HP OpenView Select Audit

For the Windows®, HP-UX®, and Linux® Operating Systems

Software Version: 1.01

Report Developer’s Guide

Document Release Date: November 2006 b ®
Software Release Date: November 2006 (ﬁ l

invent

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2006 Hewlett-Packard Development Company, L.P.
© Copyright 2001-2006 JasperSoft Corporation

Trademark Notices

HP OpenView Select Audit includes the following software developed by third parties:
e ANTLR Copyright 2005 Terrence Parr.

e commons-logging from the Apache Software Foundation.

e Install Anywhere, Copyright 2004 Zero G Software, Inc.

e Jasper Decisions Copyright 2000-2006 JasperSoft Corporation.
e JavaScript Tree, Copyright 2002-2003 Geir Landro.

e Legion of the Bouncy Castle developed by Bouncy Castle.

e log4d from the Apache Software Foundation.

e OpenAdaptor from the Software Conservancy.

e Quartz, Copyright 2004 - 2005 OpenSymphony

e spring-framework from the Apache Software Foundation.

e Tomahawk from the Apache Software Foundation.

e treeviewjavascript from GubuSoft.

e Xalan-Java from the Apache Software Foundation.

e Xerces-Java version from the Apache Software Foundation.

Documentation Updates

This manual’s title page contains the following identifying information:

e Software version number, which indicates the software version

e Document release date, which changes each time the document is updated

e Software release date, which indicates the release date of this version of the software

To check for recent updates, or to verify that you are using the most recent edition of a document, go to:
http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

Support

You can visit the HP OpenView Support web site at:
www.hp.com/managementsoftware/support

HP OpenView online support provides an efficient way to access interactive technical support tools. As a
valued support customer, you can benefit by using the support site to:

e Search for knowledge documents of interest

e Submit and track support cases and enhancement requests
e Download software patches

e Manage support contracts

e Look up HP support contacts

¢ Review information about available services

e Enter into discussions with other software customers

e Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract.

To find more information about access levels, go to:
www.hp.com/managementsoftware/access_level
To register for an HP Passport ID, go to:

www.managementsoftware.hp.com/passport-registration.html

Contents

T OV EIVIEW . . o oo 11
Who is This Book For? e e e 11
What’s in This booK? e e e e 12
The Select Audit Documentation Set e 13

2 Terms and CONCEPESo\ttt et et 15
R L. .o e e 15
L7030 oo =3 o | 2 16
L0703 31) 17
Parameter. 17
Profile . . . e e 17
Data Source e 18
QU . .ttt e e e 18

Data Blockso e e e 19
ThemeE 19
Catalog . . . e e e e e 19

Catalog QUeTIES.ottt e e 19

Catalog Parameters e e e 20

Catalog Themest e e e e e e e e 20

Catalog Permissionsttt e e e 20
ATy . . e e e e e 20
Client Tools.ot e e 20
Ad Hoe Wizardot e e e e e e 20
Permissions, Directories, and ACLS e 21
B TeSSIOM .« . .. e e e 21
Uploading and Publishing. e e 22
Schedule e e e 22
Report APIs 22

H TP AP . . o e e e e 22

Extensibility AP 22

SOAP AP . . 22
Report Variables. e e e 23

3 RDL OVeIVIEW 25
Top-level Tags. . ..o 25
Prope s . . . e e 25
Parameters e e 26
L0703 01175 o 1 7 26

T v ' V= 26
Layout. . .. e e 27
Report Creation TOOIS oo 29
CLEnt Tools.ttt e 29
Report Designer e 29
Ad Hoc Wizardo 29
Parameters 31
Parameters and RD L. e 31
Content Parameters e e 32
Layout Parameters e e 32
Tips for Using Parameters. e e e e 32
Tips for the Content Section. e e e e e 32
Making sure the parameter hasavalue i, 32
Making sure the parameter hasonlyonevalue. 33

Tips for the Layout Section e e e e i e 33
Example . .. e e e 33
Guidelines for Developing Reports.o 39
Using the Report Designer e e e e e e e e e 39
Test-publishing Your Report e e e e 40
Copying Your Report to the rdl Directory i et e i 40
Using the Developers Center. e e e e e e 40
Publishing Your Report e e e 40
Working with Non-SQL Data Sourcest 41
Queries and Parameters 41
Non-SQL SELECT “QUETies”ttt e e e e e e e e 41
Parameters Not in SQL SELECT Statements 41
XML Data SoUrCeS . . . o oottt e 42
Select Audit Parameters and XML Data Sources.ttt 42
Select Audit Parameters and XQuUeries. it e e 42
Designating Rows and Columns from an XML Data Source 44
Examples. . .. o e e e e 45
EJB Data Sources i 46
Setting Up a JNDI Connectionttt et et 47
WebLogic Example e e 48
WebSphere Example. 48
Example Java Files. e 48
Basic EJB Example e e e 49
Parameterized EJB Example. 50
Stored Procedure Data Sources. e 50
Example Stored Procedure Arguments i 50
Handling Return Values. e 51

Return values from Oracle stored procedures i, 51

8 Select Audit APls . ..o 53

AP OVeIVIEW . . .\ttt et e e e e e e e e e e e e 53
When to Use Each APT e e e 54
H T P AP . o 54
URL Syntax for the HTTP API e e e e e e 54
Example HTTP Request. i et e e e e e e e 54
SOA P AP . . . 55
Setting up the SOAP AP e e e e 55
dJava application. e 55
Non-Java application. e e 55
Types of Methods e e e e e e e e 56
SeSSIoN MAaNaZeMeENtottt e 56
Labrary . .. e 56
DareCtOry. . . . e e e 56
Report execution e 57
Schedule. e e e 57

Java Client SOAP AP e 57
Extensibility AP e 57
Writing a Custom Data Source i e e e 57
Writing a Custom XQuery Data Source i 59
Writing a Custom Directory Provider 60
Writing a Custom Authentication Module 60

9 Managing Images 61
Static and Dynamic Images. e e 61
Static ImMages.t e e 61
Dynamic Imagesottt e e e 61
Image Usage.o e e e 62
Imagesinan RDL File e e e e e e 62
Images in a Component File. e 62
Background Images for Charts i e 62
Fill Images for Charts. e e e e e e e e 62
Sorting Icon Imagest e e e e 63
Dynamic Images Generated by Chart Components 63
Deploying Images.o e e e 63
Configuring the Image Directory. e e e e 63
Temporary Images Directory per Server Instance 63
The Image Serviet e e e e e 64
Images in the Library 64
Images in the Configurable Images directory 64
Per-server temporary chart images i e 64
Authentication and Authorization e 65
Library Permissionso e e e 65
10 Incorporating Reports infto HTML 67
Using the StandardDashboard e e e 67
Using the StandardRecordGrid or StandardBandedTable 67

Using Templates 67

Changing the Default Templates. e e e e e e 68
Specifying the Templates for a Report. e e 68
Writing Your Own HTML Page. e e e e e 68
Example. . ..o e e e 69
Calling Reports from JSP or Servlets. 70
11 Using JavaScript in RDL o 71
Where in RDL to Put the JavaScript e e e e 71
Examples e 71
Directly Invoking JavaScripto e e 72
JavaScript Inside a Function e 72
12 Formatting PDF Output.o 75
Technical OVervVIEWttt e et e et e e e e e e e e 75
RDL Arguments for PDF Formatting. e e e e 76
Page Dimensions e 76
Customizing the Header and Footer. i i e e 76
Page Breaks e 77
PopCharts Image Size e e e 77
Miscellaneous Formatting Tips.ttt e e e e 77
Cell Paddingot e e 77
Cell ColorS . . ot e e 77
Checking XSL:FO Output i e e e e e e e e e e e 78
COMSt ANt S . . o Lt e 78
Repeating Table Headers e e e e e e e 78
Custom CompPOnEntS.ttt e 78
HyperlinKks.o e 78
StandardInclude and CDATA Markupoi i e e et e e 78
Fonts . . e e 78
Oversized Page Content i et e e e e 79

13 Runtime RDL Processingo 81
Request Received e 81
Request Passed Through the Authentication Filter 82
Parameters Extracted e 82
RDL File Parsed.o e e e e 82
Report Output Constructed. e 82
Report Output Sent to the Client e e e 83
14 PopChart SUPPOrt 85
PopChart Basics.o e e e e 85
ermInOlOgYottt 85
Data Requirements for PopChart Types. i e e e 86
How Select Audit uses PopCharts. e e e e e 87
How PopCharts are Represented in RDL i e 87
Using the Extra Argument. i e e 88

Adding drilldown capability 88

Pie Chart TS . ..ottt e e e 88
Using the addPCXML and setPCXMLAttribute Tags. 89
Limitationso e 90
Select Audit Variable Syntax. 91
Parameter Variables 91
Content Block Parameter Syntaxt e 91
Examples e e e 92
Layout Block Parameter Syntax i e e e 92
Parameter Types. . ..ottt e e e 93
User Variables e e 93
Content Block User Variable Syntax. i e e i 93
Examples e 93
Layout Block Parameter Syntax i e e 94
User Variable Typeso e 94
Data Variableso 94
Data Variable Typeso e e e 95
Cell Name Variables e e e e e e 95
Cell Name Variable Typesot e e e e e e e e e e e e e 95
INdeX . .o 97

70

1

Overview

Select Audit makes reporting easy for the developer and flexible for the end user. Using a
Select Audit report, an end user can easily connect to live data and display it in a web browser
or Microsoft Excel, or print or save it in any of a number of formats. The end user can change
the report’s data, layout, and appearance at runtime. No software other than the browser is
required on the end user’s machine.

Select Audit provides tools for report developers with different levels of expertise, experience,
and authorization. It also provides a web-based tool for end users to easily develop their own
ad hoc reports.

The web-based Report Server processes complex data queries and handles dynamic report
formatting, security, and scheduling.

The data and presentation elements that make up each report are easy to store and reuse.

The files underlying each report are clear text and use an XML-based format, making it
possible to connect your report to many types of data sources and application servers. These
open underlying files allow experts to make low-level changes to a report file using only a text
editor.

Who is This Book For?

This book uses the following terms for the different types of people who use Select Audit:

e Developers create reports for others to use. Some developers are highly skilled and
experienced in all aspects of report development, some specialize in either data or
presentation, and some have only a high-level understanding of report development.
Select Audit provides tools for all these kinds of developers.

e Administrators manage configuration, security, database access, and troubleshooting.

e End Users run web-based reports created by developers and managed by administrators,
create their own ad hoc reports based on reports created by developers, or use Microsoft
Excel’s graphing and charting capabilities to view reports.

The HP OpenView Select Audit 1.01 Report Developer’s Guide is addressed to developers. This
is the first guide that developers should read.

17

12

What's in This book?

The chapters in this book are given in Table 1.

Tablel Chapter Summary

Chapter

Description

Chapter 1, Overview

This chapter describes the HP OpenView
Select Audit 1.01 Report Developer’s Guide
and its contents.

Chapter 2, Terms and Concepts

Defines the terms and concepts used in
Select Audit.

Chapter 3, RDL Overview

Introduces the XML-based language that
defines a report.

Chapter 4, Report Creation Tools

Introduces the three report-building
applications.

Chapter 5, Server-side
Architecture

Shows the architecture of the Report Server
and how it connects to data sources,
application servers, and external directories.

Chapter 5, Parameters

Shows how to use Select Audit parameters.

Chapter 6, Guidelines for
Developing Reports

Describes the typical report development
cycle.

Chapter 7, Working with
Non-SQL Data Sources

Gives pointers for using Select Audit with
XML, EJB, or stored procedures as a data
source.

Chapter 8, Select Audit APIs

Introduces the APIs included in Select Audit.

Chapter 10, Security

Introduces Select Audit’s security provisions.

Chapter 9, Managing Images

Shows how to manage report images.

Chapter 10, Incorporating
Reports into HTML

Shows the various ways to embed Select
Audit reports in your application.

Chapter 11, Using JavaScript in
RDL

Shows how to enhance your reports using
JavaScript.

Chapter 12, Formatting PDF
Output

This chapter provides technical information
and stylistic guidelines for creating
well-formatted PDF report output.

Chapter 13, Runtime RDL
Processing

This chapter shows how RDL is processed at
runtime.

Chapter 14, PopChart Support

Describes Select Audit’s optional PopChart
support.

Chapter 17, Sample Application

Introduces the sample application.

Appendix A, Select Audit Variable
Syntax

Describes the syntax of parameters, user
variables, and query results in RDL.

Chapter 1

The Select Audit Documentation Set

Overview

This manual refers to the following Select Audit documents. These documents are installed
with Select Audit and are available in the <install path>/docs folder where
<install path>represents the path where Select Audit is installed.

HP OpenView Select Audit 1.01 Installation Guide, © Copyright 2006 Hewlett-Packard
Development Company, L.P. (installation guide.pdf)

HP OpenView Select Audit 1.01 Administration Guide, © Copyright 2006 Hewlett-Packard
Development Company, L.P. (administration guide.pdf).

HP OpenView Select Audit 1.01 Concepts Guide, © Copyright 2006 Hewlett-Packard
Development Company, L.P. (concepts guide.pdf)

HP OpenView Select Audit 1.01 Sarbanes-Oxley Model Guide, © Copyright 2006
Hewlett-Packard Development Company, L.P. (sb_model guide.pdf).

HP OpenView Select Audit 1.01 Report Center User’s Guide, © Copyright 2006
Hewlett-Packard Development Company, L.P. (rpt center guide.pdf)

HP OpenView Select Audit 1.01 Report Designer’s Guide, © Copyright 2006
Hewlett-Packard Development Company, L.P. (rpt design guide.pdf)

HP OpenView Select Audit 1.01 Report Developer’s Guide, © Copyright 2006
Hewlett-Packard Development Company, L.P. (rpt design guide.pdf)

Online help is available with the Report generation components.

13

14

Chapter 1

2 Terms and Concepts

This chapter introduces terms important to Select Audit reports. Most of these terms are
standard English words but have specific meanings in the Select Audit context.

This chapter defines the following terms as used in Select Audit reports and related
documentation:

e RDL on page 15

e Component on page 16

¢ Control on page 17

e Parameter on page 17

e Profile on page 17

e Data Source on page 18

e Query on page 18

e Theme on page 19

e (Catalog on page 19

e Library on page 20

¢ (Client Tools on page 20

e Ad Hoc Wizard on page 20

e Permissions, Directories, and ACLs on page 21
e Expression on page 21

e Uploading and Publishing on page 22
e Schedule on page 22

e Report APIs on page 22

e Report Variables on page 23

RDL

The basis of an Select Audit report is the report file. The report file determines the report’s
content and layout. This file contains other information as well, such as how the report
handles sorting and pagination.

Select Audit report files use a format called RDL (pronounced “riddle”). Report files use the
.rd1 extension. RDL adheres to the XML standard.

The server program that renders RDL into an interactive report is called the Report Server.

15

76

Like all XML-based languages, RDL is easily modifiable in any text editor. In fact, the Query
Designer and Report Designer provide a text area for viewing and modifying the RDL file. You
can write an RDL file from scratch, or you can create it using one or more of the client tools
and modify it later if you choose. (See Client Tools on page 29 for more detail on the client
tools.)

An end user can take an existing report (which may or may not contain layout information)
and create layout for her own report using the Ad Hoc Wizard.

To develop Select Audit reports, it is helpful to understand RDL’s high-level structure. For that
high-level overview, see RDL Overview on page 25.

Component

Reports present data in certain standard formats, called components. The Report Server
provides several built-in components. You have great flexibility in configuring the appearance
of these components.

The basis of each supplied component is a . jsp file. You can create a custom component by
writing your own . jsp file or editing an existing one. This process is not documented in this
release.

In this release of Select Audit, the supplied components are listed below:

Table 2 Select Audit Supplied Components

Component Description

StandardTable A simple grid, one grid row per data row, and one grid column per
data column. The table can also have a title, headers and footers
for the columns, and a header and footer for the whole table.

StandardGroupTable | Like the StandardTable, but the rows can optionally be
grouped, the groups can nest, and each group can have its own
header and footer.

StandardCrossTab A simple grid with grouping over both rows and columns. The
column grouping typically uses time intervals.

StandardChart A column, line, area, or bar chart. Many variants of column, line,
area, and bar charts are provided.

StandardPieChart A pie chart. Many variants of each chart type are provided.

StandardRecordGrid | A flexible table that allows you to specify the number of grid
rows and columns for each header, footer, data column, data row,
and cell. You can also specify exact grid row and column sizes for
PDF output.

StandardBandedTable | Like the StandardRecordGrid, but the output can be grouped
in bands with very flexible designs. The bands can nest. You can
define headers and footers for each band.

StandardDashboard A grid that contains other components. Use
StandardDashboard to arrange the positioning of other
components relative to one another.

Chapter 2

Table 2 Select Audit Supplied Components (cont’d)

Component Description

StandardPopChart Graphs and charts that use Corda’s PopChart rendering tool.

This component is not available.

In the Report Designer, StandardBandedTable is used for all tables.

For a description of how to create components using the Report Designer, see the HP
OpenView Select Audit 1.01 Report Designer’s Guide.

Control

A control is an area in the browser window where the end user can specify a value or initiate
an action. Examples of controls are radio buttons, text fields, and submit buttons.

Parameter

In Select Audit, parameters are a type of Report Variables whose values can be set by the
end user at runtime. Parameters are bound to controls on the report. For example, parameters
can allow the end user to specify that she wants her report output to show only data from the
Eastern region, or to display only page 5 of the full output.

The Client Tools let you create and manage parameters. You can specify the parameter name,
the kind of values it can take and how the values are presented, and optional default values.
You can also save parameters to or fetch them from the Catalog.

For more detail on parameters, see Parameters on page 31. For a description of parameter
syntax, see Select Audit Variable Syntax on page 91.

Profile

Typically, a particular end user uses the same set(s) of layout parameters each time she runs
a report. For example, the manager of the Vancouver office may always choose only Western
Canada sales data, and she may always prefer to see her report in earthtone colors. You, the
developer, can create a control on the report that allows the end user to assign a name to the
version of the report specifying, say, “Western Canada” as the region parameter and
“Earthtone” as the theme parameter. (See Theme on page 19 for more information on themes.)

The name that the end user assigns to a set of parameters for a certain report is called a
profile. When the end user opens a report in the Report Center (see Library on page 33), she
can choose the profile for the report results.

The profile name is limited to letters, digits, and spaces.

Terms and Concepts 17

18

Profile controls are optional. A report cannot contain more than one profile control.

Data Source

Query

A data source can be:

a relational database management system (RDBMS) that supports JDBC, accessed either
by SQL statements or stored procedures

an XML file
an Enterprise Java Bean (EJB)
a stored procedure

a custom source (a Java class implementing a particular interface)

For more details on using XML, EJB, or stored procedure data sources, see Working with
Non-SQL Data Sources on page 41.

In Select Audit’s client tools, you interact with the data source by specifying:

the connection name (the connection is defined in an administration file)

the “columns” returned by the data source

The term query is used to mean several different things in Select Audit:

A SQL statement that returns values. This may be a SELECT statement or a stored
procedure call. In RDI, this is a sql block within a data block.

A call to an XML data source that returns values. In RDL, this is an xmlsource block
within a data block.

A call to an Enterprise Java Bean that returns values. In RDL, this is an ejb block within
a data block.

An entire <XMLTag>data block in an RDL file (See Data Blocks on page 19).

An entire RDL file that contains only data information. (The term query is used this way
in the Catalog.)

The “queries” saved by the Client Tools are <XxMLTag>data blocks or complete RDL files
containing a single <XMLTag>data block. The Client Tools always save a connection name
and returned column list along with each “query”; they never save sql, xmlsource, and
ejb blocks without the rest of the <XMLTag>data block.

To avoid confusion, Select Audit’s documentation uses the following conventions:

SQL queries are referred to as SQL statements. (Although in standard database
parlance queries are actually only one kind of SQL statement, SQL statements that are
not queries are never used in Select Audit.)

A SQL statement (or other source of return values), a connection name, and the return
values are collectively called a <XMLTag>data block.

Catalog files of type “query” are called query files.

Chapter 2

Data Blocks

The content block of the RDL file contains blocks called data. Each <xMLTag>data block for
an RDBMS data source consists of:

® aconnection name
e a SQL statement that returns values
e alist of returned columns

Other data source types have similar content blocks.

Theme

In Select Audit, a theme is a set of CSS attributes associated with an element of a component.
For example, for a standard table, the elements include title, and the themes for a report title
may include font family, font size, and color.

In the Ad Hoc Wizard, themes are called “styles”.

You, the report developer, can use both inline or external style sheets to design your reports.

Catalog

The Catalog lets you save and re-use report elements. The elements of the Catalog are:
e queries (see Catalog Queries on page 19)

e parameters (see Catalog Parameters on page 20)

e themes (see Catalog Themes on page 20)

e permissions (see Catalog Permissions on page 20)

The Catalog is one of the keys to Select Audit’s ease of use. You can easily insert existing
Catalog entries into your report and modify them slightly, if necessary. Also, once you create a
query, parameter, theme, or permission, you can save it in the Catalog for yourself or others to
use later (if you have permission).

The Catalog appears as one of the folders in the Library.

There is no standalone Catalog tool. The Ad Hoc Wizard has links to Catalog manager screens
that let you retrieve elements from or save them to the Catalog.

Catalog Queries

A Catalog query file is an RDL file containing a content block that contains a single of data
block. If the data block uses parameter values, the Catalog query also contains a
parameters section containing the parameters referred to in the data block.

Terms and Concepts 19

Catalog Parameters

A Catalog parameter is an RDL file containing a parameters block that contains a single
parameter block. If the Catalog parameter is based on a query, the Catalog parameter also
contains one content block containing one data block.

Catalog Themes

A Catalog theme is an XML file describing multiple styles, grouping them, and naming the
groups.

Catalog Permissions

A Catalog permission is an Access Control List (ACL) string stored in a text file. See ACLs on
page 76 for details.

Library

The Library is a virtual hierarchical file system that contains Catalog, Parameter, and other
files. It is a repository for files that many users of a particular Report Server may find useful.
The Library contains the Catalog as a subfolder. In addition to Catalog entries, the Library
contains runnable reports and report output in any of several formats.

You interact with the Library using the Report Center, Select Audit’s web-based Library
management application. See the HP OpenView Select Audit 1.01 Report Center User’s Guide
for more information.

Client Tools

Select Audit provides a client tool to make building and modifying reports easy. This tool
creates and modifies RDL files. The client tool is theReport Designer which is a graphical
tool for designing a complete report.

For general information about the Select Audit’s client tools, see Client Tools on page 29. For
details on the Report Designer, see the HP OpenView Select Audit 1.01 Report Designer’s
Guide.

Ad Hoc Wizard

The Ad Hoc Wizard enables end users to design the layout for their own reports.
Select Audit provides two sets of tools for creating reports:
e (Client Tools, a set of client applications designed for developers.

e The Ad Hoc Wizard, a browser-based tool designed for end users.

Chapter 2

The Ad Hoc Wizard is launched from the Report Center. It enables end users to start with a
report in the Library and quickly give it the layout they want.

The Ad Hoc Wizard uses the information in the report and allows the end user to quickly
create a table or chart to present the data.

For more information on the Ad Hoc Wizard, see the HP OpenView Select Audit 1.01 Report
Center User’s Guide.

Permissions, Directories, and ACLs

Select Audit allows you to define which end users have access to which reports, queries,
parameters, themes, or even columns and rows of particular reports.

A directory is a customer’s list of users and groups. Often these lists are maintained
remotely. LDAP is a commonly used standard protocol for accessing remote directories.

Access Control Lists (ACLs) are formatted lists that determine which users and groups
have access to which objects. ACL lists are used in the Catalog permissions files and inside
RDL files (to control column permissions). For a description of ACL grammar, see ACLs on
page 76.

Catalog permissions files are ACL lists that are stored in text files.

Some Select Audit elements are secured using Select Audit, and some using the file system’s
native security. Parameter files are secured at the file system level, which means that you
must use your operating system’s security to control who can access these elements.
Column-level security is defined within the RDL file, so it is also secured at the file system
level. All Catalog items are secured by Select Audit, as is row-level security.

For details on the Select Audit security model, see Security on page 33.

Expression

The SQL database language includes functions (AVG, COUNT, MAX, MIN, and SUM) that allow
queries to return calculated values and present them in the query results as a virtual, or
derived, column.

Select Audit allows you to create your own columns whose values are derived from functions
that you create. These functions are called expressions. The set of operators available with
Select Audit expressions is much richer than that provided by SQL.

For example, if your data source returns columns named FIRST NAME and LAST NAME, you
may want to create a virtual column named full name. To do that, use an expression like
FIRST NAME + LAST NAME. You can also create much more elaborate expressions.

Terms and Concepts 2]

Uploading and Publishing

Moving reports and other files from your file system to the Library is called uploading. When
you upload Catalog files, they are automatically validated and made available to Library
users. report files, on the other hand, are not validated on upload, and are invisible to other
users until you publish them. Publishing validates the report file and makes it visible to other
users to whom you have given permission.

Use the Report Center to upload files to the Library, publish reports, and assign permissions.
See the HP OpenView Select Audit 1.01 Report Center User’s Guide for details.

Schedule

A Schedule determines frequency with which the Report Center creates static report output.
The Report Center lets you create report output automatically from published reports
according to a schedule of your choosing. The report output can be in any of several formats:
HTML, PDF (Adobe Acrobat), CSV, XML, and Microsoft Excel. Scheduling reports lets end users
see reports containing recent data without the overhead of querying the data source or
running the Report Server.

For information on scheduling report output, see the HP OpenView Select Audit 1.01 Report
Center User’s Guide.

Report APIs

Select Audit provides application programming interfaces (APIs) to let expert developers
create and manage reports. This release provides the following APIs:

e HTTP “API” on page 22
e Extensibility API on page 22
e SOAP API on page 22

HTTP “API”

Though not exactly an API, a sophisticated URL syntax lets you access reports and report
output by specifying strings within the URL.

Extensibility API

The Java API for integrating Select Audit with custom or legacy environments.

SOAP AP

The SOAP API allows you to programmatically interact with the Report Server. (See Report
Server on page 31 for more information.)

Chapter 2

Report Variables

Select Audit provides variables that can be used within SQL code and elsewhere in the RDL
file. Parameter values are one kind of Select Audit variable; user, data, and cellname are
the others. For details on how parameter values and other variables are represented inside
RDL files, see Select Audit Variable Syntax on page 91.

Terms and Concepts 23

24

Chapter 2

3 RDL Overview

The basis of a Select Audit reports is the report file. The report file contains the report’s
content and layout information, as well as other information about the report.

Select Audit’s report files use a language called RDL (pronounced “riddle”). Report files use the
.rd1 extension. RDL adheres to the XML standard.

Like all XML-based languages, RDL is clear text and modifiable in any text editor. In fact, the
Report Designer provides a window for viewing and modifying the text of the RDL file that you
are working on. You can write an RDL file from scratch, or you can modify it after creating it
using one of the Select Audit tools.

The following is a very brief high-level description of RDL. If you use the client tools to create
reports, you don’t need an in-depth knowledge of the RDL language. However, it is advisable to
learn at least the RDL blocks described in this chapter.

Top-level Tags

The highest-level blocks of RDL are:
Table 3 RDL Blocks

Block Name Description

Properties the property overrides for the RDL file

Parameters end-user-defined report elements

Content data source, queries, returned columns
Paginations how the report breaks among pages

Sortings sorting information for different columns

Layout components (i.e. table), headers and footers, colors

The Query Designer primarily creates the content block and (if you create data-based
parameters) part of the parameters block. The Report Designer creates the entire RDL file.

Properties

The properties block lists the property overrides for this RDL file. The settings specified in
this section override the settings in the defaultscope.xml configuration file.

25

Parameters

The parameters block lists the report’s parameters and their values. Parameters can be
data-based (for modifying the report results), or layout-based (for modifying the report
appearance). See Parameter on page 17 for more information on parameters.

Content

The content block consists of data blocks. Each data block contains one of the following

blocks:
rdbms a SQL SELECT or CALL statement run against a database that
supports JDBC
xmlsource XML data read from a file, URL, or the results of an XQuery
ejb an Enterprise Java Bean (EJB)
custom a custom data source

Each of these blocks contains a return block, which shows the columns returned from the
data source. The component displays the data from these returned columns.

For more information on XML, EJB, and stored procedure data sources, see Working with
Non-SQL Data Sources on page 41.

Paginations

The paginations block determines how the report should be broken into pages and how
navigation among pages will work.

Sortings

The sortings block determines how return values in a <xMLTag>data block are to be sorted.

Chapter 3

Layout

RDL Overview

The layout block consists of useComponent and controls blocks. Each useComponent
block uses an existing component (for example, StandardTable) and specifies exactly how
this component is to be realized on the report. The controls block defines the controls in the
report and how they work.

Components are defined in a JSP file on the server. These files have the extension . jsp. You
can alter existing components or create new ones by modifying or creating a . jsp file. This
process is not currently documented.

27

28

Chapter 3

4 Report Creation Tools

Both developers and end users can create reports. Developers can, of course, define any part of
the report. End users can start with a report prepared by a developer and create, or re-create,
its layout.

The developer tools for creating reports are called the Client Tools. The end-user tool for
creating a report with a new layout is the Ad Hoc Wizard.

Client Tools

Select Audit provides client tools to help you build and upgrade reports. The Report Designer
is a powerful tool for both beginners and experts to create complete reports.

The Select Audit Client Tool is the Report Designer on page 29

The Report Designer is a Java application.Report-creation tools create an RDL file (see
Chapter 3, RDL Overview). Each RDL file represents a single report. You have great flexibility
in deciding when to create a report using the report-building tools and when to modify report
files. You can create a report by:

e using the tools alone
e using the tools and then modifying the resulting report file

e writing an RDL file from scratch

Report Designer

The Report Designer is a graphical Java-based tool that enables both novices and experts to
create and modify all aspects of a report, including both content and layout.

Ad Hoc Wizard

The Ad Hoc Wizard is a browser-based tool that lets end users design layout for their own
reports. It is launched from the Report Center. Any report in the Library with Ad Hoc
permission can be used to launch the Ad Hoc Wizard.

The Ad Hoc Wizard allows end users to fashion the tabular or graphic layout they wish using
the information that you, the developer, put in a report. If the report contains parameters, and
you, the report developer, want the Ad Hoc Wizard to use different labels or parameter
mappings for the report, you have the option of doing so using the Report Center.

For more information on configuring and launching the Ad Hoc Wizard, see the HP OpenView
Select Audit 1.01 Report Center User’s Guide.

29

30

Chapter 4

5 Parameters

Parameters make reports interactive. Using parameters, you can allow end users to configure
both the content and appearance of report output.

Parameters are variables whose values are set at runtime. You, the report developer, create
the parameter as part of the report. The end user provides a value to the parameter by using
a control on the report. Each parameter is “bound” to a control, meaning that what the end
user does with the control determines the value assigned to the parameter.

Parameters can take two kinds of values: strings and lists. If the parameter value is a string,
you typically provide a text field where the end user can enter the parameter’s value. If the
parameter is a list, you can either create an explicit list of possible values to be displayed
using a list-based control (for example, radio buttons), or you can use a <XMLTag>data block’s
return values to populate the list.

You can provide default values for a parameter if you wish, and you can require the end user
to supply a value to the parameter.

Parameters can configure either data or layout. Data parameters affect the data in the report
output. Layout parameters affect report appearance.

Data parameters typically restrict the amount and kind of data returned from the database.
For example, you can create a parameter called salesperson, associate it with the

SALES REP LAST NAME column returned from the database, and bind it to a pick list control
labeled “Salesperson:”. The end user selects a name from the pick list, and only orders for that
salesperson appear in the report results.

Layout parameters let the end user configure a report’s appearance. For example, you can
create a parameter called tableTitle and bind it to a text field control labeled “Title:”. The
text that the end user enters in this control appears as the title of the report output.

You can create parameters and bind them to controls by using the Ad Hoc Wizard or by
hand-editing the RDL file. For a description of parameter syntax, see Parameter Variables on
page 91.

Parameters and RDL

Parameters appear in several places in the RDL file. They are defined and configured in the
parameters block. The content block can use parameters to let the end use control
displayed data (for example, which orders to display), and the 1ayout block can use
parameters to let the end user control report appearance (for example, which header text to
use).

This section lists the parts of the RDL file that you can parameterize.

37

Content Parameters

Parameters can appear in the following places within the content block:
e Anywhere within a sql block

e In an xmlsource block, anywhere within the URL

e In an ejb block, any value of an arg

For EJBs, the parameter syntax is different from elsewhere in the content block.

For the syntax of parameters in the content block, see Content Block Parameter Syntax on
page 91.

Layout Parameters

In the layout section, you can parameterize any literal string value of any of the args within
the useComponent block.

For the syntax of parameters in the 1ayout block, see Layout Block Parameter Syntax on
page 92.

Tips for Using Parameters

When writing RDL, make sure to handle cases where the end user might assign multiple
values to a single-value parameter or a null value to any parameter.

Since the content and layout sections use different parameter syntax, the way you handle
these cases is different.

See Example on page 33 for an RDL file containing many instances of content and layout
parameters.

Tips for the Content Section

The content block has its own parameter syntax. See Parameter Variables on page 91 for
details. This richer syntax gives you a lot of flexibility when using parameters, especially for
defining multi-value parameters. However, you must make sure that multiple values don’t get
assigned to a single-value parameter, and that parameters are assigned a value when
necessary.

Making sure the parameter has a value

To make sure that the parameter has a value, assign a default to it. You can do this using the
Parameter Manager accessed through the Select Audit Client Tools, or you can do it directly
in RDL by making sure that one of the values in the parameter section has default set to
true, and that the value that has default set to true is not null.

For example, the following multi-value parameter is sure to have at least one value:

<rdl:parameter name="title" readonly="false" queryParam="false">
<rdl:value label="Titlel" default="true">titlel</rdl:value>

Chapter 5

<rdl:value label="Title2" default="false">title2</rdl:value>
</rdl:parameter>

The default value holds only the first time the report is run. If the end user selects a different
value and then reruns the report, the default no longer applies.

If the list of possible values is generated by a query, or if the report is run using an API rather
than by the end user (see Chapter 8, Select Audit APIs), then selecting a default value may
still not guarantee that the parameter has a value. For query-generated values, this is
because the list of possible values for the parameter may no longer include the designated
default value. For API-generated values, this is because the API may override the default
value by explicitly specifying no value at all.

Making sure the parameter has only one value

You must make sure that single-value parameters are not assigned multiple values. To do
this, bind the parameter to a single-value control type. The single-value control types are:

e text field
e radio button
e single-value list

This technique may not work for API-generated values. If the API specifies multiple values,
the single value generated is a concatenation of all the specified values, rather than any one
of the individual values.

Tips for the Layout Section

In the layout section, make sure that empty selections are not allowed. To do this, insert the
value ““, which creates a null string rather than a null value. For example:

<rdl:arg name="header">
<! [CDATA[{ (param.pNoneCategoryProduct.label.equals("") 2 ""
param.pNoneCategoryProduct.label) }]1]></rdl:arg>

Example

Parameters

The following example shows some of the many ways that you can use parameters in an RDL
file:

<?xml version="1.0"?>

<!DOCTYPE rdl:RDL SYSTEM "ReportDescriptionlLanguage.dtd">

<rdl:RDL xmlns:rdl="http://www.panscopic.com/RDL" name="PanscopicScope">
<t--

This report provides an example of parameterizing the GROUP BY,
HAVING, and ORDER BY clauses used for generating a table report.

Additionally, this report also provides an example of using
JavaScript to alter the layout of the report at runtime.

33

34

1) Add parameters pCountryCity and pNoneCategoryProduct whose values

will be used in the GROUP BY and ORDER BY clauses. The parameters
will be bound to controls in the layout section so that the user
can select the columns by which they wish to group the report.
Add a parameter pSalesAmount whose value will be used in the
HAVING clause.

The parameter will be bound to a control in the layout section so
that the user can specify the conditional value to be tested
against in an optional HAVING clause.

<rdl:parameters>

<rdl:parameter name="pSalesAmount" readonly="false"
queryParam="false">

</rdl:parameter>

<rdl:parameter name="pCountryCity" readonly="false"
queryParam="false">

<rdl:value label="Country" default="true"> ORDERS.SHIP COUNTRY
</rdl:value>

<rdl:value label="City" default="false">ORDERS.SHIP CITY
</rdl:value>

</rdl:parameter>

<rdl:parameter name="pNoneCategoryProduct" readonly="false"
queryParam="false">

<rdl:value label="Category" default="true">
CATEGORIES.CATEGORY NAME</rdl:value>

<rdl:value label="Product" default="false">
PRODUCTS.PRODUCTiNAME</rdl:Value>

</rdl:parameter>

</rdl:parameters>

<rdl:content>

<rdl:data name="MainQuery" readonly="false">
<rdl:mandatoryParameters/>
<rdl:rdbms prefetch="false">

<rdl:connection name="demo"/>

Use the parameters in the SQL statement. Using the parameter
syntax add the values of the parameters to the SELECT, GROUP BY,
and ORDER BY clauses. Also, using the parameter syntax add an
optional HAVING clause. Note that the HAVING clause will not be
added to the SQL statement if the value of pSalesAmount is empty.
Since the value of pNoneCategoryProdut is potentially empty and
we cannot dynamically change the number of return columns based
on a parameter value we must add the parameterized value to the
end of the SELECT clause and follow it with a "filler" column of
"NULL" so that if the expression, {param.pNoneCategoryProduct
("", ",")}, evaluates to an empty string there will be at least
four columns returned by our query and no runtime error will be
generated.

<rdl:sgl>

Chapfer 5

<! [CDATA[
SELECT

FROM

WHERE

GROUP BY

ORDER BY

</rdl:sqgl>
<!--
4)

{param.pCountryCity("", ",™)}
EMPLOYEES.LAST NAME,
SUM (ORDER_DETAILS.UNIT PRICE

* ORDER DETAILS.QUANTITY),

{param.pNoneCategoryProduct ("", ",")} NULL
ORDERS, ORDER DETAILS, CATEGORIES, PRODUCTS,
SUPPLIERS, EMPLOYEES

ORDERS.ORDER_ID =
AND

ORDERS .EMPLOYEE ID =
AND

ORDER DETAILS.PRODUCT ID =
AND
CATEGORIES.CATEGORY ID =
AND

PRODUCTS.SUPPLIER ID =

ORDER DETAILS.ORDER ID
EMPLOYEES.EMPLOYEE ID
PRODUCTS.PRODUCT ID

PRODUCTS.CATEGORY ID

SUPPLIERS.SUPPLIER ID

{param.pCountryCity("", ",")}
{param.pNoneCategoryProduct ("",

EMPLOYEES.LAST NAME

",")}

{param.pSalesAmount ("HAVING SUM
(ORDER_DETAILS.UNIT_PRICE *

ORDER DETAILS.QUANTITY) > ", "")}

n ASC,") }
n ASC,") }

{param.pCountryCity("",
{param.pNoneCategoryProduct ("",
SUM (ORDER_DETAILS.UNIT PRICE *
ORDER DETAILS.QUANTITY) DESC
11>

Add return columns which represents the return values of the

parameterized columns from the SELECT clause.

<rdl:return>
<rdl:column
<rdl:column
index="2"/>

<rdl:column

name="COUNTRY CITY" type="string" index="1"/>
name="EMPLOYEES LAST NAME" type="string"

name="SUMORDER DETAILS UNIT PRICE MUL ORDER

DETAILS QUANTITY" type="integer" index="3"/>
<rdl:column name="NONE CATEGORY PRODUCT" type="string"

index="4"/>
</rdl:return>
</rdl:rdbms>
</rdl:data>
</rdl:content>

Parameters

35

<rdl:paginations>
<rdl:pagination data="MainQuery" type="vcr">
<rdl:pagelnterval>10</rdl:pagelnterval>
<rdl:nextPage><! [CDATA[]]></rdl:nextPage>
<rdl:prevPage><! [CDATA[]]></rdl:prevPage>
<rdl:firstPage><![CDATA[]]></rdl:firstPage>
<rdl:lastPage><! [CDATA[]]></rdl:lastPage>
</rdl:pagination>
</rdl:paginations>

<rdl:sortings>

<rdl:sorting data="MainQuery">
<rdl:sortOrder direction="ascending">EMPLOYEES LAST NAME</
rdl:sortOrder>
<rdl:sortOrder direction="descending"> SUMORDER DETAILS UNIT PRICE
MUL_ORDER_DETAILS_QUANTITY</rdl :sortOrder>
<rdl:sortOrder direction="descending">NONE CATEGORY PRODUCT</
rdl:sortOrder>
</rdl:sorting>
</rdl:sortings>

<rdl:layout>
<!--
5) Bind the parameters to controls so that the user can

interactively select grouping columns and optionally specify a
"having" value via the report's UI.

<rdl:controls name="controlsO" style="background:#ffffff;
font-family:Arial; font-size:%9pt;">
<rdl:pushButton type="submit" style="font-family:Arial;
font-size:9pt; ">Submit</rdl:pushButton>
<rdl:break/>
<rdl:sectionBreak/>
<rdl:listMenu size="1" style="width:80; font-family:Arial;
font-size:9pt;" multiple="false" parameter="pCountryCity"
labelStyle="font-family:Arial; font-size:9pt;">Group by
</rdl:1listMenu>
<rdl:listMenu size="1" style="width:80; font-family:Arial;
font-size:9pt;" multiple="false"
parameter="pNoneCategoryProduct" labelStyle="font-family:Arial;
font-size:9pt;" noSelection=" (none)">then by</rdl:listMenu>
<rdl:textField cols="6" wrap="default" lines="1"
style="text-align:right; font-family:Arial; font-size:9pt;"
password="false" parameter="pSalesAmount"
labelStyle="font-family:Arial; font-size:9pt;">having sales
amount greater than USS$</rdl:textField>
</rdl:controls>

<rdl:useComponent name="StandardTable 1" type="StandardTable">

Chapter 5

<!--

6) Add a column to the layout that displays the data values of the
COUNTRY CITY return column. The data values will be from either
the ORDERS.SHIP COUNTRY column or the ORDERS.SHIP CITY column
depending on the user's selection in the report's UI. Note that
the header will correspond to the label of the selected
parameter value.

-—>
<rdl:arg name="column">
<rdl:arg name="header">{param.pCountryCity.label}</ rdl:arg>
<rdl:arg name="cell">{data.MainQuery.COUNTRY CITY}</ rdl:arg>
<rdl:arg name="headerStyle">text-align: center;</rdl:arg>
</rdl:arg>
<!--
7) Add a column to the layout that displays the data values of the
NONE CATEGORY PRODUCT return column. Note the use of the
JavaScript three part conditional operator, "condition ? vall
val2", to "hide" the column when no selection, " (none)", is
specified for the parameter.
-—>

<rdl:arg name="column">
<rdl:arg name="columnStyle"><! [CDATA[

{ (param.pNoneCategoryProduct.label.equals("") ?
"width:0" : "")}]11></rdl:arg>

<rdl:arg name="header"><! [CDATA[
{ (param.pNoneCategoryProduct.label.equals("") 2 ""

param.pNoneCategoryProduct.label) }]]></rdl:arg>

<rdl:arg name="cell"><! [CDATA[
{ (param.pNoneCategoryProduct.label.equals("") 2 "" :
data.MainQuery.NONE CATEGORY PRODUCT) }]]></rdl:arg>

<rdl:arg name="headerStyle">text-align: center;</rdl:arg>
</rdl:arg>
<rdl:arg name="column">
<rdl:arg name="sortable">EMPLOYEES LAST NAME</rdl:arg>
<rdl:arg name="header">Sales Rep</rdl:arg>

<rdl:arg name="cell">{data.MainQuery.EMPLOYEES LAST NAME}
</rdl:arg>

<rdl:arg name="headerStyle">text-align: center;</rdl:arg>
</rdl:arg>
<rdl:arg name="column">

<rdl:arg name="sortable">SUMORDER DETAILS UNIT
PRICE MUL ORDER DETAILS QUANTITY</rdl:arg>

<rdl:arg name="header">Sales Amount</rdl:arg>

<rdl:arg name="cell">{data.MainQuery.SUMORDER DETAILS
UNIT PRICE MUL ORDER DETAILS QUANTITY}</rdl:arg>

<rdl:arg name="headerStyle">text-align: center;</rdl:arg>
</rdl:arg>
<rdl:arg name="dataSet">MainQuery</rdl:arg>

Paramefers 37

38

<rdl:arg name="tableStyle">width:80%; border-color:#000066;
border-style:solid; border-width:2; background:#FFFFFF;
font-family:Arial; font-size:9pt; color:#000000;
text-align:right;</rdl:arg>

<rdl:arg name="tableBorder">1</rdl:arg>

<!--

8) Both embedded HTML and JavaScript are used to generate the report
title. Note the use of the embedded HTML tag,
, to
break the title into two lines. Also, note again the use of the
JavaScript three part conditional operator to dynamically build
the report title at runtime.

-—>

<rdl:arg name="titleLabel"><! [CDATA[Sales Amount Per Rep

{new String("Grouped by " + param.pCountryCity.label +
(param.pNoneCategoryProduct.label.equals("") 2 "" : (" and by
" 4+ param.pNoneCategoryProduct.label)))}]]1></rdl:arg>

<rdl:arg name="showColumnHeaders">true</rdl:arg>

<rdl:arg name="titleStyle">text-align: center;
background: #FFFFFF; font-family:Arial; font-size:1l4pt;
font-weight: bold; color:#000066;</rdl:arg>

<rdl:arg name="columnHeaderStyle">font-weight:bold;
font-family:Arial</rdl:arg>

<rdl:arg name="tableHeaderFooterStyle">text-align:center;
font-family:Arial; font-size:10pt; font-weight:bold;
font-style:normal; text-decoration:none; background:#CCCCCC;
color:#000066;</rdl:arg>

<rdl:arg name="rowStylel">font-family:Arial; background:
#dffffd;</rdl:arg>

<rdl:arg name="rowStyle2">font-family:Arial; background:
#d0db5el;</rdl:arg>

</rdl:useComponent>

</rdl:layout>
</rdl:RDL>

Chapter 5

6 Guidelines for Developing Reports

This chapter shows the steps you typically take to develop reports using the Report Designer
and the Report Center. The principal steps in report development are:

e Using the Report Designer on page 39
e Test-publishing Your Report on page 40
e Publishing Your Report on page 40

Using the Report Designer

Typically, you start building a report using the Report Designer.
In the Report Designer, perform the following steps:

1 Connect to the server that contains your data sources.

2 Choose the data source that will populate the report.

3 Create the SQL statement.
4

Decide the choices that the end user can make at runtime that affect the data in the
component. For example, if the report will display a table of orders, you might want to let
the end user choose to display only orders placed in certain countries and/or only orders
above a certain amount. Create a parameter to represent each choice.

5 Ifthe set of possible parameter values will not be known until runtime, create a separate
query to generate the items to choose from. For example, if a parameter lets the end user
limit the displayed orders to those from certain countries, create a new query to generate
the list of countries.

6 Ifyou have created queries to produce parameter values, bind the queries to the
parameters.

7 Using Report Designer’s SQL editor, add the parameter to the query that generates data
for display.

8 Preview the report using the Preview tab.
9 Select the component (Table, CrossTab, or Chart) to present the data.
10 Use the wizard to create the component.

11 Rearrange and style the various parts of the component. (See the HP OpenView Select
Audit 1.01 Report Designer’s Guide for examples.)

12 Choose the controls for the report. Bind the controls to parameters (some controls, for
example the Run button, are not bound to parameters).

13 Run Live Preview to check whether the report runs as expected.

14 Save the RDL file.

39

Test-publishing Your Report

To run a report in the Library, you must publish it. Obviously, it’s desirable to test your report
in the Report Server before publishing it. To do this, use the Report Center’s Developers
Center.

For details on the Developers Center, see the HP OpenView Select Audit 1.01 Report Center
User’s Guide.

Copying Your Report to the rdl Directory

To use the Report Server’s Developers Center to test publish a report, you must first:
e set the development server property in the scopeserver.xml file to true.

e copy the report to the following directory under the following directory in your Select
Audit installation:

WEBAPPS_ HOME\scopeserver\WEB-INF\rdl

You can create subdirectories of the rd1 directory and copy the report into one of the
subdirectories, if you wish.

Using the Developers Center

The URL of the Developers Center is:
http://<servername>/scopeserver/
where servername is the address of the Report Server.

It’s a good idea to save this page as a favorite or bookmark in your browser.

The test page contains a number of samples, as well as a text field for entering the report to
run.

To test your report, enter your report’s complete filename in the Run a Report field, then click
Run. If the report is in a subdirectory of rd1, enter it as a relative path, for example:

my sub folder/myscope.rdl

Publishing Your Report

Once you are satisfied with your report, publish it to the Library. For instructions, see the HP
OpenView Select Audit 1.01 Report Center User’s Guidee.

Chapter 6

7 Working with Non-SQL Data Sources

This chapter discusses how to work with XML, EJB, and stored procedure data sources. (Even
though stored procedures actually are SQL-based, they are discussed in this chapter because
Select Audit handles them differently from SQL SELECT queries.)

You can also create a custom data source using the Extensibility API. See Writing a Custom
Data Source on page 57 for details.

This chapter frequently refers to the tags contained in the RDL content block.

Queries and Parameters

Data returned from any supported data source type can be treated much like the results of an
SQL SELECT statement. The Select Audit parameter paradigm also works with all supported
data source types.

Non-SQL SELECT “Queries”

The definition of the values returned from a data source (the equivalent of a “query” in SQL)
is defined in the various sub-blocks of the RDL file’s content block. XML “queries” are defined
in the xmlsource block, EJB “queries” are defined in the ejb block, and stored procedure
“queries” are defined in the sql block.

The Report Server uses a list of data elements internally, each of which must contain the
same number of fields. This paradigm for organizing data is optimal for most reports. Data
returned from all sources is mapped to this internal data structure. In the case of SQL data,
the data elements are rows and the fields are the columns in each row. For XML data, each
data element is a node in the XML DOM. For EJBs, each element is an instance of an EJB.

Parameters Not in SQL SELECT Statements

Select Audit parameters are variables with dynamic values. (See Parameters on page 31 for
more information on Select Audit parameters.) Select Audit parameters are a powerful way to
restrict the return set generated by any data source: they can be used as part of an XML URL,
an EJB argument, or a stored procedure argument. The sections in this chapter explain how
to use parameters with each supported data source type.

You can work with XML, EJB, and stored procedure data sources using the Query Designer.

41

XML Data Sources

Select Audit accesses an XML source either via a URL or as the result of an XQuery. You
retrieve XML from a URL by setting the url attribute of the xmlsource block. The specified
URL must include the protocol; be sure to use file: for reading XML from a local file. To
specify XQuery content, nest an xquery block inside the xm1source. When using an XQuery,
the url attribute sets the default document to query against.

Select Audit Parameters and XML Data Sources

The url attribute of an XML source can be fully parameterized. The parameters can be used
to pass information to the source of the XML or even to change the source of the data. You can
parameterize the entire URL or just part of it, and you can put multiple parameters in the
URL. You often use a Select Audit parameter as the value of a URL parameter.

Select Audit parameter syntax in an URL is the same as in a SQL query. See Content Block
Parameter Syntax on page 91 for details.

The following is an example of parameterized URL that changes the source of the XML data:

<rdl:xmlsource url="file://{param.region ('samples/XML/', '', "")}">

</rdl:xmlsource>

If the value of the region parameter is East, the file samples/XML/East is used. Similarly,
if the value is West, the file samples/XML/West is loaded instead.

If the same data had originated from a dynamic XML source, you might want to modify the
request sent to the XML source. If the data in the previous example came from a servlet or
Web Services invocation, the example would look like:

<rdl:xmlsource url="http://myserver/
xmlProcessor?{param.region('region=",""',"")}">

</rdl:xmlsource>

In this example, if the region parameter is set to East, the actual URL used is:
http://myserver/xmlProcessor?region=East

If region is set to West, the URL is:

http://myserver/xmlProcessor?region=West

Select Audit Parameters and XQueries

Because XQueries are strongly typed, the syntax for parameterizing an XQuery is different
from the syntax for parameterizing a URL or SQL query. An XQuery in an xmlsource block
consists of a series of static text and parameterized text, all enclosed in an xquery block.
Static text is enclosed in an insertText block, while parameterized text is enclosed in a
parameterizedCondition block.

The following example shows the W3C’s sample XQuery @1 inside an RDL file. (See http://

w3c.org/TR/xquery-use—-cases/#xmp-queries-results—-qgl for more information on
the sample XQueries defined by the W3C.)

Chapter 7

http://w3c.org/TR/xquery-use-cases/#xmp-queries-results-q1

<rdl:xmlsource>
<rdl:xquery>
<rdl:insertText>
<! [CDATA[
<bib>
{
for $b in doc("http://bstorel.example.com/bib.xml") /bib/book
where $b/publisher = "Addison-Wesley" and S$b/Q@year > 1991
return
<book year="{ $b/Q@year }">
{ Sb/title }
</book>
}
</bib>
11>
</rdl:insertText>

</rdl:xquery>

</rdl:xmlsource>

A parameterizedCondition always contains one predicate block, which specifies which
parameter the block depends on. If the parameter does not have a defined value, the entire
block evaluates to an empty string; otherwise it evaluates to the optional leading static text,
the parameterized expression, and the optional trailing static text. The predicate requires a
parameter and a string that acts as a placeholder for the parameter value, and can contain
the type of the parameter and a boolean operator to use if the parameter has more than one
value. If no boolean operator is specified and the parameter has more than one value the
query fails and an error is thrown.

The following extension to the previous example parameterizes the publisher:

<rdl:xmlsource>
<rdl:xquery>
<rdl:insertText>
<! [CDATA[
<bib>
{
for $b in doc("http://bstorel.example.com/bib.xml") /bib/book
where $b/@year > 1991
11>
</rdl:insertText>
<rdl:parameterizedCondition>
<rdl:insertText> and (<rdl"insertText>

<rdl:predicate parameter="Publisher" bindingSymbol="##"
booleanOp="or">

Sb/publisher="4##"
</rdl:predicate>
<rdl:insertText>) </rdl:insertText>
</rdl:parameterizedCondition>
<rdl:insertText>
<! [CDATA[

Working with Non-SQL Data Sources 43

Sb/publisher = "Addison-Wesley" and

return
<book year="{ S$b/Qyear }">
{ $b/title }
</book>

}

</bib>

11>
</rdl:insertText>
</rdl:xquery>

</rdl:xmlsource>

If the Publisher parameter does not have any values, every book published since 1991 is
returned, regardless of the publisher. If Publisher is set to “Addison-Wesley” the data
returned matches the first example, and if Publisher is set to “Addison-Wesley” and
“Morgan Kaufmann Publishers” all books published since 1991 by either publisher are
returned.

In addition, if you are using Select Audit driver for the Saxon XQuery engine available from
Saxonica (http://www.saxonica.com), you can specify a custom URI resolver to use when
loading data into the XQuery engine. For information on configuring a custom resolver.

Designating Rows and Columns from an XML Data Source

Select Audit treats XML data as a sequence of nodes, with the specific fields to report on for
each node specified relative to each node. The full DOM is available when specifying the fields
to use.

Specifying the XML data to include in a report is a two-step process. First you identify the set
of nodes to include in the report, and then you specify the data fields for each node. In both
cases, Select Audit uses XPath (http://www.w3.o0rg/TR/xpath) to identify both the node
set and the data fields.

Select Audit uses the Java API for XML Processing (JAXP) to perform all operations on the
XML data, and follows the JAXP specification when determining which Transformer to use.

Use the selectPath attribute of the return block to specify an XPath expression that
identifies the nodes to include in the report. To identify the information you want to include
for each node, use the fieldPath attribute of nested column tags.

A The context for the XPath used in the fieldPath attribute is the current node, not the entire
document. You should always specify fieldPath expressions relative to a node and begin each
with ". /"

If your XML data source returns data containing explicit namespaces, you must tell Select
Audit the prefixes that are being used in the returned data. Do this via the namespace
elements nested inside the return block.

Chapter 7

http://www.saxonica.com
http://www.w3.org/TR/xpath

Examples

The examples in this section all use the following XML data:

<?xml version="1.0" encoding="UTF-8"?2>
<Regions>
<Region name="East">
<City name="New York">
<Population>8000000</Population>
</City>
<City name="Boston">
<Population>600000</Population>
</City>
<City name="Philadelphia">
<Population>1500000</Population>
</City>
<City name="Chicago">
<Population>2900000</Population>
</City>
</Region>
<Region name="West">
<City name="Dallas">
<Population>1200000</Population>
</City>
<City name="San Francisco">
<Population>800000</Population>
</City>
<City name="Seattle">
<Population>600000</Population>
</City>
<City name="San Diego">
<Population>1300000</Population>
</City>
</Region>
</Regions>
The following RDL code returns a simple table of all the cities, the regions they are in, and

their populations. The code selects all the City nodes, and includes a reference to the Region
ancestor as one of the data fields:

<rdl:return selectNode="/Regions/Region/City">

<rdl:column name="Region" type="string" fieldPath="ancestor::Region/

@name" />

<rdl:column name="City" type="string" fieldPath="./Q@name"/>

<rdl:column name="Population" type="int" fieldPath="./Population"/>
</rdl:return>

The resulting data set is:

East New York 8000000
East Boston 600000

Working with Non-SQL Data Sources 45

46

East Philadelphia 1500000

East Chicago 2900000
West Dallas 1200000
West San Francisco 800000
West Seattle 600000
West San Diego 1300000

The next example uses XPath predicates to further filter the data set. This example extends
the previous one to find only the cities that start with the string “san”.

<rdl:return selectNode="/Regions/Region/City[starts-with (@name,
'San') ">
<rdl:column name="Region" type="string" fieldPath="ancestor::Region/
@name" />
<rdl:column name="City" type="string" fieldPath="./Q@name"/>
<rdl:column name="Population" type="int" fieldPath="./Population"/>
</rdl:return>

The results are:

West San Francisco 800000
West San Diego 1300000
The final example shows how to take advantage of all the XPath and XSLT functions. This
example counts the number of cities in a Region and sums up the total population for the
cities using functions to aggregate the information and format the output:
<rdl:return selectNode="/Regions/Region">
<rdl:column name="Region" type="string" fieldPath="./@name"/>
<rdl:column name="NumCities" type="string"
fieldPath="count (descendant::City)"/>
<rdl:column name="Population" type="string"
fieldPath="format-number (sum(child::City/Population), '#,##0")"/>
</rdl:return>

The output is:

East 4 13,000,000
West 4 3,900,000

EJB Data Sources

The ejb tag takes three arguments: connection, service, and method. (Two other
arguments, beanclass and factoryclass, have been deprecated.)

The connection attribute specifies the EJB’s JNDI connection. This attribute specifies the
logical name of the connection as defined in the scopeserver.xml file.

The service attribute is the logical name under which the EJB server advertises itself on
the JNDI naming service.

The method attribute is the name of the method to invoke on the object. The method returns
either a single bean or a collection of beans. Single beans are useful for record- or invoice-type
reports. Collections are useful for showing tabular or chart data.

Chapter 7

The specified method can be any method on the Home interface. It may or may not be a finder
method. You can also use a series of methods, separated by a slash (/), where the first method
is on the Home interface and subsequent methods are on the object returned by the previous
method.

The return objects can be Entity beans, Session beans, or Java beans (serializable state
objects). Each returned bean is mapped as a row in Select Audit. If the EJB “query” returns a
single object rather than a collection, the results contain only one row. A collection of 12 beans
results in 12 rows of data.

The return block within the ejb block contains the “columns” to return. Each of the return
objects becomes a row of data, and the public access methods become the “columns”. The
property attribute of each column refers to methods on the bean, typically “getters” or
“setters”. For example, if a column name is lastName, the column’s property is typically the
getLastName method on the bean.

The method specified with the method attribute is not on the same object as the access
method. The former is on the Home interface and the latter is on a returned bean.

The arg blocks within the ejb block is how the Select Audit parameter model is realized on
an EJB. The value attribute of each arg is typically a Select Audit parameter. The parameter
is sent to the EJB as an argument to a bean method.

Setting Up a JNDI Connection

To use an EJB data source, make sure that a JNDI connection is defined in the
scopeserver.xml file. The JNDI connection definition depends on the application server.
This section shows sample JNDI connection definitions for different application servers.

For example, using the supplied Tomcat application server framework, the following
JNDIConnection block in scopeserver.xml might define the jndi-demo connection used
in the examples that follow:

<JNDIConnection>
<name>jndi-demo</name>
<Properties>
<Property name="java.naming.factory.initial">
org.openejb.client.JNDIContext
</Property>
<Property name="java.naming.provider.url">
127.0.0.1:4201
</Property>
<Property name="java.naming.security.principal">
myuser
</Property>
<Property name="java.naming.security.credentials">
mypass
</Property>
</Properties>
</JNDIConnection>

Working with Non-SQL Data Sources 47

Weblogic Example

The following example shows a sample JNDI connection definition using BEA WebLogic:

<JNDIConnection>
<name>jndi-weblogic</name>
<Properties>
<Property name="java.naming.factory.initial">
weblogic.jndi.WLInitialContextFactory</Property>

<Property name="java.naming.provider.url">t3://localhost:7001
</Property>

<Property name="java.naming.security.principal">user</Property>

<Property name="java.naming.security.credentials">password
</Property>
</Properties>
</JNDIConnection>

The port number is configurable, so check your server configuration.

WebSphere Example

The following example shows a sample JNDI connection definition using IBM WebSphere:

<JNDIConnection>
<name>jndi-scopeservl</name>
<Properties>
<Property name="java.naming.factory.initial">
com.ibm.websphere.naming.WsnInitialContextFactory</Property>
<Property name="java.naming.provider.url">
corbaloc:iiop:scopeservl1:2809</Property>
<Property name="java.naming.security.principal">user</Property>

<Property name="java.naming.security.credentials">password
</Property>

</Properties>
</JNDIConnection>

The port number is configurable, so check your server configuration.

Example Java Files

The following examples show how to create reports using an entity EJB data source that uses
the connection defined above.

The following file, EmployeeHome. java, gets the beans and advertises the methods that the
rdl:ejb method attribute can specify:

package testapp;
import java.rmi.x*;

import javax.ejb.*;

import java.util.Collection;

Chapter 7

public interface EmployeeHome extends EJBHome ({

public java.util.Collection findEmployees () throws
javax.ejb.FinderException, Jjava.rmi.RemoteException;

public java.util.Collection findEmployeesBySize (int size) throws
javax.ejb.FinderException, java.rmi.RemoteException;

}

The following file, Employee. java, specifies the methods available using the rdl:column
properties attribute:

package testapp;
import java.rmi.RemoteException;

public interface Employee extends javax.ejb.EJBObject {

public String getFirstName () throws RemoteException;
public String getLastName () throws RemoteException;
public String getDepartment () throws RemoteException;

public String getPhoneNumber () throws RemoteException;

}

These files are also available in the examples that ship with this documentation.

Basic EJB Example

The following content block of an RDL file retrieves information on all employees from the
EJB described in the Java files mentioned above:

<rdl:content>
<rdl:data name="sampledata">
<rdl:ejb connection="jndi-demo"
beanclass=""
factoryclass=""
method="findEmployees"
service="EmployeeHome">
<rdl:return>

<rdl:column name="firstName" type="string"
property="getFirstName"/>

<rdl:column name="lastName" type="string"
property="getFirstName"/>

<rdl:column name="name" type="string"
value="firstName + ' ' + lastName"/>

<rdl:column name="dept" type="string"
property="getDepartment"/>

<rdl:column name="phoneNum" type="string"
property="getPhoneNumber"/>
</rdl:return>
</rdl:ejb>
</rdl:data>

Working with Non-SQL Data Sources 49

</rdl:content>

For the complete RDL file containing this content section, see the entityejb.rdl file in the
examples that ship with this documentation.

Parameterized EJB Example

The following content block of an RDL file passes a parameter value to an EJB method to
filter employees by the size of their department:

<rdl:content>
<rdl:data name="sampledata'">
<rdl:ejb connection="jndi-demo"
beanclass=""
factoryclass=""
method="findEmployeesBySize"
service="EmployeeHome">
<rdl:arg name="size" type="int" value="{param.size}" />
<rdl:return>
<rdl:column name="firstName" type="string"
property="getFirstName" />

<rdl:column name="lastName" type="string"
property="getFirstName"/>
<rdl:column name="name" type="string"
value="firstName + ' ' + lastName"/>
<rdl:column name="dept" type="string"
property="getDepartment"/>
<rdl:column name="phoneNum" type="string"
property="getPhoneNumber" />
</rdl:return>
</rdl:ejb>
</rdl:data>
</rdl:content>

For the complete RDL file containing this content section, see the
entityEJBWithParam.rdl file in the examples that ship with this documentation.

Stored Procedure Data Sources

Stored procedure calls, like SQL SELECT statements, are placed in sql blocks. Standard
JDBC syntax is used:

{call stored procedure name ([optional argument list])}
Example Stored Procedure Arguments

The following is a typical sqgl block containing a stored procedure that does not take any
arguments:

<rdl:sgl><![CDATA[{call OrdersByQuarter()}]]1></rdl:sql>

Chapter 7

The following examples use a stored procedure that takes an argument specifying the starting
year for the report. You can bind the argument to either a fixed value or to a Select Audit
parameter.

The following example shows a fixed-value argument:
<rdl:sgl><![CDATA[{call OrdersByQuarter (1998)}]]1></rdl:sqgl>
The following example shows the argument bound to a Select Audit parameter:

<rdl:sqgl><![CDATA[{call OrdersByQuarter ({param.startDate("","")})}]11>
</rdl:sqgl>

Handling Return Values

For all supported databases except Oracle, the values returned by the stored procedure are
automatically available to be assigned to columns in the return block.

Return values from Oracle stored procedures

Oracle stored procedures cannot directly return results. To return results, an Oracle stored
procedure must have an argument of Oracle data type REFCURSOR. The stored procedure
must load this argument with the results.

Select Audit automatically creates a REFCURSOR, passes it to the stored procedure, and
extracts the results when the stored procedure returns. All you need to do is indicate which
argument represents the REFCURSOR by marking it with the “?” character.

In following example, the value of the Select Audit parameter region is passed in as the
stored procedure’s reg argument, and a REFCURSOR is automatically created and passed in as
the second argument.

To call the following Oracle stored procedure:

PROCEDURE CustomersForRegion (reg IN VARCHAR2, curs IN OUT refcursor)
IS
BEGIN

open curs for select company name, address, city, region, country,
postal code

FROM customers

WHERE country = reg
ORDER BY company name;
END CustomersForRegion;

set the second (REFCURSOR) argument to “?”, as follows:

<rdl:sgl><![CDATA[{call CustomersForRegion ({param.region}, ?)}]1]1>
</rdl:sqgl>

Working with Non-SQL Data Sources 57

52

Chapter 7

8 Select Audit APIs

Select Audit offers several APIs that integrate Select Audit with your system, and extend and
enhance the Report Server. Each of the APIs serves a different purpose and offers a different
level of control.

APl Overview

The Select Audit APIs are:

e HTTP “API” on page 54

e SOAP API on page 55

e Java Client SOAP API on page 57
e Extensibility API on page 57

The HTTP “API” isn’t a true API, but a way to drive the Report Server via URLs. It consists of
parameters that can be passed via a URL to run a specific report, save output to the Library,
and so forth. For a brief description, see HTTP “API” on page 54.

The SOAP API allows you to programmatically interact with the Report Server. Currently
this API includes Library calls, Directory access, Session management, and Report Execution
sections. See SOAP API on page 55 for more information.

The Java Client SOAP API is a set of classes that perform SOAP communication with the
Report Server via a Java API.

The Extensibility API is a set of Java interfaces that extend and modify the Report Server.
This API enables you to integrate the Report Server with your corporate directory, add a
custom login processing module, or supply a custom data source. See Extensibility API on
page 57 for more information.

The App Server Plugin consists of a set of Java classes that you can use to easily run a report
from a JSP or Java servlet application.

53

When to Use Each API

The following table shows the functionality provided by each API:
Table 4 API Functionality

Report Session Library Directory | Server
Execution | Management | Navigation | Access Extensions | Scheduling
HTTP X
SOAP X X X X X
Java Client X X X X X
SOAP
Extensibility X
Plugin X

HTTP “API”

You can control much of how the Report Server runs a report by using parameters passed as
part of the URL. These parameters are collectively called the HTTP API, though of course it is
not a true API. Among the actions you can perform with the HTTP API are:

e gpecifying report parameters
e configuring how the report runs

e gpecifying the output format

URL Syntax for the HTTP API

The URL syntax for using HTTP API is:
http://<server>/scopeserver/ScopeServer?<URL parameter string>
where:

¢ <server> is the URL of your server

® <URL parameter string>is a sequence of parameter name/value pairs separated by
ampersands (&).

Example HTTP Request

The following URL causes the App Server Plugin to request that the Report Generator
execute the file Leads. rdl in the Library’s Sales folder and display the results in XML
format:

http://myappserver:8080/scopeserver/ScopeServer? p r=/Sales/
Leadsé& p ch=xml

Chapter 8

SOAP API

SOAP (Simple Object Access Protocol) is an XML-based messaging protocol designed to be
language- and transport-neutral. SOAP is currently the most popular protocol for deploying a
web service. Select Audit fully supports SOAP 1.1.

SOAP uses XML to send a message or make a remote procedure call across a network, such as
the Internet. All the parameters in the XML body of the request, as well as information about
the request itself, are contained in a special section of the XML data called the envelope.
Because all the information is encoded in XML, you can access a SOAP server from any
operating system that supports the underlying protocol used to send the message. Similarly,
you can write the SOAP client in any programming language.

You can make Select Audit SOAP API calls from any language. Select Audit also provides a
Java client implementation for applications written in Java.

The Select Audit SOAP implementation requires HTTP transport. Cookies maintain state
between requests.

Setting up the SOAP API

This section shows how to set up the SOAP API for Java and non-Java applications.

Java application

To call the Select Audit SOAP API from a Java application, include the panscopicsoap.jar
file in your application’s classpath, and use the Java objects it contains to make all the calls.
This is the Java Client SOAP API. See the Javadoc that comes with the Java SOAP client

library for more information.

Non-Java application

Select Audit APls

To call the Select Audit SOAP API from a non-Java based application, use a SOAP library to
format all the requests. You can write your own SOAP library if you choose to. Your SOAP
library should have some way to call an arbitrary SOAP Action and specify the method, the
namespace URI, and all parameters.

All the methods in the SOAP API require that you log in first. The SOAP API is stateful and
uses servlet-based sessions to maintain the login state. The first method you call must be
login, which returns a cookie over the HTTP transport as well as a session 1ID. If your
SOAP client library supports it, cache the cookie and send it back with each subsequent
request. If your client does not support cookies and you cannot add support for them, you
must add the session ID toeach subsequent request. To do so, add:

;jsessionid=sessionid
to each URL before any parameters.

Since Select Audit uses servlet-maintained sessions, SOAP sessions time out. If your client
code may have long delays between logging in and making an additional call, prepare to
detect a timeout and log back in.

55

Types of Methods

The Select Audit SOAP API contains the following sets of methods:
e Session management on page 56

e Library on page 56

e Directory on page 56

e Report execution on page 57

e Schedule on page 57

Session management

The Session Management methods of the SOAP API let you log into Select Audit and
programmatically end a session. The Select Audit SOAP API is stateful, and 1ogin must be
the first call your code makes. If your code makes any other calls before 10gin, an error
results.

The 1ogin method uses the configured authentication model (and the configured
Authentication Module if appropriate) to perform authentication. See Authentication Models
on page 71 for more information about the available authentication models.

To end a session programmatically, call the 1ogout method. This is useful to force Select
Audit sessions to end when a session expires in another integrated application.

Library

The Library methods of the SOAP API enable you to:

® browse the contents of the Library (without using the Report Center)
e get the metadata about objects in the Library

e upload, publish, and unpublish reports

e generate a list of available reports

¢ add or delete objects from the Library

e integrate with an existing portal

The Library methods include search, getChildren, getObject, removeObject and
addObject.

Directory

The directory methods of the SOAP API give you programmatic access to the user and group
information available to Select Audit. These methods act as a gateway to the underlying
configured directory provider. See Authentication Providers on page 72 for more information
about directory providers. The Directory methods include getUsers, getRoles,
getSubRoles, and getUsersInRole.

Chapter 8

Report execution

The Report Execution section of the SOAP API enables you to programmatically run reports
in either full page or part-of-page mode. The method getScope allows you to run any report
in the Library, supply parameters to it, and get the resulting output, usually HTML. (You can
specify another format as part of the request, if desired.) The most common use of the
getScope method is to get the HTML output of a report and embed it in another page.

Schedule

The Schedule section of the SOAP API lets you manage schedules for reports.

Java Client SOAP AP

The Select Audit Java Client SOAP API is a set of Java classes that perform SOAP
communication with the Report Server via a Java API.

The supplied com.panscopic.soap.client.CommandLineInterface example
demonstrates a typical use of the Java Client SOAP API.

Extensibility API

The Select Audit Extensibility API extends Select Audit and integrates it with custom or
legacy environments. Using the Extensibility API, you can integrate the Report Server with a
custom directory or authentication engine, or add a custom data source.

Each element of the Extensibility API consists of one or more Java interfaces that must be
implemented as well as configuration information on how to use the extension. For complete
information about the interfaces that must be implemented, see the Javadoc installed with
the Select Audit API.

Tasks that you can perform with the Extensibility API include:
e Writing a Custom Data Source on page 57

e Writing a Custom XQuery Data Source on page 59

e Writing a Custom Directory Provider on page 60

e Writing a Custom Authentication Module on page 60

Writing a Custom Data Source

Select Audit APls

The Report Server can access many different kinds of data sources, including RDBMS, XML,
and EJB. You can also implement a custom data source.

A custom data source gives you complete control on how the data is presented to the Report
Server. For example, you can write a data source that performs a join between an Oracle
server and a Sybase server, and appears to the Report Server as a single database. As another
example, you can write a custom data source that goes to a URL and “screen scrapes” the
returned HTML to convert tabular data into a data stream.

57

To implement a custom data source:

e Write a Java class that implements the

com.panscopic.scopeserver.queryengine.DataSource interface to actually collect
the data.

e Write an object that implements the
com.panscopic.scopeserver.queryengine.DataSet interface to model the
returned data.

e Implement the com.panscopic.scopeserver.queryengine.DataSetIterator
interface or use
com.panscopic.scopeserver.queryengine.SimpleDataSetIterator, which is
automatically used by the SimpleDataSet class.

See com.acme.custom.AcmeDataSource. java for a sample implementation of the
DataSource interface.

The DataSource interface is used to initiate a request for data. The object that implements it
is built with the default constructor, and all configured arguments are converted to a
Hashtable and passed to the setArgs method of your DataSource. When a report is run
that uses your data source, the fetchData method is called to get your implementation of the
DataSet interface. Within the fetchData method, you can also implement pagination and
sorting on your data set. (See Pagination and sorting in a custom data source on page 59.)

The DataSet interface provides a rows-and-columns model of the data where each row
consists of the same set of columns. The DataSet interface’s methods fall into three broad
categories: navigation, row data access, and group-related methods.

The navigation methods move through the data set and act rather like a cursor. These
methods include moving to the next, previous, first, or last row and getting the current
position in the result set. The row data access methods give access to the row data, either by
giving access to a column in the current row or by returning an iterator over the rows. Finally,
the group-related methods group the data and calculate aggregates based on the grouping.

To use a custom data source, simply refer to your implementation inside a report file. Include
an rdl:custom tagin an rdl:data section, and specify your class as the value of the
classname attribute. Make sure that the rdl:return section is in sync with the list of
columns in the SimpleReturnInfo class.

To use a custom data source, put your custom classes in the WEBAPPS HOME/scopeserver/
WEB INF/classes directory. Then simply refer to your implementation inside the content
section of an RDL file. Include an rdl:custom tag in an rdl:data section, and specify your
class as the value of the classname attribute. List parameters as name-value pairs using
rdl:arg tags. Make sure that the rdl:return section is in sync with the list of columns in the
SimpleReturnInfo class.

<rdl:content>

<rdl:data name="[data source name]">
<rdl:custom classname="[custom data source class]">
<!-- optional parameters -->
<rdl:arg name="[parameter name]" value="[value]"/>

<rdl:return>
<rdl:column name="[column name]" type="[data type]"
index="[index]">
</rdl:return>
</rdl:custom>
</rdl:data>
</rdl:content>

Chapter 8

Pagination and sorting in a custom data source

The objects in this example are subject to change in future releases.

You can access the report’s pagination and sorting information by using code like the

following:

RunTimeContext context = RunTimeContext.getCurrentContext () ;
Pagination pagination =
context.getParameters () .getPagination (getName ()) ;

) A

int rowsPerPage = pagination.getPagelnterval (context);

if (pagination != null
int pageNumber = pagination.getPageNumber (context) ;
// Convert page number to starting row number

pageNumber = pageNumber*rowsPerPage;

result.paginate (pageNumber, rowsPerPage);

Sorting sorting = context.getParameters().getSorting (getName())
if (sorting != null) {

Iterator i = sorting.getSortOrder (context) ;

while (i.hasNext()) {

com.panscopic.scopeserver.parameters.SortOrder sortOrder =

(com.panscopic.scopeserver.parameters.SortOrder)i.next () ;

result.sortOrder (sortOrder.getColumn(),
sortOrder.isAscending());

}

In the example above, the pagination and sorting settings are passed from the custom data

source to the result object, which is an instance of the DataSet interface.

Writing a Custom XQuery Data Source

Select Audit APls

Select Audit provides full support for XQuery data sources. One area where XQuery

standardization lags behind SQL standardization is the lack of a standard interface to talk to
a XQuery provider. Select Audit provides an interface to the Saxon XQuery engine, and you

can also write an adaptor to talk to a different XQuery engine.

To add support for an additional XQuery engine, write an XQuery data source that
implements the com.panscopic.scopeserver.queryengine.XQueryConnection

interface. The only method that you must implement is executeQuery () ; the other methods

can be empty. You do not have to parameterize XQuery or parsing the results; Select Audit

does all that for you.

59

Writing a Custom Directory Provider

A custom directory provider integrates Select Audit with an existing directory that does not
already have an available directory provider. Since most current centralized directory
applications provide LDAP support, you typically create a custom directory provider only
when integrating with legacy systems.

The directory provider is responsible only for finding and returning directory information.
The directory provider provides this information to the Report Server in the form of users,
user attributes and groups. The directory provider does not handle caching, application of
security, rules, and the like.

To implement a custom directory provider, write an implementation of the
com.panscopic.directory.DirectoryProvider interface. If you need only read-only
access to your directory, have your implementation of i sReadOnly return true, and do not
implement the addEntity, deleteEntity, modifyEntity, addEntityToRole, and
removeEntityFromRole methods.

In addition to the methods in the DirectoryProvider interface, create a constructor that
takes one parameter, a com.panscopic.util.conf.Configuration, which contains a
parsed representation of all the configuration options defined in the directory.xml file,
which is installed at WEBAPPS HOME/scopeserver/WEB INF/conf/directory.xml.

To use custom directory provider, put your DirectoryProvider implementation class into the
WEBAPPS HOME/scopeserver/WEB-INF/classes directory and configure the ReportServer
Directory by specifying your class as the value of the class attribute. The Directory is
configured via the directory.xml file.

<Directory>
<DirectoryProvider class="[custom directory provider class]">

</Directory>

For more information about directory providers, see Authorization and the Directory on
page 74.

Writing a Custom Authentication Module

A custom authentication module integrates Select Audit with an authentication source that
does not already have an authentication module available. This could be a proprietary system
or a SQL database that the generic SQLAuthModule cannot handle.

Before implementing a custom authentication module you should familiarize yourself with
the JAAS authentication module by consulting Sun Microsystems’ documentation, especially
their LoginModule Developer’s Guide, available from their web site. Note that the Select Audit
authentication engine handles all Callback-related issues for you, so you do not have to
implement javax.security.auth.callback.CallbackHandler yourself.

To implement a custom authentication module, write an implementation of the
javax.security.auth.spi.LoginModule interface. Your object needs to provide only the
default constructor, as all configuration information is passed to the initialize method on
each attempt to authenticate.

For more information about authentication modules, see Authentication Providers on page 72.

Chapter 8

9 Managing Images

This chapter discusses image management in the Report Server. Image management refers to
generation, storage, retrieval, and cleanup of images in single and clustered server
configurations.

Images can be incorporated into reports (see Static Images on page 61) or generated by
reports (see Dynamic Images Generated by Chart Components on page 63).

Images can be included in reports in any of the following ways:
e Using the rdl:image tag.

e Using HTML tags whose src attributes refer to an image (such as img or input) in a JSP
report component.

e Within chart background images, chart series fill images, or the chart component itself.

e Image locations are specified as fully qualified URLs in the src attribute of an
rdl:image or HTML tag.

Images can be persisted in the Library or in a file system directory. See Deploying Images on
page 63.

Images are served by a servlet. See The Image Servlet on page 64 for details.

Static and Dynamic Images

Select Audit can support either static or dynamic images. All image output, both static and
dynamic, is accessed using either the rdl : image tag (for a supplied component) or the
HTML tag (for a custom component).

Static Images

Images that are stored and fetched before the report is run are called static images. Static
images are pre-generated and included in the report output. Examples are header and footer
images, icons, and logos.

The static images themselves may be stored in the Library or in a specific location under the
Report Server home directory. The images can be of any type supported by the presenting
application (typically a web browser).

Dynamic Images

Images that are generated by the report’s charting components at runtime are called
dynamic images. Dynamic images are saved to either a temporary file or to the Library. The
acceptable types of dynamic images are: JPEG, GIF (licensing from Unisys is required), and
PNG.

6]

62

Image Usage

This section shows the RDL and component file syntax for managing different kinds of images.

Images in an RDL File

The following RDL code generates the text “Press Me!” next to an image taken from the file
system on the server machine:

<rdl:image src="http://myserver/images/myimage.gif">Press Me!
</rdl:image>

The following RDL code does the same thing from a generated image file in the Library:

<rdl:image src="http://scopeservl:7001/scopeserver/servliet/
imageservlet?action=geté&store=library&loc=User+Scopes%$2Fjeff%2Fchart-144
3091197.jpg">Press Me!</rdl:image>

Images in a Component File

The following example includes an image from a known spot on the Report Server in a
component. The component refers to the images that use the HTML src tag attribute:

<img id="Chart 1" src="http://myserver/images/myimage.gif"
alt="Column" >

The following HTML example includes a Library image in a component:
<img id="Chart 1"
src="http://scopeservl1:7001/scopeserver/serviet/

imageservlet?action=geté&store=library&loc=User+Scopes%2Fjeff%2Fchart-144
3091197.jpg" alt="Column">

Background Images for Charts

Chart components can refer to images for use within the chart. For example, the chart
background can display an image using the following syntax:

<rdl:arg name="Chart.BackgroundImage">http://myserver/images/
myimage.gif</rdl:arg>

Fill Images for Charts

Each chart series can use a fill image by using the following syntax:

<rdl:arg name="ChartData.ChartSeriesl.FillImage">
http://myserver/images/myimage.gif
</rdl:arg>

Chapter 9

Sorting Icon Images

You can specify the images to use for “up” and “down” sorting icons, if your report uses them.
For example, the following RDL code selects an image for the “up” sorting icon:

<rdl:sorting data="data" upIlcon="http://myserver/images/myimage.gif">

Dynamic Images Generated by Chart Components

Dynamic images of charts are generated when a charting component is included in a report.

<rdl:useComponent name="Chart 1" type="StandardPieChart">
<rdl:arg name="chartargname">argvalue</rdl:arg>

</rdl:useComponent>

Deploying Images

Deploy images either to the Library or to a directory that is configurable in the Report Server
configuration file. Doing so enables multiple servers to share the images in a clustered
environment. You can store static images directly under this configurable directory.

Only the “admin” user should be able to configure this directory.

Configuring the Image Directory

To configure the image servlet directory that stores images, set the image path property. If
this property is not set or is set to the null string, the image directory is the images directory
under the Report Server webapp root. If this property is set to a value other than null, the
specified path is an absolute path available in the server machine. This can be a local path or
a network path.

Temporary Images Directory per Server Instance

The images directory also contains the tmp subdirectory, which contains directories for each
Report Server instance. For example, if the names of two Report Servers in a clustered
environment are myserver and yourserver, then the tmp directory under the image
directory contains two directories called myserver and yourserver. Maintaining a different
temporary directory for each Report Server prevents UID conflicts among server instances.

Each of these server-specific directories stores the temporary images that are generated when
a report is executed but not stored in the Library. The temporary image filenames follow the
following naming convention:

chart-<uid>.<imagetype>

where <uid>is a unique ID generated in the server. The UID is unique to the server machine.

Managing Images 63

The Image Servlet

All images are served by an image servlet. The servlet’s main URL is:

http://serverinstance:<portnumber>/scopeserver/servlet/imageservlet

The image servlet uses the following attributes:

Table 5 Image Servlet Attributes

Attribute name

Function

Valid values

action Indicates what to do with the image | get
loc The URL of the image valid URL
store Indicates where the image is

library, file

You can serve the image to the browser using a different server instance than the one that
generated the image. The temporary file is automatically deleted after it is served.

Image servlet serves URLs that access the following image types:

e TImages in the Library on page 64

e Images in the Configurable Images directory on page 64

e Per-server temporary chart images on page 64

Images in the Library

The following URL accesses the image at /User Reports/jdoe/myimage.gif in the
Library. It assumes the server is accessible through port 1234.

http://serverinstance:1234/scopeserver/servliet/

imageservlet?action=get&store=library&loc=/User%20Reports/jdoe/

myimage.gif

Images in the Configurable Images directory

The following URL accesses the image file myimage.gif under the images directory:

http://serverinstance:1234/scopeserver/servlet/

imageservlet?action=geté&store=file&loc=myimage.gif

Per-server temporary chart images

The following URL accesses temporary images generated by charts generated by a server

instance:

http://serverinstance:1234/scopeserver/servliet/

imageservlet?action=geté&store=file &loc=tmp/chart/serverinstance/
chart-uid.jpg&del=true

64

Chapter 9

Authentication and Authorization

The image servlet uses the Report Server authentication and authorization mechanism for
images stored in the Library. Therefore, to ensure that images are served, make sure that the
User object has been set in the user session object.

The images stored in the well-known directory in the Report Server distribution do not use
the authentication and authorization mechanism. Anyone can view them via the image
servlet.

Library Permissions

Managing Images

If the image is stored as a part of report output, then the image content is created in the same
folder and with the same permission as the report output. The content type is set to GENERIC.
The name of the image file uses the pattern:

chart-<uid>.<imagetype>

where <uid>is a unique ID generated in the server. The UID is unique to the server machine.

65

66

Chapter 9

10 Incorporating Reports into HTML

Most developers need to create complex HTML output. Typically, you need to group multiple
components into a single report and embed reports into an existing template or web site. This
chapter shows how to do this.

Pagination applies to the data rather than the component. If multiple components use the
same data, they are paginated the same way. To paginate reports on the same page
differently, duplicate the query and use a different instance of the query for each differently
paginated report.

The ways of incorporating reports into HTML are (in increasing order of flexibility):
e Using the StandardDashboard on page 67

e Using the StandardRecordGrid or StandardBandedTable on page 67

e Using Templates on page 67

e Writing Your Own HTML Page on page 68

e (Calling Reports from JSP or Servlets on page 70

Using the StandardDashboard

The simplest way to create a multi-component report is to use the Report Designer. If you
create a multi-component report, the reports are automatically placed in a
StandardDashboard component.

Using the StandardRecordGrid or StandardBandedTable

The standardRecordGrid is more flexible and more complex than the
StandardDashboard. It uses IFrames, and is more flexible at including image and text than
StandardDashboard. StandardBandedTable is more flexible still, providing nesting.

Using Templates

Use templates when the same Report Server both accesses your data source and serves your
end users. To use custom templates, follow these steps:

1 Create the report.
2 Publish the report on the Report Server.

67

3 Link to the wrapping JSPs.

Select Audit ships with sample template header and footer files, called
provencalheader.jsp and provencalfooter. jsp, for a fictitious food distribution
company.

Changing the Default Templates

All reports use the default header and footer templates defined in the following two files:

WEBAPPS HOME/scopeserver/header.jsp
WEBAPPS HOME/scopeserver/footer.jsp

To modify the headers and footers for your web site’s reports, edit these two files.

Specifying the Templates for a Report

To specify header and footer templates for a particular report, include the template attribute
in the rdl:layout tag. The name of the . jsp files called by a template are:

<templatename>header.jsp

and

<templatename>footer.jsp

where <templatename> is the name of the template attribute of the rdl:1layout tag.
For example, to use the provencal template, include the following block in the RDL file:

<rdl:layout template="provencal">

</rdl:layout>
This block uses following header and footer templates:

WEBAPPS HOME/scopeserver/provencalheader.jsp
WEBAPPS HOME/scopeserver/provencalfooter.jsp

Writing Your Own HTML Page

You can usually create the multi-component reports you need using only the Report Designer.
However, if you prefer, you can write your own HTML code to tie the reports, text, and links
together. To do this, you must be able to access the main multi-component page and all the
reports it links to via URLs, using frames or JavaScript.

Multi-component pages can use IFrames or other technologies to load the URL. You can put
each report into its own inline frame, position it where you like, and add other HTML code for,
say, images, lines, and links. See Example on page 69 for a sample multi-component page
using IFrames. If you cannot use URLs to call the reports, use a Select Audit API instead. See
Calling Reports from JSP or Servlets on page 70.

Chapfer 10

When you use the HTTP “API” to call a report, the Report Server typically returns an HTML
page, though it can return other formats. You can, however, publish a page in HTML format
directly to the Report Server and call it using the HTTP “API”, just as you would a report.
Once published to the Report Server, access to the multi-component HTML file is secured via
the standard Report Server security mechanism.

Example

The following example shows an HTML page containing customized formatting, descriptive

text, links, and two reports:

<html>

<head>

<title>My Main Page</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso0-8859-1">

</head>

<body bgcolor="#FFFFFF" leftMargin=20 topMargin=20 marginheight="0"
marginwidth="0" >

<!-- MAIN TABLE -->

<table border=0 cellpadding=0 cellspacing=0 >
<!-— ROW 1 -->

<tr>e

<!-- COLUMN 1 WHICH CONTAINS PROJECT LOGO-->

<td style="vertical-align:top;text-align:left;width:400">

</td>
<!-- COLUMN 2 WHICH CONTAINS LINK TO SECOND MULTI-COMPONENT REPORT -->
<td style="text-align:right;width:400">
Main View | <a href="/scopeserver/servlet/
scopecenter?action=show& p fn=/
User%20Scopes/-Dashboard%20 (Secondary%$20View) -">Secondary View

</td>

</tr>

<!--— ROW 2 -->

<tr>

<!-- COLUMN 1, 2 WHICH CONTAIN DASHBOARD TITLE-->

<td colspan="2" style="background-color:#FFFFFF; color:#000000
;text-align:left; font: bold large Times, serif;">

My Main Analysis

</td>

</tr>

<!-- ROW 3 -->

<tr>

<!-- COLUMN 1, 2 WHICH CONTAIN REPORTS AND DESCRIPTIVE TEXT-->
<td colspan="2" valign="top">

<!-- MAIN DIVISION-->

<div style="position:relative; top:0; left:0; width:800; height:1000;
border-top: solid black lpx; border-bottom: solid black lpx;">
<!-- INLINE FRAME WHICH CONTAINS FIRST REPORT -->

Incorporating Reports info HTML 69

<iframe name="il"src="/scopeserver/ScopeServer? p r=/User%20Scopes/

main analysis table view" style="position:relative; top: 10;

left: 10;

width:800; height:400" border=none frameborder=0 allowtransparency>
</iframe>
<!-- INLINE FRAME WHICH CONTAINS SECOND REPORT -->

<iframe name="il"src="/scopeserver/ScopeServer? p r=/User%20Scopes/
main_analysis graphical view" style="position:relative; top: 510;
left: 10; width:800; height:400" border=none frameborder=0
allowtransparency>

</iframe>

<!-- SUB DIVISION WHICH CONTAINS DESCRIPTIVE TEXT -->

<div style="position:absolute; top:600; 1left:500; width:300;
height:200; font: Times, serif;background-color:#FFFFFF; color:#999999">

How many items were created?

Which group buys more?

</div>
</div>
</td>
</tr>
<!-- ROW 4 -->
<tr>
<!-- COLUMN 1, 2 WHICH CONTAIN LINK TO SECOND DASHBOARD -->
<td colspan="2" style="text-align:right;width:800">
Main View | <a href="/scopeserver/servlet/
scopecenter?action=show& p_ fn=/
User%20Scopes/-Dashboard%20 (Secondary%$20View) -">Secondary View
</td>
</tr>
</table>
</body>
</html>

Calling Reports from JSP or Servlets

If you want to link reports to an already-developed web application, or if your application
dynamically generates web content, link your page to reports using the Select Audit-supplied
APIs.

Chapfer 10

11 Using JavaScript in RDL

This chapter shows how to use JavaScript within an RDL file.

JavaScript is a good way to add custom functionality to your reports. For example, you can use
JavaScript to ensure that the end user types a string with valid date syntax into a report text
control. You can also use it to provide rollover text.

To incorporate JavaScript in an RDL file, use the StandardInclude component. You can put
the JavaScript code directly in the RDL file, but it is better to reference an external JavaScript
file using the SRC attribute, because some characters, particularly curly braces ({ }), must be
escaped if they appear directly in the RDL file.

The JavaScript file that you invoke must be accessible by specifying a path on the file system.
The path is relative to WEBAPPS HOME/scopeserver.

Where in RDL fo Put the JavaScript

The placement of the StandardInclude component containing the JavaScript reference is
significant. The script must appear after the object it acts on. For example, if the script acts on
a control, you must place the StandardInclude component after the controls block
containing that control.

The basic rules for placing JavaScript calls in RDL are:
e Put the StandardInclude component where you want the script executed.

e Ifthe action is to be executed immediately, have the JavaScript execute unconditionally
(see Directly Invoking JavaScript on page 72).

e Ifthe action is to be executed at some event, put the JavaScript inside a function and use
the browser’s object model to invoke it (see JavaScript Inside a Function on page 72).

Examples

This section contains examples of the two ways to incorporate JavaScript into RDL.

These examples are taken from a single RDL file and a single JSP file. To see the complete files
from which these snippets are taken, see the Examples page that ships with this
documentation.

71

72

Directly Invoking JavaScript

The following is an example of a StandardInclude component that executes right away. As
soon as the RDL file executes this StandardInclude component, an alert is fired.

<rdl:useComponent type="StandardInclude" name="inlineScript">
<rdl:arg name="text">
<! [CDATA [

<SCRIPT>
alert ("This alert should appear right when the report is

loaded.");
</SCRIPT>
11>
</rdl:arg>
</rdl:useComponent>

JavaScript Inside a Function

This example illustrates using JavaScript to ensure that a text control contains an integer
value. The text field bound to the pSalesAmount parameter triggers the JavaScript
priceCheck function when the onblur event is triggered. (The browser’s object model
associates onblur with moving the focus off the control.)

To achieve this, do the following:
1 Write a JavaScript function called PriceCheck.js:

function priceCheck (editObj)

{
var pricePattern = /"~-2\d+$/gi;
if (!pricePattern.test (editObj.value))
{

alert (
"The sales amount field must contain a valid integer number

(i.e. 1000)"
) ;
editObj.select ()

}
2 Put the PriceCheck.js file in the WEBAPPS HOME/scopeserver/clientscripts
directory.
3 IntheRDL file, add a StandardInclude component that points to the JavaScript file. Put
the component at the end of the 1ayout block:
<rdl:useComponent type="StandardInclude" name="PriceCheckScript">
<!-- Include a JavaScript file for checking the price threshold -->
<rdl:arg name="text"><! [CDATA[
<SCRIPT SRC="clientscripts/PriceCheck.js"></SCRIPT>
11>
</rdl:arg>
</rdl:useComponent>

Chapter 117

4

Using JavaScript in RDL

Associate the JavaScript file with an action on the control. The RDL code that defines this
text field in the control block should now look like the following:

<rdl:textField cols="6" wrap="default" lines="1"
style="font-family:Arial; font-size:9pt;" password="false"
parameter="pSalesAmount"
labelStyle="font-family:Arial; font-size:9%pt;"
>having sales amount greater than USS$
<rdl:action event="onblur">
<! [CDATA[
priceCheck (this);
11>
</rdl:action>
</rdl:textField>

73

74

Chapter 117

12 Formatting PDF Output

This chapter provides technical information and stylistic guidelines for creating
well-formatted PDF report output.

See examples/Reports/SampleInvoice.rdl for an example of the report formatted for
PDF output.

Technical Overview

Select Audit uses the XSL:Formatting Objects (XSL:FO) standard for formatting PDF output.
(For details on the XSL standard, see http://www.w3.0rg/TR/2001/
REC-xs1-20011015/0Overview.html#contents.) XSL:FO describes the visual layout of
documents to be translated into various output types. Apache’s FOP (Formatting Objects
Processor) (http://docs.pushtotest.com/soapdocs/install/

FAQ Tomcat SOAP_ SSL.html)is an open-source library that renders XSL:FO documents
into printer-friendly formats, including PDF.

The Report Server comes bundled with the Apache FOP processor to provide PDF generation
out of the box. In addition, the Report Server supports another third-party PDF renderer,
XEP, made by RenderX. XEP is not bundled with the Report Server and is sold separately. By
default, the Report Server is configured to use FOP instead of XEP globally, but you can
configure it on a report-by-report basis.

When the Report Server requests the PDF channel as part of the report execution process (for
example, through the use of the download control or the p ch=pdf HTTP parameter), the
following events occur:

1 The Report Server formatting engine uses the relevant PDF JspP files to generate header
and footer information in XSL:FO format (see the files FODocHeader. jsp,
printheader.jsp, and printfooter. jsp in the webapps/scopeserver directory).

2 Each standard layout component used in the report generates XSL:FO output.

3 The Report Server formatting engine passes the generated XML document to the FOP
Processor.

4 The Report Server formatting engine outputs the generated PDF document (from FOP) to
the user.

75

http://www.w3.org/TR/2001/REC-xsl-20011015/Overview.html#contents
http://www.w3.org/TR/2001/REC-xsl-20011015/Overview.html#contents
http://xml.apache.org/fop/index.html
http://xml.apache.org/fop/index.html

RDL Arguments for PDF Formatting

RDL contains several arguments and tags specifically for PDF usage. They are:

Various page-size properties (see Page Dimensions on page 76).

The pdfWidth argument, which controls the column width for PDF output within a cell.
The formatting engine does not recognize the style sheet column width arguments that
are used for HTML output.

The PDFContentDisposition property in the <rdl:properties> block, which
dictates whether the document is displayed to the user inline or as a new window.

The forenderer parameter, which dictates the type of renderer to use (FOP or XEP). You
can also set the property to none to see the generated XML directly.

In standardBandedTable, the componentWidth argument, which dictates the PDF size
of bands placed next to each other (using the band break).

In standardBandedTable, the columnWidth block, which dictates each column width
within a single XML block for the table.

Page Dimensions

To set page dimensions, use the properties illustrated in the example below. Keep in mind
that you may want to reserve top and bottom margin space for the header and footer.

<rdl:properties>

<rdl:property name="pageWidth">8.5in</rdl:property>
<rdl:property name="pageHeight">11lin</rdl:property>
<rdl:property name="pageMarginLeft">.5in</rdl:property>
<rdl:property name="pageMarginRight">.5in</rdl:property>
<rdl:property name="pageMarginTop">1in</rdl:property>
<rdl:property name="pageMarginBottom">1in</rdl:property>

</rdl:properties>

The defaults for these properties are set in the conf/defaultscope.xml file.

Customizing the Header and Footer

To customize the PDF header (for example, to put the date and user information in every page
header), modify the FODocHeader . jsp file. You need a basic understanding of XSL:FO to do
this. See webapps/scopeserver/FODocHeader. jsp for an example.

For a reference of XSL:FO, see http://www.w3.0rg/TR/2001/REC-xs1-20011015/
Overview.html#contents.

76

Chapter 12

http://www.w3.org/TR/2001/REC-xsl-20011015/Overview.html#contents
http://www.w3.org/TR/2001/REC-xsl-20011015/Overview.html#contents

Page Breaks

The StandardBandedTable component uses the pageBreak argument in the header
sections to generate a break before the header. If you are not using StandardBandedTable,
another option is to insert a “dummy” component in the relevant section of your RDL file, as
follows:

<rdl:useComponent name="pgbrk" type="StandardBandedTable">
<rdl:arg name="dataSet"></rdl:arg>
<rdl:arg name="header">
<rdl:arg name="pageBreak">true</rdl:arg>
</rdl:arg>
</rdl:useComponent>

PopCharts Image Size

To ensure that PopCharts images are properly displayed in PDF, set the chart dimensions
explicitly in the image style to match the dimensions in RDL, including the border dimensions,
as in the following example:

<rdl:arg name="imageStyle">width:150px;height:100px,border:0</rdl:arg>

Note that the unit of measurement indicator (in this example, px for pixels) is required. This
property is accessible in the Properties window.

Miscellaneous Formatting Tips

This section contains some other formatting suggestions.

Cell Padding

Use the cell padding style argument to prevent text from bleeding into table borders. For
example:

<rdl:arg name="style">font-weight:bold;padding-left:3pt</rdl:arg>

Cell Colors

In SstandardBandedTable, use row styles instead of cell styles to prevent white space (or
table background color) from appearing in remainder of cells in situations where some cells
have a line break and others don’t.

Formatting PDF Outout 77

78

Checking XSL:FO Output

To check the XSL:FO output for debugging or educational purposes, run the report with the
_p_ch=pdf& p forenderer=none parameters. This will generate the XML that would
normally be passed to the FOP engine, but instead is passed to your browser window for
display.

Constraints

This section describes constraints in PDF rendering.

Repeating Table Headers

XSL:FO supports the concepts of table-header and table-body. With the more recent versions
of FOP, table-headers also have the behavior of repeating on page breaks (for tables that span
multiple pages).

Each table has only one header section. Therefore, if you use StandardBandedTable, you
might design a report where each band looks like a new table, but is in fact the continuation of
one larger table. This way, only the global table header, not the band headers, appear on each

page.

Custom Components

If you write custom components, you must also write XSL:FO to support PDF rendering. The
standard layout components provide good examples of this output.

Hyperlinks

Hyperlinks are not rendered in PDF format.

Standardinclude and CDATA Markup

Fonts

The StandardInclude component enables report developers to set the format of embedded
HTML The standardInclude component and embedded HTML are not converted to PDF
format. For example, the formatting of the following RDL code is not preserved in PDF output:

<rdl:arg name="text”><! [CDATA[My <hl/>Heading</hl>]]></rdl:arg>

FOP supports only the base 14-font package defined in the Adobe PDF specification, which
includes Helvetica, Times, Courier, Symbol and ZapfDingbats. FOP automatically maps other
fonts specified by style component arguments to one of the above fonts. Report Server does not
control that mapping.

Therefore, when deciding on fonts for styles, indicate the optimal font first, then a secondary
font as a backup for PDF display.

Chapter 12

Oversized Page Content

If a generated component “stretches” to the page boundaries, it is cut off. To avoid this,
explicitly set the column widths and the page dimensions to provide the best proportions for
optimal display.

Formatting PDF Outout 79

80

Chapter 12

13 Runtime RDL Processing

This chapter shows how RDL is processed at runtime.

Client '—Pm »| Process ROL 5| Published RDL

[y
¢ -

F—
Create)
RunTimeContext Security Source

Create layout JSP

I !

o output > Layout JSP

—_
Output (HTML, PDF, etc.)

Reporting Data
Source

Component JSP
___/-._‘-‘-\

template JSPs
“--___.-/-._‘-“h

|

L—w{ .SF tag library

Report Server

Figure 1 RDL processing

The steps are:

1

o O A WN

Request

The Report Server receives a request from the client to run a report.

Request Received on page 81

Request Passed Through the Authentication Filter on page 82
Parameters Extracted on page 82

RDL File Parsed on page 82

Report Output Constructed on page 82

Report Output Sent to the Client on page 83

Received

87

Request Passed Through the Authentication Filter

The request goes through the standard Report Server Authentication Filter, which verifies
that a user is authenticated and exists in the Directory. The flow of the authentication and
authorization process depends on the Report Server configuration settings.

Parameters Extracted

The Report Server servlet extracts parameters from the request.

The Report Server uses standard parameters to determine, for example, the report to be
executed and its output channel. The most commonly-used parameters are:

pr The name of the published RDL file

_p ch The output channel (HTML, PDF, Excel, CSV, XML)

_p pi The name of the profile

P _Pg part-of-page mode

Custom parameters are passed in the request as name-value pairs. These parameters can be
applied to either report content or layout.

RDL File Parsed

The Report Server retrieves content of the RDIL template file from the library and parses the
RDL.

Initialize the RunTimeContext object by setting standard properties and objects, including
the User object, the output channel, default and report-override report properties,
parameters, the Content object, and compiled JavaScript expressions.

Construct the layout JSP file in the scopeserver/tmp/layout directory. The layout JSP file
contains tags related to the layout section of the RDL template and is reconstructed only when
the layout section of the RDL template changes. The tags used in the layout JSP file are
defined in the Report Server JSP tag library: scopeserver/WEB-INF/rdl.tld.

Report Output Constructed

The Report Server constructs report output by including contents of the layout template and
layout JSP in the Ht tpResponse object.

The RunTimeContext object is set in the request and is available in the layout template and
layout Jsp via the RDL object. The RDL object is an instance of
com.panscopic.scopeserver.taglibs.RDL and is initialized by including the RDL. jsp
file via the JsSP include directive:

<%@ include file="RDL.jsp" %>

Chapter 13

The layout template consists of the header and footer JSP files in the scopeserver directory.
The naming convention of these files is:

[template name]header.jsp

[template name] footer.jsp

The template is applied to the report via the template attribute of the layout RDL argument,
as follows:

<layout template="[template name]">

The layout JSP invokes the appropriate tag implementations from the tag library. After the
<rdl:useComponent> tag is processed, the content of the corresponding component JSP is
included in the Ht tpResponse object. The component is defined by component JSP file and
referenced in the rdl : useComponent tag via type attribute:

rdl:useComponent type="[component name]">

The component implementation provides functionality for accessing a data source, iterating
through the data result set, and providing presentation logic for different output channels.
The RunTimeContext object can be accessed in the component JSP via the RDL object.

Report Output Sent to the Client

The report output is sent to the client for rendering and display.

Runtime RDL Processing 83

84

Chapter 13

14 PopChart Support

PopChart Basics

PopChart graphs are described using a custom XML syntax called PCXML. PCXML files, also
called appearance files, have the extension .pcxml. PCXML includes tags to describe the
chart’s type, its layout and configuration, and the data that it should display. An appearance
file may contain many chart objects, each with its own configuration. It may also include other
objects, such as labels, legends, and images.

Use the Report Designer or hand-code RDL to design the StandardPopChart component that
uses the appearance file.

The PopChart Server is embedded in the Report Server. At report generation time, the Report
Server uses PCScript to insert data and other dynamic elements into the each of the chart
objects. Select Audit can also override settings within the appearance file.

PCScript cannot manipulate every PCXMIL tag. However, it does have methods for adding any
PCXML snippet on the fly to override existing values. Using these methods you can provide
standard Select Audit parameters. (See Using the addPCXML and setPCXMLAttribute Tags
on page 89 for details.)

Terminology

The terms used in this section are:

Categories | The X-axis data values. Categories are typically strings like
Salesperson Name, or Region. Categories are specified
with the categories argument in the RDL useComponent
block.

Series The Y-axis data values. Typically, these are the main values
for graphs. Strings like Total Sales and Closing Price
are typical values. Series are specified with the series
argument in the RDL useComponent block. This block
contains data label and data value information.

Data Labels | The labels required by each series. Each label is denoted
with a label argument in the RDL useComponent block.

Data Values | The value(s) assigned to a series. Each series requires at
least one data value. Some graph types require multiple data
values per series. For these graphs, use multiple data tags.
Data values are denoted within the RDL data block.

85

86

Data Requirements for PopChart Types

This section describes the PopChart graph types and the data requirements for each.
Table 6 PopChart Types

PopChart graph type | Data requirements

bar One category.

stacked bar One or more series. Fixed number of series.

line . .

. One data value in each series.

line bar combo

area

radar

pareto Multiple categories.
One or more series. Fixed number of series.
One data value in each series.

pie A single title, which becomes the category name.
A series for the labels. The number of series is typically dynamic.
A series for the data values. The number of series is typically
dynamic.
See Pie Chart Tips on page 88 for more information on creating
PopChart pies in the StandardPopChart component.

XY No category.

X-Y bubble One or more series.

222 bﬁ)lible Each series requires at least two data values representing the X

p and Y coordinates respectively. An optional third data value

converts the graph to a bubble graph, where the last value is the
size of the bubble.
For time plots, the first data value in each series should be a date.
You can sort dates using either the AddPCXML tag or the
appearance file. See the Corda documentation for the SortData
attribute.

stock graphs A single category value.

(candlestick, high-low /
open-close)

One or more series.

Each series requires least two data values (representing high/low
stock values). Optional third and forth values represent open/close
values respectively.

gauge Must have a value.
May have 1abel, min, max, and dataSet.
If min and max are set in the appearance file, they are not
required by the StandardPopChart component.

unknown If the type is unspecified or of a type unknown to the Report

Designer, this graph type is used.
No limitations are placed on the number of series you can have or

the number of data fields per series. You must have at least one
data series, however.

Chapter 14

How Select Audit uses PopCharts

The StandardPopChart component classifies PopCharts as follows:
® graph

® pie charts

® gauge

® map

Graph represents all graph types except pie charts. (Even pie charts sometimes have type
graph in StandardPopChart; see Pie Chart Tips on page 88.)

See the HP OpenView Select Audit 1.01 Report Designer’s Guide for more information on
PopChart support in the Report Designer.

How PopCharts are Represented in RDL

PopCharts are represented in RDL by a useComponent block of type StandardPopChart
containing the following:

e a pointer to a PCXML file (or a complete inline PCXML file)

e an image type (defaults to JPEG), height, and width

e one or more blocks with arg names graph, pie, gauge, map, or extra

The following sample useComponent block is for a single graph with two series:

<rdl:useComponent name="Chart 2" type="StandardPopChart">
<rdl:arg name="pcxmlFile">pop.pcxml</rdl:arg>
<rdl:arg name="imageType">JPEG</rdl:arg>
<rdl:arg name="height">400</rdl:arg>
<rdl:arg name="width">700</rdl:arg>
<rdl:arg name="graph">
<rdl:arg name="object">graph</rdl:arg>
<rdl:arg name="dataSet">Queryl</rdl:arg>
<rdl:arg name="maxRows">20</rdl:arg>

<rdl:arg name="series">
<rdl:arg name="label">US$ Sold</rdl:arg>
<rdl:arg name="data">{data.Queryl.PriceExt}</rdl:arg>
<rdl:arg name="data">{data.Queryl.SumQuantity}</rdl:arg>
<rdl:arg name="data">2</rdl:arg>

</rdl:arg>

<rdl:arg name="series">
<rdl:arg name="label">Quantity Ordered</rdl:arg>
<rdl:arg name="data">{data.Queryl.PriceExt}</rdl:arg>
<rdl:arg name="data">{data.Queryl.SumQuantity}</rdl:arg>
</rdl:arg>

</rdl:arg> <!-- end of graph -->

PopChart Support

</rdl:useComponent>

Using the Extra Argument

Use the extra argument to:

e add drill-down capability to a region that does not normally take drilldowns in a
PopChart. (See Adding drilldown capability on page 88.)

e set or change PCXML objects or tags. (See Using the addPCXML and setPCXMLAttribute
Tags on page 89.)

e pass Select Audit parameters to the chart. (See Using the addPCXML and
setPCXMLAttribute Tags on page 89 for an example.)

Adding drilldown capability

To add drilldowns to region without drilldown support in PopChart, use the extra block to
override the object on which you want to drill down and add drilldown capabilities to that
object.

The following RDL snippet illustrates adding drilldown to a title:

<rdl:arg name="extra'">
<rdl:arg name="object">title</rdl:arg>

<rdl:arg name="addPCXML"><! [CDATA[<Text>CLICK ON ME!</Text>]]>
</rdl:arg>

<rdl:arg name="drilldown">

<rdl:arg name="url"><! [CDATA [http://www.panscopic.com]]>
</rdl:arg>

</rdl:arg>
</rdl:arg>

Pie Chart Tips

The slices of pie charts can be generated in one of two ways:
e All the slices of the pie are created from a single data column.
e Each slice of the pie corresponds to its own data column.

If all the slices of the pie are created from a single column, use the pie attribute of the
StandardPopChart. To assign a different data column to each slice, use graph rather than
pie. In the graph block, assign a different series to each slice.

Chapter 14

Using the addPCXML and setPCXMLAttribute Tags

addPCXML and setPCXMLAttribute, which correspond to PCScript methods of the same
name, override values in the appearance file. They can be used either in the main section of
the appearance file or on a specific object.

These two arguments typically let you use Select Audit parameters in a PopChart.
For example, the following RDL code sets the PCXML attribute:

<rdl:arg name="extra">
<rdl:arg name="object">piel</rdl:arg>
<rdl:arg name="addPCXML">
<! [CDATA [<Properties PieExplodedSeriesNumber='{param.explode}' />]]1>
</rdl:arg>
</rdl:arg>
where the parameter named explode is defined in the RDL parameters block. The
PieExplodedSeriesNumber attribute of the Properties tag on the chart is set to the

parameter’s value. Any attributes that can be modified via addPCXML or
setPCXMLAttribute can be configured this way at run time.

The following more complete example illustrates adding drilldowns to a graph:

<rdl:useComponent name="Chart 2" type="StandardPopChart">
<rdl:arg name="pcxmlFile">drill down.pcxml</rdl:arg>
<rdl:arg name="imageType">FLASH</rdl:arg>
<rdl:arg name="height">600</rdl:arg>
<rdl:arg name="width">800</rdl:arg>
<rdl:arg name="extra">
<rdl:arg name="object">graph</rdl:arg>
<rdl:arg name="addPCXML"><! [CDATA[<Drilldown
MetaString="'{url.scopeserver}
?{url.scope ("/User Scopes/pop chart/orders over time")}
&pProductName=% CATEGORY NAME' />]]></rdl:arg>
</rdl:arg>
<rdl:arg name="graph">
<rdl:arg name="categories">{data.Queryl.PRODUCT NAME}</rdl:arg>
<rdl:arg name="series">
<rdl:arg name="label">Cost</rdl:arg>
<rdl:arg name="data">{data.Queryl.Cost}</rdl:arg>
</rdl:arg>
<rdl:arg name="series">
<rdl:arg name="label">Revenue</rdl:arg>
<rdl:arg name="data">{data.Queryl.Revenue}</rdl:arg>
</rdl:arg>
<rdl:arg name="dataSet">Queryl</rdl:arg>
<rdl:arg name="maxRows">{param.pCount}</rdl:arg>
</rdl:arg>
</rdl:useComponent>

PopChart Support 89

90

Limitations

When you use the Ad Hoc Wizard on a report containing a PopChart, you get a standard
Select Audit chart, and initial column selections are not recognized.

Chapter 14

A Select Audit Variable Syntax

This appendix shows how to use Select Audit variables within RDL. The four types of Select
Audit variables are:

e Parameter Variables on page 91

e User Variables on page 93

e Data Variables on page 94

e (Cell Name Variables on page 95

Curly braces ({}) are used to indicate Select Audit variables.

Select Audit variables can appear in the following places in the RDL file:
e In rdl:column value attributes.

e As rdl:arg values. The exception is when the name of the rdl :arg name attribute is
expression. In this case, the “bracket” Select Audit variable syntax is not permitted, but
you can use any JavaScript expression as the expression value.

e Within sqgl blocks (for RDBMS data sources) and url blocks (for XML data sources).

Parameter Variables

Select Audit provides two types of parameter variables: one for use within a content block,
and one for use within the 1ayout block.

Content Block Parameter Syntax

The syntax for parameters within the content block is:
{param.<paramName> (<argumentl>, <argument2>, [<argument3>]) }

The parameter can take either two or three arguments. The first argument represents what
will appear before the parameter’s first value. The second argument represents what will
appear after the parameter’s last value. The third (optional) argument represents the
separator character(s) between parameter values. The third argument is ignored if the
parameter can take only one value. If the third argument is not included, a comma followed by
a space is assumed.

ejb blocks use a simplified parameter syntax: {param.<paramname>}.

The parameter may evaluate to NULL. To ensure that the SQL statement is still valid when
this occurs, Select Audit inserts 1=1 if needed after WHERE, AND, or OR.

97

Examples
Assume a parameter called region that can take values EAST, WEST, NORTH, and SOUTH.

Single-value parameters

When the parameter can have only one value, there is no need to include the third argument.

For example, if the end user chooses the value EAST for the region parameter, the following
query:

SELECT * FROM tableX WHERE {param.region("region='", "'"})
evaluates to:
SELECT * FROM tableX WHERE region='EAST'

In this example, if the end user does not choose a value for the region, the Select Audit inserts
“1=1”" and the query evaluates to:

SELECT * FROM tableX WHERE 1=1

which returns all rows from tableX.

Multi-value parameters

If comma followed by space is an acceptable separator, you don’t need to include the third
argument. This is often the case if the parameter returns integers or other data types that
don’t need to be put between single quotation marks in the SQL language.

If the parameter returns a string value, you typically do need to specify the third argument.
For example, assume the end user selects both NORTH and EAST from a multi-valued list. The

query:
SELECT * FROM tableX WHERE region IN {param.region("('"™, "")", "', '™)}

evaluates to:

SELECT * FROM tableX WHERE region IN ('NORTH', 'EAST')

Layout Block Parameter Syntax

Parameters used within the 1ayout block let you to fetch either the value of a parameter or
its label. The syntax for parameters in the 1ayout block is:

{param.<paramname>.label}
OR:
{param.<paramname>.value}

For example, if your report contains a control that allows the end user to set the table header,
the useComponent block of the 1ayout block may contain the following line:

<rdl:arg name="Header">{param.headerParam.label}</rdl:arg>
You can use JavaScript expression syntax, for example:

<rdl:arg name="Header">'Report: View by ' + {param.headerParam.label}
</rdl:arg>

Chapter A

Parameter Types

Parameter variables are JavaScript String objects. Therefore, you can use any method
available to these objects. See Example on page 33 for sample code using the equals method
on a layout parameter expression.

User Variables

The name of an attribute associated with an end user can be passed to a query in much the
same way as a parameter. User names are needed to enable permissions and security.

The syntax of a user variable is identical to that of a parameter variable.

Content Block User Variable Syntax

The syntax for user variables within the content block is:
{user.<attributeName> (<argumentl>, <argument2>, [<argument3>])}

The user variable attribute can take either two or three arguments. The first argument
represents what will appear before the user variable attribute’s first value. The second
argument represents what will appear after the user variable attribute’s last value. The third
(optional) argument represents the separator character(s) between user variable attribute
values. The third argument is ignored if the user variable attribute can take only one value. If
the third argument is not included, a comma followed by a space is assumed.

ejb blocks use a simplified user variable syntax: {user.<attributeName>}.

The user variable may evaluate to NULL. To ensure that the SQL statement is still valid when
this occurs, Select Audit inserts 1=1 if needed after WHERE, AND, or OR.

Examples

Assume a user variable attribute called region that can take values EAST, WEST, NORTH, and
SOUTH.

Single-value user variable attributes

When the user variable attribute can have only one value, there is no need to include the third
argument.

For example, if the end user’s region attribute has the value EAST, the following query:
SELECT * FROM tableX WHERE {user.region("region='", "'"})

evaluates to:

SELECT * FROM tableX WHERE region='EAST'

In this example, if the end user’s region attribute has not been assigned a value, the Select
Audit inserts “1=1" and the query evaluates to:

SELECT * FROM tableX WHERE 1=1

which returns all rows from tableX.

23

Multi-value user variable attributes

If comma followed by space is an acceptable separator, you don’t need to include the third
argument. This is often the case if the user variable attributes evaluate to integers or other
data types that don’t need to be put between single quotation marks in the SQL language.

If the user variable attribute is a string value, you typically do need to specify the third
argument. For example, assume the end user selects both NORTH and EAST from a
multi-valued list. The query:

SELECT * FROM tableX WHERE region IN {user.region("('", "")", "', '™)}
evaluates to:

SELECT * FROM tableX WHERE region IN ('NORTH', 'EAST')

Layout Block Parameter Syntax

The syntax for user variable attributes in the 1ayout block is:
{user.<attributeName>}

For example, if your report assigns a different table header to each user, the useComponent
block of the 1ayout block may contain the following line:

<rdl:arg name="Header">{user.name}</rdl:arg>
You can use JavaScript expression syntax, for example:
<rdl:arg name="Header">'Welcome ' + {user.name}</rdl:arg>

Layout parameter expressions are really JavaScript String objects, so you can use JavaScript
methods, such as “equals”. See Example on page 33 for sample code using the “equals”
object on a layout parameter expression.

User Variable Types

User variables are JavaScript String objects. Therefore, you can use any method available to
these objects. For information on the JavaScript String class, see http://
developer.netscape.com/docs/manuals/js/core/jsrefl5/contents.html.

Data Variables

Data variables represent return values from a query. They are typically used in the 1ayout
block of the RDL file, and refer to return values in the <XMLTag>data block.

The syntax of a data variable is:
{data.<data block name>.<return column name>}

For example, the following data variable represents the values of the product id column in
the salesquery <XMLTag>data block.

{data.salesquery.product id}

Chapter A

http://developer.netscape.com/docs/manuals/js/core/jsref15/contents.html
http://developer.netscape.com/docs/manuals/js/core/jsref15/contents.html

For tables and crosstabs, the following syntax is also valid:
{data.<data block name>.summary.<return column name>}
Group tables also may use:
{data.<data block name>.group.name}

to represent the name of the current group.

Data Variable Types

The class returned by a data variable depends on the type attribute of the returned column.
The following table shows the object type returned for each column type:

Column type Data variable object type
string JavaScript String

short JavaScript Number

int JavaScript Number

integer JavaScript Number

long JavaScript Number

float JavaScript Number

double JavaScript Number

money JavaScript Number

date Java java.util.Date

Cell Name Variables

Cell name variables represent the current cell value in a crosstab. The syntax is:
(crosstab.thiscell.{cellname})

cellname represents the value of the data argument in the cell definition in the layout
section of the RDL file. For example, if the name of the data layout argument for a cell is
quantity, then the following expression represents the value in that cell:

(crosstab.thiscell.quantity)

Cell Name Variable Types

Cell name variables are JavaScript Number types.

95

96

Chapter A

Index

A custom block, 26

Access Control List. See ACL
ACL, defined, 21

custom data source
accessing using the Extensibility API, 57
pagination in, 59

action attribute, image servlet, 64 sorting in, 59
ad hoc, defined, 20 custom directory provider, using the Extensibility
Ad Hoc Wizard API with, 60

defined, 20

designing reports for, 29 D
administrator, defined, 11 dashboard, defined, 16
API provided by Select Audit, 53 data block
appearance file, defined for PopCharts, 85 contents of, 26

defined, 19

App Server Plugin, defined, 53
DataSet interface, 58

DataSetIterator interface, 58

data source
custom, 57
defined, 18
B EJB, 46
list of supported, 18
other than SQL SELECT, 41
stored procedure, 50
XML, 42

DataSource interface, 58

authentication and image servlet, 65
authentication module, custom, 60

authorization and image servlet, 65

background images, 62
banded table, defined, 16

C
Catalog, defined, 19

cell name variable
as a JavaScript expression, 95

data variable
as a JavaScript expression, 95
data type of, 95

data type of, 95 syntax, 94
defined, 95 developer, defined, 11
chart, defined, 16 .
developing a report, 39
component directory
deﬁned, 16 defined, 21

specifying images in, 62

content block, 26
parameters within, 91
user variables within, 93

control, defined, 17
controls block, 27
crosstab, defined, 16

custom authentication module and the Extensibility

API, 60

managing using the SOAP API, 56

directory provider, custom, 60
DirectoryProvider interface, 60
down icon, 63

dynamic image
defined, 61
sample code for, 63

E

ejb block, 26

EJB data source, 46

end user, defined, 11
Enterprise Java Bean. See EJB

expression, defined, 21

Extensibility API, 57 to 60
accessing a custom data source with, 57
defined, 53
overview, 57
using with a custom authentication module, 60
using with a custom directory provider, 60

F
fill image, 62

footer template
default, 68
specifying in a report, 68

FOP use in Select Audit, 75

H

header template
default, 68
specifying in a report, 68

HTTP API, defined, 53

icon, sorting, 63

image
and Library permissions, 65
background, 62
deploying, 63
dynamic, 61
fill, 62
server-specific temporary directories for, 63
specifying in a component file, 62
specifying in RDL, 62
static, 61
temporary directory for, 63

image management, 61 to 65

image servlet
defined, 63
security and, 65
URL for, 64
URL for images directory, 64
URL for Library image, 64
URL for temporary image, 64

inline frame, in multi-component reports, 68

98

J
Java Client SOAP API, defined, 53

JavaScript
and cell name variables, 95
and data variables, 95
and parameters, 93
and user variables, 94
in RDL, 71

JNDI
connection for WebLogic, 48
connection for WebSphere, 48
defining a connection, 47

L

layout block
defined, 27
parameters within, 92
user variables within, 94

Library
defined, 20
managing using the SOAP API, 56
permission on images in, 65
security and images in, 65
URL for images stored in, 64

loc attribute, image servlet, 64

LoginModule interface, 60

M

multi-component report, 67

(o)

Oracle stored procedures, 51

P

pagination in a custom data source, 59
paginations block, 26

parameter
and PopCharts, 89
and XML data source, 42
as a JavaScript expression, 93
data type of, 93
defined, 17
discussion of, 31 to 38
syntax of, 91
where used in RDL, 31
within content block, 91
within layout block, 92

parameterizedCondition, 42

parameters block, 26

PDF S
formatting output, 75 to 79

schedule
RDL arguments for, 76 defined, 22
permission, and image servlet, 65 using the SOAP API, 57
PopChart security
component defined, 17 and image servlet, 65
parameters for, 89 defined, 21
profile, defined, 17 Select Audit variable. See variable
properties block, 25 servlet
publishing, defined, 22 image, 63
URL for image, 64
Q session management, using the SOAP API, 56
query SOAP API, 55 to 57
defined, 18 defined, 53
parameters within, 91 methods of, 56
user variables within, 93 setting up, 55
query file, defined, 18 sorting
icon for, 63
R in a custom data source, 59

specifying icons for, 63
rdbms block, 26
RDL
content blocks of, 26
controls block of, 27
custom block of, 26

sortings block, 26

SQL statement
parameters within, 91
user variables within, 93

defined, 15 StandardInclude component
ejb block of, 26 and PDF output, 78
highest level blocks of, 25 using with JavaScript, 71
hOW to modify, 25 static image, 61
E;iii’ l?lz(l)ck of 27 store attribute, image servlet, 64
overview of, 25, to 27 stored procedure as a data source, 50
paginations block of, 26 syntax
parameters block of, 26 of cell name variable, 95
properties block of, 25 of data variable, 94
rdbms block of, 26 of parameter, 91
sortings block of, 26 of user variable, 93
specifying images in, 62
useComponent block of, 27 T
where variables can appear in, 91
xmlsource block of, 26 table, defined, 16
record grid, defined, 16 template, 67 to 68
Report Center schedule creation, 22 cu§tom, 67
using, 67

Report Definition Language. See RDL theme, defined, 19
report development cycle, 39
report execution using the SOAP API, 57]
Report parameter and XQuery, 42 up icon, 63
uploading, defined, 22

useComponent block, defined, 27

user variable
as a JavaScript expression, 94
data type of, 94
syntax, 93
within content block, 93
within layout block, 94

\'}

variable
cell name, 95
data, 94
parameter, 91
user, 93
where in RDL it can appear, 91

variable, defined, 91

X
XEP use in Select Audit, 75

XML data source
described, 42
designating rows and columns from, 44

xmlsource block, 26

XQuery
and Report parameters, 42
as a data source, 42
writing a custom data source, 59

XSL:FO
checking output, 78
how used by Select Audit, 75

7100

	Report Developer’s Guide
	Contents
	1 Overview
	Who is This Book For?
	What’s in This book?
	The Select Audit Documentation Set

	2 Terms and Concepts
	RDL
	Component
	Control
	Parameter
	Profile
	Data Source
	Query
	Data Blocks

	Theme
	Catalog
	Catalog Queries
	Catalog Parameters
	Catalog Themes
	Catalog Permissions

	Library
	Client Tools
	Ad Hoc Wizard
	Permissions, Directories, and ACLs
	Expression
	Uploading and Publishing
	Schedule
	Report APIs
	HTTP “API”
	Extensibility API
	SOAP API

	Report Variables

	3 RDL Overview
	Top-level Tags
	Properties
	Parameters
	Content
	Paginations
	Sortings
	Layout

	4 Report Creation Tools
	Client Tools
	Report Designer

	Ad Hoc Wizard

	5 Parameters
	Parameters and RDL
	Content Parameters
	Layout Parameters

	Tips for Using Parameters
	Tips for the Content Section
	Making sure the parameter has a value
	Making sure the parameter has only one value

	Tips for the Layout Section

	Example

	6 Guidelines for Developing Reports
	Using the Report Designer
	Test-publishing Your Report
	Copying Your Report to the rdl Directory
	Using the Developers Center

	Publishing Your Report

	7 Working with Non-SQL Data Sources
	Queries and Parameters
	Non-SQL SELECT “Queries”
	Parameters Not in SQL SELECT Statements

	XML Data Sources
	Select Audit Parameters and XML Data Sources
	Select Audit Parameters and XQueries
	Designating Rows and Columns from an XML Data Source
	Examples

	EJB Data Sources
	Setting Up a JNDI Connection
	WebLogic Example
	WebSphere Example
	Example Java Files
	Basic EJB Example
	Parameterized EJB Example

	Stored Procedure Data Sources
	Example Stored Procedure Arguments
	Handling Return Values
	Return values from Oracle stored procedures

	8 Select Audit APIs
	API Overview
	When to Use Each API
	HTTP “API”
	URL Syntax for the HTTP API
	Example HTTP Request

	SOAP API
	Setting up the SOAP API
	Java application
	Non-Java application

	Types of Methods
	Session management
	Library
	Directory
	Report execution
	Schedule

	Java Client SOAP API
	Extensibility API
	Writing a Custom Data Source
	Writing a Custom XQuery Data Source
	Writing a Custom Directory Provider
	Writing a Custom Authentication Module

	9 Managing Images
	Static and Dynamic Images
	Static Images
	Dynamic Images

	Image Usage
	Images in an RDL File
	Images in a Component File
	Background Images for Charts
	Fill Images for Charts
	Sorting Icon Images
	Dynamic Images Generated by Chart Components

	Deploying Images
	Configuring the Image Directory
	Temporary Images Directory per Server Instance

	The Image Servlet
	Images in the Library
	Images in the Configurable Images directory
	Per-server temporary chart images

	Authentication and Authorization
	Library Permissions

	10 Incorporating Reports into HTML
	Using the StandardDashboard
	Using the StandardRecordGrid or StandardBandedTable
	Using Templates
	Changing the Default Templates
	Specifying the Templates for a Report

	Writing Your Own HTML Page
	Example

	Calling Reports from JSP or Servlets

	11 Using JavaScript in RDL
	Where in RDL to Put the JavaScript
	Examples
	Directly Invoking JavaScript
	JavaScript Inside a Function

	12 Formatting PDF Output
	Technical Overview
	RDL Arguments for PDF Formatting
	Page Dimensions
	Customizing the Header and Footer
	Page Breaks
	PopCharts Image Size
	Miscellaneous Formatting Tips
	Cell Padding
	Cell Colors
	Checking XSL:FO Output

	Constraints
	Repeating Table Headers
	Custom Components
	Hyperlinks
	StandardInclude and CDATA Markup
	Fonts
	Oversized Page Content

	13 Runtime RDL Processing
	Request Received
	Request Passed Through the Authentication Filter
	Parameters Extracted
	RDL File Parsed
	Report Output Constructed
	Report Output Sent to the Client

	14 PopChart Support
	PopChart Basics
	Terminology
	Data Requirements for PopChart Types
	How Select Audit uses PopCharts
	How PopCharts are Represented in RDL
	Using the Extra Argument
	Adding drilldown capability

	Pie Chart Tips
	Using the addPCXML and setPCXMLAttribute Tags
	Limitations

	A Select Audit Variable Syntax
	Parameter Variables
	Content Block Parameter Syntax
	Examples

	Layout Block Parameter Syntax
	Parameter Types

	User Variables
	Content Block User Variable Syntax
	Examples

	Layout Block Parameter Syntax
	User Variable Types

	Data Variables
	Data Variable Types

	Cell Name Variables
	Cell Name Variable Types

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

