
HP OpenView Service Desk 5.0

Web API Programmer’s Guide

Software Version: 5.0

For the Windows and UNIX Operating Systems
Manufacturing Part Number: None

Document Release Date: December 2005

Software Release Date: December 2005

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.

© 1983-2005 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in
both 32 and 64-bit configurations) on all HP 9000 computers are Open
Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.
2

OpenView® is a registered U.S. trademark of Hewlett-Packard
Company.

SQL*Plus® is a registered U.S. trademark of Oracle Corporation,
Redwood City, California.

UNIX® is a registered trademark of the Open Group.

Windows NT® is a U.S. registered trademark of Microsoft Corporation.

Windows® is a U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.
 3

4

Contents
Documentation Updates

Support

Preface

1. Getting Started
Web API . 14
Service Desk Architecture . 15
Installation . 18

Requirements . 18
Generation of the Web API. 18
Running the Installation Program . 19
Extracting the Examples . 19
Checking the Java Class Path . 20

JavaDoc Documentation Tree . 23
Your First Web API Application . 24
Web API Examples. 27

Example1.java. 28
Example2.java. 28
Example3.java. 28
Example4.java. 29
Example5.java. 29
Example6.java. 29
Example7.java. 29
Example8.java. 30
Example9.java. 30
RelateSCtoChange.java . 30
RelateSCtoProblem.java. 30
SetFolderToCaller.java . 30
SetSLA.java. 30

2. Programming Interface
Web API Structure . 32
Programming Concepts . 33
5

Contents
Service Desk Object Model . 33
Interfaces. 33
Entities . 33
Entity Home . 34
Naming Conventions . 34
Entity Interface. 35
Attributes . 36

Methods . 38
IEntity Interface Methods . 38
IEntityHome Interface Methods . 45
IEntityWhere Interface . 49
IEntityEntitlement Interface . 52
The Session Class . 52

Exception Handling . 56
Views. 57
Programming Considerations . 59

Not Intended for Field-by-Field Validation . 59
Implementing Service Desk UI Rules . 59
Not Optimal for Bulk Exchange. 60
Authentication . 60
Web API Sessions are Not Thread-Safe. 61
Allow for Concurrency Issues. 61
Initialization is Expensive . 61
Be Careful with Logging. 62
Run Simple Tests . 62

Java Servlets . 63
Introduction. 63
Examples . 64
Deployment . 64

3. Changes From Service Desk 4.5 to 5.0
6

Documentation Updates
This manual’s title page contains the following identifying information:

• Version number, which indicates the software version.

• Document release date, which changes each time the document is
updated.

• Software release date, which indicates the release date of this
version of the software.

To check for recent updates or to verify that you are using the most
recent edition, visit the following URL:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the
appropriate product support service. Contact your HP sales
representative for details.
 7

8

Support
Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the
products, services, and support that HP OpenView offers.

HP OpenView online software support provides customer self-solve
capabilities. It provides a fast and efficient way to access interactive
technical support tools needed to manage your business. As a valuable
support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest
• Submit enhancement requests online
• Download software patches
• Submit and track progress on support cases
• Manage a support contract
• Look up HP support contacts
• Review information about available services
• Enter discussions with other software customers
• Research and register for software training

Most of the support areas require that you register as an HP Passport
user and log in. Many also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.h
tml
 9

10

Preface
This document describes procedures for using the Service Desk Web API.
This Application Program Interface (API) enables you to develop your
own web applications around HP OpenView Service Desk, integrate
Service Desk into local applications, and add custom functionality to
your Service Desk implementation.

This guide provides information about the architecture and use of the
Web API, and is intended for anyone developing applications using the
Web API. It is assumed that you have an administrator-level knowledge
of Service Desk, and a reasonable knowledge of Java.

This guide is organized as follows:

• Chapter 1, “Getting Started,” on page 13 explains how to install the
Web API.

• Chapter 2, “Programming Interface,” on page 31 describes the
structure of the API.

• Chapter 3, “Changes From Service Desk 4.5 to 5.0,” on page 67
explains what has changed since the Service Desk 4.5 version.
 11

12

1 Getting Started

This chapter introduces the HP OpenView Service Desk Web API. It
describes how to install the Web API, then use it to build applications.
Chapter 1 13

Getting Started
Web API
Web API
The Service Desk Web API is the Sun Java programming interface to the
HP OpenView Service Desk application. It opens up the Service Desk
application, its object model, and its data to your specific requirements.

The Web API enables you to develop web applications around the Service
Desk core. In addition, it can be used to integrate Service Desk with local
applications, and to add custom functionality to your Service Desk
implementation.

The Web API provides you with many opportunities to customize how
processes are implemented using Service Desk. From commands called
from Service Desk smart actions, or from database rule actions, you can
use the Web API to define alternative assignment algorithms,
automatically close items if related items have been closed, and much
more.

NOTE To compile and run the examples that come with the Web API, and that
are discussed in this guide, you will need a Sun Java Development
Environment (JDE) and a working Service Desk installation. See the
Service Desk Installation Guide for more information.
Chapter 114

Getting Started
Service Desk Architecture
Service Desk Architecture
This section presents a brief overview of the Service Desk architecture
and the role of Web API in that architecture. It helps you to better
understand the mechanism of the Web API.

As an interactive application, Service Desk uses a three-tier
architecture:

• Client: communicates with the application using the ITSM
Transaction Protocol (ITP) protocol.

• Application Server: communicates with the database server by using
the Java Database Connectivity (JDBC) API. ITP is a communication
protocol that is specific to Service Desk.

• Database server: provides access to the database, it completes the
Service Desk three-tier architecture.

Logically, Service Desk functionality is divided over a number of layers,
as shown in Figure 1-1.

Figure 1-1 Service Desk Logical Layers

The presentation layer displays information on the monitor screen. It
also allows users to enter information. From an application point of view,
the presentation layer embodies very little logic. All Service
Desk-specific concepts are implemented in the workflow layer.
Chapter 1 15

Getting Started
Service Desk Architecture
The workflow layer is the implementation of the Service Desk object
model, and of application logic that is expressed in terms of the object
model. The base classes of the workflow model implement the most
frequent types of relation between sets of objects. Some of these relations
can be found in almost any business application, such as one-to-one and
one-to-many relationships. Other relations, such as history lines, are
more specific to Service Desk and workflow applications.

The workflow layer maintains the state of the Service Desk application
for a particular user that logs into Service Desk. All information that
passes from users to the database passes through the workflow layer.
This allows the workflow layer to enforce the logic of the business model.

The workflow layer also retrieves data for users. When doing so, it does
such things as retrieving objects that are referenced by the object that
the presentation layer retrieves for users.

The business and data access layers implement the interaction of the
workflow layer with external resources, such as the database and mail
delivery agents. The business layer in the Application Server, as defined
in Service Desk, accesses the resources from the workflow layer. It also
executes database rules.

In the Service Desk application, the presentation and workflow layers
are physically situated in the interactive client application process.
Because both the presentation and workflow layers use the repository,
the interactive client consults the repository over the network the first
time that it needs some piece of repository information. In this setup,
sessions are long and repository information is cached, so the overhead of
retrieving repository information over a network connection is relatively
low. The business and data access layers are executed in the Application
Server. That is, most of the state of a user log-on session is kept in the
graphical user interface (GUI) client process. The small amount of state
information that is used in the Application Server process is for keeping
track of the log-on session and authorization. Note that some exceptions,
that are beyond the scope of this introductory discussion, do exist.

From the Service Desk perspective, a Web API application is a client of
the Service Desk Application Server, even when it serves a different
client. However, the distribution of the logical layers over the physical
processes is different, the workflow layer is executed in the Application
Server. This means that the client application does not need to query the
repository to implement the Service Desk object model. The Web API
Chapter 116

Getting Started
Service Desk Architecture
offers a set of Java classes and methods that implement the concepts of
the Service Desk object model by remotely invoking the workflow layer in
the Application Server.

As a result, although many of the functions in the Web API look like
database functionality, the logic of the workflow layer is still activated
when you submit a whole object to be saved by using the Web API. It is
treated as if the values came from a form in the Service Desk client GUI
application. The business layer executes database rules in the same way
as with the GUI client. The UI rules are not relevant when you use the
Web API. This means that interactive per-field data validation is not
implemented by the Web API itself. If you want to validate individual
field values in a Web API application, you will have to validate them
with custom code in your application.

The Service Desk agent gets its commands from the Application Server.
Even when the applications it executes are interactive, it is not relevant
to the Web API architecture. In other words, an application started by
the agent that uses the Web API has the same features and restrictions
that apply to any other application. However, there are some unique
problems with logging. For details, see “Be Careful with Logging” on
page 62.
Chapter 1 17

Getting Started
Installation
Installation
For convenience, the distribution contains Sun JavaDoc documentation,
and a set of examples that illustrate the use of the Web API. It is
recommended that you use them as a starting point for developing your
own Web API applications.

The Web API is delivered as a single Java .jar file, with some
accompanying documentation. The procedure to run the installation
program, extract the examples, and check the Java class path are
described below.

Requirements

To build and test your own extensions to Service Desk, you will need a
working Service Desk installation. This does not need to be on the same
machine that runs the Web API applications. To compile and run Service
Page applications, you need the Sun Java 2 Development Environment, a
working Service Pages installation, and the Apache Ant Java-based build
tool. For more information about the Apache Ant Java-based build tool,
see the Apache Ant web site: http://ant.apache.org/. Furthermore, the
examples assume that the demo data is present in the database.

Generation of the Web API

When you are using a non-standard object model, you can use the Web
API builder to build your own Web API. To do so, run the
OvObsWebAPIGenerator.bat file (found in the installation “bin”
directory). Make sure that you shut down local running Service Desk
sessions to save resources. The files generated by this step are the Web
API source files, which are stored in the following directory:
$INSTALL-DIR\data\web-api-generated\

To Build the Web API jar file, compile the sources to a jar file. Make sure
that the required/dependant jar files are available and are on the
CLASSPATH. The following jar files are required:

• OvObsWebApi-Client.jar

• OvObsWebApi-Common.jar

• OvObsSDK.jar
Chapter 118

Getting Started
Installation
• OvObsWebApi-Server.jar

A sample compilation script, called "build.xml" is provided in the
following directory:

$Installdir\examples\webapi\generation

Check the path names in this file. If necessary, modify them to reflect the
actual situation.

To compile the sources, run the “Ant” build tool. The output of this
compilation step (the ov-webapi-gen.jar file itself) is stored in the
following directory:

c:\Program Files\HP OpenView\data\web-api-generated\lib

Running the Installation Program

The Web API installation location for Microsoft Windows is C:\Program
Files\HP Openview\examples\webapi. On UNIX, this is
/opt/OV/examples/webapi.

Microsoft Windows
Locate and run the setup.exe installation executable in the Web API
distribution.

Sun Solaris
Locate and run the setup.bin file in the Web API distribution.

HP-UX
Locate and run the setup.bin file in the Web API distribution.

Linux (using rpm)
Locate and run the setup.bin file in the Web API distribution.

Extracting the Examples

Select a location for the Web API examples. It is recommended that you
use C:\web-api (Microsoft Windows) and $HOME/web-api (UNIX),
because these are assumed in the examples.

Substitute your chosen location in the extraction instructions described
below. Some of the scripts that come with the examples explicitly refer to
the default installation location for the sd-webapi.jar file. If you have
selected a different location, you will need to change these scripts.
Chapter 1 19

Getting Started
Installation
Microsoft Windows
Double-click the web-api-examples.zip file, located in C:\Program
Files\HP Openview\examples\webapi.

Alternatively, use the following command:

jar xvf Program Files\HP
Openview\examples\webapi\web-api-examples.zip

UNIX
Run the following command:

cd && mkdir -p web-api && cd web-api && tar xvf
/opt/OV/examples/webapi/web-api-examples.tar

Checking the Java Class Path

In a standard Sun Java Development Kit (JDK) environment, you can
add the full name of the .jar file to the CLASSPATH environment
variable, or you can explicitly add it to the class path in the invocations
of the compiler and the applications. Refer to your Java Development
Environment documentation for information on how to add the Web API
.jar file to its class path. To use the Web API .jar file with the Sun
JDK, you can use commands similar to the following:

On Microsoft Windows:

set CP="C:\Program Files\HP Openview\Java\sd-webapi.jar"
javac -classpath %CP% com\hp\ov\sd\webapi\examples\Example1
java -cp "%CP%" localhost jeffp servicedesk

On UNIX (Syntax for Bourne Shell at ksh or bash)

CP="/opt/ov/java/sd-webapi.jar"; export CP
javac -classpath $CP com\hp\ov\sd\webapi\examples\Example1
java -cp $CP localhost jeffp servicedesk

Compiling the Examples
Open the compileExamples.bat (Microsoft Windows) or
compileExamples.sh (UNIX) file, and check that the class path in the
commands points to the .jar file in the HP OpenViewJava folder.

Invoke the compile script to compile the examples. This checks that the
installation was successful. All programming examples should compile
without any problems. If you do experience any problems:
Chapter 120

Getting Started
Installation
• Check that the JDK and Sun Java Runtime Environment (JRE) are
installed.

• Check that the programs in the JDK bin directory can be found
using the PATH environment variable.

• Check that the value of the JAVA_HOME environment variable
points to the JDK.

• Check that the JDK and JRE versions match.

Running the Examples
Open the runExample1.bat (Microsoft Windows) or runExample1.sh
(UNIX) file, and check that the class path in the Java command points to
.jar file in the HP OpenViewJava folder.

Invoke the script, and check that when you receive any errors, these
concern the working of the application, and not the Java environment.

For Java or connection related error messages:

• Check the issues relating to the compiler described above.

• Check the class path in the script.

• Check the server name in the script.

• Check that the Service Desk application is running on the server
machine.

For applications or permission related error messages:

• Check that the Service Desk application is running on the server
machine.

• Check that the demo data was installed in the Application Server
database.

• Check that you have a valid Service Desk account for the Application
Server. It does not need to be a UI account. Not using the system
account forces you to consider entitlement from the beginning. The
scripts that invoke the example programs use accounts and data
from the Service Desk demo database.

You have now installed a simple Web API development environment.
Although you can copy its contents to your preferred Java development
environment, in the rest of this guide it is assumed that you are using
the Sun JDK.
Chapter 1 21

Getting Started
Installation
NOTE The compile script, compileExamples.bat (Microsoft Windows) or
compileExamples.sh (UNIX), simply compiles the example programs. For
serious development work, you probably need to build files that can be
used with make or ant. You might also want to add a -g switch to the
compiler command to include information in the class files for a Java
debugger, such as jdb.
Chapter 122

Getting Started
JavaDoc Documentation Tree
JavaDoc Documentation Tree
A JavaDoc document for the Service Desk Web API is provided on the
Service Desk distribution CD. The JavaDoc consists of a set of
hyperlinked HTML files, generated from the API source code, that
describe the classes, interfaces, and methods of the API.

You can find JavaDoc in the Doc folder on the Service Desk distribution
CD. The file name is Web API Javadoc.zip. Before you can use the
JavaDoc, you must extract all the files from the Web API Javadoc.zip
file to a location of your choice. Make sure to select the “Use folder
names” option for the extraction. During the extraction, a subfolder
named html is created in the folder you specified as the target location.
To open the JavaDoc, open the index.html file in the html folder.
Chapter 1 23

Getting Started
Your First Web API Application
Your First Web API Application
This section presents a very simple Web API application. It is a
simplified version of Example 2. The application logs into the Service
Desk Application Server, retrieves a service call by number, and displays
some of the properties of the service call. The source for this example is
part of the distribution.

The annotations for this code are shown in Table 1-1.

package com.hp.ov.sd.webapi.MyFirstWebApiApplication;

//1

import com.hp.ov.webapi.Session;

import com.hp.ov.webapi.sd.IServicecall;

import com.hp.ov.webapi.sd.IServicecallHome;

/**

 * MyFirstWebApiApplication

 *

 * A very simple web-api client application for demonstration purposes.

 *

 * Opens a session to the ServiceDesk and retrieves the description of

 * a service call with the functional ID of 1234567.

 */

public class MyFirstWebApiApplication {

 public static void main(String args[]) {

 Session session;
Chapter 124

Getting Started
Your First Web API Application
//2 try {

 session = Session.openSession("localhost", "olsek", "servicedesk");

 } catch (RuntimeException e) {

//3 System.out.println(e.getMessage());

 return;

 }

//4 IServicecallHome servicecallHome = session.getServicecallHome();

 IServicecall serviceCall;

//5 try {

 serviceCall = servicecallHome.openServicecall(1234567);

 } catch (RuntimeException e) {

 System.out.println(e.getMessage());

 return;

 }

//6 String labelDescription = servicecallHome.getLabelDescription();

//7 System.out.println(labelDescription + ": " +

 (serviceCall.getDescription());

 }

}

Table 1-1 Java Source Code Annotations

No. Explanation

1 To use the Web API, you need to import the classes with the
basic types and interfaces of the Web API.
Chapter 1 25

Getting Started
Your First Web API Application
The first step is to log in to Service Desk. You must provide a network
location where Service Desk can be reached, a user name, and the
password. After successfully logging in, the Web API returns a session
instance that implements a connection to the workflow layer in the
Application Server.

Now that a session has been established, you can use it to query the
session for the service call home object. For details about home objects,
see “Programming Considerations” on page 59. For this simple example,
treat the entity home as an interface to the database that allows you to
store and retrieve objects from the database.

2 Open a session on the Application Server on the current
machine. User “olsek” with the password “servicedesk” is
provided in the Service Desk demo database.

3 If logging in fails, the Web API or the Application Server
throws an exception. It never returns null. The Web API only
throws one type of exception: the RuntimeException. The
message in the exception should be good enough to present to
users. In all cases, the level of severity is high enough to
simply try to exit elegantly from the application. Trying to
recover does not make much sense.

4 Get the home for service calls from the session.

5 Retrieve a particular service call. The number that identifies
the service call is known from some external source. Because
this call retrieves an object from the database, it can fail.
(Indeed, it will almost certainly fail with the number
1234567.) Therefore, catch the possible run-time exception. In
this example, it suffices to print a message and exit.

6 Query the “service call home” for a label to identify the
description field of the service call. It will retrieve the
appropriate label from the appropriate language pack.

7 Print the description field of the service call.

Table 1-1 Java Source Code Annotations (Continued)

No. Explanation
Chapter 126

Getting Started
Web API Examples
Web API Examples
As mentioned earlier, the Web API comes with a number of example
programs that illustrate its use. Although the code is reasonably
self-explanatory, the details are explained in Java comments in the
source files.

Use the compileMyFirstWebApiApplication.bat (Microsoft Windows) or
compileMyFirstWebApiApplication.sh (UNIX) file to compile
MyFirstWebApiApplication. Use the
runMyFirstWebApiApplication.bat or the
runMyFirstWebApiApplication.sh (UNIX) file to run the application.

Use the compileExamples.bat (Microsoft Windows) or
compileExamples.sh (UNIX) file to compile the examples. Use the
appropriate batch or script file to run the example. For example, to run
example1.java, use runExample1.bat (or runExample1.sh). The
provided examples are explained in the rest of this section.

In addition, some more application-specific examples can be found in the
com.hp.ov.sd.webapi.cases package. After installing the example tree, the
application case source and class files can be found in the folder where
you unpacked the files, for example the c:\webapi folder. These are
described at the end of this section. Use the compileCases.bat file (or
compileCases.sh) to compile these examples. Use the appropriate batch
or script file to run the example case. For example, to run
RelateSCtoChange.java, use runCase1.bat (or runCase1.sh). For each
Microsoft Windows batch file mentioned in the following table, a UNIX
shell script file is also provided.

Table 1-2 Web API Example Files

File Description

compileMyFirstWebApiApplica
tion.bat

Compile the
MyFirstWebApiApplication
example.

runMyFirstWebApiApplication.
bat

Run the MyFirstWebApiApplication
example.

compileExamples.bat Compile all examples;
example1.java - example9.java.
Chapter 1 27

Getting Started
Web API Examples
Example1.java

Shows how to open a session to the Service Desk Application Server. It
retrieves the account information object from the session object for the
user that owns it. Then, it extracts and prints various properties of the
account. The example lists all persons that use this account, illustrating
how to obtain a set of related objects using a one-to-many relationship.

Example2.java

Shows how to open an existing service call, based on its functional ID. It
retrieves the history lines belonging to the service call. One of the
properties of a history line is the date of its creation. The Web API offers
methods to represent Java dates as strings. The example illustrates one
of these methods.

Example3.java

Shows how to create a new problem, set some properties of the problem,
and save it. Optionally, you can provide the name of a template. If the
specified template exists and is a template for problems, the template is
used to initialize the new problem. Finally, a history line is added to the
problem.

runExample1.bat Runs example 1. (General:
runExamplex.bat to run example x.)

compileCases.bat Compiles all use case examples.

runCase1.bat Runs the RelateSCtoChange use
case.

runCase2.bat Runs the RelateSCtoProblem use
case.

runCase3.bat Runs the SetFolderToCaller use
case.

runCase4.bat Runs the SetSLA use case.

Table 1-2 Web API Example Files (Continued)

File Description
Chapter 128

Getting Started
Web API Examples
Example4.java

Shows how to open an existing incident, change the information field of
the incident, and assign the incident to a person.

The example illustrates application-defined queries that are built with a
“where” clause and search criterion objects. It also shows how to access
the aggregated object in the incident and how to update the assignment.
Aggregated objects are stored in the same database record as the object
to which they belong. Finally, the incident is saved to the database,
illustrating how modified objects, including the aggregated subobjects,
are saved.

Example5.java

This is another example of handcrafted selections with “where” clauses
and criteria. Because the selection is on a date field, it also illustrates
some of the date manipulation methods.

Example6.java

Briefly illustrates the concept of a view. Views are a means to reduce the
amount of information in a home object that is visible to the application.
Unlike selections that are made with “where” objects and search criteria,
views are not built dynamically.

The description of a view is stored in the internal system, and the
application refers to a view in the internal system to retrieve the
information that belongs to the view. In the Service Desk application,
views can limit the number of available fields. In this example, only the
selection of the set of objects that is retrieved through the view is
relevant. Using a view enables you to define very complex filters using
the Service Desk GUI, while the programming for selecting the data
using the API remains very simple.

Example7.java

Shows how to use web application profiles to control the set of attributes
that is returned by the methods that return an array of entity instances.
It illustrates the concept of the IWebApiApplication, and demonstrates
its importance for performance.
Chapter 1 29

Getting Started
Web API Examples
Example8.java

Illustrates the use of relationships in the Service Desk Web API. It scans
the membership relationship between persons and workgroups. It then
makes a new workgroup, and relates some persons to it. Finally, it
deletes the new workgroup. The purpose is to show how to use
many-to-many relationships.

Example9.java

Shows how to use reflection using the IEntityInfo interface to get a
display name for an entity type, and to get a list of applicable templates.

RelateSCtoChange.java

Use runCase1.bat (or runCase1.sh) to run this application case with
the Service Desk demo database. The example relates an existing service
call in the database to an existing change.

RelateSCtoProblem.java

Use runCase2.bat (or runCase2.sh) to run this application case with
the Service Desk demo database. The example relates an existing service
call in the database to an existing problem.

SetFolderToCaller.java

Use runCase3.bat (or runCase3.sh) to run this application case with
the Service Desk demo database. The example tries to find the caller of
an existing service call. It then sets the folder of the service call to that of
the caller or the caller’s organization.

SetSLA.java

Use runCase4.bat (or runCase4.sh) to run this application case with
the Service Desk demo database. The example tries to find the caller of
an existing service call. It then sets the service level agreement of the
service call to that of the caller or the caller’s organization.
Chapter 130

2 Programming Interface

This chapter describes in detail the structure of the HP OpenView
Service Desk Web API. It presents the classes and methods that are
available to access and manipulate HP OpenView Service Desk data.
Exception handling and the use of views are also explained.
Chapter 2 31

Programming Interface
Web API Structure
Web API Structure
The Web API consists of two parts: the server-side component and the
client-side component. The server-side component runs on the Service
Desk management server, in the same Java Virtual Machine (JVM)
process as the Service Desk server application. Its task is to handle
incoming calls from the client-side component.

The client-side component runs in a separate Java virtual machine, in a
pure Java environment. This could be the same process as where a web
server runs. This component consists of the application programming
interface (API) classes that are to be used by a programmer. It is this
component that will be explained in this document.

There are three levels of client-side classes: session, home, and entity
classes.

The first level consists of the session classes. A programmer uses the
class Session to start up a session and from then on use all the
functionality of the API.

The second level consists of the home classes. Each different type of
entity has its own home class. Users of the API use interfaces called
I<Entity Name>Home, for example IChangeHome or IServicecallHome.

These classes are used, among other things, to do the following:

• Open individual records of the entity to which the home class
belongs.

• Create new records.

• Find records that meet some search criteria.

The home classes use two kinds of utility classes, called I<Entity
Name>Where and I<Entity Name>Entitlement. The I<Entity
Name>Where class is used to build “where” clauses for a find action and
the I<Entity Name>Entitlement class provides information about
entitlement.

The third level consists of the entity classes. Each different type of entity
has its own entity class. Users of the API use interfaces called I<Entity
Name>, for example IChange or IServicecall. These classes contain the
values of individual record attributes, as well as the methods to
manipulate these values.
Chapter 232

Programming Interface
Programming Concepts
Programming Concepts
This section does not attempt to describe the Service Desk object model.
Probably the best way to gain an understanding of this is to browse the
Service Desk client tool. The links from one piece of information in the
application to another correspond to the relationships in the object
model.

Service Desk Object Model

A detailed and navigable description of the Service Desk object model
can be found on the Service Desk distribution CD in the following file:

doc\Data Dictionary\Data_Dictionary_Items.htm

This file contains extensive information. Because it is generated from the
same material as the Web API, it is bound to match the Web API. To
locate specific information about the Data Dictionary, it is often easier to
use Sun JavaDoc documentation for the Web API.

Interfaces

The classes of the Service Desk object model appear as interfaces in the
Web API. With an few exceptions, you can use the instances of the
interfaces as if they were instances of the corresponding class. The Web
API is implemented with interfaces instead of classes to force you to use
the homes as an instance factory.

Entities

The Service Desk programming concepts are based on the concept of an
entity. For all practical purposes, Entity is the base class of the Service
Desk object model. All objects that are saved to the database are
instances of the Entity class. Depending on the context, instances of
subclasses of Entity are referred to as entities or Entity instances. The
Entity class (IApiEntity in the Web API), together with the
corresponding EntityHome class, saves and retrieves instances in the
database.
Chapter 2 33

Programming Interface
Programming Concepts
Entity Home

The entity home is a fundamental Service Desk concept. The instances of
the instantiable classes in the Service Desk object model are saved in the
database tables. The classes of objects that are responsible for saving
entities to the database are called entity homes.

Additional tasks of entity homes include retrieving entity instances from
the database, and creating fresh entity instances that still have to be
saved to the database. Therefore, the entity home is at once a factory of
entity instances, and an interface to the database to store and retrieve
the instances.

Naming Conventions

Except for logon and logoff, the Web API software is generated from the
object, and follows a rigid naming convention. With this naming
convention, it is relatively easy to infer the name of a method or a class
from the Data Dictionary.

This section describes the most important families of classes and
methods. It does not describe every class and method. The JavaDoc
provided with the WebAPI contains extensive information about classes
and methods. It is not the intention to describe every class and method.
The JavaDoc provided with the Web API contains extensive information.

The structure of the Web API follows certain paradigms. The existence,
name and functionality of a method are applications of the paradigms.
The descriptions that follow deal with the families of classes and
methods that come from a certain paradigm. Some of the properties of
the Service Desk classes are discussed in general, together with the
functionality of the methods.

Most of the class, attribute, and method names used in the following
discussion are not actual names of classes. Rather, they refer to the
patterns that the paradigms follow. In particular, the words Entity,
Attribute, SimpleType, RelatedEntity, ReffedEntity,
ContainedEntity, StringAttribute (and some grammatical
inflections) do not refer to actual concepts. You should replace these
words with the name of actual entities, attributes, and types. For
example, for every entity Entity, the name of the interface that the class
implements is IEntity, and the name of the interface to the entity home
is IEntityHome. Names that refer to this convention are used
Chapter 234

Programming Interface
Programming Concepts
throughout the rest of this section. Usually, this notation is used as if the
names refer to actual interfaces or methods, without mentioning that the
name actually refers to a naming convention rule.

Entity Interface

As previously explained, entities are the equivalent in the interface to
the classes in the Service Desk object model. The JavaDoc
documentation that accompanies this guide describes a large number of
entity interfaces.

The most important families of entity classes are shown in Table 2-1.

Table 2-1 Entity Class Families

Family Description

IWorkflow Note that all objects, not just Workflow instances,
are managed by the workflow layer. Also:

• They have a functional record ID (for example,
Service Call 1024).

• They contain aggregate entities for assignment
and history.

• No system constraints on deletion exist. It is
transient data, although user access and status
restrictions can be implemented.

Non-workflow • Mostly identified by a search code rather than a
functional ID (CIs have both).

• System constraints on deletion, static data
defining the base data in the Service Desk
implementation at the customer’s site. For
example, managed configuration items (CIs),
services, Person and Organization data, and so
on.
Chapter 2 35

Programming Interface
Programming Concepts
Attributes

Entity instances have attributes. Each attribute has its own
getAttribute() and setAttribute() method. The getAttribute()
method returns the value of the attribute, and the setAttribute()
method allows you to give the attribute a value. The Java type of the
attribute values can be derived from the method definitions.

Attributes can be classified into the following groups:

• Attributes that have a basic Java type. For example, String, Long,
Boolean, and so on. The entity classes have getAttribute() and
setAttribute() methods for these attributes.

• Attributes that are references to other entities. These attributes are
called entity reference attributes. The entity classes have
getReferredEntity() and setReferredEntity() methods for these
attributes.

• Aggregated entities that show up as an attribute. A reference to the
aggregated entity can be obtained with the getContainedEntity()
methods list in Table 2-2. Changes to the contained entity can be
transferred back to the parent instance with the transfer() method
of the aggregated entity instance.

Codes • For example, status and category texts.

• A list of codes can be searched from the home
class you get from the entity home. For example,
you can get a list of statuses from
IStatusProblemHome that you can use for an
IProblem instance.

Aggregated
entities

Can be accessed only using another entity. Many
types of aggregated entities can be found inside
different kinds of containing entities. For example,
IAssignment instances are aggregated inside
IProblem instances and inside IServicecall
instances.

Table 2-1 Entity Class Families (Continued)

Family Description
Chapter 236

Programming Interface
Programming Concepts
• Attributes that reference a set of entities. For example, history lines.
These attributes are called entity set reference attributes. To retrieve
an array with references, use the getRelatedEntity() methods
listed in Table 2-2. To sever a relationship, use the
unrelateRelatedEntity() methods. The related entity instances
have a getParentEntity() method to follow the reference in the
opposite direction.

• Many-to-many (n-m) relation attributes. These are actually a special
kind of entity set references.To retrieve an array with references, use
the getRelatedEntity() methods in Table 2-2. To relate one object to
another, use the addRelatedEntity() methods. To sever a
relationship, use the unrelateRelatedEntity() methods. To
navigate the relationship in the opposite direction, the related
entities offer the same kind of methods.
Chapter 2 37

Programming Interface
Methods
Methods
This section provides an overview of the methods defined for the entities.
Not all methods exist for all entity types.

IEntity Interface Methods

The IEntity interface methods are shown in Table 2-2.

Table 2-2 The IEntity Interface Methods

Attribute Description

void addRelatedEntity(IRelatedEntity object)

(Where Entity has a one-to-many relationship
to RelatedEntity)

Adds the RelatedEntity object to the set of
RelatedEntity objects that belong to this
Entity instance. The Entity instance must
exist in the database. The RelatedEntity
object is saved to the database by this method.
Methods of this kind exist for all one-to-many
relationships.

Because this is a database action, it can fail.
Catch RuntimeExceptions when you invoke this
method. In addition to physical database I/O
failure, there are many reasons that a database
modification can fail. Consider validating the
attribute values, referential integrity,
entitlement, and business logic.

The related entity is added to the database
immediately. In the case of history lines that
describe changes to the entity itself, this means
that the update of the entity itself, and the
insertion of the history line, are not executed as
a single database transaction.
Chapter 238

Programming Interface
Methods
void addRelatedEntity(IRelatedEntity object)

(Where Entity has a many-to-many
relationship to RelatedEntity)

Adds the RelatedEntity object to the set of
RelatedEntity ojects that are related to this
Entity instance. Methods of this kind exist for
all many-to-many relationships without any
attributes. Relationships with attributes are
implemented as an entity type. The
relationship is saved to the database
immediately. The current entity instance and
the related entity instance should be saved to
the database before they are related. This is a
database action, so catch exceptions.

void unrelateRelatedEntity(IRelatedEntity
object)

Remove RelatedEntity object to the set of
RelatedEntity objects that are related to this
Entity instance. Methods of this kind exist for
all many-to-many relationships without any
attributes. Relationships with attributes are
implemented as an entity type. The
relationship is removed from the database
immediately. The current entity instance and
the related entity instance should be related to
allow you to unrelate them. This is a database
action, so catch exceptions.

SimpleType getAttribute()

Gets the value of Attribute. getAttribute()
methods exist for all attributes that have a
simple type. For example, the type of the
attribute is not an entity type from the Service
Desk object model. If the attribute is not set,
getAttribute() returns null. (No exceptions
are thrown.)

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 2 39

Programming Interface
Methods
IRelatedEntity[] getRelatedEntity()

Loads all RelatedEntity objects that belong to
the Entity instance from the database into an
array. Methods of this kind exist for all
one-to-many relationships. Because this is a
database action, it can fail. Catch
RuntimeExceptions when you invoke this
method.

IReffedEntity getReferredEntity()

Gets the entity instance to which this attribute
refers. This attribute follows the link in the
database to a different entity instance. These
methods exist for all something-to-one
relationships in the object model.
getReferredEntity() returns null if no
referred entity exists. Because following the
link (if it exists) involves database I/O, catch
exceptions when you invoke methods from this
family.

IContainedEntity getContainedEntity()

Gets the aggregated entity instance that is part
of the current entity instance. The contained
entity instance is stored in the same database
record as the containing entity instance. If you
make changes to the return value that you
want to change, use its transfer() method to
transfer them back before you save() this
instance.

void setAttribute(SimpleType value)

Sets the value of an attribute. setAttribute()
methods exist for all attributes that have a
simple type. The type of the attribute is not an
entity type from the Service Desk object model.

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 240

Programming Interface
Methods
void setReferredEntity(IReferredEntity value)

Makes the current instance refer to a different
entity. You must invoke a save() method to save
the new reference to the database. Also, no
setContainedEntity() methods exist. An
aggregated entity can be changed, and its
changes can be saved to the database through
transfer() methods, and a subsequent save()
method. Because the aggregated instance does
not exist independently from its container, it is
logically impossible to just change the
reference.

void cancel()

Cancels previous programmatic changes. The
properties of the entity instance are reset to
their original values. To cancel the changes,
cancel() must be called before the changes are
committed to the database with save(). The
Web API does not use the database to reset the
values, so it is not absolutely essential to catch
exceptions when you invoke this method.

void delete()

Delete the entity instance from the database.
Because this is a database action, it can fail.
Catch RuntimeExceptions when you invoke this
method. In addition to physical database I/O
failure, there are many reasons that a database
modification can fail. Consider validating the
referential integrity, entitlement, and specific
checks in the business logic. For obvious
reasons, there is no delete() for aggregated
entities.

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 2 41

Programming Interface
Methods
com.hp.ov.obs.OID getOID()

Gets the unique object ID value that identifies
this entity instance. No two instances from the
database return the same value for getOID().
The value returned by getOID() is persistent.
That is, it remains the same over time for the
same instance. It can even be used to retrieve a
particular instance from the database. OIDs are
internal to the application. They are not
intended for storage or display by a Service
Desk application. One of their few sensible uses
in application code is to determine whether two
entity instances are the same instance in the
database.

OIDs is also used to refer to instances from a
list of values. Do not confuse object IDs with
functional IDs that do make more sense in
application code.

Java.lang.Long getID()

Gets the functional ID of the object. Similar to
the object ID, the functional ID uniquely
identifies the object. Only entity types that
inherit from Workflow have functional IDs.
Functional IDs are intended to uniquely
identify the instances to users. They are an
immutable attribute. In contrast, the object
OIDs are used by Service Desk itself to identify
entity instances.

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 242

Programming Interface
Methods
java.lang.Boolean isDeleteAllowed()

Returns true if you are allowed to delete this
entity instance. The return value depends on
the user that is logged in, and the
entitlement-related properties of the entity
instance. This method is used to avoid the
delete() method throwing an exception. In
addition to entitlement, there are many reasons
that deletion can be forbidden. These situations
are not checked by the isDeleteAllowed()
method, so you have to catch exceptions in the
delete() invocation.

java.lang.Boolean isModifyAllowed()

Returns true if you are allowed to update this
entity instance. The return value depends on
the user that is logged in, and the
entitlement-related properties of the entity
instance. This method is used to avoid the
save() method throwing an exception. In
addition to entitlement, there are many reasons
that saving can be forbidden. These situations
are not checked by the isModifyAllowed()
method, so you have to catch exceptions in the
save() invocation.

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 2 43

Programming Interface
Methods
void save()

Saves the changes that you have made to this
entity instance. Because this is a database
action, it can fail. Catch RuntimeExceptions
when you invoke this method. In addition to
physical I/O failure, there are many reasons
that database modification can fail. Consider
validating the attribute values, referential
integrity, entitlement, and business logic.
Aggregated entities do not have a save()
method. Use their transfer() method as well as
their parent’s save() method.

void transfer()

Propagates changes that are made to the entity
to which this aggregated entity belongs. Use the
save() method of the parent entity to save the
changes in the database.

IReferringEntity[] getReferringEntity_ReferringAttribute()

Retrieves all ReferringEntity instances that
refer to the current entity instance by using
their ReferringAttribute attribute. This
attribute is a shortcut for
IReferringEntityHome.searchOnReferringA
ttribute(this).

Table 2-2 The IEntity Interface Methods (Continued)

Attribute Description
Chapter 244

Programming Interface
Methods
IEntityHome Interface Methods

Home interfaces give descriptive information about the entity type. For
many entities, the home is the interface to the database that stores them.
The home can also be the factory object that can be used to make new
entities. The IEntityHome interface methods are shown in Table 2-3.

Table 2-3 The IEntityHome Interface Methods

Attribute Description

void delete(com.hp.ov.obs.OID id)

Deletes the entity instance with the
specified ID. Because this is a database
action, it can fail. Catch RuntimeExceptions
when you invoke this method.

com.hp.ov.obs.OID getDefaultView()

Returns the default view for this particular
type of entity. If there is a default view, it
can be used to load an array of instances
using the findEntities() method.

com.hp.ov.obs.OID getEntityID()

Returns a long value that identifies the
entity type that is stored uniquely using
this EntityHome.

boolean isAggregated()

Returns true when instances of this entity
type are always part of the instance of
another entity type. An aggregated entity
instance cannot exist independent of
another entity instance. This means that
the EntityHomes of aggregated entities do
not support the database-related
functionality or the methods to make new
entity instances.
Chapter 2 45

Programming Interface
Methods
IEntityWhere createEntityWhere()

Creates a where object to retrieve Entities
from the database. The IEntityWhere
object is used to contain search criteria that
define a selection. It also loads an array of
entity instances that match the criteria with
the findEntity() method.

IEntity[] findAllEntities()

Loads all Entity instances in the database
into an array. Do not use any selection
criterion. For many types of entities, the
number of instances may be considerable.

IEntity[] findEntity(IEntityWhere where)

Loads selected Entity instances from the
database into an array. Use the selection
criteria from a “where” clause selection.

IEntity[] findEntity(com.hp.ov.obs.OID view)

Loads selected Entity instances from the
database into an array. Use the selection
criteria from a view.

IEntityEntitlement getEntityEntitlement()

Gets entitlement for this Entity type.
Entitlement objects can be used to
determine whether the current user is
allowed to change attributes of entity
instances, and to determine which
attributes are required attributes. For
details, refer to the IEntityEntitlement
interface.

Table 2-3 The IEntityHome Interface Methods (Continued)

Attribute Description
Chapter 246

Programming Interface
Methods
java.util.Hashtable getEntityViews()

Gets all views of Entity. Views are
predefined selections to retrieve a set of
instances. Views are defined in the Service
Desk administrator's console.

java.lang.String getLabelAttribute()

Gets the label that can be used with the
value of the Attribute. A
getLabelAttribute() method exists for all
attributes of the entity type. When a label
must be shown on a form, this method can
be used to retrieve the label name.

IEntity openEntity(com.hp.ov.obs.OID oid)

Retrieves an existing entity instance from
the database.

Because this is a database action, it can fail.
Therefore, catch the possible
RuntimeException. If no Entity with this
particular object ID exists, a
RuntimeException is thrown. OIDs are
internal to Service Desk applications. It
rarely makes sense to use OIDs in
application code. A possible use of this
method is to retrieve individual instances
from a list of values. Do not confuse OIDs
with functional IDs that do make more
sense in an application context.

CAUTION: The methods that retrieve an
entity by functional ID and by object ID
differ only in the type of the argument.

Table 2-3 The IEntityHome Interface Methods (Continued)

Attribute Description
Chapter 2 47

Programming Interface
Methods
IEntity openEntity(long id)

Retrieves an existing entity instance from
the database.

Because this is a database action, it can fail.
Therefore, catch the possible
RuntimeException. If no Entity with this
particular functional ID exists, a
RuntimeException is thrown. Do not
confuse functional IDs (that are specific to
application data) and IWorkflow instances
with object IDs (that are internal to the
operation of Service Desk).

CAUTION: The methods that retrieve an
entity by functional ID and by object ID
differ only in the type of the argument.

IEntity openNewEntity()

Returns a fresh instance of Entity. The
entity instance is not saved to the database
before its save() method is invoked.

IEntity openNewEntity(com.hp.ov.obs.OID
template)

Returns a fresh instance of Entity. The
fresh instance is initialized according to the
template in the argument. The entity
instance is not saved to the database before
its save() method is invoked.

Table 2-3 The IEntityHome Interface Methods (Continued)

Attribute Description
Chapter 248

Programming Interface
Methods
IEntityWhere Interface

Instances of this interface are used to load selected Entity instances
from the database. To make a selection from the database, you create an
EntityWhere object. You then add search criteria on the attributes to the
EntityWhere. Finally, you pass the EntityWhere instance to the
findEntity() method of the EntityHome object to load an array of

IEntity[] searchOnAttribute(SimpleType value)

Searches for Entity instances, where
attribute Attribute has a specific value,
and load them into an array. The type of the
value is the type of the attribute. In many
cases the searchOnAttribute() methods
return more entity instances than you ever
want to retrieve. Use them with discretion.

IEntity[] searchOnAttribute(IReferredEntity
value)

Searches for Entity instances, where
attribute Attribute refers to a specific
instance of an entity, and load them into an
array. The type of the value is the type of the
attribute. In many cases the
searchOnAttribute() methods return more
entity instances than you ever want to
retrieve. Use them with discretion.

Table 2-3 The IEntityHome Interface Methods (Continued)

Attribute Description
Chapter 2 49

Programming Interface
Methods
Entity instances. The instances that are loaded match all the criteria
that have been added to the EntityWhere. The methods of the
IEntityWhere interface methods are shown in Table 2-4.

Table 2-4 The IEntityWhere Interface Methods

Attribute Description

void addContainCriteriumOnStringAttribute(java.lan
g.String value)

Adds a contains-string-criterion on the value of a
string attribute. The value of the string attribute of
all instances that will be retrieved from the database
must contain the string value.

void addCriteriumOnContainedEntity(IContainedEnti
tyWhere where)

Restricts the selection to those instances where the
aggregated instances match the selection on the
contained entity type in the “where” argument.

void addCriteriumOnReferredEntity(IReferredEntity
value)

Restricts the selection to those instances that refer to
referred entity instance value.

void addCriteriumOnAttribute(SimpleType value)

Adds an equal-to search criterion on the simple type
attribute. The value of the attribute of all instances
that will be retrieved from the database must have
this value. AddCriteriumOnAttribute() methods
exist for all attributes that have a simple type. That
is, the type of the attribute is not an entity type from
the Service Desk object model.
Chapter 250

Programming Interface
Methods
void addCriteriumOnAttributeRange(SimpleType[]
values)

Adds a range search criterion on the simple type
attribute. The value of the attribute of all instances
that will be retrieved from the database must be
between the first two values in the values array or
equal to one of them.
addCriteriumOnAttributeRange() methods exist for
all attributes that have a simple type. That is, the
type of the attribute is not an entity type from the
Service Desk object model.
addCriteriumOnAttributeRange() also allows you to
set less than or equal to (<=) or greater than or equal
to (>=) criteria. If you pass null as the upper or lower
bound in the values array, a selection that is bounded
only at the other side is added to the EntityWhere.

Table 2-4 The IEntityWhere Interface Methods (Continued)

Attribute Description
Chapter 2 51

Programming Interface
Methods
IEntityEntitlement Interface

For every Entity type, an IEntityEntitlement interface exists. You can
use it to determine whether the individual properties of instances can be
modified. The IEntityEntitlement interface can also tell you whether
the individual properties are required properties. The methods available
using the IEntityEntitlement interface are shown in Table 2-5.

The Session Class

The Session is the implementation of a session to a running Service
Desk management server. Once you have a connection, you can use it to
communicate with the server. The connection is to an instance of the
workflow layer in the server that keeps state information for your client

Table 2-5 The IEntityEntitlement Interface Methods

Attribute Description

boolean isModifyAllowedAttribute()

Checks whether attribute Attribute can be
modified. The return value depends on the user who
is logged on and on the entitlement-related properties
of the attribute of this type of entity instance.

This method can be used to prevent the save()
method from throwing an exception. In addition to
the entitlement of a particular attribute for all
instances of a certain entity type, there are many
reasons that a save() can be forbidden. These
situations are not checked by the
isModifyAllowedAttribute() method. The
modification of a particular instance might be
forbidden, although the attributes of instances in
general are freely changeable. Always try to catch
exceptions when you save() an entity instance.

boolean isRequiredAttribute()

Checks whether Attribute is a required attribute. If
you do not set the attribute, and it is not set by the
template that you used to make an instance of this
type of entity, saving the instance will fail.
Chapter 252

Programming Interface
Methods
application. To log on to a management server, you provide a username
and a password that belong to an account. You can use any account that
is authorized to use the Web API.

For an economic use of licenses and conservative security, it might be
wise to create a special user for the Web API as a whole, or for the
separate applications that use it.

A Web API application receives the permissions of the user who is logged
on to the current session. If you are using the Web API as an extension
mechanism to Service Desk, this may sound too restrictive. For a
detailed discussion of Service Desk entitlement, refer to the Service Desk
Administrator’s Guide.

Accounts that belong to the named license, or to the concurrent users
license groups, consume one of the licenses that you have.
Chapter 2 53

Programming Interface
Methods
Table 2-6 Session Interface Methods

Attribute Description

IEntityHome getEntityHome()

Gets the home interface for entity Entity. Home
interfaces give descriptive information about the
entity type. For many entities, the home is the
interface to the database that stores them and the
factory object that can be used to make new ones.

static
Session

openSession(java.lang.String server,

java.lang.String username

java.lang.String password)

This is the way to obtain a connection to a
management server. The arguments are as follows:

• server: The server to connect to. This string
argument can have the following formats:

— computer_name

— IP_address

— computer_name:port

— IP_address:port

• username: The username of the account you
want to use. It must be a known Service Desk
user who is allowed to log on.

• password: The password of the account you
want to use.

This method can fail. Always catch the
RuntimeException that it might throw.
Chapter 254

Programming Interface
Methods
void setApplicationSettings(IWebApiApplication
application)

Lets IWebApplication application determine
which attributes of the different entity types
instances are retrieved immediately, and which
attributes are retrieved only when they are actually
used. The mechanism only controls the methods
that return arrays of entity instances (that is, the
findEntity() methods of the IEntityHomes).
Settings are usually done once, at startup. There is
no need to make them available afterwards, so a
corresponding getApplicationSettings method is
not offered.

void closeConnection()

Closes the connection that you have to a workflow
layer in the management server. Connections that
are not used are closed after a certain amount of
time. If you want to clean up the unwanted files
that you leave behind, you can use this method to
free up resources in the management server
immediately. This method makes the connection
worthless, so it does no harm to forget the reference
to the object as well.

Table 2-6 Session Interface Methods (Continued)

Attribute Description
Chapter 2 55

Programming Interface
Exception Handling
Exception Handling
The Web API throws only one kind of exception: the Runtime Exception.
The Web API has been designed in such a way that exceptions are rare in
a well-designed application. Exceptions that do occur are a fundamental
part of the application logic.

An exception is more than just part of the programming interface. The
message contained in the exception is intended for users. Usually, it is
sufficient to display the message, and either restart the action as a whole
or just to exit.

Subtle exception handling logic is performed inside the Web API classes.
The exceptions that are thrown concern severe problems or the
application logic itself. Because the message in the exception is aimed at
users, it is provided in their language as soon as the Web API identifies
their language. That is, as soon as a user is logged on.

What you do when the Web API throws an exception in your application
is largely an issue of personal preference. This decision depends on the
action, not on the exception.
Chapter 256

Programming Interface
Views
Views
Views are a means to limit both the set of entity instances and the set of
attributes of the instances that are retrieved from the database.
Additionally, a view can have an ordering on certain attributes, and it
can be grouped using certain attributes. In many respects, a view is
comparable to an SQL “select” statement. Views can be defined in the
Service Desk administrator's console. The Web API uses only the
ordering and the selection on the rows of the view. With the Web API,
limitations on the set of columns that is retrieved come from application
settings, not from the views. The
IEntityHome.findEntity(com.hp.ov.obs.OID viewId) method allows
you to use views that you have defined in the administrator's console
from your Web API application. Using views saves you from having to
explicitly code the selection, and it gives better performance because
your calls to make the selection do not have to be passed to the server
over the network.

An additional mechanism to improve performance exists. The Service
Desk administrator's console allows you to control which attributes of an
entity instance are initially returned to the Web API client by the
methods that return an array of entity instances. Because attributes that
have not been returned initially have to be fetched one by one over the
network, web application profiles are a powerful performance-tuning
tool.

The settings are organized in named groups. The groups are available to
a Web API application as IWebApiApplication instances. By default,
only the object ID and a few attributes are returned when a set of
instances is retrieved. The IWebApiApplication settings allow you to
return more attributes with the array. The settings eliminate the need to
fetch attributes that are needed later on individually. That is, those
attributes that have not yet been returned with the array are retrieved
when you ask for them. On the one hand, limiting the number of
attributes reduces the amount of data that is retrieved from the
database, and that is returned over the network. This improves
performance in terms of client memory and network traffic. On the other
hand, when your application retrieves attribute values one by one, its
performance is degraded by individual calls over the network connection.
Chapter 2 57

Programming Interface
Views
Returning exactly the attributes that you want (and nothing more) is
optimal. Experience suggests that fetching too many attributes is less
harmful than fetching too few.
Chapter 258

Programming Interface
Programming Considerations
Programming Considerations
The Web API is designed for transaction-based applications. This is
typical of an intranet application in which users fill out forms and
browse data. All the application logic is implemented inside transactions
that receive the user input and return some data. The data is intended
for the user’s immediate consumption. Also, in a low to medium volume
situation, the Web API can be used to implement database rule actions.
This section highlights some of the restrictions on the Web API when
used in non-typical scenarios.

Not Intended for Field-by-Field Validation

It is possible to develop applications that do not fit the scenario described
above. However, the performance of these applications may well be less
than optimal. If you want to use the Web API for purposes other than
those for which it was designed, you should be aware of some of the
disadvantages before you design and develop your application.

The Service Desk Web API is designed for transaction-based
applications. Because most of the information that the Service Desk
graphical user interface (GUI) client uses for field-by-field validation is
available through the Web API, you could write your own field validation
code and incorporate it into your application. However, UI rules are not
available.

Because all Web API calls are made over the network, for performance
reasons you need to limit the number of mini-transactions that you make
to perform field-by-field validation. Also, even if you check user input
extensively, you need to consider proper handling of catched exceptions.

Implementing Service Desk UI Rules

Not only is trying to use the Web API to implement UI rules for input
validation in the Service Desk GUI client application very difficult, it
also has severe disadvantages.

Because a Java Virtual Machine (JVM) has to be started, and the
application has to log on to the management server, every time one of
these small checks is performed, performance suffers.
Chapter 2 59

Programming Interface
Programming Considerations
In addition, because you access the same database as the GUI client, but
using a different route, it will be very difficult to avoid database
concurrency issues (such as locking conflicts) between the two programs,
as well as failed transactions, because one program changes a database
record that the other also owns.

Not Optimal for Bulk Exchange

Applications that use the Web API to update or consult the database on a
much larger scale than online transaction processing may suffer from
performance problems. The Web API allows you to add entity instances
only to the database one by one, using the
IEntityHome.openNewEntity()..IEntity.save() path. Feeding a large
number of entities to Service Desk with the Web API causes Service
Desk to validate every entity instance individually, and to perform the
insertion of the individual entities as separate database transactions.
For medium-volume data feed applications, this may not be a problem.
However, when you use the Web API to feed a lot of data to Service Desk
at once, performance suffers.

A similar restriction also applies in the opposite direction. The Web API
returns sets of entity instances in arrays. For a high-volume-at-once
application, the size of the arrays would become prohibitive. Either many
attribute values are returned with the arrays, and the arrays consume a
lot of memory, or the attributes are fetched over the network one by one.
Neither situation is suitable for large-scale data extraction.

From the point of view of performance, Service Desk Data Exchange is
superior to the Web API for bulk data exchange.

Authentication

Web API applications need to log into a management server with an
account and password. Although you can use any account that is
authorized to use the Web API, for an efficient uses of licenses and
conservative security, it may be wise to create a special user for the Web
API as a whole, or for the separate applications that use it.

A Web API application receives the permissions of the user who is logged
on to the current session. Although these permissions might appear too
restrictive when using the Web API as an extension mechanism to
Service Desk, it is a restriction you need to be aware of when designing
your Web API applications.
Chapter 260

Programming Interface
Programming Considerations
Web API Sessions are Not Thread-Safe

The state information and the ITSM Transaction Protocol (ITP)
communication protocol that communicates with the workflow layer on
the other side are not thread-safe. Therefore, do not share sessions
between threads.

Actually, when you consider this restriction from a design perspective,
you realize that it is almost unavoidable. When a session is used to
communicate with the workflow layer in the management server, it
builds up a context with a state. Another thread that uses the same
session will change and probably destroy the state. Therefore, do not
share sessions between threads. To avoid concurrency issues, do not use
more than one session for a transaction.

Allow for Concurrency Issues

Service Desk uses optimistic concurrency control. This means that your
application can read data that has been read by other users. The
advantage of this is all data is accessible at every moment. The
disadvantage is that Service Desk and the database system have to make
decisions about the validity of the database updates at the moment that
they are submitted. An object stored in the database that has been
changed by another user before you have the possibility to save it is a
possible cause for transactions to fail. Your application design must retry
important transactions that fail.

Initialization is Expensive

A Java program that opens a Web API session, does a few simple things
and then exits, has the advantage that it is easy to understand and easy
to debug. However, if your application invokes this kind of program with
varying frequency, there may be a performance problem. Loading and
starting a Java Virtual Machine (JVM) is probably more work than
executing your small program.

In addition, once your small program is started, logging on to the Service
Desk management server is probably more expensive than the actual
application actions of your small program. An application that frequently
uses the Web API for relatively small transactions must not use separate
Java programs that open and close sessions to the management server.
You should try to build programs that exist longer and that use just one
session during their whole use.
Chapter 2 61

Programming Interface
Programming Considerations
Be Careful with Logging

Some of the provided examples use System.out.println() to inform you of
the execution progress. For simple command-line applications, this is the
simplest and most appropriate way to produce output.

However, if you use the Web API to implement database rule actions or
to write servlets, severe disadvantages exist. In the best case, your
output can be lost. In the worst case, uncontrolled output will hang your
server (for example, when the program pops up a dialog box and only
continues after the “OK” button is pressed). Rule actions, programs that
are started by the Service Desk agent, do not have their standard output
connected to a suitable medium. Therefore, you should not use standard
output.

If your application produces informative output of the
System.out.println() type, you should make sure that it is redirected
to a log file every time it is used as a rule action. There are concurrency
issues with the log file. When two rule actions execute simultaneously,
their output is mixed. To avoid this, use a unique file name. For example,
one based on the functional ID of one of the entity instances involved.
Remember also that it is your responsibility to clean up the log files at
some point.

In a servlet, use one of the GenericServlet.log() methods to produce
log application progress information, or to signal error situations. This is
a way to produce logging information in a servlet container.

Run Simple Tests

Be aware that running Service Desk rule actions and Java HTTP
servlets are complex subjects. While not difficult from a technical point of
view, every time you install software in the context of an environment,
your unfamiliarity with the environment greatly complicates your work.
Therefore, before you build a rule action or a servlet, test your code in a
simple standalone command-line program. If you encounter difficulties,
go back to your simple command-line program. A frequent cause of
problems with rule actions is that the Service Desk agent is not running,
or that it was never installed.
Chapter 262

Programming Interface
Java Servlets
Java Servlets
This section describes the use of Java HTTP servlets with the Service
Desk Web API. An extended example of deploying on the Tomcat Web
Server is also presented.

Introduction

Java HTTP servlets are small applications that live in a servlet
container. Typically, a servlet container complements an HTTP web
server, and the servlets serve HTTP requests that come in over the
network.

The Service Desk Web API is designed to allow you to use Service Desk
from Java servlets. Within this setup, there are two levels of client-server
operation. The servlet is a server for the browser client but, at the same
time, it is a client of the Service Desk management server by using the
Web API.

The servlet container keeps a state for the servlets in the form of a
session. The session is a servlet container-specific session. However, it
can keep track of session-specific data for servlets. When using the Web
API, the servlet container session is used to remember the Service Desk
session object.

Figure 2-1 Servlets in the Web API Architecture
Chapter 2 63

Programming Interface
Java Servlets
The Apache Web Server and the Tomcat Servlet Container must run on
the same machine (Machine X in the figure). The Service Desk
management server and the Database can be installed on the same
machine, but this is not mandatory.

The examples directory contains an example of a Java HTTP servlet
illustrating some of the issues involved in developing and deploying
HTTP servlets using the Service Desk Web API. The servlet shows how
to log in, build a session, and manage data. Refer to the documented
source for more information on its use.

Examples

The com.hp.ov.sd.webapi.servlets package is a Java servlet that
implements a simplified service call management application. After
installing the example tree, the servlet source files and class files are
located in
C:\web-api\web-api-examples\com\hp\ov\sd\webapi\servlets.
Use the compileServlets.bat or compileServlets.sh file to compile
the servlet.

Deployment

This section presents an example of how to deploy a servlet on the
Tomcat Web Server. For convenience, the sources are provided for you in
the Examples directory. However, you will still need to modify the
Tomcat configuration, and to deploy the built package.

The source files provided for this example are shown in Table 2-7.

Table 2-7 Web API Example Files

File Description

compileServlets.bat,
compileServlets.sh

Compile the servlet example.

index.html Entry page for the example application.
This will be included in
web-api-example.war.
Chapter 264

Programming Interface
Java Servlets
The Web ARchive (WAR) file containing the application-specific files now
needs to be built. In this very simple example, the only
application-specific files are the servlet class, an index.html file, the
web-api.jar library, and a deployment descriptor file (web.xml).

The deployment descriptor file tells Tomcat which servlet classes
correspond to which invocation URLs. The application servlets can use
the deployment descriptor file to obtain application parameters. Because
the example application has only one servlet class and no configurable
parameters, the contents of the web.xml file are very simple.

Refer to the Javasoft servlet specification for information about the
web.xml file, and the content requirements of the application .war file. A
complete explanation of the deployment and configuration of Java Web
applications is beyond the scope of this guide. It is recommended that
you review the files provided with the example application. This will give
you a better understanding of the Tomcat documentation. Most of the
files contain references to the standard installation locations for the
Service Desk Web API and Service Pages. If you have installed the
software in different locations, you will need to modify the files.

To compile, package and deploy the example application, use the scripts
shown in Table 2-7. Then restart Tomcat. The example application
should now work. Assuming that you used the standard installation
locations, the URL of the start page is
http://localhost:8080/web-api-example/index.html. If you have loaded the
demonstration database, a user “OLSEK” with password “servicedesk”
exists. It is the caller of exactly one service call. Use the example
application to enter some calls.

createWAR.bat,
createWAR.sh

Script to build the web-api-example.war
for the example. After the server.xml is
updated, web-api-example.war is the
complete example web application.

installWAR.bat,
installWAR.sh

Copies the web-api-example.war file to
the correct location. The next time the
Tomcat Web Server is started, the example
application will work.

Table 2-7 Web API Example Files (Continued)

File Description
Chapter 2 65

Programming Interface
Java Servlets
NOTE This example is a practical application of an article by James Goodwill
on the O’Reilly web site. For the full text, refer the original article:
http://www.onjava.com/pub/a/onjava/2001/04/19/tomcat.html.
Chapter 266

3 Changes From Service Desk 4.5
to 5.0

Because the Object Model of Service Desk has changed between version
4.5 and version 5.0, inevitably the Web API has changed as well. This
Chapter 3 67

Changes From Service Desk 4.5 to 5.0
appendix describes the differences. Furthermore, it provides links to
documents listing the model changes between Service Desk 4.5 and 5.0.
After installation, these documents can be found in the /paperdocs/
folder of the target machine.

The document ModelChanges4.5to5.0(UInames).html lists the
differences between version 4.5 and version 5.0 based on class and
property names as used in the Service Desk 5.0 GUI. The document
ModelChanges4.5to5.0(javanames).html lists the differences between
version 4.5 and version 5.0 based on attribute names as used in the
Service Desk 5.0 Java source code. The content of these documents
reflects the out-of-the-box situation, that is, before any label changes (for
instance for localization) are implemented. These documents contain a
reference to the Service Desk 5.0 build number to which they apply.

For classes and properties that cannot be presented in the GUI, the Web
API methods contain the string ‘Undisplayable’. For example: for cdm
entity EMailAddress a method exists to retrieve the address:
getUndisplayableAddressLowerCase().

The data type of the object ID class (OID) has changed. In SD 4.5 the
type of an OID was java.lang.Long. In SD 5.0 the type of an OID is
com.hp.ov.obs.OID.

This affects the following methods.

The type of the return variable of the following methods is
com.hp.ov.obs.OID:

• getOID()

• getDefaultView()

• getEntityID()

The type of the parameter for the following methods is
com.hp.ov.obs.OID:

• delete(id)

• findEntity(view)

• openEntity(oid)

• openNewEntity(template)
Chapter 368

Changes From Service Desk 4.5 to 5.0
The name of the Session class has changed from ApiSDSession (in SD
4.5) to Session (in SD 5.0).

In SD 4.5: all modules are stored in one package. In SD 5.0: one package
per module, so each module is stored in its own package.
Chapter 3 69

Changes From Service Desk 4.5 to 5.0
Chapter 370

	Documentation Updates
	Support
	Preface
	1 Getting Started
	Web API
	Service Desk Architecture
	Figure�1�1 Service Desk Logical Layers

	Installation
	Requirements
	Generation of the Web API
	Running the Installation Program
	Extracting the Examples
	Checking the Java Class Path

	JavaDoc Documentation Tree
	Your First Web API Application
	<TABLE>

	Web API Examples
	Example1.java
	Example2.java
	Example3.java
	Example4.java
	Example5.java
	Example6.java
	Example7.java
	Example8.java
	Example9.java
	RelateSCtoChange.java
	RelateSCtoProblem.java
	SetFolderToCaller.java
	SetSLA.java

	2 Programming Interface
	Web API Structure
	Programming Concepts
	Service Desk Object Model
	Interfaces
	Entities
	Entity Home
	Naming Conventions
	Entity Interface
	<TABLE>

	Attributes

	Methods
	IEntity Interface Methods
	<TABLE>

	IEntityHome Interface Methods
	<TABLE>

	IEntityWhere Interface
	<TABLE>

	IEntityEntitlement Interface
	<TABLE>

	The Session Class
	<TABLE>

	Exception Handling
	Views
	Programming Considerations
	Not Intended for Field-by-Field Validation
	Implementing Service Desk UI Rules
	Not Optimal for Bulk Exchange
	Authentication
	Web API Sessions are Not Thread-Safe
	Allow for Concurrency Issues
	Initialization is Expensive
	Be Careful with Logging
	Run Simple Tests

	Java Servlets
	Introduction
	Figure�2�1 Servlets in the Web API Architecture

	Examples
	Deployment
	<TABLE>

	3 Changes From Service Desk 4.5 to 5.0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

