
HP Operations Orchestration
For Windows and Linux

Software Version: 9.06

Purging OO Run Histories fromMySQL
Databases

Document Release Date: October 2012

Software Release Date: October 2012

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

HP Operations Orchestration (9.06)Page 2 of 25

Purging OO Run Histories from MySQL Databases

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

HP Operations Orchestration (9.06)Page 3 of 25

Purging OO Run Histories from MySQL Databases

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Operations Orchestration (9.06)Page 4 of 25

Purging OO Run Histories from MySQL Databases

Contents
Purging OO Run Histories from MySQL Databases 1

Contents 5

About Deleting Run Histories 6

Required knowledge 7

HP OO Database Tables 8

Run Table 8

Run_history Table 8

Runstep_historyTable 8

Property_history Table 9

Log_record Table 9

Flow_metrics Table 9

Physically Deleting Data 10

Appendices 11

Appendix A: Table Diagram 12

Appendix B: Upgrading Older Schemas 13

Appendix C: Example Cleanup Stored Procedure 16

Appendix D: Example Scheduling Scripts 23

Appendix E: Performance Implications 24

HP Operations Orchestration (9.06)Page 5 of 25

About Deleting Run Histories
This document is designed to provide amethod for pruning old run history data for Central
administrators and DBAs involved in themanagement of the data stored by Central systems.

This document is divided into threemain sections:

1. Descriptions of the tables involved in storing historical run data in the HP OO database. See
"HP OODatabase Tables" on page 8.

2. The procedure for physically deleting old run history data. See "Physically Deleting Data" on
page 10.

3. Appendices that contain information such as a diagram of the tables in theRun schema, how
to upgrade older schemas, and performance implications.

The code examples shown in the appendices and the script that calls the pruning process are
included in text form in the fileMySQL_Run_History_Purge.zip (available on theWeb site
where you downloaded this document). The code files are:

n To call the schema update process:

mysql_oo_upgrade_history_schema_call.sql

n To call the pruning process:

mysql_oo_prune_run_history_call.sql

n For Appendix B: Upgrading older schemas:

mysql_oo_upgrade_history_schema.sql

n For Appendix C: Example cleanup stored procedure:

mysql_oo_prune_run_history.sql

n For Appendix D: Example scheduling scripts:

mysql_oo_prune_run_history_call.sh

To upgrade the schema:

a. Replace dharma_userwith your database user at about line 4 in themysql_oo_upgrade_
history_schema.sql script.

b. Run themysql_oo_upgrade_history_schema.sql script to create the upgrade_history_
schema stored procedure.

c. Run the scriptmysql_oo_upgrade_history_schema_call.sql script to call the upgrade_
history_schema procedure.

To run the pruning procedure:

a. Replace dharmawith your database name at about lines 3 and 4 in themysql_oo_prune_
run_history.sql script.

b. Run themysql_oo_prune_run_history.sql script to create the prune_oo_data stored
procedure.

HP Operations Orchestration (9.06)Page 6 of 25

Purging OO Run Histories from MySQL Databases
About Deleting Run Histories

c. Call the prune_oo_data procedure by either running themysql_oo_prune_run_history_
call.sql script or themysql_oo_prune_run_history_call.sh shell script.

Before deciding whether to implement the procedures in this document, read the entire document
including "Appendix E: Performance Implications" on page 24.

Required knowledge
MySQL database knowledge is required.

HP Operations Orchestration (9.06)Page 7 of 25

Purging OO Run Histories from MySQL Databases
About Deleting Run Histories

HP OO Database Tables
The tables involved in capturing run history information belong to the OO database. See "Appendix
A: Table Diagram" on page 12 for a diagram of the tables in the schema. The tables in theRun
schema are:

l The run table

l The run_history table

l The runstep_history table

l The property_history table

l The log_record table

l The flow_metrics table

Run Table
The run table stores information about flows that have not yet finished running. Every time a run
performs a checkpoint, its current frame stack (including context variables) is placed into a binary
object and written to a row in this table. The primary key of the run table is the run id. As soon as a
run finishes, the entry in the run table is removed and placed in the run_history table.

There are no foreign keys between this table and any other table.

Run_history Table
The run_history table stores run information that is used in reporting. There is one row in this table
stored for every execution of a flow. The table stores general information about the run, such as its
start time, end time, the number of its steps, and how the run ended.

Important: Deleting data from the run_history table causes the loss of reporting information.
However, if storage space is critical, you can delete data from this table. Just be aware that
flows deleted from the run_history table will no longer be visible in any reports.

Runstep_historyTable
The runstep_history table stores reporting information for each step. There is a one-to-many
relationship between the run_history table and the runstep_history table, enforced by a foreign
key relationship between the runstep_history.run_history_id and run.oid fields, which uses
cascading deletes.

Important Deleting data from the runstep_history table causes the loss of reporting information for
each step of a flow, but the general flow information is still available for reporting. You will not
however, be able to "drill down" into the steps which were executed by a flow that has been pruned.
However, if storage space is critical, you can delete data from this table. Deleting data from the
runstep_history table also deletes any related records from the property_history table.

HP Operations Orchestration (9.06)Page 8 of 25

Purging OO Run Histories from MySQL Databases
HP OODatabase Tables

Note: Note: OO versions older than 7.20 require schema altering in order to properly support
cascading deletes. See "Appendix B: Upgrading Older Schemas" on page 13 .

Property_history Table
The property_history table stores a row for each input of a step. There is a foreign key relationship
between the fields property_history.runstep_hist_id and runstep_history.oid, with cascading
deletes.

Log_record Table
The log_record table stores a row for each step input that was designated to be recorded for
reporting under a domain-term name. Essentially, it stores a subset of the data in the property_
history table, but there is no foreign key relationship to the runstep_history table. If a run_history
row is deleted, rows will also be deleted from the runstep_history and property_history tables,
but the log_record table is left intact.

The data in the log_record table is used to plot dashboard charts, so deleting data from it will result
in loss of dashboard information. This may or may not be a problem depending on how often you
prune data. Since dashboard charts aremeant to give amore "real-time" picture of what's going on
with OO, deleting data from the log_record table for a period past where the data is useful for
dashboards should be fine.

Flow_metrics Table
The flow_metrics table stores flow outcome counters. There is one entry for each flow, with
counters broken down intoResolved, Error, Diagnosed, No Action Taken, and Failed
outcomes, as well as the cumulative time taken by the flows.

This table is used to create the flow metrics bar:

HP Operations Orchestration (9.06)Page 9 of 25

Purging OO Run Histories from MySQL Databases
HP OODatabase Tables

Physically Deleting Data
To delete run histories, use the following approach

1. Upgrade the database schema if necessary (see "Appendix B: Upgrading Older Schemas" on
page 13).

2. Establish a timestamp (date and time) when run histories older than it are deleted.

3. Determine how many run histories should be deleted.

4. Divide these run histories into batches tominimize the transaction size.

5. Starting with the oldest batch, delete the batches using one transaction per batch as follows:

a. Begin the transaction.

b. Delete data from the run_history table, if required.

c. Update the flow_metrics table to reflect the deleted rows, if run histories were deleted.

d. Delete data from the runstep_history table if data was not removed from the run_history
table.

e. Delete the rows for the deleted run steps from the log_record table, if necessary.

f. Commit the transaction.

These steps, excluding the first one (upgrading), can be performed on a periodic basis from a
scheduled job. An example stored procedure is provided in "Appendix C: Example Cleanup Stored
Procedure" on page 16.

You can schedule the cleanup job, as explained in"Appendix D: Example Scheduling Scripts" on
page 23.

Because an orphaned flow is not considered completed, its related run history is not deleted by the
purging scripts.

HP Operations Orchestration (9.06)Page 10 of 25

Purging OO Run Histories from MySQL Databases
Physically Deleting Data

Appendices
The appendices in this section aremeant to help you perform the necessary tasks involved in
deleting run histories.

Appendix A: Table Diagram 12

Appendix B: Upgrading Older Schemas 13

Appendix C: Example Cleanup Stored Procedure 16

Appendix D: Example Scheduling Scripts 23

Appendix E: Performance Implications 24

HP Operations Orchestration (9.06)Page 11 of 25

Purging OO Run Histories from MySQL Databases
Appendices

Appendix A: Table Diagram
7.50 Run Schema

HP Operations Orchestration (9.06)Page 12 of 25

Purging OO Run Histories from MySQL Databases
Appendices

Appendix B: Upgrading Older Schemas
This appendix contains the following examples:

l A stored procedure namedmysql_oo_upgrade_history_schema.sql

l A script to call the procedure namedmysql_oo_upgrade_history_schema_call.sql

The mysql_oo_upgrade_history_schema.sql
stored procedure

The following stored procedure detects older versions of the schema (OO versions 7.0 and earlier)
and alters the appropriate tables to support cascading deletes. We recommend that you use the
text copy of this stored procedure contained in the filemysql_oo_upgrade_history_schema.sql
instead of copying the code below, which has line breaks tomake reading easier.

DELIMITER $$

DROP PROCEDURE IF EXISTS `upgrade_history_schema` $$
CREATE DEFINER=`dharma_user`@`localhost` PROCEDURE `upgrade_
history_schema`()
BEGIN

/* find out the build version so we know if we need to do some
schema altering */

SET @need_alters = 0 ;

SELECT build_info.version
INTO @current_version
FROM build_info
WHERE dri_time IN (SELECT max(dri_time) FROM build_info);

SELECT CASE WHEN (@current_version LIKE '7.0%') OR (@current_
version LIKE '7.10%')

THEN 1
ELSE 0

END
INTO @need_alters;

/* only do this if version is < 7.11 !!! */
IF @need_alters = 1 THEN

SELECT CONCAT('Schema is at version ', @current_version, '.

HP Operations Orchestration (9.06)Page 13 of 25

Purging OO Run Histories from MySQL Databases
Appendices

Updating.. (This may take some time)') AS "Message";

/* drop constraint, if it exists*/
IF EXISTS (SELECT NULL FROM information_schema.TABLE_

CONSTRAINTS
WHERE CONSTRAINT_SCHEMA = DATABASE() AND

CONSTRAINT_NAME = 'fk_hist_rstep2parent') THEN

ALTER TABLE runstep_history DROP FOREIGN KEY fk_hist_
rstep2parent;

END IF;

/** create index if not there already */
IF EXISTS (SELECT NULL FROM information_schema.statistics

WHERE INDEX_SCHEMA = DATABASE() AND index_name =
'idx_hist_prop_runhist_id') THEN

ALTER TABLE property_history
DROP INDEX idx_hist_prop_runhist_id;

END IF;

CREATE INDEX idx_hist_prop_runhist_id
ON property_history(run_hist_id);

/* replace some of the foreign keys generated by hibernate
with the same foreign keys, but with DELETE CASCADE */

IF EXISTS (SELECT NULL FROM information_schema.TABLE_
CONSTRAINTS

WHERE CONSTRAINT_SCHEMA = DATABASE() AND
CONSTRAINT_NAME = 'fk_hist_rstep2run') THEN

ALTER TABLE runstep_history
DROP FOREIGN KEY fk_hist_rstep2run;

END IF;

ALTER TABLE runstep_history
ADD CONSTRAINT fk_hist_rstep2run
FOREIGN KEY (run_history_id)
REFERENCES run_history(oid)
ON DELETE CASCADE;

IF EXISTS (SELECT NULL FROM information_schema.TABLE_
CONSTRAINTS

WHERE CONSTRAINT_SCHEMA = DATABASE() AND
CONSTRAINT_NAME = 'fk_hist_prop2rstep') THEN

HP Operations Orchestration (9.06)Page 14 of 25

Purging OO Run Histories from MySQL Databases
Appendices

ALTER TABLE property_history
DROP FOREIGN KEY fk_hist_prop2rstep ;

END IF;

ALTER TABLE property_history
ADD CONSTRAINT fk_hist_prop2rstep
FOREIGN KEY (runstep_hist_id)
REFERENCES runstep_history(oid)
ON DELETE CASCADE;

ELSE
SELECT CONCAT('Schema is at version ' , @current_version, '. No

update is required.') as "Message";

END IF;

END $$

DELIMITER ;

The mysql_oo_upgrade_history_schema_call.sql
script

You can use the following script to call the above stored procedure. We recommend that you use
the text copy of this script contained in the filemysql_oo_upgrade_history_schema_call.sql
instead of copying the code below, which has line breaks tomake reading easier.

/* mysql_oo_upgrade_history_schema_call.sql
*
* example script to run upgrade_history_schema
*/

/* there are no options to this procedure */

call upgrade_history_schema();

To run this script:

l Use themysql utility as follows:

mysql –u database_user – p database_name < mysql_oo_upgrade_history_
schema_call.sql

HP Operations Orchestration (9.06)Page 15 of 25

Purging OO Run Histories from MySQL Databases
Appendices

Appendix C: Example Cleanup Stored
Procedure

This appendix contains the following examples:

l A stored procedure namedmysql_oo_prune_run_history.sql

l A script to call the procedure namedmysql_oo_prune_run_history_call.sql

The mysql_oo_prune_run_history.sql stored
procedure

The following stored procedure does the actual pruning from the database. Before you use this
procedure, review "Appendix E: Performance Implications" on page 24.

We recommend that you use the text copy of this example contained in the filemysql_oo_prune_
run_history.sql instead of copying the code below, which has line breaks tomake reading easier.

DELIMITER $$

DROP PROCEDURE IF EXISTS dharma.prune_oo_data $$
CREATE PROCEDURE dharma.`prune_oo_data`(hoursToKeep int -- default
2160

, prune_batch_size int -- default 1000
, prune_run_history varchar(5) --default 'false'

, prune_dashboards varchar(5) -- default 'true'
, verbose int -- default 1

)
MODIFIES SQL DATA

BEGIN

declare lastRunDate datetime;
declare deleteOlderThan datetime;

declare deleteFromIndex int;
declare deleteToIndex int;
declare deleteRowCount int;
declare lastPruneTableIndex int;

SELECT max(start_time)
INTO lastRunDate
FROM run_history;

IF verbose > 0 THEN
SELECT CONCAT('Last entry in the run_history table occured on

HP Operations Orchestration (9.06)Page 16 of 25

Purging OO Run Histories from MySQL Databases
Appendices

',
lastRunDate) AS "INFO";

END IF;

SET hoursToKeep = hoursToKeep * -1;
SET deleteOlderThan = TIMESTAMPADD(HOUR, hoursToKeep,

lastRunDate);

IF verbose > 0 THEN
SELECT CONCAT('Deleting entries older than ', deleteOlderThan)

AS "INFO";
END IF;

-- drop the temp table just in case it's still around from a
failed run

DROP TEMPORARY TABLE IF EXISTS oo_prune_table;
CREATE TEMPORARY TABLE oo_prune_table

(
`oid` bigint(20) NOT NULL AUTO_INCREMENT,
`run_hist_id` bigint(20) NOT NULL,
`execution_state` int(11) DEFAULT NULL,
`flow_uuid` varchar(255) DEFAULT NULL,
`flow_version` bigint(20) DEFAULT NULL,
`run_time_millis` bigint(20) DEFAULT NULL,
PRIMARY KEY (`oid`),
KEY `idx_oo_prune_table_run_hist_id` (`run_hist_id`)

)
ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

-- get the info for the records to delete, making sure not to
remove

-- anything that's still in the run table.
INSERT INTO oo_prune_table(run_hist_id,

execution_state,
flow_uuid,
flow_version,
run_time_millis)

SELECT oid,
execution_state,
flow_uuid,
flow_version,
CAST(run_time_millis as UNSIGNED)

FROM run_history AS h
WHERE (start_time < deleteOlderThan

AND

HP Operations Orchestration (9.06)Page 17 of 25

Purging OO Run Histories from MySQL Databases
Appendices

oid NOT IN (SELECT history_id FROM run)
)

ORDER BY h.oid ASC;

-- get the first and last indexes from oo_prune_table
SELECT count(*), min(oid), max(oid)
INTO deleteRowCount, deleteFromIndex, lastPruneTableIndex
FROM oo_prune_table;

-- loop through oo_prune_table, stepping by batch_size, and
delete the data

IF verbose > 0 THEN
SELECT CONCAT('Pruning information for ', deleteRowCount,

' flow runs from the database. This may take a
while...') AS "INFO";

END IF;

WHILE deleteFromIndex <= lastPruneTableIndex DO

-- calculate the end of the delete range
SET deleteToIndex = deleteFromIndex + prune_batch_size;

-- on the off chance that a batch ends on the end of the batch
table,

-- we would end up in an infinite loop without this check.
IF deleteToIndex = deleteFromIndex THEN

SET deleteFromIndex = deleteFromIndex + 1;
END IF;

IF verbose > 1 THEN
SET @msg = CONCAT('Deleting chunk: ',

deleteFromIndex, ' to ',
deleteToIndex);

SELECT @msg as "INFO";
END IF;

START TRANSACTION;

-- delete dashboard data from log_record if requested

IF (LOWER(prune_dashboards) = 'true') THEN

IF (verbose > 1) THEN

HP Operations Orchestration (9.06)Page 18 of 25

Purging OO Run Histories from MySQL Databases
Appendices

SELECT 'Deleting dashboard data...' AS "INFO";
END IF;

DELETE l
FROM log_record l

INNER JOIN oo_prune_table p
ON ((p.oid BETWEEN deleteFromIndex AND deleteToIndex)
AND (l.run_hist_id = p.run_hist_id));

ELSE
-- notify the user that we're not deleting dashboards
IF (verbose > 1) THEN

SELECT 'Not deleting dashboard data...' AS "INFO";
END IF;

END IF;

-- check to see if we want to delete rows from run_history
IF (LOWER(prune_run_history) = 'true') THEN

-- delete all data from run_history table
-- this requires recalculation of flow_metrics as well
IF (verbose > 1) THEN

SELECT 'Deleting run history data...' AS "INFO";
END IF;

-- delete rows from run_history
DELETE r
FROM run_history AS r
INNER JOIN oo_prune_table as p

ON
p.oid >= deleteFromIndex AND
p.oid < deleteToIndex AND
r.oid = p.run_hist_id;

IF (verbose > 1) THEN
SELECT 'Updating flow metrics...' AS "INFO";
SELECT 'BEFORE:' AS "INFO";
SELECT * FROM flow_metrics;

END IF;

-- now recalculate the totals for flow_metrics
-- (this only needs to be done if we delete from run_history)
UPDATE flow_metrics AS f

INNER JOIN (SELECT flow_uuid,
flow_version,
sum(if(execution_state = 0, 1, 0))

HP Operations Orchestration (9.06)Page 19 of 25

Purging OO Run Histories from MySQL Databases
Appendices

AS diagnosedCount,
sum(if(execution_state = 1, 1, 0))

AS resolvedCount,
sum(if(execution_state = 2, 1, 0))

AS noActionCount,
sum(IF(execution_state = 3, 1, 0))

AS errorCount,
sum(IF(execution_state = 2147483647, 1, 0))

AS failedCount,
sum(run_time_millis) AS cumulativeTime
FROM oo_prune_table
WHERE oid BETWEEN deleteFromIndex AND deleteToIndex
GROUP BY flow_uuid, flow_version
) AS d

ON f.flow_uuid = d.flow_uuid AND f.flow_version = d.flow_version
SET f.diagnosed_count = f.diagnosed_count - d.diagnosedCount,

f.resolved_count = f.resolved_count - d.resolvedCount,
f.failed_count = f.failed_count - d.failedCount,
f.no_action_count = f.no_action_count - d.noActionCount,
f.resolved_count = f.resolved_count - d.resolvedCount,
f.cumulative_time = f.cumulative_time - d.cumulativeTime,
f.dlm_time = NOW();

-- now delete the metrics for those flows that are
-- left with 0 counts across the board
DELETE FROM flow_metrics
WHERE diagnosed_count = 0
AND failed_count = 0
AND no_action_count = 0
AND resolved_count = 0
AND error_count = 0
AND EXISTS (SELECT 1 FROM oo_prune_table p

WHERE oid BETWEEN deleteFromIndex
AND deleteToIndex

AND flow_uuid = p.flow_uuid);

IF (verbose > 1) THEN
SELECT 'AFTER:' AS "INFO";
SELECT * FROM flow_metrics;
END IF;

ELSE
-- we are not deleting from run_history.
-- we just need to delete rows from runstep_history.
IF (verbose > 1) THEN

SELECT 'Deleting step details' AS "INFO";
END IF;

HP Operations Orchestration (9.06)Page 20 of 25

Purging OO Run Histories from MySQL Databases
Appendices

DELETE r
FROM runstep_history AS r
INNER JOIN oo_prune_table as p
ON
(p.oid BETWEEN deleteFromIndex AND deleteToIndex)
AND
(r.run_history_id = p.run_hist_id);

END IF;

COMMIT;

-- move the start index to start one after the last index
deleted.

SET deleteFromIndex = deleteToIndex;

END WHILE;

IF verbose > 0 THEN
SELECT 'Pruning complete.' AS "INFO";

END IF;

-- drop the temp table to free up resources.
DROP TEMPORARY TABLE oo_prune_table;

END $$

DELIMITER ;

The mysql_oo_prune_run_history_call.sql script
You can use the following script to call the above stored procedure. We recommend that you use
the text copy of this script contained in the filemysql_oo_prune_run_history_call.sql instead of
copying the code below, which has line breaks tomake reading easier.

/*
* sample script to call prune_oo_data
*
*
* USAGE EXAMPLE:
*
* mysql -u database_user database < mysql_oo_execute_prune_
run_history.sql
*/

HP Operations Orchestration (9.06)Page 21 of 25

Purging OO Run Histories from MySQL Databases
Appendices

/**-

** modify parameters below to suit your needs.
**
** See "Appendix E: Performance Implications" of the documentation
** for guidlines

***-
***********/

/* The number of hours to keep in run_history. Anything older than
this many

hours will be removed from the database.
*/
SET @keep_this_many_hours = 336; -- keep 2 weeks worth of data

/* batch size. deletes will be commited to the database for this
many rows */
SET @batch_size = 1000;

/* prune run history. If set to 'true', records will be removed
from the
* run_history table. If set to false, the default value, records

will no
* be removed from the run_history table, and data will only be

removed
* from the runstep_history table.
* Please see "About the OO 7.50 Run schema and tables" in the
* documentation for further details. And be sure to understand all
* implications before setting this to true
*/

SET @prune_run_history = 'false';

/* prune dashboards. If set to 'true', information will be removed
from the
* log_record table. See "About the OO 7.50 Run schema and tables"

in the
* documentation for further details.

*/
SET @prune_dashboards = 'true';

/* verbosity. Higher numbers will produce more detailed output. 2
is the
* highest level at the moment

HP Operations Orchestration (9.06)Page 22 of 25

Purging OO Run Histories from MySQL Databases
Appendices

*/
SET @verbosity = 2;

/**-
***********/

call prune_oo_data(@keep_this_many_hours, @batch_size, @prune_run_
history, @prune_dashboards, @verbosity);

Appendix D: Example Scheduling Scripts
The preferredmethod to schedule a pruning job is to use your operating system’s scheduling
facility. In a UNIX environment, you can place a cron script like the one shown below under
/etc/cron.daily or use it in a custom schedule as desired, as shown in the following script. In a
Windows system, you can achieve similar results usingMicrosoft Windows Scheduler and a .bat
file modeled after the following script.

We recommend that you use the text copy of this script contained in the filemysql_oo_prune_
run_history_call.sh instead of copying the code below, which has line breaks tomake reading
easier.

See "Appendix E: Performance Implications" on next page for performance considerations and
make sure that the filemysql_oo_prune_run_history_call.sql has been tailored to your needs
before running this script. For more information on setting parameters inmysql_oo_prune_run_
history_call.sql, see "Appendix C: Example Cleanup Stored Procedure" on page 16.

#!/bin/sh

example shell script to call prune_oo_data.
edit the values below to match your system configuration

enter your database information below
NOTE: entering passwords here might be a security issue. please
be sure you understand the implication before you do
so.
db_user="root"
db_password="roots_password"
db_name="oo_database_name"

change this to the location of your mysql scripts.
script_dir="/your_script_location"

HP Operations Orchestration (9.06)Page 23 of 25

Purging OO Run Histories from MySQL Databases
Appendices

cd $script_dir

/usr/bin/mysql -u $db_user --password=$db_password $db_name <
mysql_oo_prune_run_history_call.sql > hp_oo_prune_log_`/bin/date
+"%Y-%m-%d"` 2>&1

Appendix E: Performance Implications
Here are some recommendations for using the pruning code:

l Choose a pruning set size that is appropriate to your particular situation. This is important for
maintaining the well being of your HP OO system. The number of hours retained should be
calculated so that the pruning stored procedure deletes small amounts of history while allowing
Central to make progress in running flows.

Having a higher number for pruning set size can affect database performance, and as a result,
flow execution performancemetrics will decrease. Having a lower number for pruning set size
increases the execution time of the database purging script, but maintains an overall better
database performance. The chosen pruning set size should be the highest number for which
database performance counters are yielding acceptable values. Depending on the database
size, for big database sizes, it is recommended to stop Central, Scheduler services for the
duration of the execution of the purging script.

l The stored procedure uses a temporary table which is usually allocated inmemory, but should
be placed on disk if there is not enoughmemory for it. Make sure there is enough free space for
this temporary table.

l In general, it is better to run the pruning proceduremore often with small batches, than less
frequently with larger batches. This helps both Central andMySQL’s throughput, as the pruning
jobs can be interleaved with normal processing jobs.

l Although this is beyond the scope of this document, note that proper allocation of disk space is
important when considering the performance of the database. Having separate physical drives
for the database file and the transaction log (separate from the operating system) is a good start.

HP Operations Orchestration (9.06)Page 24 of 25

Purging OO Run Histories from MySQL Databases
Appendices

	Purging OO Run Histories from MySQL Databases
	Contents
	About Deleting Run Histories
	Required knowledge

	HP OO Database Tables
	Run Table
	Run_history Table
	Runstep_historyTable
	Property_history Table
	Log_record Table
	Flow_metrics Table

	Physically Deleting Data
	Appendices
	Appendix A: Table Diagram
	Appendix B: Upgrading Older Schemas
	Appendix C: Example Cleanup Stored Procedure
	Appendix D: Example Scheduling Scripts
	Appendix E: Performance Implications

