
HP OpenView Service Delivery Designer

Reference Guide

Software Version: 2.2

Microsoft Windows Server 2003, Windows XP

Manufacturing Part Number: T3288-90000
March 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be held liable for errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from
your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices

© Copyright 2004 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language without the
prior written consent of Hewlett-Packard Company. The information contained in this material is
subject to change without notice.

Trademark Notices

OpenView® is a trademark of Hewlett-Packard Development Company, L.P.

Microsoft®, Windows NT®, Windows® 2000, Windows® XP, Windows Server™ 2003, Windows®, SQL
Server™ 2000, and Visio 2002, are U.S. registered trademarks of Microsoft Corporation.

WinZip® is a registered trademark of WinZip Computing, Inc.

2

Support

Please visit the HP OpenView web site at:

http://openview.hp.com/

There you will find contact information and details about the products, services, and support that HP
OpenView offers.

You can go directly to the HP OpenView support web site at:

http://support.openview.hp.com/

The support site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information

3

http://openview.hp.com/
http://support.openview.hp.com/

 Contents

Contents... 5

The SDD Guide .. 11

Introduction.. 11

Audience.. 11

Prerequisites.. 11

Chapters Summary.. 11

Related Documents ... 12

SDD Overview.. 13

Packages and Solutions .. 13

Jobs ... 13

Execution Units.. 14

The Package Designer .. 14

EU and Package Versions... 14

Editing a Package.. 14

Solution Rollout ... 15

GUI & CLI Customization .. 15

Additional Tools ... 15

SDD Basic Concepts ... 17

Service Delivery Controller Overview.. 17

Service Delivery Building Blocks ... 18
Solutions... 18

Solution Components .. 18
Packages.. 18

Package Anatomy.. 18
The XML File ... 19
The C# File .. 19

5

Contents

The Message File .. 19
Working with Resources... 19

Binding to a Resource ... 20
Managing Dependencies.. 20
Execution Units (EUs) .. 20

EU Components .. 21
EU Registration.. 22
Capturing State Information... 22
EU Creation Flow... 22

Execution Unit Examples.. 25

Sample Execution Unit One: SampleEU... 25
SampleEU Class Elements .. 25

Sample Execution Unit Two: AddShare .. 30
AddShare EU Class Elements ... 30

SDD Tools .. 35

The Package Designer .. 35
Overview of the Package Designer.. 35
Launching... 36
Opening a Package.. 37
Saving a Package .. 39
Saving a Package Locally .. 39
Editing a Package .. 40
Edit Log Messages... 40

Import Message File .. 41
Preview... 41
Updating a Package to Latest EU Revisions ... 42
Package Designer Shapes... 43

Versioning Overview.. 44
Introduction to Versioning... 44
Revisions are Persistent... 44
Package Default Revision .. 45
EU Default Revision ... 45
Propagating an EU Update to a Package .. 46

A Versioning Example ... 51

6

Contents

Versioning in the Service Delivery Controller Console .. 51

Solution Rollout ... 53
Requirements form Solution Rollout .. 53
Introduction to Solution Rollout .. 53
Solution Rollout Overview .. 53
Solution Rollout Details .. 53
Solution Rollout and Versioning ... 56

Additional Command Line Tools.. 57
EU Test Tool... 57

Short Description ... 57
Description... 57
Location and Command... 57
Security Considerations... 57
Usage... 57
Parameters .. 57
Example... 58

Resource Dictionary Tool ... 58
Short Description ... 58
Description... 58
Location and Command... 58
Security Considerations... 59
Usage... 59
Parameters .. 60

Repository Tool .. 60
Short Description ... 60
Description... 60
Location and Command... 60
Security Considerations... 60
Usage... 60
Example... 60

SDD—UI Job Options Modifications ... 61
UI Job Options Overview.. 61
Fixed vs Dynamic Input Parameters .. 62
GUI Job Options Modification Example—Change Default Setting .. 62
GUI Job Options Modification Example—Add New Input Parameter 65
CLI Job Options Modifications.. 70

7

Contents

SDD Security.. 73

Package Designer Security ... 73

Solution Rollout Security ... 73

EU Registration Security ... 74

SDD Tools Security Considerations .. 74

SDD Execution Units... 75

ADS EUs.. 75
ADSDeployValidator... 75
CopyFile ... 75
CopySequence... 76
CopySysprepFiles .. 76
ExtractMachineName... 76
GenerateCaptureSequence ... 76
GenerateDeploySequence... 76
GenerateSysprepSequence... 76
GetAdminMAC ... 76
GetADSInstallDir .. 76
GetBootPartition ... 77
GetDeviceName ... 77
GetDeviceNameByServerName... 77
GetDiskLayout.. 77
InstallAgentValidator .. 77
PrepareImgVariables.. 77
RegisterCSRImage .. 77
RegisterDevice ... 77
RunRemoteCommand.. 77
RunSequenceValidator .. 78
SetDefaultTemplate.. 78
SetDeviceVariables .. 78
SubmitJob... 78
SysprepValidator .. 78

Domain EUs... 78
ConsolidationCheck ... 78

FileServices EUs ... 78

8

Contents

AddShare.. 78
AddTempShare .. 79
AssertFailure .. 79
AssertSuccess.. 79
CopyFiles.. 79
DelShare... 79
DfsAdd.. 79
DfsAddDomainRoot.. 79
DfsAddStandaloneRoot.. 79
DfsRemove... 79
DfsRemoveDomainRoot... 80
DfsRemoveStandaloneRoot... 80
FileShareMoveValidate .. 80
ForceRemoveDir .. 80
GetNestedShares... 80
GetShareInfo .. 80
MakeRemoteDir ... 80
NestedShareCheck .. 80
RemoveDir.. 80
SetFileAttributes ... 81
SetFileSecurity ... 81
SetShareInfo .. 81
WaitEU ... 81

Machine EUs ... 81
AddLocalGroups... 81
ComputerNameAdd.. 81
ComputerNameDel... 81
EnumLocalGroups.. 82
FileSharesConsolidateCheck... 82
FixServerName .. 82
GenerateNewServerName... 82
Rename.. 82
RenameNT4 ... 82
Shutdown.. 83
ShutdownNT4... 83
ValidateUser... 83

9

Contents

Walkthrough Examples... 85

Changing a Service Delivery Controller Solution: Overview ... 85

Walkthrough Example A: Changing an Existing Solution—Removing an EU............................... 86
Identifying the Package to Be modified.. 86
Identifying Necessary Changes ... 86
Identifying EUs to Be Modified/Changed ... 87
Saving the Modified Package... 87
Testing the New Package .. 88

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share.... 88
Identifying the Package to Be Modified.. 88
Identifying Necessary Changes ... 88
Identifying the Precise Change Location.. 89
Saving the Modified Package... 99
Testing the New Package .. 99

Appendix A – SampleEU Code and Markup.. 101

SampleEU Code.. 101

SampleEU MarkUp.. 105

Appendix B – AddShare EU Code and Markup... 107

AddShare Code ... 107

AddShare MarkUp ... 110

10

 1

The SDD Guide

Introduction

This guide provides information on the SDD set of tools that enable the customization of
HP OpenView Service Delivery solutions.

Audience

This guide is intended for IT Architects and Administrators, IT professionals, Data
Center Managers, and developers, creating, enhancing or modifying HP OpenView
Service Delivery Controller solutions using the Service Delivery Designer.

Prerequisites

To take full advantage of the SDD you must be familiar with the HP OpenView Service
Delivery Controller. Basic understanding of programming and operating system concepts
is also assumed.

Chapters Summary

Chapter 1 – The SDD Guide, introduces the overall purpose and structure of the SDD
Guide.

Chapter 2 – SDD Overview, provides a high-level overview of the HP OpenView Service
Delivery Designer, its components and tools.

Chapter 3 – SDD Basic Concepts, describes the basic concepts involved in the SDD
product.

Chapter 4 – Execution Units, provides a guide through the EU files, from the C# class
definitions to the markup file definitions.

11

Related Documents

Chapter 5 – SDD Tools, walks you through using the Package Designer tool
demonstrating how to capture and customize an IT organization’s workflow.

Chapter 6 – SDD Security, addresses the model to use to modify, save, and rollout
packages and solutions.

Chapter 7 – SDD Execution Units, describes the Execution Units that are part of the
library that ships with the HP OpenView Service Delivery Controller.

Chapter 8 – Walkthrough Examples, provides examples and information needed to
modify existing Service Delivery Controller Solutions using the Package Designer.

Related Documents

Refer to this site for additional information: http://support.openview.hp.com/

12

http://support.openview.hp.com/

 2

SDD Overview

The HP OpenView Service Delivery Designer (Service Delivery Designer or SDD) is a
development environment made up of a set of tools, samples, and documentation that
allow for the customization of HP OpenView Service Delivery Controller solutions.

Typically, the SDD user is the IT architect or administrator familiar with their
company’s IT workflow process. The skills required to take full advantage of this release
of the Solution Builder can be satisfied with a familiarity of the Microsoft .NET
environment and the ability to program in one of the .NET languages with primary focus
being on C#. However, the SDD is a powerful tool that can be used by any administrator
familiar with workflows and possessing basic programming skills.

Packages and Solutions

A key component of the Service Delivery Controller is the “Package.” An SDC Package
provides the manifestations of the logic for a solution, or, in other words, its workflow.
For example, the File Sharing Services Migrate Package contains the detailed steps
required (workflow) to migrate a share from source to destination. Steps, or actions, are
performed by execution units (EUs) and/or other sub-packages. Thus a package is
nothing more than a collection of execution units (EUs) and/or sub-packages connected in
a flowchart.

A Package or a collection of Packages put together in a workflow creates a solution. For
example, the File Sharing Services Migrate solution is a workflow consisting of Packages.

Jobs

Jobs are instantiations of package executions on specific resource instances. For more
details on Jobs see the HP OpenView Service Delivery Controller documentation.

13

Execution Units

Execution Units

Execution Units (EUs) provide Service Delivery Controller Packages with the
modularity, isolation, security, and robustness necessary for them to function. EUs
execute in their own context and any failures they may encounter or cause are limited to
their scope. This is achieved by the SDC Intelligent Automation Engine (IAE), which
ensures EUs cannot have unwanted side effects on the rest of the system.

Typically EUs encapsulate an atomic (and logical) step. For example, one EU is used to
read the permissions off a (source) share. Another EU is used to apply them to a
(destination) share. Another EU lists DFS links, and so forth. There is no precise
definition on the scope of an EU, however HP has made extended effort to keep EUs as
small and well-defined as possible.

EUs are not only responsible for executing an operation but also for committing their
work in the case of an error-free execution, and for rolling back their work in the case of
errors, either by them or by other EUs in the Package.

The Package Designer

The Package Designer is one of the key components of SDD and lies at the heart of the
product. The Package Designer provides a simple tool to capture an IT organization’s
workflow and customize it. Workflows provided by HP can be extended, modified,
customized, and personalized with existing EUs or with the use of custom EUs, to meet
an IT organization’s needs. These workflows can then be used, by any appropriate user in
the organization, repeatedly and with predictable, repeatable, logged and verifiable
results.

EU and Package Versions

HP OpenView Service Delivery supports EU and Package versioning (revisions). This
allows the SDD users to select the solution revision they want to execute, where
appropriate, and they can define a package to use a specific EU revision, or update the
package to use the latest EU revisions available.

All EU and Package revisions are stored in the Service Delivery Controller Repository.

Editing a Package

Extending, enhancing or changing a Package to meet custom requirements is done by the
Package Designer tool. This graphical tool allows the editing of a package in a visual and
easy to use manner.

14

SDD Overview

Solution Rollout

Another key component of the SDD is the Solution Rollout feature. In a typical solution
creation process, a solution moves from the development environment to a test
environment and finally to a production environment, with possible intermediate steps.
The Solution Rollout feature supports this process.

GUI & CLI Customization

The SDD allows, with the use of the Package Designer, for simple customization of
solution options as they appear in the graphical user interface (GUI) and the command
line interface (CLI).

Additional Tools

The SDD provides, in addition to the Package Designer and Solution Rollout, a number
of additional tools including the EU registration, EU test, and other tools as described in
the Tools section.

15

 3

SDD Basic Concepts

The SDD provides the user with the tools, documentation, and samples to create
customized solutions for their administration needs with the HP OpenView Service
Delivery Controller.

Service Delivery Controller Overview

HP OpenView Service Delivery Controller provides an information technology, resource
lifecycle management platform that measurably increases the efficiency and reduces the
risk and time required to manage today’s complex IT infrastructures. For the modern,
agile datacenter, Service Delivery Controller’s solution improves the quality of server
operations while it drives down the overall cost of IT operations.

Service Delivery Controller delivers innovative Lifecycle Management capabilities for
that optimize an organization's server resource environment for a business advantage.
Utilizing a unique Intelligent Automation Engine (IAE), the Service Delivery Controller
software automates common workflows, incorporates best practices, and adapts
infrastructure management operations to the specific environment. Whether discovering,
deploying, moving, migrating, or consolidating server resources, HP OpenView Service
Delivery Controller activates IT, delivering business agility, and infrastructure
management to the organization.

Service Delivery Controller’s powerful workflows standardize repetitive, ad hoc, and
error-prone operations, improving the success of change and delivering reliable results.
Pertinent settings and configurations are captured and completely adapted to the new
environment for error-free, repeatable, traceable results.

Additionally, HP OpenView Service Delivery Controller encapsulates best practices into
the operations it per-forms—improving the quality of the infrastructure over time and
creating an evolutionary effect that optimizes for change and flexibility in the future.

Service Delivery Controller gets to work fast, installing right into an up-and-running
environment, and actually detecting the existing infrastructure. It facilitates the newest
technologies available, such as Microsoft's Automated Deployment Services (ADS), and
other standard tools on which users rely.

17

Service Delivery Building Blocks

Through its intuitive graphical user interface (GUI), the SDC organizes the complexity of
server lifecycle management and file sharing services tasks, giving the user instant
access to system resources, workflows, and status.

Whether the task is to utilize server capacity more efficiently, simplify server migration,
navigate business expansion or consolidation, or repurpose old servers gracefully, HP
OpenView Service Delivery Controller extends the physical and software infrastructures’
lifecycles.

For more information on the HP OpenView Service Delivery Controller, refer to the Help
documentation available at the Service Delivery Controller installation location.

Service Delivery Building Blocks

This section provides a high level overview of the building blocks of the HP OpenView
Service Delivery.

Solutions

Solutions are the cornerstone of HP OpenView Service Delivery. They provide the
components needed to solve particular problems, such as deploying a new server or
migrating an older server to a new destination.

Solution Components

A typical HP OpenView Service Delivery solution is comprised of the following
components: the Package or Packages that actually perform the operations, the UI
interfacing with the user visually, and the Command-Line Interface (CLI) that allows the
user to call the solution from an appropriate command prompt.

Packages

An HP OpenView Service Delivery Controller Package provides the manifestations of the
logic for a solution, or, in other words, its workflow. For example, the File Sharing
Services Migrate Package contains the detailed steps required (workflow) to migrate a
share from source to destination. Steps, or actions, are performed by execution units
(EUs) and/or other sub-packages. Thus a package is nothing more than a collection of
execution units (EUs) and/or sub-packages connected in a flowchart.

A Package or a collection of Packages put together in a workflow creates a solution. For
example, the File Sharing Services Migrate solution is a workflow consisting of Packages.

Package Anatomy

A Package (which consists of a collection of inputs, flow (logic), EUs, and so on) begins
with a logical start. The first EU of the package takes a set of inputs, such as share name
and the server name to which it belongs. Once the EU has been executed and produced
an output, this output can then be used as an input to a following EU.

18

SDD Basic Concepts

The entire Package can be rolled back if any part of it fails. If an EU toward the end of
the Package fails, all previous EUs will roll back. Once the final EU of the Package has
re-turned “true,” the Package is complete and can no longer be rolled back. If the
Package has child packages nested inside of it that have completed successfully, these
completed packages cannot be rolled back.

Each EU in the Package works by using its own inputs and creating an output, which the
EU following may or may not consume. If any element of the Package or of any
individual EU fails, the entire Package will fail. The Package and each EU in it must be
registered with the repository, which will be discussed later.

Once every element in the Package has executed, the Package Designer produces several
files as an output: an XML file, a C# file, and a message file.

The XML File

The XML file that is output by the Package Designer contains the layout of the shapes,
so that the way the Package looks in Microsoft Visio is maintained. This information also
includes the shape types that are used, the workflow layout, what individual EUs and
which versions are included in the Package, and so on. Linkage information is also
included.

The C# File

The Package Designer also outputs a C# file, which contains the code that actually does
the Package’s work. The C# file code follows the same flow as the Pack-age shapes in
Visio; so, the code for each EU is in the same order as it is in your Visio workflow. It
follows the same logic. Whereas the XML file describes the Package (layout,
dependencies, inputs, outputs, and so on), the C# file contains the manifest
representation of the workflow itself. When the Package is registered, you must provide
your C# code as a compiled .dll file.

The Message File

There is also a message file that is output along with the XML and C# files. It contains
debug messages, as well as any other messages or information the user might want to
include. This message file can be extended by the user. For more information on message
files and how they’re created, please see the section on Execution Units.

Working with Resources

HP OpenView Service Delivery Controller’s entire architecture is based upon resources,
the primary means by which Packages are executed. Each server contains properties
such as OS, server name, and so on. Under the server are also a collection of services
(such as file services, IIS services, and SQL services). Underneath the level of services is
a collection of file shares, which contain information such as name, path, disk space used,
and so on.

19

Service Delivery Building Blocks

The architecture of Service Delivery Controller is based on discovering this information
and performing actions on these resources—this is the means by which SDD performs
and completes its operations. In order for this to occur, the Package must be associated
with the resource. Once it has been developed, and associated with the resource, it can be
executed. Resource association provides several advantages to the Package, such as
source share and source server information, and these pieces of information are provided
automatically. How the Package gets attached to the resource is discussed in the
following section. It is done in the XML file associated with the Package.

Binding to a Resource

In order to bind your Package to a resource, you must first make sure that the resource
exists in the resource database. When you drop a resource bind statement onto the page,
the Package Designer provides you with a list of every resource that is available for
binding. You will not be able to bind to a Windows machine; you must instead bind to a
specific instance of a Windows machine. Once this has been done, the properties of that
resource will be auto-populated for you in the UI. Once you’ve bound to the resource, you
will be able to start using EUs, such as for each statement to iterate through the shares
on a server. For example, for each dependent in your share, you can iterate through the
For loop and do the logic required to correct the dependency.

Managing Dependencies

One of the great advantages of the SDD is its ability to manage dependencies. The
Package Designer provides information on dependencies automatically. When working
with resources, you can ask, “What does this resource that I’m attaching to depend on,
and who depends on it?” By dropping the resource onto the page, you can determine
automatically what dependencies will be involved by using that resource—no search will
be required. The Package Designer will automatically know (through reflection) what the
resource’s possible dependents will be.

Execution Units (EUs)

The use of Execution Units (EUs) is the primary vehicle by which HP OpenView Service
Delivery carries out workflow functionality. Each EU performs a specific task or set of
tasks, and a collection of EUs along with the logic that strings them together is what
makes up an HP OpenView Service Delivery workflow. The SDD allows its users, among
other things, to add, remove, or modify EUs in order to add robustness and flexibility to
their workflows.

An EU is a unit that is agnostic of what comes before or what follows it in a Package. It is
entirely independent, and acts on whatever information it calls for in order to produce its
proscribed action.

The architectural concept behind EUs is that they are small atomic units of functionality,
easily created, changed, and used. Therefore, it is important to remember that, in order
to add new functionality to your workflow, it is advisable to create a new EU rather than
adding functions to an existing EU. This would result in the EU becoming monolithic and
difficult to manage. If an EU does perform more than one function, state information
must be provided in order to achieve Rollback and Cleanup for each individual function.

20

SDD Basic Concepts

EU Components

An EU is made up of several different files: a C# file, which contains the actual work
implementation definition done by the EU; an XML file, which contains definitions of
different EU portions (and, incidentally, is the part of the EU that communicates with
the Package Designer); and a message file, which provides the message types that the
EU will need to output. The XML file defines inputs, outputs, and state variables, as well
as any other elements that appear in the Package. The C# files operate independently of
the Package Designer; the EU relies solely on the XML file for its interaction with the
Package Designer.

EU Part One: The C# File

There are three separate sections that make up this file. These are Execute, Rollback,
and Cleanup.

•

•

•

Execute is where the primary work of the EU is accomplished. Execute performs the
specific operation of execution.

Rollback is called if the Execute portion of the EU fails. It is also called if the
Package that the EU is a part of fails after the EU has executed. When an EU is
executed, it is placed on the Rollback stack. If the EU (or any subsequent EU) fails,
recovery operations proceed. Rollback is initiated and provides, where appropriate,
recovery to the original state. If no rollback is required (for example, for operations
that read data), this section will simply return true.

Cleanup is called if the EU operation leaves behind something that must be deleted.
If no cleanup is required, this section will simply return true.

The DLL produced by the compilation of the C# file, is what is registered with the
Service Delivery Controller system.

EU Part Two: The XML File

The XML file for any EU holds the responsibility for communicating with the SDD
Package Designer. It contains the definitions for all the different parts of the EU, and in
particular its inputs, outputs, and state information. It provides a representation of the
EU to the rest of the system.

EU Part Three: The Message File

The message file for an EU must first be created in XML. The XML file specifies what
different types of messages the EU can use. Following are two examples of log messages:

<LogMessage Id="0"

 Severity="Info"

 SymbolicName="FileServicesAddShareSuccess"

 Language="English"

 MessageFormat="Success: New share {0} added on server {1}" />

<LogMessage Id="1"

 Severity="Error"

 SymbolicName="FileServicesAddShareFailed"

 Language="English"

21

Service Delivery Building Blocks

 MessageFormat="Error: Unable to add share {0} on server {1}" />

Once the XML file has been prepared it will need to be converted to a C# file so that it
can be compiled in with the EU. This is done with the mc2msg2cs Converter Tool that is
included with the Service Delivery Controller installation. If a change needs to be made
to the message file, you will make the change to the XML file, convert the XML to C#
using the mc2msg2cs Tool, convert the C# to a .dll file, and so on.

Even though a message file is optional, it is recommended that it be provided with every
EU, regardless of whether or not the EU needs to log any messages.

EU Registration

Each EU created must be registered with the HP OpenView Service Delivery repository.
You must provide the repository with the EU .dll, XML, and message files to complete
registration. EU registration is achieved by invoking the “RepositoryTool.exe” tool from
the command prompt.

Capturing State Information

Any EU that is complex enough to have stages in its operation will need a place where
complex information is provided, so that if a failure occurs, Rollback will have data on
the “state” the EU was at when it failed. State information operates as a sort of book-
mark in the operation of the EU, in case of failure. Note that state information can also
be used in case of success for the EU execution Cleanup.

State information allows Rollback to function if the EU fails at some point in its own
execution. Without state information in the EU, no information in it persists. This
information is only of use to the EU itself—the Package Designer does not need any
individual EUs state information.

It is helpful to think of the EUs being pushed onto a LIFO (last in, first out) stack as they
are executed. Because of the EUs atomic nature, its original state can be restored by
traveling back up the stack. This becomes necessary if the Package that the EU is a part
of fails at some point past where the EU has completed execution. When Rollback of the
entire Package takes place, Rollback travels back up the Package and restores the origi-
nal state of each EU in order. Cleanup is called if the EUs execution is successful.

EU Creation Flow

The creation of an EU involves only a few simple steps, allowing users to easily and
quickly add new functionality to Packages. For more detailed information about each of
these steps, please see the sample EU sections.

Create an EU class: This is done via the C# file. 1

2

3

4

Create your EU markup file (XML).

Create your message file in XML and convert it to C# using the mc2msg2cs Tool
included as part of the SDD installation. For more information on tools, please see
the Tools section.

Test your EU independently using the stand-alone EU tester tool. This tool is
included as part of the SDD installation. For more information on tools, please see
the Tools section.

22

SDD Basic Concepts

Compile your EU C# files (or class) into a .dll file: You must use a .NET development
environment to compile your code. You will need the .dll files HPSD.Core.P1.dll and
HPSD.PA.Developer.dll to compile your C# file. These files are included with your
Service Delivery Controller installation.

5

6

7

Use the RepositoryTool.exe tool to register the EU .dll, markup, and .msg files.
This tool is included as part of the SDD installation. For more information on tools,
please see the Tools section.

Use the EU in a package using the Package Designer. Once you’ve completed the
above steps, the EU that you created will be available in the Package Designer.

23

 4

Execution Unit Examples

This section is a tutorial that examines two HP OpenView Service Delivery Controller
Execution Units (EUs), including their accompanying XML definitions.

This tutorial provides a guide through the EU files, from the C# class definitions to the
markup file definitions.

We have assumed a familiarity with the design concepts of an Execution Unit as
explained elsewhere in this document.

Sample Execution Unit One: SampleEU

The first EU to be examined is a version of a “Hello World” Execution Unit, called
SampleEU. SampleEU appends an input string to a specified file. For example,
SampleEU could be used whenever a small amount of information needs to be added to a
file in the database. In this case, SampleEU will add the text “Hello World!” to the file
that is specified.

This sample shows how Execution, Rollback, and Cleanup work. State information is not
required in this case, because this EU does not have any information that needs to be
persisted.

The XML definition file associated with SampleEU contains definitions of all of its
elements, including string definitions. The code for both the C# and XML files is shown
in Appendix A in listings A-1 and A-2 respectively.

SampleEU Class Elements

The first thing that happens in this EU is that the namespaces are defined. The
definition of all of these namespaces is provided here as a convenience, in order to
prevent having to spell out the namespace at each individual spot in the file where it
would be required later.

using System;

using System.IO;

25

Sample Execution Unit One: SampleEU

using Microsoft.Win32;

using HPSD.PA.Developer;

using HPSD.Core.P1;

namespace HPSD.Solutions.EU.Samples.Impl

The first real action that is taken in the file is that the interface execution unit (IEU) is
called upon. All EUs inherit from this interface. By doing so the EU must implement all
of the interfaces that IEU requires, namely, Execute, Rollback, and Cleanup, the three
basic parts of an EU, which were discussed earlier. This EU also contains 5 private
strings, and one Boolean string.

public class SampleEU : IEU

 {

 private string m_strInput = "";

 private string m_strFileName = "";

 private string m_strDirectory = "";

 private string m_strMachineName= "";

 private string m_strTempFileName = "";

 private bool m_bWasCreated = false;

The first step is to provide the string that will be input:

public string Input
 {
 get
 {
 return (m_strInput);
 }
 set
 {
 m_strInput = value;
 }
 }

Then add the machine name where the file that the string will be added to resides:

public string MachineName
 {
 get
 {
 return (m_strMachineName);
 }
 set
 {
 m_strMachineName = value;
 }
 }

Next, we must know whether the file was created or not:

public bool WasCreated
 {
 get
 {

26

Execution Unit Examples

 return (m_bWasCreated);
 }
 set
 {
 m_bWasCreated = value;
 }
 }

Now we need the name of the file where the string will be appended:

public string FileName
 {
 get
 {
 return (m_strFileName);
 }
 set
 {
 m_strFileName = value;
 }
 }

Then the name of the directory that the file is in:

public string Directory
 {
 get
 {
 return (m_strDirectory);
 }
 set
 {
 m_strDirectory = value;
 }
 }

Lastly, we need the temporary file name, so that Rollback can be achieved:

public string TempFileName

 {
 get
 {
 return (m_strTempFileName);
 }
 set
 {
 m_strTempFileName = value;
 }
 }

Now that all of the above information has been provided, we execute the EU. Execute
copies the original file to a temporary file, then adds the string that was specified to the
original file.

public bool Execute()
 {
 string strFile = FullFileName();

27

Sample Execution Unit One: SampleEU

 m_strTempFileName = Path.GetTempFileName();

 try
 {
 StreamWriter w = null;
 if (!File.Exists(strFile))
 {
 // Create a file to write to.
 w = File.CreateText(strFile);

 if (w != null)
 {
 WasCreated = true;
 }
 }
 else
 {
 File.Copy (strFile, m_strTempFileName, true);
 w = File.AppendText(strFile);
 }
 if (w == null)
 {
 return false;
 }

 w.Write (Input);
 w.Close ();

 }
 catch
 {
 return false;
 }

 return true;
 }

Once Execute has successfully run, we need Cleanup, to delete the temporary file that
the EU created.

public bool Cleanup()
 {
 try
 {
 if (WasCreated)
 {
 File.Delete (m_strTempFileName);
 }
 }
 catch
 {
 return false;
 }

 return true;
 }

28

Execution Unit Examples

Rollback is also required, to return the file to its original state if the EU fails. It does this
by copying the temporary file to the original file.

public bool Rollback()
 {
 string strFile = FullFileName ();

 try
 {
 if (WasCreated)
 {
 File.Delete (strFile);
 }
 else
 {
 File.Copy (m_strTempFileName, strFile, true);
 File.Delete (m_strTempFileName);
 }
 }
 catch
 {
 return false;
 }

 return true;
 }

Finally, the file name’s full path is built:

private string FullFileName ()
 {
 string strFile = null;

 if (MachineName.Length == 0)
 {
 strFile = Path.Combine (Directory, FileName);
 }
 else
 {
 string tmp = Directory;
 tmp.Replace (':', '$');
 tmp = string.Format ("\\\\{0}\\{1}", MachineName, tmp);
 strFile = Path.Combine (tmp, FileName);
 }

 return strFile;

 }
 }
}

29

Sample Execution Unit Two: AddShare

Sample Execution Unit Two: AddShare

The EU AddShare is a FileServices EU that is used to add a share (without permissions)
to a specified destination that has been given a server name and a share information
directory.

This sample shows how Execution and Rollback work, as well as including information
on creating state information. This EU example does not require Cleanup.

The XML file associated with the EU contains definitions of all of the AddShare
elements, including string definitions.

The XML definition file associated with AddShare contains definitions of all of its
elements, including string definitions. The code for both the C# and XML files is shown
in Appendix B in listings B-1 and B-2 respectively.

AddShare EU Class Elements

At the top of the AddShare C# file, it tells us that it’s using these namespaces, as well as
the namespace that the EU occupies. For example, HPSD.PA.Developer provides the IEU
method information (see the next paragraph for more information on IEU).

using System;

using System.IO;

using Microsoft.Win32;

using HPSD.PA.Developer;

using HPSD.Core.P1;

using HPSD.Win32.Netapi32;

namespace HPSD.Solutions.EU.FileServices.Impl
{

The first real action that is taken in the file is that we call upon the method IEU. All EUs
inherit from this method. By doing so the EU must implement all of the methods that the
IEU requires, namely, Execute, Rollback, and Cleanup, the three basic parts of an EU,
which were discussed earlier. The namespace for IEU is the HPSD.PA.Developer
namespace.

public class AddShare : IEU
 {

Here, the first string is defined, which happens to be mServerName. This string specifies
the name of the remote server on which the function is to execute. The string must be-gin
with \\. If this parameter is NULL, the local computer is used. It is important to
remember to prepend (prefix) the preceding slashes to the ServerName.

private string mServerName = null;

 public string ServerName
 {
 get
 {
 return mServerName;

30

Execution Unit Examples

 }
 set
 {
 mServerName = value;

 if (mServerName != null)
 {
 if (!mServerName.StartsWith("\\\\"))
 {
 mServerName = "\\\\" + mServerName;
 }
 }
 }
 }

Next, we call the buffer that specifies the share metadata:

private NetShare.ShareInfo2 mShareInfo = null;

Then we call the property used to get and set the share information:

public NetShare.ShareInfo2 ShareInfo
 {
 get
 {
 return mShareInfo;
 }
 set
 {
 mShareInfo = value;
 }
 }

Now, we provide some information that will be needed for Rollback and Cleanup. At this
point we are ready to start setting state information. State information allows for
information in the EU to persist. From the comments included here, you can see that the
execution state provides a status on where the execution is, at any particular point in
time. This way, if there is a problem with the EUs execution, state information allows
you to go back and know exactly where the problem occurred. So, in the example pro-
vided here, the AddShare execution is begun, but the state information provides for a
different action to be taken if, for example, the share to be added already exists.

First, we need execution status:

private ExecState mExecStatus = ExecState.Begin;

Then, we need the property accessor for the execution status and state:

public ExecState ExecStatus
 {
 get
 {
 return mExecStatus;
 }
 set
 {
 mExecStatus = value;
 }
 }

31

Sample Execution Unit Two: AddShare

public enum ExecState : int
 {
 /// <summary>
 /// Begin Execution
 /// </summary>
 Begin = 0,

 /// <summary>
 /// Share Already Exists
 /// </summary>
 ShareExists = 1,

 /// <summary>
 /// Share Added
 /// </summary>
 ShareAdded = 2,

 /// <summary>
 /// End Execution
 /// </summary>
 End,
 }

Now, we get into the section that describes the three primary portions of this (and any)
EU: Execute, Rollback, and Cleanup. In the Execute method, the work of the AddShare
EU is accomplished. The EU must validate the candidate share, add the share, then set
the state that the share has been added and log that message. If the share does not
validate, of if the share already exists, then Execute returns failure and an error is
logged that the AddShare has returned failure.

public bool Execute()
 {
 // Enter
 mEuLoader.Logging.SubmitFunctionEnter();

 // Assume failure
 bool retval = false;

 // Set Execution Status
 SetExecStatus(ExecState.Begin);

 // Validate the share to be added.
 if (!NetShare.Exists(mServerName, mShareInfo.NetName))
 {
 // Add the Share;
 if (NetShare.Add(mServerName, mShareInfo))
 {
 // Share Added
 SetExecStatus(ExecState.ShareAdded);

 // Log the Message
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareSuccess,
 mShareInfo.NetName, mServerName);

 retval = true;
 }

32

Execution Unit Examples

 else
 {
 // Log the Error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareFailed,
 mShareInfo.NetName, mServerName);
 }
 }
 else
 {
 // Share Exists;
 SetExecStatus(ExecState.ShareExists);

 // Log the Error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareExists,
 mShareInfo.NetName, mServerName);
 }

 // Leave & Return
 mEuLoader.Logging.SubmitFunctionLeave(retval);
 return retval;
 }

This section provides the necessary Rollback method, which is called if a failure occurs
(during this or subsequent EUs in the package). Rollback deletes the share that has been
added. It then logs that the rollback was successful, or logs that an error occurred if the
rollback failed.

public bool Rollback()
 {
 //Enter
 mEuLoader.Logging.SubmitFunctionEnter();

 // Assume success
 bool retval = true;

 // If the Share has been added then remove it
 if (mExecStatus == ExecState.ShareAdded)
 {
 // Delete the Share;
 if (NetShare.Delete(mServerName,
mShareInfo.NetName))
 {
 // Log that it was successful
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareRemoved,
 mShareInfo.NetName, mServerName);
 }
 else
 {
 // Log the error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareRemoveFailed,
 mShareInfo.NetName, mServerName);

 retval = false;

33

Sample Execution Unit Two: AddShare

 }
 }

 // Leave & Return
 mEuLoader.Logging.SubmitFunctionLeave(retval);
 return retval;
 }

This section looks at Cleanup. In the AddShare EU, Cleanup is not required, so it just re-
turns true.

public bool Cleanup()
 {
 return true;
 }

The final section of this EU file takes care of one last step, namely setting the Rollback
status.
private void SetExecStatus(
 ExecState Status)
 {
 mExecStatus = Status;
 mEuLoader.SetRollback();
 }
 }
}

34

 5

SDD Tools

The Package Designer

This section walks you through using the Package Designer tool, which is the heart of the
HP OpenView Service Delivery Designer.

Overview of the Package Designer

The Package Designer Tool lies at the heart of the HP OpenView Service Delivery
Designer. The Package Designer provides a simple tool to capture and customize an IT
organization’s workflow. The greatest advantage of using the Package Designer is that it
allows you to insert new functionality, such as EUs, logic, or sub-workflows (child
packages), into existing workflows. Rather than using a collection of scripts, the Package
Designer provides a representation of the code that can be used to create a workflow
using individual atomic units of functionality called Execution Units (EUs).

The Package Designer also provides GUI and CLI customization options for solutions.

35

The Package Designer

An execution unit (EU) is an atomic vehicle that includes one or more inputs that
produce one or more outputs; that does not call for UI to be displayed, nor have any side
effects. It does not require anything to be run before it, nor leaves any “bread crumbs”
after it for other EUs that may follow. For further information on EUs, go to the section
on Execution Units.

SDD includes a set of existing packages, as well as a collection of EUs that will allow you
to modify these packages to suit your needs. When you open the Package Designer, you
will select from a collection of existing packages. The product allows you to both view and
update a workflow. You will also be provided with the tools to create your own EUs for
modification of the packages.

Launching

On the server where SDD is installed, go to the Programs group and launch the Package
Designer from the program menu, following the HP OpenView Service Delivery menu
item and selecting the SDD link.

You can also launch the Service Delivery Designer’s Package Designer by loading the
PackageDesigner.vsd file into Microsoft Visio 2002. The PackageDesigner.vsd file is
available at

36

SDD Tools

C:\Program Files\HP\ServiceDelivery\Designer

Assuming the SDD has been installed at C:\Program
Files\HP\ServiceDelivery\Desginer.

You must already have Microsoft Visio 2002 installed on the machine
where Solution Builder is installed. Only Microsoft Visio 2002 works with
the Package Designer.

The Package Designer is now running and ready to open Service Delivery Controller
packages.

Tip: it is very useful to have Microsoft Visio’s “Pan & Zoom” window tool available.
Before starting the Solution Builder, start Microsoft Visio 2002, create a new blank Visio
document and in the View menu select Pan & Zoom Window. Then launch the Package
Designer as described here.

Opening a Package

To open a package, select the Load From Repository command under File. The following
dialog comes up:

Next, select the Package you want to edit. To do so click the button.

The following dialog appears:

37

The Package Designer

In this example the user has elected to load the FileShare Migrate Package.

Click OK. A dialog similar to the following appears:

38

SDD Tools

The Package Designer provides the option to edit any of the Package revisions. In the
example shown here the user has already de-selected the “Use latest revision” option,
thus enabling the revision selection dropdown. In this example the Migrate Package is at
revision 2 (in other words, there are three revisions in the system of this Package, 0—2).
Note that when initially installed all packages are at revision 0.

Select the revision you want to edit and click OK. Or if you intend to edit the latest
revision, leave the “Use latest revision” option checked.

The revision description is shown in the Description field, and the revisions displayed in
the above dialog will vary based on the revision history of a Package.

Saving a Package

After you have finished editing a Package, select the Save to Repository option from the
Package Designer File menu. The following dialog appears:

Provide the description you want for the Package and click OK.

You must provide a description in order to save the package.

The revision number is automatically determined by the host HP
OpenView Service Delivery Controller.

Saving a Package Locally

You may save a package locally (on the disk) as opposed to the Service Delivery
Controller Repository. Doing so is convenient during the package development process.
Note however, that saving the package locally does not update the Service Delivery
Controller repository. You must save the package in the Service Delivery Controller
repository in order for it to be available for execution.

39

The Package Designer

Note that in order to save a package locally you must first load it from the Service
Delivery Controller Repository.

Saving the package locally does not affect the revision sequence of this package. Only
when a package is saved in the Service Delivery Controller Repository its revision
number is incremented.

Editing a Package

To change an HP OpenView Service Delivery Package revision, open it in the Package
Designer. The next step is to identify the change you would like to perform. For example,
you may want to modify the logic of the Package, add or remove EUs, change job options,
and so forth.

To edit a Package, identify the page (sub-workflow) you would like to edit. You can either
right-click the appropriate Scope shape and select GoTo, or you can directly click the
desired page from the Visio workspace as shown in the following diagram, where the user
has selected the ValidateInput page:

You are now ready to perform edits to the Package. Consult the Walkthrough section for
Package modification examples.

Edit Log Messages

The Edit Log Messages Tool is another powerful feature of the Solution Builder. When a
message logged by the Package needs to be changed it can be done from the Action/Edit
Log Messages menu. Doing so launches the Log message editor. The following image
shows the message editor for the FileShare Migrate Package:

40

SDD Tools

To modify the log message file, how to use message parameters must be understood.

A message can be directly edited in the Message Format column as shown below. In this
example the last message in the window has been edited.

Import Message File

The Import Message File option allows you to import a message file to replace the
existing message file, instead of editing each message individually. You will need to
construct the message file per SDD specifications which are available from the SDD
support web site.

Preview

The Package Designer provides the option to preview the code generated. To do so, select
the View/Preview menu option. This causes the Package Designer Preview window to pop
up. The C# code generated will be as shown in the following image:

41

The Package Designer

The XML output generated by the Package can be viewed by selecting the XML option.

The Display Differences option shows the changes made to the Package before it was
saved to the repository. Differences can be viewed for both C# and XML and are
indicated by the - and + signs.

Updating a Package to Latest EU Revisions

You can update a Package to the latest EU revisions. This is achieved by opening the
Package in the Package Designer, selecting “Edit/Package Dependency Revisions”, and
then selecting the “Use the default revision for all package dependencies.” option in the
Edit Revisions dialog as shown below:

42

SDD Tools

As shown here, the package will get the latest revisions in the repository. See the
Versioning section of this documentation for more details on versioning and revisions.

Package Designer Shapes

When modifying SDD workflows you can use the following shapes in the Package
Designer:

•

•

•

•

•

•

Decision (Conditional): Adds a decision branch. Decision branches can be nested.

Loop: Adds a loop. Loops can be nested.

Sub-Workflow: Allows for the inclusion of a sub-workflow from one page to another.
Sub-workflows can be nested.

Exit Package Success: Allows the user to exit in the middle of the Package,
causing the Package to succeed.

Exit Package Failure: Allows the user to exit in the middle of the Package, causing
the Package to fail.

External Input: Adds an external input to the Package.

43

Versioning Overview

•

•

•

•

•

•

•

•

•

•

External Output: Adds an external output to the Package.

Define Variable: Defines and optionally assigns a value to a new variable in the
Package.

Assign Variable: Assigns a value to a previously defined variable.

Use EU: Gives the option to select, add, and use an EU in the Package workflow.

Allocate Resource: Adds a new resource instance into the Package workflow.

Use Resource: Allows an operational method off a resource to be invoked. This is
the method to use to invoke sub-packages from the current package.

Discover Resource: Invokes discovery for a resource instance.

Custom Code: Allows the inclusion of custom code into the Package workflow.

DebugMessage: Provides user with debug message capability.

Console Message: Displays a message on the Service Delivery Controller Console.

Versioning Overview

This section describes the versioning feature of the product.

Introduction to Versioning

In a typical solution creation process, many revisions (versions) are created and tested by
the solution developers before the revision that passes the exit criteria is declared the
“released revision.” The released revision is to be used by the operators of Service
Delivery Controller for the particular solution.

As time goes by, additional changes may be needed. The above process is repeated and a
new released revision is made available. By design, this new revision becomes the default
version available to the Service Delivery Controller system.

If, for whatever reason, (for example, due to test or legal requirements), there is a need to
run a revision other than the default revision, this can be easily achieved by invoking the
desired revision number of a given solution.

In this section versioning is defined as the process of creating revisions (for EUs and
Packages).

Revisions are Persistent

SDD supports versioning at the Execution Unit (EU) and the package level, and (since a
solution is a collection of one or more packages) to the solution level as well.

For both EUs and Packages, when a new revision is created, it is saved as new in the
Service Delivery Controller Repository and does not override the previously saved
revision. For example, when an EU is saved five times, there are five versioned copies of
this EU in the repository. The Service Delivery Controller repository uses a numbering
scheme to keep track of revisions. The first revision gets number 0 and each subsequent
revision gets the previous revision number + 1.

44

SDD Tools

The same applies for Packages. When they are saved, a new copy is made and the
previous one is still available.

It is important to note that a Package saves with it the version of the EUs
it uses. Thus even if the EU changes, any saved packages will run with the
EU version they were last saved with. This property is called immutability.

Important: If a package uses an EU more than one times, in the package
proper, this EU must be in the same revision throughout. In other words,
you cannot use one revision of a given EU at some point in the package and
another revision at another place in the same package.

However, if a package invokes sub-packages, these sub-packages may use
different revisions of this EU.

Packages are immutable, in other words, they save with them the versions
of the EU they use.

Package Default Revision

By design, when a revision (version) of a package is saved it becomes the default revision
for this package. This is the revision that members of the ServiceDeliveryOperators will
execute when they issue jobs based on this package.

By design the default revision is the latest saved Package revision. However, a member
of the ServiceDeliveryAdministrators or Architects can change the default to any of the
registered revisions simply by resaving the desired revision, thus creating a new
revision, which becomes the default (by design).

The default revision (version) of a Package is always the latest saved.

Changing the default revision affects only newly created jobs (jobs created after the
change).

When the default Package changes, any completed, currently running or
scheduled (for the future) jobs are not affected. Only jobs created after this
change takes effect are affected.

EU Default Revision

The Package Designer of the SDD uses the default revision of an EU. By design the EUs
default revision is the latest saved in the repository.

Unless specified otherwise, the EUs default revision is the one used when this EU is
added to a Package, or when the user decides to update one or all EUs of a Package to
their default revisions.

45

Versioning Overview

Users can select any revision of an EU to participate in a Package. They are not
restricted to using the default revision.

A member of the ServiceDeliveryAdministrators or Architects can change the default to
any of the registered revisions simply by re-registering the desired EU revision, thus
creating a new default revision, or they can register a brand new revision of the EU.

Changing the default revision affects only newly edited Package revisions (packages
saved after the change).

When the default EU changes, any existing packages and any completed,
currently running or scheduled (for the future) jobs are not affected.

Important: If a package uses an EU more than one times, in the package
proper, this EU must be in the same revision throughout. In other words,
you cannot use one revision of a given EU at some point in the package and
another revision at another place in the same package.

Note however, that if a package invokes sub-packages, these sub-packages
may use different revisions of this EU.

Propagating an EU Update to a Package

Due to the immutability property, Packages are self-contained and are not affected by
any EU changes. When a changed EU needs to be propagated to an existing Package,
this task needs to be performed as follows.

The new EU is registered in the Service Delivery Controller repository (using the EU
registration tool as described in this documentation). If this is a brand-new EU, it creates
revision 0. If this is an already existing EU, then the EU gets a revision number equal to
the previous revision number + 1.

The desired Package is opened in the Package Designer.

Using the Package Designer’s “Edit Revisions” feature (Edit/Package Dependency
Revisions menu), find the desired EU, in the package, to update.

The image below shows the Edit Revisions Dialog of the Package Designer, showing all
the EUs the package contains. Because the GetShareInfo is selected, the revision details
are shown for that particular EU. In this case the GetShareInfo EU is at revision 0 (for
example, the EU is as registered by the initial Service Delivery Controller installation).

46

SDD Tools

The following image shows the same package version after a new revision of the
GetShareInfo EU has been registered in the repository. The GetShareInfo EU now has
two revisions, 0 and 1.

By design the default revision is revision 1 because it is the latest saved. However, the
package is using revision 0 as indicated by the check box:

 in the diagram below.

47

Versioning Overview

Note that the default revision need not be explicitly indicated (visually) in the Package
Designer since it is always the one with the highest revision number (the one most
recently saved).

The package is still using revision 0 of the GetShareInfo EU. The Package
Designer simply informs the user that additional EU revision(s) are
available.

To change to the default and latest revision of the GetShareInfo EU, the revision is
selected as shown in the following image.

48

SDD Tools

To save the Package to the repository select the Save to Repository option, enter a
description of the change, and click OK as shown in the following image.

49

Versioning Overview

When saved, a new Package revision is created and becomes the default revision. The
previous revision is available in the repository.

If all the EUs of a Package must change, the Package Designer supports this feature by
selecting the “Use the default revision for all package dependencies” option in the Edit
Revisions dialog as shown below.

The following image shows that when the FileShare Migrate Package is loaded again
from the repository, the option to select, either the default revision or an explicit revision,
is presented to the user. In this case the user has unchecked the “Use latest revision”
option and has selected revision 3 of the package, which is the revision that was created
when the update to the revision 1 of the GetShareInfo EU was made (do not confuse EU
revision numbers with package revision numbers; they are not related).

50

SDD Tools

A Versioning Example

Package P1 is in revision 8. Package P1 uses EUs E1 and E2. EU E1 is in revision 12 and
E2 in re-vision 3.

When the user loads P1 in the Package Designer and then saves P1 to the repository, a
new package revision is created, revision 9 in this case. This becomes the new default
revision. A new revision is created even though nothing in the package has changed.

Assume now that new revisions of EUs E1 and E2 are available, the desired revisions
(for this package) being 17 for E1 and 4 for E2 (note here that due to multiple
registrations the desired revision of EU E1 is not number 13 but number 17, because EU
E1 has been modified 5 times). To select these revisions of EUs E1 and E2 to be used in
the package, the user has two options. Either explicitly select the desired revisions of
EUs E1 and E2 and then save the package, or elect to update the package to the latest
EU revisions available in the system.

In either case when package P1 is saved to the repository it will be in revision 10 with
EU E1 in revision 17 and EU E2 in revision 4. However, if the latter method is selected,
any additional EUs (other than E1 and E2) in the package P1 will also be updated to the
default revision.

If only the EU E1 is desired for updating, then user selects the explicit method, and
saves package P1. In this case P1 will EU E1 in revision 17 and EU E2 in revision 4.

For additional information, see the Solution Rollout section.

Versioning in the Service Delivery Controller Console

By design members of the ServiceDeliveryOperators group can only execute the default
package (solution revision). Members of the ServiceDeliveryAdministrators and
ServiceDeliveryArchitects groups can select the revision they execute.

51

Versioning Overview

In the following example, showing the Service Delivery Controller Console, the File
Sharing Services Migrate package has a total of three revisions. Since the user running
the Console is a member of the ServiceDeliveryAdministrators group, this user is able to
select the revision to execute (notice that the first step in the operation is the revision
selection):

However, at the same Service Delivery Controller Console, when a user member of the
ServiceDeliveryOperators group is performing the same operation, only the default
revision is available, and hence there is no option to select a revision. This is
demonstrated in the following image (notice that the first step in the operation is not the
revision selection, but actually the Source selection):

See also Package Designer versioning.

52

SDD Tools

Solution Rollout

Requirements form Solution Rollout

In order to move a solution (Package) from a Service Delivery Controller server to
another, both source and destination servers must be running HP OpenView Service
Delivery Controller version 2.2 or later.

Introduction to Solution Rollout

In a typical solution creation process, a solution moves from the development
environment to a test environment and finally to a production environment, with
possible intermediate steps. The Solution Rollout feature of the HP OpenView Service
Delivery supports this process.

Solution Rollout Overview

Solution Rollout is the process of enabling a solution (Package) to move from one HP
OpenView Service Delivery Controller environment to another. Solution Rollout is
agnostic as to whether an environment is test or production. It simply knows how to take
a solution from one Service Delivery Controller environment to another.

Solution Rollout is a command line tool that has two phases. First phase is preparing and
“packaging” a solution from the source Service Delivery Controller environment. Second
phase is installing the new solution to a destination Service Delivery Controller
environment. An implicit intermediate step is needed to transfer the created file from the
source to the destination SDC environment.

Solution Rollout Details

Once the Package is working properly, has been verified and tested on the developer
workbench, it is ready to use. In order to do this, the Package’s working version must be
registered on the target Service Delivery Controller server.

The registration process at the target Service Delivery Controller server starts with the
leaf nodes of any nested Packages and works its way upward from there. The entire
Package is registered in this order, and once this has happened successfully your
Package will be ready for use. The Package registration will take the latest version of
each EU or nested Package of which it is comprised.

To rollout a solution from a source Service Delivery Controller environment to a
destination SDC environment you need to do the following.

Solution Rollout is available only via the Service Delivery Controller CLI.

In the Service Delivery Controller CLI identify the solution (Package) version you want
to rollout by issuing the following command in the CLI:

53

Solution Rollout

cao –username=<username> -password=<password> -host=<host machine>
system listpackages

<username> must be a member of the ServiceDeliveryAdministrators or
ServiceDeliveryArchitects groups in order to run this command. This user
need not be the user logged on.

You may cache the credentials for the username, password and host even
though caching the password information is not recommended. Refer to the
Service Delivery Controller documentation for details.

This produces a list of the Packages indicating the latest and default revisions from the
Service Delivery Controller repository as shown in the following excerpt:

<?xml version="1.0"?>
<ArrayOfPackageElement xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/200
1/XMLSchema-instance">
 <PackageElement>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.ADS.ADSCapture</name>
 <latestRevision>-1</latestRevision>
 <defaultRevision>-1</defaultRevision>
 </header>
 </PackageElement>
 <PackageElement>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.ADS.ADSDeploy</name>
 <latestRevision>-1</latestRevision>
 <defaultRevision>-1</defaultRevision>
 </header>
 </PackageElement>
…

From this list identify the Package revision you want to rollout by issuing the command
(in this example the File Services Migrate Package revisions are listed):

cao –username=<username> -password=<password> -host=<host machine>
system listpackagerevision –
name=HPSD.Solutions.Package.FileShare.Migrate

This creates a list of all package revisions available in the repository. For example, the
above command produces the following (note that results will be different depending on
the revisions a package has undergone):

<?xml version="1.0"?>
<PackageElement xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSc
hema-instance">
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.FileShare.Migrate</name>

54

SDD Tools

 <latestRevision>3</latestRevision>
 <defaultRevision>3</defaultRevision>
 </header>
 <body xmlns="urn:HP-com:schema:PackageElement-20031009">
 <revisions>
 <revision>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.FileShare.Migrate</name>
 <revision>0</revision>
 </header>
 </revision>
 <revision>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.FileShare.Migrate</name>
 <revision>1</revision>
 </header>
 </revision>
 <revision>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.FileShare.Migrate</name>
 <revision>2</revision>
 </header>
 </revision>
 <revision>
 <header xmlns="urn:HP-com:schema:Repository-20030423">
 <name>HPSD.Solutions.Package.FileShare.Migrate</name>
 <revision>3</revision>
 </header>
 </revision>
 </revisions>
 </body>
</PackageElement>

The above HPSD.Solutions.Package.FileShare.Migrate package has four revisions, 0-3.

By design, the default revision of a Package is its latest revision.

Finally, having selected the revision you would like to rollout, issue the following
command to pack the solution (Package) and create a .cab file that contains its own self-
contained installation logic.

Then copy this .cab file to the destination Service Delivery Controller server, expand it
and run the install.cmd command. The revision selected in the packing phase will be
installed on the destination.

Assume you would like to select revision #2 of the above package.

cao –username=<username> -password=<password> -host=<host machine>
system createpackagesetup –
name=HPSD.Solutions.Package.FileShare.Migrate -revision=2 -
outputshare=\\<destserver>\<share>

 This command produces a “.cab” (Windows Cabinet) file and puts it in the share
indicated by \\<destserver>\<share> as follows:

55

Solution Rollout

HPSD.Solutions.Package.FileShare.Migrate.2.setup.cab

You must have sufficient write permissions on the destination share.

You must now manually copy this “.cab” file to the destination Service Delivery
Controller installation. Expand it using Winzip®. Do not use the Windows Explorer
because there is an issue with folder tree expansion.

You must expand the cab file using Winzip®. Do NOT use Windows
Explorer.

You can obtain Winzip® from www.winzip.com.

Expanding this file will provide the appropriate folder structure and will create
install.cmd and unattended_install.cmd scripts at the root folder. Both these
installation scripts will install the Package to the host Service Delivery Controller server.
The installation script works by running the setup logic recursively for all components of
a solution and registering this solution to the destination environment.

You must NOT run two or more concurrent Solution Rollout installations
on a given Service Delivery Controller server.

Concurrent revision installations cause unpredictable results.

The revision (version) number of the Package on the destination server is
determined by the destination server history and not by the source server.
Thus, it can be bigger, same, or smaller, numerically, than the version on
the source server.

Revision numbers are just identifying numbers used by the Service Delivery Controller
system. They have no other significance.

You must be a member of the ServiceDeliveryAdministrators or
ServiceDeliveryArchitects to run this command.

Solution Rollout and Versioning

When a solution is rolled out to a Service Delivery Controller server, the version created
is based on the version of the destination server, not the source. If the source Service
Delivery Controller server (for example, the development server) has version 27 of a
Package, whereas the production server has version 13 of the same package, then, when
this package is rolled out to the production server it gets version 14 (and not 27). This
Package also becomes the default package.

See Also Versioning

56

SDD Tools

Additional Command Line Tools

EU Test Tool

Short Description

The EU Test Tool allows testing of individual Execution Units (EUs) in isolation, i.e.,
without the need to use them in an existing Package.

Description

EUs have three areas where code could run; the Execute, Cleanup, and Rollback phases.
For further information on these three phases see the EU section.

The tool allows testing of the following EU lifecycle phases:

Execute 1

2

3

Cleanup

Rollback

Location and Command

To use the EU Test Tool, go to the SDD installation directory, ServiceDelivery\Designer
and run the EUTester.exe command. By default the EUTester.exe tool is installed in:

C:\Program Files\HP\ServiceDelivery\Designer

Where Service Delivery Controller is installed in:

C:\Program Files\HP\ServiceDelivery

Security Considerations

Only members of ServiceDeliveryAdministrators or ServiceDeliveryArchitects groups can
run the EU Test Tool.

Usage

EUTester.exe

Parameters

The EU Test Tool is a shell program.

The command to test an EU implementation is:

runeuimpl

The parameters required are: the path to the implementation and the type name of the
class that implements the EU.

57

Additional Command Line Tools

Example

C:\Program Files\HP\ServiceDelivery\Designer>EUTester.exe
Welcome
Commands:
? [command]
runeurep
runeuimpl
property [propertyName]
quit

>runeuimpl
Please enter EuImplPath
>>C:\temp\MyEU.dll
Please enter EuImplClass
>>MyEUNameSpace.MyEUClass

Now you will need to enter property values, to use an available property from the
properties you have defined in the EU. To do so, type the name of that property in the
format: EUClass.PropertyName.

Resource Dictionary Tool

Short Description

The Resource Dictionary Tool allows the addition and query of resources in the Service
Delivery Controller server.

For this release of the SDD only query and enumerate functionalities are
supported.

Description

The Resource Dictionary Tool provides its users with the ability to register a new
resource, modify an existing resource (if permitted), query for the definition of a resource,
and enumerate the resource inheritance and containment hierarchy as defined in the
system.

For this release of the SDD only query and enumerate functionalities are
supported.

Location and Command

To use the Resource Dictionary Tool, go to the Service Delivery Controller installation
and run the resreg.exe command. By default the resreg.exe is installed in the
Service Delivery Controller installation directory, such as:

C:\Program Files\HP\ServiceDelivery

Where Service Delivery Controller is installed in:

58

SDD Tools

C:\Program Files\HP\ServiceDelivery

Security Considerations

Only members of ServiceDeliveryAdministrators or ServiceDeliveryArchitects can run
the Resource Dictionary Tool.

Usage

Service Delivery Controller Resource Registration Tool:

resreg {-a | -m ResourceId} XmlFile [DiscoveryModule]

-a : Register a resource definition.

-m : Modify an existing resource definition indicated by Resource ID with the new XML
and Discovery Module.

Discovery Module file is not required for abstract resources.

 resreg -q ResourceId [-v MajorVersion.MinorVersion]
[OutXmlFile DiscoveryModulePath]

 resreg -eq ResourceId [-v MajorVersion.MinorVersion]
[OutXmlFile DiscoveryModulePath]

Query a resource by its type prefix, optionally of a given version.

Additional parameters, or using -eq option, imply an exact match on the resource ID and
indicate the file into which the XML and the path in which the Discovery Module may be
saved. Without them, all the resource IDs matching the given prefix are sent to standard
output.

resreg -h [ResourceId]

 Query the hierarchy information, starting at an optionally specified root.

resreg -c ResourceId

 Query the containment hierarchy information, starting at a specified root.

resreg {-e | -r | -d [-c]} ResourceId

-e : Mark a resource as editable

-r : Mark a resource currently set as `editable' back to read-only.

-d : Delete a resource definition. -c flag means all child resources are to be deleted as
well.

resreg -i InputFile

Take all commands from the input file and process them. The commands are all in the
same form as above.

resreg -init

Initialize the resource dictionary. This query fails if the resource dictionary has already
been initialized.

resreg -?

59

Additional Command Line Tools

Print this message.

Parameters

Please see Usage for details.

Repository Tool

Short Description

The Repository Tool allows a user to register an EU or Package, and enumerate existing
versions of EUs and Packages.

Description

The Repository Tool has the ability to register a new EU, register a new version of an
existing EU, a new version of an existing Package, or re-register a Package to update all
of its EU and child package references, and query all the various versions of EUs and
Pack-ages.

Location and Command

To use the Repository Tool, go to the Service Delivery Controller installation and run the
RepositoryTool.exe command.

Security Considerations

To run the Repository Tool you must be a member of ServiceDeliveryAdministrators, or
ServiceDeliveryArchitects.

Usage

Usage: RepositoryTool --mode=TESTTYPE [OPTIONS]...

Usage: RepositoryTool [OPTIONS]
 -m, --mode=TESTTYPE The operation to use: RegisterEU,
RegisterPackage, OutputXml, ListEUs, ListFiles, DeployFiles,
DeployReps, DeployPackageReps, CatalogPackages, ReRegisterPackage.
 -d, --debug Invoke debugger after initialization
 -i, --ini=STRING Alternate INI file to use
 -o, --outputdir=STRING Output directory for operations

Example

Register an EU
RepositoryTool –mode=RegisterEU c:\temp\NewEU.xml
c:\temp\NewEUImpl.dll
List all EUs
RepositoryTool –-mode=ListEUs

60

SDD Tools

List all Packages
RepositoryTool –-mode=CatalogPackages

All other operations are for debugging and support purposes.

For an extensive example of this tool see the EUReg.cmd batch file in your Service
Delivery Controller installation directory under the XML sub-directory.

SDD—UI Job Options Modifications

The SDD allows for modifications of job options as they are manifested in the Service
Delivery Controller GUI (console) and CLI (command line). These changes are achieved
by using the Package Designer Tool.

UI Job Options Overview

The Service Delivery Designer’s Package Designer allows modifications of the job options.
Modifications include adding or changing an external input, setting, and enabling job
execution options.

The UI job options modifications functionality allows you to:

•

•

•

•

•

•

Add a new external input

Modify an external input

Create new job options

Set the default of a job option

Set the visibility of a job option

Reorder the job options as they appear on the job options page of the Service Delivery
Controller Console

For example you may need to add another input parameter to the Service Delivery
Controller File Share Migrate package. This input parameter is to be used to provide an
email address for email notifications. Or you may want to set the default state of certain
job options, e.g., Continue on Errors, to be different from the default as set at the product
installation.

UI job options can be changed for both the GUI and the CLI of the Service Delivery
Controller.

All changes affect the new revision of the package. Existing packages revisions are not
affected.

When a changed package revision is moved from and Service Delivery Controller server
to another using Solution Rollout, the UI modifications are moved with it.

This functionality is available for members of the ServiceDeliveryAdministrators and
ServiceDeliveryArchitects groups.

61

SDD—UI Job Options Modifications

Fixed vs Dynamic Input Parameters

The Package Designer allows two main types of input parameters. Fixed and Dynamic.

Typically Fixed parameters are used for package inputs that are critical to the package
and should not be changed. In particular, if a package is to be called by other packages,
which is the model in the Service Delivery Controller, care must be taken to select
appropriately the fixed parameters. For example a package that migrates a file share
from machine A to machine B will always need to have inputs that define its operands.
These inputs need to be defined as fixed since without them the package can not execute
correctly.

However, some inputs may be optional. For example, the above package may have email
notifications options, however, if no email address is supplied it is designed to function
without providing email notifications. The package can still achieve its main goal, e.g., to
migrate a file share from machine A to machine B. Alternatively, certain execution
options can be assumed by the package logic, e.g., the Continue on Errors option can be
assume that if is not provided it is always set (i.e., the default value is unambiguous).
Therefore this parameter is set as dynamic.

The package creators must decide which parameters must be made fixed and which ones
not by their knowledge of the package logic.

When a parameter is defined as Dynamic, then its display properties on the job option
page in the Service Delivery Controller Console, can be managed in the Package
Designer.

The examples in this section illustrate these cases.

GUI Job Options Modification Example—Change Default Setting

To make changes that appear in the Service Delivery Controller Console GUI, open the
Package Designer and select the package to modify.

See elsewhere in this documentation on how to open packages and select the appropriate
revision.

Once you have a package loaded select the command shown below:

Then select the Webconsole option.

Note that Console and WebConsole are used synonymously.

The following dialog appears:

62

SDD Tools

This dialog shows all job options available for modification in this package.

Note that not all package inputs can be modified.

Select the first one, the DelSrcDir option and click Edit. Enable the Allow User Input:

Click OK and save the package into the Repository.

Now in the Service Delivery Controller Console, log in with the credentials of a member
of the ServiceDeliveryAdministrators or ServiceDeliveryArchitects group and start a File
Sharing Services Migrate job (based on the package just modified).

Notice the new revision that is available (and is the default one by design).

If you where to run the job using the initial Service Delivery Controller installation
options the job info page would look like this:

63

SDD—UI Job Options Modifications

However, in this case, select the revision just saved (on your system, the revision number
will reflect the number of times a package has been saved) and create a job.

Observe the new job info page:

64

SDD Tools

Notice that the Delete source directory is now enabled.

GUI Job Options Modification Example—Add New Input Parameter

To make changes that appear in the Service Delivery Controller Console GUI, open the
Package Designer and select the package to modify.

See elsewhere in this documentation on how to open packages and select the appropriate
revision.

First add a new input parameter in the package by adding the External Input shape. In
this example a string input parameter is added to allow adding a new input for an email
address. When the external input shape is dropped on the package the External Input
dialog appears.

65

SDD—UI Job Options Modifications

Since we are designing this package to function with or without an email address input
parameter, the parameter is defined as of type Dynamic. See the section on Fixed vs
Dynamic parameters elsewhere in this documentation.

Select the Options under Categories:

66

SDD Tools

Here you can define various aspects of this external input for each of the three Service
Delivery Controller operator types.

Options include:

•

•

•

•

•

User Access Level

Default Value

Required parameter

Length

Validating regular expression

In this example the parameter is made as Optional and the maximum length is defined
to be 50 characters. No default value is provided.

Click OK.

In the Package Designer open the job option editor and select the WebConsole

67

SDD—UI Job Options Modifications

Notice that the newly added external input is now available as a job option.

You can change the caption and its enabled property by clicking on the Edit button.

Note that the caption is what appears on the Service Delivery Controller Console options
page.

Click OK and save the package to the Repository.

68

SDD Tools

Start the Service Delivery Controller Console, login with the credentials of a member of
the ServiceDeliveryAdministrators or ServiceDeliveryArchitects and select this package
revision:

Note that the revision number shown on your Service Delivery Controller Console will
depend on the revision history on the Service Delivery Controller you are using.

On the job info page notice that the new external input parameter with the caption
defined earlier is available:

In this example the user has typed an email address of Nionio@xyz.com.

69

SDD—UI Job Options Modifications

You can choose to rearrange or change the default or required behavior of this job option.

CLI Job Options Modifications

The CLI job options modification feature follows the functionality of the GUI feature and
has the same design principles. In addition, it allows the definition of the command line
usage and example text as shown here.

From the following Menu in the SDD Package Designer, select the CLI option.

The following dialog appears:

70

SDD Tools

To change the command usage and example text as it appears in the CLI, edit the Usage
box in the above dialog.

To edit defaults and other props of a particular job option select the job option and click
Edit:

You can change the name of the CLI parameter, e.g., for localization or for CLI
consistency and you can provide a description.

You must save the package to the Repository for any of these changes to
take effect.

71

 6

SDD Security

The SDD Security model follows that of Service Delivery Controller, in that
ServiceDeliveryAdministrators and ServiceDeliveryArchitects (but not
ServiceDeliveryOperators) can modify, save, and rollout packages and solutions.

Package Designer Security

Only members of the domain based groups ServiceDeliveryAdministrators and
ServiceDeliveryArchitects can use the Package Designer and load and save Packages
from the repository. Any user that has access to the server that the SDD is installed on
may launch the Package Designer by launching Microsoft Visio 2002 and then loading
the PackageDesigner.vsd.

Users other than the ServiceDeliveryAdministrators and ServiceDeliveryArchitects, get
a “repository not available” error when they try to load or save to the repository.

Solution Rollout Security

Only ServiceDeliveryAdministrators and ServiceDeliveryArchitects can create a Solution
Rollout (.cab) file and install a solution (on a Service Delivery Controller server).

For creating a Solution Rollout, the user may be logged on to the source Service Delivery
Controller server under any valid user with the right server permissions; for example, as
a ServiceDeliveryOperator, and use the necessary credentials (e.g., a user member of
ServiceDeliveryAdministrators or ServiceDeliveryArchitects) when issuing the command.
Note that ServiceDeliveryOperators do not have privileges to successfully issue Solution
Rollout commands.

For installing a solution to a destination Service Delivery Controller server, you must log
on with the credentials of a user member of ServiceDeliveryAdministrators or
ServiceDeliveryArchitects.

73

EU Registration Security

EU Registration Security

Only ServiceDeliveryAdministrators and ServiceDeliveryArchitects can register new
EUs in the Service Delivery Controller Repository.

SDD Tools Security Considerations

The SDD tools, such as EUTester, can only be used by ServiceDeliveryAdministrators or
ServiceDeliveryArchitects.

74

 7

SDD Execution Units SDD Execution Units

This section describes the Execution Units that are part of the library that ships with the
HP OpenView Service Delivery Controller. EUs are shown categorized by area.
This section describes the Execution Units that are part of the library that ships with the
HP OpenView Service Delivery Controller. EUs are shown categorized by area.

For a list of the available registered Execution Units in your installation,
open the SDD Package Designer, drop the Use EU shape on the Package

Designer and click the button.

ADS EUs

The following EUs are in the Automated Deployment Services (ADS) name space.

ADSDeployValidator

The EU ADSDeployValidator validates the ADSDeploy package.

This EU does not include Rollback or Cleanup.

See Also ADS ADSControllerName EU.

CopyFile

The EU CopyFile copies a file from one specified remote machine to another.

This EU is specific to ADS and is separate from the FileShare.CopyFiles
EU because the file name must be fully qualified with
\\machinename\share\filename.

This EU does not include Rollback or Cleanup.

See Also FileShare CopyFiles EU.

75

ADS EUs

CopySequence

The EU CopySequence takes an ADS sequence string and converts it into a file, then
copies that file onto an ADS server.

CopySysprepFiles

The EU CopySysprepFiles copies all of the Sysprep files including the INF file to the
destination machine.

ExtractMachineName

The EU ExtractMachineName extracts the machine from a fully qualified domain
name.

GenerateCaptureSequence

The EU GenerateCaptureSequence generates the ADS sequence for capturing the
image of a device.

GenerateDeploySequence

The EU GenerateDeploySequence generates the ADS sequence for deploying an image
to a device.

GenerateSysprepSequence

The EU GenerateSysprepSequence generates the Sysprep sequence for the ADS
controller.

GetAdminMAC

The EU GetAdminMAC gets the media access control (MAC) address from an ADS device.

GetADSInstallDir

The EU GetADSInstallDir gets the ADS installation directory from the ADS
controller.

76

SDD Execution Units

GetBootPartition

The EU GetBootPartition passes in a data structure containing the disk layout, and
returns the boot partition number based on the disk layout.

GetDeviceName

The EU GetDeviceName returns an ADS device name based on the MAC address.

GetDeviceNameByServerName

The EU GetDeviceNameByServerName returns the ADS device corresponding to a
Windows server name.

GetDiskLayout

The EU GetDiskLayout returns the specified ADS device’s hard drive disk layout.

InstallAgentValidator

The EU InstallAgentValidator installs the agent validators that will be called in the
install agent Package to ensure that all the parameters are properly set.

PrepareImgVariables

The EU PrepareImgVariables returns a hash table containing all the image variables.

RegisterCSRImage

The EU RegisterCSRImage registers the selected image as a Service Delivery
Controller labeled image for the ADS controller.

RegisterDevice

The EU RegisterDevice registers an ADS device to the ADS controller.

RunRemoteCommand

The EU RunRemoteCommand runs an ADS command on a remote device.

77

Domain EUs

RunSequenceValidator

The EU RunSequenceValidator serves as the validator for the RunSequence Package.

SetDefaultTemplate

 The EU SetDefaultTemplate sets the default template for each ADS device.

SetDeviceVariables

The EU SetDeviceVariables sets one or more device variable on the ADS device.

SubmitJob

The EU SubmitJob submits an ADS job to the controller.

SysprepValidator

The EU SysprepValidator serves as the validator for the Sysprep Package.

Domain EUs

The following EUs are in the Domain name space.

ConsolidationCheck

The EU ConsolidationCheck checks that the domain level of the consolidation is going
to occur successfully—ensures that there is no conflict.

FileServices EUs

The following EUs are in the FileServices name space.

AddShare

The EU AddShare adds a share when the EU is given a server name and a share
directory. It adds a specified share without permissions. This EU cannot be registered via
the repository. If a user needs to change this package, they must contact HP OpenView
Service Delivery for assistance.

78

SDD Execution Units

AddTempShare

The EU AddTempShare adds a temporary share when the EU is given a server name and
a specified path, and is an informal method of creating a share, using a GUID.

AssertFailure

The EU AssertFailure exits a Package and always returns false.

AssertSuccess

The EU AssertSuccess exits a Package and always returns true.

CopyFiles

The EU CopyFiles copies files given a source and destination UNC path.

DelShare

The EU DelShare deletes the specified share from the specified server.

DfsAdd

The EU DfsAdd adds the DFS link or a replica. Takes the DFS link name.

DfsAddDomainRoot

The EU DfsAddDomainRoot adds a domain-based DFS root to a system when the EU is
given a set of parameters.

DfsAddStandaloneRoot

The EU DfsAddStandaloneRoot adds a stand-alone based DFS root to a system when
the EU is given a set of parameters.

DfsRemove

 The EU DfsRemove removes a DFS entry.

79

FileServices EUs

DfsRemoveDomainRoot

The EU DfsRemoveDomainRoot removes a domain-based DFS root.

DfsRemoveStandaloneRoot

The EU DfsRemoveStandaloneRoot removes a stand-alone DFS root.

FileShareMoveValidate

The EU FileShareMoveValidate takes a set of inputs, including a source server, net
name, share name, and path and compares them with what the destination will be. This
EU validates that no conflict exists before the move takes place.

ForceRemoveDir

The EU ForceRemoveDir takes the indicated directory and removes it immediately.
This EU requires a server name and a path. This operation is not recoverable.

Only use this EU when Rollback is not needed.

GetNestedShares

The EU GetNestedShares goes to any given share and enumerates all the shares
underneath it to see if there are any nested shares.

GetShareInfo

The EU GetShareInfo gets the share information for a specified share, including
permissions.

MakeRemoteDir

The EU MakeRemoteDir creates a remote directory on a specified server.

NestedShareCheck

The EU NestedShareCheck checks for nested shares for any “root” share. Typically
used before an operation commences.

RemoveDir

The EU RemoveDir removes a remote directory from the specified server.

80

SDD Execution Units

SetFileAttributes

The EU SetFileAttributes sets the file attributes for a file or folder.

SetFileSecurity

The EU SetFileSecurity sets the file permissions on a file or a folder. This EU is used
in the Deploy package.

SetShareInfo

The EU SetShareInfo sets the share information associated with a sharepoint.

WaitEU

The EU WaitEU adds a wait cycle.

Machine EUs

The following EUs are in the Machine name space.

AddLocalGroups

Adds the local groups that have been enumerated by EnumLocalGroups and adds them
to the destination server.

See also EnumLocalGroups

ComputerNameAdd

The EU ComputerNameAdd adds a computer name to the server for emulation, and is
used to initiate emulation.

ComputerNameDel

The EU ComputerNameDel removes the name that has been added to the server for
emulation, and is used to terminate emulation.

81

Machine EUs

EnumLocalGroups

The EU EnumLocalGroups enumerates the local groups on a server.

See also AddLocalGroups

FileSharesConsolidateCheck

This EU ensures that the shares will not conflict, and checks the share name and
directory path.

FixServerName

The EU FixServerName ensures that the server name is being presented in the proper
format. For example, it might get rid of extra \\. It normalizes the server name if it is
wrong.

GenerateNewServerName

The EU GenerateNewServerName generates a random number to be used as a new
server name, to prevent a naming conflict. Used when a server must be renamed to fulfill
the requirements of a unique name in the domain.

Even though the algorithm is usually successful at generating a previously
unused server name, there is always a possibility for a server name conflict
since the randomly generated server name may already exist.

Rename

The EU Rename renames the specified server with a new name.

This EU must not be used for NT 4.0 servers.

RenameNT4

The EU RenameNT4 renames the specified NT4 server with a new name.

This EU is specific to NT 4.0 servers, and must not be used on Windows
2000 servers or Windows 2003 servers.

82

SDD Execution Units

Shutdown

The EU Shutdown shuts down the specified Windows 2000 or Windows 2003 server.

This EU must not be used for NT 4.0 servers.

ShutdownNT4

The EU ShutdownNT4 shuts down the specified Windows NT4 server.

This EU is specific to NT 4.0 servers, and must not be used on Windows
2000 or Windows Server 2003 servers.

ValidateUser

The EU ValidateUser validates the user credentials to ensure that they have
permissions to perform operations.

83

 8

Walkthrough Examples

This section provides examples and information needed to modify existing Service
Delivery Controller Solutions using the Package Designer.

This section assumes you have read and familiarized yourself with the Service Delivery
Controller components and understand the Service Delivery Designer’s basic
functionality, features, and the Package Designer Tool.

Changing a Service Delivery Controller Solution:
Overview

Using the SDD software, Service Delivery Controller solutions (workflows and packages)
can be changed easily. Changing a solution typically involves the following process. Note
that the following is an outline. The examples below provide the details.

i. First identify and outline the modifications needed for the solution. For example, you
may want to remove or add an EU to the solution.

ii. Next, identify the granularity of the changes. Some of these changes may be
available by EUs that are built into the Package Designer. Others could be
accomplished by writing custom EUs, or alternatively (and of lesser desirability),
some could be achieved by writing scripts or calling out to external executables. In
subsequent SDD releases additional and expanded capabilities will be offered.

iii. If the required changes to a solution cannot be covered with the use of the above,
then you must consult HP OpenView Service Delivery Support for further assistance.

iv. The next step is to identify where in the Package (workflow) the change should be
introduced.

v. If there are requirements for new user input parameters for a solution being
modified, you can incorporate them into the new solution and have them exposed in
the Service Delivery Controller Console UI or CLI. See the corresponding section
elsewhere in this documentation for more details.

85

Walkthrough Example A: Changing an Existing Solution—Removing an EU

vi. When the new Package version is complete, you are ready to rollout the solution.
Typically a Rollout involves moving the new solution from the developer environment
to a testing environment and finally to a production environment. You may have
more or fewer steps depending on your policies and procedures.

The sections below provide detailed examples on a spectrum of typical modifications.
Note that you can also modify UI and CLI options. Please refer to the appropriate

Walkthrough Example A: Changing an Existing
Solution—Removing an EU

This detailed example provides the key pieces of information needed to modify, as well as
how to change an existing Service Delivery Controller Solution using the Package
Designer.

In this example, we will modify an existing Service Delivery Controller solution; the File
Sharing Services Migrate operation to disable the part of the solution that removes
(destroys) the source directory. Thus, after the change in this example, the File Sharing
Services Migrate operation will leave the source directory available (note that any DFS
links will be removed). Deleting the source directory is a function of the Migrate
operation that is not exposed in the Service Delivery Controller UI.

Identifying the Package to Be modified

Identification of the package to be modified is accomplished by using the Package
Designer Tool available as part of the SDD installation. Launch the Package Designer
and Load from the Repository the File Sharing Migrate solution. The solution can be
accessed from the File/Load from Repository menu. In the window select the Package you
want to modify; in this case File Sharing Migrate.

Identifying Necessary Changes

The second step is to identify the changes that will occur and where they should occur.

The place in the Migrate Package that destroys the source share must be identified and
that step removed from the Package.

When opened in the Package Designer the File Sharing Services Migrate Package spans
many pages. The first page provides a functional Package summary by displaying EUs
and off-page references (scope), as well as the definition of the input parameters.

Let’s first examine some of these shapes.

The first group of shapes on the diagram’s top left provides the input parameters for the
Package. Observe that the following, amongst others, are required input parameters:
SrcServerName, which is the source server name, DestServerName, which is the
destination server name, and so forth.

86

Walkthrough Examples

Next, observe the Migrate (Start) element followed by a number of shapes, EUs and/or
off-page references finally terminating with the End shape. What is shown here is the
complete end-to-end logic of the Migrate Package. This logic is gathered into coherent
groups of the form: “First do A,” then “do B,” and so on. To draw an analogy, this is
similar to the main function of a program that calls a number of subroutines to achieve
its goal; you can view off-page references as analogous (but with differences) to a macro
substitution in programming.

Now that the package contents are available, we need to identify the area that needs to
change.

To do so, we walk through the Package’s contents.

To access off-page references simply right-click them and select GoTo. You can also go to
these references by selecting the desired page.

Identifying EUs to Be Modified/Changed

When you open the File Sharing Services Migrate Package in the Package Designer you
will see the solution components displayed in a flowchart on the right pane. On the left
pane is a document stencil containing various shapes.

The main page (first page) details the Package flow. Going through its components
towards the end you find the Cleanup sub-workflow shape, which is an off-page
reference. Right-click this shape and select GoTo (or click the Cleanup page).

This takes the Package Designer to the Cleanup process. This process deletes the source
server directory. This action depends on the delete source directory setting, which is an
input parameter.

The next action requires you to right-click the “If” statement EU and select Delete. Now
the Cleanup part of the Package is a null operation, thus achieving the desired result.

This will be true regardless of the “DelSrcDir” (delete the source directory) option setting
since the code for this action has been removed.

Since this sub-workflow performs no other function, it can safely be removed from the
main section of the workflow. The next step requires you to right-click at the top of the
page on the “Cleanup (Start)” shape, and select Go Back. This takes you back to the main
page. Select the Cleanup off-page reference and press Delete. Or right-click and select
Delete. This page is now removed.

Saving the Modified Package

Having made the necessary changes, the next step is to save the Package.

Select Save to Repository from the File menu.

Provide an appropriate description and click OK. A new version of the package is saved
in the Repository.

Member of the ServiceDeliveryOperators group can only run this modified revision.
However, members of the ServiceDeliveryAdministrators and ServiceDeliveryArchitects
groups can run this or any of the previously saved revisions.

87

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Testing the New Package

Now that we have modified and saved the package, it is time to test it. To do so, launch
Service Delivery Controller Console (you must launch the Service Delivery Controller
Console that runs on the server where you modified the Package, or you must use
Solution Rollout to move this version to another Service Delivery Controller installation).

Log in either as a member of the ServiceDeliveryAdministrators or
ServiceDeliveryArchitects group.

Select the File Sharing Services Migrate operation. You are now presented with the
screen that allows you to select the package revision. Select the revision just saved and
create a job to migrate a file share from machine A (some machine in your network) to
machine B (some other machine).

Upon successful completion of the job, you can observe the results as illustrated in this
example.

Walkthrough Example B: Changing an Existing
Solution—Adding a Prefix to a Moved Share

This detailed example provides the key pieces of information needed to change or modify
existing Service Delivery Controller Solutions using the Package Designer.

In this example, we modify an existing Service Delivery Controller Solution, the File
Sharing Services Migrate operation to add a prefix, of our choosing to every moved file
share. In the simplistic example, the prefix is predetermined; however, with a simple
change the input string could be provided at job run time by an external program such as
a rules engine or a database.

Identifying the Package to Be Modified

Identification of the Package to be modified is accomplished by using the Package
Designer Tool available as part of the SDD installation. Launch the Package Designer
and Load from the Repository the File Sharing Migrate solution. The solution can be
accessed from the File/Load from Repository menu. In the window select the Package you
want to modify, File Sharing Migrate in this case. If you have already performed
walkthrough example A, select revision 0, the one installed by the Service Delivery
Controller installation.

Identifying Necessary Changes

The second step is to identify the changes that will occur and where they should occur.

The place in the Migrate Package that is most appropriate to provide the prefix must
now be identified.

88

Walkthrough Examples

When opened in the Package Designer, the File Sharing Services Migrate Package spans
many pages. The first page provides a functional summary of the Package by displaying
various EUs and shapes, off-page references (scope), as well as the input parameter
definitions.

Let’s first examine some of these shapes.

The first group of shapes on the diagram’s top left provides the input parameters for the
Package. Note that the following, amongst others, are required input parameters:
SrcServerName, which is the source server name, DestServerName, which is the
destination server name, and so forth.

Next, we observe the Migrate (Start) element followed by a number of shapes, EUs
and/or off-page references finally terminating with the End shape. What is shown here is
the complete end-to-end logic, albeit at a very high level, of the Migrate Package. This
logic is gathered into cohesive groups of the form: “First do A,” then “do B,” and so on. To
draw an analogy, this is similar to the main function of a program that calls a number of
subroutines to achieve its goal; you can view off-page references as analogous (but with
differences) to a macro substitution in programming.

Now that the Package contents are available we need to identify the area that needs to
change.

To do so, we walk through the Package’s contents.

Note that to access off-page references simply right-click them and select GoTo. You can
also go to these references by selecting the desired page.

Identifying the Precise Change Location

When the File Sharing Services Migrate Package is opened in the Package Designer you
will see the solution’s components displayed in a flowchart on the right pane. On the left
pane there is a document stencil containing various shapes.

The main page (first page) details the Package flow. Going through its components you
see the ValidateInput reference. Right-click it and select GoTo (or select on the
ValidateInput page).

89

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Just after the ChkDestNetName conditional ends, and before the ChckDestDir
conditional starts, drop in a Variable Assignment shape.

When you drop the Assign Variable shape, the Variable Assignment Editor opens up as
follows:

90

Walkthrough Examples

Provide a unique caption and a description. Click the Select button for the Target
Declaration Name. The following expression editor appears:

91

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Because we want to change the Destination share name, select the DestShare as shown
above.

Click OK.

Now click the Assignment Expression under Categories (top left area of the dialog).
The following appears:

92

Walkthrough Examples

Click Add and type the prefix in the Constant Expression box of the Expression editor.
For example, type MyPrefix as the prefix.

93

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Click OK.

Then click Add (second time) and select the DestShare in the Expression Editor.

94

Walkthrough Examples

Click OK. Now the Variable Assignment editor looks like this:

95

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Note the generated code in the statement summary box:

This is the actual code generated by this variable assignment.

Click OK.

You can change this to a postfix by changing the order in the assignment
expression. This can easily be achieved by selecting the DestShare and
clicking on the MoveUp button as shown in the following.

96

Walkthrough Examples

Click Cancel on the above screen.

The new ValidateInput sub-workflow looks like the following diagram:

97

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Note the shape that has been added, the PrefixDestShare as shown below:

98

Walkthrough Examples

At this point the changes can be saved to the repository.

Saving the Modified Package

Having made the necessary changes the next step is to save the Package.

Select Save to Repository from the File menu.

Provide an appropriate description and click OK. A new Package version is saved to the
Repository.

Testing the New Package

Now that the Package has been modified and saved, it is time to test it. To do so, launch
the Service Delivery Controller Console (the Service Delivery Controller Console must be
launched on the same server used to modify the Package, or Solution Rollout must be
used to move this version to another Service Delivery Controller installation).

Log in either as a member of the ServiceDeliveryAdministrators or
ServiceDeliveryArchitects group.

Select the File Sharing Services Migrate operation. You are now presented with the
screen that allows you to select the package revision. Select the revision just saved and
create a job to migrate a file share from machine A (some machine in your network) to
machine B (some other machine).

99

Walkthrough Example B: Changing an Existing Solution—Adding a Prefix to a Moved Share

Upon successful completion of the job, you can observe that the destination share has the
defined prefix. Now repeat the above steps, but when selecting the Package revision to
run, select revision 0, the original Package version. Run another migration. Observe that
the share is removed verbatim.

100

 A

Appendix A – SampleEU Code and Markup

This appendix contains the SampleEU code and markup as used in examples in this
tutorial.

SampleEU Code

Listing A-1: SampleEU Code Listing

using System;
using System.IO;
using Microsoft.Win32;
using HPSD.PA.Developer;
using HPSD.Core.P1;

namespace HPSD.Solutions.EU.Samples.Impl{
 /// <summary>
 ///
 /// </summary>
 /// <remarks>
 ///
 /// </remarks>
 public class SampleEU : IEU
 {
 private string m_strInput = "Hello World!";
 private string m_strFileName = "";
 private string m_strDirectory = "";
 private string m_strMachineName= "";
 private string m_strTempFileName = "";
 private bool m_bWasCreated = false;

 /// <summary>
 /// Input string to be appended
 /// </summary>
 public string Input
 {
 get
 {
 return (m_strInput);
 }
 set
 {
 m_strInput = value;

101

SampleEU Code

 }
 }

 /// <summary>
 /// The machine name where the file resides
 /// </summary>
 public string MachineName
 {
 get
 {
 return (m_strMachineName);
 }
 set
 {
 m_strMachineName = value;
 }
 }

 /// <summary>
 /// Wheher the file was created or not
 /// </summary>
 public bool WasCreated
 {
 get
 {
 return (m_bWasCreated);
 }
 set
 {
 m_bWasCreated = value;
 }
 }

 /// <summary>
 /// The file where the string will be appended
 /// </summary>
 public string FileName
 {
 get
 {
 return (m_strFileName);
 }
 set
 {
 m_strFileName = value;
 }
 }

 /// <summary>
 /// Directory name where the file is in
 /// </summary>
 public string Directory
 {
 get
 {
 return (m_strDirectory);
 }
 set
 {
 m_strDirectory = value;
 }
 }

102

Appendix A – SampleEU Code and Markup

 /// <summary>
 /// Temporary file name
 /// </summary>
 public string TempFileName

 {
 get
 {
 return (m_strTempFileName);
 }
 set
 {
 m_strTempFileName = value;
 }
 }

 /// <summary>
 /// Copies the original file to a temporary file
 /// Appends the string to the original file
 /// </summary>
 /// <remarks>
 ///
 /// </remarks>
 /// <returns>
 ///
 /// </returns>
 public bool Execute()
 {
 string strFile = FullFileName();

 m_strTempFileName = Path.GetTempFileName();

 try
 {
 StreamWriter w = null;
 if (!File.Exists(strFile))
 {
 // Create a file to write to.
 w = File.CreateText(strFile);

 if (w != null)
 {
 WasCreated = true;
 }
 }
 else
 {
 File.Copy (strFile, m_strTempFileName,
true);
 w = File.AppendText(strFile);
 }
 if (w == null)
 {
 return false;
 }

 w.Write (Input);
 w.Close ();

 }
 catch
 {
 return false;
 }

103

SampleEU Code

 return true;
 }

 /// <summary>
 /// Deletes the temporary file created in the Execute method
if exists
 /// </summary>
 /// <remarks>
 ///
 /// </remarks>
 /// <returns>
 ///
 /// </returns>
 public bool Cleanup()
 {
 try
 {
 if (WasCreated)
 {
 File.Delete (m_strTempFileName);
 }
 }
 catch
 {
 return false;
 }

 return true;
 }

 /// <summary>
 /// Copies the temporary file to the original file
 /// </summary>
 /// <remarks>
 ///
 /// </remarks>
 /// <returns>
 ///
 /// </returns>
 public bool Rollback()
 {
 string strFile = FullFileName ();
 try
 {
 if (WasCreated)
 {
 File.Delete (strFile);
 }
 else
 {
 File.Copy (m_strTempFileName, strFile,
true);
 File.Delete (m_strTempFileName);
 }
 }
 catch
 {
 return false;
 }

 return true;
 }

104

Appendix A – SampleEU Code and Markup

 /// <summary>
 /// Builds the full path of the file name
 /// </summary>
 /// <returns></returns>
 private string FullFileName ()
 {
 string strFile = null;

 if (MachineName.Length == 0)
 {
 strFile = Path.Combine (Directory, FileName);
 }
 else
 {
 string tmp = Directory;
 tmp.Replace (':', '$');
 tmp = string.Format ("\\\\{0}\\{1}",
MachineName, tmp);
 strFile = Path.Combine (tmp, FileName);
 }

 return strFile;
 }
 }
}

SampleEU MarkUp

Listing A-2: SampleEU Markup Listing

<eu:execution-unit version="1.0" xmlns:eu="urn:HP-
com:schema:ExecutionUnit-20030429">
 <eu:name>SampleEU</eu:name>
 <eu:namespace>HPSD.Solutions.EU.Samples</eu:namespace>

<eu:implementation>HPSD.Solutions.EU.Samples.Impl.SampleEU</eu:implem
entation>
 <r:abstract xmlns:r="urn:HP-com:schema:Repository-20030423">
 <r:category>Samples</r:category>
 <r:version major="2" minor="1" />

 <r:description>
 Implements a sample execution unit, appends the input
string to the specified file.
 </r:description>

 <r:authors>
 <r:author name="HP" email="Support@mycompany.com"
company="My Company" />
 </r:authors>
 </r:abstract>
 <id:interface xmlns:id="urn:HP-com:schema:InterfaceDescription-
20030429">
 <id:loader location="%HPSD_BINS_DIR%\Loader\EULoader.exe" />
 <id:variables>
 <id:input>
 <id:variable id="Input" class="System.String">
 <id:description>
 The string to be appended into the output file.

105

SampleEU MarkUp

 </id:description>

 <id:example>
 Any text such as "Hello world!"
 </id:example>
 </id:variable>

 <id:variable id="FileName" class="System.String">
 <id:description>
 The name of the file to where the string will be
appended.
 </id:description>

 <id:example>
 foo.txt
 </id:example>
 </id:variable>

 <id:variable id="Directory" class="System.String">
 <id:description>
 The directory where the file is.
 </id:description>

 <id:example>
 foo.txt
 </id:example>
 </id:variable>

 <id:variable id="TempFileName" class="System.String">
 <id:description>
 The path of the temporary file. This is not an
input variable and used
 by rollback and cleanup.
 </id:description>

 <id:example>
 c:\temp.fileName
 </id:example>
 </id:variable>

 </id:input>

 </id:variables>
 </id:interface>
</eu:execution-unit>

106

 B

Appendix B – AddShare EU Code and
Markup

This appendix contains the code and mark up of the EU AddShare as used in examples in
this tutorial.

AddShare Code

Listing B-1: AddShare Code Listing

using System;

using System.IO;

using Microsoft.Win32;

using HPSD.PA.Developer;

using HPSD.Core.P1;

namespace HPSD.Solutions.EU.Samples.Impl

{
public class AddShare : IEU

 {
private string mServerName = null;
 public string ServerName
 {
 get
 {
 return mServerName;
 }
 set
 {
 mServerName = value;

 if (mServerName != null)
 {
 if (!mServerName.StartsWith("\\\\"))
 {
 mServerName = "\\\\" + mServerName;
 }

107

AddShare Code

 }
 }
 }
private NetShare.ShareInfo2 mShareInfo = null;
public NetShare.ShareInfo2 ShareInfo
 {
 get
 {
 return mShareInfo;
 }
 set
 {
 mShareInfo = value;
 }
 }
private ExecState mExecStatus = ExecState.Begin;
public ExecState ExecStatus
 {
 get
 {
 return mExecStatus;
 }
 set
 {
 mExecStatus = value;
 }
 }
public enum ExecState : int
 {
 /// <summary>
 /// Begin Execution
 /// </summary>
 Begin = 0,

 /// <summary>
 /// Share Already Exists
 /// </summary>
 ShareExists = 1,

 /// <summary>
 /// Share Added
 /// </summary>
 ShareAdded = 2,

 /// <summary>
 /// End Execution
 /// </summary>
 End,
 }
public bool Execute()
 {
 // Enter
 mEuLoader.Logging.SubmitFunctionEnter();

 // Assume failure
 bool retval = false;

 // Set Execution Status
 SetExecStatus(ExecState.Begin);

 // Validate the share to be added.
 if (!NetShare.Exists(mServerName, mShareInfo.NetName))
 {
 // Add the Share;

108

Appendix B – AddShare EU Code and Markup

 if (NetShare.Add(mServerName, mShareInfo))
 {
 // Share Added
 SetExecStatus(ExecState.ShareAdded);

 // Log the Message
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareSuccess,
 mShareInfo.NetName, mServerName);

 retval = true;
 }
 else
 {
 // Log the Error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareFailed,
 mShareInfo.NetName, mServerName);
 }
 }
 else
 {
 // Share Exists;
 SetExecStatus(ExecState.ShareExists);

 // Log the Error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareExists,
 mShareInfo.NetName, mServerName);
 }

 // Leave & Return
 mEuLoader.Logging.SubmitFunctionLeave(retval);
 return retval;
 }
public bool Rollback()
 {
 //Enter
 mEuLoader.Logging.SubmitFunctionEnter();

 // Assume success
 bool retval = true;

 // If the Share has been added then remove it
 if (mExecStatus == ExecState.ShareAdded)
 {
 // Delete the Share;
 if (NetShare.Delete(mServerName,
mShareInfo.NetName))
 {
 // Log that it was successful
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareRemoved,
 mShareInfo.NetName, mServerName);
 }
 else
 {
 // Log the error
 mEuLoader.Logging.SubmitOperatorLog(
 LogMessage.FileServicesAddShareRemoveFailed,
 mShareInfo.NetName, mServerName);

 retval = false;
 }

109

AddShare MarkUp

 }

 // Leave & Return
 mEuLoader.Logging.SubmitFunctionLeave(retval);
 return retval;
 }
public bool Cleanup()
 {
 return true;
 }
private void SetExecStatus(
 ExecState Status)
 {
 mExecStatus = Status;
 mEuLoader.SetRollback();
 }
 }
}

AddShare MarkUp

Listing B-2: AddShare Markup Listing

-<eu:execution-unitversion="1.0"xmlns:eu="urn:HP com:schema:
ExecutionUnit-20030429">
Name of the EU
 <eu:name>AddShare</eu:name>
Namespace of the EU
 <eu:namespace>HPSD.Solutions.EU.FileServices</eu:namespace>
Implementation of the EU
 <eu:implementation>HPSD.Solutions.EU.FileServices.Impl.AddShare</eu
:implementation>
- <r:abstract xmlns:r="urn:HP-com:schema:Repository-20030423">
Category that this EU is a part of
 <r:category>FileServices</r:category>
Version information. This version is provided by the creator of the
EU.
 <r:version major="2" minor="2" />
Description
 <r:description>Adds a sharepoint</r:description>
Author Information
- <r:authors>
 <r:author name="AuthorName" email="Author@Mycompany.com"
company="MyCompany" />
 </r:authors>
 </r:abstract>
- <id:interface xmlns:id="urn:HP-com:schema:InterfaceDescription-
20030429">
 <id:loader location="%HPSD_BINS_DIR%\Loader\EULoader.exe"/>
- <id:variables>
EU Inputs. These will be shown to the Package Designer, when this EU
is used. They must match the parameters used by the EU.
- <id:input>
- <id:variable id="ServerName" class="System.String">
 <id:description>The name of the server to remove the share
from.</id:description>
 <id:example>For a given UNC path: "\\TestSrv3\public", the
ServerName would be "TestSrv3"</id:example>
 </id:variable>

110

Appendix B – AddShare EU Code and Markup

- <id:variable id="ShareInfo
class="HPSD.Win32.Netapi32.NetShare.Share Info2">
 <id:description>The ShareInfo object describing the share we are
creating.</id:description>
 </id:variable>
 </id:input>
EU State Information
- <id:state>
- <id:variable id="ExecStatus"
class="HPSD.Solutions.EU.FileServices. Impl.AddShare.ExecState">
 <id:description>Execution Status</id:description>
 </id:variable>
 </id:state>
 </id:variables>
 </id:interface>
 </eu:execution-unit>

111

	Contents
	Introduction
	Audience
	Prerequisites
	Chapters Summary
	Related Documents
	Packages and Solutions
	Jobs
	Execution Units
	The Package Designer
	EU and Package Versions
	Editing a Package
	Solution Rollout
	GUI & CLI Customization
	Additional Tools
	Service Delivery Controller Overview
	Service Delivery Building Blocks
	Solutions
	Solution Components

	Packages
	Package Anatomy
	The XML File
	The C# File
	The Message File

	Working with Resources
	Binding to a Resource

	Managing Dependencies
	Execution Units (EUs)
	EU Components
	EU Part One: The C# File
	EU Part Two: The XML File
	EU Part Three: The Message File

	EU Registration
	Capturing State Information
	EU Creation Flow

	Sample Execution Unit One: SampleEU
	SampleEU Class Elements

	Sample Execution Unit Two: AddShare
	AddShare EU Class Elements

	The Package Designer
	Overview of the Package Designer
	Launching
	Opening a Package
	Saving a Package
	Saving a Package Locally
	Editing a Package
	Edit Log Messages
	Import Message File

	Preview
	Updating a Package to Latest EU Revisions
	Package Designer Shapes

	Versioning Overview
	Introduction to Versioning
	Revisions are Persistent
	Package Default Revision
	EU Default Revision
	Propagating an EU Update to a Package
	A Versioning Example

	Versioning in the Service Delivery Controller Console

	Solution Rollout
	Requirements form Solution Rollout
	Introduction to Solution Rollout
	Solution Rollout Overview
	Solution Rollout Details
	Solution Rollout and Versioning

	Additional Command Line Tools
	EU Test Tool
	Short Description
	Description
	Location and Command
	Security Considerations
	Usage
	Parameters
	Example

	Resource Dictionary Tool
	Short Description
	Description
	Location and Command
	Security Considerations
	Usage
	Parameters

	Repository Tool
	Short Description
	Description
	Location and Command
	Security Considerations
	Usage
	Example

	SDD—UI Job Options Modifications
	UI Job Options Overview
	Fixed vs Dynamic Input Parameters
	GUI Job Options Modification Example—Change Defau
	GUI Job Options Modification Example—Add New Inpu
	CLI Job Options Modifications

	Package Designer Security
	Solution Rollout Security
	EU Registration Security
	SDD Tools Security Considerations
	ADS EUs
	ADSDeployValidator
	CopyFile
	CopySequence
	CopySysprepFiles
	ExtractMachineName
	GenerateCaptureSequence
	GenerateDeploySequence
	GenerateSysprepSequence
	GetAdminMAC
	GetADSInstallDir
	GetBootPartition
	GetDeviceName
	GetDeviceNameByServerName
	GetDiskLayout
	InstallAgentValidator
	PrepareImgVariables
	RegisterCSRImage
	RegisterDevice
	RunRemoteCommand
	RunSequenceValidator
	SetDefaultTemplate
	SetDeviceVariables
	SubmitJob
	SysprepValidator

	Domain EUs
	ConsolidationCheck

	FileServices EUs
	AddShare
	AddTempShare
	AssertFailure
	AssertSuccess
	CopyFiles
	DelShare
	DfsAdd
	DfsAddDomainRoot
	DfsAddStandaloneRoot
	DfsRemove
	DfsRemoveDomainRoot
	DfsRemoveStandaloneRoot
	FileShareMoveValidate
	ForceRemoveDir
	GetNestedShares
	GetShareInfo
	MakeRemoteDir
	NestedShareCheck
	RemoveDir
	SetFileAttributes
	SetFileSecurity
	SetShareInfo
	WaitEU

	Machine EUs
	AddLocalGroups
	ComputerNameAdd
	ComputerNameDel
	EnumLocalGroups
	FileSharesConsolidateCheck
	FixServerName
	GenerateNewServerName
	Rename
	RenameNT4
	Shutdown
	ShutdownNT4
	ValidateUser

	Changing a Service Delivery Controller Solution: Overview
	Walkthrough Example A: Changing an Existing Solut
	Identifying the Package to Be modified
	Identifying Necessary Changes
	Identifying EUs to Be Modified/Changed
	Saving the Modified Package
	Testing the New Package

	Walkthrough Example B: Changing an Existing Solut
	Identifying the Package to Be Modified
	Identifying Necessary Changes
	Identifying the Precise Change Location
	Saving the Modified Package
	Testing the New Package

	SampleEU Code
	SampleEU MarkUp
	AddShare Code
	AddShare MarkUp

