

HP OpenView Service Quality
Manager

Service Adapters Software Development Toolkit

Development Guide

Edition: 2.0

for the HP-UX Operating Systems

March 2007

© Copyright 2007 Hewlett-Packard Company, L.P.

2

Warranty

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notices

© Copyright 2006-2007 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ and all Java based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Microsoft® , Windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries.

Origin

Printed in France.

3

Contents

Chapter 1 ...8

Introduction...8
1.1 Required features implemented by Service Adapters8
1.2 Architecture..9
1.3 Concepts ..9
1.3.1 Registration...9
1.3.2 Discovery ..10
1.3.3 Measure ..11
1.3.4 Configuration...13
1.3.5 Resource...13

Chapter 2 ...15

Installation and Configuration ...15
2.1 Pre-requisites...15
2.1.1 Installing J2SE Software...15
2.1.2 Setting-up Java environment ..15
2.1.3 Installing Apache TomCat...15
2.2 Installing the software ..16
2.2.1 Required environment ..16
2.2.2 Installing the SA SDK ...16
2.3 Uninstalling the software..17
2.4 Product configuration ...18
2.4.1 Setting-up Ant environment ..18
2.5 Packaged Third Party Products ...19
2.5.1 Apache Axis ..19

Chapter 3 ...20

Product Description..20
3.1 Product Content ...20
3.1.1 Sample Service Adapter description...20
3.1.2 SQM Simulator description ...25
3.1.3 SDK API Documentation ..34

Chapter 4 Service Adapter development guidelines35
4.1 Defining the development environment ...35
4.2 Compiling an SQM Service Adapter ..36
4.3 Installing a SQM Service Adapter..37
4.4 Deploying a SQM Service Adapter ..37
4.5 Testing a SQM Service Adapter ..37

4

Chapter 5 ...38

Implementing a Service Adapter ...38
5.1 Designing a Service Adapter ...38
5.1.1 Registration Service..39
5.1.2 Configuration Service ...42
5.1.3 Discovery Service ...44
5.1.4 Measure Service...48

Chapter 6 ...60

Debugging, Troubleshooting and Tracing..60
6.1 Debugging a SQM Service Adapter...60
6.1.1 Required environment ..60
6.1.2 Setting up the project environment ...60
6.1.3 Setting up the Eclipse project ...61
6.1.4 Deploying the SampleSA services..63
6.1.5 Debugging the Service Adapter..63

5

Preface

This document is a guide to the development and implementation of Service Adapters
with OV SQM Service Adapters SDK. It allows developers to focus on the
application code to be developed independently from SQM concepts and architecture.

This manual contains the recommended procedures for OV SQM Service Adapter
development, many of them illustrated by an example. It provides coding examples
but does not contain in-depth descriptions of Service Adapter API. This API is
explained in detail SDK Java documentation provided as a set of HTML documents
in the product kit.

In addition, this document describes how to install and configure the OV SQM
Service Adapters SDK.

This document describes how to:

• Install the Service Adapter SDK (and required products)

• Deploy, execute and test the Sample Service Adapter

• Guideline for developing a Service Adapter

• Development Tips

Intended Audience
This document is intended for experienced network managers and system software
developers who want to develop an SQM Service Adapter and integrate it into OV
SQM using Service Adapter SDK.

Required Knowledge
It is assumed that the reader is familiar with the functionality of Service Quality
Manager and has previous experience of the following:

• Java programming

• Web Service Technology

• System administration and operations

• Service Level Management

It is assumed that the reader is familiar with the concepts described in the following
books:

• HP OpenView Service Quality Manager Overview.

• HP OpenView Service Quality Manager Service Adapter User's Guide.

6

Software Versions
The software versions referred to in this document are:

Product Version Operating System

OpenView Service Quality
Manager 1.4

OpenView SA Software
Development KToolkit 2.0

HP-UX 11i
Windows XP

Typographical Conventions
Courier Font:

• Source code and examples of file contents.

• Commands that you enter on the screen.

• Pathnames

• Keyboard key names

Italic Text:

• Filenames, programs and parameters.

• The names of other documents referenced in this manual.

Bold Text:

• To introduce new terms and to emphasize important words.

Associated Documents
The following documents contain useful reference information:

• HP OpenView Service Quality Manager Service Adapter User’s Guide

For a full list of Service Quality Manager user documentation, refer to the HP
OpenView Service Quality Manager Product Family Introduction.

Support
You can visit the HP OpenView support web site at:

http://support.openview.hp.com/support.jsp

This Web site provides contact information and details about the products, services,
and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It
provides a fast and efficient way to access interactive technical support tools needed
to manage your business. As a valued support customer, you can benefit by using the
support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

7

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

8

Chapter 1

Introduction
hp OpenView SQM provides a complete service quality management solution. It
consolidates quality indicators across all domains — telecom, IT networks, servers,
and applications — providing end-to-end visibility on service quality. SQM links
service quality degradations to potential effects on business, allowing network
support operators to address problems and prioritize actions proactively.

SQM monitors the service quality by aggregating performance or quality indicators
collected from various data sources, such as the network, the IT infrastructure, and
the service provider’s business processes. Using this information, service operators
can pinpoint infrastructure problems and identify their potential effects on customers,
services, and service level agreements (SLAs).

The SQM platform has a southbound composed of various data sources integration
modules. These data feeder specific integration modules are called Service Adapters
(SA). Service Adapter allows collecting data on various sources and mapped them
into performance or quality indicator in a model expected by SQM.

The purpose of the Service Adapter Software Development Kit (SDK) is to provide a
generic interface for feeding SQM with the collected performance or quality
indicator. Using the SDK the integrator has a development and deployment
environment that allows him to quickly produce standalone Service Adapters. The
following schema locates the Service Adapters, produced by the integrator, once
deployed.

1.1 Required features implemented by Service
Adapters
The role of a Service Adapter is mainly:

• Model Discovery [optional]: expose to SQM, the model (DFD) of indicators
which can be collected from the Third Party Product

• Instance Discovery [mandatory]: expose to SQM the DFD instances (DFIs)
providing indicators collected from the Third Party Product

• Controlling the collection [mandatory]:: to allow SQM to start/stop collecting
raw data from the Third Party Product

• Resynchronization [optional]: to provide to SQM a way to resynchronize itself
(retrieving raw data that it has not completely processed yet)

• Collection [mandatory]: to feed SQM with the raw data provided by the Third
Party Product:

• Repair [mandatory]: to auto repair collections’ broken resources and to expose
to SQM a way to attempt new repairs when the auto repair failed

9

• Registration [mandatory]: to setup (and destroy) a context for each “Service
Adapter client” (on the SQM platform), and expose (share) these contexts to the
features (services).

• Configuration [optional]: to update Service Adapters and Third Party Products
configurations.

1.2 Architecture
The following schema represents the Service Adapters, highlighting their role of
adapting Third Party Products to an SQM platform. Thus, the Service Adapters
communicate on the northbound with the SQM platform (processes) using a standard
WSDL interface, crossing a firewall. Note that the calls are always initiated by the
SQM platform. Indeed, each call establishes a connection to a HTTP web server, on
the Service Adapter platform. Therefore the eventual firewalls have to be configured
to authorize outgoing connections (only on one port) from the SQM platform and to
allow incoming calls for the Service Adapter platform. Finally, on the southbound
the Service Adapters interact with their dedicated Third Party Products.

1.3 Concepts
The previous chapter exposed an overview of the Service Adapter features. The
details and their classifications (categories) are provided hereafter. Each following
paragraph describes a category of features, its purpose and the functionality.

1.3.1 Registration
The Service Adapter implementation communicates on its southbound with the SQM
platform. The SQM platform might have, mainly for scalability reasons, several
clients (instances) accessing one single Service Adapter. As most features are state
full operations, the Service Adapter has to maintain a context for each client.

Service
A

dapter
glue

DFD/DFI Discovery
<<Client>>

SA Config Tool
<<Client>>

Data Gathering
<<Client>>

3rd Party Product

3PP API

3PP<->SQM mapping

SA SDK

Discovery
Collection/Control/Monitoring
requests Config

 OOVV SSeerrvviiccee
QQuuaalliittyy MMaannaaggeerr

WSDL

10

Therefore, each client-request references the context that has been allocated to the
client. That way the Service Adapter recovers a context for each incoming request.
The Service Adapter attributes a new context to each client who is performing the
request. As each request is context related, the clients (uniquely identified) have
always to request a context before performing its requests. Each context has a unique
ID. To avoid any collisions within the context referencing system, the contexts IDs
could only be reallocated, as soon as the context associated previously to this ID has
explicitly been destroyed (through the entire SA life-cycle: even crashes). A simple
Service Adapter implementation of this constraint is to allocate unique identifiers that
are unique over time with respect to the host on which they are generated. Note: A
context ID is named registrationId at the Service Adapter interface level.

Although the scalability requires client context scoped requests, the context scoped
requests are also used for the Service Adapter crashes or clean-up detection. Indeed,
all client requests refer a context, which is maintained by the Service Adapter. Thus
any client request, which fails because it is referencing a context that is unknown by
the Service Adapter, allows the client to deduce that the Service Adapter crashed or
cleaned-up since the context creation.

The contexts are destroyed on client request, when the client stops (or in some case,
before it crashes). To prevent context leaks (remaining undestroyed contexts), the
Service Adapter has to monitor the clients’ activities. This monitoring could trigger
context garbage collections. Indeed, “inactive” clients are either “disconnected” from
the Service Adapter due to a crash or network problems, or they might no more
collect Data Feeders. When a client is no more collecting Data Feeders for a time
laps, the allocated resources has to be freed. This way, “inactive” clients no longer
monopolize the Service Adapter and “dead” clients’ allocated resources get wiped
out. Finally, the Service Adapter has also to invalidate the contexts that are allocated
to clients that are claiming again a context without having requested the destruction
of their previous context. This might happen when a client crashed. Therefore the
client has to request its context destruction, before he is able to claim a new context in
order to perform further requests. This context invalidation is mandatory, as
otherwise the Service Adapter and the client might own different Data Feeder states.

The context garbage collecting has of course to de-allocate all related resources.
Typically, all the referenced Data Feeder collections have to be stopped (and freed),
as well as the referenced external uploaded resources have to be removed (confer
Resource paragraph).

1.3.1.1 Versioning visible at registration level
The Service Adapter implementation will evolve over time, independently of the
interface (WSDL). Therefore the SQM platform has to be aware of these changes.
Indeed, a new revision of an implementation could be available for updated Service
Adapter clients, whereas the previous Service Adapter might still be available to none
upgraded systems. The origin of a Service Adapter implementation change might be a
simple performance improvement or maybe a fix of a functional miss behavior.

This versioning information is visible to the Service Adapter clients (SQM platform)
within the context identification. As the context is shared among all features, it is a
good place to include versioning controls. Therefore the context ID (registrationId)
includes a version number.

1.3.2 Discovery
The SQM platform requires a full description of the Data Feeders in order to be able
to perform collections.

The Data Feeder overall description has to be provided by the Discovery in two steps.

11

First SQM needs the Data Feeder Definition (DFD), that defines what kind of
indicators (parameters) the Data Feeder collects and which properties allow to
uniquely identify the location where these indicators are collected (measurement
reference point schema). Note that the Data Feeder Definition defines a full set of
properties, but in general only a subset of these properties is used to uniquely identify
the collection location. The DFD are identified through their name and their version.
These DFD descriptions could be modeled by the integrator using the SQM Service
Designer. Indeed, it is possible that this type of information is not offered by the
Third Party Product. In this case the Service Adapter might use alternative
mechanism retrieve this data.

The second description, mandatory, provides the Data Feeder description. A Data
Feeder is described by what (name and version of the DFD) it collects and where
(measurement point). This “what” and “where” information uniquely identifies a DF.
The Service Adapter has to provide the descriptions of the Data Feeder it is aware of.
The Service Adapter implementation will most likely query the Third Party Product
to achieve this task.

As exposed above the DF description might thus exist for a DFD that has been
provided to the SQM platform by hand. This type of use cases could introduce several
discrepancies. Therefore it is recommended that the Service Adapter also provides the
DFD descriptions.

1.3.3 Measure
The features allow SQM to control the collection of Data Feeders and to retrieve the
collected measures and statuses changes. The Data Feeder collection control is
composed of: a start since a given measure, a stop and a repair operation.

All Service Adapter implementations support Data Feeder collections. The SQM
platform whereas require some additional capabilities for its (optional)
synchronization mechanism. Therefore, the Service Adapter should support some
historical measures querying. Indeed, to allow the SQM platform to recover from its
eventual crashes, SQM requests from the Service Adapter the (historical) measures
collected in the meantime of its crash.

Thus, we distinguish two kinds of Service Adapter implementations: those who
support this historical measures querying, and those who don’t. The implementations
declare (provide) their category through the MeasureDeliveryPolicy. Confer to the
Java documentation for further details. The measures, provided to the SQM platform,
have to be uniquely identified, to allow historical measures querying. Therefore, the
Service Adapter implementations supporting this querying feature have of course also
to be able to attribute a unique ID (MeasureId) to the measures. The SQM platform
could therefore use these IDs for its synchronization mechanism.

The Service Adapter implementation category will mainly depend on the Third Party
Products capabilities. Indeed, if the Third Party Product does not provide some query
functionalities, the Service Adapter implementation won’t probably support the
historical measures querying, too.

Thus the collected measures are either current measures, or historical measures (as
those described in the former paragraph). Each measure is time stamped. The current
measures might have, like historical measures, timestamps in the past as they are
most likely polled from or listened on the Third Party Products. For example,
measures polled, every 2 minutes, by the Service Adapter implementation from the
Third Party Product are available only up to 2 minutes later.

The Data Feeder collection not only provides the current and historical measures, but
also the status changes. Thus measures are declined into value measures or Data
Feeder status measures. A status measure is generated by the Service Adapter each
time the status, of a Data Feeder collection, changes. This status measure has to be

12

generated regardless of the action which triggered the change: directive called by
SQM, failure or Third Party Product event, etc. Now, how does the SQM platform
retrieve these measures? For technical reasons, as previously exposed, the SQM
platform permanently fetches the measures accumulated by the Service Adapter.
Thus, the SQM platform retrieves a flow (stream) of collected measures. The fetch
operation will behave in two ways. It is either blocking for a configurable time, when
the Service Adapter currently has not accumulated measures, or it returns all the
currently accumulated measures. The fetch operation uses a maximum fetch size
providing a way to retrieve "huge" amounts of measures in bunches. The Data Feeder
collection controls are implemented by the following directives. The stop directive
stops the collection and maybe frees the associated resources. When resources (like
sockets) are used for several Data Feeder collections, the Service Adapter has of
course to de-allocate the resources only once all the associated Data Feeder
collections are stopped.

The collect directive has a different behavior depending on the Service Adapter
implementation category (those who support the historical measures querying, and
those who don't). Indeed, the Service Adapter implementations which don't support
historical measures querying, will only put in place the resources in order to start the
Data Feeder collection. The Service Adapter implementations, supporting historical
measures querying, whereas put first in place the resources in order to start the Data
Feeder collection and (only) then perform some queries to retrieve the historical
measures (last available one, or since a given measure) as requested by the SQM
platform. Note that a collect directive on already collecting Data Feeders should
whereas only perform the eventual historical measures queries, keeping in place the
existing collection resources. The collected measures have to be accumulated by the
Service Adapter implementation, until the SQM platform fetches them. For details on
the historical requests behavior refer to Java documentation (collect directive). The
repair directive is called by the SQM platform as soon as a collecting Data Feeder is
detected as being "Failed", "Off line", etc… Indeed, when the Service Adapter
implementation or the Third Party Product fails to maintain a Data Feeder collection,
an availability status change measure has to be generated. Therefore the SQM
platform will be aware of this degradation and will be able to perform Data Feeder
repair trials. After several repairs tries, the SQM platform will leave unchanged the
"un-repairable" collections, whereas, for the "repaired" Data Feeders collections, it
will, depending on the policies and the provided status changes, query for the
historical measures that the platform eventually missed (confer collect directive). The
Service Adapter repair directive implementation should only try to reestablish (repair)
the resources (sockets, etc.) of the listed Data Feeder collections (dataFeederIds
array). Therefore the Data Feeder collections associated to the repaired resources
might collect again. Note that the directives are dedicated to Data Feeders, whereas
the measures retrieval is global to all Data Feeders. Thus, the SQM platform will
retrieve all the accumulated measures, regardless of the Data Feeder to which these
measures belong to. The Data Feeder collection control directives always produce a
Data Feeder status. These Data Feeder statuses are provided two times: once as a
directive result, allowing an "immediate" feed back to the SQM platform, and a
second time within the collected measures flow.

This Data Feeder status duplication is used to cope with the asynchronous aspect of
this measure service. Indeed, each directive (Data Feeder collection control) impacts
the flow of collected measures, which is consumed independently. This measure flow
of values and statuses, produced by the Service Adapter implementation, thus
transcribes the Data Feeder collections' chronological "life-cycle" as a context free
source. Consider this life-cycle as a simple sequence of Data Feeder statuses and
value measures. Therefore the Data Feeder statuses resulting of a collection control
directive have also to be provided through the collected measure flow. Remember
that these services are moreover built on top of a transport layer. In order to cope with
any Data Feeder collection control directive invocation delivery delay problem, due
to the transport (or application communication) layer implementations, a transaction

13

context is provided by the SQM platform. Indeed, notice that no guarantee could be
provided on the fact that the SQM platform will be aware of the status-change, first,
through the directive result and, only then, through the collected measures flow, and
vice and versa. The collected measures (values and statuses) could even reach the
SQM platform through the collected measures flow a few seconds after the
corresponding collection control directive has been processed. Some extreme
situations even show that depending on the volume of the accumulated measures and
the rate of the control directives, it might happen that a Data Feeder collection has a
given status at SQM level, whereas the collected measures flow still provides values
for the previous statuses. Take the example where a Data Feeder collection is
collecting, before it is suddenly stopped and started again. At the same time other
Data Feeders generate higher amounts of measures. Therefore the SQM platform
processing will be lagging behind the value- and status-measures generation. The
SQM platform will handle values provided for the former started Data Feeder
collection (before the collection has been stopped and started again). This situation
would lead on the SQM platform to a de-correlation between the Data Feeder status
and the measure flow processing. In other circumstances, the Data Feeder might even
be considered as available, whereas in fact it is failed. Indeed, each Data Feeder
collection status could be placed in the context of a directive and therefore a
transaction. Thus the SQM platform has to attribute a new "transaction id", each time
it calls a directive (collected, repair, stop). The Service Adapter has to use this
transaction id, not only to discard the out-dated directives, which have been delivered
after another more recent control directive, but also to mark all future status-measures
resulting of the processing of the various directives. Therefore the SQM platform
could discard the status- (and value--) measures that didn't result of the latest
requested directive. Note that the SQM platform allocates, per Data Feeder collection,
a distinct transaction Id number, incremented on each directive call. A filtering based
on discarding measures whose timestamp is previous to the directive processing is not
possible, as it is difficult to put in place due to: eventual time jitter, or time
differences between the SQM, the Service Adapter and the Third Party Product
platforms, etc. Moreover the Service Adapter implementation would otherwise have
to eventually realign the Third Party Products measures' timestamps, which is
prohibited.

1.3.4 Configuration
As described above the SQM platform accesses a range of Service Adapters adapting
different Third Party Products in order to feed the SQM system. Therefore SQM is
the ideal place for centralizing the Service Adapters and Third Party Products
configuration deployment. The integrator has thus only to store on the SQM platform
its different configuration resources. These resources could be any arbitrary file
bundles, binary or text files. It is only recommended that the size of this resource is
not too huge (< 1MB), unless it is accessible through an URL. Using the
configuration tools the integrator could then upload to the Service Adapters and the
Third Party Products platforms the required configuration resources, in order to
request a global or single configuration deployment. Resource uploads are classified
as being resource related features.

1.3.5 Resource
The Service Adapter configurations require resources uploads. These upload features
are classified as being resource related features. (Confer the former Configuration
paragraph for further details on the resource contents.) As resource uploads are in
most cases time consuming, the upload process is split into steps. First a resource ID
is allocated by the Service Adapter for a declared resource. The declaration provides
the name and the type of the resource. This resource ID is used by the SQM tools to
perform a resource upload request. An upload could be performed in two different
ways. Either the resource content is streamed (one-way) to the Service Adapter. Or

14

only the URL for the resource is send to the Service Adapter. In this last case, the
Service Adapter will read the resource content from the specified URL. Finally, the
SQM tools could independently check that the upload finished and succeeded. Take
care, that the resources updated to the Service Adapter are removed as soon as the
associated context is destroyed (confer 1.3.1 Registration). Also note that a resource
could be declared several times. But each declaration generates a new temporary
resource on the Service Adapter side.

In order to provide an I18N support for error messages, the Service Adapter offers
within this Resource classification an error code translation operation.

15

Chapter 2

Installation and Configuration

2.1 Pre-requisites
Before installing the OV SQM Service Adapter SDK it is mandatory to install the
following third party products:

1. The Java 2 Standard Edition Software Development Kit (SDK)

2. An application server, we recommend Apache TomCat 4.1.31

2.1.1 Installing J2SE Software
To install install J2SE kit:

3. Download the Java 2 Standard Edition (J2SE) SDK, from:
http://java.sun.com/j2se/

4. Install the SDK according to the instructions included with the release.

5. Set an environment variable JAVA_HOME to the pathname of the directory into
which you installed the SDK release.

2.1.2 Setting-up Java environment
To setup the JAVA environment it is necessary to:

1. Set the JAVA environment variable (it depends where the product is installed)
JAVA_HOME=<java installation directory>/java ; export

JAVA_HOME

2. Update the PATH environment variable:
PATH=${JAVA_HOME}/bin:${PATH} ; export PATH

2.1.3 Installing Apache TomCat
It is recommand to install Apache TomCat 4.1.31. A servlet container is mandatory
for executing a SQM Service Adapter. The software kit and documentation can be
downloaded from the following location: http://jakarta.apache.org/tomcat/

1. Download the binary distribution of Tomcat

2. Unpack the binary distribution into a convenient location (for instance /opt)

3. Set an environment variable CATALINA_HOME to the path of the directory into
which you have installed Tomcat

16

2.2 Installing the software
This section describes how to install the SQM Service Adapter SDK on a HPUX
system.

SA SDK does not require that the OV SQM Kernel is already installed and
configured on the primary host. SA SDK is independent from any SQM component.

Anyway it can be installed on an SQM director.

2.2.1 Required environment
To configure the SA SDK, you first have to set the Java and TomCat environment as
describes in chapter Chapter 2.

2.2.2 Installing the SA SDK
To install the SA SDK perform the following steps:

1. Log on as root user.

2. Mount the Service Adapters and Gateways CD-ROM on your system

3. Go to the SQM-1.40.00-SAGTW/HPUX directory

4. Run the ‘SQMSASDK-2.00.00.bin’ installer.

5. Select the installation directory. If SQM is already installed on the target system,
we recommend to install the SA SDK in the SQM installation directory (directory
refered by the environment variable $TEMIP_SC_HOME)

17

6. To end the installation process, click ‘Done’

2.3 Uninstalling the software
To uninstall the SA SDK, perform the following commands:

1. Log on as root user.

2. Go to the SA SDK installation directory
#cd $TEMIP_SC_HOME/ServiceAdapters/SDK/v2_0/Uninstaller_SASDK

3. Run the Un-installer:
#Uninstall_SASDK

4. The uninstaller window appears, click on Uninstall button.

5. When the un-installation is terminated the following window appears:

18

6. Click “Done” to accept.

2.4 Product configuration
The SA SDK requires that Ant environment is setup. This setup is mandatory for
compiling and executing SA SDK components.

The TEMIP_SC_HOME environment variable is not necessary for the SA SDK. Any
way, in this document, this variable refers to the kit installation directory.

2.4.1 Setting-up Ant environment
Apache Ant is a Java-based build tool. It is delivered in the SA SDK at the following
location:

${TEMIP_SC_HOME}/ServiceAdapters/SDK/v1_0/ant-1.5.1

To setup the Ant environment it is necessary to:

1. set the ANT_HOME environment variable:
ANT_HOME=${TEMIP_SC_HOME}/ServiceAdapters/SDK/v1_0/ant-

1.5.1; export ANT_HOME

2. Update the PATH environment variable:
PATH=${ANT_HOME}/bin:${PATH} ; export PATH

19

2.5 Packaged Third Party Products

2.5.1 Apache Axis
Axis is essentially a SOAP engine -- a framework for constructing SOAP processors
such as clients, servers, gateways, etc.

The SA SDK proposes an implementation of Service Adapters based on Apache
Axis.

For more information about Apache Axis, please refer to the following Apache Axis
Web Site:
http://ws.apache.org/axis/

20

Chapter 3

Product Description

3.1 Product Content
The SA SDK Software kit is a SQM Service Adapter development environment. It is
composed by:

• A set of WSDL files defining Service Adapter interface

• A Service Adapter sample. This SA is delivered as:

o a web archive (war file). Therefore the Service Adapter sample
deployment only requires copying the shipped war file to the user’s
web application container (Apache Tomcat, etc.)

o the source files

• A command line tool named SQMSimulator, which can be used to validate
Service Adapter services

• A compilation environment based on Apache Ant. The Sample Service
Adaptor component is also shipped with an Ant file which can be re-used as
a standard Service Adaptor Ant file

• A User documentation:

o A Development User Guide

o A Java documentation, describing Service Adapter interface

3.1.1 Sample Service Adapter description
The Service Adapter SDK includes a Service Adapter implementation sample. This
sample provides to the SDK’s users a canvas for the implementations he has to
produce. The sample responds like concrete implementations to Data Feeders
discovery, control and collection requests, but it does not interact with a Third Party
Product, to execute. Instead, the sample implementation only produces predefined
results. Therefore, some Data Feeders could be controlled, in order to collect and
provide fake measures, whereas others are dedicated to raise standard errors.

The SDK ships the sample source code, but it also provides a file hierarchy that all
Service Adapter implementations should follow. Therefore the automatic
implementation packaging producing web applications could be used. These web
applications are deployable on web application containers.

3.1.1.1 Data Feeder Model exposed by the Sample Service Adapter
The Sample Service adapter exposes 3 datafeeder definitions:

1. Multimedia DFD: example of video measure

21

2. OVIS HTTP DFD: same DFD as the HTTP DFD supported by the SQM OVIS
Service Adapter

3. TeMIPFaultStatistics DFD: The TeMIP Fault Statistics DFD collects fault
statistics parameters on TeMIP managed entities based on the alarms collected in
TeMIP Operation Context monitored and integrated with the Service Quality
Manager platform.

3.1.1.2 Installating the Sample Service Adapter
The Sample Service Adapter must be installed in a Servlet Container. Installation
depends on the selected Servlet Container. In most cases it consists in dropping the
Sample SA war file (located in
$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/SampleSA/war) in the webapps
directory of the server and restarting the server, or by using a server-specific
mechanism to enable the web application.

For instance, installing the Sample Service Adapter on TomCat 4.1 consists in:

1. Log as root user

2. Copy the war file in the TomCat webapps directory:
cp

$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/SampleSA/war/SampleSA

_v1_0.war $CATALINA_HOME/webapps

3. Create the Sample SA data directories. These directories are used for properties,
trace and logging files:
mkdir /var/opt/SA_SDK

4. Start TomCat server (if not already started)
$CATALINA_HOME/bin/startup.sh

Note

• After copying the war file into the TomCat webapp directory it is not
necessary to restart the TomCat server, the web application will be deployed
on the fly.

• If the directory /var/opt/SA_SDK does not exist, the SampleSA, will copy
the default property file in the user directory

3.1.1.3 Validate the Sample Service Adapter installation
To validate the Service Adapter installation you should make sure that the server is
running the web application.

To test the installation, using your favorite web browser, look for the available
services by entering the following URL:

http://localhost:8080/SampleSA_v1_0/services

You should obtain the following result:

And now... Some Services

• AdminService (wsdl)

o AdminService

• Version (wsdl)

o getVersion

22

Note

The Service Adapter services are not already deployed (see section 3.1.1.4). The
defaults services allow deploying the Service Adapter web services.

3.1.1.4 Deploying the Sample Service Adapter services
The Sample Service Adapter implements the various services. The Sample SA is
based on the Axis SOAP Engine (see chapter 2.5.1). It remains to tell Axis how to
expose these services. Axis takes a Web Service Deployment Descriptor (WSDD) file
that describes in XML what the services are, what methods it exports and other
aspects of the SOAP endpoint.

Execute the following command to perform the deployment:
$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/SampleSA/bin
/deploy.sh

This command deploys the Sample Service Adapter services on a local Web server
configure with the http port number 8080. To deploy the Sample Service Adapter
services on a remote Web server or on a different http port number, use the option ‘–s
<webapp hostname>’ to specify a different hostname, or the option ‘–p <webapp port
number>’ to specify a different port number.

Note

This command allows also undeploying the Sample Service Adapter services by add
the option ‘-r’.

3.1.1.5 Testing the Sample Service Adapter services
To test the installation and the deployment of the Sample Service adapter, using your
favorite web browser, look for the available services by entering the following URL:

http://localhost:8080/SampleSA_v1_0/services

You should obtain the following result:

 OOVV SSeerrvviiccee
QQuuaalliittyy MMaannaaggeerr

Internet /
intranet

W
eb

Conta

iner Service Adapter

SOAP Engine (Axis)

3rd Party Product

http | http/s

http | http/s

Connector

23

And now... Some Services

• ResourceService (wsdl)
o getCodeTranslations
o declareResource
o uploadResourceContent
o uploadResource
o checkResourceUpload

• DiscoveryService (wsdl)
o getDFs
o getDFDs

• AdminService (wsdl)
o AdminService

• Version (wsdl)
o getVersion

• ConfigurationService (wsdl)
o acceptConfiguration
o deployConfiguration
o getMeasureDeliveryPolicy

• RegistrationService (wsdl)
o register
o deregister

• MeasureService (wsdl)
o repairDFCollections
o stopDFCollections
o getDFsInternals
o collectSinceDFMeasures
o getCollectedDFMeasures

To call the Sample Service Adapter’s services, uses the SQM Simulator utility (see
chapter 3.1.1.6).

3.1.1.6 Service Adapter configuration
The Sample Service Adapter offers many configurable parameters allowing to control
for instance the number of DFIs/DFD, messages throughput…

 OOVV SSeerrvviiccee
QQuuaalliittyy MMaannaaggeerr

Internet /
intranet

W
eb

Conta

iner Service Adapter

SOAP Engine (Axis)

3rd Party Product

http | http/s

http | http/s

Connector

24

These parameters are located in:

/var/opt/SA_SDK/SampleSA.properties

This file is created at this location in the directory /var/opt/SA_SDK/ exists when
starting the Service Adapter.

The Sample Service Adapter provides the following configurable parameters:

Property Default value Description

configuration_directory_name /var/opt/SA_SDK Directory in which the property
file is copied at startup

configuration_file_name SampleSA.properties Name of the copy of the
property file

configuration_tmp_file_name /tmp/config_tmp_file When the new configuration
file is provided thank to the
Configuration service, this
property specify the name of
the temporary file in which the
provided property file is stored
before being applied

logs.level WARNING Logging level

trace.level ALL Tracing level

trace.files.location /var/opt/SA_SDK/trace/ Trace file location

log.files.location /var/opt/SA_SDK/log/ Log file location

trace.file.name SampleSA_Trace.log Trace file name

log.file.name SampleSA_Log.log Log file name

ARE_EVENTS_CHRONOLOGICAL True

RETRIEVE_HISTORICAL_MEASURES
_UPON_THEIR_IDS

True

OvisHTTP_STATUS AVAILABLE Status of the OvisHTTP DFs.
Possible values:
 AVAILABLE: the collection on

this DFD is enabled
 FAILED: the collection on this

DFD is disabled

Sql_MMediaDF_STATUS AVAILABLE Status of the Sql_MMediaDF.
DF. Possible values:
 AVAILABLE: the collection on

this DFD is enabled
 FAILED: the collection on this

DFD is disabled

TeMIPFaultStats_STATUS AVAILABLE Status of the Sql_
TeMIPFaultStats DF. Possible
values:
 AVAILABLE: the collection on

this DFD is enabled
 FAILED: the collection on this

DFD is disabled

OvisHTTP_PERIOD 15000 milliseconds Acquisition period for the
measures of the OvisHTTP
DFD (in milliseconds)

25

Sql_MMediaDF_PERIOD 20000 milliseconds Acquisition period for the
measures of the
Sql_MMediaDF DFD (in
milliseconds)

TeMIPFaultStats_PERIOD 5000 milliseconds Acquisition period for the
measures of the
TeMIPFaultStats DFD (in
milliseconds)

TeMIPFaultStats_NUMBER_OF_MEAS
URE_BEFORE_FAILURE

10 Defines the number of measures
done before the collection for the
DFD TeMIPFaultStats fails
down.

discovery.df.count 1 Number of DFs per DFD when
performing a DF discovery

discovery.df.naming.start 1 DF names are prefix by a
number. This property defines
the first used number for naming

3.1.2 SQM Simulator description
The SQM Simulator tool is command line driven. Each command line allows
executing on a service, an operation with a set of required arguments. The
configuration of this tool is based on a property file.

The tool is located in:

$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/SQMSimulator/bin/SQMSimulator
.sh

3.1.2.1 Usage

Command tool usage

> SQMSimulator –service <service name> –operation <operation
name> –arguments '<operation arguments>'

or

> SQMSimulator –service <service name> –operation <operation
name> -argumentsfile <file>

Where:

• -service <service name>: The name of the service. The available services are
described Table 1 SQM Simulator: available Services and Operations

• -operation <operation name>: The operation name. The available operations for
each service are described Table 1 SQM Simulator: available Services and
Operations

• -arguments <operation arguments>: The operation’s arguments, encapsulated
within a specific XML document. The inputs arguments format is described in the
can be Table 2 SQM Simulator input arguments format. Format:
<Arguments>
 <first argument> ….
 <second argument> ….

26

 …..
</Arguments>

• -argumentsfile <file>: file defining the operation arguments, encapsulated within
a specific XML document. The inputs arguments format is described in the can be
Table 2 SQM Simulator input arguments format.

Description of the available services and operations

The following table sums up the available operations and the required parameters.

Service name Operation name Operation arguments Returned data type

registration register ClientId RegistrationId

 deregister ClientId void

discovery getDFs RegistrationId ArrayOfDataFeederId

 getDFDs RegistrationId ArrayOfDataFeederDefi
nition

measure repairDFCollections RegistrationId
 ArrayOfDataFeederContr
olId

 ArrayOfDataFeederStat
usReport

 stopDFCollections RegistrationId
 ArrayOfDataFeederContr
olId

 ArrayOfDataFeederStat
usReport

 getDFsInternals RegistrationId
 ArrayOfDataFeederId

 ArrayOfDataFeederInte
rnals

 collectSinceDFMeasures RegistrationId
 ArrayOfDataFeederStartC
ontrolId

 ArrayOfDataFeederStat
usReport

 getCollectedDFMeasures RegistrationId
 MaxMeasure
 TimeoutInMillis

 ArrayOfMeasure

resource getCodeTranslations RegistrationId
 String
 String
 String
 ArrayOfErrorDesignation

 ArrayOfstring

 declareResource RegistrationId
 String
 BigInteger

 ResourceId

 uploadResourceContent RegistrationId
 ResourceId
 byte[]

 void

 uploadResource RegistrationId
 ResourceId
 String

 Void

 checkResourceUpload RegistrationId
 ResourceId

 UploadReport

configuration acceptConfiguration RegistrationId
 ResourceId

 Void

 deployConfiguration RegistrationId
 ResourceId

 Void

27

 getMeasureDeliveryPolicy RegistrationId MeasureDeliveryPolicy

Table 1 SQM Simulator: available Services and Operations

Description of the argument format per datatype

The following table sums up the operations argument’s format.

Argument datatype Format

ClientId
<ClientId name="ClientTest" />

RegistrationId
<RegistrationId registrationId="1e940b:fffe022d24:-
8000:client1" version="v1_0"/>

ArrayOfDataFeederId
<ArrayOfDataFeederId>
 <DataFeederId>
 <DataFeederDefinitionId dfdName="Sql_MMediaDF"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="DbaseLocation"
value="TV4" />
 <PropertyValue name="Id" value="TV4" />
 </ArrayOfPropertyValue>
 </DataFeederId>

</ArrayOfDataFeederId>

ArrayOfDataFeederStartControlId
<ArrayOfDataFeederStartControlId>
 <DataFeederStartControlId transactionId="1"
measureId="2004-11-09T09:20:18.211">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1"
/>
 <PropertyValue name="PROBENAME"
value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX"
/>
 <PropertyValue name="TARGET" value="TARGET"
/>
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederStartControlId>
</ArrayOfDataFeederStartControlId>

ArrayOfDataFeederControlId
<ArrayOfDataFeederControlId>
 <DataFeederControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1"
/>
 <PropertyValue name="PROBENAME"
value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX"
/>
 <PropertyValue name="TARGET" value="TARGET"
/>
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederControlId>
</ArrayOfDataFeederControlId>

28

MaxMeasure
<MaxMeasure maxMeasureCount="5">

TimeoutInMillis
<TimeoutInMillis timeout="10000"/>

Table 2 SQM Simulator input arguments format

SQM Simulator Output (on the standard output)

Values replied by the service encapsulated within a XML document

SQM Simulator Output (on the error output)

Errors displayed in system’s default language (local)

3.1.2.2 Examples
This section provides some examples of SQMSimulator commands.

Registration

For performing a registration, execute the command:

SQMSimulator.sh -service registration -operation register -
arguments '<Arguments><ClientId name="client1"/></Arguments>'

Output:

<Arguments>
 <RegistrationId registrationId="166c114:1002d1d1ff1:-
7fff:client1" version="v1_0"/>
</Arguments>

Note

It is not possible to perform multiple registrations with the same client identifier, an
RegistrationException is raised. For performing another registration with the same
client identifier, use the deregister operation

Deregistration

For performing an unregistration, execute the command:

SQMSimulator.sh -service registration -operation deregister -
arguments '<Arguments><ClientId name="client1"/></Arguments>'

DFD Discovery

For discovering the Datafeefer definitions supported by the Sample SA, execute the
command:

SQMSimulator.sh -service discovery -operation getDFDs -
arguments '<Arguments><RegistrationId
registrationId="166c114:1002d1d1ff1:-7fff:client1"
version="v1_0"/> </Arguments>'

Output (partial):

<Arguments>
 <ArrayOfDataFeederDefinition>
 <DataFeederDefinition>
 <DataFeederDefinitionId dfdName="Sql_MMediaDF"
dfdVersion="v1_0" />
 <ArrayOfPropertyDefinition>

29

 <PropertyDefinition name="DbaseLocation"
label="Database Location" dataType="STRING">
 <description>Database Location</description>
 </PropertyDefinition>
 <PropertyDefinition name="Id" label="Identificator"
dataType="INT">
 </PropertyDefinition>
 </ArrayOfPropertyDefinition>
 <ArrayOfParameterDefinition>
 <ParameterDefinition name="EndTime" label="End Movie
Timestamp" isCustomerDependent="true" category="OTHER"
dataType="ABSOLUTE_TIME" partition="OTHER">
 <description>End Movie Timestamp</description>
 </ParameterDefinition>
 <ParameterDefinition name="StartTime" label="Start
Movie Timestamp" isCustomerDependent="true" category="OTHER"
dataType="ABSOLUTE_TIME" partition="OTHER">
 <description>Start Movies Timestamp</description>
 </ParameterDefinition>
 <ParameterDefinition name="NbMovies" label="Number of
downloaded movies" units="movies" isCustomerDependent="true"
category="OTHER" dataType="INT" partition="OTHER">
 <description>Start Movies Timestamp</description>
 </ParameterDefinition>
 </ArrayOfParameterDefinition>
 </DataFeederDefinition>
 . . .
 </ArrayOfDataFeederDefinition>
</Arguments>

DFI Discovery

For discovering the Datafeefer instances handled by the Sample SA, execute the
command:

SQMSimulator.sh -service discovery -operation getDFs -
arguments '<Arguments><RegistrationId
registrationId="166c114:1002d1d1ff1:-7fff:client1"
version="v1_0"/> </Arguments>'

Output (partial):

<Arguments>
 <ArrayOfDataFeeder>
 <DataFeeder>
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityScope" value="*" />
 </ArrayOfPropertyValue>
 </DataFeeder>
 <DataFeeder>
 <DataFeederId>
 <DataFeederDefinitionId dfdName="Sql_MMediaDF"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>

30

 <PropertyValue name="DbaseLocation" value="TV_1" />
 <PropertyValue name="Id" value="TV_1" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederId>
 ………
 </ArrayOfDataFeeder>
</Arguments>

Enable Measures collection

For requesting to the SA, collecting Measures of a given set of the Datafeeder
instances, execute the commands:

1. Specify the operation arguments in xml file:
<Arguments>
 <RegistrationId registrationId="166c114:1002d1d1ff1:-
7fff:client1" version="v1_0"/>
 <ArrayOfDataFeederStartControlId>
 <DataFeederStartControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederStartControlId>
 <DataFeederStartControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederStartControlId>
 </ArrayOfDataFeederStartControlId>
</Arguments>

2. Run the SQMSimulator passing in argument this xml file

SQMSimulator.sh -service measure -operation
collectSinceDFMeasures –argumentsFile <xml file>

Output (status of the collection on the requested DFIs)

<Arguments>
 <ArrayOfDataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T16:45:39.125">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />

31

 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Active"availabilityStatus="AVAILABLE"administrativ
eState="UNLOCKED"/>
 </DataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T16:45:39.132">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Active"availabilityStatus="AVAILABLE"administrativ
eState="UNLOCKED"/>
 </DataFeederStatusReport>
 </ArrayOfDataFeederStatusReport>
</Arguments>

Collection of Measures

For requesting to the SA the available Measures (here we request a maximum of 2
measures), execute the commands:

1. Specify the following operation arguments in xml file:
<Arguments>
 <RegistrationId registrationId="166c114:1002d1d1ff1:-
7fff:client1" version="v1_0"/>
 <MaxMeasure maxMeasureCount="2"/>
 <TimeoutInMillis timeout="10000"/>
</Arguments>

2. Run the SQMSimulator passing in argument this xml file
SQMSimulator.sh -service measure -operation
getCollectedDFMeasures –argumentsFile <xml file>

Stopping collection

For requesting to the SA stopping Measures on a given set of DFIs, execute the
commands:

1. Specify the operation arguments in xml file:
<Arguments>
 <RegistrationId registrationId="166c114:1002d1d1ff1:-
7fff:client1" version="v1_0"/>
 <ArrayOfDataFeederControlId>
 <DataFeederControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederControlId>

32

 <DataFeederControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederControlId>
 </ArrayOfDataFeederControlId>
</Arguments>

2. Run the SQMSimulator passing in argument this xml file

SQMSimulator.sh -service measure -operation stopDFCollections
–argumentsFile <xml file>

Output (status of the collection on the requested DFI)

<Arguments>
 <ArrayOfDataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T17:01:11.615">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Stopped"availabilityStatus="AVAILABLE"administrati
veState="LOCKED"/>
 </DataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T17:01:11.615">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Stopped"availabilityStatus="FAILED"administrativeS
tate="LOCKED"/>
 </DataFeederStatusReport>
 </ArrayOfDataFeederStatusReport>
</Arguments>

Repair collection

For requesting to the SA repairing Measures on a given set of DFIs, execute the
commands:

33

1. Specify the operation arguments in xml file:
<Arguments>
 <RegistrationId registrationId="166c114:1002d1d1ff1:-
7fff:client1" version="v1_0"/>
 <ArrayOfDataFeederControlId>
 <DataFeederControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederControlId>
 <DataFeederControlId transactionId="1">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 </DataFeederControlId>
 </ArrayOfDataFeederControlId>
</Arguments>

2. Run the SQMSimulator passing in argument this xml file

SQMSimulator.sh -service measure -operation
repairDFCollections –argumentsFile <xml file>

Output (status of the collection on the requested DFI)

<Arguments>
 <ArrayOfDataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T17:07:18.748">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="OvisHTTP"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>
 <PropertyValue name="HOST" value="honda_1" />
 <PropertyValue name="PROBENAME" value="honda" />
 <PropertyValue name="SYSTEM" value="HP-UX" />
 <PropertyValue name="TARGET" value="TARGET" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Down"availabilityStatus="FAILED"administrativeStat
e="LOCKED"/>
 </DataFeederStatusReport>
 <DataFeederStatusReport timestamp="2005-03-
25T17:07:18.748">
 <DataFeederId>
 <DataFeederDefinitionId dfdName="TeMIPFaultStats"
dfdVersion="v1_0" />
 <ArrayOfPropertyValue>

34

 <PropertyValue name="EntityName" value="BTS
BTS_Paris_1" />
 <PropertyValue name="OcName" value="OP_IDF" />
 <PropertyValue name="DomainName" value="IDF" />
 </ArrayOfPropertyValue>
 </DataFeederId>
 <DataFeederStatus
explanation="Down"availabilityStatus="FAILED"administrativeStat
e="LOCKED"/>
 </DataFeederStatusReport>
 </ArrayOfDataFeederStatusReport>

</Arguments>

3.1.2.3 Configuration
The SQMSimulator configuration is defined in the property file located in:

$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/SQMSimulator/properties/SQMSi
mulator.properties

The following table sums up the available configuration options:

Property name Default value Description
 Services.hostname localhost Hostname of the servlet container

 Services.portnumber 8080 portnumber of the servlet container

 ServiceAdaptor.name SampleSA_v1_0 Name of the Service Adapter on which service
requests are sent

 logfiles.location /var/opt/SA_SDK/logs Log and Trace Directory location

 logfiles.tracefile.name SQMSimulator_Trace.log Name of the trace file

 logfiles.logfile.name SQMSimulator_Log.log Name of the log file

 logs.logs.level ALL The logging levels in descending order are:
 SEVERE (highest value)
 WARNING
 INFO
 CONFIG (lowest value)

In addition there is a level OFF that can be used
to turn off logging, and a level ALL that can be
used to enable logging of all messages.

 logs.traces.level OFF The tracing levels in descending order are:
 FINE (highest value)
 FINER
 FINEST (lowest value)

In addition there is a level OFF that can be used
to turn off logging, and a level ALL that can be
used to enable logging of all messages.

Table 3 SQMSimulator configuration properties

3.1.3 SDK API Documentation
The SDK API document is available in HTML format in the SDK kit at the following
location:

$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/doc/index.html

35

Chapter 4
Service Adapter development

guidelines

This chapter presents some advices for developing an SQM Service Adapter. It
introduces the following development points:

• Defining a development environment

• Compiling an SQM Service Adapter

• Installing a SQM Service Adapter in a Servlet engine

• Deploying a SQM Service Adapter in a Servlet engine

• Testing a SQM Service Adapter

This development guidelines are based on the development environment of the
Sample Service Adapter provided in the software kit. The most commonly-used
development tasks are available in the Sample SA Ant file.

4.1 Defining the development environment
To setup the Service Adapter development environment which will contain your
Service Adapter implementation source code:

1. Create you working directory at your favorite location. For instance:
mkdir ~/SQM/MySA

cd ~/SQM/MySA

2. Set the environment variable TEMIP_SA_SDK_HOME to the SA SDK software
product directory location:
export TEMIP_SA_SDK_HOME=$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0

3. Copy the Sample SA Ant file your working directory
cp $TEMIP_SA_SDK_HOME/SampleSA/build.xml.
Create the development environment by call the target ‘create’ of the Ant file.
Running this target, the Service Adapter name (<SA name>) will be requested.
ant create
This target initialize the environment by creating in the working directory:

a. A directory named ‘src’. This directory will contain all SA source files

b. A directory name ‘src/properties’. This directory will contain SA properties
files, the <SA name>.properties file defining SA environment at run-time
and a property file <SA name>_Version.properties defining the SA version
properties

c. It generates the SA interface classes from the SDK WSDL and moves the
implementation template classes in the directory named ‘src’.
This generation is performed by the Ant target named ‘wsdl’:

36

ant wsdl
This target generates the SA interface classes from the SDK WSDL using
the Apache Axis tool WSDL2Java. This target generates:

i. An implementation template class per binding. It is intended that the
Service Adapter writer fill out the implementation from these
templates. These templates classes are located in:
src/com/compaq/temip/servicecenter/serviceadapter/sdk

/soap/service/ConfigurationServiceSOAPImpl.java

src/com/compaq/temip/servicecenter/serviceadapter/sdk

/soap/service/DiscoveryServiceSOAPImpl.java

src/com/compaq/temip/servicecenter/serviceadapter/sdk

/soap/service/MeasureServiceSOAPImpl.java

src/com/compaq/temip/servicecenter/serviceadapter/sdk

/soap/service/RegistrationServiceSOAPImpl.java

src/com/compaq/temip/servicecenter/serviceadapter/sdk

/soap/service/ResourceServiceSOAPImpl.java

ii. For all services, one deploy.wsdd file located in:
soapsrc/com/compaq/temip/servicecenter/serviceadapter

/sdk/soap/service/

iii. For all service, one undeploy.wsdd file, located in:
soapsrc/com/compaq/temip/servicecenter/serviceadapter

/sdk/soap/service/

4. Edit the build.xml file, to update the value of the property named ‘comp.name’.
Set the property value to the SA name specified at the previous step.
<property name="comp.name" value="<put here the SA name>"/>

5. The Service Adapter is ready to compile. Even if the template classes do nothing,
the templates can be used for test purpose

4.2 Compiling an SQM Service Adapter
Before compiling the Service Adapter:

1. go to you SA working directory. For instance:
cd ~/SQM/MySA

2. Set the environment variable TEMIP_SA_SDK_HOME to the SA SDK software
product directory location:
export TEMIP_SA_SDK_HOME=$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0

To compile the Service Adapter, the Ant file provides the following targets:

• Build [default target]: it generates a SA kit by executing: SA interface classes
generation, compilation, war file generation, SA kit
The SA Kit is a zip file containing source files and compilation result. It does not
package AXIS libraries.

• Compile: generates the skeleton classes and compile the java source code

• War: generates the SA interface classes and compile the java source code, and
generates the War file which can be installed on the Servlet container

• Clean: remove the result of the compilation: deletes directories ‘build’ and
‘soapsrc’

The result of these compilation steps is generated in the directory named ‘build’. The
resulting Service Adapter kit content is under ‘build/input’.

37

4.3 Installing a SQM Service Adapter
The Service Adapter must be installed in a Servlet Container. Installation depends on
the selected Servlet Container. In most cases it consists in dropping the SA war file in
the webapps directory of the server and restarting the server, or by using a server-
specific mechanism to enable the web application.

For instance, installing the Sample Service Adapter on TomCat 4.1 consists in:

1. Log as TomCat admin user

2. Unzip the SA kit at the same location of the SA SDK
unzip build/MySA_v1_0.zip -d $TEMIP_SC_HOME

3. Copy the war file in the TomCat webapps directory:
cp $TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/<SA

Name>/war/<SA Name>_v1_0.war $CATALINA_HOME/webapps

4. Stop TomCat server:
$CATALINA_HOME/bin/shutdown.sh

5. Start TomCat server:
$CATALINA_HOME/bin/startup.sh

4.4 Deploying a SQM Service Adapter
Deploying the SQM Service adapter consists in telling Axis how to expose these
services. Axis takes a Web Service Deployment Descriptor (WSDD) file that
describes in XML what the services are, what methods it exports and other aspects of
the SOAP endpoint.

Execute the following command to perform the deployment:

$TEMIP_SC_HOME/ServiceAdapters/SDK/v1_0/<SA Name>
/bin/deploy.sh

This command deploys the Service Adapter services on a local Web server configure
with the http port number 8080.

4.5 Testing a SQM Service Adapter
To test the installation and the deployment of the Service adapter, refer to chapter
 3.1.1.5, it’s the same method as for the Sample SA.

The SQMSimulator tool, described in chapter 3.1.1.6, can be used for testing the SA
services.

38

Chapter 5

Implementing a Service Adapter
This chapter is intended to present:

• How to design a Service Adapter

• How to implement a Service Adaper, the mandatory service operations

• How to implement each service operations

It includes the following topics:

5.1 Designing a Service Adapter
Designing a Service Adapter consists in designing a server implementing the services
and operations defined by the SQM Service Adapter Interface. The interface defines
the services and operations described in the table thereafter, some operations are
mandatory some others are optional.

Service name Operation name Mandatory
Implementation

Registration register ♦

 deregister ♦

Discovery getDFs

 getDFDs

Measure repairDFCollections ♦

 stopDFCollections ♦

 getDFsInternals

 collectSinceDFMeasures ♦

 getCollectedDFMeasures ♦

Resource getCodeTranslations

 declareResource

 uploadResourceContent

 uploadResource

 checkResourceUpload

Configuration acceptConfiguration

 deployConfiguration

 getMeasureDeliveryPolicy ♦

39

The starting point is the implementation classes of each service. SQM Service
Adapter Interface is defined as a Web Services. Apache Axis allows generating one
template implementation class per service. This template doesn't do anything. It is
intended that the service writer fill out the implementation from this template.

For instance the template class for the registration service is the following:

package com.compaq.temip.servicecenter.serviceadapter.sdk.soap.service;

public class RegistrationServiceSOAPImpl implements
com.compaq.temip.servicecenter.serviceadapter.sdk.soap.service.Registra
tionService{
 public
com.compaq.temip.servicecenter.serviceadapter.sdk.soap.RegistrationId
register(java.lang.String clientId) throws java.rmi.RemoteException,
com.compaq.temip.servicecenter.serviceadapter.sdk.soap.RegistrationExce
ption {
 return null;
 }

 public void deregister(java.lang.String clientId) throws
java.rmi.RemoteException,
com.compaq.temip.servicecenter.serviceadapter.sdk.soap.RegistrationExce
ption {
 }
}

The implementation classes are:

• ConfigurationServiceSOAPImpl

• DiscoveryServiceSOAPImpl

• MeasureServiceSOAPImpl

• RegistrationServiceSOAPImpl

• ResourceServiceSOAPImpl

It is not recommended to implement Service Adapter services in these classes but to
delegate to other components.

The next sub-headings provides a design proposal for each mandatory Service
Adapter Services (Registration, Measure and Configuration)

5.1.1 Registration Service
The main purpose of this service is to manage a context per service client. Even if the
Service Adapter will be access by a single client (a single SA Proxy Application), the
SQM platform might have, mainly for scalability reasons, several clients (instances)
accessing one single Service Adapter.

The registration service must manage a single context per client. Each context
handles:

• the pair client identifier/registration identifier

• A queue of measures. This queue contains all the measures collected by the
Service Adapter which must be published to the client

40

• Optionally the state of each Data Feeder instance.

• Optionally of Configuration context

5.1.1.1 Operation register
This operation is in charge of creating a client context and associating an identifier
(registrationId) to this client context. This identifier must be unique.

It is also recommended to synchronize this operation. Indeed each service call is
performed in a dedicated thread and a service can be called by multiple clients.

If the client is already registered the operation must throw a Registration exception
passing the reason code “
invalidated_previous_registration_id_client_already_registered” . The operation
must also invalidate the client context but should not delete it. The client is
responsible for context deletion by calling the ‘ deregister’ operation.

Implementation example

public RegistrationId register(String clientId) throws
RegistrationException, RemoteException {
synchronized (m_lock) {

 RegistrationId registrationId;
 if (clientId != null) {
 if (isRegistred(clientId)) {
 // Client already register
 // invalidate the context

41

 registrationId =
 (RegistrationId)m_client2regId.get(clientId);
 Context context =
 (Context) m_reg2context.get(registrationId);
 context.setInvalid();

 // Construct and throw a registration exception
 ErrorDesignation errDesign = new ErrorDesignation(
 new ArrayOfstring(new String[] {clientId}),
 “ invalidated_previous_registration_id_client_already_registered”);

 throw new RegistrationException(
 “Client already registered: ”+clientId,
 errDesign);
 } else {
 // Client not already registered
 // generates a unique registration identifier
 UID uId = new UID();
 String stringUId = new String(uId.toString()+":"+clientId);

 // Allocation of the returned Registration identifier

 registrationId=new RegistrationId();

 // Sets the SA version in the returned registration ID
 registrationId.setVersion("v1_0”);

 // Sets the unique identifier as registration ID
 registrationId.setRegistrationId(stringUId);

 // Stores the tuple (clientId,registrationId)
 // and allocates a context for this client
 m_client2regId.put(clientId, registrationId);
 Context context = new Context(registrationId, clientId);
 m_reg2context.put(registrationId, context);
 }
 } else {
 // provided client identifier is null
 // throw a registration exception
 ErrorDesignation errDesign = new ErrorDesignation(
 null,
 “invalid_client_id”);

 throw new RegistrationException(
 “Invalid null client identifier”,
 errDesign);
 }

 return registrationId;
 }
}

5.1.1.2 Operation deregister
This operation deregisters the client identified by it client ID. This operation must
also perform a cleanup of all resources associated to the given client, such as:

• Deleting the associated context,

• Stopping the components collecting the measure,

• Destroying the queue of measures ….

It is also recommended to synchronize this operation.

42

If the given client is not registered, the operation must throw a registration exception
passing the error code “ client_not_registered”

Implementation example

public void deregister(String clientId)
 throws RegistrationException, RemoteException {
 // Synchronize the operation
 synchronized (m_lock){
 RegistrationId registrationId;

 if (isRegistred(clientId)) {
 // Valid and registered client identifier

 // Get the client context and destroy it
 registrationId =
 (RegistrationId)m_client2regId.get(clientId);
 Context context
 = (Context) m_reg2context.get(registrationId);
 context.destroy();

 m_reg2context.remove(registrationId);
 m_client2regId.remove(clientId);
 } else {
 // Client is not registered
 // throw a Registration Exception
 ErrorDesignation errDesign
 = new ErrorDesignation(
 new ArrayOfstring(new String[] {clientId}),
 “client_not_registered”);
 throw new RegistrationException(
 “Client {0} is not registered”,
 errDesign);
 }
 }
 }

5.1.2 Configuration Service
This service is in charge of managing the Service Adapter configuration. It
implements operations to dynamically and remotely deploy the SA configuration.

For a simple implementation of Service Adapter, the configuration can be managed
locally and so it is not necessary to implement these services.

Note

SQM SDK client part (SA Proxy kit) does not yet provide configuration tools for
managing remotely Service Adapter configuration.

A more complex Service Adapter implementation will implement all these services
and should be able to handle one configuration per client (this is why the registration
identifier is passed to the configuration service operations, the Context class can also
manage a configuration per client).

The only mandatory operation of this service is the getMeasureDeliveryPolicy
operation.

It is recommended to delegate the configuration implementation to a dedicated class
and not to the ConfigurationServiceSOAPImpl class.

43

5.1.2.1 Operation getMeasureDeliveryPolicy
The operation returns the measure delivery policies (capabilities) used by this Service
Adapter implementation. These policies indicate to the SA client if the SA supports
resynchronization capabilities or not.

Policies are expressed by two flags:

• areEventsChronological: it determines if the service adapter generates
measures in a chronological order.

• couldRetrieveHistoricalMeasuresUponTheirIds: it indicates that the Service
Adapter implementation is able to retrieve all historical measures since a
previously (in the past) collected measure whose MeasureId is provided by
the SQM platform.

When one of these flags is set to false the SA client consider that the SA does not
implement resynchronization capabilies.

The operation must throw a Registration Exception in the following cases:

• When the provided registration Id is unknown : error code “
unkown_registration_id” .

• When the context has been invalidated (it occurs when the client tries to
register multiple times): error code “ invalidated_registration_id”

Implementation example

In the following example, the getMeasureDeliveryPolicy operation finds the
configuration associated to the given client (Configuration instance is allocated at
registration time) and returns the policy.

public class ConfigurationServiceSOAPImpl implements ConfigurationService{

public MeasureDeliveryPolicy getMeasureDeliveryPolicy(RegistrationId
regId) throws RemoteException, ConfigurationException {

44

 // Get the context associated to the provided client id
 // and delegate call on the configuration instance

 return getContext(regId).
 getConfiguration().
 getMeasureDeliveryPolicy();
 }
…..
}

private Context getContext(RegistrationId regId) throws
ConfigurationException {
 Context context = null;
 try {
 Registration reg = Registration.getInstance();
 // Get the context and validate registration ID
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();
 throw new ConfigurationException(trace, e.getError());
 }
 return context;
 }

public class Configuration {

 public MeasureDeliveryPolicy getMeasureDeliveryPolicy()
 throws ConfigurationException {
 // returns Service Adapter delivery policy
 MeasureDeliveryPolicy policy = new MeasureDeliveryPolicy();
 policy.setCouldRetrieveHistoricalMeasuresUponTheirIds(true);
 policy.setAreEventsChronological(true);
 return m_measureDeliveryPolicy;
 }
…
}

5.1.3 Discovery Service
The Discovery Service provides two operations for exporting into SQM the Data
Feeder Model (Data Feeder Definitions) exposed by the Service Adapter and also the
instances (Data Feeders) of this model:

• getDFDs: returns the Data Feeder Definitions exposed by the Service Adapter

• getDFs: returns the Data Feeders on which the Service Adapter is able to
collect measures

Both operations are optional. Data Feeder Definition can be defined in SQM using
the SQM Service Designer and Data Feeder imported using an external tool.

It is recommended to delegate the dicovery implementation to a dedicated class and
not to the DiscoveryServiceSOAPImpl class.

45

5.1.3.1 Operation getDFDs
The operation returns, on each call, the requested number of Data Feeder Definitions
that the Service Adapter implementation is aware of. In the current implementation of
the SQM DFD Discovery tool, the number of requested definitions is set to the
maximum integer value and discovery tool is designed to perform a single operation
call.

The operation must throw a Registration Exception in the following cases:

• When the provided registration Id is unknown : error code “
unkown_registration_id” .

• When the context has been invalidated (it occurs when the client tries to
register multiple times): error code “ invalidated_registration_id”

Implementation example

In the following example, the getDFs operation constructs a DataFeederDefinition
and returns it. This DFD defines:

• 1 property part of MRP: SYSTEM

• 1 property: LOCATION

• 1 parameter: CPU

public class DiscoveryServiceSOAPImpl implements DiscoveryService{

 public ArrayOfDataFeederDefinition getDFDs(RegistrationId regId, int
maxDFDCount) throws java.rmi.RemoteException, DiscoveryException {
 return getContext(regId).getDiscovery().getDFDs(maxDFDCount);
 }

private Context getContext(RegistrationId regId) throws
ConfigurationException {
 Context context = null;
 try {

46

 Registration reg = Registration.getInstance();
 // Get the context and validate registration ID
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();
 throw new ConfigurationException(trace, e.getError());
 }
 return context;
 }

public class Discovery {

public ArrayOfDataFeederDefinition getDFDs(int maxDFDCount)
 throws DiscoveryException {
 // for the time being the operation’s argument ‘maxDFDCount’

 // is not handled

 // Allocates and defined the Data Feeder Definition

 DataFeederDefinition dfd = new DataFeederDefinition();

 // Define the MRP properties
 PropertyDefinition system
 = new PropertyDefinition(DataType.STRING,
 “Description text”,
 "SYSTEM",
 "SYSTEM");
 PropertyDefinition[] propertyDefsMRP =

 new PropertyDefinition[] {system};
 dfd.setOrderedMRPPropertyDefinitions(

 new ArrayOfPropertyDefinition(propertyDefsMRP));

 // Define the additional properties
 PropertyDefinition location
 = new PropertyDefinition(DataType.STRING,
 “Description text”,
 "LOCATION",
 "LOCATION");
 PropertyDefinition[] propertyDefsAddition =
 new PropertyDefinition[] {location};
 dfd.setAdditionalPropertyDefinitions(
 new ArrayOfPropertyDefinition(propertyDefsAddition));

 // Define the DFD’s parameters
 ParameterDefinition cpu
 = new ParameterDefinition(ParameterCategory.PERCENT,
 DataType.FLOAT,
 "CPU consumption (%)",
 false,
 "CPU Used",
 "CPU",
 null,
 null);
 ParameterDefinition[] parameterDefs = new ParameterDefinition[]
 { cpu };
 dfd.setParameterDefinitions(
 new ArrayOfParameterDefinition(parameterDefs));

 // Define the DFD identifier. A DFD is identified by its name and
 // and its version
 dfd.setDfdId(

 new DataFeederDefinitionId(“MYDFD”,”v1_0”);

47

 // Set DFD label and description text

 dfd.setLabel("DFD label");
 dfd.setDescription("DFD Description");

 // Put the defined DFD in a ArrayOfDataFeederDefinition object
 DataFeederDefinition[] dfdArray=new DataFeederDefinition[1];

 dfdArray[0]=dfd;
 ArrayOfDataFeederDefinition dfds

 = new ArrayOfDataFeederDefinition(dfdArray);

 // return the DFD
 return dfds;
 }
….
}

5.1.3.2 Operation getDFs
The operation returns, on each call, the requested number of the Data Feeders that the
Service Adapter implementation is aware of. In the current implementation of the
SQM DFD Discovery tool, the number of requested DFs is set to the maximum
integer value and discovery tool is designed to perform a single operation call.

The operation must throw a Registration Exception in the following cases:

• When the provided registration Id is unknown: error code “
unkown_registration_id” .

• When the context has been invalidated (it occurs when the client tries to
register multiple times): error code “ invalidated_registration_id”

Data Feeder object’ s definition must be aligned with the corresponding Data Feeder
Definition. And more especially the Data Feeder properties must be defined in the
same order as in the DFD.

The getDFs operation provides also a parameter defining the scope of the DFs to
return. This scope acts as a filter, to request only Data Feeders of a given set of DFD.
In the current implementation of the SQM DFD Discovery tool, this scope is not used

Implementation example

In the following example, the getDFDs operation constructs and returns a single Data
Feeder instance

public class DiscoveryServiceSOAPImpl implements DiscoveryService{

 public ArrayOfDataFeeder getDFs(RegistrationId regId,
 int maxDFCount,
 DataFeederDefinitionId optionalDFDScope)
 throws java.rmi.RemoteException, DiscoveryException {
 return getContext(regId).getDiscovery().getDFs(maxDFCount);
 }

private Context getContext(RegistrationId regId) throws
ConfigurationException {
 Context context = null;
 try {
 Registration reg = Registration.getInstance();
 // Get the context and validate registration ID
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();

48

 throw new ConfigurationException(trace, e.getError());
 }
 return context;
 }

public class Discovery {

public ArrayOfDataFeeder getDFs(int maxDFCount,

 DataFeederDefinitionId optionalDFDScope)
 throws DiscoveryException {

// for the time being the operation’s arguments ‘maxDFDCount’ and
 // ‘optionalDFDScope’ are not handled

 DataFeeder df = new DataFeeder();
 // Set the DF’s identifier
 // A DF is identified by its DFD and by its MRP properties
 DataFeederId dfId = new DataFeederId();
 df.setDfId(dfId);

 // DataFeederId - fill MRP property values
 PropertyValue system
 = new PropertyValue(
 "SYSTEM",
 “hars.vbe.cpqcorp.net”);
 PropertyValue[] mrpPropertyValues = new PropertyValue[] {system};

 dfId.setOrderedMRPPropertyValues(
 new ArrayOfPropertyValue(mrpPropertyValues));

 // DataFeederId - fill DFD Id
 dfId.setDfdId(
 new DataFeederDefinitionId(“MYDFD”,"v1_0"));

 // Set DF additional properties
 PropertyValue location
 = new PropertyValue(
 "LOCATION",
 “Valbonne”);
 PropertyValue[] additionalPropertyValues =
 new PropertyValue[] {location};

 df.setAddtionalPropertyValues(
 new ArrayOfPropertyValue(additionalPropertyValues));

 // Put the DF into an ArrayOfDataFeeder object
 DataFeeder [] dfArray=new DataFeeder [1];

dfArray[0]=df;
ArrayOfDataFeeder dfs = new ArrayOfDataFeeder (dfArray);

// return the DF

 return dfs;
}

5.1.4 Measure Service
The Measure service provides the following types of operations:

1. A single operation for collecting measures:

o getCollectedDFMeasures: collects available measures and
collection status

49

2. Operations to control the measure collection flow:

o Starting the collection on a set of Data Feeder => operation
collectSinceDFMeasures

o Restoring a collection after failure => operation
repairDFCollections

o Stopping a collection on a set of Data Feeder =>
stopDFCollections

3. Debugging operation

o Dump internal information of on the requested Data Feeders

Each of these control operations provides a Transaction ID. This Transaction ID is
passed by the SA client and must be put in a status report published as a measure in
the measure stream. These status reports are used by the SA Client (SA Proxy) to
control the flow of measures and manage the state of each collection. There is a
Transaction ID per Data Feeder, to control each Data Feeder collection
independently. It is recommended to store at each control operation the Transaction
ID. Indeed when a collection error occurs, the SA needs to publish a error status. This
error status must contain the last Transaction Id.

The figure thereafter illustrates the collection flow.

It is recommended to validate the TransactionId of the incoming operations by
checking that the operation’ s Transaction Id is greater that the previously received
Transaction Id (for a same Data Feeder). Indeed Service Adapter implementation
cannot guarantee that 2 operations with a successive Transaction Ids are executed in
the right order (because of network latency). This case is illustrated in the next figure.
In that case ignore is the oldest command.

1 1 2 3

collectSinceD
FM

easure(Tr ID
=1)

Operation status

Measure

Collection error status

repairD
FC

ollection(Tr ID
=2)

collectSinceD
FM

easure(Tr ID
=3)

stopD
FC

ollections ID
=4)

4

50

Each operation is performed in a dedicated thread. It is mandatory to synchronize
control operations on the same object.

Concerning the design of the components performing the collection, there are at least
3 main components:

• A component implementing the operations of the Service Measure: Measures
class

• A component managing the queue of measures. This component is responsible
for providing services to insert, retrieve and destroy measures into/from a
queue: MeasureQueueManager

• A component responsible for collecting measure on the third party product:
MeasureCollector
This component is executed in a dedicated thread and control (started/
stopped) by the Measure Service Operations

When the Service Adapter is also able to handle measure resynchronization a
dedicated component is recommended.

51

5.1.4.1 Operation collectSinceDFMeasures
This operation starts the collection of measures of a provided set of Data Feeders. The
operation is also used for initiating the collection of historical measures for
resynchronization purpose (if this feature is supported by the Service Adapter)

1. The operation is called when the SQM Service Repository Manager (SRM)
unlocks a Data Feeder

2. The operation is also called by the SA Proxy (Service Adapter client) after a
collection failure, to restart the collection and retrieve historical data which
have been lost during the failure time.

When the Service Adapter supports measures resynchronization, the SA client (SA
Proxy) puts in each Data Feeder control structure (DataFeederStartControlId), the ID
of the measure from which the resynchronization must be performed. Historical
measures must be marked using a dedicated flag and the last measure of
resynchronization must be also marked as the last one. It is important to not mix the

52

historical measures with the current flow of measures. Measure should be emitted in
the order of their measure identifier (as illustrated in the next figure).

When the collectSinceDFMeasures does not provide a MeasureId in the control
structure (DataFeederStartControlId), it means that no synchronization is requested.
Anyway the Service Adapter must return the last available measure. This measure
must be marked as a resynchronization measure by setting the flag
isFinalRequestedMeasure to true on the measure. Thank to this flag, the Service
Adapter Proxy can determine its last point of resynchronization.

Implementation example

In the following example, the collectSinceDFMeasure operation just starts the
collector of measures and publishes an operation status for each Data Feeder in the
queue of measures.

public class MeasureServiceSOAPImpl implements MeasureService{

 public ArrayOfDataFeederStatusReport
 collectSinceDFMeasures(RegistrationId regId,
 ArrayOfDataFeederStartControlId dataFeederStartControlIds)
 throws java.rmi.RemoteException, DFControlException {
 try {
 return getContext(regId).
 getMeasure().

n 1 2 6 7 8 9

collectSinceD
FM

easure
(Tr ID

=n, M
easureId=1)

Operation status

Historical Measure

Last Historical Measure

3 4 5

Standard Measure

Measure

n 1 3 4 5 6

collectSinceD
FM

easure
(Tr ID

=n, M
easureId=null)

Operation

FinalRequestMeasur

2

Standard

Measure

53

 collectSinceDFMeasures(dataFeederStartControlIds);
 }
 catch (Throwable t) {
 t.printStackTrace();
 return null;
 }
 }

 private Context getContext(RegistrationId regId) throws
DFControlException {
 Context context = null;
 try {
 Registration reg = Registration.getInstance();
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();
 throw new DFControlException(trace, e.getError(),null);
 }
 return context;
 }
….
}

public class Measures {

private final Object MEASURE_LOCK = new Object();

public ArrayOfDataFeederStatusReport collectSinceDFMeasures(
 ArrayOfDataFeederStartControlId
arrayOfDataFeederStartControlIds)
 throws RemoteException, DFControlException {

 // Synchronized the operation with the other control operations
 synchronized (MEASURE_LOCK){
 // Initialize the returned operation status
 DataFeederStartControlId[] dataFeederStartControlIds
 = arrayOfDataFeederStartControlIds.getItem();
 DataFeederId dfId;
 MeasureId measureId;
 DataFeederStatus dfStatus;

 DataFeederStatusReport[] dfStatusReport
 = new DataFeederStatusReport[dataFeederStartControlIds.length];

 // For each requested DF, build the report status
 // and publish this status into the queue of measures
 for (int i = 0; i < dataFeederStartControlIds.length; i++) {
 dfId = dataFeederStartControlIds[i].getDataFeederId();

 dfStatusReport[i] = new DataFeederStatusReport();

 // Construct the Data Feeder Status
 dfStatus = new DataFeederStatus(
 AdministrativeState.UNLOCKED,
 AvailabilityStatus.AVAILABLE,
 "Collecting",
 dataFeederStartControlIds[i].getTransactionId());

 // Publish the status in the queue of measures
 publishStatus(dfId,dfStatus);

 // Append the status to the reply

54

 Date currentDateTime = new Date();
 String timestamp;
 timestamp =

 DateTimeFormat.dateToISOStringInGMT(currentDateTime);
 dfStatusReport[i].setTimestamp(timestamp);
 dfStatusReport[i].
 setDataFeederId(
 dataFeederStartControlIds[i].getDataFeederId());
 dfStatusReport[i].setDataFeederStatus(dfStatus);
 }

 // Create a new the measure collector if it does not exists
 if ((m_measureCollector==null) ||
 (m_measureCollector.getState()==MeasureCollector.MeasureConsumer.STOP)) {
 // Start a new collector
 m_measureCollector=
 new MeasureCollector(m_measuresCollection);
 }

 // Start collecting measures
 m_measureCollector.start();

 return new ArrayOfDataFeederStatusReport(dfStatusReport);
 }
 }
}

5.1.4.2 Operation getCollectedDFMeasures
The operation fetches the measures (values and report statuses) accumulated by the
Service Adapter. Thus, the SQM SA Proxy retrieves a flow of collected or historical
measures.

When there is no available measures, the operation waits until the given timeout
parameter. If new measures are accumulated during this period, the operation returns
them else it returns null.

When some measures are availables, the operation returns the maximum number of
measures as indicated in the given parameter.

Implementation example

In the following example, the getCollectedDFMeasures operation fetches the
available measures from the queue of measures and returns them.

public class MeasureServiceSOAPImpl implements MeasureService{

 public ArrayOfMeasure getCollectedDFMeasures(RegistrationId regId,
 long timeoutInMillis,int maxMeasureCount)
 throws java.rmi.RemoteException, FlushException {
 Measures measureServiceInstance=getContext_FE(regId).getMeasure();
 ArrayOfMeasure measures=null;
 try {
 measures=measureServiceInstance.
 getCollectedDFMeasures(timeoutInMillis,maxMeasureCount);
 } catch (Throwable t) {
 t.printStackTrace();
 }

 return measures;
 }

55

 private Context getContext_FE(RegistrationId regId) throws
FlushException {
 Context context = null;
 try {
 Registration reg = Registration.getInstance();
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace =e.getErrorDefaultTranslation();
 throw new FlushException(trace, e.getError());
 }
 return context;
 }
….
}

public class Measures {

 private final Object MEASURE_LOCK = new Object();

 public ArrayOfMeasure getCollectedDFMeasures(long timeoutInMillis,
 int maxMeasureCount) throws RemoteException, FlushException {

 ArrayOfMeasure l_result = null;

 try {
 Measure[] measure;
 if (maxMeasureCount > 0) {
 // Wait for at least one measure in the queue of measures
 if (m_measuresCollection.isEmpty()) {
 try {
 // This code is provided as an example and it not
 // the optimal solution. A better solution is to wait
 // until a measure is available
 Thread.sleep(timeoutInMillis);
 } catch (InterruptedException e) {
 throw new
 FlushException(e.getLocalizedMessage(),null);
 }
 }
 if (!m_measuresCollection.isEmpty()) {
 // Retreive measures from the queue of measures
 l_result =
 m_measuresCollection.getMeasure(maxMeasureCount);

 int retrievedMeasureCount = l_result.getItem().length;
 }
 }
 } catch (Throwable e) {
 ErrorDesignation errDesign
 = new ErrorDesignation(null,
 “Internal Error”);
 e.printStackTrace();
 throw new FlushException(“Internal Error”, errDesign);
 }

 return l_result;
 }
}

56

5.1.4.3 Operation repairDFCollections
This control operation tries to reestablish the resources (sockets, etc) of the Data
Feeder collections after a failure. The operation is called each time an error report is
published in the queue of measure during the collection.

As for the other control operations, it publishes per Data Feeder the operation status
in the queue of measures and also returns this status.

When the operation succeed in restoring the collection flow for a DF, the SQM SA
Proxy will call the collectSinceDFMeasures operation to start the collection and
resynchronize measure which have been lost during the failure period.

Implementation example

In the following example, the repairDFCollection operation just returns a success
status.

public class MeasureServiceSOAPImpl implements MeasureService{

 public ArrayOfDataFeederStatusReport repairDFCollections(
 RegistrationId regId,
 ArrayOfDataFeederControlId dataFeederControlIds)
 throws java.rmi.RemoteException, DFControlException {
 return getContext(regId).
 getMeasure().
 repairDFCollections(dataFeederControlIds);
 }

 private Context getContext(RegistrationId regId) throws
DFControlException {
 Context context = null;
 try {
 Registration reg = Registration.getInstance();
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();
 throw new DFControlException(trace, e.getError(),null);
 }
 return context;
 }
 ….
}

public class Measures {

 private final Object MEASURE_LOCK = new Object();

 public ArrayOfDataFeederStatusReport repairDFCollections(
 ArrayOfDataFeederControlId arrayOfDataFeederControlIds)
 throws RemoteException, DFControlException {
 synchronized (MEASURE_LOCK) {

 DataFeederControlId[] dataFeederControlIds =
 arrayOfDataFeederControlIds.getItem();

 DataFeederStatusReport[] dfStatusReport =
 new DataFeederStatusReport[dataFeederControlIds.length];

 DataFeederStatus dfStatus;

 // Nothing to do - consider that collection cannot fail

57

 // Iterate on each DataFeederControlId to build the return
 // status
 // A DataFeederControlId contains the DataFeederID to repair
 for (int i = 0; i < dataFeederControlIds.length; i++) {
 DataFeederId dfId =
 dataFeederControlIds[i].getDataFeederId();

 // Construct a status and publish it
 dfStatus =
 new DataFeederStatus(AdministrativeState.UNLOCKED,
 AvailabilityStatus.AVAILABLE,
 "Up",
 dataFeederControlIds[i].getTransactionId());

 // Publish a status report in the queue of measures
 publishStatus(dfId,dfStatus);

 // Contruct the return status
 String timestamp;
 Date date = new Date();
 timestamp = DateTimeFormat.dateToISOStringInGMT(date);
 dfStatusReport[i] = new DataFeederStatusReport();
 dfStatusReport[i].setTimestamp(timestamp);
 dfStatusReport[i].setDataFeederId(dfId);
 dfStatusReport[i].setDataFeederStatus(dfStatus);
 }

 return new ArrayOfDataFeederStatusReport(dfStatusReport);
 }
 }
….
}

5.1.4.4 Operation stopDFCollections
This control operation stops the collection of the specified Data Feeder.

This operation is called when stop in the SQM SA Proxy application of when locking
a Data Feeder.

As for the other control operations, it publishes per Data Feeder the operation status
in the queue of measures and also returns this status.

Implementation example

In the following example, the repairDFCollection operation just returns a success
status.

public class MeasureServiceSOAPImpl implements MeasureService{

 public ArrayOfDataFeederStatusReport repairDFCollections(
 RegistrationId regId,
 ArrayOfDataFeederControlId dataFeederControlIds)
 throws java.rmi.RemoteException, DFControlException {
 return getContext(regId).
 getMeasure().
 repairDFCollections(dataFeederControlIds);
 }

 private Context getContext(RegistrationId regId) throws
DFControlException {
 Context context = null;
 try {

58

 Registration reg = Registration.getInstance();
 context = reg.getContext(regId);
 } catch (RegistrationException e) {
 String trace = e.getErrorDefaultTranslation();
 throw new DFControlException(trace, e.getError(),null);
 }
 return context;
 }
 ….
}

public class Measures {

 private static final Object MEASURE_LOCK = new Object();

 public ArrayOfDataFeederStatusReport stopDFCollections(
 ArrayOfDataFeederControlId arrayOfDataFeederControlIds)
 throws RemoteException, DFControlException {
 synchronized (MEASURE_LOCK) {

 DataFeederControlId[] dataFeederControlIds =
 arrayOfDataFeederControlIds.getItem();

 DataFeederStatusReport[] dfStatusReport =

 new DataFeederStatusReport[dataFeederControlIds.length];

 DataFeederStatus dfStatus;

 // For each DF construct and publish it status
 for (int i = 0; i < dataFeederControlIds.length; i++) {
 DataFeederId dfId =
 dataFeederControlIds[i].getDataFeederId();
 dfStatus =
 new DataFeederStatus(AdministrativeState.LOCKED,
 AvailabilityStatus.AVAILABLE,
 "Stopped",
 dataFeederControlIds[i].

 getTransactionId());

 // Insert the status in the collection queue
 publishStatus(dfId, dfStatus);

 // Construct the status report
 Date currentDateTime = new Date();
 String timestamp;
 timestamp = DateTimeFormat
 .dateToISOStringInGMT(currentDateTime);

 dfStatusReport[i] = new DataFeederStatusReport();
 dfStatusReport[i].setTimestamp(timestamp);
 dfStatusReport[i].setDataFeederId(dfId);
 dfStatusReport[i].setDataFeederStatus(dfStatus);
 }

 // Suspend the Collector of measures if not stopped
 if (m_measureCollector.getState()!=
 MeasureCollector.MeasureConsumer.STOP){
 m_measureCollector.suspend();
 }

 return new ArrayOfDataFeederStatusReport(dfStatusReport);

59

 }
 }
….
}

60

Chapter 6

Debugging, Troubleshooting and
Tracing

6.1 Debugging a SQM Service Adapter
This section explains how to debug a Java SQM Service Adapter. It provides an
example based on the debugging of the SQM Sample Service Adapter.

6.1.1 Required environment
The proposed debugging solution is explained for a Windows platform with the
following development environment installed:

• Eclipse release 3.0.1 (can be downloaded from the following location:
http://www.eclipse.org/downloads/index.php)

• A TomCat Eclipse plugin
(http://www.sysdeo.com/eclipse/tomcatPluginV3.zip)

• TomCat 4.1.31

• Java 2 Standard Edition Software Development Kit (SDK).
Recommended release: 1.4.1_05

6.1.2 Setting up the project environment

For debugging the Sample Service adapter, before creating the Eclipse project:

1. Copy the SA SDK kit on a Windows Platform:

61

2. Open a Windows command prompt

3. Set up the Apache Ant environment:
>cd <SDK root
directory>\ServiceAdapters\SDK\v1_0\SampleSA>
>set ANT_HOME=<SDK root
directory>\ServiceAdapters\SDK\v1_0\ant-1.5.1
>set PATH=%PATH%;%ANT_HOME%\bin

4. Set up the Java environment
>set JAVA_HOME=<Java installation directory>

5. set up the Eclipse project environment for the SampleSA using the Ant target
named ‘eclipse-dbg’ in the SampleSA build.xml file:
> ant eclipse-dbg

6. The resulting SampleSA directory should be structured as:

7. Run Eclipse

6.1.3 Setting up the Eclipse project
To create the SampleSA project in Eclipse,

1. Create a TomCat project by using the Eclipse project creation wizard (File->New-
>Project …) and select ‘TomCat Project’:

62

2. Set the project name and browse the project location (it must be: <SA SDK root
directory>\ServiceAdapters\SDK\v1_0\SampleSA)

3. Update default Project settings. The context name must be ‘/SampleSA_v1_0’

4. The project is now created, it is necessary to include the SampleSA source files:
Select the project and display project’s properties. In the ‘Java build path’ section

63

add the SampleSA source files: directory named ‘src’ and directory name
‘soapsrc’ You should obtain:

5. The SampleSA project is now ready to be used.

6.1.4 Deploying the SampleSA services
The last step consists in starting the SampleSA and to deploy the WebServices:

1. Start TomCat under eclipse:

2. Deploy the SampleSA services by executing the ‘deploy’ target in the Windows
Command prompt:
> ant deploy

6.1.5 Debugging the Service Adapter
The Service Adapter can now be debugged as any other Java application.

Use the SQMSimulator to call operations to debug (see chapter 3.1.1.6,)

	Chapter 1
	Required features implemented by Service Adapters
	Architecture
	Concepts
	Registration
	Versioning visible at registration level

	Discovery
	Measure
	Configuration
	Resource

	Pre-requisites
	Installing J2SE Software
	Setting-up Java environment
	Installing Apache TomCat

	Installing the software
	Required environment
	Installing the SA SDK

	Uninstalling the software
	Product configuration
	Setting-up Ant environment

	Packaged Third Party Products
	Apache Axis

	Product Content
	Sample Service Adapter description
	Data Feeder Model exposed by the Sample Service Adapter
	Installating the Sample Service Adapter
	Validate the Sample Service Adapter installation
	Deploying the Sample Service Adapter services
	Testing the Sample Service Adapter services
	Service Adapter configuration

	SQM Simulator description
	Usage
	Examples
	Configuration

	SDK API Documentation

	Service Adapter development guidelines
	Defining the development environment
	Compiling an SQM Service Adapter
	Installing a SQM Service Adapter
	Deploying a SQM Service Adapter
	Testing a SQM Service Adapter
	Designing a Service Adapter
	Registration Service
	Operation register
	Operation deregister

	Configuration Service
	Operation getMeasureDeliveryPolicy

	Discovery Service
	Operation getDFDs
	Operation getDFs

	Measure Service
	Operation collectSinceDFMeasures
	Operation getCollectedDFMeasures
	Operation repairDFCollections
	Operation stopDFCollections

	Debugging a SQM Service Adapter
	Required environment
	Setting up the project environment
	Setting up the Eclipse project
	Deploying the SampleSA services
	Debugging the Service Adapter

