you begin recording, the Record and Run Settings
dialog box opens automatically when you begin
recording a new test (by clicking Record (or choosing
Record > Record).

Important
information

If you load only the UFT Oracle Add-in and the Web
add-in, then only the Oracle, Web, and Windows
Applications tabs are displayed in the Record and Run
Settings dialog box. If other add-ins are loaded, the
corresponding tabs (if any) are also displayed.

Relevant tasks ➤ "How to Verify or Enable the Oracle Server Unique
Name Attributes" on page 320

➤ "How to Enable the Oracle Name Attribute" on
page 321

➤ "How to Set Oracle Environment Variables" on
page 323

➤ "How to Locate the Java Console" on page 324

➤ "How to Disable Dynamic Transformation Support" on
page 325

See also ➤ "Recording Tests on Oracle Applications" on page 316

➤ "Dynamic Transformation Support" on page 318

➤ "Considerations for Working with the Oracle Add-in"
on page 308

Chapter 17 • Oracle Add-in - Testing and Configuration

329

User interface elements are described below:

UI Elements Description

Record and run test
on any open Oracle
Application

Instructs UFT to record and run the test on any open
Oracle application.

Open the following
application when a
record or run session
begins

Instructs UFT to connect to the Oracle Applications
server at the specified URL address.

Note: This setting controls only which application, if
any, is opened at the beginning of a record or run
session. It does not affect the applications that UFT
recognizes. Even if this radio button is selected and no
application is specified, UFT can still record, recognize,
and run on any open Oracle application.

Address Indicates the URL of the Oracle Applications server to
which you want to connect.

Auto-login Instructs UFT to log on to the specified Oracle
Applications server using the specified user name and
password.

Enabled only when Open the following application when
a record or run session begins is selected.

The Auto-login feature works for the Java interface login
only. If you log in to your Oracle applications through a
Web interface, the Auto-login feature cannot be used.

User name The user name used to log on to the specified server.

Enabled only when Auto-login is selected.

Password The password for the specified user name.

Enabled only when Auto-login is selected.

Chapter 17 • Oracle Add-in - Testing and Configuration

330

Oracle Record and Run Environment Variables

You can use record and run environment variables to specify the
applications you want to use for recording and running your test. These
variables can also be used in external library files for automation scripts.

If you define any of these record and run environment variables, they
override the values in the corresponding boxes in the Oracle tab of the
Record and Run Settings dialog box. For details on the Oracle tab, see
"Recording Tests on Oracle Applications" on page 316.

Use the variable names listed in the table below to define Oracle record and
run variables:

Log out of the
application when the
test closes

Instructs UFT to log out of the Oracle Applications
session specified in the Record and Run Settings dialog
box when the test is closed.

Enabled only when Auto-login is selected.

Close the browser
when the test closes

Instructs UFT to close the browser on which the test is
recorded when the test is closed.

Enabled only when Open the following application when
a record or run session begins is selected.

UI Elements Variable Name Description

Address ORACLE_URL_ENV The URL of the Oracle
Applications server to which
you want to connect.

Auto-login ORACLE_AUTO_LOGIN_ENV Instructs UFT to log on
automatically to the Oracle
Applications server.

Possible values:
True
False

UI Elements Description

Chapter 17 • Oracle Add-in - Testing and Configuration

331

For details on defining and working with environment variables, see the
HP Unified Functional Testing User Guide.

User name ORACLE_USER_NAME_ENV The user name used to log on
to the specified server.

Password ORACLE_PASSWORD_ENV The password for the
specified user name.

Log out of
the
application
when the
test closes

ORACLE_LOGOUT_ENV Instructs UFT to log out of
the Oracle Applications
session specified in the
Record and Run Settings
dialog box when the test is
closed.

Possible values:
True
False

Close the
browser
when the
test closes

ORACLE_CLOSE_BROWSER_ENV Instructs UFT to close the
browser on which the test is
recorded when the test is
closed.

Possible values:
True
False

UI Elements Variable Name Description

Chapter 17 • Oracle Add-in - Testing and Configuration

332

Part VIII

PeopleSoft Add-in

334

335

18
PeopleSoft Add-in - Quick Reference

You can use the Unified Functional Testing PeopleSoft Add-in to test
PeopleSoft user-interface objects (controls).

The following table summarizes basic information about the PeopleSoft
Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Web-based add-in. Much of its functionality is the
same as other Web-based add-ins.

See "Web-Based Application Support" on page 49.

Supported
Environments

For details on supported PeopleSoft environments, see the
PeopleSoft Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the UFT
Help or the root folder of the Unified Functional Testing
DVD.

Important
Information

See "Considerations for Working with the PeopleSoft
Add-in" on page 338.

Test Object
Methods and
Properties

The PeopleSoft Add-in provides test objects, methods, and
properties that can be used when testing objects in
PeopleSoft applications. For details, see the PeopleSoft
section of the HP Unified Functional Testing Object Model
Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - PeopleSoft Add-in"
on page 339.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 18 • PeopleSoft Add-in - Quick Reference

336

Prerequisites

Opening Your
Application

You must open UFT before opening your PeopleSoft
application.

Add-in
Dependencies

The Web Add-in must be loaded.

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

For details, see "Web > General Pane (Options Dialog Box)"
on page 82.

Record and Run
Settings Dialog Box
(tests only)

Use the Web tab.
(Record > Record and Run Settings)

See "Web Tab (Record and Run Settings Dialog Box)" on
page 77.

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Web pane.
In the application area, select Additional Settings > Web in
the sidebar.

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Chapter 18 • PeopleSoft Add-in - Quick Reference

337

This chapter includes:

Concepts

➤ Considerations for Working with the PeopleSoft Add-in on page 338

Reference

➤ Troubleshooting and Limitations - PeopleSoft Add-in on page 339

Chapter 18 • PeopleSoft Add-in - Quick Reference

338

Concepts

Considerations for Working with the PeopleSoft Add-in

➤ When learning PSFrame objects, or Web pages containing PSFrame
objects, the following child objects are automatically filtered out and are
not added to the object repository:

➤ WebElement

➤ WebTable

➤ Images with type "Plain Image"

➤ Images with type "Image Link"

If you want to add an object that is automatically filtered out, you can
manually add it by selecting it in the Object Selection dialog box.

➤ The PeopleSoft Add-in provides a customized PSFrame test object to
identify PeopleSoft frames. The PSFrame object differs from the Web
Frame object both in its test object description and its algorithm for
generating object names. This customization helps make your PeopleSoft
tests easy to read and maintain.

➤ The PeopleSoft Add-in identifies all other objects in your PeopleSoft
application using Web test objects.

For details on PeopleSoft and Web test objects, methods, and properties,
see the PeopleSoft and Web sections of the HP Unified Functional Testing
Object Model Reference.

➤ For the purposes of Web event recording, UFT treats Web test objects that
are child objects of a PSFrame test object as PeopleSoft objects and thus
applies the settings in the PeopleSoft event configuration XML file when
recording those objects.

For details on Web event recording configurations, see "Event Recording
Configuration for Web-Based Applications" on page 58.

Chapter 18 • PeopleSoft Add-in - Quick Reference

339

Reference

Troubleshooting and Limitations - PeopleSoft Add-in

➤ The Active Screen may not function correctly when working with
non-English UI servers.

➤ If you use the ENTER key to activate a search operation while recording a
test, UFT may not perform the operation as expected during the test run.

Workaround: Activate the search by clicking the Search button with the
mouse.

➤ The use of keyboard shortcut keys to perform operations while recording
is not supported.

Chapter 18 • PeopleSoft Add-in - Quick Reference

340

Part IX

PowerBuilder Add-in

342

343

19
PowerBuilder Add-in - Quick Reference

You can use the Unified Functional Testing PowerBuilder Add-in to test
PowerBuilder user-interface objects (controls).

The following table summarizes basic information about PowerBuilder
Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported PowerBuilder environments, see
the PowerBuilder Add-in section of the HP Unified
Functional Testing Product Availability Matrix, available from
the UFT Help or the root folder of the hUnified Functional
Testing DVD.

Important
Information

See "Considerations for Working with the PowerBuilder
Add-in" on page 346.

Test Object
Methods and
Properties

The PowerBuilder Add-in provides test objects, methods,
and properties that can be used when testing objects in
PowerBuilder applications. For details, see the
PowerBuilder section of the HP Unified Functional Testing
Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Considerations for Working with the PowerBuilder
Add-in" on page 346.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 19 • PowerBuilder Add-in - Quick Reference

344

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - PowerBuilder
Add-in" on page 348.

Prerequisites

Opening Your
Application

You can open your PowerBuilder application before or
after opening UFT.

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Note: If you select the Record and Run only on radio
button in the Record and Run Settings dialog box, the
settings also apply to (limit) the applications that are
recognized for Object Spy and other pointing hand
operations.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 19 • PowerBuilder Add-in - Quick Reference

345

This chapter includes:

Concepts

➤ Considerations for Working with the PowerBuilder Add-in on page 346

Reference

➤ Troubleshooting and Limitations - PowerBuilder Add-in on page 348

Chapter 19 • PowerBuilder Add-in - Quick Reference

346

Concepts

Considerations for Working with the PowerBuilder
Add-in

The PowerBuilder Add-in provides the PbDataWindow test object with
customized methods and properties to help you test PowerBuilder's
DataWindow control.

➤ When you insert a checkpoint or output value step on a DataWindow
control, UFT treats it as a table and opens the Table Checkpoint Properties
or Table Output Value Properties dialog box (not supported for business
components). It enables you to check or retrieve values for the table
content and the object properties.

➤ When you insert a checkpoint or output value step on a DataWindow
control during a recording session, the properties available to be checked
or retrieved in the Properties tab include the DataWindow control’s inner
attributes (such as DataWindow.color) in addition to the identification
properties (such as enabled and focused).

The set of DataWindow inner attributes available in the dialog box is the
same as the list of properties that would be returned if you run a
DataWindow.Describe ("DataWindow.attributes") statement. Properties of
the inner objects of the table (objects that can be retrieved using a
DataWindow.Describe ("DataWindow.objects") statement) are not available
in this list.

Chapter 19 • PowerBuilder Add-in - Quick Reference

347

➤ When you insert a checkpoint or output value step on a DataWindow
control while editing (from the Active Screen, or on a step for which
Active Screen data was captured), only the identification properties are
available in the list.

For details on the DataWindow test object, see the PowerBuilder section of
the HP Unified Functional Testing Object Model Reference.

Chapter 19 • PowerBuilder Add-in - Quick Reference

348

Reference

Troubleshooting and Limitations - PowerBuilder Add-in

When learning or recording on toolbars in PowerBuilder applications, UFT
no longer records the PbToolbar test object. Instead, it records a
PbObject.Click object. The PbToolbar test object is no longer available in
UFT dialog boxes or in the documentation.

If a PbToolbar test object exists in an old object repository, it will be
recognized and supported, but toolbar-specific methods such as CheckItem,
GetContent, GetItem, GetItemProperty, GetItemCount, GetSelection, Press,
ShowDropDown, and WaitItemProperty are not supported for this object.
To fix this, update object repositories and tests to use the PbObject test
object for toolbar steps.

Part X

Qt Add-in

350

351

20
Qt Add-in - Quick Reference

You can use the Qt testing support provided by UFT to test user-interface
objects (controls) developed using the Qt framework for mobile devices.

The following table summarizes basic information about Qt testing support
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type The Qt Add-in is a Windows-based add-in. Much of its
functionality is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117

Important
Information

"Considerations - Qt Add-in" on page 354

Test Object
Methods and
Properties

The Qt Add-in uses a sub-set of the standard Windows test
objects, methods, and properties, which can be used when
testing objects (controls) in Qt applications. For details, see
the Standard Windows section of the HP Unified Functional
Testing Object Model Reference.

For a list of supported Qt controls, see "Considerations - Qt
Add-in" on page 354.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Prerequisites

Opening Your
Application

You must open UFT before opening your Qt application.

Chapter 20 • Qt Add-in - Quick Reference

352

Add-in
Dependencies

None

Low Level
Recording

To enable low level recording on Qt controls, you must
first modify the object identification properties list for the
WinObject test object class, as follows:

➤ Add the regexpwndtitle property to the mandatory
properties list.

➤ Move the object class property up the assistive
properties list so that it is learned before the text
property.

For details, see the section describing the Object
Identification dialog box in the HP Unified Functional
Testing User Guide.

MainUsersGuide.chm::/Object_Identification.htm
MainUsersGuide.chm::/Object_Identification.htm

Chapter 20 • Qt Add-in - Quick Reference

353

This chapter includes:

Considerations - Qt Add-in on page 354

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Run > Run Settings or Record > Record Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Note: UFT recognizes Qt objects only in applications that
are opened after changing settings in the Windows
Applications tab of the Record and Run Settings dialog
box.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
tab
(business
components only)

Use the Applications pane.
In the application area, click Additional Settings in the
sidebar and select the Java node

See the section on the Applications Pane in the HP Unified
Functional Testing User Guide.

Chapter 20 • Qt Add-in - Quick Reference

354

Considerations - Qt Add-in

Qt Add-in support is provided using standard Windows test objects. The
following table lists each supported Qt control and its corresponding
standard Windows test object.

Qt Control Standard Windows Test Object

QCheckBox WinCheckBox

QComboBox WinComboBox

QComboBoxPrivateContainer Window

QExpandingLineEdit WinEdit

QLabel Static

QLineEdit WinEdit

QListWidget WinList

QMenu Window

QMenuBar WinToolBar

QPlainTextEdit WinEditor

QPushButton WinButton

QRadioButton WinRadioButton

QSpinBox WinSpin

QTabWidget WinTab

QToolButton WinButton

QTreeWidget WinTreeView

Part XI

Add-in for SAP Solutions

356

Chapter 21 • Add-in for SAP Solutions - Overview

357

21
Add-in for SAP Solutions - Overview

You can use the Unified Functional Testing Add-in for SAP Solutions to test
user-interface objects (controls) in SAP GUI for Windows applications and in
Web-based SAP applications. You can create and run tests and business
components on these objects, and check their properties.

After you create your test or business component, you can enhance it by
adding checkpoints, retrieving output values, and parameterizing values.
Where relevant, you can also add SAP GUI for Windows or SAP Web objects,
methods and properties to it.

This section contains:

➤ Web-Based SAP Support - Quick Reference

➤ Windows-based SAP Support - Quick Reference

Chapter 21 • Add-in for SAP Solutions - Overview

358

Chapter 22 • Web-Based SAP Support - Quick Reference

359

22
Web-Based SAP Support -
Quick Reference

You can use the SAP Web testing support provided with the Unified
Functional Testing Add-in for SAP Solutions to test user-interface objects in
Web-based SAP applications. These applications include SAP Enterprise
Portal, Internet Transaction Server, SAP Customer Relationship Management
(CRM), and the Interaction Centre Web Client.

The following table summarizes basic information about the Web-based
SAP environment and how it relates to some commonly-used aspects of
UFT.

General Information

Add-in Type Web-based SAP testing support is similar to other
Web-based add-ins.

For details, see "Web-Based Application Support" on
page 49.

Supported
Environments

For details on supported Web-based SAP environments, see
the Add-in for SAP Solutions section of the HP Unified
Functional Testing Product Availability Matrix, available from
the UFT Help or the root folder of the Unified Functional
Testing DVD.

Note: Firefox is not supported for testing Web-based SAP
environments.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 22 • Web-Based SAP Support - Quick Reference

360

Important
Information

➤ Before you begin recording tests on Web-based SAP
applications, you can define your required recording
settings. This enables you to specify the browser on
which you want UFT to record, specify any
environment variables, and select the required Web
options to optimize performance. For details, see "SAP
Tab (Record and Run Settings Dialog Box)" on page 407.

➤ When the Unified Functional Testing Add-in for
SAP Solutions is loaded, UFT can learn objects and run
steps on both Web-based (requires the Web Add-in, too)
and Windows-based SAP applications.

➤ For details on recording and running tests and
business components on SAP GUI for Windows
applications, see "Low-Level or Analog Mode
Recording on SAP GUI for Windows" on page 397
and "How to Record on Standard Windows Controls
During an SAP GUI for Windows Recording Session"
on page 406.

➤ For details on working with SAP GUI from HTML, see
"Considerations for Working with SAP GUI for
HTML" on page 366.

Test Object
Methods and
Properties

The Add-in for SAP Solutions provides test objects,
methods, and properties that can be used when testing
objects in Web-based SAP applications. For details, see the
SAP Web section of the HP Unified Functional Testing Object
Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Considerations for Working with SAP GUI for
HTML" on page 366.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - Web-based SAP" on
page 362.

Chapter 22 • Web-Based SAP Support - Quick Reference

361

Prerequisites

Opening Your
Application

➤ Open UFT before you open your Web-based SAP
application.

➤ If you are working in an SAP GUI application that
contains HTML objects, you can log on to your
application before opening UFT, but you must open
UFT before navigating to the transaction containing
any HTML objects.

➤ For SAP GUI for HTML, Interaction Centre Web Client
(ICWC) applications, and Customer Relationship
Management (CRM) applications, confirm that your
SAP server and client are configured properly.

See "How to Enable Support for SAP GUI for Windows"
on page 399.

Add-in
Dependencies

The Web Add-in must be loaded.

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

See "Web-Based SAP Support - Testing and Configuration"
on page 365.

Record and Run
Settings Dialog Box
(tests only)

➤ Use the SAP tab (Record > Record and Run Settings) to
connect to the SAP GUI Client for SAP GUI for HTML or
Interaction Centre Web Client (ICWC) applications.
This is because ICWC opens from inside the SAP GUI
Client.

See "How to Enable Support for SAP GUI for Windows"
on page 399.

➤ Use the Web tab (Record > Record Settings) to instruct
UFT to use a specific URL and browser to open a
Web-based SAP application, or the SAP Enterprise Portal,
at the beginning of each record and run session.
Alternatively, you can instruct UFT to record and run on
any open browser.

See "Web Tab (Record and Run Settings Dialog Box)" on
page 77.

Chapter 22 • Web-Based SAP Support - Quick Reference

362

This chapter includes:

➤ Troubleshooting and Limitations - Web-based SAP on page 362

Troubleshooting and Limitations - Web-based SAP

This section contains general troubleshooting and limitation information
about the Web-based SAP add-in, and includes the following sections:

➤ "General" on page 363

➤ "SAP Enterprise Portal" on page 363

➤ "SAP GUI for HTML—Internet Transaction Server (ITS)" on page 363

➤ "Using the Active Screen " on page 364

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level button)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Web pane.
In the application area, select Additional Settings > Web in
the sidebar.

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Web Event
Recording
Configuration
Dialog Box

When you load the Add-in for SAP Solutions, the settings
in the Web Event Recording Configuration dialog box
(Record > Web Event Recording Configuration) are
automatically customized. You do not need to make any
Web event configuration changes.

Chapter 22 • Web-Based SAP Support - Quick Reference

363

General

➤ It is not recommended to work with other Web-based add-ins when the
Unified Functional Testing Add-in for SAP Solutions is loaded. The Add-in
for SAP Solutions modifies certain Web configuration settings that may
affect other add-ins or applications.

SAP Enterprise Portal

➤ Operations on the iView option menu and on objects within the page title
bar of SAP Enterprise Portal are recorded as Web operations on the Frame
object and not as SAP operations on the iView object.

➤ Minimized or collapsed iViews may not be recognized correctly.

➤ In some cases, when more than one browser is open during the test run,
UFT is unable to correctly identify certain objects.

Workaround: Clear the Enable Smart Identification check box for the
Browser test objects in the Object Repository window. You may also want
to disable the Enable Smart Identification option for Browser test objects
in the Object Identification dialog box for future test recording.

➤ In some cases, a frame in SAP Enterprise Portal may be recognized as a
Web Frame object instead of an iView object. In some of these, the frame
name is generated dynamically. Because the Web Frame object uses the
name property to identify the object, you must modify the recorded
name value to use an appropriate regular expression so that UFT will be
able to recognize it during the test run.

SAP GUI for HTML—Internet Transaction Server (ITS)

➤ When using the Object Spy or creating a checkpoint on an object inside
an SAP Web table cell, UFT may recognize the object as a WebElement
(and not as the appropriate SAP Web object), if a click has not yet been
performed on the object.

Workaround: Click on the object inside the SAP Web table cell before
using the Object Spy or creating a checkpoint on it.

Chapter 22 • Web-Based SAP Support - Quick Reference

364

➤ Dragging the SAP GUI for HTML table scroll bar is not recorded.

Workaround: You can record scrolling in SAP GUI for HTML tables by
clicking the scroll button. Alternatively, use the Step Generator or Editor
to insert a SAPTable.Object.DoScroll("up") or
SAPTable.Object.DoScroll("down") statement in your test.

➤ The appearance of toolbar buttons may differ, and toolbar buttons may or
may not be displayed, depending on the size of your browser window.

Workaround: Try to maintain the same browser window size and the
resulting menu appearance when recording and running your test.

➤ When running a test on an ITS frame in an SAP Enterprise Portal iView,
the ITS menu sometimes fails to operate properly.

Workaround: Enlarge the iView size and/or increase the Object
Synchronization Timeout and then run the test again.

➤ When recording a SAPList object, you need to click the input part of the
list, not its button part in order to enable UFT to recognize the object.

Using the Active Screen

➤ The Active Screen may not display the entire HTML page captured while
recording your test.

Workaround: Resize the Active Screen so that it best fits the HTML page
size.

➤ When testing an SAP Enterprise Portal application, it is recommended to
set advanced authentication for Active Screen access (File > Settings >
Web).

➤ Avoid using an Active Screen that was captured when a pop-up dialog was
open to add an object from the main window to the object repository.
Doing this results in an incorrect object hierarchy in the object repository.

Web-based CRM Systems

➤ When using UFT to test Web-based CRM systems, make sure that the
CRM system is in test mode. You can do this by adding "?sap-testmode=X"
to the URL.

Chapter 23 • Web-Based SAP Support - Testing and Configuration

365

23
Web-Based SAP Support -
Testing and Configuration

This chapter includes:

Concepts

➤ Considerations for Working with SAP GUI for HTML on page 366

Reference

➤ Web > Page/Frame Options Pane (Options Dialog Box > GUI Testing Tab)
on page 367

➤ Web > Advanced Pane (Options Dialog Box > GUI Testing Tab)
on page 369

Chapter 23 • Web-Based SAP Support - Testing and Configuration

366

Concepts

Considerations for Working with SAP GUI for HTML

➤ You can add a table checkpoint while recording or editing your test.

➤ If a table has a column header row, it is counted as the first row in the
table.

➤ If you have not recorded a step on the table object you want to check, but
you have an Active Screen capture that displays the table object, you can
add a table checkpoint if the Active Screen Capture level was set to
Complete when the object was captured, and the Active Screen is
currently selected (View > Active Screen).

(You set the Capture level in the Active Screen pane of the Options dialog
box (Tools > Options > GUI Testing tab > Active Screen node). For details,
see the section on Active Screen options in the HP Unified Functional
Testing User Guide.)

➤ You can spool all of the available data from an SAP GUI for HTML
application table into an external file using the GetCellData method,
which loops through each cell in the table. You can then save the
information to an external file.

The following example uses the GetCellData method to list the data of
each cell in a table of 10 rows and 10 columns:

For details on the GetCellData method, see the SAP Web section of the
HP Unified Functional Testing Object Model Reference.

For i=1 to 10
For j=1 to 10

Dat=Browser("ITS System Informati").Page("Table control").
SAPTable("MySAPTable").GetCellData (i, j)
‘Enter lines of code that use the value of the returned Dat variable

Next
Next

Chapter 23 • Web-Based SAP Support - Testing and Configuration

367

Reference

Web > Page/Frame Options Pane (Options Dialog Box >
GUI Testing Tab)

This pane enables you to configure the settings that are best-suited for
testing Page and Frame test objects in Web-based SAP applications. Applying
these recommended settings helps to optimize UFT performance.

Chapter 23 • Web-Based SAP Support - Testing and Configuration

368

Recommended settings are described below:

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Web node >
Page/Frame Options node.

See also ➤ "Web-Based SAP Support - Quick Reference" on
page 359

➤ "Web > Advanced Pane (Options Dialog Box > GUI
Testing Tab)" on page 369

➤ "Web > Page/Frame Options Pane (Options Dialog
Box)" on page 88

UI Elements Description

Create a new Page
test object for

Different URLs or a change in data transfer

Instructs UFT to create a new Page object only when the
page URL changes, or if the URL stays the same and data
that is transferred to the server changes, according to the
data types and transfer methods you select.

Make sure that only the following check boxes are
selected:

➤ Ignore user-input data - Get

➤ Ignore user-input data - Post

➤ Ignore additional Page information

Create a new Frame
test object for

Different URLs or a change in data transfer

Note: This option is selected by default.

Instructs UFT to create a new Frame object only when the
page URL changes, or if the URL stays the same and data
that is transferred to the server changes, according to the
data types and transfer methods you select.

Make sure that all of the check boxes in this section are
selected.

Chapter 23 • Web-Based SAP Support - Testing and Configuration

369

Web > Advanced Pane (Options Dialog Box > GUI Testing
Tab)

This pane enables you to configure the advanced settings that are
best-suited for testing Web-based SAP applications. Applying these
recommended settings helps to optimize UFT performance.

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Web node >
Advanced node.

See also ➤ "Web-Based SAP Support - Quick Reference" on
page 359

➤ "Web > Page/Frame Options Pane (Options Dialog
Box > GUI Testing Tab)" on page 367

➤ "Web > Advanced Pane (Options Dialog Box)" on
page 92

Chapter 23 • Web-Based SAP Support - Testing and Configuration

370

Recommended settings are described below:

UI Elements Description

Record settings Select the Use standard Windows mouse events
check box, as well as the following check boxes:

➤ OnClick

➤ OnMouseDown

➤ OnMouseUp

This instructs UFT to use these standard Windows
mouse events instead of browser events.

Chapter 24 • Windows-based SAP Support - Quick Reference

371

24
Windows-based SAP Support -
Quick Reference

You can use the Windows-based SAP testing support provided with the
Unified Functional Testing Add-in for SAP Solutions to test user-interface
objects in SAP GUI for Windows user-interface objects.

The following table summarizes basic information about the
Windows-based SAP environment and how it relates to some
commonly-used aspects of UFT.

General Information

Add-in Type When testing SAP GUI for Windows applications, much of
the functionality is the same as other Windows-based
add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported Windows-based SAP
environments, see the Add-in for SAP Solutions section of
the HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the
Unified Functional Testing DVD.

Important
Information

When the Add-in for SAP Solutions is loaded, UFT can
learn objects and run steps on both Web-based and
Windows-based SAP applications. For details on recording
and running tests and business components on Web-based
SAP applications, see "Web-Based SAP Support -
Testing and Configuration" on page 365.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 24 • Windows-based SAP Support - Quick Reference

372

Test Object
Methods and
Properties

The Add-in for SAP Solutions provides test objects,
methods, and properties that can be used when testing
objects in SAP GUI for Windows applications. For details,
see the SAP GUI for Windows section of the HP Unified
Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Checkpoints and Output Values in SAP GUI for
Windows" on page 375.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - Windows-based
SAP" on page 377

Prerequisites

Before Using this
Add-in

For details on the following prerequisites, see "How to
Enable Support for SAP GUI for Windows" on page 399.

➤ The SAP GUI Scripting option must be installed.

➤ Your server and client must have the proper package
and patch versions installed. For details, see "Package
and Patch Versions Requirements - SAP Application
Server and SAP GUI for Windows" on page 377.
See also: SAP OSS note # 480149

➤ The Scripting API must be enabled on both the server
and client. For details, see "Enable scripting on the SAP
application (server-side)" on page 399.

➤ Your client must be configured to use the Dialog display
mode for F4 Help screens.

➤ Make sure that the server is not set to use a Low speed
connection.

➤ The F1 and F4 Help display setting must be configured
correctly to support testing the use of the F1 and F4
Help screens in your SAP GUI for Windows application.

➤ If you plan to use the UFT-Solution Manager integration
features, you must also install the appropriate support
package and configure the Solution Manager server to
work with UFT. For details, see "How to Configure
Solution Manager to Work with UFT" on page 425.

Chapter 24 • Windows-based SAP Support - Quick Reference

373

This chapter includes:

Concepts

➤ Considerations - Windows-based SAP Add-in for SAP Solutions
on page 374

➤ Checkpoints and Output Values in SAP GUI for Windows on page 375

Reference

➤ Package and Patch Versions Requirements - SAP Application Server and
SAP GUI for Windows on page 377

➤ Troubleshooting and Limitations - Windows-based SAP on page 377

Add-in
Dependencies

None

Configuration

Options Dialog Box Use the SAP > General pane.
(Tools > Options > GUI Testing tab > SAP > General node)

See "SAP > General Pane (Options Dialog Box > GUI
Testing Tab)" on page 412.

Record and Run
Settings Dialog Box
(tests only)

Use the SAP tab.
(Record > Record and Run Settings)

See "SAP Tab (Record and Run Settings Dialog Box)" on
page 407.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the SAP GUI for Windows section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level button)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 24 • Windows-based SAP Support - Quick Reference

374

Concepts

Considerations - Windows-based SAP Add-in for
SAP Solutions

When recording and running tests or business components on SAP GUI for
Windows applications, consider the following:

➤ When working in tests, the Record and Run Settings dialog box in UFT
enables you to specify a server and client to open at the beginning of
every test record and run session. The servers available in the dialog box
are the same as those available in the SAP Logon Pad and SAP Logon
dialog box.

➤ When you record a business component on an SAP GUI for Windows
session, the Record and Run Settings dialog box is not available. Instead,
you need to open the SAP session manually or include statements in your
business component that connect to the SAP server (using the SAPGuiUtil
test object).

➤ You can also record specific operations in your SAP GUI for Windows
Application in Standard Windows Recording mode, if required. For
details, see "How to Record on Standard Windows Controls During an SAP
GUI for Windows Recording Session" on page 406.

➤ As you record a test or business component on your SAP GUI for
Windows application, UFT records the operations you perform. UFT
works directly with the SAP GUI Scripting API to record your operations.
Therefore, although UFT records a step for each operation you perform, it
adds the steps to your test only when API events are sent to UFT (when
information is sent to the SAP server).

For details on the SAP GUI Scripting API events, see your SAP
documentation.

Chapter 24 • Windows-based SAP Support - Quick Reference

375

➤ When you select a test step in UFT, the corresponding object is
highlighted in the Active Screen (unless you chose not to capture Active
Screen information when you recorded your test). However, the values of
the object properties stored with the Active Screen are the values of the
properties at the time that the steps were added to the test (when you
performed the step that sent information to the SAP server). These values
may potentially be different from the values of the properties at the time
that the selected step was actually performed. For details on Active Screen
capture levels, see the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User Guide.

Checkpoints and Output Values in SAP GUI for Windows

➤ When inserting a table checkpoint (tests only), consider how other steps
performed on the table may affect the checkpoint.

Example 1: If you have a step in your test that clicks the Total toolbar
button on a grid control, that click refreshes all data in the table. The
refresh could potentially cause a table checkpoint on a cell in the table to
fail.

Example 2: If you click a toolbar button in a grid control that adds rows to
your table before creating a table checkpoint, the extra rows are captured
as part of the grid checkpoint (if you capture all rows). Therefore, confirm
that the same rows are displayed during the run session.

➤ To insert a new table checkpoint while editing your test or business
component, the actual table or grid must be open to the appropriate level
or view. This is true even if your Active Screen (tests only) contains a
capture of the table or grid.

➤ In general, it is not necessary to open the table or grid in the application
to edit an existing checkpoint. However, if you want to modify the row
range for the checkpoint, the actual table or grid must be open to the
appropriate level or view.

Chapter 24 • Windows-based SAP Support - Quick Reference

376

➤ When creating a checkpoint on ActiveX grid controls (these generally
have toolbars), UFT captures the data from all columns and all rows in the
grid in the table checkpoint. If you do not need to check data from all
rows in your grid, you can specify the rows you want to include in the
checkpoint in the Define Row Range dialog box. You can also increase or
decrease the number of rows included in the checkpoint at a later time.

➤ The Visible Rows option in the Define/Modify Row Range dialog box is
not available for checkpoints created on grid controls.

Chapter 24 • Windows-based SAP Support - Quick Reference

377

Reference

Package and Patch Versions Requirements - SAP
Application Server and SAP GUI for Windows

To test your application using UFT, you must confirm that you have the
correct support package and kernel patch levels for your software
component release. The following tables show the minimum required
versions and levels. You must have these versions and levels or higher:

For details, see SAP OSS note # 480149.

Troubleshooting and Limitations - Windows-based SAP

This section contains general troubleshooting and limitation information
about the Windows-based SAP add-in, and includes the following sections:

➤ "Creating and Running Testing Documents" on page 378

➤ "Working with Windows-based SAP Controls" on page 379

Software
Component

Release Support Package Kernel Patch Level

SAP_APPL 31I SAPKH31I96 Kernel 3.1I level 650

SAP_APPL 40B SAPKH40B71 Kernel 4.0B level 903

SAP_APPL 45B SAPKH45B49 Kernel 4.5B level 753

SAP_BASIS 46B SAPKB46B37 Kernel 4.6D level 948

SAP_BASIS 46C SAPKB46C29 Kernel 4.6D level 948

SAP_BASIS 46D SAPKB46D17 Kernel 4.6D level 948

SAP_BASIS 610 SAPKB61012 Kernel 6.10 level 360

Chapter 24 • Windows-based SAP Support - Quick Reference

378

➤ "Checkpoints, Output Values, and the Object Spy" on page 380

➤ "Test Objects, Methods, and Properties" on page 381

➤ "Using the Active Screen" on page 382

➤ "SAP Scripting API" on page 382

Creating and Running Testing Documents

➤ Running a test on HTML elements embedded in an SAP GUI for Windows
application may result in an "Object is disabled" error. This may happen if
the HTML control is not ready for the test run.

Workaround: Add a Sync statement such as SAPGuiSession.Sync or a Wait
statement to the script in order to run the test successfully.

➤ By default, the recording and running of steps on HTML elements
embedded in an SAP GUI for Windows application is performed using the
UFT Web Add-in. In some cases, steps recorded using the Web Add-in are
inserted into the script before SAP Add-in steps that use the SAP Scripting
API.

Workaround: Use the option of recording HTML elements embedded in
SAP GUI application using the SAP Scripting Interface. To do so, stop
recording, select the Record HTML elements using SAPGui Scripting
interface check box in the SAP pane of the Options dialog box (Tools >
Options > GUI Testing tab > SAP > General node). Then close and reopen
the test and then begin recording again.

➤ If you insert a call to an external action or a copy of an action, and that
action includes an SAPGuiTable.Input, SAPGuiGrid.Input, or
SAPGuiAPOGrid.Input statement, the corresponding input data sheet is
not copied to the Data pane with the action.

Workaround: Insert and run Datatable.AddSheet and
Datatable.ImportSheet statements to import the sheet referenced by the
action’s Input method. Ensure that the name of the data sheet exactly
matches the name specified in the corresponding Input statement.

Chapter 24 • Windows-based SAP Support - Quick Reference

379

➤ In the SAP Enterprise Portal environment, occasional synchronization
problems may occur during the test run when alternating between SAP
Web and SAP Windows environments.

Workaround: Add a WaitProperty or Wait statement between the Web
steps and the Windows steps.

➤ UFT can connect to your SAP Logon or SAP Logon Pad application for
recording and running tests on SAP GUI for Windows sessions. If you use
both SAP Logon and SAP Logon Pad processes on your computer, UFT
connects to the latest process that was launched.

➤ Use the SAP tab of the Record and Run Settings dialog box to instruct UFT
to open your SAP GUI for Windows application. Do not use the Windows
Applications tab of the dialog box for this purpose.

Working with Windows-based SAP Controls

➤ Separate toolbar controls (ones that are not part of a grid or other object)
are supported by the SapGuiToolbar test object (GuiComponentType
is 202), and the Object Spy recognizes them because they are separate
objects.

Note that tree controls do not have associated toolbars. Toolbars
displayed on top of tree controls are recognized as separate toolbars, and
are therefore supported as described above.

➤ Toolbars inside grid controls are supported by the SapGuiToolbar test
object (GuiComponentType is 204). However, the Object Spy does not
recognize these toolbars because they are part of the grid. You cannot add
these toolbars to the object repository using the Add to repository option
from the Active Screen or the Add Objects option in the Object
Repository window. To add these toolbars to the object repository, record
on them.

➤ Toolbars inside other controls (such as a toolbar within a text area
control) are not supported.

➤ Microsoft Office controls within the SAP window are not supported.

➤ If you record the step of pressing an F4 key, and that key press results in
setting new values for multiple fields, a step is recorded only for the field
from which the F4 key was pressed, and therefore, only that field will be
populated during the run.

Chapter 24 • Windows-based SAP Support - Quick Reference

380

➤ The SAP Editor control is not supported.

➤ UFT fails to run steps on SAP tree nodes that contain the ";" character.

➤ UFT does not automatically record standard Windows dialog boxes used
by your SAP GUI for Windows application (such as the Open File and Save
As dialog boxes). This is because the SAP scripting API does not support
these dialog boxes. This may also occur when using SAP GUI for Windows
with GuiXT.

Workaround: Do one of the following:

➤ Change to Standard Windows Recording mode (select Standard
Windows Recording from the Recording Modes drop-down in the
Record toolbar) to record on these objects. (Make sure that you switch
to Standard Windows Recording mode before you perform the
operation that opens the standard Windows control in your SAP
application.)

➤ Use low-level recording to record on these objects.

➤ Use programmatic descriptions to run steps on these objects.

Checkpoints, Output Values, and the Object Spy

➤ To ensure that the correct object properties are captured with your
checkpoint, always record a step that results in communication with the
server (such as pressing ENTER) before inserting a checkpoint or output
value.

➤ You cannot use the Object Spy or create checkpoints for the controls
listed below. However, you can successfully record and run steps on them.

➤ Toolbar buttons in grid controls.

➤ Internal controls in tree or table objects.
(For example, a radio button in a table cell or a check box in a tree.)

➤ Creating checkpoints or using the Object Spy on an object that is located
in a currently inactive SAP screen (for example, if the screen is behind an
invoked dialog box) is not supported. However, you can create
checkpoints on status bar messages (displayed in an inactive window)
using the Record status bar messages option (Tools > Options > GUI
Testing tab > SAP node > Record status bar messages).

MainUsersGuide.chm::/RecordToolbar.htm
MainUsersGuide.chm::/RecordToolbar.htm

Chapter 24 • Windows-based SAP Support - Quick Reference

381

➤ When running old 6.20 tests on a 6.40 client, checkpoints on radio
buttons, check boxes, edit boxes, or regular buttons may fail due to
changes to tooltip property values for these objects in the 6.40 client.

➤ UFT can estimate the number of rows in a table control, but it cannot
retrieve the exact number because only the table content that is visible on
the client is actually available. Data from non-visible rows are stored only
on the back-end server. Therefore, when inserting or modifying
checkpoints for a table control object, the number of rows specified in the
Define/Modify Row Range dialog box may not be accurate.

➤ Do not perform any operations on the SAP GUI window (such as
changing the transaction state or navigating to another window) while
UFT retrieves the data for a table checkpoint even if it seems to take a long
time, as this may cause severe problems.

➤ When inserting a checkpoint on a table or grid from the Active Screen,
the actual table must be open in your SAP Gui for Windows application to
extract the correct information from the table or grid.

Test Objects, Methods, and Properties

➤ When using the SAPGuiTable Input method, check the scrolling mode of
the current table. If you parameterize a table with a Data pane sheet that
contains more rows in the sheet than are displayed in the table’s current
view, UFT tries to scroll down the table while running the test, to insert
more rows from the data sheet. UFT supports two ways of scrolling rows
in tables—by pressing the ENTER key, or by pressing the PAGEDOWN key. By
default, the Add-in for SAP Solutions tries PAGEDOWN if needed. You can
configure the required mode using the second argument of the Input
method.

For details, see the HP Unified Functional Testing Add-ins Guide.

➤ Right-click operations are not supported for the SAPGuiTextArea object.

➤ Drag-and-drop operations in the SAP Gui for Windows application are
disabled when UFT is open.

Chapter 24 • Windows-based SAP Support - Quick Reference

382

Using the Active Screen

➤ Active Screen images are based on captured screen bitmaps. Therefore,
objects that are not visible in the SAP GUI for Windows view are not part
of the Active Screen image. You cannot add objects to the script from the
Active Screen if they were not in the captured view.

➤ Drop-down menus are not captured in the Active Screen. Active Screen
technology captures the data after the menu is closed and the menu item
is selected.

➤ While recording, UFT captures one Active Screen image for several steps.
UFT records steps only when the SAP GUI for Windows client sends
information to the SAP back-end server. When this occurs, all steps that
were performed between the previous communication and the current
one are added to the script. The last screen that was sent to the server is
captured by the Active Screen for all steps recorded during that
communication.

➤ When recording on Web elements inside SAP GUI for Windows
applications, HTML images are not captured.

➤ Adding objects to the object repository (using the View/Add Object
option, or creating checkpoint or output value steps) from an Active
Screen created from a step recorded on a Web element inside a SAP GUI
for Windows application generates an incorrect object hierarchy in the
object repository.

SAP Scripting API

➤ For security reasons, the SAP scripting API prevents the recording of
passwords. When you record the operation of inserting a password in a
password box, UFT records a Set statement using asterisks (****) as the
method argument value.

Workaround: Do one of the following:

➤ Configure and enable the Auto-logon settings in the SAP tab of the
Record and Run Settings dialog box.

➤ Insert a step using one of the SAPGuiUtil object’s AutoLogon methods.

Chapter 24 • Windows-based SAP Support - Quick Reference

383

➤ Record the password normally during the recording session. After the
recording session, modify the password step to use the SetSecure
method, and enter the encrypted password value or parameterize the
value.

For details, see the SAP Windows section of the HP Unified Functional
Testing Object Model Reference (Help > HP Unified Functional Testing
Help > Object Model Reference for GUI Testing > SAP Windows).

Chapter 24 • Windows-based SAP Support - Quick Reference

384

Chapter 25 • Windows-based SAP Support - Testing and Configuration

385

25
Windows-based SAP Support -
Testing and Configuration

This chapter includes:

Concepts

➤ SAP GUI Scripting API and UFT on page 386

➤ Using the Auto-Parameterize Option to Parameterize Table and Grid Cell
Values on page 389

➤ Low-Level or Analog Mode Recording on SAP GUI for Windows
on page 397

➤ Spooling Data from a Table on page 398

Tasks

➤ How to Enable Support for SAP GUI for Windows on page 399

➤ How to Record on Standard Windows Controls During an SAP GUI for
Windows Recording Session on page 406

Reference

➤ SAP Tab (Record and Run Settings Dialog Box) on page 407

➤ Environment Variables for Windows-based SAP Applications on page 411

➤ SAP > General Pane (Options Dialog Box > GUI Testing Tab) on page 412

Chapter 25 • Windows-based SAP Support - Testing and Configuration

386

Concepts

SAP GUI Scripting API and UFT

UFT works directly with the SAP GUI Scripting API to record your
operations. Therefore, UFT adds steps to your test or business component
only when API events are sent to the server. This means that while recording
a test or business component, you may perform several operations on your
application before the corresponding steps are added. When you perform a
step that sends information to the server, UFT inserts steps with the relevant
Windows-based SAP objects in the Keyword View (tests and business
components) and adds corresponding statements in the Editor (tests only).

Note: The Unified Functional Testing Add-in for SAP Solutions provides an
alternative recording mechanism for specific SAP GUI for Windows objects
that do not have built-in test object support. For details, see "Low-Level or
Analog Mode Recording on SAP GUI for Windows" on page 397.

For details on the test object model, the object repository, and the Object
Spy, see the HP Unified Functional Testing User Guide.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

387

Example 1: Check Boxes

Suppose you record the steps of filling in a Price Simulation for Material
form. You select the three check boxes in the form (Incl. cash discount,
Delivery costs, and Effective price) and click Continue. When you click the
Continue button, information is sent to the SAP server, and the steps in
which you select the check boxes and click the Continue button are added
to your test at once. In the Keyword View, the process described above is
displayed as follows.

UFT records these steps in the Editor as follows:

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
 Material").SAPGuiCheckBox("Incl. cash discount").Set "ON"

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
 Material").SAPGuiCheckBox("Delivery costs").Set "ON"

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
 Material").SAPGuiCheckBox("Effective price").Set "ON"

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
 Material").SAPGuiCheckBox("Effective price").SetFocus

SAPGuiSession("Session").SAPGuiWindow("Price Simulation for
 Material").SAPGuiButton("Continue (Enter)").Click

Chapter 25 • Windows-based SAP Support - Testing and Configuration

388

Example 2: Radio Buttons

Suppose you select a radio button in the My worklist tab of your SAP GUI for
Windows application. This radio button is labeled In my role as....

UFT uses the SAP GUI business component type (41) to identify the object as
an SAPGuiRadioButton object. It creates an SAPGuiRadioButton test object
with the name In my role as... and records the following properties and
values as the description for the radio button.

Note: The guicomponenttype and name property values are supplied by the
SAP GUI Scripting API.

UFT also records that you performed a Set method to turn ON the radio
button.

UFT displays your step in the Keyword View as follows:

Chapter 25 • Windows-based SAP Support - Testing and Configuration

389

UFT displays your step in the Editor like this:

When you run a test or business component, UFT identifies each object in
your application by its test object class and its description—the set of
identification properties and values used to uniquely identify the object. In
the above example, during the run session, UFT looks up the description for
the SAPGuiRadioButton object with the name In my role as... by searching
the object repository. UFT finds the following description:

guicomponenttype = 41
name = MEL_ROL
text = In my role as...

UFT then looks in the application for an SAPGuiRadioButton object that
matches the above description. When it finds the object, it performs the Set
method on it to change the value of the field to ON (selects the radio
button).

Using the Auto-Parameterize Option to Parameterize
Table and Grid Cell Values

When working with tests, UFT records a SetCellData statement, by default,
each time you modify the value of a cell in a table or grid. If you want to
modify the values of several cells in a single table or grid, and then
parameterize your test so that different values are entered into the cells each
time your test action runs, you can do this by parameterizing each
statement individually, or by enabling the Auto-parameterize table and grid
controls option.

SAPGuiSession("Session").SAPGuiWindow("Worklist: Notifications").
SAPGuiRadioButton("In my role as...").Set

Chapter 25 • Windows-based SAP Support - Testing and Configuration

390

When this option is selected, UFT automatically captures all values you set
for a particular table or grid during a recording session and stores them in a
special data sheet in the Data pane. UFT inserts a single SAPGuiTable.Input,
SAPGuiGrid.Input, or SAPGuiAPOGrid.Input statement into your test, which
refers to this new data sheet. Before running the test, you can easily modify
the values or add additional sets of data to the data sheet for each action
iteration.

How UFT Records in Auto-Parameterize Mode
In tests, when you record with the Auto-parameterize table and grid
controls option and you perform an operation that sends data to the SAP
server after setting table or grid cell values, UFT:

➤ Creates a new data sheet to represent the table or grid. Each data sheet is a
sub-sheet of the action in which the table or grid operations were
recorded. The data sheet name is always the action name followed by a
period (.) and the internal name of the table or grid. For example:
Action1.FLIGHT_TABLE

➤ Adds a column to the data sheet for each table or grid column in which
you record. (Columns in which you did not set any cell data are not
added to the data sheet.)

The name of the column in the data sheet is generally the same as the
name of the column in your application.

If a column in the application does not have a header, or more than one
column header has the same name, UFT inserts a column with a name in
the format: _ _<index>, where <index> represents the column number
according to its location when you record the Input step.

➤ Inserts the values you set during the recording session into the
appropriate cells in the data sheet. Each row in which you entered data is
represented by a row in the data sheet. Place-holder (empty) rows are
added for rows above the rows in which you recorded. For example, if you
set data in rows 2, 4, and 7, seven rows are added to the data sheet. The
cells in rows 1, 3, 5, and 6 do not contain any data.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

391

➤ Inserts an additional end row where the value of the first cell in the row is
.END.

➤ Inserts an Input DataSheetName statement (followed by a SelectCell
statement) into your test.

UFT records these steps in the Editor as follows:

The Input statement instructs UFT to enter values from the data sheet into
the table or grid corresponding to the data sheet name, similar to an
automatically parameterized statement referring to a special sheet in the
Data pane.

SAPGuiSession("Session").SAPGuiWindow("SAP").SAPGuiTable("Table
 control tc spfli").Input "Action1.Table control tc spfli_3"

SAPGuiSession("Session").SAPGuiWindow("SAP").SAPGuiTable("Table
 control tc spfli").SelectCell 1,"Airline"

SAPGuiSession("Session").SAPGuiWindow("SAP").SendKey ENTER

Chapter 25 • Windows-based SAP Support - Testing and Configuration

392

Suppose you update values in a table control containing airline flight
information. You update some airline codes, add state and country names
to some of the departure and destination cities, update one of the
destination airport codes, and update some of the departure times. The
edited table in your application may look something like this:

UFT inserts the following Input statement in your test to represent the
data input:

Note: If you record on a table or grid that scrolls using the ENTER key
rather than the PAGEDOWN key, you may need to manually add the
ScrollMethod optional argument. For details, see "Data in Rows that
Require Scrolling" on page 396.

SAPGuiSession("Session").SAPGuiWindow("SAP R/3").SAPGuiTable("SPFLI").
Input "Action1.SPFLI"

Chapter 25 • Windows-based SAP Support - Testing and Configuration

393

The corresponding data sheet in your Data pane looks like this:

There are six rows in the data sheet, because data was modified in the first
six rows of the table or grid in the application. Note that the data sheet
does not contain columns for the Flight Number and Flight time
columns, because no values were modified in those columns during the
recording session.

Parameterized Cell Values in the Input Data Sheet
When working in tests, after you record an Input statement to create an
input data sheet, you can modify the values to be used in the run session,
and you can create multiple sets of table or grid cell data to be used in
different iterations of an action.

As described above, when you record the Input statement, UFT records the
values you set in the appropriate rows and columns in the input data sheet
for that table or grid. Below the data it adds an end row (shaded in blue)
with the text .END in the first cell of the row. This row indicates the end of
the first set of data for the table or grid. This set of data and its
corresponding end row represents a single data set.

To supply different data values for each action iteration, you add new data
sets. You add a new data set for a table or grid by entering the values in the
appropriate rows and columns below the previous end row. To indicate the
end of the new data set, copy and paste the end row from the first set of data
to the row below the new set of data. You can include a different number of
rows in each data set.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

394

Note: The Input statement can run successfully only if it can find the end
row. Therefore, the first cell of the end row must contain only the text .END.
You can enter text into other cells in that row, if needed. For example, you
can enter a number in the second cell of the end row to indicate the
iteration number corresponding to that set of data.

Because the input data sheets are added as a sub-sheet of the current action,
the Input statement uses the data set corresponding to the current action
iteration. For example, if you set the action to run on all iterations and your
action sheet includes five rows of data, then your input data sheet should
also include five data sets (and five .END rows).

The input data sheet below contains three sets of data. The first set contains
data for the top three rows of the table or grid. The second set contains data
for the top two rows of the table or grid. The third set contains data for
rows 2-5. The blank first row (row 8 in the data sheet), indicates that no data
should be entered or modified in the first row of the table or grid.

Note that a number was manually entered into the second cell of each END
row to make it easier to identify the action iteration to which each data set
corresponds.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

395

Considerations for Auto-Parameterization
Consider the following when using the Auto-parameterize table and grid
controls option:

➤ UFT inserts an Input statement and a new input data sheet each time
information including modified table or grid cell data is sent to the server.
If you set data in the cells of a particular table or grid both before and
after sending information to the server, you will have more than one
input data sheet (and more than one Input statement) representing the
same table or grid. For best results:

➤ Enter data only in the visible rows of the table or grid while recording,
especially if scrolling results in sending information to the server. You
can add additional rows to the recorded data set while editing your
test.

➤ Perform sorting, calculations, and other such operations either before
beginning or after you finish entering data in a table or grid.

➤ The end of each data set in the input table or grid must be indicated by an
end row with only the text .END in the first cell of the row.

➤ You can enter additional text, such as comments or an iteration number,
in other cells of the .END row.

➤ You can include a different number of rows in each data set.

If you enter data for rows that require scrolling to display them in your
application, you may need to modify your Input statement. For details,
see "Data in Rows that Require Scrolling" on page 396.

➤ When recording, UFT adds a column to the input data sheet only for table
or grid columns in which you set data. You can add additional columns
from your table or grid to the data sheet while editing your test.
Double-click the column header in the data sheet to rename it. Enter the
name of your table or grid column. If the table or grid column name has
spaces, replace the spaces with underscores.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

396

➤ In general, the columns in your data sheet can be in any order, as long as
the column names match the column names in your table or grid.
However, if you record data in a column without a column header name
or if more than one column in the table or grid has the same header
name, UFT adds a column to the data sheet in the format: __<index>,
where <index> indicates the number of the column in the table or grid
when you record the Input statement, for example, __1 or __2. You can
also use this format for columns in the data sheet if the column header
names in your table or grid may change from iteration to iteration.

➤ To use multiple sets of data from an input data sheet, you must have at
least one other Data pane parameter in your action that is set to use
Current action sheet (local). Also, confirm that the action is set to run
multiple iterations in the Run tab of the Action Properties dialog box.

➤ The number of data sets in your input data sheet should match the
number of rows in the corresponding action data sheet.

If your input data sheet contains fewer data sets than the number of rows
in the action sheet, no data will be inserted in the table or grid during
those action iterations. For example, if the action runs five iterations, and
your input data sheet contains only four data sets, during the fifth
iteration no data will be entered into the table or grid when the Input
statement runs.

If your data sheet contains more data sets than the number of rows in the
action sheet, those data sets will not be used.

Data in Rows that Require Scrolling
When working in tests, UFT inserts a new Input statement and creates a new
input data sheet each time you send information to the server that includes
table or grid cell data. Therefore, if scrolling results in sending data to the
server, it is recommended to add data only to visible cells during the
recording session. If you want to enter data into additional rows during the
run session, you can add those rows to the data sheet manually while
editing your test.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

397

If you create an input data set for rows that are not visible on the table or
grid in your application, then UFT must scroll the table or grid during the
run session to insert the data for those rows. If you create an input data set
for a row that needs to be added to the table or grid, UFT must send a
command to add the row. By default, UFT sends a PAGEDOWN command if
the rows in the data sheet exceed those currently displayed in the
application. If UFT needs to use the ENTER key to add additional rows to the
table or grid, then you need to manually add the optional ScrollMethod
argument (with the value ENTER) to your Input statement before running
your test.

For example:

Low-Level or Analog Mode Recording on SAP GUI for
Windows

When working in tests, if you are unable to record steps on an object in the
normal recording mode, or if you want to record mouse clicks and keyboard
input with the exact x- and y-coordinates, you can record steps on those
objects using low-level or analog recording (select Low-Level Recording or
Analog Recording from the Recording Mode drop-down in the Record
toolbar during a recording session).

When recording in one of these modes, your steps are added to your test (or
to the analog file) as you record them rather than when information is sent
to the server. If you begin recording in low-level or analog mode, do not
switch back to the normal recording mode until you perform a step that
results in communication with the SAP server. Switching between one of
these modes and the normal recording mode before the server
communication, may result in your steps being recorded twice (once in
low-level/analog mode and once in normal mode).

For details on low-level and analog recording, see the HP Unified Functional
Testing User Guide.

SAPGuiSession("Session").SAPGuiWindow("Create Standard").
SAPGuiTable("SAPMV45ATCRTL_V_ERF_").
Input "Action1.All items", ENTER

Chapter 25 • Windows-based SAP Support - Testing and Configuration

398

Spooling Data from a Table

If you want to spool all the data from an SAP GUI for Windows table into an
external file, use the GetCellData method to loop through each cell in the
table. You can then save the information to an external file.

The following example uses the GetCellData method to list the data of each
cell in a table of 10 rows and 10 columns:

For details on the GetCellData method, see the SAP GUI for Windows section
of the HP Unified Functional Testing Object Model Reference.

For i=1 to 10
for j=1 to 10

col="#" & j
Dat=SAPGuiSession("Session").SAPGuiWindow("Create Standard").

SAPGuiTable("SAPMV45ATCTRL_U_ERF_").GetCellData (i, col)
‘Enter lines of code that use the value of the returned Dat variable

next
next

mySAP-Windows.chm::/mySAP-Windows.htm

Chapter 25 • Windows-based SAP Support - Testing and Configuration

399

Tasks

How to Enable Support for SAP GUI for Windows

This task describes how to enable SAP GUI for Windows to work with UFT.

 1 Prerequisite: Make sure that SAP GUI Scripting is installed

When you install your SAP GUI for Windows application, you must select
the SAP GUI Scripting installation option. If you did not select this option
when you installed the SAP GUI for Windows application, it is essential
that you reinstall it and select this option before setting the other
configuration options described in this chapter.

Note: SAP provides a range of security mechanisms that enable the
administrator to limit the use of SAP GUI Scripting by system, by group,
by user, and by scripting functionality. To test SAP GUI for Windows
applications, you must ensure that these security mechanisms are not
activated. For details on the various security options, see the online SAP
GUI Scripting Security Guide at the SAP Service Marketplace.

 2 Enable scripting on the SAP application (server-side)

 a Confirm that you have the proper support package and kernel patch
levels installed. For details, see "Package and Patch Versions
Requirements - SAP Application Server and SAP GUI for Windows" on
page 377.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

400

 b Enable scripting on your SAP application. (By default, scripting is
disabled.) You do this by entering the Maintain Profile Parameters
window with administrative permissions and setting the sapgui/
user_scripting profile parameter to TRUE on the application server.

➤ To enable scripting for all users, set this parameter on all application
servers.

➤ To enable scripting for a specific group of users, set the parameter
only on application servers with the appropriate access restriction
settings.

For more details, see "How to Enable Scripting on the SAP Application
(Server-Side)" on page 402.

Note: If you connect to a server on which scripting is disabled, an error
message displays when you try to record on your SAP GUI for Windows
application.

 3 Enable scripting on the SAP application (client-side)

You can do this on your SAP client only if the SAP GUI Scripting option is
installed. If this option is not installed, reinstall your SAP GUI for
Windows application and be sure to select the SAP GUI Scripting check
box. For details, see your SAP GUI for Windows documentation.

 4 Eliminate warning messages

By default, you regularly receive two warning messages when using UFT
with an SAP GUI for Windows application:

➤ When UFT connects to the Scripting API, the following warning
message is displayed: A script is trying to attach to the GUI.

➤ When UFT opens a new connection using the Scripting API, the
following warning message is displayed: A script is opening a connection
to system <system_name>.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

401

It is recommended to disable these warning messages in the SAP GUI for
Windows application when working with UFT.

 5 Check the connection speed on the SAP server

Confirm that the Low speed connection option is NOT selected for the
server to which you are connecting before recording and running GUI
tests.

This is because when you log on to SAP using the Low speed connection
option to communicate with the server, the SAP server does not send
sufficient information for UFT to properly record and run tests. (UFT
displays an error message if the Low speed connection option is selected.)

For details, see SAP OSS note #587202.

 6 Set F1 Help to use the modal dialog box mode

Confirm that the modal dialog box option is selected. This enables UFT to
record the display of F1 Help in your tests. (The F1 Help in your SAP GUI
for Windows application can be displayed using either the Performance
Assistant or as a modal dialog box.)

 7 Set F4 Help to use the dialog display mode

Confirm that your client is set to load F4 Help screens in Dialog mode.
(The SAP GUI for Windows application cannot load F4 Help screens in
Control mode when using the SAP GUI Scripting API (Enable Scripting
option.)

Note: This is a per-user setting. You must set this option on each client
that you want to test using the UFT Add-in for SAP Solutions.
Alternatively, the SAP system administrator can change the system default
for you.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

402

How to Enable Scripting on the SAP Application
(Server-Side)
UFT records and runs steps based directly on the API events that are sent
from the client to the SAP server because UFT communicates directly with
the SAP GUI Scripting API. Therefore, to record and run tests and business
components on your SAP GUI for Windows application, you must enable
scripting on both the server-side.

After you confirm that you have the proper support package and kernel
patch levels installed, you must enable scripting on your SAP application.
By default, scripting is disabled.

You enable scripting by entering the Maintain Profile Parameters window
with administrative permissions and setting the sapgui/user_scripting profile
parameter to TRUE on the application server.

To enable scripting for all users, set this parameter on all application servers.
To enable scripting for a specific group of users, set the parameter only on
application servers with the appropriate access restriction settings.

Note: If you connect to a server on which scripting is disabled, an error
message displays when you try to record on your SAP GUI for Windows
application.

To change the profile parameter:

 1 Enter /nrz11 in the OKCode edit box to open transaction rz11.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

403

 2 In the Param. Name box of the Maintain Profile Parameters window,
enter sapgui/user_scripting and click the Display button.

Note: If the message Parameter name is unknown is displayed in the
status bar, your client lacks the required support package (see "Package
and Patch Versions Requirements - SAP Application Server and SAP GUI
for Windows" on page 377). Download and install the support package
that corresponds to the SAP release you are using and then repeat steps 1
and 2.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

404

The Display Profile Parameter Attributes window opens.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

405

 3 If ProfileVal is FALSE, you must modify its value. To modify it, click the
Change value button. The Change Parameter Value window opens.

 4 Enter TRUE (in capital letters) in the New value box and click Save.

Note: The change takes effect only when you log on to the system.
Therefore, before beginning to work with UFT, you must log off and log
on again. You may also need to restart the SAP Service from the SAP
Console.

If you find that even after restarting the SAP Service from the SAP Console
and logging on again to the client, your change to the ProfileVal
parameter was not saved, you may have an outdated kernel version. In
this case, either restart the application server or download and import the
required kernel patch, as specified below.

Release
Kernel
Version

Patch Level

6.10 6.10 391

6.20 all versions all levels

Chapter 25 • Windows-based SAP Support - Testing and Configuration

406

For details, see SAP OSS note # 480149.

How to Record on Standard Windows Controls During an
SAP GUI for Windows Recording Session

To enable UFT to record steps on standard Windows controls during an SAP
GUI for Windows recording session, you must switch to Standard Windows
Recording mode prior to performing steps on these controls. (If you switch
to Standard Windows Recording mode after performing an operation on a
standard Windows control, both UFT and the SAP application may
sometimes become unresponsive.)

This task describes how to toggle between the relevant recording options.

To switch to Standard Windows recording mode while recording a test in
an SAP GUI for Windows application:

On the Record toolbar, select Standard Windows Recording from the
Recording Modes drop-down, or press ALT+SHIFT+F3.

To record steps as SAP GUI for Windows objects again:

Do one of the following:

➤ On the Record toolbar, select Default from the Recording Modes
drop-down.

➤ Stop the recording session.

This restores the normal recording mode for SAP GUI for Windows.

6.40 all versions all levels

7.10 all versions all levels

Release
Kernel
Version

Patch Level

Chapter 25 • Windows-based SAP Support - Testing and Configuration

407

Reference

SAP Tab (Record and Run Settings Dialog Box)

This dialog box enables you to specify how UFT connects to your SAP GUI
for Windows application during a recording or run session.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

408

User interface elements are described below:

To access Select Record > Record and Run Settings and choose
the SAP tab.

Note: The Record and Run Settings dialog box also opens
automatically each time you begin recording a new test
(unless you open the dialog box and set your preferences
manually before you begin recording).

See also ➤ You can also use application details environment
variables to specify these parameters. For details, see
"Environment Variables for Windows-based SAP
Applications" on page 411.

➤ "SAP GUI Scripting API and UFT" on page 386.

➤ "Using the Auto-Parameterize Option to Parameterize
Table and Grid Cell Values" on page 389.

➤ "Low-Level or Analog Mode Recording on SAP GUI for
Windows" on page 397.

➤ "How to Record on Standard Windows Controls
During an SAP GUI for Windows Recording Session"
on page 406.

➤ "SAP > General Pane (Options Dialog Box > GUI
Testing Tab)" on page 412.

UI Elements Description

Record and run tests
on any open SAP GUI
for Windows
application

Instructs UFT to use any open SAP GUI for Windows
application to record and run the test.

This option supports sessions opened using the SAP
Logon dialog box or the SAP Logon Pad.

Open the following
SAP Gui client when
a record or run
session begins

Instructs UFT to connect to the specified SAP server and
open your SAP GUI for Windows application using
specified user settings.

Note: If you select to connect to a specific server, you can
specify details that will enable UFT to automatically log
on to the server each time a record or run session begins
(instead of recording the logon steps).

Chapter 25 • Windows-based SAP Support - Testing and Configuration

409

Server description Indicates the server to which you want to connect. The
Server description box lists the servers available in the
SAP Logon Pad or the SAP Logon dialog box.

To add a server to the list in the Record and Run Settings
dialog box, close the Record and Run Settings dialog box,
define an appropriate entry using your SAP Logon dialog
box, and then reopen the Record and Run Settings dialog
box.

Note: The values you enter for the User, Client,
Password, and Language in the Auto-logon area of the
dialog box are saved with the selected server (in addition
to being saved with the test). Therefore, the saved values
are automatically displayed in the auto-logon area when
you specify a previously selected server.

System data
container

Specifies the system data container that contains the
available target systems for the current test.

Enabled only if you open a GUI test from Solution
Manager in integrated mode.

Target system A drop-down list of available SAP environments that can
be tested.

Enabled only if the System data container option is
selected.

Enable auto-logon Instructs UFT to open the specified SAP GUI for Windows
application using the specified logon details.

Enabled only when Open the following SAP Gui client
when a record or run session begins is selected.

User The user name used to log on to the specified server.

Enabled only when Enable auto-logon is selected.

Password The password for the specified user name.

Enabled only when Enable auto-logon is selected.

Client The client number.

Enabled only when Enable auto-logon is selected.

UI Elements Description

Chapter 25 • Windows-based SAP Support - Testing and Configuration

410

Language The language that you want the specified SAP GUI for
Windows application to display.

Enabled only when Enable auto-logon is selected.

Remember password Saves the password information in this dialog box so that
you do not have to enter it each time you begin to record
or run the test.

Enabled only when Enable auto-logon is selected.

Close the SAP GUI for
Windows application
when the test is
closed

Instructs UFT to close the SAP GUI for Windows session
specified in the Record and Run Settings dialog box when
the test is closed.

Any other SAP GUI for Windows session that was opened
before, during, or after the run session is not affected.

The Session cleanup option in the SAP pane of the
Options dialog box (Tools > Options > GUI Testing tab >
SAP node) overrides this option. For details, see "SAP >
General Pane (Options Dialog Box > GUI Testing Tab)" on
page 412.

Do not record and
run on sessions that
are already open

Instructs UFT not to record or run tests on any SAP GUI
for Windows sessions that were already open prior to the
start of the record or run session. This is to ensure that
steps are not inadvertently recorded on other SAP GUI
for Windows sessions that may also be running on the
same computer.

Wait for Web pages
to load before
running steps

Instructs UFT to wait for Web-based SAP pages to
synchronize completely before starting the test run.

Note: This option is selected by default. Clear this option
only when working with IC WebClient.

UI Elements Description

Chapter 25 • Windows-based SAP Support - Testing and Configuration

411

Environment Variables for Windows-based SAP
Applications

You can use environment variables to specify details for the applications you
want to use during a recording or run session. These variables can also be
used in external library files for automation scripts.

If you define any of these environment variables, they override the values in
the Server description, User, Password, Client, and Language boxes in the
SAP tab of the Record and Run Settings dialog box. For details, see "SAP Tab
(Record and Run Settings Dialog Box)" on page 407.

Use the variable names listed in the table below to define SAP application
details:

For details on defining and working with environment variables, see the
HP Unified Functional Testing User Guide.

Option Variable Name Description

Server description SAP_SERVER_ENV The description of the server
to which you want to
connect.

User SAP_USERNAME_ENV The user name used to log on
to the specified client number.

Password SAP_PASSWORD_ENV The encrypted password for
the specified user name.

Client SAP_CLIENT_ENV The client number.

Language SAP_LANGUAGE_ENV The language that you want
the specified SAP GUI for
Windows application to
display.

MainUsersGuide.chm::/Test_Settings_Envir.htm

Chapter 25 • Windows-based SAP Support - Testing and Configuration

412

SAP > General Pane (Options Dialog Box > GUI Testing
Tab)

This pane enables you to configure how UFT records and runs tests and
business components on SAP applications.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

413

User interface elements are described below:

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > SAP >
General node.

Important
information

This pane is available only when the Unified Functional
Testing Add-in for SAP Solutions is installed and loaded.

See also ➤ "SAP GUI Scripting API and UFT" on page 386.

➤ "Using the Auto-Parameterize Option to Parameterize
Table and Grid Cell Values" on page 389.

➤ "How to Record on Standard Windows Controls
During an SAP GUI for Windows Recording Session"
on page 406.

➤ "Environment Variables for Windows-based SAP
Applications" on page 411/

➤ "SAP Tab (Record and Run Settings Dialog Box)" on
page 407.

UI Elements Description

Auto-parameterize
table and grid
controls

While recording tests, automatically captures the data
you set in table and grid cells and stores it in a new data
sheet in the Data pane. UFT inserts an Input statement
into your test, which refers to the new data sheet. Using
this option enables you to set values of multiple cells in a
single test step and easily parameterize the cell values.
For details, see "Using the Auto-Parameterize Option to
Parameterize Table and Grid Cell Values" on page 389.

Record HTML
elements using
SAPGui Scripting
interface

Specifies whether UFT should use the SAP GUI Scripting
API when recording HTML elements within SAP
applications, or use the built-in Web support to record
these HTML elements. You can use this option to handle
synchronization issues that may arise from recording on
Web elements inside an SAP GUI for Windows session.

Changes to this option take effect only after you start
recording a new test or business component.

Chapter 25 • Windows-based SAP Support - Testing and Configuration

414

Record Reset Method
on SAP Gui Session

Records a Reset method as the first step when recording a
test or business component. When the test or business
component is run, the first step resets the application
session so that it starts at the initial SAP screen. This
ensures that the test or business component starts with
the same application state each time it is run.

This option is applicable only if the Open the following
SAP Gui client when a record or run session begins and
the Auto-logon options are both selected in the SAP tab
of the Record and Run Settings dialog box.

Record status bar
messages

Records a SAPGuiStatusbar.Sync step each time a status bar
message is displayed in the SAP application.

Note: This option is selected by default.

Show 'Disabled
Scripting Interface'
warnings

Instructs UFT to display warnings if the SAP GUI
Scripting API is disabled on the SAP application. If this is
the case, you cannot record or run steps until you enable
the SAP GUI Scripting API. For information on enabling
the SAP GUI Scripting API, see "Enable scripting on the
SAP application (client-side)" on page 400.

Note: This option is selected by default.

UI Elements Description

Chapter 25 • Windows-based SAP Support - Testing and Configuration

415

Show 'Low Speed
Connection'
Warnings

Instructs UFT to display warnings if the connection speed
to the server is set to Low speed connection.

Note: This option is selected by default.

If this option is selected, one of the following occurs if
the connection speed is low:

➤ If the session was opened by UFT when recording
started (as defined in the Record and Run Settings
dialog box), the error message appears and the
recording stops.

➤ If the session was opened by the user before recording
started, the error message appears and recording
continues in Standard Windows recording mode. For
information on Standard Windows recording mode,
see "How to Record on Standard Windows Controls
During an SAP GUI for Windows Recording Session"
on page 406.

If this option is not selected, one of the following occurs
if the connection speed is low:

➤ If the session was opened by UFT when recording
started (as defined in the Record and Run Settings
dialog box), the error message does not appear and the
recording stops.

➤ If the session was opened by the user before recording
was begun, the error message does not appear and
recording continues in Standard Windows recording
mode. For information on Standard Windows
recording mode, see "How to Record on Standard
Windows Controls During an SAP GUI for Windows
Recording Session" on page 406.

The connection speed can be checked using the SAP
client. For details, see "Check the connection speed on
the SAP server" on page 401.

UI Elements Description

Chapter 25 • Windows-based SAP Support - Testing and Configuration

416

Record only the
selected value when
using a Possible
Entries (F4) list

Specifies that only the selected value is recorded when
using a Possible Entries list. Any other actions performed
on any windows opened after pressing F4 (or after
clicking the icon in the specific field) are ignored, and
only the actual change made to the field is recorded.

Note: An event is received only on the field in focus
when F4 was pressed, and not on all the populated fields
in the screen. For this reason it may be preferable not to
select this option when recording.

Session cleanup Instructs UFT to close all SAP GUI for Windows sessions
opened by UFT during the current run session when the
test is closed. This includes all SAP GUI for Windows
sessions that were invoked from the Record and Run
Settings dialog box, as well as any sessions that may have
been invoked during the run session using a SAPGuiUtil
statement or the Open New Session button in the SAP
GUI for Windows application that was being recorded.

SAP GUI for Windows sessions that were opened during a
previous run session, or opened manually before or
during the current run session are not affected.

This option overrides the Close the SAP GUI for Windows
application when the test is closed option in the SAP tab
of the Record and Run Settings dialog box. For details, see
"SAP Tab (Record and Run Settings Dialog Box)" on
page 407.

UI Elements Description

Chapter 26 • UFT-SAP Solution Manager Integration

417

26
UFT-SAP Solution Manager Integration

This chapter includes:

Concepts

➤ UFT-SAP Solution Manager Integration - Overview on page 419

➤ Test Management in SAP Solution Manager on page 420

➤ Resource Files in Solution Manager on page 422

➤ Standalone Mode on page 422

➤ Integrated Mode on page 424

Tasks

➤ How to Configure Solution Manager to Work with UFT on page 425

➤ How to Open and Save Tests in Solution Manager in Standalone Mode
on page 428

➤ How to Upload Files to Solution Manager in Standalone Mode
on page 431

➤ How to Run a Test Stored in Solution Manager in Standalone Mode
on page 435

➤ How to Run a Test Stored in Solution Manager in Integrated Mode
on page 437

➤ How to Display or Edit a GUI Test from Solution Manager in Integrated
Mode on page 439

➤ How to Transfer Data To and From GUI Tests in Integrated Mode Using
Test Parameters on page 441

Reference

➤ Solution Manager Testing Modes: Standalone or Integrated on page 442

Chapter 26 • UFT-SAP Solution Manager Integration

418

➤ Solution Manager Connection Dialog Box on page 444

➤ Save GUI Test to Solution Manager Dialog Box on page 446

➤ Open GUI Test from Solution Manager Dialog Box on page 448

➤ Upload File to Solution Manager Dialog Box on page 449

➤ Save External File to Solution Manager Dialog Box on page 451

➤ Download File from Solution Manager on page 452

➤ SAP > SAP Solution Manager Pane (Options Dialog Box > GUI Testing
Tab) on page 454

➤ Solution Manager Trace Options Dialog Box on page 456

Chapter 26 • UFT-SAP Solution Manager Integration

419

Concepts

UFT-SAP Solution Manager Integration - Overview

Note: Unless otherwise specified, references to Solution Manager in this
Help file apply to all currently supported versions of SAP eCATT (SAP
Extended Computer Aided Test Tool) and SAP Solution Manager. Note that
some features and options may not be supported in the specific edition of
Solution Manager or eCATT that you are using.

For a list of the supported versions of Solution Manager or eCATT, see the
HP Unified Functional Testing Product Availability Matrix, available from the
UFT Help or the root folder of the Unified Functional Testing DVD.

In addition to ALM, HP’s Web-based test management tool, you can also
store and manage GUI tests in SAP Solution Manager.

Unified Functional Testing Add-in for SAP Solutions integrates with SAP
Solution Manager. This means that you can use Solution Manager with UFT
to run quality tests in environments that span beyond Windows and SAP
environments including complex, multi-platform, highly-integrated
composite, legacy, and proprietary enterprise applications.

Note: UFT cannot connect to both Solution Manager and ALM in the same
session. Therefore, you cannot use Solution Manager to manage business
components and application areas.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 26 • UFT-SAP Solution Manager Integration

420

You can work with GUI tests stored in Solution Manager in standalone or
integrated mode. The current mode is indicated in the UFT title bar.

➤ Standalone Mode (described on page 422). The test is opened from UFT.

➤ Integrated Mode (described on page 424). The test is opened from
Solution Manager.

Solution Manager support is available only when:

➤ SAP Frontend software is installed on your computer (including support
for Unicode).

➤ SAP GUI for Windows software installed on your computer, including
support for RFC libraries. You add support for RFC libraries by selecting
the Unicode RFC Libraries check box (under Development Tools) during
the SAP installation.

➤ The Unified Functional Testing Add-in for SAP Solutions is installed and
loaded. For details, see "How to Manage UFT Add-ins" on page 40.

➤ Solution Manager integration components are installed.

Test Management in SAP Solution Manager

You can store and manage GUI tests for your SAP application in the file
system or in a test management tool, such as HP ALM or SAP Solution
Manager, depending on your testing needs.

To work with SAP Solution Manager, you must configure your Solution
Manager server to work with UFT. After the server is configured, you can
connect to Solution Manager from UFT in standalone mode, or you can
connect to UFT from Solution Manager in integrated mode. For details, see
"How to Configure Solution Manager to Work with UFT" on page 425.

You can create tests from UFT or from Solution Manager, store tests and
associated resource files in the Solution Manager database, edit tests, run
tests, and review run results. For details see, "How to Open and Save Tests in
Solution Manager in Standalone Mode" on page 428.

Chapter 26 • UFT-SAP Solution Manager Integration

421

You can also call and pass values from a Solution Manager test script to a
GUI test. For details, see "How to Transfer Data To and From GUI Tests in
Integrated Mode Using Test Parameters" on page 441.

For details on performing basic Solution Manager test management
operations, see:

➤ "How to Configure Solution Manager to Work with UFT" on page 425

➤ "How to Open and Save Tests in Solution Manager in Standalone Mode"
on page 428

➤ "How to Upload Files to Solution Manager in Standalone Mode" on
page 431

➤ "How to Run a Test Stored in Solution Manager in Standalone Mode" on
page 435

➤ "How to Run a Test Stored in Solution Manager in Integrated Mode" on
page 437

➤ "How to Display or Edit a GUI Test from Solution Manager in Integrated
Mode" on page 439

➤ "How to Transfer Data To and From GUI Tests in Integrated Mode Using
Test Parameters" on page 441

Chapter 26 • UFT-SAP Solution Manager Integration

422

Resource Files in Solution Manager

When you save a GUI test in Solution Manager, make sure you store all
associated resource files in Solution Manager so that any user who opens the
test from Solution Manager will have access to all of the test’s resource files.

Like test names, all test resource files stored in Solution Manager must begin
with a valid prefix according to the server settings. For example, if your
Solution Manager server requires all file names to begin with z, you would
use the following naming convention: z<filename> (for example:
zSOR_dwdm). You can set the default prefix for files in the Solution
Manager pane of the Options dialog box. For details, see "SAP > SAP
Solution Manager Pane (Options Dialog Box > GUI Testing Tab)" on
page 454.

When you create a file in UFT, such as a new shared object repository or
recovery file, you can create the file as you normally would in UFT and then
save the file directly to Solution Manager.

You can also upload existing files that are stored in the file system (such as
external data table files, function library files, shared object repository files,
recovery files, and environment variable files).

For details on uploading resource files to Solution Manager, see "How to
Upload Files to Solution Manager in Standalone Mode" on page 431.

Standalone Mode

You can connect to Solution Manager from UFT. This is known as
standalone mode. After you connect to Solution Manager in standalone
mode, you can:

➤ Store tests in the Solution Manager database.

➤ Open existing tests from the Solution Manager database.

➤ Upload files to or download files from Solution Manager.

Chapter 26 • UFT-SAP Solution Manager Integration

423

➤ Store a test’s external resource files in Solution Manager. For example, you
can store shared object repository files, data table files, function library
files, environment variable files, and recovery files in your Solution
Manager database. UFT provides a special set of Solution Manager-specific
options that enable you to control certain elements of the Solution
Manager-UFT integration.

➤ Pass values from a Solution Manager test script to a GUI test, or vice versa,
using GUI test parameters. For example, if you want to create tests or
actions that you can use for different purposes or in different scenarios
based on the data supplied to them, you can take advantage of the
Automatically parameterize steps using Test Parameters option (in the
General node of the GUI Testing tab in the Options dialog box (Tools >
Options > GUI Testing tab > General node)). This option instructs UFT to
automatically parameterize all the operation arguments in the steps of
one or more actions in your test, at the end of a UFT recording session.
You can then supply the values for these test parameters from Solution
Manager. For more details on parameters, see the HP Unified Functional
Testing User Guide.

Note:

➤ You can also perform many of these operations from Solution Manager in
integrated mode. For details, see "Integrated Mode" on page 424. For a
comparison of Solution Manager testing modes, see "Solution Manager
Testing Modes: Standalone or Integrated" on page 442.

➤ You can also download resource files already stored in Solution Manager
and save them in the file system.

Chapter 26 • UFT-SAP Solution Manager Integration

424

Integrated Mode

You can connect to UFT from Solution Manager. This is called integrated
mode. When you work in integrated mode, only UFT features related to the
Solution Manager test are available in UFT. When you run tests in integrated
mode, your run session results are accessible in the Solution Manager log.

When you log on to a Solution Manager server that is configured to
integrate with UFT, you can view, edit, and run GUI tests that are stored in
Solution Manager. You can also use the standard Solution Manager
commands to copy, rename, and delete GUI tests, just as you would with
any other file stored in Solution Manager.

When you open a GUI test from Solution Manager, UFT opens in integrated
mode. In this mode, you can use all UFT features that are associated with the
open test. However, you cannot save the open test with another name.

You can run a test in integrated mode by using the Run option in UFT or
using the Execute Test Script (F8) option for a selected GUI test in Solution
Manager. You can also execute a Solution Manager test script (or blob—
Binary Large Object) that calls a GUI test. Creating Solution Manager scripts
that call GUI tests is useful if you want to pass or retrieve values to or from a
GUI test.

For details on configuring Solution Manager to work with UFT, see "How to
Configure Solution Manager to Work with UFT" on page 425.

Note: You can also work with tests stored in Solution Manager from the UFT
interface in standalone mode. For details, see "Standalone Mode" on
page 422. For a comparison of Solution Manager testing modes, see
"Solution Manager Testing Modes: Standalone or Integrated" on page 442.

Chapter 26 • UFT-SAP Solution Manager Integration

425

Tasks

How to Configure Solution Manager to Work with UFT

This task describes how to configure Solution Manager to work with UFT so
that you can use the Solution Manager-UFT integration features available
with the Unified Functional Testing Add-in for SAP Solutions.

This task includes the following steps:

➤ "Prerequisites" on page 425

➤ "Set external tool parameters in the ECCUST_ET table" on page 426

➤ "Apply necessary roles or profiles to Solution Manager-UFT Users" on
page 426

➤ "Register UFT to work with Solution Manager" on page 427

Prerequisites

You (or a Solution Manager system administrator) must install the
appropriate support package and configure the Solution Manager server to
work with UFT.

Chapter 26 • UFT-SAP Solution Manager Integration

426

Set external tool parameters in the ECCUST_ET table

This step enables Solution Manager to communicate with UFT. (You
perform this procedure only once in the system.)

 1 Navigate to transaction se17. The General Table Display window opens.

 2 In the Table Name box, enter ECCUST_ET and press ENTER.

 3 The Display Table ECCUST_ET window opens and displays an empty table
with the required parameter names.

 4 Enter the values exactly as shown below:

Note: You can also use the function module SET_EXTERNAL_TOOL to
create entries in the customizing table. For details, see your Solution
Manager documentation.

Apply necessary roles or profiles to Solution Manager-UFT
Users

 1 Make sure you have permission to:

➤ Run Solution Manager scripts

➤ Edit Solution Manager scripts

➤ Work with an external tool (UFT) in integrated mode

➤ Connect to Solution Manager from an external tool (UFT) in
standalone mode

Chapter 26 • UFT-SAP Solution Manager Integration

427

 2 Confirm with your system administrator that the user name you use is
assigned the necessary roles or profiles to perform the above tasks before
you begin working with the UFT-Solution Manager integration. For
example, to work with UFT in standalone mode, you must be assigned the
role S_ECET or the profile SAP_ECET in the Solution Manager system. This
is because each of these tasks requires special roles or profiles.

For details, contact your system administrator or see your SAP and Solution
Manager documentation.

Register UFT to work with Solution Manager

To enable UFT to communicate with Solution Manager, you must register
UFT and then verify the registration. You perform this procedure only once
in the system.

 1 Navigate to transaction SPRO, click SAP Reference IMG, and browse to
SAP Solution Manager > Capabilities (Optional) > Test Management >
External Integration > External Test Tool with eCATT > Register Test Tool.

 2 Click New Entries.

 3 Enter the values exactly as shown below:

Chapter 26 • UFT-SAP Solution Manager Integration

428

 4 Navigate to transaction SM30, and enter V_AGS_SMT_TCT, as shown in
the example below.

 5 Click Display and verify that a row exists with the following information:

UFT is now registered to work with your SAP application.

How to Open and Save Tests in Solution Manager in
Standalone Mode

This task describes how to:

➤ "Save a test in standalone mode" on page 429

➤ "Open a test from Solution Manager in standalone mode" on page 430

Note: You can also open, edit, and save existing tests that are stored in
Solution Manager, and you can save existing tests with a new name in the
Solution Manager database or in the file system.

Chapter 26 • UFT-SAP Solution Manager Integration

429

Save a test in standalone mode

 1 In UFT, create or open a test.

 1 From UFT, connect to a Solution Manager server. UFT connects to
Solution Manager in standalone mode. For user interface details, see
"Solution Manager Connection Dialog Box" on page 444.

 2 In UFT, select File > Save As. The Save GUI Test to Solution Manager
dialog box opens.

Note: If you defined a New test prefix in the SAP Solution Manager pane
of the Options dialog box, the dialog box displays the defined prefix. (For
details, see "SAP > SAP Solution Manager Pane (Options Dialog Box > GUI
Testing Tab)" on page 454.)

 3 Do one of the following:

➤ To save a test directly to the file system, click File System. The Save Test
dialog box opens. For user interface details, see the HP Unified
Functional Testing User Guide.

➤ To save the test to Solution Manager, enter the required information
and click OK. For details on the user interface, see "Save GUI Test to
Solution Manager Dialog Box". When the save process finishes, the
status bar displays the word Ready, and the test is saved to the local
package ($TMP) in Solution Manager. When the save process is
complete, the UFT title bar displays the test information in the
following format:

[Solution Manager] TestName: VersionNumber (Mode)

Chapter 26 • UFT-SAP Solution Manager Integration

430

Open a test from Solution Manager in standalone mode

 1 Connect to a Solution Manager server. For details, see "Solution Manager
Connection Dialog Box" on page 444.

 2 In UFT, select File > Open > Test to open the test. The Open GUI Test from
Solution Manager dialog box opens.

Note: The Open GUI Test from Solution Manager dialog box opens when
UFT is connected to a Solution Manager server. To open a test directly
from the file system while you are connected to Solution Manager, click
the File System button to open the Open Test dialog box.

 3 Enter the required information and click OK. For details on the user
interface, see "Open GUI Test from Solution Manager Dialog Box".

When the test opens, the UFT title bar displays the test information in the
following format:

[Solution Manager] TestName: VersionNumber (Mode)

Chapter 26 • UFT-SAP Solution Manager Integration

431

How to Upload Files to Solution Manager in Standalone
Mode

This task describes how to upload files to Solution Manager. When you
upload a file to Solution Manager in standalone mode, it is automatically
saved to the local package ($TMP) in Solution Manager.

This task describes how to:

➤ "Upload external resource files from the file system to Solution Manager"
on page 431

➤ "Create a new shared object repository file and store it in Solution
Manager" on page 432

➤ "Copy or export an object repository to Solution Manager" on page 433

➤ "Create a new recovery file in Solution Manager" on page 434

Upload external resource files from the file system to Solution
Manager

 1 Create and save the resource file in the file system.

 2 Connect to Solution Manager. For details, see "Solution Manager
Connection Dialog Box" on page 444.

 3 Select File > Upload File to Solution Manager option. The Upload File to
Solution Manager dialog box opens.

For information on the Upload File to Solution Manager dialog box, see
"Upload File to Solution Manager Dialog Box".

Chapter 26 • UFT-SAP Solution Manager Integration

432

 4 Browse or enter the file path of the Local file you want to upload.

 5 Specify the Solution name and Version number you want to assign to the
uploaded file.

 6 Associate the uploaded file with your test in the appropriate UFT dialog
box. For more information on associating Data pane files, library files,
environment variable files, and shared object repositories with your test,
see the HP Unified Functional Testing User Guide.

Create a new shared object repository file and store it in
Solution Manager

 1 Open a blank test.

 2 Select Resources > Object Repository Manager and add test objects as
needed.

 3 Select File > Save. The Save External File to Solution Manager dialog box
opens.

 4 In the File name field, enter the name you want to use for the shared
object repository according to the naming conventions of the Solution
Manager server. For example, if your Solution Manager server requires all
filenames to begin with z, save the file in the following format:
z<filename>. For example: zSOR_dwdm

 5 In the File version field, enter the version number you want to use for the
shared object repository.

 6 If a warning message opens, click Yes to create the new object repository
file in Solution Manager.

Chapter 26 • UFT-SAP Solution Manager Integration

433

For more information on creating object repository files, see the
HP Unified Functional Testing User Guide.

Copy or export an object repository to Solution Manager

 1 Open the test whose object repository you want to copy or export.

Note: If you are exporting objects from a local object repository:

➤ You must select the action whose object repository you want to export.

➤ The object repository name must contain at least 14 characters.

 2 Select one of the following:

➤ Resources > Object Repository Manager to open the shared Object
Repository Manager.

➤ Resources > Object Repository to open the local Object Repository for
the selected action.

 3 Do one of the following:

➤ In the shared Object Repository Manager, select File > Save As to save
a copy of the object repository file with a new name in Solution
Manager.

➤ In the Object Repository window, select File > Export Local Objects to
export the object repository to a shared object repository file in
Solution Manager.

Chapter 26 • UFT-SAP Solution Manager Integration

434

The Save External File to Solution Manager dialog box opens.

 4 Enter the required information and click OK. For details on the user
interface, see "Save External File to Solution Manager Dialog Box".

For details on exporting and saving object repository files, see the
HP Unified Functional Testing User Guide.

Create a new recovery file in Solution Manager

 1 Select Resources > Recovery Scenario Manager. The Recovery Scenario
Manager opens.

 2 Click the New Scenario button. The Recovery Scenario Wizard opens.
Follow the instructions in the wizard to create a new scenario. When you
are finished, the scenario is displayed in the Recovery Scenario Manager.

To add more scenarios to the new scenario file, repeat this step.

When you are ready to save the scenario file, click Save. The Save External
File to Solution Manager dialog box opens.

 3 Enter the required information and click OK. For details on the user
interface, see "Save External File to Solution Manager Dialog Box".

Chapter 26 • UFT-SAP Solution Manager Integration

435

For details on creating and saving recovery files, see the HP Unified
Functional Testing User Guide.

How to Run a Test Stored in Solution Manager in
Standalone Mode

This task describes how to run tests from UFT (standalone mode). The run
results are stored in the location you specify in the file system. You cannot
access these results from Solution Manager.

When working with UFT in standalone mode, you run a test stored in a
Solution Manager database just like any other UFT test.

To run a test stored in Solution Manager in standalone mode:

 1 Open UFT in standalone mode. For details, see "Solution Manager
Connection Dialog Box" on page 444.

 2 In UFT, open the test you want to run. For user interface details, see
"Open GUI Test from Solution Manager Dialog Box" on page 448.

 3 Click the Run button or select Run > Run. The Run dialog box opens.

 4 Accept the default results folder or browse to select another one.

Chapter 26 • UFT-SAP Solution Manager Integration

436

Note:

➤ The default results folder is created under the folder where the cache
(local) copy of your test is stored. You set the location of your Solution
Manager test cache folder in the Solution Manager pane of the
Options dialog box.

➤ When running tests in standalone mode, no Solution Manager log is
created. For details on the Solution Manager log for UFT run sessions,
see "View results of a GUI test run in integrated mode" on page 438.

➤ To run the test and overwrite the previous run session results, select
the Temporary run results folder (overwriting older temporary results)
option.

➤ UFT stores temporary run session results for all tests in <System
Drive>:\%Temp%\TempResults. The path in the text box of the
Temporary run results folder (overwriting older temporary results)
option is read-only and cannot be changed.

 5 Click OK. The Run dialog box closes and UFT begins running the test.

When the run session ends, the Run Results window opens (unless the
View results when run session ends check box is cleared in the Run
Sessions pane of the Options dialog box (Tools > Options > GUI Testing
tab > General tab > Run Sessions node). For more details on running UFT
tests and analyzing run results, see the HP Unified Functional Testing User
Guide.

Chapter 26 • UFT-SAP Solution Manager Integration

437

How to Run a Test Stored in Solution Manager in
Integrated Mode

This task describes how to run test from Solution Manager in integrated
mode and view the run results stored in the network drive specified for
Solution Manager run results (as defined in the SAP Solution Manager pane
of the Options dialog box).

You can run GUI tests from Solution Manager test scripts (integrated mode)
in any of the following ways:

➤ Use the Run option in UFT. Display the test in UFT and use the standard
UFT Run option. For details on displaying the test, see "How to Display or
Edit a GUI Test from Solution Manager in Integrated Mode" on page 439.
For details on running a test using the UFT Run option, see the HP Unified
Functional Testing User Guide.

➤ Run the test from Solution Manager. Create and run a Solution Manager
test script that calls a GUI test. For information on creating test scripts
that call GUI tests, see "How to Transfer Data To and From GUI Tests in
Integrated Mode Using Test Parameters" on page 441. For information on
running Solution Manager test scripts, see your Solution Manager
documentation.

➤ Use the Execute Test Script (F8) option for a selected UFT test in Solution
Manager. For details, see "Run a UFT test from Solution Manager using
the Execute Test Script option" on page 437.

Note: For details on running tests in standalone mode, see "How to Run a
Test Stored in Solution Manager in Standalone Mode" on page 435.

Run a UFT test from Solution Manager using the Execute Test
Script option

For details, see your SAP documentation.

Chapter 26 • UFT-SAP Solution Manager Integration

438

View results of a GUI test run in integrated mode

You can view the results of a GUI test that was run from Solution Manager in
the following ways:

➤ In the Solution Manager Log Display. You can view the results of the test
or the results of a specific event, such as a checkpoint, in the Solution
Manager log. You can view the folder in which the results are saved in the
UNCPathToLocalLog line of the Solution Manager log.

➤ In the HP Run Results Viewer. You can view the run results in the Run
Results Viewer, which you can either access from UFT or open directly.

If a test includes steps that log on to Solution Manager using the SAP tab
of the Record and Run dialog box (as described in "SAP Tab (Record and
Run Settings Dialog Box)" on page 407), the logon steps are displayed in
the run results tree.

You can set the Run Results Viewer to open automatically after a test runs
from Solution Manager. To do this, in Solution Manager, select the Log
Display check box in the Shared tab in Start Options window.

For details on opening and analyzing run session results in UFT, see the
HP Run Results Viewer User Guide.

➤ Via the generated XML Report. Each time you run a GUI test from
Solution Manager, an .xml file is generated. This file contains all details of
the run session. To view the file, click the line containing the text:
XML-DATA in the Solution Manager log.

RunResultsViewer.chm::/About_Analyze_Test_Results.htm

Chapter 26 • UFT-SAP Solution Manager Integration

439

How to Display or Edit a GUI Test from Solution Manager
in Integrated Mode

This task describes how to display or edit any existing GUI test that is stored
in Solution Manager. When you open the test, UFT opens in integrated and
read-only mode. When you display or open a GUI test in integrated mode,
you can work only with the open test. You cannot open another test or save
the open test with another name.

Despite this, resource files that are saved with the test (for example, a local
repository or the test’s local data table) are editable. To edit external resource
files, open the test in standalone mode.

Note: If you select the UFT File > Save As menu command when working in
integrated mode, UFT displays a warning message indicating that you can
save a test with a new name in the file system, but doing so disconnects UFT
from Solution Manager and switches UFT to standalone mode.

For more details on integrated and standalone modes, see "Standalone
Mode" on page 422 and "Integrated Mode" on page 424.

This task describes how to:

➤ "Display or open a GUI test from Solution Manager" on page 439

➤ "Create a new GUI test from Solution Manager" on page 440

Display or open a GUI test from Solution Manager

 1 Log on to Solution Manager and open a test script. Make sure to specify
QuickTest Professional as the external tool. For details on how to open
test scripts in Solution Manager, see your SAP documentation.

You can open the test in:

➤ Read-only (Display) mode. (If the test uses external resource files, the
test and its resources open in read-only mode by default.)

➤ Edit mode. This enables you to use most UFT options. For details, see
the HP Unified Functional Testing User Guide.

Chapter 26 • UFT-SAP Solution Manager Integration

440

 2 To return to Solution Manager, close UFT.

Create a new GUI test from Solution Manager

 1 Log on to Solution Manager. Then create and save a test script. Make sure to
specify QuickTest Professional as the external tool. For details on how to
open test scripts in Solution Manager, see your SAP documentation.

When you create the script, UFT opens with a blank test.

 2 Create the test in UFT. For details on creating GUI tests in UFT, see the
other chapters in this guide and the HP Unified Functional Testing User
Guide.

 3 In UFT, select File > Save As. A dialog box opens in Solution Manager.

 4 In Solution Manager, specify the package in which you want to store the
test. Confirm that the other edit boxes contain correct values.

If the test has external resource files, they are stored by default in the
$TMP (local) package. If you select another package for the test, you must
manually move any external resource files to the same package.

 5 In Solution Manager, save the test. UFT is restored in integrated mode and
displays the saved test for additional editing.

 6 To return to Solution Manager, close UFT.

Chapter 26 • UFT-SAP Solution Manager Integration

441

How to Transfer Data To and From GUI Tests in
Integrated Mode Using Test Parameters

You can pass values from a Solution Manager test script to a GUI test, or vice
versa, using GUI test parameters.

To send values to your input arguments, you must run your test via a call
from a Solution Manager test script. After you define input and output
arguments for your GUI test, you can insert a call to that test from a
Solution Manager test script and specify argument values for the input
arguments.

Prerequisites

Define test parameters and use them in your GUI test. For details, see the
section on the Parameters Pane (Test Settings Dialog Box) in the HP Unified
Functional Testing User Guide.

Call a GUI Test and Specify Arguments from Solution Manager

To send values to your input arguments from Solution Manager, you must
run your test via a call from a Solution Manager test script.

Tip: You can enter the name of a Solution Manager parameter from the
Solution Manager script as the value of a GUI input parameter.

After you define input and output arguments for your GUI test, you can
insert a call to that test from a Solution Manager script and specify argument
values for the input arguments.

Chapter 26 • UFT-SAP Solution Manager Integration

442

Reference

Solution Manager Testing Modes: Standalone or
Integrated

The table below describes the basic differences between the standalone and
integrated testing modes.

Standalone Mode Integrated Mode

Open test from UFT Solution Manager

Solution Manager
- UFT connection

Connect to Solution
Manager from UFT using the
Solution Manager
Connection dialog box.

Solution Manager
automatically establishes the
Solution Manager - UFT
connection.

Available UFT
features

All UFT features are
available. You can open and
work with any test in
Solution Manager or in the
file system.

You can work only with the
currently open test.

File > Open, File > New, and
the Recent files list options
are disabled.

If you select File > Save As,
UFT warns you that it will
disconnect from Solution
Manager and switch UFT to
standalone mode.

Resource files When you open the test, you
can also edit and save all the
test’s resource files,
including those stored in
Solution Manager.

When you open the test, test
resources stored in Solution
Manager are opened in
read-only mode.

Save location Tests and uploaded files are
automatically saved to the
local package ($TMP) in
Solution Manager.

You can save tests to any
package (including non-
local packages).

Chapter 26 • UFT-SAP Solution Manager Integration

443

Solution Manager
dependence

Although UFT is connected
to Solution Manager, you
can work and navigate in
Solution Manager
independently.

Solution Manager is locked
while the test is open in
UFT. To release Solution
Manager, close UFT.

Run results All run results are stored in
the file system. They cannot
be accessed from your
Solution Manager log list.

For details, see the HP Run
Results Viewer User Guide.

Run results are stored to the
network drive you specify in
the Solution Manager pane
of the Options dialog box
and in the Solution Manager
server. You can access the
run results from the Solution
Manager log.

Standalone Mode Integrated Mode

Chapter 26 • UFT-SAP Solution Manager Integration

444

Solution Manager Connection Dialog Box

This dialog box enables you to connect to or disconnect from Solution
Manager at any time during the testing process.

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.

3 Select Tools > SAP Solution Manager Connection.

Important
information

Do not disconnect UFT from Solution Manager while a
GUI test that is stored in Solution Manager is open or
while UFT is using a shared resource stored in Solution
Manager (such as a shared object repository or data table
file).

Chapter 26 • UFT-SAP Solution Manager Integration

445

User interface elements are described below:

Relevant tasks ➤ "How to Configure Solution Manager to Work with
UFT" on page 425

➤ "How to Open and Save Tests in Solution Manager in
Standalone Mode" on page 428

➤ "How to Upload Files to Solution Manager in
Standalone Mode" on page 431

➤ "How to Run a Test Stored in Solution Manager in
Standalone Mode" on page 435

➤ "How to Run a Test Stored in Solution Manager in
Integrated Mode" on page 437

➤ "How to Display or Edit a GUI Test from Solution
Manager in Integrated Mode" on page 439

➤ "How to Transfer Data To and From GUI Tests in
Integrated Mode Using Test Parameters" on page 441

UI Elements Description

Server description The Solution Manager server to which you want to
connect.

The Server description box lists the servers available in
the SAP Logon Pad or the SAP Logon dialog box.

To add a server to the list in the Solution Manager
Connection dialog box, close the dialog box, define an
appropriate entry using your SAP Logon dialog box, and
then reopen the Solution Manager Connection dialog
box.

User The user name used to log on to the specified server.

Password The password for the specified user name.

Client The client number.

Language The language that you want to use.

Reconnect on startup Instructs UFT to automatically reconnect to the Solution
Manager server the next time you open UFT.

Chapter 26 • UFT-SAP Solution Manager Integration

446

Save GUI Test to Solution Manager Dialog Box

This dialog box enables you to save a GUI test in the Solution Manager
database.

Save password for
reconnection on
startup

Instructs UFT to save your password for reconnection on
startup.

If you select Reconnect on startup, but do not select this
option, you are prompted to enter it each time UFT
opens.

Enabled only when Reconnect on startup is selected.

Connect Connects UFT to Solution Manager.

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.

3 In UFT, display a GUI test and select File > Save As.

Important
information

➤ This dialog box is similar to the Save External File to
Solution Manager dialog box, and displays similar user
interface elements.

➤ When saving a test to Solution Manager in standalone
mode, the test is automatically saved to the local
package ($TMP) in Solution Manager.

UI Elements Description

Chapter 26 • UFT-SAP Solution Manager Integration

447

User interface elements are described below:

UI Elements Description

Test name The name for the test. Use a descriptive name that will help
you easily identify the test. Ensure that the test name begins
with a prefix that matches your Solution Manager server
naming conventions. For example, your Solution Manager
server may require all file names to begin with the letter z.

When the Save Test in Solution Manager dialog box opens, it
displays the default test prefix in the Test name box. You can
define or modify this prefix in the Solution Manager pane of
the Options dialog box. For details, see "SAP > SAP Solution
Manager Pane (Options Dialog Box > GUI Testing Tab)" on
page 454.

Test version The version number of the test. The version number can be
any number that you choose. You can use the version number
option as a kind of manual version control. For example, each
time you open and modify a test, you can increment the
version number by 1, instead of overwriting the existing
version of the test if you want to keep a record of all versions
of a test. The test name and version number together form a
unique ID for the test.

File System Enables you to save the currently open test anywhere in the
file system.

Chapter 26 • UFT-SAP Solution Manager Integration

448

Open GUI Test from Solution Manager Dialog Box

This dialog box enables you to open a GUI test from the Solution Manager
database.

User interface elements are described below:

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.

3 In UFT, select File > Open > Test.

Important
information

This dialog box is similar to the Open External File from
Solution Manager dialog box, except that this dialog box
contains the Open in read-only mode option.

Relevant tasks "How to Open and Save Tests in Solution Manager in
Standalone Mode" on page 428

UI Elements Description

Test name The name of the test you want to open.

When the Open Test from Solution Manager dialog
box opens, it displays the most recently opened
Solution Manager test in the Test name box.

You can enter a valid test name or select one from
the list of recently opened Solution Manager tests.
Do not specify a folder path or other location.

Test version The version number of the test you want to open.

Chapter 26 • UFT-SAP Solution Manager Integration

449

Upload File to Solution Manager Dialog Box

This dialog box enables you to store a test’s external resource files in
Solution Manager. You use this dialog box to upload files that are stored in
the file system, such as external data table files, external function library
files, and environment variable files, shared object repository files, and
recovery files.

Open in read-only mode Opens the test in read-only mode. You can run the
test and save the results, but you cannot modify the
test or any external resources associated with the
test.

File System Enables you to open a test from anywhere in the file
system.

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.
Note: This step is optional for standalone mode.

3 In UFT, select File > Upload File to Solution Manager.

UI Elements Description

Chapter 26 • UFT-SAP Solution Manager Integration

450

User interface elements are described below:

Important
information

When uploading a file to Solution Manager in
standalone mode, it is automatically saved to the local
package ($TMP) in Solution Manager.

Relevant tasks "How to Upload Files to Solution Manager in Standalone
Mode" on page 431

UI Elements Description

Local file The complete path of the file you want to upload. You can
enter a file path or browse to the file.

Solution The name under which to store the file in Solution Manager.
Ensure that the file name begins with a prefix that matches
your Solution Manager server naming conventions. For
example, you may have to prefix all file names with the
letter z.

When the Upload File to Solution Manager dialog box opens,
it displays the default file prefix in the Solution Manager
name box. You can define or modify this prefix in the
Solution Manager pane of the Options dialog box. For details,
see "SAP > SAP Solution Manager Pane (Options Dialog Box >
GUI Testing Tab)" on page 454.

Version The version number of the file. The version number can be
any number that you choose. For example, each time you
open and modify a file, you can increment the version
number by 1, instead of overwriting the existing version of
the file if you want to keep a record of all versions of a file.
The file name and version number together form a unique ID
for the file.

Chapter 26 • UFT-SAP Solution Manager Integration

451

Save External File to Solution Manager Dialog Box

This dialog box enables you to save a GUI test’s resource files directly to
Solution Manager.

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.
Note: This step is optional for standalone mode.

3 In UFT, display the file and select Tools > Save As.

Important
information

This dialog box is similar to the Open External File from
Solution Manager dialog box, except that this dialog box
does not contain the Open in read-only mode option.

Relevant tasks "How to Upload Files to Solution Manager in Standalone
Mode" on page 431

Chapter 26 • UFT-SAP Solution Manager Integration

452

User interface elements are described below:

Download File from Solution Manager

This dialog box enables you to download files stored in Solution Manager
and save them in the file system.

UI Elements Description

File name The name under which to store the file in Solution Manager.
Ensure that the file name begins with a prefix that matches
your Solution Manager server naming conventions. For
example, you may have to prefix all file names with the letter z.

When the Save External File to Solution Manager dialog box
opens, it displays the default file prefix in the Solution
Manager name box. You can define or modify this prefix in the
SAP Solution Manager pane of the Options dialog box. For
details, see "SAP > SAP Solution Manager Pane (Options Dialog
Box > GUI Testing Tab)" on page 454.

File version The version number of the file. The version number can be any
number that you choose. For example, each time you open and
modify a file, you can increment the version number by 1,
instead of overwriting the existing version of the file if you
want to keep a record of all versions of a file. The file name and
version number together form a unique ID for the file.

Chapter 26 • UFT-SAP Solution Manager Integration

453

User interface elements are described below:

To access 1 Make sure that the computer is connected to Solution
Manager.

2 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.

3 In UFT, select File > Download File from Solution
Manager.

Important
information

If you upload a file to Solution Manager and then
associate that file with a test as a resource file, the
resource file is automatically downloaded each time you
open the test, and you do not need to use this dialog box.

UI Elements Description

Solution The name of the file stored in Solution Manager.

When the Download File from Solution Manager dialog box
opens, it displays the default file prefix in the Solution
Manager name box. You can define or modify this prefix in
the Solution Manager pane of the Options dialog box. For
details, see "SAP > SAP Solution Manager Pane (Options Dialog
Box > GUI Testing Tab)" on page 454.

Version The version number of the file to download.

Download to The complete path and file name of the location to which you
want to download the file. You can enter or browse to the
folder path.

Chapter 26 • UFT-SAP Solution Manager Integration

454

SAP > SAP Solution Manager Pane (Options Dialog Box >
GUI Testing Tab)

This pane enables you to configure how UFT behaves when you are
connected to SAP Solution Manager.

To access 1 Make sure that UFT is open with the Add-in for
SAP Solutions loaded.

2 Make sure that a GUI test is open.

3 In UFT, select Tools > Options > GUI Testing tab > SAP
> SAP Solution Manager node.

Chapter 26 • UFT-SAP Solution Manager Integration

455

User interface elements are described below:

UI Elements Description

Run results The location in which run results are stored when the
test is run from Solution Manager.

This folder must be a mapped network drive or a path in
Universal Naming Convention (UNC) format.

New test prefix The prefix that is displayed by default in the Save GUI
Test in Solution Manager dialog box.

New file prefix The prefix that is displayed by default when specifying a
file to store in Solution Manager.

Solution Manager
test cache folder

The location in which a test from Solution Manager is
temporarily stored when it is open for editing or running
in UFT.

Default location = C:\Documents and
Settings\<UserName>\Application Data\Solution
Manager

Note: RunCache and EditCache folders are automatically
created under the specified folder.

Clear Cache Deletes all files from the Solution Manager test cache
folder.

Modify Trace Options Opens the Solution Manager Trace Options dialog box,
which enables you to configure if and how UFT
generates the UFT–Solution Manager communication
trace log (used for troubleshooting communication
errors). For details, see "Solution Manager Trace Options
Dialog Box" on page 456.

Chapter 26 • UFT-SAP Solution Manager Integration

456

Solution Manager Trace Options Dialog Box

This dialog box enables you to configure whether and how UFT generates a
trace file. For example, you can instruct UFT to generate a UFT–Solution
Manager communication trace file each time Solution Manager runs a UFT
test to troubleshoot communication errors.

To access 1 Connect the computer to Solution Manager in
standalone mode.

2 In UFT, select Tools > Options > GUI Testing tab > SAP
> SAP Solution Manager node.

3 In the SAP Solution Manager pane, click Modify Trace
Options.

Chapter 26 • UFT-SAP Solution Manager Integration

457

User interface elements are described below:

UI Elements Description

Level The level of detail to include in the trace file that is created
when Solution Manager runs a GUI test.

None. (default) No trace file is created.

Low. The trace file lists any Solution Manager–UFT
communication errors.

Medium. The trace file includes Solution Manager–UFT
communication errors and information on other major
operations that result in Solution Manager–UFT
communication.

High. The trace file includes all available information related
to Solution Manager–UFT communications.

Folder The folder path for storing the trace file. Required if a trace file
level other than None is specified in the Level option.

Default location = C:\Documents and
Settings\<UserName>\Application Data\Solution
Manager\Trace

File name The file name for the trace file.

Default = SolutionManagerTrace.html

Max size The maximum file size you want to allow for the trace file.

Generate .xml
file for
debugging
when opening
and saving tests

Generates an .xml file each time you open or save a test that is
stored in Solution Manager. The files are saved in Open and
Save folders under the trace folder.

Note: Selecting this option results in slower response times for
editing and saving tests in UFT. In general, you should select
this option only when instructed to do so to debug Solution
Manager connectivity issues.

Chapter 26 • UFT-SAP Solution Manager Integration

458

Part XII

Siebel Add-in

460

461

27
Siebel Add-in - Quick Reference

You can use the Unified Functional Testing Siebel Add-in to test Siebel
user-interface objects (controls).

The following table summarizes basic information about the Siebel Add-in
and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Web-based add-in. Much of its functionality is the
same as other Web-based add-ins.

See "Web-Based Application Support" on page 49.

Supported
Environments

For details on supported Siebel environments, see the
Siebel Add-in section of the HP Unified Functional Testing
Product Availability Matrix, available from the UFT Help or
the root folder of the Unified Functional Testing DVD.

Important
Information

➤ You can use Siebel Test Express to automatically
generate a new object repository, or update an existing
object repository. For details, see "Siebel Test Express" on
page 491.

➤ For general considerations, see "Considerations - Siebel
Add-in" on page 464.

Test Object
Methods and
Properties

The Siebel Add-in provides test objects, methods, and
properties that can be used when testing objects in Siebel
applications. For details, see the Siebel section of the
HP Unified Functional Testing Object Model Reference.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 27 • Siebel Add-in - Quick Reference

462

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Considerations - Siebel Add-in" on page 464.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Siebel Add-in" on
page 465

Prerequisites

Opening Your
Application

You must open UFT and set Record and Run options before
opening your Siebel application. Open the application
only after you begin the recording session.

Add-in
Dependencies

None

Other To test a Siebel 7.7.x or later application, you must:

➤ Modify the Siebel Test Automation module
configuration.

➤ Instruct your Siebel application to generate test
automation information.

See "Siebel 7.7.x or Late - Test Automation Module
Configuration" on page 479.

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

See "Web > General Pane (Options Dialog Box)" on
page 82.

Record and Run
Settings Dialog Box
(tests only)

Use the Siebel tab.
(Record > Record and Run Settings)

See "Siebel Tab (Record and Run Settings Dialog Box)" on
page 485.

Chapter 27 • Siebel Add-in - Quick Reference

463

This chapter includes:

➤ Considerations - Siebel Add-in on page 464

➤ Troubleshooting and Limitations - Siebel Add-in on page 465

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web node)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

➤ Use the Web pane.
In the application area, click Additional Settings > Web
in the sidebar.

See "Web Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 101.

➤ Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

In the Siebel version box, specify the Siebel version for
the applications on which you want to record your
business component. The version that you choose
remains selected for all subsequent business
components.

Chapter 27 • Siebel Add-in - Quick Reference

464

Considerations - Siebel Add-in

General Considerations

➤ UFT learns objects in Siebel 7.7.x or later applications in a different way
than in Siebel 7.0.x and 7.5.x applications. The Siebel Add-in has two
different groups of test objects. The test object used to represent an object
in your application depends on the Siebel version of your application and
the implementation of the object. For details, see "Siebel Test Object
Model - Overview" on page 473.

➤ When you load the Siebel Add-in, the Web event recording configurations
designed for this add-in are loaded and are used whenever you record on
a Siebel object. The Siebel Web event recording configurations do not
affect the way UFT behaves when you record on other non-Siebel Web
objects. For details, see "Event Recording Configuration for Web-Based
Applications" on page 58.

➤ When you load the Siebel Add-in, the object identification settings are
also automatically customized for Siebel. You do not need to make any
changes to them. Therefore, the Siebel and Web options in the Object
Identification dialog box are unavailable.

➤ Loading the ActiveX and Siebel add-ins together may cause problems
when recording on some ActiveX methods.

Chapter 27 • Siebel Add-in - Quick Reference

465

Siebel 7.7.x or Later

➤ As you record a test or business component on your Siebel 7.7.x or later
application, UFT records the operations you perform. UFT works directly
with the Siebel Test Automation API
(SiebelAx_Test_Automation_18306.exe) to record your operations.
Therefore, although UFT records a step for each operation you perform, it
adds the steps to your test or business component only when API events
are sent to UFT (when information is sent to the Siebel server).

➤ When test automation is activated on a Siebel 7.7.x or later server and
requested in the URL, the Siebel Web Engine (SWE) generates additional
information about each object in the Siebel application when
constructing the Web page. Each object has a specific set of properties,
events, and methods that provide functionality for the Siebel application.
The Siebel Test Automation API maps to these objects to enable you to
manipulate your Siebel application from UFT when recording and
running tests or business components on the Siebel application.

Siebel 7.0.x/7.5.x

The Siebel Add-in can also identify Siebel objects by the siebel attached text
property (the static text displayed with a Siebel object), rather than by the
HTML name of the object. This enables you to maintain the test or business
component with dynamically created pages.

Troubleshooting and Limitations - Siebel Add-in

This section contains general troubleshooting and limitation information
about the Siebel Add-in.

General

Recording on multiple Siebel application versions in the same computer
may cause steps not to be recorded.

Chapter 27 • Siebel Add-in - Quick Reference

466

Checkpoints and the Object Spy

➤ To create a table content checkpoint or output value for the appropriate
object type (for example, SiebList, SiebPicklist, or SiebPageTabs) when
editing your test or business component, you must open the application
to the exact screen in which the object appears. Otherwise, only the
Properties tab is displayed in the Table Checkpoint dialog box or Table
Output Value dialog box.

➤ Checkpoints created for SiebList objects that contain a Total row may fail
during a run session if the action that led to the update of the Total row
was not recorded.

➤ The Object Spy and checkpoints identify expanded calculator and
calendar popup objects as Window("Siebel control popup").

This section also includes troubleshooting and limitation information about
the following Siebel versions:

➤ "Siebel 7.7.x or Later" on page 466

➤ "Siebel 7.0.x and 7.5.x" on page 467

Siebel 7.7.x or Later

➤ Certain objects, methods, or properties may be available from within UFT
even though they are not described in the documentation. This is because
UFT retrieves the latest SiebelObject.xml file when loading the Siebel
add-in and opening a Siebel application, and because the documentation
is updated according to version of the XML file that is available at the
time of the UFT product release.

➤ Certain objects, for example, in the SmartScript module, do not have a
value for the repository name property and are therefore not recorded and
are not recognized by the Object Spy.

Workaround: Use low-level recording.

➤ Gantt chart operations and RichText editor toolbar operations are not
recorded.

Workaround: Use low-level recording.

Chapter 27 • Siebel Add-in - Quick Reference

467

➤ The appointment calendar object can be recorded only if the ActiveX
Add-in is enabled.

➤ If you record the creation of a new appointment in an appointment
calendar, the test or business component may fail when you run it.

Workaround: Manually add an onkeypress FireEvent to the WebElement
before the Set step.

➤ The Active Screen is empty for steps recorded on pop-up tables.

➤ Inner objects that are placed in cells of a SiebList object cannot be
accessed in the standard way, even if they are recorded. This may cause
the following limitations:

➤ The entire SiebList object is highlighted if the test or business
component script line contains an operation on a SiebList inner
object.

➤ The ChildObjects method for SiebList objects returns 0.

➤ The Add Objects option in the Object Repository window cannot be
used to add SiebList inner objects to the object repository.

➤ If a warning message opens while recording your test or business
component, for example, if you insert invalid data, UFT may record these
operations in the incorrect order.

Workaround: Manually change the order of the steps in your test after
recording.

➤ Context-sensitive help (F1 Help) may not be available for Siebel 7.7.x or
later objects and/or methods that were added by Siebel after the UFT
11.50 release. In addition, auto-documentation (in the Keyword View
Documentation column) and step documentation (in the Step Generator)
may not be available for these objects and/or methods.

Siebel 7.0.x and 7.5.x

Creating and Running Testing Documents

➤ UFT does not support recording on Siebel applications using keyboard
shortcuts.

Workaround: Use the mouse to record on Siebel applications.

Chapter 27 • Siebel Add-in - Quick Reference

468

➤ UFT does not record the scrolling of a set of records in an SblTable.

Workaround: While recording, scroll the table row by row.

Tip: You can use the Editor to manually edit the statement to scroll
multiple rows.

➤ By default, UFT does not record Editor control operations (used mainly in
long Description fields).

Workaround: Use low-level recording, making sure you record the
scrolling to the control if needed.

Working with Siebel Controls

➤ When you click the Search icon for the first time during a browser
session, a frame opens that is different from all other search frames. When
running test iterations, the correct frame may not be identified.

Workaround: Close the browser at the end of every iteration.

➤ Each Siebel version includes changes/modifications to the user interface.
As a result, steps created on previous Siebel versions on elements that no
longer exist in the interface will probably fail and should be replaced.

For example, the button arrow used to view the next set of records on the
top line of the Siebel table that appears in earlier versions of Siebel was
replaced in Siebel version 7.5.2 with a scroll bar at the side of the table. In
this case, replace Image("Next Record").Click with an operation on the
scroll bar.

➤ The name of the first column in an SblTable object cannot be retrieved.

Workaround: Use the column index to perform the operation on the cells
in the first column.

Chapter 27 • Siebel Add-in - Quick Reference

469

Standard-Interactivity (SI) Applications

➤ In some SI application dialog boxes, in cases where selecting a check box
causes a navigation to occur (for example, in a check box table column,
such as the New column), UFT may not record the subsequent steps or
may record them inaccurately.

Workaround: To continue recording accurately, click anywhere in the
page before the next operation.

➤ When recording on a Currency Calculator pop-up control, clicking OK
immediately after entering a currency value may result in a recording
error.

Workaround: Before clicking OK in a Currency Calculator pop-up control
within a SblAdvancedEdit object, select another control within the
pop-up and click OK.

High-Interactivity (HI) Applications

➤ Depending on your browser's security settings and the Siebel patches that
are installed, several dialog boxes may open when logging in to your
Siebel application. It is recommended to run tests or business components
when all required Siebel patches are downloaded and installed. If for
some reason, you cannot do this, manually delete the Sync steps added
between the steps recorded on the security alerts.

➤ UFT cannot record a SblTable.Sort operation if it is the first operation
inside an MVG (Multi-Value Group) applet.

Workaround: Click anywhere in the MVG applet and then sort it.

➤ When recording on a SblAdvancedEdit object that opens a pop-up object,
UFT records only the Set method and does not record the operations
within the pop-up object. However, if you open a table from the pop-up
object, UFT does record the operations performed within this secondary
table. These statements are not required in the test or business
component, since the operation of inserting the Pickup table selected
item into the main table is also recorded. In some cases, these redundant
statements interfere with the run session.

Workaround: If the test or business component does not run as expected,
delete the statements recorded on secondary tables opened from a pop-up
object.

Chapter 27 • Siebel Add-in - Quick Reference

470

➤ When adding an attachment to a Siebel table, UFT records additional
statements that may interfere with the run session.

Workaround: After recording, delete the OpenCellElement and Add
statements that were recorded when you added an attachment.

➤ When inserting a value into a Siebel table cell using the Currency
Calculator control, UFT may record a new SelectCell step before the
SetCellData if you move the cursor to another cell before clicking in the
cell in which you entered a value.

Workaround: While recording, always close the Currency Calculator by
pressing the ENTER key. If, for some reason, the Currency Calculator was
not closed using the ENTER key, you can manually change the order
between the SetCellData and SelectCell steps.

471

28
Siebel Add-in - Testing and Configuration

This chapter includes:

Concepts

➤ Siebel Add-in - Overview on page 472

➤ Siebel Test Object Model - Overview on page 473

➤ Siebel Add-in - Checkpoints and Output Values on page 476

➤ Siebel 7.7.x or Late - Test Automation Module Configuration on page 479

Tasks

➤ How to Define Environment Variables for Siebel Applications on page 482

➤ How to Upgrade Tests Created with Version 6.5 of the Siebel Add-in
on page 483

Reference

➤ Siebel Tab (Record and Run Settings Dialog Box) on page 485

Chapter 28 • Siebel Add-in - Testing and Configuration

472

Concepts

Siebel Add-in - Overview

The Siebel eBusiness platform is widely used in many organizations for their
business process applications. UFT can create and run tests and business
components on these applications using special test objects and operations
(methods and properties) that are customized for Siebel.

The customized Siebel test objects, methods, and properties make scripts
simpler to read, maintain, enhance, and parameterize, enabling both
advanced and novice users to create sophisticated tests and business
components on Siebel applications.

UFT supports testing on both standard-interactivity and high-interactivity
Siebel applications:

➤ Standard-interactivity applications download data as it becomes
necessary. This interface is designed for users accessing the application
from outside the corporate network.

➤ High-interactivity applications download the majority of the required
data at one time, requiring fewer navigations. This interface is designed
for heavy use, for example, by call centers.

Note: Tests created in earlier versions of the Siebel Add-in can be opened in
Unified Functional Testing Siebel Add-in. The Siebel Add-in provides an
option to convert the test’s old record and run settings to the new version
settings automatically. In addition, the naming convention for Siebel test
objects has been modified for Unified Functional Testing Siebel Add-in. For
details, see "How to Upgrade Tests Created with Version 6.5 of the Siebel
Add-in" on page 483.

Chapter 28 • Siebel Add-in - Testing and Configuration

473

Siebel Test Object Model - Overview

The Siebel test object model is comprised of two different groups of test
objects: test objects with the prefix Sbl and test objects with the prefix Sieb.
If you are recording on a Siebel 7.0.x or 7.5.x application, UFT learns only
Sbl test objects. If you are learning objects on a Siebel 7.7.x or later
application, UFT may learn only Sieb test objects or a combination of Sbl
and Sieb test objects, depending on the way in which your Siebel
application was implemented.

For details on each of the Siebel test objects, see the Siebel section of the
HP Unified Functional Testing Object Model Reference.

When you perform an operation on your Siebel application while recording
a test or business component, UFT:

➤ identifies the object on which you performed the operation and creates
the appropriate test object in the test or business component.

➤ reads the current value of the object’s properties in your application and
stores them in the object repository as the test object’s property values.

➤ chooses a unique name for the test object, generally using the value of
one of its prominent properties.

➤ records the operation (method) that you performed on the object and
displays the operation as a step in the Keyword View and as a statement
in the Editor.

For example, suppose you select a check box for a specific account on a page
of your Siebel application. This check box has the label Competitor.

UFT identifies the check box as a SiebCheckbox object. It creates a
SiebCheckbox test object with the name Competitor and records the
following properties and values as the description for the Competitor
SiebCheckbox.

Chapter 28 • Siebel Add-in - Testing and Configuration

474

It also records that you performed a SetOn method to select the
SiebCheckbox object.

UFT displays your step in the Keyword View like this:

UFT displays your step in the Editor like this:

When you run a test or business component, UFT identifies each object in
your application by its test object class and its description: the set of
identification properties and values used to uniquely identify the object. In
the above example, during the run session, UFT searches the object
repository for the SiebCheckbox object named Competitor to look up its
description. Based on the description it finds (repositoryname = Competitor
and classname = SiebCheckbox), UFT searches the application for a
SiebCheckbox object named Competitor. When it finds the object, UFT
performs the SetOn method on the object to select the check box.

This section also includes:

➤ "Recording Steps on Siebel Objects" on page 474

➤ "Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications"
on page 475

Recording Steps on Siebel Objects
When you record an operation on a Siebel object, UFT inserts a step with the
relevant Siebel object in the Keyword View and adds the corresponding
statement in the Editor.

SiebApplication("Siebel Call Center").SiebScreen("Accounts").
SiebView("Account Details").SiebApplet("Account").
SiebCheckbox("Competitor").SetOn

Chapter 28 • Siebel Add-in - Testing and Configuration

475

For example, if you select an item from a list, the Keyword View may be
displayed as follows:

UFT records this step in the Editor as:

Tip: It is recommended to log out of your Siebel application at the end of the
recording session before closing the browser.

If you have the Siebel Add-in installed, you can use UFT to generate an
object repository for your application. For details, see Chapter 29, "Siebel
Test Express."

Native Operations and Properties in Siebel 7.0.x and
7.5.x Applications
In addition to the Siebel-specific test objects and operations, you can also
use the Object property to access native (internal) operations and properties
of the HTML or ActiveX elements that wrap Siebel objects. The Object
property is available for all Siebel 7.0.x and 7.5.x objects.

Tip: You can use the Object Spy to view the native operations and properties
of an object in your application.

SiebApplication("Siebel Call Center").SiebScreen("Accounts").
SiebView("Account Details").SiebApplet("Account").
SiebPicklist("Account Type").Select "Consultant"

Chapter 28 • Siebel Add-in - Testing and Configuration

476

The Object property is also useful for checking the value of properties that
are not available using a standard Siebel checkpoint.

The following example uses the Object property to access the raw HTML
element that represents the SblTabStrip object, retrieve its HTML tag name
and size, and display this information in message boxes.

Note: Relying on native properties may be problematic if you are upgrading
your Siebel application to a newer version, in which objects may have a
different structure. For example, the conversion of HTML objects to ActiveX
objects in the Internet Explorer Option Pack.

For details on using the Object property, see the HP Unified Functional Testing
User Guide.

Siebel Add-in - Checkpoints and Output Values

After you create your test or business component, you can enhance it by
adding checkpoints, retrieving output values, parameterizing values, and
inserting Siebel objects, methods and properties.

You check most Siebel objects or output their property values in the same
way as you do for other objects supported by UFT, with exceptions for
SblTable objects and Sieb tabular test objects.

set obj = Browser("Siebel Call").Page("Siebel Call").Frame("Siebel Call").
SblTabStrip("ScreenTabStrip").Object
msgbox obj.tagName
msgbox obj.height
msgbox obj.width

Chapter 28 • Siebel Add-in - Testing and Configuration

477

Considerations - Siebel Add-in Checkpoints and Output Values

➤ You check SblTable objects and output their values in the same way as
you do for other table objects supported by UFT—using the Table
Checkpoint Properties dialog box or Table Output Value Properties dialog
box—with the following differences:

➤ In Siebel 7.0.x or 7.5.x high-interactivity applications, you must have
your Siebel application open to the page that contains the table while
creating a table checkpoint or output value.

When creating table checkpoints or output values, do not include the
header line of the SblTable object when selecting cells to check or
output. To clear the selection in this first row of cells, double-click row
heading 1 to the left of the table.

Tip: When working with SblTable objects, you can spool all of the
visible data from a table into an external file. For details, see "Spooling
Data from a Siebel Table" on page 478.

➤ Specific test objects in Siebel 7.7.x applications (with Sieb prefixes)
have tabular characteristics. UFT treats Sieb tabular test objects as
table-type objects and enables you to check both their content and/or
their identification properties. You can also output content and/or
identification property values for use in your test or business
component. The following Sieb test objects have tabular
characteristics: SiebCommunicationsToolbar, SiebList, SiebMenu,
SiebPageTabs, SiebPDQ, SiebPicklist, SiebScreenViews, SiebThreadbar,
SiebToolbar, and SiebViewApplets.

Tip: When working with Sieb tabular objects, you can spool all of the
visible data from the object into an external file. For details, see
"Spooling Data from a Siebel Table" on page 478.

Chapter 28 • Siebel Add-in - Testing and Configuration

478

➤ When testing high-interactivity applications:

➤ If the Sieb tabular object is not open in your Siebel application when
you create a checkpoint, the Table Checkpoint Properties dialog box
contains only the Properties tab and the option to select which type of
information to check (content or properties) is disabled.

➤ If the Sieb tabular object is not open in your Siebel application when
you create the output value, the Table Output Value Properties dialog
box contains only the Properties tab, and the option to select which
type of information to output (content or properties) is disabled.

➤ If you want to access an inner object contained in a SiebList object, hold
the CTRL key while you click the SiebList object with the pointing hand
mechanism.

Spooling Data from a Siebel Table

If you want to spool all the visible data from a SblTable or a Sieb tabular
object (such as a SiebList object) into an external file, you can loop through
each cell in the table and then save the information to an external file.

The following example uses the GetCellData method to list the data of each
cell in a SblTable object with 10 rows and 10 columns:

For i=0 to 10
For j=0 to 10

Dat=Browser("Siebel eChannel").Page("Siebel eChannel_8").
Frame("Campaign Explorer").SblTable("Campaign").
GetCellData (i, j)
SaveToExternalFile (Dat)

Next
Next

Chapter 28 • Siebel Add-in - Testing and Configuration

479

The following example uses the RowsCount and ColumnsCount methods to
list the data of each cell in a SiebList object:

For details on the GetCellData, RowsCount, and ColumnsCount methods,
see the Siebel section of the HP Unified Functional Testing Object Model
Reference.

Siebel 7.7.x or Late - Test Automation Module
Configuration

UFT support for Siebel 7.7.x or later applications is based on the Siebel Test
Automation API (SiebelAx_Test_Automation_18306.exe). Before you can
create or run tests or business components on your Siebel 7.7.x or later
application, you must modify the Siebel Test Automation module
configuration and instruct your Siebel application to generate test
automation information.

You do not need to make any configuration changes in Siebel 7.0.x and
7.5.x applications to create and run tests or business components on these
Siebel application versions.

RowsCount = SiebApplication("Siebel Call Center").
SiebScreen("Accounts").SiebView("My Accounts").
SiebApplet("Accounts").SiebList("List").RowsCount

ColsCount = SiebApplication("Siebel Call Center").
SiebScreen("Accounts").SiebView("My Accounts").
SiebApplet("Accounts").SiebList("List").ColumnsCount

For i=0 to RowsCount-1
For j=0 to ColsCount-1

ColumnName = SiebApplication("Siebel Call Center").
SiebScreen("Accounts").SiebView("My Accounts").
SiebApplet("Accounts").SiebList("List").
GetColumnRepositoryNameByIndex(j)

Dat=SiebApplication("Siebel Call Center").SiebScreen("Accounts").
SiebView("My Accounts").SiebApplet("Accounts").
SiebList("List").GetCellText(ColumnName,i)
SaveToExternalFile (Dat)

Next
Next

Chapter 28 • Siebel Add-in - Testing and Configuration

480

To test your Siebel 7.7.x or later application using the Siebel Add-in, you
must confirm that your Siebel server has the Siebel Test Automation module
installed and correctly configured to perform test automation. For detailed
information, see the section that describes how to set up your functional
testing environment in Testing Siebel eBusiness Applications Version 7.7,
provided with your Siebel installation.

Generating Test Automation Information - Siebel Application

To create and run tests or business components on your Siebel 7.7.x or later
application, you must instruct the Siebel Web Engine (SWE) to generate test
automation information for the Siebel application, using a SWE command.
To do so, append the SWECmd=AutoOn token to the URL of your Siebel
server. For example: http://hostname/callcenter/start.swe?SWECmd=AutoOn. If
you do not append this token, the SWE does not generate test automation
information.

If you select the Open the following application when a record or run
session begins option in the Siebel tab of the Record and Run Settings dialog
box, UFT automatically appends the Siebel Test Automation information to
the URL (you do not need to specify it manually in the URL). For details on
the Record and Run Settings dialog box options, see "How to Define
Environment Variables for Siebel Applications" on page 482.

Note: If a session timeout error occurs in your Siebel 7.7.x or later
application, the Siebel Test Automation URL parameter values are not saved.
After you log out and log in again, you must navigate to the correct URL
that contains the required Siebel Test Automation parameter values
(including password parameter values, if any—see below).

Chapter 28 • Siebel Add-in - Testing and Configuration

481

Generating Test Automation Information - Secured Siebel
Application

If a password for generating test automation information is defined on your
Siebel Server, you must also indicate that password in the URL (in addition
to the SWECommand=AutoOn token described above). The URL token is in
the format AutoToken=password. For example: http://hostname/callcenter/
start.swe?SWECmd=AutoOn&AutoToken=mYPass. This enables UFT to run
the Siebel Test Automation API SiebelAx_Test_Automation_18306.exe even
in secure mode.

If a password is defined for the Siebel Server and you do not append this
token to the URL, the SWE does not generate test automation information.

For details on whether your Siebel Server is secured for test automation,
contact your Siebel system administrator.

If you select the Open the following application when a record or run
session begins option in the Siebel tab of the Record and Run Settings dialog
box, click the Advanced button, and specify the password in the Siebel
automation access code box in the Advanced Siebel Record and Run
Settings dialog box, UFT automatically appends the password information
to the URL (you do not need to specify it manually in the URL). For details
on the Record and Run Settings dialog box options, see "How to Define
Environment Variables for Siebel Applications" on page 482.

Chapter 28 • Siebel Add-in - Testing and Configuration

482

Tasks

How to Define Environment Variables for Siebel
Applications

Note:

➤ If you define any of these environment variables, it overrides the
corresponding values in the Siebel tab of the Record and Run Settings
dialog box (for tests), the Applications pane in the Business Component
Settings dialog box (for components), or the Applications pane in the
application area’s Additional Settings pane (for application areas).

➤ For details on defining and working with environment variables, see
"Environment Variables in Record and Run Settings" on page 37.

Use the variable names listed in the following table to define Siebel
application details:

Option Variable Name Description

Siebel version APPLICATION_ENV The Siebel version for the
applications on which you want
to record your test or business
component.

Possible values:
77
7075

This option is available for tests
and business components.

Address URL_ENV The URL of the application you
want to open. This option is
available only for tests.

Chapter 28 • Siebel Add-in - Testing and Configuration

483

How to Upgrade Tests Created with Version 6.5 of the
Siebel Add-in

The first time you open a test that was created in an earlier version of the
Siebel Add-in, a message opens asking whether you want to convert the
record and run settings to the appropriate settings automatically.

This is because in Siebel Add-in 6.5, the record and run settings were defined
in the Web tab of the Record and Run Settings dialog box, and now they
need to be defined in the Siebel tab of the Record and Run Settings dialog
box.

Auto-login AUTO_LOGIN_ENV Indicates whether to
automatically log in to the
application to open. This option
is available only for tests.

Possible values:
True | False

User USER_NAME_ENV The user name used to log in to
the application to open. This
option is available only for tests.

Password PASSWORD_ENV The encrypted password for the
application to open. This option
is available only for tests.

Log out of the
application when
the test closes

LOGOUT_ENV Indicates whether to
automatically log out of the
application when the test closes.
This option is available only for
tests.

Possible values:
True | False

Option Variable Name Description

Chapter 28 • Siebel Add-in - Testing and Configuration

484

Select one of the following:

➤ Yes. Converts the record and run settings for the test automatically.

➤ No. Leaves the settings as they are.

If you select Yes, the following settings are modified in the Siebel tab of the
Record and Run Settings dialog box:

➤ The Siebel version is set as Siebel eBusiness 7.0/7.5.

➤ The browser settings and/or URL that were defined in the Web tab are
transferred to the Siebel tab.

➤ The Web Add-in is removed from the list of add-ins associated with the
test.

Note: If you choose not to convert the settings automatically, or if you
choose to convert the settings but do not save the test before closing it, the
message asking if you want to convert the settings is not displayed the next
time you open the test. You can manually change the settings for a test at
any time in the Siebel tab of the Record and Run Settings dialog box.

For user interface details of the Siebel tab of the Record and Run Settings
dialog box, see "Siebel Tab (Record and Run Settings Dialog Box)" on
page 485.

Chapter 28 • Siebel Add-in - Testing and Configuration

485

Reference

Siebel Tab (Record and Run Settings Dialog Box)

This tab enables you to define how UFT starts recording and running tests
on Siebel objects.

Chapter 28 • Siebel Add-in - Testing and Configuration

486

To access Select Record > Record and Run Settings and select the Siebel tab.

Note: The Record and Run Settings dialog box opens
automatically each time you begin recording a new test (unless
you open the dialog box and set your preferences manually before
you begin recording).

Important
information

➤ If you have tests that were last modified using the Siebel
Add-in, version 6.5, you need to convert your Record and Run
Settings to use the Siebel tab instead of the Web tab. For details,
see "How to Upgrade Tests Created with Version 6.5 of the
Siebel Add-in" on page 483.

➤ If you are working with Siebel 7.7.x or later applications,
consider the following:

➤ To test a Siebel 7.7.x or later application, you must open the
Siebel application with Siebel Test Automation loaded, by
specifying additional URL parameter values. For details, see
"Siebel 7.7.x or Late - Test Automation Module
Configuration" on page 479.

➤ If you select the Open the following application when a
record or run session begins option, UFT automatically
appends the Siebel Test Automation information to the URL
(you do not need to specify it manually in the URL). If you
select to record and run on any open browser, you must
specify the required parameter values as part of the
application URL when you open the application.

➤ If you select the Open the following application when a
record or run session begins option, and specify the
password in the Siebel automation access code box in the
Advanced Siebel Record and Run Settings dialog box, UFT
automatically appends the password information to the
URL. You do not need to specify it manually in the URL. If
you select to record and run on any open browser, or do not
specify the password in the Advanced Siebel Record and Run
Settings dialog box, you must specify the required password
values as part of the application URL when you open the
application.

➤ If a session timeout error occurs in your Siebel 7.7.x or later
application, the Siebel Test Automation URL parameter
values are not saved. After you log out and log in again, you
must navigate to the correct URL that contains the required
Siebel Test Automation parameter values.

Chapter 28 • Siebel Add-in - Testing and Configuration

487

User interface elements are described below:

Relevant
tasks

➤ "How to Define Environment Variables for Siebel Applications"
on page 482

➤ "How to Upgrade Tests Created with Version 6.5 of the Siebel
Add-in" on page 483

See also ➤ "Considerations - Siebel Add-in" on page 464

➤ "How to Define Record and Run Settings for UFT Add-ins" on
page 41

UI Elements Description

Siebel version Specifies the Siebel version for the applications on
which you want to record your test. The version that
you choose remains selected for all subsequent tests.

You can use an environment variable to specify the
Siebel version. For details, see "How to Define
Environment Variables for Siebel Applications" on
page 482.

Record and run tests on
any open browser

Instructs UFT to use any Internet Explorer browser to
record and run the test.

UFT can record and run only browsers that are opened
after UFT is opened. If you are using Siebel 7.7.x or
later, make sure you specify the required test
automation parameters, as described in "Siebel 7.7.x
or Late - Test Automation Module Configuration" on
page 479.

Open the following
application when a
record or run session
begins

Instructs UFT to open the specified application when
record or run sessions begin.

Chapter 28 • Siebel Add-in - Testing and Configuration

488

Address

(Enabled only when
"Open the following
application when a
record or run session
begins" is selected)

Instructs UFT to open Internet Explorer to the
specified URL. Recommended format: <host>/
<application name>/start.swe

Example: siebapp/callcenter_enu/start.swe

You can use an environment variable to specify the
URL. For details, see "How to Define Environment
Variables for Siebel Applications" on page 482.

Auto-login

(Enabled only when
"Open the following
application when a
record or run session
begins" is selected)

Instructs UFT to open the specified Siebel application
using the specified login details.

You can use an environment variable to specify the
Auto-login setting. For details, see "How to Define
Environment Variables for Siebel Applications" on
page 482.

User

(Enabled only when
Auto-login is selected)

The user name used to log in to the specified
application.

You can use an environment variable to specify the
user name. For details, see "How to Define
Environment Variables for Siebel Applications" on
page 482.

Password

(Enabled only when
Auto-login is selected)

The password for the specified user name.

You can use an environment variable to specify the
password. For details, see "How to Define
Environment Variables for Siebel Applications" on
page 482.

Log out of the
application when the
test closes

(Enabled only when
Auto-login is selected)

Instructs UFT to log out of the specified application
automatically when the test closes. Any other Siebel
sessions that were opened before, during, or after the
test run are not affected.

You can use an environment variable to specify the
Log out setting. For details, see "How to Define
Environment Variables for Siebel Applications" on
page 482.

UI Elements Description

Chapter 28 • Siebel Add-in - Testing and Configuration

489

Close the browser when
the test closes

(Enabled only when
"Open the following
application when a
record or run session
begins" is selected)

Instructs UFT to close the opened browser when the
test closes. Any other browsers that were opened
before, during, or after the test run are not affected.

Advanced

(Enabled only when
"Siebel version 7.7 and
later" and "Open the
following application
when a record or run
session begins"
are selected)

Opens the Advanced Siebel Record and Run Settings
dialog box, where you can specify the following
options:

➤ Siebel automation request timeout. The timeout
period (in seconds) for each attempt to connect to
Siebel Test Automation when running the test.
Default: 120 seconds.

➤ Siebel automation access code. The predefined
security code required to enable access to Siebel
Test Automation, if specified by your organization’s
access security policy.

UI Elements Description

Chapter 28 • Siebel Add-in - Testing and Configuration

490

491

29
Siebel Test Express

This chapter includes:

Concepts

➤ Using Siebel Test Express to Generate or Update Shared Object
Repositories on page 492

Tasks

➤ How to Use Siebel Test Express to Generate or Update a Shared Object
Repository on page 493

Reference

➤ Create Object Repository Wizard on page 496

Chapter 29 • Siebel Test Express

492

Concepts

Using Siebel Test Express to Generate or Update Shared
Object Repositories

If the Siebel Add-in is installed on UFT, you can use Siebel Test Express to
automatically generate a new shared object repository, or to update an
existing object repository.

You can create new shared object repositories using the Create Object
Repository Wizard. Using the wizard you can select the applications or
top-level application objects for which to create an object repository. Siebel
Test Express scans the Siebel application and creates test objects for every
child object contained in the applications or top-level objects that you
specify. After you have created the shared object repository, you can save it
to the file system or to an ALM project using the Object Repository Manager.

You can also use Siebel Test Express to update an existing object repository.
The Update Object Repository Wizard enables you to select the applications
or top-level objects to include in the update, as well as the date from which
to search for and include new or modified objects. The date refers to when
the objects were last added or modified in the object repository.

After you update an object repository, the Object Repository Merge Tool
merges the new and modified objects with objects from your existing object
repository.

This chapter explains how to create or update an object repository using
Siebel Test Express. For details on working with object repositories in
general, see the HP Unified Functional Testing User Guide.

For details on creating and updating object repositories using Siebel Test
Express, see "How to Use Siebel Test Express to Generate or Update a Shared
Object Repository" on page 493.

For details on the Create / Update Object Repository wizard, see "Create
Object Repository Wizard" on page 496.

Chapter 29 • Siebel Test Express

493

Tasks

How to Use Siebel Test Express to Generate or Update a
Shared Object Repository

This task describes how to use Siebel Test Express to generate a new shared
object repository for a Siebel application or to update an existing shared
object repository.

This task includes the following steps:

➤ "Prerequisites" on page 493

➤ "Create or update a shared object repository" on page 493

➤ "(Optional) Use the Object Repository Merge Tool to merge the updated
Siebel object repository" on page 494

➤ "Save the shared object repository" on page 495

 1 Prerequisites

➤ To successfully run Siebel Test Express, the Siebel Add-in must be
installed and loaded.

➤ Siebel Test Express supports Siebel 7.7 or later high-interactivity
applications that are based on the Siebel Test Automation API.

➤ To work with Siebel Test Express in UFT, ensure that the Siebel Test
Automation API version installed on your server is one that supports
Siebel Test Express.

 2 Create or update a shared object repository

 a Select Resources > Object Repository Manager. The Object Repository
Manager opens.

 b (Optional) To update an existing object repository, open the object
repository file you want to update in editable format.

Chapter 29 • Siebel Test Express

494

Note: By default, the object repository file opens in read-only mode.
To open it in editable format, either clear the Open in read-only mode
check box in the Open Shared Object Repository window, or enable
editing by selecting File > Enable Editing after you open the repository.

 c Open the Create Object Repository Wizard, as described in "Create
Object Repository Wizard" on page 496.

 d Follow the steps of the wizard to create the new shared object
repository. The wizard contains the following pages:

➤ "Connection Information Page (Create Object Repository Wizard)"
on page 497

➤ "Screen Selection Page (Create / Update Object Repository Wizard)"
on page 499

➤ "Importing Test Objects Page (Create Object Repository Wizard)" on
page 501

➤ "Object Repository Created / Updated Page (Create / Update Object
Repository Wizard)" on page 503

After the import process ends, the Object Repository Merge Tool opens.
This may take a few minutes.

 3 (Optional) Use the Object Repository Merge Tool to merge
the updated Siebel object repository

Conflicts between objects in the primary and secondary repository files
are resolved automatically by the Merge Tool according to the default
resolution settings. After the merge, the Merge Tool displays the Statistics
dialog box, which lists the files that were merged, and the number and
type of any conflicts that were resolved during the merge. You can accept
or modify these resolutions to match your needs.

For details on working with the Object Repository Merge Tool, see the
HP Unified Functional Testing User Guide.

Chapter 29 • Siebel Test Express

495

 4 Save the shared object repository

Save the shared object repository to the file system or to an ALM project.
For details on working with or saving shared object repositories, see the
section on the Object Repository Manager in the HP Unified Functional
Testing User Guide.

Chapter 29 • Siebel Test Express

496

Reference

Create Object Repository Wizard

This wizard enables you to create or update a shared object repository using
Siebel Test Express.

To access In the Object Repository Manager (Resources > Object
Repository Manager), do one of the following:

To create a new object repository:
➤ Click the Create Object Repository button on the

Object Repository Manager toolbar.

➤ Select Tools > Siebel Test Express > Create Object
Repository.

To update an existing object repository:
➤ Click the Update Object Repository button on the

Object Repository Manager toolbar.

➤ Select Tools > Siebel Test Express > Update Object
Repository.

Important
information

You can run only one instance of the Create / Update
Object Repository Wizard on a computer at any given
time.

Relevant tasks "How to Use Siebel Test Express to Generate or Update a
Shared Object Repository" on page 493

Wizard map This wizard contains:

Connection Information Page (Create Object Repository
Wizard) (page 497) > Screen Selection Page (Create /
Update Object Repository Wizard) (page 499) >
Importing Test Objects Page (Create Object Repository
Wizard) (page 501) > Object Repository Created /
Updated Page (Create / Update Object Repository Wizard)
(page 503)

See also "Using Siebel Test Express to Generate or Update Shared
Object Repositories" on page 492

Chapter 29 • Siebel Test Express

497

Connection Information Page (Create Object
Repository Wizard)
This wizard page enables you to enter the connection information for
logging in to the Siebel server.

Important
information

➤ General information about the wizard is available
here: "Create Object Repository Wizard" on page 496

➤ The information you enter on this page is saved as
metadata in the generated object repository file.

➤ If you are creating a new repository, the information
that was entered in this page the last time you used
the wizard is automatically entered in this page.

➤ If you are updating the repository, the information
that was saved as metadata with the repository file is
automatically entered in this page.

➤ The data required in this page is not necessarily the
same as the data you use to log into the Siebel
application as a user. Contact your Siebel server
administrator for details.

➤ While the Connection Information page is open, you
cannot make the Object Repository Manager or UFT
window active.

Wizard map The Create Object Repository Wizard contains:

Connection Information Page (Create Object Repository
Wizard) > Screen Selection Page (Create / Update Object
Repository Wizard) (page 499) > Importing Test Objects
Page (Create Object Repository Wizard) (page 501) >
Object Repository Created / Updated Page (Create /
Update Object Repository Wizard) (page 503)

See also ➤ "How to Use Siebel Test Express to Generate or Update
a Shared Object Repository" on page 493

➤ "Using Siebel Test Express to Generate or Update
Shared Object Repositories" on page 492

Chapter 29 • Siebel Test Express

498

User interface elements are described below:

UI Element Description

Server URL The URL of the Siebel server (including http://).

User name Your user name.

Password Your password.

Database name The name of the Siebel database.

Table owner The table owner you want to use for the specified Siebel
database.

Siebel repository
(optional)

The name of the Siebel repository. If you do not enter a
name, Siebel will use a default name.

Chapter 29 • Siebel Test Express

499

Screen Selection Page (Create / Update Object
Repository Wizard)
This wizard page enables you to select the test objects whose children you
want to import. You can select the applications for which to create the
object repository, or you can expand the application node and then select
one or more top-level objects. It is recommended to select only the top-level
objects that you need. Importing an entire application may take a very long
time.

Important
information

➤ General information about the wizard is available
here: "Create Object Repository Wizard" on page 496.

➤ While the Screen Selection page is open, you cannot
make the Object Repository Manager or UFT window
active.

➤ When Siebel Test Express creates the object repository,
it imports the metadata and creates test objects for all
children (descendants) of the applications or top-level
objects you select in this page. Therefore, it is
recommended to select only the top-level objects that
you need. Importing an entire application may take a
very long time.

Wizard map The Create Object Repository Wizard contains:

Connection Information Page (Create Object Repository
Wizard) (page 497) > Screen Selection Page (Create /
Update Object Repository Wizard) > Importing Test
Objects Page (Create Object Repository Wizard)
(page 501) > Object Repository Created / Updated Page
(Create / Update Object Repository Wizard) (page 503)

See also ➤ "How to Use Siebel Test Express to Generate or Update
a Shared Object Repository" on page 493

➤ "Using Siebel Test Express to Generate or Update
Shared Object Repositories" on page 492

Chapter 29 • Siebel Test Express

500

User interface elements are described below (unlabeled elements are shown
in angle brackets):

UI Elements Description

<test object tree> The list of all the available applications and their objects,
according to the connection information entered in the
Connection Information Page (Create Object Repository
Wizard), displayed as nodes in a tree.

Note (updating an object repository):

➤ If the last used profile from a previous import
operation was saved, the profile is loaded, and you can
edit the selected options, as required. The new
selections are saved in the profile to be used for future
import operations on the same object repository.

➤ If you select objects other than the ones that were
imported in the previous wizard session, then only
objects modified since the selected date are imported.

Import only objects
modified since
(Update Object
Repository Wizard
only)

 The date in which the last import was performed. You
can keep the displayed date or select a new date by
clicking the drop-down arrow, and select the date from
the displayed calendar. All objects modified before the
selected date are ignored during the import process.
Using this option can speed up the importing process.

Chapter 29 • Siebel Test Express

501

Importing Test Objects Page (Create Object Repository
Wizard)
This wizard page shows the progress of the import process. The number
imported indicates the number of applet objects that have already been
imported, including all child objects of that applet.

Important
information

➤ General information about the wizard is available
here: "Create Object Repository Wizard" on page 496.

➤ Importing into the object repository can take up to
several hours, depending on the size of the repository.

➤ At the same time that the wizard imports the objects,
it is also retrieving information about the total
number of applets it needs to import. While the
wizard is retrieving this information, the total number
changes and the words at least show that the wizard is
still retrieving information. When the total number is
known, the words at least are no longer displayed.

➤ You can work in either the Object Repository Manager
or UFT while the wizard is generating the object
repository. However, do not close either window. If
you do try to close either window, a message is
displayed, warning that the object repository
generation process will be stopped and all data will be
lost.

➤ If you are using the wizard to update an object
repository, that object repository file is locked and you
cannot modify it in the Object Repository Manager.

➤ During the import process, you can cancel the
operation if required. If you cancel the operation, a
message is displayed notifying you that stopping the
import process will result in an incomplete object
repository. You can then select whether to keep,
discard, or continue importing test objects into the
partial object repository.

Chapter 29 • Siebel Test Express

502

Wizard map The Create Object Repository Wizard contains:

Connection Information Page (Create Object Repository
Wizard) (page 497) > Screen Selection Page (Create /
Update Object Repository Wizard) (page 499) >
Importing Test Objects Page (Create Object Repository
Wizard > Object Repository Created / Updated Page
(Create / Update Object Repository Wizard) (page 503)

See also ➤ "How to Use Siebel Test Express to Generate or Update
a Shared Object Repository" on page 493

➤ "Using Siebel Test Express to Generate or Update
Shared Object Repositories" on page 492

Chapter 29 • Siebel Test Express

503

Object Repository Created / Updated Page (Create /
Update Object Repository Wizard)
This wizard page opens after all the objects have been imported, displaying
the total number of objects added or modified in the object repository.

Important
information

➤ General information about the wizard is available
here: "Create Object Repository Wizard" on page 496.

➤ Displaying the new or updated object repository in the
Object Repository Manager may take a few minutes.

➤ If any errors occur during the import process, this page
displays a warning and an Error Log button. The log
contains error and exception data from the Siebel
server, listing the failed calls and the object that
caused the error. You can click the Error Log button to
save the error log. By default, the error log is called
TestExpressErrorLog.xml, and it is saved in the
<Unified Functional Testing>\Tests folder.

Wizard map The Create Object Repository Wizard contains:

Connection Information Page (Create Object Repository
Wizard) (page 497) > Screen Selection Page (Create /
Update Object Repository Wizard) (page 499) >
Importing Test Objects Page (Create Object Repository
Wizard) (page 501) > Object Repository Created /
Updated Page (Create / Update Object Repository
Wizard)

See also ➤ "How to Use Siebel Test Express to Generate or Update
a Shared Object Repository" on page 493

➤ "Using Siebel Test Express to Generate or Update
Shared Object Repositories" on page 492

Chapter 29 • Siebel Test Express

504

Part XIII

Standard Windows Testing Support

506

507

30
Standard Windows Support -
Quick Reference

You can use the standard Windows testing support provided by UFT to test
user-interface objects (controls) developed using the Win32 API or MFC
platforms. UFT standard Windows testing support is built-in and does not
require you to load any UFT add-in.

The following table summarizes basic information about standard Windows
testing support and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type The standard Windows testing support functions like a
Windows-based add-in. Much of its functionality is the
same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117

Important
Information

UFT uses built-in standard Windows testing support and
standard Windows test objects to identify the following:

➤ Objects from other environments if the relevant add-in
is not installed and loaded.

➤ Stingray, VisualAge Smalltalk, and Qt (widget toolkit)
controls when the relevant add-in is installed and
loaded. For details, see the relevant add-in
documentation.

➤ Many windowless objects, if they were developed using
the MSAA (Microsoft Active Accessibility) API. For
example, the controls within the Microsoft Office
ribbons are identified as independent objects.

Chapter 30 • Standard Windows Support -Quick Reference

508

Test Object
Methods and
Properties

Standard Windows testing support provides test objects,
methods, and properties that can be used when testing
objects in standard Windows applications. For more
information, see the Standard Windows section of the
HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Standard Windows" on
page 509

Prerequisites

Opening Your
Application

You can open your standard Windows application before
or after opening UFT.

Standard Windows testing support is always loaded in
UFT. It is therefore not an available option in the Add-in
Manager.

Add-in
Dependencies

None

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Note: UFT recognizes standard Windows objects only in
applications that are opened after changing the settings in
the Windows Applications tab of the Record and Run
Settings dialog box.

Chapter 30 • Standard Windows Support -Quick Reference

509

This chapter includes:

Troubleshooting and Limitations - Standard Windows on page 509

Troubleshooting and Limitations - Standard Windows

This section describes troubleshooting and limitations for working with
Standard Windows test objects.

➤ When recording on WinMenu objects, the Active Screen is not captured.

➤ You cannot insert a checkpoint on a WinMenu object.

Workaround: Use the CheckProperty and CheckItemProperty methods to
check specific property and item property values.

➤ If you record using Windows logo key shortcuts, the recording may be
inaccurate.

Workaround: Use the Start menu instead of the Windows logo key when
recording.

➤ Changing the style of a WinCalendar (from single selection to multi-
selection, for example) will cause the run session to fail.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 30 • Standard Windows Support -Quick Reference

510

➤ When using the pointing hand mechanism from the Object Spy to point
to MFC static text or tab controls, UFT may fail to return the correct
object.

Workaround: Add the object to the object repository. To do this, point to
the object’s parent window, select the parent window object in the Object
Selection dialog box, click OK, and perform one of the following in the
Define Object Filter dialog box:

➤ Select the All object types option to add all of the objects in the parent
window to the object repository.

➤ Select the Selected object types option, click the Select button, and
then select the specific object type(s) you want to add to the object
repository.

After you add the object to the object repository, you can use the
GetROProperty method to retrieve the run-time values of its properties.
For example:
width = Dialog("Login").Static("Agent Name:").GetROProperty("width")
MsgBox width

➤ Checkpoints are not supported for WinComboBox objects of style Simple
ComboBox.

➤ Windowless objects developed using an API other than the MSAA API are
not identified.

➤ The description properties of a windowless control must include the
acc_name property. By default, this property is not available in the list
properties when you add a new test object.

Workaround: Add the acc_name property to the list of properties. To do
this from the Define New Test Object dialog box, in the Test object details
area, click the Add description properties button . In the Add
Properties dialog box, click the Define new property button and add
the acc_name property.

Part XIV

Stingray Add-in

512

513

31
Stingray Add-in - Quick Reference

The following table summarizes basic information about the Stingray
Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

The Unified Functional Testing Stingray Add-in recognizes
and records on supported Stingray Objective Grid and
Stingray Objective Toolkit controls. For details on
supported Stingray environments, see the Stingray Add-in
section of the HP Unified Functional Testing Product
Availability Matrix, available from the UFT Help or the root
folder of the Unified Functional Testing DVD.

Important
Information

"Considerations for Working with the Stingray Add-in" on
page 515

Test Object
Methods and
Properties

The Stingray Add-in uses a sub-set of the standard
Windows test objects, methods, and properties, which can
be used when testing objects (controls) in Stingray
applications. For details, see the Stingray section of the
HP Unified Functional Testing Object Model Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Stingray Add-in" on
page 516

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 31 • Stingray Add-in - Quick Reference

514

Prerequisites

Opening Your
Application

You can open your Stingray application before or after
opening UFT.

Add-in
Dependencies

None

Other You must configure the Stingray Add-in to work with your
application. See "Setting Up Stingray Object Support" on
page 520.

Setting Preferences

Wizard "Stingray Support Configuration Wizard" on page 527

Options Dialog Box ➤ Use the Stingray pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Stingray node.)

See "Stingray Pane (Options Dialog Box)" on page 548.

➤ Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows
Applications node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Notes:

➤ In addition to the settings in the Record and Run
Settings dialog box, you must also configure UFT to
recognize your Stingray applications in the Stingray
pane of the Options dialog box (Tools > Options > GUI
Testing tab > Stingray node). For details, see "Stingray
Pane (Options Dialog Box)" on page 548.

➤ If you select the Record and Run only on radio button in
the Record and Run Settings dialog box, the settings
also apply to (limit) the applications that are recognized
for Object Spy and other pointing hand operations.

Chapter 31 • Stingray Add-in - Quick Reference

515

This chapter includes:

➤ Considerations for Working with the Stingray Add-in on page 515

➤ Troubleshooting and Limitations - Stingray Add-in on page 516

Considerations for Working with the Stingray Add-in

UFT stores Stingray support configuration for each configured Stingray
application separately. By default, UFT uses the latest configured Stingray
agent version for all Stingray applications except those applications that are
already configured.

For example, suppose you have two Stingray applications; application
grid1.exe that uses Stingray Grid control version 9.03, and application
tree1.exe that uses Stingray TreeView control version 11.00.

You can configure UFT to support both applications as follows:

 1 Run the Stingray Support Configuration Wizard and configure support for
the grid1.exe application. UFT saves the configuration for this application.

 2 Run the Stingray Support Configuration Wizard again and configure
support for the tree1.exe application. UFT saves the configuration for this
application.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, click Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 31 • Stingray Add-in - Quick Reference

516

After performing these steps, UFT will support the grid1.exe application
and support all Stingray applications that have Stingray TreeView controls
version 11.00, including the tree1.exe application.

Troubleshooting and Limitations - Stingray Add-in

This section describes troubleshooting and limitations for the Stingray
Add-in.

General

➤ Applying Stingray Support Configuration settings to all users on the
computer has no effect on users that have opened UFT at least once.

Workaround: Apply Stingray Support Configuration settings separately
for each user that has opened UFT at least once.

➤ UFT does not support both Unicode and non-Unicode in the same
application when the Stingray Add-in is loaded.

Creating and Running Tests and Components

➤ If your Stingray application was built using the precompiled agent mode
and you have used the Stingray Support Configuration Wizard at least
once to set a Stingray run-time agent, then recording, learning, or
running steps on the application may fail.

➤ By default, only singlethreaded Stingray applications are supported.

To provide support for multithreaded applications, in UFT, select Tools >
Options > GUI Testing tab > Stingray node. Select the Support
multithreaded Stingray applications check box and click OK. Close and
restart UFT.

For details, see "Stingray Pane (Options Dialog Box)" on page 548.

➤ The Stingray Add-in does not support Objective Edit or Objective Chart
controls.

➤ The ExpandAll method is not supported for Stingray tree controls.

Chapter 31 • Stingray Add-in - Quick Reference

517

➤ Sometimes, the MFC internal map that correlates a window handle of a
control with a Visual C ++ object may not contain an entry for all
Stingray controls. In such cases, the Stingray Add-in may fail to recognize
certain Stingray controls because it relies on this map when retrieving
information from the application.

Workaround: The Stingray Add-in contains an auxiliary mechanism that
serves as a fallback for the lack of MFC map entries in the situation
described above. To activate this mechanism, in UFT, select Tools >
Options > GUI Testing tab > Stingray node. Select the Cache MFC map
check box and click OK. Close and restart UFT.

Note: This mechanism is not activated by default because it imposes some
performance overhead.

➤ When working with nested tab controls, you may need to manually
modify the corresponding entries in the object repository to enable
unique identification. For example, you may need to add an ordinal
identifier to the existing description.

➤ By default, edit boxes, check boxes, and drop-down (combo) lists are
supported when recording on a Stingray grid. Other types of controls
embedded in Stingray grids may be supported partially or may not be
supported at all.

Note: The CGXTabbedComboBox control and the CGXCheckBoxEx
control type are not supported during recording.

Workaround: To work with controls other than the supported ones,
manually add SetCellData statements to your test or business component
(instead of recording user actions inside cells).

➤ GetCellData and SetCellData methods are limited to 3000 characters.

Chapter 31 • Stingray Add-in - Quick Reference

518

➤ By default, only the following grid classes are supported:

➤ CGXBrowserView

➤ CGXBrowserWnd

➤ CGXGridWnd

➤ CGXGridView

➤ CGXGridHandleView

➤ When Stingray tree control items have tooltips, recording the selection of
an item by clicking its label may fail.

Workaround: Select the requested item by performing a click on the
item’s icon.

519

32
Stingray Add-in - Testing and
Configuration

This chapter includes:

Concepts

➤ Setting Up Stingray Object Support on page 520

➤ Stingray Run-time Agent (Agent DLL) on page 521

➤ Stingray Precompiled Agent Mode on page 522

Tasks

➤ How to Set Up Your Stingray Project Using the Precompiled Agent Mode
on page 523

Reference

➤ Stingray Support Configuration Wizard on page 527

➤ Stingray Pane (Options Dialog Box) on page 548

Chapter 32 • Stingray Add-in - Testing and Configuration

520

Concepts

Setting Up Stingray Object Support

Before you begin working, you need to configure the Stingray Add-in to
work with your application. UFT support for Stingray objects is based on an
agent entity that exists in the Stingray application. This agent interacts with
UFT to enable record and run operations. There are two different modes for
establishing the agent entity:

➤ Run-time Agent Mode. UFT injects an agent DLL into the application’s
process during run-time. This is the recommended mode. For details, see
"Stingray Run-time Agent (Agent DLL)" on page 521.

➤ Precompiled Agent Mode. You make slight modifications to your
Visual C++ project in addition to configuring the Stingray Add-in. Use
this mode only if the run-time agent mode is unsuitable or cannot be
used. For details, see "Stingray Precompiled Agent Mode" on page 522.

You choose your preferred mode and configure support for the Stingray
Add-in using the Stingray Support Configuration Wizard. For details, see
"Stingray Support Configuration Wizard" on page 527.

After you configure support for the Stingray Add-in, you can fine-tune the
configuration options, if needed. For details, see "Stingray Pane (Options
Dialog Box)" on page 548.

Chapter 32 • Stingray Add-in - Testing and Configuration

521

Stingray Run-time Agent (Agent DLL)

When you choose the run-time agent mode, UFT injects an agent DLL into
the application’s process during run-time. This recommended mode is
non-intrusive and does not require any modifications to the source code of
the application being tested.

You can use the run-time agent mode only with Stingray applications that
are created with dynamically-linked MFC libraries. You can verify if your
MFC libraries are linked dynamically or statically by launching the Stingray
Support Configuration Wizard. If the wizard identifies that your Stingray
application uses statically-linked MFC libraries, it issues a warning.

The run-time agent mode supports the most commonly used major Stingray
versions, as well as some—but not all—minor versions. For a list of
supported version combinations, see the HP Unified Functional Testing
Product Availability Matrix, available from the UFT Help or the root folder of
the Unified Functional Testing DVD. You can also verify if your Stingray
application version is supported by launching the Stingray Support
Configuration Wizard. If the wizard identifies that your Stingray application
version is not supported, it issues a warning.

Note: The Stingray Add-in is designed to support only applications that are
compiled in Release mode.

If you cannot use the run-time agent mode for any reason, you can still
work with your Stingray application using the precompiled agent mode,
instead. For details, see "Stingray Precompiled Agent Mode" on page 522, or
contact HP Software Support.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 32 • Stingray Add-in - Testing and Configuration

522

Stingray Precompiled Agent Mode

If your application is statically linked with the MFC libraries, you can use
the precompiled agent mode to enable Stingray object support. The
precompiled agent mode requires you to make slight modifications to your
Visual C++ project to enable UFT to support your Stingray application. If
you select the precompiled agent mode in the Stingray Support
Configuration Wizard, you can compile your project using the Stingray
Add-in agent files.

Note: If your Stingray application project was compiled with an earlier
version of the Stingray Add-in agent, your project already contains the
required support code. To take advantage of the latest functionality
provided with this add-in, it is recommended to remove the existing
Stingray Add-in agent files from your project and recompile using the latest
agent files.

Setting up Stingray support using the precompiled agent mode requires
adding one support header file to your application’s Visual C++ project and
copying one library file to your Visual C++ project directory. After you
complete these steps, you can compile your application, as usual.

Note: Use the precompiled agent mode only if the run-time agent mode is
unsuitable or cannot be used.

Chapter 32 • Stingray Add-in - Testing and Configuration

523

Tasks

How to Set Up Your Stingray Project Using the
Precompiled Agent Mode

Note:

➤ Use the precompiled agent mode only if the run-time agent mode is
unsuitable or cannot be used.

➤ For a conceptual overview, see "Stingray Precompiled Agent Mode" on
page 522.

This task includes the following steps:

➤ "Prerequisites" on page 524

➤ "Copy StgAgentLib.h and StgAgentLib.lib files" on page 524

➤ "Add #include "StgAgentLib.h" to a .cpp file" on page 525

➤ "Add the ReleaseWRVC(); function call" on page 526

➤ "Make sure that the Precompiled Agent option is selected in the Stingray
Support Configuration Wizard" on page 526

➤ "Results" on page 526

Chapter 32 • Stingray Add-in - Testing and Configuration

524

 1 Prerequisites

➤ Both Stingray Objective Grid and Stingray Objective Toolkit must be
installed on your computer, even if your application contains only one
type of Stingray control, such as a grid control or a tab control.

➤ The installed versions must match the version combinations
supported for this add-in. For a list of supported version combinations,
see the HP Unified Functional Testing Product Availability Matrix,
available from the UFT Help or the root folder of the Unified
Functional Testing DVD.

Note: If you do not have the required Stingray Objective Grid and
Stingray Objective Toolkit version combination, contact HP Software
Support for assistance.

➤ If your Stingray application was previously compiled with agent files
from an earlier version of the Stingray Add-in, remove the existing
agent files from your project.

Caution: If you choose not to replace your existing Stingray Add-in
agent files with the latest agent files, do not continue with this
procedure. Although you will be able to work with the Unified
Functional Testing Stingray Add-in, you will not be able to take
advantage of the latest functionality.

 2 Copy StgAgentLib.h and StgAgentLib.lib files

 a Copy the StgAgentLib.h header file from <UFT Installation
Folder>\bin\StingrayAgent\AgentLib\src\StgAgentLib.h to your
Visual C++ project directory. (You can optionally add the header file to
the list of header files in your workspace.)

 b Check the version of the Stingray Objective Grid or Stingray Objective
Toolkit used by your application and search for the corresponding
support library file, StgAgentLib.lib.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 32 • Stingray Add-in - Testing and Configuration

525

For example, if your application is not compiled in Unicode and uses
Objective Grid version 9.03 and Objective Toolkit version 8.03 linked
with MFC version 7.1, search for the library file in: <UFT Installation
Folder>
\bin\StingrayAgent\AgentLib\bin\MFC71\OG903_OT803

If the application is linked with MFC80, is compiled in Unicode and
uses Objective Grid version 10.0 and Objective Toolkit version 9.0,
search for the library file in: <UFT Installation Folder>\bin\StingrayAgent\
AgentLib\bin\MFC80\OG1000U_OT900U

Note: Each support library file specifies a combination of Objective
Grid and Objective Toolkit versions. You must choose a combination
of Objective Grid or Objective Toolkit versions, even if your
application uses only one of these Stingray tools. For a list of
supported Stingray version combinations, see the HP Unified Functional
Testing Product Availability Matrix, available from the UFT Help or the
root folder of the Unified Functional Testing DVD.

 c Copy the StgAgentLib.lib support library file to your Visual C++
project directory.

 3 Add #include "StgAgentLib.h" to a .cpp file

Add the #include "StgAgentLib.h" statement to one of your cpp files, such
as, MainFrm.cpp.

LandingPages.chm::/LP_UFT_PAM.htm
LandingPages.chm::/LP_UFT_PAM.htm
LandingPages.chm::/LP_UFT_PAM.htm

Chapter 32 • Stingray Add-in - Testing and Configuration

526

 4 Add the ReleaseWRVC(); function call

Insert the ReleaseWRVC(); function call in one of the functions called
when your application terminates, for example,
CMainFrame::OnDestroy().

Note: Inserting this function call instructs the agent to perform required
clean up operations related to the support library code.

 5 Make sure that the Precompiled Agent option is selected in
the Stingray Support Configuration Wizard

For details, see "Stingray Support Configuration Wizard" on page 527.

 6 Results

When you build your application executable, the added header file
automatically links the StgAgentLib.lib support library to your
application statically, enabling the library code to be activated
automatically during the run session.

Chapter 32 • Stingray Add-in - Testing and Configuration

527

Reference

Stingray Support Configuration Wizard

The wizard guides you through the steps that are necessary to configure UFT
to work according to the agent mode that you select.

To access Use one of the following:

➤ Select Tools > Options > GUI Testing tab > Stingray node >
Select Version button.

➤ From the Start menu, select All Programs > HP Software >
HP Unified Functional Testing > Tools > Stingray Support
Configuration Wizard.

Important
information

You can open the Stingray Support Configuration Wizard from the
Additional Installation Requirements dialog box. You can also
open the wizard later by choosing it from the UFT program group
or by activating it from the Stingray pane of the Options dialog
box (Tools > Options > GUI Testing tab > Stingray node). For
details, see "Stingray Pane (Options Dialog Box)" on page 548.

Relevant
tasks

"How to Set Up Your Stingray Project Using the Precompiled Agent
Mode" on page 523

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528) > Add
Support Code Page (page 530) > (Select Configuration Mode Page
(page 532)) > (Manual Configuration Mode Page (page 535)) >
(Automatic Configuration Mode Page (page 537)) > (Detected
Stingray Components Page (page 541)) > (Finish Page (page 544)) >
(Detection Failure Page (page 546))

Note: Pages that are in parentheses open according to the option
selected in the previous page. Therefore, not all pages are displayed
for every option.

See also ➤ "Setting Up Stingray Object Support" on page 520

➤ "Stingray Run-time Agent (Agent DLL)" on page 521

➤ "Stingray Precompiled Agent Mode" on page 522

Chapter 32 • Stingray Add-in - Testing and Configuration

528

Support Mode Selection Page (Stingray Support
Configuration Wizard)
This wizard page enables you to select a Stingray support mode.

Important
information

General information about this wizard is available here:
"Stingray Support Configuration Wizard" on page 527.

Chapter 32 • Stingray Add-in - Testing and Configuration

529

User interface elements are described below:

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page > Add
Support Code Page (page 530) > (Select Configuration
Mode Page (page 532)) > (Manual Configuration Mode
Page (page 535)) > (Automatic Configuration Mode Page
(page 537)) > (Detected Stingray Components Page
(page 541)) > (Finish Page (page 544)) > (Detection
Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ "Setting Up Stingray Object Support" on page 520

➤ "Stingray Run-time Agent (Agent DLL)" on page 521

➤ "Stingray Precompiled Agent Mode" on page 522

UI Elements Description

Run-time Agent A simple, non-intrusive mode that adds a support DLL to
the Stingray application process during run-time.

This is the recommended mode.

Precompiled Agent A mode that requires you to make slight modifications to
your Stingray application project so that UFT can support
your Stingray application.

If you select this option and click Next, the Finish page
opens.

Chapter 32 • Stingray Add-in - Testing and Configuration

530

Add Support Code Page (Stingray Support
Configuration Wizard)
This wizard page enables you to access information describing how to add
support code to your Stingray application project.

This wizard page opens if you selected the Precompiled Agent option in the
Support Mode Selection (described on page 532).

Chapter 32 • Stingray Add-in - Testing and Configuration

531

User interface elements are described below:

Important
information

➤ General information about this wizard is available
here: "Stingray Support Configuration Wizard" on
page 527.

➤ If your Stingray application project is already
compiled with an earlier version of the Stingray
Add-in agent, your project already contains the
required support code. However, it is strongly
recommended to remove the previous agent files and
to recompile your project with the new Stingray
Add-in agent included with this add-in.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page > (Select Configuration Mode
Page (page 532)) > (Manual Configuration Mode Page
(page 535)) > (Automatic Configuration Mode Page
(page 537)) > (Detected Stingray Components Page
(page 541)) > (Finish Page (page 544)) > (Detection
Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Stingray Precompiled Agent Mode" on page 522

UI Elements Description

Help Displays information describing how to add support code
to your Stingray application project.

Finish Closes the wizard. If you have not already compiled your
application with the Stingray Add-in agent files, you
must do so before you begin to work with the Unified
Functional Testing Stingray Add-in.

Chapter 32 • Stingray Add-in - Testing and Configuration

532

Select Configuration Mode Page (Stingray Support
Configuration Wizard)
This wizard page enables you to select a configuration mode—either
automatic or manual—and to create a diagnostic log file, when needed.

This wizard page opens if you selected the Run-time Agent option in the
Support Mode Selection Page (described on page 532).

Chapter 32 • Stingray Add-in - Testing and Configuration

533

User interface elements are described below:

Important
information

➤ General information about this wizard is available
here: "Stingray Support Configuration Wizard" on
page 527.

➤ If your Stingray application project is already
compiled with an earlier version of the Stingray
Add-in agent, your project already contains the
required support code. However, it is strongly
recommended to remove the previous agent files and
to recompile your project with the new Stingray
Add-in agent included with this add-in.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page) > (Manual Configuration
Mode Page (page 535)) > (Automatic Configuration Mode
Page (page 537)) > (Detected Stingray Components Page
(page 541)) > (Finish Page (page 544)) > (Detection
Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

UI Elements Description

Automatic
configuration

Instructs the wizard to configure Stingray support
automatically according to the detected MFC DLL and
the version of Stingray business components used in
your application.

Chapter 32 • Stingray Add-in - Testing and Configuration

534

Manual
configuration

Enables you to configure Stingray support manually by
specifying the MFC DLL and Stingray business
component version used in your application. This is
useful, for example, if your application is statically linked
to the Stingray libraries.

Create wizard
configuration log file

Creates a a diagnostic log file.

Select this check box if, at any time, you encounter
problems with the Stingray Add-in.

Note: If you contact HP Software Support for assistance,
you may be asked to provide this log file for diagnostic
purposes.

UI Elements Description

Chapter 32 • Stingray Add-in - Testing and Configuration

535

Manual Configuration Mode Page (Stingray Support
Configuration Wizard)
This wizard page enables you to configure Stingray support manually by
specifying the MFC DLL and Stingray business component version used in
your application. This is useful, for example, if your application is statically
linked to the Stingray libraries.

This wizard page opens if you selected the Manual configuration option in
the Select Configuration Mode Page (described on page 535).

Chapter 32 • Stingray Add-in - Testing and Configuration

536

Important
information

➤ General information about this wizard is available
here: "Stingray Support Configuration Wizard" on
page 527.

➤ If your Stingray application project is already
compiled with an earlier version of the Stingray
Add-in agent, your project already contains the
required support code. However, it is strongly
recommended to remove the previous agent files and
to recompile your project with the new Stingray
Add-in agent included with this add-in.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page (page 532)) > (Manual
Configuration Mode Page) > (Automatic Configuration
Mode Page (page 537)) > (Detected Stingray Components
Page (page 541)) > (Finish Page (page 544)) > (Detection
Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

Chapter 32 • Stingray Add-in - Testing and Configuration

537

Automatic Configuration Mode Page (Stingray
Support Configuration Wizard)
This wizard page enables you to instruct to identify the version of Stingray
business components used by your application so that the wizard can set up
Stingray support accordingly.

This wizard page opens if you selected the Automatic configuration option
in the Select Configuration Mode Page (described on page 535).

Chapter 32 • Stingray Add-in - Testing and Configuration

538

Important
information

General information about this wizard is available here:
"Stingray Support Configuration Wizard" on page 527.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page (page 532)) > (Manual
Configuration Mode Page (page 535)) > (Automatic
Configuration Mode Page) > (Detected Stingray
Components Page (page 541)) > (Finish Page (page 544))
> (Detection Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

Chapter 32 • Stingray Add-in - Testing and Configuration

539

User interface elements are described below:

UI Elements Description

Find Enables you to specify the application executable. Click the Find
button and point to a window or dialog box in your application
that contains a Stingray control. UFT automatically detects and
displays the executable in the Name of application executable
box.

Note:

➤ If UFT detects more than one MFC version, you must select the
relevant version in the dialog box that opens. For details, see
Multiple MFC Versions, below.

➤ You can right-click at any time to cancel the Find command.

Tip: If you want to bring another window into focus or perform
operations such as a right-click or mouseover to display a context
menu, you can press and hold the Ctrl key. This temporarily
disables the Find mechanism and enables you to perform regular
mouse operations. When the window or dialog box containing
the Stingray control is displayed, release the Ctrl key. Note that
pressing the Ctrl key does not enable you to select an application
from the Windows task bar, therefore you must make sure that
the window you want to access is not minimized.

Chapter 32 • Stingray Add-in - Testing and Configuration

540

Multiple MFC Versions

If UFT detects more than one MFC version for the Stingray application, the
following dialog box opens:

Select the relevant version and click Apply.

Chapter 32 • Stingray Add-in - Testing and Configuration

541

Detected Stingray Components Page (Stingray
Support Configuration Wizard)
This wizard page displays the Stingray business components it detected in
your application process.

This wizard page opens if the wizard successfully identified the application
executable in the Automatic Configuration Mode Page (described on
page 537).

Important
information

General information about this wizard is available here:
"Stingray Support Configuration Wizard" on page 527.

Chapter 32 • Stingray Add-in - Testing and Configuration

542

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page (page 532)) > (Manual
Configuration Mode Page (page 535)) > (Automatic
Configuration Mode Page (page 537)) > (Detected
Stingray Components Page) > (Finish Page (page 544)) >
(Detection Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

Chapter 32 • Stingray Add-in - Testing and Configuration

543

User interface elements are described below:

UI Elements Description

<Stingray business
components>

The Objective Grid and Objective Toolkit that the wizard
detected in your application.

Note: If, in the previous screen, you pointed to a
non-Stingray application, or to a Stingray application
whose business components UFT could not detect, a
warning message displays stating that UFT failed to
detect the Stingray business components in your
application.

UFT may fail to detect business components of a Stingray
application for several reasons, for example:

➤ The application may be statically linked to Stingray
libraries, preventing the wizard from identifying the
version of the Stingray libraries. In this case, click Back
twice and select Manual configuration to configure
Stingray support manually. For details, see "Manual
Configuration Mode Page (Stingray Support
Configuration Wizard)" on page 535.

➤ The application may be statically linked to the
Microsoft Foundation Class (MFC) libraries. In this
case, click Back three times and select Precompiled
Agent. For details, see "Add Support Code Page
(Stingray Support Configuration Wizard)" on
page 530.

➤ The selected Stingray version may not be supported by
the Stingray Add-in, or may be slightly different from
the officially supported versions.

If you need to work with a Stingray version that is not
supported, contact HP Software Support, who may be
able to provide you with a support agent for your
specific version.

Chapter 32 • Stingray Add-in - Testing and Configuration

544

Finish Page (Stingray Support Configuration Wizard)
This wizard page indicates that UFT configures Stingray support according
to the detected Stingray version.

This wizard page opens if the wizard successfully identified the Stingray
business components in the Detected Stingray Components Page (described
on page 541).

Chapter 32 • Stingray Add-in - Testing and Configuration

545

User interface elements are described below:

Important
information

General information about this wizard is available here:
"Stingray Support Configuration Wizard" on page 527.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page (page 532)) > (Manual
Configuration Mode Page (page 535)) > (Automatic
Configuration Mode Page (page 537)) > (Detected
Stingray Components Page (page 541)) > (Finish Page) >
(Detection Failure Page (page 546))

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

UI Elements Description

<detected Stingray
version>

Read-only display of the Stingray version detected using
the Stingray Support Configuration Wizard.

Apply to all users on
this computer

Applies the identical settings you configured in this
wizard for all users on this computer.

Note: You must have administrator permissions on the
computer to configure support for all users. If you do not
have administrator permissions, this option is disabled.

Chapter 32 • Stingray Add-in - Testing and Configuration

546

Detection Failure Page (Stingray Support
Configuration Wizard)
This wizard page indicates that UFT configures Stingray support according
to the detected Stingray version.

This wizard page opens if the wizard cannot identify the Stingray business
components in the Detected Stingray Components Page (described on
page 541).

Chapter 32 • Stingray Add-in - Testing and Configuration

547

User interface elements are described below:

Important
information

General information about this wizard is available here:
"Stingray Support Configuration Wizard" on page 527.

Wizard map The Stingray Support Configuration Wizard contains:

Welcome Page > Support Mode Selection Page (page 528)
> Add Support Code Page (page 530) > (Select
Configuration Mode Page (page 532)) > (Manual
Configuration Mode Page (page 535)) > (Automatic
Configuration Mode Page (page 537)) > (Detected
Stingray Components Page (page 541)) > (Finish Page
(page 544)) > (Detection Failure Page)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also "Setting Up Stingray Object Support" on page 520

UI Elements Description

Configure the
Stingray version
manually

Opens the Manual Configuration Mode Page (Stingray
Support Configuration Wizard) (described on (page 535)
when you select this option and click Next.

Abandon manual
configuration

Closes the Stingray Support Configuration Wizard when
you select this option and click Finish.

Chapter 32 • Stingray Add-in - Testing and Configuration

548

Stingray Pane (Options Dialog Box)

This pane enables you to configure how UFT records and runs tests and
business components on Stingray Objective Grid and Objective Toolkit
objects.

Chapter 32 • Stingray Add-in - Testing and Configuration

549

User interface elements are described below:

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Stingray
node.

Important
information

If the Stingray Add-in is configured correctly, you may
not need to make any modifications using this pane.
However, if you did not run the Stingray Support
Configuration Wizard after installing the Stingray
Add-in, or if you encounter difficulties when recording
and running tests and business components on Stingray
applications, you can use the options in this pane to
fine-tune the configuration. For example, you can enable
support for multithreaded applications by selecting the
relevant option in this pane.

After modifying this pane, you must restart UFT before
you continue working with this add-in.

Relevant tasks "How to Set Up Your Stingray Project Using the
Precompiled Agent Mode" on page 523

See also "Stingray Support Configuration Wizard" on page 527

UI Elements Description

Support
multithreaded
Stingray applications

Instructs UFT to support multithreaded Stingray
applications. If you are not sure whether you are working
with a multithreaded Stingray application, first try to
record and run on your Stingray application without
selecting this check box. If you experience difficulties,
you can select this check box and try again.

Select this check box only if you are working with a
multithreaded application.

By default, this check box is cleared.

Chapter 32 • Stingray Add-in - Testing and Configuration

550

Cache MFC map Instructs UFT to use auxiliary caching as a backup for
MFC’s internal mapping of window handles to
Visual C++ objects. If UFT cannot identify one or more
Stingray controls while recording or running a test or
business component, you can select this check box to
instruct UFT to use a cached map instead of using the
Stingray application for identification.

By default, this check box is cleared.

Use displayed
(formatted) data in
table checkpoints

Instructs UFT to use the formatted data value in the
Stingray grid control. You can use this option when
working with table checkpoints (not supported for
business components). For example, if the actual value of
a cell in a Stingray application is formatted to display two
digits to the right of the decimal point, UFT will use that
rounded number instead of the actual number when
checking the value during the run session.

By default, this check box is selected.

Record cell editing
options using

Instructs UFT to record typing operations in a Stingray
grid (edit) cell using one of the following options:

➤ WinTable.SetCellData statements. (Default) Uses the
SetCellData method to record the final value that you
enter in a grid cell. This option results in a single step
in your test or business component. In most cases, this
option makes the step more readable and easier to
modify manually

➤ WinEditor statements. UFT records each operation
that you perform in a Stingray grid edit cell as a
separate WinEditor step. For example, operations such
as placing the cursor in a specific place in the edit box,
typing a single character, or deleting a character may
be recorded as individual steps. This can make your
test or business component less readable and more
difficult to modify manually, but this may be useful if
you want to test the behavior of specific editing
operations.

For a use-case example, see "Record Cell Editing
Options - Example" on page 553

UI Elements Description

Chapter 32 • Stingray Add-in - Testing and Configuration

551

Do not use Stingray
Add-in support for
these applications:
(Specify application
process names
separated by
commas)

Instructs UFT to treat the applications you specify as
non-Stingray applications.

Some open, non-Stingray processes (such as explorer.exe)
can cause unexpected behavior when recording and
running tests and business components on Stingray
applications. By adding the process names to this edit
box, you can help prevent this unexpected behavior.

Note:

➤ In some cases, the executable file you use to open an
application is only a launching process, which then
opens the actual application process. In these cases,
make sure that you specify the name of the actual
application process and not the launching process.

➤ When working with tests, this option is relevant only
if you selected the Record and run test on any open
Windows-based application in the Record and Run
Settings dialog box (Record > Record and Run
Settings). For details on the options available in the
Record and Run Settings dialog box, see "Windows
Applications Tab (Record and Run Settings Dialog
Box)" on page 124.

Stingray version Indicates the versions of the Stingray Objective Grid and
Stingray Objective Toolkit libraries used for identifying
Stingray objects in your application (read-only).

Select Version Opens the Stingray Support Configuration Wizard, which
enables you to select the combination of Objective Grid
and Objective Toolkit versions with which you want to
work.

For details, see "Stingray Support Configuration Wizard"
on page 527.

UI Elements Description

AddinOverview.chm::/Record_Settings_Standard_Tab.htm

Chapter 32 • Stingray Add-in - Testing and Configuration

552

Generate diagnostic
agent log

Instructs UFT to generate a diagnostic agent log file. You
can use this option if you encounter problems with the
Stingray Add-in, for example, if UFT does not recognize a
Stingray grid control while recording. HP Software
Support may ask you to generate this log and send it
together with your service request.

When you select this check box, the following options
are enabled:

➤ Include detailed log information for this control

➤ Log file (C:\st_agent.log)

➤ External debug application

Note: If you select this check box, you must specify the
location for the generated log. For details, see "Specify
location(s) for the generated log" on page 553.

Include detailed log
information for this
control

Instructs UFT to include detailed information in the
generated log for a specific Stingray control, in addition
to the general UFT/agent communication log
information. For example, you may want to generate
additional log details for a specific Stingray grid.

To select the object for which you want to generate
detailed log information:
Click the pointing hand and then click the relevant
Stingray control. The selected object’s window handle is
displayed in the edit box.

Note: This option is available only when the Generate
diagnostic agent log check box is selected.

UI Elements Description

Chapter 32 • Stingray Add-in - Testing and Configuration

553

Record Cell Editing Options - Example

Suppose that during a recording session, you place the cursor in an edit-type
cell that already contains the value abc. You place the cursor before the b,
delete the b and c characters, and then you type bcde.

If you are using the WinTable.SetCellData statements option, UFT records
the following in the Editor:

UFT inserts these steps as follows in the Keyword View:

Specify location(s)
for the generated log

Instructs UFT to generate the log to the selected
locations. You can select one or both of the following
options:

➤ Log file (C:\st_agent.log). Saves the diagnostic log to
the st_agent.log text file on your C: drive.

➤ External debug application. Exports the diagnostic log
data to an external debug application, such as the
freeware application, DebugView, or Microsoft
VisualStudio.

Note: These options are available only when the
Generate diagnostic agent log check box is selected.

Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3"
Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3", "abcde"

UI Elements Description

Chapter 32 • Stingray Add-in - Testing and Configuration

554

If you are using the WinEditor statements option, UFT records the following
in the Editor:

UFT inserts these steps as follows in the Keyword View:

Window("GRIDAPP").Window("GridAp1").WinTable("StingrayGrid").SelectCell "#2",
"#3"
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").SetCaretPos 0,1
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").Type micDel
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit").Type micDel
Window("GRIDAPP").Window("GridAp1").WinEditor("Edit_2").Type "bcde"

Part XV

Terminal Emulator Add-in

556

557

33
Terminal Emulator Add-in -
Quick Reference

The following table summarizes basic information about the Terminal
Emulator Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported emulators, see the Terminal
Emulator Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the UFT
Help or the root folder of the Unified Functional Testing
DVD.

Important
Information

➤ Before using the Terminal Emulator Add-in for the first
time, you must enable UFT to identify your terminal
emulator.
See "Terminal Emulator Configuration Wizard
Overview" on page 609.

➤ You must configure your terminal emulator settings to
work with UFT.
See "How to Set Your HLLAPI Terminal Emulator to
Work with UFT" on page 579.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Checkpoints and Output Values - Terminal
Emulators" on page 572.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 33 • Terminal Emulator Add-in - Quick Reference

558

Troubleshooting
and Limitations

"Troubleshooting and Limitations - Terminal Emulator" on
page 559

Prerequisites

Opening Your
Application

You can open your Terminal Emulator application before
or after opening UFT and creating a test.

Add-in
Dependencies

None

Configuration

Wizard "Terminal Emulator Configuration Wizard Overview" on
page 609

Options Dialog Box ➤ Use the Terminal Emulator pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Terminal Emulator node.)

See "Terminal Emulator Pane (Options Dialog Box)" on
page 595.

➤ Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows
Applications node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Terminal Emulator section in the dialog box.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, click Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 33 • Terminal Emulator Add-in - Quick Reference

559

Troubleshooting and Limitations - Terminal Emulator

This section contains general troubleshooting and limitation information
about the Web add-in, and includes the following sections:

➤ "Installing and Loading the Terminal Emulator Add-in" on page 559

➤ "Connecting and Disconnecting from the Terminal Emulator Add-in" on
page 560

➤ "Configuration and Settings" on page 561

➤ "Creating and Running Tests and Components" on page 562

➤ "Working with Terminal Emulator Controls" on page 563

➤ "Test Objects, Methods, and Properties" on page 564

➤ "Checkpoints and Output Values" on page 565

➤ "Multilingual Support" on page 565

Installing and Loading the Terminal Emulator Add-in

➤ When installing a Hummingbird HostExplorer terminal emulator or
patches, make sure that UFT is closed.

➤ If the Unified Functional Testing Terminal Emulator Add-in is installed
and loaded, but there is no terminal emulator installed on your computer,
the following error message is displayed: UFT Terminal Emulator support is
not configured correctly. Either the terminal emulator is not installed on your
computer or the HLLAPI DLL was not found.

Workaround: When you open UFT, clear the Terminal Emulators check
box in the Add-in Manager.

AddinOverview.chm::/RRSettings_DB_WinAppTab.htm
AddinOverview.chm::/RRSettings_DB_WinAppTab.htm

Chapter 33 • Terminal Emulator Add-in - Quick Reference

560

Note: You can prevent this message from appearing by adjusting your
emulator’s configuration settings. For more information, see the
HP Unified Functional Testing Add-ins Guide.

➤ You may experience unexpected behavior after you install an EXTRA!
emulator. You may not be able to run UFT or various features may stop
working. This happens because the EXTRA! installation may have copied
and registered an outdated version of the atl.dll file on your computer.

Workaround: Locate the atl.dll in your system folder (WINNT\system32).
Its version should be 3.0 or higher. Register it with the regsvr32 utility.

Connecting and Disconnecting from the Terminal Emulator
Add-in

➤ If you have more than one terminal emulator session open, UFT does not
recognize either session.

Workaround: While recording or running your test or business
component, make sure that only one terminal emulator session is
connected at a time.

➤ If your test or business component contains steps that disconnect the
current emulator session during the run session, followed immediately by
a TeScreen.Sync command, the test or business component run might
stop responding or take a long time to respond.

Workaround: Remove the Sync command from the test or business
component, or replace it with a Wait statement. For more information,
see the Utility Objects section of the HP Unified Functional Testing Object
Model Reference.

➤ Inserting a checkpoint, creating a new test or business component, or
opening an existing test or business component when the emulator
session is busy may cause unexpected problems.

Workaround: Check the connection status of your emulator on the status
line of the emulator screen before performing any of these operations.

Chapter 33 • Terminal Emulator Add-in - Quick Reference

561

➤ Unexpected behavior may occur after disconnecting from a Host
On-Demand session while recording.

Workaround: Stop recording before disconnecting from the session. Then,
manually add a step that disconnects from the session.

➤ You may experience unexpected behavior if the terminal emulator is
closed while UFT is recording.

Configuration and Settings

➤ When working with an emulator that does not support HLLAPI, or with
an emulator that has been configured as supporting text-only HLLAPI
operations, do not change the size of the terminal emulator window after
configuring the emulator settings.

➤ To enable support for a NetManage Web-To-Host Java Client session that
is configured to open in a separate window, specify the title of your
session window using the Tools > Options > GUI Testing tab > Terminal
Emulator > Adjust Configuration > Object identification settings >
Identify emulator window based on title bar prefix option.

Tip: You may need to clear this value when switching to another
configuration.

➤ When using the Terminal Emulator Configuration Wizard to configure
the screen sizes of NetManage RUMBA Web-to-Host, you cannot use the
Mark Text Area option to draw on top of the emulator window.

Workaround: Configure the text area position of the screen manually.

Chapter 33 • Terminal Emulator Add-in - Quick Reference

562

Creating and Running Tests and Components

➤ When using the OCR mechanism in order to perform steps requiring text
recognition on non-HLLAPI emulators, the steps run slowly due to the
required processing power of the OCR mechanism. Therefore, when
testing non-HLLAPI emulators, it is recommended to select the default
text recognition option: First Windows API then OCR in the Text
Recognition pane of the Options dialog box. (For details on this option,
see the HP Unified Functional Testing User Guide.)

➤ The Unified Functional Testing Terminal Emulator Add-in can identify
emulator window objects only when the emulator is connected. For
example, you cannot use the following statement to connect to an
emulator session:

TeWindow("TeWindow").WinMenu("Menu").Select "Communication;Connect"

Workaround: You can record any steps that need to be performed prior to
connection with the emulator. These steps are recorded as if the Terminal
Emulator Add-in is not loaded. After the emulator is connected, stop the
recording session and begin a new recording session to record terminal
emulator objects.

➤ When using an emulator that supports HLLAPI, if your emulator session
disconnects from the host while recording, UFT no longer recognizes the
emulator, even after reconnecting.

Workaround: Stop recording, reconnect the session, and continue
recording.

➤ When recording on a Hummingbird HostExplorer emulator, menu and
toolbar operations in the emulator window are disabled.

Workaround: Stop recording, select the required menu item or click the
required toolbar button, and continue recording.

➤ When using an emulator that supports HLLAPI, closing the emulator
window while recording may cause unexpected results.

Workaround: Stop recording before closing the emulator window.

MainUsersGuide.chm::/Text_Recognition_Options.htm
MainUsersGuide.chm::/Text_Recognition_Options.htm

Chapter 33 • Terminal Emulator Add-in - Quick Reference

563

➤ The Unified Functional Testing Terminal Emulator Add-in does not
support recording operations on toolbar objects in terminal emulator
applications.

Workaround: Record on the corresponding menu command for the
toolbar button. Alternatively, you can use low-level recording to record
operations on toolbars. For more information about low-level recording,
see the HP Unified Functional Testing User Guide.

➤ If you record a test or business component using one terminal emulator, it
may not run correctly on another terminal emulator. For example, tests
recorded on RUMBA may not run on IBM PCOM.

➤ HostExplorer has a bug in the HLLAPI GetKey function. As a result, UFT
will stop recording terminal emulator keyboard events after recording for
a while, and the emulator might stop responding to keyboard events.

Workaround: Contact Hummingbird customer support to get the patch
that fixes the problem with the HLLAPI GetKey function (where it stops
responding after several calls).

➤ Clicking, typing, or moving objects in the terminal emulator window
while UFT is running a test or business component may cause unexpected
results.

Workaround: Wait until the end of the test or business component, or
pause the test or business component execution before using the
emulator.n

➤ To record and run tests or business components on Hummingbird 9.0
5250 sessions, you need to install a patch for Hummingbird.

Workaround: Contact Hummingbird customer support to get the patch
that fixes the problem with HLLAPI where all 5250 fields appear
protected.

➤ You can encounter unexpected results when you run the Reflection HLL
API in multiple threads mode.

Working with Terminal Emulator Controls

➤ When working with Attachmate Terminal Viewer 3.1 5250 session, all of
the fields that appear on the screen before the first unprotected field are
recognized as a single field.

Chapter 33 • Terminal Emulator Add-in - Quick Reference

564

➤ UFT may not recognize a TeField object in a NetManage RUMBA session
immediately after installing the emulator.

Workaround: Restart your computer after installing RUMBA, even if the
installation does not request a restart.

Test Objects, Methods, and Properties

➤ When using the SendKey method to unlock a terminal emulator, for
example, TeWindow("TeWindow").TeScreen("screen5296").SendKey
TE_RESET, some emulators (such as Host On-Demand) may not be
unlocked.

Workaround: Specify the keyboard event to send for the RESET command,
using the Tools > Options > GUI Testing tab > Terminal Emulator > Adjust
Configuration > Run Settings > Run steps containing special emulator
keys using keyboard events > Keys for RESET function option.

➤ By default, UFT uses the attached text and protected properties in TeField
test object descriptions. If the attached text for a field changes from
session to session, UFT cannot find the field during the run session.

Workaround: Open the Object Repository window or the Object
Properties dialog box for the object. Remove the attached text property
from the field’s description and add another property (or properties) such
as start row, start column, or index to uniquely identify the object.

Tip: You can also create a smart identification definition for TeField
objects so that your recorded test or business component can run
successfully even if the attached text property value for a particular
TeField object changes. (Select Tools > Object Identification > Enable
Smart Identification and click Configure.) For more information on Smart
Identification, see the HP Unified Functional Testing User Guide.

➤ You cannot use the label property in a programmatic description of the
TeScreen object. However, since only one screen can exist in the given
TeWindow at any one time, you can use TeScreen("MicClass:=TeScreen").

For example:

Chapter 33 • Terminal Emulator Add-in - Quick Reference

565

TeWindow("short
name:=A").TeScreen("MicClass:=TeScreen").TeField("attached text:=User",
"Protected:=False").Set "33333"

➤ The TeTextScreen properties current column and current row are available
only for emulators that support HLLAPI.

➤ The location property is not recorded for TeField objects.

Workaround: Use the index property instead.

Checkpoints and Output Values

In some cases, a bitmap checkpoint on a TeScreen may fail because the
cursor shows in the expected bitmap, and not in the actual bitmap (or the
other way around).

Workaround: Set the emulator cursor to a slow blink rate, or not to blink at
all. This enhances the probability that the cursor is not captured in the
bitmap.

Multilingual Support

When working with the IBM PCOM emulator, UFT may ignore special
European language characters while recording or running a test or business
component.

Workaround: Set the code page for your IBM PCOM emulator in UFT, using
the Tools > Options > GUI Testing tab > Terminal Emulator > Adjust
Configuration > Emulator settings > Code page number (IBM PCOM only)
option.

Tip: Try setting the Code page number (IBM PCOM only) option to 1252.

Chapter 33 • Terminal Emulator Add-in - Quick Reference

566

567

34
Terminal Emulator Add-in - Testing and
Configuration

This chapter includes:

Concepts

➤ Terminal Emulator Add-in - Overview on page 568

➤ Recording Tests and Components on Terminal Emulator Applications
on page 570

➤ Checkpoints and Output Values - Terminal Emulators on page 572

➤ Run Session Synchronization on page 573

➤ Terminal Emulator Recovery Scenarios on page 574

Tasks

➤ How to Check the Validity of a Terminal Emulator Configuration
on page 576

➤ How to Copy Existing Terminal Emulator Configurations on page 576

➤ How to Set Your HLLAPI Terminal Emulator to Work with UFT
on page 579

➤ How to Manage Terminal Emulator Configuration Settings on page 585

➤ How to Synchronize Steps on Terminal Emulators on page 586

Reference

➤ Test Object Classes and Icons - Terminal Emulators on page 590

➤ Validating a Terminal Emulator - Possible Error Responses on page 591

➤ Terminal Emulator Pane (Options Dialog Box) on page 595

➤ Terminal Emulator Configuration Wizard Overview on page 609

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

568

Concepts

Terminal Emulator Add-in - Overview

You can use UFT with the Terminal Emulator Add-in to test terminal
emulator applications that support HLLAPI (High Level Language
Application Programming Interface) as well as those that do not, for
example, emulator sessions configured to work with the VT100 protocol
(using the Text-only option). HLLAPI allows a PC application to
communicate with a mainframe application with extended capabilities.

UFT distinguishes between the window of the terminal emulator and the
screens in the host application. The terminal emulator window consists of
the frame, menus, toolbar, and status bar of the terminal emulator itself.
This window remains constant throughout each terminal emulator session.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

569

The terminal emulator screen refers to the area of the window in which the
application is displayed. Each time the host responds to user input to the
application, the screen changes.

If your emulator supports HLLAPI, UFT recognizes the screen and field
objects in your emulator screen. If your emulator does not support HLLAPI,
or you have configured UFT in Text-only mode, UFT records operations in
terms of the text as it appears in the rows and columns of your emulator
screen.

The Unified Functional Testing Terminal Emulator Add-in includes
preconfigured settings for several terminal emulators. The Terminal
Emulator Add-in also enables you to configure the settings for most other
terminal emulators using the "Terminal Emulator Configuration Wizard
Overview" on page 609.

To configure your HLLAPI emulator to work with UFT, see "How to Set Your
HLLAPI Terminal Emulator to Work with UFT" on page 579.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

570

Recording Tests and Components on Terminal Emulator
Applications

As you record, the test or business component reflects the objects in your
application and the type of operation you perform (such as pressing
function keys or typing in fields). Each object has a defined set of properties
that determines its behavior and appearance. UFT learns these properties
and uses them to identify and locate objects during a run session.

Tip: You can launch your terminal emulator using the SystemUtil.Run
method as the first step of your test or business component. For more
information, see the section on running and closing applications
programmatically in the HP Unified Functional Testing User Guide, and the
Standard Windows section of the HP Unified Functional Testing Object Model
Reference.

By default, when you record a test or business component, UFT
automatically inserts synchronization points so that during a run session,
execution will be delayed until the application is ready to receive input. You
can also add synchronization points manually. For more information, see
"How to Synchronize Steps on Terminal Emulators" on page 586.

The following is a sample of a UFT test recorded on a terminal emulator
application that fully supports HLLAPI.

While recording, the user pressed the ENTER key in the first screen of an
application, waited for the screen to change, and then typed the name
MERCTEST and a password in the appropriate fields.

TeWindow("TeWindow").TeScreen("Welcome").SendKey TE_ENTER
TeWindow("TeWindow").TeScreen("Welcome").Sync
TeWindow("TeWindow").TeScreen("Sign On").TeField("User").Set "MERCTEST"
TeWindow("TeWindow").TeScreen("Sign On").TeField("Password").

SetSecure "3c4feb5bc6233d6e6898bc"

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

571

UFT displays this test in the Keyword View like this:

The following is a sample test on a terminal emulator that does not support
HLLAPI or that has been configured to support text-only HLLAPI operations.

Note that UFT records the TeTextScreen object instead of the TeScreen object
and that it does not record TeField objects. The operations are recorded in
terms of keyboard and mouse operations on the text screen, rather than
operations within fields.

TeWindow("TeWindow").TeTextScreen("TeTextScreen").ClickPosition 24,2
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type "l"
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type micReturn
TeWindow("TeWindow").TeTextScreen("TeTextScreen").WaitString

"FRSMAIN",1,2,1,8,2000
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type "qa1"
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Type micReturn
TeWindow("TeWindow").TeTextScreen("TeTextScreen").Sync

UFT displays this test in the Keyword View like this:

This section also includes "Considerations for Recording and Running Tests
and Components on Terminal Emulators" on page 572.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

572

Considerations for Recording and Running Tests and
Components on Terminal Emulators

➤ Connect your emulator to the host and ensure that the emulator is
configured properly. For details, see "How to Set Your HLLAPI Terminal
Emulator to Work with UFT" on page 579.

➤ Make sure that only one terminal emulator session is open. (Multiple
open sessions may cause problems with recording and running tests or
business components.)

➤ If your test or business component includes calls to WinRunner tests,
make sure that these tests do not use the WinRunner Terminal Emulator
Add-in. Similarly, when running WinRunner tests with the WinRunner
Terminal Emulator Add-in, make sure that these tests do not use the
Unified Functional Testing Terminal Emulator Add-in if they include calls
to UFT tests.

➤ If you are using an emulator that is configured as fully supporting HLLAPI
and you need to record specific steps in terms of keyboard and mouse
operations on the text screen (instead of operations within fields), you
can change the recording mode for your emulator by adjusting the
configuration. For details, see "How to Manage Terminal Emulator
Configuration Settings" on page 585.

➤ UFT does not record operations on the toolbar and status bar in the
terminal emulator window. However, you can insert checkpoints or
output values for the status bar of the terminal emulator window while
recording. For more information, see "Checkpoints and Output Values -
Terminal Emulators" on page 572.

Checkpoints and Output Values - Terminal Emulators

While recording your test, you can add text checkpoints for the following:

➤ TeScreen and TeTextScreen objects

➤ status bar of the terminal emulator window

➤ dialog boxes that open after menu options are selected

While editing your test or business component, you can:

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

573

➤ add text checkpoints for TeScreen objects.

➤ add text checkpoints for TeTextScreen objects if the test was recorded
using an emulator with full HLLAPI support that was configured to record
in Text screen mode. For details on changing the emulator mode, see
"How to Manage Terminal Emulator Configuration Settings" on page 585.

➤ output property or text values from the objects in your terminal emulator
application to use in your test or business component.

Guidelines for Using Checkpoints and Output Values

➤ You can create bitmap checkpoints for TeWindow, TeScreen and
TeTextScreen objects, but not for TeField objects.

➤ You can create text output values (tests only) only for TeScreen and
TeTextScreen objects.

➤ In the terminal emulator window you can add text checkpoints or output
values (tests only) and standard checkpoints and output values for the
status bar and the dialog boxes that open from the menu options. UFT
recognizes these as standard Windows objects. For more information on
the properties of standard Windows objects, see the HP Unified Functional
Testing Object Model Reference.

For details on standard, text, and bitmap checkpoints, and on standard and
text output values, see the HP Unified Functional Testing User Guide.

Run Session Synchronization

When testing a terminal emulator application, many factors can affect its
speed of operation and therefore can potentially interfere with the run
session. For example, host response time can vary depending on the system
load.

Synchronizing your run session helps to ensure that UFT performs the next
step in the test or business component only when your terminal emulator
application is ready to continue. This prevents incidental differences in host
response time and other factors from affecting successive run sessions.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

574

The following table illustrates the synchronization options available for
various terminal emulator applications:

For a list of tasks describing how to synchronize, see "How to Synchronize
Steps on Terminal Emulators" on page 586.

Terminal Emulator Recovery Scenarios

UFT allows you to define recovery scenarios for your tests or business
components, to cater for various unexpected events, such as crashes and
error situations, which can disrupt your tests or business components and
distort your results.

You can use the values of the Emulator status property and the other
properties of the TeWindow object to define specific recovery scenarios for
your terminal emulator application tests or business components.

Emulator type Synchronization options

All emulator types You can instruct UFT to delay the run session:

➤ For a specified period of time
➤ Until a specific string appears in a defined area
➤ Until a specified property achieves a defined value

Emulators that
fully support
HLLAPI

You can synchronize the run session with the response time
of the host. By default, during a record session, UFT
automatically generates a Sync statement for the TeScreen
object each time the emulator waits for a response from the
host.

Emulators that do
not support
HLLAPI

When you record using a terminal emulator that does not
support HLLAPI, or that has been configured as supporting
text-only HLLAPI operations, UFT automatically generates a
Sync statement for the TeTextScreen object each time a
specified key is pressed. The default is the ENTER key. UFT
waits a specified period of time, to allow the host sufficient
response time.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

575

The possible values for the Emulator status property are:

➤ Busy. Emulator is communicating with the server.

➤ Disconnected. Emulator is not connected to the server.

➤ Locked. Emulator cannot currently accept input.

➤ Ready. Emulator is waiting for input.

➤ Unavailable. Emulator status cannot be identified.

For each emulator status, you can create a recovery scenario that performs
an appropriate recovery operation. For example:

➤ Disconnected. Reconnect to the server, using a function call recovery
operation that includes recorded steps for connecting, API commands in a
VB Script, or a keyboard shortcut key, according to the capabilities of your
terminal emulator.

➤ Ready. Perform specific operations according to the content of a displayed
error message, including pressing the relevant key.

➤ Locked. Activate the emulator’s RESET key, or use a handler function to
disconnect from the server and reconnect.

For detailed information on defining recovery scenarios, see the HP Unified
Functional Testing User Guide.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

576

Tasks

How to Check the Validity of a Terminal Emulator
Configuration

 1 Make sure that a GUI test is open.

 2 Open the Terminal Emulator pane of the Options dialog box (Tools >
Options > GUI Testing tab > Terminal Emulator node) (described on
page 595).

 3 Click Validate.

If a problem is detected, a brief description (error response) is displayed in
the pane. For details on handling the error, click Troubleshoot to open a
Help page that displays error-specific information.

How to Copy Existing Terminal Emulator Configurations

This task describes how to copy a terminal emulator configuration from
another user who has already configured the UFT settings for a specific
emulator using the Terminal Emulator Configuration Wizard.

For example, if the settings for your terminal emulator were configured and
saved to a file on another computer (or on a network drive), you can copy
this file to your computer, instead of running the wizard and configuring
the settings yourself.

This task includes the following steps:

➤ "Prerequisites" on page 577

➤ "Copy the registry file to your computer" on page 577

➤ "Register the file" on page 577

➤ "Set the new emulator as the default emulator - Optional" on page 578

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

577

➤ "Modify the emulator settings - Optional" on page 578

➤ "Results" on page 578

 1 Prerequisites

➤ The existing configuration file must be saved to a registry file, using
the Save terminal emulator settings to file option in the wizard’s final
page. For details, see "Completing the Terminal Emulator
Configuration Wizard Page" on page 632.

➤ Before you copy the saved configuration, make sure you know the
vendor name and the emulator name assigned to the configuration,
and the exact name and location of the file. The file has a .reg
extension.

 2 Copy the registry file to your computer

 a Locate the registry file containing the configuration settings for your
emulator. The file has a .reg extension.

 b Copy the file to the <UFT installation folder>\dat folder on your
computer.

The path for the dat folder in a typical installation is:
C:\Program Files\HP\Unified Functional Testing\dat

 3 Register the file

 a Double-click the registry file to open the Registry Editor message box.

 b Click Yes to add the information into the registry. A message opens
confirming that the information has been copied into the registry.

 c Click OK. The emulator name assigned to this configuration is added
to the list of available terminal emulators for your UFT installation.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

578

 4 Set the new emulator as the default emulator - Optional

 a Open UFT with the Terminal Emulator Add-in loaded.

 a Select the new emulator name from the list in the Tools > Options >
GUI Testing tab > Terminal Emulator pane, and set it as your default
emulator.

 5 Modify the emulator settings - Optional

 a Open UFT with the Terminal Emulator Add-in loaded.

 b Open the Terminal Emulator Configuration Wizard. For details, see
"Terminal Emulator Configuration Wizard Overview" on page 609.

 6 Results

After you copy a configuration file from another location, the emulator
name assigned to this configuration is added to the list of available
terminal emulators for your UFT installation.

Note: If you copy a configuration file after starting UFT, you need to close
and reopen UFT to see the updated list of available emulators.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

579

How to Set Your HLLAPI Terminal Emulator to Work with
UFT

The steps below provide a general overview of how to enable testing on your
terminal emulator application when working with an emulator that
supports HLLAPI. For details on how to configure a specific emulator, see
"How to Configure an Emulator to Work with the Terminal Emulator
Add-in" on page 579.

 1 Connect your emulator to the host before running the Terminal Emulator
Configuration Wizard and before recording each test or business
component.

 2 Assign the uppercase letter A as the short name for the current emulator
session.

 3 (Optional) Restart the emulator after changing these settings.

Note: For details on supported emulator versions and protocols, see the
HP Unified Functional Testing Product Availability Matrix, available from the
UFT Help or the root folder of the Unified Functional Testing DVD.

How to Configure an Emulator to Work with the
Terminal Emulator Add-in

This section describes how to configure an emulator to work with the
Terminal Emulator Add-in:

"Attachmate EXTRA!" on page 580

"Attachmate myEXTRA! Terminal Viewer" on page 580

"Attachmate INFOConnect" on page 581

"Hummingbird HostExplorer" on page 581

"IBM Personal Communications (PCOM)" on page 582

"IBM WebSphere Host On-Demand" on page 582

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

580

Attachmate EXTRA!

To connect your EXTRA! terminal emulator to UFT:

 1 Open EXTRA!.

 2 In EXTRA!, select Options > Global Preferences. The Global Preferences
dialog box opens.

 3 Click the Advanced tab.

 4 In the HLLAPI shortname list, select the uppercase letter A as the Short
Name.

 5 Click the browse button, browse to and select your session profile, and
click OK.

 6 Save the profile before you start testing with UFT. This enables you to
configure the terminal emulator once and then reuse the saved settings.

Attachmate myEXTRA! Terminal Viewer

To connect your myEXTRA! terminal viewer to UFT:

 1 Open the myEXTRA! Management and Control Services window.

 2 In the Management and Control Services window, select Products >
Terminal Viewers. The Terminal Viewers tree is displayed in the left pane.

 3 In the Terminal Viewers tree, select the required terminal.

 4 In the right pane, select the required session and click Properties.

 5 In the Properties pane, click Configure to configure the connection.

 6 In the General tab of the Configure pane, select the Support HLLAPI
check box and set the session name to A.

 7 Save the session.

"NetManange RUMBA" on page 582

"NetManage RUMBA Web-to-Host" on page 583

"Seagull BlueZone" on page 584

"WRQ Reflection" on page 584

"Zephyr Passport" on page 584

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

581

 8 If this is the first time that you are connecting to a myEXTRA! terminal
viewer, install the HLLAPI DLL, as follows:

 a Click Preferences.

 b Click the Install HLLAPI Client Components link.

Attachmate INFOConnect

To connect your INFOConnect terminal emulator to UFT:

 1 Open Attachmate INFOConnect.

 2 Select Options > Global Preferences from the main menu.

 1 Select the Advanced tab.

 2 Select A as the session short name.

 3 To associate the session short name (A), with your session, click Browse
and locate your session profile in the file system.

 4 Click OK.

Hummingbird HostExplorer

To connect your HostExplorer terminal emulator to UFT:

 1 Open HostExplorer.

 2 From the HostExplorer main menu, select File > Save Session Profile.

 3 In the Save Profile dialog box, set the HLLAPI Short Name to the
uppercase letter A.

 4 From the main menu, select Options > API Settings.

 5 In the API Global Settings dialog box, select the Update screen after
PS update and Auto sync options.

 6 Click OK.

Alternatively:

 1 Open HostExplorer.

 2 Open a saved session.

 3 Select Options > Edit Session Profile.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

582

 4 Select Terminal > API in the categories tree.

 5 Select A as the session short name and click OK.

 6 Save the session profile.

IBM Personal Communications (PCOM)

The preconfigured settings enable UFT to work with IBM PCOM terminal
emulators.

IBM WebSphere Host On-Demand

To connect your WebSphere Host On-Demand terminal emulator to UFT:

 1 Open the WebSphere Host On-Demand EHLLAPI Enablement Tool. (If
you do not have this tool, contact IBM for information on how to acquire
and install it.)

 2 To enable UFT to record on the IBM WebSphere Host On-Demand
terminal emulator, define the session options as follows:

➤ Click Configure and select Properties from the list. Then select
Preferences > Start Options and set Auto-Start HLLAPI Enabler to Yes.

➤ Set the Start In Separate Window option to Yes.

➤ Set the Alternate Terminal option to Disable.

Make sure that the server and client are not installed on a computer on
which another terminal emulator is installed.

NetManange RUMBA

To connect your RUMBA terminal emulator to UFT:

 1 Open RUMBA.

 2 In RUMBA, select Options > API. The API Options dialog box opens.

 3 Click the Identification tab.

 4 In the Session Short Name field, type the uppercase letter A.

 5 Click OK.

 6 Save the profile.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

583

Tip: It is recommended to save the profile before you start testing with UFT.
This enables you to configure the terminal emulator once and then reuse
the saved settings.

NetManage RUMBA Web-to-Host

To connect your RUMBA Web-to-Host terminal emulator to UFT:

 1 Open the RUMBA Web-to-Host Session Configuration Manager and open
a session.

 2 In addition to your standard configuration steps in the Configuration
Manager:

 a Select Pro client from the Implementation drop-down list.

 b Click HLLAPI Configuration and select A from the Session Short Name
drop-down list.

 3 Save the profile.

Note:

➤ For versions 5.x: Only Mainframe Display is supported for the Java client
Only Replay is supported for both Java client and Pro client.

➤ For version 6.x: Java Client is not supported. Only Replay is supported for
Pro client.

For more details on supported versions RUMBA Web-to-Host, see the
HP Unified Functional Testing Product Availability Matrix, available from the
UFT Help or the root folder of the Unified Functional Testing DVD.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

584

Seagull BlueZone

To connect your BlueZone terminal emulator to UFT:

 1 Open BlueZone.

 2 In BlueZone, select Options > API. The API Properties dialog box opens.

 3 Click the Options tab.

 4 In the Short Name Session Identifier field, type the uppercase letter A.

 5 Click OK.

 6 Save the session.

WRQ Reflection

To connect your Reflection terminal emulator to UFT:

 1 Open a new or existing session.

 2 Select Setup > Terminal.

 3 In the Short Name field, type the uppercase letter A.

 4 Click OK.

Zephyr Passport

To connect your Zephyr Passport terminal emulator to UFT:

 1 Open a new or existing session.

 2 Check that the session shortname (A) Passport.zws appears in the
window title bar.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

585

How to Manage Terminal Emulator Configuration
Settings

The following steps describe how to manage your terminal emulator
configuration settings.

➤ "Change configuration settings" on page 585

➤ "Restore default settings for the selected preconfigured emulator" on
page 585

➤ "Restore settings for a user-defined configuration" on page 586

Change configuration settings

The Terminal Emulator Configuration Adjustments dialog box contains
check boxes, radio buttons, and options that require a numeric or text
value.

 1 Open the Terminal Emulator Configuration Adjustments Dialog Box, as
described on page 595.

 2 Enter a numeric or text value for an option:

 a Click the option once to highlight it.

 b Click the option again or press F2 to access the value to be changed.

 c Change the value as necessary.

 d Click another location in the dialog box to set the value.

 3 Click OK to update the current terminal emulator configuration and close
the dialog box.

Restore default settings for the selected preconfigured
emulator

 1 Open the Terminal Emulator Configuration Adjustments Dialog Box, as
described on page 595.

 2 Click the Reset button. (This button is enabled only if a preconfigured
emulator is selected.)

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

586

Restore settings for a user-defined configuration

 1 Locate the saved registry file that contains the configuration settings in
the <UFT installation folder>\dat folder on your computer. The file has a
.reg extension. (The path for the dat folder in a typical installation is:
C:\Program Files\HP\Unified Functional Testing\dat)

 2 Double-click the registry file to activate the registry file. A confirmation
message opens.

 3 Click Yes. A message opens confirming that the information was copied
into the registry.

 4 Click OK. The settings in the saved file are restored.

Tip: You can also restore the settings for a user-defined terminal emulator,
if these settings were saved previously using the wizard. For details, see
"Completing the Terminal Emulator Configuration Wizard Page" on
page 632.

How to Synchronize Steps on Terminal Emulators

The following steps describe how to perform various types of
synchronization operations. For conceptual details, see "Run Session
Synchronization" on page 573.

➤ "Insert a synchronization step while recording" on page 587

➤ "Set synchronization timeout" on page 587

➤ "Insert a synchronization point for an object" on page 588

➤ "Wait for a specified text string" on page 588

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

587

Insert a synchronization step while recording

 1 Select Design > Emulator Synchronization.

 2 (Optional) Specify a timeout in milliseconds for the Sync statement, after
which the run session continues regardless of the status of the emulator.
If you do not specify a timeout value, UFT uses the default timeout
interval, as described in "Set synchronization timeout" on page 587.

Note:

➤ You can adjust your emulator configuration to prevent UFT from
automatically inserting Sync steps for TeScreen objects in your test or
business component.

➤ You can specify the keys that generate Sync steps for TeTextScreen
objects.

For details, see Chapter 34, "How to Manage Terminal Emulator
Configuration Settings."

Set synchronization timeout

In the Run pane of the Test Settings dialog box (File > Settings > Run node),
set the Object Synchronization Timeout. For details, see the HP Unified
Functional Testing User Guide.

This enables you to specify the maximum interval (in milliseconds) that
UFT waits before running each test step.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

588

Note:

➤ This option is not available for business components.

➤ This setting is also used as the default timeout for the Sync and WaitString
methods for both the TeScreen and the TeTextScreen objects if a timeout
argument is not specified.

Insert a synchronization point for an object

Select Design > Synchronization Point. For details, see the HP Unified
Functional Testing User Guide.

When you insert a synchronization point into your test or business
component, UFT generates a WaitProperty statement in the Editor. This
statement instructs UFT to pause the test or business component until a
particular object property achieves the value you specify.

Example:

If you want the run session to wait until the Text property of the Result field
has a value of Successful, insert the following statement:

TeScreen("LogOn").TeField("Result").WaitProperty "Text", "Successful"

Wait for a specified text string

UFT’s WaitString method delays the run session until a specific text string
appears in a specified rectangle on the terminal emulator screen. The
specified text string can be a constant string or a regular expression.

To insert a WaitString statement while recording:

 1 Select Design > Emulator WaitString. Your cursor becomes a crosshairs
pointer.

 2 Drag the pointer to draw a rectangle on your emulator screen containing
the text string for which you want the run session to wait. UFT inserts a
step into your test or business component with the following syntax:

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

589

TeScreen object:
TeScreen(description).WaitString String [, TopRow, LeftColumn, BottomRow,
RightColumn, Timeout, RegExp]

TeTextScreen object:
TeTextScreen(description).WaitString String [, TopRow, LeftColumn,
BottomRow, RightColumn, Timeout, RegExp]

The position on the screen is defined by the values of the four corners of
the rectangle, each corner with its own argument.

 3 Optionally, you can:

➤ Specify that the value specified in the String argument is a regular
expression by setting the value of the RegExp argument to True.
Regular expressions enable UFT to identify objects and text strings
with varying values. For more information on regular expressions, see
the HP Unified Functional Testing User Guide.

➤ Add a timeout value in milliseconds after which the run session
continues regardless of whether the text string appears on the screen.
If you do not specify this value, UFT uses the default timeout interval.
For details, see "Set synchronization timeout" on page 587.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

590

Reference

Test Object Classes and Icons - Terminal Emulators

The following test object classes and icons apply to terminal emulators that
are configured as fully supporting HLLAPI:

The following test object classes and icons apply to terminal emulators that
do not support HLLAPI or that have been configured as supporting text-only
HLLAPI operations:

The following test object classes and icons apply to the Windows objects for
the terminal emulator window status bar and the dialog boxes that open
from the menu options in the terminal emulator window:

Icon Test Object Class

TeField

TeScreen

TeWindow

Icon Test Object Class

TeTextScreen

TeWindow

Icon Test Object Class

Dialog

WinObject

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

591

Validating a Terminal Emulator - Possible Error
Responses

The following possible error responses may be displayed in the Terminal
Emulator pane of the Options dialog box (Tools > Options > GUI Testing tab
> Terminal Emulator node) when you click the Validate button:

➤ "Invalid HLLAPI DLL" on page 591

➤ "Cannot detect an open session" on page 592

➤ "Cannot locate the main window class" on page 592

➤ "Cannot detect the emulator screen" on page 592

➤ "Cannot connect to the open session" on page 593

➤ "Cannot retrieve session text" on page 593

➤ "Cannot detect open session, or Cannot locate the main window class" on
page 593

➤ "HLLAPI DLL not found" on page 594

➤ "More than one session open" on page 594

➤ "Unknown error" on page 594

Invalid HLLAPI DLL
The required HLLAPI or EHLLAPI function cannot be found, because the
configured DLL is invalid.

Ensure that you have configured the correct DLL path and name in the
Terminal Emulator Configuration Wizard (Tools > Options > GUI Testing tab
> Terminal Emulator node > Open Wizard).

For more details, see the table listing the DLL names used by supported
terminal emulators in "Configure HLLAPI Properties Page" on page 618, or
the documentation provided by your emulator provider.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

592

Cannot detect an open session
UFT cannot detect an open terminal emulator session.

➤ Ensure that you have opened a current session in your terminal emulator.

➤ For HLLAPI emulators, ensure that the emulator short session name is set
to the uppercase letter A. You may need to restart the emulator after
changing this setting.

Cannot locate the main window class
UFT cannot find the terminal emulator main window class name.

➤ Ensure that the terminal emulator main window class name is configured
correctly in the Terminal Emulator Configuration Wizard (Tools >
Options > GUI Testing tab > Terminal Emulator node > Open Wizard).

➤ If the main window class name has a postfix that changes each time you
launch the emulator, enter only the non-changing portion of the name in
the Terminal Emulator Configuration Wizard.

Cannot detect the emulator screen
UFT cannot find the terminal emulator main window class name.

➤ Ensure that the terminal emulator main window class name is configured
correctly in the Terminal Emulator Configuration Wizard (Tools >
Options > GUI Testing tab > Terminal Emulator node > Open Wizard).

➤ If the main window class name has a postfix that changes each time you
launch the emulator, enter only the non-changing portion of the name in
the Terminal Emulator Configuration Wizard.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

593

Cannot connect to the open session
Although a current session is open, invoking an HLLAPI function resulted in
an error.

Restart UFT and then restart the emulator. If this does not resolve the
problem, contact your emulator provider.

Cannot retrieve session text
UFT cannot display text captured in the current session.

➤ HLLAPI Emulators—Restart UFT and then restart the emulator. If this does
not resolve the problem, contact your emulator provider.

➤ Non-HLLAPI Emulators—Click Validate again. If the error message is
repeated, check that the emulator screen is brought to the front during
the validate process (even when using remote access). If this is the case,
contact HP Customer Support.

Cannot detect open session, or Cannot locate the main
window class
UFT cannot detect an open terminal emulator session, or find the terminal
emulator main window class name.

➤ Ensure that you have opened a current session in your terminal emulator.

➤ Ensure that the terminal emulator main window class name is configured
correctly in the Terminal Emulator Configuration Wizard (Tools >
Options > GUI Testing tab > Terminal Emulator node > Open Wizard).

➤ If the main window class name has a postfix that changes each time you
launch the emulator, enter only the non-changing portion of the name in
the Terminal Emulator Configuration Wizard.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

594

HLLAPI DLL not found
UFT cannot find the HLLAPI DLL specified for the selected emulator.

Ensure that you have configured the correct DLL path and name in the
Terminal Emulator Configuration Wizard (Tools > Options > GUI Testing tab
> Terminal Emulator node > Open Wizard).

For more details, see the table listing the DLL names used by supported
terminal emulators in "Configure HLLAPI Properties Page" on page 618, or
the documentation provided by your emulator provider.

More than one session open
More than one terminal emulator session is currently open.

Close additional sessions.

Unknown error
The validation process failed due to an unknown error.

Restart UFT and then restart the emulator.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

595

Terminal Emulator Pane (Options Dialog Box)

This pane enables you to change your terminal emulator settings and to
validate your current terminal emulator configurations.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

596

User interface elements are described below:

To access 1 Make sure that a GUI test is open.

2 Select Tools > Options > GUI Testing tab > Terminal Emulator
node.

Important
information

This pane is available only when the Unified Functional Testing
Terminal Emulator Add-in is installed and loaded.

Any changes you make to the settings in this pane are
immediately applied to the currently open test or business
component when you click OK.

Terminal Emulator area: You can select an emulator to test using
the Vendor and Emulator list boxes. The displayed lists include
all of the vendor/emulator combination settings that are:

➤ Preconfigured (supplied with your Terminal Emulator Add-in)

➤ Copied to your computer

➤ Previously configured using the Terminal Emulator
Configuration Wizard

You can also open the wizard to configure a new terminal
emulator setting or modify an existing setting.

Relevant tasks "How to Check the Validity of a Terminal Emulator
Configuration" on page 576

UI Elements Description

Vendor The list of available terminal emulator vendors. Select the
vendor for your emulator.

Emulator The list of terminal emulators available for the
selected vendor. Select the emulator application
you want to test.

Protocol The protocol that your emulator uses.

Recommended: Auto-detect

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

597

Validate Validates the current configurations of the selected
emulator, and, if an error is detected, displays a brief
description that error.

Errors may result from:

➤ invalid terminal emulator configurations in the
Terminal Emulator pane (Tools > Options > GUI
Testing tab > Terminal Emulator node).

➤ invalid configurations made when configuring the
terminal emulator using the Terminal Emulator
Configuration Wizard (Tools > Options > GUI Testing
tab > Terminal Emulator node > Open Wizard).

➤ errors in the terminal emulator itself.

For a list of possible error responses, see "Validating a
Terminal Emulator - Possible Error Responses" on
page 591.

Troubleshoot Opens a specific Help page that provides a
troubleshooting solution where available.

Available only if an error response is displayed after you
click Validate.

Example: If you click Validate and Invalid HLLAPI DLL is
displayed, you can click Troubleshoot to open a Help
topic displaying information on handling this error.

For details, see "Validating a Terminal Emulator - Possible
Error Responses" on page 591.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

598

Screen Label The area from which UFT reads the label property
of the emulator screen while recording a test or
business component. If the location and length of
the label are correctly defined, UFT uses this value
as the name of the TeScreen object. The Screen
label area is enabled only for emulators that
support HLLAPI.

To set the screen label:
Enter the Start row and Start column coordinates that
mark the beginning of the emulator label. Define the size
of the label by entering the Length (in characters).

Note: You can change the way that UFT reads the
label property of the emulator screen, by adjusting
the configuration settings. For details, see "How to
Manage Terminal Emulator Configuration Settings"
on page 585.

Open Wizard Opens the Terminal Emulator Configuration
Wizard. The wizard enables you to define new
settings for a terminal emulator or to modify
existing user-defined settings. For details, see
"Terminal Emulator Configuration Wizard
Overview" on page 609.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

599

Terminal Emulator Configuration Adjustments Dialog
Box

This dialog box enables you to make adjustments to existing terminal
emulator configuration settings. This is required only in exceptional
circumstances. In the majority of cases, UFT works successfully with
terminal emulators using the supplied preconfigured settings and with the
configuration settings defined using the Terminal Emulator Configuration
Wizard.

Caution: Do not change the configuration settings using the options in this
dialog box unless you have a good understanding of your terminal emulator
and of the impact that such changes may have on your tests or business
components.

Adjust Configuration Opens the Terminal Emulator Configuration
Adjustments dialog box to allow changes to
existing configuration settings in exceptional
circumstances.

Note: In general, it is recommended to use the
Terminal Emulator Configuration Wizard to
configure your emulator screen settings. For details,
see "Configure Emulator Screen Settings Page" on
page 628. You should use the Adjust Configuration
option only if you have a good understanding of
your terminal emulator settings and of the impact
that such changes may have on your tests or
business components. For more information, see
"How to Manage Terminal Emulator Configuration
Settings" on page 585.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

600

The following is an example of the options displayed in the dialog box for
an emulator that supports HLLAPI.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

601

To access 1 Select Tools > Options > GUI Testing tab > Terminal
Emulator node.

2 Select an emulator and click Adjust Configuration,

Important
information

The choice of options displayed in this dialog box depends
on the type of terminal emulator selected in the Terminal
Emulator pane.

The majority of the options in this dialog box are specific to
the terminal emulator selected in the Terminal Emulator
pane of the Options dialog. The values for these
emulator-specific options are saved with the selected
emulator. For example, if you specify an HLLAPI DLL file
other than the default file, the specified file is used only for
the selected emulator.

For a few options, the value is saved and applied regardless
of the emulator selected in the Terminal Emulator pane of
the Options dialog. For example, if you select not to record
menus and dialog boxes, UFT keeps this setting even if you
select a different emulator.

Relevant tasks You modify options that are displayed as bullets by clicking
the text and modifying the value when the text becomes an
editable box. For details, see "Change configuration settings"
on page 585.

See also "How to Manage Terminal Emulator Configuration Settings"
on page 585

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

602

User interface elements are described below:

UI Elements Description

Emulator
Settings

The following options enable you to define configuration
settings that cannot be changed using the wizard:

➤ Auto-advance fields supported. Auto-advance fields allow an
application to proceed automatically to the next screen or
field after input of a predefined number of characters without
pressing ENTER or another key.

If your emulator supports auto-advance fields, select this
check box to enable UFT to record Set statements on these
fields.

Displayed for: Emulators that support HLLAPI.

➤ Number of blank lines at bottom of screen. Some emulators
reserve blank lines at the bottom of the screen. If the screen
size changes, these lines may distort UFT’s calculation of field
locations. This option enables you to specify the number of
blank lines at the bottom of the emulator screen. It is
recommended to use the Terminal Emulator Configuration
Wizard to configure this setting, but you can also modify the
setting using this option.

Enter the number of lines that your emulator reserves at the
bottom of the screen. UFT includes this value in its algorithm
for identifying field locations.

➤ Code page number (IBM PCOM only). If you are using an
IBM PCOM emulator with a language other than English,
enter the code page number for this language. For example,
for the German language keyboard, enter the value 1252. To
use the default code page conversion, specify 0. To view a list
of languages and their code page numbers, select Regional
Options in the Windows Control Panel and select the
Advanced button in the General tab.

UFT uses this code page to correctly identify the keys you
record.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

603

HLLAPI
Settings

The following options enable you to define configuration
settings for the selected emulator. They are displayed only for
emulators that support HLLAPI.

➤ HLLAPI dll file. UFT uses the HLLAPI DLL file specified for this
emulator to connect to the emulator and to retrieve data
concerning its current status.

If you are using a customized version of a preconfigured
emulator, you may need to specify a different DLL file name.

➤ HLLAPI function name. The HLLAPI DLL for this emulator uses
this function as the entry point for all HLLAPI calls.

If you are using a customized version of a preconfigured
emulator, you may need to specify a different function name.

➤ Argument size for HLLAPI function. For most emulators, the
HLLAPI function receives 16-bit (word) arguments. For some
emulators, such as IBM PCOM, the HLLAPI function receives
32-bit (integer) arguments.

Select the correct argument size for the selected emulator:
word (16 bits) or integer (32 bits).

➤ Execute HLLAPI calls from multiple threads. Some emulators
allow HLLAPI calls from multiple threads, while others require
all HLLAPI calls to be executed from the same thread. (Selected
by default for a preconfigured emulator configuration.)

Clear this check box to instruct UFT to open a separate process
for HLLAPI calls and to execute all HLLAPI calls from this
single thread.

➤ Warn if HLLAPI dll file not found. Instructs UFT to display a
warning message when the HLLAPI DLL file for the current
configuration cannot be found. For example, UFT warns you if
you try to use the Terminal Emulator Add-in before you have
installed the emulator itself.

If you clear this check box and UFT cannot find the required
DLL file, it may be difficult to determine why UFT is not
recording successfully. It is therefore recommended that you
leave this option selected.

Applies to: All terminal emulator configurations, regardless of
the currently selected emulator.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

604

Object
Identification
Settings

The following options enable you to configure the way UFT
identifies objects for the selected terminal emulator:

➤ Identify screen label using all characters. The label property
value is used to identify the TeScreen test object. The location
and length of the label are defined for the selected emulator in
the Terminal Emulator pane. For more information, see
"Terminal Emulator Pane (Options Dialog Box)" on page 595.

By default, only the protected characters in the defined label
area are captured for the label property value.

Select this option if you want UFT to capture all the characters
in the label area for the label property, including any
unprotected or hidden characters that may form part of the
label.

➤ Identify emulator window based on title bar prefix. UFT
normally identifies the emulator window by its object class.
With a user-defined configuration, the class name may not be
unique. For example, an emulator may use a generic class
name, such as Afx. In such cases, you can instruct UFT to
identify the window based on a static prefix in the window
title bar.

To instruct UFT to use a prefix to identify the correct window,
specify the text string for the prefix.

When no value is specified, UFT uses the object class to
identify the emulator window.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

605

Record
Settings

The following options enable you to configure the way UFT
records operations:

➤ Communicate with server using these keys. When recording
without HLLAPI support, UFT inserts Sync steps after specified
keys are pressed, to synchronize the communication between
the emulator and the server. The keys are identified by their
virtual key codes.

Default: ENTER key—virtual key code value: 13 (0D Hex). You
can specify different or additional keys. For example, you can
add the CTRL key—virtual key code value: 17 (11 Hex).

Specify the decimal value of the virtual key code for each key,
separated by a semicolon (;). UFT inserts a Sync step whenever
one of these keys is pressed. For more information on
synchronization, see "How to Synchronize Steps on Terminal
Emulators" on page 586.

For a list of virtual key codes, see http://msdn.microsoft.com/
en-us/library/dd375731(VS.85).aspx. The list on the MSDN page
displays the Hex values for each key code. You must convert
the value to decimal and specify the decimal value of the key
codes when you add them to the list for this option.

Applies to: All terminal emulator configurations, regardless of
the currently selected emulator.

➤ Record operations on menus and dialog boxes. By default,
UFT records operations on the menus of the terminal
emulator window and the dialog boxes that open as a result of
these menu option selections.

Clear this check box if you do not want UFT to record these
menu and dialog box operations. For example, you may not
want emulator-specific menu and dialog box steps in your test
or business component if cross-emulator compatibility is
important, or if these steps are not relevant to your test or
business component.

Applies to: All terminal emulator configurations, regardless of
the currently selected emulator.

UI Elements Description

http://msdn.microsoft.com/en-us/library/dd375731(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd375731(VS.85).aspx

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

606

Record
Settings
(continued)

➤ Record mode. In Text screen mode, UFT records operations as
TeTextScreen steps, based on the screen coordinates. In
Context-sensitive mode, UFT records field operations as
TeField steps.

By default, all preconfigured terminal emulators and
user-defined emulators configured as fully supporting HLLAPI
are set to context-sensitive mode. Select Text screen mode if
you are using an emulator that supports HLLAPI and you want
to test in terms of coordinates instead of TeField objects.

You can use the wizard to change the mode for a user-defined
terminal emulator. For more information, see "Terminal
Emulator Configuration Wizard Overview" on page 609.

Note: For emulators that do not support HLLAPI and those
configured as supporting text-only HLLAPI operations, UFT
always uses Text screen mode and this option is not available.

➤ Record steps without synchronizing. By default, when UFT
recognizes a user operation in the terminal emulator
application, such as keyboard input or a mouse click, UFT
suspends the processing of the user input in the application.
After the recorded statement is added to the test or business
component script and the Active Screen information has been
saved, UFT releases the emulator and allows it to process the
user input.

Some emulators, such as IBM PCOM, do not support running
HLLAPI while user input processing is suspended, and require
UFT to release the emulator process before executing HLLAPI
calls.

If you experience unexpected behavior while trying to record,
you may need to select this option. For example, there may be
no response from UFT or the emulator (or both). If you do
select this option, make sure that you allow sufficient time for
UFT to record each step before performing another operation.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

607

Record
Settings
(continued)

➤ Record cursor position. When recording in a text screen or
field, UFT uses TeTextScreen.ClickPosition or
TeField.SetCursorPos to record the cursor position.

Clear this check box if you do not want to record the cursor
position in your test or business component.

Applies to: All terminal emulator configurations.

➤ Trim trailing spaces in fields. When recording in
Context-sensitive mode, fields may contain trailing spaces or
other "white characters", such as tab symbols.

Select this check box to instruct UFT to trim these characters.
If you select this option, specify the minimum length of fields
to be trimmed. Fields containing fewer than the specified
number of characters remain unchanged. The default is 5
characters.

Clear the check box to leave the field content unchanged.

Displayed for: Emulators that support HLLAPI.

➤ Use property patterns. Select this check box to use property
patterns to record regular expressions in identification
properties, such as for date and time values in a screen label.

For more information on property patterns, see Using Property
Patterns to Identify Objects (Advanced) in PropPattern.htm. This
file is located in the help subfolder of the UFT installation
folder.

You can accept the default property pattern configuration file,
change its contents, or specify a different property pattern
configuration file. The default file is designed for applications
where the current time forms part of the screen label. It
defines regular expressions that replace the current time in the
screen label, creating a reliable description and readable name
for the screen.

Applies to: All terminal emulator configurations, regardless of
the currently selected emulator.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

608

Run Settings The following options enable you to configure the way UFT runs
tests or business components for the selected terminal emulator,
if the emulator supports HLLAPI:

➤ Beep when Sync operations are performed. Indicates whether
UFT beeps after performing each Sync operation during a run
session.

Applies to: All terminal emulator configurations, regardless of
the currently selected emulator.

➤ Run steps containing special emulator keys using keyboard
events. Instructs UFT to perform SendKey commands using
keyboard events. If you do not use this option to specify key
codes, UFT performs SendKey commands using the
corresponding HLLAPI function.

Some emulators, for example, Attachmate Extra!, recognize
the RESET command while the emulator is busy only when it
is sent using keyboard events. In the Keys for RESET function
option, specify the keyboard combination of the virtual key
code by specifying the decimal value of each key in the code,
separated by semicolons (;).

➤ Time between emulator status checks (in milliseconds).
During a Sync step, UFT waits the specified period of time
before checking the emulator status. UFT repeats these checks
at the specified interval until the emulator status changes to
Ready (or until the Sync timeout is reached), and then
continues with the run session. For more information on
synchronization, see "How to Synchronize Steps on Terminal
Emulators" on page 586.

Specify the interval (in milliseconds) between emulator status
checks.

Default: 200

Note: Specifying a very long interval could significantly
increase the time your tests or business components take to
run.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

609

Terminal Emulator Configuration Wizard Overview

This wizard guides you through the process of configuring the settings UFT
needs to identify your terminal emulator. If your emulator is not in the list
of preconfigured settings to select, you can define the way UFT identifies
your emulator.

To access 1 Open UFT with the Terminal Emulator Add-in loaded.

2 In UFT, select Tools > Options > GUI Testing
tab > Terminal Emulator node.

3 In the Terminal Emulator pane, click Open Wizard.

Note: After you install UFT, the Terminal Emulator
Configuration Wizard opens automatically if you
selected Run the Terminal Emulator wizard in the
Additional Installation Requirements dialog box.

Important
information

➤ To configure a terminal emulator that supports
HLLAPI, make sure that you close any application that
is currently using the HLLAPI .dll file before you begin
using the wizard. Otherwise, the wizard cannot
connect to your terminal emulator.

➤ If terminal emulator settings for UFT are already
configured on another computer, you can copy an
existing configuration file onto your computer,
instead of running the wizard. For details, see "How to
Copy Existing Terminal Emulator Configurations" on
page 576.

➤ After you run the wizard, the terminal emulator you
selected is set as the default emulator when you open
UFT with the Terminal Emulator Add-in loaded.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

610

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page (page 618) > (HLLAPI Configuration Test
Page (page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ You can check your configurations by clicking the
Validate button in Terminal Emulator pane of the
Options dialog box. A description of any detected
problem is displayed in the pane, as well as a link to a
specific troubleshooting Help page. For details, see
"How to Check the Validity of a Terminal Emulator
Configuration" on page 576.

➤ You can use the wizard to select a different emulator
for use with your tests or business components. For
more information, see "Terminal Emulator
Configuration Wizard Overview" on page 609.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

611

Terminal Emulator Configuration Wizard Welcome
Page
This wizard page provides general information about the different options
in the Terminal Emulator Configuration Wizard.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

612

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
> Specify Wizard Operation Page (page 613) > (Emulator
Setup Page (page 616)) > Configure HLLAPI Properties
Page (page 618) > (HLLAPI Configuration Test Page
(page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

613

Specify Wizard Operation Page
This wizard page enables you to you specify the operation that you want the
wizard to perform.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

614

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page > (Emulator
Setup Page (page 616)) > Configure HLLAPI Properties
Page (page 618) > (HLLAPI Configuration Test Page
(page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

615

User interface elements are described below:

UI Elements Description

Use a preconfigured
setting

Enables you to select one of the vendor/emulator settings
that are supplied with your Terminal Emulator Add-in.

Note: If you select this option, you can click Finish
instead of Next to begin working with UFT to test the
emulator you selected.

However, if you are testing a Web-based emulator, or if
UFT is not recording or recognizing objects as expected,
it is recommended to click Next and define the emulator
screen settings.

(The emulator screen settings do not affect run sessions;
they affect only recording and other object operations
(for example, inserting checkpoints and using the Object
Spy.)

For details on using your emulator with UFT, see
"Terminal Emulator Add-in - Overview" on page 568.

Configure a new
user-defined setting

Enables you to supply the details of your vendor and
emulator.

After completing the wizard, the vendor and emulator
names that you define here are displayed in the list of
vendor/emulator combinations in the Terminal Emulator
pane.

Modify an existing
user-defined setting

Enables you to modify settings that were previously
configured using the Terminal Emulator Configuration
Wizard.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

616

Emulator Setup Page
This wizard page instructs you to open your terminal emulator and connect
it to the server.

Important
information

If your emulator supports HLLAPI, enable it and set the
emulator short session name to the uppercase letter A.
For details, see "How to Set Your HLLAPI Terminal
Emulator to Work with UFT" on page 579.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

617

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page) > Configure HLLAPI Properties
Page (page 618) > (HLLAPI Configuration Test Page
(page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

618

Configure HLLAPI Properties Page
This wizard page enables you to specify whether your terminal emulator
supports HLLAPI.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

619

User interface elements are described below:

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page > (HLLAPI Configuration Test Page
(page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

UI Elements Description

Emulator supports
HLLAPI

If your emulator supports HLLAPI, select this option and
supply the information described in the table below**. If
you are not sure what values to enter, consult your
terminal emulator documentation or contact the vendor
for your terminal emulator.

HLLAPI dll path The HLLAPI dynamic-link library file specified for the
selected emulator that UFT uses to connect to the
emulator and to retrieve data concerning its current
status. This file usually resides in the terminal emulator
installation folder. You can click the browse button to
search for the path.

HLLAPI function
name

The HLLAPI DLL for the selected emulator uses this
function as the entry point for all HLLAPI calls.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

620

**The table below lists the DLL and function names used by the supported
terminal emulators.

HLLAPI format The format by which UFT attempts to identify your
emulator screen. If you are working with VT protocols,
select the Text-only option. Otherwise, it is
recommended to select Auto-detect.

If, in the next screen, UFT is unable to capture the text
from your terminal emulator, you may need to return to
this screen and change this selection to Classic,
Extended, or Text-only. You should also confirm the
accuracy of the properties you entered in the screen.

Emulator does not
support HLLAPI

Select this option if your emulator does not support
HLLAPI.

Emulator Name DLL Name HLLAPI Function Name

Attachmate EXTRA! and
Attachmate myEXTRA! Terminal
Viewer

ehlapi32.dll hllapi

Attachmate INFOConnect ihlapi32.dll WinHLLAPI

Hummingbird HostExplorer ehllap32.dll HLLAPI32

IBM Personal Communications
(PCOM) and IBM WebSphere
Host On-Demand

pcshll32.dll hllapi

NetManage RUMBA and
NetManage RUMBA Web-To-Host

ehlapi32.dll hllapi

PuTTY Not applicable Not applicable

Seagull BlueZone WHLAPI32.dll hllapi

WRQ Reflection hllapi32.dll hllapi

Zephyr (PC/Web to Host) PassHll.dll hllapi

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

621

HLLAPI Configuration Test Page
This wizard page displays a screen capture test if you selected Emulator
supports HLLAPI in the Configure HLLAPI Properties page. This test enables
you to determine whether UFT accurately identifies your terminal emulator
screen.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

622

Important
information

Check that the screen capture test is correct for your
currently selected terminal emulator, and that all the text
is correctly identified and displayed.

➤ If the wizard displays the emulator screen and the text
correctly, click Next to continue.

➤ If the wizard does NOT display the emulator screen
and the text correctly, see "Troubleshooting the
HLLAPI Properties Configuration" on page 623.

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page (page 618) > (HLLAPI Configuration Test
Page) > (Configure Emulator Classes Page (page 624)) >
(Configure Emulator Screen Settings Page (page 628))>
Completing the Terminal Emulator Configuration
Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

623

Troubleshooting the HLLAPI Properties Configuration

If the wizard does not display the text correctly, or if the HLLAPI
configuration test fails, do the following:

 1 Click Back. Before repeating the test:

➤ Make sure your emulator is connected to the host and the short name
for the session is set to the uppercase letter A. For details, see "How to
Set Your HLLAPI Terminal Emulator to Work with UFT" on page 579.

➤ Check that the settings you entered in the Configure HLLAPI
Properties Page are accurate (DLL path, procedure, format). For details,
see "Configure HLLAPI Properties Page" on page 618.

➤ Make sure that the HLLAPI .dll file you specified in the DLL path is not
in use by UFT or another application.

If the .dll file is currently in use by another application, click Cancel to
close the wizard, close the application using the DLL, and restart the
wizard.

If the .dll file is currently in use by UFT, select a different emulator and
create a new test. Then reopen the wizard and modify the original
configuration as required.

 2 If the display is still not correct, click Back and, in the Configure HLLAPI
Properties page, change the HLLAPI format to Text-only. Use the Text-only
option if you are working with a VT protocol, or if you have begun
working in UFT and encountered problems with recording and running
tests or business components. For details, see "Configure HLLAPI
Properties Page" on page 618.

 3 If the above tips do not solve the problem, click Back and, in the
Configure HLLAPI Properties page, select Emulator does not support
HLLAPI. For details, see "Configure HLLAPI Properties Page" on page 618.

Tip: If you have a good understanding of your emulator, you may be able to
solve any problems you experience by adjusting the configuration settings.
For details, see "How to Manage Terminal Emulator Configuration Settings"
on page 585.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

624

Configure Emulator Classes Page
This wizard page enables you to specify emulator class information. UFT
uses this information to locate classes on the emulator screen. By
identifying the business components of the terminal emulator window, UFT
distinguishes between the window of the terminal emulator and the screens
in the host application.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

625

Important
information

You identify the business components of the emulator by
clicking the pointing hand and then clicking the
corresponding object on your terminal emulator window.

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page (page 618) > (HLLAPI Configuration Test
Page (page 621)) > (Configure Emulator Classes Page) >
(Configure Emulator Screen Settings Page (page 628))>
Completing the Terminal Emulator Configuration
Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

626

User interface elements are described below (unlabeled elements are shown
in angle brackets):

UI Elements Description

<emulator class
options>

You identify the business components of the emulator by
clicking the pointing hand and then clicking the
corresponding object on your terminal emulator window.

Main window class. The uppermost title bar of the main
emulator window.

Text window class. The text within the emulator screen.

Toolbar class.The terminal emulator’s toolbar (if applicable).

Status bar class.The lowest status bar of the main emulator
window (if applicable).

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

627

Emulator
Process Image
Name

The process name for the emulator. (The wizard detects the
process name for the emulator and displays it in this box after
identifying the emulator main window class.)

UFT uses this process name to identify the correct process for
this terminal emulator when recording and running tests or
business components.

Make sure that the displayed process name is correct for this
emulator.

Tip: You can view the image names of the currently loaded
processes in the Image Name column of the Windows Task
Manager Processes tab.

Configure
Emulator
Screen

Select this check box to configure your emulator screen
correctly for use with UFT if:

➤ Your emulator does not support HLLAPI.

➤ Your emulator supports HLLAPI, but you want to review or
change the configuration settings for the emulator screen.

Note: If you do not select this check box, the Terminal
Emulator Add-in automatically:

1 Retrieves the configuration settings for the emulator screen.

2 Adjusts the screen size and alignment using a proprietary
algorithm with the settings retrieved for the emulator. These
settings are normally correct, so you may not need to select
this check box.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

628

Configure Emulator Screen Settings Page
This wizard page enables you to specify the settings of the terminal emulator
text screen.

This page opens only if you selected a preconfigured setting, or if you
selected the Configure Emulator Screen check box in the Configure
Emulator Classes page. In this case, your emulator screen is displayed with a
red grid overlay.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

629

Important
information

You change the settings of the emulator screen to
correspond to the required settings for your emulator.
The character size, column, and row details for your
terminal emulator are generally available from your
emulator’s connection configuration menu.

As you change the settings for the emulator screen, the
grid automatically adjusts to show the new settings.

It is recommended that you specify the text screen
settings in the following order:

1 Use the Mark Text Area button to mark the text area
on your emulator screen.

2 Fine-tune the text screen settings using the options
above the Mark Text Area button.

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page (page 618) > (HLLAPI Configuration Test
Page (page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page)
> Completing the Terminal Emulator Configuration
Wizard Page (page 632)

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

630

User interface elements are described below (unlabeled elements are shown
in angle brackets):

UI Elements Description

Mark Text Area Enables you to define the dimensions of the terminal emulator
text area on your emulator screen. When you click this button,
the wizard is minimized and the cursor becomes a crosshairs
pointer. Drag the pointer on your emulator screen to define the
text area.

After you mark the text area on your emulator screen you can
fine-tune your settings by adjusting the text screen settings.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

631

<text screen
settings>

Screen and Character Sizes
You can specify your emulator’s screen size in terms of:

➤ Number of columns and rows. Specify the number of
columns and rows in your emulator screen.

➤ Character size. Select the width and height of your
emulator’s characters to fit correctly in the defined emulator
screen.

Alignment and Offset
You can specify how the text on your emulator’s screen should
be aligned in relation to the emulator window when the
window size changes. The effect of these settings depends on
the behavior of your emulator:

➤ Screen alignment. Select the vertical alignment (Top or
Center) and the horizontal alignment (Left or Center) of the
emulator screen inside the window. These options are
already optimized for preconfigured emulator settings, and
cannot be modified.

Tip: The screen alignment settings determine how UFT
identifies the information on your emulator screen. If you
are having trouble recording and running tests or business
components (for example, the ClickPosition method is not
accurately determining the coordinates), try changing the
Screen alignment settings.

➤ Screen offset. Select the top and left offset for the text on
your emulator screen in relation to the emulator window.
For example, if you know that your emulator always reserves
one blank row at the top of the screen, set the offset to 1.

UI Elements Description

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

632

Completing the Terminal Emulator Configuration
Wizard Page
This wizard page enables you complete the configuration and, optionally, to
save your terminal emulator settings to a specific registry file.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

633

Important
information

➤ It is recommended that you save the settings you have
just configured to a separate registry file. This allows
you to restore this exact configuration if you later
change your configuration settings. For more
information, see "Terminal Emulator Pane (Options
Dialog Box)" on page 595.

➤ If you save your settings to a registry file, other users
will be able to copy and use your terminal emulator
configuration. For more information, see "How to
Copy Existing Terminal Emulator Configurations" on
page 576.

➤ If you are using the wizard from the Terminal Emulator
pane of the Options dialog box (Tools > Options > GUI
Testing tab > Terminal Emulator node), any changes
you make are not applied to the currently open test or
business component. To apply your changes, close
your test or business component and reopen it.

Wizard map The Terminal Emulator Configuration Wizard contains:

Terminal Emulator Configuration Wizard Welcome Page
(page 611) > Specify Wizard Operation Page (page 613) >
(Emulator Setup Page (page 616)) > Configure HLLAPI
Properties Page (page 618) > (HLLAPI Configuration Test
Page (page 621)) > (Configure Emulator Classes Page
(page 624)) > (Configure Emulator Screen Settings Page
(page 628))> Completing the Terminal Emulator
Configuration Wizard Page

Note: Pages that are in parentheses open according to the
option selected in the previous page. Therefore, not all
pages are displayed for every option.

See also ➤ For details on how to open the wizard, see "Terminal
Emulator Configuration Wizard Overview" on
page 609.

➤ For details on copying an existing configuration, see
"How to Copy Existing Terminal Emulator
Configurations" on page 576.

Chapter 34 • Terminal Emulator Add-in - Testing and Configuration

634

User interface elements are described below (unlabeled elements are shown
in angle brackets):

UI Elements Description

Save terminal
emulator settings to
file

Saves your settings to a registry file when you specify a
location. This enables others to import these settings as
needed.

<file location> The location in which to save the terminal emulator
settings registry file.

Finish Adds the name you assigned to your new configuration
settings to the list of available terminal emulators in the
Terminal Emulator pane of the Options dialog box as
described in "Terminal Emulator Pane (Options Dialog
Box)" on page 595.

Part XVI

VisualAge Smalltalk Add-in

636

637

35
VisualAge Smalltalk Add-in -
Quick Reference

You can use the Unified Functional Testing VisualAge Smalltalk Add-in to
test VisualAge Smalltalk user-interface objects (controls).

The following table summarizes basic information about the VisualAge
Smalltalk Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported VisualAge Smalltalk
environments, see the VisualAge Smalltalk Add-in section
of the HP Unified Functional Testing Product Availability
Matrix, available from the UFT Help or the root folder of
the Unified Functional Testing DVD.

Important
Information

You must configure your VisualAge Smalltalk environment
by importing the qt-adapter.dat file and then recompiling
your application.

See "How to Configure the VisualAge Smalltalk Add-in" on
page 640.

Test Object
Methods and
Properties

The VisualAge Smalltalk Add-in uses a sub-set of the
standard Windows test objects, methods, and properties,
which can be used when testing objects in VisualAge
Smalltalk applications. For details, see the VisualAge
Smalltalk section of the HP Unified Functional Testing Object
Model Reference.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 35 • VisualAge Smalltalk Add-in - Quick Reference

638

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Prerequisites

Opening Your
Application

You can open your VisualAge Smalltalk application before
or after opening UFT.

Add-in
Dependencies

None

Configuration

Configuring Your
Application

You configure your VisualAge Smalltalk environment by
importing the qt-adapter.dat file and then recompiling
your application.

See "How to Configure the VisualAge Smalltalk Add-in" on
page 640.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Notes:

➤ UFT can recognize only VisualAge Smalltalk
applications that have been precompiled with the
qt-adapter agent. For details, see "How to Configure the
VisualAge Smalltalk Add-in" on page 640.

➤ The Record and Run only on radio button applies only
to record and run sessions. UFT recognizes all VisualAge
Smalltalk objects for Object Spy and pointing hand
operations, regardless of the settings in the Record and
Run Settings dialog box.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Tools > Options > GUI Testing tab > Active Screen node >
Custom Level

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Chapter 35 • VisualAge Smalltalk Add-in - Quick Reference

639

This chapter includes:

Tasks

➤ How to Configure the VisualAge Smalltalk Add-in on page 640

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 35 • VisualAge Smalltalk Add-in - Quick Reference

640

Tasks

How to Configure the VisualAge Smalltalk Add-in

This task describes how to configure the VisualAge Smalltalk Add-in by
importing the qt-adapter.dat file to your VisualAge Smalltalk development
environment and then recompiling your application to include the
qt-adapter agent.

 1 Start VisualAge Smalltalk.

 2 In the System Transcript window, select Tools > Browse Configuration
Maps.

 3 In the Configuration Maps Browser window, right-click the All Names
pane and select Import > Selected Versions.

 4 In the Information Required box, enter the IP address or host name of the
server, or leave the text box blank to use the native (fileio) access. Click
OK. The Selection Required dialog box opens.

 5 In your file system, browse to the <UFT installation folder>/dat folder and
select qt-adapter.dat.

 6 In the Selection Required dialog box, do the following:

➤ In the Names pane, select Unified Functional Testing.

➤ In the Versions pane, select UFT Adapter 1.0.

➤ Click the >> button and click OK.

 7 In the Configuration Maps Browser window, do the following:

➤ In the All Names pane, click Unified Functional Testing.

➤ In the Editions and Versions pane, click UFT Adapter 1.0. A list of
available applications displays in the Applications pane.

➤ Right-click the Editions and Versions pane and select Load.

 8 To save your changes, select File > Save Image, or click OK in the Warning
dialog box when closing the VisualAge Smalltalk application.

Chapter 35 • VisualAge Smalltalk Add-in - Quick Reference

641

 9 Recompile your VisualAge Smalltalk application with the qt-adapter
agent.

You are now ready to create and run tests on VisualAge Smalltalk
applications.

Chapter 35 • VisualAge Smalltalk Add-in - Quick Reference

642

Part XVII

Visual Basic Add-in

644

645

36
Visual Basic Add-in - Quick Reference

You can use the Unified Functional Testing Visual Basic Add-in to test Visual
Basic user-interface objects (controls).

The following table summarizes basic information about the Visual Basic
Add-in and how it relates to some commonly-used aspects of UFT.

General Information

Add-in Type This is a Windows-based add-in. Much of its functionality
is the same as other Windows-based add-ins.

See "Windows-Based Application Support" on page 117.

Supported
Environments

For details on supported Visual Basic environments, see
the Visual Basic Add-in section of the HP Unified Functional
Testing Product Availability Matrix, available from the UFT
Help or the root folder of the Unified Functional Testing
DVD.

Test Object
Methods and
Properties

The Visual Basic Add-in provides test objects, methods,
and properties that can be used when testing objects in
Visual Basic applications. For details, see the Visual Basic
section of the HP Unified Functional Testing Object Model
Reference.

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Troubleshooting
and Limitations

See "Troubleshooting and Limitations - Visual Basic
Add-in" on page 648.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 36 • Visual Basic Add-in - Quick Reference

646

Prerequisites

Opening Your
Application

You can open your Visual Basic application before or after
opening UFT.

Add-in
Dependencies

None

Configuration

Options Dialog Box Use the Windows Applications pane.
(Tools > Options > GUI Testing tab > Windows Applications
node)

See "Windows Applications > General Pane (Options
Dialog Box > GUI Testing Tab)" on page 136.

Record and Run
Settings Dialog Box
(tests only)

Use the Windows Applications tab.
(Record > Record and Run Settings)

See "Windows Applications Tab (Record and Run Settings
Dialog Box)" on page 124.

Notes:

➤ If you select the Record and Run only on radio button,
the settings may also apply to (limit) the applications
that are recognized for Object Spy and other pointing
hand operations.

➤ UFT recognizes Visual Basic objects only in applications
that are opened after changing the settings in the
Windows Applications tab of the Record and Run
Settings dialog box.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Windows applications section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Applications pane.
In the application area, select Additional Settings >
Applications in the sidebar.

See the section on the Applications pane in the HP Unified
Functional Testing User Guide.

Chapter 36 • Visual Basic Add-in - Quick Reference

647

This chapter includes:

Reference

➤ Troubleshooting and Limitations - Visual Basic Add-in on page 648

Chapter 36 • Visual Basic Add-in - Quick Reference

648

Reference

Troubleshooting and Limitations - Visual Basic Add-in

This section describes troubleshooting and limitations for the Visual Basic
Add-in.

➤ When working with the Visual Basic Add-in, it is recommended to select
the Record and run on these applications (opened on session start)
option and then to specify the application name in the Windows
Applications tab of the Record and Run settings dialog box.

If you select the Record and run test on any open Windows-based
application option, you should open the Visual Basic application after the
first time you start recording.

➤ Combo box objects of style Simple ComboBox are not supported.

➤ Note that Visual Basic .NET applications are supported by the Unified
Functional Testing .NET Add-in.

Part XVIII

Web Add-in

650

651

37
Web Add-in - Quick Reference

You can use the Web Add-in to test HTML user-interface objects (controls).

The following table summarizes basic information about the Web Add-in
and how it relates to some commonly-used aspects of UFT. This information
is also relevant for all child add-ins that extend the Web Add-in.

General Information

Add-in Type Much of the functionality of this add-in is the same as
other Web-based add-ins.

➤ See "Web-Based Application Support" on page 49.

Supported
Environments

➤ For details on supported Web browsers and versions, see
the HP Unified Functional Testing Product Availability
Matrix, available from the UFT Help or the root folder of
the Unified Functional Testing DVD.

➤ UFT also provides a set of add-ins that support testing
specialized controls from a number of Web 2.0 toolkits
using test object classes that were developed by HP
using Web Add-in Extensibility (described on page 654).
These add-ins are displayed as child nodes of the Web
Add-in in the Add-in Manager. For details, see "Web 2.0
Toolkit Support" on page 675.

Test Object
Methods and
Properties

The Web Add-in provides test objects, methods, and
properties that can be used when testing objects in Web
applications. For details, see the Web section of the
HP Unified Functional Testing Object Model Reference.

LandingPages.chm::/LP_UFT_PAM.htm

Chapter 37 • Web Add-in - Quick Reference

652

Checkpoints and
Output Values

➤ See the sections describing checkpoints and output
values in the HP Unified Functional Testing User Guide.

➤ See "Checkpoints for Web Pages" on page 57.

➤ See "GUI Checkpoints and Output Values Per Add-in"
on page 695.

Extending the Web
Add-in

Web Add-in Extensibility (described on page 654) enables
you to develop support for testing third-party and custom
Web controls that are not supported out-of-the-box by the
Unified Functional Testing Web Add-in.

Other ➤ When you load the Siebel Add-in in addition to the
Web Add-in, the object identification settings are
automatically customized. For this reason, the Web
Add-in is not available in the Environment list in the
Object Identification dialog box (Tools > Object
Identification), even though the Web Add-in is loaded.

For details, see "Siebel Add-in - Overview" on page 472.

➤ You can create steps on more than one browser tab, if
your browser supports tabbed browsing.

Prerequisites

Opening Your
Application

You must open UFT before opening your Web application.

Add-in
Dependencies

None

Configuration

Options Dialog Box Use the Web pane.
(Make sure that a GUI test is open and select Tools >
Options > GUI Testing tab > Web > General node.)

For details, see "Web > General Pane (Options Dialog Box)"
on page 82.

Record and Run
Settings Dialog Box
(tests only)

Use the Web tab.
(Record > Record and Run Settings)

See "Web Tab (Record and Run Settings Dialog Box)" on
page 77.

Chapter 37 • Web Add-in - Quick Reference

653

This chapter includes:

➤ Web Add-in Extensibility on page 654

➤ Extensibility Accelerator for HP Functional Testing on page 655

➤ Considerations - Mozilla Firefox on page 656

➤ Considerations - Google Chrome on page 659

➤ Considerations - Working With Multiple Browsers on page 659

➤ Troubleshooting and Limitations - Web Add-in on page 660

Test Settings Dialog
Box
(tests only)

Use the Web pane.
(File > Settings > Web pane)

See "Web Pane (Test/Business Component Settings Dialog
Box / Application Area - Additional Settings Pane)" on
page 101.

Custom Active
Screen Capture
Settings Dialog Box
(tests only)

Use the Web section.
(Tools > Options > GUI Testing tab > Active Screen node >
Custom Level)

See the section on the Custom Active Screen Capture
Settings dialog box in the HP Unified Functional Testing User
Guide.

Application Area
Additional Settings
pane
(business
components only)

Use the Web pane.
In the application area, select Additional Settings > Web in
the sidebar.

➤ See "Web Pane (Test/Business Component Settings
Dialog Box / Application Area - Additional Settings
Pane)" on page 101.

➤ See the section on defining Application Settings for
your application area in the HP Unified Functional
Testing User Guide.

Chapter 37 • Web Add-in - Quick Reference

654

Web Add-in Extensibility

Unified Functional Testing Web Add-in Extensibility enables you to develop
support for testing third-party and custom Web controls that are not
supported out-of-the-box by the Unified Functional Testing Web Add-in.

If the test object class that UFT uses to represent a control does not provide
the operations and properties necessary to operate on your control, you can
use Web Add-in Extensibility to create a new test object class.

You can then map the control to the new test object class, and design the
test object class behavior in JavaScript. You can program how operations are
performed on the control, how properties are retrieved, and more.

You can also teach UFT to treat a control that contains a set of lower-level
controls as a single functional control, instead of relating to each lower-level
control separately.

To implement Web Add-in Extensibility, you need to be familiar with:

➤ UFT and its Object Model Reference

➤ The behavior of the custom control (operations, properties, events)

➤ Web programming (HTML and JavaScript)

➤ XML (basic knowledge)

Extensibility Accelerator for HP Functional Testing (described on page 655)
is a Visual Studio-like IDE that facilitates the design, development, and
deployment of Web Add-in Extensibility support. You can install it from:

➤ The Add-in Extensibility and Web 2.0 Toolkits option in the UFT setup
program.

➤ www.hp.com/go/functionaltestingWeb2

Extensibility Accelerator also provides samples of support developed using
Web Add-in Extensibility, which you can use to gain a better understanding
of how to create your own support.

http://www.hp.com/go/functionaltestingWeb2

Chapter 37 • Web Add-in - Quick Reference

655

For details on implementing Web Add-in Extensibility, see the Web Add-in
Extensibility Help, available from the UFT Extensibility Documentation
program group (Start > All Programs > HP Software > Unified Functional
Testing > Extensibility > Documentation).

A printer-friendly (PDF) version of the HP Unified Functional Testing Web
Add-in Extensibility Developer Guide is available in the <UFT installation
folder>\help\Extensibility folder.

Extensibility Accelerator for HP Functional Testing

An increasing number of Web applications are making use of Web 2.0-based
toolkits, such as ASP.NET AJAX, Dojo, YahooUI, GWT, and JQueryUI to add
dynamic and interactive content to their sites. The controls in these toolkits
are complex and require sophisticated and flexible testing capabilities.

Unified Functional Testing Web Add-in Extensibility enables you to extend
the Web Add-in to customize how UFT recognizes and interacts with
different types of controls. Until now, using Web Add-in Extensibility
consisted of manually developing and maintaining toolkit support sets.

Extensibility Accelerator for HP Functional Testing is a Visual Studio-like IDE
that facilitates the design, development, and deployment of these support
sets. It makes it faster and easier to create the required extensibility XML
files so that you can invest your main efforts in the development of the
JavaScript functions that will enable UFT to work with your custom Web
controls.

The Extensibility Accelerator user interface helps you define new test object
classes, operations, and properties. It also provides a point-and-click
mechanism you can use to map the test object classes you defined to
controls in your application. Extensibility Accelerator deployment
capabilities enable you to automatically deploy your new toolkit support set
to UFT or to package it so that you can share it with other UFT users.

Chapter 37 • Web Add-in - Quick Reference

656

The Extensibility Accelerator for HP Functional Testing installation is
available from:

➤ The Add-in Extensibility and Web 2.0 Toolkits option in the Unified
Functional Testing setup program.

Note: As part of this process, an html page opens in your browser. To
complete the installation successfully, this page must be opened in
Internet Explorer.

➤ www.hp.com/go/functionaltestingWeb2

Considerations - Mozilla Firefox

UFT tests and business components are generally cross-browser—you can
record Web steps on Microsoft Internet Explorer or Mozilla Firefox, or you
can create steps with the keyword-driven methodology using any supported
browser. You can run Web steps in any supported browser.

For general considerations on working with Web browsers, see
"Considerations - Web-Based Application Support" on page 51.

The following sections describe specific items to consider when working
with Mozilla Firefox:

➤ "Running Steps on Mozilla Firefox Browser Controls" on page 657

➤ "Running Steps on Mozilla Firefox Dialog Boxes" on page 657

➤ "Checkpoints and Output Values" on page 658

http://www.hp.com/go/functionaltestingWeb2

Chapter 37 • Web Add-in - Quick Reference

657

Running Steps on Mozilla Firefox Browser Controls

Generally, steps that were recorded on Microsoft Internet Explorer will run
on Mozilla Firefox without requiring any modification. However, there are
several differences to consider:

➤ UFT does not support Mozilla Firefox menus or sidebars.

➤ UFT supports specific Browser menu operations that are represented by
the following toolbar buttons:

➤ Back

➤ Forward

➤ Home

➤ Refresh

➤ Stop

All other toolbars and toolbar buttons are not supported. If you record steps
on any unsupported menu or toolbar objects when working with Microsoft
Internet Explorer, you may need to remove or replace the steps before
running the test or business component on Mozilla Firefox.

Running Steps on Mozilla Firefox Dialog Boxes

➤ Due to the difference in standard dialog boxes, pop-up recovery scenarios
that use the Click button with label recovery operation and were built for
Microsoft Internet Explorer will not work for Mozilla Firefox, and vice
versa.

➤ Mozilla Firefox uses different standard dialog boxes than the Windows
standard dialog boxes used by Microsoft Internet Explorer. If you create
steps on such dialog boxes, you should create additional steps to be used
when running on Mozilla Firefox, and precede them with an If statement
to check which browser is running.

Chapter 37 • Web Add-in - Quick Reference

658

For example, the following two dialog boxes are a security alert of the
same Web site. The one on the left is from Microsoft Internet Explorer,
and the one on the right is from Mozilla Firefox. Although they both look
like a Windows dialog box, the Mozilla Firefox one is actually a browser
window.

Checkpoints and Output Values

Cross-browser UFT operations may affect the results of some types of
checkpoints and output values:

➤ Standard or page checkpoints for links and images that are created on
Internet Explorer using Record, or using the Active Screen, may not pass
when run using Mozilla-based browsers, even if the checkpoints pass
when the test is run using Internet Explorer.

➤ Standard checkpoints for links and images created on Active Screen
captures that were captured from a Mozilla-based browser may not pass
when run using Internet Explorer, even if the checkpoints pass when the
test is run using the Mozilla-based browser.

You can use regular expressions if you want to create checkpoints for links
and images that run on both Internet Explorer and Mozilla-based
browsers. For details on regular expressions, see the section on
understanding and using regular expressions in the HP Unified Functional
Testing User Guide.

Chapter 37 • Web Add-in - Quick Reference

659

➤ Standard checkpoints that use the inner_html property may not pass
when run using Mozilla-based browsers because blanks, slashes,
backslashes, or other special characters are handled differently in different
browser types.

➤ Before running text/text area checkpoint or output value steps, you must
set the text recognition options to use only OCR, by selecting the Use
Only OCR option in the Text Recognition pane of the Options dialog box
(Tools > Options > GUI Testing tab > Text Recognition node).

Considerations - Google Chrome

By default, the ability to run extensions on local HTML files is disabled in
Google Chrome. Do the following to allow the UFT Google Chrome
extension to run on local HTML files:

 1 In Google Chrome, browse to the following URL: chrome://extensions

 2 Locate the UFT extension, named Unified Functional Testing Agent.

 3 Click the arrow located to the left of the icon to expand details about
the extension.

Select Allow access to file URLs. Your selection is automatically saved.

Considerations - Working With Multiple Browsers

Web applications and Web controls may be implemented or displayed
differently on different browsers. This may affect the behavior of your tests
and components, especially if you design them on one browser, and then
run them on another. The run results may also differ when running the
same test or component on different browsers. For example, if properties are
implemented or stored differently on different browsers, UFT may use
different properties for object identification or checkpoints depending on
the browser you use to open the application.

If you are aware of differences in your application’s behavior on different
browsers, you may be able to design your tests and components to be
browser-independent by anticipating these differences.

Chapter 37 • Web Add-in - Quick Reference

660

For example:

➤ Link controls are displayed differently on Firefox and Chrome, using
different font and color properties. If you design a test or component that
runs a checkpoint on a Link object, and the test may run on different
browsers, be sure to deselect the font, color, and backgroundColor
properties in the checkpoint. Alternatively, you can define regular
expressions for these properties, to enable the checkpoint to pass for
different values.

➤ The type attribute for a button object is button in Internet Explorer, but
submit in Firefox and Chrome. Therefore, if you learn a button object on
Internet Explorer, and the type attribute is added to the object’s
description, UFT has to use smart identification to identify the button
object if you test a Web page opened with Firefox or Chrome.

➤ You may design a test that enters text into an edit box, and then retrieves
the edit box content and sends it to the run results. If you use this test to
check a Web page opened in Chrome, the text is not displayed in the run
results, because Chrome does not store this text in a property that UFT
can retrieve.

Troubleshooting and Limitations - Web Add-in

This section contains troubleshooting and limitation information about
working with the Web Add-in.

Active Screen

➤ When working with test objects that are supported using Web Add-in
Extensibility, such as Web 2.0 test objects, if you create a checkpoint from
the Active Screen, or try to view the object’s properties from the Active
Screen, some property values may be empty.

➤ When working with the Web 2.0 ASPAjax Add-in, running scripts in the
Active Screen is not enabled by default.

Chapter 37 • Web Add-in - Quick Reference

661

Workaround:

 1 In the Options dialog box, enable running scripts in the Active Screen. In
Tools > Options > GUI Testing tab > Active Screen node, set Run scripts to
Enabled.

 2 Close and reopen your test or component for the setting to take effect.

Object Identification

If UFT does not recognize your objects in the correct location, check to see
that you are viewing the page at 100%, and are not zooming in or out of the
page.

For example, if you view the page at 90% or 120%, you may be required to
click or select an area to the left or the right of the actual object in order to
recognize it.

Recording

Autocomplete is not supported during recording sessions. When recording
on an autocomplete control, enter the full string instead of selecting the
suggestion provided by the control. The step is recorded in the same way as
other (non-autocomplete) controls.

Workaround: You can disable the AutoComplete feature in Microsoft
Internet Explorer by selecting Tools > Internet Options > Advanced and
deselecting the Use inline AutoComplete under the Browsing options.

Troubleshooting and Limitations - Browser Specific

➤ "Troubleshooting and Limitations - Internet Explorer" on page 662

➤ "Troubleshooting and Limitations - Mozilla Firefox" on page 663

➤ "Troubleshooting and Limitations - Google Chrome" on page 665

Chapter 37 • Web Add-in - Quick Reference

662

Troubleshooting and Limitations - Internet Explorer

Test Objects, Methods, and Properties

➤ Recognition of test objects when using AutoXPath is very slow for web
pages in Quirks Mode and Almost Standards Mode.
Workaround: Convert the web page into Standards Mode by adding or
changing the DOCTYPE of the page into <!DOCTYPE.htlm> or
<!DOCTYPE.HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd" or disable AutoXPath capabilities in
UFT by clearing the Learn and run using automatic XPath identifiers in
the Web > Advanced pane (Tools > Options > GUI Testing tab > Web >
Advanced node).

➤ When using the RunScript method with protected mode ON, Alert,
Confirm, or Prompt dialogs are not displayed.
Workaround: When writing a RunScript method, use the following
method syntax: Set wnd=Browser("<browser name>").
Page("<page name>").RunScript("window") wnd.alert()’ or
Browser("<browser name>").Page("<page name>").RunScript
"setTimeout(function () {alert(); }, 0)".

Recording

When recording a test on Internet Explorer 8 or earlier with the Active
Screen enabled, performance on the site may become very slow. This is due
to a performance issue in the JavaScript engine used in these browsers.
Workaround: Record the test using Internet Explorer 9, or disable the Active
Screen. For details, see the HP Unified Functional Testing User Guide.

Web 2.0 Support

Due to synchronization issues, if you navigate to a new Web page in
Internet Explorer while recording, then UFT may not record certain
operations on certain ASP .NET Ajax or jQuery UI objects in the page.
Similarly, when running steps that navigate to a new page, UFT may fail to
perform certain steps on certain ASP .NET Ajax or jQuery UI objects.

Workaround: If the problem occurs while recording, refresh the Web page
and record the step again. If the problem occurs while running, insert a
Wait() statement before the problematic step.

Chapter 37 • Web Add-in - Quick Reference

663

Internet Explorer 9

➤ The WebXML object is not supported on Internet Explorer 9 in standard
mode.

➤ XML checkpoints are not supported on Internet Explorer 9 in standard
mode.

Google Chrome Frame

➤ Google Chrome Frame is used for only one page at a time, and does not
have access to Internet Explorer’s browsing history. For this reason, the
Browser Back (CMD_BROWSER_BACK) and Browser Forward
(CMD_BROWSER_FORWARD) commands will not work when testing in
Google Chrome Frame.

➤ You cannot run a test on multiple tabs using Google Chrome Frame.

➤ You cannot run a UFT test while running Google Chrome and Google
Chrome Frame simultaneously.

➤ The OpenTitle and OpenURL Browser object identification properties may
return incorrect values. This is because Google Chrome Frame creates a
new Browser object for each navigation activity.

Troubleshooting and Limitations - Mozilla Firefox

Checkpoints

XML and text area checkpoints are not supported on Mozilla Firefox.

General Limitations

➤ If two minor versions of Mozilla Firefox are installed on the same
computer, and the earlier version (for example, Firefox 1.5.0.3) was
installed after the later version (for example, Firefox 1.5.0.8), UFT may
not recognize which is the latest version.

➤ UFT does not support anonymous content elements in non-XUL frames.
(For example, the buttons in the Mozilla Firefox SSL exception page.)

Chapter 37 • Web Add-in - Quick Reference

664

Recording

➤ Recording on Mozilla Firefox pages is only possible when the page is fully
loaded.

➤ When recording steps in Mozilla Firefox, additional steps may be
recorded.

Workaround: Manually remove the extraneous steps after the recording
session ends.

➤ The If Handler option in the Web Event Recording Configuration dialog
box works on Mozilla Firefox browsers only if the handler is assigned as
an attribute (for example,) and not if it is
assigned as a property (for example, aObj.onclick = function() {some
code})

Test Objects, Methods and Properties

➤ The Object Spy and Checkpoint Properties dialog boxes do not retrieve
the current value of edit boxes in Mozilla Firefox dialog boxes.

➤ The Object Spy and Navigate and Learn dialog boxes do not retrieve the
current value of tabmodal dialogs in Mozilla Firefox.

➤ The Type property of the WebButton test object has a different default
value in Microsoft Internet Explorer and Mozilla Firefox. In Microsoft
Internet Explorer the default value is Button, but in Mozilla Firefox the
default value is Submit.

Workaround: Do not use the Type property in the description of a
WebButton test object.

➤ When using Mozilla Firefox, the innertext, outertext, innerhtml and
outerhtml property values may differ from other browsers. Therefore,
using these values in parameters or running checkpoints that use these
property values may cause the steps to fail.

➤ The WebXML test object and the Browser.Object method are not
supported on Mozilla Firefox.

➤ If you drag a tab to create a separate window in Firefox, UFT stops
recognizing, recording, or running any web objects in the new window.

Chapter 37 • Web Add-in - Quick Reference

665

Web 2.0 Support

➤ Due to synchronization issues, if you navigate to a new Web page in
Firefox while recording, then UFT may not record certain operations on
certain ASP.NET Ajax or jQuery UI objects in the page. Similarly, when
running steps that navigate to a new page, UFT may fail to perform
certain steps on certain ASP.NET Ajax or jQuery UI objects.

Workaround: If the problem occurs while recording, refresh the Web page
and record the step again. If the problem occurs while running, insert a
Wait() statement before the problematic step.

Troubleshooting and Limitations - Google Chrome

Checkpoints

➤ Bitmap checkpoints may fail in Google Chrome because of differences
between browsers.

➤ Page checkpoints may fail in Google Chrome because of differences
between Google Chrome and Internet Explorer when handling casing in
HTML source files.

➤ If you add a text checkpoint to an text string in Google Chome, it will not
be recognized during a run session and the test will fail.

Chapter 37 • Web Add-in - Quick Reference

666

Google Chrome Functionality and Settings

➤ Web pages that modify Google Chrome's JavaScript functionality (for
example, a Web page that replaces the JSON object) may cause UFT to
behave unexpectedly.

➤ If you manually un-install the UFT Agent extension from Google Chrome
using Tools > Extensions, you must manually reinstall it if you reinstall
this hotfix.

➤ The font and color properties for link objects contain different values in
Google Chrome. Therefore, if you create standard checkpoints in
Microsoft Internet Explorer and select the font and color properties,
running these checkpoints in Google Chrome may cause the checkpoints
to fail.

➤ Internal Google Chrome pages, such as the about:blank page, Google
Chrome sign-in page, Google Chrome Web Store, and Google Chrome’s
default tabs homepage are not recognized as Web pages but WinObjects.

Recording and Learning

➤ Recording steps in Google Chrome is not supported.

➤ Learning all objects on the page in Google Chrome may result in
unexpected behavior.

Workaround: Learn individual objects at a time instead of all objects
simultaneously.

Test Objects, Methods and Properties

➤ When using Google Chrome, the innertext, outertext, innerhtml and
outerhtml property values may differ from other browsers. Therefore,
using these values in parameters or running checkpoints that use these
property values may cause the steps to fail.

➤ The following test objects, methods, and other Web-specific
functionalities are not supported in Google Chrome:

➤ Browser.Home method.

➤ Browser.FullScreen method.

➤ Browser.ClearCache method.

Chapter 37 • Web Add-in - Quick Reference

667

➤ Browser.Object method.

➤ chrome://* pages.

➤ Developer Tools pane. (Running steps on Google Chrome while the
Developer Tools pane is open is supported.)

➤ Web pages that include frame sets.

➤ Web test objects located inside iFrame controls with a blank or
about:blank SRC identification property value.

➤ WebXML test object.

➤ Web 2.0 test objects or Web Add-in Extensibility-based test objects.

➤ Web-based environments, such as Web-based SAP, Siebel, Java, .NET
Web Forms, and so on.

➤ When psying on a Web file in Google Chome, you get a fakepath for a
Webfile value property.

Chapter 37 • Web Add-in - Quick Reference

668

669

38
Web Add-in - Testing and Configuration

This chapter includes:

Concepts

➤ Event Recording Configuration for Web Objects - Overview on page 670

➤ Web 2.0 Toolkit Support on page 675

Tasks

➤ How to Manage Custom Web Event Recording Configurations
on page 681

➤ How to Manage Listening and Recording Events for Web Objects
on page 683

Reference

➤ Web Event Recording Configuration Dialog box on page 686

➤ Custom Web Event Recording Configuration Dialog Box on page 688

Chapter 38 • Web Add-in - Testing and Configuration

670

Concepts

Event Recording Configuration for Web
Objects - Overview

When you record on a Web application, UFT generates steps by recording
the events you perform on the Web objects in your application. An event is
a notification that occurs in response to an operation, such as a change in
state, or as a result of the user clicking the mouse or pressing a key while
working in a Web application.

You may need to record more or fewer events than UFT automatically
records by default. If so, you can modify the default event recording settings
for Web objects using the Web Event Recording Configuration dialog box to
use one of three predefined configurations, or you can customize the
individual event recording configuration settings to meet your specific
needs.

For example, UFT does not generally record mouseover events on link
objects. If, however, you have mouseover behavior connected to a link, it
may be important for you to record the mouseover event. In this case, you
could customize the configuration to record mouseover events on link
objects whenever they are connected to a behavior.

Considerations for Configuring Web Event Recording for Web
Objects

➤ Event configuration is a global setting and therefore affects all steps that
are recorded after you change the settings.

➤ Changing the event configuration settings does not affect steps that have
already been recorded. If you find that UFT recorded more or less than
you need, change the event recording configuration and then re-record
the steps that are affected by the change.

Chapter 38 • Web Add-in - Testing and Configuration

671

➤ Changes to the custom Web event recording configuration settings do not
affect open browsers. To apply your changes, make the changes you need
in the Web Event Recording Configuration dialog box, refresh any open
browsers, and then start a new recording session.

➤ The settings in the Web Event Recording Configuration dialog box affect
recording only for objects that UFT recognizes as Web test objects. The
recording configuration for other Web-based objects (such as Siebel,
PeopleSoft, .NET Web Forms, and SAP Web controls) is defined by
environment-specific XML configuration files.

➤ You can restore predefined settings after you set custom settings by
resetting the event recording configuration settings to the basic level from
the Web Event Recording Configuration dialog box. You can also restore
the default custom level settings from the Custom Web Event Recording
Configuration dialog box.

Note: For the purposes of Web event recording, UFT treats Web test
objects that are child objects of a PSFrame test object as PeopleSoft objects
and thus applies the settings in the PeopleSoft event configuration XML
file when recording those objects.

This section also includes:

➤ "Event Listening and Recording for Web Objects" on page 671

➤ "Considerations - Event Listening and Recording" on page 673

Event Listening and Recording for Web Objects
For each event, you can instruct UFT to:

➤ listen every time the event occurs on the object.

➤ listen only if an event handler is attached to the event.

➤ listen only if a DHTML behavior is attached to the event.

Chapter 38 • Web Add-in - Testing and Configuration

672

➤ listen if either an event handler or DHTML behavior are attached to the
event.

➤ never listen to the event.

An event handler is code in a Web page, typically a function or routine
written in a scripting language, that receives control when the
corresponding event occurs.

Note: UFT supports event handlers that are attached using an on* attribute
(such as onclick or onmouseover). It does not support other event handlers,
such as those attached using an addEventListener or attachEvent command.

A DHTML behavior encapsulates specific functionality or behavior on a
page. When applied to a standard HTML element on a page, a behavior
enhances that element's default behavior.

For each event, you can enable recording, disable recording, or enable
recording only if the next event is dependent on the selected event.

For example, suppose a mouseover behavior modifies an image link. You
may not want to record the mouseover event each time you happen to
move the pointer over this image. It is essential, though, that the mouseover
event be recorded before a click event on the same object because only the
image that is displayed after the mouseover event enables the link event.
This option applies only to the Image and WebArea objects.

For task details, see "How to Manage Listening and Recording Events for
Web Objects" on page 683.

Recording Right Mouse Button Clicks

UFT enables you to record click events made using left, center, and right
mouse buttons. By default, only left clicks are recorded, but you can modify
the configuration to record clicks from the right and center buttons, as well.

Chapter 38 • Web Add-in - Testing and Configuration

673

UFT records the Click statement when the OnClick event is triggered. UFT
differentiates between the mouse buttons by listening for events configured
for each of the mouse buttons. By default, it listens for the OnMouseUp
event, but you can also configure it to listen for the OnMouseDown event
using the Web Event Recording Configuration dialog box.

Note:

➤ UFT does not record the simultaneous clicking of more than one mouse
button.

➤ UFT does not record the right-click that opens the browser context
menu, or the selection of an item from the context menu. For details on
modifying the script manually to enable these options, visit the HP
Software Self-solve knowledge base and search for document
ID KM185231.

For details, see "How to Configure UFT to Record Mouse Clicks" on page 71.

Considerations - Event Listening and Recording
It can sometimes be difficult to find the ideal listen and recording settings.
When defining these settings, keep in mind the following guidelines:

➤ If settings for different objects in the Objects pane conflict, UFT gives first
priority to settings for specific HTML Tag Objects and second priority to
Web Objects settings. UFT applies the settings for Any Web Object only to
Web objects that do not belong to any other loaded Web-based
environment and were not defined in the HTML Tag Object or Web
Objects areas.

➤ To record an event on an object, you must instruct UFT to listen for the
event, and to record the event when it occurs. You can listen for an event
on a child object, even if a parent object contains the handler or behavior,
or you can listen for an event on a parent object, even if the child object
contains the handler or behavior.

Chapter 38 • Web Add-in - Testing and Configuration

674

However, you must enable recording for the event on the source object
(the object on which the event actually occurs, regardless of which parent
object contains the handler or behavior).

For example, suppose a table cell with an onmouseover event handler
contains two images. When the mouse moves over either of the images,
the event also bubbles up to the cell, and the bubbling includes
information on the image that the mouse moved over. You can record
this mouseover event by:

➤ Setting Listen on the <TD> tag mouseover event to If Handler (so that
UFT "hears" the event when it occurs), while disabling recording on it,
and then setting Listen on the tag mouseover event to Never,
while setting Record on the tag to Enable (to record the
mouseover event on the image after it is listened to at the <TD> level).

➤ Setting Listen on the tag mouseover event to Always (to listen
for the mouseover event even though the image tag does not contain a
behavior or handler), and setting Record on the tag to Enabled
(to record the mouseover event on the image).

➤ Instructing UFT to listen for many events on many objects may lower
performance, so it is recommended to limit Listen settings to the required
objects.

➤ In Internet Explorer, listening to the object on which the event occurs
(the source object) can, in rare situations, interfere with the event.

If you find that your application works properly until you begin recording
on the application using UFT, your Listen settings may be interfering.

➤ If this problem occurs with a mouse event, try selecting the appropriate
Use standard Windows mouse events options in the Web > Advanced
pane of the Options dialog box (Tools > Options > GUI Testing tab > Web
> Advanced node). For details, see "Web > Advanced Pane (Options Dialog
Box)" on page 92.

➤ If this problem occurs with a keyboard or internal event, or the Use
standard Windows mouse events option does not solve your problem, set
the Listen settings for the event to Never on the source object (but keep
the record setting enabled on the source object), and set the Listen
settings to Always for a parent object.

Chapter 38 • Web Add-in - Testing and Configuration

675

Web 2.0 Toolkit Support

The Complexities of Testing Web 2.0 Controls

Web 2.0 sites often include a feature-rich, user-friendly interface based on
client-side interactivity frameworks. The controls in these sites are generally
created using a combination of HTML and client-side JavaScript code that
create complex, interactive application objects.

Many groups and organizations have published Web 2.0 toolkits. These
toolkits comprise open source JavaScript libraries that define Web 2.0
controls. Developers can use or customize these toolkits to build Web 2.0
applications instead of developing Web 2.0 controls from scratch.

The UFT Web Add-in does not recognize these complex controls and,
instead, relates to the HTML elements that comprise them. This results in
low-level steps on generic Web test objects. Such steps may be difficult to
create, read, and maintain.

Testing Web 2.0 Controls with UFT Web 2.0 Add-in Support

UFT Web Add-in Extensibility makes it possible to develop Web-based
add-ins that can identify the controls in a Web 2.0 application in a way that
better matches the intended purpose and functionality of those controls.

UFT provides built-in Web Add-in Extensibility support for several public
Web 2.0 toolkits. The support for each toolkit is packaged as a child add-in
of the Web Add-in. If you install the Web 2.0 Toolkit Support, you can load
this support by selecting the relevant toolkit name in the Add-in Manager.
The Web 2.0 Toolkit Support Setup is available from the Add-in Extensibility
and Web 2.0 Toolkits option in the UFT setup.

The operations supported for each Web 2.0 test object class are a
combination of custom operations developed for that test object class and
operations directly inherited from the corresponding (base) Web Add-in test
object class.

You work with a Web 2.0 toolkit add-in much the same way as you work
with the regular Web Add-in. When the toolkit support is loaded, you can
learn, record, create checkpoints, run steps, and use all standard UFT
functionality on controls from these toolkits.

Chapter 38 • Web Add-in - Testing and Configuration

676

UFT provides support for the following toolkits:

➤ ASP .NET Ajax - http://www.asp.net/ajax/

➤ Dojo - http://www.dojotoolkit.org

➤ Google Web Toolkit (GWT) - http://code.google.com/webtoolkit/

➤ jQuery UI - http://jqueryui.com/

➤ Yahoo User Interface (Yahoo UI) - http://developer.yahoo.com/yui/

For details on the test objects and operations supported for these toolkits,
see the Web 2.0 Toolkits section of the HP Unified Functional Testing Object
Model Reference.

Considerations for Working with Web 2.0 Add-ins

➤ jQuery UI Library Injection. The Web 2.0 Add-in support is based on the
jQuery UI JavaScript library. Therefore, if you load any Web 2.0 add-in,
UFT injects the jQuery UI JavaScript library into every Web page that
opens in a browser while UFT is open (unless a jQuery UI library is already
included in the page).

The specific jQuery UI file injected for each Web 2.0 add-in is specified in
the add-in’s toolkit XML file, located in: <UFT
installation>\dat\Extensibility\Web\Toolkits\<ToolkitName>\<ToolkitNa
me>.xml

➤ F1 Help Support. When you press F1 on a test object operation that was
inherited from the Web Add-in, the Help displays information about that
operation for the Web Add-in test object class from which the operation
was inherited, and not for the extensibility-based test object class used in
your step.

Additionally, the details in the Help file reflect the behavior of the test
objects and operations in the XML files provided with UFT. If these files
were customized or modified in any way, the details in the Help files
supplied with UFT may no longer be accurate.

http://www.dojotoolkit.org
http://jqueryui.com/
http://www.asp.net/ajax/
http://code.google.com/webtoolkit/
http://developer.yahoo.com/yui/

Chapter 38 • Web Add-in - Testing and Configuration

677

In general, when the content of the extensibility files for a Web 2.0
toolkit is modified, the Help file should also be changed as described in
"Customization Guidelines" on page 679. In these cases, you should
contact the person or organization who customized the files as your first
contact point for support.

➤ Checkpoints and Output Values. Inserting checkpoints and output values
on Web 2.0 objects is supported only when recording steps.

➤ Container Objects. Some Web 2.0 objects that visually or behaviorally
seem to contain other objects in a Web application are not learned as
container objects in terms of the test object hierarchy. For example, this is
the case for the YUIDialogBox and GWTDialogBox test objects.

➤ Identification property values. When working in Mozilla Firefox, the
value of the selected item or selected identification property is not
available in the Object Spy for some Web 2.0 test object classes. The same
is true when updating property values from the application in the object
repository. This is because the value is only retrievable when the browser
is in focus.

Workaround: Retrieve the property value without removing focus from
the browser. For example:

➤ Object Type Identification. In the toolkit XML file, the <HTMLTags> and
<Conditions> elements in the <Identification> section for the relevant test
object class define how UFT maps Web controls to that class.

Browser("Dijit Tree Test").Page("Dijit Tree Test").DojoTree("mytree").Select
"Continents;Africa"

msgbox Browser("Dijit Tree Test").Page("Dijit Tree Test").DojoTree("mytree").
GetROProperty("selected item")

Chapter 38 • Web Add-in - Testing and Configuration

678

In the example below, UFT identifies a control as a GWTToggleButton test
object (when the GWT Add-in is loaded) if it has a <div> HTML tag and a
className HTML property with a value that matches the regular
expression: .*gwt-ToggleButton.*

In some cases (for example, when <Conditions
type="CallIDFuncIfPropMatch">), a JavaScript function that contains
identification criteria is also used to help map controls to a test object
class.

Keep in mind that the support provided in the HP-furnished Web 2.0
add-ins is dependent on the HTML and DOM structure of the controls. If
developers of a Web 2.0-based application change the values of a control’s
properties, then the values defined for the <HTMLTags> and <Conditions>
elements of the toolkit XML files (or JavaScript files) may not enable UFT
to correctly identify those controls.

If UFT is not identifying an object in your application as you expect, you
can view or adjust these values in the relevant toolkit support files.

The toolkit XML files are located in: <UFT
installation>\dat\Extensibility\Web\Toolkits\<ToolkitName>\<ToolkitNa
me>.xml

The JavaScript files are in a JavaScript folder under the above folder.

<Control TestObjectClass="GWTToggleButton">
<Settings>

<Variable name="default_imp_file" value="JavaScript\GWTToggleButton.js"/>
</Settings>
<Identification>

<Browser name="*">
<HTMLTags>

<Tag name="div"/>
</HTMLTags>
<Conditions type="IdentifyIfPropMatch">

<!-- The search string in this condition is treated as a regular expression
and
 is therefore equivalent to .*gwt-ToggleButton.* -->

<Condition prop_name="className" expected_value="gwt-
ToggleButton" is_reg_exp="true"/>

</Conditions>
</Browser>

Chapter 38 • Web Add-in - Testing and Configuration

679

If you modify this (or any) HP-furnished toolkit support set file, follow
the guidelines described in "Customization Guidelines" on page 679.

For more details on the way UFT identifies supported controls and for
details on the implementation of the supported operations, see the
comments provided in the XML and JavaScript files for the relevant
toolkit support set.

Customization Guidelines

If you are familiar with Web Add-in Extensibility, then you can customize or
further extend the built-in Web 2.0 support to match the needs of the
Web 2.0 toolkit application you are testing.

Additionally, if you have installed Extensibility Accelerator, you can use this
Visual Studio-like IDE to make it faster and easier to design and develop the
required extensibility XML files so that you can invest your main efforts in
the development of the JavaScript functions that will enable UFT to work
with your custom Web controls.

Extensibility Accelerator also comes with built-in projects for the UFT
Web 2.0 add-ins. You can use these projects to help you learn the
Extensibility Accelerator features or to more easily add to or modify the
provided support files.

If you customize or further extend any of the HP-furnished Web Add-in
Extensibility files, you should also do the following:

➤ Make a copy of, or otherwise back up, the original HP-provided files.

➤ Change the name and description that are displayed in the Add-in
Manager for the toolkit. Include the text: "Provided by <YourOrganization>"
in the Add-in Manager description (in the Controls\Description element
of the toolkit XML file).

➤ Create your own Help file to be opened for the customized test object
classes or operations. You must use a different file name than the
HP-provided Help file. (Change the file name in the HelpInfo element of
the Test Object XML file.)

Chapter 38 • Web Add-in - Testing and Configuration

680

Note: When installing the Web 2.0 add-ins, if a previous version of a
selected add-in is installed on your computer, the setup stores the previous
files in a backup folder before installing. You may need to merge any
customizations you made to the previous version into the new version.

For details on how to make these changes and how to customize the support
files, see the Unified Functional Testing Web Add-in Extensibility
documentation, available in the <UFT installation
folder>\help\Extensibility folder.

For details on working with Extensibility Accelerator, see the HP Extensibility
Accelerator for HP Functional Testing User Guide.

Chapter 38 • Web Add-in - Testing and Configuration

681

Tasks

How to Manage Custom Web Event Recording
Configurations

This task describes the different ways you can define, modify, export, and
reset custom Web event recording configurations.

This task includes the following steps:

➤ "Add objects to the HTML Tag Objects list" on page 681

➤ "Delete objects from the HTML Tag Objects list" on page 682

➤ "Save a custom configuration in an XML file" on page 682

➤ "Load a custom configuration from an XML file" on page 682

➤ "Modify a custom configuration file manually - Optional" on page 682

➤ "Reset configuration settings to a pre-configured basic level" on page 683

Prerequisite - Open the Custom Web Event Recording
Configuration dialog box

Select Record > Web Event Recording Configuration, and then click Custom
Settings. For user interface details, see "Custom Web Event Recording
Configuration Dialog Box" on page 688.

Add objects to the HTML Tag Objects list

 1 Select Object > Add. A New Object object is displayed in the HTML Tag
Objects list.

 2 Click New Object to rename it. Enter the exact HTML Tag name.

By default the new object is set to listen and record onclick events with
handlers attached.

Chapter 38 • Web Add-in - Testing and Configuration

682

Delete objects from the HTML Tag Objects list

 1 Select the object in the HTML Tag Objects category that you want to
delete.

 2 Select Object > Delete. The object is deleted from the list.

Save a custom configuration in an XML file

 1 Select File > Save Configuration As. The Save As dialog box opens.

 2 Navigate to the folder in which you want to save your event
configuration file and enter a configuration file name. The extension for
configuration files is .xml.

 3 Click Save to save the file and close the dialog box.

Load a custom configuration from an XML file

 1 Select File > Load Configuration. The Open dialog box opens.

 2 Locate the event configuration file (.xml) that you want to load and click
Open. The dialog box closes and the selected configuration is loaded.

Modify a custom configuration file manually - Optional

Open the XML file that you saved in any text editor, and modify the file
according to your needs. To enable UFT to recognize the modifications that
you made, the XML file must keep its original structure. For details on the
XML file structure, see "Web Event Recording Configuration XML File
Structure" on page 106.

For example, you can modify the file to enable right mouse click recording,
as described in "How to Configure UFT to Record Mouse Clicks" on page 71.

Chapter 38 • Web Add-in - Testing and Configuration

683

Reset configuration settings to a pre-configured basic level

➤ From the Custom Web Event Recording Configuration dialog box. In the
Reset to box, select the predefined event recording level you want, and
click Reset. All event settings are restored to the defaults for the level you
selected.

➤ From the Web Event Recording Configuration dialog box. Reset basic
level configuration settings by selecting Default Settings. The
configuration slider is displayed again, and all event settings are restored
to the Basic event recording configuration level.

Note: When you choose to reset predefined settings, your custom settings
are cleared completely. If you do not want to lose your changes, make sure
to save your settings in an event configuration file. For details, see "Custom
Web Event Recording Configuration Dialog Box" on page 688.

How to Manage Listening and Recording Events for Web
Objects

This task describes the different ways you can manage listening and
recording events for Web objects.

Note: The listen and record settings are mutually independent. This means
that you can choose to listen to an event for a particular object, but not
record it, or you can choose not to listen to an event for an object, but still
record the event. For details, see "Considerations - Event Listening and
Recording" on page 673.

Chapter 38 • Web Add-in - Testing and Configuration

684

This task contains the following steps:

➤ "Prerequisite - Open the Custom Web Event Recording Configuration
dialog box" on page 684

➤ "Add listening events for an object" on page 684

➤ "Delete listening events for an object" on page 684

➤ "Specify the listening criterion for an event" on page 685

➤ "Set the recording status for an event" on page 685

Prerequisite - Open the Custom Web Event Recording
Configuration dialog box

Select Record > Web Event Recording Configuration, and then click Custom
Settings. For user interface details, see "Custom Web Event Recording
Configuration Dialog Box" on page 688.

Add listening events for an object

 1 Select the object to which you want to add an event, or select Any Web
Object.

 2 Select Event > Add. A list of available events opens. For details, see
"Custom Web Event Recording Configuration Dialog Box" on page 688.

 3 Select the event you want to add. The event is displayed in the Event
Name column in alphabetical order. By default, UFT listens to the event
when a handler is attached and always records the event (as long as it is
listened to at some level).

Delete listening events for an object

 1 Select the object from which you want delete an event, or select Any Web
Object.

 2 Select the event you want to delete from the Event Name column.

 3 Select Event > Delete. The event is deleted from the Event Name column.

Chapter 38 • Web Add-in - Testing and Configuration

685

Specify the listening criterion for an event

 1 Select the object for which you want to modify the listening criterion or
select Any Web Object.

 2 In the row of the event you want to modify, select the listening criterion
you want from the Listen column. You can select Always, If Handler,
If Behavior, If Handler or Behavior, or Never. For details, see "Custom Web
Event Recording Configuration Dialog Box" on page 688.

Set the recording status for an event

 1 Select the object for which you want to modify the recording status or
select Any Web Object.

 2 In the row of the event you want to modify, select a recording status from
the Record column. For details, see "Custom Web Event Recording
Configuration Dialog Box" on page 688.

Configure UFT to record mouse click events

For details, see "How to Configure UFT to Record Mouse Clicks" on page 71.

Chapter 38 • Web Add-in - Testing and Configuration

686

Reference

Web Event Recording Configuration Dialog box

This dialog box enables you to select a predefined event configuration level
to use when recording on Web objects. By default, UFT uses the Basic level.
If UFT does not record all the events you need, you may require a higher
level.

To access Select Record > Web Event Recording Configuration.

See also "Event Recording Configuration for Web Objects - Overview" on
page 670

Chapter 38 • Web Add-in - Testing and Configuration

687

User interface elements are described below (unlabeled elements are shown
in angle brackets):

UI Elements Description

<Event
configuration
level slider>

Enables you to select a predefined event recording
configuration.

Note: If you define a custom event recording configuration, the
slider scale is hidden and the configuration description displays
Custom.

Basic (selected
by default)

Instructs UFT to:

➤ Always record click events on Web objects that commonly
support clicking, such as images, buttons, and radio buttons.

➤ Always record the submit event within forms.

➤ Record click events on other Web objects with an Internet
Explorer handler or behavior connected.
For details on handlers and behaviors, see "Event Listening
and Recording for Web Objects" on page 671.

➤ Record the mouseover event on images and image maps only
if the event following the mouseover is performed on the
same object.

Medium Instructs UFT to record click events on the <DIV>, , and
<TD> HTML tag objects, in addition to the events recorded in
the basic level.

High Instructs UFT to record mouseover, mousedown, and
double-click events on Web objects with handlers or behaviors
attached, in addition to the events recorded in the basic level.

Chapter 38 • Web Add-in - Testing and Configuration

688

Custom Web Event Recording Configuration Dialog Box

This dialog box enables you to customize the event recording configuration
in cases where the predefined Web event configuration levels do not exactly
match your recording needs.

You can customize event recording in the following ways:

➤ Add or delete objects to which UFT should apply special listening or
recording settings.

➤ Add or delete events for which UFT should listen.

➤ Modify the listening or recording settings for an event.

Custom
Settings

Opens the Custom Web Event Recording dialog box, which
enables you to customize the event recording configuration. For
details, see "Custom Web Event Recording Configuration Dialog
Box" on page 688.

Default
Settings

Restores the settings to the Basic level.

Note: When you choose to reset predefined settings, your
custom settings are cleared completely. If you customized the
event recording configuration and do not want to lose these
settings, make sure to save your settings in an event
configuration file. For details, see "How to Manage Custom Web
Event Recording Configurations" on page 681.

UI Elements Description

Chapter 38 • Web Add-in - Testing and Configuration

689

To access 1 Select Record > Web Event Recording Configuration. The
Web Event Recording Configuration dialog box opens.

2 Click the Custom Settings button. The Custom Web Event
Recording Configuration dialog box opens.

Important
information

➤ If an object is listed in the Custom Web Event Recording
Configuration dialog box, then the settings for that object
override the settings for Any Web Object.

➤ You cannot delete or add to the list of objects in the Web
Objects category, but you can modify the settings for any of
these objects.

➤ You can add any HTML Tag object in your Web page to the
HTML Tag Objects category.

Chapter 38 • Web Add-in - Testing and Configuration

690

User interface elements are described below (unlabeled elements are shown
in angle brackets):

Relevant tasks ➤ "How to Manage Custom Web Event Recording
Configurations" on page 681

➤ "How to Manage Listening and Recording Events for Web
Objects" on page 683

➤ "How to Modify Event Recording Configuration for
Web-Based Applications" on page 69

➤ "How to Configure UFT to Record Mouse Clicks" on page 71

See also ➤ "Event Recording Configuration for Web Objects - Overview"
on page 670

➤ "Event Listening and Recording for Web Objects" on
page 671

UI Elements Description

<menu
options>

File Menu
➤ Load Configuration. Enables you to load a custom

configuration XML file.

➤ Save Configuration As. Enables you to save your custom
configuration in an XML file.

Object Menu
➤ Add. Enables you to add an HTML tag object to the Objects

pane.

➤ Delete. Enables you to delete an HTML tag object from the
Objects pane.

Event Menu
➤ Add. Enables you to add the following events to the Events

pane: onchange, ondblclick, onblur, onfocus,
onmousedown, onmouseup, onmouseover, onmouseout,
onsubmit, onreset, onpropertychange.

Depending on the selected object, not every event type is
available.

➤ Delete. Delete the selected events from the Events pane.

Chapter 38 • Web Add-in - Testing and Configuration

691

<Objects
pane>

The list of Web test object classes and HTML tag objects. The
top of the hierarchy is Any Web Object.

Note:

➤ The settings for Any Web Object apply to any object on the
Web page, for which there is no specific event recording
configuration set. Below this are the Web Objects and HTML
Tag Objects categories, each of which contains a list of
objects.

➤ Only HTML tag objects can be added or deleted to this list.

<Events pane> The list of events associated with the object.

Event Name The name of the event to which UFT listens and/or records,
depending on the settings you specify.

Listen The criteria that instructs UFT when to listen to the event. The
following criteria are available:

➤ Always. Always listens to the event.

➤ If Handler. Listens to the event if a handler is attached to it.
A handler is code in a Web page, typically a function or
routine written in a scripting language, that receives control
when the corresponding event occurs.

➤ If Behavior. Listens to the event if a DHTML behavior is
attached to it. A DHTML behavior encapsulates specific
functionality or behavior on a page. When applied to a
standard HTML element on a page, a behavior enhances that
element's default behavior.

➤ If Handler or Behavior. Listens to the event if a handler or
behavior is attached to it.

➤ Never. Never listens to the event.

UI Elements Description

Chapter 38 • Web Add-in - Testing and Configuration

692

Record The record status for the selected object. The following statuses
may be displayed:

➤ Enabled. Records the event each time it occurs on an object
as long as UFT listens to the event on the selected object, or
on another object to which the event bubbles.

Bubbling is the process whereby, when an event occurs on a
child object, the event can travel up the chain of hierarchy
within the HTML code until it encounters an event handler
to process the event.

➤ Disabled. Does not record the specified event and ignores
event bubbling where applicable.

➤ Enabled on next event. Same as Enabled, except that it
records the event only if a subsequent event occurs on the
same object.

Reset Enables you to reset your settings to a pre-configured level. The
following levels are available:

➤ Basic

➤ Medium

➤ High

Note: When you choose to reset predefined settings, your
custom settings are cleared completely. If you do not want to
lose your changes, make sure to save your settings in an event
configuration file. For details, see "How to Manage Custom Web
Event Recording Configurations" on page 681.

UI Elements Description

Part XIX

Appendix

694

695

A
GUI Checkpoints and Output Values
Per Add-in

Relevant for: GUI tests and components

The tables in this chapter show the categories of checkpoints and output
values that are supported by UFT for each add-in.

For more information about using checkpoints and output values in a
specific add-in, see the relevant add-in section.

This chapter includes:

➤ Supported Checkpoints on page 696

➤ Supported Output Values on page 698

Chapter A • GUI Checkpoints and Output Values Per Add-in

696

Supported Checkpoints

Relevant for: GUI tests and components

The following table shows the categories of checkpoints that are supported
by UFT for each add-in.

Table Legend

➤ S: Supported

➤ NS: Not Supported

➤ NA: Not Applicable

Note:

➤ Only standard and bitmap checkpoints are supported for keyword
components.

➤ XML checkpoints are not supported on Internet Explorer 9 running in
standard mode or on Mozilla Firefox because the WebXML test object is
not supported for these browsers.

Chapter A • GUI Checkpoints and Output Values Per Add-in

697

For additional information, see "Footnotes" on page 698.

A
cc

es
si

b
ili

ty

B
it

m
ap

D
at

ab
as

e

Fi
le

 C
o

n
te

n
t

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L
(A

p
p

lic
at

io
n

)

X
M

L
(R

es
o

ur
ce

)

.NET Web
Forms3

S S NA NA NA NA S S S6 S6 S S

.NET Windows
Forms

NA S NA NA NA NA S S S6 S6 NA NA

ActiveX NS S NA NA NS NA S S S S NA NA

Delphi NS S NA NA NS NA S S S S NA NA

Flex NA S NA NA NA NA S S S S NA NA

Java NA S NA NA NA NA S S S S4 NA NA

Oracle NA S NA NA NA NA S S NS NS NA NA

PeopleSoft S S NA NA S S S S S1 NS S S

PowerBuilder2 NS S NA NA NS NA S S S S NA NA

Qt NS S NA NA NS NA S S S S NA NA

SAP Web-based S S NA NA S S S S S NS S S

SAP Windows-
based

S5 S NA NA S5 S5 S S S5 NS S5 NA

Siebel S S NA NA S S S S S NS S S

Silverlight NA S NA NA NA NA S S S S NA NA

Standard
Windows

NS S NA NA NS NA S S S S NA NA

Stingray NA S NA NA NA NA S S S S NA NA

Terminal
Emulator

NA S NA NA NA NA S NA NA NA NA NA

VisualAge for
Smalltalk

NA S NA NA NA NA S S S S NA NA

Chapter A • GUI Checkpoints and Output Values Per Add-in

698

Footnotes
1 Text checkpoints are supported only for Page, Frame, and ViewLink
objects.

2 When you insert a checkpoint on a PowerBuilder DataWindow control,
UFT treats it as a table and opens the Table Checkpoint Properties dialog
box.

3 For NET Web Forms, text checkpoints for WbfTreeView, WbfToolbar, and
WbfTabStrip objects are not supported.

4 The text area checkpoint mechanism for Java Applet objects is disabled by
default. You can enable it in the Advanced Java Options dialog box.

5 This is supported only when UFT records HTML elements using the Web
infrastructure, but not when it records using the SAPGui Scripting Interface
(as selected in the SAP pane of the Options dialog box).

6 This is supported only when UFT is configured to use the OCR (optical
character recognition) mechanism.

Supported Output Values

Relevant for: GUI tests and components

The following table shows the categories of output values that are supported
by UFT for each add-in.

Visual Basic NS S NA NA NS NA S S S S NA NA

Web S S NA NA S S S S S1 S S NA

Web Services NA NA NA NA NA NA S NA NA NA S NA

WPF NA S NA NA NA NA S S S S NA NA

A
cc

es
si

b
ili

ty

B
it

m
ap

D
at

ab
as

e

Fi
le

 C
o

n
te

n
t

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L
(A

p
p

lic
at

io
n

)

X
M

L
(R

es
o

ur
ce

)

Chapter A • GUI Checkpoints and Output Values Per Add-in

699

Table Legend

➤ S: Supported

➤ NS: Not Supported

➤ NA: Not Applicable

Note: Only standard and bitmap checkpoints are supported for keyword
components.

For additional information, see "Footnotes" on page 700.

A
cc

es
si

b
ili

ty

B
it

m
ap

D
at

ab
as

e

Fi
le

 C
o

n
te

n
t

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L
(A

p
p

lic
at

io
n

)

X
M

L
(R

es
o

ur
ce

)

.NET Web Forms NA NA NA NA NA S S S S5 S5 NA NA

.NET Windows
Forms

NA NA NA NA NA NA S S S5 S5 NA NA

ActiveX NS NA NA NA NA NA S S S S NA NA

Delphi NS NA NA NA NA NA S S S S NA NA

Java NA NA NA NA NA NA S NA S S3 NA NA

Oracle NA NA NA NA NA NA S S NA NA NA NA

PeopleSoft NA NA NA NA NA S S S S1 NS S S

PowerBuilder2 NA NA NA NA NA NA S NA S S NA NA

Qt NA NA NA NA NA NA S S S S NA NA

SAP Web-based NA NA NA NA NA S S S S NS S S

SAP Windows-
based

NA NA NA NA NA S4 S S S4 NS S4 S

Siebel NA NA NA NA NA S S S S NS S S

Chapter A • GUI Checkpoints and Output Values Per Add-in

700

Footnotes
1 Text output values are supported only for Page, Frame, and ViewLink
objects.

2 When you insert an output value step on a PowerBuilder DataWindow
control, UFT treats it as a table and opens the Table Output Value Properties
dialog box.

3 The text area output mechanism for Java Applet objects is disabled by
default. You can enable it in the Advanced Java Options dialog box.

4 This is supported only when UFT records HTML elements using the Web
infrastructure, but not when it records using the SAPGui Scripting Interface
(as selected in the SAP pane of the Options dialog box).

5 This is supported only when UFT is configured to use the OCR (optical
character recognition) mechanism.

Silverlight NA NA NA NA NA NA S S S S NA NA

Standard
Windows

NA NA NA NA NA NA S S S S NA NA

Stingray NA NA NA NA NA NA S S S S NA NA

Terminal
Emulator

NA NA NA NA NA NA NA NA NA NA NA NA

VisualAge for
Smalltalk

NA NA NA NA NA NA NA S S S NA NA

Visual Basic NA NA NA NA NA NA S NA S S NA NA

Web NA NA NA NA NA S S S S1 NS S NA

Web Services NA NA NA NA NA NA NA NA NA NA NA S

WPF NA NA NA NA NA NA S S S S NA NA

A
cc

es
si

b
ili

ty

B
it

m
ap

D
at

ab
as

e

Fi
le

 C
o

n
te

n
t

Im
ag

e

Pa
g

e

St
an

d
ar

d

Ta
b

le

Te
xt

Te
xt

 A
re

a

X
M

L
(A

p
p

lic
at

io
n

)

X
M

L
(R

es
o

ur
ce

)

	HP Unified Functional Testing Add-ins Guide
	Table of Contents
	Welcome to the HP Unified Functional Testing Add-ins Guide
	HP Unified Functional Testing Add-ins Guide Overview
	Prerequisite Background
	How Do I Find the Information That I Need?
	Unified Functional Testing Help Contents
	Additional Online Resources

	Working with UFT Add-ins
	UFT Add-ins Overview
	Concepts
	UFT Add-in Support - Overview
	Loading UFT Add-ins
	Add-in Licenses
	Considerations for Working with UFT Add-ins

	Record and Run Settings for Add-ins - Overview
	Considerations for Defining Record and Run Settings
	Environment Variables in Record and Run Settings

	UFT Add-in Extensibility

	Tasks
	How to Manage UFT Add-ins
	How to Define Record and Run Settings for UFT Add-ins

	Reference
	Add-in Manager Dialog Box

	Web-Based Application Support
	Concepts
	Web-Based Application Support - Overview
	Considerations - Web-Based Application Support
	Registering Browser Controls
	Accessing Password-Protected Resources in the Active Screen
	Checkpoints for Web Pages
	Event Recording Configuration for Web-Based Applications
	Advanced Operations on Web-Based Applications
	Activating methods associated with a Web-based object using the Object property
	Using programmatic descriptions for the WebElement object

	Web Object Identifiers
	Web Object Identifier Types
	Considerations - Web Object Identifiers

	Tasks
	How to Define Record and Run Variables for a Web-Based Environment
	How to Modify Event Recording Configuration for Web-Based Applications
	How to Configure UFT to Record Mouse Clicks
	How to Use Web Object Identifiers - Exercise

	Reference
	Web Tab (Record and Run Settings Dialog Box)
	Web > General Pane (Options Dialog Box)
	Browser Details Dialog Box
	Web > Page/Frame Options Pane (Options Dialog Box)
	Web > Advanced Pane (Options Dialog Box)

	Web Pane (Test/Business Component Settings Dialog Box / Application Area - Additional Settings Pane)
	Advanced Authentication Dialog Box

	Web Event Recording Configuration XML File Structure
	Register Browser Control Utility
	Active Screen Dialog Box
	Troubleshooting and Limitations - Web-Based Application Support

	Windows-Based Application Support
	Concepts
	Windows-Based Application Support - Overview

	Tasks
	How to Configure Options for Windows-Based Applications
	How to Define Record and Run Settings for Windows-Based Applications

	Reference
	Windows Applications Tab (Record and Run Settings Dialog Box)
	Application Details Dialog Box
	Record and Run Setting Guidelines for Windows-Based Add-ins

	Windows Applications > General Pane (Options Dialog Box > GUI Testing Tab)
	Windows Applications > Advanced Pane (Options Dialog Box > GUI Testing Tab)
	Considerations for Advanced Windows-based Application Testing

	.NET Add-in
	.NET Add-in - Overview
	.NET Web Forms Add-in - Quick Reference
	Concepts
	Considerations for Testing .NET Web Forms
	.NET Web Forms Objects and Outputting Values

	Reference
	Troubleshooting and Limitations - .NET Web Forms
	General
	Creating, Editing, and Running Testing Documents
	Checkpoint and Output Values

	.NET Windows Forms Support - Quick Reference
	Concepts
	Considerations for Testing .NET Windows Forms Applications
	.NET Add-in Extensibility
	Troubleshooting and Limitations - .NET Windows Forms

	.NET Windows Forms Support - Testing and Configuration
	Concepts
	.NET Windows Forms Objects - Checkpoints and Output Values
	.NET Windows Forms Spy

	Tasks
	How to Use the .NET Windows Forms Spy

	Reference
	.NET Windows Forms Spy Dialog Box

	.NET Silverlight Add-in - Quick Reference
	Concepts
	Silverlight Add-in Extensibility

	References
	Troubleshooting and Limitations - Silverlight Add-in
	General
	Checkpoints
	Creating and editing testing documents
	Running steps on Silverlight applications

	.NET Windows Presentation Foundation Add-in - Quick Reference
	Concepts
	Considerations for Working with the WPF Add-in
	WPF Add-in Extensibility

	Reference
	Troubleshooting and Limitations - Windows Presentation Foundation

	.NET Windows Presentation Foundation Add-in - Testing and Configuration
	Concepts
	About WPF User Interface Automation
	Automation Elements
	Control Patterns

	WPF Objects, Methods, and Properties to Enhance Your Test or Component

	ActiveX Add-in
	ActiveX Add-in - Quick Reference
	Concepts
	Considerations for Working with the ActiveX Add-in

	Reference
	Troubleshooting and Limitations - ActiveX Add-in
	Creating, Editing, and Running Testing Documents
	Checkpoints and Output Values
	Unsupported Controls

	Delphi Add-in
	Delphi Add-in - Quick Reference
	Concepts
	Delphi Add-in Extensibility

	Tasks
	How to Enable Communications Between UFT and Your Delphi Application

	Flex Add-in
	Flex Add-in - Quick Reference
	Concepts
	Considerations - Flex Add-in
	UFT Interaction with the UFT Flex Agent
	UFT Recognition of Web-based Flex Applications

	Tasks
	How to Prepare Flex Applications for Testing

	Reference
	Troubleshooting and Limitations - Flex Add-in

	Java Add-in
	Java Add-in - Quick Reference
	Concepts
	Considerations - Java Add-in
	Java Add-in Extensibility

	Reference
	Troubleshooting and Limitations - Java Add-in
	Identifying and Solving Common Problems
	General Notes and Limitations
	Java Environment Variables Settings
	Locating the Java Console
	Checking Whether the Problem is Application-Specific by Running an Application or Applet with the Same Settings

	Java Add-in - Testing and Configuration
	Concepts
	Java Add-in - Overview
	Recording Steps on Java Objects
	Text Checkpoint and Text Output Value Steps for Java Objects
	Full Object Hierarchy Views

	Advanced Java Test Object Methods
	CreateObject Method
	GetStatics Method
	FireEvent / FireEventEx Methods

	Java Add-in Environments

	Tasks
	How to Record Steps on Java Table Objects
	How to Define Record and Run Environment Variables for Java Objects
	How to Optimize Settings for Other Record and Run Settings Dialog Box Tabs
	How to Disable Dynamic Transformation Support (Advanced)

	Reference
	Java Pane (Options Dialog Box > GUI Testing Tab)
	Advanced Java Options Dialog Box

	Java Pane (Test/Business Component Settings Dialog Box / Application Area - Additional Settings Pane)
	Java Tab (Record and Run Settings Dialog Box)

	Oracle Add-in
	Oracle Add-in - Quick Reference
	Concepts
	Considerations for Working with the Oracle Add-in

	Reference
	Troubleshooting and Limitations - Oracle Add-in

	Oracle Add-in - Testing and Configuration
	Concepts
	Recording Tests on Oracle Applications
	Dynamic Transformation Support

	Tasks
	How to Verify or Enable the Oracle Server Unique Name Attributes
	How to Enable the Oracle Name Attribute
	How to Set Oracle Environment Variables
	How to Locate the Java Console
	How to Disable Dynamic Transformation Support

	Reference
	Oracle Tab (Record and Run Settings Dialog Box)
	Oracle Record and Run Environment Variables

	PeopleSoft Add-in
	PeopleSoft Add-in - Quick Reference
	Concepts
	Considerations for Working with the PeopleSoft Add-in

	Reference
	Troubleshooting and Limitations - PeopleSoft Add-in

	PowerBuilder Add-in
	PowerBuilder Add-in - Quick Reference
	Concepts
	Considerations for Working with the PowerBuilder Add-in

	Reference
	Troubleshooting and Limitations - PowerBuilder Add-in

	Qt Add-in
	Qt Add-in - Quick Reference
	Considerations - Qt Add-in

	Add-in for SAP Solutions
	Add-in for SAP Solutions - Overview
	Web-Based SAP Support - Quick Reference
	Troubleshooting and Limitations - Web-based SAP

	Web-Based SAP Support - Testing and Configuration
	Concepts
	Considerations for Working with SAP GUI for HTML

	Reference
	Web > Page/Frame Options Pane (Options Dialog Box > GUI Testing Tab)
	Web > Advanced Pane (Options Dialog Box > GUI Testing Tab)

	Windows-based SAP Support - Quick Reference
	Concepts
	Considerations - Windows-based SAP Add-in for SAP Solutions
	Checkpoints and Output Values in SAP GUI for Windows

	Reference
	Package and Patch Versions Requirements - SAP Application Server and SAP GUI for Windows
	Troubleshooting and Limitations - Windows-based SAP

	Windows-based SAP Support - Testing and Configuration
	Concepts
	SAP GUI Scripting API and UFT
	Using the Auto-Parameterize Option to Parameterize Table and Grid Cell Values
	How UFT Records in Auto-Parameterize Mode
	Parameterized Cell Values in the Input Data Sheet
	Considerations for Auto-Parameterization
	Data in Rows that Require Scrolling

	Low-Level or Analog Mode Recording on SAP GUI for Windows
	Spooling Data from a Table

	Tasks
	How to Enable Support for SAP GUI for Windows
	How to Enable Scripting on the SAP Application (Server-Side)

	How to Record on Standard Windows Controls During an SAP GUI for Windows Recording Session

	Reference
	SAP Tab (Record and Run Settings Dialog Box)
	Environment Variables for Windows-based SAP Applications
	SAP > General Pane (Options Dialog Box > GUI Testing Tab)

	UFT-SAP Solution Manager Integration
	Concepts
	UFT-SAP Solution Manager Integration - Overview
	Test Management in SAP Solution Manager
	Resource Files in Solution Manager
	Standalone Mode
	Integrated Mode

	Tasks
	How to Configure Solution Manager to Work with UFT
	How to Open and Save Tests in Solution Manager in Standalone Mode
	How to Upload Files to Solution Manager in Standalone Mode
	How to Run a Test Stored in Solution Manager in Standalone Mode
	How to Run a Test Stored in Solution Manager in Integrated Mode
	How to Display or Edit a GUI Test from Solution Manager in Integrated Mode
	How to Transfer Data To and From GUI Tests in Integrated Mode Using Test Parameters

	Reference
	Solution Manager Testing Modes: Standalone or Integrated
	Solution Manager Connection Dialog Box
	Save GUI Test to Solution Manager Dialog Box
	Open GUI Test from Solution Manager Dialog Box
	Upload File to Solution Manager Dialog Box
	Save External File to Solution Manager Dialog Box
	Download File from Solution Manager
	SAP > SAP Solution Manager Pane (Options Dialog Box > GUI Testing Tab)
	Solution Manager Trace Options Dialog Box

	Siebel Add-in
	Siebel Add-in - Quick Reference
	Considerations - Siebel Add-in
	Troubleshooting and Limitations - Siebel Add-in
	Siebel 7.7.x or Later
	Siebel 7.0.x and 7.5.x

	Siebel Add-in - Testing and Configuration
	Concepts
	Siebel Add-in - Overview
	Siebel Test Object Model - Overview
	Recording Steps on Siebel Objects
	Native Operations and Properties in Siebel 7.0.x and 7.5.x Applications

	Siebel Add-in - Checkpoints and Output Values
	Siebel 7.7.x or Late - Test Automation Module Configuration

	Tasks
	How to Define Environment Variables for Siebel Applications
	How to Upgrade Tests Created with Version 6.5 of the Siebel Add-in

	Reference
	Siebel Tab (Record and Run Settings Dialog Box)

	Siebel Test Express
	Concepts
	Using Siebel Test Express to Generate or Update Shared Object Repositories

	Tasks
	How to Use Siebel Test Express to Generate or Update a Shared Object Repository

	Reference
	Create Object Repository Wizard
	Connection Information Page (Create Object Repository Wizard)
	Screen Selection Page (Create / Update Object Repository Wizard)
	Importing Test Objects Page (Create Object Repository Wizard)
	Object Repository Created / Updated Page (Create / Update Object Repository Wizard)

	Standard Windows Testing Support
	Standard Windows Support - Quick Reference
	Troubleshooting and Limitations - Standard Windows

	Stingray Add-in
	Stingray Add-in - Quick Reference
	Considerations for Working with the Stingray Add-in
	Troubleshooting and Limitations - Stingray Add-in
	General
	Creating and Running Tests and Components

	Stingray Add-in - Testing and Configuration
	Concepts
	Setting Up Stingray Object Support
	Stingray Run-time Agent (Agent DLL)
	Stingray Precompiled Agent Mode

	Tasks
	How to Set Up Your Stingray Project Using the Precompiled Agent Mode

	Reference
	Stingray Support Configuration Wizard
	Support Mode Selection Page (Stingray Support Configuration Wizard)
	Add Support Code Page (Stingray Support Configuration Wizard)
	Select Configuration Mode Page (Stingray Support Configuration Wizard)
	Manual Configuration Mode Page (Stingray Support Configuration Wizard)
	Automatic Configuration Mode Page (Stingray Support Configuration Wizard)
	Detected Stingray Components Page (Stingray Support Configuration Wizard)
	Finish Page (Stingray Support Configuration Wizard)
	Detection Failure Page (Stingray Support Configuration Wizard)

	Stingray Pane (Options Dialog Box)

	Terminal Emulator Add-in
	Terminal Emulator Add-in - Quick Reference
	Troubleshooting and Limitations - Terminal Emulator

	Terminal Emulator Add-in - Testing and Configuration
	Concepts
	Terminal Emulator Add-in - Overview
	Recording Tests and Components on Terminal Emulator Applications
	Considerations for Recording and Running Tests and Components on Terminal Emulators

	Checkpoints and Output Values - Terminal Emulators
	Run Session Synchronization
	Terminal Emulator Recovery Scenarios

	Tasks
	How to Check the Validity of a Terminal Emulator Configuration
	How to Copy Existing Terminal Emulator Configurations
	How to Set Your HLLAPI Terminal Emulator to Work with UFT
	How to Configure an Emulator to Work with the Terminal Emulator Add-in

	How to Manage Terminal Emulator Configuration Settings
	How to Synchronize Steps on Terminal Emulators

	Reference
	Test Object Classes and Icons - Terminal Emulators
	Validating a Terminal Emulator - Possible Error Responses
	Invalid HLLAPI DLL
	Cannot detect an open session
	Cannot locate the main window class
	Cannot detect the emulator screen
	Cannot connect to the open session
	Cannot retrieve session text
	Cannot detect open session, or Cannot locate the main window class
	HLLAPI DLL not found
	More than one session open
	Unknown error

	Terminal Emulator Pane (Options Dialog Box)
	Terminal Emulator Configuration Wizard Overview
	Terminal Emulator Configuration Wizard Welcome Page
	Specify Wizard Operation Page
	Emulator Setup Page
	Configure HLLAPI Properties Page
	HLLAPI Configuration Test Page
	Configure Emulator Classes Page
	Configure Emulator Screen Settings Page
	Completing the Terminal Emulator Configuration Wizard Page

	VisualAge Smalltalk Add-in
	VisualAge Smalltalk Add-in - Quick Reference
	Tasks
	How to Configure the VisualAge Smalltalk Add-in

	Visual Basic Add-in
	Visual Basic Add-in - Quick Reference
	Reference
	Troubleshooting and Limitations - Visual Basic Add-in

	Web Add-in
	Web Add-in - Quick Reference
	Web Add-in Extensibility
	Extensibility Accelerator for HP Functional Testing
	Considerations - Mozilla Firefox
	Considerations - Google Chrome
	Considerations - Working With Multiple Browsers
	Troubleshooting and Limitations - Web Add-in
	Troubleshooting and Limitations - Internet Explorer
	Troubleshooting and Limitations - Mozilla Firefox
	Troubleshooting and Limitations - Google Chrome

	Web Add-in - Testing and Configuration
	Concepts
	Event Recording Configuration for Web Objects - Overview
	Event Listening and Recording for Web Objects
	Considerations - Event Listening and Recording

	Web 2.0 Toolkit Support
	Considerations for Working with Web 2.0 Add-ins

	Tasks
	How to Manage Custom Web Event Recording Configurations
	How to Manage Listening and Recording Events for Web Objects

	Reference
	Web Event Recording Configuration Dialog box
	Custom Web Event Recording Configuration Dialog Box

	Appendix
	GUI Checkpoints and Output Values Per Add-in
	Supported Checkpoints
	Supported Output Values

